
sEQ{JENTr.{n DECODXNG OF. I_ÃF{EAR BLOCK COÐES

by

Dirk J. Tempel

A Thesis
Presented to the Faculty of Graduate Studies

in Partial Fulfillment of the Requirements
for the Degree

Department of-Electrical and Computer Engineering
University of Manitoba
Winnipeg, Manitoba

MASTER OF SCIENCE

March 1993

WWW NationalLibrary
wry w ofCanada

Acquisitions and
Bibliographic Services Branch

395 Wellington Street
Ottawa, Ontario
K1A ON4

Bibliothèque nationale
du Canada

Direction des acquisitions et
dès services bibliog raphiques

395, rue Wellington
Ottawa (Ontario)
K1A ON4

Your lile Votrc élércnce

Out l¡le Nolre Élérence

T'Í'le ar.ithor has grarÌted an
ãrrevocab le ¡lon-excl us¡ve licence
allowinE the hüational Library of
Canada to reprod¡;ce, loan,
distribute or sell copies of
his/her thesis hy any sneans and
i¡'r any form or format, makinE
this thesis available to interested
persons.

The author retains ownership of
the copyright i¡'l his/hen thesis.
ftüeither the thesis nor substantia!
extracts from it rnay be printed or
otherwise reproduced withor¡t
his/her permìission.

å-'au¡teun a accordé L¡ne ticence
!rnévocable et non exc¡¡.¡s¡ve
per¡mettant à Na Bibliothèque
nationale du Canada de
reprodu¡re, prêter, distribuer oL¡

vendre des copies de sa thèse
de qtlelqu¡e maniè¡,e et sous
Eue¡que forme que ce soit pour
mettre des exemplaires de cette
thèse à la disposition des
person nes intéressées.

L'auteur conserve !a propriété du
droit d'auteur qrr¡ protège sa
thèse. h{i tra thèse ni des extraits
substantiels de celle-ci ne
doivent être imprimés ou
autrement reproduits sans son
autorisation.

I58ftt Ø-315-e1684_8

Cæmada

Nome l'' ì' ,.i r

Dissertolion Abstrocts lnternotionolis.orronged by brood, generol sub¡ect cotegories. Pleose select the one subiect which most
neorly describes ihe conient of your dissertolion. Enter the corresponding four-ãigit code in the spoces provided.

l- ' :::,¡ -:-t) ; ,!,: ,11! ,/.,.¡..,\ f_i-C¿--Ùr.-Ì l*; r- =i' í't tÌ,ji-ë? it :LI n-il.,Tt åJ'e4å
SUBJECÌ TERM

Subiect €otegories

trffiffi wwffi&wøwwwv& eww g6@@øew 6€8ffiffi6€ffi6

SUBJECT CODE

COffiffiUNICATIO¡{5 A¡{D THE ARTS
Architecture,...................... 07 29
Art H istory -................. 037 7
Cinemo 0900
Donce 0378
Fine Arts0357
lnformolion Science 0723
Journolism0391
Librory Science 0399
Moss Communicotions 0708
Music-.......... 041 3
Soeech Communicotion 0459
Theoter 0¿ó5

EDUCATIO$I
Generol,.. 05 I 5
Administrotion 05 I 4
Adult ond Continuinq05ì ó
Agriculturol I................. OS I Z
,Ar1............................,.........-....0273
Bilinguol ond Multiculturol0282
8usiness 0ó88
Community Colleqe 027 5
Curriculuri ond ln"struction 0727
Eorlv Childhood 05 I I
Eleóentory0524
l-¡nonce0277
Guidonce ond Counselinq 051 9
Heolth:.......... 0ó80
Higher07 45
History of0520
Home Economics 0278
lndustriol0521
Longuoge ond LìÌeroture 0279
Mqlhemolics 0280
Music 0 522
Philosophv of 0998
Physiccìl ..1................................. 0523

ffiww &@øffi,ru@ffi$ MWW
Bt0t0GtcAt sqEN(Es
Aqriculture-

Genero1 O 47 3
Aqronomy 0285
Añimol Cûlture ond

Nutrition047 5
Animol Potholoqv 0 47 6
Food Science cñii

Technoloqv 0359
Forestn', onãWildlúe 0478
Plont Culture0479
Plont Potholoov 0480
Plont Phvsioloîv 081 7
Ronqe Monoqäme n| 0777
Woõd Technõloov 07 46

Bioloov
GËnerol 030ó
Anotomy . -... -...................... 0287
Biostotisiics 0308
Botony 0309
Cell ..1................ 0379
Ecoloqy 0329
Entomî1ogy..................,..... 0353
Genelics 03ó9
Limnoloov 0293
Microbiõlogy 0¿1 0
Moleculor 0307
Neuroscience,..... 03 I 7
Oceonoqroohy.................... 041 ó
Physiolo[y :...:..................... 0¿33
Rodiotion 082 I
Velerinory Science............... 0778

_. Zpology .'...... -...................... 0472
BroohYsrcs

'Gánerol0786
Medicol0760

0535
.............,.......,..... 0527
.............._............071 4

Secondory............ . 0533
Sociol Scíences 053¿
Sociolooy of 0340
Soecìo11..............0529
Teocher Troininq 0530
Technoloqv I........................ 0Z I O
Tests ondrÇ1eosurements 0288
Vocotionol0747

[A${GUAGE, TITERATURE AND

I.INGUISTICS
Lonouooe

öen"ero I o 67 g
Ancient 0289
Linguistics 0290
Modern,......................... 029 ì

Literoture
Generol 040 I
Clossicol 029 4
Comporotive 0295
Medíevol 0297
Modern-............... 0298
Africon 03 I ó
Americon............................ 059,l
Asion................0305
Conodion f Enolishl 0352
Conodion {Fre"nchi 0355
Enolish 0593
Ge-rmonic 03 I I
Lofin Americon, 03I 2
Middle Eostern 031 5
Romonce 03'l 3
Slovic ond Eost Europeon03 1 4

ffiru@øffiffiffiffiøru@
Geodesy0370
Geo|ogy.............0372
Geophysics0373
Hydrology0388
Minerolooy 04 I I
PoleobotoÁv,... 03¿5
Poleoecoloóv 0 42ó
Poleontoloqî 04 1 8
Poleozooloõv 0985
Polvnoloov".l....... o 427
Phísicol öeoqrophv 03ó8
Phisicol OceðnogräphyOr'1 5

HEAl.TH AND ENVIROTMENTAt
SCIE$ICES

Environmentol Sciences 07ó8
Heohh Sciences

Generol 05óó
Audioloqv..........0300
Chemotñ'éroov 0992
Dentisf ny 1.1..... 0 5ó7
Educoliôn,........ 0350
Hosoitol Monooem enr 07 69
Huóon Develoõment 0758
lmmunoloqy ...'............. -....... 0982
Medicine ðhd Surqerv05ó4
Mentol Heolth:....'............ 0347
Nursing 05ó9
Nutr¡tion 0570
Obstetrics ond Gy¡ecolo y ..0380

........................ 0525

....0572

.......o573

PHII.OSOPHY, REIIGIO!{ AND
THEOI.OGY
Philosophy 0422
Kelroron

öenerol 03 I 8
Biblicol Studies 032i
Clergy ..,............................031 9
History ol 0320
Philosôphv oÍ 0322

Theology . i... :.................... 0A69

s0clAt sqEN(Es
Americon Studies 0323
Anlhropology

Archoeoloqy 0324
Cu|turol...11..........032ó
Physicol 0327

Busine!s Adminislrotion
Generol 03 I 0
Accounling 0272
Bonking0770
Monogement0454
Morketinq 0338

Conodion Stùdies 0385
Economics

Generol 050 I
Aqriculturol...........0503
Cõmmerce-Business 0505
Finonce 0508
History................................ 0509
Lobor' 05 I 0
Theonv 05 I I

Folklore ..'.................................. 0358
Geogrophy 03óó
Gerontology0351
Hislorv

Generol 05ZB

Psvcholoov....
Reíodino 11......
RelioioJs.-.....
Scie"nces ...-....

Soeech Polholoov......
Tòxicoloov .. .::

Home Econo"ríics

PHYSICAI. S(IE?{GS

Enoineerino
"Generof 053z
Aerospoce 0538
Agricrilturol 0539
Aulomotive 0540
Biomedicol 054ì
Chemico1 0542

..........0r'ó0

..........0383

....038ó

Pure Sciences
Chemislrv

Genérol 0485
Agricu |turo1 07 49
Anolyticol 048ó
Bioclíemistry 0487
lnorgonic 0488
Nucleor............. . , 0738
Orqonic 0490
Pho-rmoceuiico1 049 1

Phvsicol 0 49 4
Polymer 0495
Rodiotion07 5Á

Mothemotics,..... 0¿05
Phvsics

' Generol Oó05
Acoustics 098ó
Aslronomv ond

Astroph'ysics.,................... 0ó0ó
Atmosplreiic Science............ 0ó08
Atomic 07 Ag
Electronics ond Eleckiciv 0óO7
Elementory Porticles ond

. High Enêrsy......0798
Fluid ond Plosmo 0759
Moleculor 0ó09
Nucleor 0ó I 0
Optics 07 52
Rcidiotion 07 56
Solid Srore,.............0ót ì

Stotistics-................. 0¿ó3

Applied Sciences
Applied Mechonics 034ó
Côinputer Science Oq 84

Moteriols Science 0794
Mechonicoi 05¿8
Metollurgy 07 43
Mining055'l
Nucleor 0552
Pockoging 05¿9
Petroleum0765
Sonitory ond Municipol0554
System Science...0790

Geotéchnoloqy.0428
Operotions RËseorch 0796
Plóstics Techno1oqy 079 5
Texti le Tech nolog"y' 09 9 4

ecoloo
h.nJOccupotionol Heälth on

Ophtholriology
Theroov 035¿
ohtholrÁoloov 038 I

PcithologyPotholoqv 057,l
PhormoZôlosy 04l 9
Phormocv...rnormocy,......,.,.-.-.-..-.vJ/ ¿
Physicol lheropv 0382
Public Heolth .1.1 05730425

o996 Rodio1ogy O57 4
Recreoliòn ... -........ -. -........... O57 5

EARTH S(IENCES
Bioqeochemistry ..
Geõchemistry .1..,

SEQUENTIAL DECODING OF LINEAR BLOCK CODES

BY

DIRK J. TEMPEL

A Thesis submitted to the Factlfy of Graduate Studies of the University of Manitoba in partial

fuIfillment of the requirements for the degree of

MASTER OF SCIENCE

@ 1.993

Pen¡rission has been granted to the LIBRÄRY OF T}{E UNMRSIIY OF MANXIFOBA to lend or

sell copies of this tftesis, to the NATIONÂ.L LIBRARY OF CANAÐA b microfilm this thesis and

to lend or sell copies of the film, and IJNfffiRSffY ñdICROFILMS to publish an abstract of this

thesis.

