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Abstract

An unsupervised deep anomaly detection system is implemented to aug-

ment the water quality monitoring system used at a recirculating aquaculture

system (RAS) facility. Its purpose is to increase the system’s anomaly detec-

tion capabilities by improving its accuracy and decreasing the timeframe in

which anomalies can be detected. Quick and precise detection of abnormal-

ities leads to earlier action to reduce mortalities within the fish population,

or prevent them altogether.

The machine learning model introduced in this work, given the name aM-

SCRED or adaptive Multi-Scale Convolutional Recurrent Encoder-Decoder,

is an expansion of the MSCRED model featured in previous work by Zhang

et al.[1] This model is a spatio-temporal network (STN) composed of stacked

CNNs and RNNs, structured in an autoencoder architecture. This configu-

ration is capable of learning what characterizes normal behaviour within a

multivariate timeseries dataset, which can thereafter be leveraged to detect

abnormal behaviour, which may indicate a problem in the system.

Using data obtained from the monitoring system at the RAS facility, aM-

SCRED is able to outperform its predecessor in terms of anomaly detection

performance (measured in terms of Recall, Precision and F1 score). Recall

scores of up to 97% were achieved, as well as F1 scores of up to 94%. It also

outperforms its predecessor in root cause identification (RCI), achieving ac-

curate prediction rates of ∼ 70%, compared to ∼ 50% using the model from

Zhang et al.[1] The improved results are made possible due to modifications

i



which enable the model to adaptively select, on a per-dataset basis, different

signature matrix generating strategies, model structure parameters, anomaly

scoring methodologies, and root cause scoring methodologies.
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Chapter 1

Introduction

Fish production represents a significant portion of the world’s protein pro-

duction, reaching 17% of global production in 2014. This portion has been

growing ever since. Over the last couple of decades, aquaculture-based pro-

duction has steadily outpaced capture-based operations and currently rep-

resents nearly half of total fish protein production. This ratio is continu-

ally growing as well. Projections by the Food and Agriculture Organization

(FAO) of the United Nations indicate that by 2030, aquaculture production

will represent the majority of fish protein production, reaching an estimated

109 million tonnes annually. This represents an increase of 37% from 2016

levels, to 68% of total fish protein production by 2030. [2]

The aquaculture industry is a growing industry that faces unique chal-

lenges that are non-existent in capture-based operations. Namely, smaller

margins on products sold due to extra costs associated with meeting feeding
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requirements and increased mortality rates which result in greater losses due

to stock depletion. Some mortalities are due to failings in the biology and

genetics of individual specimens, which are more difficult to predict and pre-

vent. However, mortalities related to poor living conditions are preventable,

if these detrimental conditions are detected ahead of time and appropriately

addressed. These shortcomings, which are especially true of in-land aquacul-

ture operations, risk hurting the scalability of the industry if not addressed

and rectified in the near-future.

Advances in new technologies, such as machine learning (e.g. sensors,

monitoring systems, anomaly detection, and automation) and process opti-

mizations (e.g. defining standard operating procedures to respond to abnor-

malities in the system) can be adapted to and implemented in aquaculture

systems in order to reduce mortality rates. Reducing such unnecessary losses

will permit this industry to scale in a healthy way and allow it to meet

increasing global demand of fish protein. This work presents a novel im-

plementation of an unsupervised anomaly detection system that works with

existing sensors and monitoring systems, in order to detect abnormalities in

the RAS, in an effort to reduce the system’s mortality rate.

In the remainder of this chapter, the motivation behind this work is de-

scribed in Section 1.1, followed by an overview of the research conducted, in

Section 1.2. Some context on timeseries anomaly detection is presented in

Section 1.3. Finally, the structure of the remainder of this thesis is laid out

in Section 1.4.
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1.1 Motivation

The research in this work focuses on the implementation of an unsuper-

vised deep anomaly detection (DAD) algorithm capable of anomaly detection

in multivariate timeseries data obtained from sensors installed in a modern

high-tech aquaculture facility. Unsupervised machine learning in this context

is key, because it provides the ability for the algorithm to learn to recognize a

normal system state without requiring labelled training data. It is also able

to adjust its understanding of a normal system state as the system evolves in

time (e.g. evolution of system conditions as cohorts of fish grow and undergo

physiological changes).

The purpose of the implementation of this machine learning algorithm

is to continuously compare the current system state to the learned normal

state and detect abnormal conditions in the system as they arise (i.e. detect

anomalies). In the event of an anomaly being detected, system operators

are alerted in order to elicit the appropriate response. With enough notice,

actions taken by the system operators can prevent unnecessary fish deaths.

Furthermore, snapshots of the system state can be recorded in order to

characterize the system at any point in time. This capability falls in line

with food traceability applications which track facility health over a given

period of time. This level of traceability in food production is increasing in

demand across the food production industry and is also on track to become

a regulatory requirements in the future. Therefore, having this capability
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built-in ahead of time is a bonus.

The algorithm implemented in this work is based on the latest advances

in spatio-temporal networks (STN), a subtype of deep anomaly detection

commonly used on multivariate timeseries data. The architecture in question

is based on the MSCRED model, found in previous work by Zhang et al., but

this implementation adds novel modifications on certain components in order

to increase its anomaly detection performance in the aquaculture context. [1,

3]

1.2 Overview of the Research

The algorithm implemented in this research is based upon the Multi-Scale

Recurrent Encoder Decoder model. MSCRED utilizes a stack of different

neural network components, configured in an autoencoder architecture. This

mixture of components can characterize both the spatial dependency between

multiple timeseries (using Convolutional Neural Networks, or CNNs), as well

as the temporal dependency (using Recurrent Neural Networks, or RNNs,

and Attention). [1]

The MSCRED model was chosen as the basis on which to build the im-

plementation in this work, as it has shown its ability in previous work to

outperform other unsupervised techniques in anomaly detection of timeseries

data.[1] This performance is measured using the standard metrics of Precision

(Pre), Recall (Rec), and F1 score. Furthermore, it has also demonstrated
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competence in root cause identification (i.e. identifying which individual

timeseries are responsible for a given anomaly).[1]

The primary objective of this research is to implement and optimize the

structure of MSCRED to perform anomaly detection in the context of a re-

circulating aquaculture system (RAS). In doing so, some novel modifications

are made to certain components of the model in order to increase its adapt-

ability to datasets, in the hope that the model might adapt itself to different

aquaculture systems in the future, requiring only trivial modifications to the

implementation itself. These modifications are detailed in Chapter 3. As

such, this modified model is given the name adaptive Multi-Scale Recurrent

Encoder Decoder, or aMSCRED. Various model hyperparameters of the im-

plementation of Zhang et al. were empirically determined for their specific

dataset. These hyperparameters are identified and tuned to find the optimal

values for the RAS dataset studied in this research. They are left as dynam-

ically tunable parameters to allow future expansion into other applications.

The secondary aim of the aMSCRED implementation is to outperform

its predecessor in terms of anomaly detection performance (measured via

Precision, Recall, and F1 score) with respect to RAS timeseries data. This

comparison is achieved by matching the hyperparameters presented in the

MSCRED paper to do a head-to-head comparison of results.[1]

A third research objective is to expand the root cause identification strat-

egy elaborated on in [1]. This research proposes two additional metrics to

identify root causes and compares their performance to the metric presented
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in [1].

Another question of interest relates to the preprocessing of the model’s

input data. The input data used to train the model is not the raw time-

series data itself, rather it is derived data (called signature matrices) which

characterize pairwise correlations between each timeseries pair over multi-

ple windows of fixed length. This research proposes alternate correlation

functions used when generating the signature matrices, namely the Pear-

son correlation coefficient and time-weighted correlation functions (i.e. time

steps further in the past have lesser effect on the correlation measure in the

signature matrix). They, as well, are compared with the method presented

in the implementation by Zhang et al. [1]

1.2.1 Further Context

When implementing anomaly detection algorithms, there exists an un-

circumventable trade-off between their ability to minimize false positives

(FP) and false negatives (FN). In the context of aquaculture, false nega-

tives have the potential to exert vastly more negative impact on production

since unchecked anomalies can lead to increased mortality rates. As such,

when implementing and training the model for the context of the RAS to

address the research objectives above, results that minimize false negatives

at the expense of an increase in false positives are favoured. This rationale

will be elaborated on further in a later section.
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1.3 Timeseries Anomaly Detection

What are anomalies? In the general sense, they are abnormalities (or

outliers) present within a given dataset; they are data points that noticeably

do not align with the majority of other datapoints present in the dataset.

In the context of timeseries data, the dataset consists of sequential data

that varies in time. Anomalies in this context consist of data points that

break a repeating sequence or range of expected values, based on the re-

maining datapoints in the dataset. An example of this is shown in Figure

1.1.

0 10 20 30 40 50

40

20

0

20

40

Timeseries Anomaly

Figure 1.1: Anomaly in a timeseries. Anomalous timesteps (highlighted in red)
do not follow the greater general trends of the remainder of the timeseries.
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1.3.1 Deep Anomaly Detection (DAD)

Deep-learning is a subset of machine learning techniques that has grown in

popularity in recent years, outpacing traditional machine learning techniques

in many applications, as the scale of data input into the system increases.[4]

The popularity of deep-learning based anomaly detection techniques is

no exception. With the prevalence of timeseries data increasing at a stagger-

ing rate, DAD techniques have become increasingly widespread in the past

decade. DAD techniques have been applied to intrusion detection, fraud

detection (e.g. banking, insurance, healthcare), malware detection, medi-

cal anomaly detection, industrial anomaly detection, and timeseries anomaly

detection, to name a few.[4]

The challenge when dealing with multivariate timeseries is that both the

spatial and temporal characteristics of the system must be examined; that is,

both the pairwise correlation of each sensor in a given segment of time and the

evolution of each single timeseries through time must be well understood.[1]

The type of DAD implemented in this research is unsupervised multivari-

ate timeseries anomaly detection. Unsupervised because of its ability to learn

the inherent structure of what characterizes data as normal versus anomalous

and doing so in a cost-effective manner. It does not require annotated data,

which is a time consuming and expensive task to undertake.[4]
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1.4 Thesis Structure/Organization

The remainder of this thesis is structured as follows. Chapter 2 presents

background information on aquaculture, its economic importance, as well as

physical parameters of a RAS and fish physiology that dictate the health

of the fish populations contained in the RAS. Chapter 3 presents machine

learning background, including theoretical concepts utilized in aMSCRED,

followed by a detailed breakdown of the components of aMSCRED, contrast-

ing the modifications made in the context of this research with respect to the

MSCRED implementation of Zhang et al.[1] Chapter 4 describes the partic-

ular recirculating aquaculture system (RAS) and sensor system from which

the dataset used in this research was obtained, as well as the experimental

methods undertaken. These include a characterization of the datasets used,

the data preprocessing they are subject to, the model hyperparameter tuning

process, the training validation and testing process, the anomaly scoring and

detection methodology (i.e. when to predict a given input as anomalous), the

root cause identification methodology, as well as defining the metrics used to

evaluate anomaly detection performance. Chapter 5 summarizes results ob-

tained for each of the evaluation metrics as well as overall anomaly detection

on the RAS dataset. Chapter 6 concludes this work and evaluates to what

degree each research objective was attained (or not).

The Appendixes contain detailed information that was not essential to the

understanding of the research presented in this work, but serve as additional
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context to interested parties. Appendix A details how the monitoring system

used at the research facility functions and how it interacts with the staff, as

well as how aMSCRED fits into it. Appendix B looks at considerations

for implementing aMSCRED in a production system (i.e. using it as an

online anomaly detection system). Appendix C details the implementation

of the aMSCRED model in Tensorflow, presenting details, diagrams, and

specifications of the model in code.
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Chapter 2

Aquaculture Background

2.1 Relevance of the Aquaculture Industry

This section discusses the importance of the in-land aquaculture industry

on a global scale, as well as challenges it faces, establishing the importance

of developing technology for the aquaculture industry. This is to justify

committing energy and resources to push along research and innovation in

this domain.

2.1.1 Global Production and Consumption

Global fish production peaked at roughly 171 million tonnes in 2016.

Aquaculture represented 47% of production that year, up from 25.7% in

2000, achieving an average growth rate of 5.8% annually.[2]

Since 1961, the average annual increase of fish consumption (3.2%) has
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been twice that of human population growth (1.6%). Demand for consum-

able fish products is exponential growth of the human population, requiring

significant scale-up in fish production capacity, world-wide, in order to meet

growing market demand.[2]

However, while the global demand for fish products grow, capture-based

fisheries production have stagnated since the 1980s, as seen in Figure 2.1.

Figure 2.1: World fish production. In orange, capture-based portion and in blue,
aquaculture-based portion of production. Figure obtained from [2]

As time passes, in-land aquaculture production is projected to repre-

sent an increasing share of production capacity and will become the primary

source to meet the increased global demand for aquatic protein.[2]

2.1.2 Advantages and Risks of Aquaculture

In 2016, roughly 60 million people are estimated to be engaged in fish

production globally, of which 20 million in aquaculture-based operations and

40 million in capture-based operations.[2] Both market segments represent
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a similar production capacity, yet aquaculture achieves it with only half the

workforce. This indicates an inherent efficiency for aquaculture-based oper-

ations in terms of labour requirement. This fares well with respect to the

expected scale-up of the industry over the next decade.

This efficiency is further increased with the ability to introduce high-tech

solutions (such as facility automation, sensing and monitoring systems, etc...)

which further extend the capacities and capabilities of existing facilities and

their workers. Research and advances in this technology holds the potential

for aquaculture-based operations to further increase is efficiencies, solidifying

its position to become the primary source of production of aquatic protein.

However, aquaculture comes with its set of risks that either do not exist or

are not as prevalent in capture-based operations. Namely, water conditions

must be closely monitored and maintained within a given operating range

to ensure good fish health. If a problem arises with any equipment (pumps,

filters, etc. . . ) the living conditions of the system can rapidly deteriorate

and lead to increased mortality rates. This risk can be mitigated, using

electronic sensors and monitoring systems which are becoming increasingly

common-place across all industries.

2.1.3 Existing Monitoring Solutions

Currently, existing systems available on the market can monitor multiple

system parameters (e.g. temperature, dissolved oxygen, pH), set thresh-

olds within which these parameters should remain, and alert operators (via
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some computer interface or alarms) or initiate automated tasks (e.g. turn

on a pump) whenever these parameters leave their normal bounds. The

Pentair line of monitoring products, IPI Singapore Fish Farm Monitoring

System, MonitorFish, and RTAqua, all consist of a payload of different sen-

sors which tie in with some software suite, visualization tools, integration

with programmable logic controllers (PLC) (Pentair and IPI), but utilize the

traditional threshold-only monitoring approach.

The drawback of this type of monitoring system is that it is not capable of

detecting the complex combination of issues which may be happening across

multiple system parameters. Looked at on an individual basis, parameters

may look normal (i.e. everything is within normal ranges) but may in fact

be dangerous when combined.

An arbitrary example of such an event might be a dead fish that is caught

in a pump line, reducing system flow and simultaneously leaching undesirable

chemicals into the water. This might not be noticeable in readings on any

one individual sensor and could lead to nitrogen poisoning of other fish in

the system, if gone unnoticed.

Another such arbitrary example is that a sensor begins to malfunction

and returns incorrect readings that appear normal to the monitoring system

when in fact they are not.

Sources of systematic errors are also a danger to such monitoring systems.

For example, biofilms accumulate on sensor probes over time and bias sensor

readings. The offset readings could appear to still be within normal ranges

14



when in fact they are not.

The scenarios presented above are far too complex to program into a

traditional rules-based and threshold-based monitoring systems as they are

multivariate issues that arise in unpredictable and unforeseeable manner,

manifesting symptoms across multiple sensors. Therefore, it is desirable and

cost effective to develop an unsupervised deep anomaly detection system that

is constantly learning what a normal system state looks like and using that

knowledge to detect abnormalities, ideally before they become noticeable to

traditional monitoring systems (or even the trained-eye of employees) and

elicit appropriate interventions in order to reduce fish mortalities, or prevent

them altogether.

2.2 Species Selection

An important decision when designing an aquaculture system is the species

of fish it is designed for, since every species has its own set of needs and re-

quirements. Stocking density is an important requirement to consider, as it

determines the total volumetric capacity of the system by setting an upper

limit of how many kg of fish can be produced per m3 of tank volume.

An equally critical consideration is the market price of the species per kg

versus its overall cost of production per kg of fish mass, as this will dictate

the margins, which is the make-or-break factor for any potential aquaculture

operation. The principal factor affecting the margin is the feed conversion
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ratio (FCR) of the species, since feed represents the single largest variable

cost in aquaculture. FCR is defined as the mass of feed necessary to add a

unit of mass onto the fish; for example, an FCR of 1.3:1 means that for every

1.3kg of feed a fish will consume, it will gain 1kg of mass.[5]

2.2.1 Arctic Char

The species of fish at the facility where this research is conducted is Arctic

Char. Arctic Char is an appropriate candidate for in-land aquaculture, as it

currently has limited supply and is perceived as a high-value species in the

market, yielding high demand and high wholesale price. Furthermore, it is

an efficient species to farm, with a FCR approaching 1:1 in ideal conditions.

The broad body shape and small head give fillet yield around 7− 8% higher

than rainbow trout.[5] Another favorable characteristic of Arctic Char is

its comfort in higher than normal stocking densities, with some facilities

achieving up to 120kg/m3. This means less system volume is required to

produce the same output weight compared to other species (e.g. salmon and

trout).[5] They also have a high survivability in short-term exposure to low

dissolved oxygen concentrations. Also, being an arctic species, they are also

cold-water resistant, maintaining a maximal growth rate in the range of 10∘C

to 15∘C.[5]

Although this species is a great candidate for in-land aquaculture, it

comes with challenges. For example, eggs and fry are expensive due to low

hatchery supply and broodstock development is in its infancy in North Amer-
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ica. They also do not feed as aggressively as other species, (e.g. rainbow

trout). Therefore, feed must be delivered gradually and slowly throughout

the day in multiple passes. It is not a very well-known species in the global

market as of yet either, limiting retail demand to northern geographies, where

it is most commonly known. [5]

2.3 Fish Physiology

The health of fish depends on the water in which they live. Many factors

herein dictate quality of life, most notably water temperature and dissolved

oxygen (DO). Other important factors are pH, oxygen reduction potential

(ORP) and concentration of fish waste, found as dissolved ammonia and

suspended solids (TAN and TSS respectively).

Every species of fish has different levels of these factors that they can

endure and surpassing these levels for prolonged durations leads to increased

erratic behaviour, disease, and mortality rates.

Many of these factors are correlated due to physical and chemical interac-

tions occurring between them in the water, making maintaining a balance a

complicated task. Small changes in one factor can initiate a cascade of larger

changes in other factors. For example, maximal DO concentration is lim-

ited by water temperature. Thus, as water in the system becomes warmer,

it also becomes inherently less oxygenated. Furthermore, increased water

temperature increases the metabolic rate of the fish, increasing their oxygen
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consumption, further decreasing dissolved oxygen supply. Thus, increasing

the water temperature beyond a certain temperature can lead to runaway

hypoxia in the fish population.

