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Abstract 

 

Health Sciences Centre (HSC) in Winnipeg is the major healthcare facility serving 

elective and emergency surgical patients in Manitoba, Northwestern Ontario, and 

Nunavut. An extensive evaluation of HSC’s adult surgical patient flow revealed that one 

of the major barriers to smooth flow was the facility’s Operating Room (OR) scheduling 

system. This thesis presents a new two-stage elective OR scheduling system for HSC, 

which generates weekly OR schedules that reduce artificial variability in order to 

facilitate smooth patient flow. The first stage reduces day-to-day variability by smoothing 

bed occupancy and patient volumes, increasing bed utilization, and evenly distributing 

OR time throughout the week. The second stage reduces the variability that may occur 

within a day by minimizing overtime, evenly distributing OR time among each operating 

theatre, and smoothing Post-Anaesthesia Care Unit (PACU) bed occupancy volumes and 

the number of cases that finish simultaneously. The scheduling processes in both stages 

are mathematically modelled as multi-objective optimization problems. An attempt was 

made to solve both models using lexicographic goal programming. However, this proved 

to be an unacceptable optimization method for the second stage, so a new multi-objective 

genetic algorithm, called Nondominated Sorting Genetic Algorithm II – Operating Room 

(NSGAII-OR), was developed. Results indicate that if the proposed system is 

implemented at HSC, the facility’s surgical patient flow will likely improve. 
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Chapter 1: Introduction 
 

1.1 Patient Flow in Healthcare 

Although the complexity of healthcare has greatly increased during the past few decades, 

the design of key processes has remained relatively primitive. Patients often experience 

long waiting times and encounter delays or cancellations. To address these problems, 

many facilities have turned to quick fixes, such as downsizing or adding more resources 

such as beds or equipment. However, most of these changes have not resulted in the 

desired outcome. Recent assessments have discovered that improved patient flow can 

reduce or eliminate these problems. Flow refers to the way in which patients, staff, 

information, and materials move throughout a facility. When patient flow is not smooth, 

staff and patient satisfaction, hospital revenue, and patient safety are all negatively 

affected (Haraden and Resar 2004). Therefore, the factors that influence patient flow 

should be analyzed, and methods for developing and improving this flow should be 

generated (Lambert 2004). 

 

Areas that have non-interchangeable resources, such as emergency departments (ED), 

intensive care units (ICU), surgical pre and post-operative units, and OR departments, are 

major bottlenecks in most healthcare facilities. Bottlenecks represent care, safety and cost 

issues. For example, if a patient is waiting to be transferred from the ICU to a post-

operative unit, a safety issue arises because there may be another patient who urgently 

requires the ICU care, and a cost is incurred because expensive ICU resources are being 
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wasted. The majority of these problems are not caused by a lack of effort from staff and 

cannot be resolved by working harder. Rather, it is the patient flow between and among 

the different departments that is the source of problems. Therefore, it must be understood 

that a healthcare facility is made up of several interdependent departments, where the 

actions of one can adversely affect another. As such, patient flow throughout the entire 

system must be improved, rather than just in isolated departments. 

 

Flow depends on the inherent variation found in the healthcare delivery system (Haraden 

and Resar 2004). Studies have found that the variations caused by the healthcare delivery 

structure, termed artificial variations, are much greater than the natural variations caused 

by random patient arrivals and the disease state they present (IHI 2003, Brideau 2004, 

Henderson et al. 2004, Horton 2004). For example, a facility may experience high 

resource utilization at the beginning of the week, when all of its surgeons scramble to 

perform operations. Consequently, resource limitations may result in delays and 

cancellations. On the other hand, resources may be severely underutilized at the end of 

the week, when the surgeons decide that they would like to leave work early. It is this 

kind of artificial variation that causes avoidable problems. Therefore, they must be 

reduced to improve patient flow. 
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1.1 Thesis Objectives 

Health Sciences Centre (HSC) in Winnipeg is the major surgical centre serving the 

residents of Manitoba, Northwestern Ontario, and Nunavut. In 2005, the facility 

embarked on a collaborative effort with researchers at the University of Manitoba to 

analyze the facility’s adult surgical patient flow, considering the entire journey from pre 

to post-operative care, and to develop ideas on how it could be improved. 

 

Over several months, researchers visited HSC’s major surgical departments carrying out 

observations and corresponding with staff and patients. Researchers mapped the surgical 

patient flow processes (summarized in Chapter 3) and identified areas of concern 

regarding patient flow. It was discovered that the major issue hampering smooth flow 

was the way in which elective surgeries, mainly referred to as cases in this thesis, were 

scheduled in the operating room (OR) department. Indeed, these results were not 

surprising, considering that many articles in literature (IHI 2003, Haraden and Resar 

2004) have pointed out that highly variable elective surgical admissions are often the 

major barrier to achieving smooth patient flow. This spurred the motivation to develop a 

new elective OR scheduling system for HSC, which is the main objective of this thesis. 

 

It should be noted that the research for this thesis commenced before HSC’s OR 

department, Post-Anaesthesia Care Unit (PACU), and Surgical Intensive Care Unit 

(SICU) moved to a new building. However, the majority of surgical patient flow 

processes has remained the same, and the results presented here are still relevant. 
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1.2 Thesis Overview 

This thesis summarizes the adult surgical patient flow processes at HSC and presents a 

new weekly elective OR scheduling system for the facility. The system is comprised of 

two stages and is designed to reduce artificial variability to facilitate smooth patient flow. 

In the first stage, surgeons present a list of cases to be scheduled in a particular week. 

Each case is then assigned to different days of the week so that day-to-day variability is 

reduced. In the second stage, the cases scheduled on a particular day are assigned to 

operating theatres and given start times in a manner that reduces the variability that may 

occur within a day. Thus, a complete elective OR schedule is generated for each day.  

 

Both stages are multi-objective optimization problems. The selection of a particular 

optimization method is driven by the type of information available and the specific 

characteristics of the problem. Because the goals in both problems have very obvious 

priorities, a biased search can be conducted to find the optimal solutions that satisfy the 

objectives with higher importance. Therefore, lexicographic goal programming was 

chosen as the multi-objective optimization method for the scheduling system. 

 

In the first stage of the system, the developed lexicographic programming model had no 

trouble finding feasible, optimal solutions in a short amount of time. However, the model 

in the second stage was unable to find optimal solutions for the given problem size in a 

reasonable amount of time. Therefore, another multi-objective optimization method had 

to be developed for stage 2. This method needed to be able to solve large problems in 

acceptable amounts of time, which is a characteristic that genetic algorithms match very 
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well. Therefore, a new multi-objective genetic algorithm for daily OR scheduling 

(NSGAII-OR) was developed. Through lexicographic goal programming in stage 1 and 

NSGAII-OR in stage 2, the schedules generated by the proposed OR scheduling system 

significantly reduced artificial variability compared to the actual schedules employed at 

HSC. 

 

In this thesis, chapter 2 is a literature review that is comprised of two parts. The first part 

focuses on multi-objective optimization while the second part deals with elective OR 

scheduling. This is followed by chapter 3, which provides an overview of the surgical 

patient flow at HSC. Chapters 4 and 5 describe the first and second stages of the 

proposed elective OR scheduling system, respectively. Finally, the research presented in 

this thesis is summarized in chapter 6, where future work is also discussed. 
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Chapter 2: Literature Review 

 

This chapter is comprised of two literature reviews. First, multi-objective optimization is 

addressed, followed by elective operating room (OR) scheduling. 

 

2.1 Introduction to Multi-objective Optimization 

Optimization is a process whereby feasible solutions are found and compared until the 

best solution(s) is discovered. Solutions are rated good or bad according to one or more 

objectives. Real-world problems are frequently expressed as optimization problems, 

where the objectives to be achieved are represented in the objective function while the 

parameters of the problem are represented by constraints. Traditionally, research has 

focused on the development of single objective optimization. In most real world 

problems, however, there are often several objectives that have to be taken into 

consideration. These types of problems are known as multi-objective, multi-criteria, or 

vector optimization problems. 

 

Multi-objective optimization theory was first approached by Kuhn and Tucker (1950). 

Since then, numerous multi-objective optimization techniques have been developed and 

reviewed in literature (Cohon 1978, Hwang and Masud 1979, Zeleny 1982, Changkong 

and Haimes 1983a, Osyczka 1985, Steuer 1986, Stadler 1988, Miettinen 1999, Ehrgott 

2000, Collette and Siarry 2003).  

 

 6



In multi-objective optimization, Pareto-optimality is the core concept. In single objective 

optimization, there exists a unique, optimal value for the objective in question. In multi-

objective optimization, however, it is usually not possible to find a solution that is 

simultaneously optimal for all objectives. Instead, there exists a set of Pareto-optimal 

solutions, which is often called the Pareto set (Pareto 1964, 1971). Each solution in this 

Pareto set is non-dominated, meaning that there is no other solution that is better than it 

with regards to all objectives. In a problem’s objective space, the plot of Pareto-optimal 

solutions is usually called the Pareto front. Essentially, each solution on this front is a 

trade-off of another. Figure 2-1 gives an example of the Pareto front formed by the 

solutions in the feasible region of a two-objective (f1 and f2) minimization problem. 

 

f2 

Pareto front

f1 
 

Figure 2-1 Example of a Pareto front 
 

Multi-objective problems will have multiple solutions if the objectives are conflicting. In 

the rare case where no objectives are conflicting, there will only be one Pareto-optimal 

solution. If there is sufficient information about a decision maker’s preferences regarding 

a problem’s objectives, a biased search can be performed to find the most satisfactory 

solution for the decision maker. If this information is unavailable, then all Pareto optimal 

solutions are considered equally important, and as many solutions as possible should be 

found. As such, there are mainly two goals in multi-objective optimization: 
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1. Obtain a set of non-dominated solutions that are as close as possible to the true 

Pareto optimal front (i.e. convergence) 

2. Obtain a set of non-dominated solutions that are diverse as possible (i.e. diversity) 

 

The main concept in optimization consists of the first goal, regardless of whether the 

problem is single or multi-objective. On the other hand, the second goal is specific to 

multi-objective optimization and is important because it ensures that the decision maker 

has a good set of trade-off solutions to choose from. To evaluate the performance of 

different multi-objective optimization methods, several metrics (Van Veldhuizen 1999, 

Zitzler and Thiele 1999, Khor et al. 2005) have been developed and are all related to 

those two goals in some way. 

 

Most multi-objective optimization techniques can be classified as either classical or 

evolutionary. Classical multi-objective optimization methods typically find only one 

solution in a single run, while evolutionary algorithms are generally able to find multiple 

solutions in a single run. Both of these methods come with their own advantages and 

disadvantages, and there is no particular method that will always be the best for every 

problem. The selection of a particular multi-objective optimization method depends on 

many factors, such as the type of information available and the specific characteristics of 

the problem, and is often a multi-objective dilemma itself. For example, classical 

optimization methods are usually not used to solve large-scale problems because the 

required computational time is normally unacceptably long. On the other hand, if an 

analyst has information regarding the decision maker’s preferences for each objective, it 

 8



will be easier to use a classical method to perform a biased search for a solution that 

matches the decision maker’s desires, rather than spending lengthy development time on 

an evolutionary algorithm.  

 

Sections 2.1.1 and 2.1.2 provide detail on classical multi-objective optimization methods 

and evolutionary algorithms, respectively. 

 

2.1.1 Classical Multi-objective Optimization Methods 

Classical multi-objective optimization methods normally use scalarizing functions to 

convert problems into single objective optimization ones. Therefore, each run is only able 

to produce one solution. To obtain different solutions, the parameters of the problem 

must be changed. Therefore, n runs will have to be made in order to find n solutions. The 

advantage of most classical optimization techniques is that they are easy to understand 

and implement. Constraints can be easily incorporated into the problem so that feasible 

solutions are found. Furthermore, they are often accompanied by theoretical proofs that 

the obtained solutions are truly Pareto-optimal. However, many classical methods 

normally require user-defined parameters, which may be difficult to set and is often done 

arbitrarily. In addition, these methods may have difficulty finding certain solutions in 

non-convex problems. Finally, the majority of these techniques are impractical if the user 

wishes to generate a large set of solutions. 

 

Many authors (Hwang and Masud 1979, Buchanan 1986, Lieberman 1991, Miettinen 

1999) have classified multi-objective optimization techniques into the following 
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categories, based on the participation of the decision maker in the solution process: No-

preference, A Priori, Interactive, or Posteriori. Figure 2-2 displays the classification used 

by Diwekar (2003), adapted from Cohon (1985): 

Multi-objective Optimization 

 

Preference-based Methods 

Interactive A Priori 

Generating Methods 

Posteriori No-preference 

Figure 2-2 Classification of multi-objective optimization methods 
 

Generally, classical multi-objective optimization methods are either generating or 

preference-based, depending on how the decision maker’s input will be used in the 

optimization process. 

 

2.1.1.1 Generating Methods 

In generating methods, a decision maker’s preferences do not have to be explicitly 

identified. Instead, they are implicitly determined after the decision maker has chosen 

his/her most preferred solution. An additional advantage is that these methods allow the 

decision maker to compare the trade-offs between each solution. In terms of drawbacks 

for generating methods, the algorithms are often complex and difficult for the decision 

maker to understand. Furthermore, the size of the solution set may be too large for the 

decision maker to realistically analyze. Finally, these methods are often coupled with 

large computational times as the number of objectives increases. Generating methods are 

often classified as no-preference or posteriori. 
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In no-preference methods, the decision maker’s preferences are not used at all in the 

optimization process. Rather than generating the Pareto set, a single feasible solution, or a 

set of feasible solutions, is obtained and presented to the decision maker. For example, in 

the multi-objective proximal bundle (MPB) method (Miettinen, 1999), only a single 

solution is obtained which the decision maker must accept or reject. 

 

Unlike no-preference methods, posteriori methods iteratively obtain multiple solutions in 

the Pareto set. After a Pareto-optimal set has been obtained for a particular problem, it is 

presented to the decision maker who selects the most preferred solution. Unfortunately, 

the optimization process is usually computationally extensive. Furthermore, it may be 

hard for the decision maker to select a solution from a large set of alternatives. Weighting 

methods and constraint methods are two common and generalized posteriori techniques 

reported in literature. The following is a short list of some posteriori methods (Siarry and 

Collette 2003, Deb 2001, Diwekar 2003): 

1. Keeney-Raiffa method (Keeney et al. 1993) 

2. Distance to a Reference Objective method (Wierzbicki 1982) 

3. Weighting methods 

a. Weighted Sum method 

b. Non-inferior Set Estimations (NISE) (Cohon 1978, Changkong and 

Haimes 1983b) 

4. Constraint methods 

a. ε-Constraint method (Haimes et al. 1971) 

b. Normal Boundary Intersection (NBI) method (Das and Dennis 1998) 
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2.1.1.2 Preference-based Methods 

Preference-based methods use information about the decision maker’s preferences as a 

base for determining how the optimal solution will be found. Hence, the optimization 

analyst has to quantify the importance of each objective according to the decision 

maker’s preferences before the optimization process begins. These techniques are 

generally lower in computational costs than generating methods because fewer solutions 

have to be obtained. However, it can be difficult for the decision maker to accurately 

quantify his/her preferences for each objective. Furthermore, these preferences have to be 

made before the decision maker can see the alternative solutions, and hence they may be 

inconsistent with his/her true preferences. Preference-based methods are often classified 

as a priori or interactive. 

 

In a priori methods, the decision maker must specify some preferences before the 

optimization process begins. Usually, this information is used to find only one preferred 

Pareto-optimal solution. The value function approach (Keeney and Raiffa 1976), the goal 

attainment method (Gembicki and Haimes 1975), and goal programming (Charnes et al. 

1955) are examples of a priori approaches. 

 

Goal programming is one of the oldest and most commonly cited a priori approaches 

(Ignizio 1978, Sayyouth 1981, Clayton et al. 1982, Romero 1991, Sandgren 1994). In 

goal programming, the decision maker sets goals for each objective. The problem is then 

transformed into a single objective one, where the aim is to minimize the total deviations 

from those goals. Weighted, lexicographic, and min-max goal programming are three of 
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the most popular variations in literature. Lexicographic goal programming is one of the 

optimization methods used in the elective OR scheduling system proposed in this thesis. 

 

In lexicographic goal programming, each goal is divided into a priority level. Goals in a 

lower priority level are infinitely more important than all of the goals in higher priority 

levels. Hence, no trade-offs between the goals in different priority levels are allowed. A 

lexicographic goal programming problem is first solved by only considering the goals in 

the lowest (most important) priority level. The resulting solutions for those goals are then 

turned into equality constraints, and the problem is solved for the goals in the second 

priority level. In this way, the obtained solution will not violate the goals achieved for the 

first priority level. This process continues until the goals in the last priority level have 

been addressed. This lexicographic process allows the user to sequentially filter out 

alternatives until one is left (Ignizio 1976). This method is suitable for problems where 

the decision maker is able to clearly prioritize goals. 

 

In interactive methods, the decision maker works together with the optimization analyst 

or interactive computer program so that his/her preferences can be determined in an 

interactive way. At each iteration, the decision maker is presented with some solutions 

and is asked to provide information about which ones are preferable. New solutions are 

then generated based on the decision maker’s preferences. After a number of iterations, a 

solution is generated which should satisfy the decision maker. Eschenauer et al. (1990) 

and Miettinen (1999) provide reviews of several interactive multi-objective optimization 

methods. The following is a list of some interactive approaches: 
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1. Fandel method (Eschenauer et al. 1990) 

2. GUESS method (Buchanan 1997) 

3. Interactive Surrogate Worth Tradeoff (ISWT) method (Changkong and Haimes 

1983b) 

4. Reference point (Wierzbicki 1980) 

5. Simplex method (Nelder et al. 1965) 

6. Step method (STEM) (Benayoun et al. 1971) 

 

2.1.2 Evolutionary Algorithms for Multi-objective Optimization 

The majority of the most recent work on multi-objective optimization has centred on 

various evolutionary algorithms that are based on principles of evolution (Fonseca and 

Fleming 1995). In general, evolutionary methods function by taking a random population 

of candidate solutions and determining the fitness of each solution. The higher a 

solution’s fitness, the better it is with regards to the problem’s objectives. A selection 

operator then chooses the better solutions to join a mating pool. From there, a search 

operator creates new solutions by exchanging information from the solutions in the 

mating pool. This is often called crossover or recombination. 

 

Additionally, the search operator often perturbs the new solutions in their neighbourhood 

in a process called mutation. While mutation does help maintain diversity in a population 

of solutions, the mutation probability is usually kept very small in order to reduce the 

computational costs of checking the outcome of every possible mutation. Therefore, 

evolutionary algorithms often use operators that place more emphasis on solutions 

 14



situated in less crowded regions in order to help preserve diversity among solutions. For 

example, niching techniques (Deb and Goldberg 1989) are often employed to help 

uniformly distributed individuals in the objective space. Cavicchio (1971), DeJong 

(1975), Goldberg and Richardson (1987), Oei et al. (1991), Davidor (1991), and 

Goldberg and Wang (1998) have all proposed various niching strategies. A drawback of 

many niching strategies is that an algorithm’s performance is usually highly dependent on 

the parameters employed (Chipperfield and Fleming 1995). 

 

When an algorithm’s mutation operator is done, a new population will be created by 

selecting existing individuals from the parent population, the offspring population, or 

both. In some elitist algorithms, the best members from both populations are carried over 

into the new population. When a new population is finally created, it is now ready to go 

through another process of evolution, which will hopefully produce an even better, fitter 

population. Each iteration of this process, called a generation, will be repeated until some 

condition is satisfied, such as when the maximum number of generations has been 

reached or when the population fails to improve in fitness. 

 

The attraction to evolutionary algorithms is mainly due to the fact that they can naturally 

produce multiple solutions in a single run and are therefore naturally suited for multi-

objective optimization. This advantage is the main reason why these evolutionary 

algorithms have experienced considerable growth in recent years, whereas classical 

optimization techniques have not. Furthermore, these methods can easily deal with 
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discontinuous or non-convex Pareto fronts, which pose great difficulties for most 

classical optimization methods. 

 

Although most evolutionary methods are flexible and may be adapted for solving a wide 

range of problems, they come with greater development and computational costs. In 

addition, an algorithm often requires many parameters to be set and adjusted in order to 

ensure good performance. Finally, the search for feasible solutions in a constrained 

problem can be challenging, and these algorithms are designed to seek good solutions 

rather than guaranteed optimal ones (Jones et al. 2002). Classical methods, on the other 

hand, are easier to use if the problem is simple and they generally come with theoretical 

properties that ensure truly optimal solutions, provided the problem is modeled correctly. 

 

Schaffer (1985) introduced the first evolutionary algorithm with his Vector Evaluation 

Genetic Algorithm (VEGA). Since then, numerous algorithms have been developed and 

several reviews of the different approaches have been published (Coello 1999, Deb 

2001). Genetic algorithms, evolution strategies, evolutionary programming, genetic 

programming, simulated annealing, tabu search, particle swarm and ant colony 

optimization are all examples of evolutionary algorithms (Deb 2001, Collette and Siarry 

2003). Deb (2001) and Khor et al. (2005) provide reviews of numerous algorithms. 
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2.1.2.1 Constraint Handling 

In classical multi-objective optimization methods, constraints are considered by simply 

adding their mathematical formulas to the problem. This is not the case for evolutionary 

algorithms. The simplest way to handle constraints in an evolutionary algorithm is to 

disregard any solution that violates a constraint (Coello and Christiansen, 1999). 

However, this may cause the algorithm to have difficulty finding feasible solutions. 

Another popular constraint-handling technique is the penalty function approach, where a 

solution’s fitness is reduced according to its constraint violation. However, this requires 

penalty parameter values to be chosen with care or else infeasible or poorly distributed 

solutions will be obtained. Two other notable approaches have been developed by 

Jimenez et al. (1999) and Ray et al. (2001). 

 

Deb (2001) presented the constraint tournament approach, which modifies the definition 

of domination. A solution xi will constrain-dominate a solution xj if: 

1. Solution xi is feasible and solution xj is not 

2. Solutions xi and xj are both infeasible, but solution xi has a smaller overall 

constraint violation 

3. Solutions xi and xj are both feasible, but solution xi dominates solution xj with 

regards to the objectives 

 

This strategy is almost the same as the one proposed by Fonseca and Fleming (1998) 

except for the way two infeasible solutions are handled. In their method, only the number 

of violated constraints is considered, rather than the extent of constraint violation. 
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2.1.2.2 Classification of Evolutionary Algorithms 

Evolutionary algorithms can be classified into one of the following three categories, 

depending on the way they handle multiple objectives (Coello 2005): Aggregating, 

Population-based, or Pareto-domination based. 

 

In aggregating approaches, weights are used to combine all of the objectives into a single 

objective. The Weight-based Genetic Algorithm (Hajela and Lin 1993) and Random 

Weighted Genetic Algorithm (Murata and Ishibuchi 1995) are examples of such an 

approach. These methods are easy to implement, but are unable to find certain solutions 

in non-convex problems (Das and Dennis 1997). Furthermore, choosing the correct 

weights can be difficult, especially if little is known about the problem. Aggregating 

approaches have been proposed for a few applications, such as real-time scheduling 

(Montana et al. 1998) and truck packing (Grignon et al. 1996).  

 

In population-based algorithms, solutions are selected sequentially for each objective. 

These approaches can find Pareto optimal solutions for non-convex problems. The 

disadvantage is that the distribution of the Pareto optimal solutions is usually non-

uniform and biased towards some objectives. VEGA (Schaffer 1985) is an example of 

such an approach, which has been proposed for various applications (Wilson and 

Macleod 1993, Cienawski et al. 1995, Coello et al. 2000). 

 

Finally, Pareto-based approaches select individuals based on the concept of domination. 

In essence, these methods rank a solution according to its level of non-domination 
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compared to others in the population. Unlike aggregating and population-based methods, 

Pareto-based approaches do not require a priori knowledge about a decision maker’s 

preferences for each objective. This advantage has made these approaches very popular, 

despite the computational costs required by the domination check. In literature, they have 

been proposed for a wide variety of applications (Chipperfield and Fleming 1995, Coello 

et al. 2000, Goldberg 1989, Marcu 1997, Bagchi 1999, Emmanouilidis et al. 2000), and 

the following is a list of some approaches: 

1. Multi-objective Genetic Algorithm (MOGA) (Fonseca and Fleming 1993) 

2. Niched Pareto Genetic Algorithm (NPGA) (Horn et al. 1993, Horn et al. 1994) 

3. Nondominated Sorting Genetic Algorithm (NSGA) (Srinivas and Deb 1993, 

1994) 

4. Nondominated Sorting Genetic Algorithm II (NSGA-II) (Deb et al. 2000a, Deb et 

al. 2000b) 

5. Pareto Archived Evolution Strategy (PAES) (Knowles and Corne 2000) 

6. Simple Evolutionary Algorithm for Multiobjective Optimization (SEAMO) 

(Valenzuela 2002) 

 

2.1.2.3 Multi-objective Genetic Algorithms 

Holland (1975) developed the concept of genetic algorithms, which are now the most 

popular evolutionary method for multi-objective optimization (Jones et al. 2002). This is 

mainly attributed to its vast applicability, global perspective, and ease of use (Goldberg 

1989). Genetic algorithms were inspired by Darwin’s theory of evolution, where fitter 

individuals will survive in a competitive environment and pass their genetic information 
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to the next generation. Hence, a population’s overall quality will increase over time. Due 

to the variety of applications for which genetic algorithms have been used, there is no 

exact way in which they function. However, most have the following elements: a 

population of solutions, selection according to fitness, crossover resulting in new 

solutions, and random mutation of the new solutions. A typically genetic algorithm 

process is illustrated below. 

Yes 

No 

Mate individuals to produce offspring (crossover) 

Select individuals for mating (selection) 

Create new population using offspring (replacement) 

Are stopping criteria satisfied? 

Mutate offspring (mutation) 

Initialize population (initialization) 

Determine the fitness of each individual 

Finish

 
Figure 2-3 Flowchart of a genetic algorithm 

 

Fonseca and Fleming (1993) developed Multiple Objective Genetic Algorithm (MOGA), 

which was the first multi-objective genetic algorithm that classified population members 

according to non-domination. It functions like a standard genetic algorithm except for the 

way in which fitness is assigned to solutions. Each solution has a rank equal to one plus 

the number of solutions that dominate it. Hence, a lower rank signifies a better solution. 
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Each solution is then assigned a fitness value based on their rank. This fitness assignment 

scheme is very easy to use, and MOGA can easily be applied to many problems. 

However, results are sometimes biased towards certain solutions. Furthermore, there may 

be sensitivity towards the shape of the Pareto-front, along with the density of solutions in 

the search space.  

 

Another popular multi-objective genetic algorithm is Nondominated Sorting Genetic 

Algorithm (NSGA) developed by Srinivas and Deb (1993, 1994). When it was 

developed, some researchers found that its overall performance was lower than compared 

to the popular MOGA (Fonseca and Fleming 1993) and was more sensitive to the niching 

parameters used (Coello 2001). Deb et al. (2000a, 2000b) modified NSGA to improve its 

performance, which resulted in the birth of NSGA-II. NSGA-II is a more computationally 

efficient algorithm than its predecessor, and employs elitism and a crowded comparison 

operator that instils diversity without the setting of additional parameters. However, the 

non-dominated sorting required by this algorithm is performed on a population that is 

double the size evaluated by most other algorithms. The genetic algorithm developed for 

this thesis is based upon NSGA-II, and hence it will be described further in chapter 5. 

