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ABSTRACT 

 

This dissertation presents new methods for detecting dynamic and thermodynamic characteristics 

of Arctic sea ice using radar remote sensing. Such methods are important to better understand the 

the impact of ongoing reduction of Arctic sea ice on physical, chemical and biological processes 

in the Arctic marine ecosystem.  

A new technique for ice motion detection from sequential satellite synthetic aperture radar 

(SAR) images was developed and thoroughly validated. This method is more robust and accurate 

compared to the previous ones. The accuracy of the system is 0.43 km obtained from a 

comparison between SAR-derived ice motion vectors and in-situ sea ice beacon trajectories. For 

the first time, we evaluated ice motion tracking results derived from HH and HV polarization 

channels of RADARSAT-2 ScanSAR imagery and formulated a condition where the HV 

channel is more reliable than the HH channel for ice motion tracking. Furthermore, we found 

that the ice motion tracking from the HV channel is not affected by noise floor stripes (due to 

inhomogeneity of the antenna pattern across the satellite track), which are prominent in the 

cross-polarization RADARSAT-2 ScanSAR images.  

Sea ice motion is substantially controlled by surface winds. Two new models for ocean 

surface wind speed retrieval from C-band SAR data have been developed and validated based on 

a large body of statistics on buoy observations collocated and coincided with RADARSAT-1 and 

-2 ScanSAR images. The proposed models without wind direction input demonstrated a better 

accuracy than conventionally used CMOD_IFR2 and CMOD5.N models in combination with the 

SAD co-polarization ratio (VV/HH), which require wind direction input. Root-mean square error 

(RMSE) for our HH-HV wind speed retrieval model is 1.59 m/s while RMSE of 
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CMOD5.N+SAD model (which requires wind direction) is 2.19 m/s. As a combination of the 

developed methods we designed a wind speed-ice motion product which can be a useful tool for 

studying sea ice dynamics processes in the marginal ice zone. 

To effectively asses the thermodynamic properties of sea ice advanced tools for modeling 

electromagnetic (EM) wave scattering from rough natural surfaces are required. In this 

dissertation a new analytical formulation for EM wave scattering from rough boundaries 

interfacing inhomogeneous media is presented based on the first-order approximation of the 

small perturbation method. This solution operates with physically meaningful reflection and 

transmission coefficients associated with certain geophysical media (e.g. snow and ice) which 

makes it practical for geophysical remote sensing applications. Available solutions in the 

literature represent special cases of our general solution.  

The developed scattering theory was applied to experimental data collected at three stations 

(with different snow thicknesses) during the Circumpolar Flaw Lead system study in the 

Beaufort Sea from the research icebreaker Amundsen. Good agreement between the model and 

experimental data were observed for all three case studies. The model results revealed that the 

scattering at the snow-ice rough interface is usually stronger than at the air-snow interface. 

Furthermore, both model and experimental normalized radar cross-section (NRCS) values were 

considerably higher for thin snow cover (4 cm) compared to the thick snow cover case (16 cm). 

This effect is associated with the lower attenuation of the propagated wave within the thin snow 

in comparison to the thick snow pack. Different brine content in snow covers with close 

thicknesses (4 cm and 3 cm) significantly affected the backscatter components from the air-snow 

and snow-ice interfaces; however, the total backscattering coefficients for VV polarization (at all 

incidence angles) and HH polarization (at incidence angles below 35°) did not change 
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considerably. These findings provide the physical basis for, and suggest that, winter snow 

thickness retrieval may be possible from radar observations under surface scattering conditions.  
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CHAPTER 1. INTRODUCTION 

 

1.1. Motivation 

Arctic sea ice extent has been drastically declining over the past three decades [1]. The low record 

minimum in summer sea ice extent of 3.41 million sq. km. (which is 49% less than 1979 to 2000 

average) was captured by passive microwave spaceborne radiometers in September 2012 [2]. 

Correspondingly, there is strong evidence that the Arctic Ocean multi-year (MY) sea ice has been 

rapidly disappearing at a rate of 15.1% per decade [3], [4]. During this, the MY sea ice is being 

replaced by seasonal first-year (FY) sea ice as the maximum extent (in winter) has not changed 

appreciably [5]. The Arctic ice thickness also decreased by 42% and 21% for fall (October-

November) and winter (February-March) respectively during the 2003-2008 period [6]. Decrease 

of the Arctic ice volume leads to increasing ice mobility. On average, the Arctic sea ice drift speed 

increased by 10.6% per decade for the period 1992-2009, which is much larger than the wind 

speed increase (~1.5% per decade) [7]. 

The observed decline in sea ice volume significantly impacts physical, chemical and 

biological processes in the Arctic marine ecosystem. These changes also facilitate industrial 

developments in the Arctic Ocean. However, hazardous ice features (i.e. hummocked MY ice 

floes, MY and FY pressure ridges, and ice islands) remain a threat to stationary and mobile 

infrastructure in the southern Beaufort Sea [8]. Therefore, reliable detection of dynamic and 

thermodynamic characteristics of sea ice is becoming increasingly important. 

Spaceborne Synthetic Aperture Radar (SAR) observations with very high resolution have been 

extensively used to monitor of changes in sea ice. SAR sensors are (generally) independent of 
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clouds and can operate during day and night times as opposed to optical instruments. To date, SAR 

observations provide the most reliable information on sea ice cover for national Ice Centers (to 

map and forecast sea ice conditions), icebreakers, and off-shore industry. High temporal resolution 

and large spatial coverage of SAR imagery are desirable for more accurate monitoring of rapid 

dynamic and thermodynamic changes in sea ice over the entire Arctic Ocean. Canadian 

RADARSAT-2 [9] launched in 2007 increased the temporal and geographical coverage of the 

circumpolar zone by airborne SAR platforms. Among other new technical features, RADARSAT-

2 has the cross-polarization channel in the ScanSAR mode (compared to its predecessor 

RADARSAT-1). In the future, Canadian RADARSAT Constellation mission (RCM) [10] will be 

equipped with three independent SAR platforms analogous to RADARSAT-2. Also, the European 

Space Agency (ESA) Sentinel-1 two satellite constellation mission is currently replacing ESA 

Envisat platform. These new missions will lead to a significant growth in satellite radar 

observations over the Arctic Ocean. 

The new capabilities of SAR sensors and the increasing volume of SAR imagery over the 

Arctic Ocean require improved methods for retrieving key parameters of sea ice from SAR. 

Interpretation of radar signatures is not often straightforward and requires advanced signal 

processing algorithms and advanced modeling techniques for electromagnetic wave scattering 

from snow-covered sea ice. The retrieval/detection methods should also take into account new 

technical capabilities of microwave satellite platforms (e.g. availability of the cross-polarization 

channel and improved noise floor characteristics). 

This Ph.D. research is dedicated to the development of new methods for detecting dynamic 

and thermodynamic characteristics of sea ice from radar remote sensing. 
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1.2.  Thesis Objectives 

The overall goal of this research is to develop new methods for detecting both dynamic and 

thermodynamic characteristics of sea ice using radar remote sensing. We highlight four sets of 

objectives which contribute to the main goal as follows. The first two sets of objectives (Set 1 and 

Set 2) are devoted to the development of new techniques for sea ice motion and ocean surface 

wind speed retrieval from SAR imagery. The second two sets of objectives (Set 3 and Set 4) are 

devoted to the development of a new model for electromagnetic wave scattering from rough 

interfaces separating layered media and application of this theory to experimental physical and 

scatterometer data collected over snow-covered FY sea ice for different snow thicknesses. These 

four sets of objectives are stated as follows: 

 

Set of Objectives 1 

1.1. To develop and validate a new sea ice motion tracking system operating with sequential SAR 

images. 

1.2. To evaluate capabilities of the co- and cross-polarization images of RADARSAT-2 ScanSAR 

data for ice motion tracking. 

 

Set of Objectives 2 

2.1.To develop and validate a wind speed retrieval model free of input wind direction for 

RADARSAT-1 HH ScanSAR imagery. 
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2.2.To develop and validate a wind speed retrieval model free of input wind direction for 

RADARSAT-2 HH-HV ScanSAR imagery, and to evaluate different options for wind speed 

imaging. 

2.3.To explore the possibility of merging wind speeds over the ocean surface and ice motion over 

the sea ice (Objective 1.1) from SAR for improved monitoring of sea ice dynamics in the 

marginal ice zone (MIZ). 

 

Set of Objectives 3 

3.1.To derive a general analytical formulation for electromagnetic wave scattering from an 

arbitrary number of rough interfaces separating layered media with the use of the first-order 

approximation of the small perturbation theory. The solution must be expressed through 

complex reflection and transmission coefficients associated with the inhomogeneous media. 

3.2.To validate the obtained solution by treating special cases available in the literature and 

comparing numerical results with those available in the literature.  

3.3.To present an analytical formulation for electromagnetic wave scattering from snow-covered 

sea ice as a special case of the general solution.  

 

Set of Objectives 4 

4.1.To model normalized radar cross-sections (NRCS) in C-band from snow-covered FY sea ice 

for different snow thickness conditions over smooth first-year sea ice using our wave 

scattering theory (Objective 3.1). 
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4.2.To validate the numerical results against winter ship-based scatterometer observations of 

snow-covered FY sea ice collected in the Canadian Arctic. 

4.3. Investigate the influence of snow cover on radar signatures using model and experimental 

data. 

 

1.3. Thesis Outline 

In Chapter 2 we discuss physical fundamentals of dynamic and thermodynamic processes 

occurring in snow-covered sea ice and also describe existing radar remote sensing methods for 

detecting these processes. 

The core of this dissertation is composed of four peer-reviewed journal publications which 

constitute Chapters 3, 4, 5 and 6 respectively. Chapters 3 and 4 are devoted to the new methods for 

assessing the dynamic state of sea ice from SAR images. Chapters 5 and 6 are devoted to the 

development of new methods for assessing the thermodynamic state of sea ice using microwave 

scattering modelling. Chapters 3, 4, 5, and 6 address Sets of Objectives 1, 2, 3, and 4 respectively. 

 

In Chapter 3 we present and validate a new sea ice motion tracking system operating with 

sequential SAR images. We also evaluate capabilities of co- and cross-polarization channels of 

RADARSAT-2 ScanSAR mode for ice motion detection. This work has been published in IEEE 

Transactions on Geoscience and Remote Sensing journal [11]: 

 

A. S. Komarov and D. G. Barber, “Sea ice motion tracking from sequential dual-polarization 

RADARSAT-2 images IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 1, pp. 

121-136, Jan. 2014. 
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In Chapter 4 we present and validate two new models for ocean surface wind speed retrieval 

from RADARSAT-2 images which do not require input wind direction (as opposed to 

conventionally used CMOD type models). Furthermore, a new tool combining ice motion and 

ocean surface wind speed in the marginal ice zone (MIZ) is proposed. This work has been 

published in IEEE Transactions on Geoscience and Remote Sensing journal [12]: 

 

A. S. Komarov, V. Zabeline, and D. G. Barber, “Ocean surface wind speed retrieval from C-band 

SAR images without wind direction input,” IEEE Transactions on Geoscience and Remote 

Sensing, vol. 52, no. 2, pp. 980-990, Feb. 2014. 

 

In Chapter 5 we derive and validate a theoretical model for electromagnetic wave scattering 

from rough surfaces separating arbitrary layered media using the first-order approximation of the 

small perturbation theory. We further adapt this model for snow-covered sea ice. This work has 

been published in Progress in Electromagnetic Research journal [13]: 

 

A. S. Komarov, L. Shafai, and D. G. Barber, “Electromagnetic wave scattering from rough 

boundaries interfacing inhomogeneous media and application to snow-covered sea ice,” Progress 

in Electromagnetic Research, vol. 144, pp. 201-219, 2014. 

 

In Chapter 6 we validate the wave scattering model (developed in Chapter 5) against C-band 

scatterometer measurements collected in the Canadian Arctic (from the CCGS Amundsen) for 

different snow thickness conditions. In this chapter we also evaluate the influence of snow cover 

on C-band radar backscatter. This work is in press of IEEE Transactions on Geoscience and 

Remote Sensing journal [14]: 
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A. S. Komarov, D. Isleifson, D. G. Barber, and L. Shafai, “Modeling and measurement of C-band 

radar backscatter from snow-covered first-year sea ice,” IEEE Transactions on Geoscience and 

Remote Sensing, in press, 2015. 

 

In Chapter 7 the results are summarizes and future directions of this research are suggested. 
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CHAPTER 2. BACKGROUND 

 

In this chapter we present relevant information on physics of sea ice dynamic and thermodynamic 

processes as well as existing radar remote sensing methods for detecting dynamic and 

thermodynamic states of sea ice.  

This chapter is substantially based on my Ph.D. Candidacy exam essay responding to the 

following question: “Describe the physical processes giving rise to dynamic and thermodynamic 

characteristics of snow covered sea ice. Assess the ability of active microwave remote sensing and 

microwave scattering models to develop effective tools to assess both the dynamic and 

thermodynamic states of snow-covered sea ice.” 

This chapter is organized as follows. In Section 2.1 we introduce the momentum balance 

equation for sea ice motion and describe its individual forces. In Section 2.2 we focus on 

algorithms for assessing the sea ice dynamic state from synthetic aperture radar (SAR) imagery. 

First, a concept of ice motion tracking from SAR along with area-based and feature-based image 

matching techniques are introduced. Second, calculation of various kinematic parameters of sea 

ice is presented. Third, existing methods to ocean surface wind speed retrieval from SAR imagery 

are evaluated. In Section 2.3 we describe properties of snow and sea ice and present the heat 

transfer equation for snow-covered sea ice with corresponding boundary conditions at the air-

snow, ice-snow and ice-water interfaces. Following this, the thermal properties of sea ice and 

energy fluxes are discussed. In Section 2.4 we describe how modeling of electromagnetic wave 

interaction with snow-covered sea ice can be used for assessing the thermodynamic state. First, we 

present Maxwell’s equations and define the complex dielectric constant. Second, we discuss the 
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linkage between the dielectric properties of snow and sea ice and corresponding physical 

characteristics. Third, we discuss microwave scattering modelling focusing on the first-order 

approximation of the small perturbation theory. 

 

2.1.  Physics of Sea Ice Dynamics 

Sea ice moves in response to winds and ocean currents, Coriolis force, the internal stress in the ice, 

and sea surface tilt. Sea ice dynamic processes cause different phenomena such as ice leads and ice 

pressure ridges formation (through divergence and convergence). These phenomena change drag 

properties of sea ice and thus substantially influence ice dynamics. In this section we consider sea 

ice dynamics in terms of physical causes and consequences of sea ice motion. 

 

2.1.1. Sea Ice Motion Equation 

The momentum balance equation is written according to Newton’s Second Law [15]-[17]: 

 

ticwa τττττa m      (2.1) 

 

m  - ice mass per unit area, 
2kg/m ; a  - ice acceleration, 

2m/s ; aτ  - air stress, 
2N/m ; wτ  - water 

stress, 
2N/m ; cτ  - Coriolis force, 

2N/m ; iτ  - internal stress in the ice, 
2N/m ; tτ  - force due to 

sea surface tilt, 
2N/m . 
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2.1.2. Air Stress and Water Stress 

The air stress at the atmospheric boundary layer is a force exerted by the wind on the ice surface. It 

is proportional to the square of the wind speed relative to the surface. Often, the air stress is 

expressed through the geostrophic winds as follows [16]: 

 

 
aaagaga zUC  sinˆcos 0 agaga UUτ  ,    (2.2) 

 

where a  is air density, agC  is air drag coefficient with respect to the geostrophic wind agU  at 

the top of the atmospheric boundary layer. The geostrophic wind results from a balance between 

the atmospheric pressure gradient and the Coriolis force (which is discussed in section 2.3). 0ẑ  is a 

unit vector normal to the surface, a  is a turning angle between the geostrophic and the surface 

wind due to the Ekman effect. Wind velocity rotates counterclockwise down from the geostrophic 

wind to the surface (in the Northern hemisphere). In [18] and [19] it was found by observation that 

the air stress vector is rotated by 
o25a  relative to the geostrophic winds. However, this angle 

may depend on surface roughness and atmospheric stability. Equation (2.2) ignores the ice velocity 

which is usually much smaller than the wind speed. 

Typically the air drag coefficient is measured with respect to the surface wind. The measured 

drag coefficient aC  is larger than agC . These two drag coefficients can be linked through the 

magnitudes of the surface and geostrophic winds. The drag coefficient aC  is a function of the ice 

surface roughness (small and large scale), and it significantly varies for different types of sea ice 

between 3107.0   (grease ice) and 3100.8   (extremely rough ice) [20], [21]. Since the roughness 
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may have small and large scales, the drag coefficient can be split into two components: skin 

friction drag and form drag. Banke et al. [22] proposed a simple relationship between the drag 

coefficient and measurable physical parameters as follows: 

 

rrfa NHCCC
2

1
10  ,     (2.3) 

 

where 10C  is the skin friction drag coefficient, fC  is the form drag coefficient for a single ridge 

sail, rH  is the mean height of ridges, rN  is concentration of ridges (a number of ridges per unit 

downwind distance). In the same study the following empirical relationships between both drag 

coefficients and ice surface parameters were found: 

 

 









 

sf

s

C

C





012.0012.0

10072.010.1 3

10
,     (2.4) 

 

where s  is the root-mean square (RMS) height of the rough surface (changing from 3.5 cm to 13 

cm), and r  is the ridge slope (ranging from 15° to 50°). In [22] the skin friction drag coefficient 

varied from 3101   to 3102   while the form drag coefficient lied in the range between 0.1 and 0.6 

depending on whether the ridges are mostly first-year (higher values) or multiyear (lower values). 

In a similar way, the water stress is defined through the geostrophic currents taking into 

account the Ekman effect [16]: 

 



 

12 

 

 

    wwwgw zC  sinˆcos 0 iwgiwgiwgw UUUUUUτ  ,  (2.5) 

 

where w  is the water density, wgC  is the water drag coefficient with respect to the geostrophic 

current, iU  is the ice velocity. The water drag coefficient is normally measured with respect to the 

surface current. A typical value of the water drag coefficient wC  with respect to the surface current 

is about 0.004; however, wC  is a function of the physical roughness of the ice underside. wgU  is 

the geostrophic current at the bottom of the oceanic boundary layer (~30 m). The geostrophic 

current results from an equilibrium between the force due to the sea surface tilt and the Coriolis 

force. w  is the turning angle between the geostrophic current at the bottom of the ocean boundary 

layer and the ice underside current. This angle is also about 25° and positive for the Northern 

hemisphere (counting counterclockwise). 

In the most elementary case where internal stress and surface tilt are not significant, the ice 

moves along the geostrophic wind. This case represents Zubov’s law [23] which stated that ice 

drifts parallel to the isobars. Zubov’s rule is in agreement with the Nansen-Ekman ice drift rule 

(1902), which stated that ice moves at 2% of the wind speed at 30° to the right of the surface wind 

in the Northern hemisphere. 

Mean sea ice velocity in the Arctic Ocean as function of long-term sea level pressure 

distribution was studied by Colony and Thorndike [24]. They demonstrated that the general sea ice 

circulation pattern (including the Beaufort Gyre and Transpolar Drift) follows the mean annual 

surface atmospheric pressure field and the geometry of the basin. 
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2.1.3 Coriolis Force 

The next term in the momentum balance equation (2.1) is the Coriolis force which arises because 

all geophysical observations on the Earth are made relative to the coordinate system associated 

with the Earth itself. The Earth is a non-inertial frame of reference, and this is why in order to use 

Newton’s laws of motion an additional term which takes into account the fact that the body is 

being accelerated by the Earth rotation must be introduced. This force is called the Coriolis force 

and it is expressed (per a unit area) as follows: 

 

 ic UΩτ  m2 ,      (2.6) 

 

where Ω  is the Earth angular velocity, iU  is the ice velocity. Components of the Earth’s angular 

velocity at certain latitude are demonstrated in Figure 2.1. If we consider two-dimensional motion 

of sea ice which has the northern and eastern components only, then (2.6) can be rewritten as 

follows: 

 

  ,ˆcosˆsinˆsin2 UENEEN eUeUeUm  cτ    (2.7) 

 

where  NE UU ,  are the eastern and northern components of the ice velocity,  UNE eee ˆ,ˆ,ˆ  are unit 

orthogonal vectors for eastern, upward and northern directions. Since the upward component is 

much smaller than the Earth’s gravitation, the last expression can be reduced to: 
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  icNEENc mUfeUeUmf  cc ττ ,ˆˆ ,   (2.8) 

 

where sin2cf  is the Coriolis parameter. At high latitudes the Coriolis force is higher than 

at low latitudes. At the equator the upward component of the Earth’s angular velocity is equal to 

zero and thus, the Coriolis force is zero.  

 

 

Figure 2.1. Northern N  and upward U  components of the Earth’s angular velocity at latitude 

 . 

 

2.1.4. Sea Surface Tilt 

Term tτ  in (2.1) is caused by sea surface tilt which occurs because the sea surface does not 

necessarily follow the geoid. The tilt of sea surface relative to the geoid causes a horizontal 

pressure gradient force which is expressed as follows [16]: 

 

sHmg tτ ,     (2.9) 
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where sH  is the elevation of the sea surface with respect to the geoid, and g  is the gravitational 

acceleration. 

 

2.1.5. Internal Stress 

The internal stress iτ  is the total force which acts on a unit area of ice cover embedded in a sea ice 

sheet due to stress transmitted through the ice from the adjacent parts of the ice sheet. This force 

must be accounted for if the ice concentration is higher than 80% [15]. The internal stress is a 

function of several factors such as the rheology, strength of the ice cover and the existing ice 

thickness distribution. 

The motion of an ice continuum can be decomposed into rigid translation, rigid rotation, and 

strain. Strain represents the physical deformation of single volume elements in the continuum 

including extension/contraction, shear and rotation. Strain and rotation are tensor quantities [25]. 

Strain rate denotes how fast ice deforms in different directions while vorticity shows how fast 

ice rotates. Strain rate and vorticity are important kinematic characteristics of sea ice motion and 

their components are defined as follows for ice velocity  ),(),,( yxyxu viU  [25]: 
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where   and   are strain rate and vorticity respectively. Two principal components of the strain 

rate tensor can be found from the eigenvalue equation. Typically, the sum and the difference of the 

eigenvalues are introduced for the analysis of a strain-rate tensor as follows: 
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Here, 1  quantifies the divergence or convergence of the ice field, with a positive value indicating 

a divergent motion field and a negative value a convergent field. 2  defines the magnitude of the 

shearing. They depict different aspects of the deformation rate and are invariant with translation 

and rotation. We also introduce a new strain-rate vector with 1  and 2  components with the 

magnitude 

 

2

2

2

1    ,     (2.12) 

and azimuth 
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of the strain-rate vector which define the total deformation rate and the ratio of shearing and 

divergence, respectively. In particular, 2/,0   , and   correspond to pure divergence, pure 

shear and pure convergence, respectively. 
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To take into account the internal ice stress iτ , a constitutive law, which relates the strain rate 

of the ice cover to the applied stress is required. Several sea ice rheologies were proposed by 

Hibler in [16] and [26]. If sea ice rheology is defined then stress tensor components 

yyyxxyxx  ,,,  are known and the internal stress components can be determined as follows: 
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2.1.6. Pressure Ridges 

A pressure ridge is a linear deformation of sea ice which is formed under convergent forces 

excerted by wind and/or the ocean. The youngest ice is the weakest part in the ice cover and is the 

first portion to be crushed. In sea ice dynamics, ridging is the main sink of kinetic energy in 

deformation due to friction and production of potential energy. 

On the other hand, ridges are important aero- and hydrodynamic form drag elements at the air-

ice and water-ice interfaces. The above water part of a ridge is the sail while the below water part 

(more extensive) is called the keel. Keels in the Arctic can reach down to 50 m, although most are 

about 10-25 m deep or less. In the sail and lower keel the ice blocks are loose or weekly frozen 

together. A simple structural model of ridges consists of a triangular keel and sail (Figure 2.2) 

described by the keel depth kh , sail height sh , slope keel angle k  and slope sail angle s . 
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Figure 2.2. Schematic diagram of an ice ridge. 

 

The relationship between the keel and sail heights can be estimated from the Archimedes law 

which can be written for our simple case as follows [25]: 

 

  ssikkiw hh  cotcot 22  ,    (2.15) 

 

where iw  ,  are water and ice densities respectively. If sk    the ratio of keel depth to sail 

height is estimated as 8.2/  skks hhr . If o30k  and o20s  then 5.3ksr  (from (2.15)). For 

multiyear ridges 3ksr  and for the first year ice ridges 54ksr  [25]. 

The spatial distribution of ridging is described in terms of their size and occurrence. Sail 

heights or keel depths distribution was proposed by [15] for the Arctic Ocean as follows: 

 

   00 ,exp)( hhhhbbhn  ,    (2.16) 
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where n  is the number of sails/keels per unit distance of track, 0h  is the low level cut-off. 

Parameter b  is defined through the mean keel depth/sail height mh  as follows: 

 

  1

0


 hhb m ,      (2.17) 

 

The exponential distribution (2.16) comes from the fact assuming all height arrangements yielding 

the same total sum are equally probable. Representative values for the mean sail height and keel 

depth mh  in the central Arctic Ocean are 4.12.1 sh m (cut-off is 0.9 m) and 148kh  m 

(cut-off is 1.6 m). Therefore, parameter 
1b  is 0.3-0.5 m for sails and 2-5 m for keels. 

According to [25] spacing between ridges is described by a logarithmic normal distribution. 

Representative values for mean ridge spacing are 5-10 km in the central Arctic Ocean, but with the 

cutoff sail heights of 0.4 m. The ridge size and spacing distributions are combined to form a 

measure of ridging intensity.  

Ice topography also plays an important role in snow catchment hydrology over the first-year 

and multi-year sea ice. Snow distribution is substantially controlled by sea ice ridging. Generally, 

greater variability in snow depth was observed over ridged ice compared to smooth first-year ice 

[28], [29]. In addition, snow depth over the ridged ice was higher than on the smooth ice [28], 

[29]. 
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2.2.  Detection of Sea Ice Dynamics from SAR Imagery 

SAR imagery acquired by satellite platforms (e.g. Canadian RADARSAT-1 and 2) is currently the 

most reliable source of information for routine detection of changes in sea ice cover at the regional 

and local scales [30]. Among other modes RADARSAT-2 ScanSAR Wide mode provides 

500×500 km single-polarization (HH or VV) or dual-polarization (HH-HV or VV-VH) scenes 

with 50 m resolution [9]. In this section we describe how SAR imagery can be used for retrieval of 

sea ice motion, sea ice kinematic parameters and ocean surface wind speed. 

 

2.2.1. Sea Ice Motion Tracking from SAR Images 

Sea ice motion can be automatically detected from sequential SAR images taken over the 

same geographical area and separated by a time interval of a few days (usually 1 – 3 days). The 

statement of problem is fairly simple - to detect similar ice floes/features in both SAR images 

evenly distributed over the area of interest with the accuracy of 1 pixel. Even though the human 

eye is the best tool for such image matching, enormous amount of time and effort would be 

required to process even one image pair. This is why various automated image processing 

algorithms have been designed. It is worthwhile to note though that for verification of any 

automated ice motion tracking algorithm visual thorough inspection is still very important. In 

addition, in-situ ice motion beacons can be used for verification.  

Existing ice motion tracking techniques contain many phases which may include a 

preprocessing step, image matching and error filtering steps. Within the preprocessing step, quite 

often a pyramid representation of input images is performed. The idea of image pyramids 

introduced in [31] was built on the fact that the direct matching process applied to the original 
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images would take massive computational resources (because the entire second image would serve 

as a search area). Having a few pyramid levels makes it possible to start ice tracking at the lowest 

resolution level, and then to refine the ice motion vector field at a higher resolution level using 

vectors found at the previous resolution level. Efficient identification of search areas at the next 

resolution level based on the ice motion derived from the previous resolution level is a separate 

problem. 

Image pyramid levels can be generated through a recursive application of a low-pass filter and 

simple 2×2 pixel averaging starting with the original image [32], [33]. The low-pass filter is 

required to supress the coherent fading affect (distinctive in SAR imagery). Then the output image 

becomes an input to this routine to produce a set of pyramid images. At each resolution level a set 

of distinctive ice features suitable for tracking must be automatically identified. An error filtering 

step is necessary to eliminate false matches (i.e. ice tracking vectors). Often, simple thresholding 

of some measure of similarity between two subimages is applied [33]. However, in addition to 

this, an adaptive error filtering technique might be required. 

Even though there are many steps in any ice motion tracking algorithm, the image matching 

component is the main one. Below we consider existing image matching approaches suitable for 

ice motion tracking pointing out their advantages and disadvantages. The methods can be divided 

into area-based and feature-based methods. 

 

1) Area-based methods 

The area based methods operate with subimages and are applicable best to the ice pack with 

medium and high ice concentrations.  
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Cross-correlation matching technique 

This classical matching approach has been used in many ice tracking algorithms (e.g. [31], [33], 

[34]). A cross-correlation coefficient between the reference subimage a  with NN   pixels (from 

image 1) and a candidate subimage b  with NN   pixels (from image 2) is calculated as follows: 
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The cross-correlation coefficient c  varies from -1 to 1 and indicates the measure of similarity 

between two subimages a  and b . If the reference subimage a  is fixed and the subimage b  is a 

moving window within some search area in the second image then a cross-correlation matrix can 

be formed based on equation (2.18). Coordinates of the maximum value in this matrix would 

correspond to the motion vector of the reference subimage a . 

The cross-correlation approach is very simple, straightforward and easy to code; however, 

there are two significant disadvantages of this approach: (1) it is computationally expensive for 

large images; (2) it does not capture the rotational component of ice motion. 

 

Phase-correlation matching technique 

This approach relies on the property of the Fourier transform that a shift in a spatial domain 

transforms into a phase shift in the frequency domain [32], [35]-[37]. Suppose function )(rf  has 

Fourier transform  u1F . Then the shifted function )( 0rr f  has Fourier transform 
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the maximum value coordinates of the following phase-correlation function: 
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where 
1F  is the inverse Fourier transform operator; asterisk denotes complex conjugation. In this 

simple example the phase-correlation function is the delta-function of the argument  0rr  . In 

practice, the inverse Fast Fourier Transform (FFT) transform is applied, and the maximum value 

of the phase-correlation matrix is linked with the shift vector coordinates. The phase correlation 

technique works significantly faster compared to the cross-correlation one due to the availability of 

the FFT routine. Also, a step of the moving window in the search area could be selected larger 

than one pixel. Furthermore, the phase-correlation approach can be extended to detection of the 

rotational component through the use of the Fourier shift and rotation theorem [38]. If  yxf ,2  is a 

translated and rotated replica of  yxf ,1  then from the Fourier transform properties we obtain: 
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where F  denotes the Fourier transform operator; 0  is angle of rotation;  00 , yx  are components 

of the shift vector. System of equations (2.20) indicates that the magnitude or the spectrum 

  ,2F  is rotated as well. In polar coordinate this rotation is transformed into a shift which can 

be detected using the original phase-correlation technique given by (2.19).  

A general disadvantage of the phase-correlation approach is that the peak value in the phase-

correlation matrix does not provide a clear measure of similarity between two subimages. 

 

Binary matching 

If we operate with two binary images, it is convenient to use a binary matching approach [39]. For 

template matching, a metric that measures the degree of mismatch between the template f  and an 

unknown target pattern g  is defined as follows: 

 

 

 
pR

gfXORm , ,     (2.21) 

 

where pR  is the size of the template pattern. A small value of m  indicates that two patterns are 

similar and a large value indicates that they are different. Only logical XOR operation on the pairs 

of pixel values (which gives 0 when they are of the same value, otherwise 1) needs to be 

performed, and therefore this method is very efficient computationally. 
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2) Feature-based methods 

The feature-based methods operate with separate ice floes and could be more efficient in 

automated tracking of low-concentrated sea ice. 

