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,ABST'R.ACT'

Recently there has been a resurgence in using statistical techniques to improve the

quality of the output of industrial production processes. Recognizing the random nature of

the process, statistical procedures can be used to describe the process when it is in a state of

"control". Using these baseline parameters, the process can then be judged as "in confol"

or "out of control".

Shewhart control charts are developed for the univariate and bivariate case. For

most production processes, more than one related quality characteristics of the product has

to be kept in control at the same time. Statistical process is then Multivariable. Although it

is important to control each variable indívídually, it is necessary to consider the va¡iables

simultaneously. Since the variables are correlated with one another, individual conrol will

not be suff,rcient to control the multivariable process. Hence the multivariate approach to

quality control has been considered.

As an alternative to the Shewhart chart, the cumulative sum (CUSUM) conrol chart

has been developed. The CUSUM chart tends to detect relatively small shifts in the

process more effectively than the Shewhart charts. CUSUM control charts in the univariate

and bivariate case are discussed here. The CUSUM conrol chart is developed by a

sequential sampling procedure. The sequential probability ratio test (SPRT) is used to

construct the V-mask Scheme to detect the shifts from in control to the out of control state.

To study the ARL of the CUSUM scheme the Markov chain approach has been

considered. The transition probability matrix for this Markov chain is obtained and then the

properties of this matrix are used to determine not only the average run lengths for the

scheme, but also moments and percentage points of the run-length distribution and exact

probabilities of run length. This method has been suggested for any discrete distribution
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and is also as an accurate approximation with any continuous distribution for the random

variable which is to be controled.

In dealing with bivariate data the role of correlation as measure of joint dispersion is

very important. This area has received very little attention in the quality control literature.

In the final chapter several different types of control charts are developed for the corelation

coefficient. Both the exact and asymptotic distributions of the correlation coefficent are

considered.
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INT'R0ÐUCTION: S{JMM.ARV

Recently there has been a resurgence in using statistical techniques to improve the

quality of the oulput of industrial production processes. Recognizing the random nature of

the process, statistical procedures can be used to describe the process when it is in a state of

"control". Using these baseline parameters, the process can then be judged as "in control"

or "out of control".

An excellent review of the history of statistical quality control and its impact on

industry can be found in an article by A. J. Duncan(1986). Work in statistical quality

began in North America in the 1920's with work at the Bell Telephone Laboratories under

the leadership of W. E. Shewart, H. F. Dodge and H. G. Romig. During World V/a¡ II

the techniques were refined mainly by the Columbia University Research group under the

leadership of A. Wald.

During the same period the Briúsh school was working on similar problems relating

to the variation in quality of ouçut and improving the quality using statistical procedures.

Following World War II V/. Edward Deming introduced statistical quality control

procedures in Japan. This has led to development of products that consistantly maintain

high quality. The demand in North America and Europe for products of quality equal to

those prduced in Japan has led to a renewed interest in the statistical community in the

development of new and improved statistical techniques.

One of the main techniques developed for statistical quality control is the control

chart. Control charts are used in deciding whether va¡iations in the quality of the output

of a process can be viewed as coming from "in control" process or whether the process has

for some reason gone "out of control".



Generally a production process operates in an "in control" state producing

acceptable prducts for a relatively long period of time. Occasionally a "shift" to an "out of

control" state will occur and a larger proportion of nonacceptable items will be produced.

A major objective of Statistical Quality Contol is to detect this shift in the behaviou¡ of the

process and to return it to its "in control" state. Hence, the control chart is used as a

monitoring, or on line, device to detect the shift in the process. The process is then

adjusted to attain an acceptable level of qualiry.

In Chapter 1 univariate a¡rd bivariate control charts are discussed. Following the

general model due to Shewhart (1931), univariate control cha¡ts are developed conrolling

for process means and process dispersion (variance and range).

The second section of this chapter deals with biva¡iate control charts. For most

production processes, more than one related quality characteristics of the product have to be

kept in control at the same time. Statistical process is then multivariable. Although it is

important to contol each va¡iable individunl/y, it is necessary to consider the variables

simultaneously. Since the variables are correlated with one another, individual conrol will

not be sufficient to control the multivariable process. The multivariate approach to quality

control was originally considered by Hotelling(1947).

In Chapter 2 the control of two quality characteristics is considered both

individually and simultaneously. When two related quality characteristics are considered,

there are three parameters that have to be studied: the process mean, the process standard

deviation and the correlation between the two characteristics. The control of the first two

parameters mentioned are discussed in Chapter 2 and the latter is discussed in Chapter 3.

After a process has been judged to be in a state of statistical control, the

effectiveness of a conrol chart in detecting departures from the "in control" state become

important. As an alternative to the Shewhart chart, the cumulative sum (CUSUM) control

chart was developed by Page (1954).



The CUSUM chart takes into account all the information in the sequence of

observations, while the Shewhart Chart only uses the information about the process

contained in the last plotted point. Thus the CUSUM chart tends to detect relatively small

shifts in the process more effectively than the Shewhart charts. The CUSUM chart is used

primarily to maint¿in the current control of the process. CUSUM control charts in the

univariate and bivariate case a¡e discussed in Chapter 2.

The CUSUM control chart is developed by a sequential sampling procedure.

Suppose the observations are observed sequentially in time. Then the CUSUM control

chart plots the cumulative sum of the sequence of observations against the number of

observations. The change in trend on a CUSUM chart will indicate that a change has

occurred in the process. It is not sufficient to detect a shift by visual inspection. The

sequential probability ratio test (SPRT) is used to construct the so called V-mask Scheme.

The use of cumulated sums can be very effective in detecting shifts. The CUSUM

will detect a shift in a process mean more quickly than a Shewhart chart. V/e say that its

average run length (ARL) or the expected number of samples needed before the process

mean plots "out of control" is less than for the Shewhart chart.

To study the ARL of the CUSUM scheme a different approach has been developed

by Brook and Evans (1972). They consider the scheme as a Markov chain. The ransition

probability matrix for this Markov chain is obtained and then the properties of this matrix

are used to determine not only the average run lengths for the scheme, but also moments

and percentage points of the run-length distribution and exact probabilities of run length.

This methd has been suggested for any discrete distribution and is also as an accurate

approximation with any continuous distribution for the random variable which is to be

controlled.

As we have seen in dealing with bivariate data the role of correlation as measure of

joint dispersion is very important. This area has received very little attention in the quality

control literature. In Chapter 3 several different types of control charts are developed for



the correlation coefficient. Both the exact and the asymptotic distribution of the correlation

coefficent are considered.

The Appendices contain the computer programs that were used. In some of the

programs the statistical package SAS has been used. However, for the simulation studies

the programs were written in FORTRAN incorporating some IMSL subroutines.
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t.L {Jnivaniate Qualiûy Controå Chants

In any production process, the quality of the product is determined by different

characteristics of the prduct produced. The measure of the quality of the characteristic of

interest is expected to be kept at a specified level throughout the production process. In any

production process a certain amount of inherent or natural variability is present. The

inherent variability is due to uncontrollable causes or "chance" causes. Another source of

variability, which can be controlled may be present. This types of variability is said to be

due to " assignable causes". A process thatis operating in the presence ofassignable

causes is said to be "out of control".

Generally a production process operates in an "in control" state producing qualihed

products for a relatively long time. However, occasionally some assignable causes will

occur making a " shift" to an out of control state, where a larger proportion of

nonconforming units will be produced. A major objective of Statistical Quality Control is

to quickly detect the shift in the process and to return it to its in control state after

identifying an assignable cause and correcting it. Hence, the control chart is used as an on-

line process control technique to detect the shift in the process.

X.X.l General Model of a Shewhart Control Chart.

Let w be a sample statistic that measures some quality characteristic of interest with

mean F,"and standard deviation o*. Then the conrol limits of a Shewhart Conrol Chart

[Duncan (1974),Montgomery (1985)] are given by:



Upper Control Limit

Centre l-ine

I-ower Control Limit

UCL=F**ko*

CL =F*

LCL =lr*-ko*

where k is the distance of the control limits from the centre line. Customarily k is chosen

to be 3, when the underlying distribution is normal, then the conrol limits are called " 3-

sigma limits".

The above control limits are chosen so that if the process is in control, nearly all of

the sample points will fall between the upper control limit and lower control limit. The

process is assumed to be in conrol as long as the points plot within the control limits.

However, a point that plots outside the control limits is interpreted as evidence that the

process is out ofcontrol, and an assignable cause is sought.

The control chart is actually a test of the hypothesis that the process is in a state of

control. In this context a Type I error is concluding the process is out of control when it is

really in control. Similarly a Type II error is concluding the process is in control when it is

really out of control.

UCL= lr.w

Somples or obsen¡ations in tIæ ord.er of prodrætion



X"1.2 K- ControYCkørt.

Suppose that the quality characteristic of interest is normally distributed with mean p and

standard deviation o, where both p and o are known. Let xr, xz, . . ., x' be a sample of

sizenwithaverage *= *Ë.,. Theniisnormallydistributedwithmean pandstandard
i=1

deviation odñ . If the Type I error of testing the hypothesis that the process mean is at its

specified value P = lro is cr, then it is expected that the lN(l-o)Vo of the sample mean i's

should fall between Þo t ,rrfn. If zor= 3, then a,=0.0A27 and the 3-sigma limits for

the i - chart are given by

UCL:p^+3+
' 1n

CL =Fo

LCL ^O=Þo-rG.

Generally, p and o are unknown. Then they must be estimated from preliminary

samples taken when the process is considered to be in control.

1.1.3
@

X and R. Control Ckarts.

Consider m samples, each containing n observations on the quality characteristic.

Usually n is taken to be very small (n< 10). læt ir, i2, . . . , i* be the averages of the m

samples. Then the best estimator of the præess mean p is the grand average

= 1**= m 4*t
Thus i would be the cenfe line on the i - chart. Now, to find an estimator for o, two

methods can be used, one is estimating from the sample standard deviations, and the other

is estimating from the ranges of the m samples. In this section the method using ranges

will be discussed.
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Let x.i, xjz, . .. , x. be the ith sample of size n and define

xil*u*¡ = mâx( xil' xi2' ' ' " *t )

*i1-in¡ = min( Xil' xi2'' ' " xin )

Then the range R, of the ith sample is given by,

R,=nt(*o)-xi(*in)

Then W, = Ri/o is called the relative range of the ith sample. And the parameters of the

distribution of W are functions of the sample size n.

To determine the control limits of the R-chart, we need the estimates of mean and

standard deviation of R. The estimate of the mean of R can be taken as R.. Hence the

centre line for this chart is ñ. and the estimate of the standard deviation of R, d* can be

found from the distribution of W = R/o'. The mean and standard deviation of W are d,

and d, respectively, where d, and 4 *" known functions of the sample size n. The values

of d, and d, for various sample sizes are given in fDuncan (1974), table M].

An estimator of o is given by

^RO=-*d2

where R is the average range;

R= !S *,.
-,'ã 

I

Therefore

^^oR = d3o,

"ñ.where 6- , .
o2

That is,

,'R
oR = ds 4.



Hence, the control limits for R - Chart with the usual 3-sigma limits are:

UCL=R+3 dn = ñ.+3d, ä
CL =R

LCL=n-¡ d* = R-3d, Fto2

I-et
d. d.

D3 = ,-tü, D4 = t+3q;

then the R chart control limits become:

UCL=RD¿

CL =R

LCL = R Dr.

The constants D, and Do are tabulated for various values of n in [Duncan (7974), table M].

The m sample ranges should be ploned on a chart with these conrol limits, and if any

points exceed the control limits, the assignable cause should be sought and corected. A

new set of connol limits should be calculated for the remaining observations. The conÍol

timits of the i - Chart based on F. as an estimator for o are given by:

UCL= i* -f= n
d'rJ n

CL =F
LCL= * - 3= R.

dtri n

Here the quantity
4

Az=Ldr{i

is a constant that depends only on the sample size n; hence the control limits can be

rewritten as:
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UCL= i+ArR

CL =x
LCL= x -arR.

The m sample averages should be plotted on a chart with the above control limits. If any of

the points fall outside the limits, the process is considered to be "out of control" and an

assignable cause is investigated.

The R-chart monitors process variability within each sample whereas the *-chart

measures variability between the samples. Hence when constructing I and R charts it is

better to deal with the R-chart first and see whether the variability within samples is in

control for all the samples. If the variability is in control, then the *-chart can be

constructed. If the R-chart indicates out of control, eliminate the assignable causes until it

plots in control and then proceed with the l-chart.

When preliminary samples are used to construct the I and R control charts, it is

customary to treat the control limits as trial values.

1.1.4 
*X 

and S Control Ckarts.

When the sample size is moderately large, say n > 10, the Range method for

estimating o loses statistical efficiency. In this .ur" Ï and S charts are used, where the

process standard deviation is estimated directly instead of indirectly through the use of R.

Sometimes this S chart is refered to as the o chart.

From each preliminary samples, the sample mean i and the sample standard

deviation s is calculated. The sample variance

z 1+, -2,s-=n_l,|(x._x)
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is an unbiased estimate of

estimate is coo, where co

d; however, s is not an unbiased estimator of

is a constant depends only on n, that is:

I,et

Bs =c4 3^{L c'z4, B6 = co+ 3"'l4t
where the constants B, and Bu are tabulated in [Duncan (1974), table M] for each n.

Now the control limits become:

UCL=Boo

CL = c46

LCL = Bs o.

If no standard value is given for o, then it must be estimated from the preliminary samples.

Consider m preliminary samples each of size n, and let s, be the standard deviation of the

iú sample. Then the average of the m sample standard deviations is,
1m5=: \'s. .

^ ,ft=r'

rz (å)
c¿=\*T (B

It can be shown that the variance of s:

Var(s) = ê ç- &¡ '

Using these results, Í and S charts can be developed.

Consider the case where a st¿ndard value is given for o. Since the mean of s is

c4o, the centre line for the chart is coo. Then the 3-sigma control limits for the s chart are:

UCL= c4o+ lo{L
CL = c4o

LCL= coo - 3

o. An unbiased
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The statistic

would be:

s

c4
is an unbiased estimator of o. Therefore the control limits of the S-chart

UCL

CL

LCL

o gÃ
c4

o ¡Ã
c4

-S

-ù

-¡l

[,et

B3= t 
+^,[t-&o, 

B4= t++

where B, and Bo are tabulated in [Duncan (1,974), table M] for different values of n.

Now the control limits become,

UCL=B¿S

CL =S
LCL = B¡ S.

B. B.
Note that B, = 

j and B" - :l .*c4tÇ4

Wnen I is used to estimate o, the conüol limits on the corresponding * chart

would be:

UCL = =o +
c4.v n

CL =x

LCL= i 3S
r¿{i

Let the constant

A3= t¿fi

and the values of A, for each n is given in [Duncan (r97 ),table M], then the * cnart

control limits become:

t- 
"1



t3

UCL = x+ ArS

CL =f
LCL= x-arS.

1.1.6 52 - ckart.

The 52 control char:t is also sometimes used to detect process dispersion. Let s2 be

the sample variance. Since the underlying distribution of the production process is

assumed to be normal the statistic 1n-t¡s2/ê is distributed as chi-square with (n-1) degrees

of freedom. If the Type I error of testing the hypothesis that the process standard deviation

is at its specified value o - oo is cr,

then

p { x \-r,r-otr< (n-1) 

*, 
*1r,,,r1 = 1- cr

t7
where Xi_r,_o,and 11i_r,ørdenote the lower and upper a/2percentage points of the chi-

square distribution on (n-1) degrees of freedom.

Then the 52 chart control limits become,

uc,-= 2 r' .n-l ^ n-t,u"l2

CL =ú

ú,
LCL = n-l xl-r.r-otr'

The above control limits are probability limits. If a standa¡d value is not given for o'2 then

it should be estimated from the priliminary samples taken when the process is considered to

be in control. Let tl , t = 1,2, ..., m be the sample variance of the ith preliminary sample.

Then



t4

m
-2 1*-^
s =j_ ) si.m ¿"--¿ |

i-- 1

Now the control limits are:

-2
UCL= s, ,2- n-l hn-l,a/2

CL =52
-2

LCL = fo x?_r,r_o,r.

Usually these 52 control charts are plotted only with an upper control limit. Since a

small variance is of advantageous in maintaining a control process, we can use only an

upper control limit:

ú
UCL = *l Xí_r,o

when o = 0o is given; otherwise,

-2
uCL= m x?_r,o.

These control limits are all valid only if the underlying distribution is normal.
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L.2 Eivaniate ComÉro[ C[¡ar6s"

For most production processes, more than one related quality characteristics of the

prduct has to be kept in control at the same time. Statistical process is then Multivariable.

Although it is important to control each variable tndívidually, itis necessary to consider the

variables simultaneously. Since the variables are corelated with one another, individual

control will not be sufficient to control the multivariable process. The multiva¡iate

approach to quality control was originally considered by Hotellin g Q9a7).

In this section the control of two quality characteristics is considered both

individually and simultaneously. When two related quality characteristics are considered,

there are three parameters that have to be studied: the process mean, the process standard

deviation and the correlation between the two characteristics. The control of the frst two

parameters mentioned are discussed in the following sections and the later is discussed in

the next chapter.

1.2.1 Control Charts for Frocess Means.

Alt and Smith (1988) have given an excellent review of the multivariate process

control technique which are currently available. Montgomery (1985) has illustrated the use

of multivariate control charts using Hotelling's (1947) ideas. These techniques will be

summarized for the bivariate case.

Consider two related quality characteristics. Let them be denoted by Xr and Xr.

Suppose that the underlying distribution of X, and X, is bivariate normal with mean

vector p and va¡iance- covariance matrix I; that is,

(Xt, Xz) - BVN ( pr, !rr, o?, o7, p).

The control of the process means of the characteristics X, ,Xrcan be monitored

individually via the usualÏcharts discussed in section 1.1. The Ï, and X, ctrarts can be
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plotted seperately to see whether the process mean is in control for X, and X,

individually. This is equivalent to plotting them both on one chart as shown in figure

1.2.7,where UCL' and LCL, are the control limits for the X, cnart and UCL, andLCL,

a¡e the þ chart control limits. The process is considered to be in control only if the sample

means i, and -xrfall within theirrespective contol limits. When the two quality

characteristics are considered simultaneously, the pair of means (ir, ! ) should fall within

the rectangular region. This can be very misleading, since the correlation is not taken into

consideration and also the Type I error or the probability that a point plotting in control

would not be equal to their claimed values for the individual i chats [Montgomery

(1985), page246l. When the correlation is taken into account, the control region will be

elliptical in nature.

x
2

UCL

LCL
2

figure 1.2.I

ucLz X I

First we will consider the case when the parameters are at their standard value. Let

the standard values of ¡r and I be given by

*=*- lï'l'o LpJ
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and

t o? porozl
E=r -l ^ I"o-Lporoz ú I

respectively. Suppose random samples of size n are taken and

= - 1å.. - - I n

xr= iå*tt, Íz= n[*rt

are determined, then a X2 -chart is used to determine whether the process mean is at its

specified value [ro. Determining whether the process is in control is equivalent to testing

the hypothesis:

Ho: p=Eo os Hr:p#!ro.

Here, instead of upper and lower control limits only an upper control limit is used. Since

the quadratic form

n(i-ro)'xot (x-uo)

is distributed as yz with2 degrees of freedom, the appropriate statistic is,

.z- n f h:r.ï fl-sfx'o = (r - p¿) I [- ", j 
. 
[-;-, .,l

,,[+,Jt?] (,2',

where i = (il , lxr)' . Then for an s -level test Ho is rejected if *o' , *3,o, where yl,o

is the upper uvo point of a chi square distribution with 2 degrees of freedom.

The equation 1.2.1 represents an ellipse centred ¿¡ (Fr, Fr) with the principal axes

and orientation determined by p, c, and or. Therefore, a control region could be

constructed such that the region is the interior and boundary of such an ellipse (figure

1.2.2). Hence using the control chart with UCL= Xl,otnecontrol of the vector of process

means could be monitored.
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figure 1.2.2
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If a particular pair of sample means plots outside the elliptical region, the process is

said to be out of control. 'We 
are now interested in which one (or both) of the

characteristics may be causing the signal. Since the characteristics are correlated, it is not

appropriate to test each of the means individually at the cr level.

To control the overall type I error rate, Bonferroni tests or confidence intervals can

be constructed I Alt (1982), Morrison (1983) ]. Let 41, 42, . . ., Ap be p random evenrs

and Ãr, Ã2, . . ., Ãn their corresponding negations. Suppose that the A.'s (i = 1,2,. . .,p)

and p hypotheses that we are interested in testing símultaneousþ. Then from the

Bonferroni inequality

[p Inl nel
L i=l rJ

for a given family error rate cr or confidence coefficient 1 - s. If we specify each

individuai test level at y - oy'p, then

Pr ( one or more hypotheses will be rejected I all hypotheses are true )

[P Lo.
= 1- PrLl ^l > p(i) = ".
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The Bonferroni method of simultaneous tests and intervals merely requires that the

error rate for the individual tests be divided by the number of tests p in the family. For this

case, for p=2, individual i - charts for each characteristics with the probability of a type I

error set at u/z will be constructed. The overall rate is then cr.

