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Abstract 

Introduction: Chronic diseases rarely follow uniform distributions throughout geographical 

space and so identifying regions that have frequent occurrences or elevated prevalences is 

important. The disease of interest for this research project was ischemic heart disease (IHD) 

which is a highly prevalent disease in Manitoba. This research project was focused on detecting 

spatial patterns of IHD and assessing the associations of some of the potential causes of these 

patterns. 

Purpose and Objectives: The purpose of this project was to use statistical tools to detect spatial 

and temporal patterns of IHD in Manitoba. The objectives were to: (1) detect geographic clusters 

of acute myocardial infarctions (AMI) within Manitoba; (2) assess whether IHD is related to the 

geographic distribution of some its well-known risk factors; and (3) what relationship IHD has to 

the temporal dimension throughout geographic space. 

Methods: This project used data from the population research data repository housed at the 

Manitoba Centre for Health Policy to identify persons diagnosed with IHD. The first objective 

was assessed using the flexible spatial scanner to detect clusters of AMIs. The second objective 

was assessed using spatial Poisson regression models that modelled the spatial covariance 

structures with neighborhood conditional autoregressive structures. The third objective was 

assessed by extending the spatial model to the temporal dimension by modeling the temporal 

covariance structures with random-walk covariance structures. Space-time interaction effects 

were assessed to complete the evaluation of the third objective. 

Results: One primary and eight secondary disease clusters of AMIs were identified, where the 

primary cluster occurred in the central Manitoba region. Hypertension prevalence and indigenous 
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population proportion significantly predicted IHD prevalence while controlling for socio-

economic status (SES) and spatial autocorrelation. A 10% increase in hypertension prevalence 

within a region was found to increase the risk of IHD by 9.3% (95% CI: 5.8%-13.0%), and a 

10% increase in the indigenous population proportion within a region was found to increase the 

risk of IHD by 0.7% (95% CI: 0.1%-1.3%). When controlling for temporal autocorrelation, 

indigenous population proportion was not a significant predictor of IHD, while hypertension 

was. The results were within error the same for males and females when stratifying by sex. 

Modelled IHD prevalence was found to be decreasing over time, but the majority of this 

occurred in the female sub-group, while the male sub-group was mostly constant. Counter to this 

finding, IHD prevalence in some regions substantially increased over the study period. 

Conclusions: This research identified AMI clusters as well as modelled the spatial and temporal 

variation in IHD within 96 regions in Manitoba over 23 years. It was found that there were 

significant associations between IHD and the two covariates of hypertension and indigenous 

population proportion, and there was indication that similar regions experienced worse outcomes 

for both IHD prevalence and AMI incidence. The most significant effect was the space-time 

interaction, suggesting that the temporal patterns in IHD prevalence vary significantly 

throughout space, with some regions having significantly increasing trends over time counter to 

the provincial average. 
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Chapter 1: Introduction 

1.1 - Background 

 Spatial analyses and disease mapping are important aspects of epidemiological studies, as 

they can provide the answer to the “where?” question that researchers often ask when performing 

health research. Chronic diseases in general rarely follow uniform distributions throughout 

geographical space, and so identifying regions that have frequent occurrences or have elevated 

prevalences is important as it can aid in our understanding of the underlying contributing factors 

of the illness of interest. Gaining this understanding is possible due to the nature of the risk 

factors for the chronic disease of interest; these are usually not randomly distributed throughout 

geographical space either. Therefore, applying a spatial analysis to health data will often reveal 

important information on the connections between the disease of interest and its suspected risk 

factors. Further, geographical patterns of the disease could be revealed in the analysis, which 

would provide information on where our attention is needed to provide equitable care for the 

citizens in those regions. 

 The disease of interest for this research project is Ischemic Heart Disease (IHD), which is 

a highly prevalent chronic disease in much of the world and particularly in Manitoba has been 

measured to have a prevalence of approximately 7.9% for Manitobans aged 19 and older and 

8.5% of all Canadians aged 20+ (Fransoo et al., 2013, pg. 93; Public Health Agency of Canada, 

2017). IHD (also known as coronary heart disease), is a condition where reduced blood flow to 

the heart is present, and usually develops due to blockages or constrictions of the arteries in the 

heart (Mayo Clinic, 2018). In the extreme case when a coronary artery is blocked completely, the 

lack of oxygen causes damage to the heart muscles which is known as an acute myocardial 

infarction (AMI) or heart attack and is often life-threatening. 
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The leading cause of all deaths and the second leading cause of premature deaths in 

Manitoba has been measured to be the broader disease classification of circulatory illnesses 

(Fransoo et al., 2013, pg. 44, 50), of which IHD is a major contributor. Manitobans from many 

different backgrounds and economic standings are affected by IHD, however, it has been shown 

that it does not affect people of different demographic or socioeconomic status (SES) stratums 

equally (Tobe et al, 2015, pg. 1124; Finegold et al, 2013, pg. 939). This is important in the 

context of this research project, as people tend to live near other persons who are of similar 

economic standings and demographic classifications. Thus, it should be expected that some of 

the geographical variation in disease prevalence could be attributed to the geographical 

distribution of demographic and SES factors. This is compounded by the natural phenomena that 

nearer regions are in general more highly correlated than further regions (Tobler, 1970), and so 

many of the statistical assumptions such as independent residuals (random errors) that are made 

when performing regressions or even simply displaying descriptive statistics, are invalid and 

could lead to incorrect conclusions. Therefore, accounting for the inherent spatial dependence of 

chronic diseases is of great importance to preserve accuracy in disease prevalence reporting, 

which is the central focus of this research project. 

 

1.2 - Purpose and Objectives 

The research aim of this project is to use tools within the area of spatial statistics to detect 

clusters of AMI incidences as well as to identify any geographic and/or temporal patterns in IHD 

prevalence rates within Manitoba. This is addressed through three main objectives and their 

corresponding research questions outlined in the succeeding paragraphs. 
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The first objective is to detect geographic clusters of the acute form of IHD (AMI) within 

Manitoba, where the corresponding research question is: Are AMI occurrences clustering 

within areas that are classified as being lower than the provincial average for SES, have 

high indigenous population proportions, are urban settings, or are a combination of these 

factors?  

 The second objective is to assess whether the prevalence of IHD is related to the 

geographic distribution of some well-known risk factors such as hypertension, SES, indigenous 

status, and pollution/urbanicity. This leads to the second research question: Are geographic 

patterns of IHD prevalence related to the spatial distributions of hypertension, indigenous 

population proportion, SES, and urbanicity? 

The third objective of this project is to discover the relationship of IHD prevalence to the 

dimension of time. This leads to the third and final research question: Are there any increasing 

temporal trends of IHD prevalence in regions with low SES, high hypertension prevalence, 

urban settings, and large indigenous populations?  

 

1.3 - Justification 

 Previous research studies have uncovered spatial disease patterns for cardiovascular 

diseases (CVD) in other areas of the world. For instance, elevated risks for IHD in Spanish towns 

that were of lower overall SES standing and higher overall rates of obesity were uncovered 

(Medrano et al, 2012). As well as high probabilities of elevated hypertension were found in small 

geographic areas in Germany that also had high rates of social deprivation (Kauhl et al, 2018). 

However, in the context of Manitoba, very little other than descriptive reports on the state of IHD 
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within administrative health regions has been done. These reports are important, as they provide 

valuable information on the state and the dynamics of IHD with respect to time and space. In the 

“2013 RHA Indicators Atlas” from the Manitoba Centre for Health Policy (MCHP) it has been 

shown clearly that there are large differences in the geographical distribution of IHD along with 

a temporal trend (Fransoo et al., 2013, pg. 93). But in order to dig deeper to potentially 

understand some of the probable causes of these trends as well as the contributing factors 

underlying the disease distributions, we need to turn to statistical disease models rather than 

relying on descriptive statistics.  

 This research project utilizes data from both the Population Research Data Repository 

(PRDR) housed at the MCHP and the 2016 Canadian Census records. This allows for relatively 

small levels of geographic aggregation to be obtained as the PRDR records the postal codes of all 

individual Manitobans with active Manitoba health insurance, and the census data is broken into 

the 2183 census dissemination areas (DA)’s that make up Manitoba. Linking these datasets at 

larger regions defined by the 96 administrative health districts is done to preserve the accuracy of 

the findings, as both the modifiable areal unit problem (MAUP) and the spatially misaligned data 

problem need to be overcome; these are outlined in the later methods chapter. As health 

reporting is often done at this district level, the results from this project will have more potential 

for comparisons to be drawn with previous reports. This enables the usability of these results by 

healthcare stakeholders when making population level decisions regarding their health regions. 

 From a policy perspective, this research could be quite beneficial. The granularity of 

geographical regions can be much finer using spatial models rather than simply stating 

prevalence rates, as the errors are modelled more accurately and thus less inflated. This could 

lead to a substantial amount of evidence for the question of “where is this disease most 
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problematic in Manitoba, where has it been getting worse, and what are some high contributors 

or indicators of the elevated risk?” The connections between risk factors, the disease in question, 

and geography presents new evidence that could be used to target either certain geographies, or 

certain economic or demographic groups with preventative health measures. As equitable 

healthcare for all Manitobans is a priority from a policy lens, evidence of the type produced in 

this research project is needed to further this goal. 
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Chapter 2: Literature Review and Theoretical Background 

 This chapter is split into two main sections: the first being a review of the literature 

surrounding IHD. Here the current state of IHD, the social and economic impacts of IHD, and 

the main contributing factors that increase IHD risk are explored. The second main theme is that 

of how geography plays a role, and a general theoretical framework is laid for how previous 

studies have sought to understand IHD’s distribution throughout both the geographical and the 

temporal dimensions.  

 

2.1 - Ischemic Heart Disease: Impacts and Risk Factors 

 According to the “2013 RHA Indicators Atlas” report from the MCHP, during both the 

2002-2006 and the 2007-2011 time periods, circulatory illness has been the leading cause of 

death in Manitoba and is the second leading cause of premature mortality next to cancers 

(Fransoo et al., 2013, pg. 44, 50). In particular, IHD; which accounts for roughly half of all 

circulatory illness deaths (The Conference Board of Canada, 2019); has had a prevalence rate of 

7.92% and an incidence rate of 6.73 per 1000 person years for Manitobans aged 19 and over in 

2007-2011, and the incidence rate of AMIs was at 4.09 per 1000 persons aged 40 and over in 

2007-2011 (Fransoo et al., 2013, pg. 93, 97, 109). Persons with a history of having a heart attack 

is 2.1% of all Canadians aged 19+, and accounts for approximately a quarter of all persons living 

with IHD in Canada (Public Health agency of Canada, 2017). For IHD, the general trend has 

been a decline in both prevalence and incidence from the 2002-2006 to the 2007-2011 time 

periods (Fransoo et al., 2013, pg. 93, 97), which indicates that IHD is on a downward trend in 
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Manitoba. This is also true for AMI incidence, which has also seen a down turn over the 2000-

2004 to the 2005-2009 time periods (Fransoo et al., 2013, pg. 109). 

 This decreasing trend in IHD prevalence, IHD incidence, and AMI incidences has been 

found to be consistent with the trends for Canada at large (Public Health Agency of Canada, 

2018, pg. 6-9). However, this reduction may not be consistent across all age-groups, ethnicities, 

and geographic regions. For instance, there has been a significant increase in the AMI incidence 

rate in the Interlake-Eastern Health Region in Manitoba from the 2002-2006 to the 2007-2011 

time periods (Fransoo et al., 2013, pg. 110). The IHD prevalence and incidence rates have also 

been shown to be rising significantly over these periods in multiple health districts in Manitoba, 

such as the Cross Lake and Norway House districts, which indicates that some of the nuances in 

this disease get masked when taking the population level statistics at face-value (Fransoo et al., 

2013, pg. 95, 99). As equitable healthcare is a priority for Manitoba’s health care system, 

understanding how one of the leading causes of premature deaths in Manitoba is affecting 

different geographic regions more severely than others should be a focus of this priority. 

 

The main impacts of IHD that are looked at more closely in the succeeding paragraphs 

could be broadly categorized into two main sections: loss of potential years of life, and taxpayer 

burden in the form of health care system resources. Other societal impacts are of course also 

present for IHD. However, quality of life and non-financial healthcare system burdens are not 

explored here as these are more difficult to measure precisely.  

 The cost of potential years of life lost (PYLL) is high in the context of circulatory 

diseases. The second highest cause of premature mortality in Manitoba, defined as mortality 

before reaching the age of 75, is circulatory illnesses taking an estimated 21-22% of all 
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premature deaths (MB Health, 2017, pg. 20; Fransoo et al., 2013, pg. 50). Although this trend 

also seems to be declining, it would be important to know if it is declining throughout all 

ethnicity groups, geographic locations etc. or whether all types or only certain types of 

circulatory diseases are related to the decrease in premature mortality. This also is confirmed in 

other first world countries that have reported a decrease in age- and sex-standardized deaths due 

to IHD (Finegold et al, 2013, pg. 939). This highlights an important risk factor for IHD; SES, as 

it has been established that there are much higher rates of IHD in those under 60 years of age in 

countries of lower economic standing (Finegold et al, 2013, pg. 939). This is a theme that is very 

prominent in epidemiology, as many chronic diseases affect populations from lower economic 

stratums more severely than others. 

The financial impact of circulatory illnesses is substantial. Given that we are in the 

context of a universal health insurance system in Manitoba which is funded by the taxpayers, this 

impact is important as it directly influences the costs imposed on the citizens of Manitoba. 

According to the patient cost estimator provided by the Canadian Institute for Health Information 

(CIHI), AMIs in Manitoba that required the use of a coronary angiogram cost the health care 

system $8,467 per case on average, and $7,289 if a coronary angiogram was not needed (CIHI, 

2018). When accounting for the typical number of cases for each of these categories there is an 

average of 69 and 180 cases respectively for the age group 18-59 in Manitoba per year, resulting 

in a total cost of approximately $1.9 million (CIHI, 2018). But this is just the tip of the iceberg. 

If other interventions are needed these numbers increase drastically, as for instance, a cardiac 

valve replacement costs on average $32,432 per case (CIHI, 2018). Overall an estimated total for 

all circulatory system disease emergencies and interventions costs the health care system in 

Manitoba an estimated $23 million per year for persons 18-59 years old and $70.8 million when 
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considering all age groups over 18 years of age (CIHI, 2018). As this is already a substantial 

investment on the part of taxpayers, any solution that lessens the burden even marginally will 

benefit Manitoba’s Provincial health budget. 

 

 It is well understood through extensive health studies that the three general categories 

that influence the risk of developing most chronic diseases are lifestyle practices, the 

environment, and genetics or family history. IHD is no exception, there is a wide body of 

literature supporting the claim that IHD risk is influenced by all three of these factors. This study 

is concerned primarily with modifiable risk factors such as lifestyle behaviours, SES, and 

geographic location. Non-modifiable factors such as genetics are explored when necessary; such 

as accounting for the indigenous populations in Manitoba. 

 Lifestyle factors such as tobacco use, heavy alcohol consumption, sedentary lifestyles, 

and unhealthy eating habits all increase the risk of developing CVD (Mayo Clinic, 2018). At a 

population level these are often hard to study however, as data on every person’s lifestyle is not 

explicitly available. Surveys such as the Canadian Community Health Survey (CCHS) conducted 

by Statistics Canada could help to bridge this gap, but with only a small number of respondents 

for Manitoba, this survey’s measurement accuracy isn’t precise enough for a population level 

study. It has been shown that these lifestyle factors are linked to SES (Huckle et al, 2010, pg. 

1199; Reid et al, 2010, pg. 76; O’Donoghue et al, 2016, pg. 21), and so some of the variation in 

IHD may be able to be partially explained by SES if one or more of these other risk factors is 

unmeasured. In fact, life expectancy in general has been shown to be strongly associated with 

SES (The Health Officers Council of British Columbia, 2013; Public Health Agency of Canada, 
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2018, pg. 60). Therefore, a surrogate variable for these lifestyle factors in the form of SES 

indicators is valuable for a population level research project on IHD. 

 As previously alluded to, the environment also has a role to play for IHD risk. Pollution, 

specifically particulate matter and nitrogen dioxide have been shown to contribute to CVD risk 

in general (Pun et al, 2014; Yoo et al, 2018). However, as there are only five air quality 

monitoring stations across the province this doesn’t provide enough information to make 

accurate inferences about the association between IHD and the air quality. It may be of interest 

to assume higher pollution rates occur in higher populated areas such as urban settings as 

pollution is generally more prominent in cities versus rural settings.  

 The environment can also influence lifestyle behaviours. The link between environmental 

deprivation such as pollution and SES has been well studied where more environmental 

deprivation is positively associated with more economic deprivation (Goodman et al., 2011, pg. 

772; Batisse et al, 2017, pg. 507). The same can be said of alcohol consumption, sedentary 

lifestyles, and smoking habits; environments with more economic deprivation are highly 

associated with these factors (Shimotsu et al, 2013, pg. 455; Eyre et al, 2014, pg. 238; Anderson, 

2006, pg. 491). This again points to an underlying SES variable that influences lifestyle 

behaviours as well as where people live; whether in areas of higher or lower pollution. 

 Lastly, genetics and family history play a significant role in the risk of IHD (Mayo 

Clinic, 2018). However, this variable is often not measured as we would need to collect historical 

information on family history of IHD, etc., so we may substitute a genetic-related variable as a 

measurement of ethnicity. Recent work has shown that the decreasing rate of CVD is not the 

same in non-indigenous groups as it is in indigenous groups in Canada, and is in fact decreasing 

slower for indigenous men and even increasing in indigenous women (Tobe et al, 2015, pg. 
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1124). In the context of this research project, indigenous is taken to mean anyone self-identifying 

as either First Nations, Inuit, or Metis. It is hypothesized that much of this difference is due to 

higher rates of diabetes in indigenous populations (Tobe et al, 2015; Public Health Agency of 

Canada, 2018, pg. 195), as diabetes is another important risk factor for CVD in general (Mayo 

Clinic, 2018). Further, indigenous Canadians living off-reserve have been shown to have a 

higher than average alcohol consumption rate, and higher tobacco smoking and exposure to 

second-hand smoke rates than the non-indigenous Canadian population (Public Health Agency 

of Canada, 2018, pg. 290, 312), which puts them more at risk for IHD due to factors that are not 

entirely related to genetics. There is also a link between SES and indigenous status, as off-

reserve indigenous Canadians had higher rates of food insecurity and working poverty status 

than non-indigenous Canadians (Public Health Agency of Canada, 2018, pg. 381, 404). Since 

indigenous persons contribute to 18% of Manitoba’s total population (Statistics Canada, 2016), 

this could affect the distribution of IHD significantly and should be accounted for. However, 

since many of the risk factors for IHD are present at higher levels in the indigenous population, it 

shouldn’t be assumed that the elevation of IHD in indigenous persons is due to genetic factors 

alone, but rather a combination of intrinsic and extrinsic factors. 

 Other less extreme health conditions can also contribute significantly to IHD risk, as 

comorbidities are often found in individuals with IHD and are often diagnosed prior to IHD 

diagnosis (Berger et al, 2010, pg. 879). This can lead to important variables in an analysis of 

IHD risk, as diagnoses of other illnesses is tracked by the health system in Manitoba. 

Hypertension, which is a less severe form of CVD, is an extremely prevalent disease as well as 

being highly associated with IHD risk. Also known as chronic high blood pressure, hypertension 

occurs when the pressure exerted by blood on the arterial walls is higher than what is normal in a 
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healthy individual, which can have detrimental health effects if elevated for too long a period or 

at too high a rate (Mayo Clinic, 2018). Hypertension is the most prevalent form of CVD in 

Manitoba at 25.6% prevalence in 2011-2012 (Fransoo et al., 2013, pg. 69), and has been shown 

to be a risk factor for other forms of CVD including IHD (Spinar, 2012, pg. 434).  

Although IHD prevalence, IHD incidence, and AMI incidence rates have been shown to 

be on the decline in recent years, hypertension prevalence is on the rise (MB Health, 2017, pg. 

24, 28; Fransoo et al., 2013, pg. 69, 93, 109). Hypertension is one of the leading risk factors for 

IHD and AMI (Weber et al, 2016, pg. 468; Spinar, 2012, pg. 434), and is an important factor to 

measure and account for in an analysis of either of these diseases. However, as hypertension has 

been shown to be on the rise and IHD and AMI rates to be on the decline, there must be other 

factors that contribute to the differences in these opposing trends. Further, it has been shown that 

hypertension is also associated with other risk factors of IHD such as tobacco use and heavy 

alcohol consumption (Mayo Clinic 2018). Since SES is associated with these lifestyle factors 

which influence IHD risk as well as hypertension (Subramanyam et al, 2013, pg. 144), it could 

be expected that SES is major confounder between hypertension and IHD. This confounding 

could also be present between SES and indigenous, as both of these variables are associated with 

IHD as well as indigenous persons being more susceptible to lower levels of SES (Public Health 

Agency of Canada, 2018, pg. 381, 404). 

 An important variable to track for population level IHD risk is population demographics. 

Age and sex both play important roles in IHD risk, as it has been shown that the risk is not equal 

in all age groups or between sexes. Much of the literature supports the claim that women have 

higher rates of mortality due to IHD than do men and are older at diagnosis (Ashley & Geraci, 

2013, pg. 430; Berger et al, 2010, pg. 879; Vaccarino, 1998, pg. 2059). Women also have higher 
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rates of comorbidities such as hypertension and diabetes than do men, whereas men have higher 

rates of extrinsic risk factors such as tobacco usage and heavy alcohol consumption (Berger et al, 

2010, pg. 879). This confirms that the standard procedure of accounting for these demographic 

variables; age and sex; in epidemiological studies of chronic diseases is important in the context 

of IHD as they may confound with other risk factors, comorbidities, or significantly interact with 

each other. 

  

2.2 – Theoretical Background 

  Ecological studies can often provide measures of association between diseases and risk 

factors without the need or prior to needing clinical or laboratory studies. This is especially true 

when the ecological study is population based, as the statistical power of such a study is 

potentially large in magnitude. As administrative health records are collected and organized for 

the population in Manitoba, this allows for population health studies to be conducted for many 

various diseases or conditions.  

 Modelling of geographical ecological associations violate the assumption that the residual 

errors are independently and normally distributed. It is well known that neighborhoods that are 

closer together often share similar traits, including demographics and economic status. As these 

and other geographically distributed variables are key covariates when studying chronic diseases, 

it does not make sense to say that neighboring regions are independently contributing to the 

outcome of interest. Further, constructing artificial boundaries between areas or neighborhoods 

may introduce the issue of imposing a false discontinuity into a continuous process. Here, risk 

factor levels will not naturally stop or change at the geographic boundaries we constructed to 
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formulate these variables, and so to account for this extra variation it may be of benefit to look 

into spatial regression models. 

An exploratory approach to detecting clusters of diseases using spatial scanners has had 

some limited usage in identifying clusters of AMIs. These spatial scanners used to detect 

geographic disease clusters can be a helpful tool for surveillance and exploratory uses, as they 

provide an easy to implement method for detecting areas that have statistically significant 

elevated disease rates. This allows the researcher to identify regions that are potentially 

problematic compared to the overall rates. However, it does not allow for covariates to be 

modelled, and so the potential causes of the clusters would need to be explored with other 

methods such as spatial and spatio-temporal models.  

Previous literature has demonstrated successful usage of these spatial scanners for 

identifying clusters of AMIs in the past, and in the Manitoba context these have been used 

successfully to identify clusters of multiple sclerosis (Torabi et al, 2014). In other contexts, 

cluster detection has been used to identify nine high risk clusters of AMIs in Texas in a study 

conducted in 2011, and 211 clusters were similarly identified in Denmark in a 2016 study 

(Pedigo et al, 2011; Kjaerulf et al, 2016). Spatial analysis of AMIs in the Strasbourg 

Metropolitan Area also revealed significant clusters of disease as well (Kihal-Talantikite et al, 

2017). The identification of these clusters would be useful for health services policy analysts, as 

it would enable them to focus their time and resources to regions of high need. However, this 

type of data exploration has not been done in the context of AMI’s in Manitoba to date, where 

other reports have been just descriptive in nature. These descriptive reports, such as MCHP’s 

“2013 RHA Indicators Atlas,” state whether health district regions have statistically significant 

rates of disease, though these do not make use of neighborhood relationships. Cluster detection 
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uses information from neighboring regions to detect clusters of regions with elevated rates. This 

allows for more robust reporting, as the ecological fallacy and the MAUP are less likely to be as 

persistent of an issue.  

When using areal level data (data that has been aggregated into geographic regions) for 

studying disease distributions, we are often dealing with count data. Poisson regression models 

are the natural choice for this type of data, but as previously alluded to, the independent residual 

assumption that is needed for this class of models is often violated. The dependency on location 

and “closeness” in geographic space, as well as any extra spatial variation that is not accounted 

for by the covariates needs to be addressed. To overcome this issue, random-effects models or 

mixed models are of value to explore.  

In the spatial context, we could define this as a latent spatial process which accounts for 

extra spatial heterogeneity in the response variable that is not accounted for by the covariates we 

are modelling (Waller & Gotway, 2004, pg. 384). Corrections of this type may be helpful in the 

analysis and will be described in more detail in Chapter 3.  

Using this (quite broad) class of models for modelling different forms of CVD has been 

done to much success in the past for other geographic contexts. The Besag-York-Mollie (BYM) 

model first popularized in the paper by Besag et al in 1991 has been used to correctly identify 

whether there are high posterior probabilities of having elevated risk ratios of CVD in small 

geographic areas in a number of studies (Besag et al, 1991). Elevated risk ratios of IHD were 

found in regions that had higher measured NO2 pollution levels in Barcelona as well as in 

Madrid Spain using the BYM model (Domınguez-Berjon et al, 2010, pg. 1089; Barcelo et al, 

2009, pg. 5521). The BYM model has also been used to discover the association between IHD 

risk and regions of high levels of alcohol abuse and obesity in Shenzhen China (Du et al, 2016, 
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pg. 7). These are just a few studies that illustrate the usefulness of models like the BYM in 

discovering spatial patterns of disease and their geographical relationship to risk factors.  

