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Abstract
The "on-road untripped rollover" is a dangerous accident, which kills thousands of

vehicle occupants every year. This type of rollover accident occurs in high-speed

emergency maneuvers without hitting any external objects. In fact, in this incident,

the vehicle is driven through the edges or beyond its yaw and roll stability limits.

Therefore, by analyzing the Lyapunov stability of accurate vehicle models, there will

be a chance to prevent this type of incidents. The problem is that accurate models

have complex dynamics and include nonlinear terms, which make the stability anal-

ysis difficult. On the other hand, the available theoretical approaches for nonlinear

stability analysis are either not constructive or not effective.

The aim of this thesis is four-fold: a) to define a new measure of dynamics called

"modified Lyapunov exponents" to provide more insight into stability analysis of non-

linear systems, b) to introduce the concept of Lyapunov exponents as a constructive

method for stability analysis of nonlinear vehicle models, c) to develop a proper non-

linear vehicle roll model in sense of Lyapunov stability analysis, and d) to develop a

Scale Experimental Test Vehicle (SETV) with unique features as a vehicle test bed

for rollover experiments.
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Abstract iv

New modified Lyapunov exponents can measure the exponential convergent/divergent

rate of the perturbation vector in a specific direction driven by the dynamics in the

same direction. Their existence and invariant property are mathematically proven

and their indications are discussed.

The concept of Lyapunov exponents has been applied effectively to analyze the system

and structure stability of a nonlinear two degrees of freedom (2-DOF) bicycle vehicle

model and further to estimate its Lyapunov stability regions.

In the absence of a proper nonlinear vehicle model for Lyapunov stability analysis,

a new nonlinear 4-DOF vehicle roll model is developed that can predict the roll

motion of a conventional full vehicle model, however, it has simpler dynamics. The

Lyapunov stability of the model has been analyzed by Lyapunov linearization and

Lyapunov exponents methods. Moreover, the accuracy of the model in predicting the

roll behaviour of a real vehicle is justified by experiments on the SETV.



Acknowledgments

I would like to begin by thanking my supervisor Dr. Wu for her support and en-

thusiasm towards my research. She always gives me confidence and inspiration. I

also want to use this opportunity and thank my internal committee members, Dr.

Telichev and Dr. Sherif. I had the advantage of their comments, which helped me a

lot during this research. I would like to thanks my external examiner Dr. B. Minaker

from the University of Windsor for his comments that improved my work.

I want to thank NSERC, MITACS Canada, and Motor Coach Industries for providing

in part the funding for this study. Great thanks to the Faculty of Graduate Studies

in University of Manitoba for offering me the IGSS, IGSES, and UMGF scholarships.

I would like to thank Paul White, and Rhyse Maryniuk, who contributed to build the

experimental setup for this research. I also want to thank all the people who have

supported me along the way.

I sincerely appreciate the government of Canada for giving me the opportunity to

continue my study in great Canada.

Finally, thanks to my family for their emotional and financial support during all these

tough years living overseas.

v



Contents

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Nomenclature xvi

1 Introduction 1

2 Background 7

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Overview of Vehicle Dynamics . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Overview of Scale Test Vehicles . . . . . . . . . . . . . . . . . . . . . 12
2.4 Overview of Stability Analysis . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Overview of Lyapunov Stability Analysis of Vehicle Models . . . . . . 18

3 Theoretical Preliminary 22

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Stability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Lyapunov Stability . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 Lyapunov Exponents . . . . . . . . . . . . . . . . . . . . . . . 25

vi



Contents vii

3.2.3 Standard Algorithm to Calculate Lyapunov Exponents . . . . 31
3.2.4 Basic Definitions on Measure Theory . . . . . . . . . . . . . . 33
3.2.5 The Multiplicity Ergodic Theorem of Oseledec . . . . . . . . . 37

3.3 Vehicle Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.1 Pneumatic Tire Models . . . . . . . . . . . . . . . . . . . . . . 38
3.3.2 Bicycle Vehicle Model . . . . . . . . . . . . . . . . . . . . . . 40
3.3.3 14-DOF Full Vehicle Model . . . . . . . . . . . . . . . . . . . 45

4 Modified Lyapunov Exponent, New Measure of Dynamics 47

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Modified Lyapunov Exponent . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1 Definition of the Modified Lyapunov Exponent . . . . . . . . . 48
4.2.2 Indications of the Modified Lyapunov Exponent . . . . . . . . 51
4.2.3 Existence and Invariant Property of Modified Lyapunov Exponent 59
4.2.4 Theorem of the Modified Lyapunov Exponent . . . . . . . . . 59

4.3 Computation of Modified Lyapunov Exponent . . . . . . . . . . . . . 65
4.4 Numerical Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4.1 Discrete-time Systems . . . . . . . . . . . . . . . . . . . . . . 67
4.4.2 Continuous-time Systems . . . . . . . . . . . . . . . . . . . . 71

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Lyapunov Stability Analysis of the Vehicle Model in Plane Motion 87

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 Bicycle Vehicle Model . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3 Stability Analysis of the Vehicle Model in Straight-line Motion . . . . 90

5.3.1 Stability Analysis of the Vehicle Model in the Straight-line Mo-
tion by Lyapunov’s Direct Method . . . . . . . . . . . . . . . 91

5.3.2 Stability Analysis of the Vehicle Model in Straight-line Motion
by the Concept of Lyapunov Exponents . . . . . . . . . . . . . 94

5.4 Investigating the Effects of Driving Conditions on the Lateral Stability
Region Using the Concept of Lyapunov Exponents . . . . . . . . . . 98



Contents viii

5.4.1 Effects of the Longitudinal Velocity on the Lateral Stability
Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4.2 Effects of the Road Friction Coefficient on the Lateral Stability
Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4.3 Effects of the Steering Angle on the Lateral Stability Region . 101
5.5 Structural Stability Analysis of the Vehicle Model . . . . . . . . . . . 102

5.5.1 Stability Region of the Vehicle Model . . . . . . . . . . . . . 103
5.5.2 Largest Lyapunov Exponent as Convergence Rate of the Dis-

turbed Vehicle Model to its Stable Fixed Point . . . . . . . . . 103
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6 Lyapunov Stability Analysis of a Newly Developed 4-DOF Vehicle
Roll Model 110
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.2 Nonlinear 4-DOF Vehicle Roll Model . . . . . . . . . . . . . . . . . . 112
6.3 Validation of the Nonlinear 4-DOF Vehicle Roll Model . . . . . . . . 121

6.3.1 Step Steer Input . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3.2 Ramp Steer Input . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.3.3 Single-lane Change Steer Input . . . . . . . . . . . . . . . . . 125
6.3.4 NHTSA J-turn Steer Input . . . . . . . . . . . . . . . . . . . . 127

6.4 1/5th Scale Experimental Test Vehicle . . . . . . . . . . . . . . . . . 136
6.4.1 Roll Safety Structure . . . . . . . . . . . . . . . . . . . . . . . 137
6.4.2 Powertrain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.4.3 Vehicle Parameter Identification . . . . . . . . . . . . . . . . . 139
6.4.4 Electrical Design . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.5 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.6 Lyapunov Stability Analysis of the Nonlinear 4-DOF Vehicle Roll Model146

6.6.1 Linearization of the Nonlinear 4-DOF Vehicle Roll Model and
Local Stability Analysis in the Straight-line Motion . . . . . . 147

6.6.2 Movement of the Stable Equilibrium Point in the State Space
in Presence of Lateral Acceleration . . . . . . . . . . . . . . . 149

6.6.3 Stability Analysis of the Nonlinear 4-DOF Vehicle Roll Model 151
6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154



Contents ix

7 Conclusions and Future Work 157

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

A Vehicle Models Predicting Roll Motion 161

A.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
A.2 Quasi-Static Roll Models . . . . . . . . . . . . . . . . . . . . . . . . 162
A.3 Rigid Vehicle Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
A.4 Suspended Vehicle Model . . . . . . . . . . . . . . . . . . . . . . . . . 163
A.5 Compliant Tire Vehicle Model . . . . . . . . . . . . . . . . . . . . . . 165
A.6 Suspended-Compliant Tire Vehicle Model . . . . . . . . . . . . . . . . 166
A.7 Transient Roll Models . . . . . . . . . . . . . . . . . . . . . . . . . . 167
A.8 Vehicle Models Representing Coupled Yaw and Roll Motion . . . . . 168
A.9 Yaw-Roll Model Considering the Roll Motion of the Sprung Mass . . 168

B Reconstruction of the 14-DOF Full Vehicle Model 171

B.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
B.2 Reconstruction of the 14-DOF Full Vehicle Model . . . . . . . . . . . 172

B.2.1 Force Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 178
B.2.2 Velocity Equations . . . . . . . . . . . . . . . . . . . . . . . . 181
B.2.3 Transmitted Moments to the Sprung Mass . . . . . . . . . . . 185
B.2.4 Tire Lift-off Consideration . . . . . . . . . . . . . . . . . . . . 186

Bibliography 187



List of Tables

4.1 Modified Lyapunov exponent computed for three different initial con-
ditions for Henon map with stable configuration . . . . . . . . . . . . 69

4.2 Modified Lyapunov exponents computed for three different initial con-
ditions in Lorenz system with stable configuration . . . . . . . . . . . 75

4.3 Modified Lyapunov exponent computed for three different initial con-
ditions in Van der Pol system with an attracting limit cycle . . . . . 80

4.4 Single-track vehicle model data . . . . . . . . . . . . . . . . . . . . . 81
4.5 Modified Lyapunov exponents computed for three different initial con-

ditions of the single-track vehicle model in the steady-state cornering
with δf = 5o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1 Vehicle model parameters . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2 Equilibrium points of the vehicle model . . . . . . . . . . . . . . . . . 91

6.1 Vehicle parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.2 SETV parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.3 Eigenvalues of the linearized 4-DOF vehicle roll model in the straight

line motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

x



List of Figures

1.1 Occupant fatalities by type of crash in different type of vehicles . . . 2

2.1 ISO and SAE vehicle axis systems . . . . . . . . . . . . . . . . . . . . 9
2.2 Different cornering behaviour of vehicles . . . . . . . . . . . . . . . . 10
2.3 Demonstration of the concept of Lyapunov stability . . . . . . . . . . 14

3.1 Concept of Lyapunov stability . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Evolution of an infinitesimal two-dimensional (2D) sphere of initial

conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Concept of Lyapunov exponents in a 2D- state space . . . . . . . . . 29
3.4 Geometrical interpretation of GSA procedure for a 2D case, the com-

ponent of the second vector along the first vector has been removed
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Magic Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6 Simple vehicle model to study the lateral motions . . . . . . . . . . . 42
3.7 Front wheel rotation dynamics . . . . . . . . . . . . . . . . . . . . . . 43
3.8 Schematic view of the 14-DOF full vehicle model . . . . . . . . . . . 45

4.1 Geometrical interpretation of the modified Lyapunov exponent for a
2-dimensional system . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Evolution of a perturbation vector in the tangent space for a 2-dimensional
discrete-time system . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Evolution of a perturbation vector in the tangent space for the pro-
jected system into the direction of the state x1 . . . . . . . . . . . . 54

xi



List of Figures xii

4.4 Geometric interpretation of the evolved perturbation vector along x1
direction by the complete dynamics and its projected sub-dynamics . 55

4.5 Projecting the dynamics of a 3-dimensional system in the tangent space
into the x1x2 state space . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6 Geometric interpretation of the evolved perturbation vector in x1x2
direction by the complete dynamics and its projected sub-dynamics . 57

4.7 β Borel σ-algebra of sets that includes {EP} . . . . . . . . . . . . . 62
4.8 Phase portrait of Henon map in the stable configuration, a = 0.1 and

b = 0.1, for three different initial conditions . . . . . . . . . . . . . . . 68
4.9 Evolution of the modified Lyapunov exponent, λSx , for Henon map in

the stable configuration . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.10 Evolution of the largest Lyapunov exponent, λ(1), for Henon map in

the stable configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.11 Phase portrait of Lorenz system in stable configuration, σ = 14, r =

0.5, and b = 3, for three different initial conditions . . . . . . . . . . . 72
4.12 Evolution of the modified Lyapunov exponent for Lorenz system in

stable configuration for (a) λSx, (b) λSu′ , and (c) λSxy . . . . . . . . . 74
4.13 Evolution of the largest Lyapunov exponent for Lorenz system in the

stable configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.14 Phase portrait for Van der Pol system with an attracting limit cycle,

γ = 0.5, for three different initial conditions . . . . . . . . . . . . . . 78
4.15 Evolution of the Lyapunov exponents, (a) λ(1) and (b) λ(2), for Van

der Pol system with a attracting limit cycle, γ = 0.5 . . . . . . . . . 79
4.16 Evolution of the modified Lyapunov exponent for Van der Pol system

with an attracting limit cycle, γ = 0.5 . . . . . . . . . . . . . . . . . . 80
4.17 Phase portrait for the single-track vehicle model in steady-state cor-

nering with δf = 5o and vx = 20 m/s, for four different initial conditions
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.18 Evolution of the Lyapunov exponents, (a) λ(1) and (b) λ(2), for single-
track vehicle model in the steady-state cornering with δf = 5o and
vx = 20 m/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.19 Evolution of the modified Lyapunov exponent for single-track vehicle
model in the steady-state cornering with δf = 5o and vx = 20 m/s for (
a) λSvy , (b) λSr, (c) λSr=vy , and (d) λSr=−vy . . . . . . . . . . . . . . 86

5.1 Comparison of stability region correspond to V1 and V2 . . . . . . . . 92



List of Figures xiii

5.2 Vehicle model Lyapunov exponents in the straight-line motion . . . . 95
5.3 Vehicle model trajectory for initial conditions r0 = 0.1 rad/s and vy0 = 1m/s 96
5.4 Time evolution of the states of the disturbed vehicle model in the

straight-line motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.5 Lateral stability region of the vehicle model in the straight-line motion 98
5.6 Effects of the longitudinal velocity, vx, on the lateral stability region . 99
5.7 Effects of the friction coefficient between tires and ground, µ, on the

lateral stability region . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.8 Effects of the steering angle, δf , on the stability region, (a) negative

steer angles, and (b) positive steer angles . . . . . . . . . . . . . . . 102
5.9 Stability region of the vehicle model . . . . . . . . . . . . . . . . . . . 104
5.10 Ranges of longitudinal velocities, vx, and friction coefficients, µ, in

which the stability of the vehicle model is guaranteed while the steering
angle, δf , is equal to (a) δf = 0o, (b) δf = ±5o, (c) δf = ±10o, and (d)
δf = ±15o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.11 Ranges of steering angles, δf , and friction coefficients, µ, in which
the stability of the vehicle model is guaranteed while the longitudinal
velocity, vx, is equal to: (a) vx = 20 m/s, (b) vx = 30 m/s, (c) vx = 40 m/s,
and (d) vx = 50 m/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.12 Ranges of steering angles, δf , and longitudinal velocity, vx, in which
the stability of the vehicle model is guaranteed while the coefficient of
friction, µ, is equal to: (a) µ = 1, (b) µ = 0.7, (c) µ = 0.5, and (d)
µ = 0.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.1 Schematic view of the nonlinear 4-DOF vehicle roll model . . . . . . . 112
6.2 Free body diagram of the unsprung mass at the right corner of the

vehicle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.3 Suspension deflection measurement . . . . . . . . . . . . . . . . . . . 114
6.4 Tire deflection measurement . . . . . . . . . . . . . . . . . . . . . . . 115
6.5 Free body diagram of the sprung mass . . . . . . . . . . . . . . . . . 117
6.6 Comparison of the vehicle roll variables between models during the

step steering at the speed of 50 km/h . . . . . . . . . . . . . . . . . . 124
6.7 Comparison of the vehicle roll variables between models during the

ramp steering at the speed of 50 km/h . . . . . . . . . . . . . . . . . 125
6.8 Comparison of the vehicle roll variables between models during the

single-lane change profile at the speed of 50 km/h . . . . . . . . . . . 127



List of Figures xiv

6.9 Comparison of the normal forces between models during the single-lane
change profile at the speed of 50 km/h . . . . . . . . . . . . . . . . . 128

6.10 Comparison of the vehicle roll variables between models during the
J-turn maneuver at the speed of 20 km/h . . . . . . . . . . . . . . . 130

6.11 Comparison of the normal forces between models during the J-turn
maneuver at the speed of 20 km/h . . . . . . . . . . . . . . . . . . . 131

6.12 Comparison of the vehicle roll variables between models during the
J-turn maneuver at the speed of 25 km/h . . . . . . . . . . . . . . . 132

6.13 Comparison of the normal forces between models during the J-turn
maneuver at the speed of 25 km/h . . . . . . . . . . . . . . . . . . . 133

6.14 Comparison of the vehicle roll variables between models during the
J-turn maneuver at the speed of 29 Km/h . . . . . . . . . . . . . . . 134

6.15 Comparison of the normal forces between models during the J-turn
maneuver at the speed of 29 Km/h . . . . . . . . . . . . . . . . . . . 135

6.16 Prediction of the minimum speed for rollover accident in the J-turn
maneuver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.17 Completed prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.18 Simplified structure and its stress distribution in Abaqus FEA software.138
6.19 Schematic of the SETV set up . . . . . . . . . . . . . . . . . . . . . . 141
6.20 Software overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.21 Backend software architecture . . . . . . . . . . . . . . . . . . . . . . 143
6.22 Experimental result versus simulation result in the maneuver . . . . . 145
6.23 SETV at the moment of the rollover accident . . . . . . . . . . . . . 145
6.24 Movement of the stable equilibrium point in xsr−xtr−φ subspace and

corresponding projections on xsr−xtr, φ−xsr, and φ−xtr planes when
ay varies from 0.0 g to 0.85 g. . . . . . . . . . . . . . . . . . . . . . . 150

6.25 Movement of the largest conjugate eigenvalues in the complex plane
while ay varies from 0.0 g to 0.85 g. . . . . . . . . . . . . . . . . . . . 151

6.26 Qualitative change in the attractor projected in φ−ωx subspace while
lateral acceleration ay varies from 0.849 g to 0.859 g. . . . . . . . . . 153

6.27 Dynamics of fourth largest Lyapunov exponents while the lateral ac-
celeration ay varies from 0.800 g to 0.859 g. . . . . . . . . . . . . . . 155

A.1 Rigid vehicle model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162



List of Figures xv

A.2 Suspended vehicle model . . . . . . . . . . . . . . . . . . . . . . . . . 164
A.3 Roll axis of the vehicle . . . . . . . . . . . . . . . . . . . . . . . . . . 165
A.4 Compliant tire vehicle model . . . . . . . . . . . . . . . . . . . . . . . 166
A.5 Suspended-compliant tire vehicle model . . . . . . . . . . . . . . . . . 167
A.6 3-DOF yaw-roll vehicle model . . . . . . . . . . . . . . . . . . . . . . 169
A.7 8-DOF yaw-roll full vehicle model . . . . . . . . . . . . . . . . . . . . 169

B.1 Schematic view of the 14-DOF full vehicle model1 . . . . . . . . . . . 172
B.2 Free body diagram of the sprung mass . . . . . . . . . . . . . . . . . 173
B.3 Free body diagram of the unsprung mass on the left rear corner of the

vehicle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
B.4 Forces at the tire contact patch . . . . . . . . . . . . . . . . . . . . . 179
B.5 Unsprung mass velocities . . . . . . . . . . . . . . . . . . . . . . . . 183



Nomenclature

α tire sideslip angle

β family of subsets (measure theory)

β vehicle side slip angle (bicycle vehicle model)

ψ state transient matrix

δ road wheel steer angle (steering angle)

δf front tire steer angle

δxi i-th ellipsoidal principal axis

λ(i) i-th one-dimensional Lyapunov exponent

λSu modified Lyapunov exponent along u direction

Rm M -dimensional Euclidean state space

Γ closed orbit

EP stable fixed point

xvi



Nomenclature xvii
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x state vector

xe equilibrium point
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ω angular velocity of the wheel rotation (14-DOF model)

ωf angular velocity of the front wheel (bicycle vehicle model)
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φ roll angle
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ρ probability measure

ρa density of air

τ step size

θ pitch angle
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m total mass (bicycle vehicle model)



Nomenclature xx

m vehicle sprung mass (14-DOF model)
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vxs/ vys/ vzs longitudinal/ lateral/ vertical velocities at the suspension corner in the

body-fixed coordinate
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Chapter 1

Introduction

Vehicle safety is one important issue followed by the road traffic safety administrations

around the world. According to the National Highway Traffic Safety Administration of

the USA (NHTSA), rollover is one of the most dangerous accidents that jeopardizes

vehicle occupant lives [1]. The NHTSA statistics, given in Figure 1.1, show that

occupant fatalities of rollover crashes increase from 22% of all types of accidents in

passenger cars to 61% in Sport Utility Vehicles (SUV) [2]. One type of rollover that

happens due to vehicle manoeuvres is known as the “on-road untripped rollover”.

Although this type of rollover is a small part of all rollover accidents (less than 10%),

much attention is given to this problem by NHTSA [3]. The reason is that this type

of rollover is caused by vehicle-related factors and it can be prevented by enforcing

better vehicle safety standards.
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Figure 1.1: Occupant fatalities by type of crash in different type of vehicles

To satisfy those standards, vehicle manufactures strive to improve the dynamic be-

haviour of their products. They perform different tests in controlled situations to

collect information in order to improve their products before sending them to the

competitive market. Since those tests are expensive and formidable, it is desirable to

analyze the vehicle behaviour theoretically before any tests. It helps reduce the cost

by cutting the unnecessary tests.

Literature shows that nonlinear vehicle models are adequate for studies of vehicle

dynamics. The untripped on-road rollover can occur due to both roll and yaw insta-

bility. Hence, knowing the stability boundaries, in which the vehicle’s roll and yaw

motions are stable, is quite important.

2



1. INTRODUCTION

Different techniques are available for stability analysis of nonlinear systems; however,

they suffer from applicability or reliably or both. Therefore, constructive and reliable

techniques to find the stability properties of nonlinear vehicle models are in demand.

This thesis targets the deficiency and difficulty of nonlinear stability analysis and its

application in the vehicle area, and it has four objectives as follows:

The first objective of this thesis is to suggest the concept of Lyapunov exponents to

the vehicle society as a powerful tool for stability analysis of vehicle models, since

this concept is advantageous in two cases: a) available methods for computation of

the Lyapunov exponents are constructive and do not depend on the size or shape of

dynamic equations, and b) Lyapunov exponents benefit from the invariant property,

which means their values do not depend on the selected initial conditions for the

same basin of attraction. The effectiveness of the concept of Lyapunov exponents

is investigated by employing the concept in both structure and system Lyapunov

stability analysis of vehicle models representing yaw and roll motions.

In spite of the advantages of the concept of Lyapunov exponents, there are some

limitations. For example, Lyapunov exponents are not associated with any specific

directions, and the computational load for calculating the exponents of large dynamic

systems is high.

The second objective of this thesis is to modify the Lyapunov exponents, which can

characterize the exponential divergent or convergent rates of the nonlinear dynamics

in specific directions and evolved by the dynamics in the same directions. The modi-

fied Lyapunov exponents are not only defined, but also their existence and invariance

properties are proven mathematically. The proposed modified Lyapunov exponent

3
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can provide additional insights of nonlinear dynamics compared to those from stan-

dard Lyapunov exponents. For example, it can identify the dominant sub-systems,

which has the potential impact of reducing the computational load in calculation of

the Lyapunov exponents [4].

Developing a proper nonlinear 4-DOF roll vehicle model for Lyapunov stability anal-

ysis without losing realistic behaviour is the third objective for this thesis. Unfortu-

nately, available realistic models are large and full of complex dynamics that make

them inappropriate for Lyapunov stability analysis. Therefore, considering the lack

of a proper model, a nonlinear 4-DOF roll vehicle model is developed by simplify-

ing a common nonlinear 14-DOF full vehicle [5] that can predict the roll motion of

the original model precisely. This model is derived as minimum realization to make

the Lyapunov stability analysis feasible. Moreover, this model can predict the roll

motion, and the occurrence of tire lift-off by measuring only the lateral acceleration.

This advantage makes it more suitable for real-world applications.

Finally, the fourth objective of this thesis is to develop a SETV as an automatic/user

control vehicle with unique features suitable for rollover study. The goal for developing

the SETV is to equip an off-the-shelf scale vehicle with sensors to use as a safe

and economical test bed to verify the correlation between theoretical and real-world

behaviour in roll motion studies. The SETV is the first scale vehicle test bed at the

University of Manitoba, and it is designed and built by a team of three students.

This thesis contributes in the area of nonlinear dynamics analysis by developing the

concept of the modified Lyapunov exponent. The contributions of this thesis in the

vehicle dynamics area include: a) introducing the concept of Lyapunov exponents to
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the vehicle dynamics field as a powerful tool for nonlinear Lyapunov stability analysis,

b) developing a proper roll vehicle model for Lyapunov stability analysis with accurate

prediction of the roll motion, and c) prototyping a unique scale experimental test

vehicle for rollover study.

The evolved publications from this thesis are listed below.

Journals:

[1]. S. Sadri and C. Wu. Lyapunov stability analysis of a new nonlinear 4-DOF

vehicle roll model. Manuscript submitted for publication, 2015.

[2]. S. Sadri and C.Q. Wu. Modified Lyapunov exponent, new measure of

dynamics. Nonlinear Dynamics, 78(4):2731-2750, 2014.

[3]. S. Sadri and C. Wu. Stability analysis of a nonlinear vehicle model in plane

motion using the concept of Lyapunov exponents. Vehicle System Dynamics,

51(6):906-924, 2013.

Conferences:

[1]. P. White, R. Maryniuk, S. Sadri, and C.Q. Wu. Scale experimental test

vehicle for rollover study. In 25th Canadian Congress of Applied Mechanics,

2015.

[2]. S. Sadri and C.Q. Wu. Lateral stability analysis of on-road vehicles using

Lyapunov’s direct method. In Intelligent Vehicles Symposium (IV), 2012 IEEE,

pages 821-826, June 2012.
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[3]. S. Sadri and C.Q. Wu. Lateral stability analysis of on-road vehicles using

the concept of Lyapunov exponents. In Intelligent Vehicles Symposium (IV),

2012 IEEE, pages 450-455, June 2012.

[4]. S. Sadri and C.Q. Wu. Largest Lyapunov exponent as a new indicator to

investigate the effects of driving conditions on the vehicle stability properties.

In CSME International Congress, CSME, 2012.

The remaining chapters are organized as follows. The theoretical preliminary of this

thesis is given in Chapter 3. In Chapter 4, the concept of modified Lyapunov expo-

nents is introduced. In Chapter 5, the concept of Lyapunov exponents is employed to

investigate the system and structure stability of the disturbed bicycle vehicle model.