To illustrate this consider a set of bivariate data generated by simulation using SAS

(Appendix A, program 1). Twenty samples of size n = 10 are generated from a normal

population with parameters pl = 30, llz= ß, ú = 8, a?.= 4 and p = 0.5. Then the

xz"1

sample averages for each characteristic X1, X, and ¡"yåsÞdstic are calculated. The

statistics î.,., *, andy^z are tabulated in Table 1.1 for each sample.,.0

Sample

1

2

4

5

6

'7

B

9

r.0

t_ 1_

L2

r_3

1-4

15

r-6

17

30.5152

30.3481

3r-.0430

31.5144

31. r_773

29.2462

3r_.6637

3L.3846

3r..8660

29.572t

3r_.1990

29 .67 43

29 .8488

30.223s

30 .4238

29 .8453

29 .91,38

lable 1.1

r_5 . 0318

L5.3424

1s. 8084

t5 .9029

15.0891-

14 .6426

1s.9283

15.3627

]-6.32s6

15.5069

L5.2t04
14.8655

t4.7799

L5.2442

]-5.2223

r"6.016s

L5 - 4282

2
x

0

0 .407L2

0-31185

2.00400

3.31713

2 .08928

0.73775

3.84556

2.45006

5.830s2

1.67306

L.94906

0.13382

0 _ 121r_8

0.15337

0.24L99

3.85466

0.71059
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l_8 30.2293 15.1393 0.07701

L9 29.9804 1,4.91,92 0.01_868

20 29.7927 t_6.0803 4.48931_

The control limits for the i, and i, charts are,

UCLI = 30 + 3 
"2/''15 = 32.6833

LCLI = 30- 3^2/''ß= 27.3167

and,

rJCLz= 15 + 3 *Zf,[-n = 16.8974

LCL2 = 15- 3*2f,[tO= 13.T026

The upper control limit for th" X' - chart is,

UCL= X?.,o.ooro = 10.44.

All these sample statistics plots within the control limits; hence we conclude that the

process mean for both characteristics is in control individually and simultaneously.

Now, suppose we simulate (Appendix A, program 2) another set of 20 samples each of

size n = 10, and we disturb the process mean for the last 15 samples as follows:

for samples from 6 to10 , pl = 30 + 0.65 i,

for samples from 11 to 15, lLr= 15 + 0.3 i ,

and for samples from 16 to 20, F, = 30 + 0.65 i ;

Vr=15+0.3i, i= 1,...,5.

Then the sample stâtistics are given in Table 1.2.

Tabl-e 1 . 2

2Sampl-e x1 *Z X;

r_ 30.651_3 16.0915 3. 0025

2 29.6978 t_5.3289 0.747L

3 30.6084 ]-4.8924 0.8099
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29 .7 696

29 .869'1

r_4.86s8

14 .25"14

0 .07 s7

1.6383

6

7

I
9

10

32.2180

32.1267

32.201,5

31.6575

32 .53L4

1_4 .8044

15 . 35r_ 8

15.8L08

14.3945

L4.7230

9.3489

6.]-87 4

6 .06]-7

8. r_669

1_2 - 5888

l_ t-

t2

13

1-4

l-5

30 .0]-27

30.2065

30.0089

29 .657 4

29.5477

16.0900

]-5.2940

L5 -2LL7

16.6930

L6 - 0]-42

3.928l.

0.2t61,

0.1450

11.1168

4.8507

r_6

1-7

r.8

19

20

30. r-623

30.322t

3t .4625

33 .0 432

32 .5287

15.1689

16 . r-2 53

r_5. 5394

r-6.5076

L5.7286

0.0744

3.5396

2.6't54

L2 .1,97 6 *

8.0839

Though the sample process mean for cha¡acteristic X, has been increased by 0.65i,

i = 1, ... ,5; from ttre 6th to the 10th samples, the l, chart has not detected this shift but the

72 - chmhas detected it at the 10th sample. Similarly from the llth to the 15th sample the

process mean of the characteristicXrhas been shifted by 0.3i, i = 1, ... ,5; and here again

th" L chart did not detect the shift but the y2 - charthas detected the shift ar rhe 14rh

sample. V/hen both characteristics X, and Xrare increased by 0.65i and 0.3i, i = 1,... ,51

respectively through samples 16 to 20, the l, chart was sensitive enough to detect the shift

at the 19th sample like ú" X'- chart, though the ! chart failed ro derect the shift.

Hence from this example we see that, where two quality characteristics are

considered th" f - chart is more sensitive in detecting the shifr than the individual I
charts.
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l,et us consider the case when the parameters are unknown. Suppose m preliminary

samples, each of size n are taken. From these samples, the sample means, ir,i , ir,i und

the sample variances, t?,i, tLi of the characteristics X1, Xrandthe sample covariance,

srr,¡ of the two variables a¡e calculated. Let

= 1*- = 1*xt=m 
þ..._*'''' 

x2=-À*z'i

and

where

s=åär,,

,, = [ '?'i 'o'i 
l,

I siz,i tr,i 
J

and also let

i. = - 'r
-r = (*t,i, xz,i), l = 1,2, ...,m.

Then

/=\ - m
= l^tl I c-.=[='J =tå''

is an unbiased estimator of p, and S is an unbiased estimator of Io. Hence we replace Lr

and Ð^ bV Ï and S respectively. Then the resulting statistic is

r3 = n(i, -Ï)'S-t(xi -E) 0.2.2)

22 F / - \r / - v
= 
n"" 

I 1L =' Ï (0r., -" Ï
*,,ÐLt_ t J.[-t J

(" rl |,1"¿1,-2srzl -l¿

I S1 jl. s2 
))
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where

t
s1

-mI nr-.

m&
r-- I

-mIç-n&r=l

-m
-lq'-mþ

r=I

2-2
s l,i' s2 =

)s2,i' sl2= stz,i

and

det (S) = s?¡} - s?r.

rfr is oistributed ut **P F2,mn-m-1. Hence tne { statistics for the m preliminary

samples are plotted on a chart with

UCL = **P F2,mn-m-r,cr and LCL = o.

If one or more of the preliminary samples ( statistic plots out of control then they are

discarded and based on the rest of the preliminary samples, Ï and S are recalculated and

again tested for control. This process is repeated unúl all the samples plot in control. Then

these in control values of E and S are used as estimates of p and ro. Now suppose a

new set of m samples each of size n a¡e taken from the process. Let i, denote the}xl

vector of sample means, then by substituting i, instead of ii in equation (1.2.2), the

test statistic becomes

1 : t --1Tér=n(ir-x)S (Ef -Ã) (1.2.3)

Andnow4,''distributedu,ffiF2,mn-m-l.HenceTfr,ofeachsamp1emean

is plotted on a control chart with

UCL = 
2(m+1Xn--1)

mn-m-I F2,mn_m_I,û, and LCL = 0.

To illustrate this, consider the example where 10 preliminary samples each of size

10 are generated (Appendix A, program 3) with p¿rameters

F, = 30, llr= 15, o? = 8, o7= + and Po = 0.5,

except that the 3rd and 5th samples are generated as follows:
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for the 3rd sample, lr, = 33 and llr= 17,

for the 5th sample, Lt, = 27 and Vr= 73.

Then the test statistic { for each sample is given in Table 1.3.

Table l-.3

Sample

1

2

3

4

c

6

7

I
9

l_0

And the control limits for this chart are

Sample

1

2

5

/
To

1.0433

L .43]-7

17.0695

4.2399

9.9870

0.885r_

0.2356

0.0054

1.3498

0 .6277

UCL = 5.461and LCL = 0.

The 3rd and 5th sample statistic falls outside the control limits. Hence we discard those

two samples and recompute the statistic based on the remaining 8 samples (Appendix A,
progïam 4), and the Tfr staisric for the 8 samples are listed in Table 1.4.

Table 1.4

t
0.s4296

1.04689

0.40840

2 .2961_6

0 .427 6t
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6

1

I

0.57674

0. r-r_597

0.00328

The new control limits based on the 8 samples are

UCL = 5.324 and LCL = 0.

Now all the samples plot incontrol. Therefore the sample statistics based on these 8

samples a¡e calculated:

¡29.511,,-,t Io - [r+.eoel

and

s=

Now we generate (Appendix A, program 5) a new set of 10 samples each of size 10.

Then the t'* statistic for these future samples are given in Table 1.5.

Table 1.5

r 71.398 4.227 .,

I o.rr, s.%4 )

Sample

t"

2

4

q

6

7

ö

9

10

-2ror

0.80445

0.37780

2.32445

0 .461,54

0.06703

0. r_r_760

r_.08576

1_ .82544

7 .25430

2.r7544

The control limits for this chart are,

UCL = 6.674 and LCL = 0.
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Here all the samples plot in control.

The sample statistics x an¿ S should be updated from time to time by taking

preliminary samples when the conrol charts indicate in conÍol state.

n.2.2 Corctrol Ckarts for Frocess Ðíspersíow"

As in the process mean case, the control of the process dispersion can be monitored

by constructing S-charts and S2-charts individually as discussed in section 1.1. Here again

the correlation of the two variables is ignored. Hence we construct cha¡ts to monitor the

control of process dispersion simultaneously. There are various kinds of control charts to

detect process dispersion. That is basically all these charts check whether the covariance

matrix of the process remain at the standard value Xo.

Suppose a random sample of size n is obtained and the sample variance-covariance

matrix is computed from those samples. Let it be denoted by S.

[ '? ,,,-lg=LI
Ltt, t, I

t .Ë. (*,0 - tr)' .Ë, (*,u - t,)(x2¡ - rt I1l K=r k=r 
I

n-11 n n , I

L ¿,(xrr 
- lt)(x2¡ - rz) å(*ru - Ì)' J

The sample correlation coefficient for the two variables denoted by rnis given by

rr, : srr/srsr.

Then the sample generalized variance is

ls I = '! 'l- '?r,

aaa
= Sl 52 (r - rl2)
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o lS lrz- ct art: Probability limits.

The flrst chart we'll consider is the 
I 
S lt'- chart. iHoel (1937) has shown that the

statistic

zqn-r¡ls l1/2-lr-rrn '
| '01

where

l"olt" =01 02 0-P3)'''

has ay2 distribution with 2n-4 degrees of freedom. Hence, the control limit of the
t tll2
lSl -chartbecomes,

ucr- = 2fu l"ol"' xf,n_¿,u.tz

LCL = T*Ð l"ol"' xln_q,t_atz.

If the sample søtistic 
I 
t Ito plots outside these limits, then the dispersion of the process is

said to be out of control, and the assignable causes are sought. Note that these control

limits are probability limits.

(ii) lS Ittz- "t 
*t: 3 - sigma limits.

Another way of conrolling the process dispersion is by constructing 3-sigma limits

chart. For this the first rwo moments of ls l" *"used. since rhe sraristic ls I is

distributed as

(n_r)-2 
lr,l É,r'" _,

it follows that the rth moment of 
I 
S I is given Uy

lsl' = (n-r)-2'l"rl' 
-ûoî. ,
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where the chi-square variables Yu's are independent, and

-zn-k \

E(yl) = 2t 
| (7 2, for k = 1, 2.

l(2/

Therefore,

nllsl')= {n-rl 
2'l:ol' ," L

Ir.of r=t,

r(* + r) ls l1/2

f(ïb) l-ol - b3 
| 'ol''

r(Ï)
f(L?'

e1¡s l'/2)
2

n-l

where

If r= 1,

.2b¡ = n-1

f(**')
f(+)

rlls l) =

where

. -r-2Ur=--r n-l'

Therefore,

v(sl''') = E(lsl)- fe(sl"')]'= (br-ú, 
l"rl

Hence, for the It Ito- chart, three sigma control limits would be:

n-2
n-I Itol = o,

"ol '

cL = o, l"ol"',

LCL=(b¡-3fru-at ,ol''
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If the 
I 
S lt' statistic calculated for each sample plots inside the control limits, the process

is considered to be in control. If one or more of the sample statistic plots outside the limits

the process is considered to be out ofcontrol and assignable causes are sought.

(iii) W. chart.

The final chart to monitor process dispersion is an analogue of the 52 - chart.

Anderson (1984) has shown that the Likelihod Ratio Test of

He: X=Io vs Hr:X#)o

is modified to be unbiased, based on the following statistic

'wo = -Z(n-t)- (n-t) m(lsl) + (n-t) t"fl"rll + (n-t) trace( rãt s ),

(t.2.s)

where

The upper 5Vo and 17o points of the distribution of 'Wo are tabulated in [Anderson (1984),

table7l, under p=2, for various values of n-1.

To illustrate all these control charts discussed for process dispersion, we will

consider the same example which we discussed earlier for process mean. For process

dispersion we will construct the S-chart and S2-cha¡t for the two variables individually; for

simultaneous control, ttre ls lt/'- ,h.t, and the wo - chart are considered.

Again 20 samples each of size 10 are simulated (Appendix A, program 6), and the

sample statistics necessary for these charts are calculated and tabulated in Table 1.6.
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The control limits for these charts a¡e tabulated below

Sr- chart

Sr- chart

Sf-chart

Sl-chan

It lt'- chart (i) probability limits

(iÐ 3 - sigmalimits

Wo - chart (ø = 0.05)

Sample s1

1 3.377ss

2 2.3-'71,1,1,

3 2.31765

4 2.822rr
5 2.51136

6 1.9s998

7 3.59024

8 2.67260

9 2 .661.52

10 r-.8561-7

11_ 2 .91446

12 2.1_1_859

l_3 2 .96494

14 2.95900

L5 2.98815

16 3. 85218

1_7 3.11956

r_8 3.24793

r_9 3.091_40

20 2 .1,1,664

s2

r.2829r
l- . 18312

L .67198

2.08354

2.3_0t46

L.26L3t
r.96691,

2 .06409

2.05126

1.511_16

2 .0967 9

2.r2041,

1.94756

2.3601,2

2 .67 485

2 .47 527

2 .617 04

2.34258

2.04355

r -7 9249

Table 1.6

2

"1

1,1, - 407 9

4.7137

5. 3715

7.9643

6.3069

3.84r_5

r.2.8898

7 -L428

7.0837

3.4454

8.4941,

4 .4884

8.7909

8.7557

I .9291

14.8393

9 .7 31,7

10.5491

9. ss68

4.4802

¿tz

1.64586

1_.39978

2.79552

4.341_r-3

4.41"614

l_.59091_

3.86873

4.26045

4 .20'7 68

2.28362

4.39651

4 .496L3
? "oroo
5. 570r_5

7. r_5483

6.1,2695

6.84888

5.48768

4.77 609

3.2t302

UCT-

4.721

3.338

22.36

1 1.18

7.838

8.97

8.52

I'1"'

4.15806

1.77734

3. r_0586

5.25658

5.27735

2.397 65

7.01105

5.18438

4 .97 450

2.65859

4.321,68

3.668s8

s.28s36

4.860s8

5. 79054

7.11698

s.30380

4.L6097

3.80567

3.14665

wn

4 .41484

7.58624

1-.73137

0.1]-23r

3.28196

4.11898

4.698]-7

0 .47737

0.20130

3.L2394

L.02222

1- .927 09

0.26s36
1 aAOaC
L. JAOLJ

2.L609r

2 .45625

2.54901,

3.7t294

2.7I23r
1.83096

LCL

0.781

0.552

1.881

0.00
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An examination of the results for the twenty samples indicates that all the sample statistics

are in conh'ol. Now we generate another set of 20 samples each of size 10 and disturb the

process variance of each variable for the last 15 samples as follows:

for samples from 6 to10,

for samples from 11 to 15,

8*0.4*i , i=1,..,5

ú= 4o0.2oi , i=l,..,5

4=

and for samples from 16 to 20, d = 8*0.4oi ;

ú= 4*0.2*i , i = 1,..,5.

A summary of the sample sratistics are given in Table 1.7.

Sample

1

2

J

4

5

s1

2.3L372

2 .7 8896

2 .83484

2 .827 50

2 .5431.2

s2

r..86484

r_.95435

L.26325

7.46452

2 .2857 6

Table 1.7

s1

s.3s33

7 .77 83

8.0363

7.9948

6 .467 5

3 .477 6

3 . 8195

1.5958

2.t448

5.2247

Iq|"'

4 .0372

5 .17 47

2 .92s8

3. 8003

4 .46LL

wo

0.7159

0. s083

3.7397

1. s087

1. r_550

s2

6

7

8

9

10

1.85864

L.97094

2 .67 969

4.42383

3.91406

2.77 648

2.2]-]-L9

1_.32712

3.19566

2. r_r_005

3.4545

3. 8846

7 .L807

19.5703

15.3199

7.7088

4.8893

L.7 628

L0.21,23

4 .4523

5.L072

2.1_995

3.3009

1"I .8527 *

7 _ 5983

1-t .1-2'7 2

8 .921 I
2.3s03

I .7 435

3.5710

1_ t_

t2
13

1,4

r_.55054

2 .63t07

2 .84'7 69

3.388s0

0.67928

\.42597

r_.45584

2 .00686

2.4042

6.922s

8. r_093

l_1_.4819

0 .461,4

2.0334

2.1-]-.95

4 .027 5

t .027 I
3.2622

2 .97 63

5.0404

]-4.6L12

L.8721,

3.3704

1. t_096
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15 3.L0072 L .87 827 9 .6l.45 3.5277 4.0554 t_.5397

L6 1, .'t 457 5 1" .L233L

1"7 r.5012'7 1.33493

18 3.45474 1.49705

19 3.98015 1.80834

20 4.341,82 l-.48051_

3.0476 t.263-8

2 .2538 r .7 820

rr.9352 2.24L2

l_5.841_6 3.270]-

l_8.8514 2.1_91-9

1 . 6536 7 .67 07

2.0003 7.1"100

4.0734 3.1878

5.756r_ 3.5043

s.9633 8.2231

V/hen the process variance d is shifted by 8*0.4*i (i=1,..,5), for the samples through 6 to

10, the W. - chart(at 5Vo level) detects the shift immediately at the 6th sample and the

I 
t Ito- chart detects the shift at the 9th sample. None of the univariate charts detects the

shift. For the 9th sample all the statistics are near to the UCL, although the second variable
process variance is not shifted. When the process variance d is shifte dby 4*0.2*i

(i=1,..,5), for the samples through 11 to 15 only the W* - chart( at 5Vo level) detects the

shift at the 1lth sample. When both process standard deviations are shifted for samples 16

to 20, not one of the charts detectes the shift.

(iv) Charts using estimates.

When the parameters of the Bivariate normal disrbution are not specified, we use

the sample estimates Ï an¿ S instead of p and Eo respectively. For ttre lS luz- "hurt 
, th"

unbiased estimate or 
lÐo ltz 

r,u, to be determined.

ræt Is- Ito o"rhe average of the m preriminary sampre sratisrics lt lt", thar is,

I 
,- l',, = *! å | 

,,1','.

Then an unbiased estimare or 
l>o it/2i, 

giurn by,

, , s.l,r,b, l'

Hence the probability limits of 
I 
S l't'- ,h*t be¡ome:
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ucL=H# xìn-+,atz

LCL=Hå xln.qr-utz.

Similarly 3 - sigma limits of the 
I 
a lt'1 chart become:

ucI- = ( t *û$-- ul ) l 
s.l',',

cL = ls*lt,r,

LCL=( t åS-- ul ) lr.l','.
For the Wo charr, the unbiased estimates 

"f l>o | 
*A

the average of lS I from the m preliminary samples. Thar is,

lr.l=åå lr,l ,

and

Els.l=o,ltrl .

ls- I

Hencef ir an unbiased estimate 
"ltrl. 

Now, let S,1 denote the inverse ofthe

sample variance-covariance matrix for subgroup i, i - 1,2,..., m. Kshirsagar (1971)

shows tt ut ff S,1 is an unbiased estimate of >;t. And if,

S*1 :* Ë s;',
r=l

tnen ffi S*1 is an unbiased estimate of lol. Hence we substitute these unbiased

estimates in equation (1.2.5) the W* statistic becomes:

!v*o = - 2(n-1) - (n-1) h(lsl) + (n-t) t"(#) + (n-1) our.ffi s;' s),

x,ol are needed. l-et lS- | Ue
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The values of the W** will be ptotted on a controt chart and the upper 5Vo and l%o points

of the distribution of wnn are tabulated in [Anderson (198a) tableTf, under Þ=2, for

various values of n-1.

Now consider the example done earlier, when standard values are not given , we

use the same estimated values that were calculated when the samples were all in control.