To gain information on any temporal trend in disease risk, an extension of the spatial 

models; such as the BYM mentioned above; can be constructed for the dimension of time. Here, 

the data is aggregated not only by region but also by time such as years or months. Additional 

random effects terms can be implemented in the model to assess the disease’s relationship to 

time as well as any spatio-temporal interactions that may be present. The reason spatio-temporal 

models are often used is to see whether the spatial patterns that are present vary over time. Or 

equivalently, if the temporal patterns that have been identified vary over geographical space.  

The usage of spatio-temporal models for detecting IHD patterns has been somewhat 

limited. However, there have been a few studies linking CVD to ambient pollution levels and 

SES (Yoo et al, 2018; Hart et al, 2015). A spatio-temporal analysis of women revealed that 

regions that had higher than average proportions of women who were in the upper age group, 

were obese, or who had been diagnosed with diabetes had higher sensitivity to ambient 

particulate matter related risk for CVD (Hart et al, 2015). This was especially true if elevated 

exposure had occurred within the last 12 months (Hart et al, 2015). This further demonstrates the 

linkage of lifestyle behaviours, SES, and pollution to heart conditions at the space and time 

aggregated level.   

 

2.3 – Final Thoughts 

Overall, the literature appears to be pointing to a combination of lifestyle, genetic, and 

environmental factors as being significant epidemiological risk factors for IHD. Confounding 
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and modification of some of these covariates will need to be examined closely as there has been 

evidence of SES being related to all three of these factors to varying degrees. An example of 

confounding in this context could be where both indigenous populations and SES are 

significantly associated with IHD prevalence, and where SES and indigenous populations are 

also associated with each other. Modification would be present if out of these two covariates 

only indigenous is associated with IHD prevalence, where SES affects this association but is not 

directly related to IHD prevalence itself. Not only this consideration, but measurement of these 

variables may be difficult if not impossible to do directly and may need measures of ethnicity 

and SES to account for the variation contributed by these variables. Pollution has been a 

persistent indicator of CVD in the literature, but unfortunately Manitoba has limited data on 

particulate matter pollution from multiple geographical locations. Thus, surrogate variables; such 

as urbanicity in place of pollution; for the unmeasured or sparsely measured risk factors of IHD 

would need to be constructed. 

The latent spatial process that is also not accounted for by the covariates and the extra 

spatial variation not accounted for by the surrogate variables will need to be predicted as well, 

where there have been many classes of these models such as the BYM implemented in the 

context of CVD in the past for this purpose. And finally, the temporal effect of IHD and its risk 

factors will need to be explored as well as lifestyle patterns, environmental effects, and 

population demographics are dynamic over time. This change in IHD risk factors will most 

likely change the way IHD is distributed throughout geographical space, and so this is important 

to account for.  
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Chapter 3: Methods 

3.1 –Hypotheses 

The hypotheses (Ha) for this research project are: 

1. AMI incidences are clustering in areas typically associated with: 

a. Lower levels of SES than the provincial average 

b. Higher indigenous population proportion than the provincial average 

c. Are considered geographically isolated 

d. Urban settings 

2. After accounting for the heterogenetic spatial variation, and controlling for SES 

confounding; prevalence of IHD is, at the health district level, associated with: 

a. Increased hypertension risk 

b. Indigenous status 

c. Urbanicity 

3. After controlling for SES confounding, the spatio-temporal patterns in IHD prevalence 

are associated with: 

a. The spatio-temporal distribution of hypertension risk 

b. The spatial distribution of the indigenous population 

c. Urbanicity 

 

3.2 – Data Sources, Study Period, and Cohort 

This research project is a population-based ecological study using administrative health 

records housed at the MCHP, with a linkage to Statistics Canada’s 2016 census records. MCHP’s 
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PRDR includes four datasets of interest: the Manitoba health insurance registry, 

medical/physician claims, hospital abstracts (outpatient records), and the drug program 

information network (DPIN) datasets. These datasets are then linked at the individual level using 

the scrambled personal health identification numbers (PHIN)s provided by MB health. This 

allows for confidentiality while also providing rich information on the individual’s interactions 

with the health care system. It is with this linkage that AMI incidences, IHD prevalence rates, 

and hypertension rates for regions in Manitoba are defined. 

The time-period of interest is from the 1995-1996 fiscal year to the 2017-2018 fiscal year 

(April 1, 1995 – March 31, 2018), which was chosen due to the availability of the data in the 

PRDR. 

The study cohort is comprised of all Manitobans that have had active Manitoba Health 

Insurance at some point within the study period. This is further restricted to the age groups of 40 

to 85 years of age. This age restriction has been chosen due to the fact that the younger age 

groups have very few incidences of IHD and so will bias the results towards zero, and the older 

age groups have been ignored due to many incidences of IHD being present as the cause of old-

age related mortality. The focus of this research project is to understand the patterns in IHD risk 

for the population that is at highest risk of premature mortality due to IHD, and so the 40-85 age 

group has been chosen accordingly as the average life-expectancy at birth for Canadians is 82 

years (Statistics Canada, 2019). Manitobans are counted in this cohort only when they are in this 

age range for each specific year. This means that for the modelling section described later, a 

person will age out of the study if they exceed this range at any point from 1995-2018. 

Conversely, new persons are included in the study if they reach the inclusion age range at any 

point from 1995-2018. 
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3.3 – Variable Definitions 

3.3.1 – Outcome Measures 

As data quality is often an issue with administrative records, it is prudent to obtain a valid 

definition of disease cases from the administrative data. Algorithms to define a disease case from 

administrative records have already been explored in this context (Lix et al, 2006, 2008). These 

algorithms have been externally validated with the CCHS from Statistics Canada (Lix et al, 

2006, 2008), and have been in use for other reports in Manitoba such as the “2013 RHA 

Indicator’s Atlas” from MCHP (Fransoo et al, 2013). Therefore, implementation of these 

algorithms is done for identifying our case groups when evaluating the research hypotheses in 

order to be consistent with other literature in Manitoba. 

To evaluate the first hypothesis, identification of persons who have experienced an AMI 

incidence is based only on the hospital abstracts database (hospital separations). Here they must 

have an international classification of diseases (ICD)-9 or ICD-10 code for AMI as the diagnosis. 

For the second and third research questions and their corresponding hypotheses, IHD prevalence 

is calculated by identifying individuals that have had at least one instance of IHD in the hospital 

abstracts or at least two instances in the medical claims dataset, or a combination of at least one 

instance in the medical claims dataset and two prescriptions in the DPIN dataset within a five 

year period. After these persons have been identified as having IHD they are counted in the 

numerator for prevalence until censored out for either death, movement to outside Manitoba, or 

aging out of the study. 
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ICD-9 and ICD-10 codes are used to identify instances in the hospital abstracts and 

medical claims datasets, while anatomic therapeutic chemical (ATC) codes are used for the 

DPIN dataset. A full list of the relevant codes can be found in the appendix. 

Geographic classification of individuals is done with the 6-digit postal code and 

municipality code as defined by Manitoba Health, Seniors & Active Living. From here, 

individuals will be assigned and aggregated into the 71 regional health authority districts 

(RHAD) for regions outside Winnipeg, and the 25 neighborhood clusters for within Winnipeg 

regions. For the remainder of this project the term RHAD is used to define all 96 regions, where 

these regions are called areal units. These will be the basis for all subsequent analysis for the 

evaluation of the three research hypotheses.  

AMI incidence is calculated as the incidence rate for the time period of 2011 to 2016 for 

the 96 areal units. IHD prevalence for the second research question is calculated for the most 

recent years of data available, which is the 5-year period of 2013 to 2017, for the 96 areal units. 

The third research question further aggregates the IHD prevalence data into years as well as the 

96 areal units. Here, 18 years are explored from 1998 to 2015. Note that each of these 18 yearly 

aggregates use 5-year time frames as defined earlier, i.e. the 1998 year is the prevalence of IHD 

for 1996-2000, 1999 is the IHD prevalence for 1997-2001, up to the 2015 year which is the IHD 

prevalence for 2013-2017. Here a person is counted in the numerator for prevalence starting at 

the mid-year for the 5-year period for which the case criteria is satisfied, until either death, 

movement out of Manitoba, aging out of the study, or the study end date. The denominator, or 

population for the study is the number of Manitobans with active health insurance (aged 40-85) 

counted uniquely for each year in the study. 



22 
 

 

Figure 3.1: RHADs and Winnipeg Neighborhood Clusters. (Region codes given in appendix). 

 

3.3.2 – Explanatory Variables 

The first research hypothesis is evaluated by comparing regional levels of AMI 

incidences with regional SES measures, indigenous population proportions, and urban/remote 

location definitions. The second and third research questions will also need information on SES, 

indigenous population, and urban locations; and will additionally need information on 

hypertension. The 2016 Census from Statistics Canada will be used to define variables for SES 
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measures and indigenous populations, whereas hypertension will be calculated from the PRDR 

housed at the MCHP. 

Hypertension has been one of the leading risk factors of IHD, and is a major comorbidity 

(Weber et al, 2016, pg. 468; Berger et al, 2010, pg. 879; Spinar, 2012, pg. 434). For this reason, 

it is of interest to use hypertension; as it is also a highly prevalent chronic condition in Manitoba 

(MB Health, 2017, pg. 24, 28; Fransoo et al., 2013, pg. 69, 93, 109); as a risk factor for IHD 

prevalence at the population level. To define hypertension the four databases previously 

mentioned within the PRDR will be used. Individuals with hypertension are defined as persons 

showing up at least once in the hospital abstracts, at least once in the medical claims dataset, or 

at least twice in the DPIN dataset with a hypertension related diagnosis or prescription within a 

one-year time period. The ICD-9/10 codes, and the ATCs used to identify these diagnoses and 

prescriptions are given in the appendix. This hypertension prevalence rate is then indirectly age 

and sex standardized using the overall provincial population demographics into a relative risk for 

each of the 96 areal units. For the second research question hypertension prevalence is calculated 

for the 2015 year only, and for the third question it is evaluated by calculating the prevalence 

rates for each year from 1998 to 2015. Also note that if a person was counted as prevalent in a 

previous year, they are now counted as prevalent for all subsequent years until excluded from the 

study. 

The next indicator that will be used in the evaluation of all three research questions is that 

of indigenous status; taken to mean any individual identifying as First Nations, Inuit, or Metis. 

As Manitoba’s population consists of 18% indigenous persons (Statistics Canada, 2016), and it 

has been shown that the indigenous population suffer from worse health outcomes regarding 

CVD than the other population groups (Tobe et al, 2015, pg. 1124), understanding how 
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indigenous status affects IHD risk is important in the Manitoban context. If this population group 

is at higher risk, this could point to an area that our health care system could address. The 

creation of an indigenous population variable is done via the 2016 Census, and simply counts the 

number of indigenous persons in a census DA and divides by the total population to create an 

indigenous population proportion variable. Only the 2016 census was used to define this 

covariate as the demographic and ethnic make-up of Manitoba has remained mostly stable 

throughout time. Census data is also only available in 5-year cycles, so a complete yearly data 

source isn’t available for usage as a covariate, and thus estimation would need to be employed. 

Also, data collection, compilation, and release methods and protocols change census-to-census, 

so differences in aggregated findings for census covariates may be due to this factor. To avoid 

these issues and provide consistent values for census covariates, only the 2016 census was 

utilized. 

For the first research question, a geographical isolation variable needs to be defined. This 

variable needs to measure geography as a barrier to healthcare access, as it is hypothesized that 

isolated communities in Manitoba have higher incidences of AMIs due to chronic conditions not 

being diagnosed and treated before acute events occur when living in relative isolation. For this, 

MCHP’s definition of remote communities is used as it provides a literature backed measure for 

healthcare access barriers due to geography. In this definition, remote communities are assigned 

if they have no permanent road access, are a four or more-hour drive from the nearest major 

hospital, or have rail or fly-in access only. Then, if most communities within a district are 

designated as remote, the entire district is assigned as remote. A list of these regions is found in 

the appendix. 
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As previously studies have identified a significant link between air pollution and CVD 

risk (Yoo et al, 2018; Pun et al, 2014; Domınguez-Berjon et al, 2010; Barcelo et al, 2009), a 

measure of pollution as an indicator of IHD risk is used to assess whether pollution is 

contributing to IHD risk in Manitoba. Since pollution is only measured at few weather stations 

within Manitoba, a surrogate variable that identifies urban regions will be used to assess the 

contribution. This is done because of the implicit circumstance that cities generally have higher 

ambient air pollution levels than rural regions due to higher densities of road vehicles, air and 

rail transportation, factories, etc. In Manitoba there are only a handful of densely populated 

cities; the obvious one being Winnipeg, with Brandon being a second. Thus, this indicator 

variable will code health districts within Winnipeg or Brandon as being urban to address the 

research questions. 

As SES has been shown to be associated with both hypertension and indigenous, as well 

as being a significant indicator of chronic diseases and premature mortality (Public Health 

Agency of Canada, 2018, pg. 381, 404; The Health Officers Council of British Columbia, 2013; 

Public Health Agency of Canada, 2018, pg. 60), it is expected that confounding between these 

variables is present and significant. Thus, a SES measure is constructed from the 2016 Census, 

and used to control for this expected confounding. The socio-economic factor index (SEFI) is an 

index defined by researchers at MCHP that bridges socio-economic factors that are highly 

influential on potential years of life lost, premature mortality rates, life expectancy, and self rated 

health (Chateau et al, 2012). The second iteration of this algorithm is known as SEFI-2 and 

contains information on the four census variables of median household income, proportion of 

high school graduates, unemployment rate, and proportion of single-parent families (Chateau et 

al, 2012). This factor index is the standardized factor scores from a factor analysis of these four 
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variables. This in theory creates a single variable which explains a large amount of the common 

variation between these 4 variables and allows for information from multiple types of SES 

variables to be incorporated into a single measure. At the DA level (2183 DA’s exist in 

Manitoba), the amount of common variation between these variables is 52.2%, which means that 

over half of the variation across these variables is explained by the SEFI-2 factor scores. This 

index variable measures socio-economic deprivation, where higher SEFI-2 values for a region 

indicates that this region has more socio-economic deprivation compared with regions with 

lower SEFI-2 scores. Said another way, higher SEFI-2 scores indicate lower levels of SES. 

For both census variables; indigenous population proportion and SEFI-2; a link between 

the census data which is organized into 2183 census DA’s and PRDR data which is organized by 

postal code and then aggregated into the 96 health districts, needs to be constructed. Since the 

health districts are defined using postal and municipal codes, and the census uses census blocks 

and DA’s, a one-to-one link unfortunately does not exist. There have been attempts at using 

different methods to link these data sets in the past, such as the extensive use of the postal code 

conversion file (PCCF), but for this research project a stochastic method for linking these 

datasets is used and is defined in detail in section 3.4.4. 

 

3.4 – Statistical Analysis 

The outcome for all subsequent statistical models is expressed in terms of either a 

standardized incidence ratio (SIR) for the AMI cluster detection or a standardized risk ratio 

(SRR) for the IHD Poisson models. Standardization is done to factor out the effects of age and 

sex in the analyses, as these are not of primary interest for the research project, but we know that 
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they do contribute to IHD risk (Ashley & Geraci, 2013, pg. 430; Berger et al, 2010, pg. 879; 

Vaccarino, 1998, pg. 2059). These are calculated using indirect standardization to the overall 

Manitoba provincial population. This is implemented by calculating Ei; the expected number of 

individuals in the ith areal unit with the disease of interest; which is done using (1). 

Ei = ∑
௒ೕ

(ೞ)

௡
ೕ
(ೞ) 𝑛௜௝௝      (1) 

where i=1, 2, …, 96 is the index for the areal units, Yj
(s) and nj

(s) are the disease counts and 

population totals in the standard population for the jth age-sex group, and nij is the population 

total for the jth age-sex group in the ith areal unit. Age groups are defined as 40-44, 45-49, …, 80-

84 where these are then broken into the two sex categories to make up the j levels (for each year 

in the spatio-temporal case). Ei is then used as the model offset in the Poisson models rather than 

using a population count which is often done in the simple case. For AMI incidence the Ei term 

is calculated with Yj
(s) being the number of new cases of AMI’s in the standard population, and 

for IHD prevalence the Yj
(s) is the number of existing cases of IHD in the standard population. 

Then the SIR for AMI incidence is given as 𝑆𝐼𝑅௜ =
௡௘௪ ௖௔௦௘௦ ௢௙ ஺ெூ೔

ா೔
 , and the SRR for IHD 

prevalence is given as 𝑆𝑅𝑅௜ =
ே௨௠௕௘௥ ௢௙ ௣௘௥௦௢௡௦ ௪௜௧௛ ூு஽೔

ா೔
 for the ith areal unit. Note that AMIs 

could be repeat cases, i.e. a person could be counted multiple times in the numerator. 

For research questions 2 and 3, sex stratification is also employed where 3 separate 

models are used for each question; an overall model and a model for each sex. Age 

standardization is still completed for the sex stratified models by modifying the j groups to only 

break the population into age groups rather than age-sex groups. This stratification is done to 

gain any insight available into the differences in IHD outcomes across the sexes. 
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The remainder of this section is broken up into four parts. The first describes the method 

of cluster detection using the flexible spatial scanner (FSS). This method is applied for the first 

research question, where AMI clusters are calculated to potentially identify geographic clusters 

with higher AMI incidences compared to the rest of the province. We can then visually compare 

the clusters of AMI incidences with the distribution of the SEFI-2 variable, the distribution of the 

indigenous population, and the geographically isolated and urban communities. The FSS is also 

employed to detect clusters of IHD prevalence as an exploratory measure to see which regions 

have significantly elevated prevalences for research questions 2 and 3. The second and third 

parts of this section describe the models used for both the spatial analysis for research question 2 

and the spatio-temporal analysis for research question 3. The final part of this section is 

dedicated to describing the methods used to overcome the misaligned data problem that occurred 

between the census and the PRDR data. 

 

3.4.1 – Cluster Detection 

Cluster detection using spatial scanners is a method used to identify “hot-spots” or 

geographic clusters of significantly elevated disease incidences or prevalences compared to the 

rest of the geographic area in the analysis. Spatial scanners were first proposed by Kulldorff & 

Nagarwalla in 1995 in its original form of the circular scan statistic (Kulldorff & Nagarwalla, 

1995), and have since been modified in 2005 to the FSS which allows for varying shapes of 

clusters to be detected (Tango & Takahashi, 2005). The underlying idea behind either spatial 

scanner, is that of measuring which set of neighboring regions contribute to a statistically 

elevated disease rate as compared to all other regions. This is done by testing the hypothesis in 

(2). 
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H0: E(Yi) = λi , Ha: E(Yi)>λi,   (2) 

where Yi ~ Poisson(λi) 

Where Yi and λi are the disease count and expected disease count respectively in the ith 

areal unit. With the circular spatial scanner, this hypothesis can be assessed directly, by using 

either a radius drawn from the centre of each ith region up to a specified distance and using all 

regions who fall within that radius, or using a nearest neighbor approach and using up to a 

predefined number of nearest neighbors for each ith region. Each combination of regions is then 

tested in hypothesis (2) to come up with the most probable disease cluster as well as any non-

overlapping secondary disease clusters that are also statistically significant. 

The FSS is a bit more robust, as it can take on any other shape in addition to the 

concentric circles or nearest neighbor method of the circular spatial scanner. This method is 

preferable in the Manitoba context as both distances between centroids and the number of 

neighbors for regions is extremely variable and hence could miss otherwise obvious clusters. In 

the flexible scanner, an irregularly shaped window Z is fit with the neighbors of the ith areal unit, 

up to a specified maximum number of neighbors. The hypothesis for the flexible scanner 

changes slightly now to include the window around the ith region as in (3). 

H0: E(Y(Zik)) = λ(Zik), Ha: E(Y(Zik))>λ(Zik),  (3) 

where Y(Zik) ~ Poisson(λ(Zik)) 

Where Zik is the kth irregularly shaped window around the ith region. The test statistic is 

constructed using a likelihood ratio and given in (4) where Z0 is the set of all regions not in Z, 

y(Z) is the observed number of cases within window Z, and I() is the indicator function. Here, 

the model offset is Ei as defined in (1). 
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௬(𝒁బ)

ఒ(𝒁బ)
ቁቇ  (4) 

To find the distribution of (4) under the null hypothesis, Monte Carlo sampling is done until 

convergence. This method provides the most likely cluster as defined by (4) which is called the 

primary cluster, as well as any secondary non-overlapping clusters that are also statistically 

significant. Note that the expected number of cases λ within each window Z is the age and sex 

standardized expected count of AMI incidences, indirectly standardized from the overall 

Manitoba population as in (1).  

 For research question 1, the primary cluster of AMI incidences and the secondary 

significant clusters for the time frame of 2011-2015 are visually compared to SEFI-2 and 

indigenous population proportion values in the same regions. Clusters are also assessed to be in 

remote or urban locations to finish evaluating the hypotheses for this research question. For the 

second research question, clusters of IHD prevalence for the overall population as well as the sex 

stratified populations are calculated for the 2013-2017 time period as an exploratory approach to 

the IHD data. These clusters are then visually compared to the smoothed risk ratios given by the 

spatial models described in section 3.4.2. 

 

3.4.2 – Poisson and Spatial Poisson Regression Models 

 Poisson regression models are one of the most common disease models, as it easily 

relates disease counts for specified regions to regional level covariates. This is specified properly 

under a few assumptions: the first is that the disease of interest has relatively few counts for each 

observed areal unit compared with a relatively large population count. Second, when using the 
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Poisson distribution for modelling we must assume that its mean is equal to its variance. This is 

fairly restrictive as the variance is often greater than the mean where this problem is called 

overdispersion. Finally, the assumptions from linear models such as linear relationships between 

covariates and the response, zero-mean and independent normally distributed residuals, and no 

perfect multicollinearity between the covariates also need to be met. Some of these assumptions 

may be loosened if needed by the incorporation of spatially dependent random effects. 

 For a standard log-linear Poisson regression model, we assume that the disease counts in 

each region follow a Poisson distribution as Yi ~ Poisson(λi), where E(Yi) = var(Yi) = λi. Then: 

log(𝜆௜) = log(𝐸௜) + 𝑿𝒊𝜷 (5) 

Note here that E(Yi | xi) = λi = Ei*exp{Xiβ}, where Xiβ is the matrix containing the covariate 

matrix (Xi) and the vector of their model coefficients (β), and Ei is the age- sex-standardized 

expected disease count defined by (1) where here it is also called the model off-set. Rearranging 

this equation, we get that: 

log(𝜆௜) − log(𝐸௜) = 𝑿𝒊𝜷 

log ൬
𝜆௜

𝐸௜
൰ = 𝑿𝒊𝜷 

ఒ೔

ா೔
= exp {𝑿𝒊𝜷} (6) 

where ቀ
ఒ೔

ா೔
ቁ is the SRR for the ith areal unit.  

This model specification is the first model tested. However, this specification has some 

issues. The most important one being the distribution of the residuals appear to be spatially 

heteroscedastic and correlated (see figures 4.18 and 4.19). This is often the case with spatially 
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referenced data, as it is expected that close regions carry some of the same variation and be more 

correlated than regions that are further apart. The spatial auto-correlation that is present in this 

model will also cause overdispersion which violates the assumption of the Poisson distribution. 

To overcome this issue, we can turn to adding spatial random-effects to the Poisson regression 

model.  

As previously mentioned, a popular modification to the Poisson regression model 

specification for dealing with spatially dependent data is the BYM model proposed by Besag et 

al. This modification includes two additive random effects terms to the Poisson regression 

model; one spatially correlated heterogeneity term (Ui), and the other a non-correlated 

heterogeneity term (Vi) as given in (7). 

𝑌௜~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆௜) 

log(𝜆௜) = log(𝐸௜) + 𝑿𝒊𝜷 +  𝑉𝒊 +  𝑈𝒊  (7) 

𝑆𝑅𝑅௜  = exp {𝑿𝒊𝜷 +  𝑉𝒊 +  𝑈𝒊} 

where: 

𝑉௜ ~ 𝑁(0, 𝜎௩
ଶ) 

𝑈௜ | 𝑛ఋ೔
, 𝑈௝; 𝑗𝜖𝛿௜ ~ 𝑁(𝑈௜ , 𝜎௨,௜

ଶ ) 

Here, 𝑈௜ =  
ଵ

௡ഃ೔

∑ 𝑈௝௝ఢఋ೔
  where 𝛿௜ is the neighborhood of the ith region, 𝑛ఋ೔

 is the number 

of neighbors for the ith areal unit, and 𝜎௨,௜
ଶ = 𝑣𝑎𝑟(𝑈௜ | 𝑛ఋ೔

, 𝑈௝; 𝑗𝜖𝛿௜). The neighborhood of the ith 

areal unit 𝛿௜, is defined as all areal units who share a border with the ith areal unit, and hence this 

model is in the class of Gaussian-Markov-random-field (GMRF) models. This model is also 
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widely known as the intrinsic or improper conditionally autoregressive (ICAR) spatial model, as 

the joint distribution is a singular normal distribution, and where the conditional distribution of 

Ui given its neighbors is also normal. Because of the singularity, Bayesian inference is carried 

out using the integrated nested Laplace approximation (INLA) approach (Rue & Martino, 2007). 

This method for inference was chosen due to the extreme complexity of these models. A more 

popular method for Bayesian inference is that of Markov chain Monte Carlo (MCMC) sampling. 

