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Abstract

This thesis examines the distribution of increasing {-sequences in a random permu-
tation generated by the integers 1, ..., n; an increasing {-sequence being a sequence
of { consecutive integers. Known methods are reviewed and two new solutions to
the problem are derived. An equation is obtained that is more efficient than ex-
isting methods. In addition, we derive the expectation and use this to show that,
for £ > 2, the distribution is degenerate about 0. The thesis concludes with a
discussion of applications of these numbers and the description of an extension to

the problem.
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Summary of Notation

The following table summarizes the notation used throughout the thesis. The page
references note where the notation is first used. I recommend photo-copying the

next page and using it as a book-mark while reading this thesis.
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SUMMARY OF NOTATION X
Notation Meaning Page
x| largest integer less than or equal to x 2
x] least integer greater than or equal to x 2
[Si 1 if statement S is true, O otherwise 2
#A cardinality of the set A 5
Cim number of compositions of n into exactly m parts 10
Cnm(f) number of compositions of n into exactly m parts; none > ¢ 10
D, derangement numbers
Dox matching numbers
N the natural numbers {1,2,...}

N, the natural numbers {1,2,... ,n}

T general element of S,

(i) i*h element of m € S,

p(n) partition numbers — number of partitions of n

p(n,m) number of partitions of n, no summand larger than m
R the real numbers

RY{m, €) number of maximal increasing {-sequences in 7

R7{m {) number of maximal decreasing {-sequences in 7

R.{m, ) number of maximal increasing/decreasing £-sequences in 7
R (m) total number of maximal increasing sequences in w

R, (7t} total number of maximal decreasing sequences in 7

Rn () total number of maximal increasing/decreasing sequences in 7
Sn symmetric group on n elements

X (m €) number of increasing {-sequences in 7t

X, (m €) number of decreasing {-sequences in 7

X.(m, €] number of increasing/decreasing {-sequences in 7

@Te) #inme S| XHm ) =k}

(tley #meS. I Xo(m b =k

(310 #Im e Sy | Xulm, ) =k}

Z the integers, {...,~2,-1,0,1,2,...}
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Chapter 1

Introduction

The topic of this thesis is the distribution of the number of increasing {-sequences
(sequences of { consecutive integers) in a random permutation of the elements
{1,...,n}. In this chapter, Section 1.1 introduces the terminology, definitions and
notation to be used throughout the thesis; Section 1.2 reviews the existing literature

on the subject; and Section 1.3 provides an overview of the remaining thesis.

1.1 Definitions and Notation

Throughout this thesis, we will make use of the following symbols for the common
sets:

the set of all natural numbers: {1,2,3,- -}

the set {1,2,3, - ,n};

the set of all integers: {---,—-2,-1,0,1,2,---};

the set of all real numbers;

W N2 Z
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For real x, we denote the largest integer less than or equal to x as | x| and the least

integer greater or equal to x as [x|. That is,
x| =max{neZ|[n<x} and [x]=min{neZ|n>x}

We also make use of the following indicator notation (Graham, Knuth, and Patash-
nik 1994): If § is any boolean statement then [S] =1if Sis true and (S| =0 if §

is false. For example,

1, ifx <1,
x<1] =
0, ifx>T.

We assume that, if [§] = 0, then ulS] = 0 even when u is undefined.

We use the following formal definition for binomial coefficients:

. T{T——]]---'(T_k—l-”, k>0
( ) - kl forallT € R,k € Z. (1.1)
0, k< Q.

This definition allows the upper index to be any real number and, in particular,
1 = —1 occurs frequently throughout. When r = n is a non-negative integer, the
definition is consistent with the usual (L‘) = n!/kl (n — k)I. We also note that
(;) = (rik) if and only if r is a non-negative infeger. Restrictions may be required
on other familiar binomial identities and care must be taken throughout.

We denote the symmetric group on n elements by Sy, that is, S is the per-
mutation group on N, = {1,--- n}. As usual, the group operation is composition
of functions. In general, we will denote the j** element of = € S, as =(j) for all
j € N,, hence m: N, — N, is a bijection. We denote a group of { € N elements

or sub-permutation in 7 by 7{j)---w{j + { -~ 1}). It will be understood that, when
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arithmetic modulo 1 is called for on the indices or elements of 7w € S, we will
identify the equivalence class [0] = {nz | z € Z} with the label n instead of the
usual 0. For convenience, if T € S, we assume 71(j) is undefined for all j < 0 and
>,

We begin with the following two definitions:

Definition 1.1 {Increasing/Decreasing {-Sequence) Let n,j,{ € N such that 1 <j <
n—£f+1<nandlet e S, Then n(j)---m{j+{—1) is an ncreasing {-sequence
if and only if

Viij<i<i+l  wi)-mi-1)=1.

Similarly, we say 7t(j)---n{j + { — 1) is a decreasing {-sequence if and only if
Vij<i<iji+d, ni—1)—-nli=1.
Lastly, (i} --nt{j + { — 1) is an {-sequence if and only if

Viij<i<ij+¢, (i) — (i 1) = 1.

Definition 1.2 {Maximal Increasing/Decreasing {-Sequence) Let 1n,j,{ € N as in the
previous definition and let © € S,,. Then we say 7(j}---n{j +{ — 1)} is a mazimal
increasing {-sequence if and only if 7(j} - -7m(j +¢— 1) is an increasing {-sequence
and 7t(j)---m{j + £ —1) is maximal in the sense that it is not contained in a larger
increasing {-sequence, that is, n(j — 1} # n(j) =V and w(j + £ — 1) # n{j + ¢) — 1.

Mazimal decreasing {-sequences are defined in an analogous manner. Similarly,
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by a mazimal (-sequence, we mean an {-sequence which in not contained in a

larger {-sequence.

Table 1.1 illustrates the definitions for the example 7w = (45621873} € Sg. We

also make the following remarks concerning these definitions:

Remark 1.3 The previous two definitions have the following consequences:

1. since 7t(j) is undefined for j ¢ N, the restriction 1 <j <n—{f41 < nis

implicit in the definitions.
2. 7(j) is both an increasing and decreasing 1-sequence for all j € Ny;
3. increasing and/or decreasing {-sequences may overlap while maximal increas-

ing and/or decreasing {-sequences are necessarily disjoins.

Table 1.1: Increasing/Decreasing {-sequences in 7t = (45621873).

Type of Sequence £=1 (=2 =3
Increasing {-Sequences 4,5,6,2,1,8,7,3 45,56 456
Decreasing {-Sequences 456,21,8,7,3 21,87
{-Sequences 4,5,6,2,1,8,7,3 45,56,21,87 456
Maximal Increasing £-Sequences 2,1,8,7,3 456
Maximal Decreasing {-Sequences 4.5,6,3 21,87

Maximal {-Sequences 3 21,87 456
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For n,{ € N and 7t € S, define

X (7, £) = number of increasing {-sequences in T,
X (71, {) = number of decreasing {-sequences In 7,

Xa(mm, 8) = X (7, £) + X (m, &),
‘More formally, we have

Xi(ml)=#{jeN, [Viij<i<j+{(n{i)—n(i-1)=T1} } (1.2)
Xolm ) =4#{je N, [Vitj<i<i+i(nli—1)—mli) =1) } (1.3)

Xolm ) = #{je N [Vij<i<j+ L (n(i)—n{i-1)=1)}. (1.4)

For n,{ ¢ N and © € S,, define R/ (7, {), R {m, {; and R,(7,{) as the number
of maximal increasing {-sequences, maximal decreasing {-sequences and maximal
{-sequences in 7t respectively. By definition, maximal (increasing/decreasing) {-
sequences are disjoint and we define

n
Ri(m) =Y Ri(mt), Rm =) Rilml), Ru(n)=) Ralml). (15)
=1 [ £=1
Hence, R () denotes the total number of maximal increasing sequences in 7t; R;; {7)
denotes the total number of maximal decreasing sequences in 7; and R, (7) rep-
resents the total number of maximal sequences in 7. Table 1.2 illustrates these

definitions for our example permutation © = (45621873).
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Table 1.2:

It is easy to see the following relations:

(k1
(1Y)
Wl

6
Examples of Defined Numbers for m = {45621873).
{=1 {=2 (=3
Xg{m, ) 8 2 1
Xg (m, €] 8 2 0
Xg(7t,0) 8 4 1
Ry (7, £) 5 0 1 Ri{m) =6
Ry (m, £) 4 2 0 Rgi{m =6
RS(TC,E) 1 2 1 Rg(?{} =4
n=X (m1) =X (m1)
= R* () + X{{m, 2)
(1.6)
= R (m) + X (m 2}
= R {m) + X, (m, 2).
Now, for n,£ € N and 0 < k € Z, define
=Y Xim O =k =#{meS. | Xz{m =k}
TEE
=Y Xom O =K =#{me8, | X (m ) =k} (.7)

TESn

=Y Xa(mO=K=#{neSa Xalmt=k}.

T[Eﬁn
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Hence, (L‘Te) is the number of permutations in §, with exactly k increasing ¢-
sequences, (;"le> is the number of permutations in §,, with exactly k decreasing £-
sequences, and <EIE> is the number of permutations in S,, with exactly k increasing

and/or decreasing {-sequences. By symmetry, we have

n n
(k9= (e
We also note the special case

<ﬂ1>:<2\!f}>=<HI>=nsz=n}, for all n € N;

There are two related numbers that, while not the main subject of this thesis,

appear frequently enough in the literature to warrant definition here.

Definition 1.4 (Increasing/Decreasing £,-Sequence) Let n,j, £ € Nsuch that 1 < ¢ <
nand 1 <j<nandlet 1€ $S,,. Then n{jin(j+T1modn)---n{j +{—1modn) is
an tncreasing {.-sequence if and only if

Yinj<i<j+d, n{imodn) —7(i— 1 modn) =1.

Recall that we use the label n for the equivalence class [0]. We similarly define

decreasing {,-sequences and {,-sequences.