Then, in Chapter 6 the nonlinear 4-DOF roll vehicle model is introduced, and the

building process of the SETV is discussed. Finally, the thesis conclusions and possible

future work are included in Chapter 7.
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Chapter 2

Background

2.1 Overview

In this chapter, the previous related works are organized in four sections. The chapter

starts by the overview of vehicle dynamics in Section 2.2, and is followed by a literature

review about employing a scale vehicle for vehicle dynamic test bed in Section 2.3.

In Section 2.4, the concept of Lyapunov stability analysis is reviewed and finally in

Section 2.5, the works on Lyapunov stability analysis of vehicle models are reviewed.

2.2 Overview of Vehicle Dynamics

In order to understand vehicle dynamics and its stability problem, it is necessary

to introduce the fundamental approach to modelling a vehicle. A vehicle consists

of many components distributed within its entire volume. However, to make the
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analysis feasible, all components are moved to a few units. The number of adequate

units depends on the application. In many cases, all components are represented as

one lumped mass (point mass) located at the Centre of Gravity (CG) of the vehicle.

In more advanced studies (e.g., ride analysis) it is more accurate to consider the

wheels as separate lumped masses. In this case, the lumped masses representing the

wheels are called the unsprung masses and the lumped mass at the CG (representing

the remaining components) is named the sprung mass.

The vehicle motions are defined with respect a coordinate system that originates at

the CG (sprung mass) and moves with the vehicle (body fixed coordinate). In Figure

2.1, a body fixed coordinate is shown. As it can be seen, the x-axis of the body

fixed coordinate system points forward. By the Society of Automotive Engineers

(SAE) convention, the y-axis points to the right side of the vehicle while in the

International Standard Organization (ISO) 8855, it points to the driver’s left side.

The z direction obeys the right-hand rule. In this thesis, both standards are used

wherever appropriate. Vehicle motions are described by the velocities of the sprung

mass with respect to the body fixed coordinate, including: longitudinal, lateral, and

vertical translational velocities, and roll, pitch, and yaw angular velocities. However,

these velocities are referenced to the earth fixed coordinate system (inertial coordinate

system) (see Figure 2.1). The relationship of the body fixed coordinate system to the

inertial coordinate system is defined by Euler angles (Cardan angles).

When a driver steers the vehicle to follow a curve shape path, the tires will slip

laterally as they roll and develop lateral forces (cornering/sideslip forces). The yaw

motion of the vehicle is generated as the result of these lateral forces. In Figure

8
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Figure 2.1: ISO and SAE vehicle axis systems

2.2, different behaviour of vehicles in cornering maneuvers are shown. As it can be

seen, the vehicle response is one of the following: a) neutral steer, where the lateral

acceleration of the CG causes identical slip in front and rear tires, b) understeer,

where the front tires slip more than the rear tires, and c) oversteer, where the rear

tires slip more than the front tires.

To make the investigation of the yaw motion (lateral dynamics) simpler, the left and

right tires of the front and rear axles are concentrated at the centre line along the

x-axis. In this way, the model is known as the bicycle vehicle model (single-track) [6].

The roll motion of the vehicle results from the interaction of forces acting on and

within the vehicle. Both the vehicle parameters and road conditions are involved in

roll dynamics. In some very aggressive maneuvers, the roll angle along the longitu-
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Neutral Steer Under Steer Over Steer 

Figure 2.2: Different cornering behaviour of vehicles

dinal axis of the vehicle exceeds 90 degrees, and the side body contacts the ground.

This situation is known as rollover [7]. Depending on the sources, the rollovers can

be classified in two types; a) tripped rollover, and b) untripped rollover [8]. In tripped

rollovers, high tripping forces are applied to the tires that cause the vehicle to rollover.

This type of rollover mostly happens when the vehicle leaves the road and hits the

guardrail or curb, or slides sideways and digs its tires into soft soil. Another possible

tripped rollover occurs in off-road environments, for example, in downhill driving.

On the other hand, in untripped rollover, there is no object that applies forces to the

tires, and rollover happens due to high centrifugal force (internal force), for example,

as the result of high-speed collision avoidance maneuvers.

To study vehicle roll motion, researchers employ the available vehicle models [7, 9–12]

or develop their own models [5, 13–17]. Depending on the consideration of the roll
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acceleration, these models can be classified into two groups [7]: a) those representing

quasi-static roll motion [7, 12] and b) those including transient roll motion [5, 9, 11,

13–17]. Choosing a model depends on the applications. For example, in vehicle ride

comfort analysis, a vehicle model that includes the relative roll motion of the sprung

mass with respect to the unsprung mass is adequate [6]. In the case of developing

rollover warning or control systems, a model which is able to detect tire lift-off is

highly demanded. Existing models with this property can be classified into two

types: a) those that can simulate vehicle roll behaviour up to the tire lift-off [12–

15, 17] and b) those that simulate the roll motion even after the tire lift-off occurs

[5, 16, 18]. Tire lift-off is unacceptable behaviour; however, all tire lift-off maneuvers

do not terminate by rollover crash. Moreover, sometimes it is possible to regain

roll stability even after tire lift-off occurs [18]. This fact makes models from the

second group more interesting. The nonlinear 14-DOF full vehicle model in [5, 18]

is an appropriate for roll motion study even after tire lift-off occurs, but it has a

large set of complex dynamic equations, which makes it inappropriate for stability

analysis. The model in [16] considers two different models for before and after tire

lift-off occurrence. However, the corresponding model for after tire lift-off occurrence,

does not model the suspension. Therefore, the need for a proper realistic model for

Lyapunov stability analysis that can predict roll motion even after tire lift-off occurs

leads to the proposed nonlinear 4-DOF vehicle roll model.
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2.3. OVERVIEW OF SCALE TEST VEHICLES

2.3 Overview of Scale Test Vehicles

Research on vehicle roll dynamics and driver assistant systems is required, but con-

ducting research on a full-size vehicle is expensive and potentially dangerous. More-

over, the number of facilities that perform rollover tests on full-size vehicles is limited.

Fortunately, literature demonstrates that scale-model testing is a suitable alternative

for full-size testing [19]. Furthermore, there are some advantages for testing scale

vehicles rather than full-size ones. For example, scale size vehicles are more durable

and their maintenance is cheaper. Additionally, testing on a scale vehicle is more

repeatable and less dangerous.

There is other research interested in using scale vehicles as experimental test beds.

Sampei, et al. [20] used an articulated scale vehicle to examine a proposed path track-

ing control. Naoki, et al. [21] developed a four-wheel steering and four-wheel drive

laboratory scale model vehicle as an experimental setup for testing their controller.

Brennan and Alleyne presented the Illinois Roadway Simulator (IRS) in [22] as a

scaled test bed to study vehicle dynamics and control. O’Brien, et al. [23] developed

the Scale-Model Testing Apparatus, the simplified IRS, as a platform for their vehicle

control projects. Travis, et al. [24] employed a scale vehicle in their study on rollover

propensity. Verma, et al. [25] developed a scale vehicle to capture the longitudinal

and powertrain dynamics of a full-size high-mobility multipurpose wheeled vehicle.

Phanomchoeng and Rajamani used a 1/8th scale vehicle in [26] to evaluate a newly

proposed rollover index. Considering the necessity of the experimental tests for veri-

fication theoretical results, the unique SETV has been built in this research to verify

the roll motion study of the nonlinear 4-DOF vehicle roll model.
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2.4 Overview of Stability Analysis

The nonlinear analysis of vehicle models is important because of a number of rea-

sons. First, theoretical study is always a low-cost way for exploring vehicle behaviour.

Second, theoretical study makes it possible to avoid blind simulations and misunder-

standing. This advantage becomes more important knowing that nonlinear models

can exhibit changing behaviour that depends on the initial conditions. Thirdly, the

theoretical analysis provides a basis for designing controllers, and sometimes it can

also suggest directions for modifying them [27].

Stability analysis is one of the central tools for nonlinear analysis of dynamical sys-

tems. There are different kinds of stability problems. The stability analysis conducted

in this thesis emphasizes Lyapunov’s method (Lyapunov stability). To understand

the concept of Lyapunov stability, consider the two cones shown in Figure 2.3. In

Figure 2.3.a, the blue cone is resting on its bottom while the red cone is balanced on

its tip. Then, both cones are identically disturbed as shown in Figure 2.3.b. From

Figure 2.3.c, it can be seen that the blue cone returned to its previous position and

the red cone fell down. Therefore, one can say that the blue cone was in a stable

equilibrium while the red cone was in an unstable equilibrium. It is worth mentioning

that instability of equilibrium is typically undesirable since it often leads to damage

to the involved mechanical or electrical components. Stability analysis can be catego-

rized into two groups: the system stability and the structural stability. In the system

stability analysis, the disturbance is imposed to the initial states, and the stability of

the solutions of the dynamic systems is discussed. For example, in the case of a vehicle

model, the system stability analysis indicates whether the vehicle model returns to
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its stable fixed point when its initial states are disturbed. Also, this type of stability

analysis can determine the stability region in the state space where the stability of

the dynamic system is guaranteed. For example, the ranges of the disturbed states

in which the vehicle model is still stable. This type of stability analysis makes it

possible to investigate how vehicle model parameters or driving conditions affect the

shape and size of the lateral stability region corresponding to the vehicle model. On

the other hand, the structural stability analysis investigates the perturbations to the

system structure. It determines in which range of parameters the system is stable.

Applying the structural stability analysis to a vehicle model, one can define the ranges

of the vehicle parameters or driving conditions in which the vehicle remains stable.

Stable  Unstable  

a)  

b)  

c)  

Figure 2.3: Demonstration of the concept of Lyapunov stability

Lyapunov, a Russian mathematician and engineer, formulated this concept as Lya-

punov stability: "An equilibrium point is stable if all solutions starting at nearby

points stay nearby; otherwise, it is unstable" [28]. His theory includes two meth-
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ods: the so-called linearization method and the direct method [27]. The linearization

method uses linear approximation around the system equilibriums and provides infor-

mation about system stability as far as system states are close to equilibrium points.

The direct method is not limited to local stability investigation. This method, instead

of explicitly solving the dynamic system of equations, determines the stability based

on shrinking of a constructed scalar "energy-like" function known as a Lyapunov func-

tion [27]. However, the difficulty in finding a Lyapunov function for complex systems

is the main restriction to applying this powerful method for stability analysis.

A more constructive technique for stability analysis is the concept of Lyapunov ex-

ponents. Lyapunov exponents are invariant measures of a dynamic system; that is,

they are independent of the initial conditions [29]. They are defined as the aver-

age exponential rates of converging or diverging of nearby orbits in the state space

[30, 31]. The concept of Lyapunov exponents was first introduced by Lyapunov to

study the stability of non-stationary solutions of ordinary differential equations [32].

It is a powerful tool to categorize the steady-state behaviour of dynamic systems. The

method for calculating the Lyapunov exponents is constructive for any dynamic sys-

tems. This constructive nature makes it more advantageous over Lyapunov’s direct

method. The Lyapunov exponents of a dynamic system can be calculated numeri-

cally using either the system mathematical model or a time series. Some methods for

calculating Lyapunov exponents based on a mathematical model have already been

developed [30, 33]. Although Lyapunov exponents have mainly been used for diag-

nosing chaotic systems, there are studies that used them for the stability analysis of

nonlinear systems. For example, Wu et al. [34] proved the system stability of their
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developed feedback control law for an inverted pendulum system by its Lyapunov

exponents. Sekhavat et al. [35] analyzed the stability of hydraulic actuators with an

impact controller using the concept of Lyapunov exponents. Some other work in this

area has been reviewed in [32].

In spite of the advantages of the concept of Lyapunov exponents, there are several

limitations. For examples, although the number of exponents is the same as the

dimension of the state space, Lyapunov exponents are not associated with any specific

directions. Furthermore, the exponential divergent or convergent rates are dictated

by the dynamics in all directions in the state space. In many applications, it is highly

desirable to obtain the information about the asymptotic performance in specific

directions, and equally important, about the dynamics, which drives such asymptotic

behaviours in the specific directions. Such information can be crucial for performance

monitoring and control design.

It is not uncommon that dynamic systems can be viewed as consisting of sub-systems,

and the dynamic effects of each sub-system on the asymptotic performance of the

overall system can be fundamentally different. Thus, identifying the dominant sub-

systems, which dictate the asymptotic behaviours, is important. Some research has

been conducted on analyzing and regulating the entire system asymptotic behaviours

using the sub-systems. Pecora and Carroll [36], for the purpose of synchronization

of chaotic systems, divided the dynamic system into two sub-systems, the master

subsystem and the slave subsystem. They named the Lyapunov exponents of the

slave subsystem as conditional Lyapunov exponents, and claimed that if all Lyapunov

exponents of the slave subsystem were negative, then the behaviour of the entire
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dynamic system dominated by the master subsystem, and synchronization is possible.

Later, Mendes [37] proved that conditional Lyapunov exponents exist. In another

independent study, Gonzalez et al. [4] have shown that for certain types of chaotic

systems, it is possible to compute the spectrum of Lyapunov exponents approximately

by only the portion of the information or the sub systems of the entire dynamic system.

The above work is inspiring in terms of diagnosing chaotic systems and chaos control

using the dynamics of the sub systems. The methodologies can also contribute to

identification of the sub systems, which dominate the asymptotic behaviours of entire

nonlinear systems. However, the above research was limited to chaotic systems, and

its applications to stable systems are questionable. Furthermore, the sub systems

were restricted to be in the same state space, i.e., for some rare chaotic systems,

the above research might be able to provide the information about the asymptotic

behaviours along certain state axes. In some applications, the asymptotic behaviours

in the directions other than the state space axes are needed.

Another limitation of determining Lyapunov exponents is the high computational load

for calculating the exponents, which prohibits the applications of the exponents for

large dynamic systems. As pointed out in [4], it is possible to compute the spectrum

of Lyapunov exponents using the sub systems. Thus, the idea of identifying dominant

sub-systems can have potential impact in reducing the computational load for large

systems. This idea inspires the concept of modified Lyapunov exponents in this thesis.
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2.5 Overview of Lyapunov Stability Analysis of

Vehicle Models

The causes of on-road untripped rollover are not well understood; however, some

literature suggests that it can occur due to both roll and yaw instability [14]. Roll

instability may cause a vehicle to rollover during critical maneuver such as a "J-turn"

maneuver at high speeds.

On the other hand, in certain movements such as a sine wave shape maneuver, the

vehicle experiences yaw instability that is followed by rollover [14]. Thus, yaw stability

in plane motion (lateral stability) is another important factor in vehicle dynamics

since it has a strong influence on the overall vehicle safety.

In fact, by improving the lateral stability of the vehicle, it is possible to reduce the

risk that a driver loses control of the vehicle [38]. The lateral stability analysis can be

carried out using either linear or nonlinear vehicle models. There is a limitation on the

information provided by linear models since these models are only valid in the case of

maneuvers with low levels of the lateral acceleration. In the case of high-g maneuvers,

the tire force saturates, and the linear model is no longer valid [39]. Therefore, for

more reliable information, the nonlinearity of the tires must be considered, and the

vehicle model must be analyzed as a nonlinear system. Much of the work done in the

vehicle stability analysis and control design areas considers a simple nonlinear vehicle

model. The main advantage of such a model is the clear relation among vehicle

states. In general, for lateral stability analysis, the well-known bicycle vehicle model

is adequate. Such a simple nonlinear model makes it possible to follow the effects of
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the vehicle states and parameters on the overall vehicle dynamics [38].

A vehicle model as a nonlinear system has its own stability region that its size and

shape are indicators of vehicle stability during critical maneuvers [40]. If the states

of a vehicle during critical maneuvers still remain in the stable region, it will move

towards a stable equilibrium point along the specific trajectory. A few studies to

estimate the lateral stability region of a vehicle have been conducted in the literature.

Work on finding the roll stability region of the vehicle is even more distinct. Methods

applied in these studies can be generally divided into two groups: Lyapunov-function-

based methods and non-Lyapunov-function-based methods [40]. Most of the existing

studies on the non-Lyapunov-function-based methods rely on topological methods,

in which the stability region is estimated due to the number of system trajectories

derived by numerical integrations of the system equations, such as the trajectory

reversal method proposed by Genesio et al. [41]. Intagaki et al. [42], by plotting

a large number of trajectories and using an applicable understanding, approximated

the stability boundary. Samsundar and Huston [43] applied the trajectory reversal

method to estimate the lateral stability region for a 2-DOF nonlinear vehicle model.

Ko and Lee [40] proposed an algorithm, including the trajectory reversal technique,

to determine a lateral stability region for a 3-DOF nonlinear vehicle for the case of a

constant vehicle speed. The dependence of trajectory-based methods on appropriate

selections of the initial conditions is the most important limitation in their application

to stability analysis.

On the other hand, investigation of the stability region based on the Lyapunov-

function-based method relies on Lyapunov’s direct method. For examples, Johnson
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and Huston [44] applied this method to the lateral stability analysis of a vehicle

in straight-line motion at a constant longitudinal velocity. Samsundar and Huston

[43] proposed another quadratic Lyapunov function for the same vehicle model and

the parameters in [44] and by using the tangency point technique, found the largest

possible lateral stability region associated with their proposed Lyapunov functions.

Applying Lyapunov’s direct method to investigate the effects of driving conditions on

vehicle stability is extremely challenging since there are no constructive techniques to

find a Lyapunov function. This technique is also infeasible to demonstrate how the

vehicle parameters such as vehicle inertial properties or tire characteristics affect the

lateral vehicle stability. The main limitations on applying Lyapunov’s direct method

to estimate the lateral stability region can be summarized as limitations on the vehicle

model due to difficulties in finding a Lyapunov function, and dependence of the size

and shape of the stability region on the selected Lyapunov functions.

The effects of vehicle parameters and driving conditions on lateral vehicle stability

have been discussed in the literature. The fundamental work on this subject has been

done by Pacejka [10]. An excellent review of related studies in this topic can also be

found in [45]. Shen et al. [46] proposed the so-called joint-point locus approach to

investigate vehicle system handling. This method geometrically determined the equi-

libria of the system and then their associated stability properties have been discussed

based on system trajectories. Ko and Lee [40] by using their proposed topological

approach, which is based on the trajectory reversal technique, found that the vari-

ation of the driving conditions such as the vehicle velocity, road friction coefficient,

and steering input lead to more significant changes in vehicle yaw lateral stability in
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comparison with the variation of vehicle parameters such as weight distribution and

tire characteristics. As mentioned earlier, in the trajectory-based method, the system

trajectories are solved for certain initial conditions. This means that the conclusion

of system behaviour for other initial conditions is not guaranteed.

Considering the drawbacks of the Lyapunov’s direct method, and non-Lyapunov-

function-based methods, a constructive and reliable technique for Lyapunov stability

analysis of the vehicle model is crucial. This raises the opportunity to suggest the con-

cept of Lyapunov exponents to the vehicle design community as a powerful stability

analysis tool.

Liu et al. [47] investigated the chaotic behaviour of the vehicle/driver system using

the concept of Lyapunov exponents. To the best of the author’s knowledge, this

concept has not been applied in vehicle stability analysis yet. However, the previous

success of using this concept in other areas [32, 34, 35] promises its effectiveness in

the vehicle stability analysis.
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Chapter 3

Theoretical Preliminary

3.1 Overview

The theoretical preliminary of this thesis is divided into two parts. In the first part,

stability theory, basic definitions, and stability related analysis tools are presented,

and in the second part, the vehicle models are discussed.

The first part is organized as follows. In Section 3.2.1, the theory of Lyapunov stability

is presented. The concept of Lyapunov exponents is introduced in Section 3.2.2.

In Section 3.2.3, the standard algorithm for calculating the spectrum of Lyapunov

exponents is discussed. Section 3.2.4 presents some basic definitions on measure

theory. Finally, in Section 3.2.5, the multiplicity ergodic theorem of Oseledec is

given.

The second part covers the following topics. In Section 3.3.1, tire models including:

the linear, third order polynomial, and Magic Formula are introduced. The bicycle
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vehicle model is discussed in Section 3.3.2. In Section 3.3.3, the 14-DOF full vehicle

model is presented.

3.2 Stability Theory

3.2.1 Lyapunov Stability

To understand the theory of Lyapunov stability, it is necessary to define the equilib-

rium point (fixed point). Suppose an autonomous (time-invariant) nonlinear dynamic

system is represented by a set of nonlinear equations in the form of

ẋ = f (x) (3.1)

where f is a m× 1 vector function, and x is the m× 1 state vector. The number of

states, m, is called the order of system (dimension of the system).

Equilibrium point [27]: A state xe is an equilibrium point of the system if once x(t)

is equal to xe, it remains equal to xe for all future time. Mathematically, in this

definition xe satisfies

f(xe) = 0 (3.2)

Now suppose that above equilibrium xe is transferred to the origin 0. The definition

of the stability in the sense of Lyapunov is:

Lyapunov stable [27]: The equilibrium point x = 0 is said to be stable if, for any

R > 0, there exist r > 0, such that if ‖x(0)‖ < r, then ‖x(t)‖ < R for all t ≥ 0.

Otherwise, the equilibrium point is unstable.
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This definition can be written as

∀R > 0, ∃r > 0, ‖x(0)‖ < r ⇒ ∀t ≥ 0, ‖x(t)‖ < R

The geometrical demonstration of the Lyapunov stability is given in Figure3.1. It can

be seen that the stability of an equilibrium point can be marginal or asymptotical.

These two types of stability can be distinguished by following definition:

Asymptotic stablility [27]: An equilibirum point 0 is asymptotically stable if it is

stable, and if in addition there exists some r > 0 such that ‖x(0)‖ implies that

x→ 0 as t→∞.

𝟎 
x(0)

r

R

Trajectory 1- Asymptotical Stable 
Trajectory 2- Marginally Stable 
Trajectory 3- Unstable 

1 

3 
2 

Figure 3.1: Concept of Lyapunov stability

Another type of Lyapunov stability is exponentially stable, in which the state vectors

converge to the equilibrium point faster than an exponential function. The concept

of exponentially stability can be defined as:

Exponential stability [27]: An equilibrium point 0 is exponentially stable if there exist

two strictly positive numbers α and λ such that ∀t > 0, ‖x(0)‖ ≤ α‖x(0)‖e−λt

is some ball Br around the origin.
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Finally, the domain of attraction is defined as:

Domain of attraction [27]: The domain of attraction of the equilibrium point is the

largest set of all points such that the trajectories initiated at these points finally

converge to the equilibrium point.

3.2.2 Lyapunov Exponents

The concept of Lyapunov exponents has been introduced to identify the asymptotic

behaviour of nonlinear systems. Considering a continuous dynamic system in an

m-dimensional state space, this concept monitors the long-term evolution of an in-

finitesimal m-sphere of initial conditions. Due to the dynamic flow, the m-sphere

may deform to an m-ellipsoid as graphically shown in Figure 3.2 when m = 2. The

average exponential rates of the length expanding or contracting of the ellipsoid prin-

cipal axes over an infinite time period are called Lyapunov exponents [30]. The i-th

one-dimensional Lyapunov exponent, λ(i), can be calculated as

Fiducial trajectory 

Initial infinitesimal 2D-sphere 

Principal axes 

Deformed to the 2D-ellipsoid 

δx1 t0( )

δx2 t0( )

δx1 t( )

δx2 t( )x t0( )

x t( )

Figure 3.2: Evolution of an infinitesimal two-dimensional (2D) sphere of initial con-
ditions
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λ(i) = lim
t→∞

1
t

ln ‖δxi(t)‖
‖δxi(0 )‖ , i = 1, · · · ,m (3.3)

where ‖δxi(t)‖ is the length of the i-th ellipsoidal principal axis at time t.

The existence of the limit in the above definition is guaranteed by Oseledec’s multi-

plicative ergodic theorem [29]. Although in the calculation of Lyapunov exponents

choosing a trajectory (the "fiducial" trajectory) is needed, the consequence of a theo-

rem of Oseledec [29] proves that Lyapunov exponents are global properties of dynamic

systems and are independent of the chosen trajectory ("invariant measure" of the dy-

namic system) if the probability measure ρ is ergodic1. Since for each principal

axis one Lyapunov exponent can be defined, the total number of system Lyapunov

exponents is equal to the dimension of the state space of the dynamic system. It is im-

portant to note that the orientation of the ellipsoid changes continuously as it evolves.

Therefore, it is not possible to define the direction associated with a given exponent.

Both the signs and the values of a system Lyapunov exponent have information about

its exponential behaviour.

The signs of Lyapunov exponents reveal the stability property of the system’s dynam-

ics. Negative exponents correspond to those principal axes of the ellipsoid that shrink

in average. If all the exponents are negative, the dynamic system is exponentially

stable and the attractor is a fixed point (equilibrium point). Zero exponents indicate

the slow change in magnitudes of principal axes. A system with one zero exponent

while others are negative has a one-dimensional attractor. For systems with order

three or more, the positive Lyapunov exponents indicate a chaotic behaviour. In a
1 see Section 3.2.5
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chaotic system, the long-term behaviour of an initial condition that is specified with

any uncertainty cannot be predicted [30].

The sum of all Lyapunov exponents indicates the time averaging divergence of the

phase space volume. Therefore, for any dissipative dynamic systems, the sum of all

exponents is negative [30]. This implies that dissipative systems have at least one

negative exponent. Moreover, dissipative systems with no fixed point must have at

least one zero exponent [48].

In general, there is no feasible analytical way to determine the Lyapunov exponents for

a complicated system [49]. Therefore, the Lyapunov exponents are often calculated

numerically. They can be calculated using either the system mathematical model

or a time series. In practical applications, the finite-time Lyapunov exponents are

frequently used in the following form

λ(i) = 1
t

ln ‖δxi(t)‖
‖δxi(0 )‖ , i = 1, · · · ,m (3.4)

in the limit as t → ∞ , the finite-time Lyapunov exponents converge to the true

Lyapunov exponents [50].

Lyapunov Exponents in System of Differential Equations

Consider the system that its time evolution is described by a set of continuous differ-

ential equations in M -dimensional Euclidean state space Rm as

ẋ = f (x) (3.5)
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where f is a smooth m× 1 nonlinear vector function and x is a m× 1 state vector.

Let the Tt
x(0) be the solution of the initial condition x (0) at time t

x (t) = Tt
x(0) (3.6)

therefore, Tt is a smooth nonlinear flow that gives the evolution of all points in the

phase space at time t.

The time evolution of the perturbation vector, δx, which is defined in the tangent

space, can be extracted by the following linear differential equation

δẋ = J (x) δx (3.7)

where J (x) is the Jacobian matrix calculated at the point x (t)

J (x) = ∂f
∂xT (x) (3.8)

The evolution of the perturbation vector at time t can be found by the map dTt
x(0)

(fundamental matrix) which is the linear part of the nonlinear map Tt
x(0) [51].

