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ABSTRACT

Recently there has been a resurgence in using statistical techniques to improve the
quality of the output of industrial production processes. Recognizing the random nature of
the process, statistical procedures can be used to describe the process when it is in a state of
"control”. Using these baseline parameters, the process can then be judged as "in control”
or “out of control".

Shewhart control charts are developed for the univariate and bivariate case. For
most production processes, more than one related quality characteristics of the product has
to be kept in control at the same time. Statistical process is then Multivariable. Although it
is important to control each variable individually, it is necessary to consider the variables
simultaneously. Since the variables are correlated with one another, individual control will
not be sufficient to control the multivariable process. Hence the multivariate approach to
quality control has been considered.

As an alternative to the Shewhart chart, the cumulative sum (CUSUM) control chart
has been developed. The CUSUM chart tends to detect relatively small shifts in the
process more effectively than the Shewhart charts. CUSUM control charts in the univariate
and bivariate case are discussed here. The CUSUM control chart is developed by a
sequential sampling procedure. The sequential probability ratio test (SPRT) is used to
construct the V-mask Scheme to detect the shifts from in control to the out of control state.

To study the ARL of the CUSUM scheme the Markov chain approach has been
considered. The transition probability matrix for this Markov chain is obtained and then the
properties of this matrix are used to determine not only the average run lengths for the
scheme, but also moments and percentage points of the run-length distribution and exact

probabilities of run length. This method has been suggested for any discrete distribution
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and is also as an accurate approximation with any continuous distribution for the random
variable which is to be controled.

In dealing with bivariate data the role of correlation as measure of joint dispersion is
very important. This area has received very little attention in the quality control literature.
In the final chapter several different types of control charts are developed for the correlation
coefficient. Both the exact and asymptotic distributions of the correlation coefficent are

considered.
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CHAPTER 0

INTRODUCTION: SUMMARY

Recently there has been a resurgence in using statistical techniques to improve the
quality of the output of industrial production processes. Recognizing the random nature of
the process, statistical procedures can be used to describe the process when it is in a state of
"control”. Using these baseline parameters, the process can then be judged as "in control"
or "out of control”.

An excellent review of the history of statistical quality control and its impact on
industry can be found in an article by A. J. Duncan(1986). Work in statistical quality
began in North America in the 1920's with work at the Bell Telephone Laboratories under
the leadership of W. E. Shewart, H. F. Dodge and H. G. Romig. During World War II
the techniques were refined mainly by the Columbia University Research group under the
leadership of A. Wald.

During the same period the British school was working on similar problems relating
to the variation in quality of output and improving the quality using statistical procedures.
Following World War II W. Edward Deming introduced statistical quality control
procedures in Japan. This has led to development of products that consistantly maintain
high quality. The demand in North America and Europe for products of quality equal to
those produced in Japan has led to a renewed interest in the statistical community in the
development of new and improved statistical techniques.

One of the main techniques developed for statistical quality control is the control
chart. Control charts are used in deciding whether variations in the quality of the output
of a process can be viewed as coming from "in control" process or whether the process has

for some reason gone "out of control".



Generally a production process operates in an "in control” state producing
acceptable products for a relatively long period of time. Occasionally a "shift" to an "out of
control” state will occur and a larger proportion of nonacceptable items will be produced.
A major objective of Statistical Quality Control is to detect this shift in the behaviour of the
process and to return it to its "in control” state. Hence, the control chart is used as a
monitoring, or on line, device to detect the shift in the process. The process is then
adjusted to attain an acceptable level of quality.

In Chapter 1 univariate and bivariate control charts are discussed. Following the
general model due to Shewhart (1931), univariate control charts are developed controlling
for process means and process dispersion (variance and range).

The second section of this chapter deals with bivariate control charts. For most
production processes, more than one related quality characteristics of the product have to be
kept in control at the same time. Statistical process is then multivariable. Although it is
important to control each variable individually, it is necessary to consider the variables
simultaneously. Since the variables are correlated with one another, individual control will
not be sufficient to control the multivariable process. The multivariate approach to quality
control was originally considered by Hotelling(1947).

In Chapter 2 the control of two quality characteristics is considered both
individually and simultaneously. When two related quality characteristics are considered,
there are three parameters that have to be studied: the process mean, the process standard
deviation and the correlation between the two characteristics. The control of the first two
parameters mentioned are discussed in Chapter 2 and the latter is discussed in Chapter 3.

After a process has been judged to be in a state of statistical control, the
effectiveness of a control chart in detecting departures from the "in control” state become
important. As an alternative to the Shewhart chart, the cumulative sum (CUSUM) control

chart was developed by Page (1954).



The CUSUM chart takes into account all the information in the sequence of
observations, while the Shewhart Chart only uses the information about the process
contained in the last plotted point. Thus the CUSUM chart tends to detect relatively small
shifts in the process more effectively than the Shewhart charts. The CUSUM chart is used
primarily to maintain the current control of the process. CUSUM control charts in the
univariate and bivariate case are discussed in Chapter 2.

The CUSUM control chart is developed by a sequential sampling procedure.
Suppose the observations are observed sequentially in time. Then the CUSUM control
chart plots the cumulative sum of the sequence of observations against the number of
observations. The change in trend on a CUSUM chart will indicate that a change has
occurred in the process. It is not sufficient to detect a shift by visual inspection. The
sequential probability ratio test (SPRT) is used to construct the so called V-mask Scheme.

The use of cumulated sums can be very effective in detecting shifts. The CUSUM
will detect a shift in a process mean more quickly than a Shewhart chart. We say that its
average run length (ARL) or the expected number of samples needed before the process
mean plots "out of control” is less than for the Shewhart chart.

To study the ARL of the CUSUM scheme a different approach has been developed
by Brook and Evans (1972). They consider the scheme as a Markov chain. The transition
probability matrix for this Markov chain is obtained and then the properties of this matrix
are used to determine not only the average run lengths for the scheme, but also moments
and percentage points of the run-length distribution and exact probabilities of run length.
This method has been suggested for any discrete distribution and is also as an accurate
approximation with any continuous distribution for the random variable which is to be
controlled.

As we have seen in dealing with bivariate data the role of correlation as measure of
joint dispersion is very important. This area has received very little attention in the quality

control literature. In Chapter 3 several different types of control charts are developed for



the correlation coefficient. Both the exact and the asymptotic distribution of the correlation
coefficent are considered.

The Appendices contain the computer programs that were used. In some of the
programs the statistical package SAS has been used. However, for the simulation studies

the programs were written in FORTRAN incorporating some IMSL subroutines.



CHAPTER 1

SHEWHART CONTROL CHARTS

1.1 Univariate Quality Control Charts

In any production process, the quality of the product is determined by different
characteristics of the product produced. The measure of the quality of the characteristic of
interest is expected to be kept at a specified level throughout the production process. In any
production process a certain amount of inherent or natural variability is present. The
inherent variability is due to uncontrollable causes or "chance” causes. Another source of
variability, which can be controlled may be present. This types of variability is said to be
due to " assignable causes". A process that is operating in the presence of assignable
causes is said to be "out of control".

Generally a production process operates in an "in control" state producing qualified
products for a relatively long time. However, occasionally some assignable causes will
occur making a " shift" to an out of control state, where a larger proportion of
nonconforming units will be produced. A major objective of Statistical Quality Control is
to quickly detect the shift in the process and to return it to its in control state after
identifying an assignable cause and correcting it. Hence, the control chart is used as an on-

line process control technique to detect the shift in the process.

1.1.1 General Model of a Shewhart Control Chart.

Let w be a sample statistic that measures some quality characteristic of interest with

mean . and standard deviation 6. Then the control limits of a Shewhart Control Chart

[Duncan (1974), Montgomery (1985)] are given by:



Upper Control Limit UCL=p,+ko,
Centre Line CL =ypu,
Lower Control Limit LCL =y, -ko,

where k is the distance of the control limits from the centre line. Customarily k is chosen
to be 3, when the underlying distribution is normal, then the control limits are called " 3-
sigma limits".

The above control limits are chosen so that if the process is in control, nearly all of
the sample points will fall between the upper control limit and lower control limit. The
process is assumed to be in control as long as the points plot within the control limits.
However, a point that plots outside the control limits is interpreted as evidence that the
process is out of control, and an assignable cause is sought.

The control chart is actually a test of the hypothesis that the process is in a state of
control. In this context a Type I error is concluding the process is out of control when it is
really in control. Similarly a Type II error is concluding the process is in control when it is

really out of control.

v UCL=p, + ko,

CL

fl
5=
£

LCL= K, - ko,

Samples or observations in the order of production



1.1.2 7% - Control Chart.

Suppose that the quality characteristic of interest is normally distributed with mean p and

standard deviation ¢, where both |1 and © are known. Let x ces X be a sample of

¥
n
size n with average X = -11; in . Then X is normally distributed with mean W and standard
i=1
deviation o/vn . If the Type I error of testing the hypothesis that the process mean is at its
specified value | = H, is «, then it is expected that the 100(1-a)% of the sample mean X's

G

should fall between Ho + Za/zf . Ifz,, =3, then 0=0.0027 and the 3-sigma limits for
n

the X - chart are given by

UCL =, +3—
n

.\/_
CL = U,
LCL=uO-3—\/g.

n

Generally, 1L and ¢ are unknown. Then they must be estimated from preliminary

samples taken when the process is considered to be in control.

1.1.3 } and R Control Charts.

Consider m samples, each containing n observations on the quality characteristic.

Usually n is taken to be very small (n< 10). Let X R S'cm be the averages of the m

r )—(2’ )

samples. Then the best estimator of the process mean [ is the grand average
1 v -
=m 2 X;
=1

Thus X would be the centre line on the X - chart . Now, to find an estimator for G, two

talll

methods can be used, one is estimating from the sample standard deviations, and the other
is estimating from the ranges of the m samples. In this section the method using ranges

will be discussed.



Let X s Xpsenvs X be the ith sample of size n and define
X max) = max( Xopo Kigs v v o0 X )
Xi(min) = min( Xips Xigp - o s Ko ).

Then the range R, of the ith sample is given by,

R;= Xitmax) ~ Ni(min)
Then W, = R/o is called the relative range of the ith sample. And the parameters of the
distribution of W are functions of the sample size n.

To determine the control limits of the R-chart, we need the estimates of mean and
standard deviation of R. The estimate of the mean of R can be taken as R. Hence the
centre line for this chart is R and the estimate of the standard deviation of R, é\R can be
found from the distribution of W =R/c. The mean and standard deviation of W are d,

and d, respectively, where d, and d, are known functions of the sample size n. The values

of d, and d, for various sample sizes are given in [Duncan (1974), table M].

An estimator of © is given by

5=

S| A

where R is the average range;

lm
R=m R

B

Therefore
6 = d;G,
A R
where o = a;
That is,
L R



Hence, the control limits for R - Chart with the usual 3-sigma limits are:

_ _ R
UCL=R+3 0 = R+3d; g
2

CL =R

Let

then the R chart control limits become:

UCL=RD,
CL =R
LCL =R D,

The constants D5 and D, are tabulated for various values of n in [Duncan (1974), table M].

The m sample ranges should be plotted on a chart with these control limits, and if any
points exceed the control limits, the assignable cause should be sought and corrected. A
new set of control limits should be calculated for the remaining observations. The control

limits of the X - Chart based on R as an estimator for ¢ are given by:
3

UCL= X+ R
d,\n
CL = X
LCL= X - == R
dyvn =
Here the quantity
3
A, =——
2 dyn

is a constant that depends only on the sample size n; hence the control limits can be

rewritten as:
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UCL= x+A,R
CL = X
LCL= x -A,R.

The m sample averages should be plotted on a chart with the above control limits. If any of
the points fall outside the limits, the process is considered to be "out of control" and an
assignable cause is investigated.

The R-chart monitors process variability within each sample whereas the X-chart
measures variability between the samples. Hence when constructing X and R charts it is
better to deal with the R-chart first and see whether the variability within samples is in
control for all the samples. If the variability is in control, then the X-chart can be
constructed. If the R-chart indicates out of control, eliminate the assignable causes until it

plots in control and then proceed with the X-chart.
When preliminary samples are used to construct the X and R control charts, it is

customary to treat the control limits as trial values.

1.1.4 ‘;'Yand S Control Charts.

When the sample size is moderately large, say n > 10, the Range method for
estimating o loses statistical efficiency. In this case X and S charts are used, where the
process standard deviation is estimated directly instead of indirectly through the use of R.
Sometimes this S chart is refered to as the ¢ chart.

From each preliminary samples, the sample mean X and the sample standard

deviation s is calculated. The sample variance

2 1 v -2
§ =ﬂz(xi'x)

i=1
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is an unbiased estimate of 62 ; however, s is not an unbiased estimator of ¢. An unbiased

estimate is ¢,0, where c, is a constant depends only on n, that is:
n
Lz G
47 ¥n-1 n-1y °
r3)

It can be shown that the variance of s:

Var(s) = (1- &) .

Using these results, X and S charts can be developed.
Consider the case where a standard value is given for 6. Since the mean of s is
¢,0, the centre line for the chart is ¢,6. Then the 3-sigma control limits for the s chart are:

UCL= ¢,0+ 3oy 1- ¢

CL = c40

LCL = c,0 - 36\/1- ci .

By =¢,- 3\ 1- ci, Bg =c4 + 3\/1- ci;
where the constants B and By are tabulated in [Duncan (1974), table M] for each n.

Now the control limits become:

UCL = B¢ o
CL = c,0
LCL = B;5o.

If no standard value is given for o, then it must be estimated from the preliminary samples.

Consider m preliminary samples each of size n, and let s; be the standard deviation of the

ith sample. Then the average of the m sample standard deviations is,
1 m

“m XS

i=1

wi
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The statistic — is an unbiased estimator of 6. Therefore the control limits of the S-chart

C4
would be:
- S

UCL=s+3a 1-c4

CL =35

ICL =5 3—§'— 1

=5 + o - Cy
Let
3 2 3 2
B, =1-—/1-¢;, B, =1+ —\/1-¢;
3 4 4 4 Cy 4

where B; and B, are tabulated in [Duncan (1974), table M] for different values of n.

Now the control limits become,

UCL = B, §
CL =5
LCL =B,5.

Bs

Bg
Note that B, = — and By = =.
4 4

S . . - .z
When — is used to estimate o, the control limits on the corresponding X chart

C4
would be;
= 35
UCL = x +
X (;4 '\/?1
CL =X
= 35
ILCL=Xx - ;
ciVn
Let the constant
A, = ——
3% en

and the values of A, for each n is given in [Duncan (1974), table M], then the X chart

control limits become:;
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UCL = X+ A;§
CL =X
LCL = X - A;§

1.1.6 S°’- chart.

The S control chart is also sometimes used to detect process dispersion. Let s? be
the sample variance. Since the underlying distribution of the production process is
assumed to be normal the statistic (n—1)52/<52 is distributed as chi-square with (n-1) degrees

of freedom. If the Type I error of testing the hypothesis that the process standard deviation

is at its specified value 6 = ;) is @,

then
2 82 2
P { xn_l’l_alz < (n’l)? < xﬂ—l,(x/Z} =1-0o
0

where X121-1,1— o2 and ﬁ_l, o2 denote the lower and upper o/2 percentage points of the chi-

square distribution on (n-1) degrees of freedom.

Then the 82 chart control limits become,

2
UCL= 17 Xn10n
CL = o
Sy
LCL = 2

-1 Xn-1,1-a/2°

The above control limits are probability limits. If a standard value is not given for % then

it should be estimated from the priliminary samples taken when the process is considered to
be in control. Let Si2 ,1=1,2,...,m be the sample variance of the ith preliminary sample.

Then
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=2_1 2
S “m Si’

m
i=1

Now the control limits are:

522

1 Xn-1,0/2

it

UCL

CL =52
52 2

LCL = 17 Xn1.1-0s2°

Usually these S2 control charts are plotted only with an upper control limit. Since a
small variance is of advantageous in maintaining a control process, we can use only an

upper control limit:

2
UCL = o1 Xn-l,a

when © =G, is given; otherwise,
=2

S 2
UCL = 1 xn—l,oc'

These control limits are all valid only if the underlying distribution is normal.
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1.2 Bivariate Control Charts.

For most production processes, more than one related quality characteristics of the
product has to be kept in control at the same time. Statistical process is then Multivariable.
Although it is important to control each variable individually, it is necessary to consider the
variables simultaneously. Since the variables are correlated with one another, individual
control will not be sufficient to control the multivariable process. The multivariate
approach to quality control was originally considered by Hotelling (1947).

In this section the control of two quality characteristics is considered both
individually and simultaneously. When two related quality characteristics are considered,
there are three parameters that have to be studied: the process mean, the process standard
deviation and the correlation between the two characteristics. The control of the first two
parameters mentioned are discussed in the following sections and the later is discussed in

the next chapter.

1.2.1 Control Charts for Process Means.

Alt and Smith (1988) have given an excellent review of the multivariate process
control technique which are currently available. Montgomery (1985) has illustrated the use
of multivariate control charts using Hotelling's (1947) ideas. These techniques will be

summarized for the bivariate case.

Consider two related quality characteristics. Let them be denoted by X and X,
Suppose that the underlying distribution of X, and X,, is bivariate normal with mean

vector W and variance- covariance matrix Z; that is,

2 2
( Xp X2 ) ~ BVN ( p“la uza 01, 0-2’ p)°
The control of the process means of the characteristics X , X, can be monitored

individually via the usual X charts discussed in section 1.1. The _)21 and -)-(—2 charts can be
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plotted seperately to see whether the process mean is in control for X, and X,

individually. This is equivalent to plotting them both on one chart as shown in figure

1.2.1, where UCL, and LCL, are the control limits for the 3(-1 chart and UCL, and LCL,

are the X, chart control limits. The process is considered to be in control only if the sample
means X, and X, fall within their respective control limits. When the two quality

characteristics are considered simultaneously, the pair of means ()'(1, ’-‘2 ) should fall within
the rectangular region. This can be very misleading, since the correlation is not taken into
consideration and also the Type I error or the probability that a point plotting in control
would not be equal to their claimed values for the individual X charts [Montgomery

(1985), page 246]. When the correlation is taken into account, the control region will be

elliptical in nature.

tadl

UCL

LCL

>l

LCL UCL

figure 1.2.1

First we will consider the case when the parameters are at their standard value. Let

the standard values of [ and X be given by

ul
m=p= |
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and
2
6, p0G.0,
X=X =
i) 2
po,0, G

respectively. Suppose random samples of size n are taken and
- 1 & - 1 &
= ﬁzxn > X = ﬁzxzi

are determined, then a xz - chart is used to determine whether the process mean is at its

specified value Hor Determining whether the process is in control is equivalent to testing

the hypothesis:
H,: m=p, vs H :E#Eo'
Here, instead of upper and lower control limits only an upper control limit is used. Since
the quadratic form
n(X-p) ' (X-p)
is distributed as xz with 2 degrees of freedom, the appropriate statistic is,

_ 2, 2
2 _ n Xy - Ky . X2 - H,
o " a-p) || o o,

X

X, -n, | [X, -1
Sop | /L1222 a2
G, O,

- - - . . . 2 2 2
where X = (X, ,X,). Then for an a -level test H,, is rejected if xO > %o where ¥ 2.0

is the upper a% point of a chi square distribution with 2 degrees of freedom.

