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Abstract 

Medicine has been advanced by diagnostic technologies such as artificial neural networks that 

can diagnose cancer from radiological images. However, these diagnostic technologies have 

mainly been applied to the diagnosis of physical illness, even though mental illness is as relevant 

as a diagnostic problem in our everyday lives as physical illness. Diagnostic technologies have 

not been applied to the diagnosis of mental illness for good reason. Psychological diagnosis does 

not depend on an analysis of physical symptoms. Rather, psychological diagnosis depends on 

interpreting and understanding the language people use to describe their thoughts and emotions. 

However, language is a complex and imprecise presentation of mental health. To solve these 

problems, I evaluated established models of distributed semantics and machine learning 

classification models to build a computational system that can diagnose people’s mental health 

from their written language. The system was trained and tested on database of essays written by 

1016 participants who also completed five standard measures of mental health. The work joins a 

growing effort to translate basic cognitive psychology and computational psychology research 

into the design of cognitive technologies capable of solving complex real-world problems. 

 

Keywords: categorization, clinical diagnosis, LSA, machine learning, computational psychiatry  



MATHEMATICS OF CLINICAL DIAGNOSIS  3 

 

The Mathematics of Clinical Diagnosis: Cognitively-Inspired Computational Psychiatry  

Categorization (or classification) is a basic psychological process where individual 

exemplars are mentally organized according to shared properties (Murphy, 2002). This process 

encodes a psychological structure of the natural and artificial worlds, and in the context of 

language, eases communication. Rather than having to think about, remember, and discuss an 

endless number of unique exemplars, exemplars can be conceptualized and discussed according 

to their similarity on relevant properties or dimensions. 

Classification has been studied extensively by cognitive psychologists. Instance theories 

(e.g., Brooks, 1978, 1987; Hintzman, 1984; Medin & Schaffer, 1978; Nosofky, 1986) were 

developed in the 1970s and 80s as a description of classification behaviour. At the time, there 

were two dominant theories of classification. The classic view (beginning with Aristotle, trans. 

2001) proposed category membership is determined by the presence versus absence of defining 

features. Alternatively, prototype theory proposed category membership is determined by 

similarity to a category prototype or average category member (Rosch, 1975; Rosch, Mervis, 

Gray, Johnson, & Boyes-Braem, 1976). In contrast, instance theory demonstrated that 

categorization emerges from a process of storing instances (or exemplars) to memory with 

categorization determined by similarity to specific known category members. 

In the 1990s, psychologists studied and examined clinical diagnosis via instance-based 

similarity. To diagnose disease, a diagnostician must translate groups of symptoms (or features) 

into diagnosed categories. The task is complicated for many reasons: Symptoms can present 

themselves differently in different people and a single symptom can point to multiple diseases. 

Although instance theory was developed in relation to artificial categories in the 1970s, it was 

not until the work in the 1990s that researchers began to show that the instance perspective 
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described the applied problem of diagnostic decision making. Work by Brooks (e.g., Norman, 

Young, & Brooks, 2007) demonstrated that the reasoning methods (and success) of novice 

versus expert diagnosticians differs. Whereas novice diagnosticians use analytic reasoning 

methods consistent with Aristotle’s classic view of defining features, expert diagnosticians rely 

on experience-based, non-analytic reasoning methods to diagnose physical and mental disorders. 

Rather than making diagnostic decisions based solely on a list of diagnostic criteria, expert 

diagnosticians also classify novel cases by comparing them against a history of relevant 

experience. Contrary to initial expectations, this classification process has shown to be fast, 

accurate, and inaccessible to introspection. 

Today, we have technologies to augment many of our cognitive processes. We have 

prescription lenses to augment visual perception and sticky notes to augment memory (Clark & 

Chalmers, 1998). Importantly, in the domain of medicine, we have diagnostic technologies such 

as artificial neural networks to diagnose cancer from radiological images that augment our 

classification processes (e.g., Lee et al. 2017). These technologies are important because they 

reduce the need of a highly trained medical professionals, thus allowing for automated and more 

accurate medical diagnosis. Furthermore, these systems can also detect subtle patterns that may 

go unnoticed by the human eye, even when that eye has decades of experience. 

Though medicine has benefited from these diagnostic technologies, they have mainly 

been used for detecting physical illness. However, mental illness is as relevant a diagnostic 

problem in our everyday lives as physical illness. I surmise that the reason why these 

technologies have not been applied to the detection of mental illness is because psychological 

diagnosis does not depend on an analysis of physical symptoms. Rather, psychological diagnosis 
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depends on interpreting and understanding the language people use to describe their thoughts and 

feelings. Our words are the window into our mental lives and our mental health.  

Since the beginning of psychology, psychologists have sought to understand the 

relationship between the language people use and the workings and content of their mental lives. 

Freud (1901) described slips of the tongue (dubbed Freudian slips) where a person’s latent 

emotions, thoughts, and intentions would expose themselves in mistakes in their use of language. 

Rorschach (1921) developed his famous inkblot test where people reveal the contents of their 

mental life through their verbal description of ambiguous paint blots. McClelland (1979) 

developed the Thematic Apperception Test (TAT) where people tell stories about ambiguous 

drawings or photos of people, thus revealing their motives and understanding of social 

interactions. Most generally, psychologists and psychiatrists, regardless of their theoretical 

orientation (e.g., cognitive-behavioural, psychodynamic, humanistic) depend on the clinical 

interview to elicit language from their patients. 

However, language is one of the most complex processes in our cognitive toolbox. Due to 

the generative and imprecise nature of language, thoughts can be expressed in a great number of 

ways. Consequently, it is a challenging job for clinicians to map the particular expression of 

language people use to the truth of their mental lives. For these same reasons, in the domain of 

developing automated diagnostic technologies, it is a challenging job to build machines that can 

classify peoples’ mental health from their language. Unlike an x-ray image that can be pixelated 

into an array of numeric pixel intensities, it is not immediately clear how to numerically 

represent language that people use in a way that captures meaning. And yet, to build automated 

methods for clinical diagnosis, we must represent the language people use in a numeric and 

machine-readable fashion.  
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The goal of developing automated methods for psychological diagnosis can be traced 

back to the 1950s with Paul Meehl (1954) who wrote about automated methods of clinical 

diagnosis. Though computers were not readily accessible at the time, Meehl’s work showed how 

his “clerk” could enter easily obtained values into a multiple regression formula and produce as, 

or more accurate, diagnoses than trained clinicians. Meehl’s methods for automated diagnostic 

presented a formal and quantitative method of predicting people’s mental health. However, his 

methods did not analyze the language people used to arrive at a diagnostic decision. 

 In the 1980s, Walter Weintraub (1981, 1989) analyzed the relationship between written 

text and mental health. Weintraub hand counted words and parts of speech (i.e., first-person 

singular pronouns) from text that people wrote and found that these counts were reliably 

correlated with peoples’ levels of depression. Recognizing the importance of Weintraub’s work, 

but seeking to automate the counting process, Pennebaker (e.g., Tausczik & Pennebaker, 2010) 

developed software for counting individual words and word classes. Pennebaker’s software 

LIWC (Linguistic Inquiry and Word Count) automatically compares each word in text to a 

dictionary where it counts and summarizes counts in more than 80 linguistic categories. As with 

Weintraub’s work, text analysis with LIWC shows certain linguistic categories are reliably 

correlated with people’s mental health, especially first-person singular pronouns such as I, me, 

and my (Tausczik & Pennebaker, 2010; Willits, Rubin, Jones, Minor, & Lysaker, in press). 

LIWC presented a big leap forward in automated methods of clinical diagnosis from 

written text. However, the method has several shortcomings. Whereas many of the LIWC 

categories are unambiguous and objective, such as the category for function words like the, it, 

and to, other categories are more subjective, such as self-reflective thinking. These subjective 

categories require a great amount of human expertise and effort to construct, given that each 
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word in the dictionary must be agreed upon by researchers. More seriously however, other than a 

crude notion of semantics based on pre-defined categories, LIWC fails to encode meaning. 

LIWC has no has no way to appreciate that words like spaceship and galaxy, or worthless and 

depressed are related unless these relationships are encoded by building word categories that 

include both words.  

 For the last 60 years, researchers have worked to derive a formal theory to represent 

word meaning. In 1952, Osgood had people rate words on varying dimensions, such as good-evil 

or valuable-worthless. Each word then occupied a point in a space with the axes representing the 

dimensions on which participants rated the words. This work, known as the semantic differential, 

resulted in a geometric space of word meaning, where semantically similar words occupied 

similar regions of space. The work provided researchers with a formal mathematics of meaning. 