Definition 1.5 (Increasing/Decreasing {,-Sequence} Let n,j,{ € Nsuchthat 1 <j <
n—~{+1<nandletne S, Then n(j)---w(j+{—1) is an increasing {,-sequence

if and only if

Vitj<i<i+l, wi)-mli-1=1 [(modn)
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Again, we define decreasing {.-sequences and {,-sequences in an analogous man-

ner and note that the equivalence class [0] is identified with n instead of 0.

In the {, (circular) case, we are imagining that 7t(1) immediately follows 7{n).
In the {, (star) case, we imagine that 1 immediately follows n. When required,
we will use the appropriate subscript on the parameter { to denote these types of
sequences. For example, X7 {m, £, ) will denote the number of increasing {,-sequences
in 7t; R (m, £,) will denote the number of maximal decreasing {,-sequences in 71; and

80 OILL.

Derangement and Matching Numbers

Definition 1.6 (Fixed Point) Let m € S,,. We say n(j) is a fired point of m if and
only if 7{j) = 3.

Definition 1.7 (Derangement) We say © € S, is a derangement if and only if 7
contains no fixed points.

The number of derangements of n elements is denoted by D, or, in some lit-

1901), is

erature, nj (read “n sub-factorial” ). The general formula, given in (Whitworth
(~1)F
!

= Lo
Dp=ni=nl) =t%+§J.
k=0

Where e is the base of the natural logarithm — hence D, = nj is simply n!/e

rounded to the nearest integer.
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In the more general case, we denote the number of permutations in §, with
exactly k fixed points as D, x. Thus, Dy 5 = D, = nj. The numbers D,  satisfy

(Graham, Knuth, and Patashnik 1994)

I
Dn,k = (k) Dnvk-

We see that D, is the coefficient of z* in the expansion of (D + z}™ where we
equate DJ with D;.

The numbers D,y are often referred to as matching numbers since they rep-
resent the number of ways of permuting n objects such that k of them remain in

their original position (i.e. k matches).

Partitions and Compositions of Integers
Definition 1.8 Let n a positive integer and let & = {£;}] be a sequence of n
non-negative integers. Then, & = {&;}]" is a partition of n if and only if

42824+, =1

For a given n, we denote the set of all partitions of n by Z,,. The number of

summands in the partitionis & +- -+ &x.

The cardinality of =, is denoted by p{n) and is known as a partition number.
The history of these numbers can be traced back to Leibniz, Bernoulli and Euler

(cf. Dickson 1920). The generating function for p(n) is well known to be

1
Gp(n)(z) = (1 —Z)(I _ZZJ[] mz3)
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While no known closed form for p(n) exists, the values are easily computed using a
recurrence. If we let p{n, k) denote the number of partitions of n with no summand

(part) larger that k, then
pn,kl =pn—kk} +pn k-1,

with boundary conditions p{n,1} =1 for all n > ¢ and p{n,k} =0 for all n < 0.
Thus, p(n) = p(n,n).
By a composition of n into exactly m parts (n, m non-negative integers) we

mean an ordered collection of positive infegers xq,..., X, such that
XpbX2 Xy =T

For example, the compositions of 4 with exactly 2 parts are 13, 31 and 22. If the
order is disregarded we obtain a partition of n.
We denote the number of possible compositions of n with exactly m parts as

Cy.m. The generating function is
Ge, (z)=(z+2Z2+2°+ )" =z™(1~-2z)™™, izl < 1. (1.8)

Writing (1 —z) ™ as (—1}™(z—1}"™ and making use of the Binomial Theorem, we

obtain
_ m M kbm —k
Genle)= (5 () (19)
Hence, the coefficient of z™ is (—1)"™( ™) = (77!} and we have

— 1
Com = (n ), integers n, m > 0. (1.10}
n—m
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Note, when m = m = 0, we get Coo = () - (—=1)® = 1 which agrees with our
generating function. In allowing n = 0, we must refrain from writing this as (::])
since the binomial reflection of () is valid only for 0 < v € Z.

For non-negative integers n, m and £, we denote the number of compositions
of n with exactly m parts, none of which are greater than £, by C, . {{). The

generating function is

Gcm(z:ﬁ)z{z+z2+---+z€}m:(%ﬂ)m. (1.11)
Hence
(1 —2)Ge, (z:8) =z(1-2G¢,, ,(z:0). (1.12)
Equating coefficients of z", we obtain the recursion
Cam(l) — Cacrmll) = Crsr 1 {8) — Crmemt et (£
Chm(l) = Crotm1{0) — Crpor 1 (8) + Crq i (€) (1.13)

The boundary conditions are C,o(£) = [m = 0] and Cym(f) = Im = 0]. In fact,
Cam(€) # 0 impliesn < {m < fnand, if{ > n, Cum(l) = Cy . If £ = 2 then

Cn.m(2) is the coefficient of z™ in (z + z?)™ and we have the special case

cn‘m(2)=( m ) (1.14)

n—m
From the generating function, Cy, 1y (0} = [n = m = 0].

See Riordan (1958), Hall (1967) and Comtet (1974) for discussions of partitions,
partition numbers and compositions as well as the related denumerants. The

reader is also directed to the collection of papers by P. A. MacMahon in (Andrews

1978), in particular (MacMahon 1894, 1908).
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1.2 Literature Review

The number of permutations in S,, without increasing 2-sequences first appears
in {Whitworth 1901) where the solution D,4/n is given. Whitworth (1901} also
considers the case of no increasing 2,-sequences.

Wolfowitz (1942) describes a non-parametric test of independence for paired
samples using R.{m) = n — X.(m,2). He gives the numbers (7 ]2) as the solution
to a system of n equations in n unknowns — the equations easily solved by back-
substitution. Wolfowitz (1944) derives the limiting distribution of X, (7,2} =n —
R,.(m) as Poisson with mean 2 while Kaplansky (1945) provides a more explicit
result concerning the limiting distribution of X, {m, 2).

Kaplansky (1944) gives a symbolic solution to the n-kings problem: How many
ways may n-kings be placed on an n x n chess board such that no two are in the
same rank or file and no two attack each other. This is equivalent to determining
the number of permutations in S, with no increasing and/or decreasing 2-sequences
since, if m € §,, has no increasing and/or decreasing 2-sequences, we may use 7t(1)
for the rank of the king in the first file, 1(2) for the rank of the king in the second
file, and so on up to 7{n). Riordan (1965) gives a recursive equation of order 5 for
these numbers. Abramson and Moser (1966) provide an independent solution.

The number of permutations in S,, with k increasing 2, 2, and 2,-sequences are
examined in (Roselle 1968; Roselle 1974; Tanny 1976; Reilly and Tanny 1979). The
results are either explicitly expressed in terms of derangement numbers or can easily

be shown fo be equivalent. Roselle (1974) and Dymacek and Roselle (1978) also
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relate the numbers (| 2.} and (}72.) to the derangement numbers. Dwass (1973)
follows a more probabilistic approach, making use of a Markov chain in determining
the distribution of X;/(m, 2) and showing its limiting distribution is Poisson with
mean 1. More recently, Fu (1995) used a finite Markov chain embedding technique
to give a simple matrix form for the distribution of X7 (7, 2); to show that the
asymptotic distribution is Poisson with mean 1; and, to show that the distribution
of X! {m,{) is degenerate about 0 when { > 2.

Riordan (1945) uses combinatorics and the symbolic method to enumerate ('] 3)
and derives the mean and variance of X{m, 3).

The more general case of increasing {-sequences (£ > 2) is discussed in (Abram-
son and Moser 1967; Jackson and Reilly 1976; Jackson and Aleliunas 1977). Abram-
son and Moser (1967) make extensive use of combinatorics. Jackson and Reilly
(1976) and Jackson and Aleliunas (1977) make use of generating functions to enu-
merate {T¢). Jackson and Reilly (1976) further derive a recursion for the coefi-
cients in the generating function and give a method to calculate (' T¢) in O(n?)

time.

1.3 Overview

The remainder of this thesis is organized as follows: Chapter 2 reviews two known
methods for the case £ = 2. Chapter 3 contains the main results of the thesis — the
general case {]¢) is solved and the expectation of X (7, {) is derived. From these

two results, all known results for £ = 2 and more efficient equations for the case £ = 3
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are derived. The chapter concludes with an alternate method for generating the
numbers (Tt} and proving a closed form for the special case { > [n/2]. Chapter
4 discusses some applications for the numbers (] T¢) and the stochastic variable
Xt{m, ). Chapter 5 contains some concluding remarks and an extension of the
problem. Appendix A enumerates the numbers (¢} for 2 < { < n < 20 and
0<k<n—£4+1.

For the impatient, dog-ear page x and turn fo Table 3.1 on page 34.



Chapter 2
Increasing/Decreasing 2-sequences

This chapter reviews two methods for determining the numbers (}[2). We first
apply the symbolic method to the determination of (172} and the related (}]z).
The second method makes use of the finite Markov chain embedding technique of

Fu (1995).

2.1 Symbolic Approach

Riordan (1958) gives a formal description of the symbolic approach for solving
a wide class of combinatorial problems. Kaplansky (1944) gives a description of
the method and applies it to a number of problems involving permutations —
in particular, the n-kings problem. Our approach follows closely that of Roselle
(1974), who used this method to provide solutions for (372), (3]2.) and (3]2) as

well as others.