 

Ψ-S correlation 

Ψ-S correlation approach has been developed by Kwok et al. [34] for tracking of features that 

have translated and rotated. The main idea of this method is to create a specific representation of 

the floe boundaries using Ψ-S coordinates as shown in Figure 2.3. The direction of the tangent to a 

shape is plotted as a function of arc length around the curve. 

 

 
 

Figure 2.3. Concept of Ψ-S curve. 

 

The matching between two Ψ-S curves is done by the one-dimensional cross-correlation of the 

Ψ-S segments: 
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where 21 ,   are the means of Ψ-S segments; 21 , qq  are the standards of deviation of Ψ-S 

segments and sn  is the length of the segment. The value of k  that maximizes this expression 

gives the index of the beginning of the best match segment in 2 . 

The computational advantage of this approach comes from the fact that the correlation is 

linear rather than two-dimensional. A match is evaluated at each point along a boundary, rather 

than at each point in a region. In addition, this method is unaffected by rotation of features. The 

rotation of a feature adds a constant to its Ψ-S curve, which does not affect the correlation 

measure. The relative rotation   of the features is obtained directly as  

 

21   .     (2.23) 

 

Dynamic programming approach 

McConnel et al. [40] extended the Ψ-S correlation method to the possibility of detection of 

deformed floes using dynamic programming. This approach allows to identify the best matching 

between two sequences  Ms ..11  and  Ns ..12 . A mapping between two sequences contains P  

possible pairings, where  NMP ,max . Amongst these pairs one has the smallest “cost 

measure”: 
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The distance between two sequences is     jicssD ,min, 21   over all possible pair 

combinations.  

For tracking ice floes, however, the objective is to locate the feature in one image that best 

matches a given feature in the other image. This can be accomplished by selecting a subinterval of 

the Ψ-S curve of a floe boundary from one image, and finding the subinterval of the Ψ-S curves of 

the other image most similar to it. 

 

2.2.2. Sea Ice Kinematic Parameters from SAR 

Having a dense ice motion vector field derived from two sequential SAR images makes it possible 

to directly calculate a number important ice kinematic parameters such as divergence, shearing and 

vorticity according to formulations (2.10) - (2.11) presented in Section 2.1. It is also possible to 

define a type of deformation through the deformation angle given by (2.13) [41]-[43]. 

The partial derivatives of the ice velocity field can be calculated on a rectangular mesh. An 

example of deformed grids on a SAR image over the ice can be found in [42]. Furthermore, having 

numerous SAR image pairs, cumulative kinematic parameters can be estimated almost all over the 

entire Arctic as shown in [44].  

Sea ice area flux is another very important kinematic parameter of sea ice which can be 

calculated directly from SAR-derived ice motion vector fields. This value quantifies what area of 

ice moves through a certain gate in the Arctic Ocean (located e.g. in the Canadian Arctic 

Archipelago) per time unit. The sea ice area flux is typically estimated as follows [45], [46]: 
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where 
kx  is the spacing along the gate, [m]; ku  is the ice velocity component normal to the gate 

of the k -th ice motion vector, [m/s], and kc  is the ice concentration in vicinity of the k -th vector. 

 

2.2.3. Ocean Surface Wind Speed Retrieval from SAR 

As discussed previously in Section 2.1 wind is one of the major factors affecting sea ice motion. 

Unfortunately, it is impossible to estimate surface wind speed directly over the sea ice from SAR 

or any other remote sensing satellite instrument. However, wind speed over the ocean surface can 

be mapped from SAR imagery to better monitor sea ice dynamics [47]. This additional piece of 

information is especially beneficial in MIZ where large areas of open water are found. In this 

section we discuss existing models for ocean surface wind speed retrieval from SAR and some of 

their deficiencies. 

Winds over the ocean significantly affect sea surface roughness which in turn governs the 

backscatter normalized radar-cross section (NRCS) measured by a SAR instrument. Wind retrieval 

models which are based on the physical theory of electromagnetic waves interaction with the 

ocean surface are quite complex and computationally expensive. Furthermore, they do not agree 

well with experimental data in a wide range of wind speeds [48]-[53]. This is why empirical wind 

retrieval models are used in practical applications. A series of C-band geophysical model functions 

(CMODs) [54]-[56] have been extensively used for ocean surface wind speed retrieval from SAR. 

They have been built based on a large statistics of measurements taken by the European 
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spaceborne scatterometers ERS-1 and 2 (C-band, VV-polarization) collocated and coincided with 

in-situ ocean buoy observations. A general CMOD geophysical function can be expressed as 

follows: 

 

        pVV VaVaVaV  2cos,cos,1,,, 210

0  ,   (2.26) 

 

where 
0

VV  is C-band VV NRCS in linear units,   is the antenna incidence angle, V  is the wind 

speed at 10 m height in m/s,   is the wind direction relative to the antenna look,  Va ,0  ,  Va ,1   

and  Va ,2   are empirically determined functions of the incidence angle and wind speed, p  is a 

constant. All CMODs have the same general formulation (2.26), but they differ by the empirical 

constant p  and the appearances of functions 0a , 1a  and 2a . If 
0

VV ,   and   are known, then 

equation (2.26) can be easily inverted relative to the wind speed V . It is important to note that the 

wind direction   is typically provided by numerical weather prediction (NWP) models which are 

often unreliable especially dealing with the Arctic region (mainly due to the presence of sea ice) 

[57]. Inaccuracy in the input wind direction may lead to an error in the retrieved wind speed 

(especially at high winds).  

CMOD geophysical functions have been widely applied to SAR imagery which have a much 

higher resolution (~100 m) compared to the space borne scatterometers (~25 km). With the launch 

of Canadian RADARSAT-1 in 1995 the problem of wind speed retrieval from HH polarization 

images arose. To address this issue, various approximations of C-band co-polarization ratios 

(VV/HH) over the open water have been applied to the HH signal [58], [59]. For instance, in [59] 
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it was shown that the Kirchhoff co-polarization ration in conjunction with CMOD_IFR2 is suitable 

for wind speed retrieval from RADARSAT-1. However, existing approximations of the co-

polarization ratio are still not accurate enough (as shown in [59]); hence, this inaccuracy may 

result in a significant error in wind speed estimation using CMODs. 

Figure 2.4 shows dependences of VV NRCS calculated according to the latest CMOD5.N [55] 

on wind speed at various incidence angles. It is seen that the CMOD curves tend to saturate at high 

wind speed. This effect may also produce a large error in high wind speed retrievals [60]. 

With the launch of Canadian RADARSAT-2 in 2007 the new cross-polarization channel (HV) 

became available. In [61] there was shown an effect that the cross-polarization signal does not 

saturate at high wind speeds and does not depend on wind direction. Moreover, the following 

linear relationship between the wind speed and the cross-polarization signal was derived based on 

a large statistics of RADARSAT-2 Fine Quad images [61] and corresponding buoy measurements: 

 

[dB]6.35596.00  VHV ,     (2.27) 

 

However, this simple model cannot be applied to RADARSAT-2 ScanSAR dual-polarization 

mode (HH-HV) due to the fact that the ScanSAR images have a significantly higher level of noise 

floor compared to the Fine Quad, which means that the cross-polarization signal at low and 

moderate wind speeds cannot be taken full advantage of. Nevertheless, results in [61] indicate that 

the cross-polarization channel in the wide ScanSAR mode could be an additional useful input to 

wind retrieval from SAR. 
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Figure 2.4. Dependence of VV radar backscatter on wind speed calculated according to 

CMOD5.N, wind direction is 45
o
 relative to the antenna look. 

 

 

2.3. Physics of Sea Ice Thermodynamics 

In this section we review physical processes which govern thermodynamic characteristics of snow-

covered sea ice. Interestingly enough, while physics of ice dynamics is described by the 

momentum balance equation (see equation (2.1) in Section 2.1), the physics of ice 

thermodynamics is described by the heat transfer equation with boundary conditions given by the 

energy flux balance. Similar to the dynamics part of this chapter, in this section we discuss the 

main equation of sea ice thermodynamics and its individual components. First, we discuss 

properties of sea ice and snow. Following this, we introduce a one-dimensional thermodynamic 

model for snow-covered sea ice. Then we discuss thermal properties of snow and sea ice which 
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control heat transfer. Finally, energy heat fluxes at the air-snow and ice-ocean interfaces are 

described. 

 

2.3.1. Sea Ice Formation and Structure 

Sea ice is formed when the sea water temperature reaches the freezing point (-1.86 Co
 at 34 ppt). 

A decrease in the surface temperature causes instability of the upper layer because the density of 

cold sea water at the surface is higher than the density of warmer water underneath it. This results 

in mixing of water in the upper ocean layer followed by the heat transfer. Once the mixed layer is 

super-cooled, tiny discs and needles begin to form floating towards the surface. As freezing 

progresses a layer of frazil ice is formed, which later becomes grease ice. In the absence of wind 

the grease ice turns into a layer of thin smooth ice called nilas. Under wind conditions the frazil ice 

consolidates into rounded discs collectively called pancake ice. Pancakes are surrounded by 

elevated rims which are formed due to ice motion and collisions. The congelation growth begins 

once the ice is consolidated [62]. The upper 1-10 cm layer of sea ice called frazil layer consists of 

randomly oriented ice crystals. This random orientation is caused by the initial turbulent formation 

of ice. Beneath the frazil layer there is a transition layer. Within this layer ice has grown according 

to the geometric selection, i.e. the ice crystals with crystallographic c-axis oriented perpendicular 

to the temperature gradient had a preference while the crystals with a different orientation of c-axis 

are cut off. In the columnar ice layer (which is below the transition layer) all the crystals has 

horizontally oriented c-axes. During the ice growth brine is rejected from the ice and trapped in 

interstices of ice crystals and platelet substructure. The brine is concentrated in brine pockets and 

brine channels which have different sizes and shapes (depending on temperature). Brine dynamics 
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within the ice is driven by various mechanisms: brine pocket migration, brine expulsion, gravity 

drainage, or melt water flushing. The salinity profile of first-year sea ice is typically C-shaped due 

to the formation mechanism and brine dynamics. The brine volume within the ice varies with 

depth and represents a function of temperature and bulk salinity. Below the columnar layer there is 

a skeleton layer (1-3 cm thick) facing the ocean. It consists of lamellar platelets directed towards 

the water. The structure of the columnar layer is driven by changes in the skeletal layer [62]. 

 

2.3.2. Snow 

A snow layer on sea ice consists of a combination of air and ice. Under melting conditions, liquid 

water occurs in the snow matrix. If brine is expelled from the upper ice volume into the snow, it 

has to be considered as an additional component. Snow substantially regulates heat transfer 

between the atmosphere and sea ice. Since the snow is a good insulator, in winter the ice-snow 

interface is stably warmer than the air-snow interface. In spring, the temperature gradient within 

the snow is changing according to the diurnal variations [63]. 

Snow is composed of ice crystals with various sizes and shapes which undergo a series of 

metamorphisms [64]. In a dry snowpack a high temperature gradient causes vapor transport from 

the bottom of the snow upwards. This results in high vapor pressure and fast kinetic growth of 

snow grains. Wet snow metamorphism is classified into the pendular and funicular regimes. In the 

pendular regime the snow moisture is less than 7% and the liquid water can stay between the snow 

grains. In this regime the clusters of grains form quickly. In the funicular regime the wetness 

exceeds 7% and the water begins to drain. In this regime the pore spaces are filled with water and 

individual grains obtain a spherical form. 
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2.3.3. Thermodynamic Model for Snow-Covered Sea Ice 

A one-dimensional thermodynamic model for snow-covered sea ice developed by Maykut and 

Untersteiner [65] predicts the thermodynamic state of the snow and ice layers. It is assumed that 

the snow-covered sea ice is an infinite horizontally homogeneous slab which is impinged by 

various energy fluxes at the air-snow and ice-ocean interfaces as shown in Figure 2.5. The core 

mathematical formulation of the model consists of two heat transfer differential equations (in snow 

and ice) with respect to the temperature, which is a function of the vertical coordinate and time. 

 

1) Heat transfer equations in snow and ice 

In the snow cover the heat transfer equation with respect to temperature  tzT ,  as a function of the 

vertical coordinate z  and time t  is given as follows [65]: 
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where s  is the snow density, [kg/m
3
]; sc  is the specific heat of the snow, [J/kgK]; sk  is the 

thermal conductivity of the snow, [W/mK], which is in the simplest case assumed to be a constant 

over depth. 0I  is the transmitted radiation into the medium, [W/m
2
] (which is a function of 

physical properties of material, incidence angle and wavelength) and s  is the bulk radiation 

extinction coefficient (integrated over all wavelengths and solid angles). The first term in the right 

hand side of equation (2.28) represents heat conduction while the second term represents 

penetration and extinction of short-wave radiation within the snow layer. 
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Given that thermal properties of sea ice depend on the temperature and salinity (as shown 

further), the heat transfer equation for sea ice becomes nonlinear. However, some of the nonlinear 

terms are three orders of magnitude smaller than the major terms, and, thus, the heat transfer 

equation within the sea ice (accounting for the snow layer on top) can be written as follows [65]:  
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where  TSi ,  is the density of sea ice,  TSci ,  is the specific heat of sea ice and  TSki ,  is the 

thermal conductivity of sea ice. All are functions of temperature and salinity. i  is the radiation 

extinction coefficient of the ice; sh  is snow thickness. 

 

2) Boundary conditions 

The heat transfer within snow-covered sea ice is partially controlled by energy fluxes at the air-

snow and ice-ocean interfaces. To unambiguously solve differential equations (2.28) and (2.29) a 

set of boundary conditions must be formulated based on the energy balance at the interfaces. 

 

Energy balance at the air-snow interface: 

At the snow surface the following balance of heat fluxes is held: 
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where positive sign denotes fluxes going towards the surface. In the left hand side of equation 

(2.30) all the fluxes are time dependent input parameters. The major energy fluxes include rF  is 

incoming short wave radiation, which basically follows the sun and varies throughout the year; 

rF  is outgoing short wave radiation;   is the surface bulk albedo; LF  is incoming long-wave 

radiation from the atmosphere and clouds; ELF  is outgoing long-wave radiation. All fluxes are in 

[W/m
2
]. 

 

 

Figure 2.5. Illustration of heat transfer within snow-covered sea ice 

 

The smaller fluxes include sF , lF , and cF  are sensible, latent and conduction heat fluxes 

respectively between the snow surface and the adjacent air. The right hand side of equation (2.30) 
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accounts for two options: (1) if the surface temperature is below freezing point; (2) if the surface 

temperature is at the freezing point and some portion of snow melts. sq  is the latent heat of fusion 

of the snow surface and s  is the snow density. 

Equation (2.30) can be resolved with respect to the surface temperature at a certain point in 

time, using, for instance, the Newton-Raphson iteration method. The obtained result would 

provide the boundary temperature value for the numerical scheme.  

 

Boundary condition at the snow-ice interface: 

At the snow-ice interface it is assumed that the temperature and heat flux functions are continues: 
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Boundary condition at the ice-water interface: 

At the ice bottom the energy balance can be written as follows: 
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where the first term represents the conductive heat flux at the ice bottom, and the second term wF  

is the ocean heat flux. The right hand side indicates ice melt or growth as a result of these two 
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fluxes acting at the ice-water interface; iq  is the latent heat of fusion at the ice bottom, i  is the 

ice density, and ih  is the ice thickness which depends on time. 

From equation (2.32) the temperature gradient at the bottom for a certain time can be derived. 

This provides a boundary value to the numerical scheme. 

 

2.3.4. Thermal Properties of Snow 

Thermal conductivity of snow is an order of magnitude smaller than that of sea ice. This means 

that the snow layer acts as a good insulator between sea ice and the atmosphere. In the heat 

transfer equation (2.28) the snow thermal conductivity was put a constant; however, this parameter 

depends on snow density s  (in 
3kg/m ) and temperature T  (in K) as follows [66]:  

 

  5/233426 2107.210845.2   T

ssk  ,   (2.33) 

 

where snow density and temperature typically depend on depth. Equation (2.33) accounts for 

direct thermal conduction (first term) and water vapor diffusion (second term). However, this 

formulation does not account for brine/liquid content in snow.  

Specific heat of snow (in [J/kgK]) can be represented as a linear function of temperature 

(in [K]) [66]: 

 

Tcs 364.788.92  .      (2.34) 
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2.3.5. Thermal Properties of Sea Ice 

Thermal conductivity of sea water is about 25% of the conductivity of fresh ice [15]. Therefore, 

conduction of heat in the sea ice is substantially influenced by brine pockets trapped in the ice 

during bottom accretion. The brine and surrounding ice are in phase equilibrium at a certain 

freezing temperature. If the temperature rises, then some portion of ice around the brine pockets 

melts. This process decreases salinity of brine and increases the freezing point. Therefore, the 

brine pockets are able to retard the heating or cooling of the ice. Thus, bulk thermal properties of 

the ice (thermal conductivity and specific heat) are functions of temperature and salinity. The 

thermal conductivity of sea ice can be expressed as a function of temperature (in K) and salinity 

(in parts per thousand) as follows [67]: 

 

15.273


T

S
kk pii


,     (2.35) 

 

where  pptmW/117.0  , and pik  is the thermal conductivity of pure (fresh) ice defined by 

[68] as a function of temperature (in K) only: 

 

 Tk pi 0057.0exp828.9  .     (2.36) 

 

The volumetric heat capacity (product of density and specific heat) can be described as a 

function of temperature and salinity as follows [65]: 
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where 
3kg/m916pi  and J/kgK2113pic  are density and specific heat of pure ice respectively, 

 pptmKJ10715.1 37  . 

The concept of latent heat for sea ice is not straightforward because ice and brine can coexist 

at any temperature. Ono [69] proposed an equation for latent heat of fusion (J/kg) of sea ice for 

temperatures above -8
o
C: 

 

 
15.273

18040
2.11415.2732113333394




T

S
STqi

.  (2.38) 

 

Figure 2.6 demonstrates dependencies of three thermal parameters of sea ice (calculated 

according to equations (2.35), (2.37) and (2.38)) on temperature and salinity. It is seen that the 

thermal conductivity and latent heat of fusion of warm very saline ice (e.g. young ice or melting 

first-year ice) become lower while the volumetric heat capacity gets higher compared to those of 

cold low salinity ice. 
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Figure 2.6. Thermal properties of sea ice versus temperature and salinity: (a) thermal conductivity, 

(b) volumetric heat capacity; (c) latent heat of fusion. 

 

 

 

2.3.6. Energy Fluxes 

The solar short-wave radiation of clear sky rF  is a function of the solar zenith angle and vapor 

pressure [70]. Clouds reduce the incoming short-wave radiation reaching the surface by the factor 

depending on the cloud coverage [70]. The bulk albedo (i.e. ratio of reflected and incident solar 

radiation) is an integrated characteristic across the short-wave spectrum. This parameter is very 

important to the thermodynamic model since it is sensitive to ice thickness and brine volume in 

young ice. Table 2.1 shows changes in albedo for different types of ice (from 0.52 for bare first-

year ice to 0.87 for snow-covered ice). Furthermore, in summer (when the short-wave radiation 

reaches its peak) there is a spatial variability of the albedo across the sea ice due to the presence of 

melt ponds, snow, and bare ice. 
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Table 2.1. Range of observed bulk albedo for various surfaces. 

 

Surface type Albedo 

Open water 0.06 

Old melt pond 0.15 

Ponded FY ice 0.21 

Mature pond 0.29 

Refrozen melt pond 0.4 

Bare FY ice 0.52 

Melting white ice 0.56 – 0.68 

Frozen white ice 0.7 

Melting snow 0.77 

Wind packed snow 0.81 

New snow 0.87 

 

The part of the shortwave radiation that passes through the snow and ice is parameterized by 

Beer’s law as follows [70]: 

 

    z

reFzI   1 ,     (2.39) 

 

where   is the bulk extinction coefficient (integrated over the spectral range of the shortwave 

radiation) of snow or ice. 

The emitted long-wave radiation ELF  by the surface is defined by the Stefan-Boltzmann law: 
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4

0TeF LL  ,      (2.40) 

 

where Le  is the long wave emissivity of the surface (~0.96), 0T  is the surface temperature (in K), 

and   is the Stefan-Boltzmann constant. Emissivity of the incoming long-wave radiation LF  from 

the atmosphere and clouds heavily depends on the air temperature, and cloud coverage [70]. In 

winter, in the absence of solar radiation, the long-wave radiation is particularly important in the 

surface energy balance. 

The turbulent sensible ( sF ) and latent heat fluxes ( lF ) are functions of wind speed, 

temperature and humidity differences between the surface and the atmosphere [70].  

In the model [65] the ocean heat flux wF  is assumed to be a constant equal to 2 W/m
2
. However, it 

can highly vary throughout the year [71] and therefore it is challenging to model this parameter. 

The ocean heat flux can be estimated indirectly using long term ice mass balance buoy (IMB) 

observations [72]. 

 

2.4. Microwave Scattering Models 

Radar microwave remote sensing has been widely used to assess the thermodynamic state of 

snow-covered sea ice. Radar signatures are sensitive to the system configurations (frequency, 

polarization, incidence angle) and the properties of the sea ice (dielectrics of snow and ice, air and 

brine inclusions, topography) [73]. In turn, the dielectric constants of snow and ice are controlled 

by their geophysical properties. 
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Modeling of electromagnetic waves scattering by snow-covered sea ice is a crucial component 

in understanding the linkage between observed radar response and corresponding geophysical 

properties of snow-covered sea ice. We focus on the modeling of surface scattering from winter 

first-year snow-covered sea ice where the contribution from volume scattering can be neglected in 

C- and L-bands. 

We begin this section with Maxwell’s equations and the definition of the normalized radar 

cross-section (NRCS). Then we introduce the concept of the complex dielectric constant (CDC) 

and present mixture models for estimating CDCs of snow and sea ice. Finally, we present the 

framework of the small perturbation theory applied to Maxwell’s equation and discuss existing 

solutions and their limitations. 

 

2.4.1. Maxwell’s Equations 

Electromagnetic fields at any point of space and time must satisfy Maxwell’s equations [74], [75]:  

 


















































0

0

0

ext

ext

j

j

Ej

B

D

B
E

jj
D

H

t

t

t

t

ext

ext









,    (2.41) 

 



 

45 

 

 

where E  and H  are total electric and magnetic fields,   is the charge density, j  is the current 

density, ext  is the charge density of external sources, 
ext

j  is the current density of external 

sources,   is conductivity of the medium, D  and B  are electric and magnetic flux densities 

respectively which are linked with electric and magnetic fields as follows [75]: 
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,     (2.42) 

 

where P  is the electric polarization in the medium, and M  is the magnetic polarization of the 

medium (magnetization); 0  and 0  are electric permittivity and magnetic permeability of 

vacuum respectively. 

In our microwave remote sensing problem a monochromatic electromagnetic plane wave with 

arbitrary polarization is incident upon the snow-covered sea ice structure. The incidence angle 

relative to the vertical axis is 2/0 0  . The wave is scattered by the rough air-snow and snow-

ice interfaces and also propagates within the media. Our problem is monochromatic and a time 

dependence of the electric and magnetic fields is accepted to be 
tie 
, where   is the angular 

frequency. Since the incident field is a plane wave then sources are absent, i.e. 0extj , 0ext . 

Then, Maxwell’s equations (2.41) can be rewritten as follows: 
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2.4.2. Normalized Radar Cross-Section 

Suppose the electric and magnetic fields are found in far zone. Then, the normalized radar-cross-

section (NRCS) in the bistatic case is a function of the elevation angle   and azimuth angle   and 

it can be defined as follows [49]: 
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where the direction of the incident wave is given by 0  (elevation angle) and 0  (azimuth angle). 

In the last equation  00 ,;, pqS  is the average value of the Poynting vector (energy flux 

density) at the observation point   ,  in far zone from a unit area of the surface; A is the surface 

area; r  is the distance between the scattering surface and the observation point; pS0  is the energy 

flux density of the incident plane wave. At the same time, the NRCS also depends on polarization 

of the incident electromagnetic wave  p  and polarization of the received wave  q . 

In the monostatic (backscatter) case the receiver point coincides with the transmitter i.e. we 

assume 0  and   0 . 
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2.4.3. Complex Dielectric Constant 

We consider fields with the harmonic time dependence. Many natural media (e.g. containing 

water) has the property of frequency dispersion. Charged particles in the medium move due to the 

external electric field E . They gain torque and the medium becomes polarized. Since the charged 

particles are inertial, this process cannot be done instantly. This mechanism causes energy loss. 

Furthermore, electric flux density D  at some point in time is determined by the electric field at the 

previous moments of time. This phenomenon is called frequency dispersion [75]. CDC of such 

media depends on the frequency  . Then, in Maxwell’s equations (2.41) for linear isotropic media 

with frequency dispersion the electric field and electric induction can be linked through the 

following constitutive relation: 

 

 ED  r0 ,     (2.45) 

 

where r  is the relative permittivity of the medium as a function of frequency. If the magnetic 

permeability of all media is 1 then the constitutive relationship for magnetic field is the following: 

 

HB 0 .      (2.46) 

 

Also, from Maxwell’s equations: 
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where   is the CDC of the medium which includes ohmic loss (in the presence of free charges in 

the medium). 

CDCs of snow and sea ice govern wave propagation through the medium. Therefore, the 

accurate description of CDC of these media is very important in electromagnetic modeling. 

 

2.4.4. Dielectric Properties of Sea Ice 

Sea ice is a complex medium which consists of pure ice, brine pockets, and air bubbles. A two-

phase medium with a host material (pure ice) and inclusions (brine pockets) can be applied to first-

year sea ice (with no air bubbles). Even though the dielectric constants of individual components 

(brine and pure ice) are well known, modelling CDC of their mixture (i.e. sea ice) is challenging. 

One of the possible approaches is the refractive dielectric mixture model: 

 

  bbibpii VV   1      (2.48) 

 

Where pi  is the dielectrics of the host medium (pure ice), bi  is the dielectrics of inclusions 

(brine pockets), bV  is the volumetric brine content in sea ice. In [76] the refractive model showed a 

good agreement with dielectric measurements reported in [77].  

The brine volume bV  can be derived according to Frankenstein and Garner formulations [78] 

through measured temperatures and bulk salinities: 
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Where S  is bulk salinity of sea ice (in ppt), t  is temperature of sea ice (in Co
). Note that 

Frankenstein and Garner equations [78] assume constant sea ice density of 0.926 g/cm
3
.  

 

1) Dielectric constant of pure ice 

The dielectrics of the host material pi  (pure ice) is nearly a constant (~3.17) with a slight 

dependence on temperature ( C,ot ) [79]: 

 

tpi 00091.01884.3  .     (2.50) 

 

The imaginary part in microwave band is quite small (~
310 
) and often can be neglected. 

 

2) Dielectric constant of pure water and brine 

The frequency dependence of the dielectrics of pure water is described by the well-known Debye 

equation [80]: 
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where w  is the high frequency (or optical) limit which is 4.9, ws  is the static dielectric constant 

of water (for 0 ) which depends on temperature, w  is the relaxation time which is also 

temperature dependent [80]. Relaxation time is the time interval required for water dipoles to 

return to the initial position after the externally applied electric field is turned off. The 

corresponding relaxation frequency (obtained from 12 wwf  ) indicates the maximum of the 

dispersion loss in the frequency dependencies. 

If there are dissolved salts in water, then free charges are present, and an additional ohmic loss 

term is introduced in the Debye equation as follows:  
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where 
b  is the limiting high frequency dielectrics of brine (4.9), bs  is the limiting static 

dielectrics of brine, b  is the conductivity of brine, b  is the relaxation time of brine. The real 

parts of dielectrics for fresh and salty water are very similar; however, the imaginary parts are very 

different at the frequencies lower than the relaxation frequency (corresponding to the curve peak) 

due to the ohmic loss term in equation (2.52) [80]. 

The Debye parameters for the brine in equilibrium with ice were determined by Stogryn and 

Desargant [81]:  
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In equations (2.53) – (2.56), which fit experimental data in the temperature range from 0 to -25
o
C, 

t  is the brine temperature (in 
o
C). 

 

2.4.5. Dielectric Properties of Snow 

Snow on sea ice is a mixture of air, pure ice grains, fresh water, and brine. While an 

electromagnetic wave is moderately sensitive to the mixture of air and pure ice, it is extremely 

sensitive to even small fractions of liquid (brine or fresh water) in the snow. Therefore, the CDC of 

the snow (mixture) is substantially governed by the liquid phase in the snow. Unfortunately, a 

reliable formulation for snow CDC which would take into account the presence of brine and fresh 

water in snow does not exist.  

Dielectric constant of dry snow is well studied and can be accurately predicted as a function of 

snow density d   33 g/cm38.0g/cm09.0  d  in the range of frequencies GHz37GHz3  f  

[82]: 
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dd  832.10.1  .     (2.57) 

 

The CDC of wet snow is mostly controlled by liquid water content. One of the models for 

describing the CDC of wet snow (with no brine) was proposed by Hallikainen [82]. His Debye-

like model is given as follows: 
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 .     (2.58) 

 

In the last equation, f  is a frequency in the range between 3 and 37 GHz; W  is volumetric 

moisture content m
3
/m

3
 that may vary from 0 to 12%; 14.2A , 43.30B , 015.1 , 31.1 , 

and GHz07.90 f  are empirical constants. 

The presence of brine in snow on top of sea ice substantially influences the imaginary part of 

the dielectric constant due to the ohmic loss (particularly at lower frequencies). The brine volume 

content in snow (in the absence of fresh water) can be found using Drinkwater and Crocker 

formulations [83] through snow density, temperature and bulk salinity. Then, the dielectric 

constant of brine wetted snow can be estimated using a dielectric mixture model (such as the 

refractive dielectric mixture model). 

 

2.4.6. Modelling of Electromagnetic Wave Scattering 

Dielectric mixture models provide a link between geophysical properties of snow-covered sea ice 

and dielectric constants of the media. The dielectric constants serve as an important input to any 
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microwave scattering model. In this section we focus on the case of snow-covered first year sea ice 

where the dominant scattering occurs at the air-snow and snow-ice rough interfaces. There are 

various approaches for modelling of electromagnetic waves scattering by snow-covered sea ice. A 

review of various scattering models which account for volume or surface scattering in sea ice is 

given by [84].  

Semi-empirical models [80], [85] based on the radiative transfer theory [86] naturally account 

for volume scattering within snow and sea ice; however, the surface scattering components in 

these models must be determined separately from physical or empirical scattering models. 

The physical based models rely on exact (numerical) or approximate solutions of Maxwell’s 

equations.  

Numerical finite-difference time-domain (FDTD) [87], [88] and finite-volume time-domain 

(FVTD) [89] methods are directly applied to Maxwell’s equations and provide a solution within a 

certain approximation. In these methods surface and subsurface roughness/deformations and an 

arbitrary behaviour of the dielectric constant within the snow and sea ice can be accounted for. 

However, the numerical methods require significant computational resources due to the facts that 

(1) numerous realizations of the random rough surface must be simulated, and (2) extremely fine 

mesh in the situations where absorption is very high (e.g. sea water under the ice) is required. 

These constraints make the numerical methods barely applicable to satellite remote sensing 

problems (e.g. analysis of temporal changes of SAR signatures). Since the numerical methods do 

not have a closed form solution, there is not a clear linkage between the scattering characteristics 

and the physical properties of the media (e.g. roughness and dielectrics). 
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Analytical methods are aimed to derive a closed-form solution of Maxwell’s equation under 

certain approximations. The small perturbation method (SPM) was introduced for analytical 

formulation of waves scattering from slightly rough surfaces by Rice [90] in 1951. Since then the 

SPM theory has been extended onto solving more complex scattering problems. The SPM final 

formulations are expressed in a closed form and demonstrate a clear linkage between the scattering 

coefficients and the physical properties of the media. Furthermore, the SPM theory can be 

generalized for a few rough interfaces embedded in media. The SPM solution can also be extended 

to the case when the small-scale roughness is modulated by a large-scale topography (e.g. typical 

for multiyear ice). An idea of such an extension to the two-scale geometry can be found in [49]. 