The problem was scalability: Many participants and a great deal of time were required to build 

the semantic space of many hundreds or thousands of words. What researchers yearned for were 

automated methods of building a geometric vector-representation of semantics. 

 Recent advances in models of semantics developed by cognitive psychologists provide a 

formal method to solve the problem of word meaning. Starting in the 1990’s researchers used 

machine learning methods grounded and informed by psychological theory to build a numeric 

representation of word meaning. These models read a large body of text and learn from patterns 

present in language to derive semantic vector representations of words. The models operate by 

relying on the distributional hypothesis, the notion that words that are used in similar contexts 

have similar meanings. As Firth (1957) said, “You shall know a word by the company it keeps”. 

Some of the most well-known models of distributional semantics are Latent Semantic Analysis 

(LSA; Landauer & Dumais, 1997), Bound Encoding of the Aggregate Language Environment 
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(BEAGLE; Jones & Mewhort, 2007), Hyperspace Analogue to Language (HAL; Burgess & 

Lund, 1997), and Google’s word2vec (Mikolov, Chen, Corrado, & Dean, 2013). Though these 

models all differ in their theoretical foundations and implementations, they all derive a numerical 

representation of words by reading a large body of natural language. Of all these models, the 

most widely known is Latent Semantic Analysis (LSA; Landauer & Dumais, 1997). 

Latent Semantic Analysis (LSA) 

LSA is a statistical method for modelling the meaning of language. LSA works by first 

“reading” a large body of text, called a corpus. The corpus can be any body of text, such as 

newspaper articles, textbooks, blog posts, or webpages; the corpus provides the knowledge base 

of LSA in the same way that peoples’ experience inform their knowledge base. Formally, the 

corpus is rewritten as a word-by-document matrix, where each row of the matrix codes each 

unique word in the corpus and each column codes each document in the corpus. A document in 

the context of LSA can be any unit of meaning, such as a sentence, paragraph, book, or web 

page. Thus, cells of the matrix record the frequency of each word in each document. Because 

most words do not occur in most documents, most of the cell entries in the matrix will be 0, in 

what is called a sparse matrix. 

Of course, some words (e.g., function words like the, and, to) appear in every document 

and thus provide very little or no information about the meaning of a document. In contrast, other 

words provide useful clues about the meaning of a document (e.g., content words like statistics, 

worthless, spaceship). It is for that reason that the cell frequencies in the word-by-document 

matrix are transformed to their information values. In particular, the inventors of LSA (Landauer 

& Dumais, 1997) use entropy weighting (described in Martin & Berry, 2005) of the matrix 

frequencies based on Shannon’s (1949) measure of information (i.e., entropy), 
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entropy = 1 +
∑  𝑝𝑖𝑗𝑙𝑜𝑔2(𝑝𝑖𝑗)

𝑙𝑜𝑔2𝑛
 

where pij is the number of times word i occurs in document j divided by the total number of times 

word i appears in the corpus, and n is the number of documents in the corpus. This weighting is 

applied to all non-zero entries of the word-by-document matrix. This procedure has the result of 

assigning a small entropy to common words that appear in every document and therefore do not 

reveal much information about the meaning of the document while also assigning a large entropy 

to words that appear in fewer documents and therefore discriminate between documents. 

After the word-by-document matrix is formed and a weighting scheme is applied, a 

technique from linear algebra called Singular Value Decomposition (SVD), is applied to the 

matrix (e.g., Strang, 1998). SVD is analogous to factor analysis and is identical to Principal 

Component’s Analysis when the column vectors of the word-by-document matrix are mean 

centered. In the same way that a composite number, such as 30, can be decomposed into 

fundamental prime factors (e.g., 30 = 2 x 3 x 5), a matrix can be decomposed using SVD into 

three fundamental matrices: 

𝐀 = 𝐔𝚺VT, 

where A is the original matrix, U is a matrix of the eigenvectors of AAT, 𝚺 is a diagonal matrix 

containing the square root of the eigenvalues of AAT (termed singular values), and V is a matrix 

of the eigenvectors of ATA (where superscript T indicates the matrix is transposed). The 

eigenvalues contained in 𝚺 are ordered from largest to smallest, and the eigenvectors of U and V 

are arranged to match the order of their corresponding eigenvalues. 

The purpose of applying SVD to the matrix is to reduce the noise in the matrix by 

leveraging the statistical regularities in language that manifest themselves in the matrix. This is 

accomplished by producing the least squares best approximation of the original matrix by using a 
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reduced number of dimensions to reconstruct the matrix. The number of dimensions to retain 

depends on the task the researcher is faced with and is usually determined by selecting the 

solution that provides the best fit to the data. SVD and related techniques are called dimension 

reduction techniques.  

Dimension reduction is accomplished by reconstructing the original matrix with a smaller 

number of dimensions, usually denoted r (for rank): 

𝐗 =  𝐔r𝚺r , 

where X is the least squares best approximation of the original matrix. Ur is a matrix including 

the first r columns of the U matrix, and 𝚺r is a matrix including the first r rows and r columns 

from the 𝚺 matrix.  

The number of dimensions used to reconstruct the matrix determines the proportion of 

variance retained in the least squares best approximation of the original matrix. When the matrix 

is reconstructed with the full number of dimensions, 100% of the variance in retained. The fewer 

the number of dimensions that are used to reconstruct the matrix, the smaller the proportion of 

variance that is retained in the reconstructed matrix.  

Due to the regularities in how people use language, a large proportion of variance will be 

contained in a relatively small number of dimensions (e.g., 300) even if the matrix originally 

consisted of tens of thousands of columns (i.e., documents). Statistical regularities occur in the 

word-by-document matrix because language is largely redundant and therefore predictable (e.g., 

Shannon & Weaver, 1949). Our knowledge that a word like spaceship is more likely to occur in 

a document that contains the word galaxy is intuitive, but also statistical. SVD exploits and 

leverages these statistical regularities.  
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The result of applying SVD to the word-by-document matrix is a matrix with the same 

number of rows as the original word-by-document matrix (each row still represents a word), but 

a smaller number of columns (by tradition around 300 dimensions, which was found to optimize 

performance of the model in a synonym task; Landauer & Dumais, 1997). Each row of the 

matrix is called a semantic word vector, because the row vectors of the matrix contain meaning. 

The effect of SVD is that the word vectors for semantically similar words will be made more 

similar, whereas semantically dissimilar words are made less similar, relative to the 

corresponding vectors before SVD is applied (Appendix B presents a toy example to 

demonstrate the relationship between words before and after applying SVD). 

LSA belongs to a larger family of methods called vector space models (for a review see 

Jones, Willits, & Dennis, 2015; Turney & Pantel, 2010). The name comes from the fact that 

geometrically, these words occupy an n dimensional space, where n is the number of dimensions 

retained using SVD. In the space, semantically similar words (e.g., dog and wolf) are close 

together, whereas semantically dissimilar words (e.g., dog and toolbox) are farther apart. Figure 

1 shows a visual example of a semantic space in two dimensions.  
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Figure 1. Multidimensional scaling solution of nine words from LSA derived vector space 

plotted in two (as opposed to 300) dimensions. In the space, semantically similar words (e.g., 

dog and wolf) are close together, whereas semantically dissimilar words (e.g., dog and toolbox) 

are farther apart. 

 

The similarity between two words can be calculated by any number of standard methods. 

One commonly used method is Euclidean distance which measures the straight-line distance 

between any two vectors (points in an n dimensional space),  

𝑑 =  √∑  (𝐚𝑗 − 𝐛𝑗)2

𝑛

𝑗=1

 , 

where d is the Euclidean distance, and a and b are vectors of the same dimensionality (n). 

Vectors that occupy the exact same location will have a Euclidean distance of 0. The further two 

points are in space, the greater their Euclidean distance.  
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But, because Euclidean distance measures the distance between vectors, and not their 

similarity per se, researchers will often use cosine similarity, which only considers the direction 

of the vectors and not their magnitude. 

Cosine Similarity (or normalized dot-product) measures the angle between vectors a and 

b ignoring the length of the vectors, 

𝑐𝑜𝑠𝑖𝑛𝑒 =  
∑ 𝐚𝑗𝐛𝑗

𝑛
𝑗=1

√∑ 𝐚𝑗
2𝑛

𝑗=1 √∑ 𝐛𝑗
2𝑛

𝑗=1

 , 

where a and b are vectors of the same dimensionality n. Cosine similarity can range from -1 to 1 

representing dissimilarity and similarity, respectively, with a cosine similarity of 0 indicating 

orthogonality between vectors. 