However, for these models, inference is very time consuming and cumbersome where WinBUGS 

in particular has issues with handling space-time interactions.  

This model specification is made possible by the proof of the Hammersley-Clifford 

theorem, which allows under certain conditions a joint distribution to be approximated by a set of 

conditional distributions (Waller & Gotway, 2004, pg. 371). This proof was first shown by Besag 

(Besag, 1974), and allows us to look at the joint distribution of the 96 areal units as a set of 96 

conditional distributions; conditional on the neighborhoods of each areal unit. Here, the Ui term 

is essentially weighted by its neighbors which are defined as areal units who share a border and 

allows for simultaneous smoothing of the SRR between areal units and their neighbors. This 

smoothing controls for the spatial autocorrelation between areal units which reduces the effect of 

the MAUP. The MAUP occurs when attempting to make inferences about a population at a 

different aggregation level than what is provided. For instance, making inferences at the 

provincial level for IHD from one of the 96 areal units, or vice versa. Generally speaking, the 

larger the aggregation level the smaller the variance (as the population n increases, the variance 

decreases). However, by smoothing the SRR through the use of the ICAR model we account for 

the spatial covariance between areal units, and thus reduce the overall variance in the SRR 

estimates. This reduction in variance produces more stable estimates of the SRR for smaller areal 
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units, or at different aggregation levels, or with differing methods for forming the boundaries 

between areal units. This smoothing also reduces the affect of the ecological fallacy bias, as 

individuals within each areal unit are better represented by the aggregated and smoothed SRR. 

This doesn’t mean that it isn’t a relevant consideration when making inferences about an 

individual, only that these inferences will be better as the smoothed rates will have less internal 

variation than non-smoothed rates do. Thus, we can be more confident that the smoothed SRR’s 

produced by the ICAR model represent the real risk levels within each areal unit regardless of 

aggregation method or population size. 

INLA works for data that is distributed via a Normal or Gaussian distribution, and where 

the set of parameters are also distributed with a multivariate normal distribution (Blangiardo & 

Cameletti, 2015, pg 107-112). The components (model parameters) of this latent Gaussian field 

are also assumed to be conditionally independent, consequently leading to a GMRF. If these 

conditions are satisfied, the INLA algorithm can be used for Bayesian inference of the model 

parameters instead of the MCMC sampler. This algorithm produces results in a much shorter 

time frame than the MCMC approach, which is of interest when modelling with many different 

specifications and/or covariate combinations. The Laplace approximation is said to have 

negligible error when the assumptions are satisfied and can be checked via cross-validation. This 

is done by assessing the conditional predictive ordinate and the probability integral transform 

(Blangiardo & Cameletti, 2015). Using the R-INLA package in R, spatial and spatio-temporal 

models are relatively quick to compute and easy to implement, and thus are done so for this 

research project. Here, priors are selected as uninformatively as possible so as to not bias the 

results with prior beliefs of the data, and the deviance information criterion (DIC) is used to 

assess model fit.  
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3.4.3 – Spatio-Temporal Poisson Regression Models 

 An extension of the spatial Poisson regression models as described in section 3.4.2 is the 

class of spatio-temporal Poisson regression models. In this case, the data is aggregated by both 

space and time, as it is beneficial to explore whether the structure of the data is correlated in both 

the time and space dimensions. As before, the spatially-correlated heterogeneity term and the 

spatially-non-correlated heterogeneity terms are added to the Poisson regression model. Now two 

temporally varying random effects terms are also added. Similar to the spatially varying random 

effects terms, one of the temporal random effects terms models the temporally-correlated 

heterogeneity and the other models the non-correlated heterogeneity in the temporal dimension. 

This specification is given in (8). 

𝑌௜௧~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆௜௧) 

log(𝜆௜௧) = log(𝐸௜௧) + 𝑿𝒊𝒕𝜷 +  𝑉𝒊 +  𝑈𝒊 +  𝜙௧ +  𝛾௧   (8) 

 Notice in (8) that the index is now consisting of both i and t terms. As before i denotes 

the ith areal unit; i=1,2,…,96; and t now denotes time in years for t=1998,1999,…,2015. Here ϕ t 

is the temporally unstructured random effects term and γt is the temporally structured random 

effects term. These are specified using (9) and (10) respectively. 

𝜙௧  ~ 𝑁(0, 𝜎థ
ଶ)    (9) 

𝛾௧ | 𝛾௧ିଵ, 𝛾௧ିଶ ~ 𝑁(2𝛾௧ିଵ +  𝛾௧ିଶ, 𝜎ఊ
ଶ) (10) 

The γt term here is also known as a random walk term of second order. What this imposes is a 

correlation structure where the errors are now assumed to depend on both the regions adjacent to 

the ith region as well as depend on the previous two years of data. This allows for measuring the 
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change in time and how one year influences the value of the next. The second order random walk 

was chosen as it was a better fit for the data than the first order random walk indicating that the 

temporal covariance structure relies on both the previous year as well as two years previous. 

 Another type of change that can (and should) be accounted for if present, is that of space-

time interactions. This occurs when we assume that the temporal trends vary over space, when 

the spatial trends vary over time, or both. To account for this, we add another random effects-

term to the model which is now measured over both i and t, as given in (11) with the SRR given 

in (12). 

log(𝜆௜௧) = log(𝐸௜௧) + 𝑿𝒊𝒕𝜷 +  𝑉𝒊 +  𝑈𝒊 +  𝜙௧ +  𝛾௧ +  𝛿௜௧ (11) 

𝑆𝑅𝑅௜௧ = exp {𝑿𝒊𝒕𝜷 +  𝑉𝒊 +  𝑈𝒊 +  𝜙௧ +  𝛾௧ +  𝛿௜௧} (12) 

There are four different types of interactions that can occur as the space-time interaction effect 

δit, these are given in table 3.1. 

Interaction Interacting Parameters Description 

I Vi and ϕt  Unstructured interaction. 

II Vi and γt Spatially unstructured, temporally structured interaction. 

III Ui and ϕt Spatially structured, temporally unstructured interaction. 

IV Ui and γt Both spatially and temporally structured interaction. 

Table 3.1: Space-time interaction types. 

 

The structure matrices for each interaction type are defined by the Kroneker product of 

the spatial and temporal structure matrices of the parameters interacting. This implies that there 

is no structure for interaction type I as the matrix structures for both of these parameters is the 
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identity matrix, and 𝑰 ⊗ 𝑰 = 𝑰. For interaction II the structure comes from the temporal effect, 

for III it comes from the spatial effect, and in IV it is the product of both the space and time 

effects. As there is indication that we have both spatially varying temporal effects and temporally 

varying spatial effects in our IHD data, all four interaction types are assessed for model fit and 

specification. Inference for these models is, as before, carried out with a Bayesian approach 

using INLA. 

 

3.4.4 – Misaligned Data Problem 

 An issue that often appears when using census data in Canada is the misaligned data 

problem. This occurs because the census is conducted at a census block level at its lowest 

aggregation level, and healthcare data is most often collected at the postal code level at the 

lowest level of aggregation. Here, census blocks and postal codes more often than not, do not 

share borders and so inferring about census rates within postal codes is not readily done as no 

one-to-one conversion between these data types exist.  

Statistics Canada has developed an algorithm in the form of the PCCF, that does attempt 

a conversion between different census levels, such as the census DA or dissemination block 

(DB) and the 6-digit postal code which is provided and maintained by the Canada Post 

Corporation. However, this is a deterministic function and only links about 94% of all postal 

codes (Statistics Canada, 2015). Hence in places where postal codes and DA’s cover a large 

landmass, such as in Northern Manitoba, the accuracy of the census variables should be called 

into question. 
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 As mentioned, the aggregation level that this research project is interested in, is the 96 

RHADs and neighborhood clusters, which are formed by aggregating postal and municipal codes 

together. This is chosen due to the organization structures of Manitoba’s health system being 

more-or-less aligned to these areal units. The lowest level of aggregation that is publicly 

available from Statistics Canada for the census is that of the census DA. In Manitoba there are 

2183 census DA’s where the majority of these represent 1000 persons or less. 

Since the misalignment occurs at a lower level of aggregation, these 2183 regions are 

also misaligned with the 96 areal units. A map of this misalignment is depicted in figure 3.2.  As 

can be seen, there are a large number of misaligned regions between these two datasets which 

needs to be overcome if we want to use the census data accurately. 

The purpose of this section is to describe a stochastically defined method for linking 

these two datasets. A few examples of previous work in this area has been done by Mugglin et al 

and Agarwal et al (Mugglin, Carlin, & Gelfand, 2000; Agarwal, Gelfand, & Silander, 2002). 

However, these methods are more specific to the data that was used to motivate these methods. 

The modelling approach outlined in this section was developed specifically for relating Canadian 

census data to the 96 areal units of interest in Manitoba.  

This method will enable more precise measures of the census covariates for the 96 areal 

units, while also being able to define a measure of error for each of the predicted values. The 

census variables that are of interest for this project are the four that make up the SEFI-2 factor 

scores; proportion of lone parent families, unemployment rate, high school education rate, and 

median household income; and the indigenous population count for each region. For simplicity, 

the SEFI-2 standardized factor scores are calculated for the 2183 regions prior to conversion to 
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the 96 administrative regions. This saves some time as we then only need to convert two 

variables, SEFI-2 and indigenous population count, rather than all five.  

 

 

Figure 3. 2: RHADs (red borders), superimposed onto census DAs (black borders). 
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A naïve approach to this problem would be to simply take a weighted average of the 

regions, weighted by either the region’s area or population size. This however, can be misleading 

as both the indigenous population composition and the SEFI-2 variable are continuous processes 

that are “binned” into areal units which effectively discretizes each process. Because of this, a 

spatial covariance structure is more than likely to occur between neighboring regions. Now since 

the indigenous population variable is a count variable and the SEFI-2 variable is continuous, the 

succeeding methods are slightly different. Thus, a step-by-step method for the count variable will 

be defined first and the modifications for the continuous variable will be provided afterwards. 

Method for Count Variable 

 The first thing that must be done is to define a one-to-one function linking the two 

aggregation methods. This is done by intersecting the two aggregation methods and defining 

each region that is created with the intersection as the atomic areal units. When this is done, 3195 

atomic units are created. If we let Ai be the ith RHAD (i=1,2,…,96), and Bj as the jth census DA 

(j=1,2,…,2183), then we can define the intersecting regions from either of these perspectives. 

Hence there exists an Aik and a Bjl for which Aik=Bjl. Here Aik represents the kth atom within the 

ith region created from the intersection, and Bjl represents the lth atom within the jth DA created 

from the intersection. Hence, we have coerced the datasets to have a one-to-one conversion. 

 However, the problem remains; we do not know the value of our count variable for the 

jlth atom, we rather only know the value for the jth region and so it needs to be estimated. If we let 

Xj be the indigenous population count for the jth DA, Xjl the count for the jlth atom, Pj the 

population of the jth DA, and Pjl the population for the jlth atom, then we can begin estimating as 

follows: 



41 
 

𝑋ఫ௟
෢ = 𝑋௝

|஻ೕ೗|

|஻ೕ|
  (13) 

𝑃ఫ௟
෢ = 𝑃௝

|஻ೕ೗|

|஻ೕ|
  

 Where |C| denotes the area of region |C|. This provides an initial estimate for atomic 

regions. However, area size as a weight for population counts is often misleading as there are 

vast expanses of space in parts of Manitoba where there are relatively few or no persons living. 

This provides the basis for the problem of a deterministic function to link these regions; the 

covariance between regions will contain some spatial structure that should be accounted for. To 

overcome this, we will fit the estimated counts from (13) with the previously mentioned BYM 

model. This will impose a GMRF structure onto the data and smooth the counts by accounting 

for the neighboring values. Not only this, but it also provides a measure of error for each of the 

3195 atoms which can be analyzed to assess if there are atoms with large errors. The full model 

is given in (14). 

𝑋ఫ௟
෢ ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆௝௟) 

log൫𝜆௝௟൯ = log (𝑃ఫ௟)෢ + 𝑈௝௟ + 𝑉௝௟    (14) 

 Here, Ujl and Vjl are defined as before in the spatial ICAR model of (7). We then collect 

the fitted values of the model (𝜆ఫ௟
෢) and convert them using the one-to-one function defined above 

as 𝜆ఫ௟
෢ = 𝜆ప௞

෢ . The final step is to sum over k to get the count for the ith areal unit as 𝜆ప
෡ = ∑ 𝜆ప௞

෢
௞  

and then divide by the total population in the ith areal unit to obtain the estimated indigenous 

population proportion covariate that we need for modelling IHD prevalence. 
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Continuous Modifications for SEFI-2 

 Inserting a continuous variable into the methods mentioned above requires a bit of a 

modification. First, we do not need to weight a continuous variable by area size, as we can 

initially estimate the value of Xjl as Xj for each lth atomic unit. The model in (14) also changes, as 

now we have a normally distributed continuous variable, rather than a Poisson distributed count 

variable. If we denote the estimated value for the jlth atom as 𝜇ఫ௟ෞ  then: 

𝜇ఫ௟ෞ = 𝑈௝௟ + 𝑉௝௟  (15) 

Note that the values for Ujl and Vjl are not the same in (14) as they are in (15), but are still 

defined by the ICAR specification and spatially unstructured specification respectively. As 

before we can convert the fitted values to the ik method of indexing the intersected dataset by 

simply equating them with the one-to-one function. The main difference here is now instead of 

simply summing over k, we must take a weighted average of all k intersections, weighted by 

population size. This is given in (16). 

𝜇పෝ =
ଵ

௉೔
∑ 𝑃௜௞௞ 𝜇ప௞ෞ     (16) 

 By using these methods, an estimated value for each variable defined by census data has 

been obtained, where the estimates have been corrected for their spatial covariance structures. 

This provides a more accurate measure, while also providing a measure of error for which we 

can ensure that we retain precise variable values. For this study, all subsequent models using 

indigenous population proportion and/or the SEFI-2 covariates, use the corrected versions of 

these variables as defined in this section. 

 



43 
 

Chapter 4: Statistical Modelling & Results 

 This chapter begins with some main cohort characteristics and how they relate to the 

outcomes of interest. Crude and standardized AMI incidences and IHD prevalences are shown by 

RHAD, and in the case of IHD prevalence also by year and sex. Characteristics of the study 

covariates are also shown by region for posterity. Following this, the research questions are 

addressed and evaluated with their corresponding hypotheses directly. In the case of the 

modelling at the latter half of this chapter, step-by-step model building and assumption checking 

is done where appropriate. 

 

4.1 – Summary Statistics 

 Over the time frame of 2011-2016, there were measured to be 13313 AMI events for the 

age group 40-85, or on average 2219 per year. This translates to a crude incidence rate of 3.79 

per 1000 persons per year, and an age- sex-standardized incidence rate of 3.82 per 1000 persons 

per year. This ranges from 1.95 per 1000 persons in St. Boniface E (Winnipeg Health Region), to 

9.87 per 1000 persons in N Seven Regions (Southern Health Region). Figure 4.1 shows the crude 

incidence rates of AMI for all 96 RHADs.  

 The overall crude prevalence of IHD for each year and stratified by sex is given in figure 

4.2. It can be seen that the general trend is a decrease in prevalence over time (1998-2015), and 

that females generally have lower prevalence than males. Figure 4.3 shows the 2015 crude 

prevalence of IHD broken down into the 5 Regional Health Authorities (RHA)’s and stratified by 

sex. These plots show that there is reason to believe that there are both spatial and temporal 

trends in the IHD data, which will need to be explored further. 
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Figure 4.1: 2011-2016 crude AMI incidence rate per 1000 persons per year, for ages 40-85, by RHAD. Vertical line represents 
provincial rate of 3.79 per 1000 persons per year. 
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Figure 4. 2: Crude provincial IHD prevalence (proportion) by sex over time (1998-2015). 

 

 

Figure 4. 3: 2015 crude IHD prevalence (proportion) by RHA 
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 The remaining figures in this section (4.4 – 4.6) show regional rates of the study 

covariates. Figure 4.4 shows the SEFI-2 values, 4.5 shows the indigenous population proportion 

levels, and 4.6 shows the standardized hypertension prevalence risk ratio (RR). Regional 

variation is present, which is expected. Note that figure 4.6 showing the standardized 

hypertension prevalence RR looks to be more uniform than the other covariate figures. This is 

most likely due to the fact that hypertension is a very prevalent condition in Manitoba regardless 

of place. Therefore, it may be a covariate that does not carry as much of the spatial variation in 

IHD prevalence as some of the other covariates. Table 4.1 gives some general statistics regarding 

these covariates as well. 
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Figure 4. 4: SEFI-2 scores for each RHAD using the 2016 census. Negative values indicate higher SES (less deprivation), whereas 
positive values indicate lower SES (more deprivation) within regions. 
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Figure 4. 5: Indigenous population proportion for each RHAD using the 2016 census. Vertical line represents the provincial 
proportion of 0.18. 

 



49 
 

 

Figure 4.6: Standardized hypertension RR for 2015. (RR of 1 means there is no elevated or reduced risk associated with a 
particular region compared to the provincial average). 
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Variable Mean(sd) 
Provincial 
Rate Median Range 

Hypertension Prevalence RR (2015) 1.074(0.20) 1.000 1.023 (0.776, 1.827) 

Indigenous Population Proportion 0.290(0.30) 0.180 0.158 (0.017, 0.989) 

SEFI-2 0.269(1.05) NA -0.098 (-1.391, 3.079) 

Urban Regions NA 30 regions NA NA 
Table 4. 1: Summary statistics of study covariates. Hypertension is calculated for 2015, and the indigenous and SEFI-2 covariates 
are calculated from the 2016 census. Note that the mean and sd is the mean and sd across the 96 areal units. The Provincial rate 

is the overall rate when we do not consider breaking the province into regions. 

 

 

4.2 – AMI Cluster Detection 

 For the AMI cluster detection, we identify groups of regions that have an elevated AMI 

age- sex-SIRs. Figure 4.7 shows the AMI SIRs by RHAD, with corresponding map in figure 4.8. 

It can be seen that there are spatial patterns present, and that exploring these further with the FSS 

should be done. The FSS will detect clusters of regions that are “hotspots” for AMI incidences. 

Checking whether lower levels of SES (more socio-economic deprivation), indigenous 

populations, or are occurring in remote or urban regions is done by visually comparing the maps 

of the geographical distributions of these variables.  

The FSS identified a most likely cluster as well as 8 secondary non-overlapping 

significant clusters. These are shown in figure 4.9. To evaluate the first hypothesis, comparisons 

of these maps are visually compared to maps of remote regions, regions that have higher than the 

average indigenous populations, and regions that have higher than the average socio-economic 

deprivation scores. It appears that the primary cluster does contain some regions that have higher 

indigenous populations and more socio-economic deprivation. However, this cluster does not 

contain any regions that are geographically isolated (remote regions), or urban regions (Portage 
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la Prairie is the largest city within this cluster). Some of the secondary clusters do seem to be 

associated with regions of more socio-economic deprivation and higher indigenous populations. 

In Winnipeg for instance, the regions with higher levels of socio-economic deprivation and 

higher indigenous populations are mostly contained within a secondary cluster, but this cluster 

also contains other regions beyond these.  

 

Figure 4.7: AMI age- sex-SIRs by RHAD for 2011-2016. 
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Figure 4.8: Map of AMI age- sex-SIRs for 2011-2016. 

 

Figure 4. 9: Clusters of AMI incidences (2011-2016). 
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Figure 4. 10: Map of regions classified as remote. 

 

 

Figure 4. 11: Map of regions that have higher than the average proportion of indigenous persons. Average of 30% is calculated 
as the mean of the proportions among the 96 RHADs. 
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Figure 4. 12: Regions that have higher than the average socio-economic deprivation scores. 

 

 

4.3 – Poisson and Spatial Poisson Regression Modelling 

 This section starts with some initial data exploration. First, we conduct a cluster analysis 

for IHD prevalence for the overall data and the sex-stratified data. Next, we move to checking 

the Poisson model assumptions and then finally performing some initial modelling with the 

Poisson model for the overall dataset using INLA for inference. A case will then be made to 

move to the spatial Poisson model, where the overall data as well as the sex-stratified data will 

be modelled using the ICAR/BYM specification with INLA.  
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Data Exploration with FSS Cluster Detection 

 Cluster detection is done for the overall data and the sex-stratified data and is displayed 

in figures 4.13-4.15. It can be seen that the clusters are all following the same geographical 

patterns. It seems to be that the primary cluster is in the central-western region of Manitoba, with 

secondary clusters in Winnipeg, north-eastern Manitoba, and a cluster in Selkirk as a lone-region 

cluster in the overall data as well as the sex-stratified data. Females seem to have larger 

clustering of regions whereas males seem to be clustering in smaller groups of regions.  

 

 

Figure 4. 13: Map of IHD clusters, overall data (2015) 
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Figure 4. 14: Female IHD clusters (2015) 

 

Figure 4. 15: Male IHD clusters (2015) 
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Poisson Regression Model Building 

 In order to model the data with a Poisson regression model, there are a few assumptions 

that need to be met. The first is that the response (log (𝜆௜)) needs to be normally distributed. 

Figure 4.16 is a histogram of log(IHD RR) to check this normality. This shows that the response 

is approximately normally distributed which is what we need.  

 

Figure 4. 16: Histogram of log(IHD RR). 

 

 The next assumption we need to check, is that of linearity in the predictors. For this part, 

linearity of the hypertension and the indigenous population proportion predictors is checked in 

figure 4.17. It can be seen that the covariates are linear to the response after transforming the 

indigenous population proportion variable with the logarithm transformation. 
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Figure 4. 17: Check for linearity of the hypertension and indigenous population covariates. 

 

 Another assumption that needs to be satisfied is the independence of the observations. If 

this is not satisfied it will cause overdispersion and lead to heteroscedasticity of the residuals. 

The first model to be run is the Poisson regression model with hypertension RR, log of 

indigenous population proportion, and the urban categorical variable as covariates. The model 

summary is given in table 4.2.  It is shown here that all three covariates of interest are significant 

predictors of IHD prevalence. The next assumption to check is whether the residuals are 

independently distributed. The residuals are displayed on the map in figure 4.18 which shows a 
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large amount of spatial correlation between regions. This will cause overdispersion and violates 

the assumption of independent and identically distributed residuals for the Poisson regression 

model. 

Poisson Generalized Linear Model – IHD SRR 
Covariate Mean sd RR 95% CI (LL) 95% CI (UL) 
(Intercept) -0.360 0.052 0.698 0.630 0.773 
Hypertension RR 0.477 0.040 1.0491 1.0411 1.0571  

log(Indigenous) 0.084 0.008 1.0082 1.0072 1.00921 

Urban 0.085 0.009 1.088 1.070 1.107 
DIC 2279.83     

Table 4. 2: Poisson regression model output. Mean is the mean of the predicted posterior density for each covariate and sd is its 
standard deviation. RR is the transformed mean in terms of a risk ratio, and the credible interval (CI) for the RR is given in the 

following 2 columns. All following model output contains these measures. 

 

 

Figure 4. 18: Residual plot for Poisson regression model, (each color bin represents a quantile of the output). 

                                                           
1 Based off a 0.1 increase in the hypertension RR value holding all other variables constant. All following models 
report hypertension estimates in this way. 
2 Based off a relative 10% increase in indigenous population proportion. E.g. increasing the proportion from 0.5 to 
0.55, or 0.2 to 0.22. All following models report indigenous population proportion estimates in this way. 
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Spatial Poisson Regression Model Building 

As the residuals are very clearly correlated and spatially heteroscedastic, the Poisson 

regression model is mis-specified. This will cause overdispersion which means that the data are 

not being modelled adequately. To account for this, we now turn to the spatial Poisson regression 

model with the BYM specification. Table 4.3 shows the model output for the initial spatial 

Poisson regression model. 

Spatial Poisson Model – IHD SRR 
Covariate mean sd RR 95% CI (LL) 95% CI (UL) 
(Intercept) -0.922 0.193 0.398 0.271 0.581 
Hypertension RR 0.960 0.155 1.101 1.068 1.135 
log(Indigenous) 0.086 0.029 1.008 1.003 1.014 
Urban 0.095 0.056 1.100 0.985 1.228 
DIC 929.945         

Table 4. 3: Initial spatial Poisson regression model output.  

 Here it appears that when accounting for the spatial covariance in the data that urban 

regions no longer significantly contribute to the response. Also, of importance to note is that the 

DIC is now under half of what it was in the non-spatial Poisson regression model. A map of the 

spatial regression model’s residuals is given in figure 4.19, where it now appears as though the 

residuals are more independently distributed and much lower in magnitude than the non-spatial 

model’s residuals were. This indicates a much better model fit. 

 Table 4.3 shows that if we increase the hypertension prevalence in a region by 10% more 

than the provincial average, we should expect the IHD prevalence in that region to be 10.1% 

(95% CI: 6.8%-13.5%) higher than the provincial average. We should also expect that a 10% 

relative increase in the proportion of indigenous population from one region to another will result 

in a 0.8% (95% CI: 0.3%-1.4%) increase in IHD prevalence.  
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 It is now prudent to also account for one of the suspected confounders of these models; 

that of SES. Here we use the SEFI-2 covariate as a measure of SES in order to account for any 

SES confounding between indigenous persons or hypertension to the response. First, a check for 

linearity to the response is performed in figure 4.20, which shows a linear relationship between 

SEFI-2 and the response, as needed. 

 

Figure 4. 19: Residual plot for initial spatial Poisson regression model. 