 

2.1.2.4 Multi-objective Evolution Strategies 

Evolution strategies are another popular concept used in multi-objective optimization. 

These strategies were first applied during the 1960s (Lichtfuss 1965, Rechenberg 1965, 

Schwefel 1968). Two recently developed strategies are the Predator-Prey Evolution 

Strategy (Laumanns et al. 1998) and the Pareto Archived Evolution Strategy (PAES) 
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(Knowles and Corne 2000). Evolution strategies differ from genetic algorithms in that 

they normally do not use crossover operators (Deb 2001). A basic evolutionary strategy is 

illustrated below. 

 

Yes 

No 

Select best solutions from modified parent population 

Modify population to include all parents and offspring 

Are stopping criteria satisfied? 

Finish

Initialize parent population (initialization) 

Mutate parents to produce offspring (mutation) 

Figure 2-4 Flowchart of an evolutionary strategy 
 

A typical evolutionary strategy begins by creating a parent population. Randomly chosen 

parent solutions are first mutated to produce offspring. The best solutions from both the 

parent and offspring populations are then selected to form a new parent population which 

will undergo another process of mutation and selection. Hence, an evolutionary strategy 

is elitist. In some variations, the best solutions are only chosen from the offspring 

population, or elitism is controlled by selecting a limited number of parent solutions. 
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2.2 Introduction to Elective Operating Room (OR) Scheduling 

Elective operating room (OR) scheduling refers to the broad range of activities required 

to achieve a fully functioning OR department. Determining staffing amounts, allocating 

OR time, prioritizing emergencies, and scheduling surgical cases/operations are all 

examples of OR scheduling activities. These activities are dictated by the type of elective 

OR scheduling system being used, along with the type of elective OR scheduling policy 

being employed. 

 

Dexter and Epstein (2003) group elective OR scheduling systems into three categories: 

Any Workday, Fixed Hours, or Reasonable Time. Because the Reasonable Time system 

is rarely used, only the Any Workday and Fixed Hours systems will be discussed. 

 

The Any Workday system is the most widely used in the US. In this system, there are no 

restrictions on the amount of OR time that a surgeon is allowed to use. Provided that they 

can be done safely, cases will be performed on the dates chosen by their surgeons and 

patients, even if there is not enough available OR time (i.e. overtime is needed). 

However, facilities may not be able to provide accurate start times for some cases since 

there are a limited number of operating theatres. 

 

In the Fixed Hours system, cases are only scheduled if they will not utilize more OR time 

than available. In this type of system, the operational objective is to minimize 

underutilized OR time. Some facilities have no choice but to use this system, such as 

ones who have fixed annual budgets. In Canada, the provincial governments are the key 

 23



providers of health care and hospitals are provincially funded in advance through a fixed 

annual budget. Therefore, the Fixed Hours system is used by most Canadian healthcare 

institutions, such as Health Sciences Centre (HSC) in Winnipeg, on which this thesis is 

based.  

 

In the literature, there are three main elective OR scheduling policies described: Block, 

Open, or Modified Block (Patterson 1996, Marcon and Kharraja 2003). Since most 

literature deals with either block or open scheduling, modified block scheduling will not 

be addressed further. Sections 2.2.1 and 2.2.2 detail the block and open scheduling 

approach, respectively. 

 

2.2.1 Block Scheduling 

The development of OR schedules through block scheduling can be thought of as a three-

stage process. In the first stage, blocks of staffed OR hours are allocated to each surgical 

group. A surgical group may be made up of an individual surgeon or a collection of 

surgeons. Usually, this group is made up of surgeons belonging to the same service (i.e. 

cardiac, neurosurgery, orthopaedic, etc.). The blocks of staffed OR hours may take up a 

full day, half of a day, or some other variation. Ideally, blocks should be whole days, 

although this may not always be practical (OR Manager 2003, Patterson 2004). If a block 

belongs to a collection of surgeons, it may be broken down into individual blocks 

belonging to a specific surgeon. 
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In an Any Workday system, the first stage is accomplished by estimating the future 

amount of OR time required by each surgical group and then allocating OR time 

according to the expected demand. In a Fixed Hours system, on the other hand, the hours 

of OR time must first be calculated, which is usually based upon the facility’s budget for 

peri-operative nursing. The available OR time is then divided among the different 

surgical groups based on some criterion, such as utilization or contribution margin. 

 

In the second stage of a block scheduling policy, a master surgical schedule (MSS), 

consisting of the blocks allocated to each surgical group in stage 1, is created. This MSS 

is a cyclic timetable that must be feasible to implement in terms of available resources 

(e.g. staffing, number of operating theatres, etc.). The cycle time for a MSS is usually one 

week, two weeks, or one month. The MSS can be thought of as being equivalent to the 

aggregate production plan in a manufacturing environment. Figure 2-5 is a simple 

example of a MSS with a cycle time of one week in a facility with 3 operating theatres 

(OR1–OR3), 5 surgical groups (A–E), and half days blocks. 

 

 Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

A B C B A C C 
OR1 

A E C C A C C 

B C A E E C E 
OR2 

B C A E E C E 

C D A D B D D 
OR3 

D D A D B D A 

 
Figure 2-5 Example of a master surgical schedule (MSS) 

 

In the third stage of block scheduling, cases are scheduled into the MSS. If the MSS 

created in stage 2 did not specify operating theatre assignments for each block, then this 
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will have to be carried out. This finally results in daily OR schedules, which list the 

actual operations to be performed, along with their surgeons, operating theatres, and start 

and end times. They are similar to production schedules where the tasks to be completed 

(i.e. operations) are defined and assigned to production resources (i.e. operating theatres). 

Figure 2-6 depicts the basic block scheduling process. 

 

Any Workday System: 
Estimate each surgical 

group’s OR time demand 

Develop a Master Surgical 
Schedule (MSS) 

Allocate OR time to each 
surgical group 

Fixed Hours System: 
Calculate OR time 

available 

Schedule cases into the 
MSS 

Finish 

Stage 1 

Stage 3 

Stage 2 

Figure 2-6 Flowchart of Block Scheduling 
 

The following sections 2.2.1.1 to 2.2.1.3 describe the literature that can be found 

regarding the three stages of block scheduling. 
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2.2.1.1 Stage 1 – Block Time Allocations 

In the first stage of block scheduling, blocks of OR time are allocated to each surgical 

group. Since the steps in this stage differ according to the scheduling system being used, 

the literature regarding this stage will be presented separately. 

 

2.2.1.1.1 Any Workday System 

When allocating block time in an Any Workday system, the future amount of OR time 

required by each surgical group must first be estimated. Dexter et al. (1999b) determined 

that using historical data from the twelve most recent four week periods is an effective 

way of predicting a surgical group’s future demand. These estimates are then used to 

assign blocks to each group. Hence, estimates must be sufficiently accurate so that each 

group will be allocated enough OR time to complete its elective cases without incurring 

underutilized OR time or overtime, thereby maximizing OR efficiency and reducing costs 

(Dexter et al. 1999a, Dexter et al. 2001, OR Manager 2003). Indeed, Dexter et al. (1999b) 

found that allocating slightly more block time than a surgeon needs to complete his/her 

elective cases can cause an 8% decrease in OR utilization, whereas allocating slightly less 

time can cause a 7% increase. 

 

Dexter et al. (2000) demonstrated how a three-step mathematical technique can be used 

to determine how much block time should be allocated to surgical groups during a future 

four week period. First, each group’s total hours of elective cases is forecasted using the 

method presented by Dexter et al. (1999b). From there, the relative cost of overtime 

versus the cost of underutilized OR time is calculated as shown by Dexter and Traub 
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(2000a). The subsequent cost ratio, estimated future demand, and the number of hours in 

each staff shift are then used in a formula for optimally allocating block time to maximize 

OR efficiency as described in Strum et al. (1999). 

 

Most of the time, each surgical group consists of a collection of surgeons. A group’s 

block time is then broken down into individual blocks belonging to a specific surgeon. To 

minimize OR costs, some authors (Dexter et al. 1999c, Dexter et al. 2000) suggest that 

overflow block time should be made available for performing cases that cannot be 

completed during an individual surgeon’s regular block time. For example, each group’s 

OR time can be divided into regular block time for each surgeon, and overflow time that 

can be shared by each surgeon in the group. 

 

2.2.1.1.2 Fixed Hours System 

The first step that needs to be carried out in a Fixed Hours system using a block 

scheduling policy is the determination of how much OR time will be made available. 

This time can then be distributed to surgical groups. 

 

Dexter and Epstein (2003) described a simple way of allocating OR time in a Fixed 

Hours system. First, each surgical group is ranked in descending order, according to their 

utilization (or whatever quantity is desired to be maximized) per allocated block. The 

highest ranked groups are then allocated the maximum amount of OR time blocks 

allowed, until the stage is reached where the remaining available OR time is less than a 

group’s maximum allowance. When this occurs, that group will be given whatever OR 
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time is left, and all other groups ranked below it will not receive any allocated OR time. 

If more constraints need to be added to the allocation process, more sophisticated 

methods can be used, such as linear programming. 

 

For example, there has been literature on how to determine the case mix (i.e. number, 

type, and price of services) that will result in the achievement of some monetary 

objective, such as the maximization of profits or minimization of costs. This resultant 

case mix may then be used to determine how much OR time each surgical group should 

be allocated. Blake and Carter (2002) used goal programming for case mix planning so 

that a facility would be able to break even in terms of revenue and costs while 

simultaneously preserving the income of physicians and minimizing disturbances. This 

method is particularly useful for public Canadian healthcare facilities who are faced with 

restricted funding and need to determine how much OR time should be allocated to each 

surgical group. 

 

Similarly, Kuo et al. (2003) used linear programming to allocate OR time by determining 

the required case mix that would maximize total weekly revenue. Mulholland et al. 

(2005) also used linear programming to calculate the appropriate case mix that would 

maximize financial outcomes for both the hospital and surgeons. However, their model 

took more resource constraints into account than Kuo et al. (2003). They developed 

several models to test the impact of limited resources, different financial objectives, and 

changes in expected procedure volumes or procedure mix using actual data from the 

Department of Surgery at the University of Michigan. 
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To determine how much time to allocate to each surgical group, the first phase of the 

scheduling method presented by Testi et al. (2007) used a bin packing model that 

considered each group’s waiting list and the time required to clear it. 

 

2.2.1.2 Stage 2 – Master Surgical Schedule (MSS) Development 

The second stage of block scheduling requires a MSS consisting of each surgical group’s 

blocks to be created. Blake et al. (2002) presented an integer programming method to 

generate MSSs so that the difference between each surgical group’s target and actual OR 

time allocation is minimized. Similarly, Blake and Donald (2002) used integer 

programming for the development of new MSSs at Mount Sinai Hospital, Toronto, in a 

quick, unbiased way after OR time was reduced due to a decline in funding. Based on 

their work, Rohleder et al. (2005) used goal programming to improve OR scheduling and 

increase patient flow. Their model reduced variability in terms of daily patient volumes, 

although overall patient volumes generally remained the same. Testi et al. (2007) also 

used mathematical programming to create MSSs which maximize surgeon preferences 

with respect to their assigned dates for each block, along with expected patient length of 

stays (LOS). 

 

Recent works have addressed controlling bed occupancy through MSS development. 

Belien and Demeulemeester (2007) proposed and evaluated several mixed integer 

programming (MIP) and simulated annealing models. They assumed that each surgeon 

only performs one type of surgery with a LOS following a multinomial distribution and a 

deterministic case duration. Similarly, Calichman (2005) developed a mathematical linear 
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programming model to create weekly MSSs that maximize revenue while respecting 

constraints such as bed availability. OR time is allocated to each surgical group by 

assuming that each group’s cases have a duration and LOS equal to the group’s average. 

 

Van Oostrum et al. (2006) demonstrated how to maximize OR utilization while levelling 

demand for the Intensive Care Unit (ICU) and surgical wards. Case durations are 

determined using a lognormal distribution. Like Calichman (2005), however, the 

estimated LOS for each group’s case is equal to the group’s average LOS. The problem is 

constructed as an integer linear program and solved using a column generation approach. 

 

2.2.1.3 Stage 3 – Surgical Case Scheduling 

In the third stage of the block scheduling policy, each surgical group selects the cases 

they want to perform in their blocks. These cases are then scheduled into the MSS. If the 

MSS created in stage 2 did not define the operating theatre assignment for each block, 

these assignments can easily be made by the OR department. 

 

Often, the surgeons in each surgical group schedule cases into their blocks on a first come 

first serve basis, or each surgeon is allocated a portion of the group’s blocks with which 

they can schedule in whatever manner they desire. Therefore, the OR schedule is created 

as each surgeon schedules their own cases. In this type of situation for a Fixed Hours 

system, the scheduling process is very simple because a surgical group can only schedule 

cases if the required durations do not surpass their allocated OR time. In an Any 

Workday system, however, the scheduling process is slightly more complex because 
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surgeons may schedule as many cases as they want, regardless of whether their allocated 

OR time has been exceeded. For regular block time scheduling in an Any Workday 

system, Dexter and Traub (2002) offer three rules for scheduling to maximize OR 

efficiency. First, a surgical group should schedule cases into their own allocated OR time 

until there is none left. Second, a case should not be scheduled for completion in 

overtime if it can start earlier in another of the group’s operating theatres. Finally, if a 

surgical group has fully scheduled its allocated OR time, additional cases should be 

scheduled into another group’s allocated OR time, rather than into overtime. 

 

In other facilities, a surgical group may select the cases to be scheduled into each of their 

blocks, but the sequencing of cases in each block is determined by the OR department. 

Dexter and Traub (2000b) presented a statistical approach for case sequencing when 

limited resources are required. Cases are sequenced in order to achieve a relatively low 

probability of overlap between cases needing the same equipment or personnel. Lebowitz 

(2003) presented the notion that scheduling short procedures before long ones can limit 

variability in actual case durations. This is because short procedures theoretically have 

less inherent variability (Strum et al. 1998, Zhou and Dexter 1998). Hence, cases may 

simply be sequenced from shortest to longest to reduce schedule disruptions. This theory 

was supported by Monte Carlo simulations using different combinations of short and long 

procedures. The results indicate that scheduling in such a way can increase the number of 

procedures that start on time and also decrease overtime without reducing surgical output. 

His findings help explain why ambulatory surgery centres, where cases are typically 

short, tend to run more according to schedule than tertiary care centres. 
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Similarly, Testi et al. (2007) used simulation in the third phase of their proposed 

scheduling strategy to test the sequencing of cases into a block according to three 

heuristics: longest waiting time (LWT), longest processing time (LPT), and shortest 

processing time (SPT). Like Lebowitz (2003), the authors found that SPT resulted in the 

least overtime and case delays or cancellations, followed by LPT and finally LWT. 

 

Denton et al. (2007) also tested three sequencing heuristics to determine the best one for 

reducing deviations between planned and actual schedules. Cases were sequenced in 

order of increasing mean, variance, or variation coefficient with respect to case durations. 

The authors concluded that the heuristic based on variance performed the best. This is 

because the early scheduling of cases with high duration variability will likely delay the 

start of all the following cases in the same operating theatre. 

 

In a Fixed Hours facility described by Fei et al. (2006), each surgical group submits a list 

of cases to be scheduled, without specifying a block assignment for each case. In this 

situation, the OR department must allocate each surgical group’s case into one of the 

group’s blocks. To allocate cases into blocks over a period of one week while matching 

utilized and available hours of OR time in each block, the authors used column 

generation to solve a linear program transformed from a binary set partitioning problem. 

Following this, a hybrid genetic algorithm with a tabu search local operator was used for 

sequencing the cases assigned to each block. The resultant occupancy in each recovery 

room bed was also determined. The hybrid genetic algorithm determined the sequence in 
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each block and recovery room bed that would result in the earliest completion time for 

the last patient in both the OR department and recovery room. 

 

2.2.2 Open Scheduling 

In some facilities, an open scheduling policy is employed. First, surgeons submit a list of 

cases that they wish to schedule over a given time period specified by the OR department. 

In an Any Workday system, each case has a surgical date that is dictated by their surgeon. 

Therefore, a facility functioning under an Any Workday system and open scheduling 

policy will always have a designated time period of one day. In a Fixed Hours system, the 

designated time period can be any number of days. 

 

Once the OR department has received the list of cases from each surgical group, the OR 

department will either schedule all, or just a portion of the cases, depending on the type 

of scheduling system being used. In an Any Workday system, all cases will be performed 

provided that they can be done safely. Therefore, the OR department will schedule all of 

the cases submitted. In a Fixed Hours system, there is a limit on the amount of OR time 

available. Therefore, if the total duration of all submitted cases exceeds the amount 

available, the OR department will only be able to schedule a portion of the submitted 

cases. In order to avoid the burden of selecting which cases should be performed, some 

facilities may allocate OR time to each surgical group before they submit their list of 

cases, so the groups can decide how to utilize their given OR time themselves. 
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Although the steps in open scheduling are much simpler than block scheduling, the 

scheduling process is usually more complex. However, it allows for more optimal use of 

resources because the facility has an overall view of the cases to be scheduled. The main 

disadvantage of open scheduling is that patients and surgeons will not know when their 

cases are scheduled until the facility has generated the complete OR schedule. 

 

Section 2.2.2.1 describes literature pertaining to scheduling when the OR department 

must schedule all of the cases submitted by each surgical group, while section 2.2.1.3 

describes the literature addressing scheduling when the OR department is only able to 

schedule selected cases. 

 

2.2.2.1 All Cases Scheduled 

This section describes literature pertaining to the situation where the OR department must 

schedule all of the cases submitted by each surgical group. In an Any Workday system, 

surgeons choose the surgical dates for each of their cases. Therefore, only daily OR 

schedules are created. In a Fixed Hours system, OR schedules may be created over any 

number of days. Literature demonstrates how the use of certain methods may optimize 

some criteria, such as utilization. 

 

For daily OR scheduling, Sier et al. (1997) used simulated annealing to develop feasible 

schedules according to patient age and estimated case duration. Cases belonging to 

younger patients and cases with longer estimated durations are given earlier start times.  
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Marcon et al. (2001) and Marcon et al. (2003) translated their problems into multiple 

knapsack models so that deviations between planned and actual daily schedules, called 

Risk of No Realization (RNR), were minimized. These deviations are attributed to 

variable case durations. Cases are assigned to operating theatres and sequenced from 

longest to shortest duration. 

 

Jebali et al. (2006) presented two MIP strategies for minimizing overtime, underutilized 

OR time, and patient waiting time (i.e. hospitalization before surgery). Constraints such 

as operating theatre opening hours, operating theatre suitability, allowable overtime 

hours, allowable surgeon operation hours, recovery room bed numbers, and equipment 

availability are all considered. In the first strategy, cases are first assigned to operating 

theatres, before the cases in each operating theatre are sequenced. In the second strategy, 

operating theatre and start time assignments are determined simultaneously. As expected, 

the second strategy results in slightly better results, but takes longer to solve. 

 

For scheduling over a time horizon of one or two weeks, which can only be used in a 

Fixed Hours system, Guinet and Chaabane (2003) developed a method for assigning 

cases to different time periods and operating theatres, while considering constraints due 

to operating theatre opening hours, allowable overtime hours, and minimum and 

maximum surgeon operation hours. They modelled the problem as a capacity constraint 

assignment problem, with the objective of minimizing costs caused by patient waiting 

time and overtime. They solved the problem using an extension of the Hungarian method. 
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Velásquez and Melo (2005) offered a set packing approach that is able to generate 

schedules over a time horizon between one and seven days. Their method produces 

optimal schedules with regards to case priorities, while satisfying resource constraints. 

 

Roland et al. (2006) presented a two-step MIP approach for scheduling cases over a time 

horizon of several days, where each case has an associated earliest and latest allowable 

operation date. The model minimizes costs due to the operating theatre opening hours and 

overtime. Renewable (e.g. staff) and non-renewable resources (e.g. pharmaceuticals), 

along with the maximum operation hours for each surgeon, are considered as constraints. 

As an alternative method for efficiently solving the problem, the authors introduced a 

genetic algorithm that generates solutions violating the least amount of constraints. 

 

Using Lagrangian relaxation, Perdomo et al. (2006) demonstrated how to schedule cases 

over a number of days which minimize the sum of completion times for each case, while 

respecting operating theatre, transport personnel, and recovery room bed constraints. 

 

2.2.2.2 Only Selected Cases Scheduled 

In some facilities using the Fixed Hours system, surgeons are not allocated hours of OR 

time. Instead, they are asked to submit a list of cases that they wish to schedule over a 

given time period. From these lists, the OR department selects cases to be scheduled, 

provided that they have a total duration that does not exceed the OR time available. 
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For daily OR scheduling, Ozkarahan (2000) used a goal programming method to select 

and assign cases to operating theatres while minimizing idle time and overtime, 

maximizing surgeons’ preferences for operating theatres and case priorities, and 

minimizing Intensive Care Unit (ICU) bed conflicts. 

 

For weekly OR scheduling, Ogulata and Erol (2003) used a three-stage hierarchical goal 

programming approach. First, the cases to be performed are picked from a waiting list in 

order to minimize overtime and underutilized OR time, and to evenly distribute the 

number of cases with the same time durations (i.e. short, medium, or long). Second, each 

case is assigned to a surgical group in a way that balances the distribution of cases among 

each group and minimizes excess use of OR time allocations. Finally, cases are assigned 

to dates and operating theatres so that waiting time is minimized while the number of 

cases with the same time durations on each day is levelled. 

 

Chaabane et al. (2006) presented a method for the selection and assignment of cases to 

operating theatres over a weekly time horizon, while considering constraints due to 

operating theatre opening hours, allowable overtime hours, and minimum and maximum 

surgeon operation hours. They used a linear program that minimizes the difference 

between available OR time and each surgical group’s requested hours of OR time. 

 

Oddly, the three methods described above do not sequence the cases in each operating 

theatre. However, the sequencing methods cited in section 3.4.3 (Dexter and Traub 

2000b, Lebowitz 2003, Denton et al. 2006, Fei et al. 2006, Testi et al. 2007) may be used. 
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2.2.3 Comparison between the Proposed System and Literature 

At HSC, like in most facilities, surgical dates are chosen by surgeons. However, 

resources are utilized better when a facility is given this control. For example, Dexter et 

al. (1999c) concluded through simulation that in order to maximize utilization during 

regular block time scheduling, control over choosing surgical dates must be moved from 

the surgeons to the facility. Similarly, the simulations of Dexter et al. (2000) showed that 

staffing costs were lowest when surgeon and patient preferences were not taken into 

consideration when scheduling into overflow block time. 

 

For this reason, the proposed scheduling system was designed to generate weekly elective 

OR schedules with full control over surgical date, operating theatre, and start time 

assignments. Hence, the proposed system follows an open scheduling policy, where each 

surgical group is allocated hours of elective OR time during each week. The OR 

department then schedules all of the elective cases submitted by each surgical group, 

which is carried out in two stages. 

 

The first stage aims to reduce day-to-day artificial variability, while the second stage 

reduces artificial variability within a day. Besides the standard constraints that can be 

found in literature with respect to resource availability (e.g. surgeon, operating theatre, 

beds, etc.), there are several additional constraints specific to HSC. For instance, there are 

different types of elective patients at HSC, who take different paths throughout the 

hospital depending on their patient type. Furthermore, some patient types have to meet 

specific discharge deadlines, in addition to keeping within the limits on the number that 
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can be scheduled each day. The following section provides a comparison between the 

proposed elective OR scheduling system and those found in literature. 

 

2.2.3.1 Stage 1 of the Proposed Scheduling System 

In this thesis, the aim of the scheduling system’s first stage is to assign cases to different 

days of the week in a way that will reduce day-to-day variability. In order to achieve this, 

the system’s first goal is to smooth daily bed occupancy in the post-operative units. In 

literature, several authors have addressed this issue when generating the MSS in a block 

scheduling policy. For example, Belien and Demeulemeester (2007) demonstrated a way 

to develop MSSs assuming that each surgeon performs only one type of case with a LOS 

following a multinomial distribution. However, most surgeons perform a variety of cases, 

each with their own mean LOS. Similarly, Calichman (2005) and van Oostrum et al. 

(2006) presented a way of creating MSSs by assuming that each surgical group’s cases 

have the same LOS, equal to the group’s average LOS. These methods use simplistic 

assumptions because there is no data on the actual cases to be performed when an MSS is 

generated. To avoid this, the proposed weekly scheduling system uses an open scheduling 

policy. 

 

Many weekly OR scheduling methods reported in the literature do not take post-operative 

bed occupancy into account. For example, in the models presented by Guinet and 

Chabaane (2003) and Ogulata and Erol (2003), patients are known to have arrived, or 

have been asked to arrive, at the hospital on a particular date. Cases are then scheduled in 

order to reduce costs associated with patients waiting in the hospital for surgery. 
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However, they do not consider the time a patient will spend in the hospital after surgery, 

along with whether or not there will be enough available beds to accommodate all of the 

patients already in the hospital or scheduled to arrive. Furthermore, the studied facilities 

are very different from HSC because the majority of HSC’s elective surgical patients 

only arrive at the hospital on the day of surgery, and will usually be sent home if their 

surgery is postponed to another day. 

 

Finally, the first stage of the proposed model also aims to smooth daily OR utilization 

and daily patient volumes in the pre-operative units. To the author’s knowledge, the latter 

goal has not yet been addressed in literature. Hence, this thesis’ attempt to generate OR 

schedules with both balanced daily OR utilization and patient volumes in the pre- and 

post-operative units is a new research venture. 

 

2.2.3.2 Stage 2 of the Proposed Scheduling System 

After cases have been assigned to the different days of the week in the first stage, the 

proposed system’s second stage carries out daily OR scheduling by attempting to reduce 

the variability that may occur within a day. In this second stage, the four goals are to 

minimize overtime, balance utilization among each operating theatre, smooth the bed 

occupancy in the Post-Anaesthesia Care Unit (PACU), and minimize the number of cases 

that finish simultaneously. 

 

There are similar works in literature that address daily OR scheduling. Sier et. al. (1997) 

scheduled cases according to patient age (i.e. youngest first) and estimated case duration 
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(i.e. longest first). This strategy is unsuitable for this thesis because the proposed 

scheduling system was developed for elective patients. Hence, their cases are not urgent 

enough to justify scheduling younger patients first. In addition, literature (Lebowitz 2003, 

Testi et al. 2007) has shown that scheduling cases from shortest to longest, rather than 

longest to shortest, will likely result in less overtime, delays, and case cancellations. 

Perhaps Sier et al. (1997) saw other benefits from sequencing in such a way, but they 

were not disclosed. 

 

Ozkarahan (2000) proposed a daily OR scheduling method using goal programming to 

minimize under-utilized OR time and overtime, while respecting constraints such as the 

availability of beds in the Intensive Care Unit (ICU). His method assigns cases to 

operating theatres, but does not specify their order. On the other hand, the proposed 

system does not consider ICU bed constraints because the vast majority of HSC’s 

elective patients go to the PACU instead. The proposed method, however, does address 

two additional goals, in addition to determining the start times for each case. Therefore, 

the proposed model is a more complete scheduling approach. 