The equation 1.2.1 represents an ellipse centred at (ul, uz) with the principal axes

and orientation determined by p, 6, and ©,. Therefore, a control region could be

constructed such that the region is the interior and boundary of such an ellipse (figure
1.2.2). Hence using the control chart with UCL= x; o, the control of the vector of process

means could be monitored.
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figure 1.2.2

32k
31 |
X1 30
29 |-
28 -
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X2
If a particular pair of sample means plots outside the elliptical region, the process is
said to be out of control. We are now interested in which orne (or both ) of the
characteristics may be causing the signal. Since the characteristics are correlated, it is not
appropriate to test each of the means individually at the o level.

To control the overall type I error rate, Bonferroni tests or confidence intervals can
be constructed [ Alt (1982), Morrison (1983)]. Let A r A2, A Ap be p random events

and Al, Az’ R Ap their corresponding negations. Suppose that the A/'s (i=1,2,...,p)

and p hypotheses that we are interested in testing simultaneously. Then from the

Bonferroni inequality

P
Pr{ﬂ A} > 1-«a

i=1 !
for a given family error rate o or confidence coefficient 1 - ct. If we specify each

individual test level at v = a/p, then

Pr ( one or more hypotheses will be rejected | all hypotheses are true )

- 1~Pr[% AJ zP(%) _—

i=1
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The Bonferroni method of simultaneous tests and intervals merely requires that the

error rate for the individual tests be divided by the number of tests p in the family. For this

case, for p=2, individual X - charts for each characteristics with the probability of a type I

error set at o/2 will be constructed. The overall rate is then .

To illustrate this consider a set of bivariate data generated by simulation using SAS

(Appendix A, program 1). Twenty samples of size n = 10 are generated from a normal
population with parameters o= 30, M, = 15, Gf =8, 0‘% =4 and p =0.5. Then the

sample averages for each characteristic X,» X, and the xg statistic are calculated. The

statistics X;, X, and x02 are tabulated in Table 1.1 for each sample.

Sample

O W o o oW N

S e T S L S
RURFC MUY B U VR Sy

30.
30.
31.
31.
31.
29.
31.
31.
31.
29.
31.
29.
29.

30

30.
29.
29.

Table 1.1
-X_l

5152 15.
3481 15.
0430 15.
5144 15.
1773 15.
2462 14.
6637 15.
3846 15.
8660 16.
5721 15.
1990 15.
6743 14,
8488 14.
.2235 15.
4238 15
8453 16.
9138 15.

ol

0318
3424
8084
9029
0891
6426
9283
3627
3256
5069
2104
8655
7799
2442

.2223

0165
4282

©C W O O O O R o kouU N WO NwWw NN oo o

.40712
.31185
.00400
.31713
.08928
.73775
.84556
.45006
.83052
.67306
.94906
.13382
.12118
.15337
.24199
.85466
.71059



18 30.2293 15.1393 0.07701
19 29.9804 14.9192 0.01868
20 29.7927 16.0803 4.48931

The control limits for the X, and X, Charts are,

UCL; = 30 +3x 2/V5 = 32.6833

LCL; = 30-3x2~5= 27.3167
and,

UCL3 = 15 + 3 x 2410 = 16.8974

LCLy = 15-3x2~10= 13.1026

The upper control limit for the x2 - chart is,
UCL= X5 g 0054 = 1044,

All these sample statistics plots within the control limits; hence we conclude that the
process mean for both characteristics is in control individually and simultaneously.
Now, suppose we simulate (Appendix A, program 2) another set of 20 samples each of

size n = 10, and we disturb the process mean for the last 15 samples as follows:

for samples from 6 to10, o= 30 +0.651,

for samples from 11 to 15, H, = 15+031,

and for samples from 16 to 20, = 30+0.651;
p.2=15+0.3i, i=1,..,5.

Then the sample statistics are given in Table 1.2.

Table 1.2
- - 2
Sample X X, X
0
1 30.6513 16.0915 3.0025
2 29.6978 15.3289 0.7471

3 30.6084 14.8924 0.8099

20



4.8507

4 29
5 29
6 32
7 32
8 32
9 31
10 32
11 30
12 30
13 30
14 29
15 29
16 30.
17 30.
18 31.
19 33.
20 32.

1623
3221
4625
0432
5287

15.1689
16.1253
15.5394
16.5076
15.7286

12.1976 *
8.0839

21

Though the sample process mean for characteristic X, has been increased by 0.65i,

i=1,..,5; from the 6th to the 10th samples, the 521 chart has not detected this shift but the

x2 - chart has detected it at the 10th sample. Similarly from the 11th to the 15th sample the

process mean of the characteristic X, has been shifted by 0.31,i=1,..., 5; and here again

the X, chart did not detect the shift but the x2 - chart has detected the shift at the 14th

sample. When both characteristics X, and X, are increased by 0.65i and 0.31,i =1, ..., 5;

respectively through samples 16 to 20, the X, chart was sensitive enough to detect the shift

at the 19th sample like the x2 - chart, though the X, chart failed to detect the shift.

Hence from this example we see that, where two quality characteristics are

considered the x2 - chart is more sensitive in detecting the shift than the individual X

charts.
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Let us consider the case when the parameters are unknown. Suppose m preliminary

samples, each of size n are taken. From these samples, the sample means, X and

1i’ %2
the sample variances, s‘;‘i , Sii of the characteristics X, X, and the sample covariance,

$;; of the two variables are calculated. Let

m m
K= Y%, K= )%,
17 m - 1,i° T m 2,i
i=1 i=1
and
1 m
S = E Z Sx ’
i=1
where
1. S12,i
S, = 5 b
S12,i 834
and also let
- - - 1
X, = (xl,l, xz,i) ,1=12, ...,m

Then
T=|_ =%i>§

is an unbiased estimator of L, and S is an unbiased estimator of )30. Hence we replace p

and ZO by Xand$S respectively. Then the resulting statistic is

To =n(% -X)'§ (% -%) (1.2.2)
2.2
ns,s - = - =
172 .- X X,.-X
1 2
- 1,1 + 2,1
det (S) 51 5y
5 s xl,i - X )(2‘i - X,
T4 512 _ _ ’
S S
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where

1 2 2 1w 2 I
Slzﬁzsl,i’ Sz:ﬁzfsz,i’ Su:fﬁzl’slz,i
1= 1=

and

3 2.2 22
det(S) = 51§, - §{5.

2(m-1)(n-1) E

2.
To is distributed as ===

2mn-m-1- Hence the Tg statistics for the m preliminary

samples are plotted on a chart with

UCL = 2(m-1)(n-1) F

p— and LCL = 0.

2,mn-m-1,0,
If one or more of the preliminary samples Tg statistic plots out of control then they are
discarded and based on the rest of the preliminary samples, X and S are recalculated and

again tested for control. This process is repeated until all the samples plot in control. Then

these in control values of X and § are used as estimates of i and ZO. Now suppose a
new set of m samples each of size n are taken from the process. Let X ¢ denote the 2x1

vector of sample means, then by substituting X ¢ instead of X , inequation(1.2.2), the

test statistic becomes

2 - = =1 _ =
Toe =n&-X) S (%;-X) (1.2.3)
And now Tgf is distributed as %ﬁ F2,mn-m-1' Hence Tgf of each sample mean

is plotted on a control chart with

UCL = 2(m+1)(n-1) E

mn-m-1 2,mn-m-1,0. and L.CL = 0.

To illustrate this, consider the example where 10 preliminary samples each of size

10 are generated (Appendix A, program 3) with parameters
n, =30, u, =15, 67 =8, 65=4 and p, = 0.5,

except that the 3rd and 5th samples are generated as follows:



for the 3rd sample, M= 33 and H, = 17,

for the 5th sample, B = 27 and M, = 13.

Then the test statistic Tg for each sample is given in Table 1.3.

Table 1.3
Sample Ti

1 1.0433

2 1.4317

3 17.0695 *
4 4.2399

5 9.9870 *
6 0.8851

7 0.2356

8 0.0054

9 1.3498
10 0.6277

And the control limits for this chart are
UCL =5.461 and LCL = 0.

The 3rd and 5th sample statistic falls outside the control limits. Hence we discard those

two samples and recompute the statistic based on the remaining 8 samples (Appendix A,
program 4), and the Tg staistic for the 8 samples are listed in Table 1.4.

Table 1.4

Sample T%

.54296
.04689
.40840
.29616
.42761

LO2 B T VS I S
(=T \* B - I =,
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6 0.57674
7 0.11597
8 0.00328

The new control limits based on the 8 samples are
UCL =5.324 and LCL =0.

Now all the samples plot incontrol. Therefore the sample statistics based on these 8

samples are calculated:
— 29511
E= (14.906)
and
_ ,11.398 4.227
- ( 4.227 5.934)

Now we generate (Appendix A, program 5) a new set of 10 samples each of size 10.
Then the Tgf statistic for these future samples are given in Table 1.5.

Table 1.5

Sample Tgf

.80445
.37780
.32445
.46154
.06703
.11760
.08576
.82544
.25430
.17544

W o 2 o o W N s
N Nk H O o O N o o

[unY
[e]

The control limits for this chart are,

UCL = 6.674 and LCL =0.

25
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Here all the samples plot in control.

The sample statistics X and S should be updated from time to time by taking

preliminary samples when the control charts indicate in control state.

1.2.2 Control Charts for Process Dispersion.

As in the process mean case, the control of the process dispersion can be monitored
by constructing S-charts and S2_charts individually as discussed in section 1.1. Here again
the correlation of the two variables is ignored. Hence we construct charts to monitor the
control of process dispersion simultaneously. There are various kinds of control charts to
detect process dispersion. That is basically all these charts check whether the covariance
matrix of the process remain at the standard value ZO.

Suppose a random sample of size n is obtained and the sample variance-covariance

matrix is computed from those samples. Let it be denoted by S.

2
81 Si2
§= 2
S12 8
n _ 2 n - _
> (X - X)) 2 (X - XXy - Xy)
1 k=1 k=1
k‘_z:l(xlk - XXy - Xp) k§1(><2k - X)

The sample correlation coefficient for the two variables denoted by r,, is given by
Ty = 812/5:5;

Then the sample generalized variance is

ISI = stg'siz

22 2
51 82 (1-135)
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@) | S|""*- chart : Probability limits.

The first chart we'll consider is the IS | 12 chart. Hoel (1937) has shown that the

statistic
2n-1)| 8|
Zolllz ’
where
120,1/2 o, (1- p0)1/2

hasay ? distribution with 2n-4 degrees of freedom. Hence, the control limit of the

|S [1/2- chart becomes,

172 2

UCL = 2(n 0 ‘Z ‘ X 204,012
12 2

LCL = 2(n—1)’Z l X 2n-4,1-a/2

. . 12 . - . . .
If the sample statistic | S ' plots outside these limits, then the dispersion of the process is

said to be out of control, and the assignable causes are sought. Note that these control

limits are probability limits.

(ii) |S|"*- chart: 3 - sigma limits.

Another way of controlling the process dispersion is by constructing 3-sigma limits

. 12 . . .
chart. For this the first two moments of l SI are used. Since the statistic IS} 18

distributed as

2
2 2
(n-1) ’Z"‘ kI;le n-k’

it follows that the rth moment of [ SI is given by

s = @1 |z [f

2
MYy,
k=1




where the chi-square variables Y, 's are independent, and

Therefore,

MI"-‘

For r=

where

Ifr=1,

where

Therefore,

n-k
] TG+ r)
E(YD) = 2 ——, fork=1,2.
=)
) 2 I()
E(S[) = 1|z |" 27 1 —Z-.
k=1 T(ZY)

n-k
I'G- +
E(IS'I/Z _ 2 (2 I')

i 1/2
-1 n-k 0
G

2
=

b _L F(—z““+ I‘)
3 7 n-1 n-k
F(T
n-2
B(s[)= 22 [20! bllzol,
n-2
b, = ol

2
v(s[" = e(s) - {(s|"H}" = (bl-b:f)IZO‘.

1 .
Hence, for the ] S| k. chart, three sigma control limits would be:

UCL =(by+3+[b, - b )‘2 !”2

L = b3‘>: ‘”2

LCL = (bs-34fb; - b2) IZO’”Z.

28
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If the ] S I 2 statistic calculated for each sample plots inside the control limits, the process

is considered to be in control. If one or more of the sample statistic plots outside the limits

the process is considered to be out of control and assignable causes are sought.

(iii) W* chart.
The final chart to monitor process dispersion is an analogue of the S2 - chart.

Anderson (1984) has shown that the Likelihood Ratio Test of
Hy: Z=EO vs Hj :Z'J':Zo

is modified to be unbiased, based on the following statistic

W* = -2(n-1) - (n-1) In(| S|) + (n-1) In(

zo’) +(n-1) race( Z1 S ),

(1.2.5)
where
2 2
tmce(Z(‘)lS)= -—1—2— —S-l— + 8—22- 2p, Si2
(I-pp 0% O, 0,0,

The upper 5% and 1% points of the distribution of W* are tabulated in [Anderson (1984),

table7], under p=2, for various values of n-1.

To illustrate all these control charts discussed for process dispersion, we will
consider the same example which we discussed earlier for process mean. For process
dispersion we will construct the S-chart and Sz-chart for the two variables individually; for
simultaneous control, the !S I 2. charts and the W* - chart are considered.

Again 20 samples each of size 10 are simulated (Appendix A, program 6), and the

sample statistics necessary for these charts are calculated and tabulated in Table 1.6.



Sample s, 5,
1 3.37755 1.28291
2 2.17111 1.18312
3 2.31765 1.67198
4 2.82211 2.08354
5 2.51136 2.10146
6 1.95998 1.26131
7 3.59024 1.96691
8 2.67260 2.06409
9 2.66152 2.05126
10 1.85617 1.51116
11 2.91446 2.09679
12 2.11859 2.12041
13 2.96494 1.94756
14 2.95900 2.36012
15 2.98815 2.67485
16 3.85218 2.47527
17 3.11956 2.61704
18 3.24793 2.34258
19 3.09140 2.04355
20 2.11664 1.79249

11.

[
N Wy T

«@w 0 o b o W N

14

4

Table 1.6

\S)

4079
L7137
.3715
.9643
.3069
.8415
.8898
.1428
.0837
.4454
.4941
.4884
.7909
.7557
.9201
.8393
L7317
.5491
.5568
.4802

1.64586
1.39978
2.79552
4,34113
4.41614
1.59001
3.86873
4.26045
4.20768
2.28362
4.39651
4.49613
3.79299
5.57015
7.15483
6.12695
6.84888
5.48768
4.17609
3.21302

The control limits for these charts are tabulated below

S,- chart
S,- chart
$2-chart
S2-chart
12 . .qe ..
ISI - chart (i) probability limits
(i1) 3 - sigma limits

W* - chart (o = 0.05)

UCL
4.721

3.338
22.36

11.18
7.838

8.97
8.52

W W e g W R NS TN U W R

.15806
.17734
.10586
.25658
.271735
.39765
.01105
.18438
.97450
.65859
.32168
.66858
.28536
.86058
.79054
.11698
.30380
.16097
.80567
.14665

LCL
0.781

0.552

1.881

0.00

30

.41484
.58624
.73137
.11231
.28196
.11898
.69817
. 47737
.20130
.12394
.02222
.92709
.26536
.34825
.16091
.45625
.54901
.71294
.71231
.83096
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An examination of the results for the twenty samples indicates that all the sample statistics
are in control. Now we generate another set of 20 samples each of size 10 and disturb the

process variance of each variable for the last 15 samples as follows:

for samples from 6 to10, cf = 8*0.4*1 , i=1,..,5
for samples from 111015,  of = 4%0.2% , i=1,..5
and for samples from 16 to 20, Gf = 8*0.4% ;

of = 4%0.2% , i=1,.5.

A summary of the sample statistics are given in Table 1.7.

Table 1.7
1/2
Sample 51 S, si sz l I Ww*

1 2.31372 1.86484 5.3533 3.4776 4,0372 0.7159

2 2.78896 1.95435 7.7783 3.8195 5.1747 0.5083

3 2.83484 1.26325 8.0363 1.5958 2.9258 3.7397

4 2.82750 1.46452 7.9948 2.1448 3.8003 1.5087

5 2.54312 2.28576 6.4675 5.2247 4.4611 1.1550

6 1.85864 2.77648 3.4545 7.7088 5.1072 11.1272 *

7 1.97094 2.21119 3.8846 4.8893 2.1995 8.9278 *

8 2.67969 1.32772 7.1807 1.7628 3.3009 2.3503

9 4.42383 3.19566 19.5703 10.2123 11.8527 * 9.7435 *
10 3.91406 2.11005 15.3199 4.4523 7.5983 3.5710
11 1.55054 0.67928 2.4042 0.4614 1.0278 14.6112 *
12 2.63107 1.42597 6.9225 2.0334 3.2622 1.8721
13 2.84769 1.45584 8.1093 2.1195 2.9763 3.3704
14 3.38850 2.00686 11.4819 4.0275 5.0404 1.1096
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15 3.10072 1.87821 9.6145 3.52717 4.0554 1.5397
16 1.74575 1.12331 3.0476 1.2618 1.6536 7.6701
17 1.50127 1.33493 2.2538 1.7820 2.0003 7.1100
18 3.45474 1.49705 11.9352 2.2412 4.0734 3.1878
19 3.98015 1.80834 15.8416 3.2701 5.7561 3.5043
20 4.34182 1.48051 18.8514 2.1919 5.9633 8.2231

When the process variance of is shifted by 8*0.4*i (i=1,..,5), for the samples through 6 to

10, the W* - chart(at 5% level) detects the shift immediately at the 6th sample and the

1
] Sl 2. chart detects the shift at the 9th sample. None of the univariate charts detects the

shift. For the 9th sample all the statistics are near to the UCL, although the second variable
process variance is not shifted. When the process variance og is shifted by 4*0.2*i

(i=1,..,5), for the samples through 11 to 15 only the W* - chart(at 5% level) detects the
shift at the 11th sample. When both process standard deviations are shifted for samples 16

to 20, not one of the charts detectes the shift.

(iv) Charts using estimates.

When the parameters of the Bivariate normal distrbution are not specified, we use

. = = . . 2
the sample estimates X and S instead of u and }30 respectively. For the IS I 12 chart , the

. . 12 .
unbiased estimate of ’ 20’ has to be determined.

2
Let IS* l 7 be the average of the m preliminary sample statistics | S l Y ; thatis,

‘1/2 =Lm

m:3

|s* S,

lr/?