The author reserves other publications dghtr, and neither the thesis nor extensive extracts &om it
may be printed or othenyise reproduced wíthout the authoy's permission"

I hereby declare that I am the sole author of this thesis.

I authorize the University of Manitoba to lend this thesis to other institutions or individuals

for the purpose of scholarly research.

Dirk J. Tempel

I further authorize the University of Manitoba to reproduce this thesis by photocopying or

other means, in total or in part, at the request of other institutions or individuals for the

purpose of scholarly research.

Dirk J. Tempel

Ae[<mowledgments

I would like to thank Professor Ed Shwedyk for his help and support over the past

two years. I would like to thank the University of Manitoba and its donors for the Duff

Roblin Fellowship and the Clarence Bogardus Sharpe Memorial Scholarship. I would like

to thank the Cable Telecommunications Research Institute for the Cable Telecommunications

Research Fellowship. Finally, I would like to thank the Natural Sciences and Engineering

Research Council of Canada for support.

iü

Abstnact

This thesis describes the use of the sequential stack algorithm for decoding linear

block codes. The motivations for using this algorithm are that (i) it can be applied to any

linear block code, (ii) it uses soft decisions, and (iii) it is efficient at moderate to high

signal-to-noise ratios.

Because the sequential stack algorithm was developed to decode convolutional

codes, it is not necessarily suited to block codes. Instead of modifying the algorithm to suit

block codes, block code encoders can be designed to suit the algorithm. Two techniques

for designing encoders are described in the thesis. The first follows from Wotf s trellis

construction techniques, while the second casts a block code in the form of a rate one

time-varying convolutional code. For suitable encoders, the sequential algorithm can be

used to decode binary, q-ary, and concatenated codes. Further, it is proven that the

sequential algorithm performs maximum likelihood soft decision decoding.

To be able to determine the effectiveness of the sequential algorithm, computational

complexity measures are formulated. Using these measures, it is shown that the stack

algorithm is the most efficient algorithm for decoding the (24,12) extended Golay code

when the signal power is at least four times greater than the noise power. Computer

simulations show that the stack algorithm can be made more efficient by setting a search

limit and by reducing its stack size. These improvements come at the cost of error

performance.

Overall, the thesis shows that the sequential algorithm is a viable alternative for

decoding linear block codes at reasonable signal-to-noise ratios.

1V

Table of Contents

Chapter

I trntroduction
1. 1 Sequential Algorithms
L2 Review of Trellis Decoding Techniques
7.3 Other Soft Decision Decoding Algorithms
L4 Thesis Outline

2 Sequential Stack ,A.lgorithm for Elock Codes
2.I Alternative Representations of Block Codes
2.2 Encoders
2.3 SSA for Binarv Block Codes
2.4 Fano Metric - Íllock Codes Over GF(2)
2.5 SSA for Block Codes over GF(q)
2.6 SSA for Concatenated Codes
2.7 Summary

Appendix 2-A
Appendix 2-B
Appendix 2-C

3 Computational Complexity
3.I A Complexity Measure for Block Codes
3.2 ComplexityMeasured
3.3 Metric Additions
3.4 Metric Comparison

? 5 Hardware (Stack) Complexity
3.6 Summary of Complexity Measures

Appendix 3-A

4 Simulation R.esults
4.1 Encoders
4.2 Error Perforlnance
4.3 Complexity
4.4 Comparisons
4.5 Summary

Appendix 4-A

q Suboptimum Implementations of the SSA
2 \ Reducing Computaiional Complexity
2? Reducing Hardware Complexity
5.3 Summary

Appendix 5-A-1
Appendix 5-A-2
Appendix 5-B

6 Conclusion
6.7 Recommendations for Future Study

R.eferences

I
2
2
õJ
5

7
7
10
T7
t9
22
24
27
28
29
32

36
36
37
37
39
44
44
47

51
51
53
56
59
6t
62

64
65
70
-at3
75
79
80

82
83

84

l-ist of'

Figure

2.1.1
2.t.2
2.L3
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.5.1
2.6.I
2.6.2
2.C.1

3.3.r

4.O.r
4.I.1
4.t.2
4.2.1
4.2.2
4.3.r
4.3.2
4.3.3
4.3.4
4.A.7

5.t.1
5.1.2
5.2.1
5.2.2

AWGN
BPSK
DMC
GF
GIFO
LIFO
SNR
SSA
WER

Figures

Full Binary Tree
Pruned Binary Tree
Block Code Trellis
Encoder for Systematic Block Codes
Systematic Encoder for Cyclic Codes
Encoder for a Wagner Code
Block and Convolutional Code Encoders
Encoder for Block Codes
Encoder for Cyclic Codes
q-ary Tree
Concatenated Coding Scheme
Concatenated Code Tree
Average Nodes Searched for 3 Metrics

Tree for an (n,k) Binary Block Code

Discrete Time Channel
(8,4) Extended Hamming Code Encoder
(24.,12) Extended Golay Code Encoder
Error Perfonnance of (8,4) Code
Error Performance of (24,12) Code
Average Nodes Searched for the (8,4) Code
Average Nodes Searched for the (24,12) Code
{verqge Squared Nodes Searched for rhe (24,12) Code
Variability in Nodes Searched for (24,12) Code
Trellis Regions

WER with Search Limirs
Pr[N > L] for Search Limits
WER with Stacks of 100,40, and l0 Elements
Average Nodes Searched for Stacks of 100, 40 and 10 Elements

Page

9
9
10
72
13
T3
I4
i5
T6
22
24
25
35

38

51
52
52
55
56
57
57
58
59
62

68
69
7T
72

List of Acronyms

additive-white-Gaussian-noi se
binary phase shift keying
discrete memoryless channel
Galois field
greatest-i n-fi rst-out
lasrin-first-out
signal-to-noise ratio
sequential stack algonthm
word error rate

vl

Chapten I - Xntrodr¡ctior'¡

Owing to their algebraic properties, linear block codes are typically decoded using

algebraic techniques. Generally, these algebraic techniques suffer from an inherent loss of

2 dB [Proa89] in error perlormance because they can not use soft decisions. This is not to

say that all block codes can not be soft decision decoded, but when efficient algorithms

exist they are usually specific to a code or class of codes at best. On the other hand,

convolutional codes are easily decoded using the Viterbi algorithm or a sequential algorithm

that use soft decisions and hence have a 2 dB advantage over block codes. Therefore, the

ability to extend the convolutional decoding techniques to block codes would clearly be

advantageous.

Why have soft decisions been so easy to use when decoding convolutional codes

but not when decoding block codes? Perhaps the overwhelming algebraic structure of

linear block codes has overshadowed the trellis structure that block codes also possess. It

is the trellis structure of convolutional codes that allows soft decision decoding to be easily

implemented. Thus, if a trellis structure can be assigned to a block code, then soft decision

decoding will easily follow.

Wolf has shown how to construct a trellis for linear block codes in general [Wolf78].

The Viterbi algorithm may then be applied to this trellis to decode block codes using soft

decisions. Unfortunately, the width of Wolf s trellis grows exponentially with the number

of parity symbols used in the block code, thereby, making the Viterbi algorithm inefficient

for higher parity codes. For these larger trellises a sub-optimum algorithm such as the

M-algorithm [MaMo82] could be used. if the signal-to-noise ratios are at least moderate,

then a sequential algorithm would be very efficient without sacrificing the optimal error

performance of the Viterbi algorithrn.

n"X Sequential Algorithrns

Since trellises for block codes are very wide, a sequential algorithm, working at

moderate signal-to-noise ratios, is an effective decoding alternative to the Viterbi algorithm.

Unlike the Viterbi algorithm, a sequential algorithm follows a single path through a trellis

until it reaches the end of the trellis or it decides to abandon its current path and follow a

better path. At reasonable signal-to-noise ratios, a sequential algorithm will only explore a

small number of promising paths. As a result, the sequential algorithm will visit a fraction

of the overall trellis that the Viterbi algorithm must cover and hence it is more efficient.

Akin to a tourist travelling through New York, the sequential algorithm requires a

map, road signs, and a compass to successfully decode a block codeword. That is, the

sequential algorithm requires a trellis for the block code (city map), information determining

where the algorithm is in the trellis (road signs), and a measure telling the algorithm which

direction it should follow (compass).

As important as maps, road signs, and compasses are, the tourist can not travel

through New York unless he has transportation. Similarly, a block code can not be

decoded unless there is a decoding algorithm. Because of its pedagogic simplicity the stack

algorithm can be used to demonstrate the application of sequential decoding to block codes.

1. "2 R.eview of T'rellis Ðecoding Techniques

The idea of assigning a trellis to a block code first appeared in i978 in papers by

Wolf [Wolf78] and Massey [Mass78]. Both were motivated by rhe ability ro use rhe

Viterbi algorithm to decode linear block codes easily. While Wolf answered how to apply

the Viterbi algorithm, Massey went a step further and showed how to measure the cornplexity

of the Viterbi algorithm. Complexity could then be used as a guide for designing trellises

for block codes.

Under Wolf s trellis construction, the lvidth of the trellis grows exponentially with

the number of parity symbols in the block code. As a result, the Viterbi algorithm is only

computationally practical for low parity codes. Recognizing this, Matis and Modestino, in

1982, proposed using the M algorithm to search the trellis [MaMo82]. The M algorithm

only searches a subset of the trellis and, therefore, has a lower complexity than the Viterbi

algorithm. The disadvantage of the M algorithm (as compared to the Viterbi algorithm) is

that it is not a maximum likelihood algorithm. Consequently, there is a trade-off between

computational com plexi ty and enor performance.

