SEQUENTIAL DECODING OF LINEAR BLOCK CODES

by
Dirk J. Tempel

A Thesis
Presented to the Faculty of Graduate Studies
in Partial Fulfillment of the Requirements
for the Degree

MASTER OF SCIENCE

Department of Electrical and Computer Engineering
University of Manitoba
Winnipeg, Manitoba

March 1993

National Library
of Canada

Acquisitions and
Bibliographic Services Branch

395 Wellington Street
Ottawa, Ontario
K1A ON4

Bibliothéque nationale
du Canada

Direction des acquisitions et
des services bibliographiques

395, rue Wellington
Ottawa (Ontario)
K1A ON4

Your file Votre rétérence

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

Qur file Notre référence

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a Ila disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
these. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0~315-81684-8

JEANEL

Name x KK W AA

Dissertation Abstracts International is arranged by broad, general subject categories. Please select the one subject which most
nearly describes the content of your disserfation. Enter the corresponding four-digit code in the spaces provided.

<L — !

S G

i ot o

S AN ELECTRICAL EMNGINE

SUBJECT TERM

Subject Categories
THE HURMANITE

ES AND SOCCIAL SCIENCES

COMMUNICATIONS AND THE ARTS Psychologycc.cevoviviuiriiirenens 0525
Architecturecccooeurirennnnnee. 0729 Reading0535
Art History0377 Religious0527
Cinema0900 Sciences0714

Dance0378 Secondary

Fine Arts0357 Social Sciences0534
Information Science ..0723 Sociology of0340
Journalism............. .0391 Special0529
Library Science0399 Teacher Training ..0530
Mass Communications .0708 Technolcggzﬂ0710
MUSIC i .0413 Tests and Measurements0288
Speech Communication . . 8:1122 Vocationalccoveveieiiinnn 0747
Theater ..oovcvinicieriee e
EDUCATION LANGUAGE, LITERATURE AND

ISTI
General ..o 0515 Eﬁeise ¢
Administrationcccoveerann.. 0514 engercl
Adult and Continuing . .0516 Ancient
Agricultural0517 Linguisﬁ.c's"
At .0273 Modern ...

Bilingual and Multicultural .
Businesscooccvcneenn

10688 Literature

Community College0275 .
Curriculur;ycnd !r?strucﬁon N 07474 glgj:xs'gorlahve ’
Early Childhood.............. .0518 Modarn :
Elementary0524 Modern . ’
Finance ...ce.rveivncnnnnne. .0277 African)
Guidance and Counseling0519 American . 0591
Hgalth0680 Asian 0305
E{ghef S 8?218 Canadian (English) . ..0352
istory of : Canadian (French} . ..0355
Home Economics . .0278 Enalish 0593
Industrialcooneenv.0521 Gegrmcn.i.c. """""" “o31]
Lan?]ucge.cnd Literature0279 Lafin Ametican T 0312
ms;i:mchcs """""""" gggg Middle Eastern . ..0315
Philosophy of 0968 Romanice 9313
Physical ..o, 0523
THE S
BIOLOGICAL SCIENCES
Agriculture .
General ..., 0473 .
AGronomycc.oovriennee 0285 .
Animal Culture and .
NUFHION .o 0475 .
Animal Pathology 0476 ececology
Food Science and Paleontology0418
Technologyccevuene. 0359 Paleozoology0985
Forestry and Wildlife0478 Pa yno]og0427
Plant Culiure0479 Physical Geography0348
Plant Pathology0480 Physical Oceanography 0415
Plant Physiology0817
Range Management0777 HEALTH AND ENVIRONMENTAL
. Wood Technology 0746 SCIENCES
Biology Environmental Sciences 0768
Generalcoeecriarrrnns 0306 Health Sciences
Anatomy0287 enera 0566
Biostatistics0308 Avdiolo y """"""""""""""" 0300
?:oﬁ‘my """ 8%93 Chemotherapy . 0992
Ee ey 0329 Dentistry0567
EC° o 0353 Education0350
Gnromp ogY - 0389 Hospital Management 0769
L_eneillcs """ 0793 Human Development0758
M’ng’.gr 0410 Immunology0982
Mle‘O iolegy - 0307 Medicine and Surgery0564
olecuiar Mental Health0..0........... 0347
Neuroscience0317 Nursing 0569
Qeeanography ~-Q4ls NUtrifion ... 0570
E)é§'°.°9>' """ '“018121 Obstetrics and Gynecology .. 0380
adiafion......... Occupational Health an
Veterinary Science0778 Therapy 0354
Bi Zhool'ogy 0472 Ophthaﬁnology . .0381
|0p(3y51cs | 0786 Pathology0571
en&;rc Phormoco|ogy 0419
Medical ..o, 0760 PhOerC{ 0572
Physical Therapy .. .0382
E.ARTH iClE.NCES Public Health py 0573
iogeochemistryoccoennne. 0425 Radiology 0574

Geochemisirycooceereruniennnn 0996 Recreafion T 0575

PHILOSOPHY, RELIGION AND
THEOLOGY

Philosophycccoovvrerirriennnns 0422
Religion
eneralcoovevieirenninis 0318
Biblical Studies0321
Clergy0319
History of0320
Philosophy of . .0322
Theologyivvviviireceeeae, 0469
SOCIAL SCIENCES
American Studiesc......... 0323
Anthropolog(
Archaeologycoovveuneunee, 0324
Cultural
Physical
Business Administration
Generaloooeviiinien.
Accounting .
Banking
Management .
Marketing
Canadian Studies
Economics

General ...,
Agriculturdl
Commerce-Business
Finance0508
History0509
Labor”0510
Theory 0511
Folklore0358
Geography .. .0366
Gerontologyc.ccvrvrieririerennn, 0351
istory
Generdlcooeveiiiienn. 0578
Speech Pathology 0460
Toxicology0383
Home Economicsc.oco..... 0386
PHYSICAL SCIENCES
Pure Sciences
Chemistry
General ..., 0485
Agricultural, ...0749
Analytical0486
Biochemistry ...0487
Inorganic0488
Nuclear0738
Organic........ ..0490
Pharmaceutica ..0491
Physical0494
Polymer ..0495
Radiation0754
Mathematicsc.cocovereninnn. 0405
Physics
Generalccooovoiiceren. 0605
ACOUSHES ..o, 0986
Astronomy and
Astroihysics 0606
Atmospheric Science0608
AOMIC oo, ..0748
Electronics and Electricxg 0607
Elementary Particles an
High Energy «..oocoevereevncnan. 0798
Fluid and Plasma . ..0759
Molecular 0609
Nuclear0610
Optics0752
Radiation0756
Solid State ..0611
SHAHSHES .ovvrveeeerieire e, 0463
Applied Sciences
Applied Mechanics 0346
Computer Sciencec.ccceune.. 0984

ol=da 14| U

SUBJECT CODE
Ancient 0579
Medieval 0581
Modern 0582
Black . 0328

Africa ..0331
Asia, Au 0332
Canadian . 0334
European .. 0335

Latin American .

Middle Eastern

United States
History of Science

General ..o, 0615
International Law and
Relationsccccouveenn. 0616
Public Administration0617
Recreation ..0814
Social Workococcvvreneae, 0452
Sociology
Generaloovvovieeen 0626
Criminology and Penology ...0627
Demographyccco.ocvene. 0938

a
Ethnic cng Ig'ccial Studies0631
Individual and Family

Studies ..o, 0628
Industrial and Labor

Relationsccooveunne. 0629
Public and Social Welfare0630

Social Structure and
Development

Theory and Methods
Transportation
Urban and Regional Planning ... 0999
Women's Studiescccovern..n. 0453
Engineerin
Generdlccovviereirininnnn. 0537
Aerospace0538
Agricultural0539
Automotive0540
Biomedical . .0541
Chemical0542
Civil oo, 0543

Electronics and Electrical 0544
Heat and Thermodynamics ... 0348

Hydraulic ...coovooverrrirnn, 0545
Industrial0546
Marine0547
Materials Science07%94
Mechanical0548
Metallurgy . ..0743
Mining0551
Nuclear0552
Packaging . ..0549
Petroleum0765

Sanitary and Municipal
System Science.......
Geotechnology
Operations Research
Plastics Technology .

Textile Technology ... 0994
PSYCHOLOGY

Generdl 0621
Behavior 0384
Clinical . 0622
Developmen 0620
Experimental 0623
Industrial ... 0624

Personality ... 0625
Physiological 0989
Psychobiology ..0349
Psychometrics ..0632
Social

SEQUENTIAL DECODING OF LINEAR BLOCK CODES

BY

DIRK J. TEMPEL

A Thesis submitted to the Faculty of Graduate Studies of the University of Manitoba in partial
fulfillment of the requirements for the degree of

MASTER OF SCIENCE

© 1993

Permission has been granted to the LIBRARY OF THE UNIVERSITY OF MANITOBA to lend or
sell copies of this thesis, to the NATIONAL LIBRARY OF CANADA to microfilm this thesis and
to lend or sell copies of the film, and UNIVERSITY MICROFILMS to publish an abstract of this
thesis.

The author reserves other publications rights, and neither the thesis nor extensive extracts from it

may be printed or otherwise reproduced without the author’s permission.

I hereby declare that [am the sole author of this thesis.

I authorize the University of Manitoba to lend this thesis to other institutions or individuals

for the purpose of scholarly research.

Dirk J. Tempel

I further authorize the University of Manitoba to reproduce this thesis by photocopying or
other means, in total or in part, at the request of other institutions or individuals for the

purpose of scholarly research.

Dirk J. Tempel

Acknowledgments

I would like to thank Professor Ed Shwedyk for his help and support over the past
two years. I would like to thank the University of Manitoba and its donors for the Duff
Roblin Fellowship and the Clarence Bogardus Sharpe Memorial Scholarship. T would like
to thank the Cable Telecommunications Research Institute for the Cable Telecommunications
Research Fellowship. Finally, I would like to thank the Natural Sciences and Engineering

Research Council of Canada for support.

11l

Abstract

This thesis describes the use of the sequential stack algorithm for decoding linear
block codes. The motivations for using this algorithm are that (i) it can be applied to any
linear block code, (ii) it uses soft decisions, and (iii) it is efficient at moderate to high
signal-to-noise ratios.

Because the sequential stack algorithm was developed to decode convolutional
codes, it is not necessarily suited to block codes. Instead of modifying the algorithm to suit
block codes, block code encoders can be designed to suit the algorithm. Two techniques
for designing encoders are described in the thesis. The first follows from Wolf’s trellis
construction techniques, while the second casts a block code in the form of a rate one
time-varying convolutional code. For suitable encoders, the sequential algorithm can be
used to decode binary, g-ary, and concatenated codes. Further, it is proven that the
sequential algorithm performs maximum likelihood soft decision decoding.

To be able to determine the effectiveness of the sequential algorithm, computational
complexity measures are formulated. Using these measures, it is shown that the stack
algorithm is the most efficient algorithm for decoding the (24,12) extended Golay code
when the signal power is at least four times greater than the noise power. Computer
simulations show that the stack algorithm can be made more efficient by setting a search
limit and by reducirig ité stack size. These improvéments come at the cost of error
performance.

Overall, the thesis shows that the sequential algorithm is a viable alternative for

decoding linear block codes at reasonable signal-to-noise ratios.

Y

Table of Contents

Chapter

fd e e et et
W e

S I NISISIN
N AW~

W W W W W W w
Anbh W=

ABBAAS
AW =

Lo
W KN =

Introduction

Sequential Algorithms

Review of Trellis Decoding Techniques
Other Soft Decision Decoding Algorithms
Thesis Outline

Sequential Stack Algorithm for Block Codes
Alternative Representations of Block Codes
Encoders

SSA for Binary Block Codes

Fano Metric - Block Codes Over GF(2)
SSA for Block Codes over GF(q)

SSA for Concatenated Codes

Summary

Appendix 2-A

Appendix 2-B

Appendix 2-C

Computational Complexity

A Complexity Measure for Block Codes
Complexity Measured

Metric Additions

Metric Comparison

Hardware (Stack) Complexity
Summary of Complexity Measures
Appendix 3-A

Simulation Results
Encoders

Error Performance
Complexity
Comparisons
Summary

Appendix 4-A

Suboptimum Implementations of the SSA
Reducing Computational Complexity

Reducing Hardware Complexity

Summary

Appendix 5-A-1

Appendix 5-A-2

Appendix 5-B

Conclusion
Recommendations for Future Study

References

List of Figures

Figure

PRPLWRR=—O W AU RN = -

AA BB BAARARAADL W RNPNPPNRORPPDNDONND

I =
B = B

Full Binary Tree

Pruned Binary Tree

Block Code Trellis

Encoder for Systematic Block Codes
Systematic Encoder for Cyclic Codes
Encoder for a Wagner Code

Block and Convolutional Code Encoders
Encoder for Block Codes

Encoder for Cyclic Codes

g-ary Tree

Concatenated Coding Scheme
Concatenated Code Tree

Average Nodes Searched for 3 Metrics

Tree for an (n,k) Binary Block Code

Discrete Time Channel

(8,4) Extended Hamming Code Encoder

(24,12) Extended Golay Code Encoder

Error Performance of (8,4) Code

Error Performance of (24,12) Code

Average Nodes Searched for the (8,4) Code

Average Nodes Searched for the (24,12) Code
Average Squared Nodes Searched for the (24,12) Code
Variability in Nodes Searched for (24,12) Code

Trellis Regions

WER with Search Limits

Pr[N = L] for Search Limits

WER with Stacks of 100, 40, and 10 Elements

Average Nodes Searched for Stacks of 100, 40 and 10 Elements

List of Acronyms

AWGN
BPSK
DMC
GF
GIFO
LIFO
SNR
SSA
WER

additive-white-Gaussian-noise
binary phase shift keying
discrete memoryless channel
Galois field
greatest-in-first-out
last-in-first-out
signal-to-noise ratio

sequential stack algorithm
word error rate

vi

Page

10
12
13

14
15
16
22
24

35
38

51
52
52
55
56

57
58
59
62

68
69
71
72

Chapter 1 - Introduction

Owing to their algebraic properties, linear block codes are typically decoded using
algebraic techniques. Generally, these algebraic techniques suffer from an inherent loss of
2 dB [Proa89] in error performance because they can not use soft decisions. This is not to
say that all block codes can not be soft decision decoded, but when efficient algorithms
exist they are usually specific to a code or class of codes at best. On the other hand,
convolutional codes are easily decoded using the Viterbi algorithm or a sequential algorithm
that use soft decisions and hence have a 2 dB advantage over block codes. Therefore, the
ability to extend the convolutional decoding techniques to block codes would clearly be
advantageous.