Then an unbiased estimate of

1 s
EISI

1/2, .
ZO{ / is given by,

1/2

2
Hence the probability limits of l S f 2 chart become:
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IS*IIIZ 5

UCL = 2b5(n-1) X2n-4,002

L1172
LCL — ._I_S_I_ 2
= 2by(n-1) X2n-4,1-02

2
Similarly 3 - sigma limits of the [S ] 2. chart become:

3 «|1/2
UCL=(1+—6-;'\/b1 -b3) st

CL =|s*",

g2

3
LCL=(1-5-4/b; - b3)

For the W* chart, the unbiased estimates of ’ Zo’ and Z;)l are needed. Let l S*I be

the average of ! S | from the m preliminary samples. That is,

5. =13

S

il »

and
E|[S4] =b1f>:0'.

Sx B
Hence I b is an unbiased estimate of ‘ x 0 ‘ Now, let Sil denote the inverse of the
1

sample variance-covariance matrix for subgroupi,i=1,2,..., m. Kshirsagar (1971)
shows that % S;' is an unbiased estimate of Z(")l. And if,

n4 _L-1. . . - ; .
then 1 S,,=1 is an unbiased estimate of X Ol. Hence we substitute these unbiased

estimates in equation (1.2.5) the W* statistic becomes:

Sx -
W™ = - 2(n-1) - (@-1) In([S|) + (n-1) 1n(|—b~1—‘) + @D mrace(27 5.1'8),



34

The values of the W** will be plotted on a control chart and the upper 5% and 1% points
of the distribution of W** are tabulated in [Anderson (1984) table 7], under p=2, for

various values of n-1.

Now consider the example done earlier, when standard values are not given , we
use the same estimated values that were calculated when the samples were all in control.

The estimates are,
29.511
B (14.906)

- 11.398 4.227
- ( 4.227 5.934

tadil

and

And the sample statistics for the S-charts, Sz-charts, IS I 2 chart and the W* - chart are

computed (Appendix A, program 8) and are given in Table 1.8.

Table 1.8
Sample Sq S, si S; I |1/2 w*
1 4.03154 1.56393 16.2534 2.4459 5.9877 5.9155
2 2.59150 1.45283 6.7159 2.1107 2.5594 4.,2348
3 2.76641 2.03969 7.6530 4.1603 4.4725 0.3019
4 3.36856 2.53436 11.3472 6.4230 7.5696 2.0835
5 2.99763 2.53590 8.9858 6.4308 7.5995 6.4842
6 2.33949 1.52969 5.4732 2.3399 3.4527 1.5306
7 4.28542 2.38054 18.3648 5.6670 10.0961 10.4273
8 3.19009 2.50522 10.1767 6.2761 7.4656 2.4601
9 3.17687 2.49269 10.0925 6.2135 7.1634 1.7791
10 2.21557 1.83287 4.9088 3.3594 3.8284 1.0071
11 3.47878 2.56306 12.1019 6.5693 6.2233 2.0086
12 2.52881 2.57799 6.3949 6.6460 5.2829 2.0691
13 3.53904 2.36925 12.5248 5.6134 7.6111 2.2336



14
15
16
17
18
19
20

NOWw ow W w W

.53195
.56675
.59807
.72360
.87683
.68999
.52648

N NN W W W N

.88176
.26042
.02793
.19568
.87015
.50536
.18176

i2.
12.
21.
13.
15.
13.
.3831

4747
7217
1422
8652
0298
6160

8.3046
10.6303
9.1683
10.2123
8.2377
6.2769
4.7601

The control limits for these charts are tabulated below

S,- chart
S,- chart
SZ-chart

S%—chart

|5]""*- chart (Probability limits)

W* - chart (o =0.05)

UCL
5.793

4.180
31.864

16.589
11.10

8.52

.9994
.3385
.2486
.6376
.9919
.4803
.5313

Lo R &) BEES = 2 E o))

LCL
0.959

0.692

2.66

S W U N oy W
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.5278
.2049
.9417
.0850
.7436
.4425
.6011

Except for the 8th sample, for which the W* - chart (o = 0.05) is out of control and [ S ]1/2-

chart also is almost near to the UCL, the other sample statistics are all in control. Therfore

the 8th sample should be discarded.
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CHAPTER 2

BASIC IDEAS IN CUSUM CONTROL CHARTS

2.1 The CUSUM Control Chart and the V-Mask Scheme.

The Cumulative Sum (CUSUM) Control Charts were proposed by Page (1954) as
an alternative to the Shewhart Control Charts. The CUSUM chart takes into account all the
information in the sequence of observations, while the Shewhart chart only uses the
information about the process which is contained in the last plotted point. Thus the
CUSUM control chart tends to detect relatively small shifts in the process more effectively
than the Shewhart charts. The CUSUM chart is used primarily to maintain the current
control of the process.

The CUSUM Control Chart is a sequential sampling procedure. Suppose the
observations are observed sequentially in time. Then the CUSUM control chart plots the
cumulative sum of the sequence of observations against the number of observations. The
change in trend on a CUSUM chart will indicate that a change has occured in the process.
It is not sufficient to detect a shift by visual inspection. Hence different decision rules have
been proposed to detect the shift in the process quickly. The first decision rule considered
here is called as the V-mask scheme. Johnson and Leone (1962, (a), (b), (c)) proposed

the sequential probability ratio test to construct the so called V-mask Scheme.

2.1.1 The Sequential Probability Ratio Test:

The sequential probability ratio test (SPRT) [Ghosh, (1970, chapter 3)] is used to

construct the V-mask scheme for the CUSUM control chart. Suppose a random sample of

m values x X ,X_, are observed. The likelihood ratio le/ LOm, is calculated,

g

where L im and L()m are the likelihoods of x p X X under the alternative

2,...
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hypothesis, H 1 and the null hypothesis, H0 respectively. Based on the likelihood ratio

three decisions are possible;

. im 061 .
@) L < , H_1is accepted
1-o 0
0
le 1- o, .
(ii) i > , H, is accepted
o 1
0
Oy le l-oa . )
(iii) <L < , a future observation X .18 taken ,
and the new ratio, L / L is then calculated based on the m+1 observations.

1(m+1) m+1)

This process is repeated until a decision is reached. Here 0 , 0 are the approximate

probabilities of Type I error and Type II error respectively.

2.1.2 Cumulative Sum Charts.

Consider the case when XppXpsoovn, X are normal independent random
variables with process mean | and known variance o°. The hypothesis to be tested is:

H : u=, against H:p=p + 66,6>0.

that is, we are testing a positive shift in the target mean value. Then, in this case the

likelihood ratio becomes

= exp ~21?( 280 Z (x,- 1) - m&?o?)
i=1

-y - m6
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IN
o =

I L =
n + 5md , accept p=p .

m
1
if —Z(xi “hy)
G o

m
if :—SZ(xi-uo) 2 = In o + %mﬁ , accept L=p + oG .
i=1 0

on |-

m
If the points [m , 1 Z(xi - uo)] are plotted on graph paper, the ‘continuation region’
C “

i=1

lies between two parrallel straight lines, each inclined at an angle tan™" (% d) to the axis of

m, and with intercepts

1 o,y 1 1- oy
—In , —In

respectively on the axis of
m
1
_Z(xi “Hy)
Gia1

Consider a third hypothesis

H :p=p, - dc
Armitage (1950) proposed the simultaneous application of two SPRT's,
@) H, vs H .
(i) Ho Vs H_l,
where o =o,. The graphical limits for the combined tests are shown in figure 2.1.

The cumulative sum up to the mth observation is denoted by S, , where

1 m
Sm= D (5, - hy) -

i=1

1-a
OP=d=2 ln( 1}
b ol

If o, is small, as we usually require, then d can be approximated as

and
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The angle B;PO is denoted by
6 =tan’ (% 3).

figure 2.1
Sm A1
AcceptH,
B,
) & S AcceptH,
P 9 o) m
By
AcceptH
Ay

The chart is interpreted by placing a mask (shaded area) over the chart as shown in
figure 2.2 with the point 'O’ over the last plotted point with the line OP horizontal. Any
point lying below A;B; is regarded as an indication of increase in the process quality

characteristic we are measuring while points lying above A_1B_; indicates a decrease.
In the CUSUM chart only two decisions are considered: one is rejecting H0 (or

accept H 1) and the other is the combination of the other two decisions; that is, accept Ho

and the continue sampling. This is because the CUSUM procedure is constructed so that it

detects only the sample points that are going out of control. Hence the acceptance of Ho is

considered as "continue sampling".
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figure 2.2
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Consider the cumulative sum up to the (m+1)th observation, then

1m+1
Sm+l=_z (XI_IJ‘O)
05
m
_1 Xm+1-“0
1=
X -H
___:Sm +—m+_l—(.)..‘
10}

Hence the ordinate of a plotted point equals the value of the immediately preceeding point

plus the value of the statistic T; that is,

xm+1 ) uO
Sm+1=8m + Tm where Ty =
c
m+1
- Z T,
=1

Thus the ordinate is the sum of the calculated values of the statistic T. Hence the name

cumulative sum control charts.
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2.1.3 Run Length and Average Run Length.

In an SPRT, the Average Sample Number(ASN) [Ghosh, B. K., (1970), section
3.5] is defined as the expected number of samples that falls inside the continuation region

before it falls on either side for the first time. If it falls for the first time on the acceptance

region, that is referred to as the ASN under H,, and the other occurance is referred to as the

ASN under H;.

Run Length is the number of observations plotted before a point plots out-of-
control for the first time. Average Run Length, ARL is the expected number of sample
points that must be plotted before a point indicates an out-of-control condition. Hence ARL
is the same as ASN under H; in an SPRT. For example if in a production process
ARL=400, this means that an out-of-control signal goes after every 400 samples observed

independent of whether the process is in control or not. Usually in a production process its

appropriate to have a large ARL when the process is in control (i.e. ARL under Hy) and a

small ARL when it is out of control (i.e. ARL under H,).
Let

fl(xi) ‘
zi=ln W ,1=1,2, .., m,

where fo’ f | are the density functions under HO and Hl, respectively. Then

2
zi':-7+E(Xi-}l0),i=l,2,...,m,
and
82
Ey(z)=-% .
5 @)= -3
Let
L
?\,m=1%9
Om

then



l-a, o
EHO[ln Ay l=0 In . + (1-0yin o
0 0

Thus the ARL under Ho is given by,

ARL y = ———
0
oy In + (1 -ay)in
-8%2 '
To calculate the ARL under H X
52
EHI(Z) - "2_ .
Eg[ln A, l=(-a)! Lo n |—21
n =(1-0y)ln + o, In .
H1 m 1 o, 1 1- o,
Thus
EHl[ln Al
ARLy = ——F+—
H By ()
I-a, o
(1-ap)in + o, In
o 1-a
B 522 '

If « is taken to be very small [Johnson and Leone, 1962(b),(c)] then,

-In oy 2ln oy
ARL = 3 = 7 -
&2 o

As §1is varied, the values of ARL associated with different values of & will trace out the

ARL curve for the given control scheme.

42
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2.14 CUSUM for Sample Means.

Here we use the sample mean instead of each observation in calculating the statistic

T. Suppose each time a sample of size n is taken and the sample mean of the ith sample

m

- __1_ s
Xl—nzxu 1—1,2,....,m
=1

is calculated. The standard deviation of %, o, = o/\n.
Then we plot the statistic

1 m
Sm=— (%, - uo) against m.
G- i=1

Here the SPRT for the construction of CUSUM for sample means is based on the
hypothesis:

HO PH=N
against

H:p=p=p+ 8(5).{, 6>0.

Then the dimensions of the V-mask for this chart are

0 =tan (~12- )

l1-«
d=2 ln( 1}
) (o

H, - By
o }
X

and

where

o =

If o, is small, as we usually require, then d can be approximated as

d=-§5 In o
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Hence to construct the V-mask, one procedure for determining the dimension's of the mask
is:

(i) Decide on the least size, D say, of absolute change in the mean which is
desired to detect. Calculate 8 = D/O'i .

(i) Decide on the proportion of occassions ( that is samples ) on which you are

willing to make a false statement that there has been a change in process average. Call this

proportion 20, ( or 0, if only one-sided deviations from average are to be considered).

(iii) Determine 0 and d from the equations.

It appears that CUSUM chart will give more rapid indication of a change in mean if

a small enough value of o, is being used. Since a value of about 0.001 is customory in

most control charts, CUSUM charts have a marked advantage. The advantage decreases

sharply as o, increases.

2.1.5 CUSUM for Sample Variances.

The Cusum chart for variability in a process has been studied by Johnson and
Leone, 1962(b), based on sample variances and sample ranges. But, in this section the

variability of the process is discussed based on sample variances alone.

Suppose the variance is Gg when the process is in control. We wish to detect an

increase in variance from cg to Gf c csg).

We can construct an SPRT such that, the probability of failing to detect such a

change is approximately o, and the probability of detecting a change when in reality,

none has occured, is approximately o;. The test is based on the hypothesis

L2 2 L2 2 2
HO.G =0, VS HI.G =0 (> ;).



Let V,,V,, ..., V_, be the observed sample variances:
N.
- (x:; - )-()2
V.= A . i=1,2,...m.
i 4 N. -1
J=1 1
Consider the likelihood
N

N
m N.
1 i 1 2 -2
= H exp |- — (x5 - X)
Faler ( ’271: GJ 2(52 =1 1) 1

= 1 i=1 exp
2K ©

Hence, the likelihood ratio is,

1}
TN
|9
N’’’
i Ms
oz
[¢]
o
g}
]
o
~
A=
1
s
Ms
o
_Z
]
—
p—
_<
~ J

0-1 O 00 =1
>
N. m
Oy 1 1,1 1
=(~(;—1-J =1 exp "2-(?1-6—3)%\/1 V1 ;

where v; =N; - 1. Then the continuation region is given by,

45



m

2
l-a, o, (on Oy

The boundary between the continuation region and the acceptance region for H1 has the

equation

NgE!
_<
<
Il
N
~~
NIH
]
N!"‘
v'
KR
~
TN
[y
]
Q
N’

i=1 ! Gy Gy
—_ 1 - —
2l

If o, is small, this is approximately

Lyyv--

2 4 1 "1 +
= ARG
Gy 0,

Hence, we construct a CUSUM control chart by plotting

m
1 . L
) ZviVi against ZNi, foreach m=1,2,...,
GO 1=1 i:l

that is we plot the points

N. m 1_
% < [EJ%-.% 1 exp —l(i—ﬁ);vivi < al.
0 =

46
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v, V, v, V, +v,V,
N., N.+N,,
1 2 1 2 )
) Sy

As this CUSUM is constructed to detect the increase in the process variance, the out of
control points of these plots can be detected using the lower limb, PQ of the V-mask as

shown in figure 2.3, where the parameters of the chart are given by

Ina
d= - L,

o
In (—lJ
Op

and

figure 2.3

>""_‘
EN,Q

N o
._.]b
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Sometimes it may also be desired to detect a reduction in process variance, from 05

to 622 (< csg ), say. By a similar argument, we arrive at a control limit represented by the

straight line P'Q’ in figure 2.4.

In this case,

g - Ina

o
In (—OJ
0,

and

figure 2.4

;‘«-'"H
TN

~
-—cl o°
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Note that in this case both control limits have positive slopes. This is to be expected, cause

m
. 1 .
the ordinate — Z v; V; cannot decrease as m increases.
Oy i=1
0
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2.2 CUSUM Schemes.

2.2.1 Conversion of V- mask into two one-sided CUSUM Schemes.

The V-mask scheme can be converted into two one-sided schemes for the upward
and downward shifts respectively. In the case of detecting an upward shift in the process
average, the rule for deciding when such a shift has occurred is to compare the last point
plotted with the lowest point previously plotted. If the difference exceeds a specified
quantity h, the conclusion is that the shift has occured in the upward direction.

This decision rule picks up very small shifts which may not be of any importance.
Hence the one-sided scheme on the upper side has been modified by the adoption of the
reference value k. Under this modified procedure the quantities plotted on the chart are the
cumulative sums of X - k, where k is a value greater than the target for X. When the
cumulative sum become less than zero a new series is began. When the cumulative sum of
X - k exceeds the decision interval h, it is decided the process average has shifted above k.
This procedure is much more easier to handle and it is sensitive only to the upward shifts in
the process average that are considered to be of importance.

For the shifts on the negative side we choose k to be smaller than that of the target
value and the test will be whether Z (x - k) has a negative value less than that of -h. It is
possible to have two one-sided schemes of the kind now discussed with upper and lower
reference values, which is equivalent to using a V- shaped mask. Kemp (1961)
demonstrates this equivalence as follows:

When the horizontal distance between the successive points on a CUSUM chart,
measured in terms of unit distance on the vertical scale, is w and if the limbs of the V are
inclined at an angle 6 to the horizontal, the two one-sided schemes and the V-mask scheme

will be equivalent if

k=wcitan6=kl-u0=u0-k2 and hzdc).(tanG,
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where k; and k, are the upper and lower reference values of the respective one-sided

schemes. The target for X is the true mean H, and the variance is o .

Proof:
Let the last point plotted be denoted by O with cumulative sum equal to S, and let

R be the point for which the cumulative sumis S, where

X 1=1
The V-mask is placed such that the line OP lies parallel to the horizontal axis as
shown in the diagram. The line OT is drawn parallel to the lower limb of the V-mask. The

horizontal line through R and the perpendicular to the horizontal axis dropped from O meets
at Q.

figure 2.5

Ay

Cumulative Sum.

Number of Samples
Then the angle TOQ is —275 - 0, and if the angle ROQ is denoted by ¢, we have that

TR = OR cos(® + ¢)
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TR = OR ( cosO cos¢ - sin6 sing )
= OR cosd cosO - OR sin¢ sin®

= 0Q cosO - RQ sind

= (S - Spy-p ) €0sO - Tw sin6

m

If
TR = d sin®,

the path of the plotted points will cross the lower limb of the V-mask; that is,

S Syr - TW tand = d tan6

This implies that

m (g .p
Y L0 wtan® |> dtand

i=m-r+1 Gi

m

2 (X-p,-wo_tand) 2 d o, tand (2.2.1)
i=mr+1 x X

Then this is equivalent to cumulating the deviations X - k,, where k; = Ko+ WO, tan0,
and using the decision interval h=d o tan6. Similarly for the negative shifts it can be
shown that with k, = Hy- WO, tan®, the upper limb of the V-mask is crossed if

m

2 (% -p,+wo_tand) < -do. tand. (2.2.2)

i=mr+1 X X

For the first single-sided decision scheme the lower boundary is taken as zero and the
upper boundary is used as a decision boundary; the value ii - k; is calculated for each

sample and as soon as a positive value occurs, this and the subsequent values of ii -k, are

accumulated. The cumulated sums are plotted until their path crosses either boundary. A

decision that quality is off target is reached when the upper boundary is crossed; if the

lower one is crossed plotting is terminated until another positive value of )'(i -k, is

obtained. The second scheme is similar but here the upper boundary is taken at zero whilst
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the lower one is the decision boundary, the values of )'Ei - k, are cumulated when negative

values of )'Ei - k, are obtained.