Vector space models such as LSA have been enormously successful in a range of 

applications. These successes range from modelling children’s semantic memory (Denhière, 

Lemaire, Bellissens, & Jhean, 2008), modelling basic memory processes (Howard, Addis, Jing, 

Kahana, 2007), assessing personality (Kwantes, Derbentseva, Lam, Vartanian, & Marmurek, 

2016), assessing reading skills (Magliano, & Millis, 2003), assessing and improving text 

comprehension (Millis, Magliano, Wiemer-Hastings, Todaro, & McNamara, 2007), automatic 

essay grading (Landauer, Laham, & Foltz, 2003), and building semantic search engines of 

academic journals (Aujla, Jamieson, & Cook, in press). 

Recently, researchers have used semantic vectors to predict peoples’ mental health. For 

example, Johns et al. (in press) predicted semantic decline in mild cognitive impairment using 

BEAGLE word representations. The researchers had participants complete a verbal fluency test, 

in which the participants’ goal was to name items from a category. By analyzing the path of 

responses, they could predict which participants would go on to develop mild cognitive 
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impairment. Bedi et al. (2015) used a similar method, but instead used LSA word vectors to 

predict which participants would develop schizophrenia.  

As previously argued, classification models have played an important role in medical 

diagnosis. But, these technologies have mainly been applied to the diagnosis of physical illness. 

To extend methods of automated diagnosis to mental illness, we need to build smart machines 

that can interpret and understand language we use to describe our thoughts and emotions. In the 

remainder of this thesis, I will investigate and evaluate the ability of models of distributed 

semantics like LSA to classify people’s mental health from written language.  

Current Project 

To carry out the project, I have used established psychological vector space models and 

machine learning classification methods. In particular, I collected data on peoples’ mental health 

and used classification algorithms to predict their psychological distress, depression, anxiety, and 

positive affect from free-form written reports. The task of classifying text for this project had 

four major aspects, including: (a) building a semantic representation of words, (b) building a 

semantic representation of essays, (c) choosing and training the classification models, and (d) 

evaluating the performance of the models. But before I begin, let me describe the data I collected 

for the project. 

Method 

Collection of Essay Data 

To conduct this project, I required both written reports that describe how people self-

describe their mental health and an objective standard measurement of their mental health. 1016 

University of Manitoba undergraduates recruited form the undergraduate psychology participant 

pool completed the study. Each participant was asked to write a minimum of 200 words to four 
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free-form questions meant to assess mental health: (1) Please describe your mental health in as 

much detail as possible, (2) Please describe the role of depression in your day-to-day life (i.e., do 

you think you experience depression, why or why not?), (3) Please describe the role of anxiety in 

your day-to-day life (i.e., do you think you experience anxiety, why or why not?), and (4) Please 

describe the positive emotions you experience in your day-to-day life. 

After writing the essays, participants completed a brief mental health questionnaire: the 

Kessler K10 Psychological Distress Scale (described in detail in Kessler et al., 2003; Kessler 

2010) that assesses psychological distress (depression and anxiety). The K10 scale is a reliable 

and valid scale that corresponds with clinical diagnoses based on diagnostic criteria from the 

Diagnostic and Statistical Manual of Mental Disorder (DSM-IV; Andrews & Slade, 2001). The 

K10 scale contains 10 items (see Appendix A) aimed at measuring psychological distress 

characterized by depression and anxiety. The 10 questions in the K10 measure the frequency of 

experiencing psychologically distressing symptoms (e.g., worthlessness, anxiety) with a 5-point 

Likert-type scale where 1 = None of the time, 2 = A little of the time, 3 = Some of the time, 4 = 

Most of the time, and 5 = All of the time. The test gives a single summative score ranging from 10 

to 50, with higher scores indicating greater psychological distress. The scale includes cut scores 

that categorize summative scores into four groups of psychological distress (Kessler et al., 2010; 

Andrews & Slade, 2001). Scores < 20 are considered “Well”, scores between 20 and 24 are 

considered “Mildly Distressed”, scores between 25 and 29 are considered “Moderately 

Distressed”, and scores >= 30 are considered “Severely Distressed”. Based on participants 

responses to the ten questions, they are categorized into one of the four ordinal levels of 

psychological distress. 



MATHEMATICS OF CLINICAL DIAGNOSIS  16 

 

Data were collected online using Qualtrics, a website for survey development, 

management, and deployment. Each of the four free-form written questions was presented on an 

individual page, with a textbox for writing essays and a word counter to present the number of 

words participants had typed. After writing the essays, participants responded to the K10 and 

four other mental health measures (described later). Each of these five scales was presented on 

individual pages. 

Modelling 

Word and essay representation. The essays that participants wrote about their mental 

health needed to be re-expressed in a manner that captures their meaning and that can be used 

with machine learning algorithms (i.e., a vector). For these reasons, I made use of published 

Latent Semantic Analysis 300-dimensional word vectors trained on the TASA (Touchstone 

Applied Science Association) database of over 37,651 documents that encode the meaning of 

92,393 unique words (Günther, Dudschig, & Kaup, 2015). 

To generate one essay representation for each participant, I combined the four essays 

each participant wrote into one essay. Each participant’s essay was represented as the arithmetic 

mean of the word vectors contained in the essay. Psychologically, the average word could be 

conceptualized as the semantic gist of the essay. The result of this procedure is a 300-

dimensional semantic essay space with each essay occupying a point in the space. As with the 

semantic word vectors of LSA, essays expressing similar sentiments will be closer in the space 

(or pointing in the same direction) compared to essays expressing dissimilar sentiments. As with 

word vectors, the similarity of essay vectors can be measured by their Euclidean distance or 

cosine similarity. 



MATHEMATICS OF CLINICAL DIAGNOSIS  17 

 

Classification algorithms. An overwhelming number of algorithms are available to 

classify exemplars from high-dimensional vector spaces (e.g., Nosofsky, 1986; Rumelhart & 

McClelland, 1986; for a broad overview see Kuhn & Johnson, 2016). But, classification models 

fall into several broad categories. For this project, I started by using one model from each of the 

several larger families of models: similarity-based models, decision boundary models, and 

probabilistic models. 

Classification algorithms like k Nearest Neighbors, Centroid models, and the Generalized 

Context Model (Nosofsky, 1986), operate by categorizing based on the class of the most similar 

exemplars to the novel case. I used the k Nearest Neighbors (kNN) model from this family of 

models. The kNN model predicts novel cases by a two-step process. First, the algorithm 

computes the Euclidean distance between the unknown case and its neighbors. Then, the 

algorithm looks at some number (k) of nearest neighbors (i.e., items closest to the item in the 

space) and uses the majority class of these nearest neighbors as a vote for its prediction. When k 

is small, the system behaves according to the principles of instance theory. I tested all odd values 

of k between 1 and 100. Odd values were used to avoid the problem of ties in the vote. 

Models like Artificial Neural Networks, Support Vector Machines, and Linear/ Non-

Linear Classifiers operate by deriving a decision boundary that divide the vectors of one class 

from another (Abdi, Valentin, & Edelman, 1999). I used the Support Vector Machine (SVM; 

Vapnik, 2010) from this family of models. SVMs are similar to an artificial neural network in 

that they attempt to derive a decision boundary that separates the exemplars of one class from 

another. Unlike artificial neural networks, the SVM produces a decision boundary that produces 

the widest margin between the exemplars of different classes. 
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Probabilistic classification models are another family of machine learning models. I used 

a Naïve Bayes Classifier from this family of models (Kubat, 2015; James, Witten, Hastie, & 

Tibshirani, 2013). The Naïve Bayes classifier relies of Bayesian probability theory to classify 

novel exemplars. For each exemplar, the Naïve Bayes classifier computes the conditional 

probability of the exemplar belonging to a given class given the values of the exemplars’ 

features. 

Each family of models operates according to different principles. Trying several models 

offers the best chance (in the applied sense) of finding a model that can correctly classify novel 

essays.  

Evaluating model performance. To be useful, a classification model should not merely 

learn patterns in data, but learn patterns in data that can be generalized for making novel 

classifications with new data. In this project, the classification models must be able to classify 

novel essays. To test the models initially, I used only the two most extreme categories of mental 

health – essays written by well versus severely distressed participants according to the K10 cut 

scores. This provides the models with the best initial chance of diagnosing mental health. To 

ensure an established and well-defined chance model, I randomly sampled the data so that there 

was an equal number of well and severely distressed essays (I address this potential issue in the 

results section). 