δx = dTt
x(0)δx (0) (3.9)

This linear map obeys the following chain rule

dTt+s
x(0) = dTt

Ts
x(0)

dTs
x(0) (3.10)

Suppose that m perturbation vectors are defined, δxi (0) for i = 1, · · · ,m, along the

principal axes of an infinitesimal volume of initial conditions, m-dimensional sphere,

around the orbit x (0). Then the Lyapunov exponents can be defined in terms of the

length of these principal axes as
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λ(i) = lim
t→∞

1
t

ln ‖δxi (t)‖
‖δxi (0 )‖ , i = 1, · · · ,m (3.11)

where ‖δxi (t)‖ represents the length of the ith principal axis of the traversed initial

infinitesimal volume at time t.

The λ(i), i = 1, · · · ,m, are called the spectrum of Lyapunov exponents for the nonlin-

ear system in Eq. 3.5. In fact, as mentioned before, the Lyapunov exponents indicate

the long-term behaviour of a dynamic system by monitoring the evolution of the ini-

tially arbitrarily infinitesimal volume element. Figure 3.3 illustrates this concept for

the case of the 2-dimensional system.

Initial infinitesimal 2D-sphere 

Principal axes 

Deformed to the 2D-ellipsoid 

δx1 0( )

δx2 0( )

δx1 t( )

δx2 t( )x 0( )

x t( )

δx2 t( ) = dTx(0)t δx2 0( )

x t( ) = Tx(0)t x 0( )

δx1 t( ) = dTx(0)t δx1 0( )

Figure 3.3: Concept of Lyapunov exponents in a 2D- state space

The length changes of most perturbation vectors2, δx (0) in the tangent space after

sufficient long time can be found by [52]

‖δx (t)‖ ≈ eλ
(1)t ‖δx (0)‖ (3.12)

where λ(1) is the largest Lyapunov exponent of the nonlinear system in Eq. 3.5. The
2As long as δx (0) /∈ V (2)

x(0) (see Section 3.2.5 )
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area spanned by the first two principal axes changes as e(λ(1)+λ(2))t, and the volume

spanned by the first three principal axes changes as e(λ(1)+λ(2)+λ(3))t, and so on.

The existences of the Lyapunov exponents, limits in Eq. 3.11, are guaranteed by the

multiplicative ergodic theorem of Oseledec [29]. Moreover, under a condition (see

Section 3.2.5) , Lyapunov exponents are independent of the selected initial condition,

and they will have constant values for all initial points inside the same basin of

attraction.

Lyapunov Exponents in System of Difference Equations

It is possible to discretize the differential equation given in 3.5 as

x [n+ 1] = f [x [n]] (3.13)

where f : Rm → Rm is a differentiable vector function. The difference equation,

governing the discrete-time evolution of the perturbation vector, is

δx [n+ 1] = J [x [n]] δx [n] (3.14)

where J [x [n]] is the Jacobian matrix of the nonlinear vector function f calculated for

the point x [n].

J [x [n]] = ∂f
∂xT

∣∣∣∣∣
x=x[n]

(3.15)

The Lyapunov exponents for the difference equation of Eq. 3.13 are defined by

λ(i) = lim
n→∞

1
n

ln ‖δxi [n]‖
‖δxi [0]‖ where i = 1, · · · ,m (3.16)

After some manipulations, the limit in Eq. 3.16 can be express as

λ(i) = lim
n→+∞

1
n

n∑
m=1

ln ‖δxi [m]‖
‖δxi [m− 1]‖ where i = 1, · · · ,m (3.17)
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3.2.3 Standard Algorithm to Calculate Lyapunov Exponents

The standard algorithm [53] calculates all Lyapunov exponents (spectrum of the Lya-

punov Exponents) of a system defined in the form of a mathematical model. This

algorithm starts by selecting an arbitrary initial condition for the nonlinear differential

equations given in Eq. 3.5.

The initial m-sphere principal axes are constructed on the selected initial condition.

The evolution of the initial condition known as the ‘fiducial’ trajectory can be found

by the action of nonlinear Eq. 3.7. To find the evolution of principal axes, another

set of equations given in Eq. 3.18 is needed.

δẋi= J(x(t)) δxi , i = 1, · · · , n (3.18)

where J(x(t)) is defined in Eq. 3.8.

Equation 3.18 can be rewritten in the form of state transient matrix, ψ, as

ψ̇ = J(x(t))ψ (3.19)

where

ψ =
[
δx1 · · · δxm

]
m×m

(3.20)

To solve Eq. 3.7 and Eq. 3.20 simultaneously, they are represented in one set of

equation given as
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
ẋ= f(x(t))

ψ̇ = J(x(t))ψ
(3.21)

The initial conditions can be any arbitrary initial conditions, as long as they are

located on the same basin of attraction. However, in the case of initial principal axes,

they must span the infinitesimal volume.


x (0)

ψ (0)

 =


x0

ψ0

 (3.22)

The standard choice for initial principal axes is orthonormal vectors define as e1 (0) =

(1, 0, ..., 0) , e2 (0) = (0, 1, 0, ..., 0) , ..., em (0) = (0, ..., 0, 1).

ψ0 =
[
eT1 (0) ... eTm (0)

]
m×m

(3.23)

Integrating the nonlinear Eq. 3.21 for the given initial conditions in Eq. 3.22 until a

single time step, τ , yields to next set of vectors δx1 (τ) , · · · , δxm (τ).

In numerical calculation of the Lyapunov exponents, there are two main concerns

[30]: the divergence of each principal axis, and the singularity due to the collapse of

all principal axes along the direction of the most rapidly growth. To solve the above

problems, the Gram-Shmidt Reorthonormalization (GSR) technique will be applied

in each integration period,τ as
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v1 (τ) = δx1 (τ)
‖δx1 (τ)‖ , v2 (τ) = δx2 (τ)−<δx2 (τ),v1(τ)>v1(τ)

‖δx2 (τ)−<δx2 (τ),v1(τ)>v1(τ)‖ , · · · ,

vm (τ) = δxm(τ)−<δxm(τ),v1(τ)>v1(τ)− ...−<δxm(τ),vm−1(τ)>vm−1(τ)
‖δxm(τ)−<δxm(τ),v1(τ)>v1(τ)− ...−<δxm(τ),vm−1(τ)>vm−1(τ)‖

(3.24)

The main idea behind this scheme, shown in Figure 3.4 for the 2D case, is to find

the orthonormalized basis,{v1, · · · ,vm}, such that it defines the same subspace which

has already defined by {δx1 , · · · , δxm}.

δx1 τ( )

v2 τ( )

δx2 τ( ), v1 τ( ) v1 τ( )

δx2 τ( )

v1 τ( )

δx2 τ( )− δx2 τ( ), v1 τ( ) v1 τ( )

Figure 3.4: Geometrical interpretation of GSA procedure for a 2D case, the compo-
nent of the second vector along the first vector has been removed

The GSR procedure never changes the direction of the first principal axes, δx1 , so

this vector is free to seek out the direction of the most rapidly growing in the tangent

space [30]. The length of this vector is proportional to eλ(1)t for large t. The length

of the second vector, which has no component along the direction of the first vector

due to the GSR, is proportional to eλ(2)t and so on.

3.2.4 Basic Definitions on Measure Theory

To understand the multiplicity ergodic theorem of Oseledec, which will be used in the

extension of Lyapunov exponents in Chapter 4, some definitions in Measure Theory
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must be given. Those necessary ones have been briefly discussed here; however,

interested readers can refer to [54, 55] for more details.

σ-algebra: Let β be a family of subsets of a set X, β is a σ-algebra if:

1. φ, X ∈ β

2. B ∈ β whenever X \B ∈ β

3. ∪∞k=1Bk ∈ β whenever Bk ∈ β for every k ∈ N

Given a family β of subsets of X, the smallest σ-algebra containing β, that

is, the intersection of all σ-algebra containing β, is called the σ-algebra of X

generated by β.

β-Measurable set: Each element of a σ-algebra β is called a β-measurable set.

Borel σ-algebra: Let X be a topological space, and let β be the family of all open

subsets of X. The σ-algebra of X generated by β is called the Borel σ-algebra

of X.

Borel-measurable sets: Elements of a Borel σ-algebra β are called Borel-measurable

sets.

Measure, µ: Let β be a σ-algebra of X, a function µ : β → [0,+∞] is a measure in

X with respect to β provided that:

1. µ (φ) = 0
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2. If Bk ∈ β for every k ∈ N and Bk ∩Bl = φ whenever k 6= l, then

µ (∪∞k=1 Bk) =
∞∑
k=1

µ (Bk) (3.25)

Measure space: The triple (X, β, µ) is called a measure space.

Probability space: Measure space (X, β, µ) is a probability space if µ (X) = 1. In

this case µ is called probability measure and denoted by ρ.

β-measurable transformation: Let X be a set and let β be a σ-algebra of X. A

transformation T : X → X is a β-measurable if T−1B ∈ β, preimage3of B

under T is in β, whenever B ∈ β.

β-measurable function: A function ϕ : X → R is said to be β-measurable if ϕ−1B ∈

β, preimage of B under ϕ is in β, whenever B is a Borel-measurable set.

Lebesgue integrable: Given a measure µ in X with respect to β, a β-measurable

signed function ϕ is Lebesgue integrable , ϕ ∈ L−1 (X, β, µ), if at least one of∫
X ϕ

+ dµ and
∫
X ϕ

− dµ is finite

min
(∫

X
ϕ+ dµ,

∫
X
ϕ− dµ

)
<∞ (3.26)

where

ϕ+ (x) =


ϕ (x) if ϕ (x) > 0

0 otherwise
(3.27)

3Given f : X → Y , for each y ∈ Y , the preimage of y is the set: f−1 (y) = {x ∈ X | f (x) = y}
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and

ϕ− (x) =


−ϕ (x) if ϕ (x) < 0

0 otherwise
(3.28)

in this case ∫
X
ϕ dµ =

∫
X
ϕ+ dµ−

∫
X
ϕ−dµ (3.29)

and one can conclude that ϕ is µ-integrable if and only if
∫
X
|ϕ| dµ <∞ (3.30)

Measure-preserving transformation: A transformation T : X → X is measure-

preserving if it is measurable and if for all measurable sets

µ
(
T−1 (B)

)
= µ (B) , ∀B ∈ β. (3.31)

It is equivalent to say that the transformation T preserves the measure µ.

Ergodic transformation: The transformation T : X → X is called ergodic if

∀B ∈ β, T−1 (B) = B =⇒ µ (B) = 0 or 1. (3.32)

Invariance: ρ (ϕ) = ρ (ϕ ◦ f), where ϕ : M → R is a continuous function and

operator ◦ is the Koopman operator [56]. This means that the measure ρ is

invariant under time evolution, i.e., invariant under the dynamical system [57].

Ergodicity: An invariant probability measure ρ is ergodic or indecomposable if it

does not have a nontrivial convex decomposition:

ρ = αρ1 + (1− α) ρ2 (3.33)

where ρ1 and ρ2 are again invariant probability measure and ρ1 6= ρ2 [58].
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3.2.5 The Multiplicity Ergodic Theorem of Oseledec

The multiplicity ergodic theorem of Oseledec is the matrix version of the Birkhoff

Ergodic Theorem [59]. It says that for ρ-almost every x (0) ∈ X, if f preserves a

probability measure ρ, the asymptotic behaviour of Tn
x[0] is similar to iterating a

single linear map [55].

Theorem- (multiplicity ergodic theorem of Oseledec) [29, 52, 57, 58]

Let ρ be a probability measure on a space M , and f : M →M a measure preserving

map such that ρ is ergodic. Let also T : M → the m×m matrices be a measurable

map such that ∫
M

log+ ‖T (x)‖ ρ (dx) <∞4 (3.34)

where log+ u = max (0, log u).

Define the matrix Tn
x(0) = T (fn−1 (x (0))) · · · T (f1 (x (0))) T (x (0)). Then, for

ρ-almost all x (0), the following limit exists:

lim
n→∞

(
Tn∗

x(0)Tn
x(0)

) 1
2n = Λx(0) (3.35)

where ∗ denotes the matrix transposition.

The logarithms of the eigenvalues of Λx(0) are called characteristic exponents, or

Lyapunov exponents. They can be denoted by λ1 x(0) ≥ λ2 x(0) ≥ · · · or λ(1)
x(0) ≥

λ
(2)
x(0) ≥ · · · .

They are ρ-almost everywhere constant if ρ is ergodic. Therefore, they are indepen-

dent of x (0), and they can be denoted by λ(1) ≥ λ(2) ≥ · · · .
4The norm of the matrix is the operator norm in Euclidean space (identical in value to the

spectral norm) with submultiplicative property ‖AB‖ ≤ ‖A‖ ‖B‖
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Let λ(1)
x(0) > λ

(2)
x(0) > · · · be the characteristic exponents again, but no longer repeated

by multiplicity (m(i) is called the multiplicity of λ(i)). Let E(i)
x(0) be the subspace of

Rm corresponding to the eigenvalues ≤ eλ
(i) of Λx(0). Then Rm = E

(1)
x(0) ⊃ E

(2)
x(0) ⊃ · · ·

and the following holds

For ρ-almost all x (0)

lim
n→∞

1
n

ln
∥∥∥Tn

x(0)u
∥∥∥ = λ

(i)
x(0) if u ∈ E(i)

x(0) \ E
(i+1)
x(0) . (3.36)

Remark: In particular, for all vectors u that are not in the subspace E(2)
x(0), the limit

in Eq. 3.36 is the largest Lyapunov exponent λ(1) [57].

3.3 Vehicle Models

3.3.1 Pneumatic Tire Models

The tire behaviour plays an important role in vehicle dynamics. Under a cornering

maneuver, the tire produces lateral force, also known as "cornering force", which

results in lateral motion of the vehicle. For low slip angles (less than approx. 5o),

the lateral force produced by a pneumatic tire has a linear relationship with the slip

angle α. Therefore, the lateral force can be described as

Fy = Cαα (3.37)
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where Cα is known as "cornering stiffness". In high speed maneuvers, where lateral

acceleration is over approx. 0.3 g, the tire slip angle is usually more than 5o and the

above equation is no longer valid.

A more accurate model is the third-order polynomial tire model [43, 44]. In this

model, the tire lateral force is related to slip angle as given in Eq. 3.38.

Fy = Cα
(
α− kα3

)
(3.38)

where the k parameter is associated with the nonlinear dependence of the lateral force

on the sideslip angle [43, 44].

One of the most accurate models of the pneumatic tire is known as the "Magic For-

mula" [10]. The Magic Formula model is found by an empirical method that fits

experimental data to describe the relationship between the cornering force and the

slip angle, or the longitudinal force and the longitudinal slip ratio [60]. In general,

the Magic Formula is expressed as:

f (x) = D sin { C arctan [B x − E (B x − arctan Bx)]} (3.39)

where B is called the stiffness factor, C is the shape factor, D is the peak factor, and

E is the curvature factor. The values of these parameters depend on the vertical load

on the tire and can be found by experiment. Considering the horizontal shift Sh and

vertical shift Sv the cornering force or longitudinal force, F (X) will be

F (X) = f (x) + Sv

x = X + Sh

(3.40)
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This formula produces a curve as a function of x which is shown in Figure 3.5 In order

to find the cornering force, the variable x in the Magic Formula must be replaced by

the slip angle α. In this thesis, the nonlinear models (third-order polynomial tire

model and Magic Formula) are employed to produce tire lateral forces.

D
( )BCDarctan

mx

asymf

hS

vS

X

Ff

x

Figure 3.5: Magic Formula

3.3.2 Bicycle Vehicle Model

The x−y plane motion of a vehicle is adequate to model its yaw and lateral motions.

The schematic view of the well-known "bicycle vehicle model" [10] that has long been

employed for the analysis of the yaw motion is given in Figure 3.6. As it can be

seen, the track width has been neglected; this simplification is valid when the radius

of the cornering motion is much larger than the width of the vehicle which; it is, in

almost all normal operation. This model does not represent the load transfer and

body roll; therefore, it is restricted to the cases where the roll moment is small. Small
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roll moment is reasonable when the height of centre of gravity is low in comparison to

the track width or when the coefficient of the friction between tire and road is small

[10].

Three differential equations [61] for the vehicle model in Figure 3.6 using a to the

fixed coordinate system on the centre of gravity (CG) of the vehicle can be derived

as



v̇x = 1
m

(
2 Ftf cos δf + 2 Ftr − 2 Fyf sin δf − 1

2CdAfρav
2
x

)
+ vyr

v̇y = 1
m

(2 Ftf sin δf + 2 Ftr + 2 Fyf cos δf + 2 Fyr)− vxr

ṙ = 1
Iz

(2 lfFtf sin δf + 2 lfFyf cos δf − 2 lrFyr)

(3.41)
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y
vy

vt

yfF2

α f
v fδ f

xl f

vx
β

r

αrvr

lr

yrF2

trF2

tfF2

Figure 3.6: Simple vehicle model to study the lateral motions

where m is the total mass of the vehicle, Iz is the vehicle moment of inertia about

the z-axis, and lf and lr are the distance of the centre of gravity from the front

and the rear axles, respectively. The tire lateral forces (side forces) Fyf and Fyr are

for the front and the rear tiers. The front tire steer angle is δf . The longitudinal

speed (speed of traveling) vx is of the vehicle and vy denotes the lateral speed of

the vehicle. Finally, r stands for the yaw rate of the vehicle around the z-axis. The

last term inside the parenthesis in Eq. 3.41 represents the longitudinal aerodynamic

drag forces where Cd is the aerodynamic drag coefficient, Af is the frontal area of
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the vehicle, and finally ρa is the density of air. The lateral aerodynamic forces and

moments have been neglected, as they are small relative to the tire side forces.

Tractive forces Ftf and Ftr that are produced by the applied torque to the wheels.

The governing equation of motion for the wheels at front axles, shown in Figure 3.7,

is

f

fT

tfF

f

Figure 3.7: Front wheel rotation dynamics

ω̇f = 1
Jw

(Tf − rfFtf ) (3.42)

where Jw is the wheel roll inertia. The angular velocity of the front wheel is ωf . Tf

stands for the applied torque to the wheel and it can be produced by the powertrain

or the braking system. A similar equation can be written for each rear wheel. To

neglect the dynamics of the traction forces, it is always assumed that the vehicle is

driven with a constant longitudinal velocity. Moreover, for simplicity, the drag force

is also neglected. Therefore, Eq. 3.41 is reduced to
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

v̇y = 1
m

(2 Fyf cos δf + 2 Fyr)− vxr

ṙ = 1
Iz

(2 lfFyf cos δf − 2 lrFyr)

(3.43)

The angle between the vehicle’s traveling direction and its longitudinal direction, see

Figure 3.6, is called the vehicle side slip angle [7], β, which can be formulated as

β = tan−1
(
vy
vx

)
(3.44)

The speed of the vehicle at the centre of gravity, vt, can be calculated by

vt =
√
v2
x + v2

y (3.45)

To formulate the tractive forces, two more differential equations must be added to

represent the wheel rotations at the front and the rear axles.

Equation 3.46 gives another representation of the vehicle plane motion by considering

the vehicle sideslip angle, β, and the yaw rate, r as the states.



β̇ = 1
mvt

[2 Fyf cos (δf − β) + 2 Fyr cos (β)]− r

ṙ = 1
Iz

(2 lfFyf cos δf − 2 lrFyr)

(3.46)

Selecting between these two different representations depends on the application, e.g.

in practical cases, depends on the availability of the sensors.
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3.3.3 14-DOF Full Vehicle Model

The schematic view of the 14-DOF full vehicle model [5] is given in Figure 3.8. As

it can be seen, this vehicle model has four wheels and separated sprung mass and

unsprung masses. This model includes 6-DOF representing the longitudinal, lateral,

vertical, roll, pitch, and yaw velocities of the sprung mass concentrated at the CG of

the vehicle. Each wheel has 2-DOF representing the vertical velocity of the suspension

travel and wheel rotational speed. This vehicle model can predict the roll, yaw, and

pitch motions of an actual vehicle. The main advantage of the 14-DOF full vehicle

model over other models is its ability to predict vehicle roll behaviour even after

wheel lift-off. Therefore, this model can be used in developing or testing the rollover

prediction/prevention strategies. An interested reader is referred to Appendix B to

find more about vehicle models that include roll motion.

vz
zω

vx

xω
vy

yω

m

ωtlfvulfmulf
murf

mulr
murr ωtlrvulr

ωtrr vurr

ωtrf vurf

X
Y

Z

x
y

z

Inertia fixed coordinate 

Forces at tire ground  
contact patch 

Figure 3.8: Schematic view of the 14-DOF full vehicle model
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The set of differential equations governing the dynamics of the 14-DOF vehicle model

is given in equation Eq. 3.47. The subscript "ij" in this equation denotes right front

(rf), left front (lf), right rear (rr), and left rear (lr). It should be noted that the

dynamic equations for the four wheel spins are excluded; however, these equations

can be written similarly to Eq. 3.42. The details on deriving 14-DOF full vehicle

model equations are provided in Appendix B.

v̇x =
∑

Fxij
ms

+ g sin θ − ωxvz + ωzvy

v̇y =
∑

Fyij
ms
− g sinφ cos θ − ωzvx + ωxvz

v̇z =
∑

Fzij
ms
− g cos(φ) cos θ − ωxvy + ωyvx

ω̇x =
∑

Mxij

Jx
+ (Fzslf+Fzslr−Fzsrf−Fzsrr)c

2Jx − ωy JzJxωz + ωz
Jy
Jx
ωy

ω̇y =
∑

Myij

Jy
+ (Fzslr+Fzsrr)b

Jy
− (Fzslf+Fzsrf )a

Jy
− ωz JxJyωx + ωx

Jz
Jy
ωz

ω̇z =
∑

Mzij

Jz
+ (Fyslf+Fysrf )a

Jz
− (Fyslr+Fysrt)b

Jz
+ (−Fxslf+Fxsrf−Fxslr+Fxsrr)c

2Jz

−ωx JyJzωy + ωy
Jx
Jz
ωx

θ̇ = ωy cosφ− ωz sinφ

ψ̇ = ωy sinφ
cos θ + ωz cosφ

cos θ

φ̇ = ωx + ωy sinφ tan θ + ωz cosφ tan θ

v̇zuij = cosφ(cos θ(Fz′gij−muijg)+sin θFx′gij)−sinφFy′gij−Fdzij−xsijksij−(−vzsij+vzuij)bsij
muij

−(vyuijωx − vxuijωy)

ẋsij = −vzsij + vzuij

ẋtij = vz′ij − (cos θ(vzuij cosφ+ vyuij sinφ)− vxuij sin θ)
(3.47)
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Chapter 4

Modified Lyapunov Exponent,

New Measure of Dynamics

4.1 Overview

The objective of this chapter1 is to modify the Lyapunov exponents, which can char-

acterize the exponential divergent or convergent rates of the nonlinear dynamics in

specific directions and driven by the dynamics in the same directions. Like other mea-

sures of the asymptotic behaviors of the nonlinear systems, the modified Lyapunov

exponent must exist and be invariant with respect to the initial conditions, which are

proven mathematically here.

This chapter is organized as follows. The concept of the modified Lyapunov exponent

is developed in Section 4.2. Some indications of the modified exponent are discussed,
1This chapter is published in [62].
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and without loss of generality; the theorem of the existence and the invariance of

the modified Lyapunov exponent for dynamic systems with an asymptotically stable

fixed point or an attracting limit cycle is given. Section 4.3 presents an algorithm

for practical computation of the modified exponents. Such an algorithm is used in

Section 4.4 to demonstrate the concept in some case studies. Finally, a discussion on

limitations and further extension of modified Lyapunov exponents is made in Section

4.5.

4.2 Modified Lyapunov Exponent

In this section, the new exponent based on the concept of Lyapunov exponents is

developed. The modified Lyapunov exponent is first defined, and its existence is

proven. The sufficient condition guaranteeing the modified Lyapunov exponent to

be independent of initial conditions (invariance) is then proposed and proven. The

algorithm for calculation of the modified Lyapunov exponent is presented. Finally,

the modified Lyapunov exponent is computed for various systems to demonstrate the

proposed modified Lyapunov exponent.

4.2.1 Definition of the Modified Lyapunov Exponent

The definition of the modified Lyapunov exponent is based on the concept of Lya-

punov exponents; however, instead of evolving the perturbation vector with the Ja-

cobian matrix, such a vector is traversed by part of the Jacobian matrix. The aim is

to define a measure that characterizes the evolution of the perturbation vector along
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the specific direction u driven by the dynamics in the same direction u.

To formulate the modified Lyapunov exponent, the following time evolution equations

are defined: 

ẋ = f (x)

δẋu = S (x) δxu

(4.1)

The matrix S (x) represents the flow components along the direction u and is defined

by

S (x) = Pu
∂f
∂xT (x) (4.2)

where Pu is the orthogonal projection matrix onto u and is defined by

Pu = uuT

‖u‖2 (4.3)

For better understanding, the geometrical interpretation of Eq. 4.1 for the case of

the 2-dimensional system is exhibited in Figure 4.1. As it can be seen, the trajectory

x (t) corresponding to the initial condition x (0) has been generated by the nonlin-

ear equations while the perturbation vector along the predefined vector u has been

traversed in linear tangent space by Eq. 4.2.

The solution of Eq. 4.1 can be written as

x (t) = Tt
x(0)

δxu (t) = dStx(0)δxu (0)

(4.4)

The asymptotic behavior of the perturbation vector δxu as t → +∞ is described by

the asymptotic behavior of the linear map dStx(0). To characterize the asymptotic
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behavior of this map, the modified Lyapunov exponent corresponded to the direction

of u is defined in terms of the perturbation vector length along u as

λSu = lim
t→+∞

1
t

ln ‖δxu (t)‖
‖δxu (0)‖ (4.5)

Figure 4.1: Geometrical interpretation of the modified Lyapunov exponent for a
2-dimensional system

In the case of discrete-time systems, the following set of difference equations are

considered. 

x [n+ 1] = f [x [n]]

δxu [n+ 1] = S [x [n]] δxu [n]

(4.6)

Similar to the continuous-time case, S [x [n]] is defined as

S [x [n]] = Pu
∂f
∂xT

∣∣∣∣∣
x=x[n]

(4.7)

Then, the modified Lyapunov exponent for discrete-time systems is defined by

λSu = lim
n→+∞

1
n

ln ‖δxu [n]‖
‖δxu [0]‖ (4.8)

50



4.2. MODIFIED LYAPUNOV EXPONENT

or equivalently

λSu = lim
n→+∞

1
n

n∑
m=1

ln ‖δxu [m]‖
‖δxu [m− 1]‖ (4.9)

In practical calculations, the infinite-time limit in Eq. 4.5 for continuous-time systems

and in Eq. 4.9 for discrete-time systems will be approximated by the finite-time series

in Eq. 4.10 and Eq. 4.11 respectively.