Now to see what happens to the other scheme when one scheme crosses the

decision boundary we will again refer to Kemp (1961). Let us define

k=w0itan6 , h=d0').(tan6 and V=X -l

Also let

t+1 u+l
C;=2, -k and  ¢;= Y, (y, + k.

i=t i=u

Consider the two sums C,andc_, where
0<Cj<h (0£j<m),
0>¢;>-h (0<1<n).

If the cumulative sums of the two schemes lie between their respective boundaries

immediately after the rth sample is drawn, C_ and ¢ will represent them if
m+t=u+n=r.

We now consider what happens when C__; 2 h, so that a decision that the process is off

target is indicated by the first scheme. We then have

Cos1 =Cm+ym+1 -k 2h,

so that
ym+12h+k—Cm.

The cumulative sum of the second scheme is now

Cot1 =Cn + Yy +k2c¢ -C +h+2k
To compute ¢ - C_, we consider three different cases: (i) t>u, (i) t=uand (iii) t<u.
case(i): t>u.

From above

t=r-m and u=r-n.
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Therefore t > u implies n>m.

Hence
m+t m+t
Co= X ,-B) = Xy - m+1k
i=t i=t
n+u n-+u
¢ =2, (v = Yy + (n+ Dk
i=u i=u
Thus
n+u m+t

c,-C, = Z Y - Zyi + (n+m+2)k

i=u i=t
t-1
2.y, + (n+m+2k

i=u

u+(t-u-1)

2, (y,+K) - (t-wk+(n+m+2)k

i=u

= C g - (M-mk+ (n+m+2)k

= ¢pq - Qm+2k.

case(ii) : t=u (this implies m=n)
m+t

Cp = 2y, - (m+ 1k
i=t

m+t
c, = Zyi + (m+ Dk
i=t

m+t m-t
C-Cp= 2y, - 2 ¥, + @m+2k
1=t

i=t

= (2m+2k.

case(iil) : t<u (this implies m>n)
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m+t
C, = Zyi - (m+ Dk
i=t
n+u
c, =2y + (n+Dk.
i=u !
Therefore,
u-1
¢u-Cp= Dy, + (+m+2)k

1=t
t+(u-t-1)
- 2 (y,-k) - (- Dk +(@+m+2)k

1=t

= -Cypq - m-nk+(n+m+2)k

=-C,y + @n+2k

Now from all these three cases we have

Ciyq T h+2(m+2)k (t>u)
c...=%h+2(m+2)k (t = u)

h+2(n+2)k -C_ ,; (t<u).

n+1

Therefore Cpy1 > 0.

A similar argument shows that C__; must be less than zero when ¢

41 S-h

When the cumulative sum immediately after the rth sample of one scheme lies
between its boundaries and cumulation for the other has ceased, similar reasoning shows
that only one decision boundary can be crossed at the next sample, and that the cumulative
sum for the other cannot lie between its boundaries. It follows that a cumulation which
ends on or above the upper boundary of the first scheme cannot cut short a cuamulation

which would otherwise have ended on or below the lower boundary of the second, and

vice versa.
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2.2.2 Two - sided CUSUM scheme,.

The two-sided CUSUM scheme can be constructed for positive shifts and negative
shifts in the mean with two boundaries for each as in Shewart control charts. That is for
the positive shift the lower boundary as zero and the upper boundary as the decision
interval h. And for the negative shifts the two-sided scheme is with the decision boundary
-h as the lower boundary and the upper boundary as zero. Hence the procedure can be

defined as

SH(i) = max [ 0, ii-uO-k+SH(i-1)]

SL @ = min[ 0, X - W, +k- SL (-1 ],
where SH 0) = SL (0) = 0, and k is the reference value. The values SH (0) and SL 0)

are referred to as the head start values. If SH (i) exceed the decision interval h, or if SL @

is less than -h, the process is considered to be out of control.
To make calculations easier we define,

X. - U
z = —0. i=1,2,...,
o-
X

where ii ~N( Ko O ), 1=1,2,..., and are identically independently distributed. As
we derived in section 2.2.1 the values of k and h involves O - Now if we consider zi’s in

the scheme [ Fellner, (1990) ], the k and h values will be independent of o . Then the two

schemes can be written as

S, ® = max [ 0, zi-k+SH(i-1)]

SL(i) = max[O,-zi~k+SL(i‘1)],
where SH ©) = SL 0) = SO‘ For a prescribed value k, the sequence is considered to be
out of control whenever either SH or SL exceeds a prespecified value h.

For the CUSUM scheme to be completly defined, the intial value S 0 of SH and SL

must be defined. Customarily, the value of S 0 is set to zero. However, Lucas and Crosier
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(1982) showed that by selecting a positive value for SO the scheme could be made more

sensitive to the process mean at the start of the scheme, without greatly increasing the 'false
alarm' rate. This gives the CUSUM scheme a 'fast initial response’.
The ARL of the scheme depends on the value of the process mean, which is

unknown at the time of the process, as well as on the values of the specified parameters k,

h and SO’ Ideally these parameters are set so that, when the process mean is at its target

value My the ARL is sufficiently large, while, when process mean is critically off target,

the ARL is small.

Consider the following example which shows, how the ARL is behaving for
different sets of values of k, h and SO’ when the process mean is at its target value H, and
when it is off target. Using the IMSL subroutine GGNPM (Appendix B, program 1),
samples of size 10 are generated by simulation, from N(u, 1). For values of (k, h) as
(0.25, 2.5), (0.50, 2.0), (0.75, 1.5) and (1.0, 1.0) the start up value SO is taken as h/2.
The ARL is found by repeating the procedure 1000 times and calculating the expected run
length based on those 1000 run lengths. Here in this example we find the ARL based on
the 1000 run lengths, under p =0.0, 0.5, 1.0, 2.0, 3.0.

Table 2.1
1!

k h 0.0 0.5 1.0 2.0 3.0
0.25 2.5 11.012 5.597 2.819 1.362 1.065
0.50 2.0 17.062 7.870 3.492 1.442 1.068
0.75 1.5 21.058 10.105 4.297 1.545 1.086
1.00 1.0 21.652 11.484 4.904 1.680 1.090

The results in Fellner's paper almost tally with this results. These results are obtained by

simulation, while his is analytical
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2.3 Markov chain approach to find the ARL of a CUSUM scheme.

To study the ARL of the CUSUM scheme a different approach has been given by
Brook and Evans (1972) in which the operation of the scheme is regarded as forming a
Markov chain. We will briefly summarize their work here.

The transition probability matrix for this Markov chain is obtained and then the
properties of this matrix are used to determine not only the average run lengths for the
scheme, but also moments and percentage points of the run-length distribution and exact
probabilities of run length. This method has been suggested for any discrete distribution
and is also as an accurate approximation with any continuous distribution for the random

variable which is to be controled.

2.3.1 The Markov chain approach.

Suppose samples of n items are taken at regular intervals and the number of
defectives D; (i=1,2,3,...) are observed. For a reference value k, the process is
considered to be in control if D <k. As soon as D exceeds k, we start plotting the
cumulative sums

13 .
Sm=-—2 (D;-k) against m.
(oF
i=1
If S, becomes zero the process starts in control. When S, exceeds the decision interval,
h an appropriate action is taken.

First we'll consider the discrete case. Let D be an integer random variable and k, h

have positive values. Then the random variable Sy, can take on values 0, 1,2, ..., h.

Let us suppose if Sy, =1, the scheme is in state E;. Then each realization of this scheme
can be considered as a Markov chain with states Ep Eqfy o » By, where E; isan

absorbing state. Itis assumed that the process is initially in state E,,.
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The transition probabilities from state E; (=0, 1,...,h-1) are determined by the
probability distribution of D as follows:

Pio =Pr (E;—— Ey)= Pr(D<k-i),
pjj=Pr(E;—— E;)= Pr(D=k+j-i), j=1,..,h-,
Py =Pr(E;—E; )= Pr(D2k+h-i).

The system forms a Markov chain whose transition probability matrix is constructed from
the probability distribution of D, given h and k.
Let P.=Pr(D-k=r) and F.=Pr(D-k<r), then

piy= Pr(D-k<-i) = F,

le=Pr(D"k=j-1)=PJ_l, j=1,...,h’l

py = Pr(D-k>h-i)= 1-F .

Hence the transition probability matrix P, has the following form:

2 - o Ppg 1-Fp T
F, P, P, ....P, LR,
b . . . .
1-Fip Pon Pap - Py 1-Fy
- 0 O o0 .... 0 -

Most of the results required can be obtained by working with the matrix R, obtained

from P by deleting the final row and column. In particular, all the eigenvalues of R are the
same as P.

2.3.2 Sampling properties of CUSUM run length.

Let X; be the number of steps taken to reach the absorbing state E, for the first
time, starting from E; and let p.i(s) be the sth factorial moment of X;, where
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(S) E[X(S)] _EI:H(X _J)] $s=2,3,...

=0
By considering the Markov chain one-step later, we have

(S) Z (S)PI'(X—I')

h-1
_Z ®) ZPI_] PI'(X—I'-I)
I=§ J-O
h-1 oo
=2 py 2 1 Pr(X;=rl)
j= =8
From this it can be shown that
h-1
(S) ZPU(M(S)‘FSH(SI)) §=2,3,....; j=0,1,.... ,h-1.
In matrix form this becomes
(1
p® - : =Rp® + sRpY  5=23,..

(S)

uhl)

where R is the h x h matrix obtained from the transition probability matrix P by deleting the

last column and row; that is,
A-R)p® = sR p®P 5=2,3,.., (2.3.1)

where 1 is the hxh identity matrix and E(S) is the vector of sth factorial moments for the

random variables ). D CHID ¢ P

For the special case in which s=1, (2.3.1) becomes
I-R)p =],
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where the vector j has each of its h elements equal to unity; hence
p=(-R7j. (2.3.2)
The first element of [Lis the ARL for a CUSUM chart starting from zero. In general, the

ith element gives the mean of the run-length distribution when starting from state E; (i=0,

1,...,h-1).

Let X be the random vector of runlengths with elements X X5+« s Xpq5 then higher
order factorial moments of X can be obtained recursively via (2.3.1):

p® = s@-R)TR p&P

=s{d-R)'-1} p®  s=23.... (2.3.3)

The matrix multiplication in (2.3.3) can be avoided by premultiplying a scalar times the
previous solution by the matrix (I - R)'1 -1 Since (I- R)'1 R=R{- R)'1 , the solution to
(2.3.3) can be written in either of the following forms:

s-1,

u® = st @-R° R

= st ™! I-R°j s=12.... (2.3.4)

Hence the probability distribution of the run-length vector X can be regarded as a

multidimensional generalization of a geometric distribution over the positive integers. For,
let N be such that Pr(N=r)=pqr'1 (r=1,2,....), where p+ q =1 (0<p <1); then its
sth factorial moment is s! qs'1 p° (s=1,2,...). If Rwas diagonal, then the elements

of X would each be geometric random variables. The scalar parameter p is replaced by

the matrix (I-R) and the elements of the vector (I-R) j are the probabilities of jumping

to the absorbing state, the first occurence of which terminates the process.
Now we will consider an example with a numerical illustration of the moments of
run length distribution. Suppose that D has a Poisson distribution with mean 4.1. An

ARL of about 4 can be arranged by choosing k = 3 and h = 4. Using the subroutine
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POPROB (Appendix B, program 2), the Poisson probabilities are obtained and the matrix

R is calculated
04142 0.1951 0.1600 0.1093

02238 0.1904 0.1951 0.1600
0.0845 0.1393 0.1904 0.1951
0.0166 0.0679 0.1393 0.1904

and from that the table 2.2 is obtained. Here again to calculate the (I - R)’1 matrix the
IMSL subroutine LINV1F is being used. From (2.3.2) and (2.3.3) we find p* by
summing the rows of (I - R)'l, u(z) by postmultiplying {(I - R)'1 -1} by Zu(l), and so on.
And from these the central moments, coefficients of skewness and kurtosis which are

shown in table 2.2 are determined.

Table 2.2
State [ Ha M3 Ha o o/t us/c?  (U/c%)-3
0 3.97 7.23 34.01 411.37 2.69 0.68 1.75 4.86
1 3.40 6.71 33.35 387.91 2.59 0.76 1.92 5.63
2 2,73 5.55 30.24 333.09 2.36 0.86 2.31 7.81
3 2.07 3.84 23.08 242.24 1.96 0.95 3.07 13.46

A basic comparison is with the geometric distribution over the positive integers with mean

1/p. This has

o?=a/p?, /o’ = (1+Q)/q"", (Wa/oh) - 3= (q? +4q + 1)/q.
In particular, if 1/p=3.97 then

o?= 11.79, 6=3.43, p3/63=2.02 and (Ua/c?) -3 =6.09.

Thus the run length from state E, has a smaller variance than a geometric random variable

with the same mean and it also has smaller skewness and kurtosis.



63

2.3.3 The probability distribution of run length.

The last column of P'; the rth power of the transition probability matrix P,

gives Pr(X; <r); i =0,1,....., h-1, together with unity as the last element. If we partitioned

the matrix P as:

where Py is a vector of h elements and R is the hxh matrix discussed in the previous

section, then
p,=(-R)j

Since P is a stochastic matrix, its row sums are equal to unity. Hence it follows that

R" I(I- Rr)i

Let B, be a vector of length h whose elements are the distribution functions of run

length starting from states E,, E,, ....... » By_p» thatis
B, = {Pr(X, <r1), Pr(X; <1 ), ..., Pr(Xp , <)) r=1,2,....

Then
B,=I-RHj r=1,2,....

r
and the first element of B, gives the cumulative probability for run length for a CUSUM

scheme starting from zero.

Let L, be avector of length h whose elements are the values of the probability

functions of run length starting from states Ep Eqs o » Bp_;» that is

L ={PrXy=0),Pr(X; =0, ... . Pr(X; ;=) r=1,2,..

Then
L,=p, = I-R)j,
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L=RL,=R"L, r=1,2....

which is closely related to the univariate geometric form

Pr(N=r)=pqr'1, r=12,....

For our example in (2.3.2), for which the average run length is 3.97, the

probability distribution of run length starting from state E, and the corresponding

probabilities for a geometric distribution with the same mean have been calculated

(Appendix B, program 2) and are tabulated in table 2.3; and they are graphed in figure 2.6.

Table 2.3
Run length The actual run length Geometric distribution
probabilities probabilities
1 0.1214 0.2516
2 0.2218 0.1883
3 0.1960 0.1409
4 0.1450 0.1055
5 0.1013 0.0789
6 0.0693 0.0591
7 0.0471 0.0442
8 0.0318 0.0331
9 0.0215 0.0248
10 0.0145 0.0185
11 0.0098 0.0139
12 0.0066 0.0104
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figure 2.6
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The geometric approximation to the run length distribution seems to be good in the tail

probabilities only.

2.3.4 Applications to general continuous distributions.

Here in this section the case where the distribution of the random variable
concerned is continuous is considered. Let Z be the continuous random variable that is
considered to have had a shift in the mean. Here the one-sided type of decision interval
scheme is considered. We accumulate the deviations of Z from a reference value k (while
the cumulative sum is positive) until either we cross the decision boundary h or the
cumulative sum reverts back to zero.

Suppose that we wish to represent the continuous scheme by a Markov chain

having t+1 states labelled E, E, ....... , E;, where E, is absorbing. Then the probability
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that the chain remains in the same state at the next step should correspond to the case where

the cumulative sum does not change in value by more than a small amount, say % w; that

is, the next value of Z does not differ from the reference value k by more than % w. The

quantity w determines the width of the grouping interval involved in the discretization of

the probability distribution of Z.
A further restriction to this is that the probability of a jump from E; to the absorbing

state E, should be equal to the probability that the cumulative sum for (Z - k) jumps beyond
the point h from a position in (0,h) which corresponds approximately with the state E;.

These requirements lead to

2h
w =m . (2.3.5)

The transition probabilities for the Markov chain are then as follows, for i=0,1,...,t-1;
Pio =Pr (Ej— E; ) = PT{Z-kS-iw+%w },
pij=Pr(E;——E,;) = Pr { (j-i)w-%w<Z-ksq-i)w+%w ),

(1<j<t1)

: 1
Py =Pr(E;——E)= Pr{(t-Dw-,w<Z-k},

Note that,

Pr(Ey——E,)= Pr(Z-k>h)

for any choice of w satisfying (2.3.5).
If we write

- L - 1
Pr—Pr(rw-2w<Z kSrw+2w)

and

Fo=Pr(Z-k <rw+3w),

then the transition probability matrix, P, for the Markov chain is constructed as before and

has the general form shown in section 2.3.1, except that the states are labelled E,, E,...

E,. The number of states is now arbitrary and is not determined directly by h, as in the
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discrete case. The matrix obtained from P by deleting the last row and column is dentoed

by R, as before, and the sampling properties of the corresponding CUSUM scheme are

determined in the manner described above for the discrete case.

Now we consider an example with a numerical illustration of the moments of run

length distribution. Suppose that Z has a normal distribution with mean 1 and variance 1.

We choose h=3 and t=5. Using the IMSL subroutine MDNOR the normal distribution

probabilities are obtained (Appendix B, program 3), and from that the matrix R is

calculated. Table 2.4 is obtained as in the case of discrete random variables. In this case

the matrix R will be
0.2525 0.2475 0.2475 0.1613 0.0685
0.0912 0.1613 0.2475 0.2475 0.1613
R = 0.0228 0.0685 0.1613 0.2475 0.2475
0.0038 0.0189 0.0685 0.1613 0.2475
0.0004 0.0034 0.0189 0.0685 0.1613
Table 2.4
State 1) 13 M4 c ot u3/o3 (ug/o*)-3
0 3.77 3.15 7.80 62.07 1.77 0.47 1.40 3.26
1 3.19 2.86 7.39 56.23 1.69 0.53 1.53 3.88
2 2.54 2.37 6.46 45.63 1.54 0.61 1.77 5.11
3 1.91 1.66 4.95 31.23 1.29 0.68 2.31 8.31
4 142 0.87 2.86 16.32 0.93 0.66 3.52 18.54

Then the ARL is the first element of the mean vector [, which is 3.77. If we use the

geometric approximation 1/p = 3.77, then the corresponding geometric distributuion
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probabilities can be obtained. Both probabilities for the run length distribution are tabulated

in Table 2.7, and are graphed and shown in figure 2.7.

Table 2.5
Run length The actual run length Geometric distribution
probabilities probabilities
1 0.0228 0.2649
2 0.2226 0.1547
3 0.2814 0.1432
4 0.2053 0.1052
5 0.1235 0.0774
6 0.0685 0.0569
7 0.0365 0.0418
8 0.0191 0.0307
9 0.0099 0.0226
10 0.0051 0.0166
11 0.0026 0.0122
12 0.0013 0.0090
13 0.0007 0.0066
14 0.0004 0.0049
15 0.0002 0.0036
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figure 2.7
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The geometric approximation to the actual run length distribution seems to be good between
run lengths 6 and 7 only, although it seems close in the tail probabilities. Brook and Evans
states that as r tends to infinity the limiting probability distribution of the run length is
approximately geometric.