 

Marcon et at. (2001) and Marcon et al. (2003) scheduled cases in a way that would 

minimize deviations between planned and actual daily schedules, caused by variable case 

durations. It is felt that this goal will have less impact on HSC’s elective surgical patient 

flow than the ones addressed in the proposed system. 
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Velásquez and Melo (2005) used a set packing approach to generate schedules that would 

be optimal with regards to case priorities, while satisfying resource constraints. For 

example, some cases may be more urgent than others, or a surgeon may wish to perform 

certain cases earlier in the day. The goals of the proposed system in this thesis differ in 

that they aim to reduce artificial variability within a day, caused by the times at which 

cases are scheduled to start. Case priorities are not considered because only elective 

patients are being scheduled and hence their medical outcomes should not be greatly 

affected by small changes in their surgical dates or times. 

 

Jebali et. al. (2006), Perdomo et al. (2006) and Fei et al. (2006) all demonstrated how to 

schedule cases while respecting bed constraints in the recovery room, known as the 

PACU at HSC. However, the proposed model attempts to smooth the PACU’s bed 

occupancy throughout the day, as opposed to just ensuring that there are enough beds 

available. This will reduce artificial variability and the chances of delays due to a lack of 

PACU beds or staff if schedule disruptions occur. 

 

Finally, the proposed method aims to reduce the number of cases that finish 

simultaneously, which will reduce the number of peri-operative aides (PAs) required to 

clean up the operating theatres between cases. To the author’s knowledge, this issue has 

not been addressed in literature. 
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Chapter 3: Analysis of Surgical Patient Flow at Health 
Sciences Centre 

 

Health Sciences Centre (HSC) in Winnipeg is the major trauma centre serving the entire 

province of Manitoba, in addition to Northwestern Ontario and Nunavut. HSC’s adult 

Operating Room (OR) department is the main place where surgeries are performed on 

both adult elective and emergency patients. 

 

In 2005, HSC management and researchers at the University of Manitoba decided to 

initiate a project that would analyze the facility’s adult surgical patient flow and generate 

improvement ideas. Before the project could begin, approval needed to be obtained from 

the Education/Nursing Research Ethics Board (ENREB) at the University of Manitoba. 

Once this approval was obtained, the researchers began visiting HSC’s major surgical 

departments, where they carried out observations and corresponded with staff and 

patients. The major departments visited were the Pre-Admission Clinic (PAC), 

Admitting, MS3, B3, OR, Post-Anaesthesia Care Unit (PACU), Surgical Intensive Care 

Unit (SICU), and A5 (an inpatient unit). Ten days were spent conducting observations in 

PAC, MS3, B3, and the OR, where 10 staff members and 2 patients were observed and 

interviewed in each department. Seven days were spent in Admitting, where 5 staff 

members were observed and interviewed. Finally, five days were spent in PACU, SICU, 

and A5. Four staff members were observed and interviewed in PACU and A5, while 2 

staff members were interviewed in SICU. Three surgeons were also interviewed during 

the course of the project. 
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Staff approached for observations and interviews were identified by HSC management, 

based on who they felt would best be able to help researchers through the learning 

process. HSC management would explain the study objectives to identified staff before 

introducing the researchers. The researchers would then read a letter of consent and have 

them sign it if they agreed to being observed and/or interviewed as per the Management, 

Nurse or Physician Questionnaire. 

 

On the other hand, patients who were approached for observations and interviews were 

selected randomly. First, researchers would ask a staff member to inform the patient that 

a patient flow study was being conducted and inquire if they could be approached by a 

researcher. If the answer was “yes”, a researcher would go to the patient and describe the 

study’s objectives, present the Patient Questionnaire, and ask if the patient was willing to 

be observed and interviewed using the Patient Questionnaire. If the patient agreed, the 

researcher would obtain the patient’s signature on a letter of consent. A copy of all 

questionnaires and letters of consent can be found in Appendix C. 

 

In this chapter, sections 3.1 and 3.2 describe HSC’s classification and flow of elective 

and emergency surgical patients, respectively. Sections 3.3 through 3.8 detail the 

individual stages making up the facility’s elective surgical patient flow. Section 3.9 

explains how the OR department is scheduled at HSC, while section 3.10 describes issues 

that plague this system. Finally, section 3.11 suggests possible methods of flow 

improvement. A summary is given in section 3.12. 
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3.1 Elective Patients 

Elective surgical patients are those who have planned surgeries. At HSC, elective surgical 

patients are classified into three categories:  

1. Day 

a. Same Day (SD) 

b. Overnight 

2. Same Day Admission (SDA) 

3. Inpatient 

 

Day and SDA patients are all admitted to HSC on the day of surgery, and their 

classification depends on their expected discharge time. Day patients are expected to be 

discharged within 24 hours after surgery, and are split into either SD or Overnight 

patients. SD patients are expected to be discharged on the same day of surgery, while 

Overnight patients are expected to be discharged the morning after. On the other hand, 

SDA patients are expected to be discharged more than 24 hours after surgery. All elective 

patients who need to be admitted a day or more prior to surgery are classified as 

Inpatients. This is usually because their surgeons have ordered extensive pre-operative 

tests or actions to be carried out. 

 

Figure 3-1 depicts the general flow of elective surgical patients at HSC. For the majority 

of elective surgical patients, their journey through HSC starts when they see their 

surgeon, usually at the surgeon’s office, and surgery is agreed upon. From there, all 

patient types, except for Inpatients, may be requested by their surgeon to visit the Pre-
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Admission Clinic (PAC) sometime prior to the day of admission. On the day of 

admission, all patients must first stop at the Admitting department for registration, before 

proceeding to their pre-operative unit. When it is time for surgery, patients are sent to the 

OR department and their operation is performed. After surgery, patients are transferred to 

a recovery unit for their recovery period. This will usually be the Post-Anaesthesia Care 

Unit (PACU), often called the recovery room, although some particular patients requiring 

acute care may be sent to the Surgical Intensive Care Unit (SICU). Finally, patients are 

sent to their post-operative unit where they will stay until they are fit enough to be 

discharged.  

 
 

 

 

OR 
Department

PACU or 
SICU

Post-
operative

Pre-operative 
Unit

Pre-Admission 
Clinic

Discharge 

Admitting 
Department

Surgeon’s 
Office

Figure 3-1 Flow of elective surgical patients at Health Sciences Centre (HSC) 

 

Pre-operatively, SD and SDA patients will usually be sent to a unit called MS3, although 

a small number may go to a unit called B3. For Overnight patients, their pre-operative 
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unit will be B3. Inpatients will go to the inpatient unit (i.e. ward) corresponding to their 

service, which depends on the type of surgery they require (e.g. cardiac, neurosurgery, 

etc.). If there are not enough beds in a particular service’s unit, their patients may be 

placed “off service”, meaning in a unit that belongs to a different service. For Inpatients, 

SD, and Overnight patients, their post-operative unit will be the same as their pre-

operative unit. Post-operatively, SDA patients will be sent to the inpatient unit 

corresponding to their service. 

 

3.2 Emergency Patients 

Emergency surgical patients are those who need unanticipated surgery. They are 

classified into four categories, E1 to E4, depending on their acuity. E1 patients need 

surgery immediately, while E2, E3, and E4 patients require surgery within four, eight, 

and thirty-six hours, respectively. 

 

Figure 3.2 depicts the flow of emergency surgical patients at HSC. The vast majority of 

HSC’s emergency surgical patients arrive at the Emergency Room (ER) department. If 

patients need surgery immediately and OR time is available, they are sent to the OR 

department straight away. If not, they are admitted to a bed in an inpatient unit or the 

SICU pre-operatively, before being sent to the OR department when OR time is 

available. After surgery, these patients are transferred to the PACU or SICU, depending 

on their required level of care. Post-operatively, patients are transferred to an inpatient 

unit. 
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Figure 3-2 Flow of emergency surgical patients at Health Sciences Centre (HSC) 

 

3.3 Pre-Admission Clinic 

The Pre-Admission Clinic (PAC) is a clinic that elective surgical patients, excluding 

Inpatients, may be asked to attend prior to the day of surgery. The purpose of PAC is to 

assess a patient’s medical fitness for surgery and anaesthesia, in addition to carrying out 

necessary pre-operative work. It is also an opportunity for patients and their families to 

be provided with information about what to expect before and after surgery. 

 

When a patient is booked for surgery, PAC nurses will review the patient’s case and set 

up an appointment for the patient if they feel it would be beneficial. Additionally, if a 

surgeon feels it is necessary for a patient to visit PAC, he/she may call PAC directly to 

arrange an appointment for their patient. Most patients can still proceed with their 

surgery, even if they have missed their PAC appointment. 
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Most patients visit PAC between a few days and two weeks of their scheduled operation, 

and the visit usually lasts between one and three hours. Each patient will be seen by a 

PAC nurse and an anaesthetist. The nurse will discuss the patient’s health and medical 

history, the operation and necessary preparations, and the patient’s discharge plans. The 

anaesthetist will assess the patient’s medical condition, determine their fitness for 

surgery, and discuss anaesthetic options. If necessary, other professionals may also see 

the patient, such as a physiotherapist or cardiac surgery nurse. By the end of a patient’s 

PAC visit, all required pre-operative investigations (e.g. blood tests, x-rays, etc.) should 

be arranged for or complete, and the patient should have a thorough understanding of 

what to expect with regards to surgery, anaesthesia, hospital stay, and discharge.  

 

3.4 Admitting Department 

On the evening before a patient’s surgery, the patient will be called by a staff member 

from the Admitting department, who will register the patient over the phone. Registration 

involves obtaining standard data on a patient, such as the patient’s name, date of birth, 

address, etc. On the day of admission, all elective surgical patients first stop at the 

Admitting department. If a patient was previously registered over the phone, the 

registration process at the Admitting department should only take a few minutes. 

Otherwise, the process will take no more than ten minutes unless there is a long line. 

 

Excluding Inpatients, most patients are told to arrive about two hours prior to surgery, 

although some are asked to come earlier if they require additional pre-operative tests or 
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medications. On the other hand, Inpatients are called on their scheduled admission day 

and only asked to arrive once an inpatient bed is available for them. 

 

3.5 Pre-Operative Units 

From the Admitting department, patients go to their pre-operative units. SD and SDA 

patients go to MS3 or B3, Overnight patients go to B3, and Inpatients go to inpatient 

units. If a patient has not arrived close to his/her scheduled OR time, the pre-operative 

unit will inform the OR and Admitting departments, who will then contact the patient. 

 

3.5.1 MS3 and B3 

MS3 is open from 5:30am to 6:00pm, Monday to Friday, while B3 and the inpatient units 

are open 24 hours a day. MS3 has seventeen beds and their patient volume is primarily 

made up of elective surgical patients. B3, on the other hand, is a unit that handles a wide 

variety of patient types. As such, one bed is reserved for SDA patients and three beds are 

reserved for Day surgery patients (SD or Overnight) every weekday. Since B3 only has 

three available beds for Day patients, priority is given to Overnight patients. If there are 

not enough B3 beds to accommodate all of the Overnight patients scheduled on a 

particular day, those patients are converted to SDA patients who will go to MS3 pre-

operatively and an inpatient unit post-operatively. 

 

3.5.2 Inpatient Units 

There are many inpatient units at HSC, each corresponding to a particular service(s), and 

each having a different number of available beds. Some inpatient units contain step-down 
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units (SDU), which are meant for patients with high acuity. Patients may be moved from 

a SDU bed to a regular inpatient unit bed or vice versa, depending on their acuity. 

 

3.5.3 Pre-operative Assessments 

All patients will be assessed by a nurse in their pre-operative unit before going to the OR 

department. A patient’s assessment involves documenting the patient’s vital signs, 

medical history, fitness for surgery, and concerns that the OR department should be 

aware of prior to surgery. On average, this assessment will take about five to ten minutes 

for patients who have been to PAC, and fifteen to twenty minutes for those who have not. 

In addition, a nurse must ensure that any remaining pre-operative tests are completed 

before the patient is sent to the OR department. 

If a patient is not prepared for surgery, such as he/she did not fast or stop taking the 

required medications beforehand, the nurse must inform the patient’s surgeon and 

anaesthetist. The anaesthetist, with input from the surgeon, will then decide whether or 

not surgery should proceed. Most of the time, the patient’s operation will be moved to the 

end of the day and performed if there is enough available OR time.  

 

3.6 Operating Room (OR) Department 

The OR department at HSC has thirteen operating theatres. Each surgery will require the 

patient’s surgeon(s) to be present, along with an anaesthetist and usually three OR nurses 

(complex cases may require more). The anaesthetist and OR nurses are assigned to a 

particular operating theatre for their whole shift, although they may be moved to different 

theatres under certain circumstances. For example, they may be moved to assist an 
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emergency case or relieve someone else. In addition, there is an In-House Anaesthetist 

(IHA) whose main purpose is to be on hand for possible emergency cases. Since HSC is a 

teaching hospital, there may also be surgical or anaesthesia residents present during a 

case. Sometimes, people from other departments (e.g. Radiology) are also at hand. 

 

Besides the surgical team, there are a lot of other people who contribute to patient flow 

through the OR department. Slating clerks schedule emergency cases and check that the 

next two day’s elective OR schedules have no resource conflicts. They work with 

Clinical Resource Nurses (CRNs) to ensure that there are no barriers (e.g. OR time, 

instrumentation, equipment, etc.) to carrying out each case. Two transport personnel, 

specifically assigned to the OR department, will be picking up elective patients from their 

pre-operative units (i.e. MS3, B3, inpatient units). Emergency patients, on the other hand, 

will be brought to the OR department by transport personnel working in other areas of the 

hospital. Supply clerks will be making sure that supplies and equipment are stocked up or 

on hand if required. Case cart personnel will make sure that all of the case carts needed 

for the day’s elective cases have been set up, before assembling the case carts required 

during the next day. In addition, they must also set up the case cart for any emergency 

case that arrives. Sterile Processing Department (SPD) personnel will be reprocessing 

(i.e. disassembling, sterilize, and reassembling) the case carts, equipment and instruments 

used during surgery. Meanwhile, peri-operative aides (PAs) will be helping with a variety 

of activities such as supporting the nurses with operating theatre set-ups, stocking 

supplies, transporting patients to their operating theatres from the holding area, assisting 

in the prepping of patients, and cleaning the operating theatres when cases are finished.  
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3.6.1 A Patient’s Visit to the OR Department 

Before a patient arrives at the OR, the nurses will have to set up the patient’s operating 

theatre with the assistance of PAs. Once the theatre is ready, one of the nurses will call 

the patient’s pre-operative unit and ask if the patient is ready. If yes, the OR nurse will 

inform the clerks at the OR department’s front desk so that they can find a transport aide 

to pick up the patient from his/her pre-operative unit. The transport aide’s journey from 

the OR department and back can take anywhere between ten minutes to half an hour 

depending on the route taken, the presence of family members, elevator waits, etc. On 

average, the journey takes about fifteen minutes. 

 

In the OR department, the patient is brought to the holding area where a nurse from the 

patient’s operating theatre will interview the patient. This may take ten or more minutes, 

depending on the patient, his/her case, and whether or not the necessary paperwork is 

complete. Afterwards, the anaesthetist from the patient’s operating theatre will assess the 

patient, usually taking another ten minutes. The patient is then taken to the operating 

theatre by a PA, or a nurse if a PA is unavailable. 

 

In the operating theatre, the patient is put to sleep by the anaesthetist, and prepped and 

positioned by the OR nurses, anaesthetist, and/or PAs. When surgery starts, at least one 

scrub nurse will set up the instruments and pass them to the surgeon, while the others 

nurses will be circulating, meaning that they will be carrying out any other required 

activities (e.g. giving supplies to the scrub nurse, charting, emptying the laundry, etc.). 
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When the case is nearly done, a circulating nurse will call the patient’s recovery unit, to 

let them know that a patient is coming. If the recovery unit does not have any space (i.e. 

not enough beds), the patient will have to be held in the operating theatre until the 

recovery unit can accept the patient. The anaesthetist will then wake the patient up and 

take the patient to the recovery unit together with the surgeon. Meanwhile, the OR nurses 

in the patient’s operating theatre will call for the next patient, in addition to putting away 

all the instrumentation and sending them to SPD. When they are finished, PAs clean up 

the operating theatre so it can be prepared for the next patient. 

 

3.7 Recovery Units 

3.7.1 Post-Anaesthesia Care Unit (PACU) 

The Post-Anaesthesia Care Unit (PACU) is the main recovery unit that patients are 

transferred to immediately after surgery. It is usually able to accommodate a maximum of 

twelve patients at a time. Its main purpose is to prevent and treat complications following 

surgery and anaesthesia. When a patient arrives in the PACU, he/she will be assigned a 

nurse who will mainly provide care according to the anaesthetist’s orders, although some 

of the surgeon’s orders may also be attended to, such as dressing changes or the 

administering of medications. If the surgeon wants the patient to have some tests 

completed, such as x-rays, the PACU must make the required arrangements. 

 

The time a patient spends in the PACU depends on the complexity of the patient’s 

surgery and their own individual reaction to the surgery. Most patients stay in the PACU 

between two and four hours. Once a patient has met discharge criteria, the patient’s nurse 
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will call the patient’s post-operative unit and confirm that the patient can be accepted 

there. The nurse will then give a verbal report to one of the nurses in that post-operative 

unit. Two nursing assistants (NAs) will then transport the patient to the post-operative 

unit. However, if the patient needs complete monitoring, has an intra-arterial catheter, is 

going to a SDU, or if there is only one NA available, a PACU nurse must help transport 

the patient. Meanwhile, other NAs will clean up the patient’s area and prepare it for the 

next patient. 

 

3.7.2 Surgical Intensive Care Unit (SICU) 

A small number of elective surgical patients may require care from the Surgical Intensive 

Care Unit (SICU), which is a ten-bed unit similar to the PACU except they handle 

patients that have experienced greater trauma or major surgical procedures. When a 

patient is ready for discharge from the SICU and the patient’s post-operative unit has a 

bed available, the patient’s nurse will call the post-operative unit and give a verbal report 

to a nurse in that unit. The patient’s SICU nurse, along with transport personnel, will then 

transfer the patient. Support staff, such as a NA, may follow if needed. When patients are 

transferred from the SICU, most of them will go to an inpatient unit, usually into a SDU.  

 

3.8 Post-Operative Units 

For Day patients and Inpatients, their post-operative unit will be the same as their pre-

operative unit, while SDA patients will go to an inpatient unit. For patients who require 

intermediate care and are going to an inpatient unit, they may first be placed in a SDU 

until their condition is stable enough for a move to a regular inpatient unit bed. 
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Upon the arrival of a patient post-operatively, a nurse will be assigned to the patient and 

care is provided according to the surgeon’s orders. Some surgeons may come to see their 

patients post-operatively, although it is not a requirement. If a patient is experiencing any 

complications or questions arise, the nurses contact the surgeons. It is usually easier to 

estimate the length of stay (LOS), in days, for elective patients than emergency patients. 

This is because most emergency patients are critically ill or have experienced major 

trauma. 

 

Patients can be discharged when they are medically stable and their condition is not 

improving. Most patients are discharged home, although some may be sent back to the 

facility they were originally transferred from (e.g. rural hospital), or to rehabilitation 

hospitals. Other patients may be discharged to long term care facilities such as supportive 

housing, companion care, personal care homes (PCH) or chronic care hospitals. 

Discharge is fairly easy if the patient’s case is straightforward. 

 

If a SD or Overnight patient has not recovered sufficiently for discharge by the time MS3 

closes or B3 has to admit new patients, he/she will need to be admitted to an inpatient 

unit. In this case, the nurse must first inform the patient’s surgeon of the situation. If the 

surgeon agrees, he/she will inform the Admitting department who will in turn find a bed 

for the patient. Situations like this may occur because the patient should have been 

booked under a different admission type (e.g. Overnight rather than SD patient), the 

patient’s recovery time was underestimated, or unexpected complications arose. 
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3.9 The OR Scheduling System at HSC 

At HSC, there are two separate schedules for elective and emergency surgeries. During 

the week, from Monday to Friday, elective cases are scheduled from 7:30am to 3:30pm, 

while emergency cases are scheduled from 3:30pm to 10:30pm. On Wednesdays, 

however, elective cases start at 9:00am so that OR staff can attend their respective 

weekly teaching sessions beforehand. Usually, twelve operating theatres are opened and 

staffed for elective cases, while only two operating theatres are opened and staffed for 

emergency cases. On Saturdays and Sundays, two operating theatres are used for only 

performing emergency procedures throughout the day. 

 

3.9.1 Elective OR Scheduling 

At HSC, elective cases are scheduled using a block scheduling policy. First, a master 

surgical schedule (MSS) is created. This MSS consists of blocks depicting the number of 

operating theatres that will be opened and staffed on a particular day, along with each 

theatre’s opening hours. The number of operating theatres opened on a given day is based 

upon anaesthesia availability, OR nursing staff availability, and sometimes PACU staff 

availability. During the winter, there may be up to thirteen operating theatres opened for 

elective cases, while during the summer there may be as little as four. The MSS is usually 

edited every four weeks by HSC management. 

 

The blocks in the MSS may be full days (i.e. from 7:30pm to 3:30pm), half days, or some 

other variation. Each block is allocated to a particular service, usually based on historical 

and political reasons rather than on quantifying ones such as waiting list lengths. Often, 

 58



certain services are regularly assigned the same operating theatres due to size and 

equipment requirements. Once these allocations have been completed, a copy of the MSS 

is sent to the managers of each service who break down their respective blocks into 

individual blocks belonging to a specific surgeon. 

 

From there, surgeons schedule cases into their individual blocks in whatever manner they 

desire. However, they do have to follow the rule that SD patients (i.e. patients who will 

be discharged on the same day of surgery) should be scheduled earlier in the day, before 

their SDA patients. This rule is carried out in order to reduce the number of SD patients 

that may not be stable enough for discharge by the time MS3 closes. In addition, this 

allows extra time for patients to be discharged from the inpatient units, resulting in less 

schedule interruptions due to a lack of post-operative beds for arriving SDA patients. 

 

Surgeons give estimates of the duration of their cases, including set-up and clean up 

times. If the OR department feels that a particular estimate is too optimistic, the surgeon 

will have his/her last case of the day put on standby, meaning that the OR department has 

the right to refuse to perform the case if it will likely result in overtime. Each surgeon 

must also finalize his/her scheduled cases at least thirty-six hours before the day of 

surgery. This rule allows the OR department to check the OR schedule for conflicts, such 

as operating theatre, instrumentation, and equipment limitations. If conflicts exist, some 

cases may be rescheduled. If a surgeon will not be using some of his/her allocated block 

time, the unused portion will be given to other surgeons. 

 

 59



In the MSS, blocks for emergency cases may be included. These blocks are solely 

devoted to pending emergency cases and are scheduled a day beforehand by the OR 

department. Some blocks are open for any type of emergency, while others may be 

dedicated to a specific service, such as one that frequently receives trauma cases. 

 

On the day of surgery, an elective case may be cancelled due to a variety to reasons such 

as a lack of post-operative beds, lack of OR time, the patient did not show up, the patient 

was medically unfit for surgery, an emergency case replaced it, etc. If a case has to be 

cancelled, the patient may be converted to an emergency patient, depending on the 

urgency of his/her case. If not, the surgeon’s office will have to reschedule the patient on 

another day. When a case is cancelled, all of the elective cases scheduled behind it in the 

same operating theatre will be moved up earlier, if possible. If there is a gap in the 

elective OR schedule, it may be filled with a pending emergency case. 

 

3.9.2 Emergency OR Scheduling 

An emergency case is performed by the surgeon who initially saw the patient and decided 

that surgery was needed. Another surgeon may perform the case if the original surgeon 

will not be available to perform the surgery in a timely manner. On the weekdays, the OR 

department schedules two operating theatres with emergency cases from 3:30pm to 

10:30pm. If a very urgent emergency case (e.g. E1) arrives before 3:30pm, during the 

time when elective cases are performed, the case will be performed in an unscheduled 

operating theatre (i.e. one that has not been staffed) provided that the surgeon is 

available, along with an anaesthetist and OR nurses who are taken from the other 
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operating theatres in use. If there is no available operating theatre or anaesthetist, or if 

there are not enough available nurses, the emergency case will be performed by the OR 

team in the first operating theatre that finishes its current case. After 10:30pm, emergency 

cases are only performed if they are very urgent and cannot wait for the next day. 

 

Any pending emergency case left at the end of the day will be carried over to the next 

day’s emergency OR schedule. Sometimes, if an emergency case is quite urgent or if 

there is a gap in the elective OR schedule, the OR department may book the case into the 

elective OR schedule, at which point it is called a pre-booked emergency. On the 

weekends, two operating rooms are opened and staffed. Usually, one room is scheduled 

with pending emergencies, while the other is left unscheduled and used for any 

emergency arrivals. 

 

3.10 The OR Scheduling System: Issues and Concerns 

3.10.1 OR Time Allocations 

The first issue regarding the current scheduling system is that OR time is allocated for 

elective and emergency cases based on historical and political reasons, rather than on 

quantifying ones. For example, OR time is not allocated for emergencies based on 

estimated future demand. When there is not enough time for emergencies, some 

emergency patients will occupy beds in the hospital waiting for surgery, subsequently 

affecting HSC’s entire bed situation as units become back-logged. Some emergency 

patients have waited weeks for surgery. This is a particularly rampant problem for less 
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urgent cases, such as E3 cases, because they have to wait until all of the more urgent 

cases are taken care of, even if those cases arrived after them. 

 

Regarding elective cases, OR time is allocated to each service and surgeon without a 

consistent formula that considers the demand for urgent cases or the waiting time of 

patients on waiting lists. When patients’ waiting times are not taken into account, some 

patients may unfairly have a longer waiting time than others. Furthermore, since each 

surgeon’s demand for urgent cases is not taken into account, the scheduling policy has no 

room for flexibility. When a surgeon suddenly acquires a patient who needs surgery more 

urgently than another patient already booked into the elective schedule, he/she will often 

replace the booked patient with the new one, resulting in last minute changes. 

 

3.10.2 Last Minute Changes to the Elective OR Schedule  

Last minute changes are often made to the elective OR schedule, despite the thirty-six 

hour scheduling policy. This not only wastes previous work, but also creates extra work 

and increases the chances of delays and case cancellations because the scheduling policy 

is not flexible enough to handle these changes.  For example, if a surgeon makes a last 

minute decision to schedule a patient one who needs to visit PAC beforehand, PAC must 

accommodate this extra patient on very short notice. Other patients in PAC may then 

experience long waiting times as this add-on patient is squeezed in, and some of them 

may even have their appointments rescheduled. Meanwhile, the Admitting department 

will have to update all of their computer records and paperwork. If any patients are 
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subsequently assigned to different pre-operative units, the Admitting department must 

notify those units and ensure that they will receive the correct patient charts. 

 

The pre-operative units get a copy of the elective OR schedule in the afternoon, on the 

day before surgery. If any last minute changes occur after this time and the Admitting 

department is not informed about them, the pre-operative units will also be unaware of 

those changes. Patients will then arrive at times unexpected to the pre-operative unit, and 

extra calls to the OR department will have to be made to clarify the changes. 

 

Sometimes, even patients are not informed about changes to their OR time. If a patient’s 

new OR time is later than before, the patient will arrive too early and experience a long 

waiting time. If a patient’s new OR time is earlier than before, he/she will simply not 

show up. When the pre-operative unit discovers that the patient is late, assuming they are 

also aware of the change, they will have to inform the OR and Admitting departments so 

that the patient can be contacted. When the patient finally arrives, the pre-operative unit 

has to rush to prepare the patient so that surgery can start on time. However, the patient 

may simply not be able arrive in time, causing delays or cancellations. 

