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Abstract

This thesis examines the distribution of increasing {-sequences in a random permu-

tation generated by the integers l, . . . , n; an increasing {-sequence being a sequence

of { consecutive integers. Known methods are reviewed and two new solutions to

the problem a¡e derived. An equation is obtained that is more efficient than ex-

isting methods. In addition, we derive the expectation and use this to show that,

for { > 2, the distribution is degenerate about 0. The thesis concludes with a

discussion of applications of these numbers and the description of an extension to

the problem.
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Summary of Notation

The following table summarizes the notation used throughout the thesis. The page

references note rx¡here the notation is first used. I recommend photo-copying the

next page and using it as a book-ma¡k while reading this thesis.



SUMMARY OF NOTATION

Notation Meaning Page

L"l

l*l
lsl
#A
c*,*
c.,*({)
D,-,"

D,.,t
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largest integer less than or equal to x
least integer greater than or equal to x
1 if statement 5 is true, 0 otherwise

cardinality of the set A
number of compositions of n into exactly m parts

number of compositions of n into exactly m parts; none >

derangement numbers

matching numbers

the natural numbers {l , 2, . . .}
the natu¡al numbers {1 ,2, . . . , nf
general element of S,.

jth element of n e S.
partition numbers - numbe¡ of partitions of n
number of partitions of n, no summand larger than m
the real numbers

number of maximal increasing {-sequences in n
numbe¡ of maximal decreasing f-sequences in zr

number of maximal increasing/decreasing {-sequences in n
total number of maximal increasing sequences in n
total number of maximal decreasing sequences in n
total number of maximal increasing/decreasing sequences :

symmetric group on n elements

number of increasing {-sequences in n
number of decreasing {-sequences in n
number of increasing/decreasing {-sequences in z
f{n e S,, Xf (zr, {) : ¡}
f;{n e S* &(î,¿) : k}
#{r e S* X"(n, t) : ¡1
the integers, {... ,-2, 1,0, 

.l,2,...}



Chapter 1

lntroduction

The topic of this thesis is the distribution of the numbe¡ of increasing {-sequences

(sequences of { consecutive integers) in a random permutation of the elements

{1 , . , n} In this chapter, Section 1.1" introduces the terminology, defrnitions and

notation to be used throughout the thesis; Section 1.2 reviews the existing literature

on the subject; and Section 1.3 provides an overview of the remaining thesis.

1.1 Definitions and Notation

Throughout this thesis, v¡e will make use of the following symbols for the common

sets:
N the set of all natural numbers: {l ,2,3, . };

N* the set {1 ,2,3, ,n};
Z tine set of a1l integers: {. . . , -2, -1 ,0, 1,2, . . .};

R the set of all real numbers;
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For real x, we denote the largest integer less than or equal to x as lxl and the least

integer greater or equal to x as [x.l . That is,

Lxl :maxtn eZ n1x] and lxl :min{n eZ n>x\.

We also make use of the following indicator notation (Graham, Knuth, and Patash-

nik 1994): If S is any boolean statement then l5l : I if S is true and lSl : 0 if S

is false. For example,
(t ifr<t:

lx < 1l : {
|.0, ifx>L

We assume that, if l.5l :0, then ul5l : O even when u is undeflned.

We use the following formal definition for binomial coefficients:

(Ð
k>0;

k<0.
(1 1)for all r € R,k € Z

This defrnition allows the upper index to be any real number and, in particular,

r: I occurs frequently throughout. When r: n is a non-negative integer, the

definition is consistent with the usud (i) : nl /kl (n - k) l. We also note that

(Ð : (.I-) if and only if r is a non-negative integer. Restrictions may be required

on other familia¡ binomial identities and care must be taken throughout.

We denote the symmetric group on n elements by S,., that is, S. is the per-

mutation group on N. : {l , "' ,n}. As usual, the group operation is composition

of functions. In general, we will denote the jth element of zr e S. as n(j) for all

j € N., hence zr: N. -+ N,. is a bijection. We denote a group of { e N elements

or sub-permutation in n bV ø(j) . '.n0 + !. - I ). It wiil be understood that, when
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a¡ithmetic modulo n is called for on the indices or elements of zr € S,-,", we will

identify the equivalence class [0] : {nz z e V'} with the label n instead of the

usual 0. For convenience, if. n e S,.', we assume zr(j) is undefined for all j < 0 and

j>n.
We begin with the following two definitions:

Definition 1.1 (lncreasing/ Decreasing {-Sequence) Let n, i, { e N such that 1 < j <

n l+1( n and let n e S.. Then z(j) . .Í6+!.-1) ts an zncreaszng [-sequence

if and only if

Vi: jci<j-l-{, ñ(i) ñ(i-1)-1.

Similarly, we say n(j) -..n() + {-.1 )is a decreo'sing (.-sequence if and only if

vi: j<i<jr{, T(i 1) z(i) -1.

Lastly, z(j) ...irb + { - 1) is an l-sequence if and only if

Vi: j<i<j+{, in(i) -n(i 1) :1.

Definition 1.2 (Maximal lncreasing/ Decreasing {-Sequence) Let n,j,e e N as in the

previous definition and let ¡ € S.. Then we say zr(j)" rc[j +f -1)is a macimal

increasing(.-sequenceifandonlyifr(j).'n(j+t-1)isanincreasing{-sequence

and zc(j) . . .ft() + { - l) is maximal in the sense that it is not contained in a larger

increasing {-sequence, that is, ø(j -1) # n(i) - I and n() + l-1) + Í(i + !.) .l 
.

M arimal decreasing l-sequences are defined in an analogous manner. Similarly,
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by a maximal t-sequence, we mean an {-sequence which in not contaìned in a

Iarger l-sequence.

Table 1.1 illustrates the definitions for the example n -- (45621873 ) e S¡. We

also make the following remarks concerning these defrnitions:

Remark 1.3 The previous two definitions have the following consequences:

1. since n(j) is undeflned lor ) ê. N,-,, the ¡estriction I <j<n {*l (nis

implicit in the definitions.

2. n(l) is both an increasing and decreasing l-sequence for all i € N.i

3. increasing and/or decreasing {-sequences may overlap while maximal increas-

ing and/or decreasing {-sequences are necessarily disjoint.

Table 1.1: Increasing/Decreasing {-sequences in zr = (45621873)

Type of Sequence (.:1 (.:2 t-3
Increasing {-Sequences 4,5,6,2,1,8,7,3 45,56 456

Decreasing {-Sequences 4,5,6,2,1,8,7,3 21 ,87

{-Sequences

Maximallncreasing{-Sequences 2,1,8,7,3

Maximal Decreasing {-Sequences 4,5,6,3 21 ,87

Maximal {-Sequences 3 21 ,87 456

456
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For n, { € N and zr e S., define

Xd (n, i ì : number of increasing t-sequences in z;

X;(n, !.) : number of decreasing {-sequences in n;

x.(¡r, ¿) : X*(¡' ¿) + X;(?r' ¿)'

More formally, we have

X*(n,¿) :#{j e N,.' vi: j <i< j +{ (r(i) r(i- l): l)}; (12)

X;(ir,t)-#{: e N* Vi: j< i< j +¿ (z(i- l) ø(i): t)}; (13)

x-(r,¿) :#{j € N* vi: j< i< j +¿ (r(i) -T(i- l) : l)}. (1.4)

Fo¡ n, { e N and 7r e Sn, deflne R*(zr, {), R;(ir, t) and R*[zr, {) as the number

of maximal increasing {-sequences, maximal decreasìng {-sequences and maximal

{-sequences in zr respectively. By definition, maximal (increasing/decreasing) {-

sequences are disjoint and we define

nn
Ritzr) :f ni¡n,e), ç(7r) :f n;1zr,r;, R"(r) :f n.¡",,t). (1.5)

0:t

Hence, Rd [rr) denotes the tota] number of maximal increasing sequences in r; R; (z)

denotes the total number of maximai decreasing sequences in n; and R.(n) rep-

¡esents the total number of maximal sequences in n. Table 1.2 iilustrates these

definitions for our example permutation n: (45621873).
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Table 1.2: Examples of Defined Numbers for n: (45621873).

L-1 (.:2 (.:3

xf(n,a) I 2 I

xl@,t) I 2 o

xa@,(.) 8 4 I

Rf(z,{) s o I R[(zr):6

Rt(rr,¿) 4 2 0 Rt(7r) -6
R¿[r,{) 1 2 l R6(r] :4

It is easy to see the following relations:

n:X*(n, l):X.(n, 1)

: RI(n) +x[(n,2)
(16)

: R- (¡r ) + x; (7r, 2)

: R*(n) i X-(r,2).

Now, for n,{ e N and 0 ( ke Z, defrne

111,\ : J tx*(,,,{) :kt : #{øe s. I xi(r,¿) :t};
\Kl / ,.-.s"

1:1,): J x;i,,,¿):kl:#{zres,,lx;(ß,{):k}; G.7)\KJ / ,.-.r ̂

(ll ¿): Jlx"(".{l:kl:#{n e S",X^iî.{l:k}.
\k. / -
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Hence, (ifr) is the number of permutations in S,-, with exactly k increasing {-

sequences, (TJ,) i, the numbe¡ of permutations in S,., with exactly k decreasing {-

sequences, and (iJe) is the numbe¡ of permutations in S,. with exactly k increasing

and/or decreasing f-sequences. By symmetry, we have

/nÎ \ /n \
\ol'/:\ol'/

We also note the special case

1ll'\ :11l'\ : /11'\ :n,rk - nr,\k / \kì/ \kt / forallneN;

There are two related numbers that, while not the main subject of this thesis,

appear frequently enough in the literature to wa¡rant deflnition here.

Definition 1.4 ( lncreasing/Decreasing {"-Sequence) Let n, j, { e N such that I < I

n and l l j <n and let n€ S,.,. Then n(j)n(j + ì mod n) .. n(j+ {- 1 modn)

an 'increasing l"-sequence if and only if

Vi:jcicj+{, n(i mod n) T(i l modn) :1.

Recall that we use the 1abe1 n fo¡ the equivalence class l0l. We similarly deflne

decreastn g (. 

" 
- s equen ce s and l, 

" 
- s equence s -

Definition 1.5 (lncreasing/ Decreasing {*-Sequence) Let n, j, { € N such that 1 < j <

n-1.+1 ( n and let n € S,-,.. Then z(j) ".n(j+t-1) is an increastng [*-sequence

if and only if

s

is

Vt: j<í<j*t, n(:,) -n(í - 1):1 [mod n).
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Again, we defrne decreasing (.*-sequences and l*-sequences in an analogous man-

ne¡ and note that the equivalence class [0] is identifred with n instead of 0.