Consider another example for the continuous case. Suppose the random variable Z
has an exponential distribution. Then to compute the R matrix, we need

Fp=Pr(Zk <rw+iw),

= 1-exp [ (k + (t+ Dw )}, S(t1) €1 < (1),

where
__2h
W=st-1-
and
Pr = Fr - Fr—l

If we consider the extreme probabilities,
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1
Fn=Pr(Z-k <-(-D)w + 3w )

Kk - (1) =2 4 B )

I
.
N
A

-1 7 -1
2t - 3
=Pr(ZS k - Zt_lh}

and

2h h
Ft_lzPr(ZS K+ (t-1) 50 + 2t-1)

= Pr(Z< k+h).

Choose a large integer I, which is almost equal to k + h. From both extreme probabilities

we choose

k=2"2h, and I'=k+h.
This implies,

h:'42(:: ;) r, k=42(§: ?) r.

Hence, if the values of I" and t are given, the values of k and h can be obtained. In our
example we took I" and t as, I = 5 and t = 4. This gives the R matrix as (Appendix B,

program 4),

09179 0.8111 0.5654 0.0000
0.0464 0.1068 0.2457 0.5654
0.0202 0.0464 0.1068 0.2457
0.0083 0.0202 0.0464 0.1068

and the ARL (the first element in the [ vector) is 112.05. Since the ARL is large the
geometric mean p (1/p = 112.05), becomes really small. That makes the geometric

approximation more appropriate.
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Table 2.6

The actual run length
probabilities
0.0067
0.0083
0.0087
0.0087
0.0087
0.0086
0.0085
0.0084
0.0084
0.0083
0.0082
0.0081

Geometric distribution
probabilities
0.0089
0.0088
0.0088
0.0087
0.0086
0.0085
0.0085
0.0084
0.0083
0.0082
0.0082
0.0081
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As can be seen that almost all the run length probabilities are the same and constant up to 3

decimal values.



CHAPTER 3

STATISTICAL CONTROL OF THE CORRELATION COEFFICIENT

3.1 Distribution of the Sample Correlation Coefficient.

3.1.1 The distribution when p = 0.

Suppose samples of size n are obtained from a bivariate Normal population with

o

and variance covariance matrix

mean vector

2
G, po,0,

x= 5
po,0, O

The sample mean vector

g S1 812
$12 Sg
n _ 2 n - -
1 k§1(xlk - Xp) kél(xm - XPDXg - Xp)
~ n-1 n _ _ n -2
kgl(xlk - XD (X - Xy) k§1(x2k - Xy)

are computed. The sample correlation coefficient, , is given by

_ S0
518,
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kgl(xlk - X)Xy - Xy)

n .2 n _ 2
'\/kgl(xlk' X1) kgl(xzk" Xy)

For p =0, the distribution of r was given by Fisher (1915):
(L n4

.__L__. (1 - 2
e

P, -l<r<i (3.1.1)
It can be shown that the transformed statistic

f(r; n, p=0) =

n-2

1-1°

t=r

has Student's t - distribution with n - 2 degrees of freedom.
Test of the hypothesis
Hy:p=0 vs H;p=#0,

are then based on a t - statistic with n -2 degrees of freedom.

3.1.1 The distribution when p # 0.

The distribution of the sample correlation was first found by Fisher (1915):
n-1

-pH 2 n4 .n-2 :
f(r; n,p=#0) =_Q_£)_(1 ) 2 d - arccos(-pr) ’
T (n-3)! d(rp) . p2r2

-1<r<1 (3.1.2)

And Anderson (1984) showed that (3.1.2) can be written as:
n-1 n-4
2" (1-p% 2 (1-1% 2 ii@pna Igcwaq)
T (n - 3)! om0 o 2 )

1<r<l (3.1.3)
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Hotelling (1953) suggested the following form, involving the hypergeometric function,

which converges more rapidly than the infinite series in (3.1.3):

nl o n4 2
g;p) = (n-Z)F(n;I) (1—p2)2(1—r2)2 (1-pr)n2
\2r T(n-dy

F(L l.n_l.1+pr), -1<r<1,  (3.1.4)

where

oo H

3 L) To+) Ie) 7
& T@Tro) e

3

Fla,b;c;z] =

is the usual Gaussian hypergeometric function. David (1938) has tabulated the cumulative

distribution of r, as

T
Pr(r<r)= [f(t)dt = F{; n,p)
t=-1

for the selection of parameter values:
(i) n=3(1)25, 50, 100,200,400
(i) p = 0.0(0.1)0.9

(iii) r = -1.00(0.05)1.00
It is clear from the density (3.1.3) that
F(r'; n, p) =1 - F(-r'; n, -p)
because the density for r, p is equal to the density for -r, -p.
More recently Subrahmaniam and Subrahmaniam (1972) extended the David's

tables to cover the values of n=26(1)49 for a variety of values of r. In addition these tables

give the percentiles of the distribution of r for
T

p= [f®)dt,
1

with p = .01, .02, .025, .05, .10, .20, .80, .90, .95, .975, .98, .99.
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When n is large, the asymptotic distribution of a sample correlation coefficient r is

given by the statistic
21 1 1+71
=2 "M r

called " Fisher's z". Here z has an asymptotic normal distribution with mean
1 1+ p

250 o

and standard deviation
1

Vn-3’

3.2 Control Charts for the Correlation Coefficient.

3.2.1 p - control chart when p = 0.

To construct the control charts for the sample correlation we will use the
distributions of r, that is discussed in the previous section 3.1.

When we consider the case of independence between the variables, that is testing
for p =0, we do not need to control the two variables simultaneously; it is sufficient to
control them individually. In a particular production process to see whether the two quality
characteristics that we are interested are independent, we will constructa p control chart

when p =0. For this the statistic used is

n-2

1-1?

t=r

and the limits of the control chart are given by

UCL = t2.002
LCL = “toan
where to a2 denotes the upper /2% point of the student's t - distribution on n-2

degrees of freedom.
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To see whether the process correlation is zero, take samples of size n and calculate
the statistic t for each sample obtained and plot on a chart with the above specified control
limits and if the points fall outside the control limits then the variables considered in the
process are not independent anymore. If we want to keep the correlation zero, then the

assignable causes have to be sought.

To illustrate the effectiveness of this chart to detect the shifts in p; 1000 samples

each of size n=10 have been generated using the IMSL subroutine GGNPM (Appendix C:
program 1), and p has been changed from 0.1 through 0.9 in steps of 0.1. The percentage

of points plotted outside the limits in each case has been tabulated in Table 3.1. Here the t-

statistic is calculated and plotted on a control chart with

UCL=2.3060 and LCL=-2.3060.

Table 3.1
P % of points plotted
outside the limits
0.1 5.6
0.2 9.3
0.3 12.8
0.4 21.6
0.5 32.5
0.6 46.7
0.7 66.7
0.8 87.2
0.9 98.2

From this we can see that as p is shifted from zero the number of points that are
falling out of control increases as the shift increases. When p=0.1 only 5.6% of the points
fall outside the limits and when p=0.9 almost all the points are outside the limits. Here the

samples are of size n = 10.
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When the sample size is increased, the shift is detected more quickly. To illustrate
this 1000 samples were generated using the IMSL subroutine GGNPM (Appendix C,

program 2) with p=0.5, for n =5, 15,20, 30, 40. For each n the percentage of points

exceeding the limits is given in Table 3.2.

Table 3.2
n UCL LCL % of points exceeding
the limits
5 3.1824 -3.1824 12.5
15 2.1604 -2.1604 47.5
20 2.1009 -2.1009 63.6
30 2.0484 -2.0484 82.6
40 1.96 -1.96 94.3

Here also as n increases the shift in p is more obvious.

3.2.1 p - control chart when p = 0.

When the two quality characteristics we take into consideration are correlated with

the correlation coefficient p,, we test whether the production process keeps the two

quality characteristics correlation at a specified value p,.

Then the statistic r is computed, and the control limits are given by

UCL = rn,a n

LCL = rn,l-—a o

where T v is the value tabulated in table on Subramaniam's paper for the sample size n

and Y% point. Also the test can be performed for specified values of p = 0.1(0.1)0.9.
To illustrate this chart we generate 1000 samples each of size n=5, 10, 15, 20, 30, 50,
100, with p = 0.5 (Appendix C, program 3). And we test for each n, whether the shift is

detected more rapidly when p is varied from 0.1 through 0.9 in steps of 0.1.
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The control limits for the charts for each n and p are obtained from table [Subrahmaniam

and Subrahmaniam (1972)] and are given in table 3.3. In the program the READ

statement reads the values in table 3.3.

Table 3.3
Control n
Y limits 5 10 15 25 50
0.1 UCL 0.9026 0.6917 0.5865 0.4788 0.3693
LCL -0.8482 -0.5633 -0.4331 -0.3063 -0.1828
0.2 UCL 0.9223 0.7440 0.6517 0.5553 0.4551
LCL -0.8099 -0.4839 -0.3427 -0.2086 -0.0812
0.3 UCL 0.9386 0.7901 0.7107 0.6259 0.5362
LCL -0.7606 -0.3916 -0.2410 -0.1021 0.0265
04 UCL 0.9521 0.8310 0.7641 0.6915 0.6131
LCL -0.6955 -0.2835 -0.1263 0.0142 0.1409
0.5 UCL 0.9635 0.8673 0.8127 0.7523 0.6861
LCL -0.6072 -0.1556 0.0037 0.1416 0.2624
0.6 UCL 0.9732 0.8997 0.8570 0.8089 0.7553
LCL -0.4839 -0.0034 0.1518 0.2814 0.3916
0.7 UCL 0.9814 0.9288 0.8974 0.8617 0.8211
LCL -0.3056 0.1793 0.3211 0.4352 0.5293
0.8 UCL 0.9885 0.9549 0.9345 0.9109 0.8837
LCL -0.0384 0.4605 0.5157 0.6048 0.6760
0.9 UCL 0.9947 0.9786 0.9686 0.9569 0.9433
LCL 0.3733 0.6700 0.7401 0.7923 0.8327
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For each n the percentage of points exceeding the limits is given in table 3.4, for the values

of n =5, 10, 15, 25, 50; and for p = 0.1(0.1)0.9.

Table 3.4

percentage of points n
exceeding the limits 10 15 25 50
0.1 0.0 23.0 34.8 54.9 86.8
0.2 0.0 14.8 23.3 36.7 62.9
0.3 0.0 10.5 14.6 20.2 35.9
0.4 0.0 5.3 7.8 9.0 15.1
P o.5 0.0 7.3 6.0 4.5 5.1
0.6 0.0 8.7 8.0 9.4 18.6
0.7 0.0 12.7 19.9 34.1 56.7
0.8 0.0 31.3 51.2 76.1 97.4
0.9 14.2 72.7 92.8 99.2 100.0

When n=5 the shift in p is not detected until it shifts to 0.9. Since the actual value of p is

0.5 the points exceeding the limits is around 5% only. For larger n the shift is detected

more effectively and also the detection of the shift when p is shifted further from 0.5 is

quite obvious too.
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3.3 The Sequential Testing procedures.

As we have seen in Chapter 2, the CUSUM schemes are actually sequential
sampling procedures. In this section we consider some sequential procedures to test the
change in the sample correlation.

The CUSUM control charts for the sample mean and variance have been discussed
in Chapter 2. But unlike sample mean and sample variance the sample correlation
coefficient takes into account the variation between the two variables and that makes it
difficult to construct the CUSUM chart using the SPRT as we did earlier.

Essentially the CUSUM control charts have been constructed so that they take into
consideration all the informations in the sequence of observations. In this section we
consider three different sequential procedures so that all these procedures take into account
all the information in the samples as one by one the samples enter the procedure. First we

construct a CUSUM chart using the Fisher's-Z statistic.

3.3.1 CUSUM Chart for the correlation coefficient.

In section 2.1, when we constructed the CUSUM charts for the mean, the rejection
region boundary line had the form of a linear equation

S =am+b,

m

where

o
il
Nl

and

1, (1-o
= =In
3 o

We plotted S, against m foreach samplem=1,2,... .
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If we proceed in the same way to construct the CUSUM chart for p using the
SPRT based on the hypothesis
Hy: p=p, vs Hi: p=p, (>p,)
the likelihood ratio is quite complicated. It is not possible to seperate the partial sums and
write them as a linear equation on the sample size. Instead we will use the Fisher's-Z

statistic, which is asymptotically normally distributed, to construct the CUSUM chart for

p.
Using the notation of section 3.1, it can be shown that the Fisher's-Z statistic
21 In 1+r
Z=3 1-r

is approximately normally distributed with mean

1 1+p0
=§1n s
l-pO

Mo

and standard deviation
1

n-3

Q=

Now to test the hypothesis:

Hy: p=p, vs Hip=p (>p,),

let us consider the statistic

Z; - M

1 .

y. = 0; 1=12,...,
! o

where zi's are the Fisher's-Z statistics.

Now using this statistic we could test for

where

1~1—p1
In .
1-p1

B

n1=
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This is analogous to a test on the mean. Hence the CUSUM chart can be constructed
based on yi's, where ¥~ N@, 1); i=1,2,...). As discussed in section 2.2.2, we can

construct a two-sided CUSUM scheme for yi's‘ That is,
S, @ = max [o, yi-k+SH(i-1)]
SL(i) = max[O,-yi-k+SL(i-1)],
where SH © = SL © =S o For a prescribed value k, the sequence is considered to be

out of control whenever either SH or SL exceeds a prespecified value h.
To illustrate this, we consider an example to find the ARL under H;; and H,.

Samples of size 10 are generated each time, using the subroutine ZCAL (Appendix C,

program 4), from a bivariate normal distribution with mean vector
30
H= )
- 15
. o2 2 . .
variances o) = 8, O, =4 and correlation coefficient p.

The target value for p is taken as P, = 0.1. Then samples are generated for p =

0.1, 0.5 and 0.9. For values of k, 0.5, 1.0 and 1.5; h, 2.25, 1.50 and 0.75 and the
initial value SO =h/2.

Table 3.5
p (W
k h 0.1(0.10) 0.5(0.55) 0.9(1.47)
0.5 2.25 20.695 2.243 1.015
1.0 1.50 35.551 3.141 1.009
1.5 0.75 31.568 3.972 1.026

In Table 3.5, the ARL's are tabulated for p values, with the corresponding [ values

in paranthesies, where



&3

1+p
1-p

u=% In

Hence it makes it easy to compare with the results in Fellner 's (1990), table 1, where the
values of ARL's are tabulated for a two-sided CUSUM scheme where the process has a

distribution with mean A and variance 1. Hence in our example A = p/c, where ¢ = 0.38.

3.3.2 Sequential procedure for the exact distribution of r.

In this procedure a different approach is considered to construct a control chart.
Here we start with a sample size n and calculate the sample correlation coefficient r,, based
on those n samples and begin the SPRT with n = 3, using the exact distribution of the
correlation coefficient given in (3.1.4) [ Kollerstrom and Wetherill (1979), Kocherlakota,
Kocherlakota and Balakrishnan (1983)].

Consider ( x;, X,; ), 1=1,2,... as a sequence of independent observations from

the bivariate normal population with parameters as mentioned above. For a sample of size

n,let X,,.,and X be the sample means and the sample correlation coefficient be
1(n) 2n) p

n
kgl(xlk - xl(n)) (X9 - X2(n))

I'n-"'-

V n ( - )2 §: ( - )2 .
E X - X X - X

) 1k 1(n) < 2k 2(n)
For n 2 3, the probability density function of r, is given by

cipy = M DLO-D
PTG re-p

Ll , It
(1-p92 (1-1)2

3
= 1+pr
N+ 1 1 1 n
- 2 -~ 2. _i.
(1 prn) F(z’ 29n 2’ 2 )9

where F(a, b; c; z) is Gauss' hypergeometric function defined by the series

oo

F@bcz) = 2 I'(a+)) I'(b+j) F('c) ;'_J ,
=0 T(@T(b) C(c+j) I
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and -1<r, <1
For this case, the invariant sequential probability ratio test (SPRT) of
Hy: psp, Vvs H;: prl,

-1<p 0 <P < 1, is based on the log-likelihood ratio for n = 3,

2
1-p; 1-p.r
z (1) = n2-1 In > |- (n-%) In|—L=
1-pp l-porn
1L+p I,
F(—l-, L,.L —10
+ In 2 2 2

F(l,l 1.1+p0rn)

R )

is given by Ghosh ( 1970, pages 322-324).
Accept Hy if z (1) < b*, reject H if z (1) = a*, with

a* =1In , b =In .

otherwise, the process continues. Here again o), o, are the type I and type II error
probabilities. In quality control procedures only the rejection boundary is taken as the
control limit or decision boundary, the acceptance is considered along with the continue
sampling.

To illustrate this consider an example, where samples are generated using the IMSL
subroutine GGNPM (appendix C, program 5) begining with a size of n = 3, the sample

correlation coefficient r is calculated (subroutine RCAL) and the SPRT is constructed for
p,=0.1and p = 0-5. But the samples are generated based on p = 0.3, 0.5 and 0.7. The

control limit a* is calculated for the sets of values oy =0, =0.05and oy = o, = 0.1,

based on theses control limits the run lengths are determined. Repeating this 100 times the

run lengths are calculated and the average run length is calculated for each case and are

tabulated in Table 3.6.
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Table 3.6
p
o B a* 0.3 0.5 0.7
0.05 0.05 2.944 29.26 17.20 12.85
0.10 0.10 2.197 19.56 13.42 10.39

The run length frequency distribution is given as a bar chart for each case with the mean

(ARL) and the variance based on the 100 runlengths obtained.

(i) a=0.05 B=0.05.

Graph 1: p = 0.3, ARL = 29.26, Variance = 144.009.
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2.957.

ARL = 12.85, Variance

p=20.7,

Graph 3:
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Graph 3: p = 0.7, ARL = 10.39, Variance = 3.29.

30 1

7 8 9 10 11 12 13 14 15 16
Run length

From the graphs it seems that the run length distribution may have possibly an approximate

normal distribution as p increases.

3.3.3 Sequential procedure using Fisher's-Z statistic.

Here again a similar kind of procedure as in section (3.3.2) is considered using the

Fisher's-Z statistic,
0 1+ I,
1- 1 ?

1
u=:2~1

n

where 1, is the sample correlation coefficient based on the sample size n (= 5). Since u

has an asymptotic normal distribution with mean
1+p
1-p

u=% In

and variance

the SPRT is based on the hypothesis
H,: u=n0 vs H;: u=n1 )

where



1 1+p0
nO_i In
l—p0
and
1 1+p1
=3 lnl_p
1

as described earlier. That is the actual test is based on
P=Py Vs P=p,

Consider the density function of u

2
f(u) = 1 _l u
D= exp - 5 .