The sequential algorithm is also adept at searching large trellises. In 1991, Offer

and Perkins described the use of the sequential stack algorithm to decode systematic binary

block codes [OfPe9l]. In their algorithm, they use a modified Fano metric that makes the

algorithm close to (but not exactly) maximum likelihood. The disadv anÍageof the sequential

algorithm is that it has a variable complexity depending on the channel noise. This limits

the algorithm to channels with reasonable noise levels.

All three approaches allow soft decision decoding to be perfonned for block codes.

As well, the algorithms only require that a trellis (or a tree) structure can be assigned to the

code, and, hence, are general soft decoding algorithms.

n.3 Other Soft Ðecision Decoding ,{lgorithms

Other than the trellis decoding algorithms, there are onìy a few good soft decision

algorithms that can be used to decode any linear block code. This overview will be limited

to those algorithms that are designed to minimize the codeword error rate or at least do so

asymptotically. These algorithms are: generalized Wagner decoding [SnBe89], generalized

minimum distance decoding [Forn6ó], and channel measurement decodin glChasT2].

Given the received sequence, all of these algorithms perform the same three steps

while decoding. First, hard decisions are made on the received sequence. In the second

step, the algorithm determines a set of contending codewords. Finally, a codeword from

this set is chosen using a soft decision criteria. The algorithms differ from each other in the

manner in which the set of contending codewords is determined.

Genenalized Wagnen Ðecoding

In 19fl, Silverman and Balser [SiBa54] considered the problern of choosing betrveen

a code (the Wagner code) that probably corrects all single errors and a code (the Hamming

code) that definitely corrects all single errors. Though the latter initially appears to be the

best choice, this decision is clouded by the fact that the probability that a bit is received in

error is higher for the Hamming code. This observation is the consequence of an equal

energy codeword assumption. The Wagner code is simply formed by appending a parity

check bit to the information sequence. It is decoded by making hard decisions on the

received sequence and then complementing the least likely bit if the parity fails. Because it

only has one extra bit, as opposed to several, the probability of error for Wagner codes

(using this decoding procedure) is less than that for Hamming codes (using a hard decision

decoding algorithm).

In 1989, Snyders and Be'ery [SnBe89] showed how to generalize the Wagner

decoding rule to make it useful for all codes (not just single parity codes). Though the

algorithm can be used to decode linear block codes in general, it is most efficiently used for

small parity codes. With this in mind, they have showed how to apply the algorithm ro rhe

cosets of a subcode and, thereby, create an efficient algorithm. The generalized algorithm

can be summarized as follows: make hard decisions and evaluate the syndrome; secondly,

among all of the sets of linearly independent columns of the parity check matrix that add to

the syndrome, find the one for which the sum of confidence values is minimum; finally,

complement the bits associated with the set found. This algorithm is the only one of the

three algorithms considered in the overview that is optimum in regards to minimizing the

word error rate.

Genenalized Minimum Ðistar¡ce Ðecoding

In 1966, Forney [Forn66] presented a new distance criterion, called generalized

minimum distance, that incorporates soft decision information. He then presented an

algorithm that uses the generalized measure and is nearly maximum likelihood for a low

noise white Gaussian channel. The algorithm works by erasing various numbers of the

least reliable bits and then decoding the resultant words with an erasures-and-errors decoder.

Of the resulting codewords, the one that falls within the generalized minimum distance of

the received word is selected as the correct codeword.

Channel Nleasurement Ðecoding

In 7972, Chase lChasTZl presented three asymptotically optimum algorithms for

soft decision decoding of block codes. These algorithms differ in the sizes of the sets of

contending codewords they construct. In all algorithms, the sequence of hard decisions is

perturbed by a set of test patterns. The perturbed sequences are then decoded using a hard

decision algorithm. Of these candidates, the codeword that produces an error pattern of

minimum analog weight is selected as the correct codeword.

L.4 Thesis Outline

Chapter 2 shows how to represent block codes as a tree or trellis. These structures

can be constructed easily by using the block code's encoder. The sequential stack algorithm,

as applied to binary, q-ary, and concatenated codes, is described in the remainder of the

chapter.

The key motivation for using a sequential algorithm is that it is an efficient algorithm

for optimal decoding of block codes at moderate signal-to-noise ratios. Thus, chapter 3

deals with the issue of computational complexity. Here, a previously defined measure of

complexity is used to determine the complexity of the stack algorithm as applied to linear

block codes.

Chapter 4 presents computer simulation results that show that the stack algorithm is

optimal and efficient. The block codes used in the simulations are the (8,4) extended

Hamming code and the (24,12) extended Golay code. For the (Z4,IZ) Golay code, the

computational complexity is compared to the leading algebraic techniques. The simulations

show that by 6 dB the sequential algorithm is the most efficient algorithm for soft decision

decoding of the (24,12) Golay code.

Though the sequential algorithm is efficient, it can be made more efficient through

refinements to the algorithm. These refinements usually come at the cost of error performance.

Chapter 5 deals with two techniques to reduce the complexity of the sequential stack

algorithm. These are setting an upper search limit and reducing the stack size.

Finally, chapter 6 contains conclusions and recommendations for further study.

6

Chapter 2 - Sequentiat Stact< Algorittrrr¡ fon tstrock Codes

In section I.2 the Viterbi, sequential, and M algorithms for decoding block codes

were briefly discussed. Of these, the sequential algorithm is the only algorithm that can

optimally (in terms of error performance) decode large parity block codes. The sequential

algorithm is visualized as a tree (or possibly trellis) searching algorithm. Thus, in order to

apply the algorithm to block codes, a tree representation must be found for block codes. In

section 2.L the tree and trellis representations for block codes are found. Tree representations

can be found for any block code whether it is linear or non-linear. If the code is linear,

then a trellis representation can be found. Finally, it is shown that the tree or trellis

representation can be easily generated using the code's encoder. Section 2.2 shows how to

design these encoders based on the code's generator matrix.

Sections 2.3 through 2.6 describe the sequential stack algorithm in detail for binary,

q-ary, and concatenated codes. In section 2.4 the metric used while decoding is discussed.

It is also shown that the sequential stack algorithm using this metric is optimal in terms of

error performance.

2.'1, Altennative Representations of tslock Codes

Convolutional codes can be decoded using a tree or a trellis searching algorithm.

These algorithms have the advantage of being general (applicable to all convolutional

codes) and being able to incorporate soft decision information easily. Block codes can also

be decoded using these algorithms if they are looked at in the proper manner. The tree or

trellis representation is a trade of the use of the block code's algebraic structure for generality

and soft decision decoding ease.

The usefulness of atree or trellis representation is that it allows one to reduce the

number of codewords under consideration. For example, for linear binary codes, a decision

made at the fork between two branches halves the number of contending codewords.

Rather than considering each codeword individually until a match is found, the codewords

are reduced until only a single choice survives. This is akin to a game of twenty questions

where each question narrows down the possibilities rather than a situation where all

possibilities are considered individually until a match is found.

All block codes, linear or non-linear, have a tree representation as do all convolutional

codes. This representation is the most general, and, consequently, ignores a large portion

of the code's algebraic structure. Nevertheless, this representation does allow soft decision

decoding to take place.

A tree for an (n,k) block code over GF(q) can be created conceptually rather easily.

First, a tree representing all possible n-tuples with elements from GF(q) (q" in total) can be

grown. This tree will have the characteristic that each branch will have q exiting branches.

This implies that the total number of branches at each level in the tree will be q times as

large as the previous level. The last level of the tree will have a total of q" branches. So far

the only information from the code used to construct the tree has been the block size n and

the field size q. The second step in constructing the proper tree for the (n,k) block code is

to prune the tree so that all paths through the tree represent codewords from the (n,k) block

code. The number of paths will be equal to the number of codewords which is usually

equal to qk

As an example, the tree for a (4,2) block code over GF(2), where the code consists

of the 4 codewords {00i1,0101, 1101, 1111}, can be constructed using the previous

procedure. First a tree growin g to 2a branches is built and labelled.

/<"

^-@---v

*-oå.--.r-.B
/\t-*--oÅ\, ,\@

¡-'@
-.-v

\-.-oAl-."\i:---oÆ
I\@

oÆ1Æ
1-r--.-oÆ

_r t>@
a--@t\---oÆi*

\t-*--6-*
_

I\@

U

/

I

Figure 2.t.1. Full BinaryTree

Pruning all branches that do not belong to a specific codeword leaves the following tree:

0

/

\
I

^,,,A.'u r-ø
1:_

,\@

Figure 2.1.2. Pruned Binary Tree

Once a tree is constructed, any codeword can be found by tracing iþath through the tree.

An even more compact representation of a block code can be constructed if the code

is linear. A linear block code has a generator matrix G and parity matrix H. Using the

/'o^r\l--e
r\t'*/o,^,-*

\,

parity matrix H, Wolf has shown how to construct a trellis. As an example, the trellis for a

(5,3) block code is shown below. The zeros and ones that make up the code are represented

by solid and dashed lines, respectively.

Depth

012345

2.2 Encoders

The following is quoted from the preface of Richard E. Blahut's coding textbook:

"Good codes need good decoders, and good decoding

algorithms lmve been dfficult to find. In the end, it may be

just as fruitful for theoreticians to search out new codes to fit
known decoders as it is to search out new decoders to fit
kno,yvn codes." [BI,ah83]

Therefore, instead of trying to suit the sequential decoding algorithm to block

codes, it might be wiser and easier to try to suit the block codes to the decoder. That is, for

an arbitrary block code, it might be better to find an equivalent block code that has an

encoder suited to the decoding algorithm. With this goal in mind, it is necessary to first

10

00

determine what the sequential algorithm requires of an encoder.

The object of the decoder is to retrace the path followed by the encoder through the

tree or trellis. To accomplish this the decoder requires a replica of the original encoder to

define the tree or trellis. Then the decoder can attempt to determine which information

sequence was encoded based on the received noise corrupted codeword.