In the {" (circular) case, we are imagining that nfl ) immediately follows n [n).

In the {* (star) case, we imagine that .l immediately follows n. When required,

we will use the appropriate subscript on the parameter { to denote these types of

sequences. For example, X; (?r, {-) will denote the number of increasing t*-sequences

in n; R;(rc, [.) will denote the number of maxima] decreasing e.-sequences in n; and

so on.

Derangement and Match¡ng Numbers

Definition 1.6 (Fixed Point) Let Í € Sn. We say n[j) is a fired. point of rc if and

only if z(j ) : ;.

Definition L.7 (Derangement) We say rc € Sn is a d"erangemenú if and only if n

contains no flxed points.

The numbe¡ of derangements of n elements is denoted by D* or, in some lit-

erature, n¡ (read "n sub-factorial" ). The general formula, given in (Whitworth

1eo1), is

D--n¡-":i {'11
;:O K:

Where e is the base of the natural logarithm

rounded to the nearest integer.

ln! I I

- l;-1)'
- hence Dn : ni is simPlY n!/e



CHAPTER 1. INTRODUCTTON

In the more general case, we denote the number of permutations in S* with

exactly k frxed points as D,.,¡. Thus, D,.,6: D,,: n¡. The numbers D,-,,¡ satisfy

(Graham, Knuth, and Patashnik 1994)

/n\D.,.: (t/D" ..

We see that D*,¡ is the coeffcient of zk in the expansion of (D + z)" where we

equate Dj with D1.

The numbers D',',¡ are often refe¡red Lo as matchtng numbers since they rep-

resent the number of ways of permuting n objects such that k of them ¡emain in

their original position (i.e. k matches).

Partitions and Compositions of lntegers

Definition 1.8 Let n a positive integer and let ¿ : {Ã,}i be a sequence of n

non-negative integers. Then, å, : {¿r}i is a partit'ion ol n if and only if

t-t *2Lz* *nå-:n.

For a given n, we denote the set of all partitions of n by E,-,. The number of

summands in the partition is É.1 +...- å..

The cardinality of 3,-,' is denoted by p(n) and is known as a part'ition nurr¿ber.

The history of these numbers can be traced back to Leibniz, Bernoulli and Euler

(cf. Dickson 1920). The generating function for p(n) is well known to be

l
\rp¡-r r,4, - (1 _ zXl _ zr)tl _ z3l_
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While no known closed form for p(n) exists, the values are easily computed using a

recurrence. If we let p [n, k) denote the number of partitions of n with no summand

(part) larger that k, then

p[n,k) : p(n - k,k) + p(n, k l),

with boundary conditions p(n, 1)-Iforalln)0andp(n,k) -0 foralln < 0.

Thus, p(n) : p(n, n).

By a composition of n into exactly m parts (n, m non-negative integers) we

mean an orde¡ed collection of positive integers Xl , . . . , Xm such that

x1 +x2+ +xÌl.,:n.

For example, the compositions of 4 with exactly 2 parts are 13, 3l and 22. If lhe

order is disregarded we obtain a partition of n.

We denote the number of possible compositions of n with exactly m parts as

C",,,,. The generating function is

10

G6-(z) : (z+ z2 + 23 + ." )* - z*(l - zJ *, lzl < 1. (1.8)

Writing (1 -z) * as [-1)''(z- 1)-' and making use of the Binomial Theorem, we

obtain

/ _,- \
G6*{zl : (-t l^ t ( -."')tt+"'1-1¡ t'. (1.9)

î\ k /

Hence, the coeficient of z' is I I l" * (;î) : (J }) and we have

/n-l\
C",* : 

l,_, *), 
integers n, m ) 0. (1.10)
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Note, when rL: m: O, we get co,o: (.t) : ( l)o: I which agrees with our

generating function. In allowing n: O, we must refrain from writing ttris as (fi 1)

since the binomial reflection of (;) is valid only for O < r e Z.

For non-negative integers n, m and {, we denote the number of compositions

of n with exactly m parts, none of which are greater than {, by C.,^({). The

generating function ís

Gç.{z:0r - tz- }r " l ze l': f 
t'l -:' )' (1'11)\ t-z /

Hence

(l z)G c- Q : l.) -- z(1 - zt )Gc.., ,(z: (.) (1.12)

Equating coefficients of z', we obtain the ¡ecursion

c',,*({) - c" r,".[{) : c'. r,* ] [¿) - c.,¿-1,*-r (¿)

C',^({) : C,.-r,,,.,-r(t) - Cn ¿ r,'. r[¿) + C* ],*[¿) (i.13)

The boundary conditions are C,.,6({) : lm : 0l and C0,.,.[{) : lm : 0]. In fact,

C-."(t) + 0 implies n ( 4m ( ún and, if { > n, C.,,-(¿) : C,.,.,^. If (.:2 then

C* *(2) is the coefficient of z* in (z + z2)* and we have the special case

c.m(2r : (" l_) (i.14)

FYom the generating function, C.,^(0) : ln : m : 01.

See Riordan (1958), Hall (1967) and Comtet (1974) for discussions of partitions,

partition numbers and compositions as well as the related denurnerants. The

reader is also directed to the collection of papers by P. A. MacMahon in (Andrews

1978), in particular (MacMahon 1894, 1908).

11



CHAPTER 1. INTRODUCTION

L.2 Literature Review

The number of permutations in S,, without increasing 2-sequences flrst appears

in (Whitworth 190i) where the solution D-+t /n is given. Whitworth (rSOr) also

considers the case of no increasing 2.-sequences.

Wolfowitz (1942) describes a non-palametric test of independence for paired

samples using R,.(z) : n X^(n,21. He gives the numbers (ilz) as the solution

to a system of n equations in n unknowns - the equations easily solved by back-

substitution. Wolfowitz (1944) derives the limiting distribution of X-(n,2) : n

R',(n) as Poisson with mean 2 white Kaplansky (1945) provides a more explicit

result concerning the limíting dist¡ibution of X*(n,2).

Kaplansky (1944) gives a symbolic solution to the n-kings problem: How many

$rays may n-kings be placed on an rr x n chess board such that no two are in the

same ¡ank o¡ flle and no two attack each other. This is equivalent to determining

the number of permutations in S* with no increasing and/or decreasing 2-sequences

since, if ñ € Sn has no increasing and/or decreasing 2-sequences, \r7e may use n(1)

for the rank of the king in the frrst frle, r(2) fo¡ the rank of the king in the second

file, and so on up to n(n). Rio¡dan (1965) gives a recursive equation of order 5 for

lhese numbers. Abramson and Moser (1966) provide an independent solution.

The number of permutations in S,-' with k increasing 2,2" arrd 2*-sequences are

examined in (Roselle 1968; Roselle 1974; Tanny 1976; Reilly and Tanny 1979). The

results a¡e either explicitly expressed in terms of derangement numbers or can easily

be shown to be equivalent. Roselle (197a) and Dymacek and Roselle (1978) also

T2
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relate the numbers (ilz.) and (ifz-) to the derangement numbers. Dwass (1973)

follows a more probabilistic approach, making use of a Ma¡kov chain in determining

the distribution of X* (r, 2) and showing its limiting distribution is Poisson with

mean L More recently, Fu (1995) used a finite Markov chain embedding technique

to give a simple matrix form for the distribution of Xf (n, 2) ; to show that the

asymptotic distribution is Poisson with mean I; and, to show that the distribution

of Xd(zr, {) is degenerate about 0 when { > 2.

Riordan (1945) uses combinatorics and the symbolic method to enumerate (iJ:)
and derives the mean and variance of X{ (zc, 3 ) .

The more general case of increasing {-sequences ({ > 2) is discussed in (Abram-

son and Moser 1967; Jackson and Reilly 1976; Jackson and Aleliunas 1977). Abram-

son and Moser (1967) make extensive use of combinatorics. Jackson and Rei11y

(1976) and Jackson and Aleliunas (1977) mahe use of generating functions to enu-

merate (ifc). Jackson and Reilly (1976) further derive a ¡ecursion for the coeffi-

cients in the generating function and give a method to calculate (lft) in O(n3)

time.

1.3 Overview

The remainder of this thesis is organized as follows: Chapter 2 reviews two known

methods for the case { : 2. Chapter 3 contains the main resuits of the thesis - the

general case (i1r) i. solved and the expectation of Xfi(2, [) is derived. FYom these

two results, all known resuits for I : 2 and more effcient equations for the case I : 3
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are derived. The chapter concludes with an alternate mettrod for generating the

numbe¡s (if c) and proving a closed form for the special case { > In,z2l. Chapter

4 discusses some applications for the numbers (ife) and the stochastic variable

Xd(ø, {). Chapter 5 contains some concluding remarks and an extension of the

problem. Appendix A enumerates the numbers (ifc) for 2 < (. < n ( 20 and

0<k<n l.+1.

For the impatient, dog-ear page x and turn to Table 3.1 on page 34.

t4



Chapter 2

lncreasing/ Decreasing 2-sequences

This chapter reviews two methods for determining the numbers (ifz). We frrst

apply the symbolic method to the determination of (ifz) ana the related (112").

The second method malçes use of the frnite Markov chain embedding technique of

Fu (1ee5).

2.L Symbolic Approach

Riordan (fSS8) gives a formal description of the symbolic approach for solving

a wide class of combinatorial problems. Kaplansky (1944) gives a description of

the method and appties it to a number of problems involving permutations -
in particular, the n-kings problem. Our approach follows closely that of Roselle

(1e7a), who used this method to provide solutions tor ([fz), (ifu-) ana ([[z) as

well as others.
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Let n € N given and S* the symmetric group on n elements. Let Ai,i1¡ denote

the event that, in a ¡andom 7r € S',., i + I immediately follows i. Clearly, there

are n- I such events to conside¡: Atz,Azs,... ,At. 1t,.. Let Ài,Ai, ...Aiu denote

an arbitrary k element subset of these n I events and let þ¡:p(Ai,Äi.. .Ài*J

denote the probability ofthe joint occurrence of ,{i, . . .Ai*; then, since k increasing

2-sequences leads to n k maximal increasing sequences which may be permuted

in [n k)! ways, we have ôr : p[Äi, . .Äi") : (n k)l/nl. Thus, þ¡ is symmetric

in the sense that it is a function ofk alone and never vanishes for k ( n- I By

Poinca¡é's formula, we have

Prtxf(ø,2):01:1-f r(ar)+f n(,{.Â,)- f n(ÀiA,Ar)+ ...
t i+i i+i+r

Now, since a sum involving k events has (^;r) terms, we have

n-1
ÞrrY-¡a ?) - ol - ir-l l* 1". tl ln k)lrr'l\nr/r'¡4 "' 

ft' '\ k ) fr: '
(2 1)

which is the result in (Roselle 1974). If. we let E such that E"öo : Q¡ then sym-

bolically we have

Prlxd(n,2) :01 : (l -E)' 'ô0.