To test the system’s ability to classify novel essays, I randomly split the data into a cross-

validation set that contained 80 percent of the essays I collected and a test set that contained 20 

percent of the remaining essays. The cross-validation set was used to train the models and 

establish which combination of parameters performed best. To train the models, I used a cross-

validation procedure (e.g., Howell, 2013) where the cross-validation set is repeatedly randomly 
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sampled into the 80/20 a training and validation sets to train the models and determine the best 

fit. The cross-validation set was used as an indication of how the models would perform on novel 

data. However, since it is possible that the models may overfit the cross-validation data and bias 

the estimate of accuracy upwards (Howell, 2013), the test set was used to test the final chosen 

models on novel data. If the models fail to learn the generalizable structure of the cross-

validation data, the models should not classify the test data appreciably better than would be 

expected by chance. If the models learn the generalizable structure of the cross-validation data, 

the models should classify the test data appreciably better than would be expected by chance. 

Method Summary 

In summary, I had participants write four essays describing their mental health. The 

participants then completed the K10 psychological distress questionnaire (and four other 

standard questionnaires). I represented the essays as the average of the words participants used to 

describe their mental life using LSA word vectors in a high-dimensional essay space. I tested 

three standard classification models to classify the essays in the space with a kNN, SVM, and 

Bayesian classifier. I evaluated the performance of the models, not on their ability to classify 

known cases, but unknown cases. My practical goal was to find a model that correctly classifies 

peoples’ mental health from their written reports at a rate greater than would be expected by 

chance. My theoretic goal was to show that cognitive psychology has theories and models that 

offer a solution to the development of technologies to solve practical real-world problems. 

Results 

 Figure 2 (Panel A) shows the classification accuracy using the word averaging 

representation with LSA vectors. The y axis represents the classification accuracy expressed as a 

proportion. The results are displayed for the cross-validation (CV) and test data for each 
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classification model (kNN, SVM, and Bayes). The dashed horizontal line represents a chance 

model of 50 percent accuracy that a model would be expected to achieve if it was guessing. 

 

 

Figure 2. Results with LSA word vector averaging representation. Panel A shows the results 

with all four essays are combined, and panel B shows the results for each essay. Each panel 

shows classification accuracy (expressed as a proportion) for the cross-validation and test data as 

a function of classification model (kNN, SVM, and Bayes). The horizontal dashed line represents 

a chance model of 50% accuracy. Error bars for the cross-validation accuracy represent the 

standard error of the mean. 

 

There are several important results of note. First, the three classification models 

(indicated by bar colour) perform substantially better than a 50 percent chance model on both the 

cross-validation data and (more importantly) on the test data. Second, there is a strong 

correspondence between the accuracy on the cross-validation data and the test set, indicating that 

the models are not over or under fitting the cross-validation data, but rather learning the patterns 
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in the data in a way that generalizes to new cases. Third, the SVM model tends to be the best 

performing model, though this advantage is negligible.  

Figure 2 (Panel B) show the same results as Panel A, but decomposed by each of the four 

essays participants wrote (questions assessing mental health, depression, anxiety, and positive 

affect). The results with all essays combined (Panel A) show the same pattern of results as for 

each of the four essays when analyzed separately (Panel B). 

 These results demonstrate that essays written by well and unwell participants can be 

classified using a standard method of language representation and established classification 

models. The correspondence between results for individual essays and the aggregate of these 

essays demonstrates that the models perform as well when classifying one of the four essays 

participants’ wrote as when classifying all essays aggregated.  Furthermore, the results 

demonstrate that representing essays of mental health as the average of its word provides a valid 

method of representing essays for classification.  

Though these results show that the models can classify peoples’ mental health when the 

number of essays from well and severely distressed participants are equal, the results do not 

depend on this distribution. The models perform at a comparable (although higher) rate when the 

numbers of essays from the well and severely distressed categories are left unaltered (roughly 

60% well and 40% severely distressed). 

Furthermore, though these results show that the models can classify peoples’ mental 

health when only the well and severely distressed groups are use, the results do not depend on 

this grouping. Figure 3 shows the results when a median split is used (i.e., the well and mildly 

distressed groups are combined into one group and the moderately distressed and severely 
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distressed groups are combined into a second group). Throughout the rest of the thesis I will 

continue to use the well and severely distressed groups. 

 

Figure 3. Results with LSA word vector averaging representation when the well and mildly 

destressed groups are combined into one group and the moderately distressed and severely 

distressed groups are combined into a second group (i.e., median split). Panel A shows the 

results with all four essays are combined, and panel B shows the results for each essay. Each 

panel shows classification accuracy (expressed as a proportion) for the cross-validation and test 

data as a function of classification model (kNN, SVM, and Bayes). The horizontal dashed line 

represents a chance model of 50% accuracy. Error bars for the cross-validation accuracy 

represent the standard error of the mean. 

 

Replication with Additional Mental Health Measures 

Although the K10 is the primary scale I used to validate the performance of the 

classification models, I wanted to be confident that the results were not specific to any particular 

measure. Therefore, I also tested the model’s ability to classify people’s mental health using four 

other self-report measures that all participants responded to. In addition to completing the K10 
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psychological distress scale, all participants completed four other self-report measures of mental 

health. Specifically, the scales were the Center for Epidemiologic Studies Depression Scale 

(CES-D), PROMIS (Patient-Reported Outcomes Measurement Information System) Short Form 

v1.0 - Depression 8b, PROMIS Short Form v1.0 - Anxiety 8a, and the Neuro-QoL (Quality of 

Life) Short Form v1.0 - Positive Affect and Well-Being scale (see Appendix A). Whereas the 

K10 scale measures psychological distress (broadly defined), the first two scales are specific 

measures of depression, and the last two scales are specific measures of anxiety and positive 

affect, respectively. These scales assess the extent to which emotions are experienced, measured 

with a 5-point Likert-type scale where 1 = Never, 2 = Rarely, 3 = Sometimes, 4 = Often, and 5 = 

Always. Like the K10, these tests give a single summative score. Higher scores on these scales 

indicate greater depression, anxiety, and positive affect. Unlike the K10, these measures do not 

have cut scores that categorize scores. For these scales, I created my own cut scores that I based 

on percentile ranking analogous to the well and severely distressed groups from the K10. For 

each scale, I retained the 30 percent of participants with the lowest scores and the 30 percent of 

participants with the highest scores to form two groups. I repeated the exact same analysis as 

previously reported with the K10 with each of the four other measures. 

Table 1 shows the classification accuracy for each essay question and for each 

classification model. For fair comparison, the cross-validation and test data used with these other 

four measures are identical to the previous study.  
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Table 1 

Replication of K10 classification results with alternate measures 

 Mental 

Health 
Depression Anxiety 

Positive 

Affect 
All Essays 

 CV Test CV Test CV Test CV Test CV Test 

Center for Epidemiologic Studies Depression Scale (CES-D), NIMH 

kNN 0.60 0.71 0.63 0.65 0.65 0.60 0.58 0.62 0.61 0.67 

SVM 0.66 0.71 0.67 0.69 0.66 0.68 0.62 0.68 0.69 0.75 

Bayes 0.63 0.70 0.65 0.69 0.64 0.59 0.61 0.67 0.63 0.67 

PROMIS Short Form v1.0 - Depression 8b 

kNN 0.64 0.57 0.69 0.62 0.64 0.59 0.63 0.62 0.67 0.63 

SVM 0.67 0.60 0.73 0.71 0.68 0.65 0.64 0.67 0.73 0.69 

Bayes 0.65 0.60 0.72 0.65 0.63 0.63 0.62 0.65 0.69 0.68 

PROMIS Short Form v1.0 - Anxiety 8a 

kNN 0.59 0.59 0.67 0.66 0.67 0.73 0.55 0.57 0.66 0.66 

SVM 0.63 0.73 0.68 0.66 0.72 0.72 0.60 0.64 0.70 0.72 

Bayes 0.62 0.69 0.67 0.60 0.67 0.68 0.59 0.61 0.66 0.70 

Neuro-QoL Short Form v1.0 - Positive Affect and Well-Being  

kNN 0.64 0.52 0.66 0.66 0.60 0.61 0.65 0.67 0.65 0.66 

SVM 0.65 0.57 0.69 0.63 0.64 0.61 0.68 0.70 0.68 0.68 

Bayes 0.64 0.59 0.65 0.68 0.62 0.61 0.66 0.70 0.65 0.63 

Note: The standard error of the mean for the CV data are all between 0.0075 and 0.0102. 