 

Finally, last minute changes also affect the OR department because a lot of extra work is 

created. For example, new case carts have to be set up while the old ones are dismantled. 

Equipment and instrumentation requirements have to re-checked, potentially leading to 

more schedule changes. Moreover, nursing staff assignments must be reviewed. 
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3.10.3 Variable Elective Patient Volumes 

One of the major systemic causes of poor surgical patient flow at HSC is that there is no 

central scheduling system, so there is no control over the mix of cases (i.e. number and 

type) performed. For example, all of the surgeons with OR time on a particular day may 

coincidentally decide to schedule only short cases, resulting in a high volume of patients. 

Other times, the surgeons may schedule only long cases, leading to a very low patient 

volume. This variability affects both the workload and bed situation throughout HSC. 

 

3.10.3.1 Bed Situation 

HSC’s bed situation is hugely affected by the elective OR schedule’s case mix. For 

example, since the PACU handles virtually all elective surgical patients, their bed 

occupancy volume is directly correlated with the elective OR schedule’s patient volume. 

Similarly, MS3 is also greatly impacted because it handles the majority of SD and SDA 

patients pre-operatively, in addition to SD patients post-operatively. In the same way, bed 

occupancy in the inpatient units will be very high on days when many SDA patients and 

Inpatients are scheduled. This strains the inpatient bed situation, and some scheduled 

surgeries may be delayed in order to wait for discharges to occur so that beds will be 

available. Sometimes, cases may be cancelled if no beds become available.  

 

When bed occupancy reaches its maximum limit in a particular unit, patients are put on 

hold. For example, when MS3 is full, patients cannot be transferred post-operatively from 

the PACU. In turn, the PACU may reach full capacity, putting patients on hold in the OR 

department. This causes surgeries to be delayed and patients are put on hold in their pre-
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operative unit. In another scenario, the inpatient units may reach full capacity, backing up 

the SICU who cannot transfer patients out. When the SICU becomes full, the overflow of 

patients and their nurses will usually move to the PACU. Similar to the previous 

example, the PACU may then become full, adversely affecting the OR department and 

pre-operative units. These types of situations result in delays, overtime, and elective case 

cancellations, thereby reducing staff and patient satisfaction. Surgeons do book their 

SDA patients later in the day so that discharges can occur by the time their patients 

require post-operative beds. However, delays and cancellations still occur.  

 

3.10.3.2 Workload 

Like the bed situation, the workload throughout HSC is also affected by variability in the 

elective OR schedule. On high volume surgical days, resources may be inadequate and 

lead to problems. For example, during a high volume elective surgical period, PAC 

experiences a heavier than average workload in the weeks leading up it. This translates 

into longer wait times for patients visiting PAC. Similarly, MS3’s staffing remains 

constant on a daily basis and hence they may be short-staffed on days with a high volume 

of SD and SDA patients. This impacts staff satisfaction, may reduce the quality of patient 

care, and increases delays in getting patients to the OR department on time. In turn, 

surgeries may start late, leading to overtime or elective case cancellations. 

 

When there is a high volume of elective surgical patients, there is a greater pace of 

activities in the OR department. There are more operating theatre turnovers, more 

preparation of equipment and instrumentation, etc. Similarly, the PACU may not have 
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enough staff, leading to delays in transferring patients to their post-operative units. The 

OR department may then be unable to transfer patients to PACU, leading to more delays. 

 

3.10.4 Case Duration Estimates 

Surgeons estimate the durations of their cases, without the assistance of their historical 

times. As a result, surgeons may underestimate their case durations and schedule too 

many cases (i.e. overbooking). This leads to overtime for the OR nursing staff, may cause 

elective case cancellations, and may also cut into the emergency schedule. On the other 

hand, durations may be overestimated, resulting in underutilized OR time. 

 

3.10.5 Large Deviations from Elective OR Schedules 

Due to a wide variety of reasons, such as inaccurate case duration estimates and delays in 

the OR department, the OR schedule is far from a true depiction of what the day’s 

schedule will really be like. Because it is hard to predict when a case will actually begin, 

especially if many delays have occurred, it is difficult for an operating theatre’s team (i.e. 

surgeon, anaesthetist, OR nurses) to estimate when they have to be present and ready for 

each of their cases. It also makes it hard to gauge how many PAs are required for a 

particular day because each case’s estimated finishing time will likely be inaccurate. 

Furthermore, these deviations make it difficult for the pre-operative units to assess 

patients in the order in which they will actually be sent to the OR department. Patients 

then experience long waiting times or have to be rushed once they arrive. 
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3.10.6 Delay Accumulation 

Many of the issues mentioned demonstrate how the activities in one department have a 

substantial impact on the activities in other departments. Most individual delays are 

small. However, they are often correlated and can quickly accumulate, leading to vast 

amounts of wasted time. For example, surgeons may leave the OR department between 

their cases because they do not want to wait while their operating theatres are cleaned. 

Turnover delays, such as an insufficient number of PAs, may also prompt surgeons to 

leave the OR department. If surgeons have experienced enough turnover delays, they may 

begin to anticipate them and schedule activities elsewhere during turnovers. This can 

create more delays if the surgeons get caught up in these activities and return to the OR 

department later than expected. 

 

3.11 Suggestions for Improving the OR Scheduling System 

It is clear from the issues mentioned above that the OR scheduling system used at HSC is 

the major obstruction to smooth surgical patient flow in their facility. Indeed, Haraden 

and Resar (2004) point out that although most admissions to a hospital are from the 

emergency department, the elective surgical admissions often have a greater effect on 

patient flow due to the arbitrary nature of elective scheduling. This section outlines a few 

suggestions for improving HSC’s OR scheduling system. 

 

3.11.1 Control of Elective Case Mix 

If the number and type of elective cases at HSC could be controlled, the bed occupancy 

and patient volumes in the pre-operative, recovery, and post-operative units can be 
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smoothed. This will reduce elective case delays, overtime and elective case cancellations. 

Furthermore, day-to-day staffing needs will be more consistent and easier to predict, 

increasing staff satisfaction and perhaps quality of patient care. The throughput of 

elective surgical cases may even increase. One way of controlling the case mix would be 

to implement a centralized scheduling system. 

 

3.11.2 Usage of Consistent OR Time Allocation Formulas 

Currently, elective OR time is allocated to each service based on historical and political 

reasons. This should be changed so that allocations reflect the actual needs of the 

different services and surgeons, such as waiting times for their patients. Furthermore, 

historical data should be collected regarding emergency surgical arrivals for each service, 

which can be used to set aside appropriate OR time so that the supply actually matches 

demand. Elective schedule disruptions due to emergencies will reduce, and less inpatient 

unit beds will be tied up by emergency patients waiting for surgery. 

 

3.11.3 Enforcement of Booking Deadlines 

There is currently a thirty-six hour scheduling policy whereby elective cases must be 

scheduled at least a day and a half before surgery. However, this policy is not enforced 

and last minute changes often occur, affecting many departments. Obviously, this policy 

was made to avoid these last minute changes and HSC should take steps to make sure it 

gets followed. Perhaps the policy can be modified so that services have different booking 

deadlines, dependant on the types of cases they typically receive. 
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3.11.4 Anticipation of Urgent or Emergent Case Arrivals 

Last minute changes to the elective OR schedule often occur because surgeons replace 

scheduled patients with new, more urgent ones. To reduce the problems caused by these 

changes, perhaps blocks of flexible OR time should be included in the MSS. Surgeons 

may then book urgent cases into these blocks, rather than exchanging patients they have 

already scheduled. This will help incorporate flexibility into the scheduling system. 

 

Another issue is that elective OR schedule disruptions are often caused by emergency 

case arrivals. Currently, HSC’s MSS includes dedicated emergency blocks. However, 

these blocks are not assigned to days and times based on historical data. Therefore, they 

are not positioned in the most effective way to reduce elective case disruptions. HSC 

should collect historical data on the frequency of emergency case arrivals so that 

emergency blocks can be positioned accordingly. 

 

Similarly, HSC should consider changing the scheduled times for elective and emergency 

cases. For example, instead of opening twelve elective operating theatres from 7:30am to 

3:30pm and two emergency operating theatres from 3:30pm 10:30pm, maybe eleven 

elective operating theatres can be opened from 7:30am to 4:30pm and one emergency 

operating theatre can be opened from 8:30am to 10:30pm. This may also help reduce 

elective case disruptions. 
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3.11.5 Use of Historical Data for Case Duration Estimates 

Currently, surgeons estimate the durations of their cases without the assistance of 

historical data, which often leads to overbooking or underutilized OR time. Broka et al. 

(2003) demonstrated that using historical data would substantially reduce overtime 

compared to simply using subjective estimates given by surgeons. Moreover, Wright et 

al. (1996) showed that if surgeons are prompted with historical data, they can provide 

estimates that are only slightly less accurate than good statistical methods. Therefore, 

historical data should be used to assist the estimation of case durations. 

 

Accurate case duration estimates will reduce deviations between scheduled and actual 

OR times, leading to many benefits. Patients will experience less variable pre-operative 

wait times, the pre-operative units will be able to assess patients in the correct order, and 

potential equipment and instrumentation conflicts may be more accurately predicted. 

Each member of the OR team (i.e. surgeons, anaesthetists, nurses) will have a better 

indication of when they must be ready for each of their cases, and the required number of 

PAs in the OR department can be more precisely anticipated, thereby reducing turnover 

delays. Surgeons will then have fewer reasons to schedule activities during turnovers. 

 

3.12 Summary 

Health Sciences Centre (HSC) in Winnipeg handles a large portion of surgical patients in 

Manitoba, Northwestern Ontario and Nunavut. Each surgical patient is classified as either 

elective or emergent and belongs to a particular service (e.g. neurosurgery, dental, etc.), 

dependant on their type of surgery. Elective patients are classified as Inpatients, Same 
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Day (SD) patients, Overnight patients, or Same Day Admission (SDA) patients. Their 

classification dictates the path they will take through HSC. On the other hand, emergency 

patients are classified into four different categories, E1 to E4, based on their acuity. 

During the week, elective surgeries are performed in the morning and early afternoon, 

while emergency surgeries are carried out late in the afternoon and at night. Of course 

very urgent emergency operations are performed at any time. On the weekends, only 

emergency procedures are completed. 

 

HSC’s operating room (OR) scheduling policy has a major impact on the facility’s 

surgical patient flow. There are six main issues regarding this policy. First, OR time is 

not set aside for emergency cases based on expected demand, and elective OR time is not 

consistently allocated to each service and surgeon based on quantifying reasons. Second, 

last minute changes are often made to the elective OR schedule, which wastes previous 

work, creates extra work, and increases the chances of delays. Third, there is no control 

over the elective case mix, so daily elective bed occupancy and patient volumes are often 

highly variable. Fourth, case duration estimates are not made based on, or even assisted 

by, historical data. Fifth, there are often big deviations between actual and scheduled case 

start times, making it difficult for the pre-operative units and the OR department to 

determine required staffing amounts and patient ready times. Finally, delays are usually 

correlated and have the tendency to spiral out of control. 

 

To improve the surgical patient flow at HSC, the OR scheduling policy needs to be 

revised. Potential methods of achieving this are to allocate OR time based on demand and 
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other pertinent factors such as waiting times, use a centralized booking system for 

elective cases so that the case mix can be controlled, and start using historical data for 

case duration estimates. In addition, HSC should consider aspects that will help 

incorporate flexibility into the scheduling system, such as creating blocks for urgent or 

emergent cases during the elective schedule in order to minimize elective case 

disruptions. 
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Chapter 4: Elective Operating Room (OR) Scheduling 
System – Stage 1 

 

This chapter describes the first stage of the proposed elective operating room (OR) 

scheduling system for Health Sciences Centre (HSC). The system follows an open 

scheduling policy, where weekly OR schedules are generated. In this stage, surgeons are 

allocated hours of OR time during the week to be scheduled. Each surgeon then presents 

a list of cases that they wish to perform during that week, provided that the total duration 

does not exceed their OR time allocation. These cases are then assigned to different days 

of the week, using multiple objectives that aim to reduce day-to-day variability while 

respecting constraints. Due to the distinct priorities of each objective, the problem was 

mathematically modelled and solved using lexicographic goal programming. 

 

Section 4.1 describes the problem’s objectives, section 4.2 explains the input data 

required by the model, and section 4.3 details the assumptions that the model is based 

upon. Section 4.4 portrays the notations and equations making up the mathematical 

model. Section 4.5 presents the problems that were solved by the mathematical model, 

their associated results, and a performance evaluation between the actual schedules used 

at HSC. Finally, section 4.6 summarizes the chapter. 
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4.1 Objectives 

There are four objectives in this stage, classified into three priority levels. The first 

priority level is the most important, followed by the second level, and finally the third. 

These objectives, and their priority levels, were determined after assessing the factors 

affecting HSC’s surgical patient flow. If desired, objectives can easily be excluded, or 

their corresponding priorities can be changed. 

 

4.1.1 Priority Level One 

The first priority level consists of the following two objectives, related to bed occupancy 

resulting from the elective OR schedule: 

1. Minimize the largest deviation between the number of inpatient beds occupied by 

any particular service on any two days of the scheduled week 

2. Minimize the total number of inpatient beds occupied on the days following the 

scheduled week 

 

Inpatient beds are the beds contained in the inpatient units, which are occupied by SDA 

patients (who need to stay in the hospital for more than 1 day after surgery) and 

Inpatients (who need to be admitted to the hospital at least 1 night prior to surgery). The 

two objectives in this priority level aim to efficiently manage inpatient bed resources by 

keeping their utilization high while minimizing variability in daily bed occupancy 

volumes. These objectives were considered the most important because HSC suffers from 

high variability in day-to-day bed occupancy volumes due to their elective schedules. 
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On days with high bed occupancy, delays often occur because there are not enough post-

operative beds available for elective patients. Some patients may have their operations 

delayed, or find themselves put on hold in their operating theatre or recovery unit. 

Consequently, this can lead to overtime in the OR department, or some elective cases 

may be cancelled. On other days, however, HSC’s bed occupancy can be very low. This 

indicates that daily bed occupancy volumes need to be smoothed, and hence the first 

objective was included in order to achieve this. 

 

The second objective reduces the number of inpatient beds occupied by patients on the 

days following the scheduled week. In this way, bed utilization will be high during the 

scheduled week, and future schedules can be created with minimal disturbance from 

previous weeks. 

 

4.1.2 Priority Level Two 

Priority level two consists of one objective, as follows: 

• Minimize the largest deviation between utilized and available OR time on any day 

of the scheduled week 

 

The intention of this objective is to reduce underutilized OR time and overtime in order 

to ensure balanced daily OR utilization. This is important because overtime results in 

extra incurred costs and impacts staff satisfaction. On the other hand, underutilized time 

must be avoided in order to make sure that resources are not wasted. 
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4.1.3 Priority Level Three 

The last priority level consists of the following objective: 

• Minimize the largest deviation between the total number of Same Day (SD) and 

Same Day Admission (SDA) cases on any two days of the scheduled week 

 

Elective surgical patients at HSC are classified as Inpatient, SD, Overnight, or SDA. SD 

and SDA patients make up the vast majority of HSC’s elective surgical patients, and 

virtually all of them will be sent pre-operatively to the unit MS3. MS3’s daily staffing 

numbers remain relatively constant, and hence they are often short-staffed on days with 

high patient volumes, which delays getting patients to the OR on time.  Therefore, 

smoothing their daily patient volumes will make it easier to predict their required staffing 

numbers, which can then be adjusted to adequately meet demand. Furthermore, since 

most elective patients are SD or SDA, smoothing their daily numbers will help smooth 

the workload for every unit involved in patient flow. 

 

4.2 Input Data 

Table 4-1 depicts the input data needed for this stage, and is split up according to whether 

HSC already uses the data for elective OR scheduling. 
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Table 4-1 Input data required for stage 1 
 
Source Data already used by HSC Data not currently used by HSC 

Surgeons • The cases to be scheduled: 

⎯ Estimated case duration (including 

set-up and clean up) 

⎯ Service type (e.g. Dental, Cardiac, 

etc.) 

 

• The days they are available for 

surgery 

• The cases to be scheduled: 

⎯ Estimated recovery time in the 

recovery unit (i.e. PACU) 

⎯ Estimated recovery time in the post-

operative unit, if less than 24 hours 

⎯ Estimated length of stay (LOS) 

⎯ A note if a patient cannot be placed 

off-service 

⎯ A note if a patient must be classified 

as an Inpatient, along with the 

number of pre-operative days 

required 

⎯ The days a patient is absolutely 

unavailable for surgery 

OR Dept. • The operating theatres that can be 

used for each case 

• The hours of OR time that each 

surgeon has been allocated 

• The number of equipment sets 

available for each service, on 

each day 

• The opening and closing times for 

each staffed operating theatre, on 

each day 

• The maximum amount of overtime 

allowed for any operating theatre, as 

decided by management 

• The maximum difference in the 

number of patients allowed between 

the day with the highest patient 

volume and the day with the lowest 

patient volume1. 

Inpatient 
Units 

 • The number of available elective 

surgical beds for each service, on 

each day 

• The number of off-service patients 

allowed for each service, before 

elective case cancellations start 

being considered by management 

                                                 
1 This will be used to keep the variability in overall daily patient volumes below a certain level. 
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Source Data already used by HSC Data not currently used by HSC 

MS3 • The unit’s daily closing time, 

where patients must be 

discharged 

 

 B3 • The daily number of available 

elective surgical beds for elective 

Overnight patients 

• The time when Overnight patients 

must be discharged in order to 

admit new patients 

 

Obtaining the required input data will not be a problem for the information already used 

by HSC for elective OR scheduling. The other data that is not currently used by the 

facility, such as estimated recovery times and LOS, can easily be estimated by surgeons. 

Moreover, historical data can be retrieved for this purpose if they have been recorded in a 

database. Data on the number of beds available for each service can easily be obtained 

because HSC does have bed allocations for each service, although they are not currently 

used during the scheduling process or split into elective or emergency designations. 

Finally, the remaining data required, such as the maximum allowable amount of overtime 

or daily elective patient volume variability, can simply be specified by management. 

 

4.3 Assumptions 

At HSC, elective surgical patients are classified as Inpatient, SD, Overnight, or SDA. If a 

patient needs to be admitted a day or more pre-operatively, that patient can only be 

classified as an Inpatient.  The three other patient types are all admitted on the day of 

surgery, and their classification depends on their estimated LOS. SD patients are 
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expected to be discharged on the same day of surgery, while Overnight patients are 

expected to be discharged the morning after surgery. Finally, SDA patients are expected 

to be discharged at least twenty-four hours after surgery. 

 

B3, the unit that handles Overnight patients, can only admit up to three Overnight 

patients on each day. Therefore, there cannot be more than three Overnight patients 

scheduled each day. All remaining patients who fall under the definition of an Overnight 

patient will instead have to be classified as SDA patients. 

 

Pre-operatively, Inpatients go to an inpatient unit corresponding to their service, 

Overnight patients go to B3, and SD and SDA patients go to MS3. From their pre-

operative units, all patients go to the OR department for surgery, before being transferred 

to the Post-Anaesthesia Care Unit (PACU) for recovery. The Surgical Intensive Care 

Unit (SICU) will not be considered because it only admits a very small percentage of 

elective surgical patients. Finally, SDA patients go to the inpatient unit corresponding to 

their service, while all others return to their pre-operative units. It is assumed that no 

other transfers take place before discharge. 

 

Many surgeons have offices nearby or at HSC, and they visit patients throughout the 

facility when they are not operating. Therefore, it is assumed that each surgeon is able to 

operate at any time on the days they stipulate they are available.  
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4.4 Mathematical Model for Stage 1 

The following notations are employed in the mathematical model: 

MS3 Closing time of MS3 

B3 Time at which new Overnight patients must be admitted in B3 

Inpi 1 if the patient of case i must be scheduled as an Inpatient; 0 otherwise 

  where i = 1,…,n (n = number of cases to be scheduled) 

Preih  1 if the patient of case i requires to be admitted on day h; 0 otherwise 

  where h = 1,…,e (e = number of days before surgery is scheduled) 

Duri Surgical duration of case i, in half hours2 

Reci  Recovery duration of case i, in half hours 

Posti  Post-operative duration of case i, in half hours, if less than 24 hours; 50 

otherwise3 

Toti  Total duration of case i, including surgery, recovery, and post-operative care 

(Duri + Reci + Posti) 

LOSi  Post-operative length of stay for case i, in days, including the day of surgery 

OFFi  1 if the patient of case i cannot be placed off-service post-operatively; 0 otherwise 

Serik  1 if case i is primarily under service k; 0 otherwise 

Suris  1 if case i is under surgeon s; 0 otherwise 

  where s = 1,…,p (p = number of surgeons with cases) 

Alls  Total OR time allocated to surgeon s in the scheduled week, in half hours 

Over Daily number of beds available for Overnight patients in B3 

                                                 
2 For example, if a case’s duration is 2 hours, then Duri will be equal to 4. 
3 If a patient needs to stay for more than 24 hours post-operatively, the number of post-operative hours (i.e. 
Posti) is not needed in the model’s calculations.  Instead, the number of post-operative days (i.e. LOSi) is 
required. Therefore, all patients who need to stay for more than 24 hours post-operatively are simply 
assigned a Posti  value of 50. 
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Bedgk  Number of beds available on day g for cases under service k 

where g = 1,…,t (t = number of days being considered) 

  where k = 1,…,f (f = number of services) 

ψgk Number of beds occupied on day g by patients under service k, scheduled during 

the previous week 

ϕgk Number of beds occupied on day g by patients under service k who cannot be 

placed off-service, scheduled during the previous week 

Ail  1 if the patient of case i will occupy a bed on day l; 0 otherwise 

where l = 1,…,q (q = number of days after surgery, including the day of 

surgery) 

Bjs  1 if surgeon s is available on day j; 0 otherwise 

Cij  1 if the patient of case i is available on day j; 0 otherwise 

Djo  Total OR time available on day j for operating theatre o, in half hours 

  where j = 1,…,m (m = number of days in the schedule) 

where o = 1,…,r (r = number of staffed operating theatres) 

Maxj  Maximum OR time available by any operating theatre on day j, in half hours 

Ω Maximum amount of overtime allowed by any operating theatre, in half hours 

Avaj  The total OR time available on day j, in half hours 

ORio  1 if case i can be performed in operating theatre o; 0 otherwise 

ORsi  Number of operating theatres that case i can be performed in 

Equjk  Number of equipment/instrumentation sets available on day j for cases under 

service k 
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ω Number of off-service patients allowed for each service, before elective case 

cancellations start being considered 

Λ Maximum daily variability allowed for elective patient volumes 

B1a Goal for b1a 

B1b Goal for b1b 

 

The following variables represent the mathematical model’s solution: 

b1a Maximum difference between the number of beds occupied by a particular service 

on any two days of the scheduled week 

b1b Total number of beds occupied during the days following the scheduled week 

b2  Largest deviation between the actual and available OR time experienced on any 

day of the schedule 

b3 Largest deviation between the total number of SD and SDA cases on any two 

days of the schedule 

wij  1 if case i is assigned to day j; 0 otherwise 

xi  1 if the patient of case i is scheduled as a SD patient; 0 otherwise 

yi  1 if the patient of case i is scheduled as a Overnight patient; 0 otherwise 

zi  1 if the patient of case i is scheduled as a SDA patient; 0 otherwise 

ugk  Number of beds occupied on day g by patients from service k, who cannot be 

placed off-service post-operatively 

vgk  Number of beds occupied on day g by patients from service k  

usej  Total OR time used on day j, in half hours 

msj  Total number of SD and SDA cases scheduled on day j 

 82



numj  Number of cases scheduled on day j 

 

The following variables ensure a linear mathematical model: 

xaij  1 if case i is assigned to day j and scheduled as an SD patient; 0 otherwise 

yaij  1 if case i is assigned to day j and scheduled as an Overnight patient; 0 otherwise 

zaij  1 if case i is assigned to day j and scheduled as an SDA patient; 0 otherwise 

a- Negative deviation between the number of cases scheduled on days j and c 

a+ Positive deviation between the number of cases scheduled on days j and c 

−
ab1  Negative deviation between the number of beds occupied on days g and a by 

patients from service k 

+
ab1  Positive deviation between the number of beds occupied on days g and a by 

patients from service k 

−
2b  Negative deviation between the actual and available OR time on day j 

+
2b  Negative deviation between the actual and available OR time on day j 

−
3b  Negative deviation between the number of SD and SDA cases scheduled on days j 

and c 

+
3b  Positive deviation between the number of SD and SDA cases scheduled on days j 

and c 

 

Objective Function: 

Priority Level 1: Minimize bBbaBbz ba 1/1/*2 11 +=     (1) 

Priority Level 2: Minimize 2bz =        (2) 
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Priority Level 3: Minimize 3bz =        (3) 
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The multi-objective optimization method used to solve this mathematical model is 

lexicographic goal programming. In lexicographic goal programming, objectives are 

divided into different priority levels according to their importance. Goals in a lower 

priority level are infinitely more important than all goals in higher priority levels. Hence, 

no trade-offs between the goals in different priority levels are allowed. A lexicographic 

goal programming problem is first solved by only considering the goals in the lowest (i.e. 

most important) priority level. The resulting solutions for those goals are then turned into 

equality constraints, and the problem is solved for the goals in the second priority level. 

In this way, the obtained solution will not violate the goals achieved for the first priority 

level. This process continues until the goals in the last priority level have been addressed. 

 

The goals in the mathematical model are split into 3 priority levels. In order to generate a 

schedule for stage 1, the model will therefore need to be executed 3 times. Equations (1-

3) represent the objective functions for priority levels 1-3, respectively. In equation (1), 

 and represent the two priority level one objectives. Based on how delays and 

elective surgical case cancellations can occur at HSC,  was given a weight of 2 

because it was considered twice as important as . The objectives in priority levels two 

and three are represented by  and  in equations (2) and (3), respectively. 

ab1 bb1

ab1

bb1

2b 3b
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Equations (4–5) prevent a case from being scheduled on a day when the corresponding 

surgeon(s) or patient is unavailable. Equation (6) calculates the largest amount of OR 

time available in an operating theatre on each day of the schedule. Equation (7) specifies 

that the total duration of all cases belonging to a surgeon on a particular day cannot 

exceed the amount found in equation (6), plus the maximum amount of allowable 

overtime. Equation (8) ensures that the OR time required for all of a surgeon’s cases does 

not exceed the amount allocated to him/her. Equation (9) allows cases to only be 

scheduled on days when the required equipment/instrumentation is available. Equation 

(10) calculates the total OR time needed for all cases that must be scheduled, and 

equation (11) checks that this value does not exceed the total available OR time. For 

cases that can only be performed in the same operating theatre, equation (12) ensures that 

if those cases are assigned to the same day, their total surgical duration does not exceed 

the total OR time available for that particular operating theatre on that day. Equation (13) 

specifies that the total number of Overnight patients scheduled on any day cannot exceed 

the number of B3 beds available. Equations (14–23) determine whether a case, excluding 

ones belonging to Inpatients, should be scheduled as SD, Overnight, or SDA. 