As an example, for n:4,

(2.2)

pilxi1r,2): ol : ir - E)3óo : (1 - 3E + 3E2 - E3)öo

:óo 3ôr+3óz-ó:
'I

: - (t (4:t i(3:) + 3(2!) - I )4!

ll
24'
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'.r 
: (l)D"-*., (";')r" ' ' - (T-- ì)o" ^

corresponding to the 1l permutations in Sq without increasing 2-sequences. We

also have, by Poincaré's formula,

prlxf rn,2) :. - i ' 
,. ' (o l,) f p(Ai, Ai*)

- i'',,,. lk\/" - l\r'.--L!
î' 

' \'/\k/ni

_ f r rr' '/k\ /El\- *À o' \,./ \ " ) (2's)

-"t",,t1'f" o')
2 kl r! \ n )

--t f,,.,-rìï {-ì'*-'t" t'l- nrl ì"' "/- kl /- k: (
\ l,-0 l-0 )

1I D", D"..r ì
- nrl l{n r 1l! '{n-r-1rlJ

_ t.("-'1,o.,-D",,r.
nl \ r /

Multiplication though by nl and replacing r by k yields

7"1r\:1,",r)rDn.¡+D.,r,r. (2.4)\rl-l \ k /
v¡hich is the exact result appearing in (Tanny 1976) and (Reilly and Tanny 1979).

Roselle (1968) gives the symbolic form

/ "1.'\ t^.k1 ( (

\;lt/ 
: lx-lt(D +x)*+ (l -x)(D +')*-'), Dj: D; (2'5)

The coefficient of xk in this polvnomiai is
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Equating Di wìth D1 and noting ttrat (i) - (l l) : (';') *. see this is also

equivalent to (2.+).

For a discrete random variable X, taking on values 0, 1, . . . , n with probabilities

po,pl,... ,p,-,, the ordinary generating function is given by

nit): f t'p,.
r:0

Evaluating at t* 1 yields

n :+- +/'\**:+,.+/'\. -f trrmrr.Prr-|:ã,-ttp, A,,--\r/ fu â\k/", i k:

where (m)r is the kth factorial moment of X. Evaluating this last expression at

t - I gives

Hence,

è ¡tl [-t)t '(m)rp,,: L \r/ tr

Therefore, from (2.3), we see that the kth facto¡ial moment fo¡ I < k < n (higher

factorial moments all vanish) is (n - k),un and r¡¡e obtain

nl 11
E[X;{Î.21J -: and Vor[Xf in.2]l:1-; - 

"? 
(2.6)

å tt I )ktml.
Pltl : ) j---------------

¿- kl

.L
_ t (mrr t l*l{ t,r. .r,/- vt /-\-l'

k:O r:tl ' '
n n /r-\ i 1\L

_ i ,, i /ol r_ll* 'f m)r
/-- ¿-\rJ k!r:0 k:r ' '
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Since all factorial moments tend to I as n -+ oo we have the limiting dist¡ibution

of Xf (r, [) as Poisson rqith mean ].

For the case of increasing {*-sequences, we consider the addition event 4,..1,

for a total of n possible events. As before, the probability of the joint occurrence

of k ( n I of these events is (n kll/nl which is a function of k alone and

never vanishes for 0 ( k ( n I and we have the required symmetry. Since the

probability of the joint occurrence of n of these events is 0, we may simply drop

the last term in Poincaré's fo¡mula. The derivation is even simpler than for that

or (ifz). we have

1'1r.) :nr prrX*(n,2-) :rr :i,',"-'(i) (i)," k)!\rl / 
-'.:ï(:) ll' '- çzz¡

L:. \ '/

_.,rr 'f'¡t+r¡ r tr*-fo\r/lk+rll
n r I, r\L

:r'! f I 'l¿- klrl

:n(n-tlo-,,.
\1,/

(2 8)

We see immediately from (2.7) t]nat the ktr factorial moment is I for k- l,...,n
and 0 otherwise which is enough to verify that the limiting dist¡ibution is again

Poisson vr¡ith mean I .

These results are equivalent to those of Roselle (1974); Tanny (1976); Dymacek

and Roselle (1978); and, Reilly and Tanny (1979). Due to the following theorem,
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it sufrces to determine ( il z. ) only.

Theorem 2.1 f,et S. the symmetric g,roup on n elements, Tr € S.', and r-'1

unique inverse. Then

X^rn.{.t- X;rn r,[.r

Proof: Let r € Sn, then we clearly have, for all 'l < k < n,

n(k) : ¡n and rrfk-F l):m+ ] modn

(2.e)

<+
n t¡m) :kandz 1(m+l modn) :k+1.

Hence, every increasing {*-sequence maps onto a unique {"-sequence which com-

pletes the proof. n

In determining (|Jz), Roselle (1974) uses the notion ot quasi-sgmmetry -
where þp : 0 or is a function of k alone. The method is identical to that above

except that all terms where öt vanishes must first be suppressed. Riordan (1945)

uses the symbolic method to determine (if:).

2.2 Finite Markov Chain Embedding Approach

Dwass (1973) made use of a non-homogeneous Ma¡kov chain to examine the dis-

tribution of X{ (zt, 2) and Xd (2, 2.). FU (1994) formalized a flnite Markov chain

embedding technique for the study of the exact distribution of a specifled pattern

20

its
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in a sequence of multi-state trials (cf. Fu and Koutras 1994; Fu 1996), FU (1995)

modifles this technique for use in determining the exact and limiting distributions

of Xd(n,2).

The generation of a random permutation î € Sn is equivalent to the stepwise

insertion ofn integers {1 ,... ,n} For 7r € S*, there is exactly n11 positions to

insert n*l to obtain n € S*+r. lt is easy to see that this generation ís unique in that,

if at any stage we choose a different insertion position, the resulting permutation

will be different. Let nt denote the sub-permutation created after inserting the

tih integer. Consider the state space f) : {0, 1,...,'fl- lJ, the index set l :

{0, 1, .. ,n} and a sequence of transformations Yr: Sn --+ O, t- 1,... ,nwhere, for

each ø € S- and each t : 1,2,...,n,

Y1(nJ : Xi(n.,2). (2.10)

For example, the permutation n : (12376854) is created by the sequence of

permutations

'It1

Y'(r)

(123) (1234) (123s4) (1236s4) (12376s4) (12376854)

232222

In general, if Yt-r(n) : k for some I : 2, . .., n and k : 0, . . ., t - 2 then Yr(zr)

can only be in states k- 1, k or k* l. The integer t has equal probability ofbeing

inserted into any of the t available positions in n € S. r and we have the folÌowing
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transition probabilities for Y1[n) :

fo,. if x:k 1;

pr y,:x y,:_,:11:,,k-rì r, ìll:l_r, (2rr)

lo, otherwise.

Hence {Y. : t € f.}forms a non-homogeneous flnite Markov chain on O with

transition matrices Mt(n) : pt¡ (n : t), fo¡ t: l,... ,n, where

ferlv.:j iY. r :il, fort,j e{0,1,...,t 2);
Pii(n : tl : I

|.0, otherwise.

F\r (1995) shows that

/n \
PrlX"tn,2r:i :Pr'Yn -i Yo:01- o{0r {f]V.'"r)U'rir, (2 12)

\' I /

where o(0) - (.I,0,0,...,0) is an l x n vector and U/(i) : (0,...,0, ,l,0,...,0)'is

an n x 1 vector with a I at the ith coordinate and 0's elsewhere.

Using these results, he further proves that

limPrlX fn.2ì :"1 :91. x:O, l,...; (2.13)
n-oo nr/tr4r-^'- Xl '

and,for{>3,

(t irx:o:
',lim 

Pr XI tn, [) : xl - { (2.74\' [0. if x>1.

That is, for (. > 2, the dist¡ibution of Xd(n, ú) has a degenerate limiting distribution

at zero.



Chapter 3

I ncreasing/ Decreasing {-Sequences

In this chapter, we state and prove the main theorem, which gives a formula for

( if e ) which may be evaluated in time of order k(n - k) - a vast improvement over

any known method. The corollaries yield a number of special cases and limiting

díst¡ibutions. We derive the expectation of Xfi (n, {) and show that the limiting

distribution is degenerate for l. > 2. In addition to the main results, we provide a

second method for determining (iJe) based on partitions. The chapter concludes

lvith the derivation a closed form for (ift) when l. > ln/2).

3.1 The Main Results

We prefer to save the discussion of the results until after all of the theorems and

corollaries are stated and proved. In the following proofs, ¡eca11 that R{(r,{) is

the number of maximat ú-sequences in n and R*(n) is the total number of maximal
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increasing sequences in n. The proofs depend on the following identities

c'',.-(2) =

(Ð:

(;)(î) :

+ (Ð (":-) -
ar'd,forn€v',

(..1^)
/n\(" u)'

(Ð (; l)
l'*'),

n,m€2,0{m{n;

n,k e Z, n> 0;

1e La

(3.c)

(3.R)

(3 r)

(3.v)

o{^r : I (l),-')ortk) <+ rt.) : i (i), ','n,0, (3 I)
k:o \r\/ L 0

(3.C) is (t.t+); (e.R) is the bjnomjal refrection; (s.T) is knou¡n as lhe trinomial

revision; (3.V) is Vandermonde's convolution; and, (3.I) is knows as the binomia1

inversion. The letters are intended as a mnemonic device.

Theorem 3.1 (Main Theorem) Let n,X e N and 0 < k e Z. Then the number of

permutations ìn S,-, wifh exactly k increasing 0-sequences .is

n minlk,p )

(îl') :r .f (:1') (Ð(i-l)c,., aL r p a({-1); (31)
P:l d:0

wherc Cn k,tr({ r),p ¿[¿ - 1) is the number of compositions ot n- k- d(¿ - I)

into exactJy p - d parts, none greater than I 1, and is calculated using (t.lS).