For this reason, aquaculture facilities must monitor and maintain appro-

priate values of these system parameters to ensure the efficiency of their

production is maintained. Failure to do so leads to increased mortalities.

These parameters, as well as interactions between them, are explained in

more detail in the remainder of this section.

2.3.1 Dissolved Oxygen

Like most animal species on Earth, fish require oxygen intake to survive.

The primary site at which oxygen uptake occurs is at the gill membrane. The

efficiency of the gas exchange at this site depends on oxygen tension gradient

(partial pressure) between the surrounding water and the fish’s blood. The

oxygen tension depends on concentration of DO (Dissolved Oxygen), the

water temperature, and atmospheric pressure.[6] For salmonoids, such as

Arctic Char, acute limit DO is anything less than 2mg/L (i.e. lethal level).[6,

7]

Levels of oxygen delivery below the metabolic requirements are detrimen-

tal to the fish, leading to hypoxia. Insufficient oxygen delivery, especially to

the brain, for an extended amount of time leads to death.[6] Exposure to

prolonged periods of hypoxic conditions have also been shown to increase

occurrence of disease, a reduction in growth rate, and interruption and alter-
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ation of the reproductive cycle. Evidently, such stresses should be avoided

in a commercial setting due to financial losses.

As mentioned earlier, DO levels in the water are primarily limited by

the temperature of the water. Solubility of oxygen in water decreases as the

temperature is increased. Therefore, the water temperature will impose an

inherent limit on dissolved oxygen concentration.

2.3.2 Water Temperature

Most fish are cold-blooded species, that is, their metabolic rate is dic-

tated by their body temperature. Increasing the water temperature linearly

increases the metabolism of the fish, requiring more oxygen and more feed to

survive. This also diminishes its FCR. This translates to a loss in efficiency

in protein-to-protein conversion and increases feed costs (i.e. diminishing

margins).[8]

Arctic Char in particular can only survive in a range of 0∘C to 16∘C, but

are able to tolerate short bursts of temperature near their thermal limit, 20∘C.

Prolonged exposure to this thermal limit temperature has negative impacts

on both the immune response (making it prone to disease) and elicit stress

response (increasing risk of premature mortality or aggressive behaviour). In

turn, this exposure yields increased mortality rates across subjected popula-

tions.
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2.3.3 TDS, TSS, and Ammonia

Fish waste is produced in the form of ammonia (𝑁𝐻3) and solid waste.

Both forms of waste are detrimental to fish health, however ammonia poison-

ing is the major concern. Both their concentrations need to be kept below a

threshold via filtration units.

A certain portion of dissolved ammonia becomes ammonium (𝑁𝐻+
4 ), de-

pending mostly on the pH of the water. Ammonia is more toxic to fish than

ammonium. In general, ammonia is more prevalent at higher pH values.

Care must be taken to keep total ammonia levels low in the system and to

swing the balance in favour of ammonium until it can be filtered out. This

is typically achieved by maintaining pH near the lower end of the healthy

threshold (more acidic).

The solid waste goes two routes once excreted. A portion of the waste

is dissolved, Total Dissolved Solids (TDS), and are removed using biofilters.

The remaining solids, Total Suspended Solids (TSS), remain in suspension

and are removed from the system using a combination of filters, skimmers,

and settling tanks.

2.3.4 pH and ORP

The hydrogen potential, commonly referred to as pH, is the measure

of activity level of hydrogen ion exchange in a water-based solution. It is

measured on a scale of 0 to 14, where 0 is more acidic and 14 is more alkaline.
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Pure water at room temperature is pH neutral, with a pH of 7. Typically, fish

can survive anywhere in the range of 5 to 8, depending on species preference,

however, it is preferable to stay near the lower-end of this range to maintain

an optimal ammonia/ammonium balance.

Oxidation Reduction Potential (ORP), also called Redox, is the activity of

oxidizers and reducers in a solution relative to their concentration. Oxidizers

accept electrons, and reducers lose electrons. It is measured as an electric

potential, in millivolts (mV). Examples of oxidizers that are commonly found

in aquaculture are chlorine and hydrogen peroxide. Among other things,

ORP is used as an indicator for biological health of the water; lower ORP

values promote growth of undesirable biological agents such as algae (below

200 mV), while maintaining higher values (between 250 mV and 400 mV)

will prevent such growth and lead to improved fish health. An upper limit for

aquaculture is 700 mV as anything above this level will sterilize all life forms

in matter of minutes (fish included). Factors linked to low ORP value are

low DO levels, high nitrites, or dissolved organic carbon (DOC) which enter

the system via TDS. In essence, ORP is a compound indicator for multiple

other factors in the system.
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Chapter 3

Relevant Deep Learning

Concepts

This chapter is divided into two parts. The first part presents some

essential background on deep learning concepts which relate to the work done

in this research and the components used to construct the model, which is

presented in the second part of the chapter.

Section 3.1 presents background on deep anomaly detection, including the

different neural network components that are used in this context and why

they are applied. Of these, the autoencoder architecture in Section 3.1.1, con-

volutional neural networks in Section 3.1.2, recurrent neural networks (LSTM

in particular) in Section 3.1.3, and scaled dot-product attention mechanism

in Section 3.1.4. Other concepts covered in this section also include activation

functions (Sigmoid, ReLU, and SELU in particular).
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The model presented in this work, aMSCRED, is elaborated upon and

contrasted with the model of Zhang et al. [1] on which it is based. Section

3.2 first gives an overview of the model, followed by examining each compo-

nent individually and formalizing them mathematically. These components

presented are the signature matrix generator, the convolutional encoder, the

recurrent component, and the convolutional decoder. This is followed by the

process to compare the input to the model and measuring the loss, used for

training the model.

3.1 Anomaly Detection Concepts

A subclass of deep anomaly detection techniques, called Spatio-Temporal

Networks (or STN) utilize a variety of traditional neural network layers,

combined to create hybrid network architecture which learns both spatial

and temporal dependencies present between pairs of timeseries in a given

dataset. [4]

The aMSCRED model presented in Section 3.2 is no exception. It is

built using the autoencoder architecture, utilizing a mixture of convolutional

networks as the encoder-decoder pair with a recurrent neural network placed

between them, acting on latent space of the convolution autoencoder.

Before delving into the details of the aMSCRED model, this section

presents an overview of the fundamental components used. In the following

subsections, a summary of terminology and basic operation of Autoencoder

23



networks, Convolutional Neural Networks (CNN), Long Short-Term Memory

(LSTM), and Scaled Dot-Product Attention mechanism are presented and

contextualize why they are used, without getting into any formal mathemat-

ical rigor.

3.1.1 Autoencoder

The Autoencoder operates on the principle of learning to correctly recre-

ate input data, given only a compressed representation of it in latent space,

as depicted in Figure 3.1. They approximate the identity function

�̂� = 𝑓𝑊,𝑏(𝑥) ≈ 𝑥 (3.1)

where 𝑥 is the input, 𝑓 is the model and 𝑊 and 𝑏 are the weights and

biases of the network’s layers. In principle, by compressing input data to

a reduced dimensionality latent space, the network learns the underlying

structure of the data, while disregarding superfluous information. In other

words, information that has greater influence on correctly reconstructing

inputs from the obtained latent space is kept, while the rest is discarded.[4]

Autoencoder loss, typically referred to as reconstruction loss, is given by,

ℒ(𝑥, �̂�) = ‖𝑥− �̂�‖ (3.2)

where 𝑥 is the input and �̂� is the reconstructed input.
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Figure 3.1: Simplified representation of the Autoencoder network architecture.
Input 𝑥 is first compressed into its Latent Space representation via the encoder;
the decoder then learns to reconstruct the input (�̂�) as accurately as possible, given
only the latent state.

3.1.2 CNN

The Convolutional Neural Network (CNN) is known for its pattern recog-

nition capability while remaining resistant to small disturbances due to noise

found in the input data.[9] Through repeated exposure to a pattern, the CNN

gradually acquires knowledge of this pattern and learns to recognize it. This

process happens in an unsupervised manner, meaning no prior knowledge of

the existence of the pattern needs to be shared with the CNN.[9]

While a CNN is typically used with 2-dimensional image data (sometimes

3-dimensional if considering separate colour channels - RGB), it can be ex-

tended to higher dimensional image analogues, like a matrix or a tensor. (e.g.
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the correlation matrix obtained from multivariate timeseries data).

When dealing with correlation matrices of timeseries data instead of im-

age data, an additional property is gained, called shift-invariance. Shuffling

the order of rows and columns (i.e. the ordering of timeseries in the correla-

tion matrix) does not affect the outcome of the process.[1]

The mechanism through which a CNN functions is by sampling the input

data 𝑚 times with 𝑚 kernels to obtain a stack of 𝑚 filtered images. The

dimensionality of the filtered space is reduced, via either max pooling or

using strided samples (i.e. only sample every second position of the input

(strides of 2 × 2), reducing filter image dimensionality by half). Multiple

convolutional layers can be chained together, each layer’s output feeding

into the next layer’s input. Normalization is typically achieved using ReLU

activation function, due to its higher computational efficiency at the cost of a

small increase of loss compared to tanh or sigmoid. The learnable parameters

are the weights and biases of the kernels; these weights and biases are learned

via the process of backpropagation.

To illustrate with a concrete example, consider a 32 × 32 pixel input

image. The input data is thus a 32 × 32 matrix. Using 3 × 3 kernels and

2× 2 strides, the kernels will output 16× 16 filtered images (since the stride

is 2 both in the 𝑥 and 𝑦 directions, leading to half the amount of pixels in

both the 𝑥 and 𝑦 direction). This process is repeated for 𝑚 kernels, each

with its own weights and biases to be learned. The input data can thus be

compressed an arbitrary amount in this fashion and the CNN learns patterns
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in these lower dimensional spaces. This structured is illustrated in Figure

3.2.

Figure 3.2: Example of a CNN on 3D dataset. The concept holds for
any dimensional 32 × 32 input image is reduced to 𝑚 16 × 16 filtered im-
ages by 𝑚 3 × 3 kernels, using a stride size of 2. Figure from Shiva Verma’s
blog post, “Understanding 1D and 3D Convolution Neural Network”, available
at https://towardsdatascience.com/understanding-1d-and-3d-convolution-neural-
network-keras-9d8f76e29610 .

A key concept to remember when using CNN as the encoder and decoder

of an autoencoder, is that data compressed via convolution is decompressed

via the inverse operation, deconvolution. Deconvolution is the transpose of

convolution. Higher dimensional images are created from smaller dimensional

filtered images. Later in this work, the component of aMSCRED using this

process is referred to as deconvolution or equivalently, as a convolutional

decoder.

3.1.3 RNN

LSTM (Long Short-Term Memory) is a type of RNN (Recurrent Neural

Network) capable of capturing long-term temporal dependencies in sequential

data. Conceptually, it is composed of interconnected memory cells capable
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of maintaining system state over time. This is accomplished using non-

linear gates to control flow of information between interconnected cells (most

commonly consisting of the input gate, output gate, forget gate, but other

compositional variations exist).[10] Each cell receives as input, the output,

and the hidden state of the previous cell. Internal computation through the

gates of the cell updates the hidden state. The hidden state and output gate

result are passed to the next cell in the chain, as shown in Figure 3.3.

Figure 3.3: Visual representation of a LSTM network. Multiple interconnected
cells learn temporal characteristics of the data. 𝑋𝑡 is input sequence value at time
𝑡, ℎ𝑡 is the hidden state of cell 𝑡. Image from Christopher Olah’s blog post Under-
standing LSTM Networks, (https://colah.github.io/posts/2015-08-Understanding-
LSTMs/).

ConvLSTM is a variant of the LSTM such that the inputs, outputs, and

hidden states of the recurrent cells are convolutional structures (i.e. the

output of a CNN). In other words, it operates on higher dimensional tensors

rather than one dimensional vectors, but otherwise the internal processes and

gates behave identically. This variant of LSTM has shown, in previous work,

the ability to learn spatiotemporal dependencies in multivariate timeseries
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data.[11]

3.1.4 Scaled Dot-Product Attention

While LSTM models are able to capture patterns over a length of time

dependent data, it does become increasingly computationally difficult and

less accurate as the sequence length increases.

As such, the attention mechanism can be utilized with recurrent networks

to model dependencies across time dependent data, regardless of the distance

in time between data points. This effectively circumvents the limitation

of LSTM by adaptively selecting timesteps which are most relevant to the

current timestep.[1, 12]

Scaled Dot-Product Attention, the attention mechanism of interest in this

work, is composed of the following matrix operations, as depicted in Figure

3.4.

The hidden state from each timestep in the ConvLSTM is element-wise

multiplied with the output from the ConvLSTM (i.e. the state from the last

timestep). These are scaled and summed and then normalized via softmax

normalization, to yield a refined state of the ConvLSTM output.[12]

3.1.5 Activation Functions

There exist multiple activation functions that are utilized by different

neural network types during model training. They are selected by judg-
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Figure 3.4: Scaled dot-product attention mechanism consists of element-wise
matrix multiplication of 𝑄 and 𝐾, the states of interest. This is followed by
a scaling step, and then normalization via SoftMax. The result is then matrix
multiplied with the output state 𝑉 , in order to weigh the elements that are most
influential more favorably. Image from [12].

ing the tradeoff between accuracy of the trained model and computational

complexity associated with the use of this activation function during back-

propogation. The activation functions used by different layers of the model

in this work are detailed briefly in this section, reasoning their choice by

suitability for each application.
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Sigmoid

The sigmoid function range is bound between 0 and 1, with limits ap-

proaching these values in the domain approach −∞ and ∞ respectively, as

shown in Figure 3.5, is given by :

𝑓(𝑥) =
1

1 + 𝑒−𝑥
. (3.3)

Thus tends to be used when layer outputs predict probabilities, since it is

bound between 0 and 1. A common place to find sigmoid activation functions

is on the last layer of a network before the output, when dealing with proba-

bilistic classification problems. It yields high accuracy on trained models but

is computationally complex compared to pseudo-linear activation functions,

such as ReLU. Sigmoid is used on the recurrent layers of the model presented

in this work.

ReLU

ReLU, or rectified linear units, is a linear function for positive domain

values, and 0 for all negative domain values, given by

𝑓(𝑥) = max(0, 𝑥). (3.4)

Its range is [0,∞). A plot of the ReLU function is shown in Figure 3.6. It is

widely used today in CNNs due to its being less computationally expensive
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Figure 3.5: The sigmoid activation function is bound by 0 and 1 for all values of
𝑥 ∈ R.

as compared to sigmoid or tanh, yet does not yield a substantial decrease in

model accuracy during training when dealing with convolutional structures.

A noticeable drawback is that negative inputs are filtered out to zero, leading

to loss of information when negative values are input into layers utilizing this

activation function.

To remediate the drawback of ReLU associated with negative values being

rectified, SELU is used, which has a non-zero assignment for negative values.

SELU

Scaled Exponential Linear Units is a newer variant of the ReLU activation

function, where the negative elements in the domain are scaled exponentially
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Figure 3.6: The Rectified Linear Unit (ReLU) activation function.

by some factor, 𝛼. It is given by

𝑆𝐸𝐿𝑈(𝑥) = 𝜆

⎧⎪⎪⎨⎪⎪⎩
𝑥, if𝑥 > 0

𝛼𝑒𝑥 − 𝛼, otherwise

(3.5)

which is plotted in Figure 3.7.

SELU is self-normalizing and thus the network using it will tend to con-

verge faster than other activation functions. This property also makes the

vanishing and exploding gradient problem disappear.[13] For this reason it

is increasingly being adopted in network activation functions. SELU is the

activation function used for training CNN layers in this work.
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Figure 3.7: The Scaled Exponential Linear Unit (SELU) activation function. In
this example, for 𝛼 = 2 and 𝜆 = 2.

3.2 aMSCRED Model

The adaptive-Multi-Scale Convolutional Recurrent Encoder-Decoder (aM-

SCRED) model is presented in this section as a candidate technique to per-

form anomaly detection and root cause identification of multivariate time-

series data obtained from a recirculating aquaculture system (RAS). It builds

upon the MSCRED model, which has shown in previous work to have su-

perior anomaly detection performance to traditional, non-deep learning, ap-

proaches. [1]

The “adaptive” variant presented in this work modifies certain compo-

nents to be flexible in their choice of strategies to employ, which can be

adapated by empirically derived model performance in an automated fash-

ion, via hyperparameter tuning that can be done on a per-dataset basis. The
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most notable of these adaptive components have the ability to dynamically

shape the CNN structure, dynamically shape the RNN structure, selectively

enable the attention mechanism in the recurrent component of the model,

and select the appropriate correlation function to use while generating sig-

nature matrices from timeseries data.

3.2.1 Component Overview

The aMSCRED is categorized as a Spatial Temporal Network (STN),

which is a class of techniques that learns both spatial and temporal features

by employing a hybrid mixture of neural networks, arranged in an autoen-

coder architecture; in particular, spatial features are learnt via CNN layers

and temporal features via ConvLSTM layers, optionally augmented with

scaled dot-product attention. [1, 4]

The multiple components that characterize aMSCRED (and MSCRED)

and their purpose are summarized as follows.

First, signature matrices are generated from the multivariate timeseries

data. Signature matrices are the data on which the model learns. This

process is a one-way operation. The timeseries data cannot be reconstructed

from the signature matrices. The signature matrices represent the pairwise

correlation between each pair of timeseries during a window of time. The

signature matrix at timestep 𝑡, written as 𝑀 𝑡, is a snapshot of the pairwise

correlation of each timeseries at time 𝑡 for a duration of 𝑠 windows, with sizes

𝑤1, 𝑤2, 𝑤3. Using many different window sizes yields a multi-scale signature
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matrix.

Next, sequential signature matrices are assembled into groups of size ℎ.

This is denoted as the set of multi-scale signature matrices, 𝑀 𝑡−ℎ,𝑀 𝑡−ℎ+1, · · · ,𝑀 𝑡.

One of these sets is a single input for the model. This set is encoded with

a Convolutional Encoder, composed of 𝑙 stacked convolutional layers, which

compresses the set of ℎ signature matrices into a large collection of smaller

dimensional samples.

The ℎ outputs from each convolutional are fed into their own ConvLSTM

layer, optionally augmented with a scaled dot-product attention mechanism,

which learns temporal patterns present in the compressed spatial data.

The last (i.e. most recent timestep) of the ℎ outputs from each recurrent

layer are then concatenated with the output from the next layer’s Convolu-

tional Decoder and fed into its own Convolutional Decoder (except for the

𝑙 − th layer, in which only the RNN output itself is considered). The objec-

tive of the convolutional decoder is to reconstruct the ℎ− th input signature

matrix as accurately as possibly, called the reconstructed matrix, �̂� 𝑡.

The residual matrix, 𝑅𝑡, at 𝑡, is obtained by subtracting 𝑀 𝑡 and �̂� 𝑡.

This matrix represents the element-wise reconstruction loss. The objective

of the model is to minimize the reconstruction loss during training, i.e. from

𝑀 𝑡, the model should output �̂� 𝑡 such that each entry in 𝑅𝑡 is as close to 0

as possible. This completes the autoencoder structure.