 

As demonstrated in Table 1, the main results from the previous analysis are replicated 

using these four scales. Importantly, across every condition the models perform substantially 

better than a 50 percent chance model. The classification accuracy with both the cross-validation 

and the test data are in strong agreement, indicating that the models are not over or under fitting 

the cross-validation data, but rather learning the patterns in the data in a way that generalizes to 

new cases. Having shown the results are not specific to any specific measure, I will continue to 

use the K10 as the category variable for the rest of results reported, due to its pre-defined cut 

scores. 

Repeating the Analysis using Different Semantic Word Vectors 
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The results reported thus far have used LSA word vectors to construct the representation 

of essays. This demonstrates that LSA succeeds as a representation scheme for constructing the 

essay vectors using the average of all words participants used in their essays. However, LSA is 

first-generation model of distributional semantics, and whereas the model successfully learns that 

dog and cat are semantically related words because they often appear in sentences such as the 

dog chased the cat, the model fails to account for differences in the order that words are used. 

For example, the LSA representation of the sentence the dog chased the cat is indistinguishable 

from the sentence the cat chased the dog. It is possible that a more sophisticated model of 

semantics, one that encodes word order rather than ignores it, will allow the classification models 

to perform substantially better. 

Second-generation models, notably Bound Encoding of the Aggregate Language 

Environment (BEAGLE; Jones & Mewhort, 2007), were invented to encode word order 

information in addition to contextual information. BEAGLE represents a words’ context and 

order information in a composite vector. Formally, each word in the corpus is initially 

represented by a random vector drawn from a Gaussian distribution with the parameters μ = 0 

and σ = 1/√n, where n is the dimensionality of the vector. Vector dimensionality is typically set 

at 1024 (Jones & Mewhort, 2007). BEAGLE represents word meaning as LSA does, but 

accomplishes the task by summing neighboring word vectors to a target word’s vector 

representation. This has the effect of making the word vectors that appear in the same contexts 

more similar.  

BEAGLE represents word order information using a mathematical operation called 

circular convolution (Plate, 1995). BEAGLE convolves a target word’s vector with the 
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neighboring words in the same sentence. Formally, circular convolution is an operation that 

collapses the outer product matrix to a vector of dimensionality n, 

𝐳 = ∑ 𝐚𝑗 𝑚𝑜𝑑𝑛
∙  𝐛(𝑖−𝑗) 𝑚𝑜𝑑𝑛

𝑛−1

𝑗=0

  

where z is a vector of the convolution of vectors a and b (𝑖. 𝑒. , 𝐳 =  𝐚 ⊛ b). Vectors a, b, and z 

all have dimensionality n. The subscript modn refers to the modulo operator, as the indices of the 

vectors are modulated by n. Circular convolution allows for a distributed and holographic (as 

opposed to local) representation of word order information.  

 A word’s order vector is computed by summing the convolutions of n-gram chunks of the 

neighboring words. Formally, the order vector of word i is computed by 

𝐨 = ∑ 𝑏𝑖𝑛𝑑𝑖𝑗  ,

𝑝𝜆−(𝑝2−𝑝)−1

𝑗=1

 

where o is the order vector for the ith word in the corpus, p is the position of the word in the 

sentence, 𝜆 is a parameter that defines the maximum number of neighbors a word can be 

convolved with, and bindij is the convolution of word i with word j. Traditionally 𝜆 is set to 7 

(Jones & Mewhort, 2007) consistent with Miller’s (1956) famous number 7 ± 2. 

 For example, computing the order information of the word fox in the sentence the fox ran 

quickly involves binding together each n-gram chunk in the sentence that include the word fox. 

All the n-grams that contain the word fox in the sentence the fox ran quickly includes: bigrams 

(the fox, fox ran), trigrams (the fox ran, fox ran quickly), and quadgrams (the fox ran quickly). 

Each n-gram that is bound using circular convolution (the ⊛ Φ, Φ ⊛ ran, the ⊛ Φ ⊛ ran, etc.) 

is summed to form the word’s order vector, where Φ is a placeholder vector for the word of 

interest (e.g., fox). This procedure results in an order vector for each word. The effect of this 

{for i = 0 to n – 1} 
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procedure makes words with similar functions in language (e.g., nouns versus verbs) more alike, 

in much the same way that words with similar meaning become more alike. The word meaning 

and word order vectors are normalized to unit length and summed into a composite vector 

representation that contains both meaning and order information. 

I will now use BEAGLE word vectors to build a representation of participants’ essays to 

test the effect of including using word vectors that also contain order information using 1024 

dimensional composite vectors.1 For this experiment, I followed the same procedure to build the 

essay vectors as with the LSA vectors where I built each participant’s essay vector by taking the 

average of all words vectors that composed a participant’s essay. The BEAGLE word vectors 

were derived from the same TASA corpus of text as the LSA word vectors to offer a fair 

comparison of results for the different semantic representation schemes.  

Figure 4 (Panel A) shows the classification accuracy using the word averaging 

representation using BEAGLE vectors. The y axis represents the classification accuracy 

expressed as a proportion. The results are displayed for the cross-validation and test data for each 

classification model (kNN, SVM, and Bayes). The dashed horizontal line represents a chance 

model of 50 percent accuracy. 

                                                           
1 I would like to thank Dr. Brendan Johns for providing me with BEAGLE word vectors. 
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Figure 4. Results with BEAGLE word vector averaging representation. Panel A shows the 

results with all four essays are combined, and panel B shows the results for each essay. Each 

panel shows classification accuracy (expressed as a proportion) for cross-validation and test data 

as a function of classification model (kNN, SVM, and Bayes). The horizontal dashed line 

represents a chance model of 50% accuracy. Error bars for the cross-validation accuracy 

represent the standard error of the mean. 

 

The main results with LSA are replicated using BEAGLE word vectors and do not appear 

to dramatically improve classification accuracy compared to the LSA vectors. Importantly 

however, across every condition the models perform substantially better than a 50 percent chance 

model. The classification accuracy with both the cross-validation and the test data are in strong 

agreement, indicating that the models are not over or under fitting the cross-validation data, but 

rather learning the generalization patterns in the data. Figure 4 (Panel B) show the same results 

as Panel A, but decomposed by each of the four essays. The results with all essays combined 
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(Panel A) show the same pattern of results as for each of the four essays when analyzed 

separately (Panel B). Going forward, I will continue to use LSA word vectors. 

 Repeating Simulations using another Representation 

 So far, I have represented each essay as the average of all the words of which the essay is 

composed. However, the word averaging representation suffers from a known problem called the 

bag of words problem. With the word averaging representation I have used, because the 

representation does not encode sequential information, an essay with the words randomly 

permuted would result in the same representation as a coherent essay where one thought 

logically leads to the next. Though it is unlikely any participant submitted a permuted essay (i.e., 

an essay without syntax or grammar), it is possible that there are differences in the levels of 

coherence in the writing between well and severely distressed participants. To examine the issue, 

I will use LSA to build a representation of coherence in participants’ essays to evaluate how well 

this representation allows the classification models to classify novel essays. 

The word averaging method used in the previous simulations encodes words of an essay 

without regard for the coherence of syntax or the thoughts expressed in the essays. To represent 

differences in how people use words and connect one idea to the next (and not just which words 

were used), I conducted another computational test where I represented the words as a summary 

of the similarity between neighboring sentences. This representation is inspired by Bedi et al. 

(2015) use of a similar method that had excellent applied success detecting schizophrenia from 

written language. 

 To build a representation for coherence, I first formed a sentence vector that was the sum 

of the word vectors in a sentence. This resulted in one sentence vector for each sentence in a 

participants’ essay. Then, I computed the cosine similarity between each neighboring pair of 
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sentences. This resulted in s – 1 cosines, where s is the number of sentences in an essay. Because 

participants used varying number of sentences in their essays, there is no direct way to compare 

vectors of varying lengths; yet classification models require fixed length vectors. To solve this 

problem, I computed six descriptive statistics to summarize the cosines. Each participants’ essay 

was represented as a six-dimensional vector that encoded the minimum cosine, 25th percentile 

cosine, mean cosine, median cosine, 75th percentile cosine, and maximum cosine. Large cosines 

mean that neighboring sentences are semantically related to one another. Small or negative 

cosines would indicate that participants were more disordered in their use of language from one 

sentence to the next. If participants vary in the coherence in expressing their language on their 

mental health, this coherence representation should classify essays at a rate better than chance. 

 Coherence Representation Results   

 Figure 5 (Panel A) shows the classification accuracy using the coherence representation. 