Fltrthermore, for l. > 1 ,

(iT') :å(:1')-*t" (Ð(i-l)Cn-k-d¿, p ¿(,-,), (32)
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where

'':[Hl and

25

Þ*:n-(k+{-2)lk+a)

Proof: Let n, k and { as given, letp,de Z such that 1lp <nand0< d(n
and let S*(k, {, p, d) denote the set of al1 n e S,-, such that

Rl(n):p, fq¡z,t'):d and xf(ø,f):k. (*)
t,>t:

That is, if zc e S"(k, {, p, d), then z has exactly p maximal increasing sequences (of

lengths {1 ,...,io) and

i) lId:lir....,ia]ç{1,.. ,p} such that t1 > { for al1 jeI¿;

ii) (¿i,-¿+.1 )+({i, {+l)+..+({io {+11:¡; utt¿,

iii) ¿j < (. for all ) Ç I¿.

Now, there are (!) ways to choose the {ir, . . . , i¿} satisfying (i); for each of these,

there are (f |) solutions satisfying (ii) lby (t.tO)l; and, for each of these, there are

C¡" t ¿(¿-r),p-d({ 1) solutions satisfying (iii) [since (ii) implies {i, + + ¿i,i :
k + d(¿ - 1)]. Bv definition, there are (!fz) ways to arrange these p maximal

sequences such that (*) is still satisÊed and we have

#s-(k, ¿, p, ., : (f 1') (Ð (l ]) .. -u,,-,,"-a(¿ - , )

Given n, k and {, the sets S*(k, {, p, d) are pairwise disjoint so that summing

fS*(k,0,p,d) over all possible p and d yields (ife) and hence (3.1). For (3.2),
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we note that the upper bound on p is clearly n - (k + t - 2)lk I 0l; lor the lower

bound, we have

[n k dr¿ ]t] [n kl
cn r d,r r,.p ¡l{_tì+0 ______- p-d> | , , I - o- l, ,l

A1so, d < p and d < k due to the binomial coeffcients and (3.2) follows. ¡

Remark 3.2 It is convenient to deflne, by convention, (31,) : [k : O] for all

{ e N and extend the double summation in (f.r) over all p, d > 0. The additional

terms all equate to 0 and the resuiting equations are easier to manipulate.

Corollary 3^3 Let n e N and k€V, such that 0 <k1n. Then the number of

permutations ìn S,. wiúh exactly k increasing 2-sequences satisfres

(ll,) : (";') ('" -1')

and hence, for k > 0,

(3 3)

k

:2 into (

We obtai

/ "1"\\kt /

(11')- " '(;-ìl')
3.1) and note that C,.,-r-¿,p-¿ (l ) - I when

n

(3.4)

P : n-- kProof: Put {

and 0 otherwise.

=(";'.1')å (";-)(i-l)
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and (3.3) follows by (3.V). Equation (3.4) follows since

. /n ll-\ /n-2\/n-kl.\rn r)\o ,lri:tn-r(t r/\ o ,)
_o(" l\ 1" olr\

"\ k /\ a '/
/nî \:k{ l2). ¡
\kl /

Corollary 3.4 The limiting distribution of Xl;(n,2) is Poisson with mean 1. That

is,

o1
lim PrlX.rn,2r- ol - ì, (3 5)

Proof: It follows easily f¡om recurrence (3.4) that the mth factorial moment, for

I ( m ( n, of the distribution of Xd(ø,2) is

ËlX"r¡.2r...rXjrn.2r-m r l,l -,],Ikrk-1r...{k-m t' (lTr)
k

_ [n-m)(n-l)!
n!

: t-^
n

Since these tend to 'l as n - + co the result follows immediately. n

Corollary 3.5 Let n e N. The number of permutations in S,-, wiúh no increasing

2-sequence is

/n^^\ D^-r illn+i1l l'( 2) = l--------]:-- ,l. (36)
\0 / n nl e /J
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Proof: Let rr € N. It is easy to see that summing (ifz) over al1 k yields n!,

hence

- 
/"Jr\ _ 

" i r" r\ 1" ol'z\nnl:nIto-, 'r-\ k /\ o /l':0 ' / L:0 \ /

- i ulll 1il'\fo \k/ \ol /
Where we are replacing k by n - k and (i:Ð ¡v (]]-ì) : * (Ð We now make use

of (3.I), with s(n) : nn! and f (k) : t-l)kk([fz), and obtain

(-r)""1i12\ : i f:l¡ rlkrrcr\0 / fu\k)'
Whence

" 1'1.,\ : + (l){-r,n-rkk' :"' i rlo,,, r,^-,
\ol / -.- .,., r.o,

:^ji,r,o, ,,.
k:0

-{n+r"iLl-'
i- Kr

The last line follows from the fact that

_f tr-l ,*:ï { l)r _ f r llt , :n_tr{ ll'-r.
- k! - k: - k: (n-lll
k:0 k:0 k:ó

lMe have shown that

/"1,\_ {"-1llþ'" r-1rr _D,,-r I lrn -lrl_ I 
¡\ol'/- "-h kt - n -"1 e -tl'

which completes the proof. !
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Corollary 3.6 Let n e N a¡d k € Z such that 0 < k 1 n. Then the number of

permutations jn S* wjúå exactly k increasing 2-seque¡ces js

/n1-\ /n\D"r,r l/n\l(n k-lr: ll( 12):l- t ' :-r rr--r:l (3.7\
\tl-l \k/ n n\k/| e 2)' \-'l

Proof: Directly from Corollaries 3.3 and 3.5. ¡

Corollary 3.7 Let n € N a¡d keZ such that 0 <k 1n. Then the number of

permutations ln S,, witå exac y k increasing 3-sequences is

Proof: Put {:3 into (3.1) and note that, by (3.C), we have C,-, ¡ 2¿,o ¿(2) :
(- i å ") 

Hence, by Remark 3.2, we have

(li,):ã(;1')ã(Ð(i-l)("i 3") (bvsc)

:å(:1')à(i-Ð(,:.)(.i,i.) (bvsR)

-ã(:1,) (" I ,)ãft-l)(" å ')
: 
å (:1') ("-t-,)("-t-')

(by 3.T)

(by 3.v)

Replacing p with n-p and noting that (:_i) l0 implies k < p < l(n+k)/2)
completes the proof. n
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Corollary 3.8 Lef n € N. Then the number of permutations j¡ S. wjth no j¡-

creasing 3-sequence is

/"1.\ - t' /" -rfr\ /n - rr\ol'i-à\o'l\r') (3e)

Proof: Put k: O into (s.a) and note that (";\ +0 implies p < ln/2]. a

Corollary 3.9 Let n, { e N such that t > 1- Then the number of permutations in

S. wiú.h no increasing {-sequence is

llTn\ _ i ll]r\ c""({ _ 1r, o, _ lrl 13 ]o)\o'l-f*,\o -7"'."'' " -l¿-ll
Proof: Put k - 0 in (3.2) and note that d:0 only, hence

(åx:-t) : (:)(;) :'
and the ¡esult follows. ¡

Corollary 3.10 The number of summands required to calculate (i1,) ¡t, at most,

o(t[n-k))

Proof: Follows directly from the bounds on p and d in Theorem 3.1-. n

Theorem 3.11 and it's corolla¡ies concern the distribution of Xd(ø, {).

Theorem 3.lL Let n, { e N such that (. 1n. Then

f-(i1,):(n-{+rri'' ¿+i)r (311)
,.ìo \Kl /
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Proof: First note that, since (if e) : I^..^lXi(n, {) : kl, we may write

/,- 1 \

f r( I'lr) : f f tt4¡",r1 : kl : I xd(z,i).z- \k /k>0 î€Sn k>0 1.€S.

Now, given n and {, let o1 ,0"2,...,ont â flxed enumeration of all permutations in

S,, and define

lorti,, if oitil oitj- { - 1) it an increasing {-sequence; /o 1ô\nu,-( " 
\¿.r¿)' |.0. otherwise.

For example, if n : 8, I : 2 and oi : (12356478), then

(m¡,..., m¿,,) : [,l,2,0,5, 0,0, 7, 0).

It is easy to see that 6 ( nhj <n-l+l and, for all j >n {*1, that mi;:Q.

For each i : 1,...,n!, we have

n t,l
xj(o1,{): f t-o,lol.

j:l

Now, fm¿1 t0l:Urq'¡:11 + [nr.i :2]+ " +lmu:n {+l] and we have

nl nl n {+1 ft {+l

Ixi(or,¿) :LL f 1".,",:tl
i.:l i:l i:l k:l

rL ¿+1 f! ¿+l ]1l

-t Ifl'r",-tl.î k ,?'^'
But m.i; : k if and only if

oiU):k, otU+1):k*1, oiUt{-1):k+l-1;
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hence the inner summation is the number of permutations in S. with { elements

fixed which is (n {)!. We obtain

lll n-¿+1 n ¿+l rLl

I**(",,¿): I f ftmri-tl
i:r j:l k:l i=l

n-¿+1 rL ¿+1

-\- It'.' l\l/_ /_'-
):1 k:]

: (n-{+l)2(n ¿)1. !

Remark 3.12 Intuitively, the left hand side of (3.11) is simply the totality of

all possible increasing [-sequences in S-. There is (n { -¡ 1)2 ways to fix the

starting position and initial element of an increasing {-sequence. Once fixed, this

particular increasing {-sequence will occur in (n {)! permutations, hence, there

are (rr- {+.1 )2[n 4)! : (n- [+ l)(n- { + ])! increasing {-sequences in S,-,.

Note that (3.11) directly leads to the foliowing ¡ecursions

ä- (" i ^'** ''.) - å 
. (î1,) vm € N, (3.13)

(3.16)

î01",*1n\:i.1l1n--\, vm€N.m<{: (3ra)l-\ k I/ - \kt /

io1:1*_,\:ï, fn+11,\- r" -t- 2Ìi.1:fr\ 
1r,u¡å"\o''-'/-å"\ t l'/- r" {T ã \Kr/

Corollary 3.13 Let n, { e N such that l. < n- Then

In -{+1)ln-{ t1)!
Ltl\nt/L,alt'" nt



CHAPTER 3. INCREASING/DECREASING I.-SEQUENCES 33

Proof: Directly from (3.r1). Note that, fo¡ { : l, we get EIX*(n, 1 )l : n as

expected. ú

Note also that, from (3.t3), we have

ElxÍ(zr'{)l Elx* 
'(n'¿-l)l ' n'{>l' (3 17)

Corollary 3.14 Let { e N such that (, > 2- Then

Jgg e'lxi¡'., t) : 0l : 1.

That is, the Jimiting distribution of Xd@,|) is degenerate about 0 for t > 2.

Proof: By the Markov inequality, we have

Prlxi(r, ¿) > ll I Etxitø, {)l

{n-{*l)(n-{+ll!
n!