λSu ≈
1
t

ln ‖δxu (t)‖
‖δxu (0)‖ (4.10)

λSu ≈
1
n

n∑
m=1

ln ‖δxu [m]‖
‖δxu [m− 1]‖ (4.11)

In the limit as t→ +∞ or n→ +∞, the finite-time series in Eq. 4.10 and Eq. 4.11

converges to the infinite-time limits [50] in Eq. 4.5 and Eq. 4.9.

4.2.2 Indications of the Modified Lyapunov Exponent

The modified Lyapunov exponent can characterize different features of the dynamic

systems depending on the predefined projection matrix. The indications of the mod-

ified Lyapunov exponent are given via various examples.

Example 1: The modified Lyapunov exponent can indicate which parts of the dy-

namics dominate the growth rate of the perturbation vector.

Consider a 2-dimensional discrete-time system with a stable fixed point as given in
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Eq. 4.12 

x1 [n+ 1] = f [x1 [n] , x2 [n]]

x2 [n+ 1] = g [x1 [n] , x2 [n]]

(4.12)

The dynamics of any perturbation vectors, δx, in the tangent space is described by

Eq. 4.13.


δx1 [n+ 1]

δx2 [n+ 1]

 =


J11 [n] J12 [n]

J21 [n] J22 [n]




δx1 [n]

δx2 [n]

 (4.13)

where Jij [n] represents the ij-th element of the Jacobian matrix, J [n], corresponding

to the dynamics in Eq. 4.12 at the instant n.

The growth of such a perturbation vector from the instant n to the instant n + 1

is illustrated in Figure 4.2. As it can be seen the components of the perturbation

vector at the instant n+ 1 (δx1 [n+ 1] and δx2 [n+ 1]) consist of both the uncoupled

dynamics Jii and the coupled dynamics Jij (i 6= j).

Figure 4.2: Evolution of a perturbation vector in the tangent space for a 2-dimensional
discrete-time system
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After a large number of n, the perturbation vector aligns itself along the direction

of the eigenvector corresponding to the largest Lyapunov exponent, λ(1) [30]. For

dynamic systems with a fixed point, the direction of this eigenvector is asymptotically

constant. Therefore, the right triangles in the instant n and the instant n + 1 are

similar and the perturbation vector component along the direction of the state x1

grows as eλ(1)n (see Section 3.2.5). Now suppose that the projection matrix Px is

selected as

Px =


1 0

0 0

 (4.14)

In this case, Px projects the dynamics, J [n], into the direction of the specific state

x1, namely S [n] as

S [n] =


J11 [n] J12 [n]

0 0

 (4.15)

Therefore, the evolution of a perturbation vector, δx′, in the tangent space can be

found by 
δx′1 [n+ 1]

δx′2 [n+ 1]

 =


J11 [n] J12 [n]

0 0




δx′1 [n]

δx′2 [n]

 (4.16)

Since the perturbation vector belongs to the subspace along the state x1, its second

component δx′2 is zero and Eq. 4.16 will be reduced to

δx′1 [n+ 1] = J11 [n] δx′1 [n] (4.17)
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The growth of the perturbation vector, δx′, evolved by Eq. 4.17 from the instant n

to the instant n+ 1 is plotted in Figure 4.3.

Figure 4.3: Evolution of a perturbation vector in the tangent space for the projected
system into the direction of the state x1

As the comparison between Figure 4.3 and Figure 4.2, Eq. 4.17 gives the growth

ratio of the uncoupled part of the perturbation vector δx along the state x1 in Eq.

4.13. Therefore, the modified Lyapunov exponent λSx related to Eq. 4.17 indicates

the growth rate of the uncoupled part of the perturbation vector δx component along

the direction of the state x1.

The comparison between λ(1) and λSx can indicate which parts of the dynamics,

the coupled part or the uncoupled part, has more effect on the growth rate of the

perturbation vector. In Figure 4.4, suppose that the initial vector along x1 direction

has the length of l0. If this vector is evolved in the tangent space by the Jacobian

matrix J [n], after long time (large enough n), its x1 direction component will have

the length of ltn and
ltn
l0
≈ eλ

(1)n (4.18)
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Figure 4.4: Geometric interpretation of the evolved perturbation vector along x1
direction by the complete dynamics and its projected sub-dynamics

On the other hand, if the initial vector along the x1 direction is evolved by the

projected dynamics into x1 direction, S [n], it will have the length of lucn for the large

n and

lucn
l0
≈ eλSxn (4.19)

Since ltn = lucn + lcn , it can be concluded that

lcn
l0
≈ eλ

(1)n − eλSxn (4.20)

Therefore, the comparison between Eq. 4.19 and Eq. 4.20 can indicate which parts

of the dynamics, the uncoupled part or the coupled part, has the most effect on the

growth rate of the perturbation vector.

Example 2: The modified Lyapunov exponent can provide information about the

sub-dynamic systems which dominate the growth rate of the perturbation vectors.

With such information, the dynamic analysis in the tangent space can be conducted

on the dominant sub-dynamics instead of the entire dynamics.

For a 3-dimensional discrete-time system with a stable fixed point, the perturbation

55



4.2. MODIFIED LYAPUNOV EXPONENT

vectors in the instants n, δx [n], and n + 1, δx [n+ 1], are shown by black vectors

in Figure 4.5. The asymptotical average growth rate of this perturbation vector in

the tangent space is understood by the largest Lyapunov exponent, λ(1). On the

other hand, as discussed before, the asymptotical average growth rate of the x1x2

component of the perturbation vector (dashed black vectors in the gray planes) is

also given by λ(1).

Figure 4.5: Projecting the dynamics of a 3-dimensional system in the tangent space
into the x1x2 state space

Now suppose the projection matrix, Px1x2 , projects the dynamics of the tangent space

into the 2-dimensional sub state space (gray planes in Figure 4.5), and transforms the

perturbation vector δx′ [n] at the instant n to the perturbation vector δx′ [n+ 1] at

the instant n + 1. The modified Lyapunov exponent, λSx1x2 , gives the asymptotical

average growth rate of the perturbation vector δx′ in the 2-dimensional tangent space

driven by the x1x2 projected dynamics. The difference between λ(1) and λSx1x2 is the

result of the dynamics in direction of the third state x3 in the tangent space. In

Figure 4.6, the initial perturbation vector in the x1x2 plane has the length of l0.
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Figure 4.6: Geometric interpretation of the evolved perturbation vector in x1x2 di-
rection by the complete dynamics and its projected sub-dynamics

When monitoring the evolution of the perturbation vector δx [0] in the tangent space

by the entire dynamics, after a sufficiently long time n, it can be seen that the

perturbation vector evolves to δx [n], which its projected component in the x1x2

plane, δxx1x2 [n], has the length of ln and

ln
l0
≈ eλ

(1)n (4.21)

On the other hand, when monitoring the evolution of the initial perturbation vector

δx [0] by the x1x2 projected dynamics, at the instant n, the evolved perturbation

vector is δx′ [n], which has the length of l′n and

l′n
l0
≈ eλSx1x2n (4.22)

The difference vector between the perturbation vector δx [n] and the perturbation

vector δx′ [n] is due to the dynamics along the state x3, and it has the length of l′′n.

Using the length relations in a triangle
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l
′′2
n = l2n + l

′2
n − 2lnl′n cos (θn) (4.23)

and therefore,

l2n + l
′2
n − 2lnl′n ≤ l

′′2
n ≤ l2n + l

′2
n + 2lnl′n (4.24)

Dividing Eq. 4.24 by l20 results in

(
ln
l0

)2
+
(
l′n
l0

)2
− 2

(
ln
l0

) (
l′n
l0

)
≤

(
l′′n
l0

)2
≤

(
ln
l0

)2
+
(
l′n
l0

)2
+ 2

(
ln
l0

) (
l′n
l0

)
(4.25)

Now by substituting Eq. 4.21 and Eq. 4.22 into Eq. 4.25, it can be concluded that

e2λ(1)n + e2λSx1x2n − 2
(
e(λ(1)+λSx1x2)n

)
≤

(
l′′n
l0

)2
≤

e2λ(1)n + e2λSx1x2n + 2
(
e(λ(1)+λSx1x2)n

)
(4.26)

which gives the lower bound and the upper bound for the effects of the neglected

dynamics along the state x3 direction on the growth rate of the perturbation vector

in the tangent space.
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4.2.3 Existence and Invariant Property of Modified Lyapunov

Exponent

In the ergodic theory, there is no difference between discrete-time and continuous-

time systems. In fact, discretization of a continuous-time system does not change the

nature of attractors and so the Lyapunov exponents [57, 58]. Therefore, the theorem

will be given only for the case of discrete-time systems and the proof is based on the

multiplicity ergodic theorem of Oseledec (see Section 3.2.5). In addition, the theorem

and the proof are given when the attractor is an asymptotically stable equilibrium

point or an attracting limit cycle, but they can be extended to other attractors as

discussed in the remarks.

4.2.4 Theorem of the Modified Lyapunov Exponent

Consider an autonomous discrete-time dynamic system of the form

x [n + 1] = f [x [n]] (4.27)

where x [n] ∈ Rm and f is an m×1 vector function. Suppose the following situations:

a) f has an asymptotically stable fixed point EP at the origin so that f [EP] = EP

for all n. There is a neighbourhood M of EP such that

∀x ∈M : lim
n→+∞

f [x] = EP (4.28)

M is known as the stability region of the asymptotically stable fixed point EP.
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b) f has an attracting limit cycle and there exists some positive n0 such that

x [n+ n0] = x [n] (4.29)

Let denote the points x ∈ Rm satisfy Eq. 4.29 by Q and define the closed orbit Γ as

Γ = {f [Q [n+ i]] : i = 0, · · · , n0} (4.30)

There is a neighbourhood M of the close orbit Γ such that

∀x ∈M : lim
n→+∞

f [x]→ Γ (4.31)

M is called the domain of attraction for the closed orbit Γ.

Theorem- Let ρ be an ergodic probability measure on the neighbourhood M , and

let f : M → M be a measure preserving map. Let S : M → the m ×m matrix be

defined as

S [x [n]] = Pu
∂f
∂xT

∣∣∣∣∣
x=x[n]

(4.32)

where Pu is the projection matrix into the direction of the vector u, and ∂f
∂xT is the

Jacobian matrix.

1 - S is a measurable function, and ln+ ‖S [x]‖ is Lebesgue integrable.

ln+ ‖S [x]‖ ∈ L−1 (M,β, ρ) (4.33)

2 - Define the matrix
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Snx[0] = S [fn−1 [x [0]]] · · · S [f1 [x [0]]] S [x [0]], then for ρ-almost all x [0], the following

limit exists:

lim
n→∞

(
Sn∗x[0]Snx[0]

) 1
2n = ΛSux[0] (4.34)

where ∗ denotes the matrix transposition. Furthermore, write the logarithm of the

eigenvalues of ΛSux[0] as λ(i)
Sux[0] such that λ(1)

Sux[0] ≥ λ
(2)
Sx[0] ≥ · · · . The largest one,

λ
(1)
Sux[0], is the modified Lyapunov exponent in the direction of the vector u.

3 - λ(1)
Sux[0] is ρ-almost everywhere constant (independent of x [0]) since ρ is ergodic.

Proof:

a) asymptotically stable fixed point- Define the stability regionM of the asymp-

totically stable fixed point EP at the origin of the state space as

M =
{
x ∈ Rm : lim

n→+∞
f [x] = EP

}
(4.35)

The Borel σ-algebra of M that includes set {EP} can be defined as

β :=
{
{EP} ,

{
x(1),x(2), · · · ,x(i), · · · ,x(n)

}
, φ,M

}
(4.36)

The graphic interpolation of M is given in Figure 4.7.

Define the measure ρ as

ρ = δβ (EP) (4.37)

where δ (EP) is Dirac measure [57].
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Figure 4.7: β Borel σ-algebra of sets that includes {EP}

This Delta measure is a measure on the set β defined for a given x ∈ M and any

measurable set B ⊆ β by

δβ (B) =


1, x ∈ B

0, x /∈ B
(4.38)

This definition for probability measure ρ is in complete agreement with the definition

of the stable fixed point, considering that the ρ is the probability of staying in a

visited point forever.

The triple (M,β, ρ) constructs a probability measure space. Measure ρ is invariant

under the dynamical system (measure-preserving map) since

ρ
(
f−1 (x)

)
= ρ (x) (4.39)

The invariant probability measure ρ is ergodic [57] (indecomposable) because it cannot

be decomposed to others’ invariant probability measure such that

ρ = 1
2ρ1 + 1

2ρ2 where ρ1 6= ρ2 (4.40)
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Since both Pu and ∂f
∂xT in Eq. 4.32 are measurable maps, their composition, S [x],

is also measurable. In addition, due to the submultiplicative property (see Section

3.2.5) of the operator norm in Euclidean space

∑
M ln+ ‖S [x]‖ ρ (x) ≤∑

M ln+ ‖Pu‖ ρ (x) +∑
M ln+

∥∥∥ ∂f
∂xT

∥∥∥ ρ (x) <∞
(4.41)

Note that the orthogonal projection matrix is symmetric, and its spectral norm is

always one. Therefore, the logarithm of the spectral norm for the projection matrix

is zero.

By substituting the T function with the S function in Oseledec’s theorem, according

to his theorem, ΛSux[0] shown in Eq. 4.34, exists and the logarithm of the largest

eigenvalue of this matrix , λ(1)
Sux[0], is the modified Lyapunov exponent.

Moreover, in consequence of the Oseledec’s theorem the modified Lyapunov exponent

is independent of x [0] since ρ is ergodic.

b) attracting limit cycle- The proof of the theorem when the attractor is a limit

cycle is similar to the proof given above, however; in this situation the ergodic prob-

ability measure ρ is described by

ρ = 1
n0

n0∑
j=1

δβ (Γ) (4.42)

where

δβ (Γ) =


1, x [n+ j] ∈ Γ

0, x [n+ j] /∈ Γ
(4.43)
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Remark 1: Since λ(1)
Sux[0] is independent of the initial conditions, the reference to

a specific initial condition can be omitted, and it can be rewritten as λ(1)
Su. This

exponent is in fact the modified Lyapunov exponent, λSu, defined in Eq. 4.9 where

the subscript (1) has been omitted.

Remark 2: Although the theorem is expressed for systems with an exponentially

stable fixed point or an attracting limit cycle, it can be applied to the systems with

quasiperiodic attractor by defining the invariant ergodic measure ρ as the Haar mea-

sure [58].

Remark 3: The existence of the modified Lyapunov exponent is not restricted to

the type of the attractors; however, its independency from initial conditions depends

on the ergodic property of the probability measure ρ. Therefore, when a system has

strange attractors, a new ergodic probability measure ρ needs to be defined. The

definition of the portability measure depends on the attractors. For chaotic systems

the attractors may not have an open basin of attraction. Therefore, even a small

uncertainty, e.g., noise in calculation, may force the system to jump among several

attractors [57] which makes the definition of the probability measure a challenge

[57, 58].

Remark 4: In stability control design, the aim of the controller is to force specific

states to follow a desired trajectory by using an external energy source. Whenever

the dynamics include coupled states, the effects of the controller on the robustness

of other states need to be considered. If the effect of the controller on other states is

considered as a perturbation, the Example 1 and the Example 2 can be extended to

measure its effects on other states.
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4.3 Computation of Modified Lyapunov Exponent

To compute the modified Lyapunov exponent numerically, the continuous-time limit

in Eq. 4.5 needs to be discretized and expanded as

λSu = lim
n→+∞

1
nτ

n∑
m=1

ln ‖δxu [mτ ]‖
‖δxu [(m− 1) τ ]‖ (4.44)

where τ is the step size in seconds and n is the number of iterations. After a large

number of iterations, the limit in Eq. 4.44 can be approximated by

λSu ≈
1
nτ

n∑
m=1

ln ‖δxu [mτ ]‖
‖δxu [(m− 1) τ ]‖ (4.45)

The algorithm utilized to compute the modified Lyapunov exponent can be summa-

rized as follows:

Step 1: Set the maximum number of iterations k and the convergence accuracy as

the termination criteria, set the value of step-time τ for the continuous-time case,

and set n = 1.

Step 2: Select the specific vector u to produce the corresponding projection matrix

Pu.

Step 3: Select an arbitrary initial condition, and an arbitrary initial vector along

the predefined vector.

Step 4: Evolve Eq. 4.1 up to the next τ for the continuous time system, or Eq. 4.6

for the discrete-time system, and compute the corresponding new xu ((n+ 1) τ) and

δxu ((n+ 1) τ), or xu [n+ 1] and δxu [n+ 1].
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Step 5: Compute the modified Lyapunov exponent by the formula given in Eq. 4.10

or Eq. 4.11.

Step 6: Normalize the solution of the perturbation vector, dividing the vector by its

magnitude, which will result in the unit vector and set n = n+ 1.

Step 7: If the termination criterion is not satisfied, set up the next initial conditions

as


x (nτ)
δxu(nτ)
‖δxu(nτ)‖

for the continuous-time case, or


x [n]
δxu[n]
‖δxu[n]‖

for the discrete-time case

and go to the step 4. Otherwise go to the step 8.

Step 8: Recall the last computed exponent from step 5 as the approximation of the

modified Lyapunov exponent and go to the end.

As it can be seen, the solution of the perturbation vector is normalized to avoid

overflow in the numerical calculation as a result of the possible large divergence. This

normalization does not affect the value of the modified Lyapunov exponent because it

has been defined based on the length ratio of the perturbation vector after and before

evolving the linear transformation, and the linear transformation preserves this length

ratio.

4.4 Numerical Case Studies

In this section, various discrete-time and continuous-time nonlinear systems will be

considered, and their modified Lyapunov exponents for predefined projection matri-

ces will be computed. The example of the discrete-time systems is the Henon map

in a stable configuration. In the case of the continuous-time studies, the Lorenz sys-
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tem in the stable configuration and the Van der Pol system with the limit cycle are

considered. In addition to these well-known continuous nonlinear systems, the single-

track vehicle model is also studied as an engineering example. The corresponding

simulations in these case studies have been generated by MATLAB software, and the

fourth-order Runge-Kutta method has been employed as the solving method.

4.4.1 Discrete-time Systems

Henon Map

Henon map is one of the most famous nonlinear chaotic systems. It has two states

with coupling difference equations given in Eq. 4.46.
x [n+ 1] = y [n] + 1− a x2 [n]

y [n+ 1] = b x [n]
(4.46)

For constants a = 0.1 and b = 0.1, the Henon map converges to the fixed point (1, 0.1)

as shown in Figure 4.8.

In this case study, the orthogonal projection into the state x direction, given in Eq.

4.47, has been considered, and the corresponded modified Lyapunov exponent in this

stable configuration has been computed.

Px =

 1 0

0 0

 (4.47)

By setting the initial condition as (2, 2) and iterating the algorithm up to 1, 000 times,

the modified Lyapunov exponent converges to the value of λSx = −1.6092. The trend

of the convergence has been illustrated in Figure 4.9.
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Figure 4.8: Phase portrait of Henon map in the stable configuration, a = 0.1 and
b = 0.1, for three different initial conditions
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Figure 4.9: Evolution of the modified Lyapunov exponent, λSx , for Henon map in the
stable configuration

To exhibit the independence of the modified Lyapunov exponent from initial con-

ditions, numerous simulations with different initial conditions have been conducted.

The values of the modified Lyapunov exponent for some of those trials are reported

in Table 4.1.
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Table 4.1: Modified Lyapunov exponent computed for three different initial condi-
tions for Henon map with stable configuration

Initial conditions,
(x (0) , y (0)) λSx

(2, 2) −1.609164
(−1, 3) −1.609182
(1,−2) −1.609291

To explore the indication of the modified Lyapunov exponent as discussed in Example

1 (see Section 4.2.2) in the Henon map, the largest Lyapunov exponent is computed.

Figure 4.10 depicts the time evolution of the largest Lyapunov exponent for 10000

iterations.
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Figure 4.10: Evolution of the largest Lyapunov exponent, λ(1), for Henon map in the
stable configuration

The largest Lyapunov exponent, λ(1), converges to the value of −0.840135. The com-

parison between λ(1) = −0.840135 and λSx = −1.60929 suggests that for the Henon

map in the tangent space, the dynamics of the coupled dynamics in the direction of

the state x must be against the dynamics of the uncoupled part in that direction. In

addition, the effect of the uncoupled dynamics on the perturbation vector after the
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large number of iterations can be found from Eq. 4.20 as

lcn
l0

= e−0.840135n − e−1.60929n (4.48)

Since both λ(1) and λSx are negative, for large values of n Eq. 4.48 is equal to zero,

which means the growth of the perturbation vector in the tangent space is dominated

by the uncoupled dynamics in the direction of the state x.

To verify this claim, the Jacobian of the Henon map is given in Eq. 4.49.

JHenon =


−2 a x [n− 1] 1

b 0

 (4.49)

where a = 0.1 and b = 0.1. After a large number of iterations where the states are

very close to the equilibrium point (x = 1, y = 0.1), the Jacobian matrix will be

JHenon =


−0.2 1

0.1 0

 (4.50)

The element J11 shrinks the x component of the perturbation vector at the instant

n− 1 and keeps it in x component of the perturbation vector at the instant x while

the element J12 adds the exact value of the y component of the perturbation vector

at the instant n − 1 to the x component of the perturbation vector at the instant

n. Therefore, the dynamics due to the J12 acts almost against the shrinking of

the perturbation vector due to J11 as it was claimed by the comparison between

λ(1) and λSx. However, the negative largest Lyapunov exponent indicates that the
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perturbation vector shrinks in the overall. Therefore, it can be claimed that the

average growth rate of the perturbation vector is dominated by the dynamics due to

the J11 element.

4.4.2 Continuous-time Systems

Lorenz System

The Lorenz system is a continuous-time nonlinear system which consists of three

ordinary differential equations as given in Eq. 4.51.

ẋ = σ (y − x)

ẏ = rx− y − xz

ż = −bz + xy

(4.51)

To extend the study on Lorenz system, three projection matrices, Eq. 4.52, Eq.

4.53, Eq. 4.54, are defined and their corresponded modified Lyapunov exponent are

computed.

Px =


1 0 0

0 0 0

0 0 0

 (4.52)

Pu′ =


0.3333 0.3333 0.3333

0.3333 0.3333 0.3333

0.3333 0.3333 0.3333

 (4.53)
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Pxy =


1 0 0

0 1 0

0 0 0

 (4.54)

Here, Px projects to the direction along x state, Pu′ projects to the u′ given in Eq.

4.55, and Pxy projects to the x− y plane.

u′ =


1

1

1

 (4.55)

For the values of r < 1 , the Lorenz system has only one stable fixed point in the

origin. The Lorenz parameters are selected as σ = 14, r = 0.5, and b = 3. The

trajectories of this Lorenz system for three different initial conditions are shown in

Figure 4.11.
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Figure 4.11: Phase portrait of Lorenz system in stable configuration, σ = 14, r = 0.5,
and b = 3, for three different initial conditions

To find three modified Lyapunov exponents, λSx, λSu′ , and λSxy, select an arbitrary

initial condition such as (10, 1, 2), set τ = 0.01 s and run the algorithm. After
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sufficiently long time (4096 seconds), the modified Lyapunov exponents are λSx =

−14, λSu′ = −1.1676, and λSxy = −0.4824.

The time history of λSx has been plotted in Figure 4.12(a). It is notable that in this

case, the corresponding modified Lyapunov exponent is simply the minus value of

σ = 14. The reason is that for a perturbation vector in the tangent space along the

x state, the dynamic equations of the projected system reduced to

δẋ′ = −σ δx′ (4.56)

Figure 4.12(b) illustrates the convergence trend for λSu′ and Figure 4.12(c) shows the

time evolution of λSxy.

These modified Lyapunov exponents were computed for the specific initial condition;

however, as addressed before, they are independent from the selected initial condi-

tions. To demonstrate this invariant property, the values of modified Lyapunov ex-

ponents for a large number of different initial conditions have been computed. Three

sets of those initial conditions and their correspond modified Lyapunov exponents are

given in Table 4.2. It can be seen that the modified Lyapunov exponents converge

approximately to the same values.
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Figure 4.12: Evolution of the modified Lyapunov exponent for Lorenz system in stable
configuration for (a) λSx, (b) λSu′ , and (c) λSxy

To demonstrate the indication of the modified Lyapunov exponent as discussed in

Example 2 (see Section 4.2.2) in Lorenz system, the largest Lyapunov exponent is

computed and its time history for 4096 seconds is given in Figure 4.13. The largest

Lyapunov exponent converges to the value of −0.4827 that is almost identical to the

value of λSxy. It suggests that the dynamics along the z direction have a negligible
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Table 4.2: Modified Lyapunov exponents computed for three different initial condi-
tions in Lorenz system with stable configuration

Initial conditions,
(x (0) , y (0) , z (0)) λSx λSu′ λSxy

(10, 1, 2) −14 −1.16673 −0.48236
(5, 4, 3) −14 −1.16668 −0.48269

(−3, 4, 3) −14 −1.16661 −0.48269

effect on the asymptotic behaviour of the perturbation vector as it traverses the

tangent space.

Figure 4.13: Evolution of the largest Lyapunov exponent for Lorenz system in the
stable configuration

To justify this statement, the Jacobian matrix for Lorenz system is given in Eq. 4.57.

JLorenz =


−σ σ 0

r − z −1 −x

y x −b

 (4.57)

When t→∞, the states are close to the equilibrium point at (0, 0 , 0) and JLorenz is

JLorenz =


−σ σ 0

r −1 0

0 0 −b

 (4.58)
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From Eq. 4.58, it can be seen that the dynamic along the z state only affects the

z-component of the perturbation vector as t→∞. Moreover, the dynamics along the

x state and the y state directions do not affect the z-component of the perturbation

vector. Since b has the positive value of 3, the z-component of the perturbation vector

is continuously shrinking and its effect on the value of the largest Lyapunov exponent

is negligible.

Projection to the x − y plane is equivalent to considering the dynamic subsystem

that only includes the dynamics along the states x and y directions. In this special

case, the modified Lyapunov exponent is the largest Lyapunov exponent of the xy

subsystem computed by the method proposed in [4]. In fact, if the left projection,

Πl, and right projection, Πr, in [4] are considered as given in Eq. 4.59 and Eq. 4.60,

Πl =


1 0 0

0 1 0

 (4.59)

Πr =



1 0

0 1

0 0


(4.60)
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then the complete projection matrix, Πc, in [4] is

Πc = Πl Πr =



1 0 0

0 1 0

0 0 0


(4.61)

which is equivalent to the projection matrix Pxy in this study.