15
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Let n € N given and §,, the symmetric group on n elements. Let A;;,; denote
the event that, in a rancioin T € Sy, 1+ 1 immediately follows i. Clearly, there
are n — 1 such events to consider: Ay, Az, ..., An_nn. Let Ay Ay, -+ Ay denote
an arbitrary k element subset of these n — 1 events and let ¢y = p(A A, - Ay )
denote the probability of the joint occurrence of A;, -+ A;,; then, since k increasing
2-sequences leads to n — k maximal increasing sequences which may be permuted

n (n—k)! ways, we have ¢y = p(A, - Ay ) = (n—k}!/nl. Thus, ¢y is symmetric
in the sense that it is a function of k alone and never vanishes for k < n—1. By

Poincaré’s formula, we have
PriX{(m2) =01 =1-3 plAd+D p(AA) — 3 plAAAL +
i 17 il

Now, since a sum involving k events has (“ 1) terms, we have

-1
Pr[Xt(m, 2) = 0] = Z ( )(“’_k}!, (2.1)

!
k=i

which is the result in (Roselle 1974). If we let E such that E¥¢y = ¢y then sym-

bolically we have
PriX7(m,2) =0l = {1 — E)" 'd. (2.2)
As an example, for n = 4,
PriXi{m2) =0l = (1 —E)°dp = {1 — 3E + 32 — E¥)dho

= o — 3Py + 37 — b3

= % (T(41) —3(3) + 32— 1)
11
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corresponding to the 11 permutations in S, without increasing 2-sequences. We

also have, by Poincaré’s formula,

n—1
PriX}{m2) =1} = kﬂM)k_T(kET) > plAy Ay
! LKy =1\ (n—k)!
szT( " (r)( k ) n!
n—1
. (1) /k n-—k
-y 5 () (__n ) (2.3)
MTL*F] (1 fm—k—7
N = k!r! ( n )
3 .l n—-r (“"'Hk n—r—1 (_”k
_-T-L—;{(n—r]kmo o +é o }

_ L anr + Dn-‘—r—l
Tar ln—r=11 " (n—r-1)!

= L (T‘- - ]) (D + Drrt)

n! T

Multiplication though by n! and replacing r by k yields

<ﬂz> N (n;}) (Dn + Drs), (2.4)

which is the exact result appearing in (Tanny 1976) and (Reilly and Tanny 1979).

Roselle (1968) gives the symbolic form
<nT2> = [x¥] {(D 4 x)* + (T —x)(D + x]““‘l} , D= D;. (2.5)

The coefficient of x* in this polynomial is

ko T\ n-k n—1\ o =T\ nx
1= (o (o (o
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Equating D/ with D; and noting that () — (37}) = (";') we see this is also
equivalent to (2.4).
For a discrete random variable X, taking on values 0,1, ... , 1 with probabilities

Do, P1,- .-, Pn, the ordinary generating function is given by

Evaluating at t + 1 yields

™ mn T n k18 ™ %
_ _— ™.k « T B t(my
Pee 1) =Y 11 = Y pe Y (1) = X ([)p =Y S
= =0} k=0 k=0 ==k k=0
where (m)y is the k*® factorial moment of X. Evaluating this last expression at
t— 1 gives
o (B Fm
Plt)=)_ 5
k=0
= {m)k - k k—rger
- Z_ Kl Z r (=1t
k=0 =0
e (R (DT m
Hence,

© e\ (<1 m)
po=3 () T

k=1

Therefore, from (2.3), we see that the k™ factorial moment for 1 < k < n (higher

factorial moments all vanish) is (n —k)/n and we obtain

-1
EXT{m,2)] = ™' and VarXf{m,2)]=1- L Lz (2.6)
n non
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Since all factorial moments tend to 1 as n — oo we have the limiting distribution
of X;:{m, {) as Poisson with mean 1.

For the case of increasing {,-sequences, we consider the addition event A, 1,
for a total of n possible events. As before, the probability of the joint occurrence
of Xk < n — 1 of these events is {n — k}!/n! which is a function of k alone and
never vanishes for 0 < k < n — 1 and we have the required symmetry. Since the
probability of the joint occurrence of n of these events is 0, we may simply drop
the last term in Poincaré’s formula. The derivation is even simpler than for that
of {]2). We have

n—1
<T:T!2*> =n! PrX'(m,2,) =1 = Z[—] el (]:) (Z) (n—k)!

k=1

n—1 K\ (=1 k+r
ke=r

n—r—1
B k+1\ (—1)*
= Z ( T ) k+ﬂ

n—r—1 3
(—1)*
=) T

k=0
—1
= Tl,(n ) anr_g] . (2-8)
T
We see immediately from (2.7) that the k™ factorial momentis 1 for k=1,... ,n

and 0 otherwise which is enough to verify that the limiting distribution is again
Poisson with mean 1.

These results are equivalent to those of Roselle (1974); Tanny (1976); Dymacek
and Roselle {1978); and, Reilly and Tanny (1979). Due to the following theorem,
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it suffices to determine (}72.} only.

Theorem 2.1 Let S, the symmetric group on n elements, = ¢ S, and 7' its

unique inverse. Then
X o) = X2 (', 4) (2.9)

Proof: Let m € S,,, then we clearly have, for all 1 < k < n,

n{k} =mand n(k+ 1) =m-+1modn
=

' m)=kand n~'(m-+Tmodn) =k + 1.

Hence, every increasing {,-sequence maps onto a unique {.-sequence which com-

pletes the proof. O

In determining (7 ]2), Roselle (1974) uses the notion of quasi-symmetry —
where ¢y = 0 or is a function of k alone. The method is identical to that above
except that all terms where ¢y vanishes must first be suppressed. Riordan (1945)

uses the symbolic method to determine (] ]3).

2.2  Finite Markov Chain Embedding Approach

Dwass (1973) made use of a non-homogeneous Markov chain to examine the dis-
tribution of X (m,2) and X/ (m, 2,). Fu (1994) formalized a finite Markov chain

embedding technique for the study of the exact distribution of a specified pattern
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in a sequence of multi-state trials (cf. Fu and Koutras 1994; Fu 1996). Fu (1995)
modifies this technique for use in determining the exact and limiting distributions
of XI(m, 2).

The generation of a random permutation 7 € S, is equivalent to the stepwise
insertion of n integers {1,...,n}. For m € §,, there is exactly n + 1 positions to
insert n+1 to obtain m € ;... It is easy to see that this generation is unique in that,
if at any stage we choose a different insertion position, the resulting permutation

will be different. Let 7w, denote the sub-permutation created after inserting the

t™* integer. Consider the state space 0 = {0,1,...,n — 1}, the index set ' =
[0,1,...,n}and a sequence of transformations Y;: S, — O, t = 1,... ,n where, for
eachmmeS,andeach t =1,2,...,n,

For example, the permutation m = (12376854) is created by the sequence of

permutations

t] 1 2 3 4 5 6 7 8

m | (1) {12) (123) (1234) (12354) (123654) (1237654) (12376854)
Yim) | 0 1 2 3 2 2 2 2

In general, if Yy j{m) =k forsome t=2,... ,nand k=0,... ,t—2 then Y(m)
can only be in states k—1, k or k+ 1. The integer t has equal probability of being

inserted into any of the t available positions in 7 € S; 1 and we have the following
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transition probabilities for Y{m):

k/t, ifx=k—1;

t—k-1)/t, ifx=Kk
PriYi=x!Y,1=k]= ( AT

1/%, fx=%k+1;

0, otherwise.

22

(2.11)

Hence {Y. : t € I, } forms a non-homogeneous finite Markov chain on () with

transition matrices M¢(n) =py(n:t), for t =1,... ,n, where

PrlY,=j|Y_1=1], fori,je{0,1,...,t— 2}
pyln:t) = .
0, otherwise.

Fu (1995) shows that

Pr[X (7 2) =1 =Pr[Y,=1]Yo=0] = a[0) (H Mt(n)> U (i),
te=]

where a(0) = (1,0,0,...,0) is an 1 x n vector and W'{i) = (0,...,0,1,0,...

an n x 1 vector with a 1 at the i*! coordinate and 0's elsewhere.

Using these results, he further proves that

lim Pr{XZ(m,2) =%] = —, x=01,...;

N—00 x!

and, for { > 3,

1, ifx=0
0, ifx>1.

n—oo

lim PriX}{n, &) =x] = {

(2.13)

(2.14)

That is, for £ > 2, the distribution of X {m, £} has a degenerate limifing distribution

at zero.



Chapter 3
Increasing/Decreasing {-Sequences

In this chapter, we state and prove the main theorem, which gives a formula for
(" T¢) which may be evaluated in time of order k{n—k} — a vast improvement over
any known method. The corollaries yield a number of special cases and limiting
distributions. We derive the expectation of X} {7, £} and show that the limiting
distribution is degenerate for £ > 2. In addition to the main results, we provide a
second method for determining {7T¢) based on partitions. The chapter concludes

with the derivation a closed form for ([ T¢) when £ > [n/2].

3.1 The Main Results

We prefer to save the discussion of the results until after all of the theorems and
corollaries are stated and proved. In the following proofs, recall that Ry (m, €] is

the number of maximal {-sequences in 7t and R} {7r) is the total number of maximal

23
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increasing sequences in n. The proofs depend on the following identities:

Coml(2) = (n Tm) nmezo<m<n (3.C)

(D = (nnk)’ nkeZnzo; (3.R)
W= mees )
FOL-(1 e

and, for n € Z,

gln) =5 (2) (1K) &= fn) =) C;) (—1)%g(Kk). (3.1)

k=0 k=0

(3.C) is (1.14); (3.R) is the binomial reflection; (3.T) is known as the trinomial
revision; (3.V) is Vandermonde’s convolution; and, (3.I) is knows as the binomial

inversion. The letters are intended as a mnemonic device.

Theorem 3.1 (Main Theorem) Let n,{ € N and 0 < k ¢ Z. Then the number of
permutations in S,, with exactly k increasing {-sequences is

<HE> B i mmfp) <ET2> (E) Gi: D Cai—aie-1)p-alf —1); (3.1)

p=1 d=0
where Co_w_ai_11p—alf — 1) is the number of compositions of n — k — d({ — 1)
into exactly p — d parts, none greater than { — 1, and is calculated using (1.13).
Furthermore, for £ > 1,

DR RHOB MG LSS EEREU

p=p
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where

p' = {%{iﬁ and p*=n- (k40— 2}k 0.

Proof: Let n, k and £ as given, let p,de Zsuchthat 1 <p<nand0<d<n
and let 5,.(k, £, p, d) denote the set of all = € S,, such that
RAm =p, > Riml)=d and Xi(mE) =k (%)
¢t
That is, if 7 € S, (k,{, p, d], then 7 has exactly p maximal increasing sequences (of

lengths {;,...,{,) and
i) 31y ={ir,...,la} €{1,...,p} such that {; > € for all j € Ig;
i) (b, =8+ 1)+ (&, — €+ 1+ 4, —{+ 1) =k and,
iii) § < {forallj ¢ Ia.