Why have soft decisions been so easy to use when decoding convolutional codes
but not when decoding block codes? Perhaps the overwhelming algebraic structure of
linear block codes has overshadowed the trellis structure that block codes also possess. It
is the trellis structure of convolutional codes that allows soft decision decoding to be easily
implemented. Thus, if a trellis structure can be assi gned to a block code, then soft decision
decoding will easily follow.

Wolf has shown how to construct a trellis for linear block codes in general [Wolf78].
The Viterbi algorithm may then be applied to this trellis to decode block codes using soft
decisions. Unfortunately, the width of Wolf’s trellis grows exponentially with the number
of parity symbols used in the block code, thereby, making the Viterbi al gorithm inefficient
for higher parity codes. For these larger trellises a sub-optimum al gorithm such as the
M-algorithm [MaMo82] could be used. If the si gnal-to-noise ratios are at least moderate,
then a sequential algorithm would be very efficient without sacrificing the optimal error

performance of the Viterbi algorithm.

1.1 Sequential Algorithms

Since trellises for block codes are very wide, a sequential algorithm, working at
moderate signal-to-noise ratios, is an effective decoding alternative to the Viterbi algorithm.
Unlike the Viterbi algorithm, a sequential algorithm follows a single path through a trellis
until it reaches the end of the trellis or it decides to abandon its current path and follow a
better path. At reasonable signal-to-noise ratios, a sequential algorithm will only explore a
small number of promising paths. As a result, the sequential algorithm will visit a fraction
of the overall trellis that the Viterbi algorithm must cover and hence it is more efficient.

Akin to a tourist travelling through New York, the sequential algorithm requires a
map, road signs, and a compass to successfully decode a block codeword. That is, the
sequential algorithm requires a trellis for the block code (city map), information determining
where the algorithm is in the trellis (road signs), and a measure telling the algorithm which
direction it should follow (compass).

As important as maps, road signs, and compasses are, the tourist can not travel
through New York unless he has transportation. Similarly, a block code can not be
decoded unless there is a decoding algorithm. Because of its pedagogic simplicity the stack

algorithm can be used to demonstrate the application of sequential decoding to block codes.

1.2 Review of Trellis Decoding Techniques

The idea of assigning a trellis to a block code first appeared in 1978 in papers by
Wolf [Wolf78] and Massey [Mass78]. Both were motivated by the ability to use the
Viterbi algorithm to decode linear block codes easily. While Wolf answered how to apply
the Viterbi algorithm, Massey went a step further and showed how to measure the complexity

of the Viterbi algorithm. Complexity could then be used as a guide for designing trellises

2

for block codes.

Under Wolf’s trellis construction, the width of the trellis grows exponentially with
the number of parity symbols in the block code. As a result, the Viterbi al gorithm is only
computationally practical for low parity codes. Recognizing this, Matis and Modestino, in
1982, proposed using the M algorithm to search the trellis [MaMo82]. The M algorithm
only searches a subset of the trellis and, therefore, has a lower complexity than the Viterbi
algorithm. The disadvantage of the M algorithm (as compared to the Viterbi algorithm) is
that it is not a maximum likelihood algorithm. Consequently, there is a trade-off between
computational complexity and error performance.

The sequential algorithm is also adept at searching large trellises. In 1991, Offer
and Perkins described the use of the sequential stack algorithm to decode systematic binary
block codes [OfPe91]. In their algorithm, they use a modified Fano metric that makes the
algorithm close to (but not exactly) maximum likelihood. The disadvantage of the sequential
algorithm is that it has a variable complexity depending on the channel noise. This limits
the algorithm to channels with reasonable noise levels.

All three approaches allow soft decision decoding to be performed for block codes.
As well, the algorithms only require that a trellis (or a tree) structure can be assigned to the

code, and, hence, are general soft decoding algorithms.

1.3 Other Soft Decision Decoding Algorithms

Other than the trellis decoding algorithms, there are only a few good soft decision
algorithms that can be used to decode any linear block code. This overview will be limited
to those algorithms that are designed to minimize the codewqrd error rate or at least do so
asymptotically. These algorithms are: generalized Wagner decoding [SnBe89], generalized

minimum distance decoding [Forn66], and channel measurement decoding [Chas72].

Given the received sequence, all of these algorithms perform the same three steps
while decoding. First, hard decisions are made on the received sequence. In the second
step, the algorithm determines a set of contending codewords. Finally, a codeword from
this set is chosen using a soft decision criteria. The algorithms differ from each other in the

manner in which the set of contending codewords is determined.

Generalized Wagner Decoding

In 1954, Silverman and Balser [SiBa54] considered the problem of choosing between
a code (the Wagner code) that probably corrects all single errors and a code (the Hamming
code) that definitely corrects all single errors. Though the latter initially appears to be the
best choice, this decision is clouded by the fact that the probability that a bit is received in
error is higher for the Hamming code. This observation is the consequence of an equal
energy codeword assumption. The Wagner code is simply formed by appending a parity
check bit to the information sequence. It is decoded by making hard decisions on the
received sequence and then complementing the least likely bit if the parity fails. Because it
only has one extra bit, as opposed to several, the probability of error for Wagner codes
(using this decoding procedure) is less than that for Hamming codes (using a hard decision
decoding algorithm).

In 1989, Snyders and Be’ery [SnBe89] showed how to generalize the Wagner
decoding rule to make it useful for all codes (not just single parity codes). Though the
algorithm can be used to decode linear block codes in general, it is most eff iciently used for
small parity codes. With this in mind, they have showed how to apply the al gorithm to the
cosets of a subcode and, thereby, create an efficient algorithm. The generalized al gorithm
can be summarized as follows: make hard decisions and evaluate the syndrome; secondly,
among all of the sets of linearly independent columns of the parity check matrix that add to

the syndrome, find the one for which the sum of confidence values is minimum; finally,

4

complement the bits associated with the set found. This algorithm is the only one of the
three algorithms considered in the overview that is optimum in regards to minimizing the

word error rate.

Generalized Minimum Distance Decoding

In 1966, Forney [Forn66] presented a new distance criterion, called generalized
minimum distance, that incorporates soft decision information. He then presented an
algorithm that uses the generalized measure and is nearly maximum likelihood for a low
noise white Gaussian channel. The algorithm works by erasing various numbers of the
least reliable bits and then decoding the resultant words with an erasures-and-errors decoder.
Of the resulting codewords, the one that falls within the generalized minimum distance of

the received word is selected as the correct codeword.

Channel Measurement Decoding

In 1972, Chase [Chas72] presented three asymptotically optimum algorithms for
soft decision decoding of block codes. These algorithms differ in the sizes of the sets of
contending codewords they construct. In all algorithms, the sequence of hard decisions is
perturbed by a set of test patterns. The perturbed sequences are then decoded using a hard
decision algorithm. Of these candidates, the codeword that produces an error pattern of

minimum analog weight is selected as the correct codeword.

1.4 Thesis Outline

Chapter 2 shows how to represent block codes as a tree or trellis. These structures
can be constructed easily by using the block code’s encoder. The sequential stack algorithm,

as applied to binary, g-ary, and concatenated codes, is described in the remainder of the

chapter.

The key motivation for using a sequential algorithm is that it is an efficient algorithm
for optimal decoding of block codes at moderate si gnal-to-noise ratios. Thus, chapter 3
deals with the issue of computational complexity. Here, a previously defined measure of
complexity is used to determine the complexity of the stack al gorithm as applied to linear
block codes.

Chapter 4 presents computer simulation results that show that the stack al gorithm is
optimal and efficient. The block codes used in the simulations are the (8,4) extended
Hamming code and the (24,12) extended Golay code. For the (24,12) Golay code, the
computational complexity is compared to the leading al gebraic techniques. The simulations
show that by 6 dB the sequential algorithm is the most efficient al gorithm for soft decision
decoding of the (24,12) Golay code.

Though the sequential algorithm is efficient, it can be made more efficient through
refinements to the algorithm. These refinements usually come at the cost of error performance.
Chapter 5 deals with two techniques to reduce the complexity of the sequential stack
algorithm. These are setting an upper search limit and reducing the stack size.

Finally, chapter 6 contains conclusions and recommendations for further study.

Chapter 2 - Sequential Stack Algorithm for Block Codes

In section 1.2 the Viterbi, sequential, and M algorithms for decoding block codes
were briefly discussed. Of these, the sequential algorithm is the only algorithm that can
optimally (in terms of error performance) decode large parity block codes. The sequential
algorithm is visualized as a tree (or possibly trellis) searching algorithm. Thus, in order to
apply the algorithm to block codes, a tree representation must be found for block codes. In
section 2.1 the tree and trellis representations for block codes are found. Tree representations
can be found for any block code whether it is linear or non-linear. If the code is linear,
then a trellis representation can be found. Finally, it is shown that the tree or trellis
representation can be easily generated using the code’s encoder. Section 2.2 shows how to
design these encoders based on the code’s generator matrix.

Sections 2.3 through 2.6 describe the sequential stack algorithm in detail for binary,
g-ary, and concatenated codes. In section 2.4 the metric used while decoding is discussed.
It is also shown that the sequential stack algorithm using this metric is optimal in terms of

error performance.

2.1 Alternative Representations of Block Codes

Convolutional codes can be decoded using a tree or a trellis searching algorithm.
These algorithms have the advantage of being general (applicable to all convolutional
codes) and being able to incorporate soft decision information easily. Block codes can also
be decoded using these algorithms if they are looked at in the proper manner. The tree or
trellis representation is a trade of the use of the block code’s al gebraic structure for generality
and soft decision decoding ease.

The usefulness of a tree or trellis representation is that it allows one to reduce the

number of codewords under consideration. For example, for linear binary codes, a decision
made at the fork between two branches halves the number of contending codewords.
Rather than considering each codeword individually until a match is found, the codewords
are reduced until only a single choice survives. This is akin to a game of twenty questions
where each question narrows down the possibilities rather than a situation where all
possibilities are considered individually until a match is found.

All block codes, linear or non-linear, have a tree representation as do all convolutional
codes. This representation is the most general, and, consequently, ignores a large portion
of the code’s algebraic structure. Nevertheless, this representation does allow soft decision
decoding to take place.

A tree for an (n,k) block code over GF(q) can be created conceptually rather easily.
First, a tree representing all possible n-tuples with elements from GF(q) (q" in total) can be
grown. This tree will have the characteristic that each branch will have q exiting branches.
This implies that the total number of branches at each level in the tree will be q times as
large as the previous level. The last level of the tree will have a total of q" branches. So far
the only information from the code used to construct the tree has been the block size n and
the field size q. The second step in constructing the proper tree for the (n,k) block code is
to prune the tree so that all paths through the tree represent codewords from the (n,k) block
code. The number of paths will be equal to the number of codewords which is usually
equal to g~

As an example, the tree for a (4,2) block code over GF(2), where the code consists
of the 4 codewords {0011, 0101, 1101, 1111}, can be constructed using the previous

procedure. First a tree growing to 2* branches is built and labelled.

Figure 2.1.1. Full Binary Tree

Pruning all branches that do not belong to a specific codeword leaves the following tree:

1

\<0/@\1\®

1
\@\1
~—~e

Figure 2.1.2. Pruned Binary Tree

Once a tree is constructed, any codeword can be found by tracing a })ath through the tree.
An even more compact representation of a block code can be constructed if the code

is linear. A linear block code has a generator matrix G and parity matrix H. Using the

9

parity matrix H, Wolf has shown how to construct a trellis. As an example, the trellis for a
(5,3) block code is shown below. The zeros and ones that make up the code are represented

by solid and dashed lines, respectively.

Depth
1 3
0 o - o
01 e ! - - -
State o : :
10 S e———g
11 [S —

Figure 2.1.3. Block Code Trellis

2.2 Encoders

The following is quoted from the preface of Richard E. Blahut’s coding textbook:

“Good codes need good decoders, and good decoding
algorithms have been difficult to find. In the end, it may be
Just as fruitful for theoreticians to search out new codes to fit
known decoders as it is to search out new decoders to Jit

known codes.” [Blah83]

Therefore, instead of trying to suit the sequential decoding algorithm to block
codes, it might be wiser and easier to try to suit the block codes to the decoder. That is, for
an arbitrary block code, it might be better to find an equivalent block code that has an
encoder suited to the decoding algorithm. With this goal in mind, it is necessary to first

10

determine what the sequential algorithm requires of an encoder.

The object of the decoder is to retrace the path followed by the encoder throu gh the
tree or trellis. To accomplish this the decoder requires a replica of the original encoder to
define the tree or trellis. Then the decoder can attempt to determine which information
sequence was encoded based on the received noise corrupted codeword.

The first requirement of an encoder is that it can output a symbol for every input
‘ symbol. This is necessary for the algorithm to be able to generate the tree “on the fly”.
That is, the encoder does not have to wait for the entire information sequence before it can
determine the beginning of a codeword.

It is important for the decoding algorithm to know where it is in the tree at all times.
This information determines which branches exit the particular node at which the al gorithm
is currently stationed. The easiest method for this is to store the entire tree in a memory that
can be referenced by the algorithm as it moves forward. For large codes this presents a
practical problem since the tree grows exponentially with the number of information symbols.

When the Viterbi algorithm is used on a trellis for a block or convolutional code it
keeps track of where it is by storing the state of the encoder. The successor states can then
be determined for all of the encoder’s possible inputs. Thus, the second requirement for an
encoder is that it has a state that can be read.