On the other hand, considering the definition of the conditional Lyapunov exponent in

[36], the modified Lyapunov exponent in this special case is equivalent to the largest

conditional Lyapunov exponent corresponding to the xy subsystem of the Lorenz

system. It is notable to mention that the work in [36] or [4] is a special case of the

work presented in this thesis when the vector u is considered along a state direction

or the dynamics is projected into the subspace spanned by the state vectors.

Van der Pol System

The normalized form of the Van der Pol equation is given in Eq. 4.62.


ẋ = y

ẏ = −x− (x2 − γ) y
(4.62)

For positive parameters γ > 0 the Van der Pol equation produces attracting limit

cycles. Figure 4.14 demonstrates the phase portrait of the Van der Pol equation

when γ = 0.5 for three different initial conditions.
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Figure 4.14: Phase portrait for Van der Pol system with an attracting limit cycle,
γ = 0.5, for three different initial conditions

To prove that Van der Pol system has a stable limit cycle when γ = 0.5, the spectrum

of the Lyapunov exponents, λ(1) and λ(2), are computed. The time histories for

these two Lyapunov exponents are given in Figure 4.15. It can be seen that the

largest Lyapunov exponent, λ(1), converges to zero and the second Lyapunov exponent

converges to −0.7314. The zero exponent is the indication of the existence of the limit

cycle.
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Figure 4.15: Evolution of the Lyapunov exponents, (a) λ(1) and (b) λ(2), for Van der
Pol system with a attracting limit cycle, γ = 0.5

In following the modified Lyapunov exponent along the vector u′′ in Eq. 4.63 with

corresponded orthogonal projection matrix Pu′′ in Eq. 4.64 will be computed.

u′′ =

 1

1

 (4.63)

Pu′′ =

 0.5 0.5

0.5 0.5

 (4.64)

Running the algorithm for 4096 seconds with step size τ = 0.01s for the initial

condition (0.5, 0.5), the corresponding modified Lyapunov exponent turned out to be

λSu′′ = −0.2536. The time evolution of this exponent is shown in Figure 4.16. Since

the modified Lyapunov exponent has the negative value, it can be concluded that the
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perturbation vector along the direction of the vector u′′ shrinks as it is evolved by

the corresponding projected dynamics.
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Figure 4.16: Evolution of the modified Lyapunov exponent for Van der Pol system
with an attracting limit cycle, γ = 0.5

To demonstrate that the modified Lyapunov exponent is independent of initial con-

ditions, λSu′′ has been computed for different initial conditions. Table 4.3 reports the

results for three of those that demonstrate the independency from the starting point.

Table 4.3: Modified Lyapunov exponent computed for three different initial condi-
tions in Van der Pol system with an attracting limit cycle

Initial conditions,
(x (0) , y (0)) λSu′′

(0.5, 0.5) −0.25358
(1, 2) −0.25397

(−2,−1) −0.25389

Bicycle Vehicle Model

In this study, a bicycle vehicle model with nonlinear tires and constant longitudinal

velocity in steady-state cornering is considered [43].
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The final set of equations for the single-track vehicle model is given in Eq. 4.65.



v̇y =
−2Caf cos(δf)

(
vy+lf r
vx

−δf
)[

1+kf
(
vy+lf r
vx

−δf
)2
]

m

−
2Car

(
vy−lrr
vx

)[
1+kr

(
vy−lrr
vx

)2
]

m
− vxr

ṙ =
−2Caf lf cos(δf)

(
vy+lf r
vx

−δf
)[

1+kf
(
vy+lf r
vx

−δf
)2
]

Iz

+
2Carlr

(
vy−lrr
vx

)[
1+kr

(
vy−lrr
vx

)2
]

Iz

(4.65)

The values of the model parameters as given in Table 4.4 are taken from [43].

Table 4.4: Single-track vehicle model data

Parameters Nominal Values
Cαf 57300 [N/rad]
Cαr 57300 [N/rad]
kf 4.87
kr 4.87
lf 1.37 [m]
lr 1.86 [m]
Iz 6550 [kg ·m2]
m 2527 [kg]
vx 20 [m/s]
δf 5o

In the steady-state cornering with δf = 5o, the vehicle model has an equilibrium

point located at the point (−0.729, 0.368) as shown in Figure 4.17. In this figure,

the phase portraits for three different initial conditions are also plotted. It can be

seen that the states attract asymptotically to the equilibrium point regardless of the

started initial conditions. To prove that this equilibrium point is stable, the spectrum

of the Lyapunov exponents, λ(1) and λ(2), are computed. The time histories for these
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two Lyapunov exponents are given in Figure 4.18. It can be seen that both of them

have the negative value −4.1269.

Since both Lyapunov exponents are negative, the equilibrium point is exponentially

stable and all the disturbances initiated in its domain of attraction will be damped

asymptotically.

To demonstrate the concept of the modified Lyapunov exponent in the single-track

vehicle model, the modified Lyapunov exponents for the dynamics along different

directions are computed. These directions include the vy state direction, r state

direction, r = vy, and r = −vy directions with corresponded projection matrices

given in Eq. 4.66 to Eq. 4.69.

Pvy =

 1 0

0 0

 (4.66)

Pr =

 0 0

0 1

 (4.67)

Pr=vy =

 0.5 0.5

0.5 0.5

 (4.68)

Pr=−vy =

 0.5 −0.5

−0.5 0.5

 (4.69)

To compute the modified Lyapunov exponents, λSvy , λSr, λSr=vy , and λSr=−vy , an ar-

bitrary initial condition (0.5, 0.1) is selected. By running the algorithm up to the 4096

seconds with the step size τ = 0.01 s, the modified Lyapunov exponents corresponding
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to the selected directions converge to the values of λSvy = −4.0425, λSr = −4.2113,

λSr=vy = −13.2578, and λSr=−vy = +5.0039. The time histories of these modified

Lyapunov exponents are shown in Figure 4.19.

Again, to show that the modified Lyapunov exponents are independent of the selected

initial conditions, the values of the modified Lyapunov exponents for different initial

conditions have been computed. Table 4.5 demonstrates three sets of those initial

conditions. It can be seen that regardless of the starting point the corresponded

modified Lyapunov exponents converge to the same values.

Table 4.5: Modified Lyapunov exponents computed for three different initial condi-
tions of the single-track vehicle model in the steady-state cornering with δf = 5o

and vx = 20 m/s

Initial conditions,
(vy (0) , r (0)) λSvy λSr λSr=vy λSr=−vy

(0.5, 0.1) −4.04250 −4.21129 −13.25776 +5.00396
(1,−0.5) −4.04252 −4.21130 −13.25779 +5.00397

(−0.5, 0.3) −4.04248 −4.21127 −13.25776 +5.00398

4.5 Summary

In this chapter, the conventional Lyapunov exponents have been modified, which

can reveal the average exponential divergent or convergent rate in specific directions

that are driven by the dynamics in the corresponding directions. The existence and

invariance of the proposed exponents have been proven rigorously. Note that although

the proof, i.e., defining an ergodic probability measure, is restricted to the system with
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an equilibrium point or an attracting limit cycle, the Haar measure [58] can be used

directly for the proof of systems with quasiperiodic attractors. However, to extend

the proof to chaotic systems, a new ergodic probability measure must be proposed,

which is a well-known challenging problem and is outside the scope of this work.

An algorithm for calculating the modified Lyapunov exponents has also been devel-

oped. Various case studies have been presented to demonstrate the modified expo-

nents. Through the case studies, the indications of the modified Lyapunov exponents

have been explored. It was also demonstrated that the previous work on conditional

Lyapunov exponents of sub-dynamic systems [4, 36] are special cases of the modified

Lyapunov exponents proposed here.

Although the research is in its infancy, it has great potential for nonlinear system anal-

ysis and stability control. The proposed modified Lyapunov exponents can provide

insights into nonlinear dynamics additional to those from conventional exponents,

such as the asymptotic behaviours along specific directions, which are driven by the

dynamics in the corresponding directions. The modified exponents can contribute to

the identification of the dominant sub-systems, as discussed in the case studies. The

information about the dominant sub-systems can be crucial for stability or chaotic

control design [36]. Successful identification of dominant sub-systems can also be

used to reduce the computational load required for calculating Lyapunov exponents

[4].
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Figure 4.17: Phase portrait for the single-track vehicle model in steady-state cornering
with δf = 5o and vx = 20 m/s, for four different initial conditions
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Figure 4.18: Evolution of the Lyapunov exponents, (a) λ(1) and (b) λ(2), for single-
track vehicle model in the steady-state cornering with δf = 5o and vx = 20 m/s

85



4.5. SUMMARY

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−4.5

−4

−3.5

Time [Second]

λ
S

v
y

(a)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−5

−4.5

−4

Time [Second]

λ
S

r

(b)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−13.8

−13.6

−13.4

−13.2

Time [Second]

λ
S

r
=

v
y

(c)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
4.5

5

5.5

Time [Second]

λ
S

r
=

−
v

y

(d)

Figure 4.19: Evolution of the modified Lyapunov exponent for single-track vehicle
model in the steady-state cornering with δf = 5o and vx = 20 m/s for ( a) λSvy , (b)
λSr, (c) λSr=vy , and (d) λSr=−vy
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Chapter 5

Lyapunov Stability Analysis of the

Vehicle Model in Plane Motion

5.1 Overview

In this chapter1, by imposing the disturbance to the initial conditions, the concept of

Lyapunov exponents is employed to investigate the system stability of the disturbed

vehicle model reviewed in Section 3.3.2. After simplifying the vehicle model in Section

5.2, the stability of the vehicle model in the straight-line motion when vx = 20m/s is

discussed in Section 5.3 followed by estimating the phase-space stability region in

which the vehicle model remains stable by the Lyapunov’s second method in Section

5.3.1 and the concept of Lyapunov exponents in Section 5.3.2. Then, in Section

5.4, the effects of driving conditions such as the longitudinal velocity, road friction

coefficient, and steering angle on the stability regions are investigated.
1Results of this chapter are published in [63–65].
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5.2 Bicycle Vehicle Model

In this study, the well-known bicycle vehicle model, introduced in Section 3.3.2, with

2-DOF (the yaw rate and the lateral velocity) and the nonlinear tire forces are con-

sidered. The dynamic equations based on the lateral speed, vy, and the yaw rate, r,

have been represented from Eq. 3.43 in Section 3.3.2 as

v̇y = 1
m

(2 Fyf cos δf + 2 Fyr)− vxr

ṙ = 1
Iz

(2 lfFyf cos δf − 2 lrFyr)

(5.1)

The following assumptions are made to the vehicle model of this study:

• The vehicle lateral speed, vy, and the yaw rate, r, are relatively small in compar-

ison with the vehicle longitudinal velocity, vx [8]. Thus, the linear relationship

among the tire sideslip angles, lateral velocity, and yaw rate as given in Eq. 5.2

and Eq. 5.3 is valid for the front and the rear axels.

αf = tan−1
(
vy + lfr

vx

)
− δf ≈

vy + lfr

vx
− δf (5.2)

αr = tan−1
(
vy − lrr
vx

)
≈ vy − lrr

vx
(5.3)

• The front and the rear sideslip angles, αf and αr , are small enough that the

nonlinear behaviour of the tire lateral force can be expressed by the third-order

polynomial tire model [43, 44]. Therefore, the tire lateral force for the front and

the rear axles is related to the corresponding tire sideslips as given in Eq. 5.4

and Eq. 5.5 as
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Fyf = −Cαf
(
αf − kfα3

f

)
(5.4)

Fyr = −Cαr
(
αr − krα3

r

)
(5.5)

where kf and kr are parameters associated with the nonlinear dependence of the

lateral force to the sideslip angle for the front and the rear tires [43, 44].

When Eq. 5.2 to Eq. 5.5 are combined with Eq. 5.1, the governing nonlinear

equations of the vehicle model can be rewritten as



v̇y =
−2Cαf cos(δf)

[
(vy+lf r)/vx−δf

](
1+kf

[
(vy+lf r)/vx−δf

]2
)

m

−
2Cαr[(vy−lrr)/vx]

(
1+kr[(vy−lrr)/vx]2

)
m

− vxr

ṙ =
−2Cαf lf cos(δf)

[
(vy+lf r)/vx−δf

](
1+kf

[
(vy+lf r)/vx−δf

]2
)

Iz

+
2Cαrlr[(vy−lrr)/vx]

(
1+kr[(vy−lrr)/vx]2

)
m

(5.6)

This vehicle model is a nonlinear system. The stability properties of the vehicle model

governed by Eq. 5.6 with parameter values of a full-size American automobile [43, 44],

given in Table 5.1, proceed in the following sections.
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Table 5.1: Vehicle model parameters

Parameter Value
Cαf 57300 N/rad

Cαr 57300 N/rad

kf 4.87
kr 4.87
Iz 6550 kg.m2

m 2527 kg
lf 1.37 m
lr 1.86 m

5.3 Stability Analysis of the Vehicle Model in Straight-

line Motion

Equations of the straight-line motion of the vehicle model, given in Eq. 5.7, can be

attained by substituting δf = 0o into Eq. 5.6.



v̇y =
−2Cαf

[
(vy+lf r)/vx

](
1+kf

[
(vy+lf r)/vx

]2
)

m

−
2Cαr[(vy−lrr)/vx]

(
1+kr[(vy−lrr)/vx]2

)
m

− vxr

ṙ =
−2Cαf lf

[
(vy+lf r)/vx

](
1+kf

[
(vy+lf r)/vx

]2
)

Iz

+
2Cαrlr[(vy−lrr)/vx]

(
1+kr[(vy−lrr)/vx]2

)
m

(5.7)

The Lyapunov’s stability analysis of a non-linear dynamic system should start with

obtaining equilibrium points. Recalling the method from [43], in which the non-linear

equations v̇y = 0 and ṙ = 0 have been solved simultaneously, five equilibrium points

are given in Table 5.2. Since in the straight-line motion any non-zero steady-state
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values for yaw rate and lateral velocity are meaningless, the stability analyses of the

non-zero equilibrium points are omitted and only the stability of the equilibrium point

located at the origin is discussed.

Table 5.2: Equilibrium points of the vehicle model

Equilibrium point (vy, r)
1 (0, 0)
2 (−6.02, 0.68)
3 (6.02, −0.68)
4 (−9.06, 0)
5 (9.06, 0)

5.3.1 Stability Analysis of the Vehicle Model in the Straight-

line Motion by Lyapunov’s Direct Method

The Lyapunov’s direct method has a great potential to analyze non-linear systems.

In this part, this method will be applied to analyze the vehicle lateral stability in a

straight-line motion with constant longitudinal velocity. Finding a Lyapunov function

is always a difficult task and sometimes impossible. To construct a new Lyapunov

function, a modified kinetic energy function recalled from [44] is considered as an

initial guess. For the vehicle model with parameters in Table 5.1, this function is

expressed in Eq. 5.8.

V1 = 0.0265v2
y + 1.1664r2 (5.8)

The largest possible stability boundary corresponding to Eq. 5.8 is depicted by the

green ellipse in Figure 5.1. The position of the equilibrium points in the phase plane
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is indicated by cross symbols. In Figure 5.1, since two equilibrium points (numbers 2

and 3) are close to the stability boundary, it seems impossible to find a bigger stability

region based on the same form of the V1 function. On the other hand, if the ellipse

rotates counter clockwise to get far from these two equilibrium points, the expansion

of the stable area appears to be possible. This rotation can be achieved by adding a

factor of vr term in Eq. 5.8. After some trial and error on selecting the coefficients,

the proposed Lyapunov function candidate, expressed in Eq. 5.9, is obtained.

V2 = 1
16v

2
y −

1
4vyr + r2 (5.9)
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Equation 5.10 presents a quadratic expression of Eq. 5.9. Since the coefficient matrix

P is a positive definite, V2 is positive definite and satisfies the first condition for a

Lyapunov function.

V2 = XTPX =

 vy

r




1
15 −1

8

−1
8 1

 [ vy r

]
(5.10)
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The time derivative of V2 is given by

V̇2 = ẊTPX + XTPẊ (5.11)

The method implemented in [43] is used here to find the border of the region in

which V̇2 is negative definite. This border is shown by dotted line in Figure 5.1. It

shows that the second condition for a Lyapunov function is satisfied inside the dotted

border. Then, the largest stable region corresponding to proposed Lyapunov function

in Eq. 5.9 can be found by fitting the largest V2 = cte inside the V̇2 < 0 area as

illustrated by the blue ellipse in Figure 5.1.

The stability region associated with the proposed Lyapunov function is larger than

those proposed in [43] and [44]. A larger stability region is achieved because the

proposed Lyapunov function is not explicitly a function of the vehicle parameters.

Thus, unlike previous works [43, 44], it is possible to estimate a larger stability region

by modifying the Lyapunov function coefficients.

The interpretation of the stability region in Figure 5.1 is that if the states of the

disturbed vehicle model remain inside this area, it will certainly return to the steady-

state situation. If the disturbed vehicle model goes outside of the stability region, no

conclusion can be made.

In fact, the exact vehicle stability region is ideally demanded for vehicle stability

analysis. In this regard, the fundamental advantage of applying Lyapunov’s direct

method arises from the fact that the Lyapunov function is an ‘invariant’ measure of

the stability. For example, it is independent of initial conditions, i.e., there is no need

to solve the system equations. On the other hand, when Lyapunov’s direct method is
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applied to the stability analysis of a dynamical system, there is no guaranty to find

a Lyapunov function. Furthermore, if a Lyapunov function is hopefully obtained,

the size of the associated stability region is dominated by that Lyapunov function,

and it is always just a fraction of the overall stability region. The absence of the

constructive technique to find a Lyapunov function makes it extremely difficult to

apply Lyapunov’s direct method to complex vehicle models. Therefore, researchers

are forced to simplify the models in order to derive a Lyapunov function. These

simplifications restrict the validation of a model for some critical maneuvers. For

examples, the constant longitudinal velocity is valid only for low-lateral acceleration

maneuvers; during high-lateral acceleration maneuvers, due to the extreme yaw rate,

the desired vehicle speed may not be achievable even with full throttle [39]. The

tire sideslip approximation is only valid for high longitudinal velocity and the third-

order tire polynomial model is not valid for the range of large tire slip [40]. Moreover,

Lyapunov’s direct method is only feasible for lateral stability analysis of the vehicle in

a simple straight-line motion, but the lateral stability of the vehicle during cornering

is more crucial. Therefore, a constructive ‘invariant’ measure of the stability for

more realistic vehicle models and more critical maneuvers would be important and

challenging and will be studied in future.

5.3.2 Stability Analysis of the Vehicle Model in Straight-line

Motion by the Concept of Lyapunov Exponents

Since the nonlinear equations describing the vehicle model have two states, two Lya-

punov exponents exist. For calculating these two Lyapunov exponents, the initial
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conditions are chosen as r0 = 0.1rad/s and vy0 = 1m/s. Selecting the time-step size

τ to be 0.001s and iterating the standard method 100, 000 times, the first exponent

converges to −6.616 and the second one converges to −6.661. Here, it is considered

that the convergent exponent is achieved if the change in the numerical values of the

exponent between the two subsequent steps is within 10−3. The time history of these

exponents is illustrated in Figure 5.2. All negative exponents indicate that the vehicle

model is exponentially stable about the origin equilibrium. Figure 5.3 displays the

system trajectory in the phase plane for the given initial conditions. It shows how

the states of the vehicle model converge to the stable fixed point at the origin of the

phase plane. The time evaluations of the system states are also shown in Figure 5.4.

It can be seen that both states approach to zero since the system is stable.
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Figure 5.2: Vehicle model Lyapunov exponents in the straight-line motion
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Figure 5.3: Vehicle model trajectory for initial conditions r0 = 0.1 rad/s and vy0 = 1m/s
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Figure 5.4: Time evolution of the states of the disturbed vehicle model in the straight-
line motion

Lateral stability region of the vehicle model in a straight-line motion

For all trajectories starting from arbitrary initial conditions in the same stability

domain, the Lyapunov exponents have the same values [29]. This property makes it

possible to estimate the stability region. To estimate such a stability region, the vy−r

phase-plane is meshed into small areas. The size of each area is 0.05m/s × 0.05rad/s.

Then, the Lyapunov exponents of an arbitrary point in each segment are calculated.

The union of those areas that have the same negative exponents constructs the lateral
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stability region [66]. The boundary of the estimated stability region, found by this

method, is illustrated by the blue curve in Figure 5.5. For each disturbance inside this

border, the vehicle model is exponentially stable and will return to its stable fixed

point. The boundary of the lateral stability region given by the proposed Lyapunov

function in Section 5.3.1 is also shown by the green curve in Figure 5.5. This is

the largest lateral stability region found by the Lyapunov’s direct method for this

particular vehicle model. In the case of Lyapunov’s direct method, the size of the

stability region is dictated by the specific Lyapunov function, and it is often just the

fraction of the overall stability region. For this particular vehicle model, it is quite

obvious that the stability boundary extracted by the Lyapunov function is only a

portion of the stability region found by the concept of Lyapunov exponents. Here,

the lateral stability region which has been obtained by the concept of Lyapunov

exponents overlaps with the complete lateral stability region found by the simulation

in [43]. For each initial condition outside this area, the calculation of the Lyapunov

exponents failed since the solution of the equations approaches infinity. This is the

interpretation of the fact that for disturbances outside of this region, the assumption

of the constant longitudinal velocity cannot be satisfied even with full throttle as

discussed in [39].
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Figure 5.5: Lateral stability region of the vehicle model in the straight-line motion

5.4 Investigating the Effects of Driving Conditions

on the Lateral Stability Region Using the Con-

cept of Lyapunov Exponents

The lateral stability region of the vehicle model can be deformed due to the vehicle

characteristics such as weight disturbance and driving conditions. Since the effect of

driving conditions on the lateral stability region is significant [40], in this subsection

the effects of these conditions on the lateral stability region are presented separately.

5.4.1 Effects of the Longitudinal Velocity on the Lateral Sta-

bility Region

To investigate the effect of the longitudinal velocity on the stability region, the vehicle

model in (Eq. 5.6) is supposed to be driven on a straight-line on a dry road (µ = 1)
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at different constant longitudinal velocities. The lateral stability regions for different

constant velocities are illustrated in Figure 5.6. The longitudinal velocities between

15m/s to 50m/s are marked on the vertical axis, and their associated lateral stability

regions are shown by colourful regions from blue to green. For better demonstration,

the projection of the lateral stability regions on planes A, B, and C are also illustrated

(see Figure 5.6). As the value of the longitudinal velocity increases, the stability region

starts to expand in the lateral velocity direction (see plane C) and to shrink in the

direction of the yaw rate (see plane B). This means the vehicle model is less robust

to the yaw rate if it is driven at a high constant longitudinal velocity. It can also

be seen that the value of the longitudinal velocity does not affect the position of the

equilibrium point in the phase plane of the vehicle model.
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Figure 5.6: Effects of the longitudinal velocity, vx, on the lateral stability region
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5.4.2 Effects of the Road Friction Coefficient on the Lateral

Stability Region

Since the vehicle moves due to the tractive force between the road and the tires, the

friction coefficient of the ground contact point plays an important role in its lateral

stability. The lateral force between the tires and the road can be formulated as the

multiplication of the tire normal load and the coefficient of the friction (Fy = µN).

Therefore, the coefficient of the friction has direct relation with the tire lateral force.

To investigate how the coefficient of the friction can change the lateral stability region,

the vehicle model is driven on a straight-line at the constant longitudinal velocity

(vx = 20 m/s) with the friction coefficient in the range of 0.1 to 1.

In Figure 5.7, the lateral stability regions associated with different road friction coef-

ficients, shown in the vertical direction, are depicted. The colour changes from blue

to green as the road friction increases. The effects of the friction coefficient on lateral

stability regions in the direction of the yaw-rate and the lateral velocity are shown

by projections of the lateral stability regions on planes B and C, respectively. It can

be found that the stability region mostly shrinks in the direction of the yaw rate (see

the plane B) due to the decrease in the friction coefficient. On the other hand, the

lateral stability region seems to be insensitive in the direction of the lateral velocity

by the changes in the friction coefficient (see plane C). It can also be observed that

like the longitudinal velocity case, the coefficient of the friction does not change the

location of the stable equilibrium point on the vehicle model phase plane.
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Figure 5.7: Effects of the friction coefficient between tires and ground, µ, on the
lateral stability region

5.4.3 Effects of the Steering Angle on the Lateral Stability

Region

In this case, the vehicle model is driven at the constant longitudinal velocity (vx =

20 m/s) around dry circular tracks (µ = 1) with different curvatures. Since the vehicle

model moves along a curve, at the steady-state condition, the lateral velocity and

yaw rate are non-zero. Therefore, unlike the two other driving conditions, the steering

angle input changes the position of the equilibrium point on the phase plane. In Figure

5.8, the lateral stability regions for positive and negative steering angles, indicated on

the vertical axis, are shown. For better illustration, the projections of these lateral

stability regions on planes A, B, and C are also demonstrated. It can be realized (see

planes B and C) that the lateral stability regions start to shrink as the steering angle

becomes larger. Furthermore, the stable equilibrium point moves to the boundary

(see planes B and C) as the value of the steering angle increases. It means that the
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vehicle model is generally less robust to the disturbance when it is driven on a sharp

circular path.
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Figure 5.8: Effects of the steering angle, δf , on the stability region, (a) negative steer
angles, and (b) positive steer angles

5.5 Structural Stability Analysis of the Vehicle Model

Structural stability is another important property of a dynamic system. In this sec-

tion, the above driving conditions are treated as system parameters and are disturbed.

The stability region associated with the vehicle model parameters is given in Figure

5.5.1. In Section 5.5.2, the largest Lyapunov exponent of the vehicle model is used

to investigating the convergence rate of the disturbed vehicle model to its stable

condition.
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5.5.1 Stability Region of the Vehicle Model

The stability region gives the ranges of the system parameters in which the stability

of the vehicle model is guaranteed. As long as the largest Lyapunov exponent is neg-

ative, the system is exponentially stable. Therefore, the sign of the largest Lyapunov

exponent is the key to investigate the structural stability of a system.

To find the ranges of the driving conditions in which the stability of the vehicle

model is guaranteed, the largest Lyapunov exponent for different vehicle parameters

is calculated. Figure 5.9 shows part of the stability region. Here, it is supposed that

the steering angle, longitudinal velocity and road friction coefficient vary from −18o

to 18o, 15 m/s to 50 m/s, and 1 to 0.1, respectively. The step sizes are equal to 0.5o for

the steering angle, 1 m/s for the longitudinal velocity, and −0.05 for the coefficient of

friction. From Figure 5.9, it can be found that if the vehicle is driven in conditions

belong to this stability region, the largest Lyapunov exponent is negative and the

vehicle model is exponentially stable. The colourful map in Figure 5.9 shows how the

absolute value of the largest Lyapunov exponents decreases as the driving conditions

approach to the edges. Figure 5.9 only shows part of the stability region. Determining

the entire stability region is important, but beyond the scope of this work.