This structure is illustrated in Figure 3.8. For brevity, the model depicted

uses 𝑙 = 4 layers only, however this structure can accomodate an arbitrarily
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large number of layers. In the orange box (1), a set of ℎ sequential signature

matrices is grouped. This set is input into 𝑙 = 4 layer convolutional encoder,

in the red box (2), denoted as Conv1, Conv2, Conv3, Conv4, respectively.

Figure 3.8: Overview of aMSCRED architecture. Composed of a recurrent net-
work (purple) acting on the latent space of a convolutional encoder-decoder pair
(red and blue, respectively).

The convolutional layers are chained, i.e. output from layer 𝑘 is used
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as the input of layer 𝑘 + 1 and so on. In the purple box (3), the outputs

from each convolutional layer is input into its respective ConvLSTM layer,

labelled ConvLSTM1, ConvLSTM2, ConvLSTM3, and ConvLSTM4, respec-

tively. Each ConvLSTM layer returns a sequence of ℎ sequential outputs,

which are fed through their own scaled dot-product attention mechanism,

labelled Attn1, Attn2, Attn3, and Attn4, respectively. The attention layer

consumes all but the last of the ℎ timesteps, which becomes the output. In

the blue box (4), the deconvolutional layers, labelled DeConv1, DeConv2,

DeConv3, and DeConv4, reconstruct the signature matrix, from the outputs

of the recurrent layers. Starting from 𝑘 = 𝑙 and working backwards, the

output of the 𝑘 − th attention layer is concatenated with the output of the

(𝑘− 1)− th DeConv layer. The result is input into the 𝑘− th DeConv layer.

The only exception to this is for the DeConv4 layer, for which only the out-

put of Attn4 is used since there is no DeConv layer output beneath it. This

process is repeated until the final (𝑙 = 1) layer is attained, which outputs the

reconstructed signature matrix, shown in the green box (5). In the yellow

box (6), the residual matrix 𝑅𝑡 is computed by taking the difference between

the last input signature matrix (𝑀 𝑡) and the reconstructed matrix �̂� 𝑡. The

loss is measured by computing the norm of the residual matrix.

These components are explained in further detail, with mathematical

rigor, in the following subsections.
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3.2.2 Signature Matrices

Generating signature matrices is the first step in the aMSCRED archi-

tecture, represented by the orange box of Figure 3.9.

Figure 3.9: Signature matrices are generated in groups of 𝑘 sequential matrices,
yielding a single input for model, the tensor 𝒳 𝑡,0.

Signature matrices are computed from multivariate timeseries, 𝑋, data

via the following process. This process is uni-directional, meaning the timestep

of the original dataset cannot be reconstructed from the signature matrix

representation.

Let 𝑋, given by

𝑋 = (𝑥1, ...,𝑥𝑛)𝑇 ∈ R𝑛×𝑇 (3.6)
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denote historical data of 𝑛 time series of length 𝑇 .

Signature matrices, 𝑀 𝑡, are 𝑛× 𝑛 matrices that characterize the state of

the multivariate timeseries at time step 𝑡. They are computed by taking the

pairwise inner-product of 𝑛2 pairs obtained from 𝑛 timeseries that compose

the system, over a window of length 𝑤, i.e. from timestep 𝑡− 𝑤 to 𝑡.

Constructing the signature matrix, 𝑀 𝑡, in this fashion captures only cor-

relations between values of the timeseries, while ignoring the values individ-

ually. In essence these matrices represent how values in all timeseries tend to

change together. This gives the signature matrices the property of robustness

to noise in the input signal.[1]

Given any two series, 𝑥𝑤
𝑖 ∈ 𝑋𝑤 and 𝑥𝑤

𝑗 ∈ 𝑋𝑤, in the timeseries segment

𝑋𝑤, where each segment is given by

𝑥𝑤
𝑖 = (𝑥𝑡−𝑤

𝑖 , 𝑥𝑡−𝑤−1
𝑖 , · · · , 𝑥𝑡

𝑖)

𝑥𝑤
𝑗 = (𝑥𝑡−𝑤

𝑗 , 𝑥𝑡−𝑤−1
𝑗 , · · · , 𝑥𝑡

𝑗)

(3.7)

their pairwise correlation for the segment, 𝑚𝑡
𝑖𝑗, is given by,

𝑚𝑡
𝑖𝑗 = 𝑓𝑐(𝑥

𝑡
𝑖, 𝑥

𝑡
𝑗) (3.8)

where 𝑓𝑐(∙) is the correlation function and 𝑚𝑡
𝑖𝑗 ∈ 𝑀 𝑡 are the resulting 𝑖 −

𝑗 − th element of the signature matrix 𝑀 𝑡. Thus, the signature matrix is

40



represented as

𝑀 𝑡 =

⎡⎢⎢⎢⎢⎣
𝑚𝑡

11 · · · 𝑚𝑡
1𝑛

...
. . .

...

𝑚𝑡
𝑛1 · · · 𝑚𝑡

𝑛𝑛

⎤⎥⎥⎥⎥⎦ (3.9)

The correlation function, 𝑓𝑐, used in Zhang et al. is given by

𝑚𝑡
𝑖𝑗 = 𝑓𝑐(𝑥

𝑡
𝑖, 𝑥

𝑡
𝑗) =

∑︀𝑤
𝛿=0 𝑥

𝑡−𝛿
𝑖 𝑥𝑡−𝛿

𝑗

𝜅
(3.10)

where 𝜅 is a rescale factor (in this case, 𝜅 = 𝑤).[1]

This correlation function, referred to herein as constant time, scales corre-

lation coefficients by the window size, but does not weigh based on temporal

distance. Values further away in time impact the computed correlation as

much as most recent values. Furthermore, this correlation function is not

invariant under linear transformations on individual timeseries, which could

negatively impact the learning process by confusion of important features.

A novel modification introduced in aMSCRED is the ability to adaptively

select from a set of predefined correlation functions, defined below. The

purpose of this functionality is to empirically determine which correlation

function leads to the best anomaly detection performance on a per-dataset

basis during hyperparameter tuning.

The first proposed correlation function is the Pearson correlation coeffi-
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cient, given by

𝑚𝑡
𝑖𝑗 =

∑︀𝑤
𝑘=0(𝑥

𝑡−𝑘
𝑖 − �̄�𝑡

𝑖)(𝑥
𝑡−𝑘
𝑗 − �̄�𝑡

𝑗)√︁∑︀𝑇
𝑘=1(𝑥

𝑘
𝑖 − �̄�𝑖)2

∑︀𝑇
𝑘=1(𝑥

𝑘
𝑗 − �̄�𝑗)2

(3.11)

where �̄�𝑡
𝑖 denotes the mean value of timeseries segment 𝑥𝑖 over period 𝑡 − 𝑘

to 𝑡, and 𝑇 is the set of all timesteps in the timeseries.

These coefficients, while similar to the constant time coefficients, are addi-

tionally invariant under linear transformations, which may improve learning

conditions by reducing feature confusion. [3]

The two other proposed correlation function are called fractional time

and exponential time correlation function, respectively. These coefficients

are weighed inversely to window distance, that is,

𝑚𝑡
𝑖𝑗 =

∑︀𝑤
𝛿=0𝑊

𝑡
𝛿𝑥

𝑡−𝛿
𝑖 𝑥𝑡−𝛿

𝑗

𝜅
(3.12)

where 𝑊 𝑡
𝛿 are the weights associated to distance 𝛿 from timestep 𝑡.

Two types of time weighting are implemented in aMSCRED : fractional

and exponential. Fractional assigns static weights 1
𝑘+1

for 𝑘 ∈ {1, 2, ..., 𝑤},

Exponential assigns static weights 1
2𝑘

for 𝑘 ∈ {1, 2, ..., 𝑤}. The MSCRED

scaled constant time and Pearson function above can be thought of as having

static weights of 1 for all 𝑘. Thinking of it in terms of this analogue, the

weight in each previous timesteps with respect to distance to the current

timestep can be plotted, as shown in Figure 3.10. Here it is clear that the

42



weight of previous timesteps decay much quicker for the exponential weighted

correlation function than the fractional, while the other two have constant

relative weight of 1.
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Figure 3.10: Relative correlation weights for timesteps with respect to distance
in time. Older timesteps carry less weight on correlation coefficient at current
timestep. The exception are constant time (MSCRED) and Pearson, which use a
constant weight of 1 (i.e. independent of distance in time).

The purpose of adding weights to the correlation coefficients is to cre-

ate another degree of freedom in which the model can learn importance of

previous measurements with respect to current measurements.

While the correlation functions tested in this work are all assigned static

weights, future work could implement dynamic weights which are learned via

backpropagation while training the model. More will be said about this in

Section 5.6.
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In order to create the multi-scale signature matrices required by model,

multiple signature matrices are computed for different windows sizes, 𝑤, in

order to gather information on pairwise correlation at different scales. The

number of scales, or windows, is denoted by 𝑠. This yields a 𝑛 × 𝑛 × 𝑠

signature matrix, as shown in Figure 3.11.

Figure 3.11: 𝑀 𝑡 is the 𝑛 × 𝑛 × 𝑠 signature matrix generated from multivariate
timeseries, 𝑋. Each of the 𝑠 channels in the signature matrix is generated by
applying the correlation function, ℎ, over different window sizes, 𝑤.

3.2.3 Convolutional Encoder

The convolutional encoder utilizes a chain of convolutional layers, each

encoding wide-and-short spatial patterns found in the signature matrices,

to thin-and-long reduced dimensionality latent space. Here, wide and thin

refers to the dimensionality of the square matrices (𝑛 × 𝑛 being the widest,

and it gets sampled down to thinner dimensions 𝑛
2
× 𝑛

2
, 𝑛

4
× 𝑛

4
, and so on)

and short and long refers to the number of channels, i.e. 𝑠 = 3 for the input
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signature matrices channels is short, whereas the number of filtered images

(number of kernels) is longer after convolution (e.g. 256 kernels yield 256

filtered images / channels).

The input to the convolutional encoder is a tensor composed of a stack

of ℎ sequential signature matrices, 𝒳 𝑡,0 ∈ Rℎ×𝑛×𝑛×𝑠, where 𝑡 is the timestep

at which the 𝑠 signature matrices were sampled, and 𝑙 = 0 references the

layer number (0 since it is the input). The input is fed sequentially into a

chain of four convolutional layers, labelled Conv1 through Conv4, as shown

in Figure 3.12. At each step, the output of the current convolutional layer is

both stored for the next step and fed into the input of the next convolutional

layer.

Figure 3.12: Convolutional encoder are chained 𝑙 levels deep, with the output
from each layer being fed into the input of the next layer. The outputs from each
layer are then gathered and fed into the inputs of their respective layers in the
next component of the aMSCRED model.

Given that 𝒳 𝑡,𝑙−1 ∈ R𝑛𝑙−1×𝑛𝑙−1×𝑑𝑙−1 denotes the features maps from the
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previous, (𝑙 − 1) − th, layer, the output of the 𝑙 − th layer is given by

𝒳 𝑡,𝑙 = 𝑓(𝑊 𝑙 * 𝒳 𝑡,𝑙−1 + 𝑏𝑙) (3.13)

where * is the convolution operator, 𝑓(∙) is the activation function, 𝑊 𝑙 ∈

R𝑘𝑙×𝑘𝑙×𝑑𝑙−1×𝑑𝑙 are the 𝑑𝑙 convolutional kernels of size 𝑘𝑙 × 𝑘𝑙 × 𝑑𝑙−1, 𝑏
𝑙 ∈ R𝑑𝑙

is a bias term, and 𝒳 𝑡,𝑙 ∈ R𝑛𝑙×𝑛𝑙×𝑑𝑙 is the output feature map at 𝑙− 𝑡ℎ layer.

SELU is chosen as the activation function for all convolutional layers.

In the implementation by Zhang et al., the authors found the structure

presented in Table 3.1 worked best for their use-case.[1] In this work, the

structure of convolutional layers in aMSCRED are implemented as tunable

hyperparameters which are tuned on a per-dataset basis. These hyperpa-

rameters are presented later, in Section 4.4.

Table 3.1: Convolutional encoder network structure from the implementation of
Zhang et al. [1]

Layer Kernels Kernel Size Stride
Conv1 32 3 × 3 × 3 1 × 1
Conv2 64 3 × 3 × 32 2 × 2
Conv3 128 2 × 2 × 64 2 × 2
Conv4 256 2 × 2 × 128 2 × 2

3.2.4 Attention-Based ConvLSTM

As explained in the previous subsection, the convolutional encoder gen-

erates spatial feature maps which are dependent on previous time steps, due
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to the nature of timeseries.

A ConvLSTM network acts on the outputs of the convolutional encoder in

order to learn temporal dependencies of the spatially encoded timeseries data.

However, the performance of this type of network deteriorates as distances

across the time axis is increased (distance being the number of time steps

forward or backwards in time). As the length of the sequences or temporal

pattern increases, performance deteriorates.[1, 11]

In the MSCRED model, a temporal scaled dot-product attention mech-

anism is implemented to act on the outputs of the ConvLSTM layer, which

acts as a means to adaptively select previous timesteps that are most rele-

vant to the current timestep. Thus, the Attention-Based ConvLSTM models

a joint representation of spatial patterns and temporal information found in

each group of signature matrices.[1]

Given feature map, 𝒳 𝑡,𝑙, of the 𝑙-th convolutional layer and previous hid-

den state ℋ𝑡−1,𝑙 ∈ R𝑛𝑙,𝑛𝑙,𝑑𝑙 , the current hidden state, ℋ𝑡,𝑙 ∈ R𝑛𝑙,𝑛𝑙,𝑑𝑙 , is up-

dated via the ConvLSTM(∙)

ℋ𝑡,𝑙 = ConvLSTM(𝒳 𝑡,𝑙,ℋ𝑡−1,𝑙). (3.14)
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The ConvLSTM(∙) update function is defined as follows :

𝑧𝑡,𝑙 = 𝜎(�̃� 𝑙
𝒳𝒵 * 𝒳 𝑡,𝑙 + �̃� 𝑙

ℋ𝒵 * ℋ𝑡−1,𝑙 + �̃� 𝑘
𝒞𝒵 ∘ 𝒞𝑡−1,𝑙 + �̃�𝑙𝒵) (3.15)

𝑟𝑡,𝑙 = 𝜎(�̃� 𝑙
𝒳ℛ * 𝒳 𝑡,𝑙 + �̃� 𝑙

ℋℛ * ℋ𝑡−1,𝑙 + �̃� 𝑙
𝒞ℛ ∘ 𝒞𝑡−1,𝑙 + �̃�𝑙ℛ) (3.16)

𝒞𝑡,𝑙 = 𝑧𝑡,𝑙 ∘ tanh(�̃� 𝑙
𝒳𝒞 * 𝒳 𝑡,𝑙 + �̃� 𝑙

ℋ𝒞 * ℋ𝑡−1,𝑙 + �̃�𝑙𝒞) + 𝑟𝑡,𝑙 ∘ 𝒞𝑡−1,𝑙 (3.17)

𝑜𝑡,𝑙 = 𝜎(�̃� 𝑙
𝒳𝒪 * 𝒳 𝑡,𝑙 + �̃�ℋ𝒪 * ℋ𝑡−1,𝑙 + �̃�𝒞𝒪 ∘ 𝒞𝑡,𝑙 + �̃�𝑙𝒪) (3.18)

ℋ𝑡,𝑙 = 𝑜𝑡,𝑙 ∘ tanh(𝒞𝑡,𝑙) (3.19)

where * is the convolutional operator, ∘ is the Hadamard product, 𝜎 is the

sigmoid function, �̃� 𝑙
𝒳𝒵 , �̃� 𝑙

ℋ𝒵 , �̃� 𝑙
𝒞𝒵 , �̃� 𝑙

𝒳ℛ, �̃� 𝑙
ℋℛ, �̃� 𝑙

𝒞ℛ, �̃� 𝑙
𝒳𝒞, �̃� 𝑙

ℋ𝒞, �̃� 𝑙
𝒳𝒪,

�̃� 𝑙
ℋ𝒪, �̃� 𝑙

𝒞𝒪 ∈ R𝑘𝑙×𝑘𝑙×𝑑𝑙×𝑑𝑙 are 𝑑𝑙 convolutional kernels of size 𝑘𝑙× 𝑘𝑙× 𝑑𝑙, and

𝑏𝑙𝒵 , 𝑏𝑙ℛ, 𝑏𝑙𝒞, 𝑏𝑙𝒪 ∈ R𝑑𝑙 are bias terms for the 𝑙 − 𝑡ℎ layer in the ConvLSTM.[1,

11] 𝒳 𝑡,𝑙 denotes cell inputs, 𝒞𝑡,𝑙 denotes cell outputs. 𝑧𝑡,𝑙, 𝑟𝑡,𝑙, and 𝑜𝑡,𝑙 denote

the input, forget, and output gates, respectively.

The temporal attention mechanism is subsequently applied to the Con-

vLSTM outputs. The attention mechanism presented in MSCRED is a sim-

plified version of the model proposed by the original paper from [1, 14]. It

learns to select which time steps are most relevant to the current time step,

in order to form refined output feature maps, ℋ̂𝑡,𝑙, given by
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ℋ̂𝑡,𝑙 =
∑︁

𝑖∈(𝑡−ℎ,𝑡)

𝛼𝑖ℋ𝑖,𝑙 (3.20)

𝛼𝑖 =
𝛽𝑖∑︀

𝑖∈(𝑡−ℎ,𝑡) 𝛽
𝑖

(3.21)

𝛽𝑖 = exp
𝑉 𝑒𝑐(ℋ𝑡,𝑙)𝑇}𝑉 𝑒𝑐(ℋ𝑖,𝑙)

𝜒
(3.22)

where 𝑉 𝑒𝑐(∙) is the vectorized representation of the corresponding tensor-

slice, 𝜒 is a rescale factor.

Figure 3.13: Outputs from each layer 𝑙 of the convolutional encoder are fed into
the respective ConvLSTM layer. The output sequences from each ConvLSTM is
passed to its respective attention layer. These outputs are pushed forward to the
convolutional decoder.

In this work, aMSCRED includes a novel feature to selectively use at-

tention or to bypass it altogether on a per-dataset basis. This is determined

during hyperparameter tuning, based on which choice leads to best anomaly

detection performance results. The attention bypass layer simply feeds for-
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ward the last output of the ConvLSTM layer’s ℎ outputs to the next layer.

Figure 3.14 depicts the differences between the attention layer and the at-

tention bypass layer.

Figure 3.14: (a) Each hidden state, ℋ𝑡,𝑙 from the ConvLSTM of layer 𝑙 is passed
into the attention layer yielding refined feature map ℋ̂𝑡,𝑙. (b) the attention layer is
bypassed; only the last hidden state, ℋ𝑡,𝑙, of ConvLSTM at layer 𝑙 is fed forward
unmodified. The remaining hidden states are discarded.