In summary, though the details of the encoder are not important, it is necessary that
the encoder be able to output a symbol for every input symbol, and also have a state that
can be recognized and read by the decoder. As long as a “black box” encoder satisf ying
these two requirements can be found, the algorithm can keep track of where it is at all
times.

Though the “black box” encoder is sufficient to guarantee that the algorithm can
move through the tree without storing the tree it may not be the simplest encoder. Further,

for an arbitrary encoder it may be difficult to determine the state of the encoder. Two

11

different approaches for designing encoders follow.

Approach 1
This approach follows from Wolf s trellis construction techniques [Wolf78]. For

(n,k) linear block codes, at least, a one-input-one-ouiput encoder can be designed using the
code’s generator or parity matrix. First, since every linear block code has an equivalent
systematic code, it is only necessary to consider systematic block codes. Then the first k
output symbols are equal to the first k input symbols. The remaining (n-k) output symbols
are equal to the elements of the vector formed by the weighted sum of the first k columns of
the code’s systematic parity check matrix. The sum is weighted by the first k input
symbols. This weighted sum is also the state of the encoder. Mathematically, after t
symbols have entered the encoder, the state is:

t-1
st= » ijhj =ighg +ijhy +--- + i ihe (2.2.1)

j=0
where h; is the jth column of the code’s parity check matrix. Figure 2.2.1. shows a

diagram of this type of encoder.

t-1

S¢= z i b

j=0

Input
P ——bL e © e

Output

Figure 2.2.1. Encoder for Systematic Block Codes

12

If the code is cyclic, then it can also be encoded systematically with the following shift

register circuit with feedback where the g, s are determined by its generator polynomial.

Input

Figure 2.2.2. Systematic Encoder for Cyclic Codes

Initially the output is connected to the input and the feedback loop is closed. After k
symbols have been entered into the encoder, the output is connected to the encoder circuit
and the feedback loop is opened. The state of this encoder is defined by the contents of the
(n-k) shift registers.

As a simple example, the encoder for an (n,n-1) Wagner code [SiBa54] is shown
below. The feedback loop is switched out after (n-1) symbols have been entered into the

encoder. This circuit simply appends a single even parity bit to any binary sequence.

Figure 2.2.3. Encoder for a Wagner Code

13

Approach 2

A second approach to designing encoders for block codes is motivated by the fact
that the sequential algorithm was originally designed for convolutional codes. If a block
code can be made to look like a convolutional code, then it can be decoded in a more
straight forward manner.

For example, encoders for a cyclic block code and a convolutional code are shown
in Figure 2.2.4. Aside from the upper taps of thé convolutional code, both encoders are

identical. Both codes have the same trellis and tree representations differing only in that the

one for the block code has a single bit labelling each branch instead of two.

—)

-

(7.4) Block Code or (1,1,3) Convolutional Code (2,1,3) Convolutional Code

Figure 2.2.4. Block and Convolutional Code Encoders

Motivated by the above example, if it is possible to encode all linear block codes
(and not only cyclic codes) using a sequence of shift registers, then the encoding and
decoding of block codes will be the same as for convolutional codes. The following
theorem shows how to find an equivalent code that can be encoded using a sequence of

shift registers. This theorem is proved in Appendix 2-A.

14

Theorem 1
Given an (n,k) linear block code with generator maltrix G, an equivalent code can be

Jound that has a generator matrix of the following form:

O<g —=00---00
G=| : L
O...OO<—gk‘2—>O
O...OOO(—gk_l—»
where the g.’s are (n-k+1)-tuples.

This equivalent code can be encoded using (n-k) shift registers with time-varying
taps, as shown in Figure 2.2.5. The taps are determined by the columns of the generator
matrix. That is, the taps for the first information symbol are determined by the first column
of the generator matrix while the taps for the second symbol are determined by the second
column. For example, the taps for the kth symbol are the first element of g,.., the second
element of g, ,, the third element of g, ,, and so on until all (n-k+1) taps are determined.

More precisely, g(t) = g,;, for 0 < t-i <k-1, and is equal to zero otherwise. The state of the

encoder is simply the contents of the (n-k) shift registers.

o P

Figure 2.2.5. Encoder for Block Codes

15

The procedure for using this encoder is as follows:

1. Initialize all the registers to zero.

2. Set the encoder taps.

3. Enter a symbol.

4. Repeat steps 2 and 3 for k information symbols.
5. Repeat steps 2 and 3 for (n-k) zeros.

This encoder yields n codeword symbols due to the k information symbols and the (n-k)
zeros. The block encoder has only one output for every input. Therefore, the block code
can be viewed as a rate one (i.e. n=1 and k=1) time-varying convolutional code and can be
decoded as if it were a convolutional code.

Cyclic codes are a special case of the previous theorem. If the code is cyclic, then
all of the (n-k+1)-tuples in G are the same, and, hence, the encoder taps do not change with

time. The encoder is shown in Figure 2.2.6.

Figure 2.2.6. Encoder for Cyclic Codes

Both approaches have their own advantages and disadvantages. The first approach

has the advantage that the code it generates is systematic so it is easy to remove the

16

information from the code. A second advantage is that it is easy to label the tree or trellis
for the code for depths less than k because the first k output symbols are equal to the first k
input symbols. The disadvantage of this first approach is that the trellis described by the
encoder is irregular. The second approach has the advantage that its trellis is the familiar
trellis for a corresponding convolutional code. It only differs in the branch labels. As
well, since the analogy to convolutional codes is so much stronger, it is clearer how to use

this encoder with the sequential algorithm.

2.3 Sequential Stack Algorithm (SSA) for Binary Block Codes

The object of the sequential algorithm is to search through the tree constructed for
the code to find the codeword that most closely resembles the received sequence. The
sequential stack algorithm follows a path through the tree until some other path looks more
promising. At this point the other path is explored until a better, if any, path is found.
This continues until some path reaches the end of the tree at which time this path is chosen
as the path most resembling the noise corrupted codeword. During the search, partially
searched paths are stored in a stack and arranged according to their resemblance to the
received sequence.

Instead of storing the partial paths on a stack that is sorted, the paths can be stored
in a priority queue as described by Chang and Yao [ChYa86]. The priority queue is a
greatest-in-first-out (GIFO) type of stack as opposed to the usual last-in-first-out (LIFO)
stack. The advantage of the priority queue is that it avoids a lot of the needless sorting
required by the stack algorithm by realizing that the most promising path is the only path
required by the algorithm at any given time. As well, Chang and Yao’s parallel implementation
of the priority queue allows the algorithm to determine the most promising partial path in a

fixed processing time.

17

The algorithm for decoding an (n,k) binary block code is:

1. Delete the best path from the priority queue.
2. If the path is at the end of the tree, output the information sequence and quit.
Otherwise:

Initialize the state of the encoder.
Input a bit (0 or 1) into the encoder.

Calculate the branch metric using the encoder output bit and the received bit.

3

4

5

6. Add the branch metric to the path meiric.

7 Append the input bit to the information sequence.

8 Increment the path length.

9 Store the metric, path, path length, and state in the priority queue.
10. Repeat steps 3 thru 9 until all of the possible input bits are exhausted.

11. Return to step 1.

The algorithm presented above requires some explanation. Before any decoding
can take place a priority queue of sufficient size must be available to the algorithm. The
priority queue must be able to store at least four pieces of information about a particular
node. These are the metric, partial path, path length, and encoder state. The metric is the
measure used to determine which path most resembles the received sequence. The partial
path contains the information bits leading to the current state of the encoder, and the path
length is the number of information bits. The priority queue must then be initialized with
the root of the code tree where the metric will be zero, the partial path will be empty, the
path length will be zero, and the state will be the all-zero state. In this way step 1 will
delete the root of the code tree and begin the decoding process from this point.

Step 1 requires that the best path be deleted from the priority queue. The four

18

pieces of information that come with that best path must then be stored for use in later
steps. Specifically, in step 3 the state of the encoder is initialized. Here the encoder’ s state
is initialized to the state of the path deleted from the priority queue in step 1. In step 6 the
path metric from step 1 is needed to calculate a new path metric. In steps 7 and 8, the
partial path and path length from step 1 are updated.

Block codes are encoded by serially entering k information bits into the encoder
followed by (n-k) zeros. Therefore, as step 10 suggests, there are two possible inputs bits

(i.e. O or 1) for path lengths less than k but only one (i.e. 0) for paths with longer lengths.

2.4 Fano Metric - Block Codes Over GF(2)

In order to decode a received sequence, a measure is needed to determine which of
the possible codewords the received sequence most resembles. When sequentially decoding
convolutional codes the usual measure is the Fano metric. This metric reflects the different
depths of paths through the trellis. Before the sequential algorithm can be applied to a
block code, the Fano metric must be formulated. The metric for decoding binary block

codes transmitted over a memoryless channel is presented below and derived in Appendix

2-B.
——— Fano Metric - Binary Codes “
. i p(ril)
M(i,r) = - Z log| 1 +8L ~07 (2.4.1)
j=1 p(rjley)
\ J

where 1; is the jth output of the receiver’ s matched filter, ¢;; s the jth bit in the ith codeword,

¢,; with an overbar is the complement of c,

ij>

N; is the length (in bits) of ith partial codeword,
and p(r; I ¢;) is the channel’s conditional output probability density function.

19

As a specific example, the Fano metric for decoding binary block codes transmitted

over an AWGN channel using BPSK modulation is;

—— Fano Metric - AWGN/BPSK —
N; o - af
M(i,r) = - Z log [1+ exp (4Q2cy- 1) ry VE; ” (2.4.2)
Jj=1 No

where E is the energy per transmitted bit, and N, is the single sided noise power density.
It should also be noted that since the metrics can be scaled by any constant the logarithm

can be with respect to any base.

Theorem 2
The sequential stack algorithm with the Fano metric always finds the maximum

likelihood codeword.

Proof

The goal of the decoder is to find the codeword with maximum probability given
the received sequence. Mathematically, given the received sequence r, the decoder attempts
to find the codeword ¢, that maximizes Pr(e; | r) or log Pr(e; | 1), assuming that all
codewords are equally likely to be transmitted. If the Fano metric is calculated for all
codewords, then the codeword with the maximum Fano metric will also be the codeword
that maximizes Pr(e; [1).

The stack algorithm does not calculate the total metric for all paths, though. Therefore,
it is necessary to show that if a completed path reaches the top of the stack (because it has
the largest metric) then no other path can have a metric that is larger than its metric. In
other words, if a completed path reaches the top of the stack then it must be the most likely

20

codeword. This can be proved by making the observation that the branch metric is always
less than or equal to zero for block codes. Consequently, if a completed path is compared
to a partial path, where the path metric of the former is larger than the metric of the latter,
then it is impossible for the path metric of the partial path to ever exceed the metric of the
completed path. Since all other paths through the tree must diverge from the completed
path, the completed path will be the maximum likelihood codeword.

The proof leads to the following corollary.

Corollary
The sequential stack algorithm with any branch metric, that is less than or equal to
zero, will always find the maximum likelihood codeword, provided that maximizing the

metric is equivalent to maximizing Pr(c,|r).

For example, the following metrics may also be used for decoding codewords

transmitted over an AWGN channel with BPSK modulation:

N;
M@GED) =- > [VE - (2c;- 1) 1;]? (2.4.3)
j=1
N;
M@0 =-> [|5]- (2ci- 1) 1;] (2.4.4)

i=1

The Fano metric was developed with the goal of minimizing the amount of searching
performed by the sequential algorithm. Despite the fact that these two metrics guarantee
optimal error performance they are not guaranteed to minimize the amount of searching. A
comparison of these and other possible metrics for sequential decoding can be found in

Appendix 2-C.

21

2.5 SSA for Block Codes over GF(q)

Block codes over larger fields than GF(2) can also be decoded using the previous
algorithm. Unlike the approach taken by Offer and Perkins [OfPe91], there is no need to
change the code to a binary code with this algorithm. Consequently, any block code can be
decoded using the algorithm and not just codes over fields that are a power of 2.

A few logical changes have to made to the algorithm to generalize it from GEF(2) to
GF(q). First of all, the tree for a block code over GF(q) has q exiting branches per node
rather than two. As a result q different inputs must be entered into the encoder and q paths

must be added to the stack per step.

Figure 2.5.1. g-ary Tree

The algorithm for decoding block codes over GF(q) is then:

1. Delete the best path from the priority queue.

2. If the path is at the end of the tree, output the information sequence and quit.
Otherwise:

3. Initialize the state of the encoder.

22

Input a symbol from GF(q) into the encoder.

Calculate the branch metric using the encoder output and received symbol.
Add the branch metric to the path metric.

Append the input symbel to the information sequence.

Increment the path length.

A S

Store the metric, path, path length, and state in the priority queue.
10. Repeat steps 3 thru 9 until all of the possible input symbols are exhausted.

11. Return to step 1.

This algorithm differs from that for binary block codes in that it is generalized to
symbols over GF(q) instead of bits from GF(2). For example, in step 10 there are g
possible input symbols, as opposed to two possible input bits, for path lengths less than k
(the number of information symbols). For paths of k symbols or more there is still only
one possible input symbol, namely zero. The differences are noted by the bold type.

The metric used for decoding must change to reflect the fact that the code is over

GK(q) instead of GF(2). The Fano metric now becomes:

—— Fano Metric - g-ary Codes 2
N e
M(@i,r) = Z log _Puley) (2.5.1)
j=1 > p(rjlcy
Cij
.)

where ¢;; is a symbol from GF(q). The derivation of the metric is shown in Appendix 2-B.

23

2.6 SSA for Concatenated Codes

Concatenated codes are generally decoded using two decoders that decode the inner
and outer codes. When a convolutional code is used as the inner code, the Viterbi al gorithm
or the sequential algorithm can be used to decode the code using soft decisions. Usually,
the outer code is a block code, like a Reed-Solomon code, that is used to correct the burst
errors of the Viterbi or sequential decoder. The decoder for the Reed-Solomon code does
not use soft decisions at all, though. Since it is now possible to decode a block code using
soft decisions via the Viterbi or sequential algorithm it may be possible to decode the
overall concatenated code with these algorithms. The motivation for using a single algorithm
to decode the entire code is twofold. The first motivation is the ability to easily use soft
decisions in the decoding. Secondly, this approach results in the savings of one decoder.