Taking the limit of both sides as lr r oo compietes the proof. n

Discussion of the Main Results

Table 3.1 summa¡izes the main results. For the case l.:2, we note that D'', r+l :
(n - k) [D* t * D,, t 1 ); hence, üre may rewrite (3.7) as

1"^'\-n t/n)(D,., 
r-Dn-r-r] :(", t)'o"-**D,, ¡ 1),\rl'/- ' \t., \ K ./
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Table 3.1: Summary of Main Results for n,{ e N and k € Zwtth0 ( k ( n

Boundary cases:

/"10\-^ ì.-,-r, /n1 \ 101,\ rk o\;lti:0, k-{-1,n; \¡lt/-":rt nl: \kl /
Genera-l case:

11 min(L,pl , ^(îJ'):å : (å1')(Ð(i-l)*-,. ¿r r p ¿(r-1)

) k{:'ir) .rtr-[.ìl1n-r lri, f <n./- \kl /
k>0

Special cases:

i"l'\:i1olr\." rn l

\orl -.\ù ,'v(t-1t' o'=le-,1
p:l'

/'1r\:o"'fl{nrrrl+ll\o'l- " nL e '2)'
/"-,\_/n-r\/n o1r\_ /.\D..,:_1 /"\ lrn-L r,: r'
\.'i:(*/\ o t/ \k/ n nroi L " zl

(;',) - "å' (";'1,) (;-i)('.')
lrlr\: Ï 1- o1:\l" r)
\oL"/ íì\ o -/\ p )

Expectations and Limiting Distributions (i < n):

trXnrn.{rl - {n-ir'l lln-t-ìtli vorlx.{ñ,2r|:t l-;5

.lggPrlx;¡r,,21 
:tf:f; 

"lSPrtx;¡n,¿) 
:01 :1, t>2



CHAPTER 3. INCR,E,4,SING/DECREASING I-SEQUENCES 35

which is consistent v¡ith the results in (Tanny 1976) and (Rei11y and Tanny 1979).

Roselle (1968) gives the symbolic form

(:lt) : l"*l{(D +xr'+ {l rt{D +rr- r}, Di : Dr. (318)
\kl /

The coefficient of xk in this polynomial is

r.t: fl)o.' *-l"'ìo.,' - (:-llo" .
\k/ \ k / \k t/

Equating Di with Di and noting ttrat (i) (l-l) : (';'), *. see this is also

equivalent to (3.7).

The Ìimiting dist¡ibution of Xd(n,2) is weil known to be Poisson rvith mean I

(cf. Dwass 1973; Tanny 1976; Reilly and Tanny 1979; F\r 1995) and Corollary 3.14

is consistent with (F\: 1995). We also note, from Corollary 3.3, that

Elx-{n,2)l :!:1, vorlx;{r,2)l -l ' l.,nnn'

For the case { : 3, Rio¡dan (rs+s) gives

(l^r)-f"', r,'.(l)ã(',')(",',')rn-2j-i!. (3le)

where (l) : O if j < k; and shows that

n ) n4 3n3¡ n2-6n-r8
EtX*lzr,3ll :-- and Vor[Xj{n,31] : -
-'' 'n \'-'ì " ' n(n 1l (n)zln]¡



1HAPTER 3. TNCREASING/DECREASTNG (.-SEQUENCES 36

where (n)¡: n(n-1) (n-k+1J. The expectation is consistent with Corollary

3.13 and we have

) r_tt'-ul. l) {' . 'l{''. '. '1r,, L+i),.
ã \K/i:ã\ I /\ l-r /

:å(^o of') (;-i)(oo') (320)

Abramson and Moser (1967) give the solution for the general case as

n t 1 -- .. i I a,lilc\:rr-r'/*-''ì ttt\kl / /_ \ i l/_L/_i-l ' ' or:0o:-0.r-0

*ä.(';')(::)(::) 
(:: ;) (321)

/n-1.-k-i-o¡ -... o, :- 2\
'(. o¿¡+ì )
x (n - k - i - or - 02 - - - - otz t+2)1.

This summation is complicated to evaluate and the number of terms is exponential

in t. We note that, by a change of variables, the product of the binomials can be

cast to a multinomial coefficient; hence, in effect, we are summing over partitions

- a method that is explored in the next section.

Jackson and Reilly (1976) and Jackson and Aleliunas (1977) provide indepen-

dent proofs that

/"1n\: rz'wk f ''r; (1_ wz_ 11 -)''.'l' (3.22\
\t]'/-t''"r¿r''\t wz lt-wt7t )'
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and we obtain, for { e N,

lz.wtl f -rri (l--wz- {1--wlz' r\'
'' '" 'k''- \ I -wz-11 -w¡2, )

¡ P t ¡, t , t ¡t. 1\: 
"-I ã (å t) (å) (i t)c" 'l ¿(¿ rr'p ¿({ - r) (3 23)

Jackson and Reilly (1976) further show that

t--I \ n

(ll|¿)-tzt Jirorn.j'. (2.24)
\Kl/ ã

where q[n, j) satisfies

o(n, j) : z(n-1,j) *(l - z)a(n - ¿, j)+ o(n- 1, j-1)
(3.25)

zo(n 2,j 1) (l z)o(n l; - 1)

with boundary conditions o(n, j) : þ: jl for n < [-1 and j> 0 and o[n,0) :

ln : Ol. They give an algorithm for calculating the generating function in O(n3)

time. Since the number of summands in (3.2) of Theorem 3.1 is of order k(n - k)

by Corollary 3.10 and, given {, the values of C.,*({) can be pre-calculated in O(n2)

time, we have a more efücient method of determining (iJr) ttran that of Jackson

and Reilly ( 1976).

3.2 An Alternate Method

Let E. denote the set of a1l partitions of the integer n and let ¿ : i¿rli denote an

arbitrary element of E. so that

tt-f2Ez*"'nL-,:n.
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Define the mapping @',: S,., - I,. as

(Þ,.,(nl :: å:iårli, where år: RT(n,i) for i:.1 ,... ,n. (3.26)

Clearly @* is defrned for all r € S^ and onto E,.. it will be convenient to flx this

prove

Theorem 3.15 Let S* úJre symmefric group on n elements, Let, ?n the set of all

partitions of T and let @n the canonical mapping of S* o-nto ?-. Then, given

¿ t¡ ln - =.- - lqi/t L rn'

#@',' å. - l:l'(s^ @n{nr - ¿l- .'åi'¿",' 1Ii ' 
r' ,¡ (32r\

L¡rL2r .'t-'.i \ A l-/

Proof: Let S-, E* and (Þ,.' as given and let t,: {år}i e E-. Then È, corresponds

to the unique multi-set {1 ...12.'.2...n. n} where the¡e are ¿.r copies of 1's, 12

copies of 2's, and so on, up to å* copies of n's. The possible distinct arrangements

of this multi-set is clearly
/\-n t.ll

¿,G-4
Each possible arrangement may be used to divide the sequence 123 ..n into I åi

subsequences by using the kth element of the multi-set as the length of the kth

subsequence. For example, if n:8 and t,: (l,2, I,0,0,0,0,0), then ã, corresponds

to the multi-set {1223} and one possible arrangement is {2312} which defines the

subsequences (12), (345), (6) and (78). By definition, the numbe¡ of v¡ays to arrange

óö
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these subsequences such that no longer subsequences are created is

/IL,åt1"\
\o

Ctearly, each n € S. such that <Þ.(n) : I is enumerated by the above method.

A1so, if n € S''., such that @.(n) : f and 7r € O;rlå-l then ¿. : ¿, srhich completes

lne prool. Ll

This result immediately yields the generating function

G{z,w:nr- I ,$;||(ti 
t']r) L,'*' '2¿ r"n '{ 

rLn,

¿.=" '' " ' 2

(3.28)

where the number of permutations in S,-, with exactly k increasing { sequences is

lztwklG(z,w:n).

Apart for the curious nature of the generating function, we now have a method

fo¡ enumerating the numbers (if c) for all(.-2,... ,n and a1l k:0,... ,n l+ 1.

Figure 3.1 gives an algorithm for calculating the values by making use of the fact

that, given zr and <Þ,.(n ) : å : {år}i,

x*(zr,¿) : f futt- { + l) : xd(n,a+ 1) + I åo (3.2e)
k:t k:C

To analyze the running time ofthe algorithm we flrst note that the cardinality of

ã* is p(n). Ehrlich (1973) gives an algorithm to iterate though the partitions of n

such that each iteration takes constant time and the numbe¡ of operations in steps

1-3 is ctearly proportional to n; hence, the total ¡unning time is of order O(np(n)).

For large n, this algorithm cannot compete with the results in the previous section



CHAPTER 3. INCREASING / DECREASIN G I-SEQUEN CES

For each E, e E-, do:

1. calculate

rf|1åi): /Il r¿.tf .\
"t' :¿,:¿21 ..åJ\ o 'l

2. set s : O and k:0. Here, s plays the role of fir: å1 and

k ptays the role of Xd(2, {) in (3.29).

3. For l.: n downto 2 do:

3a.sets-srå1.
3b. set k: k * s.

3c. set (iJe) : (i-fe) + r(a).

Figure 3.1: Algorithm for Calculating (ife).

or with the (Jackson and Reilly 1976) algorithm. It should be noted however that

np (n) < n3 for n < 16. The main advantage is that it is simple to implement

and simultaneously computes all values of (if t) given n. The (Jackson and Reilty

1976) algorithm requires n and { given and calculates (ife) tor 0 < k < m < rr.

Another advantage of the above algorithm is that the memory requirements are

much less than that required in (Jackson and Reilly 1976).

Hardy and Ramanujan (1918) show that p(n) satisfies

and that p(n)/S(n) -+ I as n -+ oo. As such, we see that p[n) is a relatively slow

exponential function of n.

40
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3.3 A Special Case

When { > ln/2) a closed form for (ifr) ir available by direct enumeration. We

have

Theorem 3.16 Let lr € N and S^ the symmetric group of n elements. Leú { e N

such that Ln/2) < (. < n. Then

/_1 \
(l'l¿):(n-¿lt t(n-{)'?+1}+(n { 1)(n ¿ t)lf¿<nl. (3.30)\rll

Proof: Since [. > n/2) , the remaining n - { elements of the permutation cannot

form anothe¡ increasing {-sequence. We have 6 cases to consider depending on what

position the increasing ú-sequence begins in and what integer it begins with.

1. The increasing {-sequence begins in ø(1) and n(t) : n which can only happen

one way. The remaining n { eiements may be permuted at leisure and we

have a total of (n {)! ways.