Other tunable hyperparameters for the ConvLSTM component of the

model are the lookback distance, ℎ, timesteps for the ConvLSTM to con-

sider while learning. The rescale factor, 𝜒 is set ℎ, as in the MSCRED

implementation, but this could be modified to a variable weight parameter

in future work.
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3.2.5 Convolutional Decoder

The convolutional decoder attempts to reconstruct original signature ma-

trices as faithfully as possible using only outputs of the previous recurrent

component, i.e. the feature maps, ℋ̂𝑡,𝑘, obtained for each of the 𝑘 ∈ 1, 2, ..., 𝑙

layers. The refined feature map of the (𝑘 + 1)-th ConvLSTM layer ℋ̂𝑡,𝑘+1 is

concatenated with the output of the (𝑘 + 1)-th deconvolutional layer 𝒳 𝑡,𝑘+1.

The concatenated result is input into the 𝑘-th deconvolution layer, to obtain

the output of the 𝑘-th layer, 𝒳 𝑡,𝑘. This process is repeated similarly, for all

𝑘 in 1, 2, ..., 𝑙. The exception to this rule is at the 𝑙-th layer, only the feature

map of the 𝑙-th ConvLSTM layer, ℋ̂𝑡,𝑙, is used as input for the deconvolution

layer, since there is no output from a previous layer to concatenate it with.

According to the results of previous work, concatenating ConvLSTM fea-

ture maps with the output of the previous DeConv layer in this manner was

shown to improve anomaly detection performance.[1] This process, depicted

in Figure 3.15, is formalized as

𝒳 𝑡,𝑙−1 =

⎧⎪⎪⎨⎪⎪⎩
𝑓(�̂� 𝑡,𝑙 � ℋ̂𝑡,𝑙 + �̂�𝑡,𝑙), when l = 4

𝑓(�̂� 𝑡,𝑙 � [ℋ̂𝑡,𝑙 ⊕𝒳 𝑡,𝑙] + �̂�𝑡,𝑙), when l = 3,2,1

(3.23)

where � is the deconvolution operator, ⊕ is the concatenation operator,

𝑓(∙) is the activation function, �̂� 𝑙 ∈ R𝑘𝑙×𝑘𝑙×𝑑𝑙×𝑑𝑙−1 are the filter kernels of

the 𝑙-th deconvolutional layer, and �̂�𝑙 ∈ R𝑑𝑙 are bias parameters (of each of

the 𝑙 deconvoluation layers). ℋ̂𝑡,𝑙 is the output from the recurrent component
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Figure 3.15: The 𝑘−th convolutional decoder layer, DeConv(𝑘), receives as input
the concatenation of the output of DeConv(𝑘+1) and output from ConvLSTM(𝑘+
1). Its output is concatenated with the output from ConvLSTM(𝑘) and are input
into the next DeConv layer. This process repeats until the reconstructed signature
matrix is obtained, �̂� 𝑡, at the 0− th layer.

at layer 𝑙, and 𝒳 𝑡,𝑙 is the output of the 𝑙-th deconvolutional layer.

The output at the final layer, 𝒳 𝑡,0 ∈ R𝑛×𝑛×𝑠, is a 𝑛× 𝑛× 𝑠 matrix called

the reconstructed matrix. Unlike the input tensor, 𝒳 𝑡,0 ∈ Rℎ×𝑛×𝑛×𝑠, which

is composed of a stack of ℎ signature matrices, this reconstructed matrix

represents only the last of the ℎ original signature matrices that composed

the input tensor, shown in Figure 3.16.

Note, the activation function used during deconvolution matches the ac-

tivation function used in the convolutional encoder (SELU).

The structure of the deconvolutional layers, labelled DeConv4 through

DeConv1, following order of execution, is given in Table 3.2. The structure

in this table relates to the implementation from Zhang et al. [1] and is just

used here as a stand-in to concretely illustrate the model structure. In the

aMSCRED model, this structure is left as a set of tunable hyperparameters.
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Figure 3.16: The reconstructed matrix, �̂� 𝑡, is constructed by the trained model,
attempting to as accurately as possible reproduce the ℎ−th input signature matrix
from step 1.

Specifically, the number of kernels at each layer, the kernel sizes at each

layer, and the kernel strides at each layer are tunable. The full set of the

hyperparameters tested in this work are presented in Section 4.4.

3.2.6 Loss Function

After obtaining the reconstructed signature matrices from the convolu-

tional decoder, the difference with respect to the original signature matrix

is computed, yielding the residual matrix. The residual matrix is just the

difference between the last (most recent) input signature matrix and the
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Table 3.2: Convolutional decoder component structure. These values refer to the
ones found in the implementation of Zhang et al.[1] A full list of tested hyperpa-
rameter are presented in Section 4.4.

Layer # Kernels Kernel Size Stride
DeConv4 128 2 × 2 × 256 2 × 2
DeConv3 64 2 × 2 × 128 2 × 2
DeConv2 32 3 × 3 × 64 2 × 2
DeConv1 3 3 × 3 × 64 1 × 1

reconstructed matrix, as seen in Figure 3.17.

Figure 3.17: The residual matrix, 𝑅𝑡, is obtained by taking the difference between
the reconstructed matrix �̂� 𝑡 and the last (most recent) input signature matrix,
𝑀 𝑡.

The residual matrix is then used to compute the loss, in this case also

called the reconstruction error. The loss function of the residual matrix is
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given by

ℒMSCRED =
∑︁
𝑡

𝑠∑︁
𝑐=1

⃦⃦⃦
𝒳 𝑡,0

:,:,𝑐 −𝒳 𝑡,0
:,:,𝑐

⃦⃦⃦2

𝐹
(3.24)

where 𝒳 𝑡,0
:,:,𝑐 ∈ R𝑛×𝑛 is a single channel (scale) of the input system 𝑛 × 𝑛

signature matrix obtained in the first step and 𝒳 𝑡,0
:,:,𝑐 ∈ R𝑛×𝑛 is its respective

reconstructed signature matrix obtained. The difference 𝒳 𝑡,0
:,:,𝑐 − 𝒳 𝑡,0

:,:,𝑐 yields

the residual matrices. The reconstruction error, or loss, is the Frobenius

norm of elements of the residual matrix.

This loss function is used during training to gauge how well the model

is able to reconstruct signature matrices, given normal input signature ma-

trices. The loss function is not considered as a metric to measure anomaly

detection performance in this work, since its main purpose is to measure the

model’s ability to reconstruct normal data, given normal data. During train-

ing, only normal data is used to train the model, thus there is no anomalous

data present in the training dataset. The marker of a well-trained model

would need to poorly reconstruct signature matrices with anomalous data.

However, models with lower reconstruction loss do tend to score better in

theory; a smaller reconstruction loss on normal data creates a larger signal

to noise ratio between anomalous data and normal data. This could lead to

a more noticeable reconstruction error when anomalous data is fed into the

model.
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Chapter 4

Methods

This chapter’s focus is to elaborate upon the methods used to train the

model, as well as methods undertaken to measure the anomaly detection

performance of the trained model in the context of the RAS dataset.

Starting in Section 4.1, the facility where the research is conducted is

introduced, including a description of the RAS system design, the sensors it

utilizes, and the monitoring system which was in place prior to this research.

Section 4.2 examines the two data sets studied in this work. The first

is the real sensor data obtained from the RAS mentionned in Section 4.1,

supplemented by operator-entered data during routine daily inspections of

the facility. This dataset serves to show the viability of the aMSCRED model

to be used in the context and timeframe of aquaculture systems. The second

dataset is a synthetic dataset, generated with parameters which characterize

multivariate timeseries data similar to the RAS dataset.
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The next section, Section 4.3, elaborates upon the steps taken to generate

signature matrices from the input timeseries data, and to put them into the

format the aMSCRED model expects as input.

Section 4.4 outlines the process used to tune the aMSCRED model hyper-

parameters, as well as presents a complete list of the hyperparameter values

tested in this work.

The training, validation, and testing process are detailed in Section 4.5,

alongside other implementation details relevant to this work.

The methodology employed to detect anomalies from the trained aM-

SCRED model is described in Section 4.6, establishing the concept of the

anomaly score and how it is used to predict whether or not a given input is

anomalous. This is followed by an explanation of the evaluation metrics used

to measure a trained model’s anomaly detection performance, in Section 4.7.

This chapter wraps up with a section on root cause identification, Section

4.8, which explains the process and metrics used to measure the model’s

capacity to identify which timeseries are responsible for any given anomaly.

It is followed by a short section on the methods used to measure the model’s

robustness to noise in input data, in Section 4.9.

4.1 The Facility

This research was conducted, in partnership with the University of Man-

itoba and the Myera Group Campus in Manitoba, Canada. This facility
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works closely with agricultural producers, government, and academia to cre-

ate innovative high-tech solutions in the agricultural-technology space. The

primary activity at this location is running a pilot fish rearing and Arctic

Char hatchery and developing the technology in preparation for scale-up to

a full-size production facility in the near future. The end-goal is to create a

sustainable fish farming industry in Manitoba in which the waste produced

by aquaculture is used to produce secondary products, reducing the waste

footprint of the operation as much as possible.

The research and development at this facility focuses on the development

of an innovative tank design to improve energy efficiency in terms of water-

transport, development of a distributed sensor system to closely monitor

critical system components and parameters, facility automation for consis-

tency and traceability of actions (e.g. when feeding, when were they fed and

how much feed was distributed), and physiological experiments to learn how

to fully understand the biology of the fish species being farmed. For exam-

ple, an exercise program where water flow-rate is increased for a portion of

the day, encouraging the fish to swim faster and exercise. Another, experi-

menting with different feed types, specifically creating a range of plant-based

formulations. Yet another, experimenting with day-night cycles to mimick

the natural northern environment from which the species originate.
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4.1.1 The Tank Design

The system in question belongs to the category of a Recirculating Aqua-

culture System (RAS), a closed-loop aquaculture system in which water is

cleaned, filtered, and recirculated through the system continously. This type

of system has the advantages of both reducing costs and reducing environ-

mental impacts with regards to water usage and waste discharge.

The system is seperated into five principal components, as shown in Fig-

ure 4.1.

Figure 4.1: Top-view of the principal components of the recirculating aquaculture
system (RAS). Recirculated water and fresh make-up water are pumped from the
sump into the fish tank, where it acquires waste products from the fish. The solid
waste is filtered out in the settling tank. Liquid waste is converted in the biofilter,
from ammonium to nitrates. The gas exchanger columns allow dissolved 𝐶𝑂2 to
degas while simultaneously replenishing DO. The cleaned water flows back to the
sump, where it is recirculated. The location of each sensor pack within the system
is labelled by A and B, respectively.

The fish tank is the largest portion of the system volume and is where

the fish reside. It is here that fresh water is initially pumped into the system
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and where the filtered recirculated water is pumped back. The tanks consist

of connected circular cells that can be left open or blocked with a grating in

order to segregate different groups of fish. A top-view of a single cell of the

tank is shown in Figure 4.2. The water current in each cell is circular, with

most fish swimming against the current. Figure 4.3 shows a side-view of the

tank (on the left) with the settling tanks shown on the right. The grey box

shown on top the fish tank is sensor pack B.

Figure 4.2: Top-view of a single circular cell from the fish tank. The water flows
in a circular pattern, with the majority of the fish swimming against current at a
leasurely pace to stay in place.

Throughout the day, the fish produce excrement (both solid and liquid

waste) and also consume oxygen (𝑂2) while producing 𝐶𝑂2. These changes

in the water renders the water harmful to the fish physiology, thus the excre-

ments need to be filtered-out, the 𝐶𝑂2 must be stripped, and dissolved 𝑂2

replenished.
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Figure 4.3: Side-view of the fish tank (left of walkway). Sensor pack B is seen
in this photo, with its probes submerged in the tank. To the right of the walkway,
the settling tanks.

Water flows into the settling tanks, where solid waste settles to the bottom

of the tank and the remaining water is skimmed off the surface and flows into

the next stage, the gas exchange columns. A flushing mechanism clears out

settled solid waste routinely.

In the gas exchange columns, 𝐶𝑂2 is stripped from the water and 𝑂2

is dissolved into the water. This is achieved by creating a mist of water

droplets, ensuring a high-surface area to volume ratio with the surround-

ing air, facilitation diffusion of dissolved gases. The replenished water then

flows through the biofilters, shown in Figure 4.4, where harmful ammonia

and ammonium are converted to less harmful nitrates by nitrifying bacteria.

The bacteria reside on growth media which consist of plastic beads with a
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high surface-area to volume ratio. The growth media is constantly mixed

and agitated by a submerged air-pump to prevent anerobic conditions from

forming in the biofilter. Finally, the cleaned and filtered water flows into the

sump where it is pumped back into the fish rearing tank, in order to repeat

the whole process.

Figure 4.4: RAS biofilter is filled with growth media on which nitrifying bacteria
reside. They convert ammonia and ammonium in the water into nitrates, which
are safer for the fish. The bubbles in the middle of the tank are from a submersed
air-pump which ensures there is enough oxygen supply available to the bacteria.

Two sensor packs with identical sensors are placed in this system in such

a way to capture the gradient of the water quality across both points in the
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system. In the future, sensor packs will be outfit to each component of the

tank. However, in this pilot-scale tank it was not deemed necessary nor cost-

effective. Sensor pack A is placed in the sump, where the water has been

filtered and is ready to be recirculated (at its cleanest), and sensor pack B is

placed in the fish tank, where the water is at its dirtiest. The sensors used

in these sensor packs are detailed further in the next section.

A feature of the RAS system is the ability to control water-flow in such

a way as to alternate between high-flow and low-flow states throughout the

day and throughout the lifecycle. This has dual benefits. The first are health

benefits to the fish. Putting them through cycles of alternating exercise and

rest improves meat quality, while also reducing aggressive behaviour amongst

them. The second benefit is reducing energy costs during low-flow states, as

less pumps need to be powered-on.

The challenges that arise in this type of dynamic system are that tran-

sitions between velocity states can rapidly change system parameters. For

example, during ramp-up to a high-velocity state, a sudden drop in DO con-

centrations could occur due to the fish entering into a state of increased

oxygen consumption.

4.1.2 The Sensor System

The sensor system installed in the RAS system described in Section 4.1.1,

consists of two seperate sensor packs with identical loadout of sensors. Each

sensor pack contains a Raspberry Pi running Raspbian and custom software
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to read and relay sensor data to the central data monitoring server. Each

sensor pack has five submersible probes for measuring the factors described

in Section 2.3: temperature (RTD), dissolved oxygen (DO), pH (PH), elec-

trical conductivity (EC), and oxygen reduction potential (ORP), from Atlas

Scientific’s line of EZO sensor products. The probes are interfaced via a

USB interface to the Raspberry Pi. The electronics of each unit are housed

in a waterproof container and powered via power-over-ethernet (PoE). More

details on the construction of the sensor packs are discussed in Appendix A.

A picture of Sensor Pack A is shown in Figure 4.5, and it’s innards are shown

in Figure 4.6.

Figure 4.5: A sensor pack sits on the side of the sump with 5 submersible probes
measuring DO, pH, temperature, ORP, and EC at regular intervals.

64



Figure 4.6: Inside the sensor pack, the Raspberry Pi is shown, as well as the 5
EZO sensor boards interfaced via a USB carrier board.

Each sensor pack is placed at two opposite ends of the closed-loop RAS

system in order to gauge the gradient of each measured variable across the

system. Due to budgetary reasons only two sensors packs are setup at the

facility at this time, but in the future this could grow to as much as one unit

per tank cell. Thus, the anomaly detection system must be flexible when

needing to add additional timeseries.

The sensors are sampled at 30 second intervals with measurements stored

on a central server via a customized monitoring system. Thresholds for nor-

mal operation of each timeseries can be defined, such that whenever values

exceed these thresholds, the technicians at the facility are alerted and correc-

tive action can occur. Further details regarding specifics of the monitoring

system are presented in Appendix A.
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4.1.3 Additional Sources of Data

Technicians at the facility make daily reports via data-entry on a tablet,

regarding both some qualitative aspects and measurements that are not yet

integrated into the electronic sensor system either for lack of availability of

electronic sensors or lack of funds to purchase expensive detectors.

The qualitative aspects include which tanks/cells were fed as well as the

responsiveness of the fish to being fed (were the fish jumping for joy, or un-

reactive). Using widgets on the tablet, such as a sliding-scale to indicate

responsiveness to feed, this qualitative “gut-feeling” can be translated into

quantitative numerical data.

Other recorded values include dissolved concentration of ammonia, ni-

trate, and nitrite, from water chemistry tests that must be done manually

via titration or some form of colorimetry. Automated systems which can

carry-out these measurements are far too expensive to be able to scale and

thus are carried out manually at this stage of the project.

Finally, the number of mortalities and jumpers (fish having jumped out

of the tanks and not necessarily dead) are recorded as well. Since these

occurrences are quite rare, they are used to label data points as anomalous

for later use when measuring anomaly detection efficiency of different trained

models. This process will be elaborated upon further in section 4.2.1.
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4.1.4 Limitation of the Monitoring System

The monitoring system put in place at this facility prior to this work

utilizes thresholds to determine when sensor values are within normal ranges.

This current implementation has some issues that need to be addressed; in

some instances, complex issues have arisen that still fell inside the normal

operating thresholds when looking at each timeseries individually, but when

considered together, the issue could have been detected. In other events,

certain sensors started to fail and yielded erroneous readings, experienced

calibration drift, or fail altogether and give false readings that appear to

remain in the normal region of operation. Another foreseeable drawback is

a breakdown in reliability that occurs when transitioning from the low-flow

to high-flow states, and vice-versa. Furthermore, there are other challenges

with regards to the threshold-based system not being able to detect when

sensors are failing in the scenario where they might be returning false readings

that are within the acceptable thresholds and thus do not trigger an anomaly

detection event. Characterization of normal system state may not be enough,

there is a requirement to characterize a family/class of ’healthy’ states that

can be used across different modes of operation, i.e. some parallels can

potentially be learned between healthy conditions in the low-flow and high-

flow states, or between tanks with younger cohorts versus tanks with older

cohorts.

Therefore, the need to augment the existing system with an anomaly

detection system that can learn what the normal state of the system looks
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like across all sensors and across time becomes necessary to reduce needless

losses that can occur during anomalous events.

The monitoring system currently in place requires an additional layer

that can learn what are normal states, as well as what are normal transitions

between states, in terms of multivariate variations. The ability to learn

this unsupervised allows the monitoring system to detect anomalies that are

not forseable (e.g. unknown chemical contamination) or detectable by the

existing threshold based system. The system must also be adaptive and be

able to continuously relearn what a normal state looks like in the RAS, as this

tends to evolve over time as the cohorts of fish grow larger and their feeding

and general behaviour changes as well, carrying with it varying consequences

on water quality.

4.2 Considered Datasets

Two datasets are used to train and subsequently evaluate the model pro-

posed in this work; the first one is electronic sensor data obtained from the

RAS presented in Section 4.1, supplemented by routine manual measure-

ments. This dataset serves to show the viability of the examined models to

be used in the context and timescale of a RAS.