A block diagram of a block-convolutional concatenated coding scheme is shown
below. The outer code is an (N,K) block code with symbols from GF(g=p™) while the

inner code is an (n,k) convolutional code with symbols from GF(p).

Input Output

(N,K) BC (n,k) CC
E over GF(q) over GF(p)

Figure 2.6.1. Concatenated Coding Scheme

For every symbol from GF(q=p™ that is an input into the outer (block) encoder, m
symbols from GF(p) are output and passed to the inner (convolutional) encoder. These m
symbols then cause nm/k symbols from GF(p) to be output from the convolutional encoder.
Therefore, one symbol from GF(q=p™) input into the overall encoder causes mn/k symbols

from GF(p) to be output. At this point it is necessary to impose the constraint that k

24

divides m so that an integral number of symbols are output at a time.

This overall encoder can then be used to construct a tree for the concatenated code.
This tree will look the same as the tree for the outer (block) code. It will only differ in that
the branches will be labelled with the nm/k symbols from GF(p) instead of a single symbol
from GF(q=p™). As well, the convolutional code introduces memory between successive
codewords. The implication of this is that the trees of successive codewords will be joined
one after the other. An example of a tree for a concatenated block-convolutional code is

shown below.

[:]

®

Figure 2.6.2. Concatenated Code Tree

The state of the overall encoder is the state of the block encoder and the state of the
convolutional encoder. The state of the block encoder will be over GF(g=p™) while the
state for the convolutional code will be over GF(p). Given an (N,K) block code with q*
states and an (n,k) memory M convolutional code with pkM states, then the overall encoder

will have pm® M

states. This enormous number of states effectively eliminates the Viterbi
algorithm as a decoding alternative leaving only the sequential algorithm.

The algorithm for decoding concatenated block-convolutional codes is:

25

1. Delete the best path from the priority queue.
2. If the path is at the end of the tree, output the information sequence and quit.
Otherwise:

Initialize the state of the encoder.

Input a symbol from GF(q=p™) into the encoder.

Calculate the branch metric using the encoder output and received symbols.

3

4

5

6. Add the branch metric to the path metric.

7 Append the input symbol to the information sequence.

8 Increment the path length.

9 Store the metric, path, path length, and state in the priority queue.

10. Repeat steps 3 thru 9 until all of the possible input symbols are exhausted.

11. Return tostep 1.

There are three key differences between this algorithm and that for block codes over
GF(q). First, in step 5 the metric is calculated using several symbols over GF(p) instead of
a single symbol over GF(q). Second, there are q possible input symbols for path lengths
between O and K, N and N+K, 2N and 2N+K etc. where N and K are the dimensions of
the outer block code. Finally, the metric for decoding the concatenated code is the Fano
metric that would be used for decoding the inner (n,k) convolutional code over GF(p).

Though convolutional codes are not restricted to the binary field most of the popular
convolutional codes are binary. If binary convolutional codes are used, then the outer
block code must be over a field that is a power of 2. As well, the algorithm implementation
requires that k divides m. The easiest way to guarantee this is to choose k to be equal to
one. This constraint is usually met since most convolutional codes used in concatenated
schemes are rate 1/n codes. Then, for every symbol from GF(g=2") input into the overall

encoder, nm symbols from GF(2), or simply nm bits, are output from the overall encoder.

26

2.7 Summary

Algorithms that use soft decisions while decoding block codes are difficult to find.
For convolutional codes, at least, two algorithms exist: these are the Viterbi al gorithm and
the sequential algorithm. The Viterbi algorithm is applied to the code’s trellis and the
sequential algorithm is normally applied to the code’s tree. All block codes have a tree
representation, and if the code is linear, then it will also have a trellis representation.
Therefore, using the Viterbi or sequential algorithm is a viable decoding alternative for
block codes.

Instead of modifying the algorithms to suit block codes, equivalent codes can be
found that suit the algorithms. As the algorithm moves through the tree or trellis it must
keep track of where it is and where it can proceed. This can be done by storing the tree or
trellis. A better way to do this is to require that the code’s encoder produce one output
symbol for every input symbol and have a state that can be read and initialized. Two
encoders satisfying these criteria are presented in section 2.2. The first is a systematic
encoder while the second is simply a rate one time-varying convolutional code encoder.

Once the encoders are designed, the algorithms can be applied in their usual forms.
Descriptions of the sequential algorithm as applied to binary, g-ary, and concatenated codes
are provided in sections 2.3 through 2.6. The advantages of this approach, as compared to
Offer and Perkins [OfPe91], are that it allows block codes over any field to be decoded and
that it has a stronger resemblance to the algorithm for convolutional codes.

Finally, the sequential algorithm requires a metric to determine the most promising
path to extend: this metric is the Fano metric. For block codes, the Fano metric allows the

sequential algorithm to perform maximum likelihood decoding.

Appendix 2-A Generator Matrix for Block Codes

Theorem
Given an (n,k) linear block code with generator matrix G, an equivalent code can be
Jound that has a generator matrix of the Jollowing form:
G= : : :

0---00<g,—0
O...OOO<—gk_1——>

where the g.’s are (n-k+1)-tuples.

Given the generator matrix of an (n,k) linear block code, it can always be put in the
form G=[IIP], wherelisak xk identity matrix and P is a k x (n-k) matrix. Define G;
= [T 1P,] as the matrix formed by removing the first i rows and columns of G = [IIP] If
(k-1)>(n-k), then the first (n-k+1) rows of P, must be linearly dependent, and some combination
of these will add to zero. If this addition is carried out, then the (n-k+1)-tuple, g;, will be
formed.

When (k-1)<(n-k) the matrix formed by the last (k-i-1) columns of P, must have
linearly dependent rows. These should be added to produce an all-zero (k-i-1)-tuple. The
addition will form the (n-k+1)-tuple, g, The procedure fails if an all-zero row is encountered.

This can be avoided by interchanging columns of P before the al gorithm is applied so that:

Pj+2kn,j= 1 forO=<j < n-k-1
if there are no 1's to the right of this position (note: p;; is the element found in the ith row

and jth column of P).

28

Appendix 2-B Fano Metric for Block Codes

The Fano metric, used when sequentially decoding convolutional codes, can be

expressed as [ViOm79]:

N,

. 5l g
M@p) =) |log ﬁpi(—rj)iJF NLilog2 T (2.B.1)

j=1

where 1 is jth matched filter output, c;; is the jth symbol in the ith codeword, p(ry is the
channel output probability density function, N, is the number of symbols that have been
partially decoded and w, is the probability of transmitting those previous N, symbols.

The channel output probability density function can be found by averaging the
conditional output density function p(r; I ¢;p) over all channel inputs. That is,

p(r) = D plcy) p(rj | c) (2.B.2)

Cij

For equally likely channel inputs from a g-ary input alphabet:

p(ci)) :é (2.B.3) and m= qN (2.B.4)
Therefore,
p(r) :% > p@lcy) (2.B.5)

Cij
Substituting for 7, and p(r;) in the Fano metric expression gives:

N
M(i,r) = Z logs
=1 > p(lcy)

Cij

p(lcy) (2.B.6)

29

which is the appropriate version of the Fano metric for decoding block codes over GF(q).
For an alphabet where q is a power of a prime (i.e. q=p™) each of the q symbols
can be represented by a stream of m symbols from GF(p). If the codewords are now
transmitted using their GF(p) representation, then the codewords become m times as long.
The previous Fano metric can still be used to decode the codewords now represented over
GF(p) simply by letting N, be the number of symbols over GF(p), as opposed to GF(q),
that have been partially decoded. Typically q is a power of 2 so each symbol over GF(q)
can be represented by m bits. Thus, N; is the number of bits that have been partially

decoded. For this case the Fano metric becomes:

p(rj 1 ¢y

2.B.7
p(r ¢ + p(rj | T5p) ()

N;
M@=) log
j=1

where ¢;; with the over bar is the complement of Cii
This last metric can be derived using an alternate approach. The Fano metric for

decoding binary convolutional codes is [ViOm79]:

. Ni e
Min= 3 [logg p—(g(—rj‘;i-RJ (2.B.8)

i=1

where R is the rate of the code. The notion that a block code is a rate one convolutional
code suggests that R = 1 should be substituted in the above expression. Substituting for R
and p(r;) will then give the metric that was derived above (see equation 2.B.7).

Defining p; as:

r,| -
LT} (2.8.9)
p(r; I ¢;))

simplifies the metric to:

30

N;
M) =-) log[1+p;] (2.B.10)
j=1
which is the Fano metric for decoding 2™-ary block codes.

For signals transmitted over an additive-white-Gaussian-noise (AWGN) channel

using binary phase shift keying (BPSK), the conditional channel output density function is:

1 e (Tim (3= 1) /B

= = (2.B.11)

p(l ¢y =

where E is the energy per transmitted bit, N, is the single sided noise power density, and

¢; is either O or 1. Therefore, p;; is:

4(2¢i- 1)1 VES
pij = exp|- C‘JN i (2.B.12)
o]

and the Fano metric for decoding 2™ary block codes transmitted over an AWGN channel

using BPSK modulation is:

N;
M(,r) = - logy [1+exp
j=1

4 Q2ci- 1)1 {E;)]
N (2.B.13)

31

Appendix 2-C Other Metrics

The following metrics are derived for binary codewords transmitted over an AWGN

channel using BPSK modulation.

Metric 1
The maximum likelihood codeword can be found by finding the codeword for
which the correlation between the transmitted sequence and the received sequence is the

largest. When using BPSK modulation this is given by:

n
MG, = D> (2c;- 1) (2.C.1)
i=1
More generally, the maximum likelihood codeword is the codeword that maximizes the

following expression where A and B are constants and B is strictly positive.

n
Min=A+B > (2¢;- 1) (2.C.2)
j=1
Setting A and B equal to:
n
A=-3 5] (2.C.3) and B=1 (2.C.4)

i=1
gives the following metric:

N;
M@0 =-> [|5]- (2c- 1) 1j] (2.C.5)

i=1
In comparison to the Fano meiric, this new metric has an interesting interpretation.

This metric is simply a scaled asymptotic approximation to the Fano metric. For an

32

AWGN channel with BPSK modulation, the Fano metric for decoding binary block codes

is:

(2.C.6)

4 (2¢j - 1) 1j {E;‘)]

Ni
M(,r) = - z Iog[1 +exp (— N
o]

-

As the argument of the exponential tends to negative infinity the exponential tends
to zero, and, hence, the metric tends to zero. As the argument tends to positive infinity the
metric becomes linear in r,. Approximating the metric by these limits leads to the following
metric.

N;

M@0 =-> [|5]- 2ci- D 1] (2.C.7)
j=1

This is the metric that was derived above. As a result, this metric should be

expected to perform (in terms of complexity) very closely to the Fano metric.

Metric 2
Alternatively, a more intuitive choice (as compared to the above choices) for the

constants A and B can be made. The constants A and B can be selected as:

n
A=-> VE (2.C.8) and B=1 (2.C.9)
j=1
This gives the following metric:
N;
M) =-> [VE - 2c- 1) 1] (2.C.10)

i=1

Here, the term YE; can be interpreted as a bias that causes the algorithm to search more
33

paths through the tree. Unfortunately, this metric is not solely negative so it will not
always find the maximum likelihood codeword. Simulations have shown that using this
metric costs about 0.1 to 0.3 dB in error performance.

Changing the bias can improve error performance slightly but also degrade error
performance significantly. Increasing the bias improves performance while decreasing the
bias degrades performance. This can be explained by realizing that a larger bias will cause
the algorithm to follow a path less deeply into the tree before switching to a new path. Asa
result more paths will be examined and hence the chance of finding the correct path
improves. An alternate explanation is that the larger bias increases the likelihood that the
metric will be negative. If the branch metrics are all negative then the al gorithm will find
the maximum likelihood codeword. If a branch metric is positive then the maximum

likelihood codeword may or may not be found.

Metric 3

The maximum likelihood codeword is also the codeword that has the minimum
squared euclidean distance to the received sequence. This is equivalent to finding the
codeword with the maximum negative squared distance. Thus, the following metric will

also yield the maximum likelihood codeword when used with the sequential stack algorithm.

1

M@0 =- Y [VE - (2¢;- 1) r;]? (2.C.11)

i=1

Comparisons
By Theorem 2, in section 2.4, metrics 1 and 3 must be maximum likelihood. It
was already noted that metric 2 is close to maximum likelihood but is not. Metrics 1 and 3

can be compared to the Fano metric in terms of complexity. The following graph shows

34

the average nodes searched, when decoding the (24,12) Golay code, as a function of the

signal-to-noise ratio.

104
103 - —
N - Nmin e Ay

) \;\\% \%—-— Metric 3

i0 O
NN Fano Metric
b1

101 Metric 1
109

0 1 2 3 4 5 ¢
SNR (dB)

Figure 2.C.1. Average Nodes Searched for 3 Metrics
Metric 1 outperforms both metric 3 and the Fano metric in terms of average nodes

searched. Since metric 1 is so closely related to the Fano metric, its complexity is only

slightly better than that for the Fano metric.

35

Chapter 3 - Computational Complexity

To determine the effectiveness of the sequential stack al gorithm for decoding block
codes an objective measure must be formulated. Such a measure is the computational
complexity of the algorithm. If the computational complexity can be measured, then it can
be used as a basis for comparison between the sequential algorithm and other decoding
alternatives.

Unlike the Viterbi algorithm, or most other block decoding techniques, the sequential
algorithm performs a variable amount of work that depends on the noise level. That is, the
sequential algorithm proceeds rather quickly and efficiently if the noise is low, but as the
noise increases the sequential algorithm becomes inefficient. When used with convolutional
codes, the complexity is normally measured in terms of the average number of branches or
nodes searched by the algorithm for a given signal-to-noise ratio. This can also be measured
when the algorithm is applied to block codes. In order to make a meaningful comparison to
other block decoding techniques, though, this measure has to be translated into a measure

for block codes.