5.5.2 Largest Lyapunov Exponent as Convergence Rate of

the Disturbed Vehicle Model to its Stable Fixed Point

The sum of the Lyapunov exponents indicates the time-averaged divergence of the

phase space velocity for a dynamic system [30]. Thus, the value of the largest Lya-
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Figure 5.9: Stability region of the vehicle model

punov exponent for a dynamic system with all negative Lyapunov exponents is a qual-

itative measurement for the convergence rate in which the disturbed system returns

to its stable fixed point in the phase plane. In this section, this idea is investigated

for the vehicle model.

Example 1: Disturbed Vehicle Model Convergence Rate to its Stable Fixed

Point for Particular Steering Angles

In the first example, for a particular value of the steering angle, the largest Lyapunov

exponent of the vehicle model with different longitudinal velocities and road friction

coefficients are calculated. Figure 5.10 illustrates the bifurcation diagram of the

largest Lyapunov exponent for the steering angle equal to: a) δf = 0o, b) δf = ±5o,
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c) δf = ±10o, and d) δf = ±15o. Here, the longitudinal velocity is in the range of

15 m/s to 50 m/s with an increment of 1 m/s at each step. The coefficient of friction

starts from 0.1, increments 0.05 until it reaches the maximum value of 1. Comparing

Figures 5.10(a) to Figure 5.10(d), it can be seen that for a particular pair of the

longitudinal velocity and the coefficient of friction, e.g., vx = 15 m/s and µ = 1, as the

steering angle increases the absolute value of the largest Lyapunov exponent decreases

and therefore, the convergence rate to the stable fixed point in the phase plane will

decrease.

Example 2: Disturbed Vehicle Model Convergence Rate to its Stable Fixed

Point for Particular Longitudinal Velocities

In this example, for particular values of the longitudinal velocity equal to a) vx =

20 m/s, b) vx = 30 m/s, c) vx = 40 m/s, and d) vx = 50 m/s as shown in Figure 5.11, the

largest Lyapunov exponents of the vehicle model for different steering angles and road

friction coefficients are calculated. In this figure, the friction coefficient is changed

from 0.1 to 1 with the step size of 0.05, and the steering angle is changed from −18o

to 18o with the step size of 0.5o. Each Figure from 5.11(a) to 5.11(d) separately

shows how the largest Lyapunov exponent varies with the steering angle or/and road

friction. Comparing Figures 5.11(a) to Figure 5.11(d), it can be realized that for

the same steering angle and the road friction coefficient, the disturbed vehicle model

has lower convergence rate to its stable fixed point when it is driven at a higher

longitudinal velocity.
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Figure 5.10: Ranges of longitudinal velocities, vx, and friction coefficients, µ, in which
the stability of the vehicle model is guaranteed while the steering angle, δf , is equal
to (a) δf = 0o, (b) δf = ±5o, (c) δf = ±10o, and (d) δf = ±15o

Example 3: Disturbed Vehicle Model Convergence Rate to its Stable Fixed

Point for Particular Road Friction Coefficients

To investigate the effects of the steering angle and the longitudinal velocity on the

convergence rate, it is assumed that the vehicle model is driven on the road with

different coefficients of friction as: a) µ = 1, b) µ = 0.7, c) µ = 0.5, and d) µ = 0.3.

In Figure 5.12, the maps of the largest Lyapunov exponents in these conditions are
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Figure 5.11: Ranges of steering angles, δf , and friction coefficients, µ, in which the
stability of the vehicle model is guaranteed while the longitudinal velocity, vx, is equal
to: (a) vx = 20 m/s, (b) vx = 30 m/s, (c) vx = 40 m/s, and (d) vx = 50 m/s

depicted. In this figure, the steering angle and the longitudinal velocity vary from

−18o to 18o and 15 m/s to 50 m/s, respectively. The step size associated with the

steering angle is 0.5o and with the longitudinal velocity is 1 m/s. It can be found that

in each condition as the steering angle increases or longitudinal velocity increases,

the absolute value of the largest Lyapunov exponents decreases and therefore, the

convergence rate of the disturbed vehicle model to return to its stable fixed point will
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decrease. The comparison among Figures 5.12(a) to 5.12(d) shows that for the same

conditions of the steering angle and longitudinal velocity of the vehicle model, the

absolute value of the largest Lyapunov exponent becomes smaller as the coefficient

of friction decreases. This can be interpreted as the lower convergence rate of the

disturbed vehicle model in slippery roads.
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Figure 5.12: Ranges of steering angles, δf , and longitudinal velocity, vx, in which the
stability of the vehicle model is guaranteed while the coefficient of friction, µ, is equal
to: (a) µ = 1, (b) µ = 0.7, (c) µ = 0.5, and (d) µ = 0.3
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5.6 Summary

This chapter applied the concept of Lyapunov exponents for the first time to both

system and structural stability analyses of a nonlinear 2-DOF vehicle model. In

system stability analysis, (a) the stability of the vehicle model in the straight-line

motion is investigated. (b) The lateral stability region of the vehicle model in the

case of straight-line motion has been estimated. It has been shown that in this special

case, the estimated lateral stability region was the largest one in comparison with

those found by Lyapunov’s direct method. (c) The effects of driving conditions on

lateral stability regions of the vehicle model have been discussed. All results were in

agreement with those in [40], which verifies the successful application of this concept

in vehicle stability analysis.

In the case of structural stability analysis, the ranges of driving conditions in which

the vehicle model stability is guaranteed have been found. Moreover, it has been

shown that for a disturbed vehicle model, the largest Lyapunov exponent varies for

different driving conditions. Therefore, the largest Lyapunov exponent can be used

to investigate how fast the disturbed vehicle model in different driving conditions will

return to its stable fixed point.
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Chapter 6

Lyapunov Stability Analysis of a

Newly Developed 4-DOF Vehicle

Roll Model

6.1 Overview

In this chapter1, the Lyapunov stability of a new nonlinear 4-degrees-of-freedom (4-

DOF) roll vehicle model is analyzed. The proposed model is an adequate model for

Lyapunov stability analysis with roll motion. The model is developed by decoupling

the yaw and roll motions of the conventional nonlinear 14-DOF full vehicle model.

The information from unmodeled yaw dynamics is fed to the nonlinear 4-DOF vehicle

roll model through measured lateral acceleration. The new model benefits from less
1Results of this chapter are submitted for publication in [67].

110



6.1. OVERVIEW

dynamic complexity; however, it keeps the advantage of the roll prediction even after

wheel lift-off occurs. The predicted roll behaviour by the 4-DOF vehicle roll model is

compared against the nonlinear 14-DOF full vehicle model for different maneuvers.

The results justify the accuracy of the new model. Moreover, the model is verified

by a experimental test on a developed SETV. The results justify the accuracy of the

new model.

After validation of the model, the nonlinear 4-DOF vehicle roll model is analyzed

by Lyapunov’s linearization and Lyapunov exponents methods. The Lyapunov’s lin-

earization method guarantees the stability of the new model for small values of the

lateral acceleration while the Lyapunov exponents method detects the qualitative

change in the type of the attractor for large values of the lateral acceleration. The

lower dimensions, and the proven Lyapunov stability make the new model more ap-

pealing for real-world applications since the lateral acceleration can be measured

through a sensor.

The remainder of this chapter is organized as follows. The dynamic equations for the

nonlinear 4-DOF vehicle are derived in Section 6.2. In Section 6.3, a set of different

maneuvers are designed and simulation results for the nonlinear 4-DOF vehicle roll

model are compared with the nonlinear 14-DOF full vehicle model. The SETV and

its different components are presented in Section 6.4. The experimental test results

for a cornering maneuver are given in Section 6.5. Then, the stability analysis of the

nonlinear 4-DOF vehicle model are discussed in Section 6.6. Finally, conclusions are

made in Section 6.7.
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6.2 Nonlinear 4-DOF Vehicle Roll Model

The dynamic equations for the nonlinear 4-DOF vehicle roll model are derived by

considering the roll plane dynamics of the 14-DOF vehicle model [5]. Figure 6.1

demonstrates the schematic view of the nonlinear 4-DOF vehicle roll model. The 4

degrees of freedom are the roll rate ωx and vertical velocity vz of the sprung mass

and the vertical velocities vzur and vzul of the unsprung masses on the right and left

sides of the vehicle.
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Front View 

y

z Frame	
  1
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urm
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ulm

zv

Inertial frame 
Y

Z
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y

ms

Ground plane 

Front view  

Frame 1 

Figure 6.1: Schematic view of the nonlinear 4-DOF vehicle roll model

In order to derive the dynamic equations, in addition to the inertia frame (X, Y, Z),

a fixed body coordinate located at the CG of the sprung mass (x, y, z), frame 1,

is considered. Inheriting from the 14-DOF vehicle model [5], the suspensions and

tires are assumed to remain at a fixed angle with respect to the sprung mass and

the tire stiffnesses are considered to be perpendicular to the ground plane at all

times. Moreover, without loss of generality, it is supposed that the vehicle has a
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parallel horizontal link independent suspensions [7]. Therefore, the roll centre is in

the ground plane when the vehicle is at rest.

Figure 6.2 illustrates the free body diagram for the unsprung mass in the right corner

of the vehicle. The lateral force at the tire contact patch is FY r of the right side of

the vehicle. The centrifugal force Wuray is acting on the CG of the unsprung mass

as the result of the curvilinear motion.
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y

z
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urW

φ

φ

FYr

Figure 6.2: Free body diagram of the unsprung mass at the right corner of the vehicle

The dynamic equation governing the vertical motion of the unsprung mass at the

right corner of the vehicle can be found as

v̇zur = 1
mur

(Fzur −Wuray sin (φ)−Wur cos (φ) + FZr cos (φ)− FY r sin (φ))− ωxvyur

(6.1)

The vertical force Fzur is in equilibrium with the right suspension force Fzsr, therefore

Fzur = − (bsrẋsr + ksrxsr) (6.2)

The suspension deflection xsr as shown in Figure 6.3 is measured from the sprung
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mass level, and it is positive when the suspension is under compression.

+
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Sprung mass level 
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y

z

Frame 1 Fzsr

Unsprung mass level 

Figure 6.3: Suspension deflection measurement

The rate of the suspension deflection is governed by

ẋsr = − (vzsr − vzur) (6.3)

The initial value of the suspension spring deflection xsir depends on the vertical load

on the suspension when the vehicle is in the rest position on the level ground. xsir

can be found by the static analysis as

xsir = msg

2ksr
(6.4)

The governing dynamic equation for the suspension spring deflection on the left-hand

side can be found in a similar way as

ẋsl = − (vzsl − vzul) (6.5)

The vertical velocity at the right corner strut, vzsr, is equal to

vzsr = −c2 ωx + vz (6.6)
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The normal force FZr at the tire contact patch is balanced by the tire spring force

FZtr, therefore

FZr = ktrxtr (6.7)

The tire deflection xtr shown in Figure 6.4 is measured from the line passing through

the nominal wheel hub with height of r0, and it is positive when the tire is under

compression.

0 tirx

0r

+

FZtrtrx

Y

Z

vZtr
Ground level 

Unsprung mass level 

Nominal hub level 

Figure 6.4: Tire deflection measurement

Considering ground to be smooth and level, the tire deflection rate ẋtr is of the same

amplitude as the unsprung vertical velocity vZur in the inertial frame

ẋtr = −vZur (6.8)

where vZur is the transformation of the vzur and vyur from the coordinate frame 1 to

the inertial frame.

vZur = vzur cos (φ)− vyur sin (φ) (6.9)

The initial deflection of the tire xtir can be written as

xtir = (ms +mur +mul) g
2ktr

(6.10)
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In Eq. 6.1, vyur is the lateral velocity of the unsprung mass at the right corner, and

it is equivalent to

vyur = lsrωx (6.11)

and lsr can be obtained by

lsr = lsir − (xsr − xsir) (6.12)

The initial length of the suspension on the right corner of the vehicle, lsir, can be

determined by Eq. 6.13.

lsir = h− (r0 − xtir) (6.13)

Finally, the lateral force FY r can be approximated by Eq. 6.14 [13].

FY r = −ayFZr (6.14)

Analogous with the dynamics of the unsprung mass on the right side, the dynamics

of the unsprung mass on the left side of the vehicle can be derived as

v̇zul = 1
mul

(Fzul −Wulay sin (φ)−Wul cos (φ) + FZl cos (φ) + FY l sin (φ))− ωxvyul

(6.15)

Figure 6.5 represents the free body diagram of the sprung mass. The lateral forces,

Fusr and Fusl, are applied to the sprung mass at the roll centres RCr and RCl [7].

These forces can be found by

Fusr = FY r cos(φ) + FZr sin(φ) (6.16)

and

Fusl = FY l cos(φ) + FZl sin(φ) (6.17)
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The forces, Fzsr and Fzsl, are acting on the right and the left side of the sprung mass,

respectively. The centrifugal force Wsay is applied to the CG of the sprung mass as

the result of the lateral dynamics of the vehicle.
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Figure 6.5: Free body diagram of the sprung mass

The dynamic equations governing the vertical motion and the roll motion of the

sprung mass can be obtained as follows:

v̇z = 1
ms

(Fzsr + Fzsl −Wsay sin (φ)−Ws cos (φ)) (6.18)

ω̇x = 1
Jx

(
Fusr (lsr + rr) + Fusl (lsl + rl)

)
+ 1

Jx
(Fzsl − Fzsr) c

2

+ 1
Jx

((
Wuray cos (φ)−Wur sin (φ)

)
lsr +

(
Wulay cos (φ)−Wul sin (φ)

)
lsl

) (6.19)

The last term in Eq. 6.19 is due to the effect of the unsprung weights and inertia

forces on the roll motion. The instantaneous tire radius on the right-hand side, rr, is
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attained by

rr = r0 −
xtr

cos (φ) (6.20)

Considering the geometry of the vehicle in Figure 6.5, the instantaneous tire deflection

on the left-hand side, rl, can be calculated by

rl = (lsr + rr) + c tan (φ)− lsl (6.21)

where xtl can be found by

xtl = (r0 − rl) cos(φ) (6.22)

Finally, the roll angle φ in preceding equations can be found by

φ̇ = ωx (6.23)

The whole nonlinear 4-DOF vehicle roll model differential equations can be given by
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embedding aforementioned equations as

φ̇ = ωx

ω̇x = 1
Jx

(
Fusr (lsr + rr) + Fusl (lsl + rl)

)
+ 1

Jx
(Fzsl − Fzsr) c

2

+ 1
Jx

((
Wuray cos (φ)−Wur sin (φ)

)
lsr +

(
Wulay cos (φ)−Wul sin (φ)

)
lsl

)
v̇z = 1

ms
(Fzsr + Fzsl −Wsay sin (φ)−Ws cos (φ))

v̇zur = 1
mur

(Fzur −Wuray sin (φ)−Wur cos (φ) + FZr cos (φ)− FY r sin (φ))

−ωxvyur

v̇zul = 1
mul

(Fzul −Wulay sin (φ)−Wul cos (φ) + FZl cos (φ)− FY l sin (φ))

−ωxvyul

ẋsr = −vzsr + vzur

ẋsl = −vzsl + vzul

ẋtr = −vzur cos (φ) + vyur sin (φ)
(6.24)

From Figure 6.4, it can be realized that the tire deflection changes into negative

values when the tire leaves the ground. When lift-off happens for a particular tire,

e.g., left-hand side tire, all the forces applied on the ground contact patch of that

particular tire are zero, FY l = 0 and FZl = 0, and its instantaneous tire radius turns

to the nominal tire radius, rl = r0.

Therefore, the governing set of differential equations when the left-hand side tire
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leaves the ground is

φ̇ = ωx

ω̇x = 1
Jx

(
Fusr (lsr + rr)

)
+ 1

Jx
(Fzsl − Fzsr) c

2

+ 1
Jx

((
Wuray cos (φ)−Wur sin (φ)

)
lsr +

(
Wulay cos (φ)−Wul sin (φ)

)
lsl

)
v̇z = 1

ms
(Fzsr + Fzsl −Wsay sin (φ)−Ws cos (φ))

v̇zur = 1
mur

(Fzur −Wuray sin (φ)−Wur cos (φ) + FZr cos (φ)− FY r sin (φ))

−ωxvyur

v̇zul = 1
mul

(Fzul −Wulay sin (φ)−Wul cos (φ))− ωxvyul

ẋsr = −vzsr + vzur

ẋsl = −vzsl + vzul

ẋtr = −vzur cos (φ) + vyur sin (φ)
(6.25)

However, when the tire in the right-hand side leaves the ground, xtr < 0, Eqs. 6.21

and 6.22 are no longer valid. In this situation, the tire deflection on the left-hand

side can be solved by corresponding differential equation given in Eq. 6.26.

ẋtl = −vzul cos (φ) + vyul sin (φ) (6.26)

In consequence when the right-hand side tire leaves the ground, the set of deferential
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equations which governs the behaviour of the nonlinear 4-DOF vehicle roll model is

φ̇ = ωx

ω̇x = 1
Jx

(
Fusr (lsr + rr) + Fusl (lsl + rl)

)
+ 1

Jx
(Fzsl − Fzsr) c

2

+ 1
Jx

((
Wuray cos (φ)−Wur sin (φ)

)
lsr +

(
Wulay cos (φ)−Wul sin (φ)

)
lsl

)
v̇z = 1

ms
(Fzsr + Fzsl −Wsay sin (φ)−Ws cos (φ))

v̇zur = 1
mur

(Fzur −Wuray sin (φ)−Wur cos (φ))− ωxvyur

v̇zul = 1
mul

(Fzul −Wulay sin (φ)−Wul cos (φ) + FZl cos (φ)− FY l sin (φ))

−ωxvyul

ẋsr = −vzsr + vzur

ẋsl = −vzsl + vzul

ẋtl = −vzul cos (φ) + vyul sin (φ)
(6.27)

In this chapter, it is assumed that in all maneuvers, a tire on one side of the vehicle is

in contact with ground. In the case that both left and right-hand side tires leave the

ground, an extra state needs to be defined, which is beyond the scope of this thesis.

6.3 Validation of the Nonlinear 4-DOF Vehicle Roll

Model

To justify the accuracy of the roll variables, roll angle φ and roll rate ωx, predicted

by the nonlinear 4-DOF vehicle roll model, a comparison between these variables and

those predicted by the nonlinear 14-DOF full vehicle model is necessary. As a case

study, a midsize sport utility vehicle (SUV) with parameter values given in Table 6.1
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is considered [5]. The Magic Formula [10] tire model is employed to estimate the tire

forces for the nonlinear 14-DOF full vehicle model.

The comparing procedure is to simulate the nonlinear 14-DOF full vehicle model for

a typical maneuver, use the resulting lateral acceleration to feed the nonlinear 4-DOF

vehicle roll model, and compare the roll variables predicted by both models. To stim-

ulate the roll variables, four maneuvers are examined: (a) step steer input, (b) ramp

steer input, (c) single-lane change steering input, and (d) NHTSA J-turn event input.

In the first three maneuvers, the steer profiles are exported from ADAMS/Car soft-

ware [68], and in the last one, the steer profiles are designed in MATLAB/SIMULINK

based on the procedure described by NHTSA [3]. For solving the ordinary differential

equations governing the behaviour of the nonlinear 4-DOF vehicle roll model and the

nonlinear 14-DOF full vehicle model, the Runge-Kutta method in MATLAB software

is employed.

6.3.1 Step Steer Input

A step change in the steer angle is the simplest test to prompt the roll motion of

the vehicle. This maneuver is executed when the vehicle is driven in a straight-line

motion at a constant speed by suddenly turning the steer wheel to the desired angle.

The speed is kept constant during the maneuver. Figure 6.6(a) demonstrates the steer

angle of the wheel for the step input. In this maneuver the wheels are steered up to

2.6 ◦ in 0.5 s while the vehicle is at a constant longitudinal speed of 50 km/h. The

lateral acceleration predicted by the nonlinear 14-DOF full vehicle model is shown in

Figure 6.6(b). It shows that the vehicle experienced a steady-state lateral acceleration
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Table 6.1: Vehicle parameters

Parameter Notation Value Unit
Sprung mass ms 1440 kg
Sprung mass roll inertia Jx 900 kg m2

Sprung mass pitch inertia Jy 2000 kg m2

Sprung mass yaw inertia Jz 2000 kg m2

Distance of the front axle from sprung mass CG a 1.016 m
Distance of the front axle from sprung mass CG b 1.524 m
Sprung mass CG height h 0.75 m
Front/rear track width cfr, cre 1.5, 1.5 m
Front suspension stiffness ksfr 35000 N/m
Front suspension damping coefficient bsfr 2500 Ns/m
Rear suspension stiffness ksre 30000 N/m
Rear suspension damping coefficient bsre 2000 Ns/m
Front/rear unsprung mass mufr = mure 80 kg
Front/rear tire stiffness ktfr = ktre 200000 N/m
Nominal tire radius r0 0.285 m
Steering ratio ns 20 : 1 −

of 0.35 g. The roll angles and roll rates predicted by the nonlinear 4-DOF vehicle roll

model and the 14-DOF full vehicle model are plotted in Figures 6.6(c) and 6.6(d).

By comparing these plots, it can be seen that the nonlinear 4-DOF vehicle roll model

predicts the roll angle and the roll rate of the nonlinear 14-DOF full vehicle model

accurately.

6.3.2 Ramp Steer Input

Ramp steer is another maneuver to excite the roll behaviour. To execute this maneu-

ver, first the vehicle is driven in a desire constant longitudinal speed. Then, while the

speed is kept constant, the steer angle is increased with a constant desirable slope.

In Figure 6.7(a), for the nonlinear 14-DOF full vehicle model in the constant speed

of 50 km/h, the steer angle starts to increase at time 6 s with the slope of 1 ◦/s.

123



6.3. VALIDATION OF THE NONLINEAR 4-DOF VEHICLE ROLL MODEL

0 1 2 3 4 5 6
−0.5

0

0.5

1

1.5

2

2.5

3

δ w
[D

eg
]

Time [Sec]

Steer angle at road wheel

0 1 2 3 4 5 6
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

a y
[g

]

Time [Sec]

Lateral acceleration

 

 

0 1 2 3 4 5 6
−6

−5

−4

−3

−2

−1

0

1

φ
 [

D
eg

]

Time [Sec]

Roll angle

0 1 2 3 4 5 6
−15

−10

−5

0

5

10

ω
x
 [

D
eg

/S
ec

]

Time [Sec]

Roll rate

 

 

14−DOF model

4−DOF model

St
ee

r a
ng

le
 o

f t
he

 w
he

el
 (°

) 

R
ol

l r
at

e 
(°

/s
) 

La
te

ra
l a

cc
el

er
at

io
n 

(g
) 

Time (s) Time (s) 

Time (s) Time (s) 

a) b) 

c) d) 

R
ol

l a
ng

le
 (°

) 

Figure 6.6: Comparison of the vehicle roll variables between models during the step
steering at the speed of 50 km/h

The corresponding lateral acceleration predicted by the nonlinear 14-DOF full vehicle

model is shown in Figure 6.7(b). Figures 6.7(c) and 6.7(d) illustrate the roll angles

and roll rates for both models. As it can be seen, the roll angle and roll rate predicted

by the nonlinear 4-DOF vehicle roll model follow the roll angle and roll rate predicted

by the nonlinear 14-DOF full vehicle model.
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Figure 6.7: Comparison of the vehicle roll variables between models during the ramp
steering at the speed of 50 km/h

6.3.3 Single-lane Change Steer Input

In a single-lane change maneuver, the vehicle exits from one lane and enters the

nearby lane. The steer profile for the single-lane change is given in Figure 6.8(a).

In this figure, the nonlinear 14-DOF full vehicle model is driven at a constant speed
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of 50 km/h while the single-lane change maneuver occurs. As a result the lateral

acceleration, shown in Figure 6.8(b), has a sinusoidal shape with positive peak of

0.62 g and the negative peak of 0.78 g. From the plot of roll angles, given in Figure

6.8(c), it can be seen that the predicted roll angle by the nonlinear 4-DOF vehicle

roll model is almost the same as the predicted roll angle by the nonlinear 14-DOF full

vehicle model. Comparing the roll rates in Figure 6.8(d), it can be recognized that

the roll rate estimated by the nonlinear 4-DOF vehicle model has a negative peak

value of −58 ◦/s while the negative peak of the roll rate estimated by the nonlinear

14-DOF is −38 ◦/s. To understand why this difference originates, the normal forces

at the left and right-hand side, FZl and FZr, are plotted in Figures 6.9(a) and 6.9(b).

It should be noted that in the case of the nonlinear 14-DOF full vehicle model, the

summation of the same side forces at front and rear axles is considered. From the plot

for the left-hand side forces, Figure 6.9(a), it can be seen that the left-hand side force

predicted by the nonlinear 4-DOF vehicle roll model, dashed red graph, reaches zero

sooner than the force predicted by the nonlinear 14-DOF full vehicle model, and it

endured longer. As discussed before, the zero normal force is the result of tire lift-off

occurrence. Therefore, the tire lift-off occurrence for the nonlinear 4-DOF vehicle roll

model in this maneuver is more serious than that happened for the nonlinear 14-DOF

full vehicle model. In predicting the roll motion for this maneuver, the nonlinear 4-

DOF vehicle roll model was more conservative, e.i., safer, than the nonlinear 14-DOF

full vehicle model.
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Figure 6.8: Comparison of the vehicle roll variables between models during the single-
lane change profile at the speed of 50 km/h

6.3.4 NHTSA J-turn Steer Input

NHTSA J-turn is one of the most famous NHTSA rollover resistance maneuver [3].

The maneuver begins when the vehicle is in a straight-line motion at a speed slightly

higher than the desired entrance speed. The throttle is released and when the vehicle

reaches the desired entrance speed, the steer wheel ramps to a maximum of 8 times
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Figure 6.9: Comparison of the normal forces between models during the single-lane
change profile at the speed of 50 km/h

of the steer wheel angle δ0.3g, where the vehicle experiences 0.3 g lateral acceleration,

with the slope of 1000 ◦/s. The vehicle is driven for 4 s and then the steer wheel

returns to zero position during a 2 s time interval with constant slope. In following,

the J-turn maneuver for three different speeds is discussed.

J-turn Maneuvre at Speed of 20 km/h

The steer profile for the J-turn maneuver at the speed of 20 km/h is shown in Figure

6.10(a). From the lateral acceleration plot in Figure 6.10(b), it can be seen that the
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nonlinear 14-DOF full vehicle model predicted the peak value of 0.6 g for this ma-

neuver. The roll variables estimated by both models in this maneuver are plotted in

Figures 6.10(c) and 6.10(d). From these figures, it can be observed that the nonlinear

4-DOF vehicle roll model correlates very well with the nonlinear 14-DOF full vehicle

model. The predicted left-hand and right-hand side forces by these models are given

in Figures 6.11(a) and 6.11(b), respectively. Comparison between normal forces pre-

dicted by both models reveals that both models predicted that all tires were on the

ground during this J-turn maneuver.