The estimates are,

: ¡29.511,,r = 
[to.rouJ

and

e _ / 11.398 4.227 ,,

" - [ 4.227 s.%4 )
And the sample statistics for the S-charts, S2-charts, 

I 
t lt'- chart and the V/o - chart are

computed (Appendix A, program 8) and are given in Table 1.8.

Samp1e

t_

2

?

4

5

6

7

o

9

l_0

1_1

t2
13

s1

4.03r_54

2.59150

2 .7 6647

3.368s6

2 .99'7 63

2.33949

4.28542

3.19009

3 .L7 687

2.21557

3.47878

2 .5288t
3.53904

s2

r_. s6393

l-.45283

2 .03969

2. s3436

2. s3590

7.52969

2.380s4

2.50522

2 - 49269

! .83287

2.56306

2.57799

2.3692s

Table 1.8

2

"r-

l.6.2534

6 .71,59

7.6530

1_I.3472

8.98s8

5.4'732

r_8.3648

L0 .1-7 67

r_0.0925

4.9088

r_2,1019

6.3949

L2.5248

2.4459

2.1L07

4. r_603

6 .4230

6.4308

2.3399

s .667 0

6.27 6r

6.21,35

3.3s94

6. s693

6.6460

5.6r_34

I'l"'
5.9877

2 . s594

4 .4725

7.5696

7.5995

3.4527

10.0961

7.4656

7 .1634

3 .8284

6.2233

5.2829

7.6LLt

v,l*

5.9r-55

4.2348

0.3019

2.0835

6 .4842

r_. s306

1,0 . 427 3

2 .4601,

L .'7'7 9r

1.0071-

2.0086

2 .069t
2.2336

2
sz
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t4
r-5

t6

I7

r.8

L9

20

3.53195

3.5667s

4.59807

3.72360

3.87683

3.68999

2 .52648

2 .88]-7 6

3.26042

3 .027 93

3. r-9568

2 .8'7 01"5

2. s0s36

2 _rgr't 6

3.2 .47 4'7

L2.72t7

21,.1,422

L3.8652

r_5.0298

13.6160

6.3831_

8.3046

r_0.6303

9.r_683

L0.2t23

8.23't'1

6.27 69

4.7 60L

6.9994

8.338s

]0.2486

7.6376

5.99r_9

s.4803

4.5313

3 .527 I
6.2049

7.94r'7

6. 08s0

5 .7 436

3 .4425

0.6011

The conrol limits for these charts are tabulated below

Sr- chart

Sr- chart

Sf-chart

Sl-chart

It lt'- chart (Probability limits)

Wo - chart (ø = 0.05)

UCL

5.793

4.1 80

3r.864

16.589

1 1.10

8.52

LCL

0.9s9

0.692

2.66

Except for the 8th sample, for which the Wo - chart (o = 0.05) is out of control uno 
I 
S lt/2-

chart also is almost near to the UCL, the other sample statistics are all in control. Therfore

the 8th sample should be disca¡ded.
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CF{,APTER. 2

B,ASNC ãÐEAS TN CUSIJM CONT'ROT, CHART'S

2.1, The C{.ISUfol Contno[ Chant a¡rd the V-Mas&r Scher¡re.

The Cumulative Sum (CUSUM) Control Chars were proposed by Page (1954) as

an alternative to the Shewhart Control Charts. The CUSUM chart takes into account all the

information in the sequence of observations, while the Shewhart chart only uses the

information about the process which is contained in the last plotted point. Thus the

CUSUM control char:t tends to detect relatively small shifts in the process more effectively

than the Shewhart charts. The CUSUM chart is used primarily to maintain the current

control of the process.

The CUSUM Control Chart is a sequential sampling procedure. Suppose the

observations are observed sequentially in time. Then the CUSUM control chart plots the

cumulative sum of the sequence of observations against the number of observations. The

change in trend on a CUSUM chart will indicate that a change has occured in the process.

It is not sufficient to detect a shift by visual inspection. Hence different decision rules have

been proposed to detect the shift in the process quickly. The fîrst decision rule considered

here is called as the v-mask scheme. Johnson and Leone (1962, (a), (b), (c)) proposed

the sequential probability ratio test to construct the so called V-mask Scheme.

2.1.X The Sequentíal Probabílíty R.atio Test:

The sequential probability ratio test (SPRT) lGhosh, (1970, chapter 3)] is used to

construct the V-mask scheme for the CUSUM control chart. Suppose a random sample of
m values xl x2, xm, are observed. The likelihood ratio LrJ Lo^, is calculated,

where Lr* and L* are the likelihoods of xf xz,. . . . , x-, under the alternative
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hypothesis, H, and the null hypothesis, FIo respectively. Based on the likelihood ratio

three decisions are possible;

L,- ü,,(Ð r*-0n, 1 - cto

L 1-n
(iÐ # = 

-, 
H,isaccepred

-om c[0

(iü) ,=I - 0o "orn cto

and the new ratio, Lr<-*ry' Lq*+r¡ is then calculated based on the m+1 observations.

This process is repeated until a decision is reached. Here øo , c[1 are the approximate

probabilities of Type I error and Type II error respectively.

2.1.2 Cumulative Sum Ckarts.

consider the case when x!, x2, xm are normal independent random

variables with process mean p and known variance d. fft" hypothesis to be tested is:

Hor lr=po against Hr, fr=Fo* ðo',ô>0.

that is, we are testing a positive shift in the target mean value. Then, in this case the

tikelihood ratio becomes

(ø")- exp { #Ë,., - po - so)2 }L
1m

Ç=

#&(*-po)2)

uo) - ,'o'o2)]

"Ì

= exp f-+ ( zôo
l2o"

= exp{:8,.,

({zn")-- 
"*p{ -

X,*, -
i=1

.1
It] - 1m
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o rË,.,-ro) 
= l^t,å) * þu , accepr !r=r,0.

o rä,., - ro), ! mt+) * þ¡, accepr p=r,o+ ôo .

rm
If the point, [- , å &O, 

- po)] are ploned on graph paper, the 'continuarion region'

lies between two parrallel straight lines, each inclined at an angle o"-' Éð) to the axis of

m, and with intercepts

Lh(_",_\. Lt,ll:glô [t-croJ' ô [ "o )
respectively on the axis of

mlr
_L8 - po) .o-r=l

Consider a third hypothesis

H_rtp=po- ôo

Armitage (1950) proposed the simultaneous application of two SpRTs,

(i) Ho vs H,

(ii) Ho vs H_r,

where Gt = o_1. The graphical limits for the combined tests are shown in figure 2.1.

The cumulative zum up to the mth observation is denoted by S- , where

r-=å8,., - ro) .

l=l

and

oP=d=3 /, fL "1ìò- [oo )
If a, is small, as we usually require, then d can be approximated as
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d=_þ tn ."o.

The angle BrPO is denoted by

0 = ran-1 (å ¡1.

frgure2.l

The chart is interpreted by placing a mask (shaded area) over the chart as shown in

figure 2.2 with the point'O'over the last plotted point with the line OP horizontal. Any

point lying below A1B1 is regarded as an indication of increase in the process quality

characteristic we are measuring while points lying above A-rB-r indicates a decrease.

In the CUSUM chart only t"vo decisions are considered: one is rejecting Ho ( or

accept Hr) and the other is the combination of the other two decisions; that is, accept H0

and the continue sampling. This is because the CUSLIM procedure is consffucted so that it
detects only the sample points that are going out of control. Hence the acceptance of Ho is

considered as "continue sampling".

Accept H,



40

figure2.2

Consider the cumulative sum up to the (m+t)th observation, then
m+1

sm+r = 
-t Z, (x. - Fo)6P- i=l

=åä (x - Fo) +

^ . x,n*t-Fo
=Jm -r

o

x-*l - Po

o

Hence the ordinate of a plotted point equals the value of the immediately preceeding point

plus the value of the sratistic T; that is,

x -u
Sm+l = S- + T**1 where Tm+l = m+l ' o

o

Thus the ordinate is the sum of the calculated values of the statistic T. Hence the name

cumulative sum control charts.

m+1

=ÐTj.
j=1

' t' .t a'ê
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Z"nS R.un Lengtk øred Average R.wre l-ength"

In an SPRT, the Average Sample Number(ASN) [Ghosh, B. K., (7970), secrion

3.51 is defined as the expected number of samples that falls inside the continuation region

before it falls on either side for the frst time. If it falls for the first time on the acceptance

region, that is referred to as the ASN under flo, *d the other occurance is refered to as the

ASN under Hr.

Run Length is the number of observations plotted before a point plots out-of-

control for the first time. Average Run Length, ARL is the expected number of sample

points that must be plotted before a point indicates an out-of-control condition. Hence ARL

is the same as ASN under H, in an SPRT. For example if in a production process

ARL=4ffi, this means that an out-of-control signal goes after every 400 samples observed

independent of whether the process is in control or not. Usually in a production process its

appropriate to have a large ARL when the process is in control (i.e. ARL under Hs) and a

small ARL when it is out of control (i.e. ARL under H1).

l-et
f. (x')

zi= In 
ilÐ , i = l, 2, ..., m,

where fo, f, are the density functions under Ho and Hr, respectively. Then

ð2ôzi= -T * 
;(xi- Fo), i = l, 2, ...,m,

and

n¡¡o(z) = -*

l-et
L.lm=Lo-'

then

Àm
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F,¡g.ol ln Lnl ] = ao ln

Thus the ARL under Ho is given by,

ao ln + (1 - cr ù ln

(r-cro)r[,å)

c[1

1 - cro

c[ I ln

[ïJ) .

tï:)

E¡1^[/rz À*l
o*"0=Ë(Ð

1 - cr,

c[o

To calculate the ARL under Hr,

n¡1.(z) = *I

Esrl ln X,n I = (l - ø,r) In + a, tn Lgt-l
[t - oo/

Thus

ARL ¡1, =

ntrUn Àn'J

c[1

1 - cro

õ2/z

If cr, is taken to be very small [Johnson and Leone, 1962(b),(c)] then,

- ln a^ -2ln a^
ARL= " -l¿ =--;---9.õ"/2 ô'

As ô is varied, the values of ARL associated with different values of ô will trace out the

ARL curve for the given control scheme.

nr,(z)

(l - ur) ln

õ2/z

+
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2.n.4 CASAM for Sarnple fufeans"

Here we use the sample mean instead of each observation in calculating the statistic

T. Suppose each time a sample of size n is taken and the sample mean of the ith sample

i,=*å.u i=t,2,....,ffi

is calculated. The sta¡rdard deviation of i, oO = odn.

Then we plot the statisric

r*
S- =; å 

( O,- Uol against m.

x

Here the SPRT for the construction of CUSLIM for sample means is based on rhe

hypothesis:

Ho:[r=lro

against

Hr r fr=Fl =lro+ õo-, ô>0.

Then the dimensions of the V-mask for this chart are

0 = ran-r (å ô)

and

¿=4 h e::L\õ' Ioo ]
where

^ Pt- Fo1__t: 
o '

x

If o, is small, as we usually require, then d can be approximated as

r- 2 ,.- ^.Lrt r;r-g.
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Hence to construct the V-mask, one procedure for determining the dimension's of the mask

is:

(i) Decide on the least size, D say, of absolute change in the mean which is

desired to detecl Calculate ô = D/o- .

(iÐ Decide on the proportion of occassions ( that is samples ) on which you are

willing to make a false statement that there has been a change in process average. Calt this

propoÍion 2cro ( or c[0, if only one-sided deviations from average are to be considered).

(iü) Determine 0 and d from the equations.

It appears that CUSUM chart will give more rapid indication of a change in mean if
a small enough value of cro is being used. Since a value of about 0.001 is customory in

most control charts, CUSUM charts have a ma¡ked advantage. The advantage decreases

sharply as cro increases.

2.1.5 CUSAM for Sample Varíances.

The Cusum chart for variability in a process has been studied by Johnson and

Leone, 1962(b), based on sample variances and sample ranges. But, in this section the

variabiliry of the process is discussed based on sample variances alone.

Suppose the variance is d when the process is in confrol. We wish to detect an

increase in variance from d to of (t oþ.

We can construct an SPRT such that, the probability of failing ro detect such a

change is approximately cr1, and the probability of detecting a change when in reality,

none has occured, is approximately ao. The test is based on the hypothesis

Ho: o2 = ofr vs Hr: cz = o?1t ofrl.
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Let Vr,Vr, . . ., Vm be the observed sample variances:

N.l4

\r _",=E qil -+; i= 1,2,"',m'
J=I I

Consider the likelihood

mNiL*=[{ry,ffi

mtN.
= ïT r--l'

i=r [r/zæ oJ

= ft l-!\.'i=r $zæ oJ

m

. 1 .X*t
= I t \i=t

[[tn".1
Hence, the likelihood ratio is,

m
lN.

L-J-_\el 'I

[^[t"",.1

,r'Ì

m

= 
[*JoE* ".0{ ;(å tC 

å (Ni- 1) v,}

'.n{ #'*,,-oJ'}
Iwt

*nt- #H(*,j-r

".n{- #,*, - rl v,}

..n{- #ä (Ni-1)

(^
,*p {-*X

L zol i=l

",Ì

(Ni- ,, o,)
L

1mt=
0m

m

(ooìf, Ni 
l, _ , t+ r,l Ë I

= [*J= 
exet oi oõ ,=i 

u' o'l'

where Vi = Ni - 1. Then the continuation region is given by,
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m

å

The boundary beween the continuation region and the acceptance region for H, has the

equation

m

Ë o, Y¡ = z( + 4)-' /, É- "rli=l oõ ol [oo )

o 2( + +)-",oõ oi

h e::L\
Ioo )

["=J å^.'
m

Xu,v, =
i=l

If cr, is small, this is approximately

4r
oõ

o'o

1- -)o1

"to1- ,)oí

,É) Ë,*,

ir
oõ

2lnao

' lsY
["'J

Hence, we construct a CUSUM control chart by plotting

r* rn

- 4 vt Vt against E *t , for each m = t,2,...,
o[' i=, i=l

that is we plot the points

åäviv,
m

EN''
i=1' [ii
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[*,, t+ ) [*,o',,[. %.1 [

vr V, + vrV,
ú

I

l
As this CUSUM is constructed to detect the increase in the process variance, the out of

control points of these plots can be detected using the lower limb, PQ of the V-mask as

shown in figure 2.3, where the parameters of the chart are given by

d= -
ln ao

and

0=tan

figure 2.3

i-
u'

Éf¿.li
lc{ o*l b

,,Fì

,f '1Ël I
t ' [îl J
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Sometimes it may also be desired to detect a reduction in process variance, from {
aa

to oi ( < oõ ), say. By a similar argument, we arive at a control limit represented by the

straight line P'Q' in figure 2.4.

In this case,

d'= -
ln ao

and

0' = tan

figare2.4

["-ï'

'" [*l

{

i'
dr^ùÍ

lôl o-l tr
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Note that in this case both control limits have positive slopes.

-m
the ordinate + X, V¡ V, cannot decrease as m increases.

o[ i=r

This is to be expected, cause
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2.2 C{JSUM Schemes"

2.2.X Cowversiow oÍ V- rnask ínto two one-sided CASAM Schemes.

The V-mask scheme can be converted into two one-sided schemes for the upward

and downward shifts respectively. In the case of detecting an upward shift in the process

average, the rule for deciding when such a shift has occurred is to compare the last point

plotted with the lowest point previously plotted. If the difference exceeds a specifîed

quantity h, the conclusion is that the shift has occured in the upward direction.

This decision rule picks up very small shifts which may not be of any importance.

Hence the one-sided scheme on the upper side has been modified by the adoption of the

reference value k. Under this modified procedure the quantities plotted on the chart are the

cumulative sums of i - k, where k is a value greater than the target for i. When the

cumulative sum become less than zero a new series is began. When the cumulative sum of

I - k exceeds the decision interval h, it is decided the process average has shifted above k.

This procedure is much more easier to handle and it is sensitive only to the upward shifts in

the process average that are considered to be of importance.

For the shifts on the negative side we choose k to be smaller than that of the target

value and the test will be whether t (i - k) has a negative value less than that of -h. It is

possible to have two one-sided schemes of the kind now discussed with upper and lower

reference values, which is equivalent to using a V- shaped mask. Kemp (1961)

demonstrates this equivalence as follows:

When the horizontal distance between the successive points on a CUSUM chart,

measured in terms of unit distance on the vertical scale, is w and if the limbs of the V are

inclined at an angle 0 to the horizontal, the two one-sided schemes and the V-mask scheme

will be equivalent if
k=w o_ tanO -ki - p0 =p0-q and h=d<¡_ tan0,
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where kt and \*" the upper and lower reference values of the respective one-sided

schemes. The target for i is the true mean p0 and the variance is o'O .

Proof:

Iæt the last point plotted be denoted by O with cumulative sum equal to S, and let

R be the point for which the cumulative sum is S*_., where

s-=åä,0,-ro).
X r=l

The V-mask is placed such that the line OP lies parallel to the horizontal axis as

shown in the diagram. The line OT is drawn parallel to the lower limb of the V-mask. The

horizontal line through R and the perpendicular to the horizontal axis dropped from O meets

ar Q.

figure 2.5

Number of Samples

Then the angte T@ " i - 0, and if the angle RoQ is denored by Q, we have that

5
UI
d.)t'Þ
ó
Ê
á() T

B1

TR = OR cos(0 + Q)
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If

TR = OR ( cos0 cosO - sin0 sinQ )

= OR cosQ cosO - OR sinQ sinO

= OQ cos0 - RQ sinO

= (S,n - Sn,,_, ) cosO - rw sinO

TR > d sinO,

the path of the plotted points will cross the lower limb of the V-mask; that is,

Srn - Sr_, - rw tanO > d tanO

This implies that

m (*- -rr \

I l:LI-a.-wtang l>otune
i=¡ñJ+t [ "o )

m

,=åÍ 
i,- Po - w o- tan0 ) > d oo tan0 (2.2.r)

Then this is equivalent to cumulating the deviations i - kr, where kr = Fo + w o_ tane,

and using the decision interval h = d ot tanO. Similarly for the negative shifts it can be

shown that with kz = po - * o-* tan0, the upper limb of the V-mask is crossed if
m

,=åÍ 
i,-ro+wo-tano) < -do-tano.

For the first single-sided decision scheme the lower boundary is taken as zero and the

upper boundary is used as a decision boundary; the value i, - k, is calculated for each

sample and as soon as a positive value occurs, this and the subsequent values of 1. - k, are

accumulated. The cumulated sums are plotted until their path crosses either boundary. A

decision that quality is off target is reached when the upper boundary is crossed; if the

lower one is crossed plotting is terminated until another positive value of i. - k, is

obtained. The second scheme is similar but here the upper boundary is taken at zeÍo whilst

(2.2.2)
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the lower one is the decision boundary, the values of i. - 4*" cumulated when negative

values of i. - \*" obtained.

Now to see what happens to the other scheme when one scheme crosses the

decision boundary we will again refer to Kemp (1961). læt us define

k=wo- tanO, h=do-tanO and yi=Ìi- !r0.

Also let

:{ u+l

c:=X(v,-t¡ and "r=Þ(v,+t¡.i=t ' ,=,

Consider the two sums Cn and cn , where

0<Cj<h (0<jlm),

0>c,>-h (0<l<n).

If the cumulative sums of the wo schemes lie between their respective boundaries

immediately after the rth sample is drawn, C- and c' will represent them if

m+t=u+n=f.

We now consider what happens when C-+r 2 h, so that a decision that the process is off

target is indicated by the f,rst scheme. We then have

Cm+t=C**Yrn*t-k >h,

so that

Y**r 2h +k - Cn .

The cumulative sum of the second scheme is now

cn+l =cn*Yrn+l+k > cr,-C*+h+2k

Tocomputo cr,-C-,weconsider threedifferentcases: (i)t>u, (ii)t=uand (iii)tcu.

case(i): t>u.

From above

t=r-m and u=r-n.
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Therefore t > u implies n > m.

Hence
m+t m+t

C,n = X(y,-k) = Xo, - (m+l)k
r=t t=t

n+u n+u

c,, =Ð(t,+k) = Ðt, + (n+1)k.
l=U l=U

Thus
m+t

c,,-C*= 
ä o, - är, 

* (n+m +2)k

r-1

= Ey, + (n+m+2)k

"i,-"-,,= Ðfr,+k) - (t-u)k+(n+m+2)k

= cru-l - (n-m)k+(n+m+2)k

= ct_u_t - (2m+2)k.

case(ii) : t=u (thisimplies m=n)
m+t

C,n=Et,-(m+l)k
t=t

m+t

cn = Ðt, * (m+1)k
l=t

m+t m+t

c,,-c*= Ðt, :,yr+ (2m+2)k
l=t r=t

= (2m+ 2)k .

case(iii) : t<u (thisimpliesm>n)
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m+t

C-: Eo, - (m+l)k
r=t

ntu
cr, = Ðy, + (n+1)k.

l=U

Therefore,
u-1

c.-C-= Xy, + (n+m+2)k
r=t

t+(u-t-1)

= - E(y,-k) - (u-t)k+(n+m+2)k
l=t

= -Cu-çl - (m-n)k+(n+m+2)k

= -Cu_t_l + (2n+2)k

Now from all these three cases we have

Therefore cr,+l ) 0.