3.1 A Complexity Measure for Block Codes

A reasonable definition for the computational complexity of a decoding algorithm is
the total number of equivalent real number additions it performs. This obviously includes
real number additions but also includes real number comparisons where the former and
latter are given equal value. The definition does not account for binary operations, hard
decisions, absolute values, or bit confidence calculations.

This definition has been used by Snyders and Be’ ery to measure the complexity of

their block decoding algorithms [SnBeg9]. Consequently, any comparison of the sequential

36

algorithm to those algorithms should be made using this definition.
The sequential algorithm manipulates four pieces of information (viz. state, metric,
path, and path length). Of these, only the metric is a real number, and, thus, metric

operations solely comprise the complexity.

3.2 Complexity Measured

There are only two metric operations in the stack algorithm. The first is metric
addition which is performed when the branch metric is added to the path metric. The
second operation is metric comparison which is performed in the priority queue after every
deletion or insertion. The overall complexity is the sum of these two different operations.
If the number of metric additions is denoted as N, and the number of metric comparisons

as N, then the complexity is N + N_.

3.3 Metric Addition

For every node in the tree that the algorithm visits a new metric must be calculated.
Thus, the number of metric additions is equal to the number of nodes visited. Denoting the

number of nodes visited by N implies that:

Number of Metric Additions

Nu=N (3.3.1)

Minimum Number of Additions
Depending on the noise, the sequential algorithm will visit a number of nodes that

falls between a minimum and a maximum number. The minimum number of nodes visited

37

occurs when the algorithm does not backtrack. Up to a depth k into the tree, each node has
two exiting branches (for (n,k) binary block codes) implying that two further nodes must
be visited. For greater depths, a single branch leaves each node. Thus, the minimum

number of nodes visited, and, hence, metric additions, is:

N@in = 2k + (n - k) (3.3.2)

For block codes over GF(q) this generalizes to:

NZin = gk + (n - k) (3.3.3)

Maximum Number of Additions

The maximum number of nodes visited occurs when the algorithm completely
searches every path through the tree. The total number of nodes visited can be calculated
by counting all the nodes in the code’s tree. An example of a binary code’s tree representation

is shown in Figure 3.3.1.

©

e ®
L] |
i 1 L
0 k n

Figure 3.3.1. Tree for an (n,k) Binary Block Code
38

For the first k steps the tree doubles in size with each step. At depth k the tree will
have 2" terminal branches representing the 2* possible codewords. For the (n-k) parity bits
the terminal branches are simply extended by one branch per step which maintains a total of
2* terminal branches at each step. The maximum number of nodes visited can then be
calculated by counting all the nodes in the tree. Therefore, the maximum number of metric

additions is:

NgaX=2+4+--.+2k+(n-k)zkz(n-k+2)2k”'-2 (3.3.4)

For g-ary block codes this becomes:

N$3X=q+q2+...+qk+(n_k)qk:(n-k+ﬁ-)qk—q—flf (335)

3.4 Metric Comparison

Metric comparisons occur whenever data is inserted or deleted from the priority
queue. Visiting a node in the tree involves deleting and extending a node from the queue.
Thus, the number of comparisons is related to the number of nodes visited. Before the
comparisons can be counted, though, it is necessary to explain briefly the operation of the
priority queue. The priority queue described by Chang and Yao [ChYa86] is guaranteed to
output thé maximum number that is stored in the queue. This is accomplished by comparing
pairs of adjacent elements after every insertion or deletion operation. The two elements in
the pair are reordered if the element furthest from the top of the queue is greater. Thus, if
the queue contains N elements, N/2 (assuming N is even) comparisons need to be made.

Given the number of nodes visited, the number of comparisons can be upper
bounded by considering a stack that initially increases in size and then remains constant in

size. The stack increases in size if two nodes are entered between deletions. This corresponds

39

to nodes in the tree with two exiting branches (i.e. depths less than k). Given that N nodes
are visited assume that the stack grows for the first oN (O=ax<1) nodes. Since two nodes
must be entered for the stack to grow by one, the stack grows to aN/2 entries and the
average stack size is approximately aN/4. Deletion and insertion operations in the priority
queue require that adjacent pairs of entries in the stack be compared. Hence, for a stack
with N elements, N/2 comparisons must be performed. Therefore, the total number of

comparisons is:

Ngl) = (# deletions and insertions/step)(average # comparisons/del or ins)(# steps)

alN
SRC P
N ~3| 2 (2) 3-a? N (3.4.1)

The stack does not grow if only one node is inserted after a deletion. This corresponds
to nodes in the tree with only one exiting branch (i.e. depths of k or greater). Knowing
that the stack grew for the first oN nodes implies that it remains fixed at «N/2 entries for

the remaining (1-a)N nodes. Therefore, the total number of comparisons is:

N g2> = (# deletions and insertions/step)(average # comparisons/del or ins)(# steps)

alN

N®=2 (—%—)((1-0)N)= L o(1-0)) N2 (3.4.2)

L
2
Combining, gives the total number of comparisons as:

N = N® +N32>z%[a- g_oﬂ]NZ (3.4.3)

Finally, maximizing the expression over o bounds the number of comparisons.

40

(—— Number of Metric Comparisons - Binary Codes 2

N, < %Nz (3.4.4)

. J

For block codes over GF(q), every deletion is followed by either 1 or q insertions.
If aN nodes are visited at depths less than k, then alN/q steps are taken where the stack
grows by (g-1) entries per step. As a result, the stack grows to (g-1)aN/q entries and
averages about (q-1)aN/2q entries. For depths greater than or equal to k it remains fixed at

(q-1)aN/q entries . Therefore, the total number of comparisons is:

((q- DaN
2 -1g+1
NP~ (q+1 d (GN)J 17" o2 N2 3.4.5
c @+ 1) 3 q q 4q a ()
and
(q - DaN
N® =2 —+_ ((l-oc)N)zq—c-—l—la(l—on) N2 (3.4.6)
Combining gives:
No=ND 4 N@ D1 3a-1 2] (3.4.7)
C C q 4q
Maximizing over . gives:
(—— Number of Metric Comparisons - q-ary Codes \
Ne< 41 2 (3.4.8)
3g-1
. J/

41

The assumption that the stack grows continually before staying at a fixed size is not
necessarily how the algorithm operates in practice. This assumption implies that the
algorithm is restricted to depths of k or greater once it begins working in this region.
Instead, the algorithm is free to move anywhere in the tree. However, this reality does not
contradict the bound on the number of comparisons. Even though the nodes are mixed
they can be grouped into nodes at depths less than k and those at depths greater or equal to
k. Since aN nodes at depths less than k are still visited, the stack growth remains the same
and N does not change. The difference is that the stack is not fully grown when nodes at
depths of k or greater are visited. Therefore, this part of the complexity is less than N @,
and the actual complexity is less than the bound which, in turn, reaffirms the bound.

The bound on the number of comparisons is a quadratic bound. That is, it grows
as the square of the number of nodes searched. This quadratic growth in complexity is a
definite disadvantage of the stack algorithm and sequential algorithms in general. Other
algorithms such as the Viterbi algorithm or M al gorithm have a linear growth in complexity
[AnMo91]. This is not to say that the sequential algorithm should not be used. In fact, as
long as the noise level is low, the number of nodes visited (N) is small and consequently
the number of comparisons is small as well. Therefore, the sequential algorithm is best

used at moderate to high signal-to-noise ratios.

Minimum Number of Comparisons

Under the most favorable noise conditions the sequential algorithm will still have to
perform a minimum amount of searching. A formula for the minimum number of nodes
searched is given in section 3.3. The minimum number of comparisons in the priority
queue, occurring when a minimum number of nodes are visited, can be calculated by
considering the situation that led to the minimum number of nodes being visited. The

number of comparisons at depths less than or equal to k can be calculated using equation

42

3.4.5 where aN is equal to gk. Substituting gives:
N~ (q- 1) .‘Lj}lKZ (3.4.9)

The number of comparisons at depths greater than k can be calculated with equation 3.4.6

where (1-o)N is equal to (n-k). This gives:
N®=(q-1)(n-kk (3.4.10)
The minimum number of comparisons is then:

] _1)\2
Noin = NO 4 N® < (q- 1) [(n- k) k+%}+£—q4—1)-—k2 (3.4.11)

Maximum Number of Comparisons

Under the worst noise conditions the algorithm may search the entire code tree. If
this occurs, the algorithm searches a number of nodes that can be calculated using equation
3.3.5. The maximum number of comparisons occurs when the al gorithm searches every
node up to a depth k and then searches every node at greater depths. The first part of this
can be calculated using equation 3.4.5 where oN is the number of nodes at depths less than

or equal to k. This is equal to:

9 q q

fonnd 2 [N k: k - = k
Substituting gives:
MO R (3.4.13)

¢ 4q-1

The second part can be calculated using equation 3.4.6 where (1-o)N is equal to the

number of nodes at depths greater than k. That is,

(1-0)N=(n-k)gk (3.4.14)

43

This gives:
NP = (n - k) g2k (3.4.15)
The maximum number of comparisons is then given by:

max = NO 4+ N® = [n-ok0 9FL | ok
NS =NO NP [n-k+ A0 g (3.4.16)

3.5 Hardware (Stack) Complexity

The hardware complexity is determined by the size of the stack required for the
algorithm. Since the algorithm only stores the head of a path through the tree, the stack
must be able to hold the heads of all possible paths through the tree. This corresponds to
being able to hold each of the code’s possible codewords. Therefore, for (n,k) block codes
over GF(q), the priority queue or stack must be able to hold q* entries for optimal decoding.
For large codes, this stack size quickly becomes an obstacle to the optimal implementation
of the SSA for block codes. Reducing the stack size (at the cost of error performance) is

investigated in chapter 5.
3.6 Summary of Complexity Measures

This section summarizes the previous computational complexity results. Specifically,
the minimum, maximum, and average complexities for decoding block codes over GF(q)
are presented.

Based on the above discussion, the minimum complexity to decode an (n,k) block
code over GF(q) consists of N metric additions and N, metric comparisons that can be

calculated using the following formulas.

44

—— Minimum Complexity ~

min = gk + (n - k) (3.6.1)

. 2
Cmmz(q_ 1) (I’l-k)k'l'kz—z—}‘l'(q—;]‘ikz (3.6.2)

Though the minimum complexity looks especially good, the maximum complexity
is especially poor. Fortunately, for reasonable signal-to-noise ratios, the complexity of the
stack algorithm does not approach its maximum. The approximate maximum number of

metric additions (nodes searched) and comparisons are given below.

— Maximum Complexity ~
mo=(n-k) gk (3.6.3)
D= (n- k) g (3.6.4)

. /

If the stack algorithm visits N nodes, then the number of metric additions is equal to
N and the number of comparisons is upper bounded by cN?, where c is constant determined
by the stack sorting algorithm. For a priority queue, ¢ is equal to (q - 1)/(3q - 1). For an
algorithm that finds the maximum metric in the stack differently, ¢ is not necessarily the

same. For example, for a maximum finder (see Appendix 3-A), ¢ equals (q - 1)/(4q - 2).

45

Mathematically, the overall complexity of the stack algorithm, Ng,, is bounded by:

Complexity

Nga < N + ¢N? (3.6.5)

and the average complexity of the stack algorithm is bounded by:

—— Average Complexity

Nea < N+ cN2 (3.6.6)

PUN— Nmax

Nsa< Y (N+cN?)Pr[N] (3.6.7)
N=]Vmin

.

where N, and N___are:

Nmin = gk + (0 - k) (3.6.8)

Nmax:(n-k+q‘_11)qk-q?1 (3.6.9)

and Pr[N] is the probability of visiting N nodes at a given signal-to-noise ratio.

46

Appendix 3-A The Maximum Finder

The priority queue is a significant improvement over a sorted stack largely because
it exploits the fact that the stack al gorithm only needs the maximum value in the stack at a
given time. The priority queue also has the advantage of being parallel. If the priority
queue can not be implemented in its parallel fashion then it loses this advantage. If this is
the case, then the priority queue, though much better than a sorted stack, is not the most
efficient algorithm for finding the maximum number in a list. Instead, a maximum finder
which goes through the list sequentially is more efficient with the stack algorithm. The
reason for this is that the maximum finder only needs to be used when a path needs to be
deleted from the stack as opposed to the priority queue which performs comparisons after
every deletion and insertion operation.

For a given stack size N a maximum finder requires (N - 1) comparisons to delete
the best path. This is done by taking the first element in the stack and comparing it to the
second. Then the largest of these is compared to the third. Of these, the largest is
compared to the fourth. This continues until the last element in the stack is compared to the
largest up to that point.

Unlike the maximum finder the priority queue rearranges the stack after every
insertion and deletion. There are two patterns of insertions and deletions that occur with
the sequential stack algorithm. One pattern is an insertion followed by a deletion. Assuming
the stack size is N after the insertion implies that the number of comparisons needed is N/2
if Nis even or (N - 1)/2 if Nis odd. After the deletion the stack size will be (N - 1) and the
number of comparisons is (N - 2)/2 if N is even or (N - 1)/2 if N is odd. For either even or
odd N the total number of comparisons for an insertion-deletion pattern is (N - 1). This is
equal to the number of comparisons performed by the maximum finder. Thus, for this

pattern, the priority queue or maximum finder are equally effective in terms of the total

47

number of comparisons. The second pattern is q (for g-ary codes) insertions followed by a
single deletion. Since each insertion causes the priority queue to compare adjacent elements
in the stack, q insertions will require more comparisons than a single insertion. Thus, for
these patterns, the priority queue will require more operations than the maximum finder.
For example, a pattern of 2 insertions followed by a single deletion requires that 3(N - 1)/2
comparisons be performed. This is 50% greater than the number of comparisons performed
by the maximum finder. Since the decoding will involve a mix of the two types of
insertion-deletion patterns the priority queue will average somewhere between 0 and 50%
more comparisons than a maximum finder.