2T O °
The likelihood ratio is,
L
R 2 ’
L_O_exp—zo_z{(un-nl) ) (un_no) }

1 )
- {(m -mgy) - 2u_ (M, -no)}

The SPRT of
Hy: p=m, vs H;: H=mn,

based on the log likelihood ratio
L
zn(rn) = In L_o

=

Il

n 1 2 2
- M -n) - —(N7-15)
o 1 0 o520

is given by Ghosh (1970).
Accept H, if zn(rn) <b*, reject Hy if zn(rn) >a*, with

oy

88
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otherwise, the process continues. Here again o, o, are the type I and type II error

probabilities. In quality control procedures only the rejection boundary is taken as the
control limit or decision boundary, the acceptance is considered along with the continue

sampling.

To illustrate this consider an example, where samples are generated using the IMSL
subroutine GGNPM (appendix C, program 5) begining with a size of n = 5, the sample

correlation coefficient r is calculated (subroutine RCAL) and the SPRT is constructed for
Py = O0.1and p L= 0.5. But the samples are generated based on p = 0.2, 0.5 and 0.8. The

control limit a* is calculated for the sets of values 0 =0, =0.05 and oy =04y =0.1,

based on these control limits the run lengths are determined. Repeating this 100 times the

run lengths are calculated and the average run length is calculated for each case and are

tabulated in Table 3.7.
Table 3.7
p
o B a* l 0.2 0.5 0.8
0.05 0.05 2.944 47 .51 16.08 9.96
0.10 0.10 2.197 29.29 13.19 8.44

The run length frequency distribution is given as a bar chart for each case with the mean

(ARL) and the variance based on the 100 runlengths obtained.
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0.05, B =0.05.
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(i) oo=0.1, B=0.1
Graph 1: p = 0.2, ARL = 29.29, Variance = 345.137.

40
30
>
2
S 20
g
10
O i
[Te [Ie] wn wn wn [I9] n n n
7 ¢ 7 T i 7 T T T
\;) (o) w W jXe] W jXe] Ate] jX)
— ™~ (28] < wn o o~ @
Run length

Graph 2: p=0.5, ARL = 13.19, Variance = 14.70.

«© ) < ~ o ™ 0
i i — i N o~ o~
0 1 1 1 i t |
[+)] ™~ wn [e o] i <

— i i o~ ™~

Run length

Graph 3: p = 0.8, ARL = 8.44, Variance = 2.65.

N
o

Frequency

10

5 6 7 8 9 10 11 12 13

Run length

91



92

When we use Fisher's- Z statistic also we get the run length distribution close to the exact
distribution run length values. This can be seen by comparing the ARL's in each case,
when p =0.5. Here also the bar charts of the run length distribution seems to tend to a

normal distribution.
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APPENDIX A: SAS Programs of Chapter 1

Program 1 :

1. // JOB

2. // EXEC SAS

3. OPTION LINESIZE=74;

4. DATA BIVNOR;

5. DO I=1 TO 20;

6. S1=0;

7. 82=0;

8. DO J=1 TO 10;

9. N1=RANNOR(6372610);
10. N2=RANNOR (3026478);
11. X1=2*SQRT (2)*N1+30;
12. X2=N1+SQRT (3) *N2+15;
13. S1=S1+X1;

14. S2=82+X2;
15. END;
16. XB1=S1/10;
17. XB2=52/10;
18. Cl=((XB1-30)*%*2)/8;
19. C2=((XB2-15)*%*2)/4;
20. C3=((XB1-30)*({XB2-15))/(4*SQRT(2));
21. CHIS=10%* (C1+C2-C3)/(1-0.5%%2);
22. OUTPUT;
23. END;
24. DROP I S1 $2 J N1 N2 X1 X2 Cl C2 C3;
25, PROC PRINT;
Program 2:

1. // JoB

2. // EXEC SAS

3. OPTION LINESIZE=74;

4. DATA BIVNOR;



10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.

o N oy L

DO I=1 TO 20;
S1=0;
52=0;
IF I<=5 THEN DO;
MU1=30;
MU2=15;
END;
IF I>5 AND I<11l THEN DO;
MU1=30+4+0.65* (I-5);
MU2=15;
END;
IF I>10 AND I<16 THEN DO;
MU1=30;
MU2=15+0.3* (I~10);
END;
IF I>15 THEN DO;
MU1=30+0.65% (I-15) ;
MU2=15+0.3* (I-15);
END;
DO J=1 TO 10;
N1=RANNOR (6392610) ;
N2=RANNOR (3026471) ;
X1=2*SQRT (2) *N1+MU1;
X2=N1+8SQRT (3) *N2+MU2;
S51=81+X1;
S2=82+X2;
END;
XB1=S1/10;
XB2=82/10;
Cl=((XB1-30)**2) /8;
C2=({XB2-15)**2) /4;
C3=((XB1-30) * (XB2-15)) / (4*SQRT (2) ) ;
MCHIS=10%* (C1+C2-C3) / (1~0.5%%2);
OUTPUT;
END;

DROP I S1 S2 J N1 N2 X1 X2 C1 C2 C3 MUl

MU2;



Program 3:

41.

10.
11.
12.
13.
14.
i5.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.

0w oy U W

PROC PRINT;

// JOB
// EXEC SAS

OPTION LINESIZE=72;

. DATA BIVNOR;

. ARRAY X1(10) Y1-Y10;

. ARRAY X2(10) Y11-Y20;

. ARRAY XB1l(10) ¥YB1-YB10;
. ARRAY XB2(10) ¥YB11-YB20;
. ARRAY $51(10) L1i-L10;

ARRAY S2(10) L11-120;
ARRAY S12(10) L21-L30;
DO I=1 TO 10;
Ti=0; MU1=30;
T2=0; MU2=15;
IF I=3 THEN DO;
MU1=33; MU2=17;
END;
IF I=5 THEN DO;
MU1=27; MU2=13;
END;
DO J=1 TO 10;
N1=RANNOR(2891063) ;
N2=RANNOR (5620192) ;
X1 (J)=2*SQRT (2) *N1+MU1;
X2 (J)=N1+SQRT (3) *N2+MU2;
T1=T1+X1(J);
T2=T2+X2 (J) ;
END;
XB1l(I)=T1/10;
XB2(I)=T2/10;
T3=0; T4=0; T5=0;
DO K=1 TO 10;



Program 4:

33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.

Gy o W N

T3=T3+ (X1 (K) -XB1 (I)) **2;
T4=T4+ (X2 (K) -XB2 (I)) **2;

T5=T5+ (X1 (K) =XB1 (I)) * (X2 (K) ~XB2 (I));

END;

S1(I)=T3/9; S2(I)=T4/9; S12(I)=T5/9;

END;

T1=0; T2=0; T3=0; T4=0; T5=0;

DO I=1 TO 10;

T1=T1+XB1 (I);

T2=T2+XB2 (I) ;

T3=T3+S81(I);

TA=T4+82 (I);

T5=T5+S$12 (I);

END;

XBB1=T1/10; XBB2=T2/10;

S1BS=T3/10; S2BS=T4/10; S12B=T5/10;
DETSB=S1BS*S2BS-S12B**2;

DO I=1 TO 10;

M1=(XB1 (I)-XBB1l)**2;

M2=(XB2 (I) -XBB2) **2;

M12=(XB1 (I)~-XBB1l)* (XB2 (I)-XBB2) ;
TOl=(10/DETSB) * (M1*S2BS+M2*S1BS-2*M12*S12B) ;
OUTPUT;

END;

DROP Y1-Y20 YB1-YB20 L1-L30 MUl MU2 N1 N2;
DROP I J K XBBl1 XBB2 S1BS $2BS S12B DETSB T1-T5 M1 M2
PROC PRINT;

// JOB

// EXEC SAS

OPTION LINESIZE=72;
DATA BIVNOR;

ARRAY X1 (10) Y1-Y10;

. ARRAY X2(10) Y11-Y20;

M12;



. ARRAY XB1(10) YBl-YB10;
. ARRAY XB2(10) YBl1-YB20;
. ARRAY S51(10) L1-L10;

. ARRAY $2(10) L11-L20;

ARRAY S512(10) L21-L30;
DO I=1 TO 10;

T1=0; MU1=30;

T2=0; MU2=15;

IF I=3 THEN I=I+1;

IF I=5 THEN I=I+1;

. DO J=1 TO 10;
. N1=RANNOR (2891063) ;

N2=RANNOR(5620192) ;

. X1 (J)=2*SQRT (2) *N1+MUL;

X2 (J)=N1+SQRT (3) *N2+MU2;
T1=T1+X1 (J);
T2=T2+X2 (J) ;

END;

. XB1(I)=T1/10;

XB2 (I)=T2/10;
T3=0; T4=0; T5=0;

. DO K=1 TO 10;

T3=T3+ (X1 (K)-XB1(I))**2;

T4=T4+ (X2 (K) -XB2 (1)) **2;

T5=T5+ (X1 (K) -XB1 (I))* (X2 {(K)~-XB2(I));
END;

S1(I)=T3/7; S2(I)=T4/7; S12(I)=T5/7;
END;

T1=0; T2=0; T3=0; T4=0; T5=0;

. DO I=1 TO 10;

IF I=3 THEN I=I+1;
IF I=5 THEN I=I+1;
T1=T1+XB1l (I);
T2=T2+XB2(I);
T3=T3+S1(I);
T4=T4+S2(I);



43. T5=T5+512(I);
44, END;

45. XBB1=T1/8; XBB2=T2/8;

46. S1BS=T3/8; S2BS=T4/8; S12B=T5/8;

47, DETSB=S1BS*S2BS~-S12B**2;

48. DO I=1 TO 10;

49. IF I=3 THEN I=I+1;

50. IF I=5 THEN I=I+1;

51. M1=(XB1 (I)-XBB1l)**2;

52. M2=(XB2(I)-XBB2)**2;

53. M12=(XBl (I)-XBB1)* (XB2 (I)-XBB2) ;

54. TOl=(8/DETSB)* (M1*S2BS+M2*S1BS-2*M12*S12B) ;

55. QUTPUT;

56. END;

57. DROP Y1-Y20 YB1-YB20 L1-L30 N1 N2 MUl MU2;

58. DROP I J K T1-T5 XBBl XBB2 S1BS S2BS S12B DETSB M1 M2 M12;

59. PROC PRINT;

Program 5:

// JOB

// EXEC SAS

OPTION LINESIZE=72;
DATA BIVNOR;

. ARRAY X1(10) Y1-Y10;

. ARRAY X2(10) Y11-Y20;

. ARRAY XB1(10) YB1-YB10;
ARRAY XB2(10) YB11-YB20;
ARRAY S1(10) L1-L10;

o W o N o0 U W N

=

. ARRAY S2(10) L11-L20;

3
s

. ARRAY S512(10) L21-L30;

=
N

DO I=1 TO 10;

et
w
.

T1=0; T2=0;

[}
-

. MU1=289.511; MU2=14.906;

[y
(63}

SIG1=11.398; SIG2=5.934;

=
(o)}

ROH=4.227/ (SQRT(11.398%5,.934));



17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29,
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45.
46.
47.
48.
49,
50.
51.
52.

DO J=1 TO 10;

N1=RANNOR (7490861) ;
N2=RANNOR (3854509) ;

X1 (J)=SQRT (SIGL) *N1+MU1;

X2 (J)=ROH*SQRT (SIG2) *NL1+N2*SQRT (SIG2) *SQRT (1-ROH**2) +MU2 ;

T1=T1+X1 (J) ;

T2=T2+X2 (J) ;

END;

XB1(I)=T1/10;

XB2(I)=T2/10;

T3=0; T4=0; T5=0;

DO K=1 TO 10;

T3=T3+ (X1 (K)-XB1(I))**2;

T4=T4+ (X2 (K) ~XB2 (I)) **2;

T5=T5+ (X1 (K) -XB1 (I))* (X2 (K)~-XB2(I));
END;

S1(I)=T3/9; S2(I)=T4/9; S12(I)=T5/9;
END;

T1=0; T2=0; T3=0; T4=0; T5=0;

DO I=1 TO 10;

T1=T1+XB1(I);

T2=T2+XB2(I) ;

T3=T3+S1(I);

T4=T4+S2(1);

T5=T5+S12(I);

END;

¥XBB1=T1/10; XBB2=T2/10;

S1BS=T3/10; $2BS=T4/10; S12B=T5/10;
DETSB=S1BS*S2BS~S12B**2;

DO I=1 TO 10;

M1=(XB1l (I)-XBBl) **2;

M2=(XB2 (I)-XBB2) **2;

M12=(XB1 (I)~XBBl) * (XB2 (I)~XBB2);

TOf=(10/DETSB) * (M1 *S2BS+M2*S1BS-2*M12*S12B) ;

OUTPUT;

END;



53. DROP Y1-Y20 YB1-YB20 L1-L30 MUl MU2 N1 N2 SIGl SIG2 ROH;
54. DROP I J K XBBl XBB2 S1BS S2BS S12B DETSB T1-T5 M1 M2 M12;
55. PROC PRINT;

Program 6:

// JOB

// EXEC SAS

OPTION LINESIZE=72;

DATA BIVNOR;

ARRAY X1(10) G1-G10;
. ARRAY X2(10) H1-H10;
DO I=1 TO 20;

@ Y U WN e

T1=0; T2=0;

9. DO J=1 TO 10:
10. N1=RANNOR(6312510);
11. N2=RANNOR(3021471);
12. X1(J)=2*SQRT (2)*N1+30;
13. X2 (J)=N1+SQRT(3)*N2+15;
14. T1=T1+X1(J);
15. T2=T2+X2(J):;
16. END;
17. M1=T1/10; M2=T2/10;
18. T3=0; T4=0; T5=0;
19. DO K=1 TO 10;
20. T3=T3+ (X1 (K)~M1)**2;
21. T4=T4+ (X2 (K)-M2)**2;
22. T5=T5+(X1(K)-Ml)* (X2 (K)-M2);
23. END;
24, S1=T3/9; S$2=T4/9;
25. SS1=SQRT(S1); SS2=SQRT(S2);
26. SD1=81; SD2=82;
27. 812=T5/9; $5128=812%*%*2;
28. DETS=S51*82-512S;
29. SDS=SQRT (DETS) ;
30. RO1=1-0.5%*2;



Program 7:

31.
32.
33.
34.
35.
36.
37.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

W N U ok W N

TR=(S51/8+52/4-812/ (4*SQRT(2))) /RO1;
W=-18-9%LOG (DETS) +9*L0OG (24) +9*TR;

OUTPUT;

END;

DROP G1-Gl0 H1-H10 N1 N2 I J K Tl T2 T3 T4
DROP M1 M2 DETS S12 S128 ROl TR S1 S82;

PROC PRINT;

// JOB

// EXEC SAS

OPTION LINESIZE=T74;
DATA BIVNOR;

ARRAY X1(10) G1-G10;

. ARRAY X2(10) H1-H10;

DO I=1 TO 20;

T1=0; T2=0;

IF I<6 THEN DO;
SIG1=8;
SIG2=4;
END;

IF I>5 AND I<11 THEN DO;
SIG1=8%*0.4* (I-5);
SIG2=4;
END;

IF I>10 AND I<16 THEN DO;
SIG1=8;
SIG2=4%0,2* (I-10);
END;

IF I>15 THEN DO;
SIG1=8%*0,4* (I-15);
SIG2=4%*0.2*(I-15);
END;

DO J=1 TO 10;

N1=RANNOR(3680917) ;

T5;



Program 8:

27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45.
46.
47.
48.
49,
50.
51.
52.
53.

A U o W N

N2=RANNOR {1638052) ;
X1 (J)=N1*SQRT (SIG1)+30;

X2 (J)=0.5*N1*SQRT (SIG2)+0.5*SQRT (3*SIG2) *N2+15;

T1=T1+X1 (J);

T2=T2+X2 (J) ;

END;

M1=T1/10; M2=T2/10;

T3=0; T4=0; T5=0;

DO K=1 TO 10;
T3=T3+ (X1 (K) -M1) **2;
T4=T4+ (X2 (K) ~M2) **2;

T5=T5+ (X1 (K) -M1) * (X2 (K) -M2) ;

END;

S1=T3/9; $2=T4/9;

$S1=SQRT (S1); SS2=SQRT(S2);
SD1=S1; SD2=82;

S12=T5/9; S128=S12%*2;
DETS=81*52-5125;

SDS=SQRT (DETS) ;

RO1=1-0.5%*2;

TR=(S1/8+S52/4-812/ (4*SQRT(2))) /RO1;
W=-18-9*LOG (DETS) +9*L0OG (24) +9*TR;
OUTPUT;

END;

DROP G1-G10 H1-H10 N1 N2 I J K Tl T2 T3 T4 T5;

DROP M1 M2 DETS S12 $12S ROl TR SIG1l
PROC PRINT;

// JOB
// EXEC SAS

OPTION LINESIZE=72;

. DATA BIVNOR;
. ARRAY X1(10) G1-G10;
. ARRAY X2(10) H1-H10;

SIG2 81 8s2;

10



10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.

11

. DO I=1 TO 20;

T1=0; T2=0;

. MU1=29.511; MU2=14.806;

SIG1=11.398; SIG2=5.934;
ROH=4.227/ (SQRT (11.398%5.934)) ;

DO J=1 TO 10;

N1=RANNOR (6312510) ;

N2=RANNOR (3021471) ;

X1 (J)=SQRT (SIG1) *N1+MU1;

X2 (J) =ROH*SQRT (SIG2) *N1+N2*SQRT (SIG2) *SQRT (1-ROH**2) +MU2;
T1=T1+X1(J);

T2=T2+X2 (J) ;

END;

M1=T1/10; M2=T2/10;

T3=0; T4=0; TS5=0;

DO K=1i TO 10;

T3=T3+ (X1 (K) -M1) **2;
T4=T4+ (X2 (K) ~M2) **2;

T5=T5+ (X1 (K) -M1) * (X2 (K) -M2) ;

END;

81=T3/9; S2=T4/9;

SS1=SQRT(S1); S$S2=SQRT(S$2);

SD1=81; SD2=82;

S12=T5/9; $128=812%*2;
DETS=51%52-5128S;

SDS=SQRT (DETS) ;

RO1=1-0.5%*2;
TR=(S1/8+52/4-812/ (4*SQRT (2) ) ) /ROL;
W=-18-9*LOG (DETS) +9*LOG (24) +9*TR;
QUTPUT;

END;

DROP G1-G10 H1-H10 N1 N2 I J K T1 T2 T3 T4 T5 S1 S2;
DROP M1 M2 DETS S12 S12S ROl TR MUl MU2 SIGl SIG2 ROH;
PROC PRINT;



Program 1:

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

0 3 U W N

// JOB

APPENDIX B: Programs of Chapter 2

'T=2M"

// EXEC WATFIV

//FTO5F001 DD *

$JOB

DIMENSION RR(10)
DOUBLE PRECISION DSEED

DSEED=31785.D0

N=10
N1=1000
FN=FLOAT (N)
SIG=1.
U0=0.