The first requirement of an encoder is that it can output a symbol for every input

symbol. This is necessary for the algorithm to be able to generate the tree "on the fly".

That is, the encoder does not have to wait for the entire information sequence before it can

determine the beginning of a codervord.

It is important for the decoding algorithm to know where it is in the tree at all times.

This information determines which branches exit the particular node at which the algorithm

is currently stationed. The easiest method for this is to store the entire tree in a memory that

can be referenced by the algorithm as it moves forward. For large codes this presents a

practical problem since the tree grows exponentially with the number of information symbols.

When the Viterbi algorithm is used on a trellis for a block or convoluiional code it

keeps track of where it is by storing the state of the encoder. The successor states can then

be determined for all of the encoder's possible inputs. Thus, the second requirement for an

encoder is that it has a state that can be read.

In summary, though the details of the encoder are not important, it is necessary that

the encoder be able to output a symbol for every input symbol, and also have a state that

can be recognized and read by the decoder. As long as a "black box" encoder satisfying

these two requirements can be found, the algorithm can keep track of where it is at all

times.

Though the "black box" encoder is sufficient to guarantee that the algorithm can

move through the tree without storing the tree it may not be the simplest encoder. Further,

for an arbitrary encoder it may be difficult to determine the state of the encoder. Two

11

different approaches for designing encoders follow.

Approach I

This approach follows from Wolf s trellis construction techniques [WolfTg]. For

(n,k) linear block codes, at least, a one-input-one-output encoder can be designed using the

code's generator or parity matrix. First, since every linear block code has an equivalent

systematic code, it is only necessary to consider systematic block codes. Then the first k

output symbols are equal to the first k input symbols. The remaining (n-k) output symbols

are equal to the elements of the vector formed by the weighted sum of the first k columns of

the code's systematic parity check matrix. The sum is weighted by the first k input

symbols. This weighted sum is also the state of the encoder. Mathematically, after t

symbols have entered the encoder, the state is:

st= t hj = i6h6 + i1h1 +... + i¡-1h¡-1 (2.2.r)

where \ is the jth column of the code's parity check matrix. Figure 2.2.1. shows a

diagram of this type of encoder.

@-@Þ
Output

Figure 2.2.L Encoder for Systematic Block Codes

r- 1

Tj=0

r- 1

st= I
j =o

t2

if the code is cyclic, then it can also be encoded systematically with the following shift

register circuit with feedback where the g,'s are determined by its generator polynomial.

_1

8n'-L

Figure 2.2.2. Systematic Encoder for Cyclic Codes

Initially the output is connected to the input and the feedback loop is closed. After k

symbols have been entered into the encoder, the output is connected to the encoder circuit

and the feedback loop is opened. The state of this encoder is defined by the contents of the

(n-k) shift registers.

As a simple example, the encoder for an (n,n-1) Wagner code [SiBa54] is shown

below. The feedback loop is switched out after (n-1) symbols have been entered into the

encoder. This circuit simply appends a single even parity bit to any binary sequence.

@+

Figure 2.2.3. Encoder for a Wagner Code

Input

13

Approach 2

A second approach to designing encoders for block codes is motivated by the fact

that the sequential algorithm was originally designed for convolutional codes. if a block

code can be made to look like a convolutional code, then it can be decoded in a more

straight forward manner.

For example, encoders for a cyclic block code and a convolutional code are shown

in Figure 2.2.4. Aside from the upper taps of the convolutional code, both encoders are

identical. Both codes have the same trellis and tree representations differing only in that the

one for the block code has a single bit labelling each branch instead of two.

(7,4) Block code or (1,1,3) convolurional code (2,1,3) convolurional code

Figure 2.2.4. Block and Convolutional Code Encode¡s

Motivated by the above example, if it is possible to encode all linear block codes

(and not only cyclic codes) using a sequence of shift registers, then the encoding and

decoding of block codes will be the same as for convolutional codes. The following

theorem shows how to find an equivalent code that can be encoded using a sequence of

shift registers. This theorem is proved in Appendix2-A.

t4

T'åreorer¡r n

Given an (n,k) Iinear block code with generator matrix G, an equivalent code can be

found that has a generator matrix of the foltowing form:

*Eo*000"'00
O,**t -00 00

0'.00*gr-z-0
0..000*gk_l *

where the g ,'s are (n-k+ t)-tuples.

This equivalent code can be encoded using (n-k) shift registers with time-varying

taps, as shown in Figure 2.2.5. The taps are determined by the columns of the generator

matrix. That is, the taps for the first infonnation symbol are determined by the first column

of the Senerator matrix while the taps for the second symbol are determined by the second

column. For example, the taps for the kth symbol are the first element of gu_,, the second

element of gr-r, the third element of gr-r, and so on until all (n-k+1) taps are determined.

More precisely, 8i(t) = g,-,,, for 0 < t-i < k-1, and is equal to zero otherwise. The state of the

encoder is simply the contents of the (n-k) shift registers.

Figure 2.2.5. Encoder for Block Codes

"=f

@ eo(Ð

75

The procedure for using this encoder is as follows:

1.

2.

-J.

4.

5.

Initialize all the registers tozero.

Set the encoder taps.

Enter a symbol.

Repeat steps 2 and 3 for k info¡mation symbols.

Repeat steps 2 and 3 for (n-k) zeros.

This encoder yields n codeword symbols due to the k information symbols and the (n-k)

zeros' The block encoder has only one output for every input. Therefore, the block code

can be viewed as a rate one (i.e. n=l and k=1) time-varying convolutional code and can be

decoded as if it were a convolutional code.

Cyclic codes are a special case of the previous theorem. If the code is cyclic, then

all of the (n-k+1)-tuples in G are the same, and, hence, the encoder taps do not change with

time. The encoder is shown in Figure 2.2.6.

Figure 2.2.6. Encoder for Cyclic Codes

Both approaches have their own advantages and disadvantages. The first approach

has the advantage that the code it generates is systematic so it is easy to remove the

76

information from the code. A second advantage is that it is easy to label the tree or trellis

for the code for depths less than k because the first k output symbols are equal to the first k

input symbols' The disadvantage of this first approach is that the trellis described by the

encoder is irregular. The second approach has the advantage that its trellis is the familiar

trellis for a corresponding convolutional code. It only differs in the branch labels. As

well, since the analogy to convolutional codes is so much stronger, it is clearer how to use

this encoder with the sequential algorithm.

2.3 sequential stack .A.lgorithm (ss.A.) for ginany Elock codes

The object of the sequential algorithm is to search through the tree constructed for

the code to find the codeword that most closely resembles the received sequence. The

sequential stack algorithm follows a path through the tree until some other path looks more

promising. At this point the other path is explored until a better, if any, path is found.

This continues until some path reaches the end of the tree at which time this path is chosen

as the path most resembling the noise corrupted codeword. During the search, partially

searched paths are stored in a stack and arranged according to their resemblance to the

received sequence.

Instead of storing the partial paths on a stack that is sorted, the paths can be stored

in a priority queue as described by Chang and Yao [ChYa86]. The priority queue is a

greatest-in-first-out (GIFO) type of stack as opposed to the usual last-in-first-out (LIFO)

stack. The advantage of the priority queue is that it avoids a lot of the needless sorting

required by the stack algorithm by realizing that the most promising path is the only path

required by the algorithm at any given time. As well, Chang and Yao s parallel implementation

of the priority queue allows the algorithm to determine the most promising partial path in a

fixed processing time.

17

The algorithm for decoding an (n,k) binary block code is:

1. Delete the best path from the priority queue.

2. if the path is at the end of the tree, output the information sequence and quit.

Otherwise:

3 . Initialize the state of the encoder.

4. Input a bit (0 or 1) inro the encoder.

5' Calculate the branch metric using the encoder output bit and the received bit.

6. Add the branch metric to the path metric.

7. Append the input bit to the information sequence.

8. Increment the path length.

9. store the metric, path, path length, and state in the priority queue.

10. Repeat steps 3 thru 9 until all of the possible input bits are exhausted.

1 1. Return to step 1.

The algorithm presented above requires some explanation. Before any decoding

can take place a priority queue of sufficient size must be available to the algorithm. The

priority queue must be able to store at least four pieces of information about a particular

node' These are the metric, partial path, path length, and encoder state. The metric is the

measure used to determine which path most resembles the received sequence. The partial

path contains the information bits leading to the current state of the encoder, and the path

length is the number of information bits. The priority queue must then be initialized with

the root of the code tree where the metric will be zero, the partial path will be empty, the

path length will be zero, and the state will be the all-zero state. in this way step 1 will

delete the root of the code tree and begin the decoding process from this point.

Step 1 requires that the best path be deleted from the priority queue. The four

i8

pieces of information that come with that best path must then be stored for use in later

steps. Specifically, in step 3 the state of the encoder is initialized. Here the encodef s state

is initialized to the state of the path deleted from the priority queue in step 1. In step 6 the

path metric from step 1 is needed to calculate a new path metric. In steps 7 and 8, the

partial path and path length from step 1 are updated.

Block codes are encoded by serially entering k information bits into the encoder

followed by (n-k) zeros. Therefore, as step 10 suggests, there are two possible inputs bits

(i.e' 0 or 1) for path lengths less than k but only one (i.e. 0) for paths with longer lengths.

2.4 F ano Metric Block Codes Over GF''(z)

In order to decode a received sequence, a measure is needed to determine which of

the possible codewords the received sequence most resembles. When sequentially decoding

convolutional codes the usual measure is the Fano metric. This metric reflects the different

depths of paths through the trellis. Before the sequential algorithm can be applied to a

block code, the Fano metric must be formulated. The metric for decoding binary block

codes transmitted over a memoryless channel is presented below and derived in Appendix

2-8.

where r, is the jth output of the receiver' s matched filter, c,, is the jth bit in the ith codeword,

c,, with an overbar is the complement of c,,, N, is the length (in bits) of ith partial codeword,

and p(r, I c,,) is the channel's conditional output probability density function.