J-turn Maneuver at Speed of 25 km/h

As another trial, the J-turn maneuver with the previous steer profile, shown in Figure

6.12(a), has been examined at a speed of 25 km/h. The correspond lateral acceleration

predicted by the nonlinear 14-DOF full vehicle model are shown in Figure 6.12(b).

At this speed, the peak value of the lateral acceleration is over 0.7 g. From the roll

variable plots for models given in Figures 6.12(c) and 6.12(d) it can be seen that at

this speed, the nonlinear 4-DOF vehicle roll model produced larger peaks in the roll

angle and the roll rate. The reason can be revealed by comparing the corresponding

normal forces. The normal forces for both models are given in Figure 6.13(a) for the

left-hand side and in Figure 6.13(b) for the right-hand side. From Figure 6.13(b),

it can be seen that the tire lift-off happened on the right-hand side of the nonlinear

4-DOF vehicle roll model. However, the nonlinear 14-DOF full vehicle model did not

predict that tire left-off occurred. Therefore, in this maneuver the nonlinear 4-DOF

roll model was safer and predicted the worse behaviour. It should be noted that in
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this maneuver, the state transfer from Eq. 6.24 to equation Eq. 6.27 occurs since the

right-hand side tires left the ground.
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Figure 6.10: Comparison of the vehicle roll variables between models during the J-
turn maneuver at the speed of 20 km/h
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Figure 6.11: Comparison of the normal forces between models during the J-turn
maneuver at the speed of 20 km/h

Prediction of the Rollover Accident in the J-turn Maneuver

In the J-turn maneuver at the speed of 25 km/h, the right-hand side tire left the

ground for a moment. However, the rollover did not happen. In this part, the

rollover speed – the minimum speed at which the rollover accident occurs – will be

predicted. The procedure for finding the rollover speed is to increase the speed and
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Figure 6.12: Comparison of the vehicle roll variables between models during the J-
turn maneuver at the speed of 25 km/h

compare the predicted roll angles by the models. In Figure 6.14, the steer profile,

lateral acceleration, roll angle, and roll rate plots when the speed is 29 km/h are given.

Comparison between the plots for roll angles and the roll rates, Figures 6.14(c) and

6.14(d), reveal that at this speed, the roll variables predicted by the nonlinear 4-DOF

vehicle roll model oscillates with larger magnitude than that corresponding to the

nonlinear 14-DOF full vehicle model. The corresponding normal forces are illustrated
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Figure 6.13: Comparison of the normal forces between models during the J-turn
maneuver at the speed of 25 km/h

in Figures 6.15(a) and 6.15(b) for the left-hand and right-hand side, respectively.

From the force plot for the right-hand side wheels in Figure 6.15(b), it can be seen

that the tire lift-off occurred for both models. However, the nonlinear 14-DOF full

vehicle model predicted the shorter time interval. The nonlinear 4-DOF vehicle roll

model predicted oscillations with larger magnitude after the right-hand side tires

touched the ground.

In the next step, the speed is increased to the larger values of 30 km/h and 32 km/h.

The corresponding lateral accelerations for these speeds are given in Figures 6.16(a)

and 6.16(b), and the predicted roll angles are shown in Figures 6.16(c) and 6.16(d).

From Figures 6.16(c) and 6.16(d), it can be seen when the speed increases to the

values more than 30 km/h, the nonlinear 4-DOF vehicle roll model predicts the
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Figure 6.14: Comparison of the vehicle roll variables between models during the J-
turn maneuver at the speed of 29 Km/h

rollover accident. However, Figure 6.16(c) shows that the nonlinear 14-DOF full

vehicle model did not predict the rollover accident at the speed of 30 km/h. The

rollover accident predicted by this model to occur at the speed of 32 km/h. The

nonlinear 4-DOF vehicle roll model is more conservative, i.e., safer, than the nonlinear

14-DOF full vehicle model in prediction of the rollover speed.

Simulation results verify that the nonlinear 4-DOF vehicle roll model can predict the

roll behaviour of the nonlinear 14-DOF full vehicle adequately. In the case of high-g

maneuvers, where the tire lift-off prompts to occur, the nonlinear 4-DOF vehicle roll
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model is safer and predicts the occurrence of the tire lift-off prior to the nonlinear

14-DOF full vehicle model. Moreover, in the J-turn maneuver, the nonlinear 4-DOF

vehicle roll model predicts the smaller critical speed in which the rollover occurs.

The reason behind the difference in the roll behaviour predicted by the models is that

the nonlinear 14-DOF full vehicle model slips laterally in high-g maneuvers, which

reduces the roll motion of the vehicle. However, in the nonlinear 4-DOF vehicle roll

model, all portions of the lateral forces produce torque to roll the vehicle since the

side slip is not considered. It is worth mentioning that conservative prediction can

make the nonlinear 4-DOF vehicle roll model a safer model since driving far from the

rollover speed is always desirable.
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Figure 6.15: Comparison of the normal forces between models during the J-turn
maneuver at the speed of 29 Km/h
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Figure 6.16: Prediction of the minimum speed for rollover accident in the J-turn
maneuver

6.4 1/5th Scale Experimental Test Vehicle

The SETV was developed for the physical validation of the 4-DOF roll vehicle model2.

A 1/5th scale Baja electric vehicle supplied by HPI racing company (Kit version3)

was considered as the platform. Then, it was modified to the SETV as shown in

Figure 6.17 by a group of students at the University of Manitoba. The SETV was
2This section is published in [69].
3In Kit versions, the manufacture sells the set of parts separately, and then the buyer assembles

them into a scale vehicle.
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equipped with encoders and IMU4 to measure real time motion parameters that were

used in collecting motion-related data and closed loop control. A roll cage structure

armed with outrigger wheels was mounted on the vehicle to protect the electronics

and prevent the rollover accident. Some simple structures were also added to mount

sensors in their places.

6.4.1 Roll Safety Structure

The roll safety structure was built by steel hardware supplied as a kit by VexRobotic

company. The reasons for selecting the hardware kit were: reducing the cost of

manufacturing, saving time, and providing versatile design. After some trial and error,

the final steel structure (see Figure 6.17) was built. The electronics were installed

on the middle of the structure for maximum safety. The roll safety structure has a

versatile design to change the position of the battery pack in the case of necessary

changes in the CG of the vehicle. Finally, two wheels were mounted on the sides of

the structure to prevent the roof of the vehicle touching the ground.

The simplified Finite Element Model (FEM) of the roll safety structure was developed

in Abaqus FEA software [70]. The stress distribution for the worst scenario when an

outrigger wheel touch the ground was analyezd. The final assembled body structure

and the stress distribution have been demonstrated in Figure 6.18. Then, the results

of the FEM analysis were used to optimize the design of the structure. More details

on finite element analysis of the roll safety structure can be found in [70].
4IMU stands for Inertial Measurement Unit.
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Roll Safety Structure 

Outrigger Wheel 

Outrigger Wheel 

Speed Controller 

BLDC Motor 

1/5th Scale Baja 

Figure 6.17: Completed prototype

Figure 6.18: Simplified structure and its stress distribution in Abaqus FEA software.

6.4.2 Powertrain

The powertrain of the scale Baja includes a brushless direct current (BLDC) motor

powered by eight cell Lithium Polymer (LiPo) batteries in a series configuration. The
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motor has a 800 kv rating5, maximum power of 7 kw , and it can be driven up to 45,000

rpm. An Electric Speed Controller (ESC) module drives the motor and monitors its

state. Both the motor and ESC are manufactured by the Castle company. The motor

shaft is connected to the transmission by a spur gear with a fixed 8 : 1 gear ratio. A

1 : 1 differential gear box is installed at the rear of the vehicle to transfer the torque

through dogbones to the rear wheels.

6.4.3 Vehicle Parameter Identification

In order to use the SETV for physical validation of the mathematical model, a va-

riety of vehicle parameters should be derived. Table 6.2 lists the measured vehicle

parameters. These parameters are measured through various experiments which are

described in details in [71].

6.4.4 Electrical Design

The electrical design of the scale vehicle is composed of two parts. The first is the

hardware for electric drive, sensors, and embedded computer, and the second one is

the software that allows the modules to be monitored and controlled through a local

network.
5kv is the motor velocity constant and 800 kv means if 1 v voltage is applied to the motor, it

spins 800 rpm.

139



6.4. 1/5TH SCALE EXPERIMENTAL TEST VEHICLE

Table 6.2: SETV parameters

Parameter Notation Value Unit
Sprung mass ms 12.132 kg
Sprung mass roll inertia Jx 0.23 kg m2

Sprung mass pitch inertia Jy 0.58 kg m2

Sprung mass yaw inertia Jz 0.49 kg m2

Sprung mass CG height h 0.17 m
Distance of the front axle from sprung mass CG a 0.326 m
Distance of the front axle from sprung mass CG b 0.257 m
Front/rear track width cf , cr 0.38, 0.38 m
Front suspension stiffness ksf 703 N/m
Front suspension damping coefficient bsf 26.5 Ns/m
Rear suspension stiffness ksr 750 N/m
Rear suspension damping coefficient bsr 26.5 Ns/m
Front/rear unsprung mass muf ,mur 1.38, 1.59 kg
Front/rear tire stiffness ktf = ktr 25375 N/m
Nominal tire radius r0 0.0842 m

Hardware

The SETV has been set up on the basis of systems shown in Figure 6.19. It is possible

to either control the vehicle manually using the transmitter (supplied by the factory)

or automatically by the User Interface (UI). In the latter case, the user interacts with

the system by means of web browser, uploads a desired steer profile as a text file, and

sets the desired speed. Then, the given driving profile is executed automatically. In

automatic driving, the SETV uses an open loop controller for steering the vehicle and

a closed loop Proportional-Integral-Derivative (PID) controller for driving the vehicle

at the desired speed [71]. The selection between manual drive or automatic drive

is controlled by means of toggle switch already mounted on the transmitter. This

toggle switch also can be used as a safety feature when the vehicle is out of control.
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A USB6 camera is mounted on the vehicle to capture video frames for realtime video

streaming on the web user interface.

User Interface Wireless Router 

Mini Computer 
Servo Motor Controller 

Sensors 
1/5th Scale Baja Car 

Or 
Transmitter 

Command 
Wireless Command 
Wireless Data Line 
Data Line 

Camera 

Receiver 

Batteries 

USB Drive 
 (Data Logging) 

Figure 6.19: Schematic of the SETV set up

The linear accelerations and angular velocities of the sprung mass are measured by

an IMU, mounted on the CG of the sprung mass. Magnetic incremental encoders

assembled at the hub axes of all four wheels measure the wheel angular velocities. A

mini computer collects the sensor data, stores the data on a USB memory drive and

sends it through wireless router to the user interface. Then, a web browser plots the

sensor data in real time graphs. The mini computer and IMU sensor are provided by

Phidgets Inc. and the encoders are manufactured by Bourns Inc. A four cell LiPo
6USB stands for Universal Serial Bus.
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battery powers all the electronics through a voltage regulator circuit.

Software

The software of the SETV, as shown in Figure 6.20, has two parts; a high level

frontend that interact with the user, and the low level backend that communicates

with the hardware. These parts are briefly described here. However, an interested

reader can find more details in [72].

Backend Server User Interface 

Frontend 

Figure 6.20: Software overview

Frontend Software

The frontend software has a web user interface developed in HTML57, Javascript,

and CSS8. The server is another part of the frontend that connects the UI to the

backend. The server that is developed with Java, sends data to the UI and vice versa.

The protocol for this communication is known as websockets while the Messagepack

protocol is used for packaging data.
7HTML stands for Hyper Text Markup Language.
8CSS stands for Cascading Style Sheet.
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Backend Software

The backend consists of several blocks. The architecture of the backend software is

shown in Figure 6.21. Each block is implemented as a Java class. These classes com-

municate with the hardware, send their data to the server or command the hardware

as requested by the server.

Baja UI Communicator  

Baja Sensor Manager 

Profile Interpreter 

Steering Open Loop 
Controller 

Speed Closed Loop 
Controller 

Sensor Data Logger 

Servo Manager 

Commands to the motor and steering servo motor 

Server commands Sensor data 

Sensors data 

Figure 6.21: Backend software architecture

6.5 Experimental Validation

For the experimental validation of the nonlinear 4-DOF roll vehicle model, the pre-

sented SETV was developed. To prompt a rollover accident, the SETV was driven by
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a user in a simple closed curve, cornering maneuver, and the corresponding data of

the roll rate and lateral acceleration were logged. In Figure 6.22, the collected data

for the roll rate and lateral acceleration are plotted in blue colour. These data are

sampled at a rate of 20 Hz and filtered by a 8th order zero-phase butterworth digital

filter with cut off frequency of 4 Hz. Then, the measured lateral acceleration is fed

to the nonlinear 4-DOF roll vehicle model. The roll rate predicted by the simula-

tion is given with red dashed plot in Figure 6.22. From this figure, it can be said

that considering the respective dynamics model and measurement accuracy, the roll

rate is very well reproduced by the proposed model. Moreover, it can be seen that

the model predicts the rollover accident 46 seconds into the maneuver. Figure 6.23

illustrates the SETV at the moment of the rollover. It is worth to mentioning that

the outrigger wheel prevented that SETV from rolling more than 45 degrees. This

explains the SETV roll rate behaviour after the moment that the rollover accident

has been predicted by the simulation.
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Figure 6.23: SETV at the moment of the rollover accident
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6.6 Lyapunov Stability Analysis of the Nonlinear

4-DOF Vehicle Roll Model

As mentioned before, Lyapunov stability analysis is a critical subject that must be

studied prior to employing the model for further study. In this section, the Lyapunov

stability of the nonlinear 4-DOF vehicle roll model when the right-hand side tires are

in touch with the ground will be discussed.

The nonlinear 4-DOF vehicle roll model given in Eq. 6.24 is a nonlinear system as a

result of both geometric and system dynamic nonlinearities. In the state space, the

nonlinear equation for 4-DOF vehicle roll model, Eq. 6.24, can be organized as the

non-autonomous system given in Eq. 6.28.

ẋ = f (x, ay (t)) (6.28)

where x is the 8× 1 state vector as

x =
[
φ ωx vz vzur vzul xsr xsl xtr

]T
(6.29)

and f is the 8× 1 nonlinear vector function.

To facilitate the stability analysis, the lateral acceleration ay is assumed to be con-

stant. Therefore, the non-autonomous system in Eq. 6.28 turns to the autonomous

system given in

ẋ = f (x) (6.30)

The first step to analyze a nonlinear system is to linearize it around the nominal

operating point and analyze the resulting linear system by available powerful tools

for Lyapunov stability analysis of the linear systems.
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6.6.1 Linearization of the Nonlinear 4-DOF Vehicle Roll Model

and Local Stability Analysis in the Straight-line Motion

For the nonlinear 4-DOF vehicle roll model, the nominal operating point is the in-

tended stable equilibrium point xe.

xe =
[
φe ωxe vze vzure vzule xsre xsle xtre

]T
(6.31)

Transferring this equilibrium point xe to zero, Eq. 6.30 is redefined as

ż = g (z) (6.32)

with the intended equilibrium point ze =
[
0 0 0 0 0 0 0 0

]T
.

Now, the nonlinear state space in Eq. 6.32 can be written around the equilibrium ze

by Taylor’s series as

ż = Jz + gh.o.t. (z) (6.33)

where gh.o.t. (z) is the nonlinear dynamics near the equilibrium point ze, and J is the

Jacobian matrix defined at the equilibrium point ze by

J =
(
∂g
∂z

)
z=ze

(6.34)

The nonlinear 4-DOF vehicle roll model in Eq. 6.32 essentially behaves the same as

its linearized approximation, given in Eq. 6.35, around the equilibrium point ze.

ż = J z (6.35)

The Lyapunov asymptotical stability of the equilibrium point xe for the nonlinear 4-

DOF vehicle roll model in Eq. 6.30 is guaranteed if all eigenvalues of Jacobian matrix
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in Eq. 6.35 are strictly in the left-half complex plane. This type of stability analysis

is based on Lyapunov’s linearization method [27], and it is a common practice in

engineering.

In the case of straight-line motion on the smooth surface, the lateral acceleration ay

is zero. The equilibrium point for the nonlinear 4-DOF vehicle model is given in Eq.

6.36. It is trivial that in the absence of the lateral motion on the even surface, the

equilibrium point has zero values for roll angle, roll rate, vertical sprung and unsprung

velocities. Moreover, the steady-state values for the tire and suspensions deflections

are equal to their initial values.

xeay=0 =
[
0 0 0 0 0 xsir xtsil xtir

]T
(6.36)

Table 6.3 reports the eigenvalues of the linearized model after transferring the equilib-

rium point xeay=0 to the origin. It can be seen that the linearized model in straight-line

motion has four conjugate eigenvalues which all are strictly in the left-half complex

plane. Therefore, based on the Lyapunov’s linearization method, the equilibrium

point in the straight-line motion is asymptotically stable for the actual nonlinear

4-DOF vehicle model.

Table 6.3: Eigenvalues of the linearized 4-DOF vehicle roll model in the straight line
motion

λ1 = −2.3442 + 7.7114i λ2 = −2.3442− 7.7114i
λ3 = −2.6076 + 8.9880i λ4 = −2.6076− 8.9880i
λ5 = −16.4058 + 50.2431i λ6 = −16.4058− 50.2431i
λ7 = −16.4897 + 50.0324i λ8 = −16.4897− 50.0324i
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6.6.2 Movement of the Stable Equilibrium Point in the State

Space in Presence of Lateral Acceleration

Another important aspect of stability analysis is to study the movements of the

equilibria in the state space as a system parameter varies. For nonlinear autonomous

vehicle model in Eq. 6.30, the location of the stable equilibrium point varies by the

value of the lateral acceleration ay. This model is complex, and it is not feasible to find

the equilibrium explicitly. Therefore, the intended equilibrium points are computed

numerically. In Figure 6.24, the location of the corresponding equilibrium point in

the subspace φ− xtr − xsr has been plotted as the lateral acceleration ay varies from

0.0 g to 0.85 g. For better illustration, the location of the each equilibrium point in

φ− xtr, φ− xsr, and xtr − xsr subspaces is also depicted. From this figure, it can be

seen that the equilibrium point moves almost on a line. Therefore, someone may use

a linear approximation to roughly predict the steady-state values of roll angle, tire,

and suspension’s spring deflections for a specific value of the lateral acceleration in

the given range.

Moreover, it can be realized from Figure 6.24 that the value of the steady-state roll

angle φe becomes larger as the lateral acceleration increases, and the steady-state

right-hand side tire deflection xtre decreases (see φ − xtr plane). As soon as the

steady-state roll angle φe becomes bigger than 8o, the right-hand side suspension is

no longer under compression (see φ − xsr). However, the right-hand side tire never

leaves the ground while the lateral acceleration ay varies between 0.0 g and 0.85 g

(see xtr − xsr plane).
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Figure 6.24: Movement of the stable equilibrium point in xsr − xtr − φ subspace and
corresponding projections on xsr − xtr, φ − xsr, and φ − xtr planes when ay varies
from 0.0 g to 0.85 g.

To investigate the Lyapunov stability of the equilibrium points corresponding to these

different lateral accelerations, the trajectory of the largest conjugate eigenvalues as the

lateral acceleration varies has been illustrated in Figure 6.25. It can be seen that the

largest conjugate eigenvalues as long as the value of the lateral acceleration ay is less

than 0.85 g remain in the left-half complex plane. Therefore, the equilibrium point of

the nonlinear 4-DOF vehicle model is asymptotically stable for lateral accelerations

ay less than 0.85g. When the linearized system at least has one eigenvalue on the jω

axis, the Lyapunov’s linearization method fails and the stability of the equilibrium

point can not be concluded.

On the other hand, a nonlinear system behaviour is more complex than its equiva-

lent locally linearized system. For example, while the Lyapunov stability of a linear
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Figure 6.25: Movement of the largest conjugate eigenvalues in the complex plane
while ay varies from 0.0 g to 0.85 g.

system is uniquely defined by the nature of its equilibrium point, a nonlinear system

may have more complex features such as periodic, quasi periodic or even chaotic mo-

tion. Understanding the limitations of Lyapunov’s linearization method, the stability

analysis of the nonlinear 4-DOF vehicle roll model follows in remainder of this thesis.

6.6.3 Stability Analysis of the Nonlinear 4-DOF Vehicle Roll

Model

In the preceding section, using Lyapunov’s linearization method, it has been shown

that when the magnitude of the lateral acceleration ay is less than 0.85 g, the nonlinear

4-DOF vehicle roll model has an asymptotically stable equilibrium point. In this
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section, the behaviour of the nonlinear 4-DOF vehicle model for larger values of

lateral acceleration, where Lyapunov’s linearized method fails, will be discussed.

To demonstrate the nonlinear behaviour of the model, the projections of the attractors

in φ − ωx subspace, when the lateral acceleration ay varies from 0.849 g to 0.859 g

with the step size 0.001 g, are plotted in Figure 6.26. As it can be seen, the attractor

projection expands as the lateral acceleration increases. This expansion is the sign

of a qualitative change in the steady-state behaviour, the type of attractor, for the

nonlinear 4-DOF vehicle roll model. In simple words, it means that the attractor is

not an equilibrium point any longer. This can be the explanation for the bouncing

behaviour of the vehicle before tire-lift off occurs.

Among different methods to detect variations within the type of attractors, the con-

cept of Lyapunov exponents is employed throughout the remaining part of this paper.

The Lyapunov exponents are entities that measure the average rates of expansion or

contraction of the nearby trajectories in the same basin of attraction, and they are

independent of the initial conditions. The number of Lyapunov exponents is equal to

the number of states that describe the dynamics in the state space. The sign of the

Lyapunov exponents reveals the type of attractors for a dynamical system. If all the

exponents are negative, the dynamics are exponentially stable and the attractor is

an equilibrium point. A dynamic system with m zero exponents while the remaining

exponents are negative, has an m-torus attractor. Finally, in a continuous time dy-

namic systems of the order larger than 3, a positive Lyapunov exponent is the sign of

chaos. Monitoring the Lyapunov exponents makes it possible to distinguish between

an equilibrium point or a periodic attractor as the lateral acceleration varies.
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Figure 6.26: Qualitative change in the attractor projected in φ − ωx subspace while
lateral acceleration ay varies from 0.849 g to 0.859 g.

There are different algorithms to compute Lyapunov exponents. The method devel-

oped in [51] was used to calculate the spectrum of the Lyapunov exponents. This

algorithm computes all Lyapunov exponents from the largest one to the smallest one.

The number of Lyapunov exponents is equal to dimension of the dynamic system. The

dimension of the nonlinear 4-DOF vehicle roll model in state space is eight; therefore,

it has eight Lyapunov exponents. In the computation process of the Lyapunov expo-

nents for the nonlinear 4-DOF vehicle model, the vehicle model was first accelerated

laterally with a smooth ramp until it reached the desired constant lateral accelera-

tion. This accelerating procedure is necessary to minimize the transient overshoot

response and keeps the vehicle models stable. Then, the vehicle model states were

disturbed by one percent of their steady-state values, and the Lyapunov exponents
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computed for 4096 s with the step size of 0.01 s. To minimize the numerical error,

the average value of each computed Lyapunov exponent for the last hundred steps

were considered as the estimation of that individual Lyapunov exponent. Considering

the above procedure, the spectrum of the Lyapunov exponents for different lateral

acceleration from 0.800 g to 0.859 g with step size of 0.001 g were computed. For all

of these lateral accelerations, the tires’ deflection was monitored to make sure that

the switching between models does not occur.

In Figure 6.27, the dynamic graphs for the fourth largest Lyapunov exponents are

plotted. The diagram for the first and second Lyapunov exponents shows that these

two Lyapunov exponents approach zero as the lateral acceleration increases. When

the lateral acceleration is between 0.858 g to 0.859 g, first and second Lyapunov

exponents are zero showing that the vehicle model attractor around these values of

the lateral acceleration is a 2-torus.

6.7 Summary

The aim of this chapter was to analysis the Lyapunov stability of a new developed

vehicle roll model. The model has 4-DOF, and it was developed as a proper nonlinear

model for Lyapunov stability analysis with small dimensions and adequate realistic

behaviour. The nonlinear 4-DOF vehicle roll model was developed by decoupling the

yaw and roll motions of the conventional nonlinear 14-DOF full vehicle model. The

new model captured the information of the neglected dynamics through the lateral

acceleration, and it was capable of predicting the roll motion even after tire lift-off
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Figure 6.27: Dynamics of fourth largest Lyapunov exponents while the lateral accel-
eration ay varies from 0.800 g to 0.859 g.

occurs. To verify the new model, the roll variable responses were compared with the

nonlinear 14-DOF vehicle model for different maneuvers. The results prove the accu-

racy of the nonlinear 4-DOF vehicle roll model for predicting the roll motion. It was

shown when the tires on the right-hand side of the model leave the ground, another set

of nonlinear equations are replaced to predict the roll behaviour. However, it is pos-

sible to represent the model with only one set of equations after adding another state

for the deflection of the tire at the left-hand side. The switching between equations
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6.7. SUMMARY

was necessary for minimum realization of the model to make the stability analysis

easier. The nonlinear 4-DOF vehicle roll model was linearized, and the Lyapunov

stability of the intended equilibrium point was studied. The trend of equilibrium

point movement as the lateral acceleration varies were investigated. After discussion

on limitation of the Lyapunov’s linearization method, the concept of Lyapunov expo-

nents was used to detect the qualitative change in type of attractors happens in large

values of the lateral acceleration. Considering the dimensions of the nonlinear 4-DOF

vehicle roll model and implemented stability analysis, it is reasonable to employ this

model in developing roll active safety system for future study.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis: a) a new measure of dynamics called "modified Lyapunov exponents"

has been defined that provides more insight into stability analysis of the nonlinear

systems, b) the concept of Lyapunov exponents has been introduced to the vehicle

dynamics community as a constructive method for stability analysis of nonlinear

vehicle models, c) the nonlinear 4-DOF vehicle roll model as a proper nonlinear vehicle

roll model for Lyapunov stability analysis has been developed, and d) the SETV has

been developed as a vehicle test bed with unique features for rollover experiments.

This thesis can be concluded in four-fold as follows.

The modified Lyapunov exponents were defined, and their existence and invariant

property have been proven by theorem of the modified Lyapunov exponents. The con-

cept of modified Lyapunov exponent have been demonstrated in various case studies.
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It has been shown how these exponents can provide additional insight of nonlinear

dynamics over the conventional Lyapunov exponents.