A similar argument shows that C-*, must be less than zero when cr,*t ( -h.

When the cumulative sum immediately after the rth sample of one scheme lies

between its boundaries and cumulation for the other has ceased, similar reasoning shows

that only one decision boundary can be crossed at the next sample, and that the cumulative

sum for the other cannot lie between its boundaries. It follows that a cumulation which

ends on or above the upper boundary of the first scheme cannot cut short a cumulation

which would otherwise have ended on or below the lower boundary of the second, and

vice versa.

I ct_,.,_r + h + 2(m+2)k (t > u)
I

Ç,,+r =l tt * 2(m+2)k (t = u)

L n * 2(n+2)k- Cu-t-r (t < u).
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2.2.2 Two - síded CASUM scheme"

The two-sided CUSUM scheme can be constructed for positive shifts and negarive

shifts in the mean with two boundaries for each as in Shewart control charts. That is for

the positive shift the lower boundary as z.eto and the upper boundary as the decision

interval h. And for the negative shifts the rwo-sided scheme is with the decision boundary

-h as the lower boundary and the upper boundary as zero. Hence the procedure can be

defined as

SH(Ð = max [0, i,- fo-k+ S" (i-r) ì

S, (i) = min [ 0, i, - lro + k - SL (i-l) ],

where SH (0) = S,- (0) = 0, and k is the reference value. The values SH (0) and S, (0)

are referred to as the head start values. O S" (i) exceed the decision interval h, or if S, (i)

is less than -h, the process is considered to be out of control.

To make calculations easier we define,

l,-ro
ti = ';. ; 1=1,2,...,

x

where ir- N ( po, o- ); i= 1,2,..., andareidenticallyindependentlydistributed. As

we derived in section 2.2.7 the values of k and h involves o- . Now if we consider zi's in

the scheme I Fellner, (1990) ], the k and h values will be independent of o'- . Then the rwo

schemes can be written as

SH (Ð = max 10, zi- k + S" (i-r) J

S, (i) = max [ 0, - zi- k + S, (i-t) ],

where SH (0) = S, (0) = S0. For a prescribed value k, the sequence is considered to be

out of control whenever either S" or S, exceeds a prespecified value h.

For the CUSUM scheme to be completly defined, the intial value So of S, and S,

must be defined. Customarily, the value of So is set to zero. However, Lucas and Crosier
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(1982) showed that by selecting a positive value for So the scheme could be made more

sensitive to the process mean at the stafi of the scheme, without greatly increasing the 'false

alarm' rate. This gives the CUSUM scheme a'fast initial response'.

The ARL of the scheme depends on the value of the process mean, which is

unknown at the time of the process, as well as on the values of the specified parameters k,

h and So. Ideally these parameters are set so that, when the process mean is at its target

value Fo, the ARL is suffTciently large, while, when process mean is critically off target,

the ARL is small.

Consider the following example which shows, how the ARL is behaving for

different sets of values of k, h and So, when the process mean is at its target value lro and

when it is off target. Using the IMSL subroutine GGNPM (Appendix B, program 1),

samples of size 10 are generated by simulation, from N(p, 1). For values of (k, h) as

(0.25,2.5), (0.50,2.0), (0.75,1.5) and (1.0, 1.0) rhe srarr up value So is taken ash/2.

The ARL is found by repeating the procedure 1000 times and calculating the expected run

length based on those 1000 run lengths. Here in this example we find the ARL based on

the 1000 run lengths, under F = 0.0, 0.5, 1.0, 2.0,3.0.

Table 2.1

0.25

0.50

0.75

1.00

ôtr

2.0

t_ .5

t_.0

5.597

7.870

10. r_05

II .484

2 .8r9

3 .492

¿, ) a'7

4.904

t -362

1.442

r_.545

r_.680

1.065

r_.068

1.086

1.090

LL .0L2

L7.062

2r..0s8

21_.652

The results in Fellner's paper almost tally with this results. These results are obtained by

simulation, while his is analytical
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2.3 Manßcov chain approach 6o ffimd the ARã. of a C{JSLiM scherne.

To study the ARL of the CUSUM scheme a different approach has been given by

Brook and Evans (1972) in which the operation of the scheme is regarded as forming a

Markov chain. V/e will briefly summarize their work here.

The transition probability matrix for this Markov chain is obtained and then the

properties of this matrix are used to determine not only the average run lengths for the

scheme, but also moments and percentage points of the run-length distribution and exact

probabilities of run length. This method has been suggested for any discrete distribution

and is also as an accurate approximation with any continuous distribution for the random

variable which is to be controled.

23.n The Markov chaín approack.

Suppose samples of n items are taken at regular intervals and the number of

defectives Di (i = I,2,3,. . . ) are observed. For a reference value k, the process is

considered to be in control if D < k. As soon as D exceeds k, we start plotting the

cumulative sums

s,n=!S fo, - ol against m.
oÊi

If S- becomes zero the process starts in control. When Sn., exceeds the decision interval,

h an appropriate action is taken.

First we'll consider the discrete case. Let D be an integer random variable and k, h

have positive values. Then the random variable S,,, can take on values 0,I,2,... , h.

Let us suppose f S* = i, the scheme is in søte E¡. Then eachrealization of this scheme

can be considered as a Markov chain with states Eg, E1, ......., Eh,where E¡ is an

absorbing state. It is assumed that the process is initially in state Eo.
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ThetransitionprobabilitiesfromstateEi(i=0,1,...,h-t)aredeterminedbythe

probability distribution of D as follows:

Pio =k ( Ei-+ Eo ) = Pr (D <k - i ),

Otj=*(Ei-+Ej)= Pr'(D=k+j-i), j= 1,...,h-1,

Pr, =k (Ei-+ E¡ ) = Pr (D > k +h - i).

The system forms a Markov chain whose transition probability matrix is constructed from

the probability distribution of D, given h and k.

Let Pr=k (D - k =r) and F.-- k (D -k<r), then

Pio= k(D-k<-i) = F-i

Ot, = *(D-k=j-i) = Pj-i, j=1,...,h-l

pih = Pr(D-k>h-i)= 1-Fr,-i.

Hence the transition probability matrix P, has the following form:

2.3.2 Samplíng propertíes of CUSUM run length.

Let Xt be the number of steps taken to reach the absorbing state En for the first

time, starting from E¡ and tet pft) be the sth factorial momenr of X', where

l- Fo Pr P2 Pn_, r-Fn_r I
I F_, Po Pl Pr,_z l-Fr,_z 

IIIP=I : : : : : Irl
I t-t,_n Pz_r, P¡_r, Po l-Fo 

IL0000rl
Most of the results required can be obtained by working with the maÍix R, obtained

from P by deleting the final row and column. In particular, all the eigenvalues of R are the

same as P.
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pÍ" = e[xÍ')] = E[#, o, - : )], S=2,3,....

By considering the Markov chain one-step later, we have

..(s) 
æ

P¡ = f ,<tlPr(xi=¡)
ÊS

h-1

Eot, Pr(X¡=¡-l
J=()

=ÐpijEr(') Pr(X¡=¡-l
J=U I=S

From this it can be shown that

h-1

PÍ') = 
åou 

(ui" + spls-t)¡

In matrix form this becomes

= f ,.ttl
r=s

h-1

).

s=2,3,....

f*'l
gtt' = I . l= nu(t) * sRp(s-t) s=2,3,""

[-J
where R is the h x h matrix obtained from the transition probability matrix P by deleting the

last column and row; that is,

(I-R)!r(t) = sR U(s-t) s=2,3,..., (2.3.1)

where I is the hxh identity matrix anO fs) is the vector of sth factorial moments for the

random variables Xg, X1, . . . ., Xh_r.

For the special case in which s=l, (2.3.1) becomes

(I-R)þ = j,
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where the vector j has each of its h elements equal to odty; hence

F = (r - n)-t j. (2.3.2)

The first element of pis ttre ARL for a CUSUM chart starting from zero. In general, the

ith element gives the mean of the run-length distribution when starting from state E, (i = 0,

1,...,h-l).
Let ð be the random vector of runlengths with elements Xs, X1, X¡_r; then higher

order factorial moments of X can be obtained recursively via (2.3.1):

E(t) = s1J_R)-1 R U(s-t)

=s{(I-R)-l-I}p(s-l) s=2,3,.... (2.3.3)

The matrix multiplication in (2.3.3) can be avoided by premultiplying a scalar times the

previous solutionbythemarrix(I-R)-1 -I. Since (I-R)-1 R=R (I- R)-1 , the solutionto

(2.3.3) can be written in either of the following forms:

E(t) 
: s! (I - R)-t Rt-t j

=s! Rt-1 (I-R)-tj s=1,2,.... (2.3.4)

Hence the probability distribution of the run-length vector ð can be regarded as a

multidimensional generalization of a geometric distribution over the positive integers. For,

letNbesuchthat Pr(N=r) =pq'l (r= 1,2,....), wherep +q= 1(0<p <1); thenits

sth factorial moment is s! qs-l p-t ( s = r,2,. . . ). If R was diagonal, then the elements

of 5 would each be geometric random variables. The scalar parameter p is replaced by

the matrix (I - R) and the elements of the vector (I -R) j are the probabilities of jumping

to the absorbing state, the fust occurence of which terminates the process.

Now we will consider an example with a numerical illustration of the moments of

run length distribution. Suppose that D has a Poisson disribution with mean 4.1. An

ARL of about 4 can be arranged by choosing k = 3 and h = 4. Using the subroutine
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POPROB (Appendix B, program 2),the Poisson probabilities are obtained and the matrix

R is calculated

I o.+uz o.l95l 0.1600 o.to93 \
I o.rrrr o.le* o.resl 0.16{n I

R = | 0.0845 o.t3s3 o.reo4 o.resl t

I o.or* o.o6is o.r3e3 o.rn* )
and from that the tzble?-.Zis obtained. Here again to calculate the (I - R)-1 matrix the

IMSL subroutine LINV1F is being used. From (2.3.2) and, (2.3.3) we find t 
(t) 

by

summing rhe rows of (I - R)-1, p(2) by postmultiplying {(I - R)-1 - I} by 2þo), and so on.

And from these the central moments, coefficients of skewness and kurtosis which are

shown in table 2.2 are determined.

Tab:-'e 2.2

State p þz ps lL¿ o' 6/p þE/o3 (pq/o4)-3

0 3.97 7.23 34.01 411.37 2.69 0.68 1.75 4.86

r 3.40 6.7 | 33.35 387.91 2.59 0.76 r.92 5.63

2 2.73 5.55 30.24 333.09 2.36 0.86 2.31. 7.81

3 2.07 3.84 23.08 242.24 1.96 0.95 3.07 t3.46

A basic comparison is with the geometric distribution over the positive integers with mean

1/p. This has

o2 = qlpT, Itzlé = (1+q)/q1v, (ttq/d) - 3 = (qz + 4q+ I)/q.

Inparticular, if \/p=3.97 then

o2 = rl.J9, o =3.43, ILE/o3 =2.02 and (pq/d) - 3 = 6.09.

Thus the run length from state Eo has a smaller variance than a geometric random variable

with the same mean and it also has smaller skewness and kurtosis.
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2"3.3 Tke probabílity distríbutíors of run lengtk"

The last column of d; the rth power of the n'ansition probability matrix P,

gives Pr(Xi I r ); i = 0,1,....., h-t, together with unity as the last element. If we partitioned

the matrix P as:

l-RlPr, I
P=l ----- r ----- l,Lo'rr J

where pn is a vector of h elements and R is the hxh matrix discussed in the previous

section, then

Pr,=G-R)i

Since P is a stochastic matrix, its row sums are equal to unity. Hence it follows that

I R'r(r-nr)jl
p=l _____ I __________ |, =r,2,....

Lotr 1 J

t ¡ Br be a vector of length h whose elements are the distribution functions of run

length starting from states 80, El, ......., Eh_l, that is

B, = {Pr(Xo lr),Pr(Xr lr),... .,Pr(Xn-r lr)}T Í=r,2,....

Then

Br=G-Bt)j Í=1,2,....

and the fust element of B, gives the cumulative probability for run length for a CUSUM

scheme starting from zero.

,*¡ Lr be a vector of length h whose elements are the values of the probability

functions of run length starting from states Eg, E1, ......., Eh_1, that is

¡- = {Pr(X' =Í), Pr(Xr =r),....,Pr(Xf,-r =r)}T r=I,2,....

T'hen

Lr = pr, = (I-R) j,
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Lr= nl.-r = *r-lLr, r=7,2,...-

which is closely related to the univariate geometric form

Pr(N = r) =p qr-l, r=1,2,....

For our example in (2.3.2), for which the average run length is 3.97, the

probability distribution of run length starting from state Eo, and the corresponding

probabilities for a geometric distribution with the same mean have been calculated

(Appendix B, program 2) and are tabulated in table 2.3; and they are graphed nfigure2.6.

Run length

I

2

J

4

5

6

7

8

9

10

11

T2

Table 2.3

The actual run length

probabilities

0.1214

0.22t8

0.1960

0.1450

0.1013

0.0693

0.0471

0.0318

0.0215

0.0145

0.0098

0.0066

Geometric distribution

probabilities

0.2516

0.1883

0.1409

0.1055

0.0789

0.0591

0.M42

0.0331

0.0248

0.0185

0.0139

0.0104
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ftgure2.6

5678
Run length

The geometric approximation to the run length distribution seems to be good in the tail

probabilities only.

2.3"4 Applícatíons to general contínuous dístríbutions.

Here in this section the case where the distribution of the random variable

concemed is continuous is considered. Let Zbe the continuous random variable that is

considered to have had a shift in the mean. Here the one-sided type of decision interval

scheme is considered. Vy'e accumulate the deviations of Zfroma reference value k (while

the cumulative sum is positive) until either we cross the decision boundary h or the

cumulative sum reverts back to zero.

Suppose that we wish to represent the continuous scheme by a Markov chain

having t+l states labelled E0, 81, ......., E' where E, is absorbing. Then the probability

>'

Ð(!
,Õ

k
Êi

1
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that the chain remains in the same state at the next step should correspond to the case where

the cumulative sum does not change in value by more than a small amount, say |w;nat
is, the nsxt value of Z does not differ from the reference value k by more ú^Tw. The

quantity w determines the width of the grouping interval involved in the discretization of

the probability distribution of Z.

A further restriction to this is that the probabiliry of a jump from E¡ to the absorbing

state E, should be equal to ttre probability that the cumulative sum for (Z -k)jumps beyond

the point h from a position in (0,h) which corresponds approximately with the state E¡.

These requirements lead to
2h

w = Tt:-l ' (2.3.s)

The transition probabilities for the Markov chain are then as follows, for i = 0, 1, . .., t-1;

P¡o =Pr (Ei-+ Eo ) = Pr {Z- k < - iw +}w },

p,j =Pt (Ei-+Ej ) = Pr { (i - i)w - **.t-k < (i - i)w + þ l,

(t<j<t-i)

Pir=k(Ei-+E,) = Pr { (t - i)w - 1

tw <z-kl,

Note that,

Pr(Eo-ÐE,) = Pr (Z-k>h)

for any choice of w satisfying (2.3.5).

If we write

Pr = Pr ( rw - l* .t- k < rw * å* i

and

Fr=Pr (Z-k <rw+ jw ¡,

then the fansition probability matrix, P, for the Markov chain is constructed as before and

has the general form shown in section 2.3.1, except that the states are labelled Es, E1, . . .,

Er. The number of states is now arbitrary and is not determined directly by h, as in the
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discrete case. The matrix obtained from P by deleting the last row and column is dentoed

by R, as before, and the sampling properties of the coresponding CUSUM scheme are

determined in the manner described above for the discrete case.

Now we consider an example with a numerical illustration of the moments of run

length disribution. Suppose thatZ has a normal distribution with mean 1 and variance 1.

'We 
choose h = 3 and t = 5. Using the IMSL subroutine MDNOR the normal disrribution

probabilities are obtained (Appendix B, program 3), ard from that the matrix R is

calculated. Table 2.4 is obtained as in the case of discrete random variables. In this case

the matrix R will be

0.2s25 0.2475 0.2475 0.1613 0.0685

0.09t2 0.1613 0.2415 0.2475 0.1613

0.0228 0.0685 0.1613 0.2475 0.2475

0.0038 0.0189 0.0685 0.1613 0.2475

0.0004 0.0034 0.0189 0.0685 0.1613

.I

State PsVz

Table 2.4

þ¿ o/þ þzlo3 (V¿/o4)-3

0

1

2

J

4

3.77

3.t9

2.54

r.9t

1.42

3.15

2.86

2.37

1.66

0.87

7.80

7.39

6.46

4.95

2.86

62.07

56.23

45.63

31.23

16.32

r.77

r.69

1.54

1.29

0.93

0.47

0.53

0.61

0.68

0.66

1.40

1.53

r.77

2.3r

3.52

3.26

3.88

5.11

8.31

18.54

Then the ARL is the first element of the mean vector p, which is 3.77 . If we use the

geometric approximation l/p =3.77, then the corresponding geometric disfibutuion
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probabilities can be obtained. Both probabilities for the run length distribution are tabulated

in Table 2.7, and are graphed and shown infigure2.7.

Run length

labl-e 2.5

The actual run length

probabilities

0.0228

0.2226

0.2814

0.2053

0.1235

0.0685

0.0365

0.0191

0.0099

0.0051

0.0026

0.0013

0.0007

0.0004

0.0002

I

2

5

4

5

6

7

8

9

10

11

T2

13

T4

15

Geometric distribution

probabilities

0.2649

0.1947

0.1432

0.t052

0.0774

0.0569

0.0418

0.0307

0.0226

0.0166

0.0122

0.0090

0.0066

0.0049

0.0036
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figure2.7

56789

Run length

The geometric approximation to the actual run length distribution seems to be good between

run lengths 6 and 7 only, although it seems close in the tail probabilities. Brook and Evans

states that as r tends to inf,rnity the limiting probability distribution of the run length is

approximately geometric.

Consider another example for the continuous case. Suppose the random vanableZ

has an exponential distribution. Then to compute the R marix, we need

Fr=Pr(z-k<rw+|w),

-l-expL-fo -(t-t) < r < (t-t),

where
2h

2t-I

and

P.=F.-Fr_1

If we consider the exÍeme probabilities,

-o(!€o
â.

+ (r+ þ* ll,
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F-(r-t) =

=

h\
I2r.-1)

)

+

n(
P'(

P'(

z -k < -(t-r)w + |w
2h.< k -(t-t)rfr

.< k -'#nÌ
)

and

Ft-l = *(t= k+(t-r)#-T + ,,5)

= Pr(Z< k+h).

Choose a large integer I*, which is almost equal to k + h. From both extreme probabiiities

we choose

u=ffih, and Io=k+h.

This implies,

n=ffir,r=¿ffir-.
Hence, if the values of Io and t are given, the values of k and h can be obtained. In our

example we took I* and t as, Io = 5 and t = 4. This gives the R matrix as (Append.ix B,

program 4),

0.8111 0.5654 0.0000

0.1068 0.2457 0.5654

0.M& 0.1068 0.2457

0.0202 0.04& 0.1068

and the ARL (the first element in the p vector) is 112.05. Since the ARL is large the

geometric mean p (l/p = 112.05), becomes really small. That makes the geometric

approximation more appropriate.

/ o.gng

I nno*
R= II o.ozoz

[. o.oo*
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Run length

Table 2.6

The actual run length

probabilities

0.0067

0.0083

0.0087

0.0087

0.0087

0.0086

0.0085

0.0084

0.0084

0.0083

0.0082

0.0081

I
2

J

4

5

6

7

8

9

10

11

t2

Geometric distribution

probabilities

0.0089

0.0088

0.0088

0.0087

0.0086

0.0085

0.0085

0.0084

0.0083

0.0082

0.0082

0.0081

As can be seen that almost all the run length probabilities are the same and constant up to 3

decimal values.
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CF{^&PT'ER 3

STAT'IST'íCAã, CÛNTR0ã, OF T'FIE CtRRÐr,,&TIoN COEF''FTCTENT

3.f, Ðistrühutüora of Éhe Samrple ConneEation Coeffícienú.

s.X"n Tke dístríbutíoru whera p = û"

Suppose samples of size n a¡e obtained from a bivariate Normal population with

mean vector

- = 
[T;]

and variance covariance matrix

The sample mean vector

l- "i porozl
t=Lporoz 

"3 l

É,1 n

o = I -t It where i: = *p, *¡r. , for i = t,z.
\.*r/

and the sample variance covariance matrix

[ '? ,,,-le- I IÙ- 
L"' ú )

I
n-l

are computed. The sample correlation coefficient, r, is given by

- - 
tt2

^ st sz

rlk - ir)(x2u Or, 

J

å,*rn - îr)' l



IJ

Èr(uto- it)(x2¡- ir)

{å(xrr 
- n,)' å(xzr - 7r)'

For p = 0, the distribution of r was given by Fisher (1915):

has Student's t - distribution with n - z degrees of freedom.