The second dataset is synthetic multivariate timeseries, generated with

parameters which characterize data similar to the data found in the RAS sys-

tem (similar periodicities and correlation). The purpose of using synthetic
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datasets is being able to measure the effect of modifying certain properties

of the data on the outcome of the model’s performance during testing. In

particular for this work, the synthetic dataset has a controllable noise fac-

tor. The amplitude of the noise can be increased or decreased via a noise

coefficient and added to noiseless synthetic data. As such, identical datasets

differing only in random noise level, ranging from 0% up to 30%, can be

generated in order to test the model’s robustness to noise in the dataset.

4.2.1 RAS Dataset

The dataset used in this work consists of measurements from the ten

electronic sensors described in 4.1.2, recorded between the period of May

9th, 2018 to June 29th, 2018. This period was chosen because it follows the

installation of the 2nd sensor pack being added to the system, and ends prior

to a PH-B probe breaking on June 30th, 2018. The fish cohort in the RAS

during this time were between 18 and 24 months old. During this period,

the sensors were sampled asynchronously every 5 seconds. Thus, readings

are resampled into 1 minute bins, yielding a final dataset on the order of 105

timesteps.

The sensors in this dataset are labelled by their sensor type and then A

or B, if it is in sensor pack A or B respectively. (e.g. the dissolved oxygen

probe at sensor pack A is labelled DO-A ).

The manually entered operator data described in Section 4.1.3 were en-

tered once daily. Therefore, values were linearly interpolated to get values
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for each 1-minute bin, in order to line up with the electronic sensor data.

Each timeseries in the dataset is subsequently normalized, using min-max

scaler. Furthermore, the data on jumpers and mortalities are used to label

datapoints as normal or anomalous (0 or 1 respectively). Days where the

jumper count or anomaly count is greater than zero get marked as anoma-

lous, setting the true class column to 1 for every timestep 12 hours prior to

and 12 hours following the time the operator entered the data. This true

class label is leveraged only during the testing phase to measure the anomaly

detection performance of the model. It is not used during training, as the

model proposed in this work learns in an unsupervised manner.

The correlation matrix of this dataset over all timesteps, shown in Figure

4.7, demonstrates the overall pairwise correlation coefficients between each

timeseries in the dataset. The pairwise correlation coefficients are the basis

on which the model in this work learns the state of the system, by observing

changes in correlation coefficients.

For example, timeseries 2 and 3 (water temperature at sensor pack A

and at sensor pack B, respectively) each have a correlation coefficient of

approximately 0.9 with timeseries 13 (incoming fresh water temperature).

This is expected in this RAS, since fresh water is pumped directly into fish

tank, thus affecting its temperature as well. An example of an anti-correlated

pair is timeseries 11 and 12, which are nitrate and nitrite respectively, with

a correlation coefficient around -0.6. This is expected as well, since nitrites

convert to nitrates in the RAS system’s biofilters. For every nitrate molecule
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created, nitrite is consummed.

Figure 4.7: Correlation matrix of the RAS dataset, taken over the entire dataset
(prior to any further anomaly injection).

The Real Anomalous Event

At timestep 𝑡 = 45, 628 to 𝑡 = 45, 689 there was an issue that caused

several fish deaths. The post-mortem analysis revealed rapid fluctuations in

ORP and EC levels in the growout tank. Rapid fluctuations in the nitrate

level were suspected to also be an issue since there were large variations in

nitrate levels days prior and after the mortalities. The issue is nitrate only

gets measured once daily, thus the actual fluctuation was not captured in

the monitored data. Thus, an anomaly is injected into the nitrates reading
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(following procedure outlined in Section 4.2.4) to emulate this behaviour.

However, the corresponding EC and ORP values are left unmodified.

Dummy Timeseries for Error Reduction

During initial training of the model during development, it showed that

there was a lot of reconstruction error on the last column of the signature

matrices, invariant of the ordering of the timeseries. This is most likely due

to some issue with the implementation of the padding in the convolutional

layers. However, a simple fix to mitigate this effect was to add a dummy

timeseries set to zero, which effectively removed the high degree of error that

tended to accumulate on the last timeseries of the signature matrices.

4.2.2 Synthetic Dataset

The second dataset is synthetically generated multivariate timeseries. It

consists of 𝑛 = 32 timeseries and 𝑇 = 200, 000 timesteps. Each individual

timeseries, 𝑥𝑖, is composed of a randomly selected periodic function, 𝑓(∙),

for 𝑡 : 𝑡 ∈ [0, 𝑇 )

𝑥𝑖 = 𝑓(𝑤 * 𝑡 + 𝑡0) (4.1)

where 𝑓(∙) is a random choice of sin(∙) or cos(∙) in this case, with a period,

𝑤, such that 𝑤 ∈ [40, 50), and phase shift 𝑡0 ∈ [50, 100).

Periodic functions were chosen with a tight range on periodicity and ran-

domly chosen between cos() and sin() in order to obtain a range of timeseries
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that are mostly correlated or anti-correlated, as the RAS dataset showed sim-

ilar correlation behaviour.

In order to reproduce the effect of noise present in real-world data, a noise

parameter is added onto the synthetic timeseries signal, scaled by a tuneable

noise coefficient, 𝜆. Equation 4.1 becomes

𝑥𝑖 = 𝑓(𝑤 * 𝑡 + 𝑡0) + 𝜆 * 𝒩 (0, 1) (4.2)

where 𝒩 (0, 1) is a vector of length 𝑇 with values randomly selected from the

gaussian distribution.

4.2.3 Anomaly Types

The RAS system and the sensor system presented above can undergo

a multitude of classes of events that are considered anomalous but might

manifest different signatures in the dataset. For example, a failing sensor

(be it membrane wear or faulty electrical connection) may create a burst of

erratic readings with no discernable pattern.

On the other hand, other anomaly types can introduce systematic changes

to the dataset. The buildup of a biofilm in the RAS system has been observed

that can impact sensor readings, especially for pH, EC, and DO, which de-

pend on surface area and good flow of the water across the sensor probe. If

probes are cleaned regularly, this biofilm does not lead to a noticeable impact

on sensor data. However, if left long enough, there is systematic error intro-
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duced which will add some constant bias/drift to the sensor readings. This

type of anomaly increases in severity continuously and linearly with time on

the affected sensors until a cleaning event, at which time a discontinuous

jump occurs and the next sensor measurement is back at the true value.

The remaining class of anomalous events, and the most important for

the reduction of mortalities in the RAS, are anomalies in the system param-

eters (i.e. water chemistry) that could have adverse effects on fish health.

These manifest as some correlated changes between subsets of the multivari-

ate timeseries. The dataset from the RAS does not yet have enough instances

of this type of anomalous event to carry-out statistical analysis to determine

signatures left behind by different issues. While this can be done in theory,

the principal issue is that in order to gather the data required to carry out

such an analysis, it is necessary for mass-mortality events to occur in order

to gather necessary data, which is undesirable from the business perspective.

The hope is that the aMSCRED model will be able to learn and detect

these signatures in this system, bypassing the need to learn of system issues

after the fact and reducing overall mortality rates in the RAS.

4.2.4 Anomaly Injection

The RAS dataset only contains one instance of an anomalous event and

the synthetic dataset by nature does not contain any anomalies after being

generated. For this reason, artificial anomalies are injected into both datasets

in order to increase the total number of anomalous events to 5. Five is
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chosen because it increases the resolution of the measurement of the anomaly

detection performance without increasing the ratio of anomalous to normal

data in the testing data by a significant amount (roughly 0.3%). This also

corresponds to the number of anomalies found in the datasets used by Zhang

et al., to serve as a basis for direct comparison.[1] The anomalies are only

injected into the testing portion of the dataset (i.e. the last 40% of the

timesteps).

Different classes of anomalies might leave different signatures in how they

modify a timeseries. Without any reference material in the literature and a

lack of anomalous events in the RAS dataset to analyse, no assumptions

are made in this work as to how these anomalies should be characterized in

the context of a RAS. The most trivial anomaly type will be used, which is

simply random noise without any underlying signal. Injected anomalies are

generated as a vector of random noise from the uniform distribution (in the

interval [0, 1)). They overwrite the original values of the target (normalized)

dataset for the timeseries and over the timesteps that should be detected as

anomalous.

4.2.5 Anomaly Labelling

An additional column is appended to the datasets, which labels each

timestep as either normal (0) or anomalous (1).

In the case of the RAS dataset, the class labels are obtained from operator

data collected on a daily basis during their rounds of the facility. Whenever
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mortalities are observed, or fish behave oddly (erratic movement, not feed-

ing, agressive behaviour, etc...) the timesteps for that day are labelled as

anomalous. Every other timestep is labelled as normal by default.

In the case of the synthetic data, every timestep is initially assigned

the normal label (i.e. 0) and subsequently changed to anomalous (i.e. 1)

whenever an anomaly is injected at a given timestep.

The class labels are excluded during the model training and model vali-

dation, as this is an unsupervised learning model. The class labels are only

used in the testing phase to measure anomaly detection performance of the

trained model. Knowledge of the true class of each datapoint is necessary to

measure Precision, Recall, and F1 scores, in terms of determining counts of

true positives, false positives, and false negatives.

4.3 Data Preprocessing

Each dataset undergoes initial preprocessing that consists of generating

a set of signature matrices for each sampled timestep (i.e. every 𝑢 timesteps,

where 𝑢 is the gap size between subsequent windows) and assembled into

groups of ℎ sequential signature matrices (where ℎ is the history size hyperpa-

rameter of the recurrent component). A group of ℎ signature matrices serves

as a single input to the model, yielding the input tensor 𝒳 𝑡,0 ∈ Rℎ×𝑛×𝑛×𝑠 for

the group of subsequent signature matrices ending at time 𝑡.
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4.3.1 Signature Matrix Labelling

Signature matrices are generated as defined in Section 3.2.2. In this

implementation, the number of channels (i.e. number of windows) and re-

spective window sizes are left as tunable hyperparameters. The totality of

tested hyperparameter values are listed in Section 4.4.

The anomaly class labels from the dataset must be transferred to the sig-

nature matrices. A signature matrix represents a range of timesteps, but the

anomaly labelling from the original dataset is defined on a per timestep basis.

Signature matrices obtained from a window in the original dataset containing

at least one anomalous timestep are labelled anomalous. Conversely, if the

window contains no anomalous data, then it is labelled normal. Formally,

this process labels signature matrix 𝑀 𝑡 via the labelling function, 𝑙,

𝑙(𝑀 𝑡) =

⎧⎪⎪⎨⎪⎪⎩
0, if 𝑙(𝑥𝑡−𝑤min:𝑡) = 0

1, otherwise.

(4.3)

where 𝑥𝑡−𝑤min:𝑡 is the timeseries segment 𝑋𝑤 between timestep 𝑡− 𝑤min and

timestep 𝑡, and 𝑤min is the smallest window size.

4.3.2 Model Input Preparation

The model expects inputs of dimension ℎ × 𝑛 × 𝑛 × 𝑠, where ℎ is the

history size (number of sequential signature matrices per input), 𝑛 is the

number of timeseries, and 𝑠 is the number of channels (or scales) for which
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the signature matrix is generated.

In other words, the inputs are expected to be sequences of ℎ consecutive

signature matrices, sampled from timestep 𝑡− ℎ to 𝑡.

Inputs are shuffled prior to each training step in order to prevent overfit-

ting as an effect of having all input data provided in the same sequence for

every training run.

4.4 Hyperparameter Tuning

Hyperparameter tuning adaptively selects optimal structural parameters

for the the model, parameters that are not learned during training. This is

accomplished by training models multiple times for each set of hyperparam-

eters and comparing the anomaly detection results obtained for each model.

Table 4.1 identifies the hyperparameters of aMSCRED, as well as the val-

ues tested during the hyperparameter tuning process. They are broken out

into three categories. First, the signature matrix generation hyperparam-

eters. Second are recurrent component hyperparameters and third are the

convolutional component hyperparameters.

In total, there are roughly 5000 hyperparameter permutations to test in

the search space. This is accomplished using a basic grid search, where every

possible permutation of hyperparameter values given in Table 4.1 are used to

train, validate, and test the model. A set of anomaly detection performance

metrics, presented later in Section 4.7, are tracked for every point in the
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Table 4.1: Model hyperparameters and values tested during hyperparameter
tuning.

HYPERPARAMETER Values
Window Sizes [10, 30, 60],

[5, 15, 30],
[5, 30, 90]

Window Step 1, 5, 10
Corr. Function mscred,

pearson,
fractional time,

exponential time
History Size 3, 5, 7, 9
Attention Layer none,

mscred
# Conv. Kernels [16, 32, 64, 128],

[32, 64, 128, 256],
[64, 128, 256, 512]

Conv. Kernel Size [3 × 3, 3 × 3, 3 × 3, 3 × 3],
[3 × 3, 3 × 3, 2 × 2, 2 × 2],
[2 × 2, 2 × 2, 2 × 2, 2 × 2]

Conv. Strides [1 × 1, 2 × 2, 2 × 2, 2 × 2],
[2 × 2, 2 × 2, 2 × 2, 2 × 2]

search space and later used to determine which set of hyperparameters yields

the best-suited model.

The values present in this table represent a small subset of the countless

possible values and permutations thereof. However, in the interest of reducing

total training times, the grid search was limited to this limited scope. This

subset starts from hyperparameters in the MSCRED implementation and

attempts values in a small neighbourhood around them. Future work to

implement a simple random search with a broader hyperparameter search
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space, especially for the convolutional component parameters, would search

a larger volume of the total search-space and potentially yield superior models

in terms of their anomaly detection performance. More will be said on this

in Section 5.6.

A breakdown of the hyperparameters in the different components of the

model are presented in the remainder of this section.

4.4.1 Signature Matrix Hyperparameters

The principal parameters in signature matrix generation are the choice

of window size, gap size between windows, and the correlation function.

The notation given for window size in Table 4.1 denotes a list of window

sizes used for each channel. For example, [10, 30, 60] denotes signature ma-

trices containing three channels, sampled with windows of size 10, 30, and

60 timesteps, respectively.

The window step parameter, also called the gap size, denotes choices for

gap size between the sampling windows of their respective signature matrices.

The correlation function hyperparameter selects between the four pro-

posed correlation functions, elaborated upon in Section 3.2.2.

4.4.2 Recurrent Component Hyperparameters

History size hyperparameter refers to both the number of sequential sig-

nature matrices in a given input, as well as the number of recurrent steps in
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the recurrent component of the model.

The Attention Layer hyperparameter refers to the choice of attention layer

placed at the output of the recurrent layers; none bypasses the attention layer

by feeding ConvLSTM outputs to the convolutional decoder directly, mscred

refers to the scaled dot-product attention layer implemented in paper [1].

4.4.3 Convolutional Component Hyperparameters

The last three hyperparameters relate to both the convolutional encoder

and convolutional decoder. For example, the choice of number of kernels

[16, 32, 64, 128], kernel sizes [3 × 3, 3 × 3, 2 × 2, 2 × 2], and strides [1 × 1, 2 ×

2, 2× 2, 2× 2] means there are 4 convolutional layers in total. The first layer

has 16 kernels of size 3×3 sampled in strides of 2×2. The second layer has 32

kernels of size 3×3 sampled in strides of 2×2, and so on. The convolutional

decoder uses identical parameters to the convolutional encoder on any given

training run.

4.5 Training, Validation, and Testing

The dataset is split into training data and validation data, 𝑋train and

𝑋valid respectively (the first 60% of datapoints), and training data, 𝑋test

(the remaining 40% of datapoints). The training data and validation data

contain only datapoints from the normal class. That is, only the testing data

portion contains anomalous data. For the RAS dataset, datapoints in the
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normal class are the most abundant, with anomalous data representing only

a fraction of total datapoints (< 1%).

Using backpropagation and the ADAM optimizer, models are trained for

for 𝑁 epochs. At the end of each epoch, the validation data is used to

measure the model’s loss for this epoch. After all 𝑁 epochs, the model with

the smallest reconstruction loss is tagged as the best epoch.

The model from the best epoch is subsequently tested with the testing

data to measure its anomaly detection performance. The performance is

measured in terms of Precision (Pre), Recall (Rec), and the F1 Score (F1),

which are formally defined in Section 4.7.

During the training phase, the model essentially learns what normal states

are for the system. This is accomplished by optimizing (minimizing) recon-

struction loss. In other words, given some input data, how accurately will the

model will be able to reconstruct the input. Since all training data is normal

data, the objective is to reduce reconstruction loss as much as possible, i.e.

the reconstructed input is as similar as possible to the original input.

When abnormal data is input into a trained model, the reconstruction

error should be greater than some expected threshold. This threshold is

obtained using the testing and validation results for this model. This phe-

nomenon is exploited as the mechanism to detect anomalies during the testing

phase.

During testing, the trained model is fed a mixture of both normal and

abnormal data. By comparing the reconstruction error given the input data,
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the model predicts if the input data is normal or anomalous. This anomaly

detection process is elaborated upon further in Section 4.6.

4.5.1 Implementation Details

The aMSCRED model is implemented in Keras and TensorFlow 2.0. Hy-

perparameters are tuned using TensorFlow’s HParams plugin. TensorFlow’s

graphical interface, Tensorboard, is configured to compare metrics obtained

for different sets of hyperparameters, one for each run.

The sets of models were trained using the tensorflow-gpu docker container

on an Intel server with 64 GB RAM and 4 Nvidia 1080Ti GPUs. In order to

fully utilize the parallel compute afforded by these GPUs, the Keras multi-

gpu model interface is used to split the model training batch-wise across

4 GPUs simultaneously, only using the CPU for merging batches after the

parallelizable computations are completed.

Total runtime for the entire search space of hyperparameters took ap-

proximately 320 hours, averaging 90 seconds per epoch per set of hyperpa-

rameters.

4.5.2 Training Loss

Loss during the training phase, also refered to as the reconstruction error,

is computed using Equation 3.24 in Section 3.2.6. Reconstruction error is

measured and recorded for every training epoch. It is not directly useful
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for the anomaly detection process, rather it is only used during training to

optimize the weight and biases of the model.

4.6 Anomaly Detection Methodology

This section details how the anomaly score, 𝑠𝜃(𝑅
𝑡), is determined given

the residual matrix, 𝑅𝑡, as well as how anomalies are predicted given the

anomaly score.

4.6.1 Residual Matrix

For any given input signature matrix, 𝑀 𝑡, at time step 𝑡, and its corre-

sponding reconstructed matrix �̂� 𝑡, the residual matrix, 𝑅𝑡, is given by

𝑅𝑡 = 𝑀 𝑡 − �̂� 𝑡. (4.4)

A simplified example of this process is illustrated in Figure 4.8, show-

ing only a single channel of the signature matrix. The residual matrix is

equivalent to the element-wise reconstruction loss when comparing the input

signature matrix to the reconstructed matrix.