DO 3 LOOP=1,4
FL=FLOAT (LOOP)
H=3.0-FL*0.5

FK=0.25*FL

DO 45 ID=1,5
IF (ID.EQ.1l) THEN DO
U=U0
GO TO 47
END IF
IF (ID.EQ.2) THEN DO
U=0.5
GO TO 47
END IF
DEL=FLOAT (ID) -2.
U1=DEL*SIG
U=U1

12



32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45.
46.
417.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
50.
60.
61.
62.
63.
64.
65.
66.
67.

c

C Generating 1000 samples each of size N from a normal

47
12

WRITE (6,12) U,FK,H

FORMAT (2%, 'U =',F6.2,"

SHJ1=0.
SHJ2=0.
SLJ1=0.
SLJ2=0.
DO 60 L=1,N1
SH=H/2.
SL=H/2.

K='F6.2,"

H =',F6.2)

C distribution with mean U and variance SIG.

C

15

10

20

35

DO 10 I=1,1000

T1=0.

CALL GGNPM (DSEED, N, RR)
DO 15 K=1,N

X1=RR (1) *SQRT (SIG) +U
T1=T1+X1

CONTINUE

XB=T1/FN

YB=XB-U0

IF (YB.GT.FK) GO TO 20

CONTINUE

DO 40 J=I,1000

T1=0.

CALL GGNPM (DSEED, N, RR)
DO 35 K=1,N

X1=RR (1) *SQRT (SIG)+U

T1=T1+X1
CONTINUE
XB=T1/FN
ASH = XB - FK + SH
ASL = - XB ~-FK + SL

13



68.
69.
70.
71.
72.
73.
4.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.

87.
88.
89.
90.
91.
92.
93.

Program 2:

Y O bW N

40

30

31

60

70

45

SENTRY
/*

// JOB

i

SH AMAX1 (0.,ASH)

SL AMAX1 (0. ,ASL)
IF (SH.GT.H) GO TO 30
IF (SL.GT. H) GO TO 31

CONTINUE

FHJ=FLOAT (J)
SHJ1l=SHJ1+FHJ
SHJ2=SHJ2+FHJ**2
GO TO 60
FLJ=FLOAT (J)
SLJ1=SLJ14FLJ
SLJ2=SLJ2+FLJ**2
CONTINUE
EHJ=SHJ1/FLOAT (N1)
ELJ=SLJ1/FLOAT (N1)
ARL=EHJ+ELJ

WRITE (6,70) EHJ,ELJ,ARL

FORMAT (2X, 'EHJ =',F12.4,2X,'ELJ = ',F12.4,2X,

CONTINUE
PRINT, '
CONTINUE
STOP
END

// EXEC WATFIV

//FTO5F001 DD *

$JOB

'ARL = ',F12.4)

14

DIMENSION F(10),P(18),R(10,10) ,WR(4),CARL(15,10),G(15)

REAL EI(10,10),EIR(4,4),EIRI(4,4),EMU(8,10)



11

22

25
23

15

INTEGER H,Y

READ, TH, K, H, N

DO 11 I=1,H
L=K+I-H
IF (L.EQ.0) THEN DO
F (I)=EXP (~TH)
GO TO 11
END IF
CALL POPROB(TH, L, F1)
F(I) = F1

CONTINUE

Y=2*H-2

DO 22 I=1,Y

Ll= K+I+1-H

CALL POPROB(TH, L1, P1)

L2 = K+I-H

IF (L2.EQ.0) THEN DO
P2=EXP (~TH)
P(I)=P1-P2
GO TO 22
END IF

CALL POPROB(TH, L2, P2)

P(I) = P1 - P2

CONTINUE

DO 23 I=1,H
KK1=H+1-I
R(I,1)=F(KK1)
DO 25 J=2,H
KK2=H+J-I-1
R(I,J)=P (KK2)
CONTINUE
CONTINUE



43.
44,
45.
46.
47.
48.
49,
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
1.
72.
73.
74.
75.
76.
77.
78.

PRINT, ' !

PRINT, 'The Matrix R?

WRITE (6,30) ((R(I,J),J=1,H),I=1,H)
30 FORMAT (/, 4F10.4)

PRINT, ' !

DO 31 I=1,H
DO 32 J=1,H

IF (I.EQ.J) THEN DO

EI(I,J)=1
GO TO 32
END IF
EI(I,J)=0
32 CONTINUE

31 CONTINUE

DO 40 I=1,H
$1=0.
DO 42 J=1,H
EIR(I,J)=EI(I,J)-R(I,J)
S1=S1+EIR(I,J)
42 CONTINUE
CARL(1,I)=S1
40 CONTINUE

DO 50 K=2,N
DO 51 I=1,H
S2=0.
DO 52 J=1,H
$2=$2+R (I, J) *CARL (K-1, J)
52 CONTINUE
CARL (K, I)=S2
51 CONTINUE
50 CONTINUE

16



79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.

56

54

58

62
60

59

57

CALL LINV1F (EIR,4,4,EIRI,1,WR,IER)

DO 54 I=1,H

$3=0.
DO 56 J=1,H
S3=8S3+EIRI (I, J)
CONTINUE

EMU(1,I)=S3

CONTINUE

DO 60 K=2,4
DO 62 I=1,H
S4=0.
DO 58 J=1,H
$4=54+ (EIRI (I, J) -EI (I, J))*K*EMU (K-1,J)
CONTINUE
EMU (K, I)=S4
CONTINUE
CONTINUE

DO 59 I=1,H

EX1=EMU(1,T)

EX2=EMU (2, I) +EX1

EMU (2, 1) =EX2-EX1**2
EX3=EMU (3, I)+3.*EX2-2.*EX1

EMU (3, I)=EX3-3.*EX2*EX1+2,*EX1**3
EX4=EMU (4,I)+6.*EX3~11.*EX2+6.*EX1
EMU (4, I)=EX4-4.*EX3*EX1+6.*EX2*EX1**2-3 *EX1%**4
EMU (5, I) =SQRT (EMU (2, 1))

EMU (6, I)=EMU(5,T)/EMU(1,I)
EMU(7,I)=EMU(3,I)/EMU(5,I)**3

EMU (8, I)=(EMU(4,I)/EMU(2,I)**2)-3,
CONTINUE

WRITE (6,57) ((EMU(K,I),K=1,8),I=1,H)
FORMAT (/,8F9.2)

17



115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.

63

67

70

65

111

18

PRINT, '

DO 65 I=1,H
PRINT, ' °

PRINT, 'The Actual ARL values'
WRITE (6,63) (CARL(K,I),K=1,N)
FORMAT(/,6F10.4)

PRINT, ' !

ARL=EMU(1,I)

AP=1/ARL

Q=1-AP

PRINT, ' '

PRINT, ‘ARL',I,'=', ARL

PRINT, ' '
PRINT, 'Geometric probability = ', AP
G(1)=AP

DO 67 J=2,N
G(J)=(Q** (J-1)) *AP
CONTINUE
PRINT, ' '
WRITE (6,70) (G(J), J=1,N)
FORMAT (/, 6F10.4)
PRINT, ' '
CONTINUE
STOP

END

SUBROUTINE POPROB(PL, X, PROB)
INTEGER X

S=EXP (-PL)

DO 111 I=1,X

CALL FACT(I, FI)

PR = EXP(-PL) * (PL**I)/FI
S=S+PR

CONTINUE

PROB=S



151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.

Program 3:

R
Bow N e

O W o oY U W N

122

c
SENTRY
4.1,

/*

// JOB

19

RETURN

END

SUBROUTINE FACT(L, F)

Kl=1

IF (L.EQ.Q0) THEN DO
F=1
RETURN
END IF

DO 122 J=1,L

Kl=K1*J

CONTINUE

F=K1

RETURN

END

3, 4, 12

// EXEC WATFIV

//FTO5F001 DD *

SJOB

DIMENSION F(10),P(10),R(10,10),WR(5),CARL(15,10),G(15)
REAL EI(10,10),EIR(5,5),EIRI(5,5),EMU(8,10)

INTEGER H,T,T1,T2
READ, T, H, N

T1=2*T-1
FH=FLOAT (H)
FT1=FLOAT (T1)
W=2.*FH/FT1



15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45,
46.
47.
48.
49.
50.

30

DO 5 I=1,Tl
FL=FLOAT (I-T)
Y=(FL+1.) *W-0.5%W
Z=Y-1.

CALL MDNOR (Z, PR)
F(I)=PR

CONTINUE

T2=T1-1
DO 7 I=1,T2
P(I)=F(I+1)-F(I)

CONTINUE

DO 10 I=1,T

K1=T+1-I

R(I,1)=F (K1)
DO 9 J=2,T
K2=T+J-I-1
R(I,J)=P (K2)
CONTINUE

CONTINUE

PRINT, ' '

PRINT, 'The Matrix R?

WRITE (6,30) ((R(I,J),J=1,T),I=1,T)

FORMAT (/, 5F10.6)

PRINT, ' !

DO 31 I=1,T

DO 32 J=1,T

IF (I.EQ.J) THEN DO

EI(I,J)=0

EI(I,J)=1
GO TO 32
END IF

20



51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.

32
31

42

40

52

51
50

56

54

21

CONTINUE

CONTINUE

DO 40 I=1,T

51=0.
DO 42 J=1,T
EIR(I,J)=EI(I,J)-R(I,J)
S1=8S1+EIR(I,J)
CONTINUE

CARL(1,I)=81

CONTINUE

DO 50 K=2,N

DO 51 I=1,T

$2=0.
DO 52 J=1,T
$2=82+R (I, J) *CARL (K-1, J)
CONTINUE

CARL(K,I)=S82

CONTINUE

CONTINUE

CALL LINVIF (EIR,5,5,EIRI,1,WR,IER)

DO 54 I=1,T
$3=0.
DO 56 J=1,T
S3=S3+EIRI (I,J)
CONTINUE
EMU (1, I)=S3
CONTINUE

DO 60 K=2,4
DO 62 I=1,T
S4=0.
DO 58 J=1,T



87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121,
122,

58

62
60

59

57

63

FK=FLOAT (K)
$4=54+ (EIRI(I,J)~-EI(I,J)) *FK*EMU(K~1,J)
CONTINUE

EMU (K, I)=S4

CONTINUE

CONTINUE

DO 59 I=1,T
EX1=EMU(1,T)

EX2=EMU (2, I) +EX1

EMU (2, I) =EX2-EX1%%*2,
EX3=EMU (3, I)+3.*EX2~2.*EX1

EMU (3, I) =EX3-3.*EX2*EX1+2, *EX1**3,
EX4=EMU (4, 1) +6.*EX3-11.*EX2+6.*EX1
EMU (4, I)=EX4-4.*EX3*EX1+6.*EX2*XEX1*%*2 -3 *EX1**%4,
EMU (5, I) =SQRT (EMU (2, I))

EMU (6,I)=EMU(5,I)/EMU(1,I)
EMU(7,I)=EMU(3,I)/EMU(5,I)*x3,
EMU(8,I)=(EMU(4,T)/EMU(2,I)**2.)-3.

CONTINUE

WRITE (6,57) ((EMU(K,I),K=1,8),I=1,T)
FORMAT (/,8F9.2)
PRINT,'

DO 65 I=1,T

PRINT, ' !

PRINT, 'The Actual ARL values'
WRITE (6,63) (CARL(K,I),K=1,N)
FORMAT (/,5F10.6)

PRINT, ' !

ARL=EMU (1, I)

AP=1./ARL

O=1.-AP

PRINT, '

PRINT, 'ARL',I,'=', ARL

22



123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.

Program 4:

10.
11.
12.
13.
14.
15.

0 Ny W N e

67

70

65

C

SENTRY

5, 3,
/*

// JOB

PRINT, ' '

PRINT, 'Geometric probability

G(1)=AP
DO 67 J=2,N
FJ=FLOAT (J-1)
G(J)=(Q**FJ) *AP
CONTINUE

PRINT, ' '

WRITE (6,70) (G(J), J=1,N)

FORMAT (/, 5F10.6)

PRINT, ' °*

CONTINUE

STOP

END

15

// EXEC WATFIV

//FTO5F001 DD *

$J0OB

H

r

AP

23

DIMENSION F(10),P(10),R(10,10),WR(4),CARL(15,10),G(15)

REAL EI(10,10),EIR(4,4),EIRI(4,4),EMU(4,10)

INTEGER H,T,T1,T2,T3

READ, T, IS, N

T1=2*T~1
T2=2*%T-3
FT=FLOAT (T)
FIS=FLOAT (IS)
FT1=FLOAT (T1)



16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45.
46.
47.
48.
49.
50.
51.

30

FT2=FLOAT (T2)
FH=FT1*FIS/ (4% (FT~1))
W=2.*FH/FT1
FK=FT2*FH/FT1

PRINT, 'K = ',FK,' H

DO 5 I=1,T1
FL=FLOAT (I-T)
Y=FK+FL*W+0.5%W
F(I)=1.-EXP(-Y)

CONTINUE

T3=T1-1

Do 7 1=1,T3
P(I)=F(I+1)-F(I)
CONTINUE

DO 10 I=1,T

K1=T+1-T

R(I,1)=F (K1)
DO 9 J=2,T
K2=T+J-I-1
R(I,J)=P (K2)
CONTINUE

CONTINUE

PRINT, ' '

PRINT, 'The Matrix R'

WRITE (6,30) ((R(I,J),I=1,T),J=1,T)

FORMAT (/, 4F10.5)

PRINT, ' '

DO 31 I=1,T
DO 32 J=1,T
IF (I.EQ.J) THEN DO

', FH

EI(I,J)=1.
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52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
717.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.

32
31

42

40

52

51
50

56

54

GO TO 32
END IF
EI(I,J)=0.
CONTINUE
CONTINUE

DO 40 I=1,T
S1=0.
DO 42 J=1,T
EIR(I,J)=EI(I,J)-R(I,J)
$1=S1+EIR(I,J)
CONTINUE
CARL(1,I)=S1
CONTINUE

DO 50 K=2,N
DO 51 I=1,T
S2=0.
DO 52 J=1,T
$2=82+R (I, J) *CARL (K-1,J)
CONTINUE
CARL (K, I)=82
CONTINUE
CONTINUE

CALL LINV1F(EIR,4,4,EIRI,1,WR,IER)

DO 54 I=1,T
$3=0.
DO 56 J=1,T
S$3=83+EIRI (I, J)
CONTINUE
EMU(1,I)=S83
CONTINUE

DO 60 K=2,4
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88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.

58

62
60

59

57

63

26

DO 62 I=1,T
S4=0.
DO 58 J=1,T
FK=FLOAT (K)
S4=54+ (EIRI (I, J)-EI (I, J))*FK*EMU (K-1,J)
CONTINUE
EMU (K, I) =S4
CONTINUE

CONTINUE

DO 59 I=1,T

EX1=EMU (1, I)

EX2=EMU (2, I) +EX1

EMU (2, I) =EX2-EX1**2 .,

EX3=EMU (3, I)+3.*EX2-2.*EX1

EMU (3, I)=EX3-3.*EX2*EX1+2 . *EX1**3,

EX4=EMU (4, I)+6.*EX3-11.*EX2+6.*EX1

EMU (4, I)=EX4-4.*EX3*EX1+6.*EX2*EX1**2 -3 6 *EX1*%4,

CONTINUE

WRITE (6,57) ((EMU(K,I),K=1,4),I=1,T)
FORMAT (/,4F15.2)
PRINT, ' !

DO 65 I=1,T

PRINT, ' !

PRINT, 'The true distribution of run length’
WRITE (6,63) (CARL(K,I),K=1,N)
FORMAT (/, 6F10.4)

PRINT, '

ARL=EMU (1, I)

AP=1./ARL

Q=1.-AP

PRINT, ' !

PRINT, 'ARL',I,'=', ARL

PRINT, ' '



124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.

C

SENTRY

4,
/*

67

70

65

S,

PRINT, ‘Geometric probability = ', AP
G(1l)=AP
DO 67 J=2,N
FJ=FLOAT (J-1)
G(J)=(Q**FJ) *AP
CONTINUE
PRINT, ' '
WRITE (6,70) (G(J), J=1,N)
FORMAT (/, 6F10.4)
PRINT, ‘' !
CONTINUE
STOP
END

12

27



APPENDIX C: Programs of Chapter 3

Program 1:
1. // JoB
2. // EXEC WATFIV
3. //FTO5F001 DD *
4. $SJOB
5. DIMENSION X1 (50),X2(50),RR(2)
6. DIMENSION UC(9),CL(9),C01(9)
7. DOUBLE PRECISION DSEED
8. DSEED=31785.D0
9. READ, N, TU, TL
10. C
11 PRINT, ROH ',* T ',' R'*?
12. C
13. DO 5 J=1,9
14 ROH=0.1*FLOAT (J)
15. C
16. CO01 (J)=0.
17. C
18. C Generating 1000 samples each of size N from a bivariate
19. C normal distribution with parameters Ul,U2,SIG1,SIG2,ROH.
20. C
21. DO 10 I=1,1000
22 U1=30.
23. U2=15.
24, SIG1=8.
25 SI1G2=4.
26. T1=0.
217. T2=0.
28. C
29. DO 15 K=1,N
30. CALL GGNPM(DSEED, 2,RR)
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31.
32.

33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48,
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.

64.
65.

Q

15

20

Checking the statistic T, with the control limits.

10

25

X1 (K)=RR (1) *SQRT (SIG1l)+Ul
X2 (K)=ROH*RR (1) *SQRT (SIG2)

+SQRT (1.- ROH**2) *SQRT (STIG2) *RR(2) +U2

T1=T1+X1 (K)
T2=T2+X2 (K)
CONTINUE
FN=FLOAT (N)
XB1=T1/FN
XB2=T2/FN
T3=0.

T4=0.

T5=0.

DO 20 K=1,N
T3=T3+ (X1 (K) -XB1) **2
T4=T4+ (X2 (K) -XB2) **2

T5=T5+ (X1 (K) ~XB1) * (X2 (K) ~XB2)

CONTINUE

S1=T3/ (FN-1)

$2=T4/(FN-1)

S1S8=SQRT (S1)

52S=SQRT (S2)

S12=T5/ (FN-1)

R=512/(S15*S28)
T=R*SQRT (FN~2.) /SQRT (1.-R**2)

IF((T.GT.TU) .OR.(T.LT.TL)) COl(J)=CO1(J)+1.0

CONTINUE

C1l=C0O1(J)/10.
WRITE (6,25) ROH,Cl
FORMAT (2F8.1)
CONTINUE



30

66. STOP
67. END
68. SENTRY
69. 10, 2.3060, -2.3060,
70. /*
Program 2:
1. // JoB
2. // EXEC WATFIV
3. //FTO5F001 DD *
4. $J0OB
5. DIMENSION X1 (50),%X2(50),RR(2)
6. DIMENSION UC(9),CL(9),CO0l(9)
7. DOUBLE PRECISION DSEED
8. DSEED=31785.D0
9. ROH=0.5
10. C
11, PRINT, N ', T L I
12. C
13. DO 5 J=1,5
14. READ, N, TU
15. TL=-TU
l6. C
17. CO1 (J)=0.
18. C
19. ¢C Generating 1000 samples of size N from a bivariate normal
20. C distribution with parameters Ul, U2, SIGl, SIG2 and ROH.
21. ¢C
22. DO 10 I=1,1000
23. Ul=30.
24 U2=15,
25. SIG1=8.
26. SI1G2=4,
27 T1=0.
28 T2=0.