Since the forward solver does not require heavy computational recourses, it can be run multiple 

times for different incidence angles, polarizations and physical properties of the media which 

would facilitate the problem of inversion. Thus, they seem more applicable to geophysical 

problems. 

Below we introduce a concept of the SPM formalism including boundary conditions for 

electromagnetic fields at the rough interface. We also describe available SPM solutions for 

different scattering geometries. 

 

1) The underlying theory of SPM 

Suppose we have a rough air-snow or snow-ice interface )(ρ  which sets a random deviation 

from a plane at rzz  , where  yx,ρ  - position vector in the horizontal plane. The SPM 

formalism applies to surfaces )(ρ  with a small surface height variation and small surface slopes 

[91]: 
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where k  is the wave number in the medium, L  is the correlation length of the rough surface, 

2   is the standard deviation of the rough surface. For the first-year sea ice these 

conditions are valid for wavelengths in C-band (5.5 GHz) and L-band (1.4 GHz). 

In the presence of the random rough interface the solution of Maxwell’s equations should 

contain a random component. Therefore, Maxwell’s equations do not have an exact analytical 

solution. According to the first-order approximation of the SPM method, the electric and magnetic 

fields are expanded in a perturbation series as follows [49], [50]: 
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where )0(
E , )0(

H  are exact solutions of Maxwell’s equations (zero-order fields) in the absence of 

the small-scale roughness, and )1(
E , )1(

H  are first-order fields which depend on the amplitude of 

the roughness [48]. The first-order fields represent a random component of the electromagnetic 

field due to the rough interface. Hence, the roughness’ impact is taken into account by a random 

additive component (first-order fields). 
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2) Boundary conditions for SPM 

Both zero-order and first-order fields must satisfy regular boundary conditions at smooth 

interfaces i.e. the tangential components must be continuous. At the mean level of the rough 

interface rzz   it is possible to demonstrate that within the first-order approximation of SPM the 

following boundary conditions are valid [48]:  
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where 
)1(

tΕ , 
)1(

tH  are tangential components of the first-order fields, 
)0(

tE , 
)0(

tH  are tangential 

components of the zero-order fields, 
)0(

zE , 
)0(

zH  are normal components of the zero-order fields, 

  is the gradient operator in the horizontal plane ( yx ). 

The right hand side of (2.61) is not zero opposed to the smooth boundary case. Therefore, the 

zero-order fields must be found first in order to be substituted into the boundary conditions (2.61). 

Note that for the sake of symmetry, boundary conditions (2.61) are written here for a general case 

when both electric permittivity and magnetic permeability of the medium are not unity. 
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3) Main steps of SPM 

A solution within the first-order approximation of the SPM method can be built as follows [48]. 

First zero-order fields are derived directly from Maxwell’s equations. If the CDC of media varies 

over depth then the exact analytical solution does not exist; however, a closed-form solution can 

still be expressed through particular solutions of wave equations in a nonhomogeneous medium. 

The zero-order fields must satisfy boundary conditions and conditions at infinity. 

Second, the first-order fields are presented as a superposition of infinite number of plane 

waves outgoing from the rough interface in multiple directions through the Fourier integral.  

Third, the zero-order and first order fields are substituted into the boundary conditions (2.61) at the 

mean level of the rough interface, and the spectral magnitudes of the scattered field can be derived. 

Finally, the first-order fields can be estimated in far zone using the method of stationary phase 

[74] and the scattering characteristics can be found through the Poynting vector. The cross-

polarized backscatter return within the first-order approximation is zero. However, it is non-zero in 

the bi-static case. 

 

2.4.7. Existing SPM Solutions and Their Limitations 

The simplest SPM solution was developed for the case where the wave is scattered by a rough 

surface on top of a homogeneous half-space [49]. Radar backscatters (VV and HH) for this case 

are the following: 
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where   is the CDC of the half-space, 0q  is the longitudinal wave number of the incident wave, 

0k  is the wave number in vacuum, K̂  is the spatial power spectral density of the rough surface 

which is defined as a spectrum of the autocorrelation function as follows: 

 

ρρα
αρdeKK i





 )()(
~

,     (2.64) 

 

where )(ρK  is the autocorrelation function of the rough surface. 

It is worth noting from (2.62) - (2.63) that the co-polarization ratio 
00 / HHVV   is independent 

of the surface roughness while it depends only on the CDC   and incidence angle 0 .  

Yarovoy derived an SPM solution [92] for wave scattering from a rough surface embedded in 

a three layered structure shown in Figure 2.7(a). An alternative formulation in terms of reflection 

and transmission coefficients was proposed in [93]: 
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where 1d  is the thickness of the upper layer with CDC 1 , 0

2

101 sin  kw  is the transverse 

wave number in medium 1, Ha1 , Va1  are ordinary Fresnel transmission coefficients through the 

interface between air and medium 1 at horizontal and vertical polarizations respectively. Har 1 , Var 1  

are ordinary Fresnel reflection coefficients from the boundary between air and medium 1 at 

horizontal and vertical polarizations respectively; Hr  and Vr  are reflection coefficients from the 

two-layered structure (medium 2 and medium 3) for horizontal and vertical polarizations 

respectively. 

 

 

Figure 2.7. (a) Yarovoy’s scattering geometry [92], (b) Imperatore’s scattering geometry [96]. 

 

Interestingly enough, if CDC’s of medium 1 and medium 2 are equal (i.e. the dielectric 

contrast between medium 1 and medium 2 is zero) then the roughness is absent and the solution 

(2.65) - (2.66) naturally goes to zero. 
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Scattering from a layered structure with a rough upper boundary was considered in [94]. Then 

the SPM solution was extended to the problem of scattering from two [95] and more rough 

interfaces [96] embedded in a layered medium. Imperatore et al. [96] presented an SPM solution 

for waves scattering from a rough surface embedded in a medium containing a number of 

homogeneous discrete layers as shown in Figure 2.7(b). His solution for the backscattering case in 

our notations can be written as follows: 
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where 0

2

0 sin  mm kw   is the transverse wave number in layer m  which is just above the 

rough surface, m  is the thickness of layer m . 
1m

HT  and 1m

VT  are transmission coefficients 

through the upper 1m  layers above the rough surface for horizontal and vertical polarizations 

respectively. 
1m

HR  and 1m

VR  are reflections coefficients from the upper 1m  layers for horizontal 

and vertical polarizations respectively. mHr  and mVr  are reflections coefficients from the lower 

half-space beneath the rough interface for horizontal and vertical polarizations respectively. 

Similar to the previous case, if the dielectric contrast between m  and 1m  layers is zero, 

then there is no surface scattering and backscatter coefficients become zero. 
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We would like to note that dielectrics of snow and sea ice can be described as a piece-wise 

continuous function of the vertical coordinate. To this point an SPM solution for waves scattering 

from rough interfaces separating media with continuous dielectric profiles has not been derived. 

 

2.5. Conclusion  

In this chapter we defined main physical processes and interactions which are giving rise to the 

dynamic and thermodynamic characteristics of snow-covered sea ice. We also evaluated existing 

active microwave remote sensing methods for retrieving dynamic state of sea ice and described the 

ability of the microwave scattering models to assess the thermodynamic state of snow-covered sea 

ice. 

The existing and future advanced SAR space borne platforms in combination with efficient 

processing algorithms would enable us to reliably detect and quantify sea ice dynamic 

characteristics all over the Arctic Ocean with very high resolution. Moreover, operational 

implementation of these methods is being conducted at Ice Centers. At the same time, accurate 

detection of certain thermodynamic characteristics of sea ice from SAR platforms is more 

challenging. This is due to (1) complexity of sea ice structure; (2) difficulties in modelling 

dielectric properties of snow and sea ice; (3) challenges in modelling microwave scattering 

characteristics. 
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CHAPTER 3. SEA ICE MOTION TRACKING FROM SEQUENTIAL 

DUAL-POLARIZATION RADARSAT-2 IMAGES 

A. S. Komarov and D. G. Barber, “Sea ice motion tracking from sequential dual-polarization 

RADARSAT-2 images,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 1, pp. 121-136, Jan. 

2014. 

 

 

3.1. Introduction 

Arctic sea ice has significantly changed over the past three decades. Comiso et al. in [1] 

demonstrated that the trend for the entire Arctic ice area (seasonal and perennial ice) has shifted 

from -3.0% per decade in 1979-1996 to -10.7% per decade for 1996-2007. Over these periods, 

first-year (FY) ice replaced much of the multi-year (MY) ice. For the 2004-2008 period the winter 

cover of MY ice shrank by 1.5 million km
2
 and currently covers one-third of the Arctic Basin [97]. 

Furthermore, the Arctic ice thickness decreased by 42% and 21% for fall (October - November) 

and winter (February - March) respectively during the 2003-2008 period [6]. Decrease of the 

Arctic ice volume leads to increasing ice mobility. On average, the Arctic sea ice drift speed 

increased by 10.6% per decade for the period 1992-2009, which is much larger than the wind 

speed increase (~1.5% per decade) as shown in [7]. 

Information on sea ice motion is required to quantify changes in sea ice at the regional scale 

including (1) ice volume exchange between the Canadian Arctic Archipelago (CAA) and the 

Arctic Ocean, (2) formation of ice leads and ridges and (3) development and maintenance of 

polynya regions. For example, Kwok in [45] estimated that a mean annual volume flux of ~100 

km
3
 is exported from the CAA into the Canada Basin for the 1997-2002 period. Since sea ice 

dynamics affects sea ice morphology [25], a number of publications (e.g. [41], [42]) were devoted 
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to studying formation of leads and pressure zones in the regions with a high concentration of sea 

ice based on divergence and shear of the ice velocity vector field. Finally, sea ice motion detection 

in polynya regions was used to understand mechanisms of formation and maintenance of polynyas 

[35], [98]. In [98] it was shown that ice export is a dominant process in maintaining the North 

Water Polynya during spring 1998. 

At the local scale, tracking of potentially unmanageable ice features such as ice islands and 

MY ice is required to prevent hazards to shipping and damaging oil platforms in the Arctic Ocean. 

In addition, operational information on local ice motion is necessary for conducting field work in 

the Beaufort Sea in compliance with the United Nations Convention on the Law of the Sea 

(UNCLOS).  

Spaceborne synthetic aperture radar (SAR) observations with very high resolution (100 m and 

smaller) have been extensively used to monitor of changes in sea ice. High temporal resolution and 

large spatial coverage of SAR imagery are desirable for more reliable monitoring of rapid dynamic 

and thermodynamic changes in sea ice over the entire Arctic. Canadian RADARSAT-2 [9] 

launched in December 2007 increased the temporal and geographical coverage of the circumpolar 

zone by airborne SAR platforms. Among other new technical features, RADARSAT-2 has the 

cross-polarization channel in the ScanSAR mode (compared to its predecessor RADARSAT-1). 

Currently, the RADARSAT-1 and 2 (operating in C-band) together provide frequent and reliable 

operational information on changes in sea ice. In the future, Canadian RADARSAT Constellation 

mission (RCM) [10] will be equipped with three independent SAR platforms analogous to 

RADARSAT-2, which will lead to a significant growth in satellite radar observations over the 

Arctic Ocean. Thus, the new capabilities of SAR sensors and the increasing volume of SAR 
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imagery over the Arctic Ocean require improved methods for retrieving key parameters of sea ice 

from SAR.  

Ice motion is one of the crucial dynamic characteristics of sea ice cover. An ice velocity field 

with a high spatial resolution can be extracted from SAR sequential images over a wide 

geographical area (up to 500×500 km), while in-situ ice tracking beacons are able to provide ice 

velocity of only one geographical point. In this study we focus on ice motion tracking from 

ScanSAR dual-polarization RADARSAT-2 imagery.  

In the literature, various automated ice motion tracking algorithms can be found [31]-[36]. 

The classical cross-correlation matching approach [31], [33] is widely applied to various image 

registration problems. This cross-correlation technique is based on direct calculation of the 

correlation coefficient that is a measure of similarity between two subimages. Coordinates of the 

maximum correlation coefficient in the correlation matrix are connected to the shift vector 

coordinates. However, there are two disadvantages to this approach. The first disadvantage is 

computational inefficiency, especially for situations where the search area is much larger than the 

reference subimage. The second disadvantage of this method is that it cannot capture the rotational 

component of sea ice motion. Modifications of the cross-correlation method to embrace the 

rotation component such as preliminary rotation of the reference subimage at a number of discrete 

angles lead to dramatic increasing of calculation time. An efficient approach to reduce the 

computational load is the method of nested correlations described in [31]. Meanwhile, the cross-

correlation approach used in [31] does not capture rotated ice features. 

Another image registration technique is the phase-correlation method based on the Fourier 

transform shift theorem [37]. With the availability of the Fast Fourier Transform (FFT) this 
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method works several times faster than the cross-correlation approach. Additionally, the phase-

correlation approach is modified to include the rotation effect [38]. However, a disadvantage to 

this method is that the peak value in the phase-correlation matrix does not provide an evident 

measure of similarity between two subimages.  

Besides the image matching technique, there are several other important steps in ice motion 

tracking algorithms. One of them is selecting initial control points in the first image. Some studies 

suggest using a set of points located on a regular grid [31], [34]. This approach is convenient for 

certain tasks such as deformation analysis of sea ice. However, some control points can be located 

in featureless areas making it harder to find corresponding matches in the second image. Another 

important step of the ice tracking algorithm is the error filtering step which is necessary to 

eliminate erroneous ice drift vectors. Many studies (e.g. [33]) suggest thresholding of the cross-

correlation coefficients. Occasionally, false matches may remain if their cross-correlation 

coefficients exceed the threshold. Thus, prior to the thresholding procedure some adaptive filtering 

approach is recommended.  

The existing ice motion tracking algorithms have been applied to co-polarization SAR images 

only; however, ice motion can be also extracted from cross-polarization data if it is available. The 

cross-polarization channel of RADARSAT-2 ScanSAR imagery is extensively used for 

operational monitoring of sea ice at the Canadian Ice Service (CIS). The cross-polarization image 

provides various ice features invisible in the co-polarization image [100], [101]. Thereby, we 

expect that ice motion information obtained from the cross-polarization images may enhance the 

ice motion product derived from the co-polarization images. Evaluation of ice motion tracking 

from co- and cross-polarization images requires a special treatment.  
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In this study we pursue two main objectives. (1) To develop a new sea ice motion tracking 

system operating with sequential RADARSAT-2 ScanSAR images. (2) To evaluate capabilities of 

the co- and cross-polarization images of RADARSAT-2 ScanSAR mode for ice motion tracking. 

 

3.2. Preprocessing of SAR Images for Ice Motion Tracking 

For ice motion tracking we use RADARSAT-2 ScanSAR Wide a (SCWA) mode which allows for 

imaging of an area of around 500×500 km with 50 m resolution [9]. The image is covering the full 

incidence angle range of 20° to 49°. The SCWA mode provides the images with one of the 

following four polarization options: HH-HV, VV-VH, HH or VV. We employ the HH-HV dual-

polarization images for ice motion tracking.  

Two overlapping sequential raw RADARSAT-2 images are converted to the normalized radar 

cross-section (NRCS) units according to the procedure described in [9]. The resolution is reduced 

from 50 m to 100 m by a simple averaging. Then, the images are reprojected into the Lambert 

Conformal Conic (LCC) projection [102] using the georeference information given in the auxiliary 

product files. The gradient search method described in [103] is implemented to reproject raw SAR 

data into the LCC projection. The overlapping area between two sequential images is extracted 

from the reprojected data. Finally, a land/data/no data mask is generated for the obtained image 

pair.  

An ultimate goal of the sea ice tracking algorithm is to recognize similar areas in two sequential 

georeferenced SAR images. A direct search for matching features in the input image pair requires 

a significant computational load due to a large size of original SAR imagery. One possible option 
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to improve computational efficiency is through the use of image pyramids [31]-[33], [36]. This 

method reduces computational time by tracking ice features at different scales. 

The preprocessing steps include pyramid data representation of the georeferenced SAR 

images and selection of control points defining ice features at each resolution level. 

 

3.2.1. Pyramid Image Representation 

In order to generate a hierarchical data structure containing several image levels, we applied a 

recursive process of the median filtering with a 3×3 pixel window and a simple 2×2 pixel 

averaging over an image beginning with the original image. The median filter effectively removes 

coherent fading, preserving the edges. The output image then becomes the input to produce a set of 

images with decreased resolution and size. Multi-resolution images are generated for both scenes 

and the lowest resolution image serves as the initial input for the image matching procedure. The 

number of pyramid levels could vary. In our study, four resolution levels with 800 m, 400 m, 

200 m, and 100 m resolutions are generated. 

Prior to the ice motion tracking procedure, the Gaussian filter with the window size of 3×3 pixel 

and the Laplace operator are sequentially applied to each resolution level in order to highlight the 

edges and other heterogeneities. Also, the Laplacian reduces the trend across the satellite track 

which occurs due to the dependence of the co-polarization NRCS on the incidence angle.  

 

3.2.2. Selection of Control Points 

A procedure for an automated selection of control points was specifically developed to identify 

those image features that are potentially suitable for the matching step. The idea behind it is to 
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generate a set of evenly spread control points over each pyramid level in a way that the following 

two conditions are met: 

a) All points should be located in some distinctive areas that have relatively high variance. 

b) Vertical and horizontal components of the distance between any two points should not be 

lower than a prescribed value.  

The proposed procedure for selecting control points includes two steps: (1) Calculation of the 

variance matrix and (2) Selection of control points based on the obtained variance matrix.  

 

1) Variance Matrix Calculation 

An illustration of the variance matrix calculation is presented in Figure 3.1. Each element of the 

matrix is calculated from a window ww  as follows: 
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where w is a window size, ija  are elements of the window ww , a  is the average value within this 

window. 

If the original image has m columns and n rows, then the variance matrix has 1
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 rows, where the square brackets denote the integer part of a number, and 

h is the step size. The generated variance matrix is the input for the selection process. 
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Figure 3.1. Variance matrix calculation. 

 

2) Selection Process 

In addition to the variance matrix, the selection routine requires one input parameter R, which must 

be such a value that each control point with coordinates  cc yx ,  does not have any neighbour point 

within the following area in the variance image:  RyRyRxRx cccc  :,: .  

The selection process consists of three sequential passes as shown in Figure 3.2. The first pass is 

preliminary sifting of elements in the variance matrix. The second pass defines those points which 

are local maximums in surrounding    1212  RR  regions. After the second pass, the areas 

where local maximums do not exist may remain. In these areas variance monotonically changes. 

The third pass is designed to add points with sufficiently high variances in such regions.  
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In the first pass the variance matrix is divided into 3×3 non-overlapping squares. Inside each 

square the point with the maximum variance remains, while the other eight points are removed. 

The obtained subset of points S1 serves as input for the next pass. In the second pass we establish 

a square area A= RyRyRxRx cccc  :,:  by surrounding each point from the set S1. Then 

the reference variance of the central point  cc yx ,  is compared with the variance of each point 

lying inside the area A. If the variance of the reference point is lower than the variance of a current 

point from A, then the reference point is removed and the variance of the next point from the initial 

set S1 is analyzed. Otherwise, we discard the current point and go to the next point in A. As a 

result of this sifting process, we obtain a new subset of points S2 which contains only several 

points from S1. For the third pass two sets of points S1 and S2 from the previous two passes are 

inputs. In the areas where there are no points from S2 a few points from S1 with sufficiently high 

variances are added as follows. A square A= RyRyRxRx cccc  :,:  around each of the 

points from S1 is analyzed. If inside this square there exists at least one point from the set S2 then 

we proceed to the next point from S1. Otherwise, if the variance of the current point from S1 

exceeds a threshold then this point is added to the set S2. The threshold is calculated as 

5/)(max meanmeanT  , where mean  and max  are average and maximum values of the 

variance subimage within the square A; the coefficient 5 was selected heuristically. 

In consequence of the described selection processes, S2 is the output set of control points in the 

variance image. Finally, the coordinates of the control points from S2 are converted into the 

original image coordinates as follows: 
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where  cc yx ,  denote coordinates of a control point in the variance matrix, while  yx,  are 

coordinates of the control point in the original image coordinates. The described routine for 

selecting control points is applied to each resolution level for generating a set of evenly spread 

points located at various heterogeneities.  

Figure 3.3 demonstrates an example of four pyramid image levels as well as control points on each 

resolution level shown in red. The parameter R is chosen to be 3 pixels for all the resolution levels, 

while the window size ( w ) and the step size ( h ) are different for each resolution level and their 

values are presented in Figure 3.3. 
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Figure 3.2. Selection of control points flowchart. 
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Figure 3.3. An example of four resolution levels and sets of control points on each of them; w  and 

h  are the window size and step size respectively in pixels. The original image was taken on April 

22, 2009 (RARARSAT-2 ScanSAR Wide mode, HH-polarization), southeast of Baffin Island, 

Canada. 
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3.3. Ice Motion Tracking 

The ice motion tracking procedure follows the selection of control points routine at each resolution 

level. In this section we introduce the cross- and phase-correlation matching approaches and put 

forward a matching technique which is based on a combination of these two methods. Then we 

describe the proposed strategy for ice motion detection at different resolution levels. Finally, we 

discuss thresholding and quality assessment of output vectors at each resolution level.  

 

3.3.1. Cross- and Phase-Correlation 

The cross- and phase-correlation matching techniques are known methods for registering similar 

features in two images. The cross-correlation technique is based on direct calculation of the 

correlation coefficient, which is a measure of the similarity between two data sets [31], [33]. The 

shift vector is obtained from coordinates of a maximum correlation coefficient in the correlation 

matrix. However, the cross-correlation method does not capture the rotational component of ice 

motion. The phase correlation technique is based on the property of the fourier transform that a 

shift in the spatial domain transforms into a phase shift in the frequency domain [32], [35]-[37]. 

For instance, if a 2D function )(rf  has Fourier transform  u1F , then the shifted function 

)( 0rr f  will have Fourier transform    uu 0ur

12 FeF
i

 , where 0r  denotes the shift vector. This 

translational component can be retrieved by finding maximum value coordinates of the following 

phase-correlation function: 

 


















 

2

*

1

2

*

11

FF

FF
C F ,     (3.3) 



 

75 

 

 

where 
1F  is the inverse Fourier transform operator; asterisk denotes complex conjugation. In this 

simple example the phase-correlation function is the delta-function of the argument  0rr  . In 

practice, the phase correlation matrix is found by applying the discrete inverse FFT to the cross-

power spectrum. Peak coordinates in this matrix are recalculated to the shift vector coordinates.  

The phase-correlation approach works several times faster than the cross-correlation due to 

the availability of the Fast Fourier Transform (FFT). In addition, the phase-correlation approach 

can be expanded for detection of the rotational component based on the Fourier shift and rotation 

theorem [38]. Suppose  yxf ,2  is a translated and rotated replica of  yxf ,1  then according to the 

Fourier transform properties we obtain: 
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where F  denotes the Fourier transform operator; 0  is angle of rotation;  00 , yx  are components 

of the shift vector.  

Equations (3.4) indicate that the magnitude or the spectrum   ,2F  is rotated as well: 

 

   000012 cossin,sincos,   FF .   (3.5) 

 

After transition to polar coordinates  ,  the last expression can be rewritten as follows: 
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   012 ,,   PP ,     (3.6) 

 

where 1P  and 2P  are magnitudes of the spectra represented in polar coordinates: 
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    (3.7) 

 

From (3.6) and (3.7) it is seen that in polar coordinates the rotation transforms to a simple 

shift along axis  . Therefore, the same phase-correlation technique can be applied to the 

magnitudes of the spectra 1P  and 2P  to find the angular shift 0 . The phase-correlation matrix in 

this case is calculated as follows: 
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F ,     (3.8) 

 

where F  denotes the Fourier transform applied to functions 1P  and 2P . The peak coordinates in 

matrix C  indicate the angular shift 0 . However,   angular ambiguity occurs because the 2D 

Fourier spectrum is conjugate symmetric for real images. This ambiguity is avoided if we rotate 

the image by two angles: 0  and  0 . Having the rotated first subimage in these two angles and 

the second subimage, we are able to determine a translational component by applying the phase-

correlation technique analogous to (3.3) [38]. The maximum value of peak strengths corresponds 
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to the correct angle 0  or  0 . The polar representation and rotation of images are performed 

using the bilinear interpolation. 

A disadvantage of the phase-correlation approach is that the peak value in the phase 

correlation matrix does not provide a clear measure of similarity between two subimages.  

 

3.3.2. Matching Procedure by Combining Phase- and Cross-Correlation Techniques 

We propose a combination of the phase- and cross- correlation matching techniques for detecting a 

match of the reference feature in the second image. The reference subimage is defined as a 

window ww  surrounding a control point which corresponds to some feature in the first image.  

An illustration and a flowchart of this matching routine are presented in Figure 3.4. We divide the 

search area into several overlapping windows with the same size as the reference subimage. 

Gaussian windowing is applied to input subimages prior to the phase-correlation routine. The 

windowing step attenuates the signal towards the image edges in order to reduce the influence of 

boundary pixels on the Fourier transform. The overlapping step h in the search area must not 

exceed half the width of the Gaussian curve: 

 

2

w
h  ,      (3.9) 

 

where w  is the window size,   is the relative half width of the Gaussian curve. Typically, 

5.0 , which corresponds to the maximum overlapping step 4/wh  . The window size w  is 
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chosen to be 64 pixels. The size of the search area varies depending on the stage of our ice motion 

tracking algorithm as discussed in the next section.  

Condition given by (3.9) allows for involving the entire search area in the matching process 

without any gaps. We conduct the phase-correlation image registration technique between the 

reference window and every window from the search area. As a result of this process, a set of 

possible displacements of the reference window is obtained. It is necessary to choose among them 

the most reliable match. Since the phase-correlation technique does not provide the measure of 

similarity between two subimages, some independent estimation should be applied. We suggest 

the cross-correlation coefficient is calculated for all potential displacements of the first subimage 

found by the phase-correlation routine. The cross-correlation coefficient for each matching 

between the first subimage and a second subimage from the search area is found as follows: 

 

  
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22

,
,    (3.10) 

 

where a  is a window surrounding a control point from the first image; b  is a rotated matching 

subimage from the second image. The angle of rotation 0  and the matching subimage itself are 

known from the phase-correlation matching procedure. The size of the square windows a  and b  is 

equal to the full width of the Gaussian curve i.e. w  or 32×32 pixel for our initial parameters 

64w  and 5.0 . a  and b  are average values of windows a  and b  respectively. The 

maximum value of the cross-correlation coefficient corresponds to the best match for the first 
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subimage. In addition, the cross-correlation coefficient is used for setting a level of confidence for 

the obtained drift vector. 

 

 

Figure 3.4. Illustration (a) and flowchart (b) of the matching technique. 

 

The use of the cross-correlation coefficient for selecting the best candidate found by the 

phase-correlation matching technique was also proposed in [36]. However, in our study the angle 

of rotation is taken into account prior to calculating the cross-correlation coefficient. 
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3.3.3. Ice Tracking Strategy 

The ice tracking strategy consists of ice motion detection at the lowest resolution level, ice motion 

detection at higher levels, and filtering erroneous vectors at each resolution level.  

Below we separately discuss the tracking strategy for the lowest resolution level with the coarsest 

resolution and higher resolution levels. 

 

1) The Lowest Resolution Level 

At the lowest resolution level the entire second image serves as a search area for all control points 

in the first image. The matching routine described in the previous section is applied to each control 

point. Thereby, for each control point there is a certain vector of displacement assigned. 

After this step, an elimination of erroneous vectors is required. We propose a new filtering 

approach which is based on combining the forward pass (ice tracking from the first image to the 

second one) and backward pass (ice tracking from the second image to the first one). Since a 

displacement vector is assigned to each control point in the first image, the coordinates of all 

control points in the second image are determined. Consequently, a set of points in the second 

image is obtained. Now it is possible to apply exactly the same matching routine to the obtained 

control points in the second image. Ideally, all these points from the second image should come 

back to the original control points in the first image. In other words, the absolute value of the sum 

of forward and backward vectors should not exceed the chosen 1 pixel threshold as shown in 

Figure 3.5(a). Those vectors which do not satisfy this criterion are removed. The rest of the vectors 

are additionally classified by thresholding of their cross-correlation coefficients as discussed in 

Section 3.3.4. 
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2) Higher Resolution Levels 

Vectors found at the previous resolution level serve as guide vectors at the present resolution level. 

For example, at the second resolution level the ice motion vectors found at the lowest (third) 

resolution level are involved where numbering of the resolution levels is shown in Figure 3.3. The 

guide vectors provide information about potential search areas in the second image. If a control 

point is located within a relatively small region (typically 48×48 pixel) surrounding the beginning 

point of the nearest guide vector then the search area is small (32×32 pixel) and its center is 

determined by the end of this guide vector as illustrated in Figure 3.5(b). Otherwise, the search 

process must be conducted within a larger search window. The size of this window is estimated 

based on the maximum length of a guide vector within a square 128×128 pixel around the control 

point as demonstrated in Figure 3.5(c). It is worthwhile to note that the sizes of the search areas 

(32×32 pixel and 3·MaxDisp×3·MaxDisp pixel) and the area surrounding a guide vector (48×48 

pixel) were defined empirically based on numerous tests of the ice tracking system. In the 

conducted experiments the search areas were established as small as possible while the area 

surrounding a guide vector was chosen as large as possible to decrease the computational load. 

During these tests the quality of derived vectors was controlled by comparing the output results 

obtained for different sizes of the search areas and the area surrounding a guide vector. The 

matching routine is applied to the reference subimage and the established search area in the second 

image in order to determine the displacement of the control point. All the control points are 

processed using the same technique. The filtering of error vectors procedure is performed using the 

same “forward-backward” approach as for the lowest resolution level, except that guide vectors 

from the previous level are involved in the backward matching routine. 
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Figure 3.5. (a) Filtering of erroneous vectors based on forward and backward passes of ice 

tracking; (b) and (c) illustrate transitions from a lower resolution level to the following upper level 

for small and large search areas (green dashed squares) respectively. 

 

3.3.4. Thresholding and Quality Assessment of Output Vectors 

Thresholding and quality assessment follows forward and backward passes at each resolution 

level. The vectors are divided into four groups based on their cross-correlation coefficients as 

shown in Table 3.1. Very low confidence vectors are discarded. 

 

Table 3.1. Cross-correlation threshold coefficients for different resolution levels. 

 

              Resolution 

 

Confidence                       

Level 

Level 0 

(100 m) 

Level 1 

(200 m) 

Level 2 

(400 m) 

Level 3 

(800 m) 

Very Low (Removed) < 0.1 < 0.2 < 0.3 < 0.4 

Low 0.1 - 0.2 0.2 – 0.3 0.3 - 0.4 0.4 – 0.5 

Medium 0.2 – 0.3 0.3 – 0.4 0.4 – 0.5 0.5 – 0.6 

High > 0.3 > 0.4 > 0.5 > 0.6 
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The thresholds for cross-correlation coefficients in Table 3.1 were found empirically based on 

numerous tests of the algorithm on different ice conditions and geographical areas. One may 

observe that the cross-correlation threshold decreases when the resolution increases. This is 

associated with the fact that, in general, the correlation between matching features in two images 

decreases when transiting from a lower resolution level to the following upper level. From a 

statistical analysis of cross-correlation coefficients derived for several image pairs we found that 

the cross-correlation coefficient decrease rate is levelresolution/1.0~  . This means that the 

cross-correlation coefficient 0.1 obtained at the highest resolution level corresponds to 0.4 at the 

lowest resolution level which is sufficiently high to admit the similarity between two subimages. 