Now, there are (%) ways to choose the {i;,... 1} satisfying (i); for each of these,
there are (1]:31) solutions satisfying (ii) [by (1.10)}; and, for each of these, there are
Crx_gie—1)p-alf — 1) solutions satisfying (iii) [since (i) implies &, + - -+ &, =
k + d{€ — 1)]. By definition, there are (572) ways to arrange these p maximal

sequences such that () is still satisfied and we have

#S.(k, p d) = <‘8T2> (3) Gz— ji) Ch—k—ait—1)p—all —1).

Given n,k and £, the sets S,{k,{,p,d) are pairwise disjoint so that summing

#Sn(k,{,p, d) over all possible p and d yields (] T¢) and hence (3.1). For (3.2),
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we note that the upper bound on p is clearly n — (k + £ — 2)[k # 0}; for the lower

bound, we have

| —k—d{t—1 ke
Crrapenpal—1#£0 = p-d> Fl e_}( )] — > F—g_]}

Also, d < p and d < k due to the binomial coefficients and (3.2) follows. [

Remark 3.2 It is convenient to define, by convention, (°T¢) = [k = 0] for all
f € N and extend the double summation in (3.1) over all p,d > 0. The additional

terms all equate to O and the resulting equations are easier to manipulate.

Corollary 3.3 Let n € N and k € Z such that 0 < k < n. Then the number of

permutations in S,, with exactly k increasing 2-sequences satisfies

Gl =), 9
iz = (L) 4

Proof: Put £ = 2 into (3.1} and note that Chox-gp-al(l} =1 when p =n —k

and hence, for k > 0,

and O otherwise. We obtain

(=6
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and (3.3) follows by (3.V). Equation (3.4) follows since
n—1 n—2 n—k
= = in—1
w0 (e 2= ) )
n—1 n—k
=k 2
EPIND
n
=k 2.
<1J > -
Corollary 3.4 The limiting distribution of X (m, 2) is Poisson with mean 1. That
is,
-1

lim PrlX:(m,2) = K = —. (3.5)

n—co k!

Proof: It follows easily from recurrence (3.4) that the m*™ factorial moment, for

1 < m < n, of the distribution of X}{m, 2} is

+ 1 n
E[X (7, 2) - - - (X5, 2) — o+ 1] ﬁagk[k—1)---(k—m+1]<ljz>

(n—m){n—1)!
n!

Since these tend to 1 as n — oo the result follows immediately. O

Corollary 3.5 Let n € N, The number of permutations in S,, with no increasing

2-sequence is

[M+]“+l} (3.6)
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Proof: Let n € N. It is easy to see that summing (772) over all k yields n!,

w=ns (2 =0 (0) 0 2)
5 (1) (52

Where we are replacing k by n —k and (7}) by (7}) = £(}). We now make use

n

hence

{

of (3.1), with g{n) = nn! and f(k) = {~1)*k (52}, and obtain

(—1)™n <ﬂz> =y (:) (—1)%KK!.
k=0

Whence
< /i\ > i( ) n-+-kkk§ TL-1—k
k=0
= n—k K
=nl Z T(—n
k=0
n-+1
(n+ 1} k*
The last line follows from the fact that
S AR G AR G bl (=1
) gt Tl et gy

k=0 ) k=0 ) k=0

We have shown that

nT\ A (=1 Day 1| mE1) T
<OT2>_ n g— kK on _E{ e +§J’

which completes the proof. O
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Corollary 3.6 Let n € N and k € Z such that 0 < k €< n. Then the number of

permutations in S,, with exactly k increasing 2-sequences is

()= ()3 [y

Proof: Directly from Corollaries 3.3 and 3.5. O

(3.7)

Corollary 3.7 Let n € N and k € Z such that 0 < k < n. Then the number of

permutations in S,, with exactly k increasing 3-sequences is

(=" o )

p=k
Proof: Put { = 3 into (3.1} and note that, by (3.C), we have Ch_yx_324p-4(2) =

(3.8)

(7% ). Hence, by Remark 3.2, we have
G-ZOBZOEI ) oo
:p>o<g#¥2>d§o (E:D (pEcJ (kfz}l) (by 3.7)
OGN e
SO () -

Replacing p with n — p and noting that (;L:E) # 0 implies k < p < |(n+k)/2]

completes the proof. O
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Corollary 3.8 Let n € N, Then the number of permutations in S, with no in-

G =3 (57)

Proof: Put k = 0 into (3.8) and note that (“;p) # 0 implies p < [n/2]. O

creasing 3-sequence is

Corollary 3.9 Let n, £ € N such that { > 1. Then the number of permutations in

S, with no increasing {-sequence Is

Q=L R ewen wefe].

p=p’

Proof: Put k = 0 in (3.2) and note that d = 0 only, hence

By =0))-

and the result follows. O

Corollary 3.10 The number of summands required to calculate (ETE) is, at most,

O (k{n-—Xk})
Proof: Follows directly from the bounds on p and d in Theorem 3.1. O

Theorem 3.11 and it's corollaries concern the distribution of X7 (m, {).

Theorem 3.11 Let n,{ € N such that { < n. Then

Zk<ﬂe>=(n—e+1)(n—e+1)l. (3.11)

x>0
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Proof: First note that, since (7 7¢) =Y .o [X{ (7€) = ki, we may write
n _ -+ _ _ -+
> k<,}j€> =3 Y KXi(mo)=K=> Xilm1.
k>0 TESn k20 TESn
Now, given n and ¢, let oy, 02,..., 0 a fixed enumeration of all permutations in

S, and define

o (i}, i oy(j}---oi(j+£f—1)is an increasing f-sequence;
myy = (3.12)

0, otherwise.

For example, if n = 8, { = 2 and o; = (12356478}, then
(mi.]‘ e )wn) = (]}2!075| 030!7)0)'

It is easy to see that 0 < my; < n—{+ 1 and, forallj > n— £+ 1, that my = 0.

Foreach i=1,...,n!, we have

n—{+1
Xilon )= > [my #00.

j=1

Now, [my £ 0 = [my =1+ [my =2l ++--+Imy =n—{+ 1] and we have

T n! n—f+1Tn—f41
> Xife,0=3 5 3 my=K
i=1 i=1  §=1 =3

n—{+T n—{+1 n!
=Y 3 Ym=u

=1 k=1 i=1

But my; = k if and only if

o;(jl =% o(j+1)=k+1, ..., cj+i-1)=k+E-T;
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hence the inner summation is the number of permutations in §,, with { elements

fixed which is (n — £)!. We obtain

n—{+1T n—{+1 n!

Y Xieu=3 3 3 imy=H
i1

j=1 k=1 i=1
n—{+1n—{+1

"L

=m—-0+1Pm-0. o

Remark 3.12 Intuitively, the left hand side of (3.11) is simply the totality of
all possible increasing {-sequences in S,. There is (n — { + 1)* ways to fix the
starting position and initial element of an increasing {-sequence. Once fixed, this
particular increasing {-sequence will occur in {n — {}! permutations, hence, there

are (N— 0+ 1P M —0!=n—L0+1)(n~—£€+1)! increasing {-sequences in S,.

Note that (3.11) directly leads to the following recursions

B £ e e
A

S (o) BT - RS () e

Corollary 3.13 Let n,{ ¢ N such that £ <n. Then

o

m—If+1n-—0+1)

EDXGm 0] = =

(3.16)
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Proof: Directly from (3.11). Note that, for { = 1, we get EIXI (7, 1)] = n as

expected. O

Note also that, from (3.13), we have

E[X! (m €~ 1)]

EX(m, 0)] = -

; n{>1 (3.17)

Corollary 3.14 Let { ¢ N such that { > 2. Then

lim Pr[X}(m, €)= 0] =1.

N—00

That is, the limniting distribution of X!(m, {) is degenerate about 0 for { > 2.
Proof: By the Markov inequality, we have
PriXt{m, 0) > 1] < EIX:(m, 0)]

m—ft+1)n—-E+1}
n!

Taking the limit of both sides as n — oo completes the proof. O

Discussion of the Main Results

Table 3.1 summarizes the main results. For the case { = 2, we note that D11 =

{1 — K)(Dn—x + Dn_x_1); hence, we may rewrite (3.7) as

< ﬂ2> P (L‘) (Daye + Droret) = (“ N *) (Dros + Do),
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Table 3.1: Summary of Main Results forn,{ e Nand k € Z with 0 <k < n.

Boundary cases:

<Lﬁ€>=0, k01 >mn; <E%>xn![kxn}; <§j€>:[§c:0}.

(General case:

GI0=2 7% (1) () (o emswcnsaton

=

nt
Zk<ki€>=(nmﬁ+1](n.—€+1]!, f<n,

k>0

Special cases:

T\ o« /P , [ n
(30 = 2 (S cnit=n w=[2]
p=p
NP\ _ Dna _1[(ns1) 1
<0 2>_ n _K[ e +2J'
n’] _{n—=1 n—k _(n D11Wk+1__1_ ny | (m—k+ 1} l
(=)o 2= ()= =l =)

D=5 (TR
Gl =2 MHD( )

Expectations and Limiting Distributions (£ < n):

= d

EXG(m, 8] = (=t ]](TWEH}!; VarlXi(m2)]) =1~ L _Lz
. T n
-1
lim PriXi(m2) =k = —; lim PriXi(m O =0l=1, (>2.

— 00 k!’ T80
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which is consistent with the results in (Tanny 1976} and (Reilly and Tanny 1979).

Roselle {1968) gives the symbolic form
<“[2> =K {D+x)"+ (1 =x)(D+x)"'}, D’ = D;. (3.18)

The coefficient of x* in this polynomial is

{Xk] - (;:) DT‘L—k + (TL; T) Dn—-k—l _ (1]1': :)Dn—k.

Equating D’ with D; and noting that (}) — (}7]) = (",’), we see this is also
equivalent to {3.7).