The concept of Lyapunov exponents has been applied to system and structure Lya-

punov stability analysis of the well-known nonlinear bicycle vehicle model. The results

verified the promised advantages of this concept over other available tools, including

the Lyapunov direct method.

Considering the absence of a suitable realistic vehicle model for roll stability analysis,

a nonlinear 4-DOF vehicle roll model with minimum realization has been developed.

Through simulations and an experiment, It has been shown that this model is capable

of modelling the realistic roll motion of vehicles. To avoid blind simulations and mis-

understanding, the Lyapunov stability of the model has been analyzed by Lyapunov

linearization and Lyapunov exponents methods. It has been shown that the con-

cept of Lyapunov exponents can tackle the limitation of the Lyapunov linearization

method and provide more information on behaviour of the vehicle model.

As an experimental test bed for rollover study, the SETV was designed and built. The

electrical and mechanical components of the SETV have been introduced, and their

functions have been discussed. The SETV was driven in a cornering maneuver such

that the rollover occurred. The collected acceleration data was fed to the nonlinear

4-DOF vehicle model. It has been shown that the roll rate graph predicted by the

vehicle model is close to the measured data; moreover, the model is capable of predict

the rollover accident.

The thesis has a number of contributions. In the field of nonlinear dynamic analysis,

the thesis contributed with the modified Lyapunov exponents. These exponents are
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introduced as new measures of dynamics that can provide more information from

nonlinear dynamics. The contribution of this thesis in the vehicle society includes: a)

suggesting the concept of Lyapunov exponents as a powerful tool for stability analysis

of the vehicle models, b) developing a proper vehicle roll model for Lyapunov stability

analysis with adequate realistic behaviour, c) developing a scale experimental test

vehicle with unique features for roll motion studies.

7.2 Future Work

The presented work in this thesis has the potential to be extended in both nonlinear

system dynamics and vehicle dynamics area.

The concept of modified Lyapunov exponent may be employed to find the borders of

the stability region. In the large dynamic systems, finding the edge of the stability

region is very time-consuming and some algorithms are developed to speed up the

searching process. The modified Lyapunov exponents may give some insight about

the appropriate directions to search.

In stability analysis or chaos controller design, the information about the dominant

sub-systems is important. The modified Lyapunov exponents can be considered to

identify the dominant sub-systems.

Moreover, the identification of dominant sub-systems may also be used to reduce the

computational load required for calculating Lyapunov exponents.

The nonlinear 4-DOF vehicle roll model can be considered as the plant for designing

controllers or warning systems. This model is precise, and it benefits from the advan-
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tages includes: a) the small dimension, and b) less complex dynamics in comparison

with other realistic models. Additionally, this model can be used in real-world appli-

cations since it is reasonably fast, and it only needs one time series measured by an

accelerometer.

Finally, the SETV is a versatile test bed to be used for other vehicle dynamics studies

with minor development. However, improving the steering system with a closed-loop

controller to guarantee the precise steering is commendable.
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Appendix A

Vehicle Models Predicting Roll

Motion

A.1 Overview

In the literature, a number of vehicle models have been introduced, which represent

the roll motion of the vehicles [6, 7, 10, 18, 73–79]. Depending on the consideration

of the roll acceleration, these models can be classified into two groups; a) those

representing the quasi-static roll motion and b) those also including the transient roll

motion. In another sense, regardless of the quasi-static or transient representation,

someone can categorize the roll models into three types a) those considering only

the roll motion of the sprung mass, b) those that assuming same roll motion for the

sprung mass and the unsprung mass, and c) those that consider different roll motions

for the sprung mass and the unsprung mass. In subsequent sections; well-known
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A.2. QUASI-STATIC ROLL MODELS

models in quasi-static and transient categories will be introduced.

A.2 Quasi-Static Roll Models

In quasi-static models, it is assumed that the vehicle is in the steady turn, and the

change in the lateral acceleration is reasonably low in comparison with the vehicle roll

response. These models include: a) the rigid vehicle, b) the suspended vehicle, c) the

compliant tire vehicle, and d) the suspended-compliant tire vehicle. In subsequent

parts, these models are briefly presented, however; an interested reader may refer to

[12] for more details.

A.3 Rigid Vehicle Model

Rigid vehicle model, shown in Figure A.1, is the simplest roll plane model which has

no degree of freedom and gives the theoretical upper bound for both yaw and roll

stabilities.
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Figure A.1: Rigid vehicle model
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A.4. SUSPENDED VEHICLE MODEL

Writing the force equilibriums in the y- and z-directions, the yaw stability limit in

terms of lateral acceleration ay can be derived as

aψy
g

= tan θ + f

1− f tan θ (A.1)

where f is the coefficient of friction, and θ is the superelevation of the road. In above

formula it has been assumed that the vehicle travels with a constant longitudinal

speed where all the available friction is used for cornering. The yaw stability limit

is always used for road geometry design purposes [80]. It is notable that the yaw

stability limits for subsequent models are same as Eq. A.1.

The roll stability limit is defined in terms of lateral acceleration ay and can be derived

by writing the moment equilibrium about the outside tire contact point with road at

the instance of lift-off of the inside where Fi,z = 0 and ay = aφy as

aφy
g

=
tan θ + t

2hcg

1− t
2hcg tan θ (A.2)

If the superelevation is neglected, the remaining terms will represent the vehicle con-

tribution to the rollover as
aφy
g

= t

2hcg
(A.3)

Equation A.3 is known as Static Stability Factor (SSF) or Track Width Ratio (TWR)

in the literature.

A.4 Suspended Vehicle Model

The suspended vehicle model, as shown in Figure A.2 [78] includes roll degree of

freedom for the suspension which represents the rotation of the sprung mass about
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A.4. SUSPENDED VEHICLE MODEL

the kinematic roll axis that is the line joining the front and rear roll centres [7] as

shown in Figure A.3. In fact, this model includes the lateral load transfer where shift

the centre of the gravity toward the outside of the turn. In this model, it is assumed

that the unsprung mass is much stiffer than the suspension, and therefore, it never

rotates and always stays parallel with the road surface. Another presumption is that

the unsprung mass is negligible in comparison with the sprung mass.

The roll stability limit for this model can be derived from the moment equilibrium

around the outer tire contact point at the moment of inner tire lift-off. Assuming the

small angles, it is formulated as

aφy
g

=
θ [hcg,s + (hcg,s − hrc)Rφ] + t

2
hcg,s + (hcg,s − hrc)Rφ − θ t2

(A.4)
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Figure A.2: Suspended vehicle model
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Figure A.3: Roll axis of the vehicle

where Rφ is the vehicle roll gain (roll rate or roll gradient) giving the amount of

sprung mass body rolls per unit applied lateral acceleration. Writing the moment

equilibrium around the roll centre for the sprung mass and considering small angles,

roll gain can be derived as

Rφ ≡
φ

ay/g − θ
= 1

Kφ
msg(hcg,s−hrc) − 1

(A.5)

A.5 Compliant Tire Vehicle Model

Figure A.4 exhibits the compliant tire vehicle model. As it can be seen this model

consists of a rigid vehicle with vertical tire compliance that allows the vehicle to roll

about an axis. However, it is assumed that the tires are always normal to the road

surface.
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A.6. SUSPENDED-COMPLIANT TIRE VEHICLE MODEL
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Figure A.4: Compliant tire vehicle model

The moment equilibrium about the outside axle spindle at the instance of inner tire

lift-off leads to the roll stability limit as given in Eq. A.6.

aφy
g

=
−l tanα + t

2
l + t

2 tanα (A.6)

where l is

l = hcg − ha
cos (φφ) (A.7)

A.6 Suspended-Compliant Tire Vehicle Model

In suspended-compliant tire vehicle model [13] (see Figure A.5), both a roll degree of

freedom of the suspension (connection between the sprung and unsprung mass) and

tire vertical compliances are included.
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Figure A.5: Suspended-compliant tire vehicle model

A.7 Transient Roll Models

To demonstrate the vehicle roll response to the rapidly changing lateral acceleration,

the model should be able to represent the roll varies with time. Such a model is known

as the transient roll model. Transient roll models can be derived by considering the

dynamics of the quasi-statics rollover models in Sections. A.4, A.5, and A.6. For

example, if someone includes the roll moment of inertia Ixx of the sprung mass to

the suspended vehicle roll model, this model can be used for examining the vehicle

response to the suddenly applied lateral accelerations [7].

The dynamic equations of the suspended-compliant tire vehicle model (2-DOF, 4

states variable) can be seen in [13].
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A.8. VEHICLE MODELS REPRESENTING COUPLED YAW AND ROLL
MOTION

A.8 Vehicle Models Representing Coupled Yaw and

Roll Motion

There are some comprehensive models that combine motions in the yaw and the roll

planes. Depending on the applications, these models may consider the roll motion of

the sprung mass or the roll motion of the combined sprung and unsprung masses.

A.9 Yaw-Roll Model Considering the Roll Motion

of the Sprung Mass

This type of combined yaw-roll models neglects the roll motion of the unsprung mass.

They can be used for studying vehicle handling in maneuvers that the tire lift-off does

not occur [18]. Figure A.6 shows such a model in 3-DOF configuration (roll, yaw, side

slip angle) and integrated unsprung mass where its dynamic equations can be found

in [6, 9]. A full model (8-DOF) including wheel spins and un-concentrated unsprung

masses [18] is given Figure A.7.
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SPRUNG MASS
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Figure A.6: 3-DOF yaw-roll vehicle model

fc

sm

zω

u

v

rc

a

b

yglrF

xglrF

ygrrF

xgrrF

xgrfF

ygrfF

xglfF
yglfF

δ

o

xωφ,

rch

rccg hh −

fczgrfF zglfF

ysam

gms

o
oo

a b

rch

cgh

urh

rcrhrcfh

ufh urmufm

sm

Side view 

Back view 
Top view 

Figure A.7: 8-DOF yaw-roll full vehicle model
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A.9. YAW-ROLL MODEL CONSIDERING THE ROLL MOTION OF THE
SPRUNG MASS

The pitch and heave motion of the vehicle is not modelled in the 8-DOF vehicle

model, however; in [18] it is noted that in the case of handling maneuvers, in which

the vehicle does not experience significant longitudinal accelerations, the result from

this model is reasonably matched with the 14-DOF full vehicle model.
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Appendix B

Reconstruction of the 14-DOF Full

Vehicle Model

B.1 Overview

In this Appendix, the 14-DOF full vehicle model which is introduced in Section 3.3.3

will be reconstructed. It will be used as the reference model for further study on the

stability analysis of the roll motion of the vehicle model. To make the process of the

modelling easier to understand, despite the original work, this chapter starts with

expressing general equation of motions in 3D space, and followed by derivation of the

velocities, forces and torques. It is notable that only the equations for the left rear

corner of the vehicle (lr) is derived here. Since the dynamics of the other corners can

be derived in the same manner, they are not presented.
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B.2. RECONSTRUCTION OF THE 14-DOF FULL VEHICLE MODEL

B.2 Reconstruction of the 14-DOF Full Vehicle Model

The reconstruction of the 14-DOF full vehicle model [5] (see Figure B.1) starts by

writing the 3D general equation of motions [81] in a frame (x, y, z) (body-fixed

frame). This coordinate is attached to the CG of the sprung mass (rigid body), and

the coordinate axes coincide with the principal axes of inertia (see Figure B.2).

Equation B.1 describes 6-DOF related to the sprung mass where Fx, Fy, and Fz are

the external forces along x, y, z directions. τx, τy, and τz are the external moments

around x, y, z axes. It should be noted that in the original work, some angular velocity

products have been omitted in Euler’s equations while they have been included in

reconstruction those equations in this chapter.
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Figure B.1: Schematic view of the 14-DOF full vehicle model1

1Subscript ij denotes left front (lf), right front (rf), left rear (lr), and right rear (rr).

172



B.2. RECONSTRUCTION OF THE 14-DOF FULL VEHICLE MODEL

h

Ground level 

a b

rc

vx vy

vz
zω

xω

x

z

y

m
crh

cfh
fc

vysrf ,Fysrf ,Myrf

vzsrf ,Fzsrf ,Mzrf

vxsrf ,Fxsrf ,Mxrf

vysrr,Fysrr,Myrr

vzsrr,Fzsrr,Mzrr

vxsrr,Fxsrr,Mxrr

vyslr,Fyslr,Mylr

vzslr,Fzslr,Mzlr

vxslr,Fxslr,Mxlr
yω

vyslf ,Fyslf ,Mylf

vzslf ,Fzslf ,Mzlf

vxslf ,Fxslf ,Mxlf

mg

X Y

Z

Inertial frame 

Fzdlf

Fzdrf

Fzdrr

Fzdlr

Figure B.2: Free body diagram of the sprung mass

Fx = mv̇x + mωyvz − mωzvy

Fy = mv̇y + mωzvx − mωxvz

Fz = mv̇z + mωxvy − mωyvx

τx = Jxω̇x + ωyJzωz − ωzJyωy

τy = Jyω̇y + ωzJxωx − ωxJzωz

τz = Jzω̇z + ωxJyωy − ωzJxωx

(B.1)
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By solving these equations, vx, vy, vz, ωx, ωy, ωz will be known with the respect to

the body-fixed frame, which changes directions at every time instant. Moreover, the

force and the torque components must be aligned with axes of this frame. To overcome

above problems they will be transferred from body-fixed frame to the inertial frame

(X, Y, Z) through transformations. The body-fixed frame (x, y, z) can be derived

by first rotating the inertial frame about the Z through angle ψ (yaw), resulting in

the frame (x′, y′, z′) attached to the ground at the tire-ground contact point. Next

rotating the (x′, y′, z′) frame about the y′ axis through angle θ (pitch) yields the

frame (x′′, y′′, z′′) and finally rotating around x′′ through the angle φ (roll) yields to

the instantaneous body-fixed frame (x, y, z). The equivalent transformation matrices

are given in Eq. B.2.

φ =


1 0 0

0 cos φ − sin φ

0 sin φ cos φ



θ =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ



ψ =


cos ψ − sin ψ 0

sin ψ cos ψ 0

0 0 1



(B.2)

Therefore, the angular velocities can be represented in frames (x′′, y′′, z′′), (x′, y′, z′),

174



B.2. RECONSTRUCTION OF THE 14-DOF FULL VEHICLE MODEL

and (X, Y, Z) as 
ωx′′

ωy′′

ωz′′

 = φ


ωx

ωy

ωz



ωxg

ωyg

ωzg

 ,


ωx′

ωy′

ωz′

 = θ φ


ωx

ωy

ωz



ωX

ωY

ωZ

 = ψ θ φ


ωx

ωy

ωz



(B.3)

For transforming velocity components the same relationship exists, therefore
vX

vY

vZ

 = ψ θ φ


vx

vy

vz

 (B.4)

The force and the torque components in different frames also have the same relation-

ship; therefore, the force and the torque components can transfer from the inertial
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frame (X, Y, Z) to the body-fixed frame (x, y, z) as
Fx

Fy

Fz

 = φT θT ψT


FX

FY

FZ



τx

τy

τz

 = φT θT ψT


τX

τY

τZ



(B.5)

The angles ψ, θ, and φ change with time and their differential equations can be related

to the body-fixed components ωx, ωy, and ωz as

ψ̇ = sin φ
cos θ ωy + cos φ

cos θ ωz

θ̇ = cos φ ωy − sin φ ωz

φ̇ = ωx + sin φ sin θ
cos θ ωy + cos φ sin θ

cos θ ωz

(B.6)

The total external forces acting on the sprung mass in the x-direction is

Fx = Fxsrf + Fxslf + Fxsrr + Fxsrr + mg sin θ (B.7)

and the total roll moments around the x-axis produced by the external forces acting

on the sprung mass is

τx = Mxrf + Mxlf + Mxrr + Mxrl + (Fzslf + FFzslr − Fzsrf − Fzsrr) c
2 (B.8)

where it is assumed that c = cf = cr.
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The total external forces acting on the sprung mass in the y-direction is

Fy = Fysrf + Fyslf + Fysrr + Fysrr + mg sin φ cos θ (B.9)

and the total pitch moments around the y-axis produced by the external forces acting

on the sprung mass is

τy = Myrf + Mylf + Myrr + Myrl + (Fzslr + FFzsrr) b − (Fzslf + Fzsrf ) a (B.10)

The total external forces acting on the sprung mass in the z-direction is

Fz = Fzsrf + Fzslf + Fzsrr + Fzslr Fdzrf + Fdzlf + Fdzrr + Fdzlr − mg cos φ cos θ

(B.11)

and the total roll moments around the z-axis produced by the external forces acting

on the sprung mass is

τz = Mzrf + Mzlf + Mzrr + Mzrl + (Fyslf + FFysrf ) a − (Fyslr + Fzyrr) b

+ (−Fxslf+Fxsrf−Fxslr+Fxsrr)c
2

(B.12)

The procedure of finding the force and the velocity components acting on each side

of the sprung mass are the same; therefore, only those acting on the left rear corner

of the vehicle will be found; however, the equations for all sides and axles must be

determined in the simulations.

The reconstruction process starts by finding the force equations and then determining

the velocities used in them. Finally, the transformed moments to the sprung mass

will be determined, and the tire lift-off condition will be applied.

177



B.2. RECONSTRUCTION OF THE 14-DOF FULL VEHICLE MODEL

B.2.1 Force Equations

Figure B.3 shows the free body diagram of the unsprung mass on the left rear corner

of the vehicle.
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2
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tlrk

vzulr

vyulrvxulr

Figure B.3: Free body diagram of the unsprung mass on the left rear corner of the
vehicle

By writing the Newton’s equation of motions along x and y directions for the unsprung

mass on the left rear corner of the vehicle

Fxulr = mulrv̇xulr + mulrωyvzulr − mulrωzvyulr

Fyulr = mulrv̇yulr + mulrωzvxulr − mulrωxvzulr

(B.13)

where
Fxulr = −Fxslr + Fxgslr +mulrg sin θ

Fyulr = −Fyslr + Fygslr −mulrg sin φ cos θ

(B.14)
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Therefore,

Fxslr = Fxgslr +mulrg sin θ −mulrv̇xulr − mulrωyvzulr + mulrωzvyulr

Fyslr = Fygslr −mulrg sin φ cos θ −mulrv̇yulr − mulrωzvxulr + mulrωxvzulr

(B.15)

The vertical force Fzslr is

Fzslr = xslrkslr + ẋslrbslr (B.16)

where xslr is the instantaneous suspension spring deflection. The ground forces Fxgslr,

Fygslr, and Fzgslr in the body-fixed frame (x, y, z) can be found by ground forces

Fx′glr, Fy′glr, and Fz′glr in the frame (x′, y′ , z′) as
Fxgslr

Fygslr

Fzgslr

 = φT θT


Fx′glr

Fy′glr

Fz′glr

 (B.17)

The ground forces Fx′glr, and Fy′glr depend on the tire longitudinal and lateral forces

and steering angle, δ, as shown in Figure B.4.

δlr

F !x glr

F !y glr

F !x tlr

F !y tlr

Figure B.4: Forces at the tire contact patch
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Fx′glr = Fx′tlr cos δ − Fy′tlr sin δlr

Fy′glr = Fy′tlr cos δ + Fx′tlr sin δlr

(B.18)

where δlr = 0 (no steering on the rear wheels).

The tire forces can be found by an empirical method known as the Magic Formula

that fits experimental data to describe the relationship between the cornering force

(Fy′tlr) and the sideslip angle, or the longitudinal force (Fx′tlr) and the longitudinal

skid.

To calculate the cornering force, Fy′tlr, the side slip angle of the left rear tire in

Equation B.19 must be inserted instead of x in the Magic Formula.

αlr = arctan
(
vy′glr
vx′glr

)
− δlr (B.19)

To calculate the longitudinal skidding force, Fx′tlr, the x in Magic formula must be

replaced by longitudinal skid of the left rear tire, slr, given in Equation B.20.

slr = (rlrωlr − (vx′glr cos δlr + vy′glr sin δlr))
|(vx′glr cos δlr + vy′glr sin δlr)|

(B.20)

Assuming that the vertical stiffness of tire, ktlr, remains normal to the ground, the

vertical force Fz′glr is equal to

Fz′glr = Fz′tlr = xtlrktlr (B.21)

where xtlr is the instantaneous tire deflection in frame (x′, y′, z′) or in the inertial

frame (X, Y, Z).
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The jacking force Fdzlr which is produced due to the lateral force Fygslr depends on

the type of independent suspension, which will be discussed in Section B.2.3.

B.2.2 Velocity Equations

The spring deflection xslr in Eq. B.16 can be expressed as

ẋslr = vzulr − vzslr (B.22)

The initial deflection of the suspension, xsir, is determined from the static equation

as

xsir = mga

2 (a + b) (kslr + ksrr)
(B.23)

The velocity vzulr represents 1-DOF related to the vertical deflection of the suspension.

It can be determined by applying the Newton’s equation of motion for the vertical

direction of the unsprung mass

Fzulr = mulrv̇zulr +mulrωxvyulr − mulrωyvxulr (B.24)

Fzulr is the total external force along the z-axis (see Figure B.3)

Fzulr = −Fzslr + Fzgslr − Fdzlr − mulrg cos θ cos φ (B.25)

and therefore, from Eq. B.24 and Eq. B.16

mulrv̇zulr = −mulrωxvyulr + mulrωyvxulr + Fzgslr − Fdzlr

− xslfkslf − ẋslfbslf − mulrg cos θ cos φ

(B.26)
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where from Eq. B.17, Fzgslr is

Fzgslr = Fx′glr cos θ cos φ − Fy′glr sin φ + Fz′glr cos θ cos φ (B.27)

The tire deflection xtlr obeys Eq. B.28 as

ẋtlr = vz′glr − vz′gulr (B.28)

where the initial deflection of the tires in the rear axle, xits, is determined from the

static equation as

xtir =

(
mga

2(a + b)

)
+ (mulrg + murrg)
ktlr + ktrr

(B.29)

The velocity vz′gulr can be found by transferring vxulr, vyulr, vzulr from the body-fixed

frame (x, y, z) to the frame (x′, y′, z′) by
vx′gulr

vy′gulr

vz′gulr

 = θ φ


vxulr

vyulr

vzulr

 (B.30)

Therefore,

vz′gulr = −vxulr sin θ + vyulr cos θ sin φ + vzulr cos θ cos φ (B.31)

Assuming that the vehicle is driven on a smooth road, vz′glr = 0, Eq. B.28 will be

reduced to

ẋtlr = vxulr sin θ − cos θ ( vyulr sin φ + vzulr cos φ) (B.32)

The longitudinal velocity vxulr of the unsprung mass as well as lateral velocity vyulr

of the unsprung mass (see Figure B.5) in the body-fixed frame (x, y, z) can be found

by

vxulr = vxslr − lslr ωy (B.33)
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and

vyulr = vyslr + lslr ωx (B.34)

The v̇xulr and v̇yulr in Eq. B.15 are determined by

v̇xulr = v̇x −
cr
2 ω̇z + ẋslrωy − ω̇ylslr (B.35)

and

v̇yulr = v̇y − bω̇z − ẋslrωx (B.36)

respectively.

v !y glr

v !z glr

v !x glr

yulrv

zulrv

xulrv

yslrv

zslrv

xslrv

slrl

lrr

xω
yω

zω

( )zyx ʹ′ʹ′ʹ′ ,, Frame 

Figure B.5: Unsprung mass velocities

The velocities of the left rear strut mounting point in the body-fixed frame (x, y, z),

vxslr, vyslr, and vzslr, (see Figure B.3) can be determined by
vxslr

vyslr

vzslr

 =


vx

vy

vz

 +


0 0 −cr

2

0 0 −b

cr
2 b 0




ωx

ωy

ωz

 (B.37)

183



B.2. RECONSTRUCTION OF THE 14-DOF FULL VEHICLE MODEL

where it is assumed that c = cr = cf .

The longitudinal velocity vx′glr, and the lateral velocity vy′glr at the tire contact patch

in Eq. B.19 and Eq. B.20 are
vx′glr

vy′glr

vz′glr

 = θ φ


vxglr

vyglr

vzglr

 (B.38)

where 
vxglr

vyglr

vzglr

 =


vxulr

vyulr

vzulr

 +


ωx

ωy

ωz

 ×


0

0

−rlr

 (B.39)

Substituting Eq. B.39 into Eq. B.38, after some manipulation Eq. B.40 and Eq.

B.41 can be derived.

vx′glr = cos θ (vxulr − ωyrlr) + sin θ (vzulr cos φ + sin φ (vyulr + ωxrlr)) (B.40)

vy′glr = cos φ (vulr + ωxrlr) − vzulr sin φ (B.41)

Finally, the instantaneous tire radius, rlr, used in Eq. B.39, in the fixed-body frame

(x, y, z) can be calculated as

rlr = r0 −
xtlr

cos θ cos φ (B.42)

and the instantaneous strut length, lslr in Eq. B.33 and Eq. B.34 is

lslr = lsif − (xslr − xsir) (B.43)

where the initial length of the strut is

lsir = h − (r0 − xtir) (B.44)
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B.2.3 Transmitted Moments to the Sprung Mass

In this subsection, it is assumed that the vehicle has the independent suspension with

parallel horizontal links in the front and the rear axles. Therefore, the front and the

rear roll centres are located in the ground plane. Moreover, it is assumed that these

centres are fixed. Since the roll centres are located in the ground plane, all the jacking

forces, Fdzlr, Fdzrr, Fdzlf and Fdzrf , are equal to zero.

The total roll moment, Mxlr, transmitted to the left rear strut of the vehicle depends

directly on the height of the rear axle roll centre. The reason is that the roll centre

is, in fact, the instantaneous point in which the lateral forces developed by the tires

are transmitted to the sprung mass.

Mxlr = Fyglr (lslr + rlr)

− (mulrg sin φ cos θ + mulrv̇yulr − mulrωxvzulr + mulrωzvxulr) lslr

(B.45)

The second parenthesis in Eq. B.45 is the force that is applied to the unsprung mass

at the left rear corner of the vehicle (see Eq. B.13 to Eq. B.15); therefore, Eq. B.45

can be simplified as

Mxlr = Fygslrrlr + Fyslrlslr (B.46)
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The moments Mylr and Mzlr transmitted to the left rear strut are

Mylr = −Fxgslr (lslr + rlr) +

(−mulrg sin θ + mulrv̇xulr −mulrωzvyulr + mulrωyvzulr) lslr

= −Fxgslr (lslr + rlr) + (Fxgslr − Fxslr) llr

= − (Fxgslrrlr + Fxslrllr)

(B.47)

and

Mzlr = 0 (B.48)

B.2.4 Tire Lift-off Consideration

When the tire lifts off the ground, the tire deflection, xtlr, becomes negative. There-

fore, whenever xtlr < 0 the tire forces Fx′glr, Fy′glr, and Fz′glr must set to zero and

the instantaneous tire radius must be set to the value of r0.
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