For (n,k) block codes over GF(q) the number of comparisons as a function of the
number of nodes searched can be bounded for the maximum finder. If the algorithm visits
N nodes assume that oN of those are at depths less than or equal to k. At these depths, q
nodes will be inserted into the stack for every node deleted. The following table lists the

stack size and number of comparisons performed as a function of the number of nodes

visited.
[Nodes Stack size Comparison?
q q q-1
2q 2g-1 2(q-1)
3q 3q-2 3(q-1)
| («N/g)q (aN/q)(g-1)

The number of comparisons is equal to:

Ng1>:(q-1)[1+2+..-+9qﬁ]zq—é—1 N2 (3.A.1)

2 42
<
4q
For the remaining (1-o)N nodes, at depths greater than k, the number of comparisons

will still be given by equation 3.4.6. Adding gives the total number of comparisons.

48

NC:N£1)+N£2)zqél[a-4q4(;2a2}1\12 (3.A.2)

If this is maximized over a, then the number of comparisons is bounded as:

(—— Number of Metric Comparisons - Maximum Finder

N.<d-1 p2 (3.A3)

In comparison to the result for the priority queue, the maximum finder still
requires a number of comparisons that grows as the square of the number of nodes
searched. The difference is that the proportionality constant is less for the maximum
finder.

The minimum number of comparisons with the maximum finder occurs when the
sequential algorithm does not backtrack. For depths less than or equal to k, the total
number of comparisons can be calculated using equation 3.A.1 where aN is equal to gk.

Substituting for aN gives:
NO =~ (q-1) %18 (3.A.4)

The total number of comparisons at greater depths for a maximum finder is the same as

for a priority queue (see equation 3.4.10). Adding gives the total number of comparisons.

Nmin (g - 1) [(n -k k+£23] (3.A.5)

As compared o a priority queue (see equation 3.4.11), the minimum number of comparisons

with the maximum finder is less by an amount equal to:

Y
NPQ. NMF = (—qu?_kz (3.A.6)

As with the priority queue, the maximum number of comparisons occurs when
49

the algorithm searches every node up to a depth k and then searches every node at greater
depths. For the maximum finder, the first part is calculated using equation 3.A.1. where

aN is approximated by equation 3.4.12. Substituting gives:

ND o __2 2k AT
R S

The second component of the number of comparisons remains the same (see equation

3.4.15). Consequently, the maximum number of comparisons is:

Nmax [k 2 2k 3.A.8
max [+4(q_1);)q (3.A.8)

As expected, the number of metric comparisons still grows as q**.

50

Chapter 4 - Simulation Results

The two block codes selected for simulation were the (8,4) extended Hamming
code and the (24,12) extended Golay code. For both codes, the simulations were performed
assuming an AWGN channel with BPSK modulation. The discrete time equivalent of this
channel and modulation scheme is shown in Figure 4.0.1. The all-zero codeword was
transmitted a total of 10° times over this channel in order to insure a reliable estimate of the
block code’s error rate. For error rates of 10", the error rate estimate has a 95% confidence
of being within 20% of the code’s true error rate; for larger error rates, the estimate
improves [HeNo88]. The noise was generated using a pseudo-random Gaussian number

generator with a period of two billion [PFTVS8S].

coded sequence

w transmitted sequence received sequence
MAPPER —&>

ER

white gaussian noise sequence

Figure 4.0.1. Discrete Time Channel

4.1 Encoders

The (8,4) Hamming code and the (24,12) Golay code are extended cyclic codes.

51

Their encoders are formed by cascading the encoders of their respective cyclic codes with
Wagner code encoders. Appending an (8,7) Wagner encoder to the (7,4) Hamming
encoder gives the overall encoder for the (8,4) extended Hamming code as shown in Fi gure
4.1.1. The state is defined by the contents of four shift registers, and, hence, the trellis

travelled through by the stack al gorithm will contain 2* states.

Figure 4.1.1. (8,4) Extended Hamming Code Encoder

The (8,4) code does not show the true value of a sequential algorithm since the
Viterbi algorithm can easily handle a trellis with 16 states, To show the advantages of a
sequential algorithm, a code with a larger trellis must be considered. The (24,12) extended
Golay code has a trellis with 2'2 states. The encoder for the (24,12) extended Golay code

is shown in Figure 4.1.2.

—{ |)

N

Figure 4.1.2. (24,12) Extended Golay Code Encoder

52

4.2 Error Performance

When the (8,4) extended Hamming code is transmitted over an AWGN channel
using BPSK modulation, the codewords can be considered as a set of M = 16 equally
likely biorthogonal signals. Therefore, the following result from Van Trees [VaTr69], for
a set of M equally likely biorthogonal signals with energy E, can be used to calculate the

error performance of a maximum likelihood soft decision decoder.

Since 8 bits, each with energy E,, are transmitted per codeword, the total energy of
a codeword is 8E,. Substituting E = 8E_ in the above expression gives the WER for the

(8,4) extended Hamming code.

7
WER=1 - -—1._exp[--1—(x- -J?E;T)Z] ' exp (yz\dy dx (4.2.2)
vﬂlqo NO x vuIJO NO/
0
This can be simplified as:

53

2
WER=1 - %[I-ZQ(X)FeXp [(1_._ “28“’)] dx (4.2.3)

0

where v, is the signal-to-noise ratio per information bit.
Usually, it is very difficult to find an expression for the WER of a linear block

code. Instead the WER can be upper bounded by using a union bound. That is,

ok
WER=< > P, (4.2.4)

m=2

where P, is the probability of choosing codeword m when codeword 1 was transmitted.

For codewords transmitted over an AWGN channel using BPSK modulation P equals:

szQ('\/ 2Rew,, 11\31—2) (4.2.5)

where R is the rate of the code and w,, is the weight of the mth codeword.
The (8,4) extended Hamming code has the following weight enumerator polynomial:

A(z) =1+ 14 z* + z%. Consequently, the WER can be bounded as:

WER514Q('\/4Ni '\/8%_) (4.2.6)

Since the (24,12) extended Golay code is a rate half code with the f ollowing weight

+Q

enumerator polynomial: A(z) = 1+ 759 z° + 2576 2'* + 759 2'° + 22*, the upper bound on

Eb Eb
+759Q('\/ 16N:{ +Q[4/ 24-N-.0_)

(4.2.7)

its WER is:

Al 8 Eo 4/ 12 Eo
WERs759Q(8m)+2576Q(125>

For an AWGN channel, a correlation decoder will perform maximum likelihood
decoding. This is done by comparing the noise corrupted information sequence to all
codewords and choosing the closest (largest correlation) codeword. The correlation decoder
can be used as a comparison to further verify that the sequential algorithm performs
maximum likelihood decoding.

Figures 4.2.1 and 4.2.2 show the measured word error rates of the sequential
algorithm when used to decode the (8,4) and (24,12) codes. The solid points represent
simulated data points. The points are joined by straight line segments. The upper bounds
are included for reference.

The number of errors made by the correlation decoder was equal to the number of
errors made by the sequential decoder using the Fano metric. As well, the theoretical error
performance of the (8,4) code matches with the simulated error performance of the sequential
algorithm. The observation that the sequential algorithm (with the Fano metric) performs

maximum likelihood soft decision decoding should be expected given Theorem 2.

10°
\\
107! B\ -
e
NN
AN
B 102 \\ .
5 N
A
Y
N
X
1074

0 1 2 3 4 5 ¢
SNR (dB)

Figure 4.2.1. Error Performance of (8,4) Code
55

10
N\
N
. \\
107} w\“\ N\
- Vs e

LY
1072 AN

WER

10° : : . . -
0 1 2 3 4 5
SNR (dB)

Figure 4.2.2. Error Performance of (24,12) Code
4.3 Complexity

Chapter 3 showed how to measure the computational complexity of the stack algorithm.
In order to calculate the complexity, the number of nodes visited by the algorithm must be
known. At the same time that the error performance was measured, the average number
and average squared number of nodes visited as a function of signal-to-noise ratio were
measured. Figures 4.3.1 and 4.3.2 show the average number of nodes visited for the (8,4)
and (24,12) codes with the Fano metric. The vertical axis of the graphs show the average
Vnumber of nodes, in excess of the minimum, that must be searched. For the (8,4) code,
the minimum number of nodes that must be searched is 12, and, for the (24,12) Golay
code, the minimum is 36 nodes. Figure 4.3.3 shows the average squared number of nodes
visited for the (24,12) code. These exponentially decaying curves are quite similar to the
average complexity curves for convolutional codes [CICa81].

56

10

N - Nmin N

10° 1
SNR (dB)

Figure 4.3.1. Average Nodes Searched for the (8,4) Code

104
, T\\\
10 o=
N - Nmin ‘@\\
AN
2 L
g\
101 - - - - - —
0 1 2 3 4 5 6
SNR (dB)

Figure 4.3.2. Average Nodes Searched for the (24,12) Code

57

10

L4
/9'

10

(N - Nmin)*

BESSS
4 X

10

10 : : - - :
0 1 2 3 4 5
SNR (dB)

)}

Figure 4.3.3. Average Squared Nodes Searched for the (24,12) Code

In certain situations, the variability in computation of the sequential algorithm can
pose practical problems. The variance in number of nodes searched can be determined

from the average and average squared nodes searched. That is,

Variance = N2 - N2 (4.3.1)
The variance for the (24,12) Golay code is plotted in Fi gure 4.3.4. The graph shows that
the variance decreases with the signal-to-noise ratio. Consequently, any problems caused

by variability are less hindering for high signal-to-noise ratios.

58

Varianee

SNR (dB)

Figure 4.3.4. Variability in Nodes Searched for (24,12) Code

4.4 Comparisons

To judge the computational efficiency of the stack al gorithm, comparisons are made
to well known maximum likelihood decoding techniques. The comparisons are for the
(24,12) extended Golay code only.

The conceptually simplest decoding technique is correlation decoding. For a
correlation decoder the complexity to decode an (n,k) block code is (n2*-1) addition equivalent
operations. This consists of (n-1)2* additions and (2%-1) comparisons. For the (24,12)
Golay code, the complexity is N, = 98303 addition equivalent operations.

The Viterbi algorithm [Wolf78] is an improvement over a correlation decoder. The
complexity of the Viterbi algorithm consists of N,, metric additions and N_ metric comparisons.
The number of metric additions is equal to the number of branches in the trellis less two for

the first two branches where additions are not required. The number of comparisons is

59

equal to the number of nodes in the trellis with two entering branches. The calculation of
N, and N_ and, in turn, the total complexity is shown in Appendix 4-A. The results are

given below.

Np=2"%1(2k-n+2)-6 (4.4.1)
Ne=2"k2k-n+1)-1 (4.4.2)
Nya = 20K (6k-3n+5)-7 (4.4.3)

For the (24,12) Golay code, this amounts to Ny, = 20473 addition equivalent operations.

The complexity of Snyders and Be’ ery’s [SnBe89] al gorithm for the (24,12) Golay
code is 683 on average and has a minimum of 539 and a maximum of 827 addition
equivalent operations. Recently, this has been bettered by Vardy and Be’ery [VaBe91].
Their algorithm has a maximum complexity of 651 addition equivalent operations. Other
low complexity techniques are those developed by Conway and Sloane [CoSI86] requiring
1614 operations, Be’ery and Snyders [BeSn&6] requiring 1551 (1159 on average) operations,
and Forney [Forn88] requiring 1351 operations.

Given that the sequential algorithm visits N nodes the complexity is bounded by:
Nsa SN2+ N (4.4.4)
and the average complexity is bounded by:

Nesa<LlN2+N (4.4.5)

1
5
By using this formula in conjunction with Figures 4.3.2 and 4.3.3, the complexity of the
sequential algorithm can be bounded as a function of the signal-to-noise ratio. The following
table lists the signal-to-noise ratio at which the sequential algorithm comparatively becomes

the better algorithm for decoding the Golay code.

60

—

(Maximum
Technique Complexity SNR
Correlation Decoder 98303 2dB
Viterbi Algorithm 20473 3dB
Conway-Sloane (86) 1614 5dB
Be’ ery-Snyders (86) 1551 5dB
Forney (88) 1351 5dB
Snyders-Be’ery (89) 827 6dB
Vardy-Be’ery (91) 651 6 dB

\. J

The table shows that whenever the signal power is at least four times larger than the
noise power the seQuential algorithm is the most efficient algorithm for decoding the
(24,12) Golay code. As signal-to-noise ratios increase, the sequential algorithm quickly
approaches its minimum complexity of 294 addition equivalent operations. Of course, the
possibility always remains that the noise will cause the algorithm to search the entire code
tree. In that unlikely situation the algorithm will have to perform 57342 metric additions

and about 214 million metric comparisons.
4.5 Summary

Simulations were performed to measure the effectiveness of the sequential algorithm
as a decoding alternative for linear block codes. As expected from the theory in chapter 2,
the sequential algorithm performs maximum likelihood decoding. Using the complexity
measures of chapter 3, the sequential algorithm has a favorable average complexity at
moderate to high signal-to-noise ratios. In fact, by 3 dB it outperforms the Viterbi algorithm,

and by 6 dB it is the most efficient algorithm for decoding the (24,12) Golay code.

61

Appendix 4-A Complexity of Viterbi Algorithm

To calculate N, and N, the trellis should be divided into three regions as shown
below (for a (5,3) block code). Regions 1, 2 and 3 correspond to where the trellis grows,
stays constant, and collapses, respectively. Assuming that the rate of the code is greater
than one half, region 1 extends to a depth of (n - k) symbols, region 2 falls between the

depths of (n - k) and k symbols, and region 3 contains all nodes at depths greater than k.