The limiting distribution of X/ (7, 2) is well known to be Poisson with mean 1
{cf. Dwass 1973; Tanny 1976; Reilly and Tanny 1979; Fu 1995) and Corollary 3.14

is consistent with (Fu 1995). We also note, from Corollary 3.3, that

EXHm 2] = ") Varkim2)=1- 1 L
n n o on

For the case { = 3, Riordan (1945) gives
n = o =T\ m—j—1
- 1yt YRy
<J3> j%_( 1) (k)go( . )( s )(n 25 +1), (3.19)
where (}) = 0 if j < k; and shows that

_ 4 2.3 2
n-—2 and  Var(X*(m,3)] = n'—-3M’+n-—6n+8
(n)a(n);

E[X:[ﬁ,s)] = m

b
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where (n)y =n(n—1) .- (n—k+1). The expectation is consistent with Corollary

3.13 and we have
n—2 ] j=-1 ]_] nm].w]
1Ytk T v
2 W ()L e

i=0
i <n —p n—p\/p—1
E(TREDO) o
— 0 /{ p—k k
Abramson and Moser (1967) give the solution for the general case as

G-I E S

i=1 ey =0 a:=0 a3=0

S EDENE) (=) o

ap_ ;=0
9 (n—ﬁ—k—i—a1—---~ac_z+2
G.e_1—§-]
K (M—k—i—a—ay—— s —L+2).

This summation is complicated to evaluate and the number of terms is exponential
in {. We note that, by a change of variables, the product of the binomials can be
cast to a multinomial coefficient; hence, in effect, we are summing over partitions
— a method that is explored in the next section.

Jackson and Reilly (1976) and Jackson and Aleliunas (1977) provide indepen-
dent proofs that

n o [T K 1 T—wz— (1 —wizt! j
<k}3> = [z WR}ZJIZ ( v — ) : (3.22)

ize
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and we obtain, for { € N,
Z. 1 —wz— (1 —w)zHTY
n,,,k 1]
2w )iz ( 1 —wz—{1-wjz!

S # 4 T SR

p=0 d=0

Jackson and Reilly (1976) further show that
n 5 n

<k[e> =2 ) jla(n,j), (3.24)
=0

where a(n,j) satisfies

G.(Tl,j} :Z{ﬂ—],j)-l—” “‘Z)ﬂ{ﬂ,——ﬂ,}]—f-a(n—‘[,]-—-]}
(3.25)

—zain—2j—1) —(1—z)an—£,j—1)
with boundary conditions a(n,j)=mn=jlforn <{—1andj > 0and an,0) =
[n = 0]. They give an algorithm for calculating the generating function in O(n?®)
time. Since the number of summands in (3.2) of Theorem 3.1 is of order k(n — k]
by Corollary 3.10 and, given ¢, the values of Cy, ,(£) can be pre-calculated in O{n?)
time, we have a more efficient method of determining <ETE> than that of Jackson

and Reilly (1976).

3.2 An Alternate Method

Let =, denote the set of all partitions of the integer n and let & = {&;}] denote an

arbitrary element of =, so that

L +26+- - néy =mn.
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Define the mapping ®,: S, — =, as
O, (7)) =& = {&)], where & =Ri (i) fori=1,... n (3.26)

Clearly @, is defined for all mw € S,, and onto =,. It will be convenient to fix this
definition of @,, and refer to it as the canonical mapping of S, onto =,,. We now

prove

Theorem 3.15 Let S,, the symmetric group on n elements, let =, the set of all
partitions of n and let @, the canonical mapping of S, onto =,. Then, given

E’ = {E»L}]]l = Em

£O7[E] = #{m e Sy | O (m) = £} = % <Zi(=; ﬁz> @

Proof: Let S,,, =, and @, as given and let & = {&;}; € =,. Then & corresponds
to the unique multi-set {1---12---2-.-n.--n} where there are &; copies of 1's, &;
copies of 2’s, and so on, up to &, copies of n’s. The possible distinct arrangements

of this multi-set is clearly
(Z; &)
L& &L

Each possible arrangement may be used to divide the sequence 123---n into Y &;
subsequences by using the k'™ element of the multi-set as the length of the k'®
subsequence. For example, ifn =8 and £ =(1,2,1,0,0,0,0,0), then & corresponds
to the multi-set {1223} and one possible arrangement is {2312} which defines the
“subsequences {12), {345), (6} and {78). By definition, the number of ways to arrange
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these subsequences such that no longer subsequences are created is

(5352

Clearly, each © € §,, such that @,(m) = & is enumerated by the above method.
Also, if m € S, such that @, () = & and ® € CD;‘ [£'] then &* = &, which completes

the proof. &

This result immediately yields the generating function

(z,w:n) Z E'}%Zl ‘E" i <ZIO1 Eﬁ >ZZW&CTZLMT A=+ 1)En )

¢=2

(3.28)

where the number of permutations in S,, with exactly k increasing { sequences is
ZWHG(z,w:n).

Apart for the curious nature of the generating function, we now have a method
for enumerating the numbers (7 T¢) forall{=2,... nandallk=0,... ,n—{+1.
Figure 3.1 gives an algorithm for calculating the values by making use of the fact
that, given 7 and @, (n) = & ={&}7,

X, 0) = Z_ak —E+1) x;m,e+1)+iak. (3.29)

k=t

To analyze the running time of the algorithm we first note that the cardinality of
=, is p(n). Ehrlich (1973) gives an algorithm to iterate though the partitions of n
such that each iteration takes constant time and the number of operations in steps
1-3 is clearly proportional to n; hence, the total running time is of order O(np(n}).

For large n, this algorithm cannot compete with the results in the previous section
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For each & € =, do:

1. calculate

R &) <Z{L1&T>
=i\ o |

2. set s = 0 and k = (. Here, s plays the role of 3 [, & and
k plays the role of X} (7, £) in (3.29).
3. For £ = n downto 2 do:

Ja. set s =5+ &
3b. set k = k + s.

3c. set (1Te) = (TTe) + f(E).

Figure 3.1: Algorithm for Calculating (}7¢).

or with the (Jackson and Reilly 1976) algorithm. It should be noted however that
np(n) < n® for n < 16. The main advantage is that it is simple to implement
and simultaneously computes all values of {7t} given n. The (Jackson and Reilly
1976) algorithm requires n and £ given and calculates (7 ]¢) for 0 < k < m < n.
Another advantage of the above algorithm is that the memory requirements are
much less than that required in (Jackson and Reilly 1976).

Hardy and Ramanujan {1918) show that p(n] satisfies

(n) < {n}—Lex 71\/E

and that p(n}/g(n) — 1 as n — co. As such, we see that p(n) is a relatively slow

exponential function of n.



CHAPTER 3. INCREASING/DECREASING (-SEQUENCES 41

3.3 A Special Case

When € > [n/2] a closed form for {7T¢) is available by direct enumeration. We

have

Theorem 3.16 Let n € N and S,, the symmetric group of n elements. Let { ¢ N

such that {n/2] <{ <n. Then

<T]E> =m0 {n—0+1}+n—0-T)n-—t-1[<n] (3.30)

Proof: Since £ > |n/2], the remaining n—£ elements of the permutation cannot
form another increasing {-sequence. We have 6 cases to consider depending on what

position the increasing {-sequence begins in and what integer it begins with.

1. The increasing {-sequence begins in 7t{1) and 7({) = n which can only happen
one way. The remaining n — { elements may be permuted at leisure and we

have a total of {n — {)! ways.

2. The increasing {-sequence begins in 7t{1) but (£] # n which can happen total
of n —{ ways. The remaining n —{ elements must now be permuted with the
restriction that m(¢+1) # 7{f) + 1 which may bedone in (n—{—1)(n—{—1}!
ways. The total for case 2 is therefore m —{)(n—£L—-1)n—-£—1)! =

(M—0-1)(n-20

3. The increasing { sequence begins in min — £) and nin — £+ 1) = 1. By

symmetry with case 1, we have a total of {n —{)! ways that this can occur.
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4. The increasing {-sequence begins in i{n —{+ 1) and ntin — £+ 1} # 1. By

symmetry with case 2, this may occur in (n — £ — 1}{n — {}! ways.

5. The increasing {-sequence starts in 7t(k) for some 1 < k < n-—{+ 1 which can
happen atotalof (n —{+1)—-2=n—{— 1 ways.

(a) Ifmik) =1orm(k) =n—{+1 (2 ways) then there are (n—{—1}{n—{-1)!
ways to permutie the remaining elements so that the {-sequence is not
increased in length. Hence, we have a total of 2(n — ¢ —1)(n—{—1)!
ways.

(b) If n(k} % 1 and n(k) # n — £+ 1 which may happen (n —{ — 1) ways,
then there are two restriction on the remaining n — { elements and we

have atotalof (n —{ -~ 1){(n -} = 2n - - 1) + (n— {— 2}!] ways.

Adding (5a) and (5b) and multiplying by (n —{ —1} we get the total for case

5 as

Mm—2—1Pn—-04+n—0—1).
Summing all cases yields
2{(n~£]!+(n—€w1)(n—2—1}!}—%—[nAEAI}Z['n—E)!+(n—£—1)!,
which simplifies fo the desired result. &

It is also easy to verify
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Theorem 3.17 Let n € N and S, the symmetric group of n elements. Let { € N

such that [n/2] <{ <mn. Then

(= ese1).



Chapter 4
Applications

The numbers (| ]t) have a number of applications in mathematics and statistics.
In this chapter, we discuss two applications in non-parametric inference and one in

graph theory.

4.1 A Test for Independence

Let {X;}, for 1 = 1,...,n, be a finite sequence of random variates hypothesized
to be independent and identically distributed (i.i.d.) according to some unspeci-
fied continuous distribution function F(x). Suppose that x;,...,x, is a particular
realization of this sequence, listed in order of occurrence. We wish to test if the
observed values are independent of the order in which they occurred.