Accuracy of output ice drift vectors was assessed visually on several image pairs as a human 

eye is the most reliable tool for detecting similar features in two images. Majority of the output 

vectors indicated correct matches; however, outliers may occur. The erroneous displacements 

belong to the low-confidence set of vectors. If an ice motion vector is missing for a particular 

control point, then the algorithm has not been able to determine a matching subimage in the 

second image. These situations typically occur in featureless areas such as sea ice covered by wet 

snow or melt ponds. 

 

3.4. Performance of Sea Ice Tracking System 

3.4.1. Comparison between SAR Ice Motion and Ice Beacon Data 

To compare ice motion derived from SAR images against ice beacon data we ran our ice motion 

tracking algorithm for 10 RADARSAT-2 ScanSAR image pairs acquired for the period of time 

from September 25, 2009 to October 19, 2009 over the southern Beaufort Sea. The time interval 
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between sequential images varied from one to three days. We used data from 10 Global 

Positioning System (GPS) ice beacons deployed by the University of Manitoba as part of our 

ongoing ArcticNet Networks of Centres of Excellence partnership with Imperial Oil and British 

Petroleum in the southern Beaufort Sea. The beacons transmitted data every two hours. Their 

positional error did not exceed 100 m. For each image pair we identified ice beacon trajectories 

corresponding to the time interval between the two images. Ice beacon locations at the image 

acquisition times were determined using the linear interpolation for two neighbour beacon 

positions. For a given ice beacon trajectory we assigned the nearest ice tracking vector such that 

the distance between the start positions of the beacon trajectory and the nearest tracking vector was 

smaller than 3 km. We collected 36 coincided and collocated satellite and beacon ice motion 

vectors. Figure 3.6 demonstrates a very good agreement between ice motion tracking and ice 

beacon data. 

The root mean square error (RMSE) indicated in Figure 3.6 was calculated as follows: 
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where 

N is the total number of ice tracking – ice beacon vector pairs 

 tit

i yx ,  are horizontal and vertical components of i th ice tracking vector; 

 b

i

b

i yx ,  are horizontal and vertical components of i th ice beacon vector; 
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Figure 3.6. Comparison between ice motion vectors derived by our algorithm from SAR images 

and ice beacon data. Blue and red dots denote horizontal and vertical displacements respectively. 

 

The obtained RMSE is slightly lower than the error of 0.6 km reported in the recent study 

[104].  

In the comparisons shown in Figure 3.6 we employed ice motion tracking vectors with all the 

levels of confidence (low, medium and high). Table 3.2 shows RMSEs specifically calculated for 

ice motion vectors with low, medium and high levels of confidence. One may observe that the 

smallest RMSE between the ice tracking and ice beacon data is obtained for vectors with a high 

level of confidence while the largest RMSE is found for vectors with a low level of confidence. 
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Table 3.2. RMSE between SAR ice motion and ice beacon data for three levels of confidence of 

ice tracking vectors 

 

Level of confidence 
Number of 

comparisons 
RMSE [km] 

Low 6 0.672 

Medium 17 0.456 

High 13 0.164 

 

 

 

3.4.2. Sea Ice Motion Fields Derived from SAR 

Two ice motion fields produced by the sea ice tracking system are presented in this section. 

Resolution of all input images is 100 m.  

Figure 3.7(a) and Figure 3.7(b) show two sequential HV images separated by one day time 

interval. Figure 3.7(c) shows the output ice motion vectors found by the algorithm. Red, yellow 

and green vectors indicate low, medium and high levels of confidence respectively.  

The presented example contains several rotated floes which are registered by the tracking 

procedure. Two rotated floes in Figure 3.7(c) are marked by white rectangles.  

The level of deformation experienced by these floes is manually assessed. An area from Image 

1 containing the floe of interest and an area from Image 2 embracing the same floe are selected. 

Then the floe from Image 2 is manually rotated and merged with the matching floe from Image 1. 

The obtained merged images for Floe 1 and Floe 2 are displayed in Figure 3.8(a) and (b) 

respectively. The conducted visual analysis of the merged images indicates that there is a slight 

deformation of Floe 1 and there is no deformation of Floe 2. 
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The absence of deformation means that the distance between any two points on the floes 

should be a constant over time. This condition of rigidity for one floe can be formulated as 

follows: 

    
pixel1

2

21
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n

tdtd
ji

ijij

 ,    (3.12) 

 

where  tdij  denotes a distance (in pixels) between control points i  and j  at the moment of time 

t  ; 1t  and 2t  are acquisition times of the images; n  is the number of segments on the floe. Floe 1 

has six motion vectors and 15 segments, and Floe 2 has five motion vectors and 10 segments as 

Figure 3.8(c) and (d) show. 

From (3.12) the deviation from rigidity for the first floe is 41.0  pixel while for the second 

floe 19.0  pixel. In both cases the obtained values are less than one pixel. However, the 

deformation of the first floe is slightly higher compared to the second floe which is consistent with 

the manual analysis. It is worthwhile to point out, that such an assessment of accuracy is possible 

only if floes are rigid. In conditions where ice floes are significantly deformed or broken the 

accuracy cannot be estimated through the criterion (3.12). Therefore, the detection accuracy of 

non-rigid motion of sea ice was assessed visually on a large number of image pairs. 

Figure 3.9 presents another example of ice motion tracking. Figure 3.9(a) and Figure 3.9(b) 

show two sequential SAR images acquired over the southeast of Baffin Island. Figure 3.9(c) 

demonstrates output displacement vectors. A rotated floe is marked by a white rectangular box in 

all three images. The rotation angle of this floe determined by the algorithm is 20°. 
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Figure 3.7. (a) and (b) are input sequential RADARSAT-2 images, HV-polarization. The images 

were taken on May 24, 2008, 15:32 and on May 25, 2008, 15:03 respectively to the west of 

Ellesmere Island; two examples of rotated floes are marked by white rectangles; (c) represents 

output ice drift vectors plotted on the first SAR image. Green: high level of confidence, yellow: 

medium level of confidence, red: low level of confidence. 
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Figure 3.8. Deformation assessment of Floe 1 and Floe 2 indicated in Figure 3.7(c). (a) Floe 1 

represented as a manual combination of two sequential subimages. Red: Image 1, green: Image 2, 

blue: Image 2. Slight deformation of the floe can be observed; (b) Floe 2 represented as a manual 

combination of two sequential subimages. Red: Image 1, green: Image 2, blue: Image 2; (c) Floe 1 

has 15 segments. Estimated deviation from rigidity is 41.0 ; (d) Floe 2 has 10 segments. 

Estimated deviation from rigidity is 19.0 . 
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Figure 3.9. (a) and (b) are input sequential RADARSAT-2 images, HH-polarization. The images 

were taken on April 22, 2009, 10:22 and on April 22, 2009, 21:52 respectively over the southeast 

of Baffin Island; a rotated floe is marked by a white rectangle; (c) represents output ice drift 

vectors plotted on the first SAR image. Green: high level of confidence, yellow: medium level of 

confidence, red: low level of confidence. 

 

Numerous tests show that the developed ice tracking algorithm demonstrates best performance 

for high and medium ice concentrations. In case of low-concentrated summer sea ice, the system 

shows low-confidence drift vectors or no vectors at all. Often times the open water has different 
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signatures in sequential SAR images due to different wind speeds. Thus, variability of the signal in 

SAR imagery over the sea surface negatively influences the matching procedure. For low ice 

concentration different floe based tracking algorithms such as [39], [40], [105] might be more 

efficient. 

 

3.5. Evaluation of Ice Motion Tracking from Co- and Cross-Polarization 

Images 

3.5.1. Cross-Polarization Channel of RADARSAT-2 

Both co- and cross-polarization channels of RADARSAT-2 ScanSAR Wide/Narrow imagery are 

suitable for extracting ice motion. The co-polarization signal is sensitive to small scale roughness 

of sea ice compared to the cross-polarization signal which is primarily generated on large scale 

changes in ice topography. In addition, the cross-polarization image makes it possible to 

distinguish ice features significantly better in the near range of incidence angles compared to the 

co-polarization image. According to [100], [101] the cross-polarization data (HV) facilitates the 

following tasks: 

1) ice-water separation; 

2) estimation of floe size; 

3) identification of first year and multiyear ice; 

4) identification of large scale deformation features. 

While the co-polarization channel is very sensitive to small-scale roughness, the 

depolarization effect is negligible over smooth ice (e.g. new ice). Therefore, the cross-polarization 

provides minimal improvement in detection of new ice.  
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Together, HH and HV data provide more accurate information on the state of sea ice cover; 

therefore, this combination is beneficial for ice charting by operational ice services.  

In terms of automated ice motion tracking, the cross-polarization channel may provide stable 

features undetectable by the co-polarization image. Thus, we expect that the combination of ice 

motion vectors extracted from the both channels should provide more reliable ice motion fields.  

Figure 3.10(a) demonstrates an example of a cross-polarization image, and Figure 3.10(b) 

shows changes of the HH NRCS 
0

HH , the HV NRCS 
0

HV  and the noise-equivalent sigma zero 

(NESZ) 
0

NE  across the satellite track (line number is 3000). The NESZ values are available in the 

RADARSAT-2 ScanSAR Wide product. The original image was converted to 100 m resolution. 

The most identifiable negative structure in cross-polarization images is several stripes parallel to 

the satellite track marked in Figure 3.10(a) with blue dashed lines. From Figure 3.10(b) it can be 

noticed that the HV signal (red) is closer to the noise floor (i.e. NESZ) than the HH signal. The 

stripes appear in the image because the noise floor of the sensor modulates the low cross-

polarization signal. The NESZ varies in the across track direction, while it is a constant in the 

along track direction. The stripes are especially pronounced over the calm ocean, where the cross-

polarization signal is close to the noise floor. Furthermore, the noise floor stripes can become 

apparent over the sea ice, where the cross-polarization signal is quite low (e.g. new ice). Since the 

co-polarization signal is significantly above the noise floor, the noise floor stripes are not 

prominent in co-polarization images. 
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Figure 3.10. (a) Example of a cross-polarization image over the Beaufort Sea (October 16, 2009), 

descending orbit; (b) HH and HV signals as well as the noise floor versus pixel number/incidence 

angle at line number 3000. The incidence angle depends nonlinearly on the pixel number. Blue 

dashed lines indicate several stripes parallel to the satellite track. 
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3.5.2. Correction of Noise Floor Stripes in Cross-Polarization Images 

In order to examine how the noise floor stripes in the cross-polarization image affect the ice 

motion tracking we developed a technique for reducing the impact of the noise on cross-

polarization imagery.  

The proposed procedure for image correction contains the following steps.  

a) The raw image is calibrated (converted to NRCS units in dB). 

b) The centered noise floor is calculated as follows: 

 

     jjiji NENE

00 ,,   ,     (3.13) 

 

where  jNE

0  is the mean value of the noise floor at line linNj ..1 , linN  is the number of lines in 

the image, pixNi ..1 , pixN  is the number of pixels across the satellite track. 
0

NE  is the NESZ 

taken in dB units 

c) The image is divided into non-overlapping square windows. The window size is chosen to be 

2020  pixel for 100 m resolution. For each pixel within a given window the difference between 

the cross-polarization signal and the NESZ is calculated as follows: 

 

00

NEHV   ,      (3.14) 
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where 
0

HV  is the HV NRCS taken in dB units. If this difference does not exceed a threshold level, 

then the pixel is assigned as a “bad” pixel, otherwise it is assigned as “good”. The threshold is 

chosen to be 4 dB which provides a sufficient level of signal over the noise floor.  

d) A ratio between the number of “bad” pixels and the total number of pixels within each window 

is calculated. The obtained concentration of “bad” pixels is assigned to each pixel in a given 

window. Thus, a new image bC  (concentration of “bad” pixels) is formed. 

e) Finally, each pixel in the initial image is corrected as follows: 

 

       jijiCjiji bHVHV ,,,,~ 0   ,    (3.15) 

 

where  ji,  is pixel coordinates;  jiCb ,  is the concentration of “bad” pixels within the window 

 ji,  it belongs to. The proposed approach corrects a cross-polarization image based on local 

differences between the signal and noise floor. The concentration of “bad” pixels bC  varies from 0 

to 1. For instance, if the cross-polarization signal is significantly higher than the NESZ, than the 

concentration of “bad” pixels 0bC  and the correction procedure is not performed: 

 

   jiji HVHV ,,~ 0  .       (3.16) 

 

On the other hand, if the signal is close to the NESZ, then the concentration of “bad” pixels 

1bC , and a significant correction is conducted as follows: 
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     jijiji HVHV ,,,~ 0   .     (3.17) 

 

We tested the technique for noise stripes correction on several HV images taken over sea ice and 

open water. Figure 3.11 shows an example of HV image (a) over sea ice and the same image after 

the correction technique is applied (b).  

 

 
 

Figure 3.11. Cross-polarization (HV) image over the Beaufort Sea (December 18, 2009), 

descending orbit before (a) and after (b) applying the noise removal procedure. Blue arrows 

indicate stripes parallel to the satellite track. 

 

 

The technique for filtering noise floor stripes in cross-polarization imagery is also valuable for 

expert visual analysis of sea ice cover (e.g. for producing ice charts at operational ice centers such 

as the CIS).  
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3.5.3. Ice Motion Tracking From Co- and Cross-Polarization Images 

Since the ice motion detection from satellite data relies on recognition of similar features into two 

sequential images, the presence of stable features in both images is essential for accurate tracking. 

As mentioned in Section 3.5.1, the co- and cross-polarization channels indicate different ice 

features. Therefore, potential benefits of ice tracking from cross-polarization images are derived 

from the cross-polarization channel’s advantageous capability to detect various ice features (which 

are not visible in the co-polarization channel). For instance, an ability of the cross-polarization 

channel to delineate ice floes and separate the multiyear ice is helpful in ice tracking. On the other 

hand, we do not expect any benefit of using the cross-polarization images over new ice where SAR 

signatures are featureless, and the signal level is close to the noise floor. 

Figure 3.12 demonstrates ice motion tracking results derived from two sequential dual-

polarization (HH-HV) images separated by a three-day time interval. One can observe that in the 

image subset 1s  a larger number of motion vectors were derived from the HH channel compared to 

the HV one. At the same time, for the image subset 2s  the HV channel provides a significantly 

better result than the HH channel. This means that it is not feasible to unambiguously judge 

whether the HH or HV channel is preferable for ice motion tracking: in certain conditions HH is 

preferable to HV and vice versa. 

To further evaluate the difference between ice motion tracking from co- and cross- 

polarization channels, 10 dual-polarization ScanSAR Wide image pairs (HH-HV) over the 

Beaufort Sea were selected for the period of time from September 25, 2009 to October 19, 2009. 

The time interval between sequential images varied from one to three days. We conducted three 
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ice tracking runs for each image pair with the following inputs: (1) two HH images; (2) two HV 

images; (3) two HV images preprocessed by the noise floor filtering algorithm described above.  

Output tracking results for each image pair were analyzed into non-overlapping square 

windows. The total number of ice motion vectors derived from HH and HV channels was 

computed for each window. In addition, the difference between the average HV signal and the 

NESZ was also computed. The described statistics were calculated for all the ten image pairs.  

 

 

Figure 3.12. Ice motion tracking results from HH (a) and HV (b) channels. Two sequential images 

were taken on October 16, 2009, 15:59 and October 19, 2009, 16:12 over the southern Beaufort 

Sea. Vectors are plotted on the first SAR image. Green: high level of confidence, yellow: medium 

level of confidence, red: low level of confidence. For the image subset 1s  a larger number of ice 

motion vectors were derived from the HH channel compared to the HV one, while for 2s  more ice 

motion vectors were derived from the HV channel compared to the HH one. 

 

Figure 3.13(a) shows a dependence of the difference between the number of motion vectors 

derived from HV ( HVN ) and HH ( HHN ) channels on the difference between the HV NRCS (
0

HV ) 
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and the NESZ (
0

NE ) taken in linear units for a window size of 400 pixels. The green points 

indicate the same dependence as the black points but for noise floor corrected HV images. 

If the HV signal is close to the noise floor, then the difference HHHV NN   becomes negative 

which means that the number of motion vectors extracted from the HH channel is larger than the 

number of vectors extracted from HV. This indicates that the tracking algorithm produces a better 

result from the HH channel than from the HV channel. If the HV signal is significantly higher than 

the noise floor, then the difference HHHV NN   is positive. This implies that the number of motion 

vectors extracted from the HV channel is larger than the number of vectors extracted from the HH 

channel. For high HV signals the ice motion tracking from the HV channel is beneficial compared 

to the HH channel.  

From Figure 3.13(a) it is also seen that the difference HHHV NN   for filtered HV images is 

approximately the same as for the original HV images. This fact suggests that the developed ice 

motion tracking algorithm is not sensitive to the noise floor stripes along the satellite track. 

The intersection point between the black/green regression line and the zero level in 

Figure 3.13(a) specifies a threshold for the difference between the HV signal and the noise floor. 

The found threshold indicates that the HV channel provides a more detailed ice motion field 

compared to the HH channel if the difference between the HV signal and the noise floor exceeds 

0.003. At the same time, if the difference between the HV signal and the noise floor is lower than 

0.003, then the HV channel is not as beneficial for ice motion tracking as the HH channel. Thus, 

from this analysis the following rule is formulated: 

If 003.000  NEHV   (linear units), then for ice tracking HV is preferable to HH; 
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If 003.000  NEHV   (linear units), then for ice tracking HH is preferable to HV. 

The same analysis was conducted for a larger window. The dependence of HHHV NN   on 

00

NEHV    (linear units) for the twice larger window size (800 pixels) is presented in Figure 

3.13(b). Despite the smaller number of points due to the larger window size, we observe similar 

results as for the window size of 400 pixels. 

 

 

Figure 3.13. Difference between the number of ice motion vectors derived from HH and HV 

channels. (a) window size is 400 pixels; (b) window size is 800 pixels. 

 

We conducted the same assessment for different levels of confidence of ice motion tracking 

vectors. The window size was selected to be 400 pixels and the noise floor correction procedure 

was not applied. Figure 3.14 shows a dependence of HHHV NN   versus 
00

NEHV    (linear units) 

for low, medium and high levels of confidence. The correlation coefficients for each of the three 

groups of points were calculated. It may be observed that the correlation coefficient is negative (-

0.22) for the low confidence vectors (red points), while it is the largest (0.55) for the high 
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confidence vectors (green points). Thus, HHHV NN   of low confidence vectors slightly decreases 

when 
00

NEHV    increases while HHHV NN   of medium and high confidence vectors increases 

when 
00

NEHV    increases. Therefore, the additional vectors derived from the cross-polarization 

imagery primarily have medium or high level of confidence. In other words, plugging in the cross-

polarization channel leads to increasing the number of vectors with medium and high levels of 

confidence. 

 

 

Figure 3.14. Difference between the number of ice motion vectors derived from HH and HV 

channels for low, medium and high levels of confidence. Window size is 400 pixels. 
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Our results suggest that the ice motion field derived from the HV images is able to 

significantly enhance the ice motion product derived from the HH images if the HV signal is 

sufficiently high. If the HV signal is low, then the produced ice motion field from the HV images 

will primarily contain low-confidence output vectors or no vectors at all. In this case, more 

complete ice motion information is derived from the HH channel. The level of the HV signal may 

vary significantly within one image. Consequently, in the areas where the HV signal is sufficiently 

high, a more comprehensive ice motion vector field is extracted from the HV channel compared to 

the HH channel. In the areas where the HV signal is low there is no supplementary ice motion 

vectors extracted from the HV channel. Therefore, a combination of the ice motion vector fields 

extracted from the HH and HV channels provides a more complete result than the ice motion 

information obtained from the HH or HV channels separately. 

 

3.6. Conclusion 

In this study we pursued two main objectives. (1) The first objective was to develop a sea ice 

motion tracking system operating with sequential RADARSAT-2 ScanSAR images and (2) to 

evaluate capabilities of the co- and cross-polarization images of RADARSAT-2 ScanSAR data for 

ice motion tracking. 

To address the first objective, we arranged the ice tracking system to include three major 

steps: preprocessing, matching, and error filtering. Each of these steps combines specifically 

developed new approaches and existing methods.  

As part of the preprocessing step we use an idea introduced in [31] of multiresolution 

representation of input images to decrease the computational load. At each resolution level, control 
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points in the first image are assigned. For control points selection we propose a new algorithm 

which automatically selects features associated with different ice heterogeneities (leads, cracks, 

ridges). Such a technique makes the probability of finding matches for these control points in the 

second image higher compared to the regular grid approach [31], [34], where some points may fall 

in featureless areas. 

For the matching step of the ice tracking system we combine the phase-correlation [38] and 

cross-correlation techniques [31], [33]. This approach makes it possible to derive the translational 

and rotational components of ice motion from the phase-correlation technique as well as to 

quantitatively estimate the similarity between two subimages and to set different levels of 

confidence to output ice drift vectors based on the cross-correlation coefficients. 

For filtering of erroneous vectors at each resolution level we suggest a new technique which is 

based on a comparison of ice drift vectors obtained from the forward (ice tracking from the first 

image to the second one) and backward (ice tracking from the second image to the first one) passes 

of ice motion detection. If the absolute value of the sum between the forward and backward drift 

vectors exceeds a threshold (1 pixel) then the vector is eliminated. After this procedure additional 

filtering is performed by thresholding the cross-correlation coefficients. For the rest of the vectors, 

a confidence level (low, medium, high) is set up for each output drift vector based on its cross-

correlation coefficient. 

We observed a very good agreement between the ice motion derived from SAR images and 

ice beacon data. RMSE was 0.428 km for 36 comparison points. Furthermore, the ice tracking 

algorithm’s accuracy was assessed visually for a large number of image pairs, and the error of 
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found vectors did not exceed one pixel. Also, an error within one pixel was found for absolutely 

rigid ice motion based on the condition of rigidity of a floe. 

To address the second objective we ran the developed ice motion tracking system on 10 dual-

polarization RADARSAT-2 ScanSAR image pairs taken over the southern Beaufort Sea in 

September - October 2009. Our statistical analysis of output ice tracking results revealed that if the 

difference between the HV signal and the noise floor in linear units exceeds 0.003, then the HV 

channel is beneficial for ice motion tracking compared to the HH channel. Accordingly, if the 

difference between the HV signal and the noise floor in linear units is lower than 0.003, then for 

ice motion tracking the HH channel is preferable to the HV channel. We also examined how the 

noise floor stripes in the cross-polarization image affect the ice motion tracking. First, we 

developed a technique for filtering noise floor stripes in HV imagery, which is also useful for 

visual expert analysis of sea ice cover. Second, we demonstrated that the ice motion tracking 

algorithm is not sensitive to the noise floor stripes along the satellite track. 

We found that ice motion information extracted from the HV images is able to enhance the ice 

motion vector field derived from the HH images in the areas where the HV signal is sufficiently 

high. Furthermore, the additional vectors derived from the HV images have primarily medium or 

high levels of confidence. We recommend a simple superposition of the ice drift vector fields 

obtained independently from the HH and HV channels as a final ice motion result derived from 

sequential dual-polarization RADARSAT-2 ScanSAR images. 

The developed sea ice motion tracking system has been implemented for operational use at the 

CIS, Environment Canada. It has been proven to be an instrumental tool for verifying sea ice 
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forecasting models, estimating sea ice exchange between the CAA and the Arctic Ocean, and 

supporting field work in the Arctic Ocean conducted in compliance with the UNCLOS. 

In light of the upcoming RCM mission [10], high resolution ice motion vector fields would be 

derived more frequently, almost all over the Arctic Ocean from both co- and cross-polarization 

images. Given the increased industrial activity in the Arctic Ocean the need for ice motion 

information has never been as acute as it is now. To be able to safely operate in the marginal ice 

zones surrounding the Arctic Ocean, timely and precise information on ice motion will be 

required. 
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CHAPTER 4. OCEAN SURFACE WIND SPEED RETRIEVAL FROM 

C-BAND SAR IMAGES WITHOUT WIND DIRECTION INPUT 

A. S. Komarov, V. Zabeline, and D. G. Barber, “Ocean surface wind speed retrieval from C-band 

SAR images without wind direction input,” IEEE Trans. Geosci. Remote Sens, vol. 52, no. 2, pp. 

980-990, Feb. 2014. 

 

 

4.1. Introduction 

Changes in wind speed play an important role in the Earth’s climate. Wind dominates mixing of 

the ocean surface mixed layer and controls exchange of gas, mass and momentum across this 

interface [106]. An overall trend of increasing values of wind speed over the past two decades has 

been recently discovered. According to satellite altimeter measurements, wind speeds over the 

majority of the world’s oceans have increased by 2.5–5% per decade [107]. However, analysis of 

long-term passive microwave SSM/I observations suggested that this global trend is around 1% 

per decade [108]. The latter appears more realistic in light of consequences that wind trends would 

have on global evaporation and precipitation [108]. Hence, more accurate satellite-based wind 

records with higher resolution are essential for specifying trends in global winds. 

At the regional and local scales, information on wind speed is required for a number of 

operational applications. For instance, detailed mapping of wind speeds over the water surface 

could improve short-range forecasts and extreme events warnings in Canadian coastal zones and 

on the Great Lakes. It could also provide important information for tracking and forecasting oil 

slick displacements as well as search and rescue operations. 

Since wind is one of the major factors affecting sea ice dynamics, wind speed mapping over 

the open water is required in the marginal ice zone (MIZ) of the Arctic Ocean. Existing numerical 
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weather prediction (NWP) models with a coarse resolution are not reliable in the Arctic region, 

particularly due to the presence of sea ice. For example, in a recent evaluation study of the 

Weather Research and Forecasting (WRF) model [57], near‐surface wind speed was the poorest of 

all the predicted surface variables. The coarse 60-km resolution introduced a large amount of error 

due to inadequate modelling of local wind effects and local flow field distortions.  

Spaceborne synthetic aperture radar (SAR) platforms have been extensively used to monitor 

winds at the ocean surface. Wind speed can be mapped over a wide geographical area (500 × 500 

km), with very high resolution (smaller than 500 m). Physical models of electromagnetic waves 

interaction with sea surface [48]-[53] are quite complex and do not agree well with experimental 

data, and therefore, in practice, various empirical formulations are applied. A series of C-band 

geophysical model functions (CMODs) [54]-[56] are widely used to derive wind speeds from C-

band SAR images. 

Initial CMOD wind speed retrieval models were developed for VV polarization C-band data 

acquired by wind scatterometers aboard European satellites ERS-1 and ERS-2. A wide swath and 

relatively coarse resolution (25 km) of satellite scatterometers make them applicable to large-scale 

weather forecasting. However, the coarse scatterometer resolution does not allow for capturing 

wind behavior in the coastal zone. At the same time, high resolution of SAR measurements 

compared to scatterometers and NWP models enables us to observe small-scale changes in surface 

winds and to improve forecasts in the coastal zones. 

CMOD models were extended to HH polarization SAR images [58], [59] through applying 

various approximations of co-polarization ratios (VV/HH) over the water surface. It was found 

[59] that the CMOD_IFR2 model, in conjunction with the Kirchhoff approximation of the co-
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polarization ratio dependent on incidence angle, is suitable to derive wind speeds from 

RADARSAT-1 ScanSAR images. The most recent geophysical function CMOD5.N was proposed 

in [56] and a more accurate co-polarization ratio dependent not only on incidence angle but also on 

wind speed (called SAD) was introduced in [109]. However, approximations of the co-polarization 

ratio may still introduce significant error into wind speed estimation through the CMOD models. 

In addition, wind direction input is required to run CMOD-type models. Normally, wind direction 

is provided by NWP models, which are often not accurate (especially in the Arctic Ocean).  

With the launch of Canadian RADARSAT-2, new cross-polarization channels became 

available [9]. It was shown [61] that the cross-polarization return from the ocean surface is 

independent of wind direction. In the same study, a strong linear relationship between wind speed 

and the cross-polarization signal (which is sometimes referred to as the C-2PO model) was 

demonstrated for fully-polarization RADARSAT-2 Fine Quad imagery. However, this simple 

relationship cannot be applied to dual-polarization RADARSAT-2 ScanSAR imagery (suitable for 

operational needs) where the noise floor values are significantly higher compared to the Fine Quad 

mode. Two new wind speed retrieval models applicable to RADARSAT-2 VV-VH ScanSAR 

imagery were proposed in [110]. Unlike CMOD models, these models use the additional cross-

polarization variable as input. One of the models introduced in [110] does not require input wind 

direction, while demonstrating a better accuracy than the CMOD_IFR2. However, such a model 

has not been developed for RADARSAT-2 horizontal polarization HH-HV ScanSAR mode. At the 

same time, primarily this beam mode of RADARSAT-2 imagery is being currently ordered by the 

Canadian Ice Service (CIS) for operational monitoring of the Canadian Arctic. This is associated 

with the fact that HH polarization provides greater differentiation between open water and ice than 
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VV polarization [111], [112]. The additional HV channel of RADARSAT-2 further facilitates a 

number of tasks, such as estimation of floe size and identification of first-year and multi-year sea 

ice [100]. 

In this study, we pursue three major objectives: (1) to develop and validate a wind speed 

retrieval model free of input wind direction for RADARSAT-1 HH ScanSAR imagery; (2) to 

develop and validate a wind speed retrieval model free of input wind direction for RADARSAT-2 

HH-HV ScanSAR imagery, and to evaluate different options for wind speed imaging; and (3) to 

explore how SAR wind speed retrieval without wind directions can be beneficial for studying 

various processes in the Arctic Ocean Marginal Ice Zone (MIZ). 

 

4.2. Data 

4.2.1. SAR Imagery 

To build the HH wind speed retrieval model, we used 347 RADARSAT-1 ScanSAR Wide (SCW) 

and ScanSAR Narrow (SCN) images acquired over the Canadian west and east coasts for the 

period May 2008 to May 2010. For development of the HH-HV–type model, we used 84 

RADARSAT-2 dual-polarization (HH-HV) SCW and SCN images acquired over the Canadian 

west and east coasts for the period November 2010 to March 2011. 

 

4.2.2. Buoy Data 

We employed buoy measurements collected on the west and east Canadian coasts. The buoy 

observations are available through the Environment Canada (EC) Thetis database [113]. All buoy 

instruments measure and average wind speed and wind direction within 10-minute intervals on an 
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hourly basis. Hourly observations of wave height and period were observed and averaged over 40-

minute intervals. Note that the Thetis database provides buoy transmission times only; actual wind 

speed observation times are not reported. Therefore, in order to obtain real observation times, it is 

necessary to know the time lags between transmission and observation. Time lags are different for 

every Eastern buoy, while they equal 20 minutes for the western buoys. For example, if buoy 

46004 (West) transmits data at 1:35, the actual observation of wind speed and direction is taken 

between 1:05 and 1:25. We used data from 17 buoys on the Canadian west coast and 9 on the east 

coast. Figure 4.1 shows the geographical anchor locations of the western and eastern buoys. All 

buoy wind speed observations were converted to equivalent neutral wind speeds at a reference 

height of 10 m above the ocean surface using a NASA algorithm described in [114]. This method 

reduces the influence of atmospheric stability based on the measured air and sea temperatures as 

well as heights of the anemometer and the air temperature sensor. 