Test of the hypothesis

Ho: p=g vs Hu:p+0,

are then based on a t - statistic with n - 2 degrees of freedom.

3.nJ The dístríbutíon when p * 0.

The distribution of the sample correlation was flrst found by Fisher (1915):

n-l

It can be shown that the transformed statistic

And Anderson (1984) showed that

2n-' (t - P'>T rt

-1 <r< 1

-1 <r< 1

(3.1.1)

(3.1.2)

(3.1.2) can be written as:

n-4

r (n - 3)!

- rz)T Ë r¿p¿: .2fFcr_ll
f-t "t '\ 2 )'

-1 <r<1 (3.1.3)
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Hotelling (1953) suggested the following form, involving the hypergeometric function,

which converges more rapidly than the infinite series in (3.1.3):

e (r; p) = 9[0P (, - pr)+ tr -?>Y {r - p,¡-nf
{zn r(n-f)

r(ï,Lt"-!ùY#), -1 (r(1, (3.r.4)

where

F[a,b;c;z] =i@ {v' v' LJ - F-o I.(a) f0) f(c+j) j! '

is the usual Gaussian hypergeometric function. David (1938) has tabulated the cumulative

distribution of r, as

Pr( r < r') = jTttO ¿, = F(r'; n,p)
t=-1.

for the selection of parameter values:

(i) n = 3(l)25,50, 100,200,400

(ii) P = 0'0(0'1)0'9

(iii) r = -1.00(0.05)1.00

It is clear from the density (3.1.3) that

F(r'; n, P) = 1 - F(-r'; n,-P)

because the density for r, p is equal to the density for -r, -p.

More recently Subrahmaniam and Subrahmaniam(1972) extended the David's

tables to cover the values of n=26(1) 49 for a variety of values of r. In addition these tables

give the percentiles of the distribution of r for
r

P = 
*lf(Ð 

dt 
'

with P = .01, .A2, .A25,.05, .10, .20, .8t,.90, .95, .97 5, .98, .99.
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When n is large, the asymptotic disribution of a sample correlation coefficient r is

given by the statistic

I 1+rz=1 n1 -y

called " Fisher's 2". }Jere zhas an asymptotic normal distribution with mean

I, l+P
2T"T;,

and standard deviation
1---:-

! n-3

3"2 Contnol Charts fon úhe Conrelation Coefficient.

3.2.1 p- control chørt when p=0.

To construct the control charts for the sample correlation we will use the

distributions of r, that is discussed in the previous section 3.1.

V/hen we consider the case of independence between the variables, that is testing

for p = 0, we do not need to control the two va¡iables simultaneously; it is sufficient to

control them individually. In a particular production process to see whether the wo quality

characteristics that we are interested are independent, we will construct a p connol chart

when p = 0. For this the statistic used is

and the limits of the control chart are given by

ucl- = tn-z,ar?

LCL = _ rr_r,*,

where tn_2,a12 denotes the upper a/ZVo point of the student's t - distribution on n-2

degrees of freedom.
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To see whether the process correlation is zero, take samples of size n and calculate

the statistic t for each sample obtained and plot on a chart with the above specified control

limits and if the points fall outside the connol limits then the variables considered in the

process are not independent anymore. If we want to keep the correlation zero, then the

assignable causes have to be sought.

To illusÍate the effectiveness of this chart to detect the shifts in p; 1000 samples

each of size n=10 have been generated using the IMSL subroutine GGNPM (Appendix C:

pro$am 1), and p has been changed from 0.1 through 0.9 in steps of 0.1. The percentage

of points plotted outside the limits in each case has been tabulated in Table 3.1. Here the t-

statistic is calculated and plotted on a control chart with

U CL=2.3060 and LCL=-2.3060.

Tabl-e 3. 1

p % of points plotted
outside the limits

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5.6

9.3

12 .8

2t .6

32.5

46.7

66.7

87 .2

9B -2

From this we can see that as p is shifted from zero the number of points that are

falling out of control increases as the shift increases. When p=0.1 only 5.6Vo of the points

fall outside the limits and when p=0.9 almost a]l the points are outside the limits. Here the

samples are of size n = 10.
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V/hen the sample size is increased, the shift is detected more quickly. To illusfate

this 1000 samples were generated using the IMSL subroutine GGNPM (Appendix C,

program 2) with p=0.5, for n = 5, 15, 20,30,40. For each n the percentage of points

exceeding the limits is given inTable3.2.

TabLe 3.2

n UCL LCL ? of points exceeding
the liruits

L2 .5

47 .5

63. 6

82 .6

94.3

Here also as n increases the shift in p is more obvious.

3.2.X p- control chart when p*0.

When the two quality characteristics we take into consideration are correlated with

the correlation coefficient p6, we test whether the production process keeps the two

quality characteristics correlation at a specified value po.

Then the statistic r is computed, and the conrol limits are given by

ucl- = Ín,alz

LCL = rn,r-arz.

where r- ^.is the value tabulated in table on Subramaniam's paper for the sample size nn,T

and y%o point. Also the test can be performed for specifîed values of p = 0.1(0.1)0.9.

To illustrate this chart we generate 1000 samples each of size n=5, 10, 15, 20,30, 50,

100, with P = 0.5 (Appendix C, program 3). And we test for each n, whether the shift is

detected more rapidly when p is varied from 0. 1 through 0.9 in sreps of 0. 1.

5 3 .L824 -3.1824
l_5 2.1-604 -2.1604
20 2.L009 -2.1009

30 2.0484 -2.0484
40 1.96 -I.96
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The control limits for the charts for each n and p are obtained from table [subrahmaniam

and Subrahmaniam (1972)J and are given in table 3.3. In the program the READ

statement reads the values in table 3.3.

Conrol

limits

Tabl-e 3. 3

10

0.4

0.5

0.6

0.7

UCL

LCL

UCL

LCL

UCL

LCL

UCL

LCL

UCL

LCL

UCL

LCL

UCL

LCL

UCL

LCL

UCL

LCL

0.9026

-0.8482

0.9223

-0.8099

0.9386

-0.7606

0.9521

-0.6955

0.9635

-0.6072

0.9732

-0.4839

0.9814

-0.3056

0.988s

-0.0384

0.9947

0.3733

0.6917

-0.5633

0.1440

-0.4839

0.7901

-0.3916

0.8310

-0.283s

0.8613

-0.r556

0.8997

-0.0034

0.9288

0.1793

0.9549

0.4005

0.9786

0.6700

0.5865

-0.4331

0.6517

-0.3427

0.7107

-0.2410

0.7&t

-0.1263

0.8127

0.0037

0.8570

0.1518

0.8974

0.3211

0.9345

0.5157

0.9686

0.7401

0.4788

-0.3063

0.5553

-0.2086

0.6259

-0.1021

0.6915

0.0142

0.7523

0.t4r6

0.8089

0.2814

0.8617

0.4352

0.9109

0.6048

0.9569

0.7923

0.3693

-0.1828

0.4551

-0.0812

05362

0.0265

0.6131

0.1409

0.6861

0.2624

0.7553

0.3916

0.8211

0.5293

0.8837

0.6760

0.9433

0.832'1

0.8

0.9
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For each n the percentage of points exceeding the limits is given in table 3.4,for the values

of n = 5, 10, 15, 25,50: and for p = 0.1(0.1)0.9.

Tab1e 3.4

percentage of points
exceeding the limits

n

t_5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

L4.2

23.0

14.8

10. s

5.3

t -5

8.7

72.7

3r-.3

72.7

34.8

23.3

1,4 .6

7.8

6.0

8.0

L9.9
E1 a
JL. ¿

92-8

s4.9 86.8

36.7 62.9

20 .2 35. 9

9.0 15.1

4.5 5.1_

9.4 18.6

34 . 1 56.7

/b.r 9t.4
99.2 100.0

When n=5 the shift in p is not detected until it shifts to 0.9. Since the actual value of p is

0.5 the points exceeding the limits is around 5Vo only. For larger n the shift is detected

more effectively and also the detection of the shift when p is shifted further from 0.5 is

quite obvious too.
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3.3 The Sequentñaå T'esting pnocedures.

As we have seen in Chapter 2,the CUSUM schemes are actually sequential

sampling procedures. In this section we consider some sequential procedures to test the

change in the sample correlation.

The CUSUM control charts for the sample mean and variance have been discussed

in Chapter 2. But unlike sample mean and sample va¡iance the sample correlation

coefficient takes into account the variation between the two variables and that makes it

difficult to construct the CUSUM chart using the SPRT as we did earlier.

Essentially the CUSUM control charts have been constructed so that they take into

consideration all the informations in the sequence of observations. In this section we

consider three different sequential procedures so that all these procedures take into account

all the information in the samples as one by one the samples enter the procedure. First we

construct a CUSUM chart using the Fisher's-Z statistic.

3.3"1 CASUM Chart for the corcelatíon coefficíent.

In section 2.1, when we constructed the CUSUM cha¡ts for the mean, the rejection

region boundary line had the form of a linear equation

Sn.,=&m+b'

where

õa=z

and

b- rhrl_ "aìô [oo )
We plotted S* against m for each sample m = I,2, . . . .
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If we proceed in the same way to construct the CUSUM chart for p using the

SPRT based on the hypothesis

Ho: p=po vs Ht: p=pr(tpo)

the likelihod ratio is quite complicated. It is not possible to seperate the partial sums and

write them as a linear equation on the sample size. Instead we will use the Fisher's-Z

statistic, which is asymptotically normally distributed, to construct the CUSUM chart for

p.

Using the notation of section 3.1, it can be shown that the Fisher's-Z statistic
I l+rz=2 ln1-¡

is approximately normally distributed with mean

1 1+Po
\o= 2 tn, 

_ %,

and standard deviation

^- 
1

fi¡'
Now to test the hypothesis:

Ho: p=po vs Hr: p=p,(tpo),

let us consider the statistic

zi- \n
Vt=-ã-i i=l'2""'

where z¡'s are the Fisher's-Z statistics.

Now using this statistic we could test for

Ho: [r=îo vs Hr:Ft=It,

where

I 1+Pr
It= T ln- 'L , _ pr
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This is analogous to a test on the mean. Hence the CUSUM chart can be constructed

based on y.'s, where yi - N(0, 1); (i = 1,2,. ..). As discussed in section 2.2.2, we can

construct a two-sided CUSUM scheme for y.'s. That is,

SH{Ð = max [0, yi-k+ S" (i-r) J

S, (i) = max [ 0, - yi- k + S, (i-1) ],

where SH (0) = S, (0) = S0. For a prescribed value k, the sequence is considered to be

out of control whenever either S" or S, exceeds a prespecified value h.

To illustrate this, we consider an example to f,rnd the ARL under FIo and Hr.

Samples of size 10 are generated each time, using the subroutineZCAL (Appendix C,

program 4), from a bivariate normal distribution with mean vector

[ ¡ol
E= L,rJ,

variances d = 8, $= +and correlation coefficient p.

The target value for p is taken ut Po = 0.1. Then samples a¡e generated for p =

0.1,0.5 and 0.9. For values of k,0.5, 1.0 and 1.5; h ,2.25,1.50 and 0.75 and the

initial value So = trl2.

Tab]e 3. 5

a aÊL.4J

r_.50

0.75

0.1(0.10)

20 .695

35. 551

3r_. s68

p (p)

0.s(0.ss)

2.243

3. t_41-

3.972

0.9 (r..47)

1.0r_5

r_.009

L .026

In Table 3.5, the ARL's are tabulated for p values, with the corresponding p values

in paranthesies, where
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w=+ ln lop.
L l-p

Hence it makes it easy to compare with the results in Fellner's (1990), table 1, where the

values of ARL's are tabulated for a two-sided CUSUM scheme where the process has a

distribution with mean Â and variance 1. Hence in our example 6= ¡t"/o, where o = 0.38.

3.3.2 Sequentíal procedure for tke exøct dístríbutíon of r.

In this procedure a different approach is considered to construct a control chart.

Here we start with a sample size n and calculate the sample correlation coefficient rn based

on those n samples and begin the SPRT with n > 3, using the exact distribution of the

correlation coefficient given in (3.1.4) [ Kollerstrom and Wetherill (L979), Kocherlakota,

Kocherlakota and Balakrishnan ( 1983)1.

Consider ( *ri, *zi ), i = 1,2,... as a sequence of independent observations from

the bivariate normal population with parameters as mentioned above. For a sample of size

n, let ir,n, and ir,n, be the sample means and the sample correlation coefficient be

.Ë. 
(*,n - i,1n¡) (*zr - irrnl)

k=1

t

V ¿(*rr - i,(n))- 
È,(*rn 

- ir(n))"

For n > 3, the probability density function of rn is given by

s(rn;p)= #ú+trå (,-p')* r, þ*
3

(r - prn ¡-n*É F ( å, L, n -lt ]:P> 
,

where F(a, b; c; z) is Gauss' hypergeometric function defined by the series
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and -1 (rn ( 1.

For this case, the invariant sequenrial probability ratio test (SPRT) of

Ho:p<po vs Hr:p>pr,

-t < po . p, . 1, is based on the log-likelihood ratio for n ) 3,

zn(rn) 6.þ"[=*,,;+"[+]
."{

,(L,L, " - ,
r(L,L;r-rS, )

1* Pr.n,
z)

is given by Ghosh (1970, pages 322-324).

Accept H0 if zn(rn) S b* , reject H0 if zn(rn) ) ao , with

^ì._ l-cr. cf,,
a =lnJ, bo=ln t

c[o I - cro

otherwise, the process continues. Here again c[0, gl are the type I and type II error

probabilities. In quality confrol procedures only the rejection boundary is taken as the

control limit or decision boundary, ttre acceptance is considered along with the continue

sampling.

To illusEate this consider an ex¿rmple, where samples are generated using the IMSL

subroutine GGNPM (appendix C, program 5) begining with a size of n = 3, rhe sample

correlation coefficient r is calculated (subroutine RCAL) and the SPRT is consrructed for

Po = 0.1 *¿ pr = 0.5. But the samples ¿ìre generated based on p = 0.3, 0.5 and 0.7. The

control limit ao is calculated for the sets of values o0 = ot = 0.05 and cro = c[, = 0.1,

based on theses control limits the run lengths are determined. Repeating this 100 times the

run lengths are calculated and the average run length is calculated for each case and are

tabulated in Table 3.6.
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Table 3. 6

0.05

0. r_0

p

0.50.3

29.26

19.56

77 .20

1-3 .42

The run length frequency distribution is given as a bar chart for each case with the mean

(ARL) and the variance based on the 1@ runlengths obtained.

(i) ø=0.05, Ê=0.05.
Graph 1: P : 0 . 3, ARL : 29 .26, Variance : 1-44.09 .
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Graph 3: P : 0.'7 , ARL : L2.85, Variance : 2.957.
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Run length

ARL : 19.56, Variance : 53.48.
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Graph 3: P : 0.7, ARL : 10.39, Variance : 3.29.

10 11 L2 13 14 15 16

Run length

From the graphs it seems that the run length disribution may have possibly an approximate

nonnal distribution as p increases.

3.3.3 Sequential procedure using Físher's-Z statístíc.

Here again a similar kind of procedure as in section (3.3.2) is considered using the

Fisher's-Z statistic,

un= å rnff ,

where rn is the sample correlation coefficient based on the sample size n (> 5). Since un

has an asymptotic normal distribution with mean

à20
()
d
C).HI¡10

p= + h l*PL l-p

o'=n=.
and variance

the SPRT is based on the hypothesis

where

Ho:[r=lo vs Hr:F=Il ,
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1 l+Po
\o=2tnr_%

and

t 1+P,
\r= i t".d

as described earlier. That is the actual test is based on

P=Po vs P=P,

Consider the density function of un

r(un) =#"*p-LfT)
The likelihood ratio is,

L, 1 {.
d=":, 

:íil;. -;' ,.: ,,.,'1,,,

The SPRT of

Ho:[r=îo vs Hr: p=îr

based on the log likelihood ratio

zn(rn) = ,nt
"o

u

=Ë,n,-îo)- þt'rï-'n3t

is given by Ghosh (1970).

Accept H0 if zn(rn) ( bo , reject Ho if zn(rn) ) a* , with

^*_ l-cr. cf,r
a =lnJ, bn=lnl.

øo 1-øo
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otherwise, the process continues. Here again c[0, c[l are the type I and type II error

probabilities. In quality conrol procedures only the rejection boundary is taken as the

control limit or decision boundary, the acceptance is considered along with the continue

sampling.

To illustrate this consider an example, where samples are generated using the IMSL

subroutine GGNPM (appendix C, program 5) begining with a size of n = 5, the sample

correlation coeff,rcient r is calculated (subroutine RCAL) and the SPRT is constnrcted for

Po = 0.1 and p, = 0.5. But the samples are generated based on p = 0.2, 0.5 and 0.8. The

control limit a* is calculated for the sets of values o0 = o1 = 0.05 and cro = c[, = 0.1,

based on these control limits the run lengths are determined. Repeating this 100 times the

run lengths are calculated and the average run length is calculated for each case and are

tabulated in Table 3.7.

Table 3.7

16.08

13. t_9

The run length frequency distribution is given as a bar chart for each case with the mean

(ARL) and the variance based on rhe 100 runlengths obtained.

p

0.5
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(i) ø=0.05, p=0.05.

Graph 1: P : 0.2, ARL : 47.5I1 Variance: 753-83.
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(ii) ø=0.1, Ê=0.1
Graph 1: P : 0.2, ARL : 29.29 1 Variance : 345.731.
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V/hen we use Fisher's- Z statistic also we get the run length distribution close to the exact

distribution run length values. This can be seen by comparing the ARL's in each case,

when P = 0.5. Here also the bar charts of the run length distribution seems to tend to a

normal distribution.
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APPENÐIX .A: SAS Fnogr&rlrs of ChapÉen I

Program 1 :

l-. / / ¡on

2. // pxpc sas

3. OPTION LINESIZE:14;

4. DATA BIVNOR,.

5. DO I:1 TO 20;

6 . Sl-:0;

7. S2:0;

8. Do J=1 To 10;

9. N]-:RANNOR ( 637261-0 ),.

l-0. N2:RÄNNOR(302647 8) ;

1-l- . X1:2*SQRT (2 ) *Nl-+30;

L2. X2:N1+SQRT (3) *N2+15,'

l-3. S1:S1*X1,'

L4. S2:52+x2;

l-5. END,-

16. xB1:s1ll_0;

I7. xB2:52/]-0;

L8. C1= ( (xB1_30)*x2¡ 
'U-l-9. c2: ( (xP2-]-5¡ **2¡ ¡ n'

20. c3: ( (xBr_-39¡ * (xB2-r_5) ) / (4*sQRr (2) \ ;

21,. CHIS:10* (Cl-+C2-C3) / (1-0.5x*21 ;

22. OUTPUT,.

23. END,'

24. DROP T SJ- 52 J N]- N2 XI X2 CI C2 C3;

25. PROC PRTNT,.

Program 2:

1. // ¡oe

2. // sx¡c ses

3 . OPIION LINESIZE=14,.

4. ÐATA BTVNOR,.



5. DO I:1 To 20;

6 . S1:0;

7. S2=0;

8. IF I<:5 THEN DO,'

9 . MU1:30;

l-0. MU2=15;

1l_. END,.

12. IF T>5 AND I<]-1 THEN DO;

l_3. MU1:30+0.65,t (r_5) ;

1-4. MU2:15;

15 . END,.

16. TF T>]-O AND T<16 THEN DO,.

L7. MU1:30;

18. MU2:l_5+0.3* (r_t_0) ;

19 . END,.

20. TF I>]-5 THEN DO,.

2L. MUt-:30+0.65* (r_15) ;

22. MU2:15+0.3* (r_l-5) ;

23. END,.

24. DO J:1 To 10;

25. N1:RA,NNOR (639261-0) ;

26. N2:RANNOR (3026471) ;

27 . XL:2* SQRT (2) *N1+MU1;

28. X2:N1+SQRT (3) *N2+MU2;

29 . S1=S1*X1,'

30. S2:52+x2;

31. END,-

32. xB1:S1,/]-0;

33. xB2:S2/l-0;

34 . c1= ( (xBl- -30) **21 / I ;

35. C2: ( ¡x3Z-1-5) xx2, , n'

36. c3: ( (xB1-30) * (xB2-15) ) / (4*SQRr (2) I ;

37. MCHIS:10* (C1+C2-C3) / (I-0.5**2) ;

38. OUTPUT,.

39. END;

40. DROP I S1- 52 J N1 N2 Xt X2 CL C2 C3 MU1 MU2;



4I . PROC PRÏNT,.