2. The increasing {-sequence begins in n(1) but n([.) I n which can happen totaì

of n - { ways. The remaining n - { elements must now be permuted with the

restriction that n({ + 1 ) I n([.) +1 which may be done in (n { .l )(n i 1)!

ways. The total for case 2 is therefore (n - {)(n - { - l )(n - ¿ - l )! :
(n- t- l)(n- t )!.

3. The increasing { sequence begins in n(n- l) and n(n t + 1) : 1. By

symmetry with case 1, we have a total of (n - {)! ways that this can occur.
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The increasing {-sequence begins in ø(n { * 1) and n(n - l. + 1) I 1. By

symmetry with case 2, this may occur in (n ú - 1 ) (n - l)l ways.

The increasing {-sequence starts in n[k) for some I < k < n-{+ I which can

happen a total of (n-{+1)-2:n-{-1ways.

(a) If n(k) :l orz(kJ :n {*l (z ways) then there are in [-1)(n*¿ l)l
ways to permute the remaining elements so that the {-sequence is not

increased in length. Hence, we have a total of 2(n- { - l){n- i - ll!
ways.

(b) If zr(k) ll andn(k) ln {*l which may happen (n-t-1)ways,

then there are two restriction on the remaining n - { elements and we

have a total of [n- f - 1)l(n- l)l-2(n - ¿- l)!+ (n-{-2)!] ways.

Adding (5a) and (5b) and multipiying by (n t 1) we get the total for case

5as

(n û 1)2[n ¿)l+(n-{ l)1.

Summing all cases yields

2{(n-t)t+(n-{-1)(n { l)l}+(1r t 1)2(n-{)l+(n-{-1)1,

which simplifies to the desired result. ¡

It is a-lso easy to verify
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Theorem 3.17 Let n € N and S,, úåe symmeúric group of n elements- l,ef { e N

such that ln/2) < (. 1 n. Then

/"1n\: lnln*k r\.\kll \il /
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Applications

The numbers (if e) have a number of applications in mathematics and statistics.

In this chapter, we discuss two applications in non-parametric inference and one in

graph theory.

4.1 A Test for lndependence

Let {X¿}, for i : 1,...,n, be a frnite sequence of ¡andom variates hypothesized

to be independent and identically distributed (i.i.d.) according to some unspeci-

fled continuous distribution function F(x). Suppose that x1 , . . . , x.. is a particuiar

realization of this sequence, listed in order of occur¡ence. We wish to test if the

observed values are independent of the order in which they occurred.

Let r(Xi) denote the ¡ank of X1 and define n € S'-, by n(i) :: r(Xi) for i :
.l 

, . . . , n. Under the null-hypothesis, the exact distribution of Xd [ø, 2) and X;(n,2)

are known and thus these may be used as test statistics. In testing against the

44
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alternative hypothesis that the values are tending to get larger over time (an upuard

trend) then we would reject the null-hypothesis for large values of the statistic

Xl@,2).In testing against a dounuard trend, we reject for large values of X; (it, 2 ).

As an example, consider the realìzation

34 5 6 7 I 9 t0 ll

45

Xi

1(xi )

47 15 56 66

4156
96 29 86

9 3 l0
20 78 82

27 8

The induced permutation is n: (11,4,1,5,6,2,7,8,9,3,10). We wish to test for

an upuard trend and the appropriate test statistic is Xd(n,2) :3; co¡responding

to (5,6), (7,8) and (8,9). From Table 4.1, we frnd

PrlXi r (z¡,2) > 3l :1 I 6,01 9,531 + 1 4,684,570 + 6,67 4,845
= ô.ô64.Il!

If we v¡ish to test fo¡ a downwold trend, then the appropriate statístic is X; (n, 2 ) :

O and, trivially, we have Prlx;[r,2) > 0] : l.

This test is also appropriate to testing a large source of pseudo-random numbers,

one may examine m consecutive blocks of n numbers each; calculating Xd (n, 2) on

each of the m blocks. A suitable goodness of flt test may then be performed on

these Xl(2,2) against its theoretical distribution.

4.2 A Test for lndependence in Paíred Samples

Wolfowitz (1942) describes a non-parametric test for independence based on the

distribution of R'-,[ø) : n X^(n,2). He shows that, under certain assumptions,
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a test based on R{(n) provides a reasonable approximation to a maximum likeli-

hood test. In this section, we recast this test for use with a one-sided alte¡native

hypothesis.

Let (Xr,Yr),IXz,Yz),...,(X.,Y.') a random sample from a population specifled

by the joint continuous distribution function Fx,v(x,u) and let F¡(x), Ëy(g) denote

the marginal distribution functions of X and Y (which will be continuous by defl-

nition). Consider testing the nuli hypothesis, H6, that the distributions of X and

Y are independent (i.e. that F¡,y(x,y) : Fx[x)Fv(u)) against the one sided alte¡-

native, Ho,, that the Xi are directly related to the Yi. Let r(X¡) denote the rank

of Xi, for'l < i < lr, among Xr,... ,X-. Similarly, let r(Yi) denote the rank of Yi

among Y1,. . . , Y,-,, Construct a permutation, n€ S,., as

n(r(Xt)):r(Yr) , t<K<n,

As an exampÌe, consider the realization (xl , ul ), . . , (x^, u'.):

789
3.9 3.6 0.3 0.7 8.0.1 .5 5.3 6.3 7-5 1.4

1.8 3.9 6.9 7.7 5.7 4.5 2.4 5.1 2.6 2.5

6 5 1 2 l0 4 7 8 I 3

15910862743

The induced permutation is hence n : (9,.10,3, 6,5, 1 ,2,7,4,8). Under the null

hypothesis, we do not expect too many increasing 2-sequences and hence a test

based on Xf,(n,2) is appropriate. in the above example, we have Xl@,2): 2 and

46
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If we consider the alte¡nate hypothesis, Ho., that the Xi are inversely related to

the Yi, then the appropriate statistic is X;(n,2) and the test follows as above.

Due to the asymptotic distribution of X*(2,2), for large n, we require 4 or more

increasing 2-sequences in order to reject the null-hypothesis at a significance level

of ø : 0.05.

4.3 A Simple Application in Graph Theory

Consider a complete directed graph, G, consisting of n nodes labeled 'l,...,n.

Each ¡ e S,. may be though of as a simple path on G by considering ø(i) as the

ith node visited in the path for i - 1,...,n. We see that (if:) represents the

number of simple paths such that we never visit nodes i and i + I in o¡der for any

i:1,...,n l.

47
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Conclusions

Using the theory of compositions of integers, theorem 3.1 gives a more efficient

formula fo¡ the dete¡mination of (if e). zurttrermore, its corollaries easíly give all

known results for the special case { :2, and provide more effcient results for t - 3.

Theorem 3.11 gives a closed form fo¡ the expectation of Xd (r, 0 ) , a result previously

unknown. Its corollaries use this to easily show the limiting distribution of X*{r, ¿)

is degenerate about 0 lot !. > 2.

in the remainde¡ of this chapter, we discuss an extension to the numbers exam-

ined he¡e.

5.1 Future Research

As an extension to the numbers studied in this thesis, consider the multi-set spec-

ified by [å,i] where there are ¿r copies of l's, é,2 copies of 2's, and so on, up to l.
copies of n's. One may reasonably ask how many distinct arrangements of such a

48
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set contain exactly k increasing {-sequences. For rises and falls, this is known as

the Simon-Newcomb problem and is related to the Eulerian Numbers (cf. CarÌitz,

Roselle, and Scoville 1966; Dillon and Roselle 1969; Catlitz 1972; Harris and Park

1994; F\r, Lou, and Wang 1996).



Appendix A

rable or ([Jt)

The following table lists the values for ([Je) for a]Ì 2<n<20,2<{(nand
0 < k < n { + l. The numbers were produced using the algorithm described

figure 3.1 on page 40. The total CPU time was less than 2 seconds on a 486 33Mhz

computer running Linux.
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Table 4.1: Values of (if e)

nt k l,) n t t (ift) n ¿ t (lÎt) n t t (iJt) r k (lì
22

42

43

44

54

62

63

1

1

3

2

1

5

1

11

I

1

2L

2

1

23

1

53

44

18

1

106

11

2

1

117

2

1

119

1

309

265

110

30

5

1

643

62

6 32 72

47
6 40 706

111
22
31

650717
12
21

660719
11

7 2 0 2,119

2 755

3 220

445
56
61

7 3 O 4,547

1 406

271

42

7 4 0 4,962

164
2lL

41
7 5 o 5,026

111
22

7 6 A 5,037

12
2\

7 7 0 5,039

83

84

85

86

87

88

92

81
82

1

16,687

14,833

6,489

r,855

385

63

7

1

36,696

3,046

481

80

14

2

1

39,817

424

65

11

2

1

40,242

64

11

2

1

40,306

11

2

1

40,317

2

1

40,319

1

148,329

133.496

9 2 2 59,332

3 17,304

4 3,714

5 616

684

81
I 3 0 332,769

2 3,708

489
515
62
77

I 4 0 359,171

1 3,196

2 433

366
4 11

52
61

I 5 0 362,376

I 426

264
311
42
51

I 6 0 362,802

164
271

4t
s 7 0 362,866

1 11

22
31

I A D 362,87?

9812
21

I I O 362,879

11
10 2 0 1,468,457

1 1,334,S61

2 600,732

3 L77,996

4 38,934

5 6,678

6 924

7 108

89
9Ì

10 3 0 3,349,507

2 32,D28

4 640

598
616
72
81

10 4 0 3,597,936

t 27,074

2 3,271

3 442

467
5 11

71
10 5 0 3,625,081

r 3,214

2 427

364
411
52
61
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Table A.1 continued.