 

4.3. Methods 

4.3.1. Processing SAR Data by the Wind Information Processing System (WIPS) 

The Wind Information Processing System (WIPS) for the routine retrieval of surface wind speed 

over Canada’s coastal waters has been implemented at the Meteorological Service of Canada, EC, 

as part of a two-year pilot project. The quasi-operational system derives wind speed from a co-

polarization channel (HH or VV) of RADARSAT-1 and -2 satellite imagery using the 

CMOD_IFR2 algorithm [54], [59]. Wind directions required by the CMOD algorithms are 

provided by the Global Environmental Multiscale Regional (GEM REG) model [115] run by the 

Canadian Meteorological Centre (CMC). The output resolution of wind speed maps and processed 
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SAR images (incidence angle, normalized radar cross-section) is 500 m If a cross-polarization 

channel is available in the input SAR imagery, then WIPS additionally provides a noise-equivalent 

sigma zero (NESZ) and calibrated cross-polarization normalized radar cross-section (NRCS) 

image with 500-m resolution. However, this information has not been used by WIPS for wind 

speed retrieval. 

 

 

Figure 4.1. Geographical locations of ocean buoys (EC Thetis database) on Canadian (a) west and 

(b) east coasts. 

 

 

 

4.3.2. Creation of Wind Speed Databases 

A general flowchart of the proposed algorithm is shown in Figure 4.2 and described in this section. 

All available SAR images noted in Section 4.2 are preprocessed by WIPS. For each wind field, we 

identify buoys that are located inside the corresponding SAR scene. Usually, the number of buoys 

inside one SAR scene varies from one to five. The buoy data corresponding to a particular SAR 

scene can be extracted directly from the Thetis database [113]. The time difference between a SAR 
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scene and the nearest buoy measurement does not exceed 30 minutes. To find the buoy location 

coordinates within a scene (pixel, line), we implemented a gradient search method described in 

[103]. This approach is efficient for searching a specific geographical point (latitude/longitude) of 

interest in a satellite swath. To obtain the incidence angle, HH NRCS, NESZ and HV NRCS (if 

available), precisely over the buoy location, we used bilinear interpolation. 

 

 

Figure 4.2. Flowchart of building a database for developing wind speed retrieval models 
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As a result, we created two wind speed databases for two types of SAR data: RADARSAT-1 

(HH) and RADARSAT-2 (HH-HV). The first database contains 755 samples and the second 

contains 248 samples. Created databases are suitable for further analysis and regression modelling 

of wind speed through SAR parameters. 

 

4.4.  HH Model without Wind Direction 

To build the HH wind speed retrieval model, the initial HH database containing 755 samples was 

divided into two subsets: (1) 500 samples (a training subset) and (2) 255 samples (a testing 

subset).  

The first subset was used for training the model. We propose a quadratic relationship in a 

regression model between buoy wind speed as a dependent variable and HH NRCS along with 

incidence angle as independent variables (there is no wind direction as an independent variable): 

 

   0

5
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4

20

32

0

10 HHHHHH aaaaaaV  ,    (4.1) 

 

where V is the wind speed, m/s;   is the incidence angle, degree; and 
0

HH  is the HH NRCS, dB. 

Table 4.1 presents coefficients 
510 ,...,, aaa , which were determined through the regression 

analysis of the training dataset. Figure 4.3 shows buoy measurements (black points) and a fitted 

surface given by equation (4.1). 
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Table 4.1. Regression coefficients for the HH model (4.1) 

 

0a  -16.50189 

1a  0.81709 

2a  1.65899 

3a  0.06022 

4a  0.00333 

5a  0.06981 

 

 

 

Figure 4.3. Fitting surface of buoy measurements for the HH model (4.1). 
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The model developed on the first subset (training) was tested on the second subset (testing). 

Figure 4.4 demonstrates the performance of the regression model on training and testing subsets, 

and for comparing the performance of the CMOD_IFR2 [54] and CMOD5.N [56] models with the 

SAD co-polarization ratio [109] on the same datasets. Figure 4.4(b), (d) and (f) illustrates that our 

regression model performs better on the testing data subset (RMSE = 1.77 m/s) compared to the 

CMOD5.N (RMSE = 1.95 m/s) and CMOD_IFR2 (RMSE = 2.23 m/s) with the SAD co-

polarization ratio. This result suggests that the error coming from the SAD approximation of the 

co-polarization ratio [109] is greater than the error resulting from the omission of wind direction in 

a regression model. Thus, our model without wind direction has a higher accuracy than the 

CMOD_IFR2 and CMOD5.N models with the SAD co-polarization ratio. 
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Figure 4.4. HH wind speed retrieval algorithm without wind direction versus the CMOD_IFR2 

and CMOD5.N with the SAD co-polarization ratio wind speed retrieval models. (a) wind speeds 
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calculated according to the CMOD_IFR2 with the SAD co-polarization ratio versus buoy data for 

the training subset; (b) wind speeds calculated according to the CMOD_IFR2 with the SAD co-

polarization ratio versus buoy data for the testing subset; (c) wind speeds calculated according to 

the CMOD5.N with the SAD co-polarization ratio versus buoy data for the training subset; (d) 

wind speeds calculated according to the CMOD5.N with the SAD co-polarization ratio versus 

buoy data for the testing subset; (e) wind speeds calculated according to our HH model without 

wind direction versus buoy data for the training subset; (d) wind speeds calculated according to 

our HH model without wind direction versus buoy data for the testing subset. 

 

To ensure that the proposed regression model is not biased towards a few wind directions we 

examined distributions of relative wind directions within the studied datasets. Figure 4.5 

demonstrates two distributions of absolute values of relative wind directions measured by buoys 

for both training and testing subsets. The wind direction relative to the antenna look is defined as 

follows: 

 

2


  bt ,     (4.2) 

 

where t  is the satellite track angle; b  is the angle of buoy wind direction counting clockwise 

from the North. We considered the distributions of the absolute value of wind directions (from 0 to 

 ) because CMOD geophysical functions are even with respect to the relative wind direction 

  , . Figure 4.5 reveals that the distributions of wind directions in both subsets are close to 

uniform; therefore, no preferred wind directions can be identified in our subsets. This result 

indicates that the proposed HH model (4.1) does not have any preference in wind direction.  
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Figure 4.5. Distribution of absolute values of relative wind directions measured by buoys of the 

HH model. 

 

 

4.5.  HH-HV Model without Wind Direction 

4.5.1. Analysis of the HH-HV Database 

It is well known that the co-polarization signal tends to saturate with increasing wind speed over 

the open water [60], [116]. This effect can also be observed in Figure 4.6(a), which shows a 

dependence of the HH NRCS on the buoy wind speed for three groups of incidence angles. 

Contrary to the HH signal, the HV signal does not saturate with increasing the wind speed as 

demonstrated in Figure 4.6(b). Also, Figure 4.6 shows a weaker dependence of HV NRCS on 

incidence angle in the range of 
oo 5020   compared to the HH NRCS. Hence, introducing the 
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HV NRCS into a regression analysis may improve the accuracy of the wind speed retrieval 

especially for strong winds. Figure 4.6 shows that the HV signal is significantly lower than the HH 

signal, and that the HV signal is close to the noise floor for low and moderate wind speeds. 

Therefore, the noise floor must be taken into consideration in the wind speed retrieval algorithms.  

 

 

Figure 4.6. Dependence of (a) HH NRCS and (b) HV NRCS and NESZ on the buoy wind speed 

for three ranges of incidence angles; 248 samples. 

 

For further analysis, the HH NRCS 
0

HH , HV NRCS 
0

HV  and NESZ 
0

NE  are converted to 

linear units as follows: 

 

100100100

000

10,10,10
NEHVHH

linNElinHVlinHH



  .   (4.3) 

 

Figure 4.7(a) shows the noise floor dependence on the incidence angle. The behaviour of the 

NESZ across the satellite track is caused by the irregular antenna elevation pattern. In our datasets 
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the NESZ level for HH-HV ScanSAR images over the ocean surface varied from -30.6 to -26.8 

dB. Relatively high levels of the NESZ in RADARSAT-2 ScanSAR products (compared to the 

fully-polarization mode) may control the cross-polarization signal. Therefore, a careful 

consideration of cross-polarization NRCS with respect to the NESZ is required for wind retrieval. 

 

 

Figure 4.7. Dependence of (a) HV NRCS and NESZ in linear units and (b) HV NRCS minus 

NESZ in linear units on the incidence angle for three ranges of buoy wind speeds; 248 samples. 

 

Figure 4.7(a) also demonstrates a dependence of the HV NRCS and NESZ taken in linear 

units on the incidence angle for three ranges of buoy wind speeds. The points with wind speeds 

higher than 12 m/s are well above the noise floor, while points with wind speeds lower than 6 m/s 

lie closer to the NESZ pattern. Thus, for low wind speeds, the HV signal is substantially governed 

by the noise floor. To reduce this effect we introduce the difference between the HV NRCS and 

the NESZ 
00

linNElinHV    taken in linear units. A dependence of this difference on the incidence 



 

121 

 

 

angle is displayed in Figure 4.7(b). Furthermore, similar to [110], we introduce a new HV cross-

polarization variable expressed in dB units as follows: 
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where   denotes a threshold that cuts the HV signal in the vicinity of the noise floor. Selection of 

the threshold   was based on the following considerations. Excessively high thresholds 

essentially exclude the cross-polarization channel from the wind speed retrieval model (as can be 

seen in the next section), which decreases the accuracy of retrieved wind speeds. Very low 

threshold values lead to appearance of noise floor stripes parallel to the satellite track in wind 

speed maps. Visual examination of numerous wind speed images produced by the HH-HV model 

enabled us to establish a useful threshold value at 4104  . 

Figure 4.8 shows a strong dependence of the HV cross-polarization variable (4.4) on the wind 

speed for three ranges of incidence angles. A slight dependence of HV  on the incidence angle can 

also be observed. 
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Figure 4.8. Dependence of the HV cross-polarization variable on the buoy wind speed for three 

ranges of incidence angles, 4104  ; 162 out of 248 samples which fulfil the condition 

  00

linNElinHV . 

 

4.5.2. HH-HV Wind Speed Retrieval Model 

Our initial HH-HV database containing 248 samples was divided into two subsets: (1) 130 samples 

(a training subset) and (2) 118 samples (a testing subset). The following relationship between wind 

speed and HH-HV image parameters is proposed: 
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where V  is the wind speed, m/s;   is the incidence angle, degree; 0

HH  is the HH NRCS, dB; and 

HV  is the new cross-polarization variable. Two sets of coefficients, 
810 ,...,, ccc  and 

510 ,...,, ppp  

(displayed in Table 4.2), were determined through a regression analysis applied to the training 

subset. 

 

Table 4.2. Regression coefficients for the HH-HV model (4.5). 

 

0c  5.87419 0p  -6.92202 

1c  0.80594 1p  1.61996 

2c  0.27113 2p  1.36301 

3c  1.38335 3p  -0.02644 

4c  -0.10676 4p  -0.02272 

5c  -0.02097 5p  -0.0487 

6c  -0.0022 - - 

7c  0.02593 - - 

8c  -0.10327 - - 

 

Figure 4.9 demonstrates the performance of the HH-HV regression model (4.5) on the training 

and testing subsets as well as the performance of the CMOD_IFR2 [54] and CMOD5.N [55] 

models with the SAD co-polarization ratio [109] on the same datasets. From Figure 4.9(b), (d) and 

(f) it is seen that our HH-HV regression model performs better on the testing data subset (RMSE = 

1.59 m/s), compared to the CMOD5.N (RMSE = 2.19 m/s) and CMOD_IFR2 (RMSE = 2.03 m/s) 

with the SAD co-polarization ratio. Thus, the proposed HH-HV model without the wind direction 

has a better accuracy than the CMOD_IFR2 and CMOD5.N models with the SAD approximation 

of the co-polarization ratio. 

 



 

124 

 

 

 

Figure 4.9. HH-HV wind speed retrieval algorithm without wind direction versus the 

CMOD_IFR2 and CMOD5.N with the SAD co-polarization ratio wind speed retrieval models. (a) 
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wind speeds calculated according to the CMOD_IFR2 with the SAD co-polarization ratio versus 

buoy data for the training subset; (b) wind speeds calculated according to the CMOD_IFR2 with 

the SAD co-polarization ratio versus buoy data for the testing subset; (c) wind speeds calculated 

according to the CMOD5.N with the SAD co-polarization ratio versus buoy data for the training 

subset; (d) wind speeds calculated according to the CMOD5.N with the SAD co-polarization ratio 

versus buoy data for the testing subset; (e) wind speeds calculated according to our HH model 

without wind direction versus buoy data for the training subset; (d) wind speeds calculated 

according to our HH model without wind direction versus buoy data for the testing subset. 

 

Analogous to Figure 4.5 for the HH model, Figure 4.10 demonstrates distributions of buoy 

wind directions relative to the antenna look for both training and testing subsets. From the 

presented histograms no preferred wind direction can be identified. This indicates that the 

proposed HH-HV model is not biased towards any wind direction.  

 

 

Figure 4.10. Distribution of absolute values of relative wind directions measured by buoys for the 

HH-HV model. 
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4.5.3. Wind Speed Imaging Using HH-HV Model 

The original resolution of RADARSAT-2 ScanSAR Wide imagery is 50 m [9]. Direct calculation 

of wind speed from the original image would lead to a noisy pattern due to the presence of speckle 

noise in the raw SAR image. Therefore, a degraded wind speed image is generated. We examined 

two options to derive a wind speed product with a lower resolution compared to the initial SAR 

image: 

 

Option 1: 

(a) the calibrated 50-m resolution image is degraded to a 500-m resolution image; 

(b) wind speed is derived from the obtained degraded image. 

Option 2: 

(a) wind speed is derived from the calibrated 50-m resolution RADARSAT-2 ScanSAR HH-

HV image; 

(b) the obtained 50-m resolution wind field is degraded to a 500-m resolution product. 

 

We found that these two options provide almost identical wind speed maps computed by the 

HH model (4.1) or CMOD models. However, in the case of the HH-HV model (4.5), the results 

can be different due to the piecewise nature of this model. Figure 4.11(a) shows an example of the 

wind speed product with a 500-m resolution derived from a RADARSAT-2 HH-HV image using 

Option 1. A grainy pattern can be observed in a subset of 100 × 100 pixels demonstrated in Figure 

4.11(b). This effect is associated with the switching between two modes of the HH-HV model 

(4.5).  
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Figure 4.11. Wind speed mapping from a RADARSAT-2 ScanSAR HH-HV image through the 

following steps: (1) the calibrated 50-m resolution image is degraded to a 500-m resolution image; 

and (2) wind speed is derived from the obtained degraded image. Wind speed is valid only over 

the open water. (a) 500-m resolution wind speed map; (b) 100×100 pixel subset from this wind 

field. The RADARSAT-2 image was acquired over the southern Beaufort Sea on October 10, 

2009, at 15:35. 

 

 

To overcome this issue, we introduced Option 2 for processing HH-HV RADARSAT-2 

images. A wind speed map generated through Option 2 is shown in Figure 4.12(a) and a 100 × 100 

pixel subset is shown in Figure 4.12(b). The wind speed subset displayed in Figure 4.12(b) is 

significantly less grainy than the corresponding subset shown in Figure 4.11(b). This can be 

explained by the fact that in Option 2 we simultaneously average out the speckle noise and the 

noise introduced by the switching effect in the HH-HV model, while in Option 1 we reduce 

speckle effect only. Thus, Option 2 is better than Option 1 for wind speed mapping through the use 

of the HH-HV model. 
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Figure 4.12. Wind speed mapping from a RADARSAT-2 ScanSAR HH-HV image through the 

following steps: (1) wind speed is derived from the calibrated 50-m resolution RADARSAT-2 

ScanSAR HH-HV image; (2) the obtained 50-m resolution wind field is degraded to a 500-m 

resolution product. (a) 500-m resolution wind speed map; (b) 100×100 pixel subset from this wind 

field. Wind speed is valid only over the open water. The RADARSAT-2 image was acquired over 

the southern Beaufort Sea on October 10, 2009, at 15:35. 

 

 

4.6.  Wind Speed Mapping in the Marginal Ice Zone 

Ocean surface wind speed distribution in the vicinity of sea ice is complex and is difficult to 

predict with NWP models. Therefore, wind speed retrieval without wind direction input is 

particularly important in the Arctic region where NWP models are not reliable. In this section we 

demonstrate how SAR wind retrieval can be beneficial for studying various processes in the MIZ 

given that winds substantially affect ice motion and ice concentration. 

To illustrate different options for wind speed imaging, which are presented in Figure 4.11 and 

Figure 4.12, we employed a RADARSAT-2 image acquired on October 10, 2009 over the 

southern Beaufort Sea MIZ. It is worthwhile to note that the wind speed calculation is valid only 
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over the open water, while over the sea ice the colour is meaningless. At the same time, the sea ice 

motion field over the sea ice can be extracted if a supplemental sequential SAR image is available. 

We added an image taken on October 13, 2009, and derived ice displacements for the time period 

from October 10 to October 13, 2009, using our sea ice motion tracking algorithm presented in 

[11]. Thus, from RADARSAT-2 ScanSAR images, it is possible to extract wind speed over the 

open water and a sea ice motion vector field over the sea ice. An example of such an ice motion – 

wind speed product is shown in Figure 4.13. 

Figure 4.13 shows that higher wind speeds (derived over the open water) cause higher sea ice 

velocities, whereas lower wind speeds correspond to shorter ice motion vectors. Furthermore, 

wind speeds in openings in sea ice (e.g., leads and cracks) are lower than over the ocean, due to the 

effect of wind shadowing by floes, described for example in [111]. This indicates that the 

developed tool is useful for studying various dynamic phenomena in the Arctic Ocean, such as the 

relationship between the wind speed, sea ice velocity and ice concentration in the Arctic Ocean 

MIZ. Moreover, SAR-derived wind speed and ice motion in the MIZ can provide reliable initial 

conditions for ice forecasting models. Data such as this will also find utility in studies of the 

exchange of CO2 across the ocean-sea ice-atmosphere (OSA) interface helping to determine the 

overall role of the MIZ as a source or sink for greenhouse gases [106]. 

Another example of merging ice motion and ocean surface wind speed in the MIZ, is shown in 

Figure 4.14. This case demonstrates ice dynamics under low wind speed conditions (< 6 m/s). An 

enlarged fragment in Figure 4.14 shows that two multi-year ice floes move in opposite directions. 

This is associated with the fact that, in the absence of strong and moderate wind, the main factors 

affecting ice motion are ocean currents and the Coriolis force [25]. Therefore, these floes might 
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move in different directions because they experience different oceanographic forcing [8]. Thus, the 

developed ice motion-wind speed tool can be useful in separating wind and oceanographic forcing 

in the MIZ. The enlarged fragment demonstrates that two multi-year ice floes move in opposite 

directions under low wind speed conditions. 

 

 

Figure 4.13. An example of ice motion – wind speed product. 1 pixel is 100 m. Sea ice motion is 

derived from two sequential RADARSAT-2 ScanSAR HH-HV images using the ice motion 

tracking algorithm proposed in [11]. The first image was acquired on October 10, 2009, at 15:35, 

and the second image was acquired on October 13, 2009, at 15:47. Each vector indicates the total 

displacement of ice for the three-day time interval. Wind speed is derived from the first SAR 

image using the HH-HV model (4.5), and is valid only over the open water. 
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Figure 4.14. An example of ice motion – wind speed product. 1 pixel is 100 m. Sea ice motion is 

derived from two sequential RADARSAT-2 ScanSAR HH-HV images using the ice motion 

tracking algorithm proposed in [11]. The first image was acquired on September 28, 2010, at 

15:37, and the second image was acquired on September 29, 2010, at 15:08. Each vector indicates 

the total displacement of ice for the three-day time interval. Wind speed is derived from the first 

SAR image using the HH-HV model (4.5), and is valid only over the open water. 
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4.7. Conclusion 

In this study we pursued three main objectives: (1) to develop and validate a wind speed retrieval 

model free of input wind direction for RADARSAT-1 HH ScanSAR imagery; (2) to develop and 

validate a wind speed retrieval model free of input wind direction for RADARSAT-2 HH-HV 

ScanSAR imagery, and to evaluate different options for wind speed imaging; and (3) to explore 

how SAR wind speed retrieval without wind directions can be beneficial for studying various 

processes in the Arctic Ocean MIZ. 

To address the first objective, we collected 755 coincided and collocated RADARSAT-1 HH 

measurements and buoy observations. This database was divided into training (500 samples) and 

testing subsets (255 samples). The independent variables of this regression model are HH NRCS 

and incidence angle. The developed HH model showed better performance (RMSE = 1.77 m/s) 

than the CMOD5.N (RMSE = 1.95 m/s) and CMOD_IFR2 (RMSE = 2.23 m/s) with the SAD 

approximation of the co-polarization ratio on the independent dataset (testing subset). This result 

indicates that the error coming from the SAD approximation is greater than the error resulting 

from the omission of wind direction in a regression model. 

To address the second objective, we collected 248 coincided and collocated RADARSAT-2 

HH-HV measurements and buoy observations. This database was divided into training (130 

samples) and testing subsets (118 samples). The independent variables of this model are HH 

NRCS, HV NRCS, NESZ and incidence angle. The new cross-polarization variable (
HV ) in the 

regression model was introduced through the difference between the HV signal and the noise floor. 

The developed HH-HV model showed better performance (RMSE = 1.59 m/s) than the CMOD5.N 

(RMSE = 2.19 m/s) and CMOD_IFR2 (RMSE = 2.03 m/s) with the SAD approximation of the co-
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polarization ratio on the independent dataset. The introduced cross-polarization variable 

compensates for the absence of the wind direction, which is required by CMOD-type models. For 

the HH-HV model, we considered two options of wind speed mapping, and we found that in 

practice it is preferable to compute a wind field as follows: (a) derive the wind speed from the 

calibrated 50-m resolution RADARSAT-2 ScanSAR HH-HV image; and (b) degrade the obtained 

50-m resolution wind field to a 500-m resolution map. This approach averages out the speckle 

noise and the noise introduced by the switching process in the HH-HV model (4.5). 

The developed algorithms do not require input of wind directions, and can be used in the areas 

where wind directions provided by an NWP model are not reliable (e.g., in the Arctic Ocean). The 

proposed models have been integrated into a quasi-operational system at the Meteorological 

Service of Canada. 

As a final step of this study (third objective), we proposed the ice motion-wind speed product, 

which appears to be promising for studying various dynamic processes in the OSA system in the 

Arctic Ocean MIZ. More specifically, the proposed tool can be useful for: (a) studying the 

relationship between wind speed, ice velocity and ice concentration; (b) assimilation of wind speed 

and ice motion into sea ice forecasting models; (c) estimation of momentum and heat exchange 

across the OSA; and (d) separating wind and oceanographic forcing for detailed analysis of ice 

floes’ motion. 
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CHAPTER 5. ELECTROMAGNETIC WAVE SCATTERING FROM 

ROUGH BOUNDARIES INTERFACING INHOMOGENEOUS MEDIA 

AND APPLICATION TO SNOW-COVERED SEA ICE 

A. S. Komarov, L. Shafai, and D. G. Barber, “Electromagnetic wave scattering from rough 

boundaries interfacing inhomogeneous media and application to snow-covered sea ice,” Progress 

in Electromagnetic Research, vol. 144, pp. 201-219, 2014. 

 

5.1. Introduction 

Accelerated decline of the Arctic sea ice extent [1] and thickness [6], [97] causes dramatic changes 

in the coupled ocean-sea ice-atmosphere system. Over the past three decades the ice-albedo 

feedback mechanism played a major role in a pervasive increase in the amount of solar energy 

deposited in the upper Arctic Ocean, with maximum values of 4% per year [117]. Larger heat 

fluxes from the ocean to the atmosphere are expected to cause significant warming of the Arctic 

region [118]. Furthermore, extensive solar heating led to a sharp depletion of thick multiyear (MY) 

ice and concomitantly increased proportion of first-year (FY) ice. Monitoring, modeling and 

predicting these climatic changes in the Arctic is becoming increasingly important because of the 

increase in development of recently accessible Arctic resources. 

Microwave radar remote sensing has been extensively used for detecting dynamic [11], [104] 

and thermodynamic changes [119] in sea ice. However, improved algorithms for extracting key 

parameters of sea ice from radar observations such as synthetic aperture radar (SAR) imagery are 

still required. To better understand the linkage between the geophysical and thermodynamic state 

of sea ice and radar signatures, modeling techniques for electromagnetic wave scattering from 

snow-covered sea ice are particularly important. These models should reproduce scattering 
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characteristics in the bistatic case (when transmitter and receiver antennas are spanned in space) to 

anticipate future bistatic spaceborne SAR systems [120]. 

In the literature various approaches to modeling of electromagnetic wave scattering from 

rough surfaces can be found.  

Semi-empirical composite scattering models [80], [85], [121] allow to naturally account for 

volume scattering in sea ice (based on the radiative transfer theory [86]); however, the surface 

scattering terms in these models need to be separately determined from empirically or physically 

based theories.  

All other models considered are based on solution of Maxwell’s equations. They can be 

classified into numerical and analytical (wave theory) methods. Unlike the radiative transfer 

models, the physical models are able to provide phase information as well.  

Numerical finite-difference time-domain (FDTD) [87], [88] and finite-volume time-domain 

(FVTD) [89] methods exactly solve Maxwell’s equations, within numerical approximation. These 

methods can account for surface and subsurface roughness and an arbitrary behavior of the 

dielectric constant within the media. However, the time domain methods require significant 

computational resources due to a number of reasons. Among them are (a) numerous realizations of 

the random rough surface, and (b) extremely fine mesh in the situations where absorption is high 

(e.g. sea water under the ice). Unfortunately, the computational constrains make the numerical 

methods difficult to apply to practical remote sensing problems such as simulation of temporal 

changes in SAR signatures over the sea ice.  

Analytical methods are aimed to derive a closed-form solution of Maxwell’s equations under 

various approximations. These methods are not computationally expensive and thereby more 
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suitable for practical geophysical applications. The small perturbation method (SPM) was 

introduced by Rice [90] in 1951 to analytically describe wave scattering from slightly rough 

surfaces. Since then the SPM theory was extended to solving more complex scattering problems. 

In [92] an SPM solution for wave scattering from a rough surface embedded in a three-layered 

structure was derived. Scattering from a layered structure with a rough upper boundary was treated 

in [94]. In [93] a unified formulation of perturbative solutions derived by [92] and [94] was 

presented. Later the SPM solution was extended to scattering from two [95] and several rough 

interfaces [96] embedded in a layered medium. The recent study by [96] presents an SPM solution 

for the medium treated as a number of homogeneous discrete layers separated by rough interfaces. 

Meanwhile, most natural media (e.g. snow, ice, soil) have continuous profiles of dielectric 

constants and a few rough interfaces separating the inhomogeneous media. Therefore, it is 

important to consider the SPM formalism for wave scattering from rough surfaces interfacing 

continuous dielectric fillings between them.  

Our main goal is to build a geoscience user-oriented SPM solution expressed through 

physically meaningful reflection and transmission coefficients associated with the continuously 

layered media (e.g. snow, ice, soil). These reflection and transmission coefficients could be either 

modelled through discretization of the layered media, in some cases found analytically, or 

measured directly (in the field or laboratory). 

An important application of the SPM theory is modeling of microwave scattering from the FY 

snow-covered sea ice. This type of ice is anticipated to prevail in the Arctic Ocean in the near 

future [4]. In the frequency range between 0.5 GHz (P-band) and 10 GHz (X-band) the dominant 

scattering mechanism for the FY ice is often the surface scattering from two rough interfaces: air-
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snow and snow-ice interfaces. Both interfaces are slightly rough in these frequency bands, and 

thereby, the SPM theory is applicable to model microwave interactions with snow-covered FY sea 

ice.  

Thus, in this study we pursue three main objectives. (1) To derive a general analytical 

formulation for electromagnetic wave scattering from an arbitrary number of rough interfaces 

separating continuously layered media with the use of the first-order approximation of the SPM 

theory. The solution must be expressed through complex reflection and transmission coefficients 

associated with the inhomogeneous media. (2) To validate the obtained solution by treating special 

cases available in the literature and comparing numerical results with those available in the 

literature. (3) To present an analytical formulation for electromagnetic wave scattering from snow-

covered sea ice as a special case of the general solution. 

 

5.2. Statement of Scattering Problem 

Geometry of the general scattering problem is displayed in Figure 5.1 in cylindrical coordinates 

 z,ρ . The area 0z  is a free space with relative permittivity and permeability of one. Complex 

dielectric constant (CDC) and complex magnetic constant (CMC) of the inhomogeneous half 

space 0z  are described by piecewise continuous functions through a set of continuous functions 

 zn ,  zn  such that their derivatives are continuous within layers 1 nn dzd . The 

continuously inhomogeneous media are separated by N  rough interfaces located at ndz  , 

where 1,...,2,1,0  Nn , and 00 d . Suppose, that roughness of interfaces is described by 

stationary random functions )(ρn  with zero average value 0)( ρn , where the sharp 
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brackets ...  denote ensemble averaging. A plane electromagnetic monochromatic wave with 

angular frequency  , harmonic time dependence 
tie 
 and an arbitrary polarization is incident 

upon this structure. The incidence angle is 
2

0 0


  relative to the vertical axis z .  

Our goal is to determine electromagnetic fields in far zone in the upper half-space and to 

calculate the normalized radar cross-sections (NRCS) VV , HH , HV  and VH  as functions of 

azimuth and elevation angles in the upper half-space 0z . We assume that the formulated 

problem is considered within the validity range of the first-order approximation of the SPM 

theory. 

 

 
 

Figure 5.1. Illustration of a general problem for wave scattering from rough interfaces separating 

continuously layered media. Reproduced courtesy of the Electromagnetics Academy. 
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5.3. Derivation of Solution 

First, we derive a formulation for a key scattering problem with a single rough interface  ρn  

located at ndz  , where 1,...,2,1,0  Nn , and 00 d . Then we generalize the obtained 

solution for an arbitrary number of rough boundaries. The SPM formalism applies to surfaces with 

a small surface height variation and small surface slopes with respect to the incident wavelength 

[91]: 

 

3.0,3.0,3 
n

n
nn

L
kkL


 ,    (5.1) 

 

where k  is the wave number in the medium, nL  is the correlation length and 
2

nn    is the 

standard deviation of the rough surface  ρn . Also, we assume that the gradient of the dielectric 

constant in the vicinity of the rough interface is small i.e. 1
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. Following the first-

order approximation of the SPM formalism the electric and magnetic fields are expanded in a 

perturbation series [48]-[50] as follows: 
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where )0(
E , )0(

H  are zero-order fields when the roughness is absent, and )1(
E , )1(

H  are first-order 

fields dependent on the roughness function [48]. The first-order fields represent a random 

component of the electromagnetic field due to the rough interface. Thus, the roughness influence is 

taken into account by a random additive component (first-order fields). To solve the scattering 

problem with only one rough interface at ndz   zero-order and first-order fields must be defined 

in three regions: 0,0  zdz n  and ndz  . Since we have the only rough interface at 

ndz   we introduce the boundary conditions for zero-order and first-order fields at 0z  and 

ndz   as follows. 

Zero-order approximation: 

At 0z : 

0)0,()0,(

0)0,()0,(
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At ndz  : 
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First-order approximation: 

At 0z : 
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At the rough interface ndz   [48]: 

 

 

 .)0,()0,()(

)()0,()0,(

)0,()0,()(

)()0,()0,(

)0()0(

0

)0(

0

)0(

)1()1(

)0()0(

0

)0(

0

)0(

)1()1(





















































































































nznzn

dz

t

dz

t

nntnt

nznzn

dz

t

dz

t

nntnt

dHdH

zz
dd

dEdE

zz
dd

nn

nn

ρρρ

HH
ρρHρH

ρρρ

EE
ρρEρE









, (5.6) 

 

where   is the gradient operator in the horizontal plane ( yx  ). Two sets of boundary 

conditions (5.3) (at 0z ) and (5.4) (at ndz  ) are introduced in order to express zero–order 

fields through reflection and transmission coefficients associated with the inhomogeneous slab 

0 zdn  and the reflection coefficient from the half-space ndz  . Zero-order fields are 

required only to determine magnitudes of the first-order fields through boundary conditions (5.6).  