Let v{X;) denote the rank of X; and define m € S, by w(i) = v{X;) for i =
1,...,n. Under the null-hypothesis, the exact distribution of X7 (m, 2) and X (, 2)

are known and thus these may be used as test statistics. In festing against the

44
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alternative hypothesis that the values are tending to get larger over time (an upward
trend) then we would reject the null-hypothesis for large values of the statistic
X (m,2). In testing against a downward trend, we reject for large values of X_ (7, 2).
As an example, consider the realization
i1 2 3 4 5 6 7 8 9 101

x; |97 47 15 56 66 20 78 82 96 29 86
rixg)i1m 4 1 5 6 2 7 & 9 3 10

The induced permutation is 7 = (11,4,1,5,6,2,7,8,9,3,10}. We wish to test for
an upward trend and the appropriate test statistic is X (7, 2} = 3; corresponding

to (5,6), (7,8) and {8,9). From Table A.1, we find

16,019,531 + 14,684,570 4 6,674,805
11!

PI‘[XH{TE,ZJ Z 3] =1 =~ 0.064.

If we wish to test for a downward trend, then the appropriate statistic is X {m, 2) =
0 and, trivially, we have Pr[XJ(w, 2) > 0l = 1.

This test is also appropriate to testing a large source of pseudo-random numbers,
one may examine m consecutive blocks of n numbers each; calculating X! {m,2) on

each of the m blocks. A suitable goodness of fit test may then be performed on

these X {m, 2) against its theoretical distribution.

4.2 A Test for Independence in Paired Samples

Wolfowitz (1942) describes a non-parametric test for independence based on the

distribution of R.(n} = n — X, (7, 2). He shows that, under certain assumptions,
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a test based on RY{m} provides a reasonable approximation to a maximum likeli-
hood test. In this section, we recast this test for use with a one-sided alternative
hypothesis.

Let {Xy, Y1), (X5,Y2),...,(X,, Ys) a random sample from a population specified
by the joint continuous distribution function Fx v{x,y} and let Fx(x], Fv(u) denote
the marginal distribution functions of X and Y (which will be continuous by defi-
nition). Consider testing the null hypothesis, Ho, that the distributions of X and
Y are independent (i.e. that Fxv(x,y) = Fx(x)Fy(u)} against the one sided alter-
native, H,,, that the X; are directly related to the Y;. Let r(X;) denote the rank
of X;, for 1 < i < n, among Xj,..., X, Similarly, let r(Y;} denote the rank of Y

among Yi,..., Yy Construct a permutation, m € §,, as
T{r(Xe)) =7V, T<k<n,

As an example, consider the realization (x1,u1),..., (Xn, Un):

i/1 2 3 4 5 6 7 8 9 10
x: 139 36 03 07 80 15 53 63 75 14
y; 1 1.8 3.9 69 77 57 45 24 51 26 25

)| 6 5 1 2 10 4 7 8 9 3

rfyy): T 5 9 10 8 6 2 7 4 3

The induced permutation is hence 7 = (9,10,3,6,5,1,2,7,4,8). Under the null
hypothesis, we do not expect too many increasing 2-sequences and hence a test

based on X7 (m,2) is appropriate. In the above example, we have X {m,2) = 2 and

1 (/10 10
PriXp(m2) 22 =1~ — {< ) T2> +< 1 Iz>} ~ 0.22745.
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If we consider the alternate hypothesis, H,,, that the X; are inversely related to
the Y;, then the appropriate statistic is X7 (7, 2) and the test follows as above.

Due to the asymptotic distribution of X! {m, 2), for large n, we require 4 or more
increasing 2-sequences in order to reject the null-hypothesis at a significance level

of o = 0.05.

4.3 A Simple Application in Graph Theory

Consider a complete directed graph, G, consisting of n nodes labeled 1,... ,n.
Bach 7 € S,, may be though of as a simple path on G by considering 7t{i) as the
i node visited in the path for i = 1,...,n. We see that (] 72) represents the

number of simple paths such that we never visit nodes i and 1+ 1 in order for any
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Conclusions

Using the theory of compositions of integers, theorem 3.1 gives a more efficient
formula for the determination of (’;Te) Furthermore, its corollaries easily give all
known results for the special case £ = 2, and provide more efficient results for { = 3.
Theorem 3.11 gives a closed form for the expectation of X} {m, {}, a result previously
unknown. Its corollaries use this to easily show the limiting distribution of X} {m, {)

is degenerate about O for { > 2.

In the remainder of this chapter, we discuss an extension to the numbers exam-

ined here.

5.1 Future Research

As an extension to the numbers studied in this thesis, consider the multi-set spec-
ified by [&;] where there are &, copies of 1's, &; copies of 2's, and so on, up o &,

copies of n’s. One may reasonably ask how many distinct arrangements of such a

48
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set contain exactly k increasing {-sequences. For rises and falis, this is known as
the Simon-Newcomb problem and is related to the Eulerian Numbers (cf. Carlitz,
Roselle, and Scoville 1966; Dillon and Roselle 1969; Carlitz 1972; Harris and Park

1994; Fu, Lou, and Wang 1996).



Appendix A
Table of (. T¢)

The following table lists the values for (}Te) forall 2 <n < 20,2 <€ < n and
0 <k <n—L{-+1 The numbers were produced using the algorithm described
figure 3.1 on page 40. The total CPU time was less than 2 seconds on a 486 33Mhz

computer running Linux.

50
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APPENDIX A. TABLE OF (}7¢)

e

Table A.1: Values of {

9

362,879

0

9

9

1,468,457
1,334,961
600,732
177,096

4 38,934

0 2 0

1
2
3

6,678
924
108

5

3 0 35,349,507

10

242,094
32,028
4,414

1
2
3

4 640

a8
16

10 4 0 3,697,936

1 27,070
2 3,27
443
67

11

3,625,081
3,214
427

64

11

0
1

5

10

2 2 59,332

9

17,304

3

4 3710

816
84

0 332,769
1 25,737
3,708
559
89

2
3

3

15

359,171
3,196
2 433

0
1

4

66
11

5 0 362,376

9

426
64
11

1

0 362,802
64
11

8

0 362,866
11

»

8 0 362877

]

D

(

k

£

16,687
14,833
6,489

&
1
2
3

2

1,855
385
63

3 0 36,696

8

3,046
2 481

1

8C
14

39,817
424
65

0
1

4

11

5 0 40,242

8

64

11

40,306
11

0

6

40,317

0

7

40,319

0

8

8

148,329
133,406

2 0

1

To

n
k

(

k

£

12

3 2

4 0 706

11

0 77

5

718

2 0 2,119

7

1,854

1

2 T8b

220
45

3 0 4,b47

7

406
71

1

13

0 4,962
64
11

4

5,026
11

5 0

7

6§ 0 5,037

7

7 0 5,039

7

w1o

ko

kxS

3 0 2

4

0 23

4

53
44

18

106
11

119

5 0

2 0 309

265
110
30

0 643
62

3
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Table A.1 continued...
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nof ok (PO n Lok (3T n ¢k ({Ty n ot ok (o
10 6 4] 3,628,206 i1 4 3 3,346 12 2 3 24,474,285 2 8 5 11
i 428 4 451 4 5,506,710 6 2
2 64 5 @8 5 978,078 7 1
3 11 6 11 6 142 758 iz 7 0 478,997,880
4 2 7 2 7 17,460 1 3,216
5 1 g8 1 8 1,815 2 426
0 7 0 3,628,722 i1 5 0 39,885,851 9 165 3 64
1 G4 127,220 10 11 4 11
2 11 2 3,223 11 1 5 2
3 2 3 428 12 3 0 446,867,351 6 1
4 1 & 64 1 28,473,604 12 8 0 478,001,096
10 8 4] 3,628,786 5 11 2 3,228,804 1 426
1 11 6 2 3 378,502 2 64
2 2 T 1 4 46,343 3 11
3 1 11 6 0 39,913,080 5 5,958 4 2
0 9 ¢} 3,628,797 1 3,218 B 811 5 1
1 2 2 426 7 116 12 9 0 476,001,522
2 1 3 64 8 18 1 64
10 10 0 3,628,798 4 11 2] 2 2 11
1 1 5 2 0 1 3 2
11 2 0 16,018,531 6 1 12 4 0 476,066,277 4 1
1 14,684,570 | 11 7 0 39,916,296 1 2,641,713 12 10 0 478,001,586
2 6,674,805 1 426 2 261,231 111
3 2,002,440 2 64 3 28,415 2 2
4 444,980 3 11 4 3,421 3 1
5 77,868 4 2 5 460 12 11 O 479,061,597
& 11,136 5 1 & 69 1 2
7 1,320 11 8 0 36,916,722 7 11 2 1
8 135 1 64 8 2 12 12 ¢ 479,001,598
g 10 2 1 ] 1 1 1
10 1 3 2 12 5 0 478,714,416 13 2 G 2,467,007,773
i1 3 4] 37,054,436 4 1 1 256,150 1 2,290,792,9832
1 2510,733 | 11 & 0 38,916,786 2 27,205 2 1,057,280,046
2 306,723 1 11 3 3,232 3 323,060,640
3 38,803 2 2 4 429 4 73,422,855
4 35,164 31 5 64 5 13,216,104
5 724 i1 16 0 39,918,797 4] 11 6 1,957,956
6 107 1 2 7 2 7 244 728
7 17 2 1 8 1 8 26,235
8 2 i1 11 0 39,916,799 12 6 0 478,870,641 g 2,420
] 1 11 1 27,238 10 198
11 4 0 39,630,372 2 2 0 190,889,411 2 3,217 11 12
1 254,808 1 176,214,841 3 426 12 1
2 27,741 . 2 80,765,135 4 64
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Table A.1 continued...
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6,226,989,840