Program 3:

1. // tos
2. // Bxnc ses

3 . OPTION I,INESIZE:72,'

4. DATA BTVNOR,.

5 . ARRÀY XL ( 10 ) Y1-Yl_ 0 ;

6. ARRAY X2 (]-0) YL1,-Y20;

7. ARRAY XBI_ (10) YB1-Y810,.

8. ARRAY XB2 (10) YB11-Y820,.

9. ARRå,Y Sl-(l-0) L1-L10t

10 . ARRÂY 52 ( 10 ) t 1,t-L20 ;

1l_ . ARRAY S12 ( 10 ) L2t-L30 ;

12. DO I:1 TO 10,.

13 . T1:0; t{U1:30;

L4. T2:0; MU2:15;

15. fF I=3 THEN DO,'

l-6. MU1:33,' MrJ2=17;

I7. END,.

18. IF T:5 THEN DO,'

79. MU1,:2'7; MU2:I3;

20. END,.

2L. DO J:l- To 10,'

22 . N1:R.A,NNOR (28 9l-063) ;

23. N2=R.ANNOR (5620L92) ;

24 . x1 (.T) :2*SQRT (2 ) *N1+MU1;

25 - x2 (J):N1+SQRT (3) *¡r*tut,'

26. T1:TL+x1 (J) ;

27 . T2:T2+x2 (J) ;

28. END,.

29. xB1 (r)=rI/70;
30. xBz (rl:r2/r0;
31. T3:0; T4:0; T5=0;

32. DO K=1 TO 10,'
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33. r3=T3+ (Xl- (K) -xB1 (I) ) **2;

34. TA--'-r4+ (X2 (K)-XBz (r))**2;
35. r5=r5+ (x1 (K) *XB1 (I)') * (x2(K) -xB2 (I) ) ;

36. END;

37 - 51(I):r3/9; 52 (I):r4/9; sl-2 (I):T5/9;

38. END;

39. T1:0; T2:0; T3:0; T4:0; T5:0;
40. DO I:1 TO 10;

41. I1:T1+XB1 (I);
42. T2:T2+KP2(I);

43. T3:T3+Sl- (I) ;
44. T4:T4+S2 (r) ;
45. T5:T5+S12 (I) ;
46. END;

47 . XBB1=T1 /1"0; XPB2:T2/70;

48. SLBS:T3l10; S2BS:T4/L0; SI2P=T5/L0;

4 9 . DETSB=S1BS*S2BS-51-2Bx *2 ;

5l-. DO I:1 TO 10,.

52. M1: (XB1 (I) -XBB1) **2;

53 . Ia2: (XB2 (I ) -XBB2 ) **2;

54. M'12=(XB1 (I) -xBBL¡'t (XB2 (I) -XBB2) ;

55. TO1: (1_0/DETSB) * (Ml*S2BS+M2*S1BS-2xN11,2*SI2B) ;

56, OUTPUT,.

57 . END,.

58. DROP y1-y20 yBl_-y820 Lt_-L30 MU1 I4U2 Nl_ N2,.

59. DROP I J K XBB1 XBB2 S1BS S2BS S12B DETSB T1-T5 MI M2 I{.I2;

60. PROC PRINT;

Program 4:

1. // toe
2. // exec sas

3. OPTION LINESIZE:72;

4. DATA BTVNOR,.

5 . ARR.A,Y X1 ( 10 ) Y1-Y1 0 ;

6. ARRAY X2 (I0l YLL*T2j;



7. ARRÃ.Y XB1 (l_0) YB1--YB10;

8. ARRAY XB2(10) YB11-Y820;

9. ARR-AY S1(10) r,1-r1_0;

l-0. ARRÃY 52(l_0) t.1r-L?];
l-l-. ARR-AY S12(t_0) L2]--L30;

L2. Do I:1 To 10t

13. T1:0; MUL:30;

14. T2:0; MU2:15;

L5. IF I:3 THEN I:I*1,'
16. IF I:5 THEN r:I+1;
17. Do J:1 TO l-0,'

18. Nl-:RANNOR (2891063) ;

a9. N2=RÀNNoR (56201,92) ;

20. x1 (J):2*SQRT (2) *N1+MU1;

2L. x2 (J):N1+SQRT (3) **r*tur,'

22. T1:11-+Xl- (J) ;

23. T2:T2+x2(J) ¡

24. END,-

25. xB1 (I):r1/I0;
26. xB2(r):'t2/10;
27 . r3=0; '14:0; T5:0;

28. Do K:l- TO 10;

29. T3=T3+ (X1 (K) -xB1 (Il lx*2;
30. 'r4:T4+ (x2 (K) -XBz (r) ) **2;

3l-. T5:T5+ (xl- (K) -XBl- (I) ) * (X2

32. END;

33. 51 (I):r3/7; s2 (r):T4/7;
34. END;

35. T1:0; T2:0; T3:0; T4:0;

36. DO I=1 TO 10,'

37. IF I:3 THEN I:I*1,'
38. lF I:5 THEN I:I+1;
39. T1:T1+xB1 (I) ;

40. T2:T2+y'B2(7);

41. T3:13+S1 (I) ;

42. T4:T4+S2 (I);

(K)-xB2 (r) );

s12 (r):r5/7;

T5:0;
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43. T5=T5+Sl-2(I);

44. END,-

45. xBBl-:Tl-l8 ; KPP2:TZ/ I ;

46. S]-BS:T3l8 ; S2BS:T4/8; S]_2P.:T5/8;

47 . DETSB:S1BS*S2BS-S128* *2 ;

4L DO I:l- To 10;

49. rE I=3 THEN r:I*1,'
50- TF I:5 THEN r=I*1,'
51. Ml-: (XB1 (I) -XBBI-)**2;

52. M2: (XB2 (I) -xB.P2) **2;

53. M12:(XB1(I) -xBBl-)* (xB2 (I) -xBB2);
54. TOI_: (8/DETSB)'k (M1 *S2BS+M2*S1BS-Zxt¡tl?xSL2B) ;

55. OUTPUT;

56. END,.

57. DROP Y1-Y2O YB1-YBzO L1-L3O N]. N2 MU1 MU2,.

58. DROP I J K T1_T5 XBB1 XBB2 S1BS S2BS S]-28 DETSB

59. PROC PRTNT,.

i". / / ¿oe

2. // EXEC SAS

3. OPTTON LINESIzE:72;

4. DATA BTVNOR,.

5 . ARRÀY Xl_ ( t_ 0 ) VJ_ -Y1_ 0;

6 . ARR-AY X2 (t- 0 ) Y1_1_-Y20;

7 . ARRÀY XBt_ ( 10 ) YB1-YB10 ,

8. ARRAY XB2(10) YB11-Y820;

9. ARRAY 51 (l_0) Ll-Ll_0;

r_0. ARRAY 52 (t_0) L1_1-L20;

11. ARRÂY S12(10) L21,-L30;

L2. DO I:1 TO 10;

j_3. T1=0; r2:0;
1-4. Mrl!:29. 511 ; MU2:1,4 . 906 ;

l-5. SIGL:11.398; SIG2:5 .934;
t6. RoH:4 .227 / (SQRT (11_.398*5 .934) I ;

M1, 1"12 Mt2;

Program 5:



L'7. DO J:1 TO l-0;

l-8 . NI:RANNOR (7 49086L) ;

19. N2=RÀNNOR (3854509) ;

20. xL (J):SORI (SIGI-) *N1+MU1,'

2I . x2 (J) =ROH* SORT ( SIG2 ) *N1+N2 * SORT ( S IG2 ) * SQRT ( 1 -ROH* *2 ) +MU2 ;

22. T1:T1+X1 (J) ;

23. T2:T2+x2(Jl;
24. END;

25. xB1(r):rr_/r_0;

26. xBz (r):r2/]-0;
Zj. T3:0; T4:0; T5:0;

28. DO K:1 TO 10;

29. T3:T3+ (X1 (K) -XB1 (I) ) **2;

30. T4:T4+ (x2 (K) -xBz (Ll ) **2;

31. r5:r5+ (xr_ (K) -xBr- (r) )x (x2 (K) -xB2 (r) ) ;

32. END;

33. Sl- (I):t3/9; 52 (I):T4/9; S12 (Il:r5/9;
34. END,.

35. T1:0; T2:0; T3=0; T4:0; T5:0;

36. Do I:l- To l-0;

37. T1:T1+XB1 (I);
38. T2=T2+XB2 (I) ;

39. 13=T3+S1 (I) ;
40. r4:T4+52 (I) ;
4]-. T5:T5+Sl-2 (I);
42. END,.

43 . xBBl-:T1l 10 ; KB.BZ:T2 / 10 ;

44. SlBS:T3l10; S2BS:T4/t0; SIZp=TS/I0;

45. DETSB:Sl-BS*S2BS-S128**2,'

46. DO r:l- To 10,'

47. til-: (XB1(r) -XBB1)*x2;

48. r42: (XB2 (I) -xBB2)**2;
49. ML2: (XB1(I)-XBB1)'k (XB2 (I) -XBB2) ;

50. TOf: (l_0/DETSB) * (Ml*S2BS+M2*S1BS-2*M1,2xS]-2B) ;

51. ouTPUT,.

52. END,.
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53. DROP Y1_Y2O YB1_YB2O I].-L3O MU1 MU2 N1 N2 STG]- SIG2 ROH;

54. DROP I J K XBB]- XBB2 S1BS S2BS S12B DETSB T].-T5 M\ M2 MI2;

55. PROC PRTNT;

Program 6:

l-. / / ¡oe

2. // nxnc sas

3. OPTION LINESIZE:72;

4. DATA BMOR,.

5. ARR-AY X1 (L0) G1-G10;

6. ARR-A,Y X2(l-0) H1-H10;

7. DO I:L TO 20;

8 . T1:0; t2--0;

9. Do J:1 To l-0,'

l-0 . NI-:RÀ,NNOR ( 63t25I0) ;

l-l-. N2=RANNOR (302L471,) ;

12. xL (J) :2*5P*T (2) *¡1''r36,'

13. x2 (J):NI+SQRT (3) *N2+15;

14. T1:rl-+Xl_ (J) ;

l-5. t2:T2+x2 (J) ;

16. END;

17. M1:T1 /L0; M2:T2/I0;
1 I . r3=0; r4:0; T5:0;

l- 9 . DO K:1 TO 10;

20 . T3=T3+ (Xl_ (K) -M1,¡ x x2.

2l . T4:T4+ (X2 (K) -ti2¡ x*2.

22. 15:15+ (xl_ (K) -M1¡ * (x2 (K) -ra2) ;

23. END;

24. Sl-:r3l9; S2:r4/9;
25. SSL:SQRr (S1) ; 552:59nr (52) ;

26. SDI-:S]-; SD2:52;

27. 51,2=15/9; 512S:Sl-2x*2;

28. DETS:S1*S2-SI2S;

29. SDS:SQRT (DETS) ;

30 - ROt_=1-0 .5xx2;
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3r_. ÎR: (S1/8+52/ 4-Sr2/ (4*SORr (2) ) ) /F(Or;

32. w:-18-9*LOc (DETS) +9*LOc (24) +9*TF.;

33. OUTPUT,.

34. END,.

35. DROP G1_G]-O H1-H]-O N1 N2 T J K T1. T2 T3 T4 T5,.

36. DROP t41, M2 DETS S12 St_2S RO1 rR 51 52;

37 . PROC PRINT,'

Program 7:

r-. / / toe
2. // sxnc sas

3. OPTTON LTNESIZE=74,.

4. DATA BTVNOR;

5 . ARRAY Xt_ ( 10 ) GL -G10;

6 . ARR-AY X2 (10 ) Hl--H10;

7. DO I=t TO 20;

I . Tt-:Q; T2:0;

9. IF I<6 ÎHEN DO;

10. SIG1:8;

11. SIG2:4;

L2. END,.

]-3. IF T>5 AND T<11 THEN DO,.

t4. sÏGl:8*o.4* 1r_5) ,.

l-5 . STG2:4;

1.6. END;

]-7. IF T>]-O AND T<16 THEN DO,.

18. SrGl=8,.

t-9. srG2:4*0 .2x (1_t0) ì

20. END;

2L. TF T>]-5 THEN DO,.

22. srGl:8*0.4* 11_15) ,.

23. srG2=4*0.2* (r_t-5) ;

24. END,.

25. Do J=1 To 10;

26. NI-:Rå,NNoR (3680917 ) ;
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27 . N2:RÃNNOR (1638052) ;

28. xl ('J) =¡¡1*5çRT (srG1)+30;

29 - x2 (.T):0.5*Nl-*SQRT (SIG2) +0.5*SQRT (3*SIG2) *N2+15;

30. T1=T1+X1 (J) ;

3l-. T2:T2+X2 (J) ;

32. END;

33. Mj-:r1 /10; M2=r2/t0;

34. T3:0; T4:0; T5=0;

35. Do K=1 To L0;

36. T3:T3+ (Xl- (K) -Ì{Ll xx2'

37 . T4:14+ (x2 (Kl -M2l **2.

38. T5:T5+ (X1 (K) _M1¡ * (X2 (K) _M2l ;

39. END,'

40. S1:r3l9; S2:r4/9;
41- . SSI-:SQRT (51) ; SS2:SQRT (52) ;

42. SD1:S1; SD2:52;

43. 51,2=T5/9; SI2S:SL2*'*2;

44. DETS:S1*S2-S]-2S;

45. SDS:SQRT (DEÎS) ;

46. ROI_:]_-0 .5**2;
47 . rR: (S1/8+52/ 4-51,2/ (4*SQRT (2) )',) /ROt,
48. w:-18-9*LOc (DETS) +9*LOG (24)+9*TF.;

49. OUTPUT;

50. END,'

51. DROP G]._G1O H1-H1O N1 N2 T J K T1 T2 T3 T4 T5,.

52. DROP M]. M2 DETS S].2 S1-2S RO1 ÎR STG1 SIG2 51 52;

53. PROC PRINT;

Program 8:

1. // ¡oø

2. // ¡xnc sas

3 . OPTTON LTNESIZE:72,'

4. DATA BTVNOR,.

5. ARRÀY X1(10) G1-G10;

6. ARRAY X2(l-0) U1-H10;
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7. DO I:1 TO 20;

B . T1:0; T2__0 ;

9. MU7:29. 511; wJ2:1,4.906;

10. SIGl:l-l-.398; SIG2:5 .934;

l_l_. RoH:4 .227 / (SQRT (r.r_.398*5.934) ) ;

12. DO J:l- TO 10;

l-3 . N1:R-A.NNOR ( 63125i.0 ) ;

14. N2=R-ANNOR (3021471) ¡

15. xl- (J):SQRT (SIG1) *N1+MU1,'

L6 . X2 ( J) :ROH* SQRT ( SIG2 ) *N1+N2 * SQRT ( S IG2 ) * SQRT ( 1 -nOH*'t2 ) +MU2 ;

I7 . lL=Tl-+x1 (J) ;

LB. T2:12+x2(J);

19. END;

20. M1:T1 /r0; MZ:T2/L1;

2I . T3:0; T4:0; r5=0,.

22. Do K=1 To 10,.

23. T3:T3+ (Xl- (K) -M:..)t x2'

24 . T4=T4+ (X2 (K) -1¡t2¡ t *2.

25. T5:T5+ (X1 (K) _M1¡ * (X2 (K) _ra2) ;

26. END;

27. 51:13/9; S2=T4/9;

28. SS1:SQRT (s1) ; SS2:SQRÎ (Sz¡ ,

29. SD1:Sl,' SD2:52;

30. s1,2:T5/9; St2S=512**2.

31 . DETS=S1*S2-51,25;

32. SDS:SQRT (DETS) ;

33. RO1:1-0 .5**2;
34. rR: (Sr_/8+52/ 4-572/ (4*SQRT (2) ) ) /ROr;

35. w:-l-8-9*LOG (DETS) +9*LOc (24) +9*TR,.

36. OUTPUT,.

37. END;

38. DROP G]--GlO H]--HlO N1 N2 I J K T!'T2 T3 T4 T5 51 52;

39. DROP M1 M2 DEÎS S12 S12S RO]. TR MU]. MUz SIG1 SIG2 ROH,.

40. PROC PRINT,'
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,&PPENÐïX B: Fnognames ofl Chapter 2

Program 1:

l-. // loø tT:2YL,

2. // zxzc wATFrv

3. //FTosFool DD *

4. $,roe

5. DII',IENSION RR(10)

6. DOUBLE PRECISION DSEED

7. DSEED:31785.D0

8. c
9. N:l-O

1-0. Nl-=1000

L1. FN:FLOAT (N)

12. SIG:1.

13. U0:0.

1-4. C

15. DO 3 LOOP:1I4

16. FL:FLOAT (LOOP)

I7 - H:3.0-FL*0.5
18. FK:0.25*FL

19. C

20. Do 45 ID:1,5
21-. rF (ID.EQ.1) THEN DO

22. U:Ug

23. co ro 47

24. END rF

25. rF (rD.EQ.2) THEN DO

26. U:0.5
27. co ro 47

28. END rF

29. DEL:FLOAT (rD) -2.
30. UI:ÐEL*SIG

3l-. U:Ul-



T3

32. 47 wRrTE (6t12) UfFKTH

33. L2 FORMAT (2Xrtll :t,E6.2rt K :"F.6.2t r H =t tE6-2)
34. C

35. SHJ]-:0 .

36. sHJ2:0.

37 . SL,II-:O .

38. sLJ2:0.

39. DO 60 L=1rN1

40. sH:H/2.

41,. sL:H/2.

42- C

43. C Generating 1000 sampl-es each of size N from a normal-

44. C distribution with mean U and variance SfG.

45. C

46. Do 10 I=1r1000

47 . rL=O.

48. CALL GGNPM(DSEED,N,RR)

49 . DO l-5 K:1r N

50 . XI-:RR (1) *SQRT (SIG) +U

5l-. T1:T1+X1

52. 15 CONTINUE

53. XB:Î1/FN

54. YB:XB-UO

55. rF (YB.GT.FK) cO TO 20

56. ].0 CONTINUE

57. C

58. 20 Do 40 J=I¡1000

59. T1_:0.

60. CALL GGNPM(DSEEDÍNTRR)

61. DO 35 K:1rN

62. X1:RR(1) *SQRT (SIc) +U

63. Tt-:T1+xt-

64. 35 CONTINUE

65. XB:T]-/FN

66. ASH : xB - FK + SH

67. ASL: - XB -FK + Sl,
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68. SH: À.t"fAXl-(0.,ÀSH)

69 - SL : AMAXI- (0.,ASL)

70. rF (SH.GT.H) cO rO 30

71_. rF (SL.cr. H) co ro 3j_

72. 40 CONTINUE

73- C

74. 30 FHJ:FLOAT (J)

'7 5 . SHJI=SHJ1+FHJ

76. SHJ2:SHJ2+EHJ**2

77. GO TO 60

78. 31 FLJ:FLOAT (J)

79. SLJI:SLJ1+FLJ

80. sLJ2:SLJ2+FLJ**2

81. 60 CONTTNUE

82 . EHJ:SHJI/FLOAT (N]. )

83 . ELJ:SLJ1/TLOAT (Nl- )

84. ARL:EHJ+ELJ

85. wRrTE (6t'70) EHJ,ELJ,ARL

86. '70 FORMAT (2XttEHJ :t tFL2.4t2X, rELJ = | t8L2.4r2X,
IARL = t .FLZ.4)

87. 45 CONTTNUE

88. PRTNT, I I

89. 3 CONTTNUE

90. sToP

91. END

92. $ENTRY

93. /*

Program 2:

1. // ¿os

2. // nxøc wATFrv

3. / /ETo5Fo01 DD *

4. $Joe

5. DTMENSTON F (10) , p (t_g) , R(t_0r 10) ,WR (4) , CARL (t_5,10) , c (15)

6. REAL Er (l_0, L0),ErR (4,4) ,ErRr (4,4),EMU(9,l_0)
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7.

8.

9.

10.

1_1.

L2.

1_3.

14.

15.

16.

L7.

18.

L9.

20.

2I-
LL.

23.

24.

25.

26.

¿t-

28.
to

30.

31.
2aJ¿.

33.

34.

35.

36.

37.

38.

?Õ

40.