 

 

Figure 4. 20: Check for linearity of SEFI-2 covariate. 
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 Table 4.4 shows the model output for the spatial Poisson regression model with the added 

SEFI-2 covariate. Here it can be seen that the model is more-or-less the same as the previous one 

in terms of fit, assessed by the DIC. Hypertension and indigenous population proportion are still 

significant in the presence of SEFI-2 while urban is again not significant. The estimates for 

hypertension RR and indigenous population proportion attenuated toward zero by 7.1% and 16% 

respectively. Therefore, even though the SEFI-2 variable isn’t significant in the model, it affects 

the results which means there is some confounding or effect modification occurring between 

SEFI-2 and indigenous population proportion, and to a lesser extent with hypertension. For this 

reason, SEFI-2 should be kept in the model, as we can then control for these effects. 

Spatial Poisson Model – IHD SRR 
Covariate mean sd RR 95% CI (LL) 95% CI (UL) 
(Intercept) -0.881 0.198 0.415 0.280 0.610 
Hypertension RR 0.892 0.168 1.093 1.058 1.130 
log(Indigenous) 0.072 0.032 1.007 1.001 1.013 
Urban 0.089 0.056 1.094 0.979 1.221 
SEFI-2 0.035 0.033 1.035 0.970 1.105 
DIC 929.969     

Table 4. 4: Spatial Poisson regression model output, controlling for SES. 

 

 Table 4.5 shows the variance of the random-effects components of the model, as well as 

the proportion for each out of the total of the model’s variation. Here, the majority of the model’s 

variation is coming from the spatially structured random effects term, indicating that the spatial 

structure is a significant component of the model. 

Variance Component Variance Estimate Proportion of Model Variance 

Spatially Structured 
6.68E-2 0.986 

Spatially Unstructured 
9.39-04 0.014 

Table 4. 5: Estimated variance components for spatial regression model controlling for SES. 
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Figure 4.21 maps the observed IHD standardized risk ratios (SRR)’s, and figure 4.22 

maps the fitted and smoothed IHD SRR’s. This smoothing has produced some changes in the 

appearance of these maps, most notably in central Manitoba where the observed SRR’s obtained 

from the data may be lower than what they are in reality. Figure 4.23 shows regions that have 

significantly elevated IHD prevalence (95% credible interval). These are calculated by checking 

if the fitted probability distribution’s 2.5% quantiles are greater than RR=1 for each RHAD. 

Comparing the map of IHD clusters in figure 4.13 with the elevated regions in figure 4.23, it can 

be seen that many of the same regions that were reported as part of a cluster have also been 

estimated to have significantly elevated prevalences of IHD.  

 

Figure 4. 21: Observed IHD SRR's (2015). 
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Figure 4. 22: Fitted/smoothed IHD SRR's (2015). Fitted with the model from table 4.4. 

 

Figure 4. 23: Regions with significantly elevated levels of IHD prevalence at the 95% credible interval (2015). Estimated by the 
model in table 4.4. 
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Sex-stratified Modelling 

 The next avenue to explore, is to apply the model from table 4.8 to the sex-stratified data 

to see if there are any differences in how the sexes are affected by IHD. Model outputs for 

females and males are given in tables 4.6 and 4.7 respectively. 

Spatial Poisson Model – IHD SRR Females 
Covariate mean sd RR 95% CI (LL) 95% CI (UL) 
(Intercept) -0.786 0.247 0.456 0.279 0.738 
Hypertension RR 0.833 0.205 1.087 1.044 1.132 
log(indigenous) 0.106 0.042 1.010 1.002 1.018 
Urban 0.113 0.069 1.120 0.977 1.284 
SEFI-2 0.069 0.046 1.072 0.980 1.172 
DIC 821.622     

Table 4. 6: Spatial regression model output for female data. 

 

Spatial Poisson Model – IHD SRR Males 
Covariate Mean sd RR 95% CI (LL) 95% CI (UL) 
(Intercept) -0.793 0.182 0.453 0.316 0.647 
Hypertension RR 0.807 0.159 1.084 1.051 1.119 
log(indigenous) 0.062 0.031 1.006 1.000 1.012 
Urban 0.081 0.053 1.084 0.976 1.203 
SEFI-2 0.024 0.031 1.024 0.964 1.088 
DIC 878.320         

Table 4. 7: Spatial regression model output for male data. 

 

 It appears that for females, indigenous population proportion is more associated whereas 

hypertension is less associated with IHD prevalence than for the overall population. There also 

appears to be less association with both of these variables for males than there is in the overall 

data. The regions with significantly elevated IHD prevalence are given in figures 4.24 and 4.25.  
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Figure 4. 24: Significantly elevated levels of IHD prevalence for females at the 95% credible interval (2015). Estimated by the 
model in table 4.6. 

 

Figure 4. 25: Significantly elevated levels of IHD prevalence for males at the 95% credible interval (2015). Estimated by the model 
in table 4.7. 
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 Although there are some differences between the cluster detection plots and the elevated 

IHD prevalence plots, the patterns are closely following each other. Females again have more 

regions that have elevated rates, whereas males are more tightly clustered. In Winnipeg, the 

regions that have elevated IHD prevalence in males seem to be more scattered than the cluster 

detection method was able to detect.  

 Thus, after accounting for the heterogenetic spatial variation, and controlling for SES 

confounding; IHD prevalence is, at the RHAD level, associated with increased hypertension risk 

and indigenous population proportion. This is true for the overall data as well as when the data is 

sex-stratified. The association between urban regions and IHD prevalence is not conclusive, as 

this covariate was not significant in any of the models after accounting for the spatial covariance. 

There are some clear disease patterns for both the overall data and the sex-stratified data, as 

many of the same regions have been identified as having an elevated IHD prevalence and being 

detected by the FSS as being part of a disease cluster.  

 

4.4 – Spatio-Temporal Regression Modelling 

 The next aspect for this research project that is of interest is to assess how IHD is 

changing over time as well as space. To motivate this, the temporal pattern of the disease is 

explored in more detail. Figure 4.2 shows the overall crude prevalence of IHD over the time 

period of interest (1998-2015) aggregated by year and sex-stratified. This shows that the overall 

temporal pattern is very similar between the sexes and the overall data, with the obvious 

difference being that males have higher prevalences than females. Figure 4.26 shows the overall 
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observed SRR for IHD over this time period as well as the observed IHD SRR broken down by 

RHA. 

 It can be seen from figure 4.26 that there are differences in the temporal patterns of IHD 

between the RHA’s. This leads to the hypothesis that IHD contains a space-time pattern that 

spatially varies over time, or temporally varies over space. For this section there are five 

different models to be considered. The first is the spatio-temporal Poisson regression model 

without any space-time interaction, and the subsequent four are the models with the 4 different 

types of space-time interactions (defined in section 3.4.3). The model fits are assessed through 

the use of the DIC, where the model with the best fit is kept. The results of this comparison are 

given in table 4.11 for the overall data as well as the sex-stratified data.  

 

Figure 4. 26: Time series plot of log transformed IHD SRR's. 
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Interaction Type 
DIC 

Overall Data Female Data Male Data 
No Interaction 17884.66 15242.00 15047.19 
Type I 16213.18 14457.61 14767.03 
Type II 14907.22 13208.11 13861.09 
Type III 16017.77 14293.01 14606.79 
Type IV 14912.09 13213.77 13856.97 

Table 4. 8: Spatio-temporal regression model fitting, assessed with the DIC. 

 

 As it is seen in table 4.8, all three models with the type II interaction; temporally 

structured and spatially unstructured correlation structures; are the best fitting for all three 

datasets. The models with type IV interactions; temporally and spatially structured correlation 

structures; are almost as good but it does not seem that the spatial structure is necessary in the 

interaction term. This is most likely due to how the temporal patterns vary throughout space, 

where the spatial patterns are not varying throughout time. The model outputs for the overall and 

sex-stratified models with type II interactions are given in tables 4.9-4.11. 

Spatio-Temporal Poisson Model – IHD SRR 
Covariate mean sd RR 95% CI (LL) 95% CI (UL) 
(Intercept) -0.103 0.152 0.902 0.670 1.214 
Hypertension RR 0.289 0.053 1.029 1.019 1.040 
log(Indigenous) 0.056 0.076 1.005 0.991 1.020 
Urban -0.035 0.245 0.966 0.597 1.562 
SEFI-2 0.010 0.122 1.010 0.795 1.283 
DIC 14907.220         

Table 4. 9: Spatio-temporal Poisson regression model output for overall data. 

Spatio-Temporal Poisson Model – IHD SRR Females 
Covariate mean sd RR 95% CI (LL) 95% CI (UL) 
(Intercept) -0.110 0.153 0.896 0.663 1.209 
Hypertension RR 0.333 0.066 1.034 1.020 1.047 
log(indigenous) 0.066 0.076 1.006 0.992 1.021 
Urban -0.048 0.248 0.953 0.586 1.549 
SEFI-2 0.032 0.123 1.032 0.810 1.315 
DIC 13208.110         

Table 4. 10: Spatio-temporal Poisson regression model output for female data. 
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Spatio-Temporal Poisson Model – IHD SRR Males 
Covariate mean sd RR 95% CI (LL) 95% CI (UL) 
(Intercept) -0.103 0.150 0.903 0.673 1.210 
Hypertension RR 0.258 0.053 1.026 1.015 1.037 
log(indigenous) 0.051 0.075 1.005 0.991 1.019 
Urban -0.024 0.238 0.976 0.612 1.558 
SEFI-2 -0.004 0.118 0.996 0.790 1.255 
DIC 13861.090         

Table 4. 11: Spatio-temporal Poisson regression model output for male data. 

 

An important finding to note is that in these models, indigenous population proportion is 

not a significant contributor to the response. Another finding is that as before in the spatial 

models, the magnitude of the association between hypertension and IHD looks to be marginally 

larger for females than males, although this increase is within error where the measures of 

association between the covariates and response are all within error the same for the overall data 

and the sex-stratified data. 

Table 4.12 shows the amount of the model’s variance coming from each of the random 

effects terms. It’s clear to see that after accounting for the temporally structured heterogeneity in 

the data, that the space-time interaction term carries the majority of the variation. Here, this is the 

temporally structured and spatially unstructured random effects term. What this means is that the 

temporal trend varies throughout space and the covariance between time points for each areal 

unit are significant factors. 

Variance Component Variance Estimate Proportion of Model Variance 
Spatially Structured 1.4E-3 0.271 
Spatially Unstructured 1.4E-3 0.270 
Temporally Structured 2.1E-5 0.006 
Temporally Unstructured 1.7E-5 0.005 
Space-Time Interaction (type II) 2.5E-3 0.447 

Table 4. 12: Estimated variance components for spatio-temporal regression model for overall data. 
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Figures 4.27-4.32 maps the IHD SRR’s for the overall data and for the sex-stratified data. 

Visually comparing these maps, it appears that females have worse IHD prevalences than males 

especially in northern Manitoba. This could be somewhat misleading however, as the standard 

population in the SRR formula would be the provincial female population for the female data 

and the provincial male population for the male data. Therefore, comparisons across strata 

should be made with caution. It does appear that the SRR for all groups is decreasing with time 

in most regions, although there are some outliers that appear to be gradually increasing with 

respect to time e.g. St. Vital North.  

The plot of the temporally structured random effect over time in figure 4.33 shows the 

adjustments made to the SRR by the temporally structured random effects for each of the 

models. The model for the male stratified data shows the least deviance from zero, which 

indicates that over time there was little adjustment needed and thus little covariance between the 

years of data existed. The female stratified data shows greater change, and the overall data model 

represents the average of these two models. Overall, the values for the structured temporal 

random effects were all on average decreasing over time. This indicates that the adjustment the 

model made here was to smooth the rates to lower values in more recent years, and indicates that 

we would have been overestimating the SRR’s in the later years compared with the earlier years 

if we did not account for the structured temporal random effect. Also, if we hold all covariates 

and spatial effects constant, this shows that over time the provincial IHD prevalence is on the 

decline over these years of data, with the largest declines in the female stratified data. 

The plot in figure 4.33 could be replicated for each of the 96 areal units by taking plotting 

the overall temporal trend term from figure 4.33 and adding the space-time interaction term for 

each areal unit. As this is the most significant term in terms of how much model variance it 
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carries, this would be the most meaningful plot. However, this is obviously a large and 

potentially messy plot to display, and so instead figure 4.34 shows the six RHADs that had the 

largest increases in the model fitted IHD RR over time. These regions had a 30% or greater 

increase in IHD RR from 1998 to 2015. This plot accounts for any temporal change in the 

hypertension covariate, as well as any changes in the temporally unstructured, temporally 

structured, and temporally structured space-time interaction random effects terms. What this 

shows is that even though the trend over time is a decrease in IHD prevalence, especially for 

females, that there are some regions that have had substantial increases in prevalence.  

Thus, after accounting for the spatial and temporal heterogeneity as well as the 

temporally structured space-time interaction effect, it appears that the IHD prevalence is 

decreasing over time. This is true for females, whereas the decrease for males has been more 

marginal. After accounting for both the spatial and temporal effects as well as SES through the 

SEFI-2 variable, it appears that indigenous population proportion is no longer a significant 

predictor of IHD prevalence and urbanicity is still not significant. However, the spatio-temporal 

distribution of hypertension prevalence is still a significant contributor to IHD prevalence for all 

three datasets.  
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Figure 4. 27: Fitted/smoothed IHD SRR's by year for the overall data. Fitted with the model in table 4.9. 
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Figure 4. 28: Fitted/smoothed IHD SRR's by year for the overall data. Fitted with the model in table 4.9. 
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Figure 4. 29: Fitted/smoothed IHD SRR's by year for the female data. Fitted with the model in table 4.10. 
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Figure 4. 30: Fitted/smoothed IHD SRR's by year for the female data. Fitted with the model in table 4.10. 
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Figure 4. 31: Fitted/smoothed IHD SRR's by year for the male data. Fitted with the model in table 4.11. 
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Figure 4. 32: Fitted/smoothed IHD SRR's by year for the male data. Fitted with the model in table 4.11. 
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Figure 4. 33: Temporally structured random effect over time. Obtained from the models in tables 4.9-4.11. 

 

 

Figure 4. 24: Model fitted IHD RR for six RHADs that had the largest increases over the time period (1998-2015). This is fitted 
with the model from table 4.9. Note that the legend order is the order of the RR’s for each RHAD for 2015 (highest to lowest). 

Each of these RHADs had a 30% or larger increase in IHD RR from 1998 to 2015. 
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Chapter 5 – Discussion & Conclusions 

 This research project has been focused on AMI incidence and IHD prevalence for the 40-

85 age group in Manitoba. The main objective was to assess whether there were any spatial 

and/or spatio-temporal patterns in this disease in Manitoba, and if so, identify some probable 

causes for these patterns. Part of this objective was to identify potential clusters of one of the 

more acute outcomes of IHD, that of AMIs. To evaluate these objectives, the first method 

employed was to use the FSS to identify clusters or hotspots of AMI disease incidences. Next, 

the FSS was used to explore the IHD data for 2015 and check whether some of the same patterns 

could be identified for the chronic condition as were discovered for the acute condition. The next 

step was to model the IHD data with the Poisson and spatial Poisson regression models to 

uncover any patterns and to identify potential drivers of these patterns. Finally, the IHD data 

from 1998 to 2015 was modelled using a spatio-temporal Poisson regression model to uncover 

any temporal and space-time interaction patterns, and again, identify any potential causes of 

these patterns.  

 The first part of this chapter is dedicated to discussing the results obtained from the 

cluster detection and regression modelling outlined in previous chapters. Here, the results are 

interpreted and evaluated against the current literature pertaining to AMI’s and IHD. The next 

section discusses the strengths and limitations of the data and the analysis. This is followed by an 

implications and final conclusions section. 
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5.1 – Discussion 

5.1.1 – AMI Cluster Detection 

 The first main objective of this research project was to identify clusters of one of the 

acute forms of IHD, that of AMI’s within Manitoba. The application of the FSS cluster detection 

method produced one primary cluster and eight secondary clusters of AMI incidences for the 

2011-2016 time-frame. To evaluate the first research question’s hypotheses, a visual comparison 

between each cluster and the geographical distributions of the SEFI-2 variable, the indigenous 

population, and remote and urban regions is done.  

For the primary cluster three out of the seven regions in the cluster also are regions with 

lower levels of SES than the average in Manitoba. Four out of seven regions have large 

indigenous populations (>30% indigenous population proportion), and none of the regions are 

either remote or considered urban. This indicates that judging based on this cluster alone, that the 

evidence is rather inconclusive with regards to the research hypotheses for this question. 

For the secondary clusters north of the primary cluster, the regions within these clusters 

are almost all associated with more socio-economic deprivation than the average. Only three 

regions are exceptions to this, these being NO11, NO12, and NO14 which do not have higher 

levels of socio-economic deprivation. The regions within these clusters also have higher than 

30% indigenous populations, with only NO11 not being included in this category, where the 

proportion is still above the provincial proportion of 18% at 24%.  

Secondary clusters east and south of the Primary cluster and not within Winnipeg are less 

conclusive. These clusters are not associated with higher levels of socio-economic deprivation, 
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higher indigenous populations, urban regions, or remote regions. Thus, for these we cannot say 

that there is any evidence to support any of the hypotheses. 

The secondary cluster within Winnipeg, does seem to be associated with both more 

socio-economic deprivation and higher indigenous populations with three out of five regions in 

this cluster being associated with higher levels of socio-economic deprivation, and one out of 

five being associated with higher indigenous populations; the only region with higher than the 

average indigenous population within Winnipeg. Obviously, this cluster is not in a remote 

location but rather is within Winnipeg, so can be said to be associated with urbanicity but not 

remoteness.  

Overall, six out of nine clusters look to be associated with higher than average socio-

economic deprivation and higher than average indigenous populations. Thus, it could be said that 

hypotheses a and b for research question 1 are in fact true. There are three clusters in the 

Southern and Interlake-Eastern RHA’s that do not seem to be associated with these variables 

however, where these should be taken into consideration. The urban and remote regions both 

look to be less associated with the AMI clusters, and thus hypotheses c and d are most likely 

false.  

Unfortunately, the FSS does not provide an explicit measure of association between 

predictor variables and the clusters, so these conclusions should be examined with caution. In 

terms of the first main objective, clusters have been clearly identified and are shown in figure 

4.9. 
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5.1.2 – Spatial Patterns of IHD Prevalence 

 The second main objective of this research was to identify any spatial patterns of IHD 

prevalence within Manitoba. To do this, exploration of the 2015 IHD data was done using the 

FSS, where one primary and four secondary clusters were identified for the overall data, and one 

primary and three secondary clusters were identified for each of the stratified datasets. It is then 

possible to visually compare these cluster maps with the clusters identified for AMI’s to see 

whether these are occurring in similar locations. It can be seen that the primary clusters for the 

IHD datasets are in similar locations to the primary cluster of AMI’s, with the primary IHD 

clusters being just a bit further north than the primary AMI cluster. The secondary clusters do 

seem to be in similar locations, but nothing is very clear, as there are few common borders 

between these. 

 To evaluate the hypotheses for the second research question, the spatial Poisson 

regression model that controls for the SEFI-2 covariate is used. Table 4.4 shows this model for 

the overall data and tables 4.6 and 4.7 show the models for the sex-stratified data. For all three 

models, the hypertension and indigenous measures are significant predictors in the model for 

IHD even after controlling for SEFI-2, but urbanicity and SEFI-2 are not. Between the datasets 

there is little variation between these measures of association, where any variation is within 

error. This shows that out of the covariates selected for modelling IHD prevalence, there is little 

difference in how they predict IHD across sexes with both male and female groups having 

similar estimates for each significant variable in the models. Here a 10% increase in 

hypertension risk within a region increases the risk for IHD by 9.3% (95% CI: 5.8%-13.0%) for 

the overall population, 8.7% (95% CI: 4.4%-13.2%) for the female population, and 8.4% (95% 

CI: 5.1%-11.9%) in the male population when holding the other covariates in the model constant. 
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A 10% relative increase in the indigenous population proportion covariate within a region 

increases the risk for IHD by 0.7% (95% CI: 0.1%-1.3%) in the overall population, 1.0% (95% 

CI: 0.2%-1.8%) in the female population, and 0.6% (95% CI: 0.0%-1.2%) in the male population 

while holding all other covariates constant.  

The indigenous population proportion covariate had moderate confounding with the 

SEFI-2 variable, dropping towards zero by 16%. But since the indigenous covariate is still 

significant, it implies that there is still some variation in IHD prevalence that is being explained 

by the indigenous population covariate and not the SEFI-2 variable in these models. This 

confirms other findings, as indigenous populations in Canada have been shown to have worse 

health outcomes overall, where CVD is no exception (Tobe et al, 2015; Public Health Agency of 

Canada, 2018, pg. 195). As SES has also been shown in the literature to significantly contribute 

to worse health outcomes (The Health Officers Council of British Columbia, 2013; Public Health 

Agency of Canada, 2018, pg. 60), the fact that the indigenous population covariate is significant 

in the presence of the confounding SES covariate is noteworthy. Especially in Manitoba where 

18% of the population are indigenous peoples, this finding is important as it indicates a large 

population subgroup at higher risk for a chronic and life-threatening disease.  

Analyzing the maps of regions with significantly elevated IHD SRR’s, it is shown that 

many of the same patterns identified with the FSS method are present when using the spatial 

Poisson regression model. This is a good indication of which regions are experiencing far worse 

outcomes than others. In particular, the regions that are part of the primary clusters of both 

AMI’s and IHD prevalences in all three datasets are also associated with significantly higher 

prevalence of IHD as obtained from the spatial Poisson regression models. The clusters of IHD 
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and AMIs within Winnipeg also match up closely to the significantly elevated IHD rate maps. 

This again appears to be a pattern of IHD and AMI’s occurring in similar locations.  

These patterns are expected, as chronic IHD can over time lead to more acute events such 

as AMI’s. The interesting regions are the regions for which AMI clusters occurred, but where 

there are no clusters or significant elevation in IHD SRRs. As most of these regions are located 

either in the north, the Interlake, and the southwest corner of Manitoba, these could potentially 

be regions where barriers to healthcare services are occurring. If IHD prevalence is in reality 

higher in these regions than what has been observed in the data; where a large unobserved 

portion of cases are potentially going undiagnosed, i.e. we are undercounting the number of 

persons with IHD in these areas; this could lead to higher rates of AMI’s in these regions as the 

condition has worse outcomes if it has gone untreated (Heart and Stroke Foundation, 2018). If 

barriers to healthcare services; such as social, cultural, or physical barriers; in these areas are in 

fact reducing the diagnosis rate of IHD in these regions, this should be identified in order to 

reduce the risk of acute events such as AMI’s. 

 

5.1.3 – Spatio-Temporal Patterns of IHD Prevalence 

 The third and final objective was to identify any temporal and/or space-time interaction 

patterns in the IHD data for the 1998-2015 years of data. This was done by extending the spatial 

Poisson regression model to now incorporate both temporal random effects terms and a space-

time interaction random effects term. The model that fit the data best was the one that had a 

temporally structured and spatially unstructured space-time interaction random effects term. This 

means that the spatial correlation is not significantly varying throughout time, but the temporal 
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correlation does vary throughout space. This is most likely due to the regions in Manitoba being 

very diverse in terms of population demographics, mobility, and population density; where these 

factors could be influencing the trajectories of IHD prevalence throughout time. 

 The largest difference in covariate estimates between the spatial regression models and 

the spatio-temporal models, is that of the now insignificant indigenous population variable. 

When taking account of the temporal changes in IHD, this covariate now isn’t significantly 

predicting the response. This is likely due to the large changes in IHD prevalence in some 

regions, whereas the indigenous population proportion covariate is fixed with respect to time. 

This was chosen because over time Manitoba’s population is relatively stationary, rather than 

using previous census results to construct this variable. Considering that even in the spatial 

models this variable was only marginally significant, after accounting for temporal changes the 

indigenous population proportion in a region does not seem to indicate elevated IHD risk. 

 The only significant covariate in the spatio-temporal models was the measure of 

hypertension. This covariate varied over both time and space, and so accounted for the variation 

in the covariate over both dimensions. Although there weren’t any significant differences 

between sexes for this covariate, females did have a slightly higher RR increase due to an 

increase in hypertension prevalence. Here a 10% increase in hypertension prevalence would 

predict a 2.9% (95% CI: 1.9%-4.0%) increase in IHD prevalence for the overall population, a 

3.4% (95% CI: 2.0%-4.7%) increase in IHD prevalence for the female population, and a 2.6% 

(95% CI: 1.5%-3.7%) increase in IHD prevalence for the male population. This finding is 

supported by the literature, where hypertension is a leading risk factor and comorbidity for IHD 

(Weber et al, 2016, pg. 468; Spinar, 2012, pg. 434), so it was expected to be a predictor of IHD 

over both the spatial and temporal dimensions. Also note that these predicted model coefficients 
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are significantly smaller in the spatio-temporal model than in the spatial model for 2015. Thus, 

when accounting for the temporal changes in IHD and hypertension prevalence, hypertension 

does not predict as large of an increase in IHD prevalence. Thus, the coefficients in the Poisson 

regression model and the spatial Poisson regression model could be said to be too “optimistic” in 

predicting IHD, and that some of the prediction error is now being accounted for in the spatial 

and temporal random effects. 

 An interesting characteristic of the fitted spatio-temporal model was also that the spatial 

covariance structure seemed to shrink in the presence of the temporal covariance structure. This 

is most likely due to larger changes and more persistent patterns over time than over 

geographical space. Using smaller aggregation sizes for regions may introduce more spatial auto-

correlation, and so if in the future dis-aggregating into smaller areal units is considered helpful, 

this could come into play more significantly. Regardless, the temporal patterns do vary 

significantly over space, as indicated by the type II interaction term used in the best fitting 

model, and so the spatial pattern is such that shouldn’t be ignored. 

 This is especially true when considering figures 4.33 and 4.34. It is clearly seen that the 

overall provincial trend in IHD is a decreasing one, especially for the female sub-population. 