 

For each service, equation (25) calculates the number of inpatient beds that will be 

occupied on each day, while equation (24) determines the same information for only 

patients who cannot be placed off-service. In those equations, d is the time between days 

g and j, defined as (g – j + 1) if day j precedes day g, 0 otherwise. Similarly, e is the time 

between days g and j, defined as (j – g) if day g precedes day j, 0 otherwise. Equation 
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(26) ensures there is an inpatient bed available for each patient that cannot be placed off-

service. For each service, equation (27) prevents the number of off-service patients from 

exceeding the threshold at which elective case cancellations are considered. Equation 

(28) calculates the number of patients scheduled on each day, and equations (29–30) 

prevent these numbers from exceeding the maximum daily variability allowed. 

 

Equations (31–32) and (33) determine the values obtained for the first and second 

objectives in priority level one, respectively. Equation (34) calculates the total OR time 

that will be used on each day of the schedule, while equations (35–36) establish the 

priority level two objective value. Equation (37) determines the number of SD and SDA 

cases scheduled on each day, while equations (38–39) establish the priority level three 

objective value. Finally, equations (40–42) are integrality constraints. 

 

Because there are two objectives in priority level one, their values have to be normalized 

before weights can be applied. The terms B1a and B1b in equation (1) are included for 

this purpose. B1a represents the best value that can be achieved for objective  when no 

other objectives are considered. Similarly, B1b corresponds to the best value that can be 

attained for objective  when no other objectives are considered. To find the value of 

B1a, the model must be run without equations (34–40), and equation (1) has to be 

changed to include only . The  value obtained should be used as B1a in the original 

equation (1). Similarly, the model must be run without equations (32–33,35–40) and 

equation (1) should only include , in order to find B1b. 

ab1

bb1

b1a ab1

bb1
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When the model is run for the objectives in priority level one, equations (35–40) are not 

included in the model because they have no bearing on the outcome of the solution, and 

will only needlessly increase the number of variables and constraints that are considered. 

Similarly, equations (38–40) are not required when the model is run for priority level 

two. When the model is run for priority level three, all equations must be included. 

 

4.5 Execution of the Mathematical Model for Stage 1 

The mathematical model was executed using Lingo4, which is a solver for linear 

optimization models. First, tables were created in Microsoft Office Excel5. These tables 

were used to arrange input data from which the Lingo solver could read from, in addition 

to providing a place for solution values to be stored. 

 

4.5.1 Test Problems 

To determine whether the proposed mathematical model could satisfactorily find feasible 

solutions, three basic problems were created and solved. As shown in Table 4-2, the 

problems differed in the number of cases to be scheduled (n), along with the number of 

surgeons (p), services (f), and operating theatres (o) to consider. The solutions were 

manually validated to confirm that all constraints and assumptions were satisfied. 

 

                                                 
4 Copyright © LINDO Systems Inc 
5 Copyright © Microsoft Corporation 
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Table 4-2 Parameters of each test problem 

 Test 1 Test 2 Test 3 

n 50 100 150 

p 10 25 40 

f 4 8 12 

o 4 6 8 

 

Table 4-3 shows the values of B1a and Blb determined by the model, along with the 

computational times (CPU) required by the Lingo solver. 

 

Table 4-3 Bla and B1b values determined for each test problem 

 Test 1 Test 2 Test 3 

B1a 2 3 3 

CPU (sec) 4 6 35 

Blb 31 47 53 

CPU (sec) 1 3 14 

 

Table 4-4 depicts the computational results for each test. The term Z corresponds to the 

objective values obtained and B gives the integer programming (IP) bound (i.e. the bound 

on the best possible value the objective can attain) reported by the solver. The global 

optimum was found for each priority level in each problem. 

 
Table 4-4 Test results for stage 1 

 
Test Priority 

Level 
Objective 
Function 

No. of 
Variables 

No. of 
Constraints 

CPU 
(sec) 

Z B 

1 2*b1a/B1a +b1b/B1b 3811 2556 6 3.032 3.032 

2 b2 3825 2571 518 12 12 

1 

3 b3 3880 2626 442 0 0 

1 2*b1a/B1a +b1b/B1b 7553 5057 21 3.021 3.021 

2 b2 7567 5072 30 9 9 

2 

3 b3 7622 5127 235 2 2 
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1 2*b1a/B1a +b1b/B1b 11150 7423 47 3. 3. 

2 b2  7438 1205 4 4 

3 

3 b3  7692 838 0 0 

 

4.5.2 Health Sciences Centre (HSC) Problems 

To evaluate the mathematical model, actual data from five consecutive weeks of elective 

surgical cases was collected from HSC in order to create five different problems. The 

elective cases performed in each week, excluding pre-booked emergencies, represent the 

cases that need to be scheduled. For each case, their surgeon(s), service, and estimated 

surgical duration was recorded. If a patient was admitted prior to the day of surgery, the 

number of pre-operative days spent in the hospital was rounded to the nearest day. 

Because these patients are rarely asked to arrive more than a few days prior to surgery, 

the maximum number of pre-operative days considered was 4. 

 

Since estimated recovery times are not currently used when scheduling at HSC, the actual 

recovery times were rounded to the nearest half hour and used in the model. For patients 

who had surgery under local anaesthetic, their recovery duration was set to 0. For each 

patient, their LOS was rounded to the nearest full day. Because most elective patients do 

not stay in the hospital for more than two weeks after surgery, the maximum LOS 

considered was 14. Each patient’s post-operative duration was also recorded if a patient 

was discharged within 24 hours after surgery. This information is needed by the model to 

determine whether patients can be classified as SD or Overnight patients. 
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During that five-week period at HSC, surgical cases were classified into eleven services. 

The OR department consisted of 13 operating theatres, two of which were utilized by the 

same OR team. Therefore, the number of staffed operating theatres was set to 12. The 

actual opening and closing times for each operating theatre were used, along with the 

actual closing time for MS3 and the actual time at which B3 had to admit new Overnight 

patients. The maximum overtime allowed by any operating theatre was set to 2 hours 

because cases are rarely allowed to proceed if they will exceed that amount. 

 

Because the majority of the required data was not stored electronically, collecting it was a 

large task and not all of the required information could be gathered. Estimates were made 

on the days that each surgeon and patient were available for surgery. In addition, the 

number of patients that could not be placed off-service was estimated by considering the 

patients’ services. For example, most cardiac (Service A), neurosurgery (Service C), and 

plastics (Service I) patients cannot be placed off-service after surgery. Therefore, all 

patients under those three services were modelled as such. In the model, the daily number 

of elective surgical beds available for each service was assumed to be constant, based on 

80% of the amount allocated to each service by the hospital during that period. This had 

to be done because the surgical beds available for each service at HSC are shared by both 

elective and emergency patients, and no distinction is made between the two. 

 

The threshold value for a service’s allowable number of off-service patients was set to 3, 

and the maximum allowable daily patient volume variability was set to 5, based on 

discussions with HSC management. Finally, reasonable estimates were made regarding 
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the operating theatres that could accommodate each case, according to the case’s service. 

For example, cardiac surgeries tend to require more operating theatre space and therefore 

all cardiac cases were modelled to have greater operating theatre restrictions. It was 

assumed that the OR time allocated to each surgeon during each week was equal to the 

total duration of cases that they had performed that week. 

 

Because the equipment and instrumentation requirements for each case can be very 

extensive and are sometimes tailored for a specific case, they were not recorded. Instead, 

it was assumed that each service had a specific set of equipment required by each of their 

cases, which could not be shared with cases belonging to other services. The number of 

equipment sets available for each service, on each day, was assumed to be 10, which is a 

reasonable estimate for a typical service’s equipment/instrumentation constraints. 

 

4.5.2.1 Health Sciences Centre (HSC) Results 

The five problems solved using the first stage of the mathematical model differ in the 

number of cases to be scheduled in the schedule week (n), along with the number of 

surgeons (p), as shown in Table 4-5. 

 
Table 4-5 Parameters of each problem 

 
 Week 1 Week 2 Week 3 Week 4 Week 5 

n 126 148 101 135 131 

p 38 40 41 41 39 

 

Table 4-6 shows the values of B1a and Blb determined by the model, along with the 

required computational times.  
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Table 4-6 B1a and B1b values determined for each problem 
 

 Week 1 Week 2 Week 3 Week 4 Week 5 

B1a 6 3 5 6 5 

CPU (sec) 33 46 7 18 8 

Blb 80 103 67 79 54 

CPU (sec) 6 4 4 6 6 

 

Table 4-7 presents the computational results for the five problems solved. The term Z 

corresponds to the objective value found after the time given under CPU, and B gives the 

IP bound reported by the solver.  If the solver had not found the global optimum after 

four hours, the search was terminated and the best solution obtained was recorded. The 

solver was able to find the global optimum for all priority levels in all problems, except 

for priority level three in Week 1, and priority levels two and three in Week 2. However, 

the solutions obtained were still better than the results achieved by the actual schedules 

used at HSC, as explained later in this section. 

 
Table 4-7 Results for stage 1 

 
Week Priority 

Level 
Objective Function No. of 

Variables 
No. of 

Constraints 
CPU 
(sec) 

Z B 

1 2*b1a/B1a +b1b/B1b 10137 6609 9 3 3 

2 b2 10151 6624 381 24 24 

1 

3 b3 10396 6679 14400 3* 0 

1 2*b1a/B1a +b1b/B1b 10643 7366 27 3.058 3.058 

2 b2 10657 7381 14400 25* 23.4 

2 

3 b3 10912 7436 14400 2* 0 

1 2*b1a/B1a +b1b/B1b 9628 5749 9 3.015 3.015 

2 b2 9642 5764 455 17 17 

3 

3 b3 9902 5789 1517 0 0 

1 2*b1a/B1a +b1b/B1b 10308 6946 8 3 3 

2 b2 10322 6961 222 20 20 

4 

3 b3 10582 7016 271 0 0 
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1 2*b1a/B1a +b1b/B1b 10294 6787 10 3 3 

2 b2 10308 6802 7759 25 25 

5 

3 b3 10558 6857 171 0 0 

*Best, but not necessarily optimal, solution found 

 

The first chart in Figure 4-1 compares the largest deviation between the number of 

inpatient beds occupied by any particular service on any two days of the scheduled week 

(i.e. b1a), resulting from the actual schedules used at HSC and the model’s schedules. On 

average, the model reduced these deviations by 25.1%. Similarly, the second chart 

compares the total number of inpatient beds occupied during the days following the 

scheduled week (i.e. b1b), where the model’s schedules reduced these numbers by an 

average of 19.9%.  
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Figure 4-1 Comparison between bla and blb values obtained by HSC’s schedules and the 
mathematical model's schedules 

 

To smooth daily OR utilization, the model minimizes the largest deviation between 

available and utilized OR time on any day of the schedule (b2). Table 4-8 depicts each 

day’s available and utilized OR time during Week 1, according to the model’s schedule, 

where the largest variability in OR utilization between any two days is only 1 half hour.  
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Table 4-8 Daily deviation between available and utilized operating room (OR) time in Week 
1, obtained by the mathematical model's schedule 

 
(half hours) Mon. Tue. Wed. Thu. Fri. 

Available OR time 189 184 135 189 175 

Largest 
Variability

Utilized OR time 165 160 112 165 151 

Deviation 24 24 23 24 24 1 

 

Table 4-9 displays this variability for each week, according to the model’s schedules. 

Daily OR utilization was balanced within 2 half hours (i.e. 1 hour) during each week. 

 
Table 4-9 Largest operating room (OR) utilization variability between any two days during 

each week, obtained by the mathematical model's schedules 
 

 Week 1 Week 2 Week 3 Week 4 Week 5 

Largest Variability 1 2 1 0 2 

 

At HSC, elective cases are only scheduled if there is enough available OR time for their 

completion. If a surgeon has unscheduled OR time close to the day of surgery, the time is 

given to other surgeons, or it is filled with emergency cases. Therefore, the theoretical 

deviations between available and utilized OR time in HSC’s schedules are always very 

small, and there is no need to compare it with the mathematical model’s schedules. 

 

Figure 4-2 illustrates the largest deviation between the total number of SD and SDA 

patients scheduled on any two days during each week (i.e. b3), due to the actual schedules 

and the model’s schedules. The model’s schedules reduced these deviations by an 

average of 94.3%, thereby reducing variable patient volumes and smoothing the 

workload and resource requirements in each department. 
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Figure 4-2 Comparison between b3 values obtained by HSC’s schedules and the 

mathematical model's schedules 
 

The results for these HSC problems were used as the basis for an analysis of the 

relationships between the mathematical model’s objectives in different priority levels. 

The analysis results can be found in Appendix B. 
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4.6 Summary 

This chapter described the first stage of the proposed elective operating room (OR) 

scheduling system, based upon the elective surgical patient flow at Health Sciences 

Centre (HSC) in Winnipeg. This proposed system creates weekly OR schedules through 

an open scheduling policy. In this first stage, surgeons with allocated OR time in a 

particular week present the cases that they wish to schedule. Cases are then assigned to 

the different days of the week, while taking into account resultant inpatient bed 

occupancy volumes and resource constraints. The problem is comprised of four 

objectives classified into three priority levels, which strive to reduce day-to-day 

variability. The objectives in the first priority level minimize daily post-operative 

inpatient bed occupancy variability while maintaining high bed utilization. The second 

priority level minimizes the discrepancy between available and utilized daily OR time in 

order to smooth daily OR utilization. The third priority level smoothes total daily Same 

Day (SD) and Same Day Admission (SDA) elective patient volumes so that daily 

workload and resource requirements are balanced.  

 

For this first stage, it was proposed that problems could be mathematically modelled and 

solved through lexicographic goal programming. The model was tested using data from 

five consecutive weeks of elective surgical cases at HSC. Compared to the actual 

schedules used, the model would have reduced the largest daily bed occupancy variability 

for any service by 25.1%, the inpatient bed occupancy on the days following the 

scheduled week by 19.9%, and total daily SD and SDA patient volume variability by 

94.3%. 
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Alternatively, HSC can determine the case mix desired in a particular week, and use the 

model to provide a guideline regarding the number and types of cases that should be 

performed each day in order to reduce daily variability. HSC can then carry out daily 

scheduling in whatever manner they like. 

 

The mathematical model can be easily tailored to meet the needs of other facilities by 

adjusting or adding more constraints, or changing the importance of objectives. 

Objectives may also be added, removed, or fine-tuned according to user preferences. 
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Chapter 5: Elective Operating Room Scheduling (OR) 
Scheduling System – Stage 2 

 

This chapter describes two alternatives for conducting the second stage of the proposed 

elective operating room (OR) scheduling system. In the first stage, cases were assigned to 

days in the week to be scheduled. In the second stage, all of the cases scheduled on a 

particular day will be assigned operating theatres and start times. Hence, daily OR 

schedules will be created. Unlike the first stage, which aimed to reduce day-to-day 

variability, the purpose of the second stage is to reduce the variability that may occur 

within a day. The problem consists of four objectives that are classified into three priority 

levels. 

 

The objectives for this stage are described in section 5.1, while the input data, 

assumptions, and constraints are explained in sections 5.2, 5.3, and 5.4, respectively. In 

section 5.5, the first alternative for scheduling is addressed. This method is a 

mathematical model, similar to the one used in the first stage, where optimal solutions are 

obtained through lexicographic goal programming. This method was chosen because the 

problem’s objectives have very distinct priorities. In section 5.6, the second alternative 

for scheduling is introduced. This method is a genetic algorithm that is able to find good 

solutions, though not necessarily optimal, in a relatively short period of time. Finally, a 

summary is given in section 5.7. 
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5.1 Objectives 

There are four objectives in this stage, classified into three priority levels. The first 

priority level is the most important, followed by the second level, and finally the third. 

These objectives, and their priority levels, were determined after assessing the factors 

affecting HSC’s surgical patient flow. If desired, objectives can easily be excluded, or 

their corresponding priorities can be changed. 

 

5.1.1 Priority Level One 

The first priority level consists of the following two objectives: 

1. Minimize the largest overtime experienced by any operating theatre 

2. Minimize the largest deviation between OR time utilized by any two operating 

theatres 

 

The first goal will minimize overtime in order to avoid unnecessary costs and staff 

dissatisfaction. The second goal will evenly distribute the hours of work among each 

staffed operating theatre, which is also important for staff satisfaction. These objectives 

were considered more important than the ones in other priority levels because costs in the 

OR department can be huge when overtime occurs, and staff satisfaction is crucial in 

maintaining an effective and motivated work environment. 
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5.1.2 Priority Level Two 

The second priority level consists of the following objective: 

• Minimize the largest number of Post-Anaesthesia Care Unit (PACU) beds 

occupied at any time 

 

This objective corresponds to the bed occupancy in the PACU during different periods 

throughout the day. At HSC, elective cases are sometimes put on hold in the OR 

department due to a lack of PACU beds, which subsequently affects following cases. On 

the other hand, there are periods of the day when the PACU is quite empty. This shows 

that the demand for PACU beds can be highly variable within a particular day. By 

smoothing the unit’s bed occupancy throughout the day, artificial variability will reduce 

and delays will decrease. This objective was considered more important than the one in 

priority level three because delays caused by PACU bed unavailability occur more 

frequently and have a bigger impact on surgical patient flow. 

 

5.1.3 Priority Level Three 

The objective in the third priority level is: 

• Minimize the largest number of cases that finish at the same time 

 

Multiple cases in the OR often finish at the same time, resulting in an inadequate number 

of peri-operative aides (PAs) available to turnover the operating theatres. When this 

occurs, the start of following elective cases scheduled in those operating theatres may be 

delayed. At other times, however, the same number of PAs may have nothing to do. 
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Hence, smoothing the number of cases that finish at the same time will help balance 

turnover workload throughout the day. In turn, cases will start on time, staff will be 

satisfied, and surgeons will be less tempted to leave the OR department during turnovers. 

 

5.2 Input Data 

For the second stage, almost all of the required input data would have already been 

collected in the first stage. Table 5-1 depicts the inputs needed for this stage, and is split 

up according to whether or not HSC already uses the data for elective OR scheduling: 

 
Table 5-1 Input data required for stage 2 

 
Source Data already used by HSC Data not currently used by HSC 

Surgeons • The cases to be scheduled, 

including: 

⎯ Estimated case duration (including 

set-up and clean up) 

• The cases to be scheduled, 

including: 

⎯ Estimated recovery time in the 

recovery unit (i.e. PACU) 

⎯ Estimated recovery time in the post-

operative unit, if less than 24 hours 

OR Dept. • The operating theatres that can be 

used for each case 

• The opening and closing times for 

each staffed operating theatre, on 

each day 

• The expected number of operating 

theatres that need to be cleaned at 

the beginning of the day 

PACU  • The expected number of PACU 

beds that will be occupied at the 

beginning of the day 

 MS3 • The unit’s daily closing time, where 

patients must be discharged 

 B3 • The time when Overnight patients 

must be discharged in order to admit 

new patients 
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Stage 2 requires far less data than stage 1 and uses only slightly more information than 

what is currently needed by HSC for elective OR scheduling. Recovery times can simply 

be estimated by the surgeons, or historical data can be used, if available. Management 

from the OR department and the PACU can easily specify the additional data required. 

 

5.3 Assumptions 

The assumptions used in stage 1 are also used in stage 2. All elective surgical patients go 

to the PACU for recovery after surgery. Afterwards, Same Day (SD) patients go to MS3, 

Overnight patients go to B3, and Inpatients and Same Day Admission (SDA) patients go 

to inpatient units. No other transfers take place before discharge. Many surgeons have 

offices nearby or at HSC, and they visit patients throughout the facility when they are not 

operating. Therefore, it is assumed that each surgeon is able to operate at any time on the 

days they stipulate they are available.  

 

5.4 Constraints 

In this stage, the following constraints need to be considered: 

 
Table 5-2 List of constraints in stage 2 

 
Constraint 1: A case cannot be assigned to an operating theatre that it cannot be performed in 

Constraint 2: A case cannot be scheduled in an operating theatre before it is open 

Constraint 3: A surgeon cannot work on more than one case at a time 

Constraint 4: An operating theatre cannot have more than one case scheduled in it at a time 

Constraint 5: A SD patient must be scheduled early enough to allow for sufficient recovery and 

discharge by the time MS3 closes 

Constraint 6: An Overnight patient must be scheduled early enough to allow for sufficient 

recovery and discharge by the time B3 has to admit new patients 
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5.5 Mathematical Model for Stage 2 

For this stage, two ways of generating daily schedules are proposed. First, the problem 

can be mathematically modelled and solved using lexicographic programming. 

 

The following notations are employed in the mathematical model: 

MS3 Closing time of MS3 

B3 Time at which new Overnight patients must be admitted in B3 

Duri Surgical duration of case i, in half hours 

  where i = 1,…,n (n = number of cases to be scheduled) 

Reci  Recovery duration of case i, in half hours 

Posti  Post-operative duration of case i, in half hours, if less than 24 hours; 50 otherwise 

Toti  Total duration of case i, including surgery, recovery, and post-operative care 

(Duri + Reci + Posti) 

Suris  1 if case i is under surgeon s; 0 otherwise 

  where s = 1,…,p (p = number of surgeons with cases) 

Openo Opening time for operating theatre o 

where o = 1,…,r (r = number of staffed operating theatres) 

Closeo Closing time for operating theatre o 

Do  Total OR time available for operating theatre o 

 (Closeo – Openo) 

ORio  1 if case i can be performed in operating theatre o; 0 otherwise 

xi  1 if the patient of case i is scheduled as a SD patient; 0 otherwise 

yi  1 if the patient of case i is scheduled as a Overnight patient; 0 otherwise 
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zi  1 if the patient of case i is scheduled as a SDA patient; 0 otherwise 

M A large number 

PACU1Number of PACU beds occupied at the beginning of the day (Time 1) 

PA1 Number of operating theatres that need to be cleaned at the beginning of the day 

(Time 1) 

 

The following variables represent the mathematical model’s solution: 

b1a Largest overtime experienced by any operating theatre 

b1b Largest deviation between OR time utilized by any two operating theatres 

b2  Largest number of PACU beds occupied at any time 

b3 Largest number of cases that finish at the same time 

Rio 1 if operation i is assigned to operating theatre o; 0 otherwise 

Starti Scheduled start time of operation i, beginning with set-up 

Fino Scheduled finish time of operating theatre o 

Overo Overtime for operating theatre o, in half hours 

Undero Underutilized OR time for operating theatre o, in half hours 

ξo Difference between available and utilized OR time for operating theatre o, in 

 half hours 

αic 1 if the recovery period of case i is scheduled to start at the beginning of period c; 

0 otherwise 

  where c = 1,…, a (a = number of half hour periods during the day) 

βic 1 if the recovery period of case i is scheduled to finish at the beginning of period 

c; 0 otherwise 
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PACUc Number of PACU beds required during period c 

PAc Number of cases that finish at the beginning of period c 

 

The following variables ensure a linear mathematical model: 

θid 1 if case i starts before case d; 0 otherwise 

  where i, d = 1,…,n (n=number of cases to be scheduled)  

−
bb1  Negative deviation between OR time utilized by operating theatres o and e 

+
bb1  Positive deviation between OR time utilized by operating theatres o and e 

 

Objective Function: 

Priority Level 1: Minimize ba bbz 11*2 +=       (1) 

Priority Level 2: Minimize 2bz =        (2) 

Priority Level 3: Minimize 3bz =        (3) 

 

Subject to: 

ioio ORR ≤     ]..1[],..1[ roni ∈∀∈∀     (4) 

 

( )iooi RMOpenStart −−≥ 1   ]..1[],..1[ roni ∈∀∈∀     (5) 

 

( ) ( dsisidiid SurSurMDurStartStart )−−−−+≥ θ3  

]..1[,/]..1[, psdindi ∈∀≠∈∀   (6) 
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( ) ( doioidiid RRMDurStartStart )−−−−+≥ θ3  

]..1[,/]..1[, rodindi ∈∀≠∈∀   (7) 

( ) 3MSTotalStartx iii ≤+   ]..1[ ni∈∀      (8) 

 

( 3BTotalStarty iii ≤+ ) ]  ..1[ ni∈∀      (9) 

 

)1( idid MStartStart θ−−≥   dindi ≠∈∀ /]..1[,     (10) 

 

( ) )1( ioiio RMDurStartFin −−+≥  ]..1[],..1[ roni ∈∀∈∀     (11) 

 

ooo CloseFinUnderOver −≥− 0  ]..1[ ro∈∀      (12) 

 

oa Overb ≥1     ]..1[ ro∈∀      (13) 

 

∑
=

−−=
n

i
ioiooo RDurOpenClose

1

ξ  ]..1[ ro∈∀      (14) 

 

eobb bb ξξ −≥− −+
11    ]..1[, reo ∈∀      (15) 

 

−+ +≥ bbb bbb 111           (16) 
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( )∑
=

=+
a

c
icii cDurStart

1

α   ]..1[ ni∈∀      (17) 

 

( )∑
=

=++
a

c
iciii ccDurStart

1

Re β  ]..1[ ni∈∀      (18) 

 

( ) ( )∑− −+=
n

iciccc PACUPACU 1 βα  ]..1[ ac∈∀
=i 1

     (19) 

 

    ]cPACUb ≥2 ..1[ ac∈∀      (20) 

 

    ]∑
=

=
n

i
iccPA

1

α ..1[ ac∈∀      (21) 

 

    cPAb ≥3 ]..1[ ac∈∀      (22) 

 

    dindi >∈∀ /]..1[,1=+ diid θθ     (23) 

 

∑
r

1     
=

=
o

ioR
1

]..1[ ni∈∀      (24) 

  

    ∑
=

=
a

c
ic

1

1α ]..1[ ni∈∀      (25) 
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∑
=

=
a

c
ic

1

1β     ]..1[ ni∈∀      (26) 

 

}{ 1,0,, ∈icicioR βα    
]..1[],..1[

],..1[],..1[
acps
roni

∈∀∈∀
∈∀∈∀

   (27) 

 

The goals in the mathematical odel ar split into 3 priority levels. In order to generate a m e 

schedule for stage 2 using lexicographic goal programming, the model will need to be 

executed 3 times. Equations (1-3) represent the objective functions for priority levels 1-3, 

respectively. In equation (1),  and represent the two priority level one objectives. 

Based on how delays an e cancellations can occur at HSC,  was 

given a weight of 2 because it was considered twice as important as 

terms are in the same units and their ideal value is zero, they do not need to be 

normalized before  The objectives in priority level two and three 

tion 

ab1

d elective su

’s weight is applied.

bb1

rgical cas ab1

. Because both bb1

a

are represented by the terms 2b  and 3b  in equations (2) and (3), respectively.  

 

Equations (4–9) correspond to Constraints 1–6 (described in Table 5-2), respectively. 

Equation (10) determines whether one case is scheduled before another. Equation (11) 

calculates the scheduled finish time of each operating theatre. Equation (12) works out 

the overtime or underutilized OR time for each theatre, which is then used in equa

b1

(13) to compute the value of the first objective in priority level one. Equation (14) 

analyzes the amount of OR time utilized in each operating theatre, which is used by 

equations (15–16) to establish the value of the second objective in priority level one. 
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Equations (17–18) calculate when the recovery period in the PACU will start and end for 

each case, respectively. Equation (19) determines the number of PACU beds occupied 

during each half hour period, which is subsequently used in equation (20) to work out the 

objective value in priority level two. Similarly, the number of cases that finish in the OR 

t the start of each period is calculated in equation (21), and those values are used in 

 

bjective values previously found for priority level one must be included as constraints. 

be included and the 

o test the stage 2 mathematical model. The mathematical 

                                                

a

equation (22) to determine the objective value in priority level three. Finally, equations 

(23–27) are the integrality constraints. 