n f k (L‘Te) n ot ok {37y n Uk {3Te n { k {ETc)
i3 3 0 5,834,728509 |13 7 1 27,240 14 2 9 327,805 14 5 2 256,375
1 350,651,588 2 3,216 10 3,146 3 27,256
2 37,080,394 3 426 11 234 4 3,219
3 4,040,110 4 64 12 13 5 426
4 457,066 5 11 13 1 8 64
5 54,380 6 2 14 3 0 82,003,113,550 7 11
6 6,796 71 1 4,661,105,036 8 2z
T 901 13 8 0 6,227,017,080 2 461,569,226 9 1
8 125 1 3,216 3 46,936,856 14 7 © 87,178,008,921
o 19 2 426 4 4,949,551 1 256,318
10 2 3 64 5 545,110 2 27,241
11 1 4 11 6 63,042 3 3216
13 ¢ 0 6,194,080,387 5 2 7 7,678 4 426
1 29,931,510 6 1 8 994 5 64
2 2,708,064 13 9 0 6,227,020,296 9 134 6 11
3 267,698 1 426 020 7 2
4 29,002 2 64 112 3 1
5 3,406 3 11 1201 14 & 0 87,178,260,240
6 460 4 3 14 4 0 86,776,390,796 1 27,240
770 5 1 1 368,145,033 2 3,216
g 11 13 10 0 6,227,020,722 2 30,671,367 3 426
g 2 1 64 3 2,774,989 4 64
10 1 2 11 & 274,209 5 11
13 5 0 6,224,078,202 3 2 5 20,772 5 2
1 2,654,568 4 1 6 3,571 71
2 256,821 13 11 0 6,227,020,786 7 478 14 9 0 87,178,287,480
3 27,370 111 3 T 1 3,216
4 3,241 2 2 9 11 2 426
5 430 3 1 10 2 3 B4
5 64 i3 12 0 6,227,020,797 1 oi 4 11
7 11 12 14 5 0 87,145,277,160 3 2
8 2 2 1 1 30,064,344 6 1
9 1 13 13 0 6,227,020,799 5 2,661,000 14 10 0 87,178,200,696
13 6 0 5£,226,733,531 11 3 257,402 1426
1 256,300 14 2 ( 34,361,803,981 4 27,445 2 64
2 27,247 1 32,071,101,049 5 3,250 3 11
3 3,218 2 14,890,154,058 6 431 4 2
4 426 3 4,581,585,866 7 64 5 1
5 64 4 1,049,946,755 g8 11 14 11 © 87,178,201,122
6 11 5 190,899,423 9 2 1 64
T2 6 28,534,802 10 1 2 11
g 1 7 3,636,204 14 6 0 87,175,347,036 3 2
13 7 0 8 397,683 1 2,655,910 4 1
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Table A.1 continued...
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no¢ ko ((TY n ko (5Te noot k(T
14 12 O  87,178,201,186 15 3 31,418,508 15 7 & 2
i1 4 2,842,488 g 1
2 2 5 280,764 15 & 0 1,307,674,080,720
31 § 30,455 1 256,320
14 13 0  87,178,201,197 7 3,646 2 27,240
102 8 487 3 3,216
2 1 9 72 4 426
14 14 0  B7,178,201,199 10 11 5 64
11 1: 2 6 11
15 2 0  b513,137,616,783 12 1 T2
1 481,066,515,734 15 0 1,307,271,652,017 5 1
9 224,407,707,343 1 360,627,369 15 9 0 1,307,674,337,040
3 60,487,385,604 2 30,130,827 1 27,240
4  16,035,550,631 3 2,667,435 2 3,216
5  2,039,850,014 4 258,163 3 426
6 445,431,087 5 27,520 4 B4
7 57,260,784 6 3,259 5 11
8 6,363,357 7 43 § 2
9 618,618 8 64 71
10 53,053 9 11 15 10 0  1,307,674,364,280
11 4,004 0 2 1 3,216
12 273 11 2 426
13 14 15 0 1,307,641,346,772 3 6
14 1 1 30,077,208 4 11
15 35 0  1,234,297,608,757 2 2,656,581 5 2
1 66,520,260,545 3 256,450 6§ 1
2 6,192,527,700 4 27,265 15 11 0  1,307,674,367,496
3 590,070,030 5 3,220 1 426
4 58,126,425 6§ 426 2 64
5 5,062,080 7 64 3 11
6 640,289 8 11 4 2
7 72,313 9 2 5 1
& 8,604 10 1 15 12 0  1,307,674,367,922
9 1,000 15 0 1,307.671,424,651 1 64
10 143 1 2,656,060 2 11
11 21 2 256,327 a2
12 2 3 27242 4 1
13 1 4 3,216 15 13 O  1,307,674,367,086
15 4 1,302,376,048,620 5 426 11
4,886,708,928 6 64 2 2
377,034,018 711 3 1




APPENDIX A. TABLE OF <’QTE> 55

Table A.1 continued...

it 4 k (xTo n ¢ k {(NTe) n k (2”}
15 14 0  1,307,674,367,997 16 4 6 287,363 % 7 9 2
102 7 31,141 w1
2 1 & 3,721 18 8 0 20,022,786,044,641
15 15 0  1,307,674,367,999 9 496 1 2,656,078
101 073 2 256,321
0 8,178,130,767,479 11 3 27,240
1 7,697,064,251,745 2 4 3,216
2 3,607,098,868,005 1 5 426
3 1,122,488,536,715 20,917,481,850,667 6 64
4  260,577,696,015 4,504 ,506,950 7
5  48,106,651,593 370,368,948 g 2
&  7,340,627,285 30,197,354 g 1
7 954,497,115 2,673,873 0 20,822,789,600,720
8 107,380,845 258,834 1 256,320
9 10,605,585 27,595 2 27,240
10 927,927 3,268 3 3,216
1t 72,345 433 4 426
12 5,008 54 5 64
13 315 11 6 11
14 15 2 72
B 1 1 g8 1
0 19,809,901,558,841 0 20,922,337,089,240 0 20,022,789,857,040
1 1,014,985,068,510 1 369,760,344 1 27,240
2 89,102,492,015 2 30,083,640 2 3,216
3 7,984,564,400 3 2,657,252 3 428
4 737,549,220 4 256,525 4 64
5 70,734,390 5 27,274 5 11
6 7,082,703 & 3,221 5§ 2
7 743,768 T 426 71
8 82,213 s 64 0 20,022,786,884,280
9 0,574 9 11 1 3,218
10 1,189 0 2 2 426
11 152 11 1 3 64
12 22 0 20,922,756,866,016 4 11
13 2 1 30,078,550 5 2
14 1 2 2,656,135 g 1
0 20,847,721,870,931 3 256,336 0 20,922,789,887,406
1 69,645,189,376 4 27,243 1 426
9 B,001,404,982 5 3,216 2 64
3 386,016,308 6 426 3 11
4 32,172,944 T 64 a2
5 2,010,561 g8 11 5 1
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Table A.1 continued...