Regions

G—1—pg4rpbgG——3—§p

|
1 l 1 1

0 (n-k) k

=

Figure 4.A.1. Trellis Regions

In region 1 the number of branches doubles for each step into the trellis. Therefore,

NP =2+4+... 4 2nk=pnkil o (4.A.1)

In region 2 the trellis has a constant number of branches and nodes. Thus,

NI(T%) = 20kt (kK (- k))= 2mk+l (2K - p) (4.A.2)
In region 3 the number of branches halves as the trellis contracts. Hence,
NG = vk yonkel 4y o= onkel (4.A.3)

62

The total number of metric additions is:

Np=NP+ N + N®_2 =00kl 2k _n12)-6 (4.A.4)
Comparisons are only needed in regions 2 and 3 since two branches enter every node in

these regions. The number of nodes in region 2 is:

N® =20k (k- (n-k))=20K (2k - n) (4.A.5)

The number of nodes in region 3 halves for each step into the trellis so:

N =onkl ponk2 oy —onk g (4.A.6)

Adding gives the total number of comparisons:
Ne=N® + NP =20k 2k -n+1)- 1 (4.A.7)
Therefore, the total complexity of the Viterbi algorithm is:

Nya =Np + N.=22%(6k -3n+5) -7 (4.A.8)

equivalent real number additions.

63

Chapter § - Suboptimum Implementations of the SSA

It has been shown that the stack algorithm can be applied to block codes once a tree
or trellis is established. Using the Fano metric, the stack algorithm can perform maximum
likelihood soft decision decoding. As well, the computational complexity of the algorithm
decreases quickly with an increasing si gnal-to-noise ratio. Therefore, the stack al gorithm is
a viable candidate for soft decision decoding of linear block codes at moderate to hi gh
signal-to-noise ratjos.

There are several unattractive features of the stack algorithm when applied to
convolutional codes. These are unbounded computation, input buffer overflow, stack
overflow, stack sort, and path storage. When the al gorithm is used for block codes some
of these problems no longer exist or are alleviated.

First of all, sequential decoding should not be used with convolutional codes that
have rates above the computational cutoff rate of the channel. In other words, the sequential
algorithm should only be used when the signal-to-noise ratio is sufficiently high to push the
computational cutoff rate above the code rate. The reason for this is that the average
number of computations becomes unbounded (infinite) at rates above the computational
cutoff rate. On the other hand, for block codes, only a finite number of computations (e.g.
maximum of 4* for an (n,k) binary block code) can be performed before decoding is
completed.

The unbounded computation leads to a second problem which is input buffer overflow.
That is, the decoding is not finished before new data arrives that fills and eventually
overflows a finite input buffer. As a result, data is lost causing future decoding errors.
This problem can be controlled for block codes by allotting a maximum number of nodes
that the algorithm can visit before proceeding to the next codeword (see section 5.1).

A third problem related to the problem of unbounded computation is stack overflow.

64

Too many decoding steps will add too many entries to the stack with the result that the
stack fills and overflows. Further entries to the full stack will either be, or cause other
entries (o be, lost resulting in degraded error performance. For block codes there are only
q" paths that the algorithm can possibly visit. Since the head of each path is stored in the
stack, the stack will contain q* entries at most. Therefore, the stack will never overflow for
block codes provided that it can hold q* entries. Unfortunately, the stack size becomes
prohibitively large as the number of information symbols increases. Therefore a smaller
stack must be used which, in turn, has a probability of overflowing. In section 5.2 the
effects of a reduced stack size are described.

The fourth problem with the stack algorithm is the computationally burdensome
stack sort needed to determine the partial path with the best metric. The priority queue
solves this problem for both convolutional and block codes.

Finally, when the Viterbi algorithm or the sequential algorithm is used with
convolutional codes the length of the explored path can grow quite large. Therefore, the
decoder has to be able to manipulate long and variable length paths. For (n,k) block codes
the maximum path length is n symbols. Therefore, the decoder can be designed to work
with paths of this length and the decoder can output n symbols at a time as a codeword is

decoded.

5.1 Reducing Computational Complexity

In order to reduce the complexity a scheme where the algorithm is limited to a
maximum number of branches or nodes that it can search can be used. If the codeword is
not decoded after L branches are searched, then the decoder can either output hard decisions
on the individual bits, force the algorithm through the trellis (i.e. no backtracking), or

output an erasure symbol.

65

If this maximum number of nodes, L, happens to be less than q* then not only will
the computational complexity be reduced but the priority queue size can also be reduced.
Since L nodes are only visited there will only be L insertions into the priority queue (one
insertion per node visited) and hence the queue will only need to hold less than L entries.

Using this scheme for an (n,k) block code over GF(q) limits the stack to:

maximum queue size < min [gk, L] (5.1.1)

The computational complexity will be reduced since L will be less than the maximum
number of nodes the algorithm can possibly visit. Without limiting the number of nodes

the average complexity of the sequential algorithm is given by:

Nmax

NN RN q-1 2
Nga ~N + N2 = (N+—-—-—N Pr[N] (5.1.2)
3q-1 NN 3g-1
where
Nmin =gk + (n-k) (5.1.3)
=(n-k+L Jgxk._9
Ninax = 1 k+q_1)q = (5.1.4)

and N is the number of nodes visited.

The average complexity with limited searching is:

Nl = q-1 2 9-1
which is clearly less than the average complexity with full searching since L < N_..

The following theorem can be used as a guide to choose a search limit. It should be
realized that limiting the amount of searching will invariably reduce the performance of the

decoder as determined by the WER.

66

Theorem 3

A sequential decoder must be allowed to visit a minimum number of nodes in order
lo guarantee that errors due 1o insufficient decoding occur less frequently than errors due to
channel noise. When a binary block code is transmitted over an AWGN channel using
BPSK modulation, a soft-decision decoder must be allowed to visit a minimum number of

nodes, L, that is lower bounded as:

L= Nyip?2 Remin

N, IS the minimum number of nodes that must be visited to decode a codeword, R is the

code rate, and d,, is the minimum distance of the code.

The attractiveness of this theorem is that the result is independent of the signal-to-noise
ratio. Intuitively, this can be explained by realizing that at low signal-to-noise ratios the
word error rate is already high so errors due to insufficient searches can also be large so the
ordinarily large searches can be reduced. At high signal-to-noise ratios the error rate is low
so the algorithm must allow for large searches in order to keep decoding failures small.
Two proofs of this theorem are provided in Appendix 5-A.

Using the previous theorem as a guide, simulations were performed to determine
the degradation in error performance with limited searching. The simulations were performed
for the (24,12) extended Golay code transmitted over an AWGN channel with BPSK
modulation. This code has a minimum distance of 8 and consequently, by the above
theorem, the minimum number of nodes to be searched is 576. The search limits used in
the simulations were 500, 1000, 2000, and 4000 nodes.

The following graph shows the WER as a function of signal-to-noise ratio for the

67

four search limits and for the unlimited search. The lower curve is for the unlimited

searched, and the curves move up as the search limit is reduced.

500

1060

2000

4000

0 1 2 3 4 5
SNR (dB)

Figure 5.1.1. WER with Search Limits of 4000, 2000,
1000, and 500 Nodes. (Lower curve
represents an unlimited search)

The simulations show that limiting the search to 4000 nodes has a negligible effect
on the error performance of the decoder. A small degradation in the WER is noticeable for
search limits of 1000 and 2000 nodes. For these limits, the loss in error performance is
less than 1 dB. Reducing the search limit further results in greater losses in error performance.

For the (24,12) Golay code, the maximum number of nodes that can be visited by
the stack algorithm is 57342 nodes. The simulations show that a limit of about 4000 nodes
is sufficient to guarantee essentially optimal error performance. This represents a decrease
of over an order of magnitude.

Since the number of comparisons increases with the square of the number of nodes
searched, the decrease in nodes searched results in a decrease of over two orders of

68

magnitude in the maximum number of comparisons. Consequently, the variation in
computational complexity of the sequential algorithm can be reduced by a factor of 100 for
the (24,12) Golay code by limiting the search to 4000 nodes.

As well as measuring the degradation in error performance, the probability that a
search reaches its limit was measured. This is shown below for four search limits, L,
where Pr [N = L] is the probability that the number of nodes searched, N, exceeds L. The

lower curve is for a limit of 4000 nodes while the upper curve is for 500 nodes.

— 500

PriHzL]

4000

0 1 2 3 4 5
SNR (dB)

Figure 5.1.2. Pr [N = L] for Search Limits of 4000,
2000, 1000, and 500 Nodes.

These simulations show that the probability that the number of nodes exceeds some
search limit decays exponentially with the signal-to-noise ratio. Thus, the number of errors
introduced by limiting the search will decrease exponentially with the signal-to-noise ratio.
Since the WER with limited searching is composed of errors due to noise and errors due to

insufficient searching, the search limit should be selected to guarantee that Pr [N> L]

69

decays as fast as or faster than the WER without limited searching. This can be shown by

using a union bound. First, the WER with limited searching is:

WER(L) = Pr[error due to noise OR search exceeds limit] (5.1.6)

where WER(L) designates the WER with searching limited to L nodes.

Using the union bound, this can be approximated as:

WER(L) ~WER +Pr[N> L] (5.1.7)

for high signal-to-noise ratios, where

WER = Pr[error due to noise] (5.1.8)
and
Pr [N=z=L] = Pr [search exceeds limit] (5.1.9)

This shows that in order to guarantee the same rate of decay with signal-to-noise
ratio for the WER(L) the probability of exceeding the search limit must decay at a rate
greater than or equal to the rate of decay of the WER. This is the criteria used in Appendix
5-A to prove the theorem for choosing a search limit.

For the (24,12) Golay code, the probability that the number of nodes searched is
greater than or equal to 4000 is much smaller and decays much faster than the WER.
Consequently, this search limit should have a negligible effect on the overall WER. As

previously noted, this observation is confirmed by the simulations.

§.2 Reducing Hardware Complexity

The second problem with the optimum implementation of the sequential stack algorithm

70

for block codes is that the required stack size grows exponentially with the number of
information symbols in the code. That is, the required stack size for optimum decoding of
an (n,k) block code over GF(q) is q*. Therefore, in order to use the stack algorithm for
one of these larger codes the optimal stack size has to be sacrificed in favor of a more
practical size. Since the decoder uses only a small portion of the entire stack under
reasonable noise levels - a complete stack is only needed when the decoder visits every path
(1.e. considers every codeword) - reducing the stack size should be feasible.

To determine the effect of a reduced stack on the error performance of the decoder
simulations were performed. Again, the simulations were for the (24,12) extended Golay
code transmitted over an AWGN channel using BPSK modulation. This code optimally
requires a stack with 4096 elements. The simulations were for stack sizes of 100, 40 and
10 elements. The WER as a function of signal-to-noise ratio is shown in the next figure for

these three cases as well as the optimum WER (lower curve).

10

WER

—— 100

0 1 2 3 4 5
SNR (dB)

Figure 5.2.1. WER with Stacks of 100, 40, and 10 Elements.
(Lower curve represents an optimum stack)

71

The simulations show that a stack of 100 elements does not degrade the performance
of the sequential algorithm significantly. The degradation is less than 0.5 dB in this
simulation. This represents a stack reduction of about 97.5 percent. Further reductions in
the stack size result in larger degradations in error performance.

The side effect of a reduced stack is a reduced computational complexity. Since all
adjacent elements in the stack are compared after every insertion and deletion, the number
of comparisons is directly proportional to the number of elements in the stack. Therefore, a

smaller stack size translates into less metric comparisons in the priority queue.

100

0 1 2 3 4 5
SNR (dB)

Figure 5.2.2. Average Nodes Searched for Stacks of
100, 40, and 10 Elements. (Upper curve
represents an optimum stack)

The number of nodes searched as a function of signal-to-noise ratio is plotted in the
above graph for the three stack sizes along with the optimum stack size. The simulations

show that the algorithm visits less nodes with a reduced stack. Since the number of nodes
72

visited is reduced, this will translate into less metric additions and less metric comparisons
performed by the decoder.

Thus, reducing the stack size has a doubly positive effect on the computational
complexity. If the algorithm were to visit the same number of nodes as it would with a
complete stack then the complexity would be smaller since less comparisons are made in
the stack. The reduced stack causes the algorithm to visit less nodes, though. Consequently,
even less metric additions and comparisons need to be performed by the algorithm. Hence
reducing the stack size not only reduces the hardware complexity but reduces the computational

complexity.
5.3 Summary

Two obstacles to the practical implementation of the sequential stack algorithm for
block codes are the variability in computational complexity and the stack (priority queue)
size. The variation in computational complexity can be reduced by limiting the length of the
search performed by the sequential algorithm. Since a full stack is only required for the
rare occasion (at moderate to high signal-to-noise ratios) when the decoder considers a
large number of potential codewords, the hardware complexity (stack size) can be dramatically
decreased.

Unfortunately, both of these techniques come at the expense of error performance,
though, this might be a small price to pay for the reductions in complexity. Fortunately,
both techniques have the added advantage that they reduce both computational and hardware
complexity.

It must be remembered, though, that these conclusions are based to a large degree
on observations of the techniques as applied to a single code. While not anticipated, the

gains may not be as sparkling for other block codes. Unfortunately, it is difficult to

73

precisely predict the effects of any complexity reduction technique used with sequential
decoders. In fact, most aspects of sequential decoders can not be predicted accurately.

This was noted by Wozencraft and Jacobs very early in the study of sequential decoding

algorithms:

“[The] analytical difficulties with sequential decoding are such
that even the tightest bounds that have been derived are not
numerically accurate enough for the purposes of engineering

design.” [WoJa65]

74

Appendix 5-A-1 First Proof of Theorem

Theorem

A sequential decoder must be allowed to visit a minimum number of nodes in order
Io guarantee that errors due to insufficient decoding occur less frequently than errors due to
channel noise. When a binary block code is transmitted over an AWGN channel using
BPSK modulation, a soft-decision decoder must be allowed 1o visit a minimum number of

nodes, L, that is lower bounded as:

L = Nyin 27

N, is the minimum number of nodes that must be visited to decode a codeword, R is the

code rate, and d

min

is the minimum distance of the code.