Below we present formulations for zero-order and first-order fields. 

 

5.3.1. Zero-Order Fields 

The total zero-order fields do not contain scattering components, and they should satisfy regular 

boundary conditions (5.3) and (5.4) at smooth interfaces. 

Electromagnetic fields in an arbitrary layered medium are described by one-dimensional wave 

equations (for horizontal and vertical polarizations) with nonconstant coefficients dependent on the 

vertical coordinate z . These differential equations could potentially be solved numerically with 

respect to the electromagnetic fields. At the same time, the general solution for fields in a finite 
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inhomogeneous layer can be expressed as a superposition of particular solutions of auxiliary 

Cauchy problems for a given wave equation. These solutions define the field distribution in the 

medium as well as magnitudes of reflected and transmitted waves at the interfaces. 

 

1) Fields in the Air Half-Space 0z  

In the upper half-space zero-order fields are presented as a superposition of the incident and 

specularly reflected plane waves. In our problem it is convenient to represent magnitudes of 

electric )0(
E  and magnetic )0(

H  fields through an expansion over the basis vectors  ẑ,ˆ,ˆ   of the 

cylindrical coordinate system as our medium is homogeneous with respect to the azimuth angle 

and inhomogeneous with respect to the vertical coordinate only. This means that all the reflection 

and transmission coefficients do not depend on the azimuth angle. Also, the total field is 

symmetric relative to the azimuth incidence angle 0 . The basis vectors  ẑ,ˆ,ˆ   of the 

cylindrical coordinate system are linked with the Cartesian unit vectors  yx ˆ,ˆ  as follows:  

 

.cosˆsinˆˆ

sinˆcosˆˆ

00

00





yx

yx




 

 

It is worthwhile to point out that we consider a general case 00   in order to take into 

account more complex problems. For example, for anisotropic rough surfaces it could be more 

convenient to choose the coordinate system associated with the principal direction of anisotropy 

(and not with the direction of wave propagation). 

The zero-order fields in the upper half space can be expressed as follows: 
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In (5.7a) and (5.7b) HE  and VE  denote magnitudes of the electric field of the incident wave 

for horizontal and vertical polarizations respectively. 000 k , and 000 Z  are the 

wave number and impedance in free space respectively; )sinˆcosˆ(ˆˆ  yxyyxx ρ  is a 

position vector of an observation point in the horizontal plane, where   is an azimuth angle of the 

observation point. Also   ̂sinsinˆcosˆsin 000000  kyxk0q  is the longitudinal wave 

vector which is a projection of the wave vector in the air onto the horizontal plane. The transverse 

wave number is a projection of the incident wave vector onto the axis z  which can be written as 

  00

2

0

2

000 cos kqkqw .  0, qVH  are reflection coefficients from the entire 

inhomogeneous structure 0z  for horizontal and vertical polarization with respect to electric and 

magnetic fields respectively. Solution (5.7a) and (5.7b) satisfy Maxwell’s equations, boundary 

conditions at 0z  and the conditions at infinity. 
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2) Fields in the Inhomogeneous Medium 0 zdn
 

In the inhomogeneous medium a closed-form analytical solution does not exist; however, the 

solution can be expressed through piecewise continuous functions  zU H  and  zU V  as follows: 
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where 

 

)()()( ,2,2,1,1, zUCzUCzU VHVHVHVHVH  .    (5.9) 

 

In equations (5.8a) and (5.8b) the stroke denotes a derivative with respect to z . In (5.9) 

 zU H1  and  zU H2  are particular solutions of one-dimensional wave equations for continuously 

layered media (given by equations (5.А1) and (5.А2) in Appendix 5.A). We accept that the 

introduced particular solutions satisfy the following initial conditions at the upper boundary 0z : 

 

)()0()0(,0)0(,0)0(,1)0( 0012211 qwiUUUU HHHH  ,  (5.10) 

)()0()0(,0)0(,0)0(,1)0( 0012211 qwiUUUU VVVV  .  (5.11) 
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3) Fields in Half-Space 
ndz   

In the lower half-space zero-order fields are given by: 
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where )(zVH  and )(zVV  are solutions of wave equations (5.А1) and (5.А2).  

Plugging zero-order fields in boundary conditions (5.3) and (5.4) we obtain two systems of 

algebraic equations. 
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Vertical polarization: 
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Reflection coefficients )( 0, qVH  can be excluded from equations (5.13) and (5.14). Then 

using results of Appendices 5.A and 5.B, coefficients VHC ,1 , VHC ,2  are derived as follows: 
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where: 
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In (5.16) and (5.17) )( 0, qT n

VH  and )( 0, qRn

VH  are transmission and reflection coefficients for a 

set of upper layers in the area 
ndz  , when the wave propagates from a homogeneous half-space 

ndz   with CDC )( nn d  and CMC )( nn d  for horizontal and vertical polarizations 

respectively. These transmission and reflection coefficients are derived in Appendix 5.А and given 

by (5.A11) and (5.A12).  

In (5.16) and (5.17)   0Im,)()( 2

0

2

00  nnnnnn wqddkqw  ; )( 0, qr n

VH  are reflection 

coefficients in the problem where a plane wave is incident from a homogeneous area 
ndz   with 
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CDC )( nn d  and CMC )( nn d  upon the inhomogeneous half-space 
ndz  . To obtain (5.15) 

we also used relationships (5.B6) and (5.B7) between )(, nVH dV  , )(, nVH dV   and )( 0, qr n

VH  derived 

in Appendix 5.B. 

If the rough boundary is located on top of the inhomogeneous structure (i.e. 0n ) then 

)()(,0)(,1)( 0,0

0

,0

0

,0

0

, qqrqRqT VHVHVHVH  . In this special case equations (5.16) and (5.17) can 

be reduced as follows: 
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From (5.13) and (5.14) we note that VHC ,1  and VHC ,2  do not depend on the rough interface 

number n . Using expressions (5.15) for coefficients VHC ,2,1  in conjunction with equations for 

zero-order fields, the required expressions for boundary conditions (5.6) can be written as follows: 
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In these expressions we introduced dielectric and magnetic contrasts at the boundary ndz   

as    nnnnn dd    11  and    nnnnn dd    11  respectively. To derive (5.20) and 

(5.21) we found Wronskians of the particular solutions at ndz   given by (5.C4) and (5.C5) in 

Appendix 5.C. 

 

5.3.2. First-Order Fields in Integral Form 

First-order approximation defines scattered fields by a rough surface. The scattered field is random 

and can be treated as a superposition of infinite number of plane waves outgoing in different 

directions from the rough interface. Therefore, it is convenient to represent the first-order fields 

through the Fourier integral. A Fourier transform of the rough surface is introduced as follows: 
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 ')'()(
~ ')(

0
0 ρρqξ
ρqξ
de

i

nn  .    (5.22) 

 

The magnitudes of spectral functions can be found through boundary conditions for the first-

order approximation. Below we provide integral representations of the first-order fields in three 

media.  

 

1) Fields in the Air Half-Space 0z  

In the upper half-space the first-order fields from the n th rough boundary can be written as 

follows: 
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where )(, ξ
n

VHa  are magnitudes of the scattered field. The functions under the integral sign are 

represented as expansions over a basis in the cylindrical coordinate system  z,,  in the wave 

numbers’ space. ̂  and ̂  are the azimuth and radial unit vectors associated with the floating 

coordinate system in the wave numbers’ space. In (5.23)  ddd ξ  and the vertical component 

of the wave number of partial plane waves in free space is given by 
22

00 )(   kw , 

0)(Im 0 w . 

 

2) Fields in the Medium 0 zdn
 

In the inhomogeneous medium the first-order fields can be given by: 
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where 
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),()(),()(),( ,2,2,1,1, zuczuczu VH

n

VHVH

n

VHVH  ξξξ  .   (5.25) 

 

In (5.25) ),(2,1 zu H   and ),(2,1 zu V   are particular solutions of the wave equations given by 

(5.А1) and (5.А2) except that the longitudinal wave number 0q  is replaced by  .  

We accept that the introduced particular solutions satisfy the following initial conditions at the 

upper boundary 0z : 

 

)()0()0,(,0)0,(,0)0,(,1)0,( 012211  wiuuuu HHHH  ,  (5.26) 

)()0()0,(,0)0,(,0)0,(,1)0,( 012211  wiuuuu VVVV  .   (5.27) 

 

3) Fields in the Half-Space ndz   

In the lower half-space the first-order fields can be represented as follows: 
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where ),(, zVH ξv  are solutions of wave equations (5.А1) and (5.А2) with the replacement of 0q  by 

 . 
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5.3.3. Spectral Magnitudes of the Scattered Field from the Rough Surface 

Substituting the first-order fields into the boundary conditions (5.5) at the smooth interface 0z  

and taking into account (5.26) and (5.27), we obtain the following: 
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Then plugging the first-order fields in boundary conditions (5.6) accounting for equations 

(5.20) and (5.21), and applying the Fourier transform to both sides of the obtained pair of 

equations we derive the following: 
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Multiplying both sides of these equations by unit vectors ̂  and ̂ , and taking into account 

(5.29), we obtain: 
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Systems of equations (5.32) and (5.33) can be resolved with respect to spectral magnitudes 

)(, ξ
n

VHa  of the scattered field in the air. Similar to zero-order approximation (Appendices 5.A and 

5.B) we introduced coefficients )(),( ,,  n

VH

n

VH ML . Then, the following relationships for the 

magnitudes )(, ξ
n

VHa  in the air can be derived: 
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5.3.4. Normalized Radar Cross-Sections 

First-order fields in far zone are estimated using the method of stationary phase [74]. Then, radar 

cross-sections are calculated through the Poynting vector of electromagnetic field in far zone. We 
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omit details of this part and present the derived radar cross-sections for co- and cross-polarized 

components at the observation point   , : 
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where subscripts VH ,  and VH ,  denote polarizations of the incident ( ) and the 

scattered (  ) waves respectively. In (5.36) we have: 
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Also,   sinˆcosˆsin0 yxk q ; )(
~

0qq nK  is the spatial power spectral density of the 

roughness linked with the autocorrelation function )()()( ρρρρ  nnnK   at interface ndz   

as follows:  
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Magnitudes of the scattered field in the direction of observation   ,  are the following: 
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Thus, the general formulations for NRCS of the initial problem displayed in Figure 5.1 can be 

written as follows: 
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where the asterisk denotes the complex conjugate and the cross power spectral density between 

interfaces m  and n  is defined as follows: 
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In the last equation the cross-correlation function between interfaces m  and n  

)()()( ρρρρ  nmmnK  . 

If all rough surfaces are statistically independent, then the second term in equation (5.44) 

disappears and the total radar cross-section is a sum of radar cross-sections from each of the rough 

interfaces: 
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It is worthwhile to note that for grazing elevation angles the accuracy of the SPM theory 

becomes lower. At grazing elevation angles the shadowing effects (which are negligible at other 

angles) start dominating [91]. These phenomena are not taken into account by the SPM theory. In 

the literature there are attempts to introduce additional factors accounting for the shadowing 

effects in the second-order approximation of the SPM theory for the cross-polarized signal [91]. In 

general, it is assumed that the SPM theory is valid within the range from 20 to 80 degrees of 

incidence and observation elevation angles. At the elevation angles close to nadir the mirror 

reflection appears. We would like to note that elevation angles of currently operational radar 

systems fall within the range of validity of the SPM theory. For example, incidence angles of 

Canadian RADARSAT-2 vary from 20 to 60 degrees [9]. 

 

5.3.5. Monostatic Scattering 

In the monostatic case the receiver elevation and azimuth angles are 0  and 0   

respectively. Therefore, general equations from the previous section can be reduced to the 

following: 
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where 
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The cross-polarization components of the fist-order solution for the monostatic case are zeros. 

However, we expect that the second-order solution would provide a non-zero result for backscatter 

coefficients. The derivation of such a second-order solution for wave scattering from a 

homogeneous rough half-space is presented in [122]. Derivation of the second-order solution for 

wave scattering from rough boundaries interfacing inhomogeneous media is an important topic of 

future research.  

 

5.4. Validation of Solution 

In this section we consider three special cases of the derived general solution. In all cases the 

permeability of all media is one. The obtained scattering characteristics for these cases are 

evaluated and compared with formulations available in the literature. Furthermore, we calculate 

bistatic scattering coefficients for a three-layered structure and compare the results with those 

available in the literature.  

5.4.1. Scattering from a Rough Surface on Top of Homogeneous Half-Space 

In the simplest case the wave is scattered by a rough surface )(ρ  on top of a homogeneous 

medium with CDC 1 . Then )(1)( 0

0

,0

0

, qqL VHVH  ,  )(1cos)( 0

0

,00

0

, qqM VHVH  , where 
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 0

0

, qVH  are ordinary Fresnel reflection coefficients from a homogeneous half-space with CDC 

1  [123]: 
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It is not difficult to demonstrate that our general formulations for backscatter coefficients 

(5.47) - (5.49) are reduced to the following: 
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where K
~

 is the spatial power spectral density of the rough surface. The obtained results are 

identical to those presented among other sources in [49], [91], [121]. 
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5.4.2. Scattering from a Rough Surface Embedded in a Three-Layered Structure 

Consider wave scattering from a rough interface embedded in a three layered medium displayed in 

Figure 5.2. The original solution of this problem was derived by Yarovoy et al. in [92], and an 

alternative formulation in terms of reflection and transmission coefficients was proposed in [93]. 

In this case each medium is homogeneous i.e.: 
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and in equations (5.16), (5.17) 1n . Also it is possible to show that: 
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Here   0

2

1001 sin  kqw , )( 0,01 qVH  and )( 0,01 qr VH  are Fresnel transmission and reflection 

coefficients for the interface between air and medium 1 when wave is incident from the air. 

)()( 0

1

,0, qrqr VHVH   are reflection coefficients from the two-layered structure (medium 2 and 

medium 3). Substituting equations (5.16) and (5.17) taken for 1n  into our general formulations 

for backscatter coefficients (5.47) - (5.49) we obtain: 
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where K
~

 is the spatial power spectral density of the rough surface. These formulations are 

identical to those presented in [93] for Yarovoy model [92]. 

 

 

Figure 5.2. Geometry of scattering from a rough surface embedded in a three-layered medium. 

Reproduced courtesy of the Electromagnetics Academy. 

 

 

5.4.3. Scattering from a Rough Surface Embedded in a Discretely Layered Medium 

Consider a more general case when an electromagnetic wave is scattered by a rough surface 

embedded in a discretely layered medium shown in Figure 5.3. 
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Figure 5.3. Geometry of scattering from a rough surface embedded in a layered medium. 

Reproduced courtesy of the Electromagnetics Academy. 

 

Taking into account the phase change of the wave in layer n  we obtain: 
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where 1 nnn dd  is the layer thickness over the rough surface;  qT n

VH

1

,

  are transmission 

coefficients through the upper  1n  layers when the wave is incident from the half-space with 

CDC n ;  qRn

VH

1

,

  are reflection coefficients from the upper  1n  layers when the wave is 
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incident from the half-space with CDC n ; )(, qrn

VH  are reflection coefficients from the lower half-

space when the wave is incident from the half-space with CDC n . 

Given (5.56), (5.57), our general solution (5.40) - (5.44) can be reduced to the formulations 

presented by Imperatore et al. in [96]. At the same time, our solution is more general and elegant 

than the solution obtained by [96]. Unlike [96] we do not discretize the medium to derive the 

solution. Instead, we use properties of particular solutions of wave equations in the continuously 

layered media. Our solution is expressed through physically meaningful reflection and 

transmission coefficients for inhomogeneous media. 

 

5.4.4. Numerical Results for a Three-Layered Structure 

To further validate our model we calculate bistatic scattering coefficients for a special case 

illustrated in Figure 5.4. To compare the numerical results with the literature data we chose exactly 

the same scattering geometry and parameters of the media as considered in [96]. All the three 

rough interfaces have the same root mean square (RMS) height and correlation length. Each rough 

surface is described by the Gaussian autocorrelation function. The spectrum of this function is 

given as follows: 
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where m , mL  are RMS height and correlation length of the rough interface 2,1,0m . 
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Figure 5.4. Three layered scattering geometry of the validation problem. Reproduced courtesy of 

the Electromagnetics Academy. 

 

The incident elevation and azimuth angles were chosen to be o

0 45  and o

0 0  

respectively. The observation azimuth angle is 
o45  while the observation elevation angle has 

been varied. Figure 5.5 demonstrates numerically calculated bistatic scattering coefficients for all 

polarizations (HH, VH, HV, and VV) from each rough boundary and from the whole structure (as 

a sum). In order to compare our outputs with the results presented in literature we digitized 120 

data points from Figure 4 of [96] and transferred them to our graphs. From Figure 5.5 one may 

observe a very good agreement between our numerical results and data from [96] for all 

polarizations. A small disparity can be attributed to the error coming from digitizing the low 

resolution graphs taken directly from the digital version of [96]. 
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Figure 5.5. Comparison of numerical results computed according to our model (solid lines) against 

the (digitized) data presented in [96] (dots) for the geometry shown in Figure 5.4. Red: scattering 

from the upper boundary; green: scattering from the middle boundary; blue: scattering from the 

bottom boundary; black: total scattering. Reproduced courtesy of the Electromagnetics Academy. 

 

5.5. Electromagnetic Wave Scattering by Snow-Covered Sea Ice 

Electromagnetic wave scattering by snow-covered sea ice is an important special case of the 

general problem being considered. A plane electromagnetic wave is scattered by snow-covered sea 
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ice. Snow and sea ice are characterized as continuous or discrete layered media. CDC of snow and 

sea ice are known functions  zs  and  zi  of vertical coordinate z  as displayed in Figure 5.6.  

 

 

Figure 5.6. Wave scattering from sea ice covered by snow. Reproduced courtesy of the 

Electromagnetics Academy. 

 

The roughness of the air-snow and snow-ice interfaces are described by stationary random 

functions  ρs  and  ρi  which define deviations from planes 0z  and dz   respectively; d  

is the snow thickness. The dominant scattering mechanism in this problem is the surface scattering 

at the air-snow and snow-ice interfaces. 

The obtained general solution (5.40) - (5.44) can be reduced to the snow-covered sea ice case 

by setting the number of rough interfaces to two and permeability of all media to one. Thus, the 

scattering component from rough sea ice can be written as follows: 
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In (5.59) – (5.62)    dd sii    is the dielectric contrast between ice and snow at the 

rough interface. iK
~

 is the spatial power spectral density of the ice-snow surface. In (5.63) - (5.64) 

  22

0 )( qdkqw ss   ,   22

00 qkqw  ; VsHT ,  and VsHR ,  are transmission and reflection 

coefficients for the inhomogeneous snow layer when the wave is incident from the half-space with 

CDC )( ds  ; ViHr ,  are reflection coefficients from the inhomogeneous sea ice when the wave is 

incident from the half-space with CDC  ds  . 
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The scattering components from the rough snow can be written as follows: 
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In (5.65) - (5.68) 
  10  ss 

 is the dielectric contrast at the air-snow interface; sK
~

 is the 

spatial power spectral density of the snow surface; VH ,  are reflection coefficients from the entire 

snow-covered sea ice structure at horizontal and vertical polarizations. 

If the air-snow and snow-ice interfaces are statistically independent then the total NRCS is a sum 

of NRCS from the snow and sea ice: 

 

),(),(),(  
snowice  .    (5.69) 
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The last equation is a special case of the more general equation (5.44) for two rough interfaces 

i.e. 2N . If the rough interfaces are correlated then according to (5.44) an additional correlation 

term should be introduced. 

In the monostatic scattering case 0 , 0  and the cross-polarization component is zero. 

Therefore, the radar backscatter coefficients from sea ice can be presented as follows: 
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The radar backscatter coefficients from the rough snow surface can be written as follows: 
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The total radar backscatter from snow-covered sea ice is a sum of the backscatter coefficients 

from snow and sea ice similar to (5.69) (if the rough interfaces are statistically independent). 
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Modeling of dielectric properties of snow-covered sea ice (as a function of depth) is a separate 

problem which will be discussed in more details in our future publication on numerical modeling 

and measurements of scattering characteristics from real snow-covered sea ice. Here we briefly 

describe how the CDC of snow and sea ice can be found as functions of the vertical coordinate.  

Snow on sea ice is a mixture of pure ice, air and brine (wicked from the sea ice surface). CDC 

of brine in snow is estimated as a function of temperature using Stogryn and Desargant model 

[81]. CDC of pure ice is nearly a constant (~3.15) in a wide range of frequencies [80]. The brine 

volume content in snow can be found through sea ice surface temperature and salinity (according 

to [83]) as well as snow density (which is a function of depth). We use physical properties of snow 

and sea ice from our field campaigns in the Arctic Ocean. There are a few dielectric models for 

estimating the CDC of moist snow (such as [82], [124]). However, a reliable dielectric mixture 

model for estimating the CDC of brine wetted snow on top of sea ice has not been developed. At 

the same time it has been shown that the refractive mixture model (which is linear with respect to 

refractive indices) is effective for sea ice [76]. In addition, the refractive mixture model has been 

proven to be the most accurate for wet soils [125]. Using this mixture model with input physical 

parameters measured in the field we obtain the CDC of snow as a function of depth.  

The CDC of sea ice is calculated using the refractive mixture model for an isotropic two-phase 

medium consisting of pure ice and brine inclusions. In the study by [76] it was found that the 

refractive dielectric mixture model agrees very well with the dielectric measurements of sea ice 

reported in [77]. The brine volume of sea ice can be estimated as a function of ice temperature and 

bulk salinity according to [78]. The CDC of brine in sea ice can be found through the Debye 

relaxation model with temperature dependent parameters empirically derived by [81]. In the field 
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campaigns we usually conduct measurements of temperature and bulk salinity as functions of sea 

ice depth (see e.g. [119]). Therefore, the CDC of sea ice is also derived as a function of depth. 

We note that, if necessary, the sea water below the ice and the rough ice-water interface can 

be naturally included in the obtained formulation, but this is not the usual case as the penetration 

depth in natural FY sea ice is on the order of the wavelength (e.g. 5.5 cm in C-band and 21 cm in 

L-band) while FY ice grows to about 2 m thick by winters end. At the same time, if we model 

scattering characteristics from newly formed sea ice (with no snow cover) with the thickness 

around 10-20 cm then the sea water half-space below the ice must be introduced. In this case the 

CDC of sea water can be found using the Debye-based model by Stogryn [126]. 

 

5.6. Conclusion 

In this study we presented a new analytical formulation for electromagnetic wave scattering from 

an arbitrary number of rough surfaces interfacing continuously layered media and derived a 

solution for wave scattering from snow-covered sea ice as a special case of the general problem. 

We solved Maxwell’s equations within the first-order approximation of the SPM theory. First, we 

derived a solution for wave scattering from a single rough boundary while the other rough 

interfaces are absent. A key step in this solution is the introduction of two auxiliary problems on 

wave propagation in inhomogeneous media. In the first problem a plane wave is incident upon a 

piecewise continuously layered medium located above the rough interface from a medium with an 

arbitrary CDC   and CMC  . This problem allowed to link the reflection and transmission 

coefficients for the layered slab with the wave equations’ particular solutions and their normal 

derivatives at the bottom of this slab. In the second problem a plane wave is incident upon a 
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piecewise continuously layered medium located below the rough surface from the same medium as 

in the first problem (CDC   and CMC  ). In this problem reflection coefficients from this 

medium are linked with the wave equations’ particular solutions and their normal derivatives at the 

mean level of the rough interface. The results obtained in these two problems in conjunction with 

the boundary conditions allowed us to derive necessary equations for zero-order fields and their 

normal derivatives at the mean level of the rough interface. According to the SPM theory, these 

equations for zero-order fields are substituted into the boundary conditions for first-order fields. 

The first-order fields are represented through the Fourier integral over the partial plane waves 

outgoing from the rough surface. The under integral functions are written analogously to the first-

order fields using particular solutions of the wave equations. Similarly to the zero-order case we 

found a link between the particular solutions of wave equations at the rough interface with 

reflection and transmission coefficients. Boundary conditions for the first-order fields enabled to 

resolve magnitudes of the scattered fields in the air. Finally, the radar characteristics are derived 

through the analytical evaluation of the Fourier integrals in far zone. 

In our formulation we avoided any discretization of the continuously layered media; instead, 

we introduced particular solutions of wave equations and associated with them reflection and 

transmission coefficients at the rough interface. Such an approach makes our solution compact and 

physically meaningful. For example, the symmetry of the bi-static solution with respect to 

transmitting and receiving points is straightforward. The solution obtained for a single rough 

interface is naturally expanded to an arbitrary number of rough boundaries interfacing 

continuously layered media. 
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To validate the derived general solution we considered three special cases of the scattering 

problem. We demonstrated that our solution can be reduced to the formulations available in the 

literature including the most recent solution [96]. Furthermore we showed that our numerical 

results for wave scattering from a three-layered structure well agree with those presented in [96].  

We would like to point out that our formulation has been expressed through physically 

meaningful reflection and transmission coefficients associated with continuously layered media. 

To numerically implement the model, these coefficients must be estimated separately. For 

example, they can be computed using the following approaches: (1) invariant embedding method 

(where the inhomogeneous media are discretized) [127], (2) Runge Kutta method directly applied 

to one-dimensional wave equations (with non-constant coefficients), (3) analytical exact or 

analytical approximate approaches (applied in some cases) to solving the differential wave 

equations with non-constant coefficients. In practice, we use the invariant embedding approach 

[127]. 

The novelty of our model can be outlined as follows: 

1. The obtained formulation is user-oriented and convenient for practical geophysical remote 

sensing applications. Our solution operates with physically meaningful reflection and 

transmission coefficients associated with certain geophysical media (e.g. snow, ice, soil, etc.). 

2. Our solution is fairly flexible because the numerical implementation can be split into two 

separate algorithmic units: (a) estimation of the reflection and transmission coefficients for 

inhomogeneous media using the approach that is best suited to a given structure of the 

inhomogeneous media; (b) calculation of scattering characteristics by plugging in these 

coefficients in the general solution.  
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3. If the complex reflection and transmission coefficients (for layered media) can be directly 

measured in the field (using, for example, a portable vector network analyzer), then the 

obtained values (at a given frequency) can be plugged in our model. In this case step (a) from 

the previous point is not required. 

4. It appears that our analytical formulation is the only solution for wave scattering from layered 

media where both the complex dielectric and complex magnetic constants are continuous 

functions of depth. 

5. Mathematical derivation and final formulation of our model is quite compact and at the same 

time general and physically meaningful compared to the previous solutions.  

 

As the final step of this study, we presented an important special case of our formulation for 

wave scattering from snow-covered sea ice where both air-snow and snow-ice interfaces are rough 

and snow and ice are continuously layered media. The developed theory could be beneficial for the 

interpretation of sequential SAR signatures over snow-covered sea ice and inverse modeling. 

Beyond polar applications, the obtained theoretical formulation could be useful in remote sensing 

of various environmental media (e.g. snow-covered soil). 

In our ongoing work we are currently validating this theory against in-situ C-band scatterometer 

measurements collected over natural snow-covered sea ice in the Canadian Arctic. 
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Appendix 5.A. Reflection Coefficients from Inhomogeneous Slab 

A plane wave with horizontal (or vertical) polarization with magnitude HA  (or VA ) propagates 

from the half-space ndz   with   ,  and transmits through the inhomogeneous layer 

0 zdn  with СDС  z  and CMC  z  as shown in Figure 5.A1. 

 

 

Figure 5.A1. Transmission of a plane wave through the inhomogeneous slab. 

 

Particular solutions in the inhomogeneous medium 0 zdn  satisfy the following wave 

equations written for horizontal and vertical polarizations: 
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where      zzkzk 20
2  . Below we express complex reflection and transmission coefficients 

through a solution of the wave equation in the inhomogeneous medium for both horizontal and 

vertical polarizations. 

 

5.A.1. Horizontal Polarization 

Tangential components of electric and magnetic fields are derived in region 
ndz  : 
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where n

HR  is the reflection coefficient from the layer at horizontal polarization. 

0 zdn : 
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0z : 
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where n

HT  is the transmission coefficient through the inhomogeneous layer at horizontal 

polarization. Taking into account initial conditions (5.10) and boundary conditions at the interfaces 

0z  and ndz   we obtain: 
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The last system of equations helps to derive the transmission and reflection coefficients: 
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where 
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5.A.2. Vertical Polarization 

Analogous to the horizontal polarization case we find tangential components of electric and 

magnetic fields in the regions 
ndz  , 0 zdn

 and 0z . Substituting these fields into the 

boundary conditions at the interfaces 
ndz  , 0z  and using initial conditions (5.11) we obtain 

expressions for the reflection and transmission coefficients with respect to tangential magnetic 

field at vertical polarization: 
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where 
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Values   and   can be arbitrary selected; however, to simplify our formulations we accept 

that 2

0

2

000 )()()()(),(),( qddkqwqwdd nnnnnnnnn    . Therefore, we 

obtain: 
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Appendix 5.В. Reflection Coefficients from Inhomogeneous Half-Space 

ndz   

Consider a boundary between two media 
  ,  and    zz  ,  respectively. A plane 

monochromatic wave is incident upon this interface from the upper half-space ndz   as shown 

in Figure 5.B1. Magnitudes )(, zV VH in the inhomogeneous area ndz   satisfy differential 

equations given by (5.А1) and (5.A2). 

 

 

Figure 5.B1. Reflection of a plane wave from the inhomogeneous half-space. 

 

5.B.1. Horizontal Polarization 

From Maxwell’s equations the tangential components of the fields are given as follows. 

In the upper half-space 
ndz  : 
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where 
2

0

2

0 qkw     is the transverse wave number in 
ndz  ; n

Hr  is the reflection 

coefficient with respect to the tangential electric field.  

In the lower half-space 
ndz  : 
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From the boundary conditions for electric and magnetic fields at 
ndz   we obtain the 

following relationships: 
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B.2. Vertical Polarization 

Similar to the horizontal polarization case the tangential fields are found in the upper and lower 

half-spaces. Substituting them into the boundary conditions at 
ndz   we derive: 
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Finally, the following relationships are obtained by setting )( nn d   and )( nn d  : 
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Appendix 5.C. Wronskians of Particular Solutions of Wave Equations 

5.C.1. Horizontal Polarization 

Particular solutions  zU H1  and  zU H2  satisfy the following wave equations in region 

0 zdn : 
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The particular solutions also satisfy initial conditions (5.10) at the upper boundary 0z . 

Multiplying the first equation of system (5.C1) by HU2  and the second equation by HU1  and 

subtracting the second equation from the first one we obtain: 
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where          zUzUzUzUzW HHHHH 1221
  is the Wronskian at horizontal polarization. Taking 

into account (5.C2) and (5.10), we obtain: 
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From (5.C3) we obtain )(zWH  at ndz  : 

 

)()()( 00 qwdidW nnnH   .  (5.C4) 

 

 

5.C.2. Vertical Polarization 

Analogous to the horizontal polarization case we derive the Wronskian at vertical polarization: 
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CHAPTER 6. MODELING AND MEASUREMENT OF C-BAND 

RADAR BACKSCATTER FROM SNOW-COVERED FIRST-YEAR 

SEA ICE 

A. S. Komarov, D. Isleifson, D. G. Barber, and L. Shafai, “Modeling and measurement of C-band 

radar backscatter from snow-covered first-year sea ice,” IEEE Transactions on Geoscience and 

Remote Sensing, in press, 2015. 

 

 

6.1. Introduction 

Arctic sea ice extent has been drastically declining over the past three decades [1], [6]. The low 

record minimum in summer sea ice extent of 26 km1041.3   (which is 49% less than 1979 to 2000 

average) was recorded by spaceborne microwave radiometers in September 2012 [2]. 