The y axis represents the classification accuracy expressed as a proportion. The results are 

displayed for the cross-validation and test data for each classification model (kNN, SVM, and 

Bayes). The dashed horizontal line represents a chance model of 50 percent accuracy.  

The kNN, SVM, and Bayesian models performed better than a 50% chance model on the 

cross-validation data, whereas only the SVM and Bayesian performed better than a 50% chance 

model on the test data. The coherence representation does not appear to perform as well as the 

word averaging representation. 
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Figure 5. Results with coherence representation using LSA word vectors. Panel A shows the 

results with all four essays are combined, and panel B shows the results for each essay. Each 

panel shows classification accuracy (expressed as a proportion) for cross-validation and test data 

as a function of classification model (kNN, SVM, and Bayes). The horizontal dashed line 

represents a chance model of 50% accuracy. Error bars for the cross-validation accuracy 

represent the standard error of the mean. 

 

To get a closer look, Figure 5 (Panel B) shows the same results as Panel A, but separated 

for each of the four essays that the participants wrote. As shown, the models do not appear to 

consistently perform better than chance. Furthermore, it is difficult to detect any consistent 

advantage of either of the three classification models. I conclude that the coherence 

representation does not adequately capture information in the essays. 

Bedi et al. (2015) reported incredible success using a coherence representation of 

language to diagnose schizophrenia. A possible reason why the coherence representation did not 

work in this study is because our mental health categories of depression and anxiety are not 
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characterised by thought disorder and deviant verbalizations the way schizophrenia is 

characterized (Levy et al., 2010).  

Psychologically-Inspired Classification Models 

The classification models I have tested show that models based on very different 

principles (similarity-based models, decision boundary models, probabilistic models) can 

classify novel essays significantly better than chance, at least when using the word averaging 

representation. However, these models are the product of engineered solutions to classification.

 In contrast, modern cognitive psychology has psychologically-inspired models of 

classification that not only seek to fit data, but to fit data in a way that is psychologically 

plausible. Specifically, Nosofsky’s General Context Model (GCM; 1986) is a classic instance-

based psychologically-inspired classification model that has been shown to succeed in a wide 

range of classification tasks. Though the model was originally developed for perceptual 

classification, I wanted to determine if it is possible that a psychologically-inspired classification 

model will perform as well as engineered solutions for text classification such as the k Nearest 

Neighbors, Support Vector Machine, and Bayesian approach. 

Generalized Context Model (GCM) 

To classify a novel exemplar, the GCM first computes the distance between the novel 

exemplar and the cross-validation data (i.e., the model’s history of experience). The Euclidean 

distance formula provided earlier is a specific instance of the generalized Minkowski r-metric 

d =  [∑|𝒂𝑖 −  𝒃𝑖|
𝑟

𝑛

𝑖=1

]

1/𝑟
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where d is the distance between vectors a and b of dimensionality n. When r = 2, the formula is 

identical to the Euclidean distance, and when r = 1 the distance is the Manhattan (or city-block) 

metric. 

However, distance does not correspond with psychological similarity (e.g., Brown, 

Neath, and Chater, 2007). To relate distance to psychological similarity, the distances between 

the novel exemplar and the training exemplars are transformed using one of two functions, the 

exponential decay function 

𝜂 = 𝑒−𝑑 

or a Gaussian function 

𝜂 = 𝑒−𝑑2
 

These functions are based on theoretical and empirical deliberations (e.g., Nosofsky, 1985b; 

Shepard, 1958a, 1958b). 

Given similarity values, the model computes the conditional probability of an exemplar 

belonging to each of c categories, where the similarity is converted to a probability of category 

membership. The probability is computed as the similarity of the exemplar with all exemplars 

from a particular category relative to the similarity will all exemplars irrespective of category 

membership 

𝑃(𝐶𝑖|𝑆) =
𝜂𝑖

∑ 𝜂𝑖
𝑛
𝑖=1

 

where P(Cj | S) is the probability of exemplar S belonging to category j where n is the number of 

categories. The category associated with the largest probability is the predicted category for the 

novel exemplar.  

The GCM also modifies the Minkowski r metric by weighting each dimension in the 

space 
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d =  [∑ 𝐰𝑖|𝒂𝑖 − 𝒃𝑖|𝑟

𝑛

𝑖=1

]

1/𝑟

 

where the vector w weights each element of vectors a and b. The sum of weights is equal to 1 

and represents a set of attentional weights that stretch or shrink the psychological exemplar 

space. When each weight is 1/n the formula provides an unweighted solution, analogous to a 

person considering each feature of the exemplar equally. As the components of the w vector 

deviate from uniform, some features of the exemplar are attended to more, which necessitates 

other features being given less attention (because attention is a finite resource). Nosofky wrote, 

“it is assumed that subjects will distribute attention among the component dimensions so as to 

optimize performance in a given categorization paradigm”. For this project, I will use 

information theory (Shannon & Weaver, 1949) to derive attentional parameters w for the model, 

reasoning that the attentional weights should be proportional to the amount of information a 

variable contains. Shannon’s measure of information, or uncertainty, is defined as 

𝐻 = ∑ 𝐩𝒊 log2

1

𝐩𝒊

𝑛

𝑖=1

 

where p is a vector of (non-zero) n probabilities.  

I computed the amount of information each of the 300 dimensions in the LSA solution 

(i.e., columns) contributes to knowledge about the categories. To do this, I computed the amount 

of information H for each variable irrespective of category. Then, I computed the average H for 

each variable within each category. The difference between these two measurements provides an 

index of the amount of information contained in any given feature. Formally, 

𝐻𝑔𝑎𝑖𝑛 = 𝐻 −  
1

𝑛
∑ 𝐻𝑖

𝑛

𝑖=1
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where Hgain is the amount of information a variable contributes about the category membership. 

H is Shannon’s information of the variable irrespective of category membership. Hi is Shannon’s 

information of the variable for category i, and n is the number of categories. This method is 

borrowed from the classification models called decision trees (e.g., Kubat, 2015). 

To evaluate the GCM, I used the identical cross-validation and test sets as I used in my 

previous experiments to ensure a fair comparison against the first study with the kNN, SVM, and 

Bayesian approaches. I evaluated the model with an exponential decay and Gaussian function. I 

used the cross-validation set to estimate the weights w that act as attentional parameters in the 

model and these weights were used in the model to attempt to classify the novel test data.  

GCM Classification Results 

Figure 6 (Panel A) shows the classification accuracy using the GCM model with the word 

averaging representation. The y axis represents the classification accuracy expressed as a 

proportion. The results are displayed with the same test data as the previous results and are 

displayed by similarity function (exponential decay and Gaussian) as indicated by the coloured 

bars. The dashed horizontal line represents a chance model of 50 percent accuracy. 

 

 

 



MATHEMATICS OF CLINICAL DIAGNOSIS  36 

 

 

Figure 6. Results with Generalized Context Model (GCM) using word averaging representation 

with LSA word vectors. Panel A shows the results with all four essays are combined, and panel 

B shows the results for each essay. Each panel shows classification accuracy (expressed as a 

proportion) for the test data as a function of the similarity function (exponential decay and 

Gaussian). The horizontal dashed line represents a chance model of 50% accuracy.  

 

There are several results to note. First, the classification accuracy irrespective the 

similarity function being used is above the 50 percent chance line. Second, the exponential decay 

function appears to perform better than the Gaussian function. Third, compared to the machine 

learning models (see Figure 2, Panel A), the GCM does quite well. The GCM with the 

exponential decay function only performed 3% lower than the kNN and Bayesian classification 

models and 6% lower than the SVM classification model. 

Figure 6 (Panel B) show the same results as Panel A, but decomposed by each of the four 

essays. The results with all essays combined (Panel A) show the same pattern of results as for 

each of the four essays when analyzed separately (Panel B), but there are some other results to 

note. First, though the GCM doesn’t outperform the machine learning classification models, with 

some essays (e.g., the anxiety essay) it performs as well as the kNN and Bayesian models on the 
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exact same test data. Second, there does not seem to be any clear advantage of the similarity 

function that is used – the performance of the exponential decay and Gaussian functions appear 

to perform roughly the same and one does not consistently outperform the other. 

In summary, the GCM, a classic instance-based model of categorization originally 

developed for modelling perceptual categorization judgements can be successfully extended to 

the domain text of classification. By using a psychologically-inspired method of classification, in 

addition to models of distributed semantics like LSA and BEAGLE, the model offers a fully 

psychologically-inspired method for text classification. Though the model did not perform better 

than the engineered machine learning classification models, the method offers promise for a 

complete psychologically-inspired method of natural language text classification that deserves 

additional analysis and consideration.  