4.6.2 Anomaly Score, 𝑠𝜃

The anomaly score, 𝑠𝜃, of a residual matrix, 𝑅𝑡, is defined as the number

of poorly reconstructed pairs by the model, where the element-wise error
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Figure 4.8: Residual matrix is the difference between input signature matrix and
its corresponding reconstructed matrix.

in poorly reconstructed pairs is greater than some threshold, 𝜃. In other

words, it is the number of elements 𝑟𝑡𝑖𝑗 ∈ 𝑅𝑡 such that |𝑟𝑡𝑖𝑗| > 𝜃, where 𝜃 is

an empirically determined threshold that maximizes the likelihood of later

correctly classifying a residual matrix as normal or as anomalous. More

formally, this is given by

𝑠𝜃(𝑅
𝑡) = |{𝑟𝑡𝑖𝑗 ∈ 𝑅𝑡 | 𝑟𝑡𝑖𝑗 > 𝜃}|. (4.5)

The anomaly score is a monotonically-decreasing step function, with

range from 𝑛2, when 𝜃 = 0, to 0, when 𝜃 = max{𝑅𝑡}, where max{𝑅𝑡} is
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the largest element-wise reconstruction loss value in 𝑅𝑡. An example of what

this function looks like is shown in Figure 4.9.
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Figure 4.9: The anomaly score as a function of 𝜃 is monotonically decreasing
step function.

The value for 𝜃 is found dynamically for any given dataset, by empirically

deducing a value of 𝜃. This places an upper bound on anomaly scores for all

residual matrices that are known to the system and are known to be normal

(i.e. training and validation data). The upper bound in this implementation

is set to one more than the square root of the total number of timeseries in

the dataset,
√
𝑛 + 1. In the case of the RAS dataset, this is

√
16 + 1 = 5.

During the testing phase, the anomaly score is computed for each residual

matrix. A depiction of this process is shown in Figure 4.10, using the residual

matrix from Figure 4.8.
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Figure 4.10: The anomaly score of a residual matrix is the number of elements
in said matrix which lies outside the threshold, 𝜃. The offending elements in this
figure are highlighted in red.

4.6.3 Anomaly Classification and 𝜏

The anomaly threshold, 𝜏 , is used to classify residual matrices as normal

or anomalous depending whether its anomaly score is lesser than or greater

than 𝜏 , respectively. Formally put, the predicted classification of each resid-

ual matrix during testing phase, 𝑦pred, is defined as

𝑦pred =

⎧⎪⎪⎨⎪⎪⎩
0, 𝑠𝜃(𝑅

𝑡) ≤ 𝜏

1, 𝑠𝜃(𝑅
𝑡) > 𝜏

(4.6)
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where 𝑠𝜃(𝑅
𝑡) is the anomaly score of the residual matrix obtained at timestep

𝑡, for a fixed value of 𝜃 (shared across all signature matrices), and 0 and 1

represent normal and anomaly, respectively.

The anomaly threshold, 𝜏 , is determined after the training phase, by

finding the maximal anomaly score obtained during validation and scaling it

by some coefficient, 𝛽. Specifically, 𝜏 is defined as

𝜏 = 𝛽 max 𝑠𝜃(𝑡valid), (4.7)

where 𝑠𝜃(𝑡valid) are the anomaly scores over the validation period, and 𝛽 ∈

[1, 2) is chosen such that it maximizes the F1 score of the validation period.

This process is illustrated in Figure 4.11.
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Figure 4.11: The anomaly threshold, 𝜏 , is chosen based on the maximum
anomaly score obtained during the validation period, denoted as 𝑠𝑚𝑎𝑥 in this
figure. The red zone represents the buffer area afforded by the chosen scaling
coefficient, 𝛽
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Figure 4.12: During the testing phase, timesteps for which 𝑠𝜃(𝑡test) > 𝜏 are
predicted as anomalies. In this figure, these timesteps are highlighted in vertical
red bars.
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Figure 4.13: 𝑦𝑝𝑟𝑒𝑑 is a vector containing classification labels for each residual
matrix obtained during the testing phase. Data classified as normal is labelled 0,
whereas data classified as anomalous is labelled 1.

During testing, 𝜏 is used to predict all timesteps which are anomalous, as

shown in Figure 4.12. Every anomalous timestep 𝑡𝑘 is labelled as such and

stored in vector 𝑦pred(𝑡𝑘), as depicted in Figure 4.13.

89



4.7 Evaluation Metrics

Anomaly detection of timeseries data is the process of detecting data

points in the set that do not fall within some predictable range, with re-

spect to the rest of the data contained. In order to evaluate the anomaly

detection performance of a trained model, the predicted anomalies and true

anomalies must be compared and measured via some collection of metrics.

Standard metrics for evaluating anomaly detection performance are Recall

(Rec), Precision (Pre), and F1 score (F1). They are formally defined in this

section.

These metrics involve computing ratios between true positive counts (TP,

anomalous data predicted as an anomaly), true negative counts (TN, normal

data predicted normal data), false positive counts (FP, normal data predicted

as an anomaly), and false negative counts (FN, anomalous data predicted as

normal). These counts are obtained by comparing entries in the 𝑦pred(𝑡𝑘)

and 𝑦true(𝑡𝑘) vectors. For example, when 𝑦pred(𝑖) = 𝑦true(𝑖) = 1, for some

𝑖 ∈ 𝑡𝑘, this is a TP. When 𝑦pred(𝑖) = 0 and 𝑦true(𝑖) = 1, this is a FN. And so

on.

4.7.1 Precision Score

Precision, Pre, is defined as the ratio of true positives to all positive

predictions,

Pre =
TP

TP + FP
(4.8)
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where TP is the number of true positives obtained, FP is the number of false

positives obtained, and Pre ∈ [0, 1].

In essence, Pre measures the likelihood that a timestep predicted as an

anomaly is a true positive. Pre is dependent on the anomaly threshold,

𝜏 ∈ [0, 𝑛2], since the ability to obtain either a TP or a FP necessitates 𝜏 to

be smaller than the anomaly score for at least one residual matrix. Figure

4.14 depicts this dependency, using some example data obtained during an

arbitrary testing phase. The ideal choice of 𝜏 , when referring to this figure, is

to pick the smallest 𝜏 such that Precision is still relatively high, near 𝜏 = 8.
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Figure 4.14: Precision obtained when using values of 𝜏 from 0 to 𝑛2.

In the limiting case, when 𝜏 = 0, all timesteps are predicted as anomalies.

Thus, Pre will attain a local minimum. On the other limit, when 𝜏 = 𝑛2

(where 𝑛 is the number of timeseries), all residual matrices will score less
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than or equal to 𝑛2, thus no timesteps are predicted anomalous. Thus, Pre

in this case is undefined due to division by 0. In this circumstance, the value

of Pre is set to 0 as a proxy, since this is an undesirable result, warranting

the worst score.

4.7.2 Recall Score

Recall (Rec) is defined as the ratio of true positives to total number of

samples that should have been predicted as anomalies. In essence, it describes

the likelihood of all anomalous events being detected by the model. It is given

by

Rec =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(4.9)

where Rec ∈ [0, 1].

Recall starts at 1 when 𝜏 = 0, since every timestep is predicted as

anomalous (positive). Thus, in this case, FN = 0 and Rec simplifies to

Rec = 𝑇𝑃
𝑇𝑃

= 1. As 𝜏 approaches 𝑛2, Rec drops off to zero, as all results are

predicted negative (i.e. normal), thus Rec = 0
0+𝐹𝑁

= 0. This relationship

between choice of 𝜏 and Rec is depicted in Figure 4.15.

4.7.3 𝐹1 Score

While it is desirable to maximize both Recall and Precision, there is a

trade-off between both values as shown in the previous sections, which is

dependent on the threshold value, 𝜏 . Smaller values of 𝜏 tend to favour Rec,
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Figure 4.15: Recall obtained for values of 𝜏 from 0 to 𝑛2. As 𝜏 approaches its
maximal value of 𝑛2, Recall drops off to 0.

while larger values favour Pre. This becomes evident when plotting Precision

versus Recall for a given threshold 𝜏 , as shown in Figure 4.16. In the ideal

case, the optimal point on this plot is to get as close as possible to the upper

right coordinate of (1, 1).

Due to this tradeoff, it is useful to compute an additional metric, the 𝐹1

score, which is the harmonic mean of Rec and Pre, defined as

𝐹1 =
2

Rec−1 + Pre−1 = 2 × Pre × Rec

Pre + Rec
. (4.10)

Then the choice of 𝜏 is the value which maximizes the 𝐹1 score.

In the context of a RAS, anomalies that go undetected (i.e. FN) can

ultimately be very costly if it leads to mortalities. These mortalities hurt the
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Figure 4.16: Recall vs Precision for some 𝜏 .

bottom line of the fish rearing business, both in terms of loss of inventory,

as well as increased operator time to clean-up and rectify the damage. On

the flip side, false positives while annoying, only trigger an escalation in

terms of operator involvement. The only cost this adds to the business is

time to investigate the issue until it is determined to be a false positive.

Thus an increase in Rec at the cost of a reduction in Pre is a small price to

pay to ensure every anomalous event is captured. As such, when comparing

models with similar F1 scores, those with better Rec (less false negatives)

are preferred over those with better Pre (less false positives).
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4.8 Root Cause Identification

The term “root cause” in multivariate timeseries anomaly detection refers

to identifying the individual timeseries that contain the anomalous data.

That is, the root causes of an anomalous event are the timeseries which are

responsible for the anomaly.

4.8.1 Scoring Functions

In order to identify the root causes of an anomaly, the row-wise and

column-wise root cause score is computed for each row and column of a given

residual matrix. The root cause score in this context is computed using the

root cause scoring threshold, 𝛾, which is similar to the threshold 𝜃 presented

earlier, but is used for root cause identification.

Each timeseries in the residual matrix is ranked by decreasing order of

their mean row-wise and column-wise score. For example, when dealing with

𝑛 timeseries, the 𝑗-th timeseries, 𝑥𝑗, is represented by the 𝑗-th row and 𝑗-th

column in the residual matrix. It’s score is given by

𝑛−1∑︁
𝑖=0

ℎ𝛾(𝑟𝑖𝑗) + ℎ𝛾(𝑟𝑗𝑖)

2
, (4.11)

where 𝑟𝑖𝑗 ∈ 𝑅𝑡 are elements of the residual matrix at timestep 𝑡 and ℎ(∙) is

the element-wise anomaly scoring function.

The root cause scores for each timeseries in the residual matrix are ranked
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in decreasing order. The top 𝑘 timeseries are predicted as the root causes of

the anomalies. 𝑘 is technically unknown when used online in a production

system, however in this work it is set to 𝑘 = 3 throughout as each anomalous

event has at most three root causes per anomaly.

The choices of anomaly scoring functions, ℎ(∙), presented in this work are

the masked scoring function (which is the scoring function used in the Zhang

et al. implementation), with the addition of the linear scoring function and

quadratic scoring function, which are newly introduced in this work.

The masked scoring function, ℎ𝛾,mask, is defined as

ℎ𝛾,mask(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
1, 𝑥 > 𝛾

0, otherwise

(4.12)

where 𝛾 is the root cause scoring threshold and 𝑥 is an element of a residual

matrix. In this scoring function, all values greater than 𝛾 are flattened to 1,

thus it keeps count of scoring elements but loses information relating to how

much each element contributes to the overall root cause score.

The linear scoring function, ℎ𝛾,linear, is given by,

ℎ𝛾,linear(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
𝑥− 𝛾, if𝑥 > 𝛾

0, otherwise

(4.13)

such that all scoring elements (greater than 𝛾) are translated and summed.
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Finally, the quadratic scoring function, ℎ𝛾,quad is given by

ℎquad(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
(𝑥− 𝛾)2, if 𝑥 > 𝛾

0, otherwise

(4.14)

such that all scoring elements (greater than 𝛾) are translated, squared and

summed.

All three of these scoring functions are used and compared during the

analysis of the root cause identification results, to identify which scoring

function is most suitable in the context of a RAS and the RAS dataset.

4.8.2 RCI Score

The RCI score is the metric by which root cause identification perfor-

mance of a trained model is measured.

For each predicted anomaly, the predicted root causes (from the residual

matrix) are compared to the ground truth root causes, which is stored in a

file during the anomaly injection process (for real anomalies, these are added

to the ground truth file manually). For each anomalous residual matrix,

every correctly identified root cause adds 1 to the score, while every missed

root cause or incorrect guess scores 0. The total is then divided by the total

number, 𝑘, of root causes for that anomaly. This is called the RCI hitrate of

that residual matrix and is expressed in percentage.

Thus, the RCI score for a given model is the mean of the RCI hitrates of
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all anomalous residual matrices predicted by that model. It is expressed as

a percentage since its range is the closed interval [0, 1].

4.9 Noise Robustness

The property of noise robustness is the level of noise in the dataset (i.e.

the SNR) that a model can endure until a sharp decrease in its anomaly

detection performance occurs. This property is important to measure, as it

indicates whether or not the model can be applied to some dataset ahead of

time, simply by analysing the noise floor of that dataset.

This is measured by generating a synthetic dataset without noise, inject-

ing anomalies into this dataset, and subsequently creating multiple copies

of this dataset with different levels of noise added to it. In this work, the

model’s anomaly detection performance is compared for 6 different noise lev-

els, 5%, 10%, 15%, 20%, 25%, and 30% respectively. The model is trained

multiple times for each of the datasets, and the resulting average anomaly

detection performance of each noise level is compared, in terms of Rec, Pre,

and F1.
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Chapter 5

Results

This chapter discusses the results obtained from the experiments out-

lined in Chapter 4. First, the hyperparameter tuning results are examined

and demonstrate which hyperparameters had greater effect on the model’s

ability to learn to recognize normal system states, as well as which combi-

nation of hyperparameters yield the model with the best anomaly detection

performance, in Section 5.1, followed by an accounting of the best performing

models based upon these hyperparameters, in Section 5.2.

Next, in Section 5.3, the anomaly detection performance of the best mod-

els are compared in terms of their respective Rec, Pre, and F1 scores.

Section 5.4 compares the ability of the best candidate models to identify

root causes of anomalous events.

The results of the robustness to noise experiment are discussed in Section

5.5. Ideas for future work that were brought up during this work are further
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elaborated upon in Section 5.6.

5.1 Hyperparameter Tuning Results

An initial exploratory trial tested a broad range of all hyperparameters

described in Section 4.4, in order to gather an idea of which hyperparame-

ters had a greater effect on the model’s anomaly detection properties. This

yielded over 900 possible combinations to test, which was not manageable in

the time frame and on the hardware available to conduct this research.

Instead, three separate exploratory trials were conducted to examine the

hyperparameters of different components of the model; the first examining

hyperparameters related to signature matrix generation, the second recur-

rent component hyperparameters, and the third convolutional component

hyperparameters. During each respective trial, hyperparameters from the

other two trials were held constant. Each set of hyperparameters were used

to train the model for 5 runs (over 30 epochs each) in order to account for

variability in individual runs.

The models in each run were trained on the RAS dataset, containing one

real anomaly and four injected anomalies. The anomaly detection perfor-

mance (in terms of Rec, Pre, and F1) of each trained model was measured

and recorded. The average over 5 runs was computed to obtain the mean

anomaly detection performance metrics for each combination of hyperparam-

eters.
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The results and intuition gained from each trial are detailed in the re-

mainder of this section.

5.1.1 Signature Matrix Hyperparameters

The first hyperparameter trial examined different combinations of win-

dow size, window step, and correlation function used in generating signature

matrices from the timeseries data. All other hyperparameters were kept con-

stant, using values presented in previous work by Zhang et al.[1]

The best individual trained models obtained for this trial, sorted by high-

est F1 Score, are presented in Table 5.1. These results represent individually

best trained models, however, this is not necessarily representative of which

sets of hyperparameters yield better trained models on average. Table 5.2

presents the aggregate performance for each set of hyperparameters, i.e. the

mean of the 5 runs. Note, the labelling run-n-m indicates the 𝑚-th run of

hyperparameter set 𝑛, thus the 𝑚 index is dropped when referring to the

mean results in Table 5.2.

Table 5.1: Top 5 models obtained during signature matrix hyperparameter trial,
with respect to the anomaly detection F1 score.

Run Hyperparameter Scores
# W Size W Step Corr Fn Rec Pre F1

run-19-2 [5, 30, 90] 1 frac 0.97 0.92 0.94
run-9-2 [5, 15, 30] 1 exp 0.96 0.88 0.92
run-10-2 [5, 15, 30] 1 frac 0.96 0.83 0.89
run-19-3 [5, 30, 90] 1 frac 0.95 0.82 0.88
run-10-3 [5, 15, 30] 1 frac 0.82 0.94 0.87
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Table 5.2: Best average anomaly detection performance over 5 runs, ordered in
terms of F1 score, for the signature matrix hyperparameter trial.

Run Set Hyperparameter Mean Scores
# W Size W Step Corr Fn Rec Pre F1

run-19 [5, 30, 90] 1 frac 0.76 ± 0.25 0.73 ± 0.40 0.63 ± 0.36
run-10 [5, 15, 30] 1 frac 0.92 ± 0.09 0.54 ± 0.47 0.54 ± 0.46
run-20 [5, 30, 90] 1 mscred 0.77 ± 0.11 0.36 ± 0.30 0.40 ± 0.32
run-18 [5, 30, 90] 1 exp 0.83 ± 0.13 0.40 ± 0.48 0.38 ± 0.40
run-0 [10, 30, 60] 1 exp 0.46 ± 0.30 0.72 ± 0.43 0.38 ± 0.21

Figure 5.1 plots the effect of these hyperparameters values on the result-

ing anomaly detection performance. In total, there were 27 different sets of

hyperparameters, with each point on the scatterplot representing the aggre-

gated results of 5 runs per set.

The top results, with respect to F1 Score, provided in Table 5.1 and Table

5.2, provide some insight into how the signature matrix generation param-

eters affect the model performance; the F1 Score is the metric of interest;

however, Rec and Pre are listed too (Rec being the more important of the

two in the RAS context).

The best single model run is run-19-2 (𝐹1 = 0.94), with Rec at 0.97

and Pre at 0.92. The aggregate results of run-19 provides confirmation on

the preference of this hyperparameter set, with a mean F1 score of 0.63.

Obtaining such a good result this early on was extremely lucky, as it ends up

being the best trained model for the remainder of the hyperparameter trials.

In terms of the window parameters, window sizes [5, 30, 90] performed

best both in single model results and aggregated results, with [5, 15, 30] in
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Figure 5.1: Scatter plot of signature matrix hyperparemeters and their respective
Rec, Pre, and F1 Scores obtained during testing, as well as Reconstruction Loss
during training. Each dot represents one run set, colored on a gradient from red
to blue, with red being the best F1 performance run set, run-19, and blue being
the worst.
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a close second place. The [10, 30, 60] option performed the worst overall in

terms of F1 Score (this is seen clearly when referring to Figure 5.1), and is

thus dropped from further consideration in later iterations.

The smallest window step value (window step 1) dominates over the larger

window steps of 5 and 10, thus the window step is set to 1 going forward.

In terms of correlation function, fractional time (frac) dominates both

the single run and aggregate results. However, both exponential and linear

time (mscred) still show up in top results, thus they will still be considered

in further rounds. Furthermore, the Pearson correlation function showed

very poor performance, with its best result yielding 𝐹1 = 0.01, thus it was

dropped from further consideration.