.ttano Metric

Ni

M(i,r) = - :
j= 1

(2.4.1)

19

As a specific example, the Fano metric for decoding binary block codes transmitted

over an AWGN channel using BPSK modulation is:

Fano Metric - AWGN/BPSK

M(i,r) - - (2.4.2)

where E" is the energy per transmitted bit, and No is the single sided noise power density.

It should also be noted that since the metrics can be scaled by any constant the logarithm

can be with respect to any base.

Theorern 2

The sequential stack algorithm with the Fano metric always finds the maximum

likelihood codeword.

Fnoof

The goal of the decoder is to find the codeword with maximum probability given

the received sequence. Mathematically, given the received sequence r, the decoder attempts

to find the codeword c, that maximizes pr(c, r r) or log pr(c, I r), assuming that all

codewords are equally likely to be transmitted. If the Fano metric is calculated for all

codewords, then the codeword with the maximum Fano metric will also be the codeword

that madmizes Pr(c, I r).

The stack algorithm does not calculate the total metric for all paths, though. Therefore,

it is necessary to show that if a completed path reaches the top of the stack (because it has

the largest metric) then no other path can have a metric that is larger than its metric. In

other words, if a completed path reaches the top of the stack then it must be the most likely

¡/'

j= |
,"rl r + exp(+ rz', ll

" ^/1)]

20

codeword. This can be proved by making the observation that the branch metric is always

less than or equal to zero for block codes. Consequently, if a completed path is compared

to a partial path, where the path metric of the former is larger than the metric of the latter,

then it is impossible for the path metric of the partial path to ever exceed the metric of the

completed path. Since all other paths through the tree must diverge from the completed

path, the completed path will be the maximum likelihood codeword.

The proof leads to the following corollary.

Conollary

The sequential stack algorithm with any branch metric, that is less thnn or equal to

zero, will always find the maximutn likelihood codeword, provided tlrut maxímizing the

metric is equivalent to maxùnizing Pr(c,l r).

For example, the following metrics may also be used for decoding codewords

transmitted over an AWGN channel with BPSK modulation:

M(i,n) - t vq - (2c¡j - t)
': l2

(2.4.3)
N

Tj=1

N,

M(i,r) = -I tll I - (2c¡ - t) r¡ lj=1
(2.4.4)

The Fano metric was developed with the goal of minimizing the amount of searching

performed by the sequential algorithm. Despite the fact that these two metrics guarantee

optimal error performance they are not guaranteed to minim ize the amount of searching. A

comparison of these and other possible metrics for sequential decoding can be found in

Appendix 2-C.

21

2.5 SSA for tslock Codes over GF(q)

Block codes over larger fields than GF(2) can also be decoded using the previous

algorithm. Unlike the approach taken by Offer and Perkins [OfPe91], there is no need to

change the code to a binary code with this algorithm. Consequently, any block code can be

decoded using the algorithm and not just codes over fields that are a power of 2.

A few logical changes have to made to the algorithm to generalize itfrom GF(2) to

GF(q). First of all, the tree for a block code over GF(q) has q exiting branches per node

rather than two. As a result q different inputs must be entered into the encoder and q paths

must be added to the stack per step.

Figure 2.51. q-aryTree

The algorithm for decoding block codes over GF(q) is then:

1. Delete the best path from the priority queue.

2. If the path is at the end of the tree, output the information sequence and quit.

Otherwise:

3. Initialize the state of the encoder.

22

Input a symbol from GF (q) into the encoder.

calculate the branch metric using the encoder output and received syrnbol.

Add the branch metric to the path metric.

Append the input symbol to the information sequence.

increment the path length.

Store the metric, path, path length, and state in the priority queue.

Repeat steps 3 thru 9 until all of the possible input syrnbols are exhausted.

Return to step 1.

This algorithm differs from that for binary block codes in that it is generalized. to

symbols over GF(q) instead of bits from GF(2). For example, in step 10 there are q

possible input symbols, as opposed to two possible input bits, for path lengths less than k

(the number of information symbols). For paths of k symbols or more there is still only

one possible input symbol, namely zero. The differences are noted by the bold type.

The metric used for decoding must change to reflect the fact that the code is over

GF(q) instead of GF(2). The Fano metric now becomes:

where c,, is a symbol from GF(q). The derivation of the metric is shown in AppendixZ-p..

F ano vi.etrrc - q-any uodes

N¡

M(i,r)= Ë bg P?¡lcu)

i=t ln?¡1c,,¡
çii

(2.s.Ð

23

2.6 SSA for Concatenated Codes

Concatenated codes are generally decoded using two decoders that decode the inner

and outer codes. When a convolutional code is used as the inner code, the Viterbi algorithm

or the sequential algorithm can be used to decode the code using soft decisions. Usually,

the outer code is a block code, like a Reed-Solomon code, that is used to correct the burst

errors of the Viterbi or sequential decoder. The decoder for the Reed-Solomon code does

not use soft decisions at all, though. Since it is now possible to decode a block code using

soft decisions via the Viterbi or sequential algorithm it may be possible to decode the

overall concatenated code with these algorithms. The motivation for using a single algorithm

to decode the entire code is twofold. The first motivation is the ability to easily use soft

decisions in the decoding. Secondly, this approach results in the savings of one decoder.

A block diagram of a block-convolutional concatenated coding scheme is shown

below. The outer code is an (N,K) block code with symbols from GF(q-p*) while the

inner code is an (n,k) convolutional code with symbols from GF(p).

Figure 2.6.I. Concatenated Coding Scheme

For every symbol from GF(q=p) that is an input into the outer (block) encoder, m

symbols from GF(p) are output and passed to the inner (convolutional) encoder. These m

symbols then cause nm/k symbols from GF(p) to be output from the convolutional encoder.

Therefore, one symbol from GF(q=p) input into the overall encoder causes mn/k symbols

from GF(p) to be output. At this point it is necessary to impose the constraint that k

(N,K) BC
over GF(q)

(n,k) CC
over GF(p)

24

divides m so that an integral number of symbols are output at a time.

This overall encoder can then be used to construct a tree for the concatenated code.

This tree will look the same as the tree for the outer (block) code. It will only differ in that

the branches will be labelled with the nm/k symbols from GF(p) instead of a single symbol

from GF(q-p'"). As well, the convolutional code introduces memory between successive

codewords. The implication of this is that the trees of successive codewords will be joined

one after the other. An example of a tree for a concatenated block-convolutional code is

shown below.

Figure 2.6.2. Concatenated Code Tree

The state of the overall encoder is the state of the block encoder and the state of the

convolutional encoder. The state of the block encoder will be over GF(q=p) while the

st'ate for the convolutional code will be over GF(p). Given an (N,K) block code with qN-K

states and an (n,k) memory M convolutional code with pM states, then the overall encoder

will have om(N-KÞkM shtes. This enormous number of states effectively eliminates the Viterbi

algorithm as a decoding alternative leaving only the sequential algorithm.

The algorithm for decoding concatenated block-convolutional codes is:

25

1. Delete the best path from the priority queue.

2. If the path is at the end of the tree, output the information sequence and quit.

Otherwise:

3. Initialize the state of the encoder.

4. Input a symbol from GF(q-p') into the encoder.

5. Calculate the branch metric using the encoder output and received syrnbols.

6. Add the branch metric to the path metric.

7. Append the input symbol to the information sequence.

8. Increment the path length.

9. store the metric, path, path length, and state in the priority queue.

10. Repeat steps 3 thru 9 until all of the possible input symbols are exhausted.

1 1. Return to step 1.

There are three key differences between this algorithm and that for block codes over

GF(q). First, in step 5 the metric is calculated using several symbols over GF(p) instead of

a single symbol over GF(q). Second, there are q possible input symbols for path lengths

between 0 and K, N and N+K, 2N and 2N+K etc. where N and K are the dimensions of

the outer block code. Finally, the metric for decoding the concatenated code is the Fano

metric that would be used for decoding the inner (n,k) convolutional code over GF(p).

Though convolutional codes are not restricted to the binary field most of the popular

convolutional codes are binary. If binary convolutional codes are used, then the outer

block code must be over a field that is a power of 2. As well, the algorithm implementation

requires that k divides m. The easiest way to guarantee this is to choose k to be equal to

one' This constraint is usually met since most convolutional codes used in concatenated

schemes are rate l/n codes. Then, for every symbol from GF(q=2") input into the overall

encoder, nm symbols from GF(2), or simply nm bits, are output from the overall encoder.

26

2 "7 Surnrnary

Algorithms that use soft decisions while decoding block codes are difficult to find.

For convolutional codes, at least, two algorithms exist: these are the Viterbi algorithm and

the sequential algorithm. The Viterbi algorithm is applied to the code's trellis and the

sequential algorithm is normally applied to the code's tree. All block codes have a tree

representation, and if the code is linear, then it will also have a trellis representation.

Therefore, using the Viterbi or sequential algorithm is a viable decoding alternative for

block codes.

Instead of modifying the algorithms to suit block codes, equivalent codes can be

found that suit the algorithms. As the algorithm moves through the tree or trellis it must

keep track of where it is and where it can proceed. This can be done by storing the tree or

trellis. A better way to do this is to require that the code's encoder produce one output

symbol for every input symbol and have a state that can be read and initialized. Two

encoders satisfying these criteria are presented in section 2.2. The first is a systematic

encoder while the second is simply a rate one time-varying convolutional code encoder.

Once the encoders are designed, the algorithms can be applied in their usual forms.

Descriptions of the sequential algorithm as applied to binary, q-ary, and concatenated codes

are provided in sections 2.3 through2.6. The advantages of this approach, as compared to

Offer and Perkins [OfPe9l], are that it allows block codes over any field to be decoded and

that it has a stronger resemblance to the algorithm for convolutional codes.

Finally, the sequential algorithm requires a metric to determine the most promising

path to extend: this metric is the Fano metric. For block codes, the Fano metric allows the

sequential algorithm to perform ma,ximum likelihood decoding.

27

Appendix 2-A Genenaton Matrix fon Elock Codes

TÈaeoner¡l

Given an (n,k) linear block code witlt generator matrix G, an equivalent code can be

found tfutt has a generator matrix of the fottowing form:

*go-000"'00
O,-*r *00 00

0'.00-gr-z*0
0...000*gk_r*

where the g,'s are (n-k+1)-tuples.