However, there are some regions that have substantial increases over the same time period, 

which indicates that this disease is affecting certain areas of Manitoba more than others. Having 

now identified these regions, this information could be used to mitigate these patterns in order to 

more reflect the temporal patterns in other parts of Manitoba.  

 Evaluation of the third research question is done using the spatio-temporal model 

coefficients, as well as analyzing the regions identified in figure 4.34. In terms of the spatio-

temporal model coefficients, there is no evidence to support hypothesis b or c, as both the 
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indigenous and urban covariates were insignificant in all three spatio-temporal models. 

Hypothesis a is supported by the evidence generated by these models, as the spatio-temporal 

trend in hypertension prevalence does significantly predict the spatio-temporal trend in IHD 

prevalence. The six regions identified in figure 4.34 are then analyzed closer to see if there are 

any similarities between them. Table 5.1 shows some descriptive statistics regarding these six 

regions. 

RHAD Indigenous Pop (%) SEFI-2 Urban 
NO27 98.2 3.08 F 
WE15 26.3 0.32 F 
WE14 54.1 0.81 F 
W04A 13.0 -0.12 T 
NO22 96.0 2.75 F 
IE11 34.4 0.40 F 

Table 5. 1: Covariate values for the six RHAD's that had the largest increases in IHD prevalence over the study period (1998-
2015). Indigenous population (%) and SEFI-2 were obtained from the 2016 census. Urban denotes regions within Winnipeg or 

Brandon. 

 

 Out of these six regions, five had higher than the provincial proportion of indigenous 

peoples, and five had more socio-economic deprivation than the average. There were only two 

regions that had large measures of socio-economic deprivation, substantially greater than the 

average, where the other four were very close to the provincial average. The single urban region 

identified in this group looks to be an odd region in this group, as it has lower indigenous 

populations and socio-economic deprivation levels than the other regions. Hence, it does appear 

that there could be some patterns here, as these regions do look to have large indigenous 

populations aside from the region in Winnipeg. SEFI-2 is still inconclusive and with only one 

urban region in this group of six, these covariates still appear to not be affecting these increases 

in IHD prevalence over time. 
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5.2 – Strengths & Limitations 

 Some of the main limitations stem from the usage of aggregated data to model IHD 

prevalence. Here, the underlying continuous process of disease occurrences is discretized into 96 

aggregated areal units. By using aggregated data this project is an ecological study and careful 

consideration of region and population sizes is needed in order to not commit ecological fallacy. 

This occurs when one or more of the variables of interest gets ‘averaged out’ within each 

aggregated region. Here, the region may misrepresent individuals as a central tendency and 

extremes on either side of the distribution may go unnoticed. However, usage of the 

autoregressive models described in preceding chapters that smooth the disease rates alleviates the 

effects of this issue while having the ability to retain small regions. This limitation may still be 

problematic when considering Northern Manitoba where the individual effect of covariates on 

the response could be extremely sensitive since the regions are quite large due to low 

populations. The neighborhood structure in areas such as northern Manitoba will be different 

than in Winnipeg for example, so the accuracy of the models may be less precise when compared 

to other regions in Manitoba.  

 The ecological aspect of this study also influences how we can talk about the covariates, 

and their relationship to the response in these models. As hypertension, indigenous status, or 

SEFI-2 values were not linked at the individual level to the response variables we can not say 

that causation at the individual level occurs. All we can say is that if the variables are significant 

in the models, is that these covariates are associated to the response at the areal level. As we do 

not measure whether a person is first diagnosed with hypertension, and then IHD, we also can 

not say that at the individual level that hypertension predicts future onset of IHD. What we can 

say however, is that regions with higher hypertension prevalence are associated with higher 
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levels of IHD prevalence. Here, the data points are areal units not individuals, so inferences 

about the direct association at the individual level is not advised.  

 The number of areal units used in the models was also a bit limiting. As IHD is still a 

relatively rare disease when looking at our cohort of the 40-85 age group, the areal units needed 

to be large enough to contain enough counts for each year of data. There are methods for dealing 

with low counts and zero-inflation so this could be mitigated to some extent, but the assumption 

is still that the log-response in the models is distributed normally. As the 96 areal units used in 

this study were selected both for this reason, as well as because health service delivery is 

generally administrated considering these regions; a case could be made for using smaller 

regions. The disease counts in most areal units were well above the minimal threshold, so 

disaggregating further could have produced higher spatial resolution. This would also have 

allowed for more covariates to be used in the modelling, as 96 observations is fairly limiting in 

terms of the number of covariates that could be used without running the risk of over-fitting the 

model(s). The final decision to not disaggregate further for this research project was made to 

preserve the ability to compare the results in this project to other studies and reports that have 

been extensively generated using these RHADs with this method of aggregation. 

 The selection of urbanicity as a surrogate variable for pollution is undoubtedly over 

simplistic. Not having an adequate covariate for pollution is a main weakness for this study as 

pollution has been shown to be associated with CVD in previous studies (Pun et al, 2014; Yoo et 

al, 2018). As regions in Winnipeg or Brandon would naturally have variation in pollution levels 

between them as well as between regions outside of these cities, much of this information is lost 

when we only use a binary variable categorizing regions as urban or not. This is most likely the 

reason why this study did not corroborate the literature and produce significant results regarding 
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an association between urbanicity/pollution and IHD prevalence levels in either the spatial or 

spatio-temporal case.  

 Another aspect of the modelling that will need to be considered, especially when looking 

at expected versus observed numbers of diagnoses, is that of the quality of the administrative 

data itself. It has been shown that non-fee-for-service physicians, specifically shadow billed 

physicians, are much less likely to report their patient’s records as accurately as their fee-for-

service counterparts (Alshammari & Hux., 2009, pg. 474). Alshammari & Hux were able to 

show that for diabetes, the reporting done by non-fee-for-service physicians was biased towards 

extreme cases (Alshammari & Hux, 2009, pg. 474). Although it is more important to capture 

these cases, the incompleteness of the data could result in biasing the estimated disease rates for 

these regions towards the average when in fact they could be elevated. As the trend has been to 

increase the numbers of physicians on non-fee-for-service pay schedules in Northern Manitoba, 

these regions could end up having biased estimates. This problem will need to be overcome 

however, as this project is mainly interested in areas where access to health care services is more 

of an issue, i.e. in northern and remote Manitoba. 

 Finally, another main limitation stems from not having data on undiagnosed cases of IHD 

for individuals who have had mortality due to IHD. This data; found in the vital statistics dataset; 

was not available for this research project, and so only non-mortal cases of IHD were considered. 

This could be concerning when assessing IHD prevalence or AMI incidences in Northern 

Manitoba, as physical barriers to healthcare services may mean that more persons are living with 

undiagnosed IHD in these locations. If IHD goes undiagnosed the risk for death increases, where 

these cases would not be captured in this study.  



92 
 

 The biggest strength of this research is the ability of the models to capture the spatial 

covariance between areal units in the spatial models, as well as the spatial, temporal, and space-

time interaction effects in the spatio-temporal models. Modelling the spatial and temporal 

covariance structures addresses the issue of non-heteroscedastic residuals which occurs when 

ignoring the spatial correlation of disease prevalence. These models produce far more accurate 

measures of association between the covariates and the response as well, as it was shown that 

when the above assumptions are not met that these measures were much too optimistic in 

prediction magnitude. 

 The models also produce more precise estimates of the IHD SRRs for each region. This 

smoothing shrinks the inherent variability of the observed estimates within each region by 

borrowing information from the neighboring regions. Modelling these covariance structures also 

produces a higher degree of accuracy for the identification of areal units that had significantly 

elevated IHD prevalence. This is important, especially when analyzing the results from regions 

with lower populations, as the variability in the predicted IHD SRRs could be too large to make 

conclusions without shrinking this variance using the autoregressive models. 

 Another main strength is the usage of a model-based approach for the misaligned data 

problem between the administrative health and the census data. As the PCCF is only accurate for 

94% of the Canadian postal codes, it means that up to 6% of geographical space could be missed 

entirely (Statistics Canada, 2015). The model-based approach outlined in Chapter 3 has 100% 

coverage, as well as being stochastically defined so that measures of error are readily produced 

for analysis. Thus, the same variance shrinking done in the main models is done here, where 

these estimates could be said to be more precisely measuring the real values within each of the 

areal units. This reduces the risk of measurement error, as well as providing more accurate 
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measures of association between the census defined covariates and the response for the main 

models. 

 

5.3 – Future Directions 

 This research project provides an initial starting point for spatial analyses of IHD in 

Manitoba. Future studies could start by including vital statistics data in the analyses for more 

completeness of the case event data. Also, other covariates such as comorbidities could be used 

in the analysis, as for example diabetes has been shown to be related to IHD (Mayo Clinic, 

2018). A covariate that defines pollution more completely, rather than just an urbanicity variable 

would also be useful, as it would be interesting to see if different types of pollution affect the 

development of IHD to differing extents. As the current climate change issue is becoming more 

important, discovering how our changing climate or the pollution that is associated with climate 

change affects the development of chronic diseases like IHD could be very important to explore 

in the future. Regarding the mapping of disease rates and the detection of spatial patterns of IHD, 

future studies explore other aggregation structures that increase the resolution of the maps, in 

order to better understand how the patterns are structured.  

 

5.4 – Implications & Conclusions 

5.4.1 - Implications 

 The results produced by this research project could be useful for health system policy 

makers and planners when making decisions about health care delivery. The identification of 
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AMI clusters provides valuable evidence for where there are significantly more AMIs occurring 

than in the rest of the province. Some of these clusters may come with little surprise, but others 

may indicate regions that would have otherwise been overlooked. This along with the 

identification of IHD clusters and areal units with significantly elevated IHD prevalence, can 

provide a better picture of where IHD is affecting Manitobans with greater magnitude than the 

rest of the province. Also, the identification of regions whose temporal trends were counter to the 

provincial decreasing trend of IHD prevalence, could aid in evaluating where certain policies that 

were designed to decrease heart disease are working and where more work is needed. As 

reducing health disparities among Manitobans is one of the six priorities of Manitoba Health, 

Seniors & Active Living (Manitoba Health Senior & Active Living, 2016), identifying areas 

where one of the most deadly diseases is more prevalent than in others should be important. This 

evidence directly reflects this priority and could be used to back health care policies that aim to 

reduce disparities among the Manitoban population. 

 As it was shown that after accounting for SES and the spatial and temporal covariance 

structures that hypertension prevalence is significantly associated with IHD prevalence, policies 

to reduce hypertension could indirectly also affect IHD. As hypertension prevalence has been 

shown to be increasing for Manitobans in recent years (MB Health, 2017, pg. 24, 28; Fransoo et 

al., 2013, pg. 69, 93, 109), funding programs to mitigate this trend could result in better 

outcomes downstream when it comes to IHD or other CVD conditions. 

 Another of Manitoba Health, Seniors & Active Living’s priorities is to “Lead advances in 

health service delivery with First Nations, Métis, and Inuit Manitobans, through policy and 

programs with a focus on prevention, primary health care, public health, and education.” 

(Manitoba Health Senior & Active Living, 2016). As the spatial models for the 2015 data 
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showed that regions with larger indigenous populations had more risk of having elevated IHD 

prevalences as well as five out of the six regions with the largest increases over time being 

regions with high indigenous populations, this research points towards a health outcome where 

disparities between indigenous populations and the rest of Manitobans exist. Thus, to meet this 

priority, a reduction in IHD among the indigenous population in Manitoba is necessary. This 

research provides information on which regions policy could be focused on and prioritized to 

achieve the greatest impact. 

 The research products that have been and will be produced by this research project will 

be useful from a policy lens as well as from an ecological health research perspective. The 

method for dealing with spatially misaligned data in section 3.4.4 is novel in the Manitoban 

context and is generalizable to other diseases and other Canadian geographies or provinces. 

Currently under development is a R-package that will allow users to convert a census covariate 

of interest using the method outlined in section 3.4.4 to the RHAD level of aggregation from the 

census DA level of aggregation. Since early simulation results have shown that this method is 

substantially better than the one currently employed by many researchers conducting ecological 

studies in Manitoba, this has the potential to improve the accuracy of the census variables that 

are used in these research projects. 

 Health surveillance of chronic diseases will be increasingly important as new technology 

and analysis methods become available. Surveillance projects are helpful to policy analysts and 

decision makers in the healthcare system, as they provide up-to-date evidence regarding health 

outcomes within the Province. This allows for better resource allocation, better preparedness for 

the future of our health system, and an increased probability for avoiding an epidemic before it 

occurs. The results from this research project could be a start to an ongoing surveillance project 



96 
 

that captures new clusters of IHD prevalence or AMI incidence as they occur, or track the 

temporal trends of IHD prevalence as they develop throughout Manitoba.  

An example of a user-friendly application that could be used as a surveillance tool has 

been developed which maps the fitted IHD prevalence using the spatio-temporal models from 

sections 3.4.3 and 4.4. This allows for a more complete set of model visualizations, as the maps 

in this application can be zoomed in to any specific location, temporal trends for any region can 

be analyzed (not just the six selected in sections 4.4 and 5.1.3), any year can be selected to map, 

and exceedance probabilities (the probability that a region has a SRR greater than 1) can be set to 

any value the user desires. This will allow for policy decision makers to discover the results of 

this project for themselves, allowing for focused insight into aspects that are required for the 

policy in question which will increase the likelihood that the results are considered in the policy 

making process. Not only could this tool be valuable in the IHD and AMI context, but it could 

also be generalized to other diseases if necessary, and would be easily updated as new and more 

recent data becomes available. 

 

5.4.2 - Conclusions  

This research project was able to identify clusters of AMI incidences, as well as model 

IHD prevalence throughout space as well as through the time period of 1998-2015. The 

associations between SES, indigenous populations, remoteness, or urbanicity to the AMI clusters 

were largely inconclusive. Minor associations between SES and indigenous populations to AMI 

clusters were noted as there were some visual patterns in the results.  
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Accounting for the spatial and temporal covariance structures allowed for better model 

specifications and hence more accurate results than using the naïve Poisson regression model. It 

was found that when accounting for the spatial covariance structure, the 2015 data showed 

significant associations between IHD prevalence and the two covariates of hypertension 

prevalence and indigenous population proportion even when accounting for SES confounding. 

The results were within error the same for males and females when stratifying the data by sex. 

There were some spatial disease patterns that were occurring for both IHD prevalence 

and AMI incidences as there were a few shared borders between AMI clusters, IHD clusters, and 

regions with elevated IHD prevalence. This indicates that the same regions are experiencing 

worse health outcomes for both the chronic and the acute case of IHD, which is expected as the 

chronic form of IHD can often lead to more adverse events. Central-west Manitoba in particular 

had worse outcomes for both AMI and IHD than the rest of the province.  

When accounting for the temporal and space-time effects along with the spatial effect, it 

was found that the indigenous population proportion was no longer significant in the models. 

Here again, the differences in model predictions were within error the same for both males and 

females. Thus, overall it appears that out of the chosen study covariates, there was little 

difference in how these affected IHD prevalence in either males or females. Females had more 

regions within their AMI clusters and also more regions that had elevated IHD prevalence than 

males. However, overall males still had larger prevalences than females, where the differences 

between them could be explained by males possibly having more concentrated prevalences in 

fewer areas than females.  

The silver lining in this research is that the previous work done which showed that the 

overall trend in IHD prevalence has been decreasing over time is confirmed (Fransoo et al., 
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2013, pg. 93). However, there are some nuances to this finding. It appears that the decrease was 

mostly in the female data, where overall males have been relatively constant throughout the 

study period. Also, as the space-time interaction effect was the most significant, it shows that the 

temporal patterns in IHD prevalence varies significantly throughout space. The regions that had 

the largest increase in IHD prevalence over the time period were shown in figure 4.34, where 

further investigation into these proved to show little similarities regarding SEFI-2 or urbanicity, 

but five of these six regions did show larger than average indigenous population proportions. 

Thus, further investigation into the main drivers behind these increases, and specifically why 

indigenous populations have much larger increases of IHD prevalence over time within these 

regions should be done in order to reverse this trend and decrease the risk of it occurring in other 

regions.  
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Appendix I: Disease Definitions 

An AMI incidence was defined as persons being identified in the hospital abstracts 

database with an ICD-9 or ICD-10 code for AMI as the diagnosis. These codes are: 

 ICD-9-CM-410 

 ICD-10-CA-I21 

IHD prevalence was defined using individuals that had at least one instance of IHD in the 

hospital abstracts or at least two instances in the medical claims dataset, or a combination of at 

least one instance in the medical claims dataset and two prescriptions in the DPIN dataset within 

a five year period. After these persons were identified they were counted in the numerator for 

prevalence until censored out for either death, movement to outside Manitoba, or aging out of the 

study. The ICD-9 and ICD-10 codes for the hospital abstract and medical claims datasets are: 

 ICD-9-CM-(410-414.9) 

 ICD-10-CA-(I20-I25) 

The ATC codes for identification in the DPIN dataset are: 

 ATC-C01 

 ATC-C07 

 ATC-C08 

 ATC-C09 

Hypertension prevalence was defined using individuals that had at least one instance of 

hypertension in the hospital abstracts, at least one in the medical claims dataset, or at least two in 

the DPIN dataset with a hypertension related diagnosis or prescription within a one-year time 
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period. After these persons were identified they were counted in the numerator for prevalence 

until censored out for either death, movement to outside Manitoba, or aging out of the study. The 

ICD-9 and ICD-10 codes for the hospital abstract and medical claims datasets are: 

 ICD-9-CM-(401-405) 

 ICD-10-CA-(I10-I15) 

The ATC codes for identification in the DPIN dataset are: 

 ATC-C02 

 ATC-C03 

 ATC-C07 

 ATC-C08 

 ATC-C09 
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Appendix II: Region Codes 

 Region codes for all 96 areal units are given in the below Table. Note that the first two 

characters of the code denote which RHA the areal unit belongs to. Here IE – Interlake-Eastern 

Health Authority, NO – Northern Regional Health Authority, SO – Southern Regional Health 

Authority, WE – Prairie Mountain Health Authority, and W0 and W1 – Winnipeg Regional 

Health Authority. Whether these regions were considered urban or remote in the analysis is also 

given in this table. 

Code Region Urban/Remote 

IE11 Selkirk  

IE21 S Stonewall/Teulon  

IE22 S Wpg Beach/St. Andrews  

IE23 S St. Clements  

IE24 S Springfield  

IE31 E Beausejour  

IE32 E Pinawa/LDB  

IE33 E Whiteshell  

IE41 W Gimli  

IE42 W Arborg/Riverton  

IE43 W St. Laurent  

IE51 N Powerview/PF  

IE52 N Fisher/Peguis  

IE53 N Eriksdale/Ashern  

IE61 Northern Remote Remote 

NO11 Z1 Flin, Snow, Cran, Sher  

NO12 Z1 The Pas/OCN, Kels  

NO13 Z1 LL/MCFN, LR, O-P(SIL)CN,PN(GVL) Remote 

NO14 Z1 Thompson, Myst Lake  
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NO15 Z1 Thick, Pik, Wab, Ilf/WLFN, Corm  

NO16 Z1 Gillam, Fox Lake Cree Nation Remote 

NO21 Z2 GR/MisCN, ML/MosCN, Eas/CheCN  

NO22 Z2 Puk/Mat Col CN Remote 

NO23 Z2 SayD(TL)FN, Bro/BLFN, NoL(Lac)FN Remote 

NO24 Z2 Nelson House/NCN  

NO25 Z2 Sham, YorkF, TatCN(SPL) Remote 

NO26 Z2 Bu(OH)CN, MS(GR)CN, GLN/GLFN Remote 

NO27 Z2 Cross Lake/Cross Lake FN  

NO28 Z2 Norway House/NH CN Remote 

NO31 Z3 IsL/GHFN, RSL/RSLFN, STPFN, WFN Remote 

SO11 N Seven Regions  

SO12 N MacGregor  

SO13 N Rural Portage  

SO14 N Cartier/SFX  

SO15 N City of Portage  

SO21 M Grey/St Claude (*pre 2015 Notre Dame)  

SO22 M Carman  

SO23 M MacDonald  

SO24 M Morris  

SO25 M St. Pierre/DeSalaberry  

SO26 M Red River South  

SO31 W Lorne/Louise/Pembina (*post 2015 Notre Dame)  

SO32 W Stanley  

SO33 W Altona  

SO34 W Morden  

SO35 W Winkler  

SO36 W Roland/Thompson  

SO41 E Niverville/Richot  
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SO42 E Tache  

SO43 E Ste Anne/LaBroquerie  

SO44 E Steinbach  

SO45 E Hanover  

SO46 E Rural East  

W002 Assiniboine South Urban 

W006 Transcona Urban 

W01A St. James-Assiniboia W Urban 

W01B St. James-Assiniboia E Urban 

W03A Fort Garry N Urban 

W03B Fort Garry S Urban 

W04A St. Vital N Urban 

W04B St. Vital S Urban 

W05A St. Boniface W Urban 

W05B St. Boniface E Urban 

W07A River East S Urban 

W07B River East W Urban 

W07C River East E Urban 

W07D River East N Urban 

W08A Seven Oaks W Urban 

W08B Seven Oaks E Urban 

W08C Seven Oaks N Urban 

W09A Inkster W Urban 

W09B Inkster E Urban 

W10A Point Douglas N Urban 

W10B Point Douglas S Urban 

W11A Downtown W Urban 

W11B Downtown E Urban 

W12A River Heights W Urban 
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W12B River Heights E Urban 

WP21 Churchill (Part of the WRHA)  

WE11 N Duck Mountain  

WE12 N Porcupine Mountain  

WE13 N Riding Mountain  

WE14 N Agassiz Mountain  

WE15 N Dauphin  

WE16 N Swan River Urban 

WE21 Bdn West End Urban 

WE22 Bdn North Hill Urban 

WE23 Bdn Downtown Urban 

WE24 Bdn South End Urban 

WE25 Bdn East End  

WE31 S Asessippi  

WE32 S Little Saskatchewan  

WE33 S Turtle Mountain  

WE34 S Souris River  

WE35 S Whitemud  

WE36 S Spruce Woods  
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Appendix III – R-Code 
--- 
title: "Appendix" 
author: "Justin Dyck" 
date: "October 2, 2019" 
output: word_document 
--- 
 
```{r} 
#Packages used 
library(spdep) 
library(rgeos) 
library(rgdal) 
library(maptools) 
library(coda) 
library(R2WinBUGS) 
library(tidyverse) 
library(tmap) 
library(FlexScan) 
library(gridExtra) 
library(INLA) 
library(wesanderson) 
``` 
 
```{r} 
###Read in Data##### 
mb = readOGR(dsn="C:/School/Grad School/Thesis/Data/Shape/comb", layer="combined") 
IHD = read.csv("IHD.csv",head=T) 
IHD = IHD[match(mb@data[["Region"]], substr(IHD$rhad,1,4)),] 
IHDM = read.csv("IHD_m.csv",head=T) 
IHDM = IHDM[match(mb@data[["Region"]], substr(IHDM$rhad,1,4)),] 
IHDF = read.csv("IHD_f.csv",head=T) 
IHDF = IHDF[match(mb@data[["Region"]], substr(IHDF$rhad,1,4)),] 
AMI = read.csv("ami.csv",head=T) 
AMI = AMI %>% 
  mutate(count_2011 = ifelse(is.na(count_2011),3,count_2011), 
         count_2012 = ifelse(is.na(count_2012),3,count_2012), 
         count_2013 = ifelse(is.na(count_2013),3,count_2013), 
         count_2014 = ifelse(is.na(count_2014),3,count_2014), 
         count_2015 = ifelse(is.na(count_2015),3,count_2015), 
         count_2016 = ifelse(is.na(count_2016),3,count_2016), 
         count = count_2011+count_2012+count_2013+count_2014+count_2015+count_2016, 
         exp = E_2011+E_2012+E_2013+E_2014+E_2015+E_2016, 
         pop = pop_2011+pop_2012+pop_2013+pop_2014+pop_2015+pop_2016) 
AMI = AMI[match(mb@data[["Region"]], substr(AMI$rhad,1,4)),] 
 
#Census data read in and clean# 
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inter = readOGR(dsn="C:/School/Grad School/Thesis/Data/Shape/intersected", layer="intersected1") 
 
CENS = read.csv("abi.csv",head=T) %>% 
  mutate(pop = ifelse(is.na(Total),20,Total), 
         ind = ifelse(is.na(AB),20,AB)) 
sef = read.csv("sefi2.csv",head=T) %>% 
  mutate(DA = Region) 
CENS = merge(CENS,sef,by="DA") %>% 
  select(-c(Total,AB,Region)) 
 
CENS = CENS %>% 
  mutate(ind = ifelse(ind==0,5,ind)) 
CENS = CENS %>% 
  mutate(indpr = ind/pop) 
 
cens = readOGR(dsn="C:/School/Grad School/Thesis/Data/Shape/census", layer="lda_000b16a_e") 
 
CENS = CENS[match(cens@data[["DAUID"]], as.factor(CENS$DA)),] 
 
####Intersect the census data with the RHAD data##### 
 
shape_data = inter@data 
shape_data = shape_data %>% 
  mutate(DA = as.numeric(as.character(DAUID)), 
         ID = paste(DAUID,Region)) 
 
pops = merge(shape_data,CENS,by='DA',all.x=T)  
 
pops = pops %>% 
  mutate(ID = paste(DAUID,Region)) 
 
pops = pops[match(shape_data$ID, pops$ID),] 
 
pops = pops %>% 
  mutate(Pjl = pop*(area_2/area), 
         Xjl = ind *(area_2/area)) 
 
pops = pops %>% 
  mutate(Pjl = Pjl+1) 
 
####Get adjacency matrices##### 
 
int_nb = poly2nb(inter, queen = F) 
int_adj = unlist(int_nb) 
int_adj = as.numeric(int_adj) 
int_num = matrix(nrow=3195,ncol=1) 
for(i in 1:3195){ 
  int_num[i] = length(int_nb[[i]]) 
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} 
 
int_num = as.numeric(int_num) 
int_snn = sum(int_num) 
 
ihd_nb = poly2nb(mb, queen = F) 
ihd_adj = unlist(ihd_nb) 
ihd_adj = as.numeric(ihd_adj) 
ihd_num = matrix(nrow=96, ncol=1) 
for (i in 1:96){ 
  ihd_num[i] = length(ihd_nb[[i]]) 
} 
ihd_num = as.numeric(ihd_num) 
ihd_snn = sum(ihd_num) 
``` 
 
```{r} 
#Misaligned Section 
 
##Intercept model 1 (To get smoothed rates for 3195 regions) - For each census variable required, just 
change the data list parameters. For count variables, also change the model specification to include the 
Poisson distribution 
 
mis_model<-function(){ 
   
for (i in 1:N) { 
    X[i]~dnorm(mu[i],sig[i]) 
   
    mu[i] <- V[i] +U[i] 
     
    sig[i] ~ dgamma(0.5,0.005) 
    V[i]~dnorm(0,tau.V) 
     
} 
 U[1:N] ~ car.normal(adj[], weights[], num[], tauomega.U) 
for(k in 1:snn) { 
weights[k] <- 1 
} 
  
tau.T ~ dgamma(0.5,0.005) 
p ~ dbeta(1,1) 
sigma.Z <- sqrt(p/tau.T) 
omega.U <- sigma.Z/sqrt(1.164) 
sigma.V <- sqrt((1-p)/tau.T) 
tau.V <- 1/(sigma.V*sigma.V) 
tauomega.U <- 1/(omega.U*omega.U) 
sd.U <- sd(U[1:N]) 
vratio <- sd.U*sd.U/(sd.U*sd.U+sigma.V*sigma.V) 
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} 
data = list( 
  N = length(int_num), 
  X = pops$sefi2, 
  num = int_num, 
  adj = int_adj, 
  snn = int_snn 
) 
 
inits<-list( 
  list(U=c(rep(0,3195)), V=c(rep(0,3195)), tau.T = 0.02, p=0.5, sig=c(rep(1,3195))), 
  list(U=c(rep(0,3195)), V=c(rep(0,3195)), tau.T = 0.01, p=0.5, sig=c(rep(1,3195)))) 
 
parameters <- c("mu","tau.T","sd.U","vratio","omega.U","sigma.V") 
 
mis_model_out<-bugs(data=data, parameters.to.save=parameters, model=mis_model, n.chains=2, 
n.iter=10000,n.thin=2,n.burnin=1000,  DIC=F,  inits=inits, debug=TRUE, bugs.directory = 
"C:/WinBUGS14") 
 
############################################################## 
 
#Summarize the smoothed counts into rates to compare in next model. 
 
INDs = mis_model_out$median$L 
INDs = as.vector(INDs) 
 
SEFIs = mis_model_out$median$mu 
SEFIs = as.vector(INDs) 
 
 
SM = cbind(region = as.character(pops$Region), p = pops$Pjl, INDs, SEFIs) 
SM = data.frame(SM) 
 
write.csv(SM,"smoothed_medians.csv") 
 