This first hyperparameter trial has already shown that, when compared

to the signature matrix hyperparameters used in Zhang et al.[1], the addition

of time dependent correlation functions already manifest superior results, at

least for the RAS dataset.

5.1.2 RNN Hyperparameters

The second hyperparameter trial was carried out on the recurrent com-

ponent parameters of the autoencoder: history size (ℎ) and whether or not

to bypass the attention layer (on/off). The values used are found in Section

4.4. The signature matrix hyperparameters from the previous sweep were

kept constant during this trial, using the values that yielded the best results:

window sizes [5, 30, 90], window step of 1, and fractional time correlation
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function.

The variability in results was more noticeable in this sweep, thus the

number of iterations was increased from 5 to 8 and the training epochs were

increased to 35. The best 5 run results of this sweep are presented in Table

5.3 and the aggregated mean results are presented in Table 5.4.

Table 5.3: Top performing models with respect to their anomaly detection per-
formance scores, ordered by F1 score, for recurrent component hyperparameters.

Run Hyperparameter Scores
# h Attn Rec Pre F1

run-0-3 3 no 0.96 0.81 0.880
run-2-0 5 no 0.74 0.85 0.787
run-2-6 5 no 0.72 0.86 0.785
run-2-2 5 no 0.74 0.83 0.784
run-0-7 3 no 0.67 0.91 0.776

Table 5.4: Mean of aggregrated results of best runs, averaged over 8 runs per
hyperparameter set, for recurrent component hyperparameters.

Run Set Hyperparameter Mean Scores
# h Attn Rec Pre F1

run-5 7 yes 0.62 ± 0.06 0.85 ± 0.04 0.71 ± 0.05
run-4 7 no 0.52 ± 0.16 0.76 ± 0.16 0.60 ± 0.15
run-2 5 no 0.51 ± 0.28 0.72 ± 0.29 0.58 ± 0.29
run-3 5 yes 0.41 ± 0.22 0.77 ± 0.30 0.43 ± 0.26
run-0 3 no 0.79 ± 0.21 0.46 ± 0.48 0.39 ± 0.39

The history size, ℎ, hyperparameter of the ConvLSTM layer was tested

for values of ℎ = 3, 5, 7. In terms of individual runs, the best performing of

these used history size ℎ = 3 and ℎ = 5. However, the variability of results
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in the smaller history sizes led to lower scores among the aggregated results,

as seen in Table 5.4.

History size of 7 timesteps led to increased stability in results (i.e. smaller

uncertainty), as can be seen by the higher overall score as well as the smaller

standard deviation on the mean.

The choice of including or bypassing the attention layer yielded incon-

clusive results. The anomaly detection performance seems to rely more on

history size rather than the use of attention layer on the outputs of the Con-

vLSTM layers. When looking at results presented in Figure 5.2, using the

attention layer improves F1 score by increasing Pre scores, while Rec does

not exhibit a clear preference.

In order to achieve optimal hyperparameter selection, history size of 7 and

use of the attention layer were selected for the remainder of training, due to

its tendency to increase the Pre of the model without noticeably impacting

Rec.

5.1.3 CNN Hyperparameters

The third hyperparameter trial looked at the convolutional parameters

of the autoencoder; the number of kernels at each layer of the convolutional

encoder (e.g. [16, 32, 64, 128] represents 16 kernels at layer 𝑙1, 32 at 𝑙2, etc...),

the kernel sizes used at each layer (e.g. [3, 3, 3, 3] represent using a 3 × 3

kernel at each layer), and kernel stride used at each layer (similarly to kernel

size, stride of 2 represents 2×2 stride). Other hyperparameters from previous
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Figure 5.2: Scatter plot of recurrent hyperparemeters and their effect on obtained
Rec, Pre, and F1 Scores during testing, as well as reconstruction loss during train-
ing. Red dots represent the highest scoring run set in terms of F1 score, while blue
is the lowest; every other point is a gradient between these two.
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sections were held constant at the same baseline values presented in Zhang

et al.[1]

The mean results of the sweep (using values presented in Section 4.4) are

shown in Table 5.6 for a mean of 8 runs for each set of hyperparameters,

trained for a period of 35 epochs, keeping the best model of each run (tested

at every epoch) and averaging them afterwards in terms of anomaly detection

performance. The best individual models are documented in Table 5.5.

Table 5.5: Convolutional component hyperparameters for top performing models
with respect to their anomaly detection performance scores, ordered by F1 score.

Run Hyperparameter Scores
# # Kernels Kernel Sizes Strides Rec Pre F1

run-6-3 [32, 64, 128, 256] [3, 3, 3, 3] [1, 2, 2, 2] 0.88 0.93 0.91
run-5-6 [32, 64, 128, 256] [3, 3, 2, 2] [2, 2, 2, 2] 0.93 0.88 0.9
run-8-5 [64, 128, 256, 512] [3, 3, 2, 2] [1, 2, 2, 2] 0.92 0.88 0.90
run-3-2 [16, 32, 64, 128] [3, 3, 3, 3] [2, 2, 2, 2] 0.93 0.87 0.90
run-6-1 [32, 64, 128, 256] [3, 3, 3, 3] [1, 2, 2, 2] 0.96 0.85 0.90

Table 5.6: Convolutional component hyperparameters averaged over 8 runs for
each hyperparameter combination. This represents only the top 5 results out of
the total set of 12, ordered by F1 Score.

Run Set Hyperparameter Mean Scores
# # Kernels Kernel Sizes Strides Rec Pre F1

run-5 [32, 64, 128, 256] [3, 3, 2, 2] [2, 2, 2, 2] 0.67 ± 0.26 0.81 ± 0.33 0.63 ± 0.30
run-6 [32, 64, 128, 256] [3, 3, 3, 3] [1, 2, 2, 2] 0.83 ± 0.18 0.61 ± 0.42 0.57 ± 0.38
run-11 [64, 128, 256, 512] [3, 3, 3, 3] [2, 2, 2, 2] 0.70 ± 0.24 0.72 ± 0.40 0.57 ± 0.32
run-0 [16, 32, 64, 128] [3, 3, 2, 2] [1, 2, 2, 2] 0.58 ± 0.21 0.57 ± 0.46 0.48 ± 0.38
run-3 [16, 32, 64, 128] [3, 3, 3, 3] [2, 2, 2, 2] 0.77 ± 0.21 0.57 ± 0.46 0.48 ± 0.38

The results in Figure 5.3 indicate a slight preference to using 32 kernels

on 𝑙1, 64 kernels on 𝑙2, 128 kernels on 𝑙3, and 256 kernels on 𝑙4, in terms of
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F1, Rec, and Pre scores.

The kernel sizes and kernel strides parameters yielded similar results,

however slightly better anomaly detection performance is seen with kernel

sizes of 3 × 3, 3 × 3, 2 × 2, and 2 × 2 and strides of 2 × 2, 2 × 2, 2 × 2, and

2 × 2 in layers 𝑙1 to 𝑙4, respectively.

For this reason, these values are used in the next section, where the model

is trained with the best hyperparameters from each trial in order to attempt

to get the best performance possible.

5.1.4 Optimized Training

Using the optimal hyperparameters from the previous sections, summa-

rized in Table 5.7, the model was trained 20 times for 50 epochs. The

best model in terms of anomaly detection performance, run-1-9, scored

𝑅𝑒𝑐 = 0.90, 𝑃𝑟𝑒 = 0.87, and 𝐹1 = 0.88. The mean performance over

the set was given by 𝑅𝑒𝑐 = 0.6 ± 0.1, 𝑃𝑟𝑒 = 0.8 ± 0.3, and 𝐹1 = 0.6 ± 0.2.

5.2 Best Performing Models

Throughout the hyperparameter trials, the best performing trained mod-

els in terms of anomaly detection were saved. The anomaly detection results

for these best performing models are summarized in Table 5.8 and visually

contrasted in Figure 5.4. These models are used for the analysis in the re-

mainder of this chapter.
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Figure 5.3: Scatter plot of convolutional hyperparemeters and their effect on
obtained Rec, Pre, and F1 Scores during testing, as well as Reconstruction Loss
during training/validation. Red dots represent the highest scoring run set in terms
of F1 score, while blue is the lowest; every other point is a gradient between these
two.

110



Table 5.7: Optimal hyperparameters determined during hyperparameter trials,
used for an extensive round of training.

Hyperparameters
Window Sizes [5, 30, 90]
Window Step 1
Correlation Function frac
h 7
attn basic
# Kernels [32, 64, 128, 256]
Kernel Size [3, 3, 3, 3]
Kernel Stride [2, 2, 2, 2]
Best Run run-1-9
Rec 0.90
Pre 0.87
F1 0.88
Mean Performance run-1
Rec 0.6 ± 0.1
Pre 0.8 ± 0.3
F1 0.6 ± 0.2

A compelling question arises. Do these different models, while performing

similarly in their anomaly detection scores, detect the same anomalies or

different sets of anomalies? In the case of the former, only the best performing

model is useful to detecting anomalies in a production system. In the case

of the latter, this would imply the use of multiple models in conjunction is

beneficial, such that the intersection of sets of detected anomalies across 𝑛

models would cover the entire set of anomalies present in the dataset.
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Table 5.8: Summary of Rec, Pre, and F1 for best performing models. Note that
the Run Set column represents the name given to each hyperparameter sweep.
For example, ras-v3sm refers to the signature matrix hyperparameter sweep on the
RAS dataset. The ras-v5 signifies the last run using the optimal hyperparameters
discovered during RAS dataset.

Run Set Run # Rec Pre F1
ras-v3sm run-19-2 0.97 0.92 0.94
ras-v3cnn run-6-3 0.88 0.93 0.91
ras-v3cnn run-5-6 0.93 0.88 0.90

ras-v5 run-1-9 0.90 0.87 0.88
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Figure 5.4: Anomaly detection performance scores for the best performing mod-
els, where maximum is 1 (100% detection rate) and 0 is minimum.

5.3 Anomaly Detection Results

In this section, anomaly detection results are examined in detail for the

run-19-2 model, as it shows the best overall anomaly detection performance,

and is subsequently compared to the results of the other top models listed in
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Table 5.8.

A first look at the confusion matrix of run-19-2, shown in Figure 5.5,

indicates exceptionally low false negative rate (FN), with only 4 instances,

as well as only 12 instances of false positives (FP), out of a total of 36, 297

inputs during the testing phase. The true positive (TP) count was 137, with

the remainder of inputs being in the true negative’s category.

Figure 5.5: Confusion matrix of ras-v3sm run-19-2.

Figure 5.6 compares the confusion matrix obtained for each of the models

listed in Table 5.8, omitting the true negatives count because it is so large

relative to the values of interest and overshadow them when plotted. Model

run-19-2 has a significantly smaller FN count compared to the other three

models, which is reflected in the Recall score, 𝑅𝑒𝑐 = 0.97.

The greatest concern in the context of a RAS are lowering FN rate. Con-
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Figure 5.6: Confusion matrix attributes from models listed in Table 5.8 are com-
pared. run-19-2 has significantly less false negative counts than its counterparts
(less than half).

sidering the models presented above, run-19-2 is the most favorable in this

regard.

5.3.1 Identified Anomalies

For model run-19-2, all instances of FN occur on the real anomaly, oc-

curring between inputs 9, 239 and 9, 301. The other four anomaly events

(injected anomalies) are fully detected, that is, every timestep in the time-

frame of the anomaly are accurately predicted as an anomaly. The two first

anomalous events for the RAS dataset are depicted in Figure 5.7, showing

the success (shown as 1 in the top row and 1 in the bottom row) or failure

(shown as 1 in the top row and 0 in the bottom row) at detecting these
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anomalous events.

This result is promising, since all FN are confined to one anomalous

event, which consists of 7 true positives and 4 false negatives. Therefore,

the algorithm would still detect this event as an anomaly in the real world.

This is further reinforced by the other 4 anomalous events having a 100%

detection rate.

What is not shown in Figure 5.7 are the false positives that were ob-

tained during testing. These were all found to be in close proximity to actual

anomalous events. For example, one such true positive occurs right after the

first anomaly event, at input 2, 800. This indicates that it is likely that the

false positives obtained by the model are due to the model having lag in its

recurrent component, which extends into the previous anomaly event.

As such, to answer the previous question of whether or not to use multiple

instances of the model to catch all anomalies in a given dataset, it appears

that this model could operate on its own given the results obtained from

the RAS dataset. This suggests, when used in a production system, the

implementation of this model should focus on refining the results of a singular

instance of the model, rather than attempts to find 𝑛 models that, when

intersected, cover the entire anomaly set.

To summarize, not every single anomalous timestep is detected as anoma-

lous for a given anomaly, but at least a portion of the timesteps are detected

as anomalous. Therefore, each anomaly is successfully detected by the model.

The Rec, Pre and F1 scores used to measure anomaly detection performance
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Figure 5.7: Hit or miss diagram of anomaly detection results of run-19-2. The
top row of each plot signifies the ground truth, 𝑦true , while the bottom row signifies
what the model predicted, 𝑦pred. 0 labels normal data, whereas 1 labels anomalous
data. Only the two first anomaly events are depicted, since there are no instances
of FN after timestep 𝑡 = 9301.

are defined in terms of point-based anomalies and are flawed when it comes

to measure range-based anomalies, i.e. an anomaly which spans multiple

timesteps. Thus, an important improvement to be made to this model in

future work would be to implement a range-based Rec, Pre, and F1, as in-

troduced in the previous work of Tatbul et al. [15], which has shown to be

an improved method for anomaly detection scoring of timeseries data.
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5.3.2 Theta Dependency of Performance

The effect of using arbitrary values of 𝜃 on the resulting Rec/Pre/F1 was

examined by running the anomaly detection test with values of 𝜃 ranging

from 10−5 to 10−1, as well as including the automatically defined value of

𝜃 = 0.00223 and 𝜏 = 4 obtained during the test phase (i.e. the value of 𝜃

and 𝜏 obtained as described in Section 4.6.2).

The results of this scan, shown in Figure 5.8, reveals that the automat-

ically determined value of 𝜃 (in the case of run-19-2, 𝜃 = 0.00223) does in

fact yield the optimal 𝐹1 score. Therefore, using this value in model testing

is appropriate. This holds true for each of the other three models tested.
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Figure 5.8: 𝜃 dependency of Pre/Rec/F1 scores, as well as how this influences
the choice of 𝜏 . Plot is based on results obtained for run-19-2.
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Every model performed similarly to the 𝜏 plot in Figure 5.8, with 𝜏 re-

maining relatively small (in general, 𝜏 < 10, however in the four models

presented above, 𝜏 < 5).

By establishing these results, the implementations using an automatically

calculated 𝜃 and 𝜏 value are deemed optimal. This removes the necessity of

adding these variables among the hyperparameter search-space.

5.4 Root Cause Identification

Root cause identification was carried out on run-19-2, adhering to the

methodology of Section 4.8. As previously explained, the basis for root

cause identification lies in observing differences between the signature ma-

trix which is input into the model and the reconstructed signature matrix

it outputs. Figure 5.9 illustrates this difference by comparing an anomalous

signature matrix and the corresponding reconstructed matrix obtained from

aMSCRED.

The reconstructed matrix has visible reconstruction error relative to the

input signature matrix. This reconstruction error is easier to see with the

residual matrix, shown in Figure 5.10. Ranking the column-wise and row-wise

mean score of the residual matrix, three timeseries (9, 12, 13 respectively)

are the predicted root causes for this anomalous timestep, based on their

greater reconstruction error.

In this instance, the model accurately predicted the root causes as shown
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Figure 5.9: The model receives input anomalous signature matrix (left) and
outputs the reconstructed matrix (right). Poorly reconstructed rows and columns
indicate the root causes of the anomaly. This example is taken from model ras-v3sm
run-19-2, for the 2790𝑡ℎ input, which corresponds to the first timestep of the first
anomaly.

in Figure 5.11, where the true root causes are highlighted on the input sig-

nature matrix, and the predicted root causes are highlighted on the recon-

structed matrix from Figure 5.9.

By converting the indices of the anomalous signature matrices back to

indices of the corresponding source dataset, the root causes of the anomaly

can be plotted on the original timeseries data, as shown in Figure 5.12. The

portion of the timeseries that is highlighted in red denotes the portion of the

timeseries which is detected as an anomaly. In practice, anomalous events

are displayed in this manner on the monitoring system as a visual cue for

system operators to observe the nature of the anomaly.
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Figure 5.10: The residual matrix obtained for the 2790𝑡ℎ input. Pairwise recon-
struction error ranges from yellow (minimal error), through green to blue (maximal
error). In this example, the greatest source of reconstruction error is timeseries
9, followed by timeseries 12, followed by timeseries 13. Thus, the model predicts
them as the root causes of the anomaly.

The RCI hitrate, as defined in Section 4.8.2, for this example is 3 of 3, or

100%. For an example with a lesser RCI hitrate, consider the next signature

matrix at 𝑡 = 2791, shown in Figure 5.13.

The RCI hitrate is 1 of 3, or 33.3̄%. Examining the residual matrix ob-

tained for this signature matrix, depicted in Figure 5.14, the model only

clearly identifies timeseries 9, while the other root causes fade into the back-

ground noise. The variability in reconstruction error from one anomalous

signature matrix to the next leads to mixed results regarding root cause

identification accuracy when looking at signature matrices individually. This

demonstrates that even for single anomaly event that is fully detected, the
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Figure 5.11: Root causes, highlighted in red, predicted by the model (right)
match the true root causes of the anomalous signature matrix (left), thus the
model has accurately predicted the root causes for the model for this particular
signature matrix.

model might not properly identify root causes for each timestep of that

anomaly.

For this reason, it is important to compute the RCI score, as defined in

4.8.2, to measure the RCI performance of a model as a whole. The mean

RCI score for the model in this example is 72%. The RCI hitrate for each

detected anomaly in this example is combined into a histogram in Figure

5.15.

Ideally, the bulk of the histogram should to be mostly in the right-most

bin (i.e. 100% detection rate). The best RCI performance is obtained with

the linear scoring function. The hitrate of this scoring function is mostly 2 of
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Figure 5.12: Root causes predicted by the model (highlighted in red) are overlaid
on the ground truth root causes (highlighted in green) for each timeseries during
the duration of the anomaly. Most predictions accurately line up with the ground
truth.
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Figure 5.13: An example of where the model incorrectly predicts root causes.
The reconstruction error is too low for two out of three of the anomalous timeseries,
(below the noise floor) and the model gets confused.

3 (approximately 75% of the time) which is far from perfect, but is reliable

enough for technicians to quickly diagnose system issues when an alert is

received, knowing that, on average, two thirds of predicted root causes are

accurate. The results also show the model does not produce any instances

of a hitrate of 0.

5.4.1 𝛾 Dependency of Mean RCI Score

The RCI scores for each of the masked, linear, and quadratic scoring

functions were computed and compared for multiple values of 𝛾. The results

obtained are plotted in Figure 5.16.