Given the generator matrix of an (n,k) linear block code, it can always be put in the

form G= [I lP], wherei isakxkidentitymatrixandPis akx (n-k) matrix. DefineG,

= [I lPt] as thematrixformedbyremovingthefirsti rowsandcolumnsof G= [l lp]. If
(k-i)>(n-k), then the first (n-k+l) rows of P, must be linearly dependent, and some combination

of these will add Ío zeÍo. If this addition is carried out, then the (n-k+1)-tuple, g,, will be

formed.

When (k-i)<(n-k) the matrix formed by the last (k-i-1) columns of p, musr have

linearly dependent rows. These should be added to produce an all-zero (k-i-l)-tuple. The

addition will form the (n-k+l)-tuple, g,. The procedure fails if an all-zero row is encountered.

This can be avoided by interchanging columns of P before the algorithm is applied so that:

P¡+zt-n,¡ = 1 for0<j < n-k-l

if there are no 1's to the right of this position (note: pi.¡ is the element found in the ith row

and jth column of P).

"=f

28

Appendix 2-E F a¡ao Metric f'or FXoc[< Codes

The Fano metric, used when sequentially decoding convolutional codes, can be

expressed as [ViOm79]:

M(i'r) =,ä
['o,' W. fr '"r, *]

(2.8.1)

where r, is jth matched filteroutput, c,, is the jth symbol in the ith codeword, p(r¡) is the

channel output probability density function, N, is the number of symbols that have been

partially decoded and ¡r, is the probability of transmitting those previous \ symbols.

The channel output probability density function can be found by averaging the

For equally likely channel inputs from a q-ary input alphabet:

pf"u) = å (2.8.3) and rri = q-N' e.8.4)

Therefore,

conditional output density function p(r., I c,) over all channel inputs. That is,

p(rj) = I p(c¡) p(r¡ lq¡)
cij

P($=f, I n(lr"¡l

substinrting for ru, and p(r) in the Fano metric expression gives:

NÌ.

M(i,r¡ = i tog" P(Ii lc¡¡)

j=l r
¿l n(5 I c¡)
C;j

(2.8.2)

(2.8.s)

(2.8.6)

which is the appropriate version of the Fano metric for decoding block codes over GF(q).

For an alphabet where q is a power of a prime (i.e. q = p-) each of the q symbols

can be represented by a stream of m symbols from GF(p). If the codewords are now

transmitted using their GF(p) representation, then the codewords become m times as long.

The previous Fano metric can still be used to decode the codewords now represented over

GF(p) simply by lefting N, be rhe number of symbols over GF(p), as opposed ro GF(q),

that have been partially decoded. Typically q is a power of Zso each symbol over GF(q)

can be represented by m bits. Thus, N, is the number of bits that have been partially

decoded. For this case the Fano metric becomes:

M(i,r) -

where c,, with the over bar is the complement of c,,.

This last metric can be derived using an alternate approach.

decoding binary convolutional codes is [ViOm79]:

Nr
M(i,r)= i ltogrP(I.l.l

c") -*1
j- L p('j)

J

N

:j=1
lon^ P(Ij I cij)

"'p(tIc¡)+p(¡I e¡ (2.8.7)

The Fano metric for

(2.8.8)

(2.8.e)

where R is the rate of the code. The notion that a block code is a rate one convolutional

code suggests that R = I should be substituted in the above expression. Substituting for R

and p(r,) will then give the metric that was derived above (see equation2.B.7).

Defining p,, as:

^ _ p(rj lqj-)nu-pm

simplifies the metric to:

30

which is the Fano metric for decoding?^-ary block codes.

For signals transmitted over an additive-white-Gaussian-noise (AWGN) channel

using binary phase shift keying (BPSK), the conditional channel output density function is:

,ol- rt-r'",,i]r qr']
,2 8 11)

where E. is the energy per transmitted bit, N. is the single sided noise power density, and

c,, is either 0 or i. Therefore, p,.,is:

N
M(i,r')=-X toez[1+pü]

j= 1

p¡ = exp (
¿ rz-q: --l 'j /E

)

(2.8.10)

(2.8.r2)

and the Fano metric for decoding2 -ary block codes transmitted over an AWGN channel

using BPSK modulation is:

NtI
M(i,r) = - Ë rog, I r +expl-4(2cù --i)

rj rEll
j=r .^--^n\ --tl;-/l

(2'B'13)

31

.Appendix 2-C Other Metnics

The following metrics are derived for binary codewords transmitted over an AWGN

channel using BPSK modulation.

Metric I

The maximum likelihood codeword can be found by finding the codeword for

which the correlation between the transmitted sequence and the received sequence is the

largest. When using BPSK modulation this is given by:

More generally, the maximum likelihood codeword is the codeword that maximizes the

following expression where A and B are constants and B is strictly positive.

M(i,r)= f {r"u-t)rj
j=1

M(i,r)=A+n) {Zc¡-1)rj
j=1

Setting A and B equal to:

N
M(i,r)

j=1

(2.c.r)

(2.C.2)

(2.c.s)

o=-Ë1,:, I Q.c.3) and B=1 (2.C.4)
j=1

gives the following metric:

In comparison to the Fano metric, this new metric has an interesting interpretation.

This metric is simply a scaled asymptotic approximation to the Fano metric. For an

32

M(i,r)= Ë rogf r*"*o(-
:îL

AWGN channel with BPSK modulation, the Fano metric for decoding binary block codes

is:

(2.c.6)

As the argument of the exponential tends to negative infinity the exponential tends

to zero, and, hence, the metric tends to zero. As the argument tends to positive infinity the

metric becomes linear in r,. Approximating the metric by these limits leads to the following

metric.

r, {Ç.1)

N^

4 (2q: -

This is the metric that was derived above. As a result, this metric should be

expected to perform (in terms of complexity) very closely to the Fano metric.

MetrÍc 2

Alternatively, a more intuitive choice (as compared to the above choices) for the

constants A and B can be made. The constants A and B can be selected as:

n

A=-X€ (2.C.8) and B=1 (z.C.s)
j=1

This gives the following metric:

N
M(i,r) = -I tl t l- (2c¡ - 1) r; l

j=1

N
M(i,r)

j=1

(2.C.7)

(2.C.10)

Here, the term ffi- can be interpreted as a bias that causes the algorithm to search more
--JJ

paths through the tree. Unfortunately, this metric is not solely negative so it will not

always find the maximum likelihood codeword. Sirnulations have shown that using this

metric costs about 0.1 to 0.3 dB in error performance.

Changing the bias can improve error performance slightly but also degrade error

performance significantly. Increasing the bias improves performance while decreasing the

bias degrades performance. This can be explained by realizing Íhat alarger bias will cause

the algorithm to follow a path less deeply into the tree before switching to a new path. As a

result more paths will be examined and hence the chance of finding the correct path

improves. An alternate explanation is that the larger bias increases the likelihood that the

metric will be negative. If the branch metrics are all negative then the algorithm will find

the maximum likelihood codeword. If a branch metric is positive then the maximum

likelihood codeword may or may not be found.

Metric 3

The maximum likelihood codeword is also the codeword that has the minimum

squared euclidean distance to the received sequence. This is equivalent to finding the

codeword with the maximum negative squared distance. Thus, the following metric will

also yield the maximum likelihood codeword when used with the sequential stack algorithm.

M(i,r) - t fç - (2cij - t)
'.i]2

(2.C.rt)
N

>j=1

Cornparisons

By Theorem 2, in section 2.4,

was already noted that metric 2 is close

can be compared to the Fano metric in

metrics 1 and 3 must be maximum likelihood. It

to maximum likelihood but is not. Metrics 1 and 3

terms of complexity. The following graph shows

34

the average nodes searched, when decoding the (24,12) Golay code, as a function of the

signal-to-noise ratio.

N - N-i"

104

103

rc2

-q-

g k

0123456

101

Metric 3

Fano Metric

Metric 1

100

sNR (dB)

Figure 2.C.1. Average Nodes Searched for 3 Metrics

Metric 1 outperforms both metric 3 and the Fano metric in terms of average nodes

searched. Since metric 1 is so closely related to the Fano metric, its complexity is only

slightly better than that for the Fano metric.

35

Chapten 3 - Cornputational Comp|exity

To determine the effectiveness of the sequential stack algorithm for decoding block

codes an objective measure must be formulated. Such a measure is the computational

complexity of the algorithm. If the computational complexity can be measured, then it can

be used as a basis for comparison between the sequential algorithm and other decoding

alternatives.

Unlike the Viterbi algorithm, or most other block decoding techniques, the sequential

algorithm performs a variable amount of work that depends on the noise level. That is, the

sequential algorithm proceeds rather quickly and efficiently if the noise is low, but as the

noise increases the sequential algorithm becomes inefficient. When used with convolutional

codes, the complexity is normally measured in terms of the avera+e number of branches or

nodes searched by the algorithm for a given signal-to-noise ratio. This can also be measured

when the algorithm is applied to block codes. In order to make a meaningful comparison to

other block decoding techniques, though, this measure has to be translated into a measure

for block codes.

3. n A Complexity Measure f,or Block Codes

A reasonable definition for the computational complexity of a decoding algorithm is

the total number of equivalent real number additions it performs. This obviously includes

real number additions but also includes real number comparisons where the former and

latter are given equal value. The definition does not account for binary operations, hard

decisions, absolute values, or bit confidence calculations.

This definition has been used by Snyders and Be'ery to measure the complexity of

their block decoding algorithms ISnBe89l. Consequently, any comparison of the sequential

36

algorithm to those algorithms should be made using this definition.

The sequential algorithm manipulates four pieces of information (viz. state, metric,

path, and path length). Of these, only the metric is a real number, and, thus, metric

operations solely comprise the complexity.

3 "2 Cornptrexity Measured

There are only two metric operations in the stack algorithm. The first is metric

addition which is performed when the branch metric is added to the path metric. The

second operation is metric comparison which is performed in the priority queue after every

deletion or insertion. The overall complexity is the sum of these two different operations.

If the number of metric additions is denoted as N- and the number of metric comparisons

as N", then the complexity is N_ + N".