Correspondingly, there is strong evidence that the Arctic Ocean multiyear (MY) sea ice has been 

rapidly disappearing at a rate of 15.1% per decade [3], [4]. During this, the MY sea ice is being 

replaced by seasonal first-year (FY) sea ice as the maximum extent (in winter) has not changed 

appreciably [5]. These changes significantly impact physical, chemical and biological processes in 

the Arctic marine ecosystem while facilitating industrial developments in the Arctic Ocean. 

Therefore, detection of thermodynamic state in snow-covered FY sea ice is becoming increasingly 

important. 

Active microwave remote sensing has been proven to be an efficient tool to characterize the 

thermodynamic state of snow-covered sea ice [121] where the snow cover plays an important role 

in wave propagation and scattering within the system [63], [128]. 
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The influence of snow cover on C-band radar signatures in spring was investigated by Barber 

and Nghiem in [63]. In [63] two experimental sites were located on 1.7 m thick landfast smooth 

snow-covered FY sea ice in the Canadian Arctic Archipelago near Resolute Bay. The physical data 

were collected at these two sites (with snow thickness of 12 cm and 24 cm respectively) on May 6 

(cold conditions) and May 9 (warm conditions) in 1993. Thus, the following four modeling case 

studies were considered: a) Thin (12 cm), cold (-13.7
 o

C) snow cover; b) Thin (12 cm), warm (-5.8
 

o
C) snow cover; c) Thick (24 cm), cold (-11.5

o
C) snow cover; d) Thick (24 cm), warm (-8.8 

o
C) 

snow cover where the temperature of basal snow is displayed in brackets. 

In [63] the following scattering contributions were analyzed: (1) volume scattering from snow 

grains within the snow basal layer, (2) volume scattering from brine inclusions within the snow 

basal layer, (3) scattering from brine pockets within the surface layer of ice, and (4) scattering 

from the rough snow-ice interface. Scattering from the air-snow interface and wave propagation 

through the layer of snow lying above the basal layer were neglected. In [63] it was demonstrated 

that volume scattering (from snow grains and brine inclusions within the basal layer of snow) 

dominated in both cold and warm cases while the surface scattering (from the snow-ice interface) 

contributes the least to the total scattering. In the cold case removing the snow grain scattering 

reduced VV backscatter by 3.6 dB; the rest of the total backscatter was from the brine in snow and 

ice and the rough snow-ice interface. In the warm case the situation was reversed, i.e. removing 

the brine inclusions from snow reduced VV backscatter by 3.6 dB and the rest of the total 

backscatter was primarily from snow grains, brine inclusions in ice and the rough snow-ice 

interface. 
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In [63] temperature changes within the basal layer substantially controlled the volume 

scattering. Over the thin snow cover an increase in VV backscatter (at 23
o
 incidence angle) was 

3.5 dB while over the thick snow cover a significantly lower increase was observed (0.7 dB). 

Therefore, a larger change in scattering is detected between a warm and cold condition surface for 

a thin snow cover relative to a thick snow cover [63]. This is explained by the fact that an increase 

in air temperature caused an increase in the brine volume in the basal layer of snow and 

consequently the volume scattering from ice grains and brine inclusions [63]. In the same study an 

increase in snow thickness under cold conditions caused an increase in VV backscatter (by 2.4 

dB), while an increase in snow thickness under warm conditions caused a substantially smaller 

increase in VV backscatter (by 0.7 dB). Based on these results, variations in snow water equivalent 

from synthetic aperture radar (SAR) data can be detected according to [129].  

As an expansion of the theory described in [63] there are times when we expect volume 

scattering to be minimal from snow covered sea ice. This can occur for thin snow covers, when the 

snow is quite new on the sea ice, resulting in smaller kinetic growth grains in the basal layer of the 

snow [130]. If the volume scattering within snow-covered sea ice is negligible, as often is the case 

in mid winter, then the surface scattering at the air-snow and snow-ice rough interfaces dominates. 

In this case we expect that the snow cover may affect radar signatures differently than in [63]. 

To investigate the effect of snow cover on radar signatures and to quantify thermodynamic 

changes in the snow-covered sea ice reliable modeling techniques linking geophysical parameters 

of snow and sea ice and radar response are required. Analytical and numerical approaches for 

modelling electromagnetic wave scattering from snow-covered sea ice can be found in literature. 

Carlström and Ulander [131] implemented a radiative transfer model (RTM) taking into account 
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surface scattering from air-snow and snow-ice interfaces as well as volume scattering within the 

ice. The volume scattering component within the snow was neglected. The surface scattering 

components of the RTM were modelled using the single scattering term of the integral equation 

model (IEM) [132]. In [131] it was also shown that the surface scattering at the snow-ice interface 

dominated over the volume scattering within sea ice in C-band. Dierking et al. in [133] 

demonstrated this effect for incidence angles below 45
o
 (for HH-polarization) and the incidence 

angles below 55
o
 (for VV-polarization) using the same RTM model (in conjunction with the IEM). 

We note that the IEM scattering model [132] does not account for the layered structure of snow 

and ice (i.e. the dependence of the dielectric properties on the vertical coordinate). Therefore, in 

[131] and [133] the dielectric of snow and ice were constants with respect to depth. Another 

modeling approach presented in the recent study by Fuller et al. [134] is based on the RTM 

modified for several layers and accounting for surface and volume scattering. The surface 

scattering contribution is calculated through the Kirchhoff physical optics method and the volume 

scattering component is estimated on the basis of the number density and effective size of ice-

particles in snow. 

Numerical finite-difference time-domain (FDTD) [88] and finite-volume time-domain 

(FVTD) [89] scattering models solve Maxwell’s equations directly for complex media, but they 

require significant computational resources. The computational constrains make the numerical 

models difficult to apply to practical remote sensing problems. 

The small perturbation theory has been extensively used for modelling of electromagnetic 

wave scattering from slightly rough natural surfaces [91]. Our new theoretical approach proposed 

in [13] provides an analytical solution (within the first–order approximation of the small 
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perturbation theory) for a general scattering geometry where an electromagnetic wave is scattered 

by an arbitrary number of rough surfaces interfacing arbitrary layered media. In [13] the snow-

covered sea ice was considered as a special case of the general scattering geometry where both 

snow and ice were treated as continuously layered media separated by a slightly rough interface (in 

C- and L- bands). In our study a medium is defined as continuously layered if the dielectric profile 

of this medium represents a continuous function of the vertical coordinate. Note that the scattering 

theory described in [13] is valid for arbitrary layered media (i.e. multi-layered or continuously 

layered) as the solution for NRCS is expressed through generalized reflection and transmission 

coefficients associated with layered media. This means that snow and ice could be represented as 

discretely-layered media as well.  

As mentioned above, the small perturbation scattering theory presented in [13] accounts for 

arbitrary layered structures (i.e. continuously layered or multi-layered media located above and/or 

beneath a rough interface) while the IEM model [133] is applied to a rough surface on top of a 

homogeneous half space. Meanwhile, the IEM model is valid for a wider range of roughness 

parameters compared to the small perturbation theory. The model proposed in [13] is also 

computationally efficient (compared to FDTD and FVTD) which allows to simulate backscatter 

coefficients for numerous input parameters (e.g. snow and ice surface roughness). Nevertheless, 

comparisons of theoretical model results with experimental data for snow-covered sea ice have not 

been performed. 

In this paper we pursue the following objectives: (1) to model normalized radar cross-sections 

(NRCS) (equivalent to backscattering coefficients) in C-band from snow-covered FY sea ice for 

different snow thickness conditions over smooth first-year sea ice using the theory presented in 
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[13], (2) to validate the numerical results against winter ship-based scatterometer observations of 

snow-covered FY sea ice collected in the Canadian Arctic, and (3) Investigate the influence of 

snow cover on radar signatures using model and experimental data. 

 

6.2. Methods 

6.2.1. Identification of Scattering Mechanisms 

In order to identify the dominant scattering mechanism in our modelling study we use a three 

component decomposition model developed by Freeman and Durden [135]. The model quantifies 

contributions of three scattering mechanisms: (1) surface scattering, (2) volume scattering, and (3) 

double-bounce scattering from a pair of orthogonal surfaces. Given the fact, that the Freeman-

Durden decomposition was originally developed for forest targets, it may not be fully suited for 

sea ice and snow applications, but it can provide rough estimations of fractions of surface and 

volume scattering contributions. This decomposition has also been successfully used for 

quantifying surface, volume, and double-bounce scattering contributions from sea ice and for 

identifying various ice types from polarimetric SAR images [136]-[140]. 

In our study we deal with smooth FY sea ice with thickness exceeding 1 m (see more details 

in Section 6.3); therefore, there is no need to consider scattering contributions from large-scale ice 

deformations (i.e. double-bounce scattering). Thus, decomposition model [135] can be considered 

for two scattering components. The contributions of surface and volume scattering for a given 

incidence angle can be determined as follows (see Appendix 6.A): 
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where 0

HH , 0

VV , and 0

HV  are observed HH, VV, and HV backscattering coefficients. In the last 

two equations sP  is the power of the received signal due to surface scattering, vP  is the power of 

the received signal due to volume scattering, and vPPP s   is the total power. Numerical results 

for surface and volume scattering contributions (demonstrating a negligible level of volume 

scattering) in our case studies are presented in Section 6.5.1.  

 

6.2.2. Microwave Scattering Model 

A plane electromagnetic monochromatic wave with angular frequency   and time dependence 

tie 
 is incident upon the snow-covered sea ice as illustrated in Figure 6.1. Dielectric properties 

of snow and ice are represented by continuous functions  zs  and  zi  respectively (where z  is 

a vertical coordinate). The snow layer thickness on top of sea ice is d . Roughness of the air-snow 

and snow-sea ice interfaces is described by stationary random functions  ρs  and  ρi  which 

define deviations of the rough surfaces from planes at 0z  and dz   respectively (where ρ  is 

the position vector at the horizontal plane). 
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Figure 6.1. Illustration of wave scattering from snow-covered sea ice. 

 

An analytical formulation for NRCS at both horizontal (H) and vertical (V) polarizations within 

the first-order approximation of small perturbation theory was derived in [13]. According to [13], 

the NRCS from the air-snow and snow-sea ice interfaces in the monostatic case can be written as 

follows. 
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Snow-ice interface: 
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If both rough interfaces are not correlated then the total radar backscatter from snow-covered 

sea ice is a sum of backscattering coefficients from rough snow and sea ice: 

 

snow

pp

ice

pppp

000   , VHp , .    (6.9) 

 

If the rough interfaces are correlated then an additional correlation term should be included in 

(6.9) according to [13]. Also, the rough ice-water interface could be included in this formulation; 

however, in our study we deal with FY ice thicker than 1 m.  

In (6.3), (6.4), (6.6), and (6.7) 0  is the incidence angle; 0k  is the wave number in vacuum; 

 ds   is the complex dielectric constant (CDC) of snow at the snow-ice interface dz  ; 

 di   is the CDC of ice at the snow-ice interface;    dd sii    is the dielectric 

contrast between ice and snow at the snow-ice interface;   10  ss   is the dielectric contrast 

between snow and air at the air-snow interface;  0000 sinˆcosˆsin  yxk0q  is a projection 
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of the wave vector in the air onto the horizontal plane (where 0  is the azimuth angle of the 

incident wave, and x̂ , ŷ  are Cartesian unit vectors in the horizontal plane). 

Also, VH ,  in (6.3) and (6.4) are complex reflection coefficients from the entire snow-

covered sea ice structure at horizontal and vertical polarizations. In (6.6) and (6.7) the auxiliary 

variables VHL ,  and VHM ,  are defined as follows: 
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where   2

0

2

00 )( qdkqw ss   ,   2

0

2

000 qkqw  ; VsHT ,  and VsHR ,  are complex transmission 

and reflection coefficients for the inhomogeneous snow layer when the wave is incident from the 

half-space with CDC )( ds   at horizontal and vertical polarizations; ViHr ,  are reflection 

coefficients from the inhomogeneous sea ice when the wave is incident from the half-space with 

CDC )( ds   at horizontal and vertical polarizations.  

All the transmission and reflection coefficients for inhomogeneous media can be numerically 

calculated using the invariant embedding approach [127], [141]. A numerical recursive scheme for 

this method is presented in Appendix 6.B. The dielectric profiles of snow and sea ice serve as 

inputs to calculate the reflection and transmission coefficients. There is no need to calculate 

reflection coefficients for the entire ice thickness (more than 1 m) as (in C-band) the wave 
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attenuates significantly within sea ice. Thus, to calculate the reflection coefficients for sea ice we 

used a dielectric profile of the upper 40 cm layer of ice.  

In equations (6.3), (6.4), (6.6), and (6.7) sK
~

 and iK
~

 are the spatial power spectral densities of 

the air-snow and snow-ice rough interfaces given by: 
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where )(ρsK  and )(ρiK  are autocorrelation functions of the rough air-snow and snow-ice 

interfaces respectively: 
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In our study we assume that both rough surfaces are isotropic, i.e. sK  and iK  are independent 

of the azimuth angle. However, anisotropic rough interfaces can be utilized in this model as well. 

The exponential function was found to provide best fit to the autocorrelation functions of snow 

and ice surfaces derived from terrestrial LiDAR data [142]. Therefore, we accept that the 

autocorrelation functions of both rough interfaces are described by exponential dependences i.e.:  
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where s  and sL  are root-mean square (RMS) height and correlation length of the air-snow rough 

interface, i  and iL  are RMS height and correlation length of the snow-ice rough interface. From 

(6.12) the corresponding spectrum can be found as follows [91]: 
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Roughness parameters of snow s , sL , and ice i , iL  were not measured during the field 

experiment. Therefore, they varied in our simulations as discussed in Section 6.5. 

 

6.3. Experimental Data 

Scatterometer and physical data for our study were collected in the southern Beaufort Sea in winter 

2008 from the research icebreaker CCGS Amundsen as part of the Circumpolar Flow Lead (CFL) 

system study [143]. Three sites (case studies) represented mobile snow-covered FY sea ice (1.2 m, 

1.2 m, and 1.1 m thick respectively) were selected for our analysis (as shown in Table 6.1). The ice 

concentration in the sampling area exceeded 9/10. The first site (March 8, 16 cm of snow) and the 

second site (March 10, 4 cm of snow) were located on different sides of the same floe. The third 

site (February 26, 3 cm of snow) was located around 12 km to the southwest from this floe. The 

sampling time of day 15:30 pm (local time) was similar for all three sites for consistency. 
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6.3.1. Scatterometer Data 

Fully-polarimetric C-band (5.5 GHz) scatterometer measurements of snow-covered sea ice were 

collected at different incidence angles (with respect to nadir) in the elevation from 20
o
 to 60

o
 with 

5
o
 step. At each incidence angle the effective NRCS for -30

o
 to 30

o
 swath in the azimuth direction 

was computed, where 0
o
 azimuth corresponds to the direction perpendicular to the side of the ship. 

At a given sampling station, typically 5 to 10 scatterometer scans were performed, and from them 

the average angular dependences (and standard deviations) of NRCS at HH, VV, and VH 

polarizations were calculated. More details on this scatterometer system and field measurement 

techniques can be found in [119], [144]. 

 

Table 6.1. Three sites selected for analysis. 

 

Case 

Study 

Location 

Latitude/Longitude 
Local Time 

Air 

Temperature 

[
o
C]  

Snow 

Thickness 

[cm] 

Ice 

Thickness 

[cm] 

1 
71.0163 

o
N  

123.8163
 o
W 

March 8, 

2008, 15:30 
-17.5 16 120 

2 
71.0385

 o
N  

123.9103
 o
W 

March 10, 

2008, 15:30 
-23.1 4 120 

3 
70.9203

 o
N  

123.9883
 o
W 

February 26, 

2008, 15:30 
-19.3 3 110 

 

 

6.3.2. Physical Data 

In-situ physical sampling of snow and sea ice was conducted in support of the scatterometer 

observations. Snow density profiles were measured with 2 cm resolution using a snow density 

cutter and a gravimetric approach. Salinity of each melted snow sample was also measured using 

HACH SENSION5 portable conductivity meter (accuracy of ±0.01 ppt). The temperature profile 
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of a snow pit was captured with 2 cm resolution using a temperature probe (Traceable Digital 

Thermometer, Control Company, accuracy of ±0.05 °C). Measured snow density, salinity and 

temperature profiles were used to estimate volumetric contents of brine and pure ice as shown in 

Section 6.4.1. 

Vertical profiles of temperature and salinity in sea ice were captured by analysing an ice core. 

The temperature profile of the extracted ice core was measured by drilling a hole at 5 cm 

increments and inserting a temperature probe. To register the bulk salinity profile, the ice core was 

cut into 5 cm lengths placing them in sealed buckets and melting them and equilibrating to room 

temperature. Salinity of each melted piece was measured in a lab using the conductivity meter.  

The physical properties of snow and sea ice served as input parameters to dielectric modeling 

of these media. 

 

6.4. Dielectric Modeling 

6.4.1. Snow 

Snow on FY sea ice is a mixture of pure ice, air and brine (wicked from the sea ice surface). There 

are a few dielectric mixture models for estimating CDC of fresh water snow (such as [82]). 

However, a reliable mixture model for estimating CDC of brine wetted snow on top of sea ice 

based on direct measurements of snow CDC in microwave band has not been developed. We 

implement the power dielectric mixture model, formulated as follows: 

 

  bbsdss W1   .     (6.16) 
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In the last equation ds  is the CDC of dry snow (where the brine volume is replaced with air) 

is given as follows: 

 

  pipids W11    .     (6.17) 

 

In equations (6.16) and (6.17) bW  is the volumetric fraction of brine, piW  is the volumetric 

fraction of ice, 15.3pi  is the dielectric constant of pure ice [80], bs  is the dielectric constant of 

brine which can be estimated as a function of temperature and frequency according to Stogryn and 

Desargant [81]. If in a special case of (6.16) and (6.17) we put 1  then the dielectric mixture 

model becomes linear; if 5.0  then the dielectric mixture model becomes refractive (which is 

linear with respect to the complex refractive indices). It has been shown that the refractive mixture 

model is effective for sea ice [76]. Furthermore, the refractive mixture model has been proven to 

be the most applicable for wet soils [125]. It is interesting to note that dielectric properties of pure 

ice and soil particles (rocks) are close to each other and the values of porosity in snow and soil are 

comparable as well. This indicates that the refractive dielectric mixture model could be applied to 

the brine wetted snow. 

The volumetric content of brine bW  and the volumetric content of pure ice piW  in the snow 

cover as function of the vertical coordinate z  can be estimated according to the formulation 

provided by Drinkwater and Crocker [83]: 
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  bbpib

bs
bW





vv

v




1
,    (6.18) 

 

where s  is the measured snow density, b  is the brine density and pi  is the density of pure ice. 

In (6.18) bv  is the ratio between the volume of brine and the volume of ice plus the volume of 

brine i.e.: 

 

pib

b
b

WW

W


v .     (6.19) 

 

Following [83], this ratio can be estimated according to Frankenstein and Garner equations 

[78] through measured snow temperature st  (
o
C) and snow bulk salinity sS  (ppt) as follows: 

 























































C2.8C9.22,189.1
795.43

10

C06.2C2.8,93.0
917.45

10

C5.0C06.2,28.2
56.52

10

oo3

oo3

oo3

s

s

s

s

s

s

s

s

s

b

t
t

S

t
t

S

t
t

S

v .  (6.20) 

 

The ice volume fraction in snow piW  can be expressed as follows: 
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 
  bbpib

bs
piW





vv

v






1

1
,     (6.21) 

 

Substituting volumetric fractions of brine and pure ice given by equations (6.18) and (6.21) 

respectively into the dielectric mixture model (6.16) and (6.17) for the refractive case ( 5.0 ) it 

is possible to estimate the CDC of snow s  as a function of depth.  

 

6.4.2. Sea Ice 

Sea ice consists of pure ice, brine inclusions and air bubbles. Unfortunately, size and distribution 

of air bubbles were not measured. Generally, air bubbles in FY sea ice have radius between 0.01 

and 2 mm and number densities of 0.03 per mm
3
 [145], whereas average brine inclusion number 

densities range from 1.0 to 4.5 per mm
3
 [146]. Therefore, we assume that air bubbles do not affect 

the dielectric constant of FY sea ice significantly compared to the brine inclusions which have two 

orders of magnitude higher number densities and also have very high dielectric constant. 

The CDC of sea ice was estimated using the power mixture model for an isotropic two-phase 

medium consisting of pure ice and brine inclusions. According to this model, the CDC of sea ice 

can be estimated as follows: 

 

  bbibpii VV    1 ,     (6.22) 

 

where 15.3pi  is the dielectric constant of pure ice, bi  is the CDC of brine inclusions in ice, bV  

is the volume fraction of brine inclusions. CDC of brine in sea ice bi  can be found through the 
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Debye relaxation model with temperature dependent parameters empirically derived by Stogryn 

and Desargant in [81]. 

Brine volume content bV  can be estimated using Frankenstein and Garner empirical equations 

as a function of temperature and bulk salinity of sea ice [78]. Note that the Frankenstein and 

Garner equations [78] assume constant sea ice density of 0.926 g/cm
3
. The newer equation by Cox 

and Weeks [147] would be more accurate, but it requires sea ice density. According to the 

equation by [147] the brine volume estimated from [78] should be multiplied by the factor 

926.0si  where si  is the density of sea ice. Assuming that the bulk density of FY sea ice 

typically ranges between 0.89 and 0.93 g/cm
3
 [148] the relative error falls within the range 

between -0.04% and 4%. In our case studies the maximum brine volume content in sea ice was 

4.2% (as shown in Section 6.5). Therefore, the maximum possible absolute error of sea ice brine 

volume content associated with assuming the constant sea ice density would be around 0.17%. 

In the study by [76] it was shown that the refractive dielectric mixture model ( 5.0 ) agrees 

very well with dielectric measurements of sea ice reported in [77]. Therefore, we use the refractive 

model for estimating CDC of sea ice. 

 

6.5. Results: Model versus Experiment 

In this section we present numerically calculated HH and VV backscattering coefficients 

compared against ship based C-band scatterometer data for three cases of snow-covered FY sea 

ice. Prior to numerical simulations, in all case studies, snow temperature, salinity, and density 

profiles measured at 2 cm resolution were interpolated to 1 mm resolution using a shape-
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preserving piecewise cubic interpolation. The obtained profiles were used to calculate the brine 

content and CDC of snow. In a similar way measured temperature and salinity profiles of sea ice 

with 5 cm resolution were interpolated to 1 mm resolution. The brine content and CDC of sea ice 

were calculated based on the interpolated profiles. The interpolated dielectric profiles of snow and 

sea ice served as inputs for calculating reflection and transmission coefficients in our scattering 

model.  

 

6.5.1. Surface and Volume Scattering Contributions 

For each case study we calculated average values of 
P

Ps  and 
P

Pv  (using (6.1) and (6.2)) for all 

incidence angles in the scatterometer observations. We demonstrated that the surface scattering 

contribution was 95%, 96%, and 91%, and the volume scattering contribution around 5%, 4%, and 

9% for case studies 1, 2, and 3 respectively. This indicates that the dominant scattering mechanism 

in our case is surface scattering. This result is supported by the observation that the measured 

cross-polarized return 
0

HV  was very low in all three cases (around or below the noise floor of the 

instrument which is -40 dB). 

We note that in the Freeman-Durden decomposition the HV signal is explained by the volume 

scattering effect only. At the same time, in our case studies the measured cross-polarization (HV) 

signal is likely explained by the combination of both volume and surface scattering mechanisms. 

This indicates that the derived values for volume scattering contributions (through the Freeman-

Durden decomposition) could be overestimated. Given the fact, that the obtained values for 

volume scattering contributions were 4%, 5% and 9% in Case Studies 1, 2, and 3 respectively, the 

actual volume scattering contributions would be even less than these values. 
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We would like to point out that our situation is substantially different from the case studied by 

Barber and Nghiem in [63], where the volume scattering from snow grains and brine inclusions in 

the basal layer prevailed over the surface scattering. For the cold snow case in [63] the ice grain 

size in the basal layer of snow was around 11.8 mm
2
. In our case the estimated snow grain size at 

the bottom of the snowpack was smaller (around 7.8 mm
2
). Also, in our study the temperature of 

the snow-ice interface was considerably lower than in [63] (where in-situ measurements were 

collected later in May). Therefore, the brine volume content at the snow-ice interface ( 0z ) was 

lower than in [63]. More specifically, in our three case studies (described below) the brine volume 

content at the snow-ice interface was 2.0% (in Case Study 1), 1.4% (in Case Study 2) and 0.7% (in 

Case Study 3). In [63] this value was 2.4% and 5.6% for thin (12 cm) cold and warm snow cases 

respectively, and 2.6% and 3.6% for thick (24 cm) cold and warm snow cases respectively. Thus, 

the smaller grain size in the basal layer of snow and the smaller brine volume content is snow in 

our case (in comparison to [63]) prevented volume scattering within the snow pack. 

 

6.5.2. Roughness Parameters 

Direct measurements of snow and sea ice roughness parameters (RMS height and correlation 

length) are quite rare in the literature. Measuring roughness of sea ice surface covered by snow is 

especially challenging as snow removal may substantially affect the ice surface. Generally, based 

on the published measurements, we expect that the RMS height of snow and ice is on the order of 

millimeters, whereas the correlation length is on the order of centimeters [111], [142]. Since the 

roughness parameters of snow and sea ice were not captured during the field campaign we varied 

these parameters within the ranges presented in Table 6.2. 
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Table 6.2. Ranges of snow and sea ice surface roughness parameters. 

 

Parameter Min Step Max 

RMS height of snow surface s  [cm] 0.01 0.02 0.31 

Correlation length of snow surface sL  [cm] 0.1 0.1 3 

RMS height of ice surface i  [cm] 0.01 0.02 0.31 

Correlation length of ice surface iL  [cm] 0.1 0.1 3 

 

From this table only those parameters which satisfy the validity range of the small 

perturbation theory (with respect to the wavelength) formulated in [91] are used. We note that for 

the snow-ice rough interface the validity range is probably more strict compared to the air-snow 

interface (as the wave length in snow is smaller than in the air); however, there is no precise 

criterion accounting for this effect (especially in a layered medium). Therefore, for the snow-ice 

interface we use the same criterion as for the air-snow interface. For each set of four roughness 

parameters the cost function between the experimental and numerical NRCS at both VV and HH 

polarization was calculated. The roughness parameters s , sL , i , iL  minimizing the cost 

function were accepted as “true” values. The optimum roughness parameters derived for each case 

study are summarized in Table 6.3. 

 

Table 6.3. Optimum parameters of snow and sea ice surface roughness for the three case studies 

for the high resolution of layers in snow and ice ( mm1 icesnow zz ). 

 

Case Study s  [cm] sL  [cm] i  [cm] iL  [cm] 

1 0.19 0.9 0.25 0.9 

2 0.25 1.9 0.25 1.7 

3 0.25 1.9 0.25 1.7 
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In the recent study by Landy et al. [142] roughness parameters for different ice types 

(including newly formed, first- and multiyear ice) derived from LiDAR measurements are 

presented. In [142] for FY ice of 1 m thick (with no snow cover) RMS height was 0.2 cm, and 

correlation length was 1.68 ± 0.21 cm. These values are close to our values obtained for Case 

Study 2 and Case Study 3 and shown in Table 6.3. In [142] no measurements of roughness 

parameters for dry snow were presented as in this case volume scattering may bias the ranging 

estimate of the LiDAR and, therefore, more research is required to evaluate the suitability of using 

LiDAR over dry snow. However, in the same study, RMS height for wet snow was 0.18 cm, and 

correlation length was 0.96 ± 0.18 cm. In another study by [111] roughness measurements of 

different ice types are presented. For congelation smooth FY sea ice (1.5 m thick) the RMS height 

was 0.053 cm and correlation length was 1.736 cm. The roughness values presented in [142] and 

[111] fall within the validity range of the small perturbation theory formulated in [91]. 

To explore how the derived roughness values change in response to the resolution of layers in 

snow and ice we reduced resolution of layers for snow to cm1 snowz  and for sea ice to 

cm5.2 icez  and conducted the numerical simulations for all three case studies. The obtained 

results of optimum roughness parameters are summarized in Table 6.4. This table indicates that the 

RMS heights did not change compared to the results presented in Table 6.3 for 

mm1 icesnow zz , whereas the correlation length of snow has slightly changed in all case 

studies and correlation length of ice has slightly changed in case studies 1 and 2. The largest 

relative change is observed for case study 1 where the gradient of dielectric properties of snow was 

the largest (in comparison to the other case studies). The NRCS curves (as functions of incidence 

angle) for the low resolution ( cm1 snowz  and cm5.2 icez ) did not change substantially 
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compared to the high resolution ( mm1 icesnow zz ). The cost function (between model and 

experimental NRCS values) has changed by 0.6%, 3.4% and 0.2% in case studies 1, 2, and 3 

respectively (which are discussed below). Thus, our modeling results are not significantly affected 

by the resolution of layers in snow and ice. 

 

Table 6.4. Optimum parameters of snow and sea ice surface roughness for the three case studies 

for the low resolution of layers in snow and ice ( cm1 snowz  and cm5.2 icez ). 

 

Case Study s  [cm] sL  [cm] i  [cm] iL  [cm] 

1 0.19 0.7 0.25 1.0 

2 0.25 1.8 0.25 1.6 

3 0.25 2.1 0.25 1.7 

 

The model has been run with the use of the roughness parameters obtained for 1 mm resolution 

(shown in Table 6.3); the obtained results for the three case studies are presented below. 

 

6.5.3. Case Study 1: Snow Thickness 16 cm 

In this case study the snow thickness was 16 cm which is the highest among the other cases. Snow 

temperature and salinity profiles are displayed in Figure 6.2(c). The salinity has the maximum 

value at the snow bottom and it rapidly decreases when approaching the air-snow interface. The 

temperature gradually decreases from the top to the bottom in the snow cover. Figure 6.2(d) shows 

the measured density and the estimated brine volume content (through density, temperature, and 

salinity) according to (6.18) in the snow cover. The brine volumetric content has the maximum 

value in the vicinity of the ice surface and it decreases when approaching the snow surface. One 

may observe that the brine volume content is substantially controlled by the salinity profile in 
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snow. Snow density and brine content directly affect the CDC of snow and therefore the wave 

attenuation within the snow pack. The estimated real and imaginary parts of snow CDC as 

functions of depth are displayed in Figure 6.2(e). 

Measured temperature and bulk salinity profiles of the upper 40 cm layer of sea ice are shown 

in Figure 6.2(f). The surface layers of sea ice are colder and more saline compared to the deeper 

layers. The higher bulk salinity in the upper layers (compared to the lower layers) cause the higher 

values of brine volume content in ice (shown in Figure 6.2(g)). Therefore, both real and imaginary 

parts of sea ice CDC are higher at the ice surface (as displayed in Figure 6.2(h)).  

The modelled and measured NRCS as functions of incidence angle are shown in Figure 6.2(a) and 

(b). The HH NRCS from the air-snow (given by (6.3)) and snow-ice (given by (6.6)) rough 

interfaces were computed separately. The VV NRCS from these two interfaces were calculated 

according to (6.4) and (6.7) respectively. Figure 6.2(a) and (b) show that the snow-ice interface has 

a larger impact on the total backscatter compared to the snow-air interface. 

Good agreement between the model and experimental data for both VV and HH radar 

backscatter coefficients can be observed. One may also observe a wavy pattern in modelled HH 

NRCS curve shown in Figure 6.2(b). We attribute this effect to the interference of the coherent 

component of the field within the snow layer (which is thick enough relative to the wavelength). 

The same effect also takes place for VV polarization (Figure 6.2(a)); however, it is significantly 

less pronounced compared to the HH polarization. 