29.
30.
31.
32.
33.

34.
35.
36.
37.
38.
39.
40.
41.
42,
43.
44,
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.

(@]

31

DO 15 K=1,N
CALL GGNPM(DSEED, 2,RR)
X1 (K)=RR (1) *SQRT (SIG1) +Ul
X2 (K) =ROH*RR (1) *SQRT (SIG2)
+SQRT (1.~ ROH**2) *SQRT (SIG2) *RR (2) +U2
T1=T1+X1 (K)
T2=T2+X2 (K)
15 CONTINUE
FN=FLOAT (N)
XB1=T1/FN
XB2=T2/FN
T3=0.
T4=0.
T5=0.

DO 20 K=1,N
T3=T3+ (X1 (K) ~XB1) **2
T4=T4+ (X2 (K) =XB2) ¥*2

T5=T5+ (X1 (K) ~XB1) * (X2 (K) -XB2)

20 CONTINUE

S1=T3/ (FN-1)

52=T4/ (FN-1)

S15=SQRT (S1)

S25=8SQRT (52)

$12=T5/ (FN-1)

R=812/(S15*52S)
T=R*SQRT (FN-2.,) /SQRT (1.-R**2)

Checking the control limits.

IF((T.GT.TU) .OR.(T.LT.TL)) CO1(J)=CO1(J)+1.0
10 CONTINUE

C1=C0l1 (J) /10.



64. WRITE (6,25) FN,Cl

65. 25 FORMAT (2F8.1)
66. 5  CONTINUE
67. STOP
68. END
69. SENTRY
70. 5, 3.1824,
71. 15, 2.1604,
72. 20, 2.1009,
73. 30, 2.0484,
74. 40, 1.96,
75. /*
Program 3:
1. // JOB 'T=6M"
2. // EXEC WATFIV
3. //FT0O5F001 DD *
4. $J0B
5. DIMENSION X1 (50),X2(50),RR(2)
6. DIMENSION UC1(9),CL1(9),UC2(9),CL2(9),C01(9),C02(9)
7. DOUBLE PRECISION DSEED
8. DSEED=31785.D0
9. ROH=0.5
10. C
11 DO 3 1=1,5
12, READ({5,100) N
13. 100 FORMAT (I3)
14. C
15. PRINT,' ROH ',° cit,v ¢
16. C
17 DO 5 J=1,9
18 RO=0.1*FLOAT (J)
19. ¢C
20 READ (5,101) UC1(J),CL1(J)
21 101 FORMAT (2F7.4)



22.
23.
24,
25.
26.
217.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.

39.
40.
41.
42,
43.
44.
45,
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.

Q QO Q O

COol1 (J)=0.

33

Generating 1000 samples of size N from a bivariate normal

distribution with parameters Ul, U2, SIGl, SIG2 and ROH.

15

20

DO 10 I=1,1000
Ul=30.

U2=15.

SIG1=8.
S5IG2=4.

T1=0.

T2=0.

DO 15 K=1,N
CALL GGNPM(DSEED, 2,RR)
X1 (K) =RR (1) *SQRT (SIG1)+Ul
X2 (K) =ROH*RR (1) *SQRT (SIG2)
+SQRT (1.~ROH**2) *SQRT (SIG2) *RR (2) +U2
T1=T1+X1 (K)
T2=T2+X2 (K)
CONTINUE
FN=FLOAT (N)
XB1=T1/FN
XB2=T2/FN
T3=0.
T4=0,
T5=0.

DO 20 K=1,N
T3=T3+ (X1 (K) -XB1) **2
T4=T4+ (X2 (K) -XB2) **2

T5=T5+ (X1 (K) =XB1) * (X2 (K) -XB2)

CONTINUE

51=T3/(FN-1.)
$2=T4/(FN~-1.)



57. S18=SQRT (S81)
58. 528=8SQRT (S2)
59.

60.

61.

62. C

63.

64. C

65.

66.

67. 10 CONTINUE

68. C

69. C1=C01 (J)/10.
70.

71. 25 FORMAT (2F8.1)
72. 5 CONTINUE

73. 3 CONTINUE

74. STOP

75. END

76. SENTRY

77. 5

78. 0.9026-0.8482

79. 0.9223-0.8099

80. 0.9386-0.7606

81. 0.9521-0.6955

82. 0.9635-0.6072

83. 0.9732-0.4839

84. 0.9814-0.3056

85. 0.9885-0.0384

86. 0.9947 0.3733

87. 10

88. 0.6917-0.5633

89. 0.7440-0.4839

90. 0.7901-0.3916

91. 0.8310-0.2835

92. 0.8673-0.1556

$12=T5/(FN-1.)
R=S12/(S18%328S)
T=R*SQRT (FN-2.) /SQRT (1.-R**2)

34

C Checking the statistic R with the control limits.

IF({ R.GT.UC1(J)).0R. (R.LT.CL1(J)))

WRITE (6,25) RO,Cl

CO1(J)=CO1(J)+1.0



93.

94.

95.

96.

97.

98.

99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.

0.
0.
0.
0.

O O O O O O O O O U O O O O 0O O O o O N O OO O 0O O O o o o
(=] o o

~
%

8997-0.
9288 0.
9549 0.
9786 0.

.5865-0.
.6517-0.
.7107-0.
.7641-0.
.8127 0.
.8570 0.
.8974 0.
.9345 0.
.9686 0.

.4788-0.
.5553-0
.6259-0.
.6915 0.
.7523 0.
.8089 0.
.8617 0.
.9109 0.
.9569 0.

.3693~0.
.4551-0.
.5362 0.
.6131 0.
.6861 0.
.7553 0.
.8211 0.
.8837 0.
.9433 0.

0034
1793
4005
6700

4331
3427
2410
1263
0037
1518
3211
5157
7401

3063

.2086

1021
0142
1416
2814
4352
6048
7923

1828
0812
0265
1409
2624
3916
5293
6760
8327
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Program 4:

1. // JOB 'T=6M"

2. // EXEC WATFIV

3. //FTO5F001 DD *

4. $JOB

5. DOUBLE PRECISION DSEED

6. COMMON DSEED

7. DSEED=31785.D0

8. N=10

9. U0=0.5*ALOG((1.+0.1)/(1.-0.1))
10. N1=1000

11. FN=FLOAT (N)
12. SIG=1./SQRT(FN-3.)

13. WRITE (6,12) UO0,SIG

14, 12 FORMAT (2X,'U0 =',F6.2,' SIG =',F6.2)
15. C
16. DO 3 LOoOP=1,3
17. FL1=FLOAT (LOOP)
18. FK=0.5*FL1
19. H=3-0.75*FL1
20. WRITE(6,9) FK,H
21, 9 FORMAT(2X,' K =',F6.2,' H =',F6.2)
22. C
23. DO 5 LR=1,3
24, FLR=FLOAT (LR)
25. ROH=0.1+ (FLR-1.)*0.4
26. U=0.5%ALOG ( (1.+ROH) / (1.-ROH) )
27. WRITE(6,11) ROH,U
28. 11 FORMAT(2X,‘'ROH = ',F5.1,' U =',F10.3)
29. ¢
30. SHJ1=0.
31. SLJ1=0.
32. DO 60 L=1,N1
33. SH=H/2.

34. SL=H/2.



37

35. C

36. DO 10 I=1,1000

37. CALL ZCAL (N,ROH, Z)

38. Y=(2-U0) /SIG

39. IF (Y.GT.FK) GO TO 23

40. 10 CONTINUE

41, 23 DO 42 J=I,1000

42. ASH = Y - FK + SH

43, ASL = -~ Y -FK + SL

44, CALIL ZCAL (N,ROH, Z)

45. Y=(2-U0) /SIG

46, SH = AMAX1 (0.,ASH)

47. SL = AMAX1(0.,ASL)

48. IF (SH.GT.H) GO TO 30

49, IF (SL.GT. H) GO TO 31

50. 42 CONTINUE

51. C

52. 30 FHJ=FLOAT (J)

53. SHJ1=SHJ1+FHJ

54, GO TO 60

55. 31 FLJ=FLOAT (J)

56. SLJ1=SLJ1+FLJ

57. 60 CONTINUE

58. EHJ=SHJ1/FLOAT (N1)

59. ELJ=SLJ1/FLOAT (N1)

60. ARL=EHJ+ELJ

61. WRITE (6,70) EHJ,ELJ,ARL

62. 70 FORMAT (2X, 'EHJ =',F15.6,2X, 'ELJ = ',F15.6,2X, 'ARL =
', F15.6)

63. PRINT,'

64. C

65. 5 CONTINUE

66. PRINT, '

67. 3 CONTINUE

68. STOP

69. END



70.
71.

72.

73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.

89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.

Q

Subroutine to generate samples of size N from a

bivariate normal

C distribution and to calculate the Fisher's 2

15

statistic.

SUBROUTINE ZCAL(N,ROH,Z1)
DIMENSION X1 (50),X2(50),RR(2)
DOUBLE PRECISION DSEED
COMMON DSEED

Ul=30.

Uz=15.

SIG1=8.

SIG2=4.

T1=0.

T2=0.

DO 15 K=1,N
CALL GGNPM(DSEED, 2,RR)
X1 (K)=RR (1) *SQRT (SIG1)+Ul
X2 (K) =ROH*RR (1) *SQRT (SIG2)
+SQRT (1. ~ROH**2) *SQRT (SIG2) *RR(2) +U2
T1=T1+X1 (K)
T2=T2+X2 (K)
CONTINUE
FN=FLOAT (N)
XB1=T1/FN
XB2=T2/FN
T3=0.
T4=0.
T5=0.

DO 20 K=1,N
T3=T3+ (X1 (K) ~XB1) %2
T4=T4+ (X2 (K) ~XB2) **2

T5=T5+ (X1 (K) -XB1) * (X2 (K) -XB2)

38



103. 20 CONTINUE

104. C
105. 81=T3/(FN-1.)
106. §2=T4/ (FN-1.)
107. S1S=SQRT (51)
108. S25=SQRT (52)
109, 812=T5/ (FN-1.)
110. R=512/(815*328S)
111. Z1=0.5*ALOG((1.4+R)/(1.-R))
112, RETURN

113. END

114. ¢

115. $ENTRY

116. /*
Program 5:
1. // JOB 'T=8M*
2. // EXEC WATFIV
3. //FTO5F001 DD *
4. $JOB
5. DIMENSION NN(100)
6. DOUBLE PRECISION DSEED
7. COMMON DSEED
8. DSEED=23512.D0
9. C
10. RHO=0.1
11 RH1=0.5
12. N2=300
13. N3=100
14 WRITE(6,2) RHO,RH1
15. 2 FORMAT(2X,' RHO=',F5.1,' RHI=',F5.1)
16. C
17. DO 7 LA=1,2
18. FLA=FLOAT (LA)

[y
\te]

ALFA=(0.05*FLA



20.
21.
22.
23.
=',F6.3)
24.
25.
26.
217.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.

43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.

c

25

23

BETA=0.05*FLA
AS=ALOG( (1.-BETA) /ALFA)
WRITE(6,6) ALFA,BETA,AS

FORMAT (2X, 'ALFA = ',F5.2,' BETA = ',F5.2,' AS

DO 9 LR=1,3

FLR=FLOAT (LR)

RH=0.2* (FLR~1.)+0.3
WRITE (6,8) RH

FORMAT (2X, 'ROH =',F5.1)

Co1=0.

C02=0.

DO 3 L=1,N3

DO 5 N=3,N2

FN=FLOAT (N)

CALL RCAL (N, RH,R)

Y=(1.+RH1*R) /2.

CALL F(N,Y,FR1)

Y=(1.+RHO*R) /2.

CALL F(N,Y,FR2)

Z=((FN-1.)/2.)*ALOG ((1.~RH1%**2) / (1.-RHO**2))
- (FN-1.5) *ALOG ( (1.-RH1*R) / (1.-RHO*R) )

+ALOG (FR1/FR2)
IF (Z.GE.AS) THEN DO
GO TO 25
END IF
CONTINUE
NN (L) =N

CO1=COl1+FLOAT (N)
CO2=CO2+FLOAT (N) **2

CONTINUE

WRITE (6,23) (NN(I),I=1,100)
FORMAT (5I5)



54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.

67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.

C
27
9
7

c

FN3=FLOAT (N3)
ARL=CO1/FN3

VN= (CO2~CO1**2/FN3) / (FN3-1)

WRITE(6,27) ARL,VN

FORMAT (2X, ' ARL =',F9.3,' Variance =',F9.3)
CONTINUE

PRINT, ' '

CONTINUE

STOP

END

C Subroutine to calculate the Gaussian hypergeometric

10

12

function.

SUBROUTINE F(N,Y,TS)
FN=FLOAT (N)

GAM= FN - 0.5

N1=100

TSU=1.

DO 10 J=1,5

FJ=FLOAT (J)
TJ1=2.*ALGAMA (0.5+FJ) +ALGAMA (GAM) +FJ*ALOG (Y)
TJ2=2.*ALGAMA (0.5) +ALGAMA (GAM+FJ) +ALGAMA (FJ+1.)
TJ=EXP (TJ1-TJ2)

TSU=TSU+TJ

CONTINUE

DO 12 J=6,N1
FJ=FLOAT (J)
TJ1=2.*ALGAMA (0 .5+FJ) +ALGAMA (GAM) +FJ*ALOG (Y)
TJ2=2.*ALGAMA (0.5) +ALGAMA (GAM+FJ) +ALGAMA (FJ+1. )
TJ=EXP (TJ1-TJ2)

IF (TJ.LT.1.E-07) GO TO 16

TSU=TSU+TT

CONTINUE

41



89. 16 TS=TSU

90. RETURN
91. END
92. C

93. C Subroutine to generate samples of size N from a
bivariate normal
94. C distribution and to calculate the correlation

coefficient R.

95. C
96. SUBROUTINE RCAL (N, ROH,R)
97. DIMENSION X1 (300),X2(300),RR(2)
98. DOUBLE PRECISION DSEED
99. COMMON DSEED

100. U1=0.

101. U2=0.

102. SIGl=1.

103. SIG2=1.

104. T1=0.

105. T2=0.

106. C

107. DO 15 K=1,N

108. CALL GGNPM(DSEED, 2,RR)

109. X1 (K)=RR (1) *SQRT (SIG1)+Ul

110. X2 (K) =ROH*RR (1) *SQRT (SIG2) +SQRT (1. -ROH**2)

*SQRT (SIG2) *RR (2) +U2

111. T1=T1+X1 (K)

112. T2=T2+X2 (K)

113. 15 CONTINUE

114. FN=FLOAT (N)

115. XB1=T1/FN

116. XB2=T2/FN

117. T3=0.

118. T4=0.

119. T5=0.

120. C

121. DO 20 K=1,N



Program 6:

122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.

10.
11.
12.
13.
14.
15.
16.
17.

W N s W N

T3=T3+ (X1 (K)-XB1l) **2

T4=T4+ (X2 (K) -XB2) **2

T5=T5+ (X1 (K) -XB1) * (X2 (K) -XB2)
20 CONTINUE

C
S$1=T3/(FN-1.)
S2=T4/(FN~-1.)
S18=SQRT (S1)
S25=8QRT (S2)
512=T5/ (FN-1.)
R=812/(S15*828)
RETURN
END

C

SENTRY

/*

// JOB 'T=8M'

// EXEC WATFIV

//FTO5F001 DD *

$JOB
DIMENSION NN(100)
DOUBLE PRECISION DSEED
COMMON DSEED
DSEED=23512.D0

RHO=0.1
RH1=0.5
N2=300
N3=100
WRITE (6,2) RHO,RH1
2 FORMAT (2X, 'RHO=',F5.1,' RH1=',F5.1)

DO 3 LA=1,2

43



18.
19.
20.
21.
22.
23.

24.
25.
26.
217.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.

42.
43.
44.
45,
46.
47.
48.
49.
50.
51.

25

23

44

FLA=FLOAT (LA)
ALFA=0.05*FLA
BETA=0.05*FLA
AS=ALOG((1.-BETA) /ALFA)
WRITE (6,6) ALFA,BETA,AS
FORMAT (2X, ' ALFA = ',F5.2,' BETA = ',F5.2,
' AS = ',F6.3)

DO 5 LR=1,3
FLR=FLOAT (LR)
RH=0.2+ (FLR-1.)*0.3
WRITE (6,8) RH

FORMAT (2X, 'RH =',F5.1)

FMU1=0.5*%ALOG{ (1.+RH1) / (1.~RH1))
FMU0=0.5%ALOG ( (1.+RH0) / (1.-RHO0))
Cco1=0.
Cco2=0,
DO 7 L=1,N3
DO 9 N=5,N2
FN=FLOAT (N)
CALL RCAL(N,RH,R)
U=0.5*%ALOG((1.4+R)/ (1.~R))
FN=FLOAT (N)
Z=U* (FMU1~FMUQ) * (FN-3.) -0, 5% (FMU1**2-FMUQ**2)
* (FN-3.)
IF (Z.GE.AS) THEN DO
GO TO 25
END IF
CONTINUE
NN (L) =N
CO1=CO1+FLOAT (N)
CO2=CO2+FLOAT (N) **2
CONTINUE
WRITE(6,23) (NN(I),I=1,100)
FORMAT (5I5)



52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.

FN3=FLOAT (N3)
ARL=CO1/FN3
VN=(CO2-CO1**2/FN3) / (FN3-1)

WRITE (6,27) ARL,VN

FORMAT (2X,' ARL =',F9.3,' Variance =',F9.3)

CONTINUE
PRINT,' *
CONTINUE
STOP
END

45

C Subroutine to generate samples of size N from a
bivariate normal
C distribution and to calculate the correlation

coefficient R.

66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.

82.
83.
84.

15

SUBROUTINE RCAL (N,ROH,R)
DIMENSION X1 (300),X2(300),RR(2)
DOUBLE PRECISION DSEED

COMMON DSEED

Ui=0.

U2=0.

SIGl=1.

SIG2=1.

T1=0.

T2=0.

DO 15 K=1,N
CALL GGNPM(DSEED, 2,RR)
X1 (K)=RR (1) *SORT (SIG1) +Ul
X2 (K) =ROH*RR (1) *SQRT (SIG2)
+SQRT (1.-ROH**2) *SQRT (SIG2) *RR (2) +U2
T1=T1+X1 (K)
T2=T2+X2 (K)
CONTINUE



85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.

C

20
C
C
SENTRY

/*

FN=FLOAT (N)
XB1=T1/FN
XB2=T2/FN
T3=0.

T4=0.

T5=0.

DO 20 K=1,N
T3=T3+ (X1 (K) -XBl) **2
T4=T4+ (X2 (K) —XB2) **2

T5=T5+ (X1 (K) -XB1) * (X2 (K) -XB2)
CONTINUE

S1=T3/(FN-1.)
S2=T4/(FN-1.)
S18=SQRT (S1)
528=SQRT (S2)
S12=T5/(FN-1.)
R=812/(815*S82S)
RETURN

END
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