{ k (}lr) n t k (lÎi) n I k (11,) r L ri ,)

10 6 0 3,628,296

7 426

264
3 11

42
51

L0 7 0 3,628,722

211
32
4I

r0 I 0 3,628,786

1 11

22
31

10 I 0 3,628,797

12
21

10 10 0 3,628,799

11
LL 2 0 16,019,531

1 14,684,570

2 6,674,805

3 2,002,440

5 77,868

6 11,130

7 L,320

8 135

910
10 1

11 3 0 37,054,436

1 2,510,733

2 306,723

3 38,893

5 724

6 107

717
82
91

L7 4 0 39,630,372

i 254,808

2 27,747

11 4 3 3,346

4 45t
568
6 11

72
81

1r. 5 0 39,885,851

1 27,220

2 3,223

3 428

5 11

62
71

11 6 0 39,913,080

1 3,216

2 426

364
411

61
71 7 0 39,916,2S6

1 426

264
311

51
11 8 0 39,916,722

164
217

41
11 9 0 39,916,786

111
22

11 10 0 39,916,797

12
21

11 11 0 39,916,799

11
72 2 0 190,899,4i1

t 176,214,841

2 80,765,135

12 2 3 24,474,285

4 5,506,770

5 978,978

6 142,758

7 17,494

8 1,815

I 165

10 11

11 l
12 3 0 446,86?,351

r 28,473,604

2 3,228,804

3 378,592

5 s,958

6 811

7 116

818
92
10 1

12 4 0 476,066,277

1 2,641,?13

2 26rP37
3 28,415

4 3,421

5 460

669
711
82
91

12 5 0 47A,7A,476

1 256,150

2 27,295

4 429

564
6 11

72
81

12 6 0 478,970,641

1 27,238

2 3,217

3 426

464

5 11

62
71
0 478,997,880

1 3,216

2 426

364
411

61
0 479,001,096

1 426

264
3 11

42
51
0 479,001,522

164
211

47
0 479,001,586

1 11

22

0 479,001,597

12
2t
0 479,001,599

11
a 2,467,007,773

1 2,290,792,932

2 1,057,289,046

3 323,060,540

4 73,422,855

5 13,216,104

6 1,957,956

7 244,724

I 26,235

10 198

11 72

12 1

12

72

I2

11
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Tabie A.1 cantinted...

Éa

n t t (|ft) n t k ( l1¿) r k (11') I k (lÎi)
L3 3 0 5,834,728,509

1 350,651,588

2 37,080,394

3 4,040,110

4 457,966

5 54,389

6 6,796

? 901

8 125

919
L02
11 1

r3 4 0 6,194,080,387

1 29,931,510

2 2,704,064

3 267,658

4 29,092

6 469

770
8 11

10 1

13 5 0 6,224,078,292

1 2,654,568

2 256,827

3 27,370

4 3,241

5 430

664
7lt
a2
91

13 6 0 6,226,733,53I

1 256,300

2 2?,247

3 3,218

4 426

6 11

72
81

13 7 0 6,226,989,840

L3 7 L 2?,240

2 3,216

3 426

464
5 11

62
7L

t3 a 0 6,227,017,D80

1 3,216

2 426

364
411

61
t3 I 0 6,227,020,296

7 426

264
311
42
51

:13 I0 A 6,227,420,722

164
21r

41
1,3 LI O 6,227,02A,786

1 1l
22
31

13 12 0 6,227 ,020,797

L2
21

t3 13 o 6,227,020,799

11
14 2 0 34,361,893,981

1 32,071,101,049

2 Ì4,890,I54,058

3 4,581,585,866

4 1,049,946,?55

5 190,899,423

6 28,634,8S2

7 3,636,244

8 397,683

14 2 I 37,895

10 3,146

lL 234

12 13

13 1

14 3 0 82,003,113,550

1 4,661,105,036

2 4ø1,569,226

3 46,936,856

4 4,949,551

5 545,110

6 63,042

7 7,678

8 994

I 134

10 20

7t2
127

14 4 0 86,776,390,796

r 368,145,933

2 30,671,367

6 3,571

7 478

871
I 11

102
11 1

14 5 O 87 ,145,277 ,160
1 30,064,344

2 2,661,000

3 257,492

5 3,250

6 431

764
I 1L

10 1

14 6 0 87,175,347,936

I 2,655,910

3 27,256

4 3,219

5 426

664
711
82
91

74 7 A 87 ,L78,003,921
1 256,318

2 27,241

3 3,216

4 426

564
6 11

72
81

14 8 0 87,178,260,240

1 27,240

2 3,216

3 426

464
5 11

62
71

14 9 0 87 ,178,287 ,484
1 3,216

2 426

364
417

61
14 10 0 87,178,290,696

1 426

264
311
42
51

14 11 A 87,778,251,122

217

41



APPENDIX A. TABLE or (if e)
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54

n i t (11,) r k (t1,) lL t l* (11,)

L4 t3

0 87,178,291,186

111
22
31
0 a7,t78,291,197

2T
0 87,178,291,199

11
0 513,137,616,783

1 481,066,515,734

2 224,497 ,707,343

3 69,487,385,604

4 16,035,550,531

5 2,939,850,914

6 445,431,987

7 57,269,784

I 6,363,357

I 618,618

10 53,053

11 4,004

72 2?3

13 14

14 1

o 7,234,297 ,698,757

1 66,529,260,545

2 6,192,527,700

3 590,070,030

4 58,126,425

s 5,962,080

6 640,289

7 72,313

8 8,604

I 1,090

10 143

11 21

13 1

0 1,302,376,048,620

1 4,886,708,928

2 377.034,018

15 4 3 31,418,508

4 2,842,488

5 280,764

6 30,455

7 3,646

8 48?

972
10 11

112
72 1

15 5 0 1,307 ,271,652,91?

1 369,627,369

2 30,130,827

3 2,667,435

4 258,163

5 27,520

6 3,259

7 432

864
911
102
11 1

15 6 O 7,307 ,647,346,772

1 30,077,208

2 2,656,581

3 2s6,450

4 27,265

5 3,220

6 426

764
I 11

10 I
75 7 0 1,307,671,424,651

1 2,656,060

2 256,327

4 3,216

5 426

664
711

91
15 8 0 1,307,674,080,720

r 256,320

2 27,240

3 3,216

4 426

564
611
72
81

15 S 0 1,307,674,337,040

1 27 ,240
2 3,216

3 426

464
5 r1
62
7L

15 10 0 1,307,674,364,280

1 3,216

2 426

364
411

61
15 11 0 13A7,674,36? ,496

1 426

264
3 11

42
51

15 12 0 7,3D7 ,67 4,367 ,922

164
21L

4L
15 13 o 1,307,674,367,S86

1 11

22
31
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n0k 1,) n I t ( i1,) n k C1
0

1

2

0

1

0

1

2

3

5

6

7

I
I
10

11

12

14

15

0

1

2

3

4

5

6

7

8

s

10

11

12

13

14

0

t

2

3

4

5

L5 r ,307 ,67 4,367 ,997

2

1

1,307,674,367,999

1

a ,17 A,130 ,7 67 ,479
7 ,697 ,064,25L,745
3,607,998,868,005

r ,122,488,536 ,715

260,577,696,015

48,106,651,593

7 ,345,627 ,285
954,497,115

107,380,845

10,605,595

s27,927

72,345

5,005

315

1

19,809,901,558,841

1,014,985,068,610

89,102,492,915

7,984,564,400

737,549,22D

70,734,390

7,082,703

743,768

82,213

1,189

22

2

L

20,847 ,?21 ,870 ,931

69,645,189,376

5,001,404,982

386,016,398

32,772,944

2,910,561

L6

L6 4 6 2a7,363

7 3L,:L4I

I 3,721

I 496

10 73

11 11

L22
13 1

16 5 0 20,917,481,850,667

1 4,904,506,950

2 370,368,S48

3 30,197,354

4 2,673,873

6 27,595

7 3,268

8 433

964
10 11

172
1.2 I

16 6 o 20,922 3A7 ,099,244

1 369,760,344

2 30,083,640

3 2,657 ,252

4 256,525

5 27,274

6 3,227

7 426

864
9 11

102
11 1

16 7 0 20,922,756,866,016

1 30,078,550

2 2,656,135

3 256,336

4 27,243

5 3,216

6 426

764
8 1L

10 1

16 8 D 20,922,7A6,944,641

1 2,656,078

2 256,327

3 27,240

4 3,216

5 426

664
711

91
16 9 O 20 ,922,7 89,600 ,720

1 256,320

2 27,240

4 426

564
6 11

72
8Ì

16 10 0 20,922,789,857 ,040
1 27,240

3 426

464
5 11

62
71

16 11 O 20,922,789 ,a84,280
1 3,216

364
411

61
16 12 0 20,922,789,887 ,496

1 426

264
311
42
51
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lÌ ¿ k (l1r) t k (11¿) ú k (lT¡)

L6

t7

15

L4

0

1

2

3

0

1

2

3

0

1

2

0

1

0

1

2

3

4

5

6

7

8

I
10

11

12

13

74

15

16

0

1

2

3

4

5

6

7

I
9

20,922,789,8A7 ,922

64

11

2

1

20,922 ,789 ,8A7 ,986

1l
2

1

20,922,789,88? ,997

1

20,922,789,887,999

1

138,547,156,531,409

130,850,092,279,664

61,576,514,013,960

19,242,660,629,360

4,489,954,146,860

a33,A4a,627,248

L28 ,284 ,404,248
16,799,148,080

1,908,994,230

190,899,280

16,968,952

r,349,712

6,160

360

16

1

337 ,7 07 ,1O9 ,446,702

16,484,495,344,135

1,369,014,167,140

L75 ,7 48,765 ,2A5

10,060,799,445

905,448,369

84,847,894

8,316,479

855,812

92,753

16

17

17

10

1l
12

13

t4
15

0

1

2

3

4

5

6

7

8

I
10

11

t2

L4

0

1

2

3

5

6

7

8

I
10

11

72

13

0

1

2

3

5

10,588

1,291

161

2

1

354,549,730,559,949

1,060,s18,965,608

71 ,229 ,862,67I
5,117,370,308

395,093,338

s2,934,686

2,979,208

294,006

31,830

3,796

505

74

t1
2

1

355,612,235,468,396

69,874,864,413

4,913,4r6,887

37r,111,101

30,263,925

2,680,314

259,505

27,670

3,277

434

64

11

2

1

355,682,119,243,320

4,905,990,240

369,826,836

30,090,072

2,657 ,923
256,600

17 6 6 27,283
7 e. ttt

I 426

964
10 11

7r2
12 1

17 7 0 355,687,025,300,052

1 369,773,208

2 30,079,227

3 2,656,210

4 256,345

6 3,2L6

7 426

a64
I 11

r02
11 I

17 I o 355,687,395,073,931

1 30,078,700

2 2,656,087

3 256,322

4 27,240

5 3,216

6 426

764
8 11

92
10 1

1? I o 355,687,425,152,640

1 2,656,080

2 256,320

4 3,216

5 426

664
711

91
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n ¿ t (ll1¿) ,1 I t (t1,) n t k ('i1,)