56

n ¢ k (‘;‘?e) n ko (To n ¢ k (mc)
16 13 ©  20,922,780,887,922 | 17 10 10,588 17 6 6 27,283
1 64 11 1,201 7 3,222
2 11 12 161 8 425
3 2 13 23 9 64
4 1 4 2 10 11
16 14 0  20,022,789,887,086 B 1 112
111 17 0 354,549,730,550,940 201
2 2 1 1,060,818,965,608 17 7 0  355887,025,300,052
301 2 71,200,862,678 1 368,773,208
16 15 0  20,922,789,887,907 3 5,117,370,308 2 30,079,221
1 2 4 305,003,338 3 2,656,210
2 1 5 32,034,686 4 256,345
16 16 0  20,922,786,387,099 & 2,079,208 5 27,244
11 7 204,006 & 3,216
17 2 0  138,547,156,531,409 8 31,830 7 436
1 130,850,092,279,664 9 3,795 8 64
2 61,576,514,013,960 10 505 9 11
3 10,242,660,629,360 11 74 02
4 4,480,054,146,860 12 11 13 1
5 833,848,627,248 13 2 17 8 ©  355687,395,073,031
6  128,284,404,248 14 1 1 30,078,700
7 16,799,148,080 17 0 355,612,235,468,306 2 2,656,087
g 1,908,994,230 1 69,874,864,413 3 256,322
9 190,899,280 2 4,913,416,887 4 27,240
10 16,068,952 3 371,111,101 5 3,216
11 1,349,712 4 30,263,925 8 426
12 96,460 5 2,680,314 7 B4
13 6,160 6 259,505 g 11
14 360 7 27,670 9 2
5 16 8§ 3,277 10 1
16 1 o 434 17 9 ©  355687,425,152,640
17 3 0 337,707,100,446,702 10 64 1 2,656,080
1 16,484,405,344,135 11 11 2 256,320
2 1,369,014,167,140 12 2 3 27,240
3 115,748,765,205 131 4 3,216
4 10,080,799,445 17 0 355582,118,243,320 5 426
5 905,448,369 1 4,605,990,240 5 64
6 84,847,804 2 369,826,836 711
7 8,316,479 3 30,090,072 g 2
8 855,812 4 2,657,923 g 1
9 92,753 5 256,600
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a ¢k (379 noLok (3o notok {770
17 10 O 355,687,427,808,720 17 17 0 355,687,428,095,999 18 4 5 404,265,103
1 256,320 1 1 6 33,703,745
2 27,240 8 2 0 2,486,161,753,313,617 7 3,048,429
3 3,216 1 2,355,301,661,033,953 8 300,603
4 426 2 1,112,225,784,377,144 9 32,622
k64 3 348,033,5679,412,440 10 3,871
6 11 4 81,781,307,674,780 11 bla
7T 2 5 15,265,844,009,324 12 75
3 1 6 2,362,571,110,5636 13 11
17 11 0 355,687,428,065,04C T 311,547,838,888 14 2
1 27,240 8 35,698,188,670 15 1
2 3,216 9 3,605,877,990 i8 5 0 6,401,234,266,266,540
3 426 10 324,528,776 1 1,064,092,121,088
4 64 11 26,224,744 2 69,9892,843,418
5 11 12 1,912,092 3 4,922,334,108
6 2 13 126,140 4 371,853,828
7 1 14 7,480 5 30,330,540
17 12 0 355,687,428,092,280 15 408 ] 2,686,758
1 3,216 6 17 7 260,176
2 426 17 1 8 27,745
3 64 18 3 [¢] 6,004,058,760,660,035 9 3,286
4 11 1 2B83,980,434,253,186 1) 435
5 2 2 22,373,840,093,040 i1 64
5§ 1 3 1,790,141,2983,730 12 11
17 13 0 355,687,428,095,496 4 146,876,083,360 13 2
1 426 5 12,445,840, 614 14 1
z 64 6 1,005,255,712 18 6 0 6,402,208,503,373,017
3 n 7 100,555,934 1 65,892,686,009
4 2 8 9,668,520 2 4,906,731,951
5 1 9 976,686 3 369,893,331
17 14 0 355,687,428,095,922 10 103,944 4 30,096,504
1 64 11 11,646 5 2,658,594
2 1 12 1,396 6 256,675
32 13170 7 27,282
4 1 14 24 g 3,223
17 15 0 355,687,428,095,986 15 2 9 426
1 11 16 1 10 64
2 2 18 4 4] 6,384,005,047,649,910 11 11
3 1 1 17,204,867,229,956 12 2
i7 16 0 355,687,428,005,007 2 1,084,282,429,945 13
1 2 3 72,832,453,416
2 1 4 5,234,609,806
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n [ k TTe n &k (Mo not ok {5
18 7 0 6,402,368,396,801,640 | 18 10 7 11 18 17 1 2
1 4,906,123,224 8 2 2 1
2 360,779,640 9 1 18 18 0 6,402,373,705,727,899
3 30,079,892 18 11 0 6,402,373,705,440,720 1 1
4 2,656,285 1 256,320 19 2 0 47,106,033,220,679,059
5 256,354 2 27,240 1 44,750,731,5659,645,106
6 27,245 3 3,216 2 21,107,714,949,305,577
7 3,216 4 426 3 6,673,354,706,262,864
8 426 5 64 4 1,576,201,107,355,980
9 64 6 11 5 204,412,707,629,208
0 i1 T 2 3] 45,797,532,297,972
11 2 g 1 7  6,075,182,855,664
12 1 18 12 0 6,402,373,705,697,04C 8 700,982,637,498
18 8 0 6,402,373,302,631,296 1 27,240 9 71,396,379,340
1 369,774,550 2 3,216 10 6,490,580,382
2 30,078,775 3 426 11 531,047,088
3 2,656,006 4 64 12 30,337,116
4 256,323 5 11 13 2,647,512
5 27,240 6 2 14 162,180
6 3,216 71 15 B,976
7 426 18 13 0 6,402,373,705,724,280 16 459
8 64 1 3,218 17 18
9 i1l 2 426 18 1
10 2 3 64 6 3 0 116,052,543,802,621,051
11 1 4 11 1 5,173,041,992 087,662
18 9 0 6,402,373,672,705,921 5 2 2 387,602,212,164,321
1 30,078,718 6 1 3 29,427,005,480,435
2 2,656,081 18 14 0 6,402,373,705,727,496 4 2,285,694,716,330C
3 256,320 1 426 5 182,817,550,694
4 27,240 2 64 6 15,165,333,989
5 3,216 3 11 7 1,308,506,455
6 426 4 2 8 117,949,351
7 64 5 1 9 11,143,891
a 11 18 15 0 6,402,373,705,727,922 10 1,106,655
je] 2 1 64 11 115,797
10 1 2 11 12 12,748
8 10 @ 6,402,373,702,784,640 3 2 13 1,504
i 2,656,080 4 1 14 179
2 256,320 18 16 0 6,402,373,705,727,986 15 25
3 27,240 111 16 2
4 3,216 2 2 17
5 426 3 1
6 64 18 17 0 6,402,373,705,727,997
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n &k {(3T0) n Lk {19 n ¢ ok {7
19 4 0 121,330,368,923,079,200 {19 6 O 3,224 19 9 9 11
1 295,971,058,578,160 10 426 0 2
2 17,571,257,417,630 11 64 11 1
3 1,107,912,107,740 12 11 16 10 0 121,645,100,375,808,920
4 74,453,045,290 13 2 1 30,078,720
5 5,353,128,376 14 1 2 2,656,080
6 413,531,958 19 7 0 121,645,025,205,662,520 3 256,320
7 34,480,132 1  69,894,169,440 4 27,240
8§ 3,118,224 2 4,906,189,716 h 3,216
9 307,424 3 369,786,072 6 428
10 33,217 4 30,080,563 7 64
11 3,046 5 2,656,360 g2 11
12 B23 6 256,363 e 2
13 76 7 27,246 10 1
14 11 8 3,216 19 11 0 121,645,100,405,888,640
15 2 g 426 1 2,656,080
16 1 10 64 2 2506,320
19 5 0 121,626,707,638,142,280 11 11 3 27,240
1 17,251,647,930,540 12 2 4 3,216
2 1,065,680,603,796 13 1 5 426
3 70,104,918,762 19 8 0 121,645,095,099,808,452 6 64
4 4,931,258,613 1 4,906,136,088 7 11
5 372,897,129 2 369,775,221 8 2
6 30,397,199 3 30,078,85C 9 1
7 2,603,205 4 2,656,105 19 12 0 121,645,100,408,544,720
8 260,847 5 256,324 1 256,320
9 27,820 6 27,240 2 27,240
10 3,295 7 3,216 3 3,216
11 436 & 428 4 426
12 64 9 64 5 64
13 11 0 11 6 11
14 2 i1 2 7 2
15 1 12 1 g8 1
19 6 0 121,643,960,874,6498,867 {18 @ O 121,645,100,006,035,211 {19 13 O 121,645,100,408,801,040
1 1,064,322,100,95C 1 369,774,700 1 27,240
2 69,901,597,668 2 30,078,727 2 3,216
3 4,807,473,706 3 2,656,082 3 426
4 369,959,829 4 256,320 4 64
5 30,162,936 5 27,240 5 11
6 2,650,265 6 3,216 6 2
7 256,750 7 426 7
8 27,301 8 64
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n ¢ k (310 n k {2Te)
19 14 0 121,645,100,408,828,280 20 15 205,428
1 3,216 16 10,659
2 426 7 513
3 64 18 19
4 i1 19 1
5 2 20 o] 2,325,005,946,434,516,516
6 1 1 99,346,091,708,245,506
19 15 4] 121,645,100,408,831,496 2 7,095,737,193,164,187
1 426 3 512,444,547,794,096
2 64 4 37,780,675,533,655
3 11 5 2,863,450,315,286
4 2 6 224,323,049,959
5 1 7 18,245,578,788
19 18 G 121,645,100,408,831,922 8 1,546,783,084
1 64 ] 137,120,880
2 11 10 12,748,110
3 2 11 1,245,984
4 1 12 128,323
19 17 0 121,645,100,408,831,986 13 13,894
1 11 14 1,515
2 2 15 188
3 1 16 26
19 i8 0 121,645,100,408,831,997 17 2
1 2 18 1
2 1 20 [¢] 2,427,166,999,663,678,987
19 19 o] 121,645,100,408,831,989 1 5,383,788,700,672,945
1 1 2 302,064,161,086,250
20 2 0 030,765,362,752,547,227 3 17,941,815,445,99C
1 895,014,631,192,902,121 4 1,131,809,403 480
2 425,131,946,816,628,507 3 76,091,722,053
3 134,252,194,678,535,321 5] 5,472,930,918
4 31,608,434,854,748,604 7 422,804,168
5 5,966,764,207,952,724 g 35,263,858
6 932,306,907,492,482 g 3,188,563
7 124,307,587,665,924 10 314,199
8 14,428 559,282,202 i1 33,915
9 1,479,852,234,718 12 4021
10 135,653,120,746 13 532
11 11,211,002,478 14 7
12 240,824,556 15 11
13 57,492,708 16 2
14 3,503,052 17 1
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369,792,504

n £ k {(¥To n i k X!
20 5 ,D 2,432,686,885,636,105,251 20 T 5 30,081,234
1 206,704,637,928,676 6 2,656,435
2 17,275,065,176,586 7 258,372
3 1,067,270,356,836 8 27,247
4 70,220,084,456 o 3,216
5 4,040,190,402 10 426
3] 372,341,004 11 64
7 30,463,002 12 11
8 2,699,655 13 2
] 261,518 14 1
10 27,895 20 8 0 2,432,901,932,973,396,840
11 3,304 1 69,804,302,424
12 437 2 4.906,142,520
13 64 3 369,775,892
14 11 4 30,078,925
15 2 5 2,656,114
16 1 6 256,325
20 5] 4] 2,432,883,613,692,550,316 7 27,240
1 17,254,825,178,973 8 3,216
2 1,064,437,101,807 9 428
3 $9,910,509,901 10 64
4 4,608,215,505 11 11
5 370,026,330 12 2
6 30,109,368 13 1
7 2,658,936 20 9 0 2,432,902,002,867,705,696
1 256,825 1 4,906,137,430
g9 27,310 2 369,774,775
10 3,225 3 30,078,736
11 426 4 2,656,083
12 64 5 256,320
13 11 6 27,240
14 2 7 3,216
18 1 8 426
20 7 0 2,432,900,868,632,730,720 9 64
1 1,064,338,924,400 10 11
2 60,804,911,160 11 2
3 4,906,256,208 12 1
4
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n { k { ‘;Te) n I k HEED
20 10 0 2,432,902,007,773,843,201 20 13 6 11
1 369,774,718 7 2
3 30,078,721 8 1
3 2,656,080 20 14 0 2,432,002,008,176,608,040
4 256,320 1 27,240
5 27,240 2 3,216
3] 3,216 3 426
7 426 4 64
8 64 ] 11
9 11 6 2
10 2 7 1
11 1 20 15 0 2,432,902,008,176,636,280
20 11 4] 2,432,002,008,143,617,220 1 3,216
1 30,078,720 2 426
2 2,556,080 3 64
3 256,320 4 11
4 27,240 5 2
5 3,216 6 1
6 426 20 16 0 2,432,902,008,176,639,496
7 64 1 426
8 11 2 64
9 2 3 11
10 1 4 2
20 12 0 2,432,902,008,173,606,640 5 1
1 2,656,080 20 17 ] 2,432,902,008,176,639,922
2 256,320 1 64
3 27,240 2 11
4 3,216 3 2
[ 426 4 1
6 64 20 18 4] 2,432,002,008,176,639,986
7 11 1 11
8 2 2 2
9 1 3 1
20 i3 0 2,432,002,008,176,352,720 20 19 0 2,432,902,008,176,639,997
1 256,320 1 2
2 27,240 2 1
3 3,216 20 20 0 2,432,902,008,176,639,999
4 426 1 1
5 64
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