41- -

42-

l_ l_

TNTEGER H,Y

READ, TH, Kt H, N

DO l-1 I:1rH

L:K+I-H

rr (L.88.0) THEN DO

F (I):P¡P 1-t",
GO TO 1l-

END IF

CALL POPROB(TH, Lt F1)

F(T) : F1

CONTINUE

Y=2*H-2

DO 22 I:1rY
L1= K+I+l-H

CALL POPROB(TH, L1, P1)

L2 : K+r-H

rF (L2.EQ.0) THEN DO

CALL POPROB (TH,

P(I) : PI - P2

CONTINUE

DO 23 r:1rll
KK1:H+1-I

R(I'1):F(KKl-)

DO 25 J:Z:H

KK2:H+J-I-l

R(I,J):P(KK2)

CONÎINUE

CONTTNUE

P2=EXP (-TH)

P (I) =P1-P2

GO TO 22

END TF

L2, P2)

22

25

23
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43. C

44. PRTNT, ¡ r

45. PRINT, tThe Matrix R'

46. V{RITE (6,30) ( (R(I ,J),J:1 rH) ,I:1,H)
47 . 30 FORMAT (/ , 4rl_0.4)

48. PRINT, r r

49. C

50 . DO 3l- r:1r H

5l- . DO 32 J:1r H

52 . IF ( r . Uç. .1¡ THEN DO

53 . Er (r, J) :1

54. co ro 32

55. END IF
56. EI (T, J):0
5'7. 32 CONTTNUE

58. 3l_ CoNTTNUE

59. C

60. DO 40 I=1rH

6r_. sr_:o.

62. DO 42 J:1rH

63. EIR(I, J) =EI (I, J) -R(Ir J)

64. S1:S1+EIR (I, J)

65, 42 CONTINUE

66. cARL (1, r):s1
67. 40 CONTTNUE

68. c

69. DO 50 K:2rN

70. DO 51 I:1¡H
7t. S2=0.

72. Do 52 J:1,H
73. S2:S2+R (Ir J) *CARL (K-l-, J)

74. 52 CONTINUE

75. CARL (K, I):S2
76. 51 CONTINUE

77. 50 coNrrNUE

78. C
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79. CALL LINV1F (ErR,4,4rEIRI,1rWR, rER)

80. c
81. DO 54 T:1rH

82. s3:0.
83. DO 56 J:1rH

84 . S3:S3+EIRI ( I, ,l)
85. 56 CONTINUE

86. EMU(l-,r):s3

87. 54 CONTTNUE

88. c
89. DO 60 K:2,4

90. DO 62 I:1rH
9r_. s4:0.
92. DO 58 J:1rH

93. S4:S4+ (EIRI (rr J) -EI (Ir J) ) *K*EMU (K-l-, J)

94. 58 CoNTTNUE

95. EMU(K,I):S4

96. 62 CONTINUE

97. 60 CONTINUE

98. C

99 - DO 59 r--1, H

l-00. EX1:EMU(1rI)

101. EX2:EMU (2, r) +EX1

I02. EMU (2¡ r):EX2-ExI**2
103. EX3=EMU(3,I)+3.*EX2-2.*EX1

l-04. E¡4U (3,I) =EX3-3 - *EX2*EX1+2. *EX1**3

105. EX4:E[dU (4tr], +6. *EX3-11 .*Ex2+6. *EX1

l-06. EMU (4r r):EX4-4. *EX3*EX1+6. *Ex2*Ex1,**Z-3. *EX1**4

107. EMU(5,r):sQRT(EMU(2rr) )

l-08. EI4U (6,I):EMu (5r I) /EMU (1, r)
109. EMU (7, r):EMU (3, r) /EMU (5, r¡ **3

l-10. EMU(8,I):(EMU(4,r) /nw(2tI)**2)-3.
111. 59 CONTINUE

1_t2. C

113. WRITE (6,5'7 ) ( (EMU(K, I),K:1r 8),I:1,H)
1-1,4. 57 FORMAT (/t8F9.2)
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1l_5.

t_16. C

1_17 .

118.

Ltg.
r20.

L2\. 63

L22.

t23.
r24.

t25.
L26.

127 .

L28.

L29.

1_30.

r_ 3r_ .

L32.

r_33. 67

134.

135.

l_36. 70

r.37.

r_38. 65

139.

140.

141. C

L42.

3.43.

t44.
145.

L46.

1-47 .

i_48.

L49. l_11

r_50.

PRTNTT I r

DO 65 I:lrH

PRINT, t ¡

PRINT, I The Actual ARL values I

wRITE (6,63) (CARL (K,Í) , K:1rN)

FORMAT (/ | 6F70.41

PRTNT, f r

ARL:EMU(1,I)

AP:1 /ARL

Q:1-AP

PRTNT, r f

PRINTT rARLr ,lr': I , ARL

PRTNT, r r

PRINT, rGeomet.ric probability : ,, Ap

G(1):AP

DO 67 J:2¡N

G (J): (Q** (,J-1) ) *AP

CONTINUE

PRTNT, r r

ülRlTE (6 t7 0 ) (c (J) , J:1, N)

FOR_L,IAT(/, 6Ft_0.4)

PRTNT, r r

CONTINUE

STOP

END

SUBROUTTNE POPROB (PL, X, PROB)

INTEGER X

S:EXP (-PL)

DO 111 I:1rX

CALL FACT(I, FT)

pR = EXp (_pt) * (pL**I) /Fr
S:S+PR

CONTINUE

PROB:S
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151. RETURN

3.52. END

153. C

l_54. suBRouTrNE FACT (L, F)

155. KL:l-

156. rF (L.EQ.0) THEN DO

l-57. F:1

158. RETURN

].59. END f F

160. DO 122 J:lrL
L6L. K1=K1*J

1-62. 1.22 CONTTNUE

163. F:K1

1-64. RETURN

l_ 65 . END

t66. c

767. $ENTRY

168. 4.I,3r 4t 1,2

1'69. /x

Program 3:

l-. / / toe
2. // rxnc wATFrv

3. / /ETosEoo1 DD *

4. $JOB

5. nr¡r'n¡lsror.l r (10) , p (10) , R (10,10) ,wR (5) , CARL (l-5,10) , c (15)

6. REAL Er (10/ 10) , EIR(5r 5) , EIRI (5,5) f Er{u (gr 10)

7. TNTEGER HtTtT],tTz

8. c

9. READ/ Tt Ht N

r_0. c

i-1. T1:2*T-1

]-2. rH=rLoAT (H)

13 . FTI:FLOAT (Ti- )

14. W:2. *FH/FT1
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i_5. c
L6. DO 5 I:1r11
L7 . FL:FLOAT (I-T)
l-8. Y= (FL+1. ) *w-0.5*hI

19. Z:Y-L.
20. CALL MDNOR(Z,PR)

2t. F (r):pp
22. 5 CONTTNUE

23. C

24. T2:T1,-t

25. DO 7 T=]-ITZ

26- P(r):F(r+1)-F(r)
27. 7 CONTTNUE

28. c
29. DO l-0 r=1rT

30. K1=T+1-r

3l-. R(rr1):F(Kl-)
32. DQ 9 J=2¡T

33. K2:1+J-I-1
34. R(I,J):P(K2)
35. 9 CONTINUE

36. ]-O CONTINUE

37. C

38. PRTNT, r r

39. PRTNT, rÎhe Matrix R¡

40. wRrTE (6,30) ( (R(I,J),J:1,T) ,I:1,T)
41. 30 FORMAT (/ , 5Fl_0.6)

42. PRTNT, r r

43. C

44 . DO 3l- T:1r T

45. DO 32 J:1rT
46. rF (I.EQ.J) THEN DO

47. E1(T,,J):1
48. co ro 32

49. END ]F
50 . Er (r, J) :0
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5]-. 32 CONTINUE

52, 3]- CONTINUE

53. C

54. DO 40 r:1rT
55. s1:0 -

56. Do 42 J:1,7
57. EIR(I,J)=EI (I,J)-R(I,J)
58 . S1:S1+EIR (r, J)

59. 42 CONTINUE

60. cARL (1, r):s1
6]-. 40 CONTINUE

62. c
63. DO 50 K=2rN

64. DO 51 r:1rT
65. S2=0 .

66. DO 52 J:1rT
67. S2:S2+R(I,J) *CARL(K-t_rJ)

68. 52 CONTTNUE

69. CARL (Kr r):S2
70. 5l_ CoNTTNUE

7I. 50 CONTINUE

72- C

73. CALL LINV1F (ErR,5,5,EIRI,1,WR, IER)

74. C

75. DO 54 I=l_rT

7 6. S3:0 .

77. DO 56 J:1,7
78. S3:S3+EIRI (I,J)
79. 56 CoNTTNUE

80 ' EMU (1' r):s3
81. 54 CONTINUE

82. c
83. DO 60 K:2t4
õö̂4. DO 62 I:1rT
85. S4:0.

86. DO 58 J:lrT
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87 . FK:FLOAT (K)

88. S4:S4+ (EIRI (I, J) -EI (I, J) ) *FK*EMU (K-1, J)

89. 58 CONTTNUE

90. EMU(K'I):S4

9).. 62 CONTINUE

92. 60 CONTINUE

93. C

94. DO 59 I:1rT
95. EX1:EMU(1-,I)

96. EX2:EMU (2tI)+ExL

97 . Eltlu (2t r):EX2-EXL**2.

98. EX3:EMU(3,I)+3.*Ex2-2.*EX1

99. EMU (3, r):Ex3-3. *Ex2*Ex1+2. *EX1**3.

l-00. EX4:EMU(4rr)+6.*EX3-11.*Ey.2+6.*EX1

101-. El4U(4 tIl=g,X4-4.*EX3*EX1+6.*Ex2*Ex1-**2.-3.*EX1**4.
L02. EMU(5rI):SQRT(EMU(2,I) )

l-03. EMU(6r r):EMU(5, r) /EMU (1, r)
104. EMU (7, r):EMU (3,I) /r¡¿U (5,I¡ **3.

105. EMU(8,r):(EMU(4tr)/F,MU(2tr.)**2.)-3.
]-06. 59 CONTINUE

L07. C

l-08. WRITE (6,5'7) ((EMU(K,I),K:1,8),I=1,T)
109. 57 FORMAT (/ t8F'9.2)

110. PR]NT, r I

l_11. C

L12- DO 65 I=1¡T

113. PRTNT, ¡ r

1-1.4. PRINT, I The Act.ual- ARL values I

115. wRrTE (6,63) (CARL(K,I),K:1,N)

1l_6. 63 FORMAT(/,5F1_0.6)

1-L7. PRTNT, r r

118. ARL=EMU (1r I)
l-l-9. AP:1. /ARL

120. Q:1. -ap
12L. PRTNT, r r

L22. pRrNT, |ARLr rTrt:r, ARL
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L23. PRTNT, r r

1-24. PRINT, rGeometric probability : ', Ap

L25. c(t_):AP

1-26 . DO 67 J:2 r N

127 . FJ:FLOAT (J-1)

1-28. G (J): (Q**FJ) *AP

1.29. 67 CONTTNUE

l_30. PRTNTT r r

i.31 . wRrTE (6 t7 0 ) (c (J) , J:1, N)

L32. 70 FORMAT (/, 5r10.6)
133. PRTNT, r ¡

134. 65 CONTINUE

l_35. sToP

136. END

L37. C

138. $ENTRY

139. 5, 3, L5

l_40. /*

Program 4:

1-. / / ¡oe

2. // nxac wATFrv

3. //FTo5Foo1 DD *

4. $Joe

5. DTMENSTON F (10),p (10),R(t-0,L0) ,VrR(4)TCARL (15.10),c (15)

6. REAL Er (10,10),EïR (4,4) ,ErRr ( 4,4) ,EMU(4,l_0)
7. TNTEGER HrT/Tl_tTztT3

LC
9. READ, T, rS. N

10. c
1l-. T1:2*1-1

12. T2:2*T-3

13. FT:FLOAT (T)

]-4. FIS=FjOAT (IS)

1-5 . FTI_=FLOAT (T1)
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1"6 -

]-7.

r-8.

]-9.

20.

2]-.

22.

23.

24.
otrLJ.

26.

27.

28.

29.

30.

3r- .

aa

33.

34.

35.

36.

37.

38.

39.

40.

4t.
42.

¿?

44.
¿q

46.

47.

48.

a3-

50.

51_.

9

1_0

FT2:FLOAT (T2 )

FH:FT1*FrS/ (4x (FT_1) )

w:2.*FH/FTt
FK:ET2*EH/ETl

PRINTTTK: rrFKrt H: trFH

DO 5 I:1rT1
FL:TLOAT (I-T)
Y:FK*FL*Vù+ 0 . 5 *W

F (I):1. -EXP (-Y)

CONTTNUE

T3=T1 -1

DO 7 f:1rÏ3
P (r) =P (I+1) -F (I)
CONTINUE

DO 10 I:1¡T
K1:T+l--I

R(Ir1):F(K1)

DO 9 J:ztT
K2:1+J-I-1
R(rrJ):P(K2)

CONTINUE

CONTINUE

PRTNT, r r

PRINT. ¡The Matrix Rl

wRITE (6,30) ( (R(I,J) ,I=1rT) ,J:L,T)
FORMAT (/ , 4r10.5)

PRTNT, r r

DO 3l- I:1rT
DO 32 J:1rT
IF ( I . ng. .1¡ THEN DO

30

EI (r, J):1
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52- co ro 32

53. END fF

54. EI (I, J):0.
55. 32 CONTINUE

56. 31 CONTINUE

57. C

58. DO 40 I:1rT
59. S1:0.

60. ÐO 42 J:1rT
61. EIR(I¡ J):EI (Ir J) -R(r, J)

62 - S1=S1+EIR (Ir J)

63. 42 CONTINUE

64. CARL (1, r):S1
65. 4O CONTINUE

66. C

67. DO 50 K:2rN

68. DO 51 I:l-¡T
69. s2:0.
70. DO 52 J:lrT
71. S2:S2+R(I,J) *CARL(K-1,J)

72. 52 CoNTTNUE

73 - CARL (Kr I) =S2

7 4. 51 CONTINUE

75. 50 CONTTNUE

76. C

77. CALL LTNVIF(EIR'4t4tBfRrrlrWR,IER)

78. C

79. DO 54 I:1rT
80. s3:0.
8l- . DO 56 J=1r T

82. S3:S3+EIRI (r, J)

83. 56 CONTINUE

84. EMU (1, r):S3
85. 54 CONTTNUE

86. C

87. DO 60 K:2r4
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88.

89.

90.

o1

92.

o?

94.
oq,

96.

97.

98.

99-

100.

101.

L02.

103 .

704.

105.

106.

L07 .

r-08.

109.

110 .

1l_t .

LL2.

r_13.

1L4.

1l_5.

1r_6.

7L7 .

118 .

119.

L20.

L2L.

L22.

1-23 -

58

DO 62 I:1rT
S4:0.

ÐO 58 J:1rT
FK:FLOAT (K)

S4:S4+ (ErRI (I, J) -ET (I, J) ) *FK*EMU (K-i-, J)

CONTINUE

EMU(K,I):S4

CONTINUE

CONTTNUE

DO 59 I=1 tT
EX1:EMU(J-,I)

EX2:EMU (2 | I') +8X1,

EMÍJ (2, I ) :EX2-¡X1-* * 2 .

EX3=EMU ( 3, r ) +3 . *EX2-2. *EX1

EI"IU (3, I ) =EX3-3. *EX2*EX1+2 . *EX1**3 .

EX4:EI"IU (4 | I) +6. *EX3-11 . *EX2+6 . *EX1

EMU (4r I):EX4-4. *EX3*EX1+6. *EXz*EXL**2. -3. *EX1**4

CONTTNUE

9IRITE (6t57 ) ( (EMU(K, I),K:1-t4),T:1,T)
FORMAT (/ | 481,5.2)

PRTNT, | |

DO 65 I:1¡T

PRTNT, r r

PRINT, rThe true distribution of run lengtht
wRITE (6,63) (CARL (K,r) ,K:1,N)
FORMå,T(/t681,0.4)

PRïNTr r r

ARL:EMU(1,f)

AP=1. /ARI

Q:1. -ep
PRïNT, f !

PRINÎ, rARLr ,1r'= I , ARL

PRTNT, r r

62

60

59

57

bJ
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1-24. PRINT, tGeometric probability : t, Ap

L25. G(l):¿p
126. DO 67 J:2rN
L27 . FJ:FLOAT (J-1)

128. c (J): (g**FJ) *AP

1,29. 67 CONTINUE

130. PRTNT, r r

131-. WRITE rct70) (c(J), J:1,N)
L32. 70 FORMAT(/,6F10.4)

133. PRTNT, r r

134. 65 CONTINUE

r-35. sroP

136 - END

]37. C

]-38. $ENTRY

139. 4t 5, 12

140. /*
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APPENÐTX C: Frograms of Chapten 3

Program 1:

L. // toe
^ 

ll ã1,.¿. // EXEC WATFIV

3. //FTosFoo1 DD *

4. $.roe

5. DTMENSTON X1(50),X2 (50),RR(2)

6. DTMENSTON UC(g) rCL(9),COt- (9)

7. DOUBLE PRECISTON DSEED

8. DSEED:31785.D0

9. READ|NTTU, TL

10. c
1l_. PRINT, I ROH 

"' 
T rr' R"' ¡

L2. C

13. DO 5 J:1r9
1-4. ROH:0.1'kFLOAT (J)

l_5. c
r_6. col_ (J):0.
1-7. C

L8. c Generating 1000 samples each of size N from a bivariat.e
19. c normal distribution with parameters ulru2rsrclrsrG2rRoH.
20. c
2I. DO 10 I:1,1000
22. u1:30.
23. u2:1_5.

24. SrGl-:8.

25. SIG2:4.

26. r1:0.
27 . T 2:0.
28. C

29. DO 15 K:1rN

30. CAIL GGNPM(DSEED, 2rRR)
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3l-. X1(K):RR(1)*SQRT(SIc1)+Ul-

32. x.2 (K):R9H*RR(1) *5QRT (Src2)

+SQRT (1. - ROH**2) *SQRT (Src2) *RR(2) +U2

33. T1:T1+XI- (K)

34. T2:T2+x2 (R)

35. ]-5 CONTINUE

36. FN:FLOAT (N)

37. XB1:TI-IFN

38. KB2:TZ/îN

39. r3=0.

40. T4:0.

41, . T5=0 .

42. C

43. DO 20 K:1rN

44 . T3:T3+ (Xl- (K) -XB1) * *2

45. T4:T4+ (x2 (K) -XB2) t *2

46- T5:T5+ (X1(K)_XB1) * (X2 (K) _y^P.z)

47. 20 CoNTTNUE

48. C

49 _ S1:r3l (rN-t_ )

50. s2:r4/ (FN-1)

5]-. S]-S:SQRT (S1)

52. SzS:SQRT (S2)

53 . s1,2:T5 / (FN-t- )

54. R:SI2/ (S1S*S2S)

55. T:R*SQRT (FN-z. ) /SQnr (1. -R**2)
56. C

57 . C Checking the stat.istic T, with the cont.rol l_imit.s.
58. C

59 . rF ( (r. cr. ru) . oR. (r. Lr.lL) ) cO1 (J) :COl (J) +1 . 0

60. 10 CONTTNUE

61. C

62. C1=Co1 (J) /10.
63. WRITE (6,25) ROä,C1

64 . 25 FORMA,T (2F8 . t_ )

65. 5 CONTINUE
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66. sroP

67. END

68. $ENTRY

69. 10, 2.3060 | -2.3060,
70. /*

Program 2:

1. // ¡oe

2. // txnc wATFrv

3. //FT05F001 DD 'k

4. $.roe

5 . DTMENSTON X1 (50 ) ,X2 (50 ) , RR (2 )

6. DTMENSTON UC(9),CL(9),COt_(9)

7. DOUBLE PRECTSION DSEED

I . DSEED:31785. D0

9. ROH:0.5

10. C

l1-. PRTNT, I N 'r, T ,rr I

L2. C

L3. DO 5 J:1r5
14. READTN, TU

l-5. TL:-TU

16. c

L7 . col_ (J):0.
18. c

l-9. C Generating 1000 samples of size N from a bivariate normal-

20. c distribution with parameters ul, IJ2, sfc1, srG2 and RoH.

2t. c

22. DO 10 I:1r1000
23. u1:30.
24. U2:i_5.

25. srGl:8.
26. srG2:4.
2'l . T1:0.
28. r2:0.
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29. C

30 . DO l-5 K:lr N

3]-. CALL GGNPM(DSEED, 2,RR)

32. x1(K):RR(r)'kSQRT(SIcl-)+U1

33. x2(K):R9H*RR(1)*SORT(SIG2)

+soRT (1. - ROH**2) *SQRT (SIG2) *RR(2) +U2

34. Tl-=Tl-+Xl- (K)

35. T2=T2+x2 (K)

36. ]-5 CONTINUE

37 . FN:FLOAT (N)

38. XB1:TIIFN

39. XB2:T2/îN

40. r3:0.
41,. T4:0 .