The model result for the cross-polarization (HV) radar backscatter is zero (i.e. -∞ dB). At the 

same time the experimental HV NRCS is approximately equal to or below the noise floor of the 
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instrument (which is -40 dB). This indicates that the small perturbation theory is appropriate for 

modeling scattering characteristics from winter snow-covered FY sea ice. 

The estimated noise floor of the instrument (-40 dB) was provided by the manufacturer 

(ProSensing) based on their calibration experiment. We emphasize that the data was carefully 

analyzed to ensure that an adequate signal to noise ratio (typically 10 dB) was maintained 

throughout processing in a similar way to [119]. 
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Figure 6.2. NRCS and physical properties of snow-covered sea ice for Case Study 1 (16 cm of 

snow). (a) Model and experimental VV NRCS along with experimental VH NRCS; (b) Model and 
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experimental HH NRCS along with experimental VH NRCS; (c) Snow temperature and salinity; 

(d) Snow density and brine content as functions of depth; (e) Real and imaginary parts of snow 

CDC; (f) Temperature and salinity of sea ice; (g) Brine content in sea ice; (h) Real and imaginary 

parts of sea ice CDC. All variables in snow and sea ice are functions of the vertical coordinate. 

 

In Figure 6.2(a) and (b) we also presented a model result for the case with no snow cover (i.e. 

where the snow is replaced by air). It is seen that neglecting the snow layer leads to the increased 

values of NRCS compared to the observations. We explain it by the fact that the snow layer 

(containing brine) significantly attenuates the incident wave and the scattered wave travelling from 

the snow-ice rough interface. 

 

6.5.4. Case Study 2: Snow Thickness 4 cm 

Model and observation results for this case study are presented in Figure 6.3. Measured 

temperature and salinity profiles in sea ice are given in Figure 6.3(f). Estimated brine volume 

content in ice is shown in Figure 6.3(g), and the corresponding real and imaginary parts of sea ice 

CDC as functions of depth are displayed in Figure 6.3(h). The frazil ice layer is substantially 

colder than in the previous case due to the thinner snow cover. This leads to the lower values of 

brine volume in the ice surface layer, and as a result to the lower values of both real and imaginary 

parts of sea ice CDC. 

Measured snow temperature and salinity profiles are shown in Figure 6.3(f) and measured 

snow density and estimated brine volume content in snow are displayed in Figure 6.3(g). The brine 

volume content at the snow-ice interface is slightly lower than in the Case Study 1. The 

corresponding real and imaginary parts of snow CDC are shown in Figure 6.3(h). 
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Figure 6.3(a) and (b) demonstrate model and measured VV and HH NRCS as functions of the 

incidence angle. In this figure the NRCS from the air-snow and ice-snow interfaces are plotted 

separately. The results indicate that the dominant scattering occurs at the snow-ice rough interface, 

except for the incidence angles at 37
o
 and higher at HH polarization. Neglecting the snow cover 

leads to overestimating the backscatter for VV polarization; however, at HH polarization 

neglecting this does not affect the model result significantly. The model NRCS agrees well with 

measurements for both VV and HH polarizations. Similar to the previous case, the observed cross-

polarization NRCS signal is equal to or below the instrument noise floor.  

 

6.5.5. Case Study 3: Snow Thickness 3 cm 

Figure 6.4 displays model and observation results obtained for this case study. Using physical 

properties of snow (Figure 6.4(c) and Figure 6.4(d)) and sea ice (Figure 6.4(f) and Figure 6.4(g)) 

we estimated the CDC of snow (Figure 6.4(e)) and sea ice (Figure 6.4(h)). The ice-snow interface 

was the coldest (among the other cases) and therefore the brine volume content in snow was the 

lowest (0.7 %). The model results presented in Figure 6.4(a) and (b) show a good agreement 

between model and measured NRCS for both VV and HH polarization. In this case the dominance 

of the surface scattering at the snow-ice interface (over the surface scattering at the air-snow 

interface) is especially pronounced compared to the other cases (due to the low amount of brine in 

the snow). Neglecting the snow cover considerably impacts both the VV and HH NRCS signals. In 

this case the observed cross-polarization signal is also close to or lower than the instrument noise 

floor. 
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Figure 6.3. Same as Figure 6.2, but for Case Study 2 (4 cm of snow). 
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Figure 6.4. Same as Figure 6.2, but for Case Study 3 (3 cm of snow). 
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6.5.6. Backscattering Coefficients for Thick (16 cm) versus Thin (4 cm) Snow Cover 

The thickness of the snow layer (containing brine) substantially controls the attenuation of the 

incident wave and the wave scattered by the snow-ice rough interface. Generally, a thick snow 

layer absorbs more microwave energy than a thin snow layer.  

We note that in the case of the thick snow cover there is more brine at the snow-ice interface 

(i.e. at the ice surface layer and at the snow bottom layer). This means that the dielectric constants 

of both ice and snow at the snow-ice interface are greater for the thick snow cover case compared 

to the thin snow cover case. However, the dielectric contrast i  (in equations (6.6) and (6.7)) at 

the snow-ice interface are found to be close for both cases (i.e. 19.2 i  for 16 cm of snow and 

13.2 i  for 4 cm of snow). This indicates that the thermodynamic effect of the warmer ice 

surface does not significantly increase the dielectric contrast at the snow-ice interface.  

Figure 6.5(a) and (b) demonstrate that modeled and observed NRCS (for both VV and HH 

polarizations) are considerably lower for the thick snow cover (16 cm) compared to the thin snow 

cover (4 cm). This result confirms that the effect of wave attenuation in the thick snow 

substantially controls the total NRCS from the snow-covered sea ice system. Our results presented 

in Figure 6.5 suggest a physical basis for winter snow thickness retrieval from radar observations 

under the specific geophysical and thermodynamic conditions represented in our three case 

studies. 

We point out that Barber and Nghiem in [63] demonstrated an increase in backscatter between 

thin and thick snow cases. This was associated with a higher level of volume scattering in the basal 

layer of the thick snow cover compared to the thin snow. At the same time, in [63] the volume 
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scattering dominated over surface scattering, while in our study the volume scattering was 

negligible compared to the surface scattering as shown in Section 6.5.1. 

 

 
 

Figure 6.5. NRCS for thin (4 cm) versus thick (16 cm) snow cover. (a) Model (solid line) and 

experimental (circles) VV NRCS along with experimental VH NRCS (squares) for thin and thick 

snow covers; (b) Model (solid line) and experimental (circles) HH NRCS along with experimental 

VH NRCS (squares) for thin and thick snow covers. 

 

 

6.5.7. Backscattering Coefficients for Thin Snow Covers with Different Brine Contents 

To investigate the influence of brine content in snow on radar backscatter in more detail we 

compare model and experimental results for Case Study 2 (4 cm of snow) and Case Study 3 (3 cm 

of snow) shown in Figure 6.6. The average brine volume content in Case Study 3 was lower than 

in Case Study 2 (i.e. 0.7%  and 1.1 % respectively) because the snow cover was less saline in Case 

Study 3 compared to Case Study 2. Therefore, the dielectric contrast at the air-snow interface is 

higher for Case Study 2 ( 79.0 s ) compared to Case Study 3 ( 51.0 s ), and, 

consequently, the backscatter component from the air-snow interface is higher in Case Study 2 
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compared to Case Study 3. At the same time, the dielectric contrast at the snow-ice interface in 

Case Study 2 ( 13.2 i ) and Case Study 3 ( 18.2 i ) are close to each other (which means 

that the thermodynamic effect does not influence the dielectric contrast between the snow and ice). 

But the backscatter component from the snow-ice interface is lower for Case Study 2 compared to 

Case Study 3, because the wave attenuation is higher in Case Study 2 (where the brine content in 

snow is higher) in comparison to Case Study 3. These two opposite effects result in almost similar 

total backscatter (i.e. sum from the air-snow and snow-ice interfaces) for VV polarization at all 

incidence angles. For the HH polarization the backscatter coefficients in Case Studies 2 and 3 are 

close to each other up to 35
o
, while at 35

o
-60

o
 the backscatter coefficients for Case Study 2 are 

substantially higher compared to Case Study 3 as shown in Figure 6.6. 

 

 

Figure 6.6. NRCS for thin snow covers with average brine volume contents of 1.1% and 0.7%. (a) 

Model total VV NRCS (solid line), model VV NRCS from the air-snow interface (dotted line), 

model VV NRCS from the snow-ice interface (dashed line) and experimental VV NRCS (circles) 

along with experimental VH NRCS (squares); (b) Model total HH NRCS (solid line), model HH 

NRCS from the air-snow interface (dotted line), model HH NRCS from the snow-ice interface 

(dashed line) and experimental (circles) VV NRCS along with experimental VH NRCS (squares). 
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Our results suggest that a situation where different brine volume contents in snow layers with 

similar thicknesses do not affect the total backscatter is possible. However, more case studies 

(including experimental physical and scatterometer data) for snow covers with similar thicknesses, 

but different brine volume contents are required to investigate the observed effect in greater detail. 

 

 

6.6. Conclusion 

In this paper we present model and experimental results for C-band radar backscatter from snow 

covered FY sea ice with average snow thicknesses of 16 cm, 4 cm, and 3 cm representing three 

case studies. Using experimental data we demonstrated that surface scattering from the air-snow 

and snow-ice rough interfaces dominated, while the volume scattering contribution was negligible. 

To model scattering processes we used a first-order approximation of the small perturbation theory 

for electromagnetic wave scattering from rough boundaries interfacing inhomogeneous media 

proposed in [13]. The autocorrelation functions of the air-snow and snow-ice rough interfaces 

were chosen to be exponential [142]. The CDC of both snow and sea ice are functions of the 

vertical coordinate.  

Experimental microwave and snow and sea ice physical data were collected in winter 2008 

onboard the CCGS research icebreaker Amundsen as part of the large CFL International Polar 

Year (IPY) project. The observed physical characteristics of snow and ice served as inputs to 

estimate the CDC of these media using the refractive dielectric mixture model. The RMS height 

and correlation length of the air-snow and snow-ice interfaces were not available during the field 

measurements. Therefore, we varied these input parameters in the model. The sets of roughness 



 

217 

 

 

parameters minimizing the error between the experimental and model NRCS were accepted as 

representative values. 

The modeled NRCS values for the three case studies agree well with experimentally collected 

data for both HH and VV polarizations. We found that surface scattering at the snow-ice rough 

interface is usually stronger than at the air-snow interface. Furthermore, the model NRCS is 

considerably lower for thick snow cover compared to the thin snow cover. This effect is in 

agreement with experimental data. We attribute it to the higher attenuation of the propagated wave 

within the thicker snow pack. Also, we demonstrated that different brine volume content in snow 

with similar thicknesses may not influence the backscatter coefficients. These modeled and 

observed effects provide a physical basis for the retrieval of snow thickness from radar 

measurements in winter when the snow and sea ice geophysics and thermodynamics are similar to 

those represented by this case study. 

The observed and modelled VV and HH C-band radar backscatter change between thin and 

thick snow covers is detectable if the following conditions are met: (1) kinetic growth snow grains 

at the bottom of the snow pack are too small in size to cause volume scattering, (2) low brine 

content in snow allowing wave penetration and interaction with the snow-ice interface, and (3) 

surface geometry of sea ice has no large-scale deformations. This situation can be typically 

observed for smooth FY snow-covered sea ice (over 1 m thick) in the mid of winter (under cold 

conditions). We note that further investigation of backscatter response from winter snow-covered 

sea ice with similar snow thicknesses, but different brine volume content in snow is required. 

Our situation is quite different from the case described in [63] where the snow grains and 

brine inclusions in snow were large enough to become scattering centers (in C-band) which is 



 

218 

 

 

typical for spring (May). In fact, the opposite effect in [63] was observed (i.e. the backscatter 

decreases when the snow thickness increases). Also, further research is required to investigate the 

backscatter response from snow on top of thinner (less than 1 m) sea ice where the brine content 

may vary considerably. 

Fully-polarimetric modes of current (e.g. RADARSAT-2) and future (e.g. Canadian 

RADARSAT Constellation, European Sentinel-1) SAR spaceborne platforms would allow to 

quantify contributions of different scattering mechanisms over snow-covered sea ice [136]. This 

information would allow to identify areas where the scattering conditions (i.e. the low level of 

volume and double-bounce scattering) described in our study take place and to infer snow 

thickness for these areas accordingly. 
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Appendix 6.A. Application of Freeman-Durden Decomposition Model 

In this appendix we derive equation (6.1) from the following Freeman-Durden decomposition 

equations given on page 965 of paper [135]: 

 

vfffS dsHH 
222

 ,    (6.A1) 

vVV fffS ds 
2

,     (6.A2) 

3

2 v
HV

f
S  .       (6.A3) 

 

where sf , df  and vf  are the surface, double-bounce, and volume scattering contributions 

respectively to the VV cross-section, HHS , VVS , HVS  are components of the scattering matrix. 

*

VVHH SS  (in the case where surface and volume scattering are absent). 
*

VVHH SS  (in the 

case where volume and double-bounce scattering are absent). For more details see [135]. 

Since in our case the double-bounce scattering component is absent (i.e. 0df ) then 

equations (6.A1)-(6.A3) can be rewritten as follows: 

 

vffS sHH 
22

 ,      (6.A4) 

vVV ffS s 
2

,      (6.A5) 

3

2 v
HV

f
S  .       (6.A6) 
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Then, the total power can be found as follows: 

 

  vHVVVv ffSSSPPP sHHs
3

8
12

2222
  ,  (6.A7) 

 

where sP  and vP  are contributions of surface and volume scattering mechanisms to the total 

power P . 

From equations (6.A1), (6.A2), and (6.A3) we obtain: 

 

  2222
61 HVVV SSSfP HHss   .   (6.A8) 

 

Therefore, contribution from the surface scattering to the total power can be found as follows: 
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The last equation is equivalent to (6.1). 
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Appendix 6.B. Invariant Embedding Approach for Wave Propagation in 

Layered Media 

A plane electromagnetic wave with angular frequency   and time dependence tie   is incident 

upon a continuously layered finite slab with CDC profile  z  from a homogeneous half space 

with CDC   as shown in Figure 6.B1. CDC of the medium located beneath the inhomogeneous 

slab is l . In this appendix we present a recursive numerical scheme to determine complex 

reflection and transmission coefficients for this slab at both horizontal and vertical polarizations. 

 

 

Figure 6.B1. Wave propagation through a slab with a continuous profile of CDC. 

 



 

222 

 

 

The slab with continuous profile of CDC  is divided into n  layers with constant CDCs 

 1 ,  2 , …,  n  and equal thicknesses z  as illustrated in Figure 6.B2. First, we introduce a 

scattering matrix for the first  1j  layers at vertical or horizontal polarizations as follows: 

 

 
   

   














11

11
1ˆ

21

21

jTjR

jRjT
jS ,     (6.B1) 

 

where  11 jT  is the transmission coefficient through  1j  layers when the wave propagates 

downwards,  11 jR  is the reflection coefficient from  1j  layers when the wave is incident 

from the upper half space  ,  12 jT  is the transmission coefficient through  1j  layers when 

the wave propagates upwards,  12 jR  is the reflection coefficient from the slab when the wave is 

incident from the lower layer with CDC  j . 

For each interface between layers j  and 1j  the partial scattering matrix can be written as 

follows: 

 

 
   

   














1,1,

1,1,
1,ˆ

21

21

jjtjjr

jjrjjt
jjs ,    (6.B2) 

 

where  1,1 jjt ,  1,1 jjr  are ordinary Fresnel transmission and reflection coefficients at the 

boundary between layers j  and 1j  when the wave propagates downwards.  1,2 jjt , 

 1,2 jjr  are ordinary Fresnel transmission and reflection coefficients at the same boundary 

 z
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when the wave propagates upwards. The following relationships for these coefficients must hold: 

11 1 rt  , 22 1 rt  , and 12 rr  . 

 

 
 

Figure 6.B2. Discrete representation of a continuously layered medium. 

 

Suppose that scattering matrix  1ˆ jS  for the first 1j  layers is known. Then, the scattering 

matrix for the first j  layers  jŜ  is formed by addition layer j  with CDC  j . Scattering matrix 

 jŜ  can be found in a recursive manner as a function of matrices  1ˆ jS  (known from the 

previous iteration step) and  1,ˆ jjs  (found at the interface between layers j  and 1j ) as 

follows: 
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where factor     zjiwju  exp  represents phase change in layer j .     0

2

0 sin  jkjw   is 

the projection of wave vector onto axis z  in layer j . In the recursive scheme (6.B3) - (6.B6) at 

the zeroth iteration 0j  we put    j  (the upper half space) and initial values for 

transmission and reflection coefficients     121  jTjT ,     021  jRjR . At the last iteration 

nj  , we put   lj  1  (the lower half space).  

In the case of horizontally polarized incident wave the Fresnel reflection coefficient 1r  

between layers with CDC  j  and  1j  with respect to the electric field is defined as follows:  

 

 
   
   1

1
1,1
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
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In the case of vertical polarization, the reflection coefficient 1r  with respect to the magnetic 

field is expressed as follows:  
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The recursive numerical scheme given by (6.B3) - (6.B8) should be run separately for 

horizontally and vertically polarized incident waves.  
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CHAPTER 7. CONCLUSION 

 

7.1. Summary of Major Results 

In this section we summarize major scientific results and contributions of this dissertation which 

address our objectives stated in Chapter 1.  

 

Result 1. New sea ice motion tracking system operating with SAR images. 

In Chapter 3 we present a new sea ice motion tracking algorithm that operates with two sequential 

SAR images. Even though, SAR-based ice motion detection algorithms had been developed in the 

past (e.g. [34], [36]), our technique contains several new components which significantly increased 

the system’s robustness and accuracy. These components include: 

1) new feature tracking approach based on the combination of phase-correlation and cross-

correlation matching techniques; 

2) new algorithm for selecting control points; 

3) an approach for filtering out error ice drift vectors by comparing vectors derived from the 

forward pass (tracking from the first image to the second one) and the backward pass (tracking 

from the second image to the first one); 

4) confidence level setting for output drift vectors. 

The accuracy of the system was thoroughly examined based on the visual detection of similar 

ice features in sequential SAR images and ground truth GPS beacon data for various ice 

conditions. We demonstrate a very good agreement between the SAR derived vectors and ice 
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drifting beacon trajectories located in close proximity (less than 3 km) to the nearest SAR ice 

motion vectors. The RMSE is 0.43 km for 36 comparison points. 

In Chapter 3 we also draw special attention to ice motion detection from the cross-polarization 

(HV) channel which was not available (in ScanSAR mode) before launching RADARSAT-2 in 

2007. In particular, we formulated the following condition where the HV channel is more reliable 

than the HH channel for ice tracking: if 003.000  NEHV   (linear units), then for ice tracking HV 

is preferable to HH; otherwise, the HH channel is preferable to HV for ice tracking. 

In Chapter 3 we also propose a novel technique for filtering noise floor stripes in HV imagery, 

which allowed us to demonstrate that the ice motion tracking algorithm is not sensitive to the noise 

floor stripes along the satellite track. 

The developed sea ice motion tracking system has been implemented for operational use at the 

Canadian Ice Service, Environment Canada. It was successfully used to quantify recent changes in 

the exchange of sea ice between the Arctic Ocean and the Canadian Arctic Archipelago [46], 

[149], [150]. It has been also proven to be an instrumental tool for verifying sea ice forecasting 

models, and supporting field work in the Arctic Ocean conducted in compliance with the United 

Nations Convention on the Law of the Sea (UNCLOS). 

 

Result 2. New models for ocean surface wind speed retrieval from SAR imagery. 

Surface wind is one of the major factors affecting sea ice dynamics. In Chapter 4 we present two 

new models for ocean surface wind speed retrieval from C-band SAR imagery based on a large 

body of statistics on buoy observations collocated and coincided with RADARSAT-1 and -2 

ScanSAR images. The conventionally used C-band geophysical model functions (CMODs) (e.g. 
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[56], [59]) require input wind direction which are normally provided by numerical weather 

prediction (NWP) models. However, these models are often not accurate (especially in the Arctic 

Ocean). 

As opposed to CMOD, our proposed models do not require input wind direction. The first 

model’s independent variables are co-polarization (HH), normalized radar cross-section (NRCS), 

and antenna beam incidence angle. The second model’s predictors are co-polarization (HH), cross-

polarization (HV) NRCS, instrument noise floor, and incidence angle. The latter model has a better 

accuracy than the first, due to using an additional cross-polarization variable. Furthermore, we 

found that the proposed models without wind direction input demonstrate a better accuracy than 

CMOD_IFR2 and CMOD5.N models in combination with the SAD co-polarization ratio 

(VV/HH), which require wind direction input. For example, RMSE for our HH-HV wind speed 

retrieval model is 1.59 m/s while RMSE of CMOD5.N+SAD model (which requires wind 

direction) is 2.19 m/s. These results were confirmed on a large independent subset of collected 

data. The developed models have been integrated into a quasi-operational system at the 

Meteorological Service of Canada. 

It was interesting to note that sea ice motion and wind speed can be extracted from the same 

RADARSAT-2 ScanSAR datasets. In the areas where open water is present (such as marginal ice 

zone, leads, or polynyas) the wind speed can be calculated using the developed models. Therefore, 

in Chapter 4 we also present a new SAR-based ice motion-wind speed product which combines 

our methods for wind speed and ice motion retrieval from SAR. The developed product can be a 

useful tool for studying sea ice dynamics processes in sea ice.  
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Result 3. New analytical solution for electromagnetic wave scattering from rough surfaces 

interfacing layered media (including snow-covered sea ice). 

Advanced electromagnetic modeling techniques are required to assess the thermodynamic state of 

sea ice from radar remote sensing. In Chapter 5 a new analytical formulation for electromagnetic 

wave scattering from rough boundaries interfacing inhomogeneous media is derived based on the 

first-order approximation of the small perturbation theory. First, we considered a scattering 

problem for a single rough boundary embedded in a piecewise continuously layered medium. As a 

key (and novel) step, we introduced auxiliary wave propagation problems that are aimed to link 

reflection and transmission coefficients in the layered media with particular solutions of one-

dimensional wave equations at the mean level of the rough interface. This approach enabled us to 

express the final solution in a closed form avoiding a prior discretization of the inhomogeneous 

medium. Second, we naturally extended the obtained solution to an arbitrary number of rough 

interfaces separating continuously layered media. 

We think that the obtained formulation is user-oriented and convenient for practical 

geophysical remote sensing applications as it operates with physically meaningful reflection and 

transmission coefficients associated with certain geophysical media (e.g. snow and ice). 

Furthermore, the derived solution is fairly flexible because the numerical implementation can be 

split into two separate algorithmic units: (1) estimation of the reflection and transmission 

coefficients for layered media; (2) calculation of scattering characteristics by plugging in these 

coefficients in the general solution.  
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As a validation step, we demonstrated that available SPM solutions in the literature (including 

the most recent [96]) represent special cases of our general solution. Furthermore, we showed that 

our numerical results agree well with published data for a special case from [96]. 

In Chapter 5, we also present a formulation for inhomogeneous snow-covered sea ice when 

the dominant scattering occurs at the snow-ice and air-snow interfaces as a particular special case 

of the general solution. 

 

Result 4. Good agreement between model and experimental C-band backscatter from snow-

covered first-year sea ice and a possibility for winter snow thickness retrieval from SAR. 

In Chapter 6 we validate the theory presented in Chapter 5 by comparing model and measurement 

results for C-band HH and VV NRCS from winter snow-covered first-year sea ice with average 

snow thicknesses of 16 cm, 4 cm, and 3 cm. The experimental data were collected during the 

Circumpolar Flaw Lead system study in winter 2008 in the southern Beaufort Sea from the 

research icebreaker Amundsen. The brine content in snow pack was low in all three case studies 

which is typical for cold winter conditions. First, using experimental data, we showed that surface 

scattering dominated, whereas volume scattering was negligible which is opposite to the previous 

study by [63] conducted for spring. Therefore, our model accounted for surface scattering from the 

air-snow and snow-ice rough interfaces and continuously layered snow and sea ice was applied. 

By comparing model and experimental data for the three case studies we revealed the following: 

1) Good agreement between the model and experimental data were observed for all three case 

studies suggesting that our model is well applicable to winter snow-covered sea ice. 

2) The scattering at the snow-ice rough interface is usually stronger than at the air-snow interface. 
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3) Both model and experimental NRCS values were considerably higher for thin snow cover 

compared to the thick snow cover case. We associate this effect with the lower attenuation of 

the propagated wave within the thin snow in comparison to the thick snow pack. 

4) Different brine content in snow covers with close thicknesses (4 cm and 3 cm) significantly 

affected the backscatter components from the air-snow and snow-ice interfaces; however, the 

total backscattering coefficients for VV polarization (at all incidence angles) and HH 

polarization (at incidence angles below 35
o
) did not change considerably. 

We believe that these findings provide the physical basis for, and suggest that, winter snow 

thickness retrieval may be possible from radar observations under particular scattering conditions.  
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7.2. Future Work 

In this dissertation we considered various methods for detecting dynamic and thermodynamic 

parameters of sea ice from radar remote sensing. We emphasize that retrieval of dynamic 

characteristics of sea ice can be conducted from spaceborne SAR platforms for large geographical 

areas with very high resolution and accuracy at the operational level. With the launch of Canadian 

RCM and European Sentinel-1 constellation SAR missions the temporal resolution of retrieved 

characteristics from space will drastically increase. At the same time, detection of thermodynamic 

parameters of sea ice from SAR platforms (in the operational mode) remains challenging due to 

the complexity and variability of snow and sea ice properties and geometry and, therefore, the 

difficulty in accurate modeling dielectric constant of the media and modeling scattering 

characteristics. However, sensitivity of model and experimental backscatter coefficients to certain 

geophysical parameters (e.g. snow thickness, brine content in snow and ice) is well observed. 

Therefore, from the operational point of view, an important general challenge that needs to be 

addressed is bringing the methods for assessing thermodynamic state of sea ice (developed for 

small scales) to the satellite (large) scale. We note, however, that it may not be fully possible for 

the current satellite systems due to their technical limitations for this task including (1) single 

frequency, (2) monostatic capability, (3) single incidence angle for a given pixel in the image. 

We also recommend the following specific directions of possible future research: 

 

Detection of sea ice dynamics 

 Generally, there are some challenges of detecting similar features in two SAR images during 

melt season, when surface physical properties of snow-covered sea ice may vary significantly 
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over a short period of time. Furthermore, during advanced melt there is a lack of distinctive ice 

features in SAR imagery. These reasons complicate automated ice tracking in summer time. 

The most efficient solution is decreasing the time interval between sequential SAR images 

(which will be provided by the upcoming constellation SAR mission). On the other hand, using 

L-band SAR imagery (e.g. Japanese ALOS-2) instead of C-band may be more efficient as 

longer wavelengths are less sensitive to the moisture in snow and penetrate deeper. Therefore, 

identification of most suitable wavelengths for sea ice motion detection (in different seasons) 

is required. 

 To further improve ocean surface wind retrieval from SAR more observations of high speed 

wind events (coincided and collocated with dual-polarization imagery) are needed. 

 It is also highly desirable to retrieve wind direction as well. This may be possible by 

combining CMOD and the proposed wind retrieval models with no input wind direction.  

 To improve our SAR-based ice motion-wind speed product a reliable automated ice/water 

separation algorithm (from SAR) is required. 

 

Detection of sea ice thermodynamics 

 The developed theory for modeling wave scattering from layered media relies on the first-order 

approximation of the small perturbation theory. We believe that the introduced concept can be 

extended to the second-order solution. Unlike the first-order solution, the second-order 

solution would give a non-zero cross-polarization backscattering coefficients. Furthermore, the 

second-order solution can be applied to rough surfaces with a wider range of roughness 

parameters. 



 

234 

 

 

 The developed scattering theory should be extended to the two-scale geometry where the 

small-scale roughness is modulated by large-scale changes in ice topography.  

 Improvement of existing dielectric mixture models for snow and ice is very important as any 

scattering model substantially relies on the accuracy of the dielectric modeling. 

 Our scattering theory should be also validated for other bands (most importantly L- and P-

bands). In these bands the validity range of roughness parameters is wider (compared to C-

band) due to the larger wave lengths. 
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APPENDIX A. CONTRIBUTIONS OF AUTHORS TO THESIS 

CHAPTERS 

 

Chapter 3 

I developed, validated and optimized the entire algorithm for sea ice motion detection from SAR 

imagery. I developed an algorithm for noise floor stripes removal from cross-polarization SAR 

images. I also conducted the detailed analysis of ice motion tracking from HH and HV images. 

David Barber provided ice beacon data for validation of the system and comments of the 

manuscript drafts. 

 

Chapter 4 

I developed and validated the ocean surface wind speed retrieval models. I also developed the 

SAR-based ice motion-wind speed product. Vladimir Zabeline contributed the basic idea for the 

wind retrieval models and provided valuable directions. David Barber provided his comments on 

the manuscript.  

 

Chapter 5 

I developed analytical formulations for electromagnetic wave scattering from rough surfaces 

interfacing inhomogeneous media. I also conducted comparisons with special cases from the 

literature. Lotfollah Shafai and David Barber provided reviews of the manuscript drafts. 
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Chapter 6 

I conducted modeling of backscattering coefficients from winter snow-covered FY sea ice and 

detailed analysis of the obtained results. Dustin Isleifson collected experimental data and provided 

comments and reviews of the manuscript drafts. David Barber contributed valuable comments and 

suggestions on manuscript drafts. Lotfollah Shafai provided comments on the obtained results.  
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APPENDIX B. ADDITIONAL CONTRIBUTIONS TO THE PEER 

REVIEWED LITERATURE 

 

In addition to the four journal publications contained in the body of this thesis, I also co-authored 

eleven peer-reviewed papers. Titles of these articles and my contributions are presented below: 

 

N. Firoozy, A. S. Komarov, P. Mojabi, D. G. Barber, J. Landy, and R. Scharien, “Retrieval of 

snow-covered sea ice temperature and salinity evolution through radar cross section inversion,” 

IEEE Transactions on Geoscience and Remote Sensing, in review, 2014. 

 

 

In this paper, I collected (with the lead author) time-series C-band scatterometer and physical 

measurements of sea ice at the Sea Ice Environmental Research Facility (SERF) at the University 

of Manitoba in winter 2014. I also provided comments and suggestions on manuscript drafts. 

 

J. Landy, A. S. Komarov, and D. G. Barber, “Numerical and experimental evaluation of terrestrial 

LiDAR for parameterizing centimeter-scale sea ice surface roughness,” IEEE Transactions on 

Geoscience and Remote Sensing, in review, 2014. 

 

 

In this paper I derived mathematical formulations for simulation of rough surfaces with known 

statistical properties (i.e. root-mean square height and autocorrelation function). I also provided 

comments and suggestions on manuscript drafts. 

 

N. Firoozy, A. S. Komarov, J. Landy, D. G. Barber, P. Mojabi, and R. Scharien, Inversion-based 

sensitivity analysis of snow-covered sea ice electromagnetic profiles, IEEE Journal of Selected 

Topics in Applied Earth Observations and Remote Sensing, in review, 2014. 
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In this paper, I collected (with the lead author) C-band scatterometer and physical measurements 

of sea ice at SERF, University of Manitoba in winter 2014. I also provided comments and 

suggestions on manuscript drafts. 

 

J. Landy, D. Isleifson, A. S. Komarov, and D. G. Barber, “Parameterization of sea ice surface 

roughness using LiDAR,” IEEE Transactions on Geoscience and Remote Sensing, in press, 2015. 

 

In this paper, I provided expertise regarding the role of roughness in microwave scattering models. 

I also provided mathematical formulations for roughness parameters of two-dimensional rough 

surfaces as well as comments and suggestions on manuscript drafts at various stages of its 

preparation. 

 

K. Warner, R. Scharien, D. Isleifson, A. S. Komarov, J. Landy, and D. G. Barber, “Diurnal 
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