3.3 Metric AdditÍon

For every node in the tree that the algorithm visits a new metric must be calculated.

Thus, the number of metric additions is equal to the number of nodes visited. Denoting the

number of nodes visited by N implies that:

Minimum lNumber of Additions

Depending on the noise, the sequential algorithm will visit a number of nodes that

falls between a minimum and a maximum number. The minimum number of nodes visited

Number of Metnic .&dditi

37

occurs when the algorithm does not backtrack. Up to a depth k into the tree, each node has

two exiting branches (for (n,k) binary block codes) implying that two further nodes must

be visited. For greater depths, a single branch leaves each node. Thus, the minimum

number of nodes visited, and, hence, metric additions, is:

NH'n=2k+(n-k)

For block codes over GF(q) this generalizes to:

Ngin-qk+(n-k)

(3.3.2)

(3.3.3)

Maxirnurn l{umber of Additions

The maximum number of nodes visited occurs when the algorithm completely

searches every path through the tree. The total number of nodes visited can be calculated

by counting all the nodes in the code's tree. An example of a binary code's tree representation

is shown in Figure 3.3.I.

Figure 3.3.1. Tree for an (n,k) Binary Block Code

38

For the first k steps the tree doubles in size with each step. At depth k the tree will

have2k terminal branches representin gtheZk possible codewords. For the (n-k) parity bits

the terminal branches are simply extended by one branch per step which maintains a total of

2k terminal branches at each step. The maximum number of nodes visited can then be

calculated by counting all the nodes in the tree. Therefore, the maximum number of metric

additions is:

Nffiu* = 2 + 4 +... + 2k+ (n - k) 2k= (n - k + 2) 2k - 2

For q-ary block codes this becomes:

N#u*= q+q2+...+qk+(n-k)qk=ln-k+ I, loo- q

\ q-rl'q-1

(3.3.4)

(3.3.s)

3.4 Metnic Cornparison

Metric comparisons occur whenever data is inserted or deleted from the priority

queue. Visiting a node in the tree involves deleting and extending a node from the queue.

Thus, the number of comparisons is related to the number of nodes visited. Before the

comparisons can be counted, though, it is necessary to explain briefly the operation of the

priority queue. The priority queue described by Chang and Yao tChYaS6l is guaranteed to

output the maximum number that is stored in the queue. This is accomplished by comparing

pairs of adjacent elements after every insertion or deletion operation. The two elements in

the pair are reordered if the element furthest from the top of the queue is greater. Thus, if
the queue contains N elements, N/2 (assuming N is even) comparisons need to be made.

Given the number of nodes visited, the number of comparisons can be upper

bounded by considering a stack that initially increases in size and then remains constant in

size. The stack increases in size if two nodes are entered between deletions. This corresponds

39

to nodes in the tree with two exiting branches (i.e. depths less than k). Given that N nodes

are visited assume that the stack grows for the first aN (0<c<1) nodes. Since two nodes

must be entered for the stack to grow by one, the stack grows to cN/2 entries and the

average stack size is approximately o.N/4. Deletion and insertion operations in the priority
queue require that adjacent pairs of entries in the stack be compared. Hence, for a stack

with N elements, N/2 comparisons must be performed. Therefore, the total number of
comparisons is:

Nltl = (# deletions and insertions/step)(av erage #comparisons/del or ins)(# steps)

(3.4.1)

The stack does not grow if only one node is inserted after adeletion. This corresponds

to nodes in the tree with only one exiting branch (i.e. depths of k or greater). Knowing

that the stack grew for the first cN nodes implies that it remains fixed at cN/2 entries for

the remaining (1-c)N nodes. Therefore, the total number of comparisons is:

N!') = (# deletions and insertions/step)(av erage #comparisons/del or ins)(# steps)

Nf)=z (1-c)N (3.4.2)

/sN \
N!')= t\+/("*)=åa2 N2

Combining, gives the total number of comparisons as:

Nç = \(1) + N[2) = Tl"- år,]*,

(+),)=|c(1-a)N2

(3.4.3)

Finally, maximizing the expression over c, bounds the number of comparisons.

40

For block codes over GF(q), every deletion is followed by either I or q insertions.

If aN nodes are visited at depths less than k, then aN/q steps are taken where the stack

grows by (q-1) entries per step. As a result, the stack grows to (q-1)crN/q entries and

averages about (q-1)oN/2q entries. For depths greater than or equal to k it remains fixed at

(q-1)aN/q entries . Therefore, the total number of comparisons is:

Nu¡nber of &¡letric Cornparisons - Binary

N.<LNz
5

i(q - t)a¡¡
1

N[',= (q + 1) \+/t +l= +äLa2 M

and

/(q- l)aN \
N[')=tI o

/t,t-*,*)=51o,i-*)N2

Combining gives:

Codes

N" = Nf) + N!z) = +[" fr1o,]*,
Maximizing over c, gives:

Nurnben of' Metric Cornparisons - q-ary Codes

N.< -9-I Yz3q-r

(3.4.4)

(3.4.s)

(3.4.6)

(3.4.7)

4t

(3.4.8)

The assumption that the stack grows continually before staying at a fixed size is not

necessarily how the algorithm operates in practice. This assumption implies that the

algorithm is restricted to depths of k or greater once it begins working in this region.

Instead, the algorithm is free to move anywhere in the tree. However, this reality does not

contradict the bound on the number of comparisons. Even though the nodes are mixed

they can be grouped into nodes at depths less than k and those at depths greater or equal to

k' Since ctN nodes at depths less than k are still visited, the stack growth remains the same

and N"(1) does not change. The difference is that the stack is not fully grown when nodes at

depths of k or greater are visited. Therefore, this part of the complexity is less than N"(t),

and the actual complexity is less than the bound which, in turn, reaffirms the bound.

The bound on the number of comparisons is a quadratic bound. That is, it grows

as the square of the number of nodes searched. This quadratic growth in complexity is a

definite disadvantage of the stack algorithm and sequential algorithms in general. other

algorithms such as the Viterbi algorithm or M algorithm have a linear growth in complexity

[AnMo91]. This is not to say that the sequential algorithm should not be used. In fact, as

long as the noise level is low, the number of nodes visited (N) is small and consequently

the number of comparisons is small as well. Therefore, the sequential algorithm is best

used at moderate to high signal-to-noise ratios.

Minimr¡m Ì{urnber of Comparisons

Under the most favorable noise conditions the sequential algorithm will still have to

perform a minimum amount of searching. A forrnula for the minimum number of nodes

searched is given in section 3.3. The minimum number of comparisons in the priority

queue, occurring when a minimum number of nodes are visited, can be calculated by

considering the situation that led to the minimum number of nodes being visited. The

number of comparisons at depths less than or equal to k can be calculated using equation

42

3.4.5 where cN is equal to qk. Substituting gives:

N!t) = (q - 1) 9!7 12 e.4.s)

The number of comparisons at depths greater than k can be calculated with equation3.4.6

where (1-c)N is equal to (n-k). This gives:

Nltr = (q - 1) (n - k) k (3.4.10)

The minimum number of comparisons is then:

Nånín = N[t) *Nfr=(q- 1) [f' ol o.ç] *(q l)z * (3.4.r1)

Maximum Number of Comparisons

Under the worst noise conditions the algorithm may search the entire code tree. If
this occurs, the algorithm searches a number of nodes that can be calculated using equation

3.3.5. The maximum number of comparisons occurs when the algorithm searches every

node up to a depth k and then searches every node at greater depths. The first part of this

can be calculated using equati on3.4.5 where aN is the number of nodes at depths less than

or equal to k. This is equal to:

crN=q+qz+...+qk=:Q;qk- 9,=,9rqk (3.4.12)^ q-1' q-l q-1-

Substituting gives:

*,ll) q+1 .t.r\i'=4ft-Ðq'^ Q-4.13)

The second part can be calculated using equation 3.4.6 where (l-c)N is equal to the

number of nodes at depths greater than k. That is,

(1 - c) N = (n - k) qk e.4.14)

This gives:

N!') = (n - k¡ qzt

The maximum number of comparisons is then given by:

Nfu* =NÉt)*N!r)=lr-ta-9+ 1
)nzr\ 4(q-1)/

(3.4.1s)

(3.4.16)

3.5 F{ardware (Stack) CornpXexity

The hardware complexity is determined by the size of the stack required for the

algorithm. Since the algorithm only stores the head of a path through the tree, the stack

must be able to hold the heads of all possible paths through the tree. This conesponds to

being able to hold each of the code's possible codewords. Therefore, for (n,k) block codes

over GF(q), the priority queue or stack must be able to hold qk entdes for optimal decoding.

For large codes, this stack size quickly becomes an obstacle to the optimal implementation

of the SSA for block codes. Reducing the stack size (at the cost of enor performance) is

investigated in chapter 5.

3.6 Surnmany of Complexity Measures

This section summarizes the previous computational complexity results. Specifically,

the minimum, maximum, and average complexities for decoding block codes over GF(q)

arc presented.

Based on the above discussion, the minimum complexity to decode an (n,k) block

code over GF(q) consists of N. metric additions and N" metric comparisons that can be

calculated using the following formulas.

44

Minirnurn Complexity

Nyin-qk+(n-k) (3.6. i)

vmin = (q - rt
l t, - k) k. +l* @ -t)' r,' (3.6.2)

Though the minimum compiexity lools especially good, the maximum complexity

is especially poor. Fortunately, for reasonable signal-to-noise ratios, the complexity of the

stack algorithm does not approach its maximum. The approximate maximum number of

metric additions (nodes searched) and comparisons arc given below.

Maximum Complexity

If the stack algorithm visits N nodes, then the number of metric additions is equal to

N and the number of comparisons is upper bounded by cN2, where c is constant determined

by the stack sorting algorithm. For a pliority queue, c is equal to (q - 1)/(3q - 1). For an

algorithm that finds the maximum metric in the stack differently, c is not necessarily the

same. For example, for a maximum finder (see Appendix 3-A), c equals (q - DlØq - z).