Replication with Additional Databases 

To give the reader some confidence in the generalizability of the results I have reported, I 

have also replicated the main results of this project with two other databases.  

One year prior to the collection of data reported in this thesis, I collected data from nearly 

500 University of Manitoba undergraduates. These data were a smaller version of the data I 

presented in this thesis: Participant’s only wrote one essay with a minimum of 200 words asking 

them to describe their mental health, and were only asked to complete one mental health scale 

(the Kessler K10). The models successfully classified novel essays at a rate consistent with the 

results reported in this paper.  

I have also been fortunate enough to apply these methods on a 30-year database of 

transcripts of clinical interviews using the Rorschach (inkblot) test with non-psychiatric controls, 

schizophrenic patients, bipolar patients, and family members of the schizophrenic and bipolar 
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patients (described in Morgan et al. 2017). Each of the over 700 transcripts were diagnosed by 

professional clinical psychologists. The same classification methods presented in this paper work 

with this database as well. 

These past results, taken with the results in this thesis, present strong evidence that 

language and classification models from psychology can successfully diagnose peoples’ mental 

health from both written and transcribed verbal language. These results apply to data collected 

online with university undergraduates as well as a psychiatric population. The methods work for 

identifying emotion-based disorders like depression and anxiety, as well as thought-based 

disorders like schizophrenia and bipolar disorders. The methods also work when the category of 

mental health is determined by self-report measure or by professional diagnosis. 

Developing a Method for Diagnostic Language Identification 

The models evaluated can correctly diagnose the mental health of people from novel 

examples of written language. But, because the models’ classify entire essays, they provide no 

insight into the words or phrases of an essay that are particularly diagnostic. Rather, the models 

simply provide a global diagnostic decision with no clinically relevant reasons to support the 

decision. In this project, I have used models of distributed semantics like LSA and BEAGLE to 

show we can represent peoples’ written language describing their mental health in a way that 

allows standard classification models to classify the mental health of a person who wrote the 

essay. I also wanted to explore methods of using these language models from cognitive 

psychology to analyze the words and phrases people use to describe their mental life. By doing 

so, we will not only be able to diagnose people’s mental health from their written language, but 

to also identify diagnostic passages and phrases. Specifically, I wanted to use the language 

models I have considered to identify words that signal depression. My goal was to build a system 
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that can read in an essay and rewrite the essay as a language heatmap, with words signalling 

depression highlighted for a visual representation of written language. 

To accomplish this, I compared every word in a participants’ essay to a prototypical 

example of words associated with depression. Words or phrases that are similar to the prototype 

vector would signal psychologically depressing sentiment.  

A depression prototype vector was built by summing the word vectors for 13 words 

related to depression (depressed, sad, worthless, depressing, useless, unhappy, hopeless, shame, 

guilt, numb, empty, irritable, and lonely). The purpose of building a prototype vector rather than 

using a single word vector for identifying psychologically distressing language is that by 

definition, a prototype is a good representation of category membership. Kwantes (2016) used a 

similar method to identify language revealing of the Big Five personality traits. 

To build the language heatmap, I computed the cosine similarity between each word in 

the depression essay to the depression prototype. I then rewrote the essay as an HTML file, color 

coding each word based on its cosine similarity to the prototype. Words with a cosine similarity 

less than 0.2 are written in black, whereas words with a cosine similarity greater than 0.2 are 

colored ranging from yellow to dark red. Figure 7 shows four of the depression essays authored 

by severely distressed participants rewritten by the program as a depression-defined heatmap. 

Ideally, we would like to see depressive language highlighted and non-depressive language not 

highlighted. 
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Figure 7. Essays about depression written by four severely distressed participants. The essays are 

rewritten by a program I developed to generate a language heatmap where darker red colors 

correspond to more depressive language. The extent of depressive language is determined by 

each words’ similarity to a vector prototype.  

 

There are a few results to note. First, the system correctly highlights many of the words 

that compose the prototype, such as depression, sad, and numb. This is a recognition-based 

word-classification results. Second, the system also identifies depression related words that were 

not used to compose the prototype such as sadness, broken, and struggling. The fact that the 

system identifies depressive language that were not explicitly included in the prototype 

representation points to the motivation and value for using semantic vectors to identify language 

that provides insight into a diagnosis. Third, whereas there are many correct identifications, there 
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are also misidentifications, such as when the system highlights words such as happy or friends. 

This occurs simply because these words are related the words used to construct the prototype. 

Lastly, there are also a few instances in these essays where the system fails to identify words that 

may be diagnostic such as failing. 

Overall, the system seems to correctly identify language that signals depressive thoughts 

and emotions. The goal of this technology is to build a tool that can augment clinicians’ wisdom 

and clinical experience. The system would allow clinicians to identify depressive language in a 

large body of written or transcribed text at a glance, augmenting and facilitating diagnostic 

decision making. Taken together with the classification results, the system I have developed can 

classify people’s mental health and rewrite the text with a heatmap overlay, providing an 

automated aid for clinical diagnosis and a tool to identify potentially diagnostic language. 

Discussion 

I have used established models of distributed semantics based on state-of-the-art 

techniques from cognitive psychology to build a representation of language that people use in 

service of describing their mental health. Having built an essay space using these semantic 

vectors, I applied engineered machine learning based classification models as well as 

classification models developed within cognitive psychology. Several combinations of 

representation and classification model produced classification accuracies in the low seventy 

percent range on novel test data, with the best model classifying the test data with 74 percent 

accuracy. 

Admittedly, classification accuracy of 74 percent is less than I had hoped when starting 

this project. However, given the ill-defined nature of mental health, the lack of precision in the 

questions participants responded to (e.g., describe your mental health), and the generative and 
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imprecise natural of human language in general, classification accuracies in the seventy percent 

range may very well be near the upper limit of what is achievable.  

However, the results reported are also not so unlike the accuracy of professional 

clinicians. For example, in a meta-analysis of judgement accuracy for practicing clinical 

psychologists, the accuracy of novice and expert clinicians was only 47 and 53 percent, 

respectively (Spengler et al., 2009). Accuracy may be even worse in medical diagnosis. Meyer et 

al. (2013) conducted an experimental study in which nearly 120 physicians diagnosed only 53.3 

percent of easy cases and 5.8 percent of difficult cases. Considering these results, classification 

accuracy of 74 percent is better than it first appears. However, it is important to note that both the 

psychologists and physicians in these reported studies had an overwhelming number of illnesses 

to select from, whereas our models had only a two-choice forced decision with a 50% chance 

model. 

This project (and related work) has important implications for the study of language and 

mental health more generally. Our mental health is complicated to understand and study. These 

complexities are exaggerated by the fact that we must use language to describe our mental lives. 

And yet, diagnostic tools like the K10 psychological distress scale represent mental health on a 

one-dimensional integer scale. This representation scheme limits the question we can ask 

regarding the relationship between language and mental health, as well as the types of analyses 

we can apply to a database of mental health reports. 

In contrast, by representing language describing peoples’ mental health in a formal 

mathematical framework in a space of hundreds or thousands of dimensions, there are nuances 

represented that are washed out in a one-dimensional integer scale representation. By probing the 

structure of these semantic spaces with machine learning classification models, or studying the 
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spaces using other methods (i.e., clustering methods), we can begin to answer more complex 

(and interesting) questions than current clinical analytic methods allow. 

I see this thesis as a direct continuation of the goals and research started by Meehl back in 

the 1950s. Meehl saw the value in automated methods for clinical diagnosis: the equivalent or 

improved accuracy over clinicians, the transparency in which the models make decisions, and the 

intellectual challenge of developing and investigating methods that researchers and clinicians 

believed were beyond the limits of quantitative methods. This thesis was conducted in the spirit 

of Meehls ambitions, while drawing on the theories, techniques, and models from modern 

psychology’s distributed models of semantics and psychologically-inspired classification 

models. 

Artificial Intelligence and Cognitively-Inspired Technology 

As a particular applied aim, the goal of this research is to build a cognitively-inspired 

technology for automated mental health diagnosis. The system could be used as a pre-screening 

tool to reduce the burden on mental health care diagnosticians and providers, especially in 

remote areas where mental health care providers are a scare resource. Building a system of this 

sort has several important advantages. The vector space models of distributed semantics that I 

have used in this project allow for peoples’ thoughts and emotions to be communicated through 

natural language. The goal of communicating with machines using our natural language is not 

only the stuff of science fiction, but is also visible throughout the history of computer science as 

programming evolved from binary instructions on punch-cards to high-level programming 

languages that resemble natural language. Additionally, we know there are therapeutic benefits 

to merely writing about ones’ thoughts and feelings (Pennebaker & Beall, 1986).  
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In order to take the work presented in this thesis that were developed and tested in a well-

controlled and artificial setting to the development of an automated diagnostic tool that is used in 

the real world, several further problems would need to be addressed.  