``` 
 
```{r} 
 
#Prep data for final model 
 
SM = read.csv("smoothed_medians.csv",head=T) 
 
SM = SM %>% 
  mutate(p = pops$Pjl) 
 
SM = SM %>% 
  group_by(region) %>% 



120 
 

  summarize(p = sum(p), 
            SEFIs = sum(SEFIs), 
            INDs = sum(INDs)) 
 
SM = SM %>% 
  mutate(SEFIs = SEFIs/p, 
         INDs = INDs/p) 
 
SM = SM[match(mb@data[["Region"]], SM$region),] 
 
#Urban and remote binary covariates 
 
urb = ifelse(IHD[,74]=="UR",1,0) 
rem = ifelse(IHD[,74]=="RE",1,0) 
``` 
 
```{r} 
#Summary Stats and graphs 
AMI1 = AMI %>% 
  mutate(RHA = ifelse(substr(rhad,1,2)=="SO","Southern", 
                      ifelse(substr(rhad,1,2)=="WE","Prairie Mountain", 
                             ifelse(substr(rhad,1,2)=="IE","Interlake-Eastern", 
                                    ifelse(substr(rhad,1,2)=="NO","Northern","Winnipeg")))), 
         Region = substr(AMI$rhad,6,52)) %>% 
  arrange(match(RHA, c("Northern","Interlake-Eastern","Prairie 
Mountain","Winnipeg","Southern")),Region) 
 
ggplot(data=AMI1)+ 
  geom_col(aes(y=IR,x=reorder(Region,match(RHA, c("Northern","Interlake-Eastern","Prairie 
Mountain","Winnipeg","Southern"))),fill=RHA))+ 
  coord_flip() + 
  scale_fill_manual(breaks = c("Southern","Winnipeg","Prairie Mountain","Interlake-
Eastern","Northern"), 
                      values=wes_palette(n=5, name="Cavalcanti1"))+ 
  labs(y = "AMI Incidence Rate /1000 persons", x = "Health District/Neighborhood Cluster")+ 
  geom_hline(yintercept=3.79,show.legend=T)+ 
  theme_light() 
 
ggplot(data=AMI1)+ 
  geom_col(aes(y=count/exp,x=reorder(Region,match(RHA, c("Northern","Interlake-Eastern","Prairie 
Mountain","Winnipeg","Southern"))),fill=RHA))+ 
  coord_flip() + 
  scale_fill_manual(breaks = c("Southern","Winnipeg","Prairie Mountain","Interlake-
Eastern","Northern"), 
                      values=wes_palette(n=5, name="Cavalcanti1"))+ 
  labs(y = "AMI SIR", x = "Health District/Neighborhood Cluster")+ 
  geom_hline(yintercept=1,show.legend=T)+ 
  theme_light() 
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cr_ihd = matrix(nrow=18,ncol=3) 
 
for(i in 1:18){ 
cr_ihd[i,1] = sum(ihda[,i])/sum(popa[,i])   
cr_ihd[i,2] = sum(ihdf[,i])/sum(popf[,i]) 
cr_ihd[i,3] = sum(ihdm[,i])/sum(popm[,i]) 
} 
 
crude_ihd = data.frame(cbind(Year = seq(from=1998, to=2015, by=1), Overall = cr_ihd[,1], Female = 
cr_ihd[,2], Male = cr_ihd[,3])) 
 
ihd_pl = data.frame(cbind(rhad = as.character(IHD[,1]), Overall_count = IHD[,70], Overall_pop = 
IHD[,71], Female_count = IHDF[,70], Female_pop = IHDF[,71], Male_count = IHDM[,70], Male_pop = 
IHDM[,71])) %>% 
  mutate(RHA = ifelse(substr(rhad,1,2)=="SO","Southern", 
                      ifelse(substr(rhad,1,2)=="WE","Prairie Mountain", 
                             ifelse(substr(rhad,1,2)=="IE","Interlake-Eastern", 
                                    ifelse(substr(rhad,1,2)=="NO","Northern","Winnipeg")))), 
         Region = substr(AMI$rhad,6,52)) %>% 
  arrange(match(RHA, c("Northern","Interlake-Eastern","Prairie 
Mountain","Winnipeg","Southern")),Region) 
 
ihd_pl = ihd_pl %>% 
  mutate(Overall_count = as.numeric(as.character(Overall_count)), 
         Overall_pop = as.numeric(as.character(Overall_pop)), 
         Female_count = as.numeric(as.character(Female_count)), 
         Female_pop = as.numeric(as.character(Female_pop)), 
         Male_count = as.numeric(as.character(Male_count)), 
         Male_pop = as.numeric(as.character(Male_pop))) 
 
ihd_pl = ihd_pl %>% 
  group_by(RHA) %>% 
  summarize(Overall_count = sum(Overall_count), 
            Overall_pop = sum(Overall_pop), 
            Female_count = sum(Female_count), 
            Female_pop = sum(Female_pop), 
            Male_count = sum(Male_count), 
            Male_pop = sum(Male_pop)) 
 
ihd_pl = ihd_pl %>% 
  mutate(Overall = Overall_count/Overall_pop, 
         Female = Female_count/Female_pop, 
         Male = Male_count/Male_pop) %>% 
  gather(Group, Prevalence, c(Overall, Female, Male)) 
 
ggplot(data=ihd_pl)+  
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  geom_col(aes(y=Prevalence,x=reorder(RHA,match(RHA, c("Northern","Interlake-Eastern","Prairie 
Mountain","Winnipeg","Southern"))),fill=Group),position = 'dodge')+ 
  coord_flip() + 
  scale_x_discrete(breaks = c("Southern","Winnipeg","Prairie Mountain","Interlake-
Eastern","Northern"))+ 
  labs(y = "Crude IHD Prevalence (2015)", x = "RHA")+ 
  scale_fill_manual(breaks = c("Overall", "Male", "Female"), 
                      values=wes_palette(n=3, name="Cavalcanti1", type="continuous"))+ 
  geom_hline(yintercept = 0.104)+ 
  theme_light() 
 
crude_ihd = crude_ihd %>% 
  gather(Group, Prevalence, c(Overall, Female, Male)) 
 
ggplot(data=crude_ihd)+  
  geom_line(aes(x=Year,y=Prevalence,color=Group),size=1)+ 
  geom_point(aes(x=Year,y=Prevalence,color=Group))+ 
  labs(y="Crude IHD Prevalence")+ 
  scale_color_manual(breaks = c("Overall", "Male", "Female"), 
                       values=wes_palette(n=3, name="Cavalcanti1", type="continuous"))+ 
  theme_light() 
 
cov_pl = SM %>% 
  mutate(hyp = IHD[,73], 
         region = as.character(region), 
         RHA = ifelse(substr(region,1,2)=="SO","Southern", 
                      ifelse(substr(region,1,2)=="WE","Prairie Mountain", 
                             ifelse(substr(region,1,2)=="IE","Interlake-Eastern", 
                                    ifelse(substr(region,1,2)=="NO","Northern","Winnipeg")))), 
         Region = substr(AMI$rhad,6,52))%>% 
  arrange(match(RHA, c("Northern","Interlake-Eastern","Prairie 
Mountain","Winnipeg","Southern")),Region) 
 
ggplot(data=cov_pl)+ 
  geom_col(aes(y=sefis,x=reorder(Region,match(RHA, c("Northern","Interlake-Eastern","Prairie 
Mountain","Winnipeg","Southern"))),fill=RHA))+ 
  scale_y_continuous(limits = c(-3.25, 3.25))+ 
  coord_flip() + 
    scale_fill_manual(breaks = c("Southern","Winnipeg","Prairie Mountain","Interlake-
Eastern","Northern"), 
                      values=wes_palette(n=5, name="Cavalcanti1"))+ 
  labs(y = "SEFI-2 Scores per Region", x = "Health District/Neighborhood Cluster")+ 
  theme_light() 
 
ggplot(data=cov_pl)+ 
  geom_col(aes(y=INDs,x=reorder(Region,match(RHA, c("Northern","Interlake-Eastern","Prairie 
Mountain","Winnipeg","Southern"))),fill=RHA))+ 
  coord_flip() + 
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  scale_fill_manual(breaks = c("Southern","Winnipeg","Prairie Mountain","Interlake-
Eastern","Northern"), 
                      values=wes_palette(n=5, name="Cavalcanti1"))+ 
  labs(y = "Indigenous Population Proportion per Region", x = "Health District/Neighborhood Cluster")+ 
  theme_light()+ 
  geom_hline(yintercept = 0.17) 
 
ggplot(data=cov_pl)+ 
  geom_col(aes(y=hyp,x=reorder(Region,match(RHA, c("Northern","Interlake-Eastern","Prairie 
Mountain","Winnipeg","Southern"))),fill=RHA))+ 
  coord_flip() + 
  scale_fill_manual(breaks = c("Southern","Winnipeg","Prairie Mountain","Interlake-
Eastern","Northern"), 
                      values=wes_palette(n=5, name="Cavalcanti1"))+ 
  labs(y = "Standardized Hypertension Prevalence Risk Ratio", x = "Health District/Neighborhood 
Cluster")+ 
  theme_light()+ 
  geom_hline(yintercept = 1) 
 
#Mapping observed values using tmap pkg 
 
mb_AMItmap = st_read("C:/School/Grad School/Thesis/Data/Shape/comb/combined.shp", 
                  stringsAsFactors=F) %>% 
  mutate(IRR = AMI$count/AMI$exp, 
         RHA = ifelse(substr(AMI$rhad,1,2)=="SO","Southern", 
                      ifelse(substr(AMI$rhad,1,2)=="WE","Prairie Mountain", 
                             ifelse(substr(AMI$rhad,1,2)=="IE","Interlake-Eastern", 
                                    ifelse(substr(AMI$rhad,1,2)=="NO","Northern","Winnipeg"))))) 
 
wpg_AMItmap = st_read("C:/School/Grad School/Thesis/Data/Shape/comb/combined.shp", 
                  stringsAsFactors=F) %>% 
  mutate(IRR = AMI$count/AMI$exp) %>% 
  filter(substr(Region,1,2)=="W0" | substr(Region,1,2)=="W1") 
 
cut = c(0,0.8,1,1.2,1.6,3.3) 
 
mb_ami = tm_shape(mb_AMItmap) + 
  tm_fill("IRR", 
          title = "Cluster Type", 
          palette="Reds", 
          title.fontfamily="mono", 
          breaks = cut) + 
  tm_layout(title = "AMI SIR - MB", 
            inner.margins = c(0.02,0.02,0.08,0.02), 
            title.fontfamily="mono", 
            title.position=c("center","top"), 
            legend.show=F, 
            title.size=1.2) + 
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  tm_borders(lwd = 1, lty = "solid") 
 
wpg_ami = tm_shape(wpg_AMItmap) + 
  tm_fill("IRR", 
          title = "SIR", 
          palette="Reds", 
          title.fontfamily="mono", 
          breaks =  cut) + 
  tm_layout(title = "AMI SIR - WPG", 
            inner.margins = c(0.02,0.02,0.08,0.07), 
            title.fontfamily="mono", 
            title.position=c("center","top"), 
            legend.title.fontfamily="mono", 
            legend.text.fontfamily="mono", 
            legend.position=c("left","bottom"), 
            legend.title.size = 1.2, 
            legend.text.size = 0.9, 
            title.size=1.2) + 
  tm_borders(lwd = 1, lty = "solid") 
 
tmap_arrange(mb_ami,wpg_ami,ncol=2) 
``` 
 
```{r} 
#Cluster Detection# 
fs = flexscan(map=mb, case=AMI$count,pop=AMI$exp) 
 
clusters = list( 
  c(34,46,52,53,55,84,91), 
  c(49,67,70,73,77,81,85,92,96), 
  c(82), 
  c(36), 
  c(7,8,9,10,17), 
  c(44,71,76), 
  c(57,58,59), 
  c(95), 
  c(56,61,62) 
) 
 
c1 = substr(AMI$rhad[clusters[[1]]],1,4) 
c2 = substr(AMI$rhad[clusters[[2]]],1,4) 
c3 = substr(AMI$rhad[clusters[[3]]],1,4) 
c4 = substr(AMI$rhad[clusters[[4]]],1,4) 
c5 = substr(AMI$rhad[clusters[[5]]],1,4) 
c6 = substr(AMI$rhad[clusters[[6]]],1,4) 
c7 = substr(AMI$rhad[clusters[[7]]],1,4) 
c8 = substr(AMI$rhad[clusters[[8]]],1,4) 
c9 = substr(AMI$rhad[clusters[[9]]],1,4) 
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Cluster = data.frame(Region = substr(IHD$rhad,1,4), cl1 = rep(0,96),cl2 = rep(0,96),cl3 = rep(0,96),cl4 = 
rep(0,96),cl5 = rep(0,96),cl6 = rep(0,96),cl7 = rep(0,96),cl8 = rep(0,96), cl9 = rep(0,96)) 
 
for (i in 1:96){ 
  Cluster$cl1[i] = ifelse(Cluster$Region[i] %in% c1,1,0) 
  Cluster$cl2[i] = ifelse(Cluster$Region[i] %in% c2,1,0) 
  Cluster$cl3[i] = ifelse(Cluster$Region[i] %in% c3,1,0) 
  Cluster$cl4[i] = ifelse(Cluster$Region[i] %in% c4,1,0) 
  Cluster$cl5[i] = ifelse(Cluster$Region[i] %in% c5,1,0) 
  Cluster$cl6[i] = ifelse(Cluster$Region[i] %in% c6,1,0) 
  Cluster$cl7[i] = ifelse(Cluster$Region[i] %in% c7,1,0) 
  Cluster$cl8[i] = ifelse(Cluster$Region[i] %in% c8,1,0) 
  Cluster$cl9[i] = ifelse(Cluster$Region[i] %in% c9,1,0) 
} 
Cluster = Cluster %>% 
  mutate(cnum = ifelse(cl1 == 1, 1,  
                       ifelse(cl2 == 1, 2,  
                              ifelse(cl3 ==1, 3,  
                                     ifelse(cl4 == 1, 4, 
                                            ifelse(cl5 == 1, 5, 
                                                   ifelse(cl6 == 1, 6, 
                                                          ifelse(cl7 == 1, 7, 
                                                                 ifelse(cl8 == 1, 8, 
                                                                        ifelse(cl9 == 1, 9, 0))))))))), 
         prime = ifelse(cnum==1,1, 
                        ifelse(cnum>1,2,0))) 
 
#Mapping clusters with tmap 
 
mb_clustertmap = st_read("C:/School/Grad School/Thesis/Data/Shape/comb/combined.shp", 
                  stringsAsFactors=F) %>% 
  mutate(prime = as.factor(ifelse(Cluster$prime==1,"Primary Cluster", 
                                  ifelse(Cluster$prime==2,"Secondary Cluster","No Cluster"))), 
         depr = as.factor(ifelse(SM$sefis>0.55,"More Deprivation","Less Deprivation")), 
         remote = as.factor(ifelse(rem==1,"Remote Location","Non-Remote")), 
         indi = as.factor(ifelse(SM$INDs>0.30,">30%","<30%")), 
         reg = ifelse(substr(Region,1,2)=="W1" | substr(Region,1,2)=="W0" | prime=="No 
Cluster","",Region)) 
 
wpg_clustertmap = st_read("C:/School/Grad School/Thesis/Data/Shape/comb/combined.shp", 
                  stringsAsFactors=F) %>% 
  mutate(prime = as.factor(ifelse(Cluster$prime==1,"Primary Cluster", 
                                  ifelse(Cluster$prime==2,"Secondary Cluster","No Cluster"))), 
         depr = as.factor(ifelse(SM$sefis>0.55,"More Deprivation","Less Deprivation")), 
         remote = as.factor(ifelse(rem==1,"Remote Location","Non-Remote")), 
         indi = as.factor(ifelse(SM$INDs>0.30,">30%","<30%")), 
         reg = ifelse(prime=="No Cluster","",Region)) %>% 
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  filter(substr(Region,1,2)=="W0" | substr(Region,1,2)=="W1") 
 
clustcols <- c("#F5F5DC", "#8B0000", "#B0C4DE") 
 
mb_clust = tm_shape(mb_clustertmap) + 
  tm_fill("indi", 
          title = "Cluster Type", 
          palette=cols, 
          title.fontfamily="mono") + 
  tm_layout(title = "Indigenous Population - MB", 
            inner.margins = c(0.02,0.02,0.08,0.02), 
            title.fontfamily="mono", 
            title.position=c("center","top"), 
            legend.show=F, 
            title.size=1.5) + 
  tm_borders(lwd = 1, lty = "solid") 
 
wpg_clust = tm_shape(wpg_clustertmap) + 
  tm_fill("indi", 
          title = "Population Proportion", 
          palette=cols, 
          title.fontfamily="mono") + 
  tm_layout(title = "Indigneous Population - WPG", 
            inner.margins = c(0.02,0.02,0.08,0.07), 
            title.fontfamily="mono", 
            title.position=c("center","top"), 
            legend.title.fontfamily="mono", 
            legend.text.fontfamily="mono", 
            legend.position=c("left","bottom"), 
            legend.title.size = 1.5, 
            legend.text.size = 0.75, 
            title.size=1.5) + 
  tm_borders(lwd = 1, lty = "solid") 
 
tmap_arrange(mb_clust,wpg_clust,ncol=2) 
 
#Mapping variables for comparison 
 
cols = c("#F5F5DC","#008080") 
 
mb_depr = tm_shape(mb_clustertmap) + 
  tm_fill("depr", 
          title = "", 
          palette=cols, 
          title.fontfamily="mono") + 
  tm_layout(title = "SES Deprivation - MB", 
            inner.margins = c(0.02,0.02,0.08,0.02), 
            title.fontfamily="mono", 
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            title.position=c("center","top"), 
            legend.show=F, 
            title.size=2) + 
  tm_borders(lwd = 1, lty = "solid") 
 
wpg_depr = tm_shape(wpg_clustertmap) + 
  tm_fill("depr", 
          title = "", 
          palette=cols, 
          title.fontfamily="mono") + 
  tm_layout(title = "SES Deprivation - WPG", 
            inner.margins = c(0.02,0.02,0.08,0.07), 
            title.fontfamily="mono", 
            title.position=c("center","top"), 
            legend.title.fontfamily="mono", 
            legend.text.fontfamily="mono", 
            legend.position=c("left","bottom"), 
            legend.title.size = 1.5, 
            legend.text.size = 0.9, 