 

When the model is run for priority level one, equations (17–22) are not included in the 

model because they have no effect on the solution obtained, and will only needlessly 

increase the number of variables and constraints that are considered. Similarly, equations 

(21–22) are not required when the model is run for priority level two, although the

o

When the model is run for priority level three, all equations must 

objective values found for priority levels one and two must be formulated as constraints. 

 

5.5.1 Execution of the Mathematical Model for Stage 2 

The first two sets of the test problems previously created and solved in stage 1 (described 

in section 4.5.1) were also used t

model for stage 2 was executed using Lingo6. Microsoft Office Excel7 tables were used 

to arrange input data that the Lingo solver could read from, in addition to providing a 

place for solution values to be stored. 

 
6 Copyright © LINDO Systems Inc 
7 Copyright © Microsoft Corporation 
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Table 5-3 on the following page depicts the computational results for the two sets of 

problems. The term Z corresponds to the objective value found after the time given under 

CPU, and B gives the IP bound reported by the solver. If the global optimum had not 

een found after four hours, the search was terminated and the best solution obtained was 

le solutions could only be 

und for priority level one in four out of the five problems. These results made it 

ble 

to handle large-sized problems, while generating good solutions in reasonable amounts of 

time. The Nondominated Sorting Genetic Algorithm II for Operating Room Scheduling 

(NSGAII-OR) was created for this purpose and is described in the following sections. 

b

recorded. Solutions were manually validated to confirm that all constraints and 

assumptions were satisfied. 

 

For the first set of test problems, the global optimum for all three priority levels could 

only be found for one particular day (i.e. Thursday) within a reasonable time frame. For 

the second set of test problems, the global optimum could not be found for any priority 

level after a reasonable amount of time. Furthermore, feasib

fo

obvious that the mathematical model is only able to handle problems of very small sizes, 

and therefore cannot be applied to real-life problems at HSC. 

 

These results prompted the decision to pursue another multi-objective optimization 

method to solve the stage 2 daily OR scheduling problem. The method needed to be a
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Table 5-3 Test results for stage 2, using the mathematical model 
 
Test Day Priority 

Level 
Objective 
Function 

No. of 
Variables 

No. of 
Constraints 

CPU 
(sec) 

Z B 

1 2*b1a +b1b 254 959 14400 10* 2 

2 b2 1452 1102 14400 5* 1.261 

Mon 

3 b3 1500 1198 14400 3* 0.294 

1 2*b1a +b1b 176 573 99 4 4 

2 b2 1086 704 14400 4* 1.433 

Tue 

3 b3 1134 800 14400 2* 0.319 

1 2*b1a +b1b 200 691 1780 8 8 

2 b2 1206 826 14400 4* 1.289 

Wed 

3 b3 1254 922 14400 2* 1 

1 2*b1a +b1b 176 579 134 6 6 

2 b2 1086 710 8525 3 3 

Thu 

3 b3 1134 806 8694 2 2 

1 2*b1a +b1b 200 695 938 8 8 

2 b2 1206 830 14400 4* 0.835 

1 

Fri 

3 b3 1254 926 1979 1 1 

1 2*b1a +b1b 466 2220 14400 14* 0 

2 b2 2048 2379 14400 N/A 1.761 

Mon 

3 b3 - - - - - 

1 2*b1a +b1b 686 3682 14400 41* 0 

2 b2 2748 3861 14400 N/A 3.196 

Tue 

3 b3 - - - - - 

1 2*b1a +b1b 686 3676 14400 20* 0 

2 b2 2748 3855 14400 N/A 2.087 

Wed 

3 b3 - - - - - 

1 2*b1a +b1b 686 3680 14400 N/A 0 

2 b2 - - - - - 

Thu 

3 b3 - - - - - 

1 2*b1a +b1b 686 3687 14400 17* 0 

2 b2 2748 3866 14400 N/A 1.783 

2 

Fri 

3 b3 - - - - - 

* Best, but not necessarily optimal, solution found 
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5.6 Nondominated Sorting Genetic Algorithm II for Operating Room 

Scheduling (NSGAII-OR) 

The Nondominated Sorting Genetic Algorithm II for Operating Room Scheduling 

(NSGAII-OR) is a version of the Nondominated Sorting Genetic Algorithm II (NSGA-II) 

(Deb et al. 2000a, Deb et al. 2000b), specifically adapted for the second stage of the 

proposed elective OR scheduling system. 

 

5.6.1 Modification of Objectives 

The objectives declared in section 5.1 are the same ones addressed by NSGAII-OR. 

However, their priority levels are not considered in order to allow users to see the real 

trade-offs for each objective in each non-dominated solution. The table lists the 

objectives in NSGAII-OR. 

 
Table 5-4 List of objectives in NSGA-II 

 
Objective 1: Minimize the largest overtime experienced by any operating theatre (f1) 

Objective 2: Minimize the largest deviation between OR time utilized by any two operating 

theatres (f2) 

Objective 3: Minimize the largest number of Post-Anaesthesia Care Unit (PACU) beds 

occupied at any time (f3) 

Objective 4: Minimize the largest number of cases that finish at the same time (f4) 

 

f1, f2, f3, and f4 are equal to b1a, b1b, b2, and b3 in the mathematical model, respectively. 

 

 116



5.6.2 Domination Definition 

In NSGAII-OR, a solution xi dominates a solution xj if: 

1. Solution xi is feasible and solution xj is not 

2. Solutions xi and xj are both infeasible, but solution xi has a smaller overall 

constraint violation 

3. Solutions xi and xj are both infeasible and have the same overall constraint 

violation, but solution xi dominates solution xj with regards to the objectives 

4. Solutions xi and xj are both feasible, but solution xi dominates solution xj with 

regards to the objectives 

 

This definition is almost the same as the one proposed by Deb (2001), except for the 

addition of rule (3). This rule was included because a few of the problems addressed in 

this chapter have no feasible solutions, and it is possible for the algorithm’s population to 

solely consist of solutions having the same overall constraint violation. Therefore, the 

infeasible solutions with better objective values are preferable, and rule (3) considers this. 

 

5.6.3 Non-dominated Sorting 

According to NSGAII-OR’s domination definition, the entire algorithm’s population 

must be sorted according to non-domination each time a new generation begins. To 

achieve this, the following items must be determined for each solution (Deb et al. 2000a, 

2000b): 

1. Domination count np: the number of solutions that dominate solution p 

2. Sp: a set of solutions that solution p dominates 
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If a solution p has np = 0, it is non-dominated. For each non-dominated solution, every 

member in its set Sp is given a new np = np – 1. If this results in np = 0 for any solution q, 

they are put in a separate list Q. These members belong to the second non-dominated 

front. The procedure repeats for every member in Q in order to identify the third non-

dominated front. The process continues until the front for each solution is determined. 

 

5.6.4 Crowding Distance 

In NSGAII-OR, a crowded comparison operator is used during selection and replacement 

to preserve diversity. First, a crowding distance metric is obtained for each solution. This 

metric estimates the density of solutions surrounding a particular solution. A solution’s 

crowding distance di is equal to the average distance of the two solutions on either side of 

it, along each objective. For a given non-dominated set, crowding distance is calculated 

in the following way: 

1. For each objective function m: 

a. Sort the set according to lowest order of objective value fm 

b. If each solution’s fm is a boundary value (i.e. lowest or highest): 0=
mi

d  

 Otherwise: 

   for each solution with an fm that is a boundary value. ∞=
mi

d

  For all other solutions: 

   
( ) ( )

minmax

11

mm

i
m

i
m
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ffd

m −
−

=
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2. For each solution i,  ∑=
m

ii m
dd
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1−i
mf  and represent the solutions before and after solution i in the sorted list.  

and are the maximum and minimum values of objective function m in the 

population.  

1+i
mf max

mf

min
mf

 

For example, assume that a two-objective problem (f1, f2) has 4 solutions (A, B, C, D) in 

its non-dominated set, and their objective values are: A = (6, 3); B = (8, 6); C = (4, 4); D 

= (12, 2). Here,  and are 12 and 4, while  and are 6 and 2. At step 1, 

we start with objective function 1 and sort the set according to lowest order of f1. 

Therefore, the set is sorted as follows: C = (4, 4); A = (6, 3); B = (8, 6); D = (12, 2). For 

objective function 1, C and D are boundary solutions because their f1 values are the 

lowest and highest in the list. If A and B were also boundary solutions (i.e. their f1 values 

were also equal to 4 or 12), step 1a would occur. Since this is not the case, step 1b is 

carried out and is calculated for each solution i. Step 1 is then repeated for objective 

function 2, where is now calculated. This time, D and B are boundary solutions. 

Finally, each solution’s total crowding distance value di is calculated by summing its 

individual crowding distance values and . Table 5-5 details these calculations. 

max
1f

1i
d

2i
d

min
1f

max
2f min

2f

1i
d

2i
d

 
Table 5-5 Example of crowding distance calculations 
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 21 iii ddd +=

A 6 8 4 (8-4)/(12-4)=0.5 3 4 2 (4-2)/(6-2)=0.5 0.5+0.5=1 

B 8 12 6 (12-6)/(12-4)=0.75 6 - 4 ∞ 0.75+∞=∞ 

C 4 6 - ∞ 4 6 3 (6-3)/(6-2)=0.75 ∞+0.75=∞ 

D 12 - 8 ∞ 2 3 - ∞ ∞+∞=∞ 
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This operator is almost the same as the one used in NSGA-II, except that step 1a has been 

included. It was found that in many problems addressed in this chapter, the values 

obtained for Objective 4 in a non-dominated front were often only boundary solutions. In 

NSGA-II’s original crowding distance calculation, each of the solutions in that front 

would have been assigned crowding distances equal to infinity, regardless of their values 

for the other three objectives. Step 1a allows us to avoid this. 

 

5.6.5 Solution Representation 

Each solution in the population is represented by a two-dimensional matrix, where 

columns correspond to half-hour periods and rows correspond to operating theatres. 

Therefore, each cell depicts the case scheduled in a particular operating theatre at a given 

time and naturally ensures that Constraint 4 is satisfied. Figure 5-1 is an example of a 

simple OR schedule where eight cases have been scheduled over three operating theatres. 

Figure 5-2 depicts how this schedule would be represented in NSGAII-OR. 

 
 Time 1 Time 2 Time 3 Time 4 Time 5 Time 6 Time 7 Time 8 Time 9 

OR 1 Case 1 Case 5  

OR 2 Case 2 Case 7 Case 4 

OR 3 Case 3  Case 8  Case 6 

 
Figure 5-1 Example of an OR Schedule 

 
 

1 1 1 5 5 5 5 5  

2 7 7 7 7 4 4 4 4 

3 3  8 8  6 6 6 

 
Figure 5-2 Example of an NSGAII-OR solution 
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5.6.6 Main Loop 

NSGAII-OR consists of the following steps: 

1. Initialization: Generate a population of N solutions 

2. Selection: From the population, create a mating pool of N solutions 

3. Crossover: From the mating pool, produce a population of N offspring using a 

crossover probability pc 

4. Mutation: Mutate offspring solutions using a mutation probability pm 

5. Replacement: Form a new population of N solutions 

6. Repeat steps (2–5) until the required number of generations has been reached 

7. Present the solutions belonging to the non-dominated front in the final population 

 

5.6.7 Initialization 

During the initialization process, a population of solutions is generated. In most genetic 

algorithms, this is carried out randomly. Datta et al. (2007) found that this may make it 

difficult to find feasible solutions. Hence, the authors used an heuristic to assist the 

algorithm’s search for feasible solutions. Because of the constraints in the elective OR 

daily scheduling problem, NSGAII-OR also employs an heuristic to generate the initial 

population. The heuristic utilizes the following steps: 

1. For each SD case i, calculate ti = MS3 – Toti 

2. For each Overnight case i, calculate ti = B3 – Toti 

3. Schedule each SD and Overnight case according to ascending t, at the earliest 

possible time where Constraints 1 – 4 are not violated 
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4. Schedule each remaining case at the earliest possible time in a randomly chosen 

operating theatre where Constraints 1 – 4 are not violated 

 

The terms MS3 and B3 correspond to the time when the post-operative units MS3 and B3 

have to discharge SD and Overnight patients, respectively. The term Toti is equal to the 

total duration of case i, including surgery, recovery, and post-operative care. Therefore, 

the term ti corresponds to how early an SD or Overnight case i must be scheduled so that 

Constraints 5 and 6 are not violated. For example, if an SD patient’s total duration (Toti) 

is equal to 11 hours and MS3’s closing time is 12 hours after the start of the schedule, 

then the patient’s operation must be scheduled within the first hour or else the patient 

cannot be discharged by the time MS3 closes. Hence, the heuristic ensures that the SD 

and Overnight cases with the smallest scheduling windows are scheduled first.  

This heuristic ensures that every solution respects Constraints 1 – 4. However, certain 

problems may have no feasible solutions with regards to Constraints 5 and 6. In those 

cases, the heuristic will only minimize the violation of Constraints 5 and 6. 

 

Once a population has been created, the objectives values and constraint violations must 

be determined for each solution. The population can then be sorted according to non-

domination, and each solution’s crowding distance can be calculated. 
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5.6.8 Selection 

The mating pool is formed through a tournament selection process, where each solution 

in the population is compared to another solution. Therefore, each solution should take 

part in a comparison exactly twice. For each comparison, the solution on a lower non-

domination level is chosen to join the mating pool. If two solutions are on the same level, 

then the solution with the larger crowding distance is selected. 

 

5.6.9 Crossover 

During crossover, two parent solutions are randomly chosen from the mating pool and 

used to produce two offspring solutions, using the following steps: 

1. The first and second offspring copy a random number of columns from the first 

and second parent, respectively. 

2. The first offspring copies a random number of columns from the second parent, 

provided that Constraints 1 – 4 are not violated. Similarly, the second offspring 

copies a random number of columns from the first parent. 

3. Each unscheduled SD and Overnight case is scheduled according to ascending t, 

at the earliest possible time where Constraints 1 – 4 are not violated. 

4. Each remaining unscheduled case is scheduled at the earliest possible time in the 

operating theatre with the most underutilized OR time, where Constraints 1 – 4 

are not violated. 
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For example, Figure 5-3 depicts how crossover would occur at step 1, if the second 

column (i.e. Time2) is randomly chosen from Parent 1 and the third and fourth columns 

(i.e. Time3 and Time4) are randomly chosen from Parent 2. 

 
Parent 1  Parent 2 

 Time1 Time2 Time3 Time4   Time1 Time2 Time3 Time4 

OR 1 Case 1 Case 5 Case 4  OR 1   Case 5 Case 1 

OR 2 Case 3   OR 2 Case 2 Case 4 

OR 3 Case 2    OR 3 Case 3  

           

           

Offspring 1  Offspring 2 

 Time1 Time2 Time3 Time4   Time1 Time2 Time3 Time4 

OR 1  Case 5    OR 1   Case 5 Case 1 

OR 2 Case 3   OR 2   Case 4 

OR 3 Case 2    OR 3 Case 3  

 
Figure 5-3 Example of crossover at step 1 

 

Figure 5-4 demonstrates how crossover would occur at step 2, if the first and third 

columns (i.e. Time1 and Time3) are randomly chosen from Parent 1 and the fourth 

column (i.e. Time4) is randomly chosen from Parent 2. Offspring 2 is only able to copy 

the cell position of Case 1 from Parent 1 because Cases 3 and 4 have already been 

scheduled, while the addition of Case 2 would violate Constraint 4. Similarly, Offspring 1 

is only able to copy the cell position of Case 1 from Parent 2 because the addition of Case 

4 would violate Constraint 4. 
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Parent 1  Parent 2 

 Time1 Time2 Time3 Time4   Time1 Time2 Time3 Time4 

OR 1 Case 1 Case 5 Case 4  OR 1   Case 5 Case 1 

OR 2 Case 3   OR 2 Case 2 Case 4 

OR 3 Case 2    OR 3 Case 3  

           

           

Offspring 1  Offspring 2 

 Time1 Time2 Time3 Time4   Time1 Time2 Time3 Time4 

OR 1  Case 5  Case 1  OR 1 Case 1  Case 5  

OR 2 Case 3   OR 2   Case 4 

OR 3 Case 2    OR 3 Case 3  

 
 

Figure 5-4 Example of crossover at step 2 
 

Finally, Figure 5-5 shows how crossover would occur at steps 3 and 4, where all 

remaining unscheduled cases are added to each offspring. 

 
 

Offspring 1  Offspring 2 

 Time1 Time2 Time3 Time4   Time1 Time2 Time3 Time4 

OR 1  Case 5  Case 1  OR 1 Case 1  Case 5  

OR 2 Case 3   OR 2 Case 2 Case 4 

OR 3 Case 2 Case 4  OR 3 Case 3  

 
Figure 5-5 Example of crossover at steps 3 and 4 

 

This operator ensures that Constraints 1 – 4 are not violated. However, due to the 

characteristics of the problem at hand, there is no guarantee that Constraints 5 and 6 will 

not be violated although the operator does reduce this possibility. 
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5.6.10 Mutation 

During mutation, offspring are mutated according to the following steps: 

1. Randomly select one case x. 

2. If there is another case that can switch cell positions with case x (i.e. start time 

and OR), without violating any constraints (i.e. Constraints 1 – 6), then: 

  Complete step 3. 

 Otherwise: 

  Go to step 4. 

3. Randomly select a second case y that can switch cell positions with case x, 

without violating any constraints. Then schedule case x to begin at the original 

starting cell position of case y, and vice versa. 

4. If there is another case that can switch cell positions with case x without violating 

Constraints 1 2, 5, and 6, then: 

  Go to step 6. 

 Otherwise: 

  Complete step 5. 

5. Reschedule case x in a randomly chosen OR at the earliest time where no 

constraints are violated. 

6. Randomly select a second case y that can switch cell positions with case x, 

without violating Constraints 1, 2, 5, and 6. Remove cases x and y from the 

offspring. 

7. If both cases are scheduled in the same OR, then: 

  Complete step 8. 
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Otherwise: 

  Complete step 9. 

8. From cases x and y, schedule the case that originally had the later start time in the 

same OR at the earliest time where no constraints are violated. Then schedule the 

other case in the same OR at the earliest time where no constraints are violated. 

9. Schedule case x in the original OR of case y at the earliest time where no 

constraints are violated. Then schedule case y in the original OR of case x at the 

earliest time where no constraints are violated. 

 

 

Yes 

No 

Yes 

No 

Yes 

No 

3. Reschedule case x and case y by 
swapping positions. 

2. Can another case swap 
with case x, respecting all 

constraints? 

6. Randomly select case y that can swap with 
case x, without violating Constraints 1-2, 5-6. 

5. Reschedule case x in randomly 
chosen OR at earliest time. 

7. Cases x and y 
scheduled in same OR?

4. Can another case swap 
with case x, respecting 
Constraints 1-2, 5-6? 

9. Reschedule case x in case y’s OR at earliest 
time, and vice versa. 

8. In same OR, reschedule later case 
at earliest time. Then reschedule other 
case. 

1. Randomly select case x. 

Figure 5-6 Flowchart of NSGAII-OR’s mutation operator 
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This mutation operator will result in one of four scenarios (i.e. step 3, 5, 8, or 9) and will 

not degrade a solution’s overall constraint violation. To depict how these 4 scenarios can 

occur, the offspring shown in Figure 5-7 will be used in several examples, and Table 5-5 

gives information about each case. 

 
 

Offspring before Mutation 

 Time1 Time2 Time3 Time4 

OR 1 Case 5  Case 6 Case 1 

OR 2 Case 3  

OR 3 Case 2 Case 4 

 
Figure 5-7 Example of an offspring before mutation 

 
Table 5-6 Case information for the example offspring 

 
Case Surgeon Possible 

ORs 
Patient 
Type 

Latest time case can 
be scheduled without 
violating Constraint 5

Latest time case can 
be scheduled without 
violating Constraint 6

1 A All SDA N/A N/A 
2 B 2, 3 SD Time3 N/A 
3 A All SD Time3 N/A 
4 C All SD Time3 N/A 
5 C All Overnight N/A Time3 
6 B All SD Time3 N/A 

 

If Case 5 is chosen as case x during mutation step 1, the mutation operator will check to 

see if there are any cases that Case 5 can switch starting cell positions with, without 

violating any constraints (step 2). Table 5-6 lists the outcomes of switching each case 

with Case 5. Since Case 4 is the only case that can switch with Case 5, without violating 

any constraints, mutation step 3 is carried out using Cases 4 and 5 as demonstrated in 

Figure 5-8. 
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Table 5-7 Outcome of switching Case 5 with other cases in the example offspring 
 
Case Constraint Violation Outcome Constraint Violation No. 

1 Case 5 would start at Time4. 6 

2 Case 2 would be performed in OR 1. 1 

3 Both Cases 3 and 6 would be scheduled in OR 2 at Time 3 4 

4 N/A N/A 

6 Both Cases 2 and 6 would be scheduled at Time1. 

Both Cases 4 and 5 would be scheduled at Time3. 

3 

3 

 
Offspring before Mutation  Offspring after Mutation 

 Time1 Time2 Time3 Time4   Time1 Time2 Time3 Time4 

OR 1 Case 5  Case 6 Case 1  OR 1 Case 4 Case 6 Case 1 

OR 2 Case 3   OR 2 Case 3  

OR 3 Case 2 Case 4  OR 3 Case 2 Case 5  

 
Figure 5-8 Example of mutation after step 3 

 

Similarly, if Case 1 is chosen as case x, Table 5-7 lists the outcomes of switching each 

case with Case 1. Since there are no cases that can switch with Case 1 without violating 

any constraints, the mutation operator moves to step 4, where it checks if there are cases 

that can switch with Case 1 without violating Constraints 1, 2, 5, and 6. As shown in the 

table, no such case exists. Therefore, mutation step 5 is carried out, where Case 1 is 

rescheduled in a randomly chosen OR at the earliest possible time where no constraints 

are violated. Figure 5-9 demonstrates how this would occur if OR 2 is randomly chosen. 

 
Table 5-8 Outcome of switching Case 1 with other cases in the example offspring 

 
Case Constraint Violation Outcome Constraint Violation No. 

2 Case 2 would be performed in OR 1 and start at Time4. 1, 5 

3 Case 3 would start at Time4. 5 

4 Case 4 would start at Time4. 5 

5 Case 5 would start at Time4. 6 

6 Case 6 would start at Time4. 5 

 129



Offspring before Mutation  Offspring after Mutation 

 Time1 Time2 Time3 Time4   Time1 Time2 Time3 Time4 

OR 1 Case 5  Case 6 Case 1  OR 1 Case 5  Case 6  

OR 2 Case 3   OR 2 Case 3 Case 1 

OR 3 Case 2 Case 4  OR 3 Case 2 

 
Figure 5-9 Example of mutation after step 5 

 

In Figure 5-10, Case 6 has been chosen as case x. Table 5-8 lists why there are no cases 

that can switch with Case 6 without violating constraints. However, Cases 3 – 5 can 

switch without violating Constraints 1, 2, 5, and 6. Therefore, one of them is randomly 

chosen as case y and removed (step 6). In our example, Case 5 has been chosen. Because 

Cases 5 and 6 were originally scheduled in the same OR (step 7), step 8 is performed. 

Since Case 6 was originally scheduled after Case 5, it is rescheduled first in the same OR 

at the earliest time where no constraints are violated. Case 5 is then rescheduled. 

 
Table 5-9 Outcome of switching Case 6 with other cases in the example offspring 

 
Case Constraint Violation Outcome Constraint Violation No. 

1 Case 6 would start at Time4. 5 

2 Case 2 would be performed in OR 1. 

Both Cases 1 and 2 would be scheduled in OR 1 at Time4. 

1 

4 

3 Both Cases 2 and 6 would be scheduled at Time3. 

Both Cases 1 and 3 would be scheduled in OR 1 at Time4. 

3 

4 

4 Both Cases 1 and 4 would be scheduled in OR 1 at Time4. 4 

5 Both Cases 2 and 6 would be scheduled at Time1. 

Both Cases 4 and 5 would be scheduled at Time3. 

3 

3 

 
Offspring before Mutation  Offspring after Mutation 

 Time1 Time2 Time3 Time4   Time1 Time2 Time3 Time4 

OR 1 Case 5  Case 6 Case 1  OR 1 Case 6 Case 5  Case 1 

OR 2 Case 3   OR 2 Case 3  

OR 3 Case 2 Case 4  OR 3 

Case 4 

Case 2 Case 4 

 
Figure 5-10 Example of mutation after step 8 
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In Figure 5-11, Case 6 has again been chosen as case x. As explained in the previous 

example, this means that mutation step 6 will be reached. This time, Case 4 has been 

randomly chosen as case y.  Because Cases 4 and 6 are not scheduled in the same OR 

(step 7), step 9 is carried out. Case 6 is rescheduled in Case 4’s original OR at the earliest 

time where no constraints are violated, and vice versa. 

 
Offspring before Mutation  Offspring after Mutation 

 Time1 Time2 Time3 Time4   Time1 Time2 Time3 Time4 

OR 1 Case 5  Case 6 Case 1  OR 1 Case 5 Case 4 Case 1 

OR 2 Case 3   OR 2 Case 3  

OR 3 Case 2 Case 4  OR 3 Case 2 Case 6  

 
Figure 5-11 Example of mutation after step 9 

 

5.6.11 Replacement 

The replacement process is similar to the one used in NSGA-II. First, the parent and 

offspring solutions are combined to form a new population of size 2N.  Each solution 

must be checked for constraint violation so that the new population can be sorted 

according to non-domination. The solutions on the non-dominated front are chosen to 

become the next generation’s population, and their crowding distances are calculated. If 

there are not enough solutions in this front to make a population of size N, solutions are 

then chosen from the second non-dominated front and their crowding distances are 

calculated. If there are still not enough solutions to make a complete population, solutions 

are progressively chosen from the next non-dominated fronts, and their crowding 

distances determined, until the population is full. All unused solutions are then deleted. 
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The solutions in the last allowed front may contain more solutions than needed. In this 

case, the following actions are taken: 

1. Sort each solution in the last allowed front into sets according to their objective 

values. Solutions in the same set will have the same values for each objective, and 

therefore the same crowding distance. 

2. In each set, delete any solution that is a duplicate of another. Therefore, the 

remaining solutions nr = 1,…,Nr, in each set r = 1,…,R, will be unique. 

3. Arrange each set according to descending crowding distance. Therefore, set r = 1 

will have the largest distance, set r = 2 will have the second largest, and so on. 

4. r = 1 

 nr = 1 for all r = 1,…,R 

5. For each space remaining in the next generation’s population: 

a. Select solution nr in set r to join the next generation 

b. nr = nr + 1 

c. If , then: ∑ ∑
= =

+=
R

r

R

r
rr NRn

1 1

  r = 1 

  nr = 1 for all r = 1,…,R 

 Otherwise: 

  i. If r = R, then: 

   r = 1 

    Otherwise: 

   r = r + 1 

  ii. While nr > Nr 
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   Repeat step i. 

1. Sort solutions into sets according to 
objective values 

2. Delete duplicate solutions 

No

No

Yes 

Yes

Yes 

No

Yes

No

4. r = 1; nr = 1 for all r = 1,…,R 

a. Select solution nr in set r 

b. nr = nr + 1 

r = 1 

∑ ∑
= =

+=
R

r

R

r
rr NRn

1 1

? 

r = 1 
nr = 1 for all r = 1,…,R i. r = R? 

r = r + 1 

ii. nr > Nr? 