Before proving the theorem a result about the Gallager function must be shown.
For a symmetric discrete memoryless channel (DMC) the Gallager function is given by

[CICa81}:

J-1[K-1 1+p
Eo(p) =-logy D [> KL[Pr(jlk)]”“"} (5.A.1)

j=0Lk=0

where K and J are the number of channel inputs and outputs, respectively, and Pr (j 1k)
are the channel transition probabilities.
The DMC Gallager function can be extended to an unquantized channel by replacing

the summation over the channel outputs by an integral and replacing the channel transition

75

probabilities by the conditional channel output density functions, p(rlk). Thatis,

(o]

K-1 I+p
Eo(p) = - log, > zlpCrio e ar (5.A.2)
k=0
Since [ViOm79],
Mw, p=0 (5.A.3)
dp

the Gallager function is a non-decreasing function for positive values of p and is upper

bounded by its asymptotic value as p tends to infinity. That is,

Eo(p) = lim Ey(p) =Eg(), p=0 (5.A.4)
p—>00
where
) K-1 1/K
Ey() = - logy []’[p(rlk)] dr (5.A.5)
k=0

-0

as shown in Appendix 5-B.
For an AWGN channel with BPSK modulation K = 2 and:

76

o (r-(2k-1) VE;)2
p(rlk) —ﬁ—exp - N. (5.A.6)

[¢]

Substituting and simplifying,

Ey(®) = (5.A.8)

R*yp R-yb
5.A. d

In2 (>-A7) a Eolp) = In2

where R is the code rate and v, is the signal-to-noise ratio per information bit.

Armed with the bound on the Gallager function the theorem can be proved. The

WER can be approximated by:

WER ~ A Q('\/Z-R-dmin Ni)z%exp[- Redumin'Yh | (5.A.9)
o

for high signal-to-noise ratios.

In order to choose a limit on the number of nodes the sequential algorithm should
be allowed to visit, the distribution of the number of nodes visited should be known. A
typical plot of this distribution can be found in [Sava66] or [LiCo83]. The pareto like
distribution is characteristic of sequential algorithms.

The Pr [N =L] curve is bounded by:

L)"’spr N=L sB(L)"’ 5.A.10
(Nmin [] Nmin1 ()
where B > 1.

Approximating Pr [N = L] by the upper bound and rewriting gives:

Pr[NzL]zB(-N-L—)"’zBexp[-pln(NL. |H (5.A.11)

min min

77

For Pr[N =L] to decay as the WER the following equality must hold:

pln (L) = Redpminvh (5.A.12)
min
or
R .d ..
In | = |t (5.A.13)
Nmin p
The pareto exponent p is the implicit solution of:
R = Eo(P) (5.A.14)
P
where R is the code rate and E_(p) is the Gallager function.
The bound on the Gallager function, bounds the pareto exponent p as:
Eo(p) L
A In2 _ Y
p= R "R =73 (5.A.15)
Substituting the bound for p gives:
R d ..
ln(L)2 min'¥% _ Red,iln 2 = [n 2 Ridmi (5.A.16)
Nmin Y_b .
In2
or
L = Ny 2 Rdmn (5.A.17)

which proves the theorem.

78

Appendix 5-A-2 Second Proof of Theorem

The second proof uses a result from Viterbi and Omura [ViOm79] for decoding
convolutional codes. When sequentially decoding convolutional codes the number of

branch extensions per node can be limited to:

R = =L = branch extensions per node = 2k +1) (5.A.18)

min

Z

for an (n,k) constraint length (M + 1) convolutional code. This will guarantee that errors
due to insufficient searching have the same exponential decay with signal-to-noise ratio as
errors due to noise.

Using the following bound on a convolutional code’s free distance:

desn(M+1) (5.A.19)

lowers bound the number of branch extensions per node to:

Ny = L= oRds (5.A.20)

min

where R is the code rate.
Replacing d; by d_ (the minimum distance of a block code) and multiplying by the
minimum number of nodes the sequential algorithm must visit to decode a linear block code

gives:

L = Npp, 2 Rdmin (5.A.21)

which proves the theorem.

79

Appendix 5-B Proof of Gallager Function Limit

The Gallager function for an unquantized memoryless channel is defined as:

o
K-1

1+
Eo(p) = - logy I: z J—[p(rlk)]m“’:} pdr (5.B.1)
Koo K

- o

Therefore, the limit as p tends to infinity is:

[o¢]

K-1 1+p
Ey(®) = lim Eg(p)= lim - log, [Z —L[p(rlk)]mﬂ’] dr (5.B.2)
p—>®© p—>00 k=OK

which can be rewritten as;

r K-1
Y —Kl—[p(rlk)]ll“"

Eo(®)=-logy | exp| lim —X=9 : dr (5.B.3)

I1+p

80

Using I’Hospital’s rule this becomes:

[e o}

K-1
Eo(%) = - log, exp[kgoKLlnp(rlk)der (5.B.4)
or
) K-1 1K
Ey() = - log, {Hp(rlk):l dr (5.B.5)
k=0

-0

which is the desired result.

81

Chapter 6 - Conclusion

Unlike convolutional codes, there are no general algorithms for efficient maximum
likelihood soft decision decoding of linear block codes. Instead of trying to find such an
algorithm, though, it might be easier to adapt a convolutional algorithm to a block code.
Perhaps, an even easier solution is to make a block code look like a convolutional code.

In chapter 2 it was shown that all block codes have a tree representation and all
linear block codes also have a trellis representation. This being so, it should be possible to
use the Viterbi algorithm or a sequential algorithm to decode a linear block code. Furthermore,
instead of trying to suit the algorithms to the block code it is easier to design block code
encoders suited to the algorithms. One encoder realization treats a block code as if it were a
rate one time-varying convolutional code. If the block code is cyclic, then the convolutional
code need no longer be time-varying. Using the convolutional encoder realization, the
sequential algorithm (with the Fano metric) is able to perform maximum likelihood decoding
of linear block codes.

Chapter 3 dealt with the issue of computational complexity. Normally, the complexity
of the sequential algorithm is measured in terms of the average amount of searching that it
performs. For block codes, though, the complexity is normally measured in terms of
equivalent real number additions. Chapter 3 gives an expression to translate the measured
complexity (average nodes searched) into the complexity (equivalent real number additions)
for block codes. The complexity of the sequential algorithm can be summarized as follows:
the number of additions grows linearly with the number of nodes searched while the
number of comparisons grows quadratically with the number of nodes searched.
Consequently, too much searching will make the sequential algorithm inefficient. Therefore
the algorithm is best used at moderate to high signal-to-noise ratios when the amount

searching is small.

Chapter 4 gives a summary of computer simulations of the sequential algorithm.
The simulations confirmed that the sequential algorithm is maximum likelihood. As well,
the simulations showed that the algorithm is computationally efficient for moderate signal-
to-noise ratios. In fact, by 6 dB, the sequential algorithm is the most efficient al gorithm for
decoding the (24,12) Golay code.

Finally, chapter 5 discussed some refinements that can be made to the sequential
algorithm to reduce its complexity. These included setting an upper limit to the number of
nodes the algorithm can search, and reducing the size of the stack that holds all the
contending paths. These refinements come at the cost of error performance.

To conclude, the sequential algorithm is definitely a viable alternative for decoding
linear block codes. All that is required is that the block code be made to look like a
convolutional code. Once that step is done, any convolutional decoding algorithm, including
the sequential algorithm, can be applied easily.

The convolutional code approach to linear block codes is one of the three key
contributions of this thesis. The second contribution is the observation and proof that the
sequential algorithm is able to perform maximum likelihood decoding when the metric
satisfies certain conditions. Finally, the complexity measures of chapter 3, together, form

the last of the three key contributions of the thesis.

6.1 Recommendations for Further Study

It may be interesting to pursue the following ideas:

1. In 1979, Solomon and van Tilborg coauthored a paper that showed how to transform

a rate 1/n quasi-cyclic code into a rate 1/n convolutional code [SoVa79]. This

approach requires that the encoder be pre-loaded with the end of the information

83

sequence. Unfortunately, when an information sequence has to be decoded, the
end of the sequence is not known with certainty. In its current form, the sequential
algorithm can not be used successfully when the initial encoder state is unknown.

Modifying the sequential algorithm to suit this encoder is an open problem.

By casting a block code in the form of a convolutional code, perhaps time-varying,
it has been possible to borrow convolutional decoding algorithms for the purpose of
decoding block codes. There may be other results for convolutional codes that can

be extended to block codes (i.e. rate one convolutional codes).

For convolutional codes, the sequential algorithm has a pareto distribution of
computation. This distribution has been used to determine the signal-to-noise ratio
at which the average number of nodes searched by the sequential al gorithm becomes
unbounded. For block codes, due to the finite tree or trellis, the average number of
nodes searched will never become unbounded. A more useful measure for a block
code might be the signal-to-noise ratio at which the complexity of the sequential
algorithm is worse than the Viterbi algorithm. For example, this occurred at 3 dB
for the (24,12) Golay code. So far, no results have been developed to predict the

signal-to-noise ratio at which this would occur.

The memory between successive trees for concatenated codes may cause practical
problems. This can be avoided by clearing the contents of the convolutional encoder.
A better solution may be to ignore the memory and determine the degradation in

error performance caused by this assumption.

References

[AnMo91]

[BeSn&6]

[Blah&3]

[Chas72]
[ChY aB6]

[CICa81]

[CoSIg6]
[Forn66]
[Forn88]
[HeNo88]

[LiCo83]

[MaMo82]

[Mass78]

Anderson, J.B., and Mohan, S., Source and Channel Coding: An Algorithmic
Approach, Kluwer Academic Publishers, 1991.

Be'ery, Y., and Snyders, J., “Optimal Soft Decision Block Decoders Based
on Fast Hadamard Transform,” IEEE Transactions on Information Theory,
vol. IT-32, No. 3, May 1986, pp. 355-364.

Blahut, R.E., Theory and Practice of Error Control Codes, Addison-Wesley
Publishing Company, 1983.

Chase, D., “A Class of Algorithms for Decoding Block Codes With Channel
Measurement Information,” IEEE Transactions on Information Theory, vol.
IT-18, No. 1, January 1972, pp. 170-182.

Chang, C.Y., and Yao, K., “Systolic Array Architecture for the Sequential
Stack Decoding Algorithm,” SPIE vol. 696 Advanced Algorithms and
Architectures for Signal Processing, 1986, pp. 196-203.

Clark, G.C. and Cain, J.B., Error-Correction Coding for Digital
Communications, Plenum Press, 1981.

Conway, J.H. and Sloane, N.J.A., “Decoding Techniques for Codes and
Lattices, Including the Golay Code and the Leech Lattice,” IEEE Transactions
on Information Theory, vol. IT-32, No. 1, January 1986, pp. 41-50.

Forney, G.D. Jr., “Generalized Minimum Distance Decoding,” IEEE
Transactions on Information Theory, vol. IT-12, No. 2, April 1966, pp.
125-131.

Forney, G.D. Jr., “Coset Codes II: Binary Lattices and Related Codes,”
IEEE Transactions on Information Theory, vol. IT-34, No. 5, September
1988, pp. 1152-1187.

Herro, M.A., and Nowack, J.M., “Simulated Viterbi Decoding Using
Importance Sampling,” IEE Proceedings, vol. 135, No. 2, April 1988, pp.
133-142.

Lin, S., and Costello, D.J., Error Control Coding: Fundamentals and
Applications, Prentice-Hall, Inc., 1983.

Matis, K.R., and Modestino, J.W., “Reduced-Search Soft-Decision Trellis
Decoding of Linear Block Codes,” IEEE Transactions on Information Theory,
vol IT-28, No. 2, March 1982, pp. 349-355.

Massey, J.L., “Foundations and Methods of Channel Coding,” Proceedings

of the International Conference on Information Theory and Systems, vol.
65, NTG-Fachberichte, September 1978.

85

[OfPe91]

[PEFTVEE]

[Proa89]

[Sava60]

[SiBa54]

[SnBe89]

[SoVa79]

[VaBe91]

[VaTr69]

[ViOm79]

[Wolab5]

[Wolf78]

Offer, E., and Perkins, M.G., “Soft Decision Decoding of Block Codes
and Concatenated Block-Convolutional Codes Using the Stack Algorithm,”
Globecom 91, pp. 765-769.

Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T.,
Numerical Recipes in C - The Art of Scientific Computing, Cambridge
University Press, 1988.

Proakis, J.G., Digital Communications, 2nd ed., McGraw-Hill Book
Company, 1989.

Savage, J.E., “Sequential Decoding - The Computation Problem,” The Bell
System Technical Journal, January 1966, pp. 149-175.

Silverman, R.A., and Balser, M., “Coding for Constant-Data-Rate Systems
- PartI. A New Error-Correcting Code,” Proceedings of the IRE, vol. 42,
September 1954, pp. 1428-1435.

Snyders, J., and Be'ery, Y., “Maximum Likelihood Soft Decoding of Binary
Block Codes and Decoders for the Golay Codes,” IEEE Transactions on
Information Theory, vol IT-35, No. 5, September 1989, pp. 963-975.

Solomon, G., and van Tilborg, H.C.A., “A Connection Between Block
and Convolutional Codes,” SIAM Journal of Applied Math, vol. 37, No. 2,
October 1979, pp. 358-369.

Vardy, A., and Be’ery, Y., “Even More Efficient Soft Decoding of the
Golay Codes,” Proc. IEEE ISIT, Budapest, Hungary, June 24-28, 1991,
p. 190.

Van Trees, H.L., Detection, Estimation, and Modulation Theory, John Wiley
and Sons, Inc., 1969.

Viterbi, A.J. and Omura, J.K., Principles of Digital Communications and
Coding, McGraw-Hill, New York, 1979.

Wozencraft, J.M. and Jacobs, I.M., Principles of Communication
Engineering, John Wiley and Sons, Inc., New York, 1965, p. 444.

Wolf, J.K., “Efficient Maximum Likelihood Decoding of Linear Block Codes

Using a Trellis,” IEEE Transactions on Information Theory, vol. IT-24,
No. 1, January 1978, pp. 76-80.

86