            title.size=2) + 
  tm_borders(lwd = 1, lty = "solid") 
 
mb_rem = tm_shape(mb_clustertmap) + 
  tm_fill("remote", 
          title = "", 
          palette=cols, 
          title.fontfamily="mono") + 
  tm_layout(title = "Remoteness - MB", 
            inner.margins = c(0.02,0.02,0.08,0.02), 
            title.fontfamily="mono", 
            title.position=c("center","top"), 
            legend.title.fontfamily="mono", 
            legend.text.fontfamily="mono", 
            legend.position=c("right","bottom"), 
            legend.title.size = 1.5, 
            legend.text.size = 0.9, 
            title.size=2) + 
  tm_borders(lwd = 1, lty = "solid") 
 
mb_ind = tm_shape(mb_clustertmap) + 
  tm_fill("indi", 
          title = "", 
          palette=cols, 
          title.fontfamily="mono") + 
  tm_layout(title = "Indigenous Population - MB", 
            inner.margins = c(0.02,0.02,0.08,0.02), 
            title.fontfamily="mono", 
            title.position=c("center","top"), 



128 
 

            legend.show=F, 
            title.size=1) + 
  tm_borders(lwd = 1, lty = "solid") 
 
wpg_ind = tm_shape(wpg_clustertmap) + 
  tm_fill("indi", 
          title = "Pop Proportion", 
          palette=cols, 
          title.fontfamily="mono") + 
  tm_layout(title = "Indigenous Population - WPG", 
            inner.margins = c(0.02,0.02,0.08,0.11), 
            title.fontfamily="mono", 
            title.position=c("center","top"), 
            legend.title.fontfamily="mono", 
            legend.text.fontfamily="mono", 
            legend.position=c("left","bottom"), 
            legend.title.size = 1, 
            legend.text.size = 0.9, 
            title.size=1) + 
  tm_borders(lwd = 1, lty = "solid") 
 
tmap_arrange(mb_clust, wpg_clust, ncol = 2) 
tmap_arrange(mb_depr, wpg_depr, ncol = 2) 
tmap_arrange(mb_ind, wpg_ind, ncol = 2) 
``` 
 
```{r} 
#Cluster Detection for IHD as a data exploration tool# 
fsihd = flexscan(map=mb, case=IHD[,70],pop=IHD[,72]) 
 
clusters_ihd = list( 
  c(35, 36, 42, 49, 84), 
  c(23), 
  c(69, 75, 79, 80, 81, 82), 
  c(6, 7, 8, 9, 17), 
  c(58) 
) 
 
ci1 = substr(IHD$rhad[clusters_ihd[[1]]],1,4) 
ci2 = substr(IHD$rhad[clusters_ihd[[2]]],1,4) 
ci3 = substr(IHD$rhad[clusters_ihd[[3]]],1,4) 
ci4 = substr(IHD$rhad[clusters_ihd[[4]]],1,4) 
ci5 = substr(IHD$rhad[clusters_ihd[[5]]],1,4) 
 
Cluster_ihd = data.frame(Region = substr(IHD$rhad,1,4), cl1 = rep(0,96),cl2 = rep(0,96),cl3 = 
rep(0,96),cl4 = rep(0,96),cl5 = rep(0,96)) 
 
for (i in 1:96){ 
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  Cluster_ihd$cl1[i] = ifelse(Cluster_ihd$Region[i] %in% ci1,1,0) 
  Cluster_ihd$cl2[i] = ifelse(Cluster_ihd$Region[i] %in% ci2,1,0) 
  Cluster_ihd$cl3[i] = ifelse(Cluster_ihd$Region[i] %in% ci3,1,0) 
  Cluster_ihd$cl4[i] = ifelse(Cluster_ihd$Region[i] %in% ci4,1,0) 
  Cluster_ihd$cl5[i] = ifelse(Cluster_ihd$Region[i] %in% ci5,1,0) 
 
} 
Cluster_ihd = Cluster_ihd %>% 
  mutate(cnum = ifelse(cl1 == 1, 1,  
                       ifelse(cl2 == 1, 2,  
                              ifelse(cl3 ==1, 3,  
                                     ifelse(cl4 == 1, 4, 
                                            ifelse(cl5 == 1, 5,0))))), 
         prime = ifelse(cnum==1,1, 
                        ifelse(cnum>1,2,0))) 
################################### 
 
fsihd_f = flexscan(map=mb, case=IHDF[,70],pop=IHDF[,72]) 
 
 
clusters_ihd_f = list( 
  c(35, 36, 42, 49, 70, 84), 
  c(8, 9, 10, 19, 23), 
  c(69, 75, 79, 80, 81, 82, 95), 
  c(58) 
) 
 
ci1f = substr(IHD$rhad[clusters_ihd_f[[1]]],1,4) 
ci2f = substr(IHD$rhad[clusters_ihd_f[[2]]],1,4) 
ci3f = substr(IHD$rhad[clusters_ihd_f[[3]]],1,4) 
ci4f = substr(IHD$rhad[clusters_ihd_f[[4]]],1,4) 
 
Cluster_ihd_f = data.frame(Region = substr(IHD$rhad,1,4), cl1 = rep(0,96),cl2 = rep(0,96),cl3 = 
rep(0,96),cl4 = rep(0,96)) 
 
for (i in 1:96){ 
  Cluster_ihd_f$cl1[i] = ifelse(Cluster_ihd_f$Region[i] %in% ci1f,1,0) 
  Cluster_ihd_f$cl2[i] = ifelse(Cluster_ihd_f$Region[i] %in% ci2f,1,0) 
  Cluster_ihd_f$cl3[i] = ifelse(Cluster_ihd_f$Region[i] %in% ci3f,1,0) 
  Cluster_ihd_f$cl4[i] = ifelse(Cluster_ihd_f$Region[i] %in% ci4f,1,0) 
} 
 
Cluster_ihd_f = Cluster_ihd_f %>% 
  mutate(cnum = ifelse(cl1 == 1, 1,  
                       ifelse(cl2 == 1, 2,  
                              ifelse(cl3 ==1, 3,  
                                     ifelse(cl4 == 1, 4,0)))), 
         prime = ifelse(cnum==1,1, 
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                        ifelse(cnum>1,2,0))) 
################################### 
 
fsihd_m = flexscan(map=mb, case=IHDM[,70],pop=IHDM[,72]) 
 
 
clusters_ihd_m = list( 
  c(35, 36, 49, 84), 
  c(23), 
  c(69, 75, 79, 81, 82), 
  c(58) 
) 
 
ci1m = substr(IHD$rhad[clusters_ihd_m[[1]]],1,4) 
ci2m = substr(IHD$rhad[clusters_ihd_m[[2]]],1,4) 
ci3m = substr(IHD$rhad[clusters_ihd_m[[3]]],1,4) 
ci4m = substr(IHD$rhad[clusters_ihd_m[[4]]],1,4) 
 
Cluster_ihd_m = data.frame(Region = substr(IHD$rhad,1,4), cl1 = rep(0,96),cl2 = rep(0,96),cl3 = 
rep(0,96),cl4 = rep(0,96)) 
 
for (i in 1:96){ 
  Cluster_ihd_m$cl1[i] = ifelse(Cluster_ihd_m$Region[i] %in% ci1m,1,0) 
  Cluster_ihd_m$cl2[i] = ifelse(Cluster_ihd_m$Region[i] %in% ci2m,1,0) 
  Cluster_ihd_m$cl3[i] = ifelse(Cluster_ihd_m$Region[i] %in% ci3m,1,0) 
  Cluster_ihd_m$cl4[i] = ifelse(Cluster_ihd_m$Region[i] %in% ci4m,1,0) 
} 
 
Cluster_ihd_m = Cluster_ihd_m %>% 
  mutate(cnum = ifelse(cl1 == 1, 1,  
                       ifelse(cl2 == 1, 2,  
                              ifelse(cl3 ==1, 3,  
                                     ifelse(cl4 == 1, 4, 0)))), 
         prime = ifelse(cnum==1,1, 
                        ifelse(cnum>1,2,0))) 
 
#map these clusters 
 
mb_cluster_ihd_tmap = st_read("C:/School/Grad School/Thesis/Data/Shape/comb/combined.shp", 
                  stringsAsFactors=F) %>% 
  mutate(all = as.factor(ifelse(Cluster_ihd$prime==1,"Primary Cluster", 
                                  ifelse(Cluster_ihd$prime==2,"Secondary Cluster","No Cluster"))), 
         fem = as.factor(ifelse(Cluster_ihd_f$prime==1,"Primary Cluster", 
                                  ifelse(Cluster_ihd_f$prime==2,"Secondary Cluster","No Cluster"))), 
         mal = as.factor(ifelse(Cluster_ihd_m$prime==1,"Primary Cluster", 
                                  ifelse(Cluster_ihd_m$prime==2,"Secondary Cluster","No Cluster"))), 
         rega = ifelse(substr(Region,1,2)=="W1" | substr(Region,1,2)=="W0" | all=="No Cluster","",Region), 
         regf = ifelse(substr(Region,1,2)=="W1" | substr(Region,1,2)=="W0" | fem=="No Cluster","",Region), 
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         regm = ifelse(substr(Region,1,2)=="W1" | substr(Region,1,2)=="W0" | mal=="No 
Cluster","",Region)) 
 
wpg_cluster_ihd_tmap = st_read("C:/School/Grad School/Thesis/Data/Shape/comb/combined.shp", 
                  stringsAsFactors=F) %>% 
  mutate(all = as.factor(ifelse(Cluster_ihd$prime==1,"Primary Cluster", 
                                  ifelse(Cluster_ihd$prime==2,"Secondary Cluster","No Cluster"))), 
         fem = as.factor(ifelse(Cluster_ihd_f$prime==1,"Primary Cluster", 
                                  ifelse(Cluster_ihd_f$prime==2,"Secondary Cluster","No Cluster"))), 
         mal = as.factor(ifelse(Cluster_ihd_m$prime==1,"Primary Cluster", 
                                  ifelse(Cluster_ihd_m$prime==2,"Secondary Cluster","No Cluster"))), 
         rega = ifelse(all=="No Cluster","",Region), 
         regf = ifelse(fem=="No Cluster","",Region), 
         regm = ifelse(mal=="No Cluster","",Region)) %>% 
  filter(substr(Region,1,2)=="W0" | substr(Region,1,2)=="W1") 
 
clustcols <- c("#F5F5DC", "#8B0000", "#B0C4DE") 
 
mb_ihd_clust = tm_shape(mb_cluster_ihd_tmap) + 
  tm_fill("all", 
          title = "Cluster Type", 
          palette=clustcols, 
          title.fontfamily="mono") + 
  tm_layout(title = "IHD Clusters - MB", 
            inner.margins = c(0.02,0.02,0.08,0.02), 
            title.fontfamily="mono", 
            title.position=c("center","top"), 
            legend.show=F, 
            title.size=1.5) + 
  tm_borders(lwd = 1, lty = "solid")+ 
  tm_text("rega",size=0.5) 
 
wpg_ihd_clust = tm_shape(wpg_cluster_ihd_tmap) + 
  tm_fill("all", 
          title = "Cluster Type", 
          palette=clustcols, 
          title.fontfamily="mono") + 
  tm_layout(title = "IHD Clusters - WPG", 
            inner.margins = c(0.02,0.02,0.08,0.07), 
            title.fontfamily="mono", 
            title.position=c("center","top"), 
            legend.title.fontfamily="mono", 
            legend.text.fontfamily="mono", 
            legend.position=c("left","bottom"), 
            legend.title.size = 1.25, 
            legend.text.size = 0.8, 
            title.size=1.5) + 
  tm_borders(lwd = 1, lty = "solid")+ 
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  tm_text("rega",size=0.65) 
 
tmap_arrange(mb_ihd_clust, wpg_ihd_clust, ncol = 2) 
 
mb_ihd_clust_f = tm_shape(mb_cluster_ihd_tmap) + 
  tm_fill("fem", 
          title = "Cluster Type", 
          palette=clustcols, 
          title.fontfamily="mono") + 
  tm_layout(title = "Female IHD Clusters - MB", 
            inner.margins = c(0.02,0.02,0.08,0.02), 
            title.fontfamily="mono", 
            title.position=c("center","top"), 
            legend.show=F, 
            title.size=1.25) + 
  tm_borders(lwd = 1, lty = "solid")+ 
  tm_text("regf",size=0.5) 
 
wpg_ihd_clust_f = tm_shape(wpg_cluster_ihd_tmap) + 
  tm_fill("fem", 
          title = "Cluster Type", 
          palette=clustcols, 
          title.fontfamily="mono") + 
  tm_layout(title = "Female IHD Clusters - WPG", 
            inner.margins = c(0.02,0.02,0.08,0.07), 
            title.fontfamily="mono", 
            title.position=c("center","top"), 
            legend.title.fontfamily="mono", 
            legend.text.fontfamily="mono", 
            legend.position=c("left","bottom"), 
            legend.title.size = 1.2, 
            legend.text.size = 0.8, 
            title.size=1.25) + 
  tm_borders(lwd = 1, lty = "solid")+ 
  tm_text("regf",size=0.65) 
 
tmap_arrange(mb_ihd_clust_f, wpg_ihd_clust_f, ncol = 2) 
 
mb_ihd_clust_m = tm_shape(mb_cluster_ihd_tmap) + 
  tm_fill("mal", 
          title = "Cluster Type", 
          palette=clustcols, 
          title.fontfamily="mono") + 
  tm_layout(title = "Male IHD Clusters - MB", 
            inner.margins = c(0.02,0.02,0.08,0.02), 
            title.fontfamily="mono", 
            title.position=c("center","top"), 
            legend.show=F, 
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            title.size=1.25) + 
  tm_borders(lwd = 1, lty = "solid")+ 
  tm_text("regm",size=0.5) 
 
wpg_ihd_clust_m = tm_shape(wpg_cluster_ihd_tmap) + 
  tm_fill("mal", 
          title = "Cluster Type", 
          palette=clustcols, 
          title.fontfamily="mono") + 
  tm_layout(title = "Male IHD Clusters - WPG", 
            inner.margins = c(0.02,0.02,0.08,0.07), 
            title.fontfamily="mono", 
            title.position=c("center","top"), 
            legend.title.fontfamily="mono", 
            legend.text.fontfamily="mono", 
            legend.position=c("left","bottom"), 
            legend.title.size = 1.2, 
            legend.text.size = 0.8, 
            title.size=1.25) + 
  tm_borders(lwd = 1, lty = "solid")+ 
  tm_text("regm",size=0.65) 
 
tmap_arrange(mb_ihd_clust_m, wpg_ihd_clust_m, ncol = 2) 
``` 
 
```{r} 
#Example map 
 
mb_tmap = st_read("C:/School/Grad School/Thesis/Data/Shape/comb/combined.shp", 
                  stringsAsFactors=F) %>% 
  mutate(reg = ifelse(substr(Region,1,2)=="W1" | substr(Region,1,2)=="W0" | 
substr(Region,1,3)=="WE2","",Region), 
         dummy = rep(1,96)) 
 
wpg_tmap = st_read("C:/School/Grad School/Thesis/Data/Shape/comb/combined.shp", 
                  stringsAsFactors=F) %>% 
  filter(substr(Region,1,2)=="W0" | substr(Region,1,2)=="W1")%>% 
  mutate(dummy = rep(1,25)) 
 
mbtmap = tm_shape(mb_tmap) + 
  tm_fill("dummy", 
          palette="#F5F5DC") + 
  tm_layout(title = "", 
            inner.margins = c(0.02,0.02,0.02,0.02), 
            frame=F, 
            legend.show=F) + 
  tm_borders(lwd = 1, lty = "solid")+ 
  tm_text("reg",size=0.5) 
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wpgtmap = tm_shape(wpg_tmap) + 
  tm_fill("dummy", 
          title = "", 
          palette="#F5F5DC", 
          title.fontfamily="mono") + 
  tm_layout(title = "", 
            inner.margins = c(0.02,0.02,0.2,0.02), 
            legend.show=F, 
            frame=F) + 
  tm_borders(lwd = 1, lty = "solid")+ 
  tm_text("Region",size=0.65) 
tmap_arrange(mbtmap,wpgtmap,ncol=2) 
``` 
 
```{r} 
#Assumption check - Normality of response and linear in predictors 
 
pdat = data.frame(IHD = IHD[,70], E = IHD[,72], hyp = IHD[,73], sefis = SM$sefis, ind = SM$IND, inds = 
SM$INDs,urb, sefi = SM$sefi) %>% 
  mutate(rhad = substr(AMI[,1],1,4), 
         RHA = ifelse(substr(rhad,1,2)=="SO","Southern", 
                      ifelse(substr(rhad,1,2)=="WE","Prairie Mountain", 
                             ifelse(substr(rhad,1,2)=="IE","Interlake-Eastern", 
                                    ifelse(substr(rhad,1,2)=="NO","Northern","Winnipeg"))))) 
 
hist(log(pdat$IHD,pdat$E),breaks=15) 
 
ggplot(data=pdat)+ 
  geom_histogram(mapping = aes(log(IHD/E)),bins=10,color="white",fill="#8B0000")+ 
  labs(x = "Model Response", y = "Count")+ 
  ggtitle("Histogram of log(IHD Risk Ratio)")+ 
  theme_light() 
 
hp = ggplot(data = pdat) + 
  geom_point(mapping = aes(x=hyp,y=log(IHD/E),color=RHA))+ 
  labs(x = "Hypertension RR", y = "log(IHD RR)")+ 
  geom_abline(intercept=-0.6847,slope=0.6281)+ 
  scale_color_manual(breaks = c("Southern","Winnipeg","Prairie Mountain","Interlake-
Eastern","Northern"), 
                      values=wes_palette(n=5, name="Cavalcanti1", type="continuous"))+ 
  ggtitle("Hypertension")+ 
  theme_light() 
hp 
sp = ggplot(data = pdat) +  
  geom_point(mapping = aes(x=sefi, y=log(IHD/E), color=RHA))+ 
  labs(x = "SEFI-2", y = "log(IHD RR)")+ 
  geom_abline(intercept=-0.04099,slope=0.10461)+ 
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  scale_color_manual(breaks = c("Southern","Winnipeg","Prairie Mountain","Interlake-
Eastern","Northern"), 
                     values=wes_palette(n=5, name="Cavalcanti1", type="continuous"))+ 
  ggtitle(" SEFI-2")+ 
  theme_light() 
sp 
ip = ggplot(data = pdat) + 
  geom_point(mapping = aes(x=log(inds), y=log(IHD/E),color=RHA))+ 
  labs(x = "log(Indigenous Population Proportion)", y = "log(IHD RR)")+ 
  geom_abline(intercept=0.18039,slope=0.11097)+ 
  ggtitle(" Indigenous Population")+ 
  scale_color_manual(breaks = c("Southern","Winnipeg","Prairie Mountain","Interlake-
Eastern","Northern"), 
                     values=wes_palette(n=5, name="Cavalcanti1", type="continuous"))+ 
  theme_light() 
 
grid.arrange(hp,ip, nrow = 2,top = "Covariates Versus Response") 
 