First, the results reported in this thesis used an equal number of essays from well and 

severely distressed participants to ensure an established and consistent chance model across 

experiments. Yet in the real world, the division of well vs severely distressed people is far from 

50-50. The models I have tested in this project would need to be tested with the imbalances in 

groups found in the real world. One approach would be to further analyze the sensitivity (true 

positive rate) and specificity (true negative rate) of the models rather than only analyzing their 

overall accuracy with an established chance model. Another approach would be to change the 

decision mechanism of the kNN and GCM models (i.e., change the threshold from 0.5 so that the 

models do not merely base their prediction from a majority vote). 

Second, the results reported in this thesis used a university sample and may not be 

generalizable to a non-university sample. However, my work applying the same methods 

reported in this thesis on a collection of transcripts from a psychiatric population may offer some 

reassurance. That analysis shows that the results reported in this thesis are not limited to the 

contrived and controlled analysis, but apply more broadly to the real-world diagnostic problem 

of the clinical interview.  

The Role of Psychologists in Artificial Intelligence 

Modern established companies like Google, Facebook, and IBM are also interested in 

developing solutions for automated clinical diagnosis from written language. However, their 

approach is to develop an engineered solution to clinical diagnosis. The approach that I explored 

with distributed theories of semantics and the Generalized Context Model classification approach 
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in this project is fundamentally different. Rather than trying to invent artificial intelligence from 

scratch, I have leveraged the empirical and theoretical contributions made by cognitive 

psychology over the past six decades. Cognitive psychology has prudently collected data and 

developed theories and models that describe the processes by which humans perceive, learn, 

think, decide, remember, and know. By studying and understanding these processes, we may be 

able to leverage what we know about human knowledge representation and classification 

processes to build technologies and methods that align with human intuition and judgement. 

Because psychologists study the process by which natural intelligence emerges, they can use 

their knowledge of natural intelligence to serve as a productive and empirically informed model 

for developing artificial intelligence. I believe psychologists have a unique role to play in the 

development of artificial intelligence because they are not forced to approach the problem of 

developing artificial intelligence from scratch. Rather, they approach problems with data, 

theories, models, and techniques that have been tested against natural behaviour. 
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Appendix A 

K10 questionnaire 

During the last 30 days: 

1. about how often did you feel tired out for no good reason? 

2. about how often did you feel nervous? 

3. about how often did you feel so nervous that nothing could calm you down? 

4. about how often did you feel hopeless? 

5. about how often did you feel restless or fidgety? 

6. about how often did you feel so restless you could not sit still? 

7. about how often did you feel depressed? 

8. about how often did you feel that everything was an effort? 

9. about how often did you feel so sad that nothing could cheer you up? 

10. about how often did you feel worthless? 

 

Center for Epidemiologic Studies Depression Scale (CES-D), NIMH 

 

During the past week: 

1. I was bothered by things that usually don’t bother me. 

2. I did not feel like eating; my appetite was poor. 

3. I felt that I could not shake off the blues even with help from my family or friends. 

4. I felt I was just as good as other people. 

5. I had trouble keeping my mind on what I was doing. 

6. I felt depressed. 

7. I felt that everything I did was an effort. 

8. I felt hopeful about the future. 

9. I thought my life had been a failure. 

10. I felt fearful. 

11. My sleep was restless. 

12. I was happy. 

13. I talked less than usual. 

14. I felt lonely. 

15. People were unfriendly. 

16. I enjoyed life. 

17. I had crying spells. 

18. I felt sad. 

19. I felt that people dislike me. 

20. I could not get “going." 
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PROMIS Short Form v1.0 - Depression 8b 

 

In the last 7 days: 

1. I felt worthless 

2. I felt that I had nothing to look forward to 

3. I felt helpless 

4. I felt sad 

5. I felt like a failure 

6. I felt depressed 

7. I felt unhappy 

8. I felt hopeless 

 

 

PROMIS Short Form v1.0 - Anxiety 8a 

 

In the last 7 days: 

1. I felt fearful 

2. I found it hard to focus on anything other than my anxiety 

3. My worries overwhelmed me 

4. I felt uneasy 

5. I felt nervous 

6. I felt like I needed help for my anxiety 

7. I felt anxious 

8. I felt tense 

 

 

Neuro-QoL Short Form v1.0 - Positive Affect and Well-Being  

 

Lately: 

1. I had a sense of well-being 

2. I felt hopeful 

3. My life was satisfying 

4. My life had purpose 

5. My life had meaning 

6. I felt cheerful 

7. My life was worth living 

8. I had a sense of balance in my life 

9. Many areas of my life were interesting to me 
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Appendix B 

Building word vectors using Singular Value Decomposition (SVD) 

The first step of building word vectors is to build a word-by-document matrix. Each row in the 

matrix represents each unique word in the corpus and each column in the matrix represents each 

document in the corpus. The table below shows a toy example with only five words and nine 

documents (D1-D9). The cells represent the number of times each word occurs in each 

document. For example, the word depressed occurs once each in D1 and D4, and the word happy 

appears once in each D8 and D9. 

 D1 D2 D3 D4 D5 D6 D7 D8 D9 

depression 1 0 0 1 0 0 0 0 0 

depressed 1 0 1 0 0 0 0 0 0 

anxiety 0 0 0 0 0 1 1 1 0 

anxious 0 0 0 0 0 0 1 1 1 

happy 0 0 0 0 0 0 0 1 1 

 

Singular Value Decomposition decomposes the word-by-document matrix (A) into three more 

fundamental matrices.  

U is a matrix of the eigenvectors of AAT: 

0.00 -0.71 0.00 -0.71 0.00 

0.00 -0.71 0.00 0.71 0.00 

-0.58 0.00 0.77 0.00 0.27 

-0.67 0.00 -0.26 0.00 -0.70 

-0.47 0.00 -0.58 0.00 0.66 

 

𝚺 is a diagonal matrix containing the square root of the eigenvalues of AAT (termed singular 

values): 

2.47 0.00 0.00 0.00 0.00 

0.00 1.73 0.00 0.00 0.00 

0.00 0.00 1.25 0.00 0.00 

0.00 0.00 0.00 1.00 0.00 

0.00 0.00 0.00 0.00 0.56 

 

V is a matrix of the eigenvectors of ATA: 

0.00 -0.82 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 

0.00 -0.41 0.00 0.71 0.00 
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0.00 -0.41 0.00 -0.71 0.00 

0.00 0.00 0.00 0.00 0.48 

-0.23 0.00 0.61 0.00 0.48 

-0.50 0.00 0.41 0.00 -0.76 

-0.69 0.00 -0.06 0.00 0.43 

-0.46 0.00 -0.67 0.00 -0.06 

 

The original word-by-document matrix (A) can be reconstructed by multiplying these three 

matrices 

𝐀 = 𝐔𝚺𝐕T 

Latent Semantic Analysis (LSA) uses SVD to reconstruct a least squares best approximation of 

the original matrix with a smaller number of dimensions by using the U and 𝚺 matrices. 

𝐗 =  𝐔r𝚺r  

where r denotes the number of dimensions in the least-squares approximation. 

For example, by multiplying the first three columns of U by the first three columns and rows of 𝚺 

produces a matrix with the same number of rows as the original word-by-document matrix, but a 

smaller number of columns. The table below shows the least squares best approximation of the 

original word-by-document matrix with only three dimensions to represent each word (i.e., r = 

3). 

 Dimension 1 Dimension 2 Dimension 3 

depression 0.00 -1.22 0.00 

depressed 0.00 -1.22 0.00 

anxiety -1.43 0.00 0.96 

anxious -1.66 0.00 -0.32 

happy -1.15 0.00 -0.73 

 

The effect of the procedure is best illustrated by looking at the correlations between words before 

and after applying SVD. In the original word-by-document matrix, the correlation between the 

two very semantically related words depression and depressed is only 0.36. However, after SVD 

is applied the correlations between depression and depressed is 1.00. As another example, the 

antonyms depression and happy is -0.28 before applying SVD, whereas after SVD the 

correlation increases in magnitude to -0.93. 

 