End 

5. Space 
remaining?

3. Sort sets according to crowding distances

c.

 

Figure 5-12 Flowchart of NSGAII-OR’s replacement process for last allowed front 

 133



This replacement process for the last allowed front works by grouping solutions 

according to their objective values and deleting any duplicate solutions. Each group is 

then sorted according to descending crowding distance. Depending on how much space is 

remaining in the population, solutions are then chosen from these groups according to 

their sorted order. A different solution will be chosen each time, until all solutions have 

been selected. The process then starts over again with the first solution in the first group, 

until there is no space remaining in the new population. As an example, Figure 5-13 

depicts three sorted groups (i.e. Set A, B, and C) in a last allowed front, consisting of 3 

(named A1-A3), 2 (named B1-B2), and 4 solutions (named C1-C4), respectively. When 

solutions are chosen from these three groups, their selection order will be A1, B1, C1, 

A2, B2, C2, A3, C3, and C4. 

Set A 

A3 

A2 

A1 

Set B 

C4 

C3 

C2 

C1 

B2 

B1 

Set C 

 

Figure 5-13 Example of solutions in last allowed front 
 

In the original NSGA-II, the solutions having the largest crowding distances in the last 

allowed front are chosen to fill up the remaining space in the new population. For the 

problems addressed in this chapter, however, there are often a large number of unique 

solutions having the same objective values. If these solutions are in a low non-domination 

level and have very large crowding distances, they will be chosen for the next 

generation’s population, resulting in a new population that is dominated by solutions with 

 134



the same objective values. Hence, NSGA-II’s replacement process was modified to select 

solutions in the last allowed front according to both their crowding distances and 

objective values, helping to further maintain diversity for the problems at hand. 

 

5.6.12 Parameter Settings 

In order to find the appropriate settings for N (population size), pc (crossover probability), 

and pm (mutation probability), NSGAII-OR was tested on one of the HSC problems (i.e. 

Week 1 – Monday) addressed in stage 1. A 35 full factorial experimental layout was used, 

where each parameter was set at one of the five values shown in Table 5-10, resulting in 

375 combinations. Three replications were carried out for each combination by fixing the 

random seed generator to three different values, resulting in 1125 experiments. 

 
Table 5-10 List of values tested for each parameter 

 
N pc pm 

100 0.9 0.1 

200 0.8 0.2 

300 0.7 0.3 

400 0.6 0.4 

500 0.5 0.5 

 

Theoretically, high N and pc values should increase the possibility of converging to the 

true Pareto-optimal front. However, this comes with increased computational time for 

each generation. In order to take this relationship into account, experiments with smaller 

N and pc settings were allowed to run for more generations. This was achieved by having 

a stopping criterion of 80000 function evaluations for each experiment, resulting in an 

average number of generations equal to 80000/(N* pc). Therefore, the combination with 
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the highest N and pc values (i.e. 500 and 0.9, respectively) had a stopping criterion of 

roughly 178 generations, while the combination with the lowest N and pc values (i.e. 100 

and 0.5, respectively) had a stopping criterion of approximately 1600 generations. 

 

For each experiment, the objective value sets obtained by each solution in the final non-

dominated front were recorded. To measure each experiment’s performance with respect 

to convergence and diversity, the following two metrics were used (Khor et al. 2005): 

1. Generational Distance, GD (a convergence metric) 
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Smaller values of GD signify better convergence, while larger values of S indicate better 

diversity. In both equations, the term n corresponds to the number of unique objective 

value sets in the final non-dominated front after a particular run.  

 

In the S equation, the term  is equal to the Euclidean distance between unique member 

i and its nearest unique member in the final non-dominated front. In the GD equation, the 

term di is equal to the Euclidean distance between unique objective value set member i in 

the final non-dominated front and its nearest unique objective value set member in the 

true Pareto front. Since the problem’s true Pareto-optimal solutions are unknown, the 

most optimal objective value set was used (i.e. 0 0 0 1) in the GD calculations. Therefore, 

'
id
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although the results give an indication of how well a particular parameter combination 

performed, they are not definitive. 

 

To determine each parameter’s effects on GD and S, a statistical analysis of variance 

(ANOVA) test was carried out. Table 5-11 displays the resultant p values, while the full 

results are contained in Appendix A. Results show that the N value has a significant 

effect on the GD metric, along with the interaction between N and pc. Similarly, results 

indicate that the N value has a significant effect on the S metric, along with the 

interaction between pc and pm. 

 
Table 5-11 ANOVA results for the generational distance (GD) and spacing (S) metrics 

 
P Value Source 

GD metric S metric 

N 0.000 0.008 

pc 0.906 0.147 

pm 0.619 0.891 

N* pc 0.055 0.922 

N* pm 0.854 0.374 

pc* pm 0.326 0.042 

N* pc* pm 0.918 0.352 

 

These ANOVA results were used to determine which N*pc*pm combination to use for the 

HSC problems addressed in this chapter. Since results showed that N and N*pc have a 

significant effect on the GD metric, their variations were ranked according to their 

average performance for the GD metric. Similarly, since results showed that N and pc*pm 

have a significant effect on the S metric, their variations were also ranked according to 

their average performance for the S metric. Table 5-12 displays these ranks. 
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Table 5-12 GD ranks for N and N*pc, and S ranks for N and pc*pm 
 

N GD 
Rank 

 N*pc GD 
Rank 

 N S Rank  pc*pm S Rank 

100 1  100*0.9 10  100 5  0.9*0.1 8 

200 2  100*0.8 5  200 4  0.9*0.2 2 

300 4  100*0.7 1  300 1  0.9*0.3 21 

400 5  100*0.6 2  400 3  0.9*0.4 3 

500 3  100*0.5 3  500 2  0.9*0.5 16 

   200*0.9 6     0.8*0.1 9 

   200*0.8 7     0.8*0.2 15 

   200*0.7 4     0.8*0.3 24 

   200*0.6 14     0.8*0.4 10 

   200*0.5 22     0.8*0.5 23 

   300*0.9 19     0.7*0.1 18 

   300*0.8 20     0.7*0.2 17 

   300*0.7 12     0.7*0.3 4 

   300*0.6 9     0.7*0.4 18 

   300*0.5 21     0.7*0.5 1 

   400*0.9 17     0.6*0.1 20 

   400*0.8 24     0.6*0.2 11 

   400*0.7 25     0.6*0.3 12 

   400*0.6 15     0.6*0.4 22 

   400*0.5 16     0.6*0.5 25 

   500*0.9 13     0.5*0.1 7 

   500*0.8 8     0.5*0.2 13 

   500*0.7 23     0.5*0.3 6 

   500*0.6 18     0.5*0.4 5 

   500*0.5 11     0.5*0.5 14 

 

In order to determine which N*pc*pm combination performed the best overall, each 

combination was assigned a performance value equal to the summation of its individual 

GD rank and S rank. Since there are 25 variations for N*pc and pc*pm, and only 5 

variations for N, the GD rank and S rank for N were multiplied by 5 in order to give them 
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the same weight. For example, the N*pc*pm combination of 100*0.9*0.1 has a 

performance value equal to (1*5) + 10 + (5*5) + 8 = 48. Since the N*pc*pm combination 

of 100*0.7*0.5 had the lowest, and therefore best, performance value, these parameters 

were used in NSGAII-OR for each problem addressed in this chapter. 

 

5.6.13 Execution of NSGAII-OR for Stage 2 

NSGAII-OR was developed in MATLAB8, a high-level programming language. The 

stopping criterion for each run was set at 4 hours, which is a reasonable amount of 

computational time to find good solutions without being too long. 

 

5.6.13.1 Test Problems 

The first set of test problems solved by the mathematical model for stage 2 was also used 

to test NSGAII-OR. The solutions were manually validated to ensure that the schedules 

were sound. Table 5-13 displays the computational results for these test problems, 

including the different sets of objective values obtained for each problem. The term Gen 

corresponds to the number of generations reached, and U represents the number of unique 

solutions in the final non-dominated front. All non-dominated solutions were feasible. 

Note that because different schedules may result in the same objective values, the number 

of objective value sets is less than the number of unique non-dominated solutions. 

                                                 
8 Copyright © The MathWorks, Inc. 

 139



Table 5-13 Test 1 results for stage 2, using NSGAII-OR 
 

Objective Values (f1 f2 f3 f4) Day Gen U 

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 

Mon 22673 100 5 2 3 1 10 2 2 1     

Tue 24844 100 2 2 4 2 3 2 3 2 3 3 4 1 4 2 2 1   

Wed 23866 42 5 0 3 2 5 0 4 1 5 2 3 1 8 0 3 1 10 3 2 1 11 0 2 1

Thu 24495 100 2 4 4 2 3 2 3 2 3 4 3 1 4 2 3 1 5 2 2 1 19 2 1 1

Fri 23600 100 3 4 3 1 4 4 2 1     

 

To compare the test results of NSGAII-OR with the stage 2 mathematical model, the set 

of objective values that best minimized the model’s objective functions (i.e. Priority 

Levels 1, 2, and 3: Minimize ba bbz 11*2 += , 2bz = , and 3bz =  respectively) were 

selected for each problem. Table 5-14 compares the objective values obtained using the 

best schedules obtained by the mathematical model and NSGAII-OR’s selected 

schedules. For Monday, Wednesday, and Friday, NSGAII-OR found solutions that 

neither dominated nor were dominated by the mathematical model’s solutions. For 

Tuesday and Thursday, NSGAII-OR found slightly worse results (i.e. 1 half hour of 

overtime) regarding the first objective. However, keep in mind that for each problem, 

NSGAII-OR’s computational time was only four hours while the mathematical model’s 

computational time ranged between five and twelve hours. 

 
Table 5-14 Comparison between the objective values obtained by the mathematical 

model's schedules and NSGAII-OR's selected schedules 
 

Objective Values (f1 f2 f3 f4)  

Mon. Tue. Wed. Thu. Fri. 

Model 4 2 5 3 1 2 4 2 4 0 4 2 2 2 3 2 2 4 4 1 

NSGAII-OR 5 2 3 1 2 2 4 2 5 0 3 2 3 2 3 2 3 4 3 1 
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5.6.13.2 Health Sciences Centre (HSC) Problems 

The HSC problems addressed in the previous chapter (for stage 1) were solved for stage 2 

using NSGAII-OR. Table 5-15 displays the computational results. Again, the stopping 

criterion was set at four hours. The term Gen relates to the number of generations reached 

and U represents the number of unique solutions in the final non-dominated front. As 

explained in section 5.6.7, NSGAII-OR is able to ensure that Constraints 1 – 4 are not 

violated, but it cannot guarantee the same for Constraints 5 and 6 because there are 

certain problems that may not have any solutions which respect these two constraints. 

Therefore, for these types of cases, V5 and V6 give the amount of violation for Constraints 

5 and 6, respectively. 

 
Table 5-15 Results for stage 2, using NSGAII-OR 

 

Week Day Gen U Feasible? 
(Yes=1,No=0)

V5 

(half hours) 
V6 

(half hours) 

Mon 9709 100 1 - - 

Tue 10799 100 1 - - 

Wed 13778 100 0 1 - 

Thu 10499 100 1 - - 

1 

Fri 9757 100 1 - - 

Mon 9159 100 1 - - 

Tue 9244 100 1 - - 

Wed 11487 100 0 - 1 

Thu 10356 100 1 - - 

2 

Fri 9103 100 1 - - 

Tue 10112 100 1 - - 

Wed 12154 100 1 - - 

Thu 9761 100 1 - - 

3 

Fri 9182 100 1 - - 

4 Mon 9100 100 1 - - 
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Tue 12091 100 1 - - 

Wed 12133 100 0 1 - 

Thu 11306 100 1 - - 

Fri 11682 100 1 - - 

Mon 10816 100 1 - - 

Tue 10415 100 1 - - 

Wed 12546 100 1 - - 

Thu 12470 100 1 - - 

5 

Fri 11530 100 1 - - 

 

For the Wednesdays of weeks 1, 2, and 4, cases could not be scheduled without violating 

Constraints 5 and 6. However, the constraint violations were minimized to only 1 half 

hour. Constraints 5 and 6 were considered to some extent during the SD and Overnight 

assignment process in stage 1. However, the stage 1 mathematical model will need to be 

modified to fully consider all possible outcomes when assigning SD or Overnight status, 

so that feasible solutions always exist in stage 2. 

 

Table 5-16 displays the different objective value sets obtained for each problem using 

NSGAII-OR. The objective values in the shaded boxes belong to the schedules selected 

for comparison with the actual schedules used at HSC, and were selected based on how 

well they minimize the mathematical model’s objective functions (i.e. Priority Levels 1, 

2, and 3: Minimize ba bbz 11*2 += , 2bz = , and 3bz =  , respectively). On average, the 

selected NSGAII-OR schedules will result in a maximum of 1.8 hours of overtime in any 

operating theatre (i.e. f1), and a maximum deviation of 1.7 hours with regards to OR time 

utilization between any two operating theatres (i.e. f2). If an OR department wished to 

employ this scheduling system, they should generate schedules sufficiently far in advance 

so that staffing can be adjusted to meet the schedule, and hence avoid overtime costs. 
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Table 5-16 Objective values obtained for stage 2, using NSGAII-OR 
 

Objective Values (f1 f2 f3 f4) Week 
Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10 Set 11 

M 4 4 7 3 5 4 7 2 6 4 6 2 12 4 5 2        
T 6 5 7 2 6 6 6 2 7 4 6 2 8 4 5 3 8 5 5 2 10 3 6 2 11 3 5 2 23 7 4 2    
W 3 3 5 2 4 3 4 3 6 3 4 2         
Th 4 8 5 3 6 8 4 2          

1 

F 4 3 7 2 6 3 6 3 6 6 6 2 7 2 6 2 11 3 5 2 17 4 4 2 20 2 5 2 20 3 4 2    
M 4 3 8 2 4 4 7 2  6 3 7 3 8 2 8 3 9 2 7 3 10 2 6 2 12 3 5 2     
T 4 2 7 3 4 6 6 3 4 6 7 2 5 5 6 3 8 4 7 2 8 6 6 2 9 3 6 3 10 2 6 3 10 2 7 2 10 3 6 2 12 2 6 2 
W 0 3 6 4 2 2 6 2 4 4 5 4 5 4 5 3 5 5 5 2 6 2 5 2      
Th 1 4 7 3 1 4 8 2 2 2 6 2 7 6 5 2 9 3 5 2       

2 

F 3 4 6 3 4 3 6 2 5 3 5 2 7 3 4 2        
T 7 5 6 3 7 5 7 2 7 7 6 2 7 8 5 3 8 5 6 2 8 7 5 3 12 9 5 2 15 5 5 2 20 11 4 2   
W 2 2 6 3 6 2 5 2          
Th 1 4 8 4 5 5 6 2 6 3 5 2 7 4 4 2        

3 

F 3 3 6 2 4 2 6 3 5 8 5 2 6 2 6 2 6 3 5 2 7 2 5 2 10 10 4 2     
M 5 4 6 3 6 7 7 2 8 4 6 2 10 3 6 3 11 7 5 2 12 3 5 2      
T 1 4 6 3 2 5 6 2 3 4 5 3 3 5 5 2 4 4 6 2 5 4 5 2 6 3 5 3 8 5 4 2 11 3 4 2   
W 4 2 6 2 6 2 5 2 7 1 6 2 13 1 5 2        
Th 2 3 7 3 4 4 8 2 4 5 7 2  4 6 6 3 5 3 7 2 6 7 6 2 6 9 5 2 8 3 6 2 8 5 5 2 10 3 5 2  

4 

F 1 3 6 3 3 4 5 3 5 4 5 2 6 3 5 2 6 4 4 2       
M 8 3 4 2 12 4 3 2          
T 4 3 6 3 5 4 6 2 6 4 5 3 8 4 5 2 10 3 5 2 10 4 4 2      
W 7 2 5 2           
Th 3 3 7 2 3 5 6 2 5 4 6 2 5 5 5 2 8 3 6 2 8 4 4 2      

5 

F 5 3 5 2 5 5 4 2 7 3 4 2         
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Figure 5-14 compares the largest number of PACU beds occupied at any time (i.e. f3), 

based on the actual schedules employed at HSC and the selected schedules generated by 

NSGAII-OR. On average, NSGAII-OR reduced these numbers by 31.9%. At the busiest 

time in PACU, at least 15 PACU beds were needed due to HSC’s schedules. The selected 

NSGAII-OR schedules, however, would have only required a maximum of 8 PACU 

beds. This demonstrates that more cases could likely be performed without increasing 

resources, simply by smoothing resource utilization variability. 
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Figure 5-14 Comparison between f3 values obtained by HSC’s schedules and NSGAII-OR’s 
selected schedules 

 

Similarly, Figure 5-15 compares the largest number of cases that are scheduled to finish 

at the same time (i.e. f4), resulting from HSC’s schedules and NSGAII-OR’s selected 

schedules. On average, NSGAII-OR’s selected schedules lowered these numbers by 

57.1%. According to the schedules used by HSC, up to 9 cases finished simultaneously. 

On the other hand, only a maximum of 4 cases would have finished at the same time if 

NSGAII-OR’s selected schedules had been used. 
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Figure 5-15 Comparison between f4 values obtained by HSC’s schedules and NSGAII-OR’s 
selected schedules 
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5.7 Summary 

This chapter presented the second stage of the proposed elective operating room (OR) 

scheduling system, based on the elective surgical patient flow at Health Sciences Centre 

(HSC) in Winnipeg, Manitoba. In this stage, cases are assigned to operating theatres and 

given start times. The resultant daily schedules reduce the artificial variability occurring 

within each day, based on four objectives classified into three priority levels. The first 

priority level minimizes overtime and balances utilized OR time among each operating 

theatre, in order to reduce costs and staff dissatisfaction. In the second priority level, 

Post-Anaesthesia Care Unit (PACU) bed occupancy is evenly distributed throughout the 

day in order to decrease delays caused by an insufficient number of PACU beds during 

peak periods. Finally, the third priority level minimizes the number of cases that finish 

simultaneously, so that delays caused by an insufficient number of peri-operative aides 

(PAs) to turnover the operating theatres during peak periods are reduced. 

 

For this stage, the problem was first mathematically modelled and solved using 

lexicographic goal programming. The mathematical model was tested on two sets of test 

problems, where it was discovered that optimal solutions could not be obtained for the 

majority of even the smallest problems. Furthermore, solution times greatly increased 

with only slight increases in the number of cases to be scheduled. Therefore, a second 

optimization method was developed for solving the problems at hand. 

 

This second method is a genetic algorithm, called Nondominated Sorting Genetic 

Algorithm II for Operating Room Scheduling (NSGAII-OR). Compared to the 
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mathematical model, NSGAII-OR was able to generate comparable solutions to the test 

problems in shorter amounts of time. Compared to the actual schedules employed at HSC 

during the five week period addressed in stage 1, NSGAII-OR reduced the largest 

number of PACU beds occupied during any period of the day by an average of 31.9%, 

and the largest number of cases that finish simultaneously during any period of the day 

by an average of 57.1%. Therefore, NSGAII-OR was able to successfully generate 

schedules with less variability within each day, regarding these two objectives. With 

modest programming knowledge, NSGAII-OR can be tailored to meet the needs of many 

other facilities by adjusting, adding, or removing constraints or objectives. 

 

Two of the constraints in this stage relate to Same Day (SD) and Overnight patients being 

scheduled early enough to allow for sufficient recovery by their post-operative unit’s 

discharge deadline. For three particular problems addressed in this chapter, there was no 

way to schedule cases without violating one of these constraints. Although the 

mathematical model for the first stage did consider these constraints to some extent when 

assigning patients SD or Overnight status, it should be modified in future research to 

fully grasp all scheduling possibilities as a result of its assignments. Another alternative 

to addressing these constraints would be to create a single multi-objective optimization 

method that can schedule in just one step, rather than two. However, this will be a very 

complex problem that is difficult to solve. Furthermore, one will likely have to remove 

some objectives in order to make the problem more tractable. 
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Chapter 6: Conclusions and Future Research 

Recent evaluations on the causes of delays in healthcare facilities have concluded that 

delays may be significantly reduced by improving patient flow. When patients, staff, 

information, and materials do not timely and efficiently flow through a hospital, staff and 

patient satisfaction, costs, and patient safety are all negatively affected. Based on this 

information, Health Sciences Centre (HSC) in Winnipeg initiated a project to analyze its 

adult surgical patient flow and generate possible methods of improvement. As a result, 

the researchers involved concluded that the largest barrier to smooth patient flow was the 

way in which elective surgeries were being scheduled in the operating room (OR) 

department. This led to the development of a new elective OR scheduling system for 

HSC, which is presented in this thesis. 

 

At HSC, as in most facilities, surgical cases are scheduled through a block scheduling 

policy in which surgical dates are chosen by surgeons. However, resources may be better 

utilized when a facility books cases through an open scheduling policy, where they have 

control over surgical date, operating theatre, and start times assignments. Therefore, the 

proposed elective OR scheduling system generates weekly elective OR schedules with 

this control. 

 

Before the scheduling system can be carried out, HSC must first allocate hours of elective 

OR time to each surgical group during a particular week. Each group must then submit a 

list of cases that they wish to perform during that week, provided that their allocated OR 
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time has not been exceeded. The OR department can then use the proposed elective OR 

scheduling system to generate complete OR schedules. 

 

In the proposed system, weekly elective OR schedules are generated in two stages. In the 

first stage, cases are assigned to the different days of the week so that day-to-day artificial 

variability is reduced. Because the objectives in this stage have very distinct priorities, a 

biased search for an optimal solution can be conducted. This thesis demonstrates that the 

problem can be mathematically modelled and solved using lexicographic goal 

programming, which is suitable for multi-objective problems where no trade-offs 

between objectives in different priority levels are allowed. 

 

In the second stage of the proposed system, the cases assigned to each day are given 

operating theatre and start time assignments so that artificial variability occurring within 

a day is reduced. Like the first stage, the second stage has distinct priorities for each 

objective, and hence a biased search for an optimal solution can be used. However, this 

thesis demonstrates that lexicographic goal programming is unsuitable for the problems 

in this stage, due to its inability to handle the problem sizes. Alternatively, a 

Nondominated Sorting Genetic Algorithm II for Operating Room Scheduling (NSGAII-

OR) was developed and shown to be a feasible optimization method for the second stage. 

 

Both stages were tested using data pertaining to elective cases performed during a five 

week period at HSC. Compared to the actual schedules employed at HSC, the stage 1 

lexicographic programming model was able to reduce the largest daily bed occupancy 
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variability for any service by an average of 25.1%, and the bed occupancy on the days 

following the scheduled week by an average of 19.9%. In addition, the model reduced 

total daily Same Day (SD) and Same Day Admission (SDA) patient volume variability 

by an average of 94.3%, while minimizing daily OR utilization variability to only one 

hour. The stage 2 NSGAII-OR was able to reduce the largest number of Post-Anaesthesia 

Care Unit (PACU) beds occupied during any period of the day by an average of 31.9%, 

and the largest number of cases that finish simultaneously during any period of the day 

by an average of 57.1%. These results suggest that there should be less artificial 

variability if the proposed elective OR scheduling system was actually implemented at 

HSC. Subsequently, there should be an improvement in the facility’s surgical patient 

flow. 

 

6.1 Alternatives 

The proposed elective OR scheduling system removes the control over choosing each 

case’s surgical date and start time from its surgeons. In addition, surgeons and patients 

will not be aware of their upcoming surgical schedules until the complete OR schedule 

has been generated, which is dependent on when each surgical group submits their 

selected cases, along with when the OR department decides to employ the proposed 

optimization methods. These two issues directly impact surgeon satisfaction and will 

probably be the major barrier to implementing the proposed scheduling system at HSC. 

As a way of alleviating some of these issues, HSC can use the proposed system to create 

a few cyclic weekly OR schedules that rotate throughout the year. This will allow the 

surgeons, patients, and staff to be aware of the upcoming elective OR schedule, weeks or 
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months in advance. Alternatively, the proposed system can be used for only scheduling 

cases that belong to specific surgical groups that are able to submit their selected cases 

far in advance. 

 

If desired, HSC can choose to only use the first stage of the proposed system. After each 

case is assigned to a particular day, its surgeon(s) can work together with the OR 

department to come up with an operating theatre and start time assignments. In this way, 

at least the objectives in the first stage will be addressed, while some control is returned 

to the surgeons. 

 

6.2 Future Research 

For three particular problems addressed in the second stage, there was no way to schedule 

cases such that some constraints were not violated. Although the mathematical model in 

the first stage did consider those constraints to some extent, it will need to be modified so 

that feasible solutions will always exist in the second stage. 

 

Alternatively, elective OR schedules may be created in just one step. In this way, all of 

the objectives and constraints will be considered simultaneously. Moreover, the 

objectives in the second stage will be optimized without being constrained by the results 

of first stage. Future research will involve the modification of NSGAII-OR to achieve 

this, allowing for complete schedules to be created in just a single run by using only one 

multi-objective optimization method. However, this will increase the complexity of the 
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problems being solved, and some objectives may need to be removed in order to make 

the problems easier to handle. 

 

Future work will also include incorporating techniques into the proposed elective OR 

scheduling system so that it can accommodate any unforeseen events that may occur after 

a schedule has been generated. This is important because unforeseen events often occur 

in the OR department, such as the arrival of emergency cases. One simple way of 

accommodating these events would be to erase existing schedules and generate entirely 

new ones. However, this is an impractical strategy because the process will be time 

consuming, the allocation of resources will be disrupted, and the strategy will likely lead 

to failure. Therefore, it would be better to adjust old schedules to meet new events. This 

process of adaptation is called reactive scheduling, and it is essential in making the 

proposed scheduling system a well-rounded success. 