42. T5:0.

43. C

44. DO 20 K:1rN

45. T3:T3+ (X1 (K) -XB1) *x2

46. T4:T4+ (X2 (K) -XB2) t *2

47 - T5:r5+ (X1 (K) _xBt_) * (X2 (K) _XB2)

48. 20 CONTINUE

^o.
50. Sr_:r3/ (FN-1)

51. s2:T4/ (FN-1)

52. S1S:SQRT (S1)

53. S2S:SQRT (S2)

54. 51,2:15/(FN-1)

55. R:5L2/ (SLS*S2S)

56. T:R*SQRT (FN-2. ) /SQRT (l-. -R**2)
57. C

58 . C Checking t.he cont.rol l-imíts.
59. C

60 . rF ( (r. cr. ru) . oR. (T. Lr. TL) ) co1 (J) =co1 (J) +l_ . 0

61.. 1O CONTINUE

62. c
63. ct_:co1 (J) /i_0.
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64. WRTTE (6,25) FN,C1

65. 25 FORMAT (2F8.1)

66. 5 CONTINUE

6'7 . sroP

68. END

69. $ENTRY

70. 5, 3.1824,

71-. 15, 2.]-6041

't2. 20, 2.1009 |

73. 30, 2.0484,

74. 40, t.96l
75. /*

Program 3:

l. // ¡oe tT:6Mr

2. // nxEc r¡¡ATFrv

3. / /FTosEoo1 DD *

4. $¡Oe

5. DTMENSTON X1 (50),X2 (50),RR(2)

6. DTMENSTON UCt_ (9),CL1(g) tVC2(g),CL2 (g),CO1 (g) tCO2(9)

7. DOUBLE PREC]S]ON DSEED

8. DSEED=31785.D0

9. RoH:0.5

r_0. c

l-1 . DO 3 L=1r 5

L2. READ(5,1_00) N

13. t_00 FoRMAT(r3)

1_4. C

1_5. PRTNTT¡ ROH 
"t 

C1 trt I

L6. C

]-7- DO 5 J:1r9
L8. RO:0.I-*FLOAT (J)

L9. C

20. READ(5,101) UCI_(J),Ct1(J)

21 . 101 FORMÀ,T (2F7 . 4)



JJ

22. co1 (J) :0 .

)? t-

24. C Generatíng L000 samples of size N from a bivariate normaf

25. C distribution with parameters Ul-, U2, SIGIr SIG2 and ROH.

26. c

27. DO 10 I:1r1000
28. UL=30.

29 . rI2=1.5.

30. srGl:8.
31. SrG2:4.

32. rr_:0 .

33. T2:0.

34. c
35 . DO l-5 K:1r N

36. CALL GGNPM(DSEED, 2,RR)

3'7 . Xl- (K):RR(l-) *SQRT (SIGI-) +Ul-

38. x2 (K):R9H*RR(1)'kSQRT (Src2)

+SQRT (1. -ROH**2) *SQRT (SIG2) *RR(2) +U2

39. T1=T1+X1 (K)

40. T2:T2+x2 (K)

41-. 15 CONTINUE

42. FN:FLOAT (N)

43. XBI-:TIIFN

44. xB2:T2lFN

45. r3:0.
46. r4:0.
47 . T5:0.

48. C

49. DO 20 K:1rN

50. T3:T3+ (x1 (K) -XB1) **2

51. T4:T4+ (x2 (K) -XB2)t x2

52 . r5:r5+ (x1 (K) -xB1) * (x2 (K) -xB2 )

53. 20 CONTINUE

54. C

55. S1:T3l (FN-1. )

s6. s2=ra/ (FN_1. )
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57 . S1S:SORT (S1)

58 - SzS:SQRT (S2)

s9. s1"2:r5/(FN-l.)
60. R=S!2l (S1S*S2S)

61. T=R*SQRT (FN-2. ) /SQRT (1. -R**2)
62. C

63. C Checking the statistic R with the control limits.
64. C

65. IF( ( R.Gr.Ucl- (J) ) .oR. (R.LT.cI,l- (J) ) ) co1(J)=Col- (J)+1

66.

67. ]-O CONTTNUE

68. C

69. C]_:CO1 (J) /r0.
7 0 . wRrrE (6 ,25) Ro, c1

71. 25 FORMÄT (2F8.l_)

72. 5 CONTTNUE

73. 3 CONT]NUE

74. STOP

75. END

7 6. $nNrRv

77. 5

78. 0.9026-0.8482

79. 0.9223-0.8099

80. 0.9386-0.7606

81. 0. 9s21-0.6955

82. 0.9635-0 .6072

83. 0.9732-0.4839

84. 0.9814-0.3056

8s. 0.988s-0.0384

86. 0.9947 0.3733

8'1 - 10

88. 0. 6917-0. s633

89. 0.7440-0.4839

90. 0.7901-0.3916

9t. 0. 831_0-0.2835

92- 0.8673-0.r_ss6
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93. 0.8997-0.0034

94. 0.9288 0. r_793

95. 0. 9549 0.4005

96. 0-9786 0.6700

97. 15

98. 0.5865-0.433r_

99. 0.6517-0 .3427

r_00. 0.7107-0 .24].0

l_01. 0.764L-0.L263

r02. 0.8L27 0. 0037

r.03. 0.8570 0.15r-8

r_04. 0.8974 0.32]-].

105. 0.9345 0.5157

106. 0.9686 0.740r_

r-07. 2s

r_08. 0.4788-0.3063

109. 0.5553-0 .2086

l_10. 0.6259-0.L027

11i.. 0.69r_5 0.0L42

aL2. 0.7523 0.r_416

1l_3. 0.8089 0.28L4

r_14. 0.86r_7 0.4352

115. 0.9r_09 0.6048

r-16. 0.9569 0.7923

1_1_7. 50

1l_8. 0.3693-0 .1,828

i_19. 0.4551-0.081.2

r20. 0.5362 0.0265

!2t. 0.6131_ 0.r_409

L22. 0.686r_ 0.2624

1,23. 0_7553 0.3916

L24. 0.8211 0.5293

a25. 0.8837 0.6760
1aa 

^ 
ô/îa 

^ 
oanlL-V. V.AaJJ V.9JLt

1,27. /*
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Program 4:

1. // ¿os rT=6Mr

2. // øxtc wATFrv

3. //FTosEoo1 DD *

4. $JOB

5. DOUBLE PRECISTON DSEED

6. COMMON DSEED

7 . DSEED:31-785.D0

8. N:10

9. u0:0.5*ALOG( (t_.+0.1) / (L.-0.1) )

10. Nl-:1000

1l-. FN=FLOAT (N)

1"2 . SrG:l_ . /SQRT (FN-3. )

l-3. wRrTE (6t1,2) U0,SIc
1-4 . L2 FORMAT (2X, I U0 :t ,86 .2 ¡ t SIG : | ,F6 .2)
t_5. c

l-6. DO 3 LOOP:1,3

I7 . FLI:FLOAT (LOOP)

18. FK:O.5*FL1

l-9. H:3-0.75*FL1

20. wRrlE (6,9) FK, H

2L. 9 rORMAT(2Xrr K:tr86.2, r H:t,F6.2)
2?î

23. DO 5 LR:1¡3

24. FLR:FLOAT (LR)

25. ROH=O.1+ (FLR-1. ) *0.4

26 . U:0 . S*ALOG ( (l- . +RoH) / (1_ . -RoH) )

21 . wRrrE (6.l_1) RoH,u

28. l-l- FORMAT(2Xr tROH = r rF5.1¡ I U :¡ ¡Fl-0.3)
29. C

30 . sHJl_:O.

3l- . SLJ1=0 .

32. DO 60 T,=1 r N1

33. sH:H/2.

34. sL:H/z.
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35. C

36. DO 10 r=1¡1000

37 - cALt ZCAL(N,ROH,Z)

38. y: (z-u0) /sre
39. rF (Y.GT.FK) GO rO 23

40. 10 CONTINUE

41-. 23 DO42 J:I¡1000
42. ASH:Y-FK+SH
43. ASL : - Y -FK + SL

44. CÀLL ZCAL(N,ROH,Z)

45. y: (z-uo) /src
46. SH : A-[44X1(0.,ASH)

4'l . SL: AMAX1(0.IASL)

48. rF (SH.cr.H) co ro 30

49 . ïF ( SL. cÎ. H) cO TO 3t_

50. 42 CONTINUE

51. C

52. 30 FHJ=FLOAT (J)

53. SHJI:SHJ1+FHJ

54. co ro 60

55. 31 FLJ:FLOAT (J)

56. SLJI-:SLJ1+FLJ

5]. 60 CONTINUE

58. EHJ:SHJI-/FLOAI (N1)

59 . EIJ:SLJI/rr,Oar (Wr )

60. ARL:EHJ+ELJ

61. wRrlE(6t70) EH,JTELJ,ARL

62. 70 FORMAT (2Xt tEHJ :r,F15 .6r2X, ¡ELJ : I /F15 .6r2X,IARL :
¡,F15.6)

63. PRTNT, r r

64. C

65. 5 CONTINUE

66. PRTNT, | |

67. 3 CONTINUE

68. sToP

69. END
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70. C

7L. C Subroutine to generat.e samples of size N from a
bivaríate normal

72. C distribution and to calcul-ate t.he Fisherts Z

stat.istic.
73. C

74. SUBROUTTNE ZCAL(N,ROH,21)

75. DII'IENSION X1 (50) , X2 (50) , RR (2)

76. DOUBLE PRECISION DSEED

77. COMMON DSEED

'18. u1:30.

79. u2--1,5.

80. SIG1:8.

81. SIG2:4.

82. r1:0.
83. 12:0.

84. C

85. DO 15 K:1rN

86. CALL GGNPM(DSEED, 2,RR)

87 . X1 (K):RR(1) *SORI (SIcl-) +U1

B8. x2 (K) =R9H*RR(1) *SQRT (src2)

+SQRT (1. -ROH**2) *SQRT (SIG2) *RR(2) +U2

89. T1:Tl-+Xl- (K)

90. T2:T2+X2 (K',)

91. 15 CONTTNUE

92. FN:FLOAT (N)

93. xB1:T1lFN

94. XB2:r2lFN

95. r3:0.
96. r4:0.
97 . r5=0.

98. C

99. DO 20 K:1rN
1 nn n?:T?¿ /¡¡1 /El -vÞ1 \ **t¡ \¡!¡ \¡\, ,\ÐL I

101. T4:T4+ (X2 (K) -XB2) *x2

102. r5=r5+ (xl- (K) -xB1) * (x2 (K) -xB2)
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]- O3 . 20 CONTINUE

l-04. c
r_05. s1:r3l (rN-l_. )

106 _ S2:T4/ (rN-1. )

l-07. S1S:SQRT (Sl-)

108. S2S:SQRT (S2)

t_09. s1_2=r5/(FN_1.)

110. R:SLZ/ (S1S*S2S)

t_t_1 . zt:o .5*ALOG ( (t_ . +R) / (r . _n) 
)

1.I2. RETURN

113. END

1_1_4. C

l,l_5. $ENTRY

116. /*

Program 5:

1. // ¡oe rT:8Mr

2. // txs,c v,rArFrv

3. //FT05F001 DD *

4 ' 9'roe

5. D]MENSTON NN(t_00)

6. DOUBLE PREC]STON DSEED

7. COMMON DSEED

8. DSEED:2351,2.D0

On

10. RH0:0. L

l-1. RH1:0.5

]-2. N2:300

1-3. N3-100

14. wRrTE (6,2) RHo,RH1

15. 2 FORMAT(2Xrr RHO:rrF5.1rr RH1:rrF5.1)
1,6. C

l'1 . DO 7 LA=lt2

18. FLA:FLOAT (LA)

L9. ALFA=O.05*FLA
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20. BETA:O.05*FLÂ

21-. AS:ALOG( (1.-BETA) /ALFA)

22- WRITE(6,6) ALFA,BETATAS

23. 6 FoRMAT(2xrIALFA:',r'5.2rt BETA: rrF5.2tt AS

:rrF6.3)

td I

25. DO 9 LR:1r3

26. FIR:FLOAT (LR)

27 . RH=O.2* (FLR*1. ) +0.3

28. blRrTE (6,8) RH

29. I FORMAT(2X, tROH :r,F5.1)

30. c
31. co1:0.

32- co2:0.

33. DO 3 L:1rN3

34. DO 5 N:3rN2

35. FN=FLOAT (N)

36. CALL RCAL(N,RH,R)

37 . Y: (t . +RH1*R) /2 .

38. CALL F(N,Y,FR1 )

39. Y: (t . +RHO*R) /2 .

40. CALL F(Nf Y,FR2)

4L. z: ( (FN-1 .) /2. ) *ALoG ( (1. -ns1**2) / (I. -RH0**2) )

42. 1 - (FN-l".5) *AL9G ( (1. -RH1*R) / (L. -RH6*R) )

+ALOG (FR1 /FR2 )

43. rF (z.cE.As) THEN DO

44- co ro 25

45. END IF
46. 5 CONTINUE

47 . 25 NN(L) =¡
48. CO1:CO1+FLOAT (N)

49. co2=co2+FLoAT (N),k*2

50. 3 CONTINUE

q1 IJI. U

52. WRITE rc,23) (NN(I),I:1,100)
53. 23 FORMAT (5r5)
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54.

55.

56.

57.

58.
q,o

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.
'73.

74.

75.

t6.

77.

78.

79.

80.

8r-.

82.

83.

84.

85.
oâ

87.

88 -

27

9

7

FN3:FLOAT (N3)

ARL:CO1 /FN3

vN: (co2_co1**2/FN3) / (FN3_1)

WRITE (6,27 ) ARL,VN

FORMÂT(2X, t ARL :r.F9.3rr Variance :rrF9.3)

CONTINUE

PRTNT, r r

CONTTNUE

STOP

END

Subroutine to cal-culate t.he Gaussian hypergeometric

function.

SUBROUTTNE F (N,Y,TS)

FN:FLOAT (N)

GAM: FN - 0.5

Nl-:10 0

TSU:1.

DO 10 .T:1 , 5

F.I:FLOAT (J)

TJ1:2.'kALGAMA (0.5+FJ) +ALGAMA (cÀM) +FJ*ALOG (y)

T J 2:2. *ALGAMA ( 0 . 5 ) +ALGAIVA ( cÀI,t+F J ) +ALGAMA ( F J+ 1 . )

TJ:EXP (TJl--TJ2 )

TSU:TSU+TJ

]-O CONTTNUE

DO L2 J:6rNL

FJ:FLOAT (J)

TJI:2. *ALGAMA ( 0 . 5+FJ) +ALGAì4A (cAM) +FJ*ALOG (y)

TJ2:2. *ALGAMA (0.5) +ALGAMA (GAI{+FJ) +ALGAMA (FJ+1. )

U:EXP (TJl--TJ2)

rF (TJ.LT.l_.8-07) GO rO t_6

TSU:TSU+TJ

12 CONTTNUE
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89. 16 TS:TSU

90. REÎURN

91. END

92. C

93. C Subroutine to generate samples of size N from a

bivariate normal

94. C dist.ribution and to calcul-ate the correlat.ion
coefficient R.

95. C

96. SUBROUTTNE RCAL(NfROH,R)

97. DTMENSTON Xl_ (300),X2 (300),RR(2)

98. DOUBLE PRECTSTON DSEED

99. COMMON DSEED

r_00. u1_:0.

l- 01 . IJ2:0 .

I02. SIGl=l- .

103. SIG2=L.

l- 04 . T1:0 .

105. T2:0.

r-06. c
L0'7. DO l-5 K=1rN

108. CALL GGNPM(DSEED, 2fRR)

l-09. x1 (K):RR(:-) *SQRT (Srcl-) +Ul-

l-l-0. X2 (K):ROH*RR(1) '.SQRT (SIG2) +SQRT (1. -ROH**2)
*SQRT (SIG2) *RR(2)+U2

l-11-. T1=T1+x1 (K)

It2- T2:T2+x2 (R)

1]-3. 15 CONTINUE

1,1-4. FN:FLOAT (N)

l-l-5. XBI-:T\IFN

LL6. xB2=T2lFN

117. 13:0.

l- 18 . T4:0 .

119. r5:0.
L20. C

L2L. DO 20 K:1,N
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122. T3:T3+ (X1 (K) -XB1 ) **2

L23. T4:T4+ (X2 (K) -XB2) **2

L24. T5:T5+ (X1 (K) _XB1) * (x2 (K) _XBz)

I25. 20 CONTTNUE

426. C

127 . si.:r3l (FN-l. )

L28. S2:r4/ (FN-1. )

L29 . SIS:SQRT (St_ )

130. S2S:SQRT (S2)

L31. 512:15/ (FN-l_. )

I32. R:512/ (S1S*S2S)

133. RETURN

l-34. END

135. c
]-36. $ENTRY

1'37 ' /*

Program 6:

1. // ¡os rT:8Mr

2. // øxsc wATFrv

3. //FTo5Foo1 DD *

4 ' $JoB

5. DrI{ENSTON NN (l_00)

6. DOUBTE PRECISION DSEED

7. COMMON DSEED

8. DSEED:235I2.D0

orr

10. RH0:0.1

11. RH1=0.5

L2. N2:300

13. N3:100

1_4. wRrrE(6r2) RHo,RHl_

1_5. 2 FORMAÎ(2X, rRHO=¡rF5.l_, r RHI_:¡rF5.l-)

t6. c

1,7 . DO 3 LA=1r 2
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18. FLA:FLOAT (LA)

19. ALFA:O.05*FLA.

20. BETA=0.05*FLA

2L . AS:A] OG ( (t_ . _BETA) /ALFA)

22. WRTTE(6,6) ALFAÍBETA,AS

23. 6 FORMAT(2xrr A,LFA = | tEs.2tr BETA :,,r.5.21
I AS : ¡rF6.3)

24. C

25 . DO 5 T.R:lr 3

26. FLR:FLOAT(LR)

27 . RH:O.2+ (FLR-1. ) *0.3

28. wRrrE (6,8) RH

29. 8 FoRMAT(2x, rRH :'rF5.1)

30. c
31. FMUI:O.5*ALOG( (t_.+RHl-l / Q_. _RH1) 

)

32. FMU0=0.S*ALOG( (l-.+RHO) / (t--RHO))

33 . cor-:o.

34. Co2=0.

35. DO 7 L:1rN3

36. DO 9 N:5¡N2

37 . FN:FLOAT (N)

38. CALL RCAL(N,RH'R)

39. u:0.S*ALOG( (1.+R)/ (t_.-R) )

40. FN:TLOAT (N)

41-. ¿=g't (Fl"lU1-FMU0)* (FN-3. )-0.5* (FMU1 **2-EMIJ}**2,)

* (FN_3. )

42. rF (z.cE.AS) THEN DO

43- co ro 25

44. END IF
45. 9 CONÎINUE

46. 25 NN(L)=N

47 . CO1:CO]-+FLOAT (N)

48. CO2:CO2+ELOAT (N) **2

49. 7 CONTINUE

50. e{RrTE (6t23) (NN(I),I=1,100)

5L. 23 FORMAT (5r5)
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52. C

53. FN3:FLOAT (N3)

54. ARL:CO1IFN3

55. VN: (CO2-CO]_**2/FN3) / (FN3-1)

56. wRrrE (6t27 ) ARL,VN

57. 27 FORMAT (2X, I ARL =rrF9.3, I Variance :rrF9.3)

58. 5 CONTINUE

59. PRTNTT I r

60. 3 CONTINUE

6T. STOP

62. END

63. C

64. C Subroutine Lo generate samples of size N from a

bivariate normal

65. C distribution and to calculate the correlation
coefficient R.

66. C

67. SUBROUTTNE RCAL(N,ROH,R)

68. DTMENSTON X1 (300),X2 (300),RR(2)

69. DOUBLE PRECISTON DSEED

70. COMMON DSEED

71-. U1:0.
'12. îJ2:0 .

'73. SIG1=]-.

74. SIG2:I-.

75. T1:0.

7 6. T2:0 .

77. C

78. DO 15 K:1¡N

7 9 . CALL GGNPI',I (DSEED, 2, RR)

80. XL (K) =RR(1) *SQRT (SIc1) +UL

8l-. x2 (K):ROH*RR(1)'kSQRT (SIc2)

+SQRT (1. -ROir**2) *SQRT (Src2) *RR(2) +U2

82. Tl-:Î]-+xl- (K)

83. I2:T2+X2 (Kl

84. 15 CONTTNUE



46

85. FN=FLOAT (N)

86. XB1:TI-IFN

87. KB2:T2/îN

88. r3=0.

89. r4:0.
90. r5:0.
9I. C

92. DO 20 K:1rN

93 . T3:T3+ (xl- (K) -XB1) **2

94. T4:T4+ (x2 (K', -XB2) **2

95. 15=15+ (x1 (K) -xB1) * (x2 (K) -xB2)

96. 20 CONTINUE

97. C

98. s1:T3l (rN-l_. )

99. s2:r4/ (FN-t_. )

r_00. sr_s:sQRr (s1)

LoL. S2S:SQRT (S2)

3-02. 51,2:15/(FN-l_.)

l-03. R:51,2/ (S]-S*S2S)

104. RETURN

l-05. END

106. c
107. $ENTRY

t_08. /*