``` 
 
```{r} 
#Poisson and Spatial Poisson - INLA 
 
temp = poly2nb(mb) 
nb2INLA("MBINLA", temp) 
MB.adj = paste(getwd(), "/MBINLA",sep="") 
H = inla.read.graph(filename="MBINLA") 
 
#Poisson Model 
 
IHD_2015 = IHD %>% 
  select(rhad, count_2015,E_2015,ht_srr_2015)%>% 
  mutate(ind = log(SM$INDs), 
         urban = urb, 
         region = seq(1:96), 
         reg = seq(1:96), 
         sef = SM$sefis) %>% 
  rename(E=E_2015, IHD=count_2015, HT=ht_srr_2015) 
 
form.pois = IHD ~ HT + ind + urban 
 
 
mod.pois = inla(form.pois, family="poisson", data=IHD_2015, E=E, 
                    control.compute=list(dic=T,cpo=T)) 
mod.pois$summary.fixed 
mod.pois$dic$dic 
 
write.csv(mod.pois$summary.fixed,"poisson.csv") 
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res = abs((IHD_2015$IHD/IHD_2015$E) - mod.pois$summary.fitted.values$mean) 
 
#Initial Spatial Model 
 
form.spat1 = IHD ~ f(region, model="bym", graph=MB.adj) + HT + ind + urban 
 
mod.spat1 = inla(form.spat1, family="poisson", data=IHD_2015, E=E, 
                    control.compute=list(dic=T,cpo=T)) 
 
mod.spat1$summary.fixed 
mod.spat1$dic$dic 
 
res_spat1 = abs((IHD_2015$IHD/IHD_2015$E) - mod.spat1$summary.fitted.values$mean) 
 
write.csv(mod.spat1$summary.fixed,"spat1.csv") 
 
#control for SES 
 
form.spat2 = IHD ~ f(region, model="besag", graph=MB.adj) + f(reg, model="iid", graph=MB.adj) + HT + 
ind + urban + sef 
 
mod.spat2 = inla(form.spat2, family="poisson", data=IHD_2015, E=E, 
                    control.compute=list(dic=T,cpo=T)) 
 
mod.spat2$summary.fixed 
mod.spat2$dic$dic 
 
write.csv(mod.spat2$summary.fixed,"spat2.csv") 
 
res_spat2 = abs((IHD_2015$IHD/IHD_2015$E) - mod.spat2$summary.fitted.values$mean) 
 
#Females 
 
IHD_2015_F = IHDF %>% 
  select(rhad, count_2015,E_2015,ht_srr_2015)%>% 
  mutate(ind = log(SM$INDs), 
         urban = urb, 
         region = seq(1:96), 
         sef = SM$sefis) %>% 
  rename(E=E_2015, IHD=count_2015, HT=ht_srr_2015) 
 
form.spat2f = IHD ~ f(region, model="bym", graph=MB.adj) + HT + ind + urban + sef 
 
mod.spat2f = inla(form.spat2f, family="poisson", data=IHD_2015_F, E=E, 
                    control.compute=list(dic=T,cpo=T)) 
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mod.spat2f$summary.fixed 
mod.spat2f$dic$dic 
 
write.csv(mod.spat2f$summary.fixed,"spat2f.csv") 
 
#males 
 
IHD_2015_M = IHDM %>% 
  select(rhad, count_2015,E_2015,ht_srr_2015)%>% 
  mutate(ind = log(SM$INDs), 
         urban = urb, 
         region = seq(1:96), 
         sef = SM$sefis) %>% 
  rename(E=E_2015, IHD=count_2015, HT=ht_srr_2015) 
 
form.spat2m = IHD ~ f(region, model="bym", graph=MB.adj) + HT + ind + urban + sef 
 
mod.spat2m = inla(form.spat2m, family="poisson", data=IHD_2015_M, E=E, 
                    control.compute=list(dic=T,cpo=T)) 
 
mod.spat2m$summary.fixed 
mod.spat2m$dic$dic 
 
write.csv(mod.spat2m$summary.fixed,"spat2m.csv") 
 
#Mapping Residuals fitted values and elevated regions. 
 
mb_tmap = st_read("C:/School/Grad School/Thesis/Data/Shape/comb/combined.shp", 
                  stringsAsFactors=F) %>% 
  mutate(res = res, 
         res_spat1 = res_spat1, 
         res_spat2 = res_spat2, 
         obs = IHD_2015$IHD/IHD_2015$E, 
         fitt = mod.spat2$summary.fitted.values$mean, 
         sig = ifelse(mod.spat2$summary.fitted.values[[3]]>1,"Elevated","Not Elevated"), 
         sigf = ifelse(mod.spat2f$summary.fitted.values[[3]]>1,"Elevated","Not Elevated"), 
         sigm = ifelse(mod.spat2m$summary.fitted.values[[3]]>1,"Elevated","Not Elevated")) 
 
wpg_tmap = st_read("C:/School/Grad School/Thesis/Data/Shape/comb/combined.shp", 
                  stringsAsFactors=F) %>% 
  mutate(res = res, 
         res_spat1 = res_spat1, 
         res_spat2 = res_spat2, 
         obs = IHD_2015$IHD/IHD_2015$E, 
         fitt = mod.spat2$summary.fitted.values$mean, 
         sig = ifelse(mod.spat2$summary.fitted.values[[3]]>1,"Elevated","Not Elevated"), 
         sigf = ifelse(mod.spat2f$summary.fitted.values[[3]]>1,"Elevated","Not Elevated"), 
         sigm = ifelse(mod.spat2m$summary.fitted.values[[3]]>1,"Elevated","Not Elevated")) %>% 
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  filter(substr(Region,1,2)=="W0" | substr(Region,1,2)=="W1") 
 
cuts = c(0, 0.8, 0.9, 1, 1.2, 2) 
 
fitmb = tm_shape(mb_tmap) + 
  tm_polygons("fitt", 
              breaks = cuts, 
              palette="Reds", 
              border.alpha=0.5, 
              title = "IHD SRR") + 
  tm_layout(title = "Fitted IHD SRR - MB", 
            inner.margins = c(0.02,0.1,0.02,0.02))   
 
fitwpg = tm_shape(wpg_tmap) + 
  tm_polygons("fitt", 
              breaks = cuts, 
              palette="Reds", 
              border.alpha=0.5, 
              title = "") + 
  tm_layout(title = "Fitted IHD SRR - WPG", 
            inner.margins = c(0.02,0.1,0.02,0.02), 
            legend.show=F) 
 
tmap_arrange(fitmb,fitwpg,ncol=2) 
 
sigcols <- c("#8B0000","#F5F5DC") 
 
mb_sig = tm_shape(mb_tmap) + 
  tm_fill("sigm", 
          title = "Cluster Type", 
          palette=sigcols, 
          title.fontfamily="mono") + 
  tm_layout(title = "Male IHD Prevalence - MB", 
            inner.margins = c(0.02,0.02,0.08,0.02), 
            title.fontfamily="mono", 
            title.position=c("center","top"), 
            legend.show=F, 
            title.size=1.25) + 
  tm_borders(lwd = 1, lty = "solid") 
 
wpg_sig = tm_shape(wpg_tmap) + 
  tm_fill("sigm", 
          title = "Elevated Regions", 
          palette=sigcols, 
          title.fontfamily="mono") + 
  tm_layout(title = "Male IHD Prevalence - WPG", 
            inner.margins = c(0.02,0.02,0.08,0.07), 
            title.fontfamily="mono", 
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            title.position=c("center","top"), 
            legend.title.fontfamily="mono", 
            legend.text.fontfamily="mono", 
            legend.position=c("left","bottom"), 
            legend.title.size = 1, 
            legend.text.size = 0.8, 
            title.size=1.25) + 
  tm_borders(lwd = 1, lty = "solid") 
 
tmap_arrange(mb_sig,wpg_sig,ncol=2) 
``` 
 
```{r} 
#spatio-temporal 
 
#data prep 
 
w = seq(from=3, to=71, by=4) 
x = seq(from=2, to=70, by=4) 
y = seq(from=5, to=73, by=4) 
z = seq(from=4, to=72, by=4) 
 
ihda = as.matrix(IHD[,x]) 
hypa = as.matrix(IHD[,y]) 
expa = as.matrix(IHD[,z]) 
popa = as.matrix(IHD[,w]) 
 
ihdf = as.matrix(IHDF[,x]) 
hypf = as.matrix(IHDF[,y]) 
expf = as.matrix(IHDF[,z]) 
popf = as.matrix(IHDF[,w]) 
 
ihdm = as.matrix(IHDM[,x]) 
hypm = as.matrix(IHDM[,y]) 
expm = as.matrix(IHDM[,z]) 
popm = as.matrix(IHDM[,w]) 
 
#Spatio-temporal graphs 
 
ihd_pl = data.frame(ihda) %>% 
  mutate(rhad = substr(IHD[,1],1,4), 
         RHA = ifelse(substr(rhad,1,2)=="SO","Southern", 
                      ifelse(substr(rhad,1,2)=="WE","Prairie Mountain", 
                             ifelse(substr(rhad,1,2)=="IE","Interlake-Eastern", 
                                    ifelse(substr(rhad,1,2)=="NO","Northern","Winnipeg"))))) 
exp_pl = data.frame(expa) %>% 
  mutate(rhad = substr(IHD[,1],1,4), 
         RHA = ifelse(substr(rhad,1,2)=="SO","Southern", 
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                      ifelse(substr(rhad,1,2)=="WE","Prairie Mountain", 
                             ifelse(substr(rhad,1,2)=="IE","Interlake-Eastern", 
                                    ifelse(substr(rhad,1,2)=="NO","Northern","Winnipeg"))))) 
 
WP_ihd = ihd_pl %>% 
  filter(RHA=="Winnipeg")%>% 
  select(-RHA,-rhad) 
 
WP_exp = exp_pl %>% 
  filter(RHA=="Winnipeg")%>% 
  select(-RHA,-rhad) 
 
WE_ihd = ihd_pl %>% 
  filter(RHA=="Prairie Mountain")%>% 
  select(-RHA,-rhad) 
 
WE_exp = exp_pl %>% 
  filter(RHA=="Prairie Mountain")%>% 
  select(-RHA,-rhad) 
 
IE_ihd = ihd_pl %>% 
  filter(RHA=="Interlake-Eastern")%>% 
  select(-RHA,-rhad) 
 
IE_exp = exp_pl %>% 
  filter(RHA=="Interlake-Eastern")%>% 
  select(-RHA,-rhad) 
 
SO_ihd = ihd_pl %>% 
  filter(RHA=="Southern")%>% 
  select(-RHA,-rhad) 
 
SO_exp = exp_pl %>% 
  filter(RHA=="Southern")%>% 
  select(-RHA,-rhad) 
 
NO_ihd = ihd_pl %>% 
  filter(RHA=="Northern")%>% 
  select(-RHA,-rhad) 
 
NO_exp = exp_pl %>% 
  filter(RHA=="Northern")%>% 
  select(-RHA,-rhad) 
 
std_ihd = matrix(nrow=18,ncol=5) 
 
for(i in 1:18){ 
std_ihd[i,1] = log(sum(WP_ihd[,i])/sum(WP_exp[,i])) 
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std_ihd[i,2] = log(sum(WE_ihd[,i])/sum(WE_exp[,i])) 
std_ihd[i,3] = log(sum(IE_ihd[,i])/sum(IE_exp[,i])) 
std_ihd[i,4] = log(sum(SO_ihd[,i])/sum(SO_exp[,i])) 
std_ihd[i,5] = log(sum(NO_ihd[,i])/sum(NO_exp[,i])) 
} 
 
stand_ihd = data.frame(cbind(Year = seq(from=1998, to=2015, by=1), WP = std_ihd[,1], WE = 
std_ihd[,2], IE = std_ihd[,3]), SO = std_ihd[,4], NO = std_ihd[,5]) 
 
stand_ihd = stand_ihd %>% 
  gather(RHA, SRR, c(WP, WE, IE, SO, NO)) %>% 
  mutate(RHA = ifelse(RHA=="WP","Winnipeg", 
                      ifelse(RHA=="WE","Prairie Mountain", 
                             ifelse(RHA=="IE","Interlake-Eastern", 
                                    ifelse(RHA=="SO","Southern","Northern"))))) 
 
ggplot(data=stand_ihd)+  
  geom_line(aes(x=Year,y=SRR,color=RHA))+ 
  geom_point(aes(y=SRR,x=Year,color=RHA))+ 
  labs(y="log(IHD SRR)", x="Year")+ 
  ggtitle("IHD Time Series Plot")+ 
  scale_color_manual(breaks = c("Southern","Winnipeg","Prairie Mountain","Interlake-
Eastern","Northern"), 
                     values=wes_palette(n=5, name="Cavalcanti1"))+ 
  theme_light() 
 
#Data prep for INLA 
 
ihdINLA = as.vector(ihda) 
eINLA = as.vector(expa) 
hypINLA = as.vector(hypa) 
 
 
INLA = data.frame(cbind(rhad = rep(as.character(IHD[,1]),18), year = rep(1998:2015,each=96), IHD = 
ihdINLA, E = eINLA, HT = hypINLA, region = rep(1:96,18))) %>% 
  mutate(rhad = substr(rhad,1,4), 
         year = as.numeric(as.character(year)), 
         year1 = as.numeric(as.character(year)), 
         yr = rep(1:18,each=96), 
         yr1 = rep(1:18,each=96), 
         IHD = as.numeric(as.character(IHD)), 
         E = as.numeric(as.character(E)), 
         HT = as.numeric(as.character(HT)), 
         region = as.numeric(as.character(region)), 
         reg = as.numeric(as.character(region)), 
         inter = seq(from=1,to=1728), 
         sefis = rep(SM$sefis,18), 
         inds = rep(log(SM$INDs),18), 
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         urban = rep(urb,18))%>% 
  mutate(rhad = as.factor(rhad)) 
 
temp = poly2nb(mb) 
nb2INLA("MBINLA", temp) 
MB.adj = paste(getwd(), "/MBINLA",sep="") 
H = inla.read.graph(filename="MBINLA") 
image(inla.graph2matrix(H)) 
 
#Model Without Interaction 
 
form.IHD = IHD ~ f(region, model="bym", graph=MB.adj) + 
                     f(yr, model="rw2") + 
                     f(yr1, model="iid") + 
                     HT + 
                     inds + 
                     urban + 
                     sefis 
 
mod.IHD = inla(form.IHD, family="poisson", data=INLA, E=E, 
                    control.compute=list(dic=T,cpo=T)) 
 
 
#Interaction type I (temporally and spatially independent) 
 
form.IHD.intI = IHD ~ f(region, model="bym", graph=MB.adj) + 
                      f(yr, model="rw2") + 
                      f(yr1, model="iid") + 
                      f(inter, model="iid") + 
                      HT + 
                      inds + 
                      urban + 
                      sefis 
 
mod.IHD.intI = inla(form.IHD.intI, family="poisson", data=INLA, E=E, 
                    control.compute=list(dic=T,cpo=T)) 
 
#Interaction type II (temporally dependent) 
 
area.int = INLA$region 
year.int = INLA$yr 
 
form.IHD.intII = IHD ~ f(region, model="besag", graph=MB.adj) + f(reg, model="iid", graph=MB.adj) + 
                      f(yr, model="rw2") + 
                      f(yr1, model="iid") + 
                      f(area.int, model="iid", group=year.int, 
                        control.group=list(model="rw2")) + 
                      HT + 
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                      inds + 
                      urban + 
                      sefis 
 
mod.IHD.intII = inla(form.IHD.intII, family="poisson", data=INLA, E=E, 
                    control.compute=list(dic=T,cpo=T)) 
 
#Interaction type III (Spatially dependent) 
 
form.IHD.intIII = IHD ~ f(region, model="bym", graph=MB.adj) + 
                        f(yr, model="rw2") + 
                        f(yr1, model="iid") + 
                        f(year.int, model="iid", group=area.int, 
                          control.group=list(model="besag", graph=MB.adj)) + 
                        HT + 
                        inds + 
                        urban + 
                        sefis 
 
mod.IHD.intIII = inla(form.IHD.intIII, family="poisson", data=INLA, E=E, 
                    control.compute=list(dic=T,cpo=T)) 
 
#Interaction type IV (Spatially and temporally dependent) 
 
form.IHD.intIV = IHD ~ f(region, model="bym", graph=MB.adj) + 
                        f(yr, model="rw2") + 
                        f(yr1, model="iid") + 
                        f(year.int, model="rw2", 
                          group=area.int, 
                          control.group=list(model="besag", graph=MB.adj)) + 
                        HT + 
                        inds + 
                        urban + 
                        sefis 
 
mod.IHD.intIV = inla(form.IHD.intIV, family="poisson", data=INLA, E=E, 
                    control.compute=list(dic=T,cpo=T)) 
 
#Female stratified data 
 
ihdINLAf = as.vector(ihdf) 
eINLAf = as.vector(expf) 
hypINLAf = as.vector(hypf) 
 
INLAf = data.frame(cbind(rhad = rep(as.character(IHD[,1]),18), year = rep(1998:2015,each=96), IHD = 
ihdINLAf, E = eINLAf, HT = hypINLAf, region = rep(1:96,18))) %>% 
  mutate(rhad = substr(rhad,1,4), 
         year = as.numeric(as.character(year)), 
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         year1 = as.numeric(as.character(year)), 
         yr = rep(1:18,each=96), 
         yr1 = rep(1:18,each=96), 
         IHD = as.numeric(as.character(IHD)), 
         E = as.numeric(as.character(E)), 
         HT = as.numeric(as.character(HT)), 
         region = as.numeric(as.character(region)), 
         inter = seq(from=1,to=1728), 
         sefis = rep(SM$sefis,18), 
         inds = rep(log(SM$INDs),18), 
         urban = rep(urb,18))%>% 
  mutate(rhad = as.factor(rhad)) 
 
#Without Interaction 
 
mod.IHDf = inla(form.IHD, family="poisson", data=INLAf, E=E, 
                    control.compute=list(dic=T,cpo=T)) 
 
#Interaction type I 
 
mod.IHD.intIf = inla(form.IHD.intI, family="poisson", data=INLAf, E=E, 
                    control.compute=list(dic=T,cpo=T)) 
 
#Interaction type II (temporally dependent) 
 
mod.IHD.intIIf = inla(form.IHD.intII, family="poisson", data=INLAf, E=E, 
                    control.compute=list(dic=T,cpo=T)) 
 
#Interaction type III 
 
mod.IHD.intIIIf = inla(form.IHD.intIII, family="poisson", data=INLAf, E=E, 
                    control.compute=list(dic=T,cpo=T)) 
 
#Interaction type IV 
 
mod.IHD.intIVf = inla(form.IHD.intIV, family="poisson", data=INLAf, E=E, 
                    control.compute=list(dic=T,cpo=T)) 
 
#male stratified data 
 
ihdINLAm = as.vector(ihdm) 
eINLAm = as.vector(expm) 
hypINLAm = as.vector(hypm) 
 
INLAm = data.frame(cbind(rhad = rep(as.character(IHD[,1]),18), year = rep(1998:2015,each=96), IHD = 
ihdINLAm, E = eINLAm, HT = hypINLAm, region = rep(1:96,18))) %>% 
  mutate(rhad = substr(rhad,1,4), 
         year = as.numeric(as.character(year)), 
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         year1 = as.numeric(as.character(year)), 
         yr = rep(1:18,each=96), 
         yr1 = rep(1:18,each=96), 
         IHD = as.numeric(as.character(IHD)), 
         E = as.numeric(as.character(E)), 
         HT = as.numeric(as.character(HT)), 
         region = as.numeric(as.character(region)), 
         inter = seq(from=1,to=1728), 
         sefis = rep(SM$sefis,18), 
         inds = rep(log(SM$INDs),18), 
         urban = rep(urb,18))%>% 
  mutate(rhad = as.factor(rhad)) 
 
#Without Interaction 
 
mod.IHDm = inla(form.IHD, family="poisson", data=INLAm, E=E, 
                    control.compute=list(dic=T,cpo=T)) 
 
#Interaction type I 
 
mod.IHD.intIm = inla(form.IHD.intI, family="poisson", data=INLAm, E=E, 
                    control.compute=list(dic=T,cpo=T)) 
 
#Interaction type II (temporally dependent) 
 
mod.IHD.intIIm = inla(form.IHD.intII, family="poisson", data=INLAm, E=E, 
                    control.compute=list(dic=T,cpo=T)) 
 
#Interaction type III 
 
mod.IHD.intIIIm = inla(form.IHD.intIII, family="poisson", data=INLAm, E=E, 
                    control.compute=list(dic=T,cpo=T)) 
 
#Interaction type IV 
 
mod.IHD.intIVm = inla(form.IHD.intIV, family="poisson", data=INLAm, E=E, 
                    control.compute=list(dic=T,cpo=T)) 
 
#Check DIC's to obtain best model (Type II interaction) 
mod.IHD$dic$dic;mod.IHD.intI$dic$dic;mod.IHD.intII$dic$dic;mod.IHD.intIII$dic$dic;mod.IHD.intIV$dic$
dic 
mod.IHDf$dic$dic;mod.IHD.intIf$dic$dic;mod.IHD.intIIf$dic$dic;mod.IHD.intIIIf$dic$dic;mod.IHD.intIVf$
dic$dic 
mod.IHDm$dic$dic;mod.IHD.intIm$dic$dic;mod.IHD.intIIm$dic$dic;mod.IHD.intIIIm$dic$dic;mod.IHD.in
tIVm$dic$dic 
``` 
 
```{r} 
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#output 
 
write.csv(mod.IHD.intII$summary.fixed, "spatempo.csv") 
write.csv(mod.IHD.intIIf$summary.fixed, "spatempf.csv") 
write.csv(mod.IHD.intIIm$summary.fixed, "spatempm.csv") 
 
fittso = mod.IHD.intII$summary.fitted.values$mean 
fittsf = mod.IHD.intIIf$summary.fitted.values$mean 
fittsm = mod.IHD.intIIm$summary.fitted.values$mean 
 
fittso = matrix(fittso,nrow=96,ncol=18) 
fittsf = matrix(fittsf,nrow=96,ncol=18) 
fittsm = matrix(fittsm,nrow=96,ncol=18) 
 
fittso = data.frame(fittso) 
fittsf = data.frame(fittsf) 
fittsm = data.frame(fittsm) 
 
colnames(fittso) = seq(1998,2015) 
colnames(fittsf) = seq(1998,2015) 
colnames(fittsm) = seq(1998,2015) 
 
fittso = data.frame(cbind(Region = as.character(substr(IHD[,1],1,4)),fittso)) 
fittsf = data.frame(cbind(Region = as.character(substr(IHD[,1],1,4)),fittsf)) 
fittsm = data.frame(cbind(Region = as.character(substr(IHD[,1],1,4)),fittsm)) 
 
signifo = mod.IHD.intII$summary.fitted.values[[3]] 
signiff = mod.IHD.intIIf$summary.fitted.values[[3]] 
signifm = mod.IHD.intIIm$summary.fitted.values[[3]] 
 
signifo = matrix(signifo,nrow=96,ncol=18) 
signiff = matrix(signiff,nrow=96,ncol=18) 
signifm = matrix(signifm,nrow=96,ncol=18) 
 
for(i in 1:96){ 
  for(j in 1:18){ 
    signifo[i,j] = ifelse(signifo[i,j]>1,1,0) 
    signiff[i,j] = ifelse(signiff[i,j]>1,1,0) 
    signifm[i,j] = ifelse(signifm[i,j]>1,1,0) 
  } 
} 
signifo = data.frame(signifo) 
signiff = data.frame(signiff) 
signifm = data.frame(signifm) 
 
colnames(signifo) = seq(1998:2015) 
colnames(signiff) = seq(1998:2015) 
colnames(signifm) = seq(1998:2015) 
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signifo = data.frame(cbind(Region = as.character(substr(IHD[,1],1,4)),signifo)) 
signiff = data.frame(cbind(Region = as.character(substr(IHD[,1],1,4)),signiff)) 
signifm = data.frame(cbind(Region = as.character(substr(IHD[,1],1,4)),signifm)) 
 
#tmap for visualizing 
 
mbfito = st_read("C:/School/Grad School/Thesis/Data/Shape/comb/combined.shp", 
                  stringsAsFactors=F) %>% 
  mutate(Fitted_1998 = fittso[,2], 
         Fitted_1999 = fittso[,3], 
         Fitted_2000 = fittso[,4], 
         Fitted_2001 = fittso[,5], 
         Fitted_2002 = fittso[,6], 
         Fitted_2003 = fittso[,7], 
         Fitted_2004 = fittso[,8], 
         Fitted_2005 = fittso[,9], 
         Fitted_2006 = fittso[,10], 
         Fitted_2007 = fittso[,11], 
         Fitted_2008 = fittso[,12], 
         Fitted_2009 = fittso[,13], 
         Fitted_2010 = fittso[,14], 
         Fitted_2011 = fittso[,15], 
         Fitted_2012 = fittso[,16], 
         Fitted_2013 = fittso[,17], 
         Fitted_2014 = fittso[,18], 
         Fitted_2015 = fittso[,19]) %>% 
  gather(year, fitted, c(Fitted_1998, Fitted_1999, Fitted_2000, Fitted_2001, Fitted_2002, Fitted_2003, 
Fitted_2004, 
                         Fitted_2005, Fitted_2006, Fitted_2007, Fitted_2008, Fitted_2009, Fitted_2010, 
Fitted_2011, 
                         Fitted_2012, Fitted_2013, Fitted_2014, Fitted_2015)) 
 
wpgfito = st_read("C:/School/Grad School/Thesis/Data/Shape/comb/combined.shp", 
                  stringsAsFactors=F) %>% 
  mutate(Fitted_1998 = fittso[,2], 
         Fitted_1999 = fittso[,3], 
         Fitted_2000 = fittso[,4], 
         Fitted_2001 = fittso[,5], 
         Fitted_2002 = fittso[,6], 
         Fitted_2003 = fittso[,7], 
         Fitted_2004 = fittso[,8], 
         Fitted_2005 = fittso[,9], 
         Fitted_2006 = fittso[,10], 
         Fitted_2007 = fittso[,11], 
         Fitted_2008 = fittso[,12], 
         Fitted_2009 = fittso[,13], 
         Fitted_2010 = fittso[,14], 
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         Fitted_2011 = fittso[,15], 
         Fitted_2012 = fittso[,16], 
         Fitted_2013 = fittso[,17], 
         Fitted_2014 = fittso[,18], 
         Fitted_2015 = fittso[,19]) %>% 
  gather(year, fitted, c(Fitted_1998, Fitted_1999, Fitted_2000, Fitted_2001, Fitted_2002, Fitted_2003, 
Fitted_2004, 
                         Fitted_2005, Fitted_2006, Fitted_2007, Fitted_2008, Fitted_2009, Fitted_2010, 
Fitted_2011, 
                         Fitted_2012, Fitted_2013, Fitted_2014, Fitted_2015)) %>% 
  filter(substr(Region,1,2)=="W0" | substr(Region,1,2)=="W1") 
 
mbfitf = st_read("C:/School/Grad School/Thesis/Data/Shape/comb/combined.shp", 
                  stringsAsFactors=F) %>% 
  mutate(Fitted_1998 = fittsf[,2], 
         Fitted_1999 = fittsf[,3], 
         Fitted_2000 = fittsf[,4], 
         Fitted_2001 = fittsf[,5], 
         Fitted_2002 = fittsf[,6], 
         Fitted_2003 = fittsf[,7], 
         Fitted_2004 = fittsf[,8], 
         Fitted_2005 = fittsf[,9], 
         Fitted_2006 = fittsf[,10], 
         Fitted_2007 = fittsf[,11], 
         Fitted_2008 = fittsf[,12], 
         Fitted_2009 = fittsf[,13], 
         Fitted_2010 = fittsf[,14], 
         Fitted_2011 = fittsf[,15], 
         Fitted_2012 = fittsf[,16], 
         Fitted_2013 = fittsf[,17], 
         Fitted_2014 = fittsf[,18], 
         Fitted_2015 = fittsf[,19]) %>% 
  gather(year, fitted, c(Fitted_1998, Fitted_1999, Fitted_2000, Fitted_2001, Fitted_2002, Fitted_2003, 
Fitted_2004, 
                         Fitted_2005, Fitted_2006, Fitted_2007, Fitted_2008, Fitted_2009, Fitted_2010, 
Fitted_2011, 
                         Fitted_2012, Fitted_2013, Fitted_2014, Fitted_2015)) 
 
wpgfitf = st_read("C:/School/Grad School/Thesis/Data/Shape/comb/combined.shp", 
                  stringsAsFactors=F) %>% 
  mutate(Fitted_1998 = fittsf[,2], 
         Fitted_1999 = fittsf[,3], 
         Fitted_2000 = fittsf[,4], 
         Fitted_2001 = fittsf[,5], 
         Fitted_2002 = fittsf[,6], 
         Fitted_2003 = fittsf[,7], 
         Fitted_2004 = fittsf[,8], 
         Fitted_2005 = fittsf[,9], 
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         Fitted_2006 = fittsf[,10], 
         Fitted_2007 = fittsf[,11], 
         Fitted_2008 = fittsf[,12], 
         Fitted_2009 = fittsf[,13], 
         Fitted_2010 = fittsf[,14], 
         Fitted_2011 = fittsf[,15], 
         Fitted_2012 = fittsf[,16], 
         Fitted_2013 = fittsf[,17], 
         Fitted_2014 = fittsf[,18], 
         Fitted_2015 = fittsf[,19]) %>% 
  gather(year, fitted, c(Fitted_1998, Fitted_1999, Fitted_2000, Fitted_2001, Fitted_2002, Fitted_2003, 
Fitted_2004, 
                         Fitted_2005, Fitted_2006, Fitted_2007, Fitted_2008, Fitted_2009, Fitted_2010, 
Fitted_2011, 
                         Fitted_2012, Fitted_2013, Fitted_2014, Fitted_2015)) %>% 
  filter(substr(Region,1,2)=="W0" | substr(Region,1,2)=="W1") 
 
mbfitm = st_read("C:/School/Grad School/Thesis/Data/Shape/comb/combined.shp", 
                  stringsAsFactors=F) %>% 
  mutate(Fitted_1998 = fittsm[,2], 
         Fitted_1999 = fittsm[,3], 
         Fitted_2000 = fittsm[,4], 
         Fitted_2001 = fittsm[,5], 
         Fitted_2002 = fittsm[,6], 
         Fitted_2003 = fittsm[,7], 
         Fitted_2004 = fittsm[,8], 
         Fitted_2005 = fittsm[,9], 
         Fitted_2006 = fittsm[,10], 
         Fitted_2007 = fittsm[,11], 
         Fitted_2008 = fittsm[,12], 
         Fitted_2009 = fittsm[,13], 
         Fitted_2010 = fittsm[,14], 
         Fitted_2011 = fittsm[,15], 
         Fitted_2012 = fittsm[,16], 
         Fitted_2013 = fittsm[,17], 
         Fitted_2014 = fittsm[,18], 
         Fitted_2015 = fittsm[,19]) %>% 
  gather(year, fitted, c(Fitted_1998, Fitted_1999, Fitted_2000, Fitted_2001, Fitted_2002, Fitted_2003, 
Fitted_2004, 
                         Fitted_2005, Fitted_2006, Fitted_2007, Fitted_2008, Fitted_2009, Fitted_2010, 
Fitted_2011, 
                         Fitted_2012, Fitted_2013, Fitted_2014, Fitted_2015)) 
 
wpgfitm = st_read("C:/School/Grad School/Thesis/Data/Shape/comb/combined.shp", 
                  stringsAsFactors=F) %>% 
  mutate(Fitted_1998 = fittsm[,2], 
         Fitted_1999 = fittsm[,3], 
         Fitted_2000 = fittsm[,4], 
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         Fitted_2001 = fittsm[,5], 
         Fitted_2002 = fittsm[,6], 
         Fitted_2003 = fittsm[,7], 
         Fitted_2004 = fittsm[,8], 
         Fitted_2005 = fittsm[,9], 
         Fitted_2006 = fittsm[,10], 
         Fitted_2007 = fittsm[,11], 
         Fitted_2008 = fittsm[,12], 
         Fitted_2009 = fittsm[,13], 
         Fitted_2010 = fittsm[,14], 
         Fitted_2011 = fittsm[,15], 
         Fitted_2012 = fittsm[,16], 
         Fitted_2013 = fittsm[,17], 
         Fitted_2014 = fittsm[,18], 
         Fitted_2015 = fittsm[,19]) %>% 
  gather(year, fitted, c(Fitted_1998, Fitted_1999, Fitted_2000, Fitted_2001, Fitted_2002, Fitted_2003, 
Fitted_2004, 
                         Fitted_2005, Fitted_2006, Fitted_2007, Fitted_2008, Fitted_2009, Fitted_2010, 
Fitted_2011, 
                         Fitted_2012, Fitted_2013, Fitted_2014, Fitted_2015)) %>% 
  filter(substr(Region,1,2)=="W0" | substr(Region,1,2)=="W1") 
 
cuts = c(0, 0.5, 0.8, 0.9, 1, 1.1, 1.2, 1.5, 2, 3, 4) 
 
tm_shape(mbfitm) + 
  tm_polygons("fitted", 
              breaks = cuts, 
              palette="Reds", 
              border.alpha=0.5, 
              title = "Fitted SRR") + 
  tm_layout(title = "Male IHD SRR - MB", 
            inner.margins = c(0.02,0.02,0.1,0.02))  + 
  tm_facets(by = "year", free.coords=T, ncol=3) 
 
tm_shape(wpgfitm) + 
  tm_polygons("fitted", 
              breaks = cuts, 
              palette="Reds", 
              border.alpha=0.5, 
              title = "Fitted SRR") + 
  tm_layout(title = "Male IHD SRR - WPG", 
            inner.margins = c(0.02,0.02,0.1,0.02))  + 
  tm_facets(by = "year", free.coords=T, ncol=3) 
 
#Graph of Temporal random effects term (Overall change in IHD prevalence over time, holding all else 
constant) 
 
phi = data.frame(mod.IHD.intII$summary.random$yr$mean) 
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phif = mod.IHD.intIIf$summary.random$yr$mean 
phim = mod.IHD.intIIm$summary.random$yr$mean 
 
phidat = phi%>% 
  mutate(Year = seq(1998,2015,1), 
         Overall = phi[,1], 
         Female = phif, 
         Male = phim)%>% 
  select(-mod.IHD.intII.summary.random.yr.mean) %>% 
  gather(Strata, PHI, c(Overall, Female, Male)) 
 
ggplot(data=phidat)+  
  geom_line(aes(x=Year,y=exp(PHI),color=Strata))+ 
  geom_point(aes(y=exp(PHI),x=Year,color=Strata))+ 
  labs(y="Temporal Random Effect", x="Year")+ 
  scale_color_manual(breaks = c("Overall", "Male", "Female"), 
                     values=wes_palette(n=3, name="Cavalcanti1", type="continuous"))+ 
  theme_light() + 
  geom_hline(yintercept=1) 
 
#Ascertain regions with largest predicted increase and map their trends 
#Found 8 regions that had a 25% or greater increase in predicted IHD SRR 
 
fitted = data.frame(mod.IHD.intII$summary.fitted.values$mean) %>% 
  mutate(rhad = rep(IHD[,1],18), 
         Year = rep(1998:2015,each=96)) %>% 
  rename(fit=mod.IHD.intII.summary.fitted.values.mean) 
 
fitted1 = fitted %>% 
  spread(key=Year,value=fit) 
 
fitted1 = fitted1 %>% 
  mutate(increasing = ifelse(fitted1[,2]+0.3*fitted1[,2]<fitted1[,19],1,0)) 
 
fitted1 = fitted1 %>% 
  filter(increasing==1) %>% 
  select(-increasing) 
 
colnames(fitted1) = c("rhad","a","b","c","d","e","f","g","h","i","j","k","l","m","n","o","p","q","r") 
 
fitted1 = fitted1 %>% 
  gather("a","b","c","d","e","f","g","h","i","j","k","l","m","n","o","p","q","r",key="Year",value="RR") 
 
fitted1 = fitted1 %>% 
  mutate(year=rep(1998:2015,each=6)) 
 
ggplot(data=fitted1)+  
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  geom_line(aes(x=year,y=RR,color=rhad))+ 
  geom_point(aes(x=year,y=RR,color=rhad))+ 
  labs(y="IHD RR", x="Year",color="RHAD")+ 
  scale_color_manual(breaks = c("NO27 Z2 Cross Lake/Cross Lake FN", "WE15 N Dauphin", "WE14 N 
Agassiz Mountain", "W04A St. Vital N", "NO22 Z2 Puk/Mat Col CN", "IE11 Selkirk" 
                     values=wes_palette(n=6, name="Cavalcanti1", type="continuous"))+ 
  theme_light() + 
  geom_hline(yintercept=1) 
 