Once 𝛾 reaches the same order of magnitude as the noise floor (∼ 10−5),
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Figure 5.14: The residual matrix for an anomalous signature matrix with a bad
root cause identification hitrate. Only timeseries 9 has a detectable reconstruction
error. The other root causes disappear into the noise floor of residual matrix (
< 0.0025).

the results stay static since it is the same as effectively using 𝛾 = 0; at 𝛾 = 0,

the reconstruction loss is identical, regardless of scoring function. In this

domain, the linear scoring function delivers the best root cause identification

results. On the other end of the spectrum, for values of 𝛾 > 10−2, the scores

for each scoring function begin converging and approaching 0.

The best mean RCI score, ℎ = 72.5, is obtained using the mask scoring

function and 𝛾 = 10−3. However, this value is a local maximum and the

mean RCI score drops off rapidly with increasing or decreasing 𝛾.

The linear scoring function achieves nearly identical mean RCI score (ℎ =

71.8 at 𝛾 = 0) but decreases as 𝛾 is increased from zero. Thus, using the
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Figure 5.15: RCI hitrate for detected anomalies. Each histogram represents
the results for three different RCI scoring functions. They are mask, linear and
quadratic scoring functions, respectively.

Figure 5.16: Mean RCI scores of the mask, linear, and quadratic scoring functions
are computed for multiple values of 𝛾 ranging from 10−5 to 10−1.
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linear scoring function and assuming 𝛾 = 0 eliminates the need to search for

the optimal value in 𝛾, reducing overall computation during the RCI process.

The quadratic scoring function follows a similar pattern with respect to 𝛾

as its linear counterpart, but consistently worst mean RCI score. This result

is expected because any non-zero element in the ranking matrix would only

further shrink when squared and disappear quicker below the noise floor,

in which case root causes begin to be misinterpreted more frequently than

compared to the linear counterpart. This shows that the quadratic scoring

function is useless when compared to the linear one and can be discarded.

These results leave an open-ended question of whether or not there could

be a set of learnable weights and biases, assigned to each timeseries, such that

ranking performance could be optimized by learning the optimal weights and

biases during training.

Considering the points laid out above, the linear scoring function is chosen

to be used in the production system. It is slightly less accurate than masked

function, but removes the requirement of computing the optimal 𝛾 and can

instead just assume 𝛾 = 0.

5.4.2 RCI Characteristics of Best Models

The mean RCI scores for the best models, from Section 5.2, were com-

puted (using 𝛾 = 0). The results presented in Table 5.9, show similar results

across all models.

An interesting observation is that the second run in the table has a higher
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Table 5.9: Mean RCI scores of the best performing models. Here the RCI scores
are computed using mask, linear, and quadratic scoring functions, respectively.

Run Set Run # Mask Linear Quadratic
ras-v3sm run-19-2 24.3% 72.0% 60.8%
ras-v3cnn run-6-3 23.7% 73.1% 63.7%
ras-v3cnn run-5-6 23.9% 63.9% 57.3%

ras-v5 run-1-9 24.3% 63.7% 58.1%

mean RCI score than the first, even though the latter had a higher F1 score

than the former. However, the Pre score of the second run is higher which

unsurprisingly leads to obtaining a more precise RCI score.

5.4.3 Number of Root Causes, 𝑘

In this work, the number of root causes, 𝑘, is set statically to 𝑘 = 3.

This is in part due to the anomaly injection process being hard-coded to

only inject anomalies on three timeseries for any given anomalous event, in

order to keep the anomaly injection implementation simple and controlled.

The shortcoming of this strategy is that it is not practical in the real world,

as anomalies could consist of any number of root causes. This shortcoming

becomes apparent when looking at the anomaly in the RAS dataset which

begins at timestep 𝑡 = 45, 679, where two of the three root causes were

randomly selected to be timeseries 4. As a result, there are only two true

root causes for this anomalous event. However, the RCI process looks for the

𝑘 = 3 most likely root causes and thus wrongly identifies a third non-existing

root cause.
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In future work, a statistical method could be implemented to try to learn

the value of 𝑘 dynamically on a per-anomaly basis. This could be tested

using the same anomaly injection process, however it needs to be slightly

modified to choose a random number of root causes for each anomaly, rather

than hard-coding it at 𝑘 = 3. This would improve overall RCI performance,

by avoiding cases like the two root-cause case mentioned above. With the

improved RCI method, it would effectively determine that only two root

causes exist and limit the root cause identification to the two respective

timeseries.

5.5 Other Results

5.5.1 Noise Robustness

Using seven identical copies of the same synthentic dataset, differing only

in noise factor, 𝜆, the model is trained for 15 runs, over 30 epochs, for each

dataset. The dataset noise factors were 𝜆 = 0%, 5%, 10%, 15%, 20%, 25%,

and 30%, respectively. The results from 15 runs were averaged to yield the

mean and standard deviation of their respective Rec, Pre, and F1 scores, for

each dataset, presented in Table 5.10.

The results from Table 5.10 are plotted in terms of Rec, Pre, and F1 in

terms of the given noise factor, in Figure 5.17.

The aMSCRED model is fully robust to noise up to 𝜆 = 5%. The break-

down occurs while approaching 10% noise, where the resulting anomaly de-
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Table 5.10: Effect of different noise factor, 𝜆, on the AD performance using the
same dataset.

𝜆 Rec Pre F1
%
0 0.7 ± 0.1 0.76 ± 0.02 0.70 ± 0.09
5 0.6 ± 0.1 0.75 ± 0.03 0.70 ± 0.09
10 0.38 ± 0.04 0.71 ± 0.02 0.49 ± 0.03
15 0.07 ± 0.01 0.5 ± 0.1 0.11 ± 0.02
20 0.03 ± 0.01 0.5 ± 0.3 0.05 ± 0.03
25 0.2 ± 0.4 0.0004 ± 0.001 0.0009 ± 0.002
30 0 0 0

Figure 5.17: Effect of different noise factor, 𝜆, on the anomaly detection perfor-
mance on identical datasets.

tection scores are already down by approximately a third of their maximum.

By the time 𝜆 = 15% is reached, Rec and F1 are less than half of the baseline

at 𝜆 = 0%.

This model did not perform as well as expected, considering the imple-

mentation by Zhang et al. achieved much higher noise robustness, only expe-

riencing drop-off of performance (i.e. breakpoint) starting around 𝜆 = 30%.

This discrepancy may be due to the choice of hyperparameters in aM-
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SCRED being optimized for the RAS dataset which had a high signal to

noise ratio (less than 5%). To improve the noise robustness of the model, a

metric for measuring noise robustness could be added to the metrics tracked

during the hyperparameter tuning. This is however left as an exercise for

future work since it is out of the scope of the objective of this research, since

the dataset and system for which this model is implemented is low-noise in

nature. An example of how such a metric would work is to arbitrarily choose

a desirable noise factor up to which the model should be robust to noise (e.g.

𝜆 = 25%) and measuring the percentage of drop in Rec/Pre/F1 score at

this level from that of the baseline dataset, by creating a duplicate dataset

with noise factor 𝜆. Thus, each testing step would occur twice, once on the

baseline dataset and once on the noise factor 𝜆 dataset.

Another interesting phenomenon is the variation in standard deviation

of the Rec, Pre, and F1 scores at different values of 𝜆. It appears that Rec

has a large standard deviation at low 𝜆, which decreases up until 𝜆 = 20%.

Pre on the other hand exhibits the opposite behaviour. This implies that as

signal to noise ratio decreases in a dataset, the Recall scores across multiple

runs of aMSCRED tend to stabilize, which is a peculiar result that should

be investigated further in future work.

5.5.2 Selection of Number of Training Epochs

Throughout this research, when deciding how many training epochs are

appropriate, the question is actually how many epochs are “good enough”.
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That is to say, how long does an epoch take in terms of computation time for

a given number of training samples (larger datasets take longer)? One could

ask, how many epochs are needed to obtain a reasonable reconstruction loss

in the shortest computation time?

To answer this question, during implementation of the model and initial

hyperparameter sweeps, the number of training epochs was set to 10 as it

consistently yielded low reconstruction losses with diminishing returns from

adding additional epochs. For the hyperparameter sweeps further on, this

number was increased to 35 epochs to yield more precise models. For the RAS

dataset in particular, each training epoch takes approximately 90 seconds to

complete. This leads to each hyperparameter sweep described in Section 4.4

taking a few days to train.

For finalized model choice however, extra time could be sacrificed to ob-

tain the best possible anomaly detection performance results, since only one

set of hyperparameters were tested. Therefore, the model was allowed to

train for 100 epochs.

In production deployment of this model, there are long periods of time

between new signature matrices being generated (roughly ∼ 1 hour) in which

the model can be retrained as new data rolls in. Therefore, the default epoch

number is set to 25 epochs but this can scale arbitrarily given the availability

of GPU compute capacity.
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5.6 Future Work

Certain aspects and observations relating to aMSCRED were brought up

throughout this work that are of interest to investigate, but lie outside the

scope of this research and are left as a starting point for future work and

improvement to this model.

The synthetic dataset generator presented in this work is pretty simplistic.

The anomaly injection mechanism only has the capacity to inject anomalies

as a burst of random noise. Adding multiple anomaly types (e.g. offline

sensor, burst error, systematic linear decrease of a signal over time) would

add more complexity and the model could potentially learn to recognize and

label different anomaly types (e.g. broken sensor, biofilm buildup on probes,

etc...)

In terms of signature matrix generation, using learnable weights and bi-

ases on the pairwise correlation coefficients obtained from the correlation

function instead of using static weights could vastly improve the quality of

spatio-temporal information encoded in the signature matrices.

The hyperparameter tuning process started with a small set of possible

hyperparameters to search and tested the entire search-space using a grid-

search. This method does not scale well when increasing total range of hyper-

parameters to test. Instead, it is suggested that the hyperparameter tuning

process use a random search technique within a much larger hyperparameter

search space; larger ranges for signature matrix generation parameters (es-

132



pecially window size and window step), kernel size and number, as well as

history length should be tested. Furthermore, hyperparameters for number

of convolutional layers should be made dynamic rather than hardcoded to

𝑙 = 4.

As for measuring anomaly detection performance, the Rec, Pre, and F1

used throughout are optimized for point-based anomalies whereas in real-

ity the datasets consist of range-based anomalies. Implementing the ranged

Pre, Rec, and F1 scores could yield more consistency and less error in their

measurement.[15]

Root cause identification has room to be improved, with best results only

seeing around 70%. Adding some learnable weights individually to timeseries

in the scoring function would possibly increase the capacity of aMSCRED

to distinguish between true root causes and false root causes in situations

where the reconstruction error of the root causes in the residual matrix is

near the noise floor.

Finally, with regard to noise robustness, implementing a metric to mea-

sure noise robustness up to some arbitrary (desired) noise factor could be

used by the hyperparameter tuning process to optimize model ability to deal

with noisy data. The implementation by Zhang et al. had greater noise

robustness, therefore it is suspected that aMSCRED’s poor performance is

due to using hyperparameters that do not favour models that deal with input

noise as effectively.
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Chapter 6

Conclusions

A novel variant of MSCRED, given the name aMSCRED, was imple-

mented in this work as a means to detect anomalies unsupervised in a RAS.

This anomaly detection system is an augmentation of an existing threshold-

based monitoring and alerting system that the facility operators interact with

daily.

The resulting model was able to outperform the MSCRED implementa-

tion of Zhang et al., when comparing Rec, Pre, and F1 scores obtained for the

RAS dataset. This dataset contains five anomalies (one real, four syntheti-

cally injected). The model was able to detect all five anomaly events, despite

producing a non-zero count of false negatives. These false negative counts

were part of a larger sequence of inputs that were registered as anomalies.

Therefore, in the live RAS system, these anomalies would all be partially

detected, which is enough to elicit action from the system operators and

134



prevent negative consequences to the fish population.

Comparing root cause identification of aMSCRED to the implementation

of Zhang et al. showed aMSCRED was able to achieve higher accuracy

predicting root causes (∼ 70% compared to ∼ 50%) when applied to the

RAS dataset. RCI was not tested on the synthetic dataset. This increased

RCI performance is in part due to using a new RCI scoring function, i.e. a

new way to rank timeseries in terms of their likelihood of being a root cause

for any given anomalous signature matrix.

The new signature matrix correlation functions proposed in this work im-

proved overall anomaly detection performance of aMSCRED, as seen during

hyperparameter tuning process. When comparing the time dependent cor-

relation functions to the MSCRED correlation function, the time dependent

variants yielded greater Rec, Pre, and F1 scores.

The implementation of aMSCRED presented in this work is only a start-

ing point, as many considerations for improvements are presented throughout

the work and summarized in Section 5.6. With proper optimization of train-

ing and testing times, using this model live in a production RAS would be

viable and would be capable of detecting anomalies within a window of 10

timesteps, which in the case of the RAS dataset represents 10 minutes.
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Appendix A

RAS Monitoring System

The RAS monitoring system is composed of two main components; the

sensor packs (the first component) house the sensors, collect measurements,

and relay data to the central monitoring server (the second component),

which collects, aggregates, and stores data. A picture of the sensor pack is

shown in Figure A.1

The central server is running a custom installation of Zabbix, which is a

highly-customizable and feature-rich open-source monitoring platform.[16] In

Zabbix, thresholds that define normal operating ranges for each sensor can be

defined. When sensor values surpass these thresholds, system operators are

alerted via e-mail or push notifications on their mobile devices (depending

on the severity of the event, different actions can be taken). Zabbix provides

a web-based frontend which can be used from any web browser, on-site or

remotely. A custom dashboard on this frontend is configured to show plots of
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Figure A.1: Sensor pack consisting of 5 submersible probes.

each sensor probe in the system in realtime, and display the latest issues and

alerts. A partial screenshot of this custom dashboard is shown in Figure A.2.

This dashboard is left open 24/7 on a computer found in the RAS facility,

for technicians to inspect daily and get a sense of the state of the system

at-a-glance.

The sensor pack uses a Raspberry Pi 3 (Figure A.3), running Raspbian

with a Zabbix agent installed, which relays sampled data from the configured

sensors every 5 seconds to the central server. A Zabbix Proxy is installed on

each sensor pack, allowing local storage of sensor data until relayed to the

central server. If communication with the central server is ever lost, sensor
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readings queue up locally on the proxy until communication is reestablished.

This adds robustness to availability of sensor measurements in the face of

communication or partial electrical failures. The unit is powered by PoE,

so only a single ethernet cable needs to be run out to each unit. This also

improves the safety of the unit, being in a very wet environment, by reducing

compromises made to the waterproof enclosure by using a single waterproof

ethernet port.

The sensors and respective probes come from the EZO family of sensors

from Atlas Scientific. Each probe (Figure A.4) has a corresponding ampli-

fication and measurement circuit, to convert the analogue probe signal into

a digital value (Figure A.5). Each circuit is connected to the Raspberry Pi

USB ports via an FTDI serial to USB adapter (Figure A.6). The advantage

of these USB-based boards is that they provide power isolation for electrically

sensitive probes (specifically for EC).

The DO, RTD, EC, pH, and ORP probes are submerged around 2 feet in

depth and are used to monitor water quality. Additional gas sensors have also

been added to one sensor pack which give it the capacity to detect humidity,

temperature, 𝐶𝑂2, and 𝐻2𝑆 concentration in the air, which is important

since the well-water being used releases trace amounts of 𝐻2𝑆.

The full assembly of the inside of the sensor pack is shown in Figure A.7.
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Figure A.2: Screenshot of the Zabbix web interface for monitoring sensor read-
outs realtime. Depicted are the current issues, latest reading for each sensor,
followed by a plot of each timeseries.
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Figure A.3: The Raspberry Pi 3 is the brain of the sensor pack. It is an ARM-
based micro computer which runs a custom distribution of Debian Linux, called
Raspbian. It is responsible for gathering readings from the sensors and relaying
them to the central server.
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Figure A.4: Atlas Scientific EZO probes. From left to right, temperature, ORP,
pH, EC, and DO.
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Figure A.5: Atlas Scientific EZO boards. From left to right, EC, pH, DO, ORP,
and temperature.

Figure A.6: Atlas Scientific USB carrier board. Interfaces probe (via BNC) to
EZO board and digital output is converted via FTDI to the Raspberry Pi, over
USB.
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Figure A.7: Full assembly of a sensor pack. The EZO sensor boards interface
with the Raspberry Pi via USB carrier boards.
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Appendix B

Implementation in Production

To use the aMSCRED model implemented in this work in production,

that is to say use it for realtime anomaly detection in the RAS, a few more

considerations need to be made. These considerations fall out of scope of the

research presented in this work, so are discussed here for reference to those

interested.

In this research, the model was trained using dataset of fixed-length,

making it only viable to detected anomalies within that period of time. In the

production system, the model will need to be retrained every day in order to

keep it up to date with changes to the system that occur on larger timescales,

on the order of months. An example of such a change are the populations

of fish growing larger, leading to increased consumption of oxygen and feed

and increased production of waste products. The idea is to constantly train

the ML every day so that it catches an evolving picture of the system.
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B.1 Data Collection

Every day that goes by without any anomalies occuring is considered

“normal” and the data collected from that 24 hour period is appended to

the “current” dataset. This means that during this period, no anomalies are

detected, no mortalities, no jumpers, and no other significant maintenance

made to the system. For example, cleaning out the settling tanks or intro-

ducing new cohorts of fish would count as significant maintenance. The size

of the “current” dataset can be set arbitrarily long given access to enough

compute, but is limited to 60 days in the current implementation. Data col-

lected longer than 60 full days is considered “expired” and is removed from

the “current” dataset. Therefore, daily model training sessions only focus on

the most recent data.

B.2 Daily Training

After updating the dataset, the model is trained. In order to test the

anomaly detection performance of the new model, an arbitrary number of

anomalies are injected into the dataset, using the same procedure described

in this work. Using the injected anomalies, the newly trained model is put

through the same testing routine as described in this work and it’s anomaly

detection performance is measured. Similarly, the current model is also on

this updated dataset. If the new model outperforms the current model, the

current model is discarded and the new model is now used to monitor the
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system. Otherwise, the previous model remains active.

B.3 Realtime Monitoring

For the remainder of the day, the current active model serves to detect

anomalies realtime. Signature matrices are computed every minute using

samples obtained during that minute-long period. The signature matrices

are queued up in sequential order. Everytime a new signature matrix is

computed, it along with the ℎ − 1 signature matrices preceeding it are fed

into the model to obtain the residual matrix.

If the resulting residual matrix is below the anomaly threshold, the system

is deemed to be in a normal state and the monitoring system waits to repeat

the process all over again.

If the resulting residual matrix is above the anomaly threshold, the mon-

itoring sytem detects this as an anomaly and runs root cause identification

routine in order to predict which timeseries contain anomalous data. The

monitoring system takes over from there and alerts the system operators of

the issue and the predicted causes. Furthermore, data collected from this 24

hour period is not to be added to the “current” dataset and is archived for

later analysis.
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Appendix C

Tensorflow Model

The model that was researched in this work was implemented in Ten-

sorflow 2.0 and Keras. Shown in Figure C.1 is the structure of the model

implemented in TensorFlow. This graph was obtained by opening the com-

piled keras model into Tensorboard, using the provided graphing tools. The

labelling is similar to the labelling used throughout this work, however in-

dexing starts at 0 rather than 1.
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Figure C.1: TensorBoard model representation.
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