L7 10 0 s55,68? ,427,808,720

I 256,320

2 2?,240

3 3,216

4 426

564
6 11

72
81

L? 11 O 355,687,428,065,040

| 27,244

2 3,216

3 426

464
511
62
71

1? 12 O 355,687,428,092,280

1 3,216

2 426

364
411

61
1? 13 o 355,687,428,095,496

1 426

264
3 11

42
51

L7 14 O 355,6A7 ,428,095,922

r64
2 t-l

41
17 15 O 355,687,428,095,986

1 11

1? 16 O 355,687,428,095,997

21

355,687,428,095,999

I
2,486,151,753,313,6I7

2,355,301,66r,033,953

7,112,225,7 84,37 7,144

348,933,579,412,440

8L ,7A7 307 ,67 4.78O

15,265,844,099,324

2,362,571,110,536

311,547,838,888

s5,698,18S,670

3,605,877,S90

324,528,776

26,224,744

126,140

7,480

408

I7
1

6,094,059,760,690,035

283,989,434,253,186

22 ,37 3 ,84O ,093 ,040

1,?90,141,293,730

146,876,983,360

12,44É ,840 ,674
r,095,255,712

100,555,934

9,668,520

976,686

11,646

1,3S6

t7a

24

2

I
6,384,006,047,6+9,S10

t7 ,204,867 ,229,956

1 p84,2A2 ,429 ,946

72 ,A32,453 ,476
5,234,609,806

t7 77 0

I
0

1

2

3

5

6

7

8

I
10

11

12

14

15

16

17

0

1

2

3

4

5

6

7

8

I
10

1L

12

14

15

16

0

1

2

3

18

404,265,103

33,703,745

3,048,429

300,6s3

3,871

514

75

11

2

1

6,401,234,2S6,266,540

1,064,092,121,088

69,989,843,418

4,922,334,108

37r,853,828

30,330,540

2,686,758

260,176

27,745

3,286

43s

64

1L

2

1

6,402,298,503,373,917

69,892,686,009

4,906,731,951

369,89s,331

30,096,504

2,65A,É94

256,675

426

64

11

2

1

5

6

7

I
I
r0
11

!2

14

15

0

1

2

3

5

6

7

I
I
10

11

12

13

t4
0

1

2

3

5

6

7

8

I
10

11

L2

13

t8

L8



APPENDLX A. TABLE oF (11,)

Table A.1 continued

58

ir k (?1,) L t (ilt) ( k ( ill i)

6 27,245

7 3,216

a 426

964
10 11

L12
72r

18 8 0 6,402,37s,302,931,296

1 369,774,550

2 30,078,775

3 2,656,096

4 256,323

5 27,240

6 3,2L6

7 426

a64
911
r02
11 1

18 9 O 6,402,37 3,672,71)5,921

1 30,078,718

2 2,656,081

3 256,320

4 27,240

5 3,216

6 426

764
I 11

92
10 1

18 10 O 6,402,37 3,7O2,7a4,640

1 2,656,080

2 256,320

3 27,240

4 3,216

5 426

664

18 10711
82
91

i8 11 0 6,402,373 ,7O5,440,720

1 256,320

2 27,240

3 3,216

4 426

564
6 11

72
81

18 12 0 6,402,373,705,6S7,040

| 27,240

2 3,216

3 426

464
5 11

62
7I

18 13 0 6,402,373 ,705,724,280

1 3,216

2 426

364
411

61
18 14 O 6,402,373 ,705,727,496

I 426

264
311
42
51

18 15 0 6,402,373 ,705,727,922

164
211

41
18 16 O 6,402,373 ,705,727,986

L 11

22
31

18 17 0 6,402,373 ,705,727,997

t7 L2
21
o 6,402,373,705,727,999

11
0 47,7A6,033,220,679,059

1 44,750,731,559,645,106

2 21,L97,714,949,3O5,577

3 6,673,354,706,262,864

4 1,s70,201,r07,355,980

5 294,412,707 ,629 ,208

6 45,797 ,532,297 ,572

7 6,075,182,855,664

I 700,982,637,498

I 71,396,3?9,340

10 6,490,580,382

11 531,047,088

12 39,337,116

13 2,647,5r2

14 t62,180

15 8,976

16 459

r? 18

18 1

0 116,052,543,892,621,951

r 5,173,041,592,087,562

2 387 ,602,212,164,321

3 29,427,095,480,435

4 2,285,694,716,330

5 182,917,590,6S4

6 15,165,333,989

7 1,308,506,455

I 117,949,361

I 1r,143,991

10 1,106,655

Lt 11É,?97

L2 L2,748

13 1,504

14 179

L5 25

162
77 1

Lg
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n t L lli¡) rr t I (]ft) c k (l1r)

L9 4 0 121,330,369,923,079,290

1 295,971,058,578,160

2 17 ,577,257 ,417,630

3 1,107 ,912,107 ,74O

4 74,453,045,290

5 5,353,128,376

6 4r3,5s1,958

7 34,480,132

I 3,118,224

I 307,424

10 33,217

11 3,946

13 76

14 11

152
16 1

19 5 0 121,626,7 0 7,63 8,142,2 80

1 17,251,647,930,540

2 1,065,680,603,7S6

3 70,\04,916,762

4 4,931,258,613

5 372,597,129

6 30,39?,1S9

7 2,693,205

I 260,847

s 27,A20

10 3,295

11 436

12 64

13 11

L42
15 I

19 6 0 121,643,960,874,64S,86?

1 1,064,322,100,950

2 69,901,597,668

3 4,907,473,?06

4 369,959,829

5 30,102,936

6 2,659,265

7 256,750

8 27,301

19 6 I 3,224

ro 426

11 64

72 11

147
19 ? 0 121,645,0 2 5,245,662,520

1 69,894,169,440

2 4,906,189,716

3 369,7A6,072

4 30,080,563

5 2,656,360

6 256,363

7 27,246

8 3,216

I 426

10 64

11 11

13L
19 8 0 121,645,095,099,898,452

1 4,906,136,088

2 369,775,221

3 30,078,850

4 2,656,105

5 256,324

6 27,240

7 3,216

I 426

964
10 11

L72
12 1

13 9 o 121,645,r00,006,035,211

7 369,774,700

2 30,078,?27

3 2,656,082

4 256,320

5 27,240

6 3,216

7 426

864

199I 11

r02
11 1

19 10 0 121,645,100,375,809,920

1 30,078,720

2 2,656,080

3 256,320

4 27,240

5 3,216

6 426

764
8 1L

92
10 1

r9 11 0 121,645,100,405,888,640

2,656,080

2É6,320

27,240

3,216

426

64

11

2

1

121,645,100,408,544,720

256,320

27,240

3,2L6

426

64

11

2

1

121,645,100,408,801,040

27,240

3,216

426

64

11

2

1

1

2

3

4

5

6

7

I
I

L9 120
1

2

3

4

5

6

7

8

19 130
I
2

3

4

5

6

7
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¿ k (t1,) n ¿ k (lÎ,)
74 121,645,100,408,828,280

3,216

426

64

11

2

1

121,645,100,408,831,496

426

64

11

2

1

121,645,100,408,831,922

64

11

2

1

121,645,r00,408,831,986

11

2

1

12r,645,100,408,831,997

2

L

121,645,100,408,831,999

1

939,7 65,362,7 52,5 47,227

895,014,631,192,902,121

425,131,949,816,628,507

134,252,194,678,935,321

31,698,434,854,748,604

5 ,966 ,7 64,2D7 ,952,724

932,306,907 ,492,492
1243A1 ,587 ,66É,924

v,42A,559,282,202
I ,479 ,852 ,234,718
135,653,120,746

17 ,211 ,002 ,47I
840,824,556

57,492,708

\?

18

L919

11

12

13

L4

15

16

L7

18

19

0

1

2

3

4

5

6

7

8

I
10

11

t2
13

I4
15

16

L7

18

0

1

2

3

5

6

7

I
I
10

11

14

15

16

L7

245,428

10,659

513

19

1

2,325,905,946,434,516,s16

99,346,SS1,708,245,506

7 ,095,737 ,193 ,164,r87
512,444,547 ,794,096
37,780,575,533,555

2,863,450,3r5,286

224,323,049 ,959
18,245,978,788

1,546,783,084

137,120,880

12,748,110

1,245,984

r28,323

13,894

r,615

188

26

I
2 ,427 ,196 ,999 ,663 ,678 ,987

5,383,788,700,672,945

302,064,161,086,250

17,941,815,445,990

1,131,809,403,480

76 ,O9t,722,O53

5,472,930,918

422,a94,168

35,263,858

3,188,5S3

314,199

33,915

4,02r

77

11

2

1
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¿ k (11,) TI I k (il,)

11

11

13

14

2,432,586,885,636,105,251

256 ,704,637 ,928,676
17,275,065,176,586

1,067,270,356,836

70 ,22O ,084,456
4,944 ,!90 ,402
373,341,004

30,463,902

2,699,655

261,518

27,895

3,304

437

64

I]
2

I
2,432,883,613,692,550,316

17 ,254 ,825 ,77I ,973

1,064,437,101,807

69,910,509,901

4,S08,215,505

370,026,330

30,109,368

2,659,936

27 3rO

426

64

11

2

1

2,432,90O,86A,632,7 30,? 20

1,064,33S,924,400

69,894,911,160

4,906,256,208

369,792,504

5

6

7

I

10

11

12

13

74

0

1

2

3

4

5

6

7

8

I
10

11

12

13

0

1

2

3

4

5

6

7

8

9

10

11

12

30,081,234

2,656,435

256,372

27,247

3,216

426

64

11

2

1

2,432,S01,932,973,396,840

69 ,894,302,424
4,906 ,r42,524
369,775,892

30,078,925

256,325

27,240

3,216

426

64

11

2

1

2,432,902,A02,46?,7 05,696

4,906,137,430

369,774,775

30,078,736

2,6s6,083

256,320

27,240

3,216

426

64

11

2

1
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t k ( l1¿) n { t (lî,)
E 2,432,902,007,773,843,201

1 369,774,718

2 3A,078,721

3 2,656,080

4 256,320

5 27,240

6 3,216

7 426

864
I 11

102
11 1

o 2,432,902,008,143,6L7,920

I 30,078,720

2 2,656,080

3 256,320

4 27,240

5 3,216

6 426

764
8 11

10 1

o 2,432,902,D0A,173,696,64tJ

1 2,656,080

2 256,320

3 27,240

4 3,216

5 426

664
717

91
o 2,432,902,00A,776,352,720

r 256,32D

2 27,240

3 3,216

4 426

564

L1

12

13

13 11

2

1

2,432,902,008,176,609,040

27,244

3,216

426

64

11

2

1

2,432,902,008,176,636,280

3,216

426

64

11

2

1

2,432,902,008,176,63S,496

426

64

11

2

1

2 ,432,902 ,008 ,1? 6,639,922

64

L1

2

1

2,432,S02,008,176,639,986

11

2

1
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