 

Appendix A 
 

Table A-1 Results for stage 1 – Only Priority Level 1 
 

Week No. of 
Variables 

No. of 
Constraints 

CPU Priority 
Level 

Objective Function Z B 
(sec) 

1 2*b1a/B1a +b1b/B1b 3 3 1 10337 6619 31 
2 b2 48 
3 b3 6 

 

1 2*b1a/B1a +b1b/B1b 3.058 3.058 2 10853 7376 48 
2 b2 38 
3 b3 7 

 

1 2*b1a/B1a +b1b/B1b 3.015 3.015 3 9843 5747 15 
2 b2 34 
3 b3 1 

 

1 2*b1a/B1a +b1b/B1b 3 3 4 10523 6956 5 
2 b2 44 
3 b3 5 

 

1 2*b1a/B1a +b1b/B1b 3 3 5 10499 6797 11 
2 b2 46 
3 b3 6 

 

 

Table A-2 Results for stage 1 – Only Priority Level 2 
 

Week No. of 
Variables 

No. of 
Constraints 

CPU Priority 
Level 

Objective Function Z B 
(sec) 

2 b2 25* 23.8 1 3218 5550 14400 
1 2*b1a/B1a +b1b/B1b 3.263 
3 b3 11 

 

2 b2 24 23.4 2 3734 6307 605 
1 2*b1a/B1a +b1b/B1b 6.722 
3 b3 7 

 

2 b2 17 16.75 3 2724 4676 65 
1 2*b1a/B1a +b1b/B1b 5.149 
3 b3 1 

 

2 b2 20 20 4 3404 5887 185 
1 2*b1a/B1a +b1b/B1b 3.574 
3 b3 3 

 

2 b2 25 24.4 5 3380 5728 107 
1 2*b1a/B1a +b1b/B1b 4.589 
3 b3 8 
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Table A-3 Results for stage 1 – Only Priority Level 3 
 

Week No. of 
Variables 

No. of 
Constraints 

CPU Priority 
Level 

Objective Function Z B 
(sec) 

3 b3 0 0 1 3258 5590 52 

1 2*b1a/B1a +b1b/B1b 3.471 

2 b2 65 

 

3 b3 0 0 2 3774 6347 54 

1 2*b1a/B1a +b1b/B1b 6.026 

2 b2 62 

 

3 b3 0 0 3 2764 4700 45 

1 2*b1a/B1a +b1b/B1b 5.179 

2 b2 22 

 

3 b3 0 0 4 3444 5927 65 

1 2*b1a/B1a +b1b/B1b 3.165 

2 b2 52 

 

3 b3 0 0 5 3420 5768 8 

1 2*b1a/B1a +b1b/B1b 3.956 

2 b2 58 

 

 

Table A-4 Results for stage 1 – 1-3-2 
 

Week Priority 
Level 

Objective Function No. of 
Variables 

No. of 
Constraints 

CPU 
(sec) 

Z B 

1 2*b1a/B1a +b1b/B1b 10137 6609 9 3 3 

3 b3 10381 6664 45 0 0 

1 

2 b2 10396 6679 775 24 23.8 

1 2*b1a/B1a +b1b/B1b 10643 7366 27 3.058 3.058 

3 b3 10897 7421 118 0 0 

2 

2 b2 10912 7436 11727 24 23.4 

1 2*b1a/B1a +b1b/B1b 9628 5749 9 3.015 3.015 

3 b3 9911 5781 37 0 0 

3 

2 b2 9902 5789 215 17 16.75 

1 2*b1a/B1a +b1b/B1b 10308 6946 8 3 3 

3 b3 10567 7001 101 0 0 

4 

2 b2 10582 7016 14400 27* 20 

1 2*b1a/B1a +b1b/B1b 10294 6787 10 3 3 

3 b3 10543 6842 24 0 0 

5 

2 b2 10558 6857 469 25 24.4 

 

154 



 

Table A-5 Results for stage 1 – 2-1-3 
 

Week Priority 
Level 

Objective Function No. of 
Variables 

No. of 
Constraints 

CPU 
(sec) 

Z B 

2 b2 3213 5545 14400 25 23.8* 

1 2*b1a/B1a +b1b/B1b 10342 6624 43 3 3 

1 

3 b3 10396 6679 297 0 0 

2 b2 3729 6302 725 24 23.4 

1 2*b1a/B1a +b1b/B1b 10858 7381 61 3.058 3058 

2 

3 b3 10912 7436 14400 1* 0 

2 b2 2743 4680 6 17 16.75 

1 2*b1a/B1a +b1b/B1b 9872 5759 26 3.015 3.015 

3 

3 b3 9902 5789 60 0 0 

2 b2 3399 5882 14400 22* 20 

1 2*b1a/B1a +b1b/B1b 10528 6961 14400 N/A 3 

4 

3 b3 - - - - - 

2 b2 3375 5723 24 25 24.4 

1 2*b1a/B1a +b1b/B1b 10504 6802 107 3 3 

5 

3 b3 10558 6857 171 0 0 

 

Table A-6 Results for stage 1 – 2-3-1 
 

Week Priority 
Level 

Objective Function No. of 
Variables 

No. of 
Constraints 

CPU 
(sec) 

Z B 

2 b2 3213 5545 14400 25 23.8* 

3 b3 3268 5600 78 0 0 

1 

1 2*b1a/B1a +b1b/B1b 10397 6679 1804 3 3 

2 b2 3729 6302 725 24 23.4 

3 b3 3784 6357 301 0 0 

2 

1 2*b1a/B1a +b1b/B1b 10913 7436 499 3.058 3.058 

2 b2 2743 4680 6 17 16.75 

3 b3 2798 4717 48 0 0 

3 

1 2*b1a/B1a +b1b/B1b 9928 5789 200 3.015 3.15 

2 b2 3399 5882 14400 22* 20 

3 b3 3454 5937 44 0 0 

4 

1 2*b1a/B1a +b1b/B1b 10583 7016 9952 3 3 

2 b2 3375 5723 24 25 24.4 

3 b3 3430 5778 6047 0 0 

5 

1 2*b1a/B1a +b1b/B1b 10559 6857 19 3 3 

 

155 



 

Table A-7 Results for stage 1 – 3-1-2 
 

Week Priority 
Level 

Objective Function No. of 
Variables 

No. of 
Constraints 

CPU 
(sec) 

Z B 

3 b3 3253 5585 10 0 0 

1 2*b1a/B1a +b1b/B1b 10382 6664 68 3 3 

1 

2 b2 10396 6679 775 24 23.8 

3 b3 3769 6342 20 0 0 

1 2*b1a/B1a +b1b/B1b 10898 7421 161 3.058 3.058 

2 

2 b2 10912 7436 11727 24 23.4 

3 b3 2783 4702 15 0 0 

1 2*b1a/B1a +b1b/B1b 9912 5781 16 3.015 3.015 

3 

2 b2 9927 5789 215 17 16.75 

3 b3 3439 5922 65 0 0 

1 2*b1a/B1a +b1b/B1b 10568 7001 11 3 3 

4 

2 b2 10582 7016 14400 27* 20 

3 b3 3415 5763 50 0 0 

1 2*b1a/B1a +b1b/B1b 10544 6842 43 3 3 

5 

2 b2 10558 6857 469 25 24.4 

 

Table A-8 Results for stage 1 – 3-2-1 
 

Week Priority 
Level 

Objective Function No. of 
Variables 

No. of 
Constraints 

CPU 
(sec) 

Z B 

3 b3 3253 5585 10 0 0 

2 b2 3268 5600 14400 27* 23.8 

1 

1 2*b1a/B1a +b1b/B1b 10397 6679 14400 N/A 3 

3 b3 3769 6342 20 0 0 

2 b2 3784 6357 243 24 23.4 

2 

1 2*b1a/B1a +b1b/B1b 10913 7436 499 3.058 3.058 

3 b3 2783 4702 15 0 0 

2 b2 2798 4717 120 17 16.75 

3 

1 2*b1a/B1a +b1b/B1b 9927 5789 200 3.015 3.015 

3 b3 3439 5922 65 0 0 

2 b2 3454 5937 14400 22* 20 

4 

2 b2 10583 7016 9952 3 3 

3 b3 3415 5763 50 0 0 

2 b2 3430 5778 4315 25 24.4 

5 

1 2*b1a/B1a +b1b/B1b 10559 6857 19 3 3 
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Table A-9 Analysis of Variance (ANOVA) Results for GD Metric 
 

Source 
Type III Sum 
of Squares df Mean Square F Sig. 

Corrected Model 593.665(a) 124 4.788 1.112 .241
Intercept 76391.093 1 76391.093 17737.982 .000
N 136.156 4 34.039 7.904 .000
pc 4.399 4 1.100 .255 .906
pm 11.415 4 2.854 .663 .619
N* pc 114.242 16 7.140 1.658 .055
N*pm 43.770 16 2.736 .635 .854
pc*pm 77.996 16 4.875 1.132 .326
N* pc*pm 

205.688 64 3.214 .746 .918

Error 1076.660 250 4.307    
Total 78061.419 375     
Corrected Total 1670.325 374     

a  R Squared = .355 (Adjusted R Squared = .036) 
 

Table A-10 GD Means for N 
 

95% Confidence Interval 
N Mean Std. Error Lower Bound Upper Bound 
100 13.232 .240 12.760 13.704 
200 14.007 .240 13.535 14.479 
300 14.693 .240 14.221 15.165 
400 14.931 .240 14.459 15.403 
500 14.500 .240 14.028 14.972 
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Table A-11 GD Means for N*pc 
 

95% Confidence Interval 
pc Mean Std. Error Lower Bound Upper Bound N 
.5 13.055 .536 12.000 14.110
.6 12.900 .536 11.844 13.955
.7 12.811 .536 11.756 13.866
.8 13.410 .536 12.355 14.465

100 

.9 13.985 .536 12.929 15.040

.5 15.288 .536 14.233 16.344

.6 14.211 .536 13.156 15.266

.7 13.286 .536 12.230 14.341

.8 13.737 .536 12.682 14.792

200 

.9 13.514 .536 12.459 14.570

.5 15.220 .536 14.165 16.276

.6 13.952 .536 12.896 15.007

.7 14.171 .536 13.116 15.226

.8 15.082 .536 14.027 16.137

300 

.9 15.041 .536 13.986 16.097

.5 14.472 .536 13.416 15.527

.6 14.451 .536 13.396 15.507

.7 15.833 .536 14.778 16.888

.8 15.410 .536 14.355 16.465

400 

.9 14.490 .536 13.434 15.545

.5 14.124 .536 13.069 15.179

.6 14.965 .536 13.910 16.021

.7 15.293 .536 14.237 16.348

.8 13.908 .536 12.853 14.964

500 

.9 14.208 .536 13.152 15.263
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Figure A-1 GD Profile Plot for N 
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Figure A-2 GD Profile Plot for N*pc 
 

Table A-12 Analysis of Variance (ANOVA) Results for S Metric 
 

Source 
Type III Sum 
of Squares df Mean Square F Sig. 

Corrected Model 11.117(a) 124 .090 1.163 .160
Intercept 80.496 1 80.496 1044.115 .000
N 1.089 4 .272 3.532 .008
pc .529 4 .132 1.715 .147
pm .086 4 .022 .279 .891
N* pc .670 16 .042 .543 .922
N*pm 1.333 16 .083 1.080 .374
pc*pm 2.131 16 .133 1.728 .042
N* pc*pm 

5.278 64 .082 1.070 .352

Error 19.274 250 .077    
Total 110.886 375     
Corrected Total 30.390 374     

a  R Squared = .366 (Adjusted R Squared = .051) 
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Table A-13 S Means for N 
 

95% Confidence Interval 
N Mean Std. Error Lower Bound Upper Bound 
100 .388 .032 .325 .451 
200 .410 .032 .347 .473 
300 .525 .032 .461 .588 
400 .495 .032 .432 .558 
500 .499 .032 .436 .562 

 

Table A-14 S Means for pc*pm 
 

95% Confidence Interval 
pm Mean Std. Error Lower Bound Upper Bound pc 
.1 .529 .072 .387 .670 
.2 .436 .072 .295 .578 
.3 .535 .072 .394 .676 
.4 .548 .072 .407 .689 

.5 

.5 .430 .072 .289 .572 

.1 .400 .072 .258 .541 

.2 .486 .072 .344 .627 

.3 .481 .072 .340 .622 

.4 .373 .072 .232 .515 

.6 

.5 .303 .072 .161 .444 

.1 .405 .072 .263 .546 

.2 .408 .072 .267 .549 

.3 .556 .072 .415 .697 

.4 .405 .072 .264 .547 

.7 

.5 .665 .072 .523 .806 

.1 .503 .072 .362 .644 

.2 .428 .072 .287 .570 

.3 .346 .072 .204 .487 

.4 .495 .072 .354 .637 

.8 

.5 .366 .072 .225 .508 

.1 .519 .072 .378 .660 

.2 .597 .072 .456 .738 

.3 .391 .072 .250 .532 

.4 .568 .072 .426 .709 

.9 

.5 .410 .072 .269 .551 
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Figure A-3 S Profile Plot for N 
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Figure A-4 S Profile Plot for pc*pm



 

Appendix B 
 

B.1 Analysis of the Stage 1 Mathematical Model 

B.1.1 Relationship between Objectives 

To understand the relationship between the objectives in different priority levels, each 

HSC problem was solved by only considering the objectives in one priority level. The 

first row of Table 4-11 depicts the average objective value obtained for each priority 

level, when the original mathematical model was used to solve the five HSC problems. 

The subsequent rows display the same values for when the model only took the 

objectives in priority level one, two, or three into account. The computational results of 

each test are given in Appendix A. 

 
Table B-1 Comparison between the results obtained by the original mathematical model 

and variations where the objectives in only one priority level were considered 
 

Objectives  

Priority Level 1 
(2*b1a/B1a +b1b/B1b) 

Priority Level 2 
(b2) 

Priority Level 3 
(b3) 

Original Mathematical Model 3.015 22.2 0.8 

Only Priority Level 1 3.015 42.0 5.0 

Only Priority Level 2 4.659 22.2 6.0 

Only Priority Level 3 4.359 51.8 0 

 

From the results, it is evident that maximizing one priority level’s objectives will not 

optimize another priority level’s objectives. Hence, the problem was correctly assumed as 

multi-objective. 
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B.1.2 Relationship between Each Objective’s Priority Level 

The mathematical model was also tested on the five HSC problems by changing the order 

of priority levels. The first row of Table 4-12 depicts the average objective value 

obtained for each priority level in the original mathematical model. The subsequent rows 

display the same values for when the HSC problems were solved by using a different 

order of priority levels in the mathematical model. For example, 1-3-2 displays the results 

when the objectives in priority level one were considered first, followed by the objective 

in priority level three and finally priority level two. The computational results of each test 

are contained in Appendix A. 

 
Table B-2 Comparison between the results obtained by the original mathematical model 

and variations where each objective's corresponding priority level was changed 
 

Objectives  

Priority Level 1 
(2*b1a/B1a +b1b/B1b) 

Priority Level 2 
(b2) 

Priority Level 3 
(b3) 

Original Mathematical Model 3.015 22.2 0.8 

1-3-2 3.015 23.4 0 

2-1-3 3.018 22.6 0.25 

2-3-1 3.015 22.6 0 

3-1-2 3.015 23.4 0 

3-2-1 3.018 23.0 0 

 

Interestingly, the average objective value for each priority level in each variation was not 

much different from the original model’s value. This indicates that for those particular 

HSC problems, the objectives in each priority level were not greatly conflicting. 

 

The model variations 1-3-2, 3-1-2, and 3-2-1 performed as expected. Compared to the 

original model (i.e. 1-2-3), 1-3-2 resulted in a better average objective value for priority 
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level three, at the expense of priority level two. The variations 3-1-2 and 3-2-1 both 

predictably resulted in a better average objective value for priority level three. For 3-1-2, 

the average objective value for priority level one remained the same as the original 

model. Therefore the improvement in priority level three was offset by the deterioration 

in priority level two. For the variation 3-2-1, the improvement in priority level three’s 

average objective value resulted in worse values for the other two priority levels. 

 

The performance of the model variations 2-1-3 and 2-3-1, where the objective in priority 

level two was considered first, did not meet expectations. In these variations, the average 

objective values obtained for priority level two should have been the same or better than 

the original model’s values. However, this was not the case because the model could not 

find the optimal values for Weeks 1 and 4 after four hours, at which point the solver 

terminated its search. This may be because the problems’ feasible regions are much larger 

when the objective in priority level two is considered first, resulting in longer 

computational times to find the optimal solutions. 
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Appendix C 

 
C.1 Management Questionnaire 

Questionnaire (Management) 
 
Please use the following questions as a basis of your discussion. Please answer the 
following questions to the best of your knowledge. If your require clarification, please do 
not hesitate to ask the researcher.  
 
 
DEMOGRAPHIC INFORMATION 
 
Date:  _________________________________________________ (dd/mm/yy) 
Work area: ____________________________________________________________ 
Comments:  ____________________________________________________________ 

____________________________________________________________ 
 
 
QUESTIONS 
 
1) Have the research team documented the processes thoroughly? Yes  ,  No   
Comments:______________________________________________________________ 
________________________________________________________________________
________________________________________________________________________ 
 
2) Are there any processes that have not been included? Yes  ,  No   
If yes, please explain: ______________________________________________________ 
________________________________________________________________________
________________________________________________________________________ 
 
3) What is your opinion of our process redesign suggestions? 
Answer: ________________________________________________________________ 
________________________________________________________________________
________________________________________________________________________ 
 
4) Do you think that there are other areas of process redesign that the research team has 
not considered? Yes  ,  No   
If yes, please explain: ______________________________________________________ 
________________________________________________________________________
________________________________________________________________________ 
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5) What are the barriers of implementation of the process redesign suggestions? 
Answer: ________________________________________________________________ 
________________________________________________________________________
________________________________________________________________________ 
 
General Comments: _______________________________________________________ 
________________________________________________________________________
________________________________________________________________________ 
 
6) Do you want to receive a summary of the study results? Yes  ,  No   
 
If yes, you can either give us your contact information or contact Dr. Tarek ElMekkawy. 
 
Your contact information: 
Name:       ______________________________ 
Address: ______________________________ 
  ______________________________ 
  ______________________________ 
  ______________________________ 
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C.2 Nurse Questionnaire 

 
Questionnaire (Nurse) 

 
Please use the following questions as a basis of your discussion. Please answer the 
following questions to the best of your knowledge. If your require clarification, please do 
not hesitate to ask the researcher.  
 
 
DEMOGRAPHIC INFORMATION 
 
Date:  _________________________________________________ (dd/mm/yy) 
Work area: ____________________________________________________________ 
Comments:  ____________________________________________________________ 

____________________________________________________________ 
 
 
QUESTIONS 
 
1) What are the tasks that you usually do during the day? 
Answer:_________________________________________________________________ 
________________________________________________________________________
________________________________________________________________________ 
 
2) What are the other departments with which you are communicating? 
Answer:_________________________________________________________________ 
________________________________________________________________________
________________________________________________________________________ 
 
3) How do you communicate with other departments? 
Phone:     Email:  Hospital Information System:  In-person: 
Fax:    Other:  
 
4) What are the forms that you have to fill? 
Answer:_________________________________________________________________ 
________________________________________________________________________ 
 
5) Do you think all of the fields are appropriate? Yes  ,  No   
Comments: ______________________________________________________________ 
________________________________________________________________________
________________________________________________________________________ 
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6) Do you have any comments on improving the information flow? 
Answer: ________________________________________________________________ 
________________________________________________________________________
________________________________________________________________________ 
 
 
7) What time of the day do you feel busier? 
Answer:_________________________________________________________________ 
________________________________________________________________________ 
 
8) Do you have any comments on improving the processes? 
Answer: ________________________________________________________________ 
________________________________________________________________________
________________________________________________________________________ 
 
 
General Comments: _______________________________________________________ 
________________________________________________________________________
________________________________________________________________________ 
 
6) Do you want to receive a summary of the study results? Yes  ,  No   
 
If yes, you can either give us your contact information or contact Dr. Tarek ElMekkawy. 
 
Your contact information: 
Name:       ______________________________ 
Address: ______________________________ 
  ______________________________ 
  ______________________________ 
  ______________________________ 
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C.3 Physician Questionnaire 

 
Questionnaire (Physician) 

 
Please use the following questions as a basis of your discussion. Please answer the 
following questions to the best of your knowledge. If your require clarification, please do 
not hesitate to ask the researcher.  
 
 
DEMOGRAPHIC INFORMATION 
 
Date:  _________________________________________________ (dd/mm/yy) 
Work area: ____________________________________________________________ 
Comments:  ____________________________________________________________ 

____________________________________________________________ 
 
 
QUESTIONS 
 
1) What are the tasks that you usually do during the day? 
Answer:_________________________________________________________________ 
________________________________________________________________________
________________________________________________________________________ 
 
2) What are the other departments with which you are communicating? 
Answer:_________________________________________________________________ 
________________________________________________________________________
________________________________________________________________________ 
 
3) How do you communicate with other departments? 
Phone:     Email:  Hospital Information System:  In-person: 
Fax:    Other:  
 
4) Do you find the equipment that you need available just in time?  Yes  ,  No   
Comments:______________________________________________________________ 
________________________________________________________________________
________________________________________________________________________ 
 
5) Do you find your schedule appropriate and smooth? Yes  ,  No   
Comments: ______________________________________________________________ 
________________________________________________________________________
________________________________________________________________________ 
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6) Do you have any comments on improving the information flow? 
Answer: ________________________________________________________________ 
________________________________________________________________________
________________________________________________________________________ 
 
General Comments: _______________________________________________________ 
________________________________________________________________________
________________________________________________________________________ 
 
7) Do you want to receive a summary of the study results? Yes  ,  No   
 
If yes, you can either give us your contact information or contact Dr. Tarek ElMekkawy. 
 
Your contact information: 
Name:       ______________________________ 
Address: ______________________________ 
  ______________________________ 
  ______________________________ 
  ______________________________ 
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C.4 Patient Questionnaire 

 
Questionnaire (Patient) 

 
Please use the following questions as a basis of your discussion. Please answer the 
following questions to the best of your knowledge. If your require clarification, please do 
not hesitate to ask the researcher.  
 
 
DEMOGRAPHIC INFORMATION 
 
Date:  _________________________________________________ (dd/mm/yy) 
Work area: ____________________________________________________________ 
Comments:  ____________________________________________________________ 

____________________________________________________________ 
 
 
QUESTIONS 
 
1) Do you have any complaints?  Yes  ,  No   
Comments:______________________________________________________________ 
________________________________________________________________________
________________________________________________________________________ 
 
2) Did you have any unpleasant experiences?  Yes  ,  No   
Comments:______________________________________________________________ 
________________________________________________________________________
________________________________________________________________________ 
 
3) Do you think you went through any unnecessary procedures? For example, answering 
the same questions twice?          Yes  ,  No   
Comments:______________________________________________________________ 
________________________________________________________________________
________________________________________________________________________ 
 
4) What do you think can be improved to make your experience better? 
Answer:_________________________________________________________________ 
________________________________________________________________________
________________________________________________________________________ 
 
5) Since how long was your appointment booked?              Answer:__________________ 
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6) Did you have any previous appointments that were cancelled / rescheduled? 
 Yes  ,  No   
Comments: ______________________________________________________________ 
________________________________________________________________________
________________________________________________________________________ 
 
General Comments: _______________________________________________________ 
________________________________________________________________________
________________________________________________________________________ 
 
7) Do you want to receive a summary of the study results? Yes  ,  No   
 
If yes, you can either give us your contact information or contact Dr. Tarek ElMekkawy. 
 
Your contact information: 
Name:       ______________________________ 
Address: ______________________________ 
  ______________________________ 
  ______________________________ 
  ______________________________ 
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C.5 Consent Form – Staff 

 
Redesign of Surgery Patients Flow at Health Sciences Centre 

 
Dr. Tarek ElMekkawy  
Department of Mechanical and Manufacturing Engineering 
University of Manitoba  
 
Sponsored by Winnipeg Regional Health Authority (WRHA) 
 
The consent form will be read to the HSC staff member by the research student. This 
consent form, a copy of which will be left with you for your records and reference, is 
only part of the process of informed consent. It should give you the basic idea of what the 
research is about and what your participation will involve. If you would like more detail 
about something mentioned here, or information not included here, you should feel free 
to ask. Please take the time to read this carefully and to understand any accompanying 
information. This document is also available in alternative formats for your convenience.  
   
GOAL: 
The objective of this research is to redesign the flow of surgery patients at Health 
Sciences Centre (HSC) and analyze the current practice to recommend changes that will 
enhance the whole system performance. The project will include the entire patient 
journey from pre-operative care to discharge and post-operative follow up. 
 
In order to redesign the flow of surgery patients at HSC, the researchers first need to 
understand all the system processes related to this flow. In order to fully comprehend 
these processes, the researchers must observe and interview the people that carry out 
these processes. Through careful analysis, it is hoped that it will lead to suggested 
improvements of the current system. These improvements could be reflected in shorter 
waiting times and better staff and patient satisfaction. 
 
All information collected during the course of this research will be kept confidential in 
the principal investigator’s office for one year staring from the end of the project then all 
the collected information will be destroyed.  No Names will be mentioned in the results 
of the research. All results of this study will be made public through WRHA.    
 
Your signature on this form indicates that you have understood to your satisfaction the 
information regarding participation in the research project and agree to participate in 
interviews and be observed.  In no way does this waive your legal rights nor release the 
researchers, sponsors, or involved institutions from their legal and professional 
responsibilities. Interviews will take approximately 20 minutes. You are free to withdraw 
from the study at any time, and /or refrain from answering any question you prefer to 
omit, without prejudice or consequence.  Your continued participation should be as 
informed as your initial consent, so you should feel free to ask for clarification or new 
information throughout your participation. If you have any questions or would like to 
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receive a summary of results when the study is completed, contact Dr. Tarek 
ElMekkawy. 
 
This research has been approved by the [REB:                                                ].  If you 
have any concerns or complaints about this project you may contact any of the above-
named persons or the Human Ethics Secretariat.  A copy of this consent form has been 
given to you to keep for your records and reference.  
 
 
 
 
Participant’s Name          Participant’s Signature                     Date (dd/mm/yy) 
 
 
 
   
Researcher and/or Delegate’s Signature                                Date (dd/mm/yy) 
 
 
 
 
Researcher and/or Delegate’s Signature                                Date (dd/mm/yy) 
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C.6 Consent Form – Patients 

 
Redesign of Surgery Patients Flow at Health Sciences Centre 

 
Dr. Tarek ElMekkawy  
Department of Mechanical and Manufacturing Engineering 
University of Manitoba  
 
Sponsored by Winnipeg Regional Health Authority (WRHA) 
 
The consent form will be read to the patient by the research student. This consent form, a 
copy of which will be left with you for your records and reference, is only part of the 
process of informed consent. It should give you the basic idea of what the research is 
about and what your participation will involve. If you would like more detail about 
something mentioned here, or information not included here, you should feel free to ask. 
Please take the time to read this carefully and to understand any accompanying 
information. This document is also available in alternative formats for your convenience.  
   
GOAL: 
The objective of this research is to redesign the flow of surgery patients at Health 
Sciences Centre (HSC) and analyze the current practice to recommend changes that will 
enhance the whole system performance. The project will include the entire patient 
journey from pre-operative care to discharge and post-operative follow up. 
 
A part of this research project is to obtain the feedback from some patients regarding the 
received services. The feedback will highlight some points of weakness or strength of the 
current system. Through careful analysis of the patient feedbacks, it is hoped that will 
lead to suggested improvements of the current system. The improvement could be 
reflected in a shorter waiting time and better patient’s satisfaction. 
 
All information collected during the course of this research will be kept confidential in 
the principal investigator’s office for one year staring from the end of the project then all 
the collected information will be destroyed.  No Names will be mentioned in the results 
of the research. All results of this study will be made public through WRHA.    
 
Your signature on this form indicates that you have understood to your satisfaction the 
information regarding participation in the research project and agree to participate as a 
patient.  In no way does this waive your legal rights nor release the researchers, sponsors, 
or involved institutions from their legal and professional responsibilities.  You are free to 
withdraw from the study at any time, and /or refrain from answering any question you 
prefer to omit, without prejudice or consequence.  Your continued participation should be 
as informed as your initial consent, so you should feel free to ask for clarification or new 
information throughout your participation (Dr. Tarek ElMekkawy) 
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This research has been approved by the [REB:                                                ].  If you 
have any concerns or complaints about this project you may contact any of the above-
named persons or the Human Ethics Secretariat.  A copy of this consent form has been 
given to you to keep for your records and reference.  
 
 
 
Participant’s Name          Participant’s Signature                     Date (dd/mm/yy) 
 
 
 
   
Researcher and/or Delegate’s Signature            Date (dd/mm/yy) 
 
 
 
 
Researcher and/or Delegate’s Signature            Date (dd/mm/yy) 
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