N#o' = (n - k) qk

Nmax = (n - k) qzn

(3.6.3)

(3.6.4)

45

Cornpnexity

N5a < N+

Mathematically, the overall complexity of the stack algorithm, \o, is bounded by:

and the average complexity of the stack algorithm is bounded by:

Average Cornplexity

^
Ns¿ I N + cN'

Nr,*
Ns¿r X (¡r*

N = N,ri,
'N2)

rrl Nl

(3.6.6)

(3.6.1)

(3.6.8)

(3.6.e)

where N*o and N,no ale:

N-i.,=qk+(n-k)

N_u*=("_r.nï)* ah
and Pr[N] is the probability of visiting N nodes at a given signal-to-noise ratio.

46

Appendix 3-A The Maxirnum Finden

The priority queue is a significant improvement over a sorted stack largely because

it exploits the fact that the stack algorithm only needs the maximum value in the stack at a

given time. The priority queue also has the advantage of being parallel. If the priority

queue can not be implemented in its parallel fashion then it loses this advantage. If this is

the case, then the priority queue, though much better than a sorted stack, is not the most

efficient algorithm for finding the maximum number in a list. Instead, a maximum finder

which goes through the list sequentially is more efficient with the stack algorithm. The

reason for this is that the maximum finder only needs to be used when a path needs to be

deleted from the stack as opposed to the priority queue which performs comparisons after

every deletion and insertion operation.

For a given stack size N a maximum finder requires (N - 1) comparisons to delete

the best path' This is done by taking the first element in the stack and comparing it to the

second. Then the largest of these is compared to the third. Of these, the largest is

compared to the fourth. This continues until the last element in the stack is compared to the

largest up to that point.

Unlike the maximum finder the priority queue rearranges the stack after every

insertion and deletion. There are two patterns of insertions and deletions that occur with

the sequential stack algorithm. One pattern is an insertion followed by a deletion. Assuming

the stack size is N after the insertion implies that the number of comparisons needed is N/2

if N is even or (N - 1)/2 if N is odd. After the deletion the stack size will be (N - 1) and the

number of comparisons is (N - 2)12 if N is even or (N - 1)/2 if N is odd. For either even or

odd N the total number of comparisons for an insertion-deletion pattern is (N - 1). This is

equal to the number of comparisons performed by the maximum finder. Thus, for this

pattern, the priority queue or maximum finder are equally effective in terms of the total

47

number of comparisons. The second pattern is q (for q-ary codes) insertions followed by a

single deletion. Since each insenion causes the priority queue to compare adjacent elements

in the stack, q insertions will require more comparisons than a single insertion. Thus, for

these patterns, the priority queue will require more operations than the maximum finder.

For example, a pattern of 2 insertions followed by a single deletion requires that 3(N - l)lz
comparisons be performed. This is 5OVo greater than the number of comparisons performed

by the maximum finder. Since the decoding will involve a mix of the two types of

insertion-deletion patterns the priority queue will average somewhere between O and 5OVo

more comparisons than a maximum finder.

For (n,k) block codes over GF(q) the number of comparisons as a function of the

number of nodes searched can be bounded for the maximum finder. If the algorithm visits

N nodes assume that cN of those are at depths less than or equal to k. At these depths, q

nodes will be inserted into the stack for every node deleted. The following table lists the

stack size and number of comparisons performed as a function of the number of nodes

visited.

Nodes Stack size Comparisons

q
2q
3q

(aN/q)q

q
2q-7
3q-2

q-1
2(q-1)
3(q 1)

(oN/q)(q-1)

The number of comparisons is equal to:

N!')= (q - 1) lt *z+ ..+
"È]= +ha2 M

For the remaining (i-a,)N nodes, at depths greater than k,

will still be given by equarion 3.4.6. Adding gives rhe rotal

(3.4.1)

the number of comparisons

number of comparisons.

48

N"-ru!r)a¡(2)=+l o-4,_2 orlM G.A.z)(ì'" 4q J

If this is maximized over .', then the number of comparisons is bounded as:

Numben of &letric Companisons - Maxirnurn Finden

¡/.< q-L
N2

4q-2

In comparison to the result for the priority queue, the maximum finder still

requires a number of comparisons that grows as the square of the number of nodes

searched. The difference is that the proportionality constant is less for the maximum

finder.

The minimum number of comparisons with the maximum finder occurs when the

sequential algorithm does not backtrack. For depths less than or equal to k, the total

number of comparisons can be calculated using equation 3.4.1 where oN is equal to qk.

Substituting for oN gives:

N[t) = fr- t>?o,

The total number of comparisons at greater depths for a maximum finder is the same as

for a priority queue (see equation 3.4.10). Adding gives the total number of comparisons.

Nånin - (q - 1) [f' - o; o.*] (3.A.s)

As compared to a priority queue (see equation3.4.Il), the minimum number of comparisons

with the maximum finder is less by an amount equal to:

NP-NMF- G-1)2 p
uv4 (3.A.6)

As with the priority queue, the maximum number of comparisons occurs when
49

(3.A.3)

(3.A.4)

the algorithm searches every node up to a depth k and then searches every node ai greater

depths. For the maximum finder, the first part is calculated using equation 3.A.1. where

crN is approximated by equation 3.4.12. Substituting gives:

r rl1)) nt.t\) , ã --n¿\'ìc -4G_Ð,t-^ (3.A.7)

The second component of the number of comparisons remains the same (see equation

3.4.15). Consequently, the ma,ximum number of comparisons is:

Nånu*=("-t*aGlrlilo'* (3.4.8)

As expected, the number of metric comparisons still grows as q,k.

50

Chapten 4 - Sirnulatiom Results

The two block codes selected for simulation were the (8,4) extended Hamming

code and the (24,12) extended Golay code. For both codes, the simulations were performed

assuming an AWGN channel with BPSK modulation. The discrete time equivalent of this

channel and modulation scheme is shown in Figure 4.0.I. The all-zero codeword was

transmitted a total of 10s times over this channel in order to insure a reliable estimate of the

block code's error rate. For error rates of 10-a, the error rate estimate has a g5vo confidence

of being within 2oVo of the code's true error rate; for larger error rates, the estimate

improves [HeNo88]. The noise was generated using a pseudo-random Gaussian number

generator with a period of rwo billion tpFfvggl.

coded sequence transmitted sequence received sequence

c.¡e{ o, r } 'i€{-€,€) r¡€R

w¡-N(0, 1)

Figure 4.0.1. Discrete Time Channel

4.n Encodens

(24,12) Golay code are

51

N"

2

white gaussian noise sequence

The (8,4) Hamming code and the extended cyclic codes.

Their encoders are formed by cascading the encoders of their respective cyclic codes with
wagner code encoders. Appending an (g,7) wagner encoder to the (7,4) Hamming

encoder gives the overall encoder for the (8,4) extended Hamming code as shown in Figure

4'1J' The st'ate is defined by the contents of four shift registers, and, hence, the trellis
travelled through by the stack algorithm wilr contain 2a states.

Figure 4.LI. (9,4) Extended Hamming Code Encoder

The (8,4) code does not show the true value of a sequential algorithm since the

viterbi algorithm can easily handle a trellis with 16 states. To show the advantages of a
sequential algorithm, a code with a larger trellis must be considered. The (24,12) extended

Golay code has a trellis withZLz states. The encoder for the (24,12) extended Golay code

is shown in Figure 4.I.2.

@_s'

Figure 4.I.2. (Z4,IZ) Exrended Golay Code Encoder

52

4 "2 Enror Fe¡-f,orrnanee

When the (8,4) exiended Hamming code is transmitted over an AWGN channel

using BPSK modulation, the codewords can be considered as a set of M = 16 equally

likely biorthogonal signals. Therefore, the following result from Van Trees [VaTr69], for

a set of M equally likely biorthogonal signals with energy E, can be used to calculate the

error performance of a maximum likelihood soft decision decoder.

pr (e) =,
{*ft"*o

[- #r. {Ð11/. *"*o (- #J.,]* .. (4.2.1)

Since 8 bits, each with energy Q, are transmitted per codeword, the total energy of

a codeword is 8Q. Substituting E = 8E. in the above expression gives the WER for the

(8,4) extended Hamming code.

wER =,
Í-6ft;"*p[-

#(^ - {€Exf [ft* (#.r]' * (4.2.2)

This can be simplified as:

53

wER= r- f #.r,-2e(x)r7*o l-
,î ?Ð'] *J,{ñ

(4.2.3)

where y o is the signal-to-noise ratio per information bit.

Usually, it is very difficult to find an expression for the WER of a linear block

code. Instead the wER can be upper bounded by using a union bound. That is,

WERs > Pm
m=2

wER=toa(
Æ)

where P* is the probability of choosing codeword m when codeword 1 was transmitted.

For codewords transmitted over an AWGN channel using BPSK modulation p* equals:

P-=a((4.2.s)

where R is ihe rate of the code and w- is the weight of the mth codeword.

The (8,4) extended Hamming code has the following weight enumerator polynomial:

A(z) = I + 14 zo + 2". Consequently, the WER can be bounded as:

wER < 759 Q)*"no

(4.2.4)

(4.2.6)).0
Since the (24,12) extended Golay code is a rate half code with the following weight

enumerator polynomial: A(z) = I +759 z8 +25762r2 +759 zru + zro, the upper bound on

its WER iS:

44
No

E
¡¡ Lb

54

(4.2.7)

For an AWGN channel, a correlation decoder will perform maximum likelihood

decoding. This is done by comparing the noise corrupted information sequence to all

codewords and choosing the closest (largest correlation) codeword. The correlation decoder

can be used as a comparison to further verify that the sequential algorithm performs

maximum likelihood decoding.

Figures 4.2.I and 4.2.2 show the measured word error rates of the sequential

algorithm when used to decode the (8,4) and (24,12) codes. The solid points represenr

simulated data points' The points are joined by straight line segments. The upper bounds

are included for reference.

The number of errors made by the correlation decoder was equal to the number of
elTors made by the sequential decoder using the Fano metric. As well, the theoretical error

performance of the (8,4) code matches with the simulated error performance of the sequential

algorithm. The observation that the sequential algorithm (with the Fano metric) performs

maximum likelihood soft decision decoding should be expected given Theorem 2.

100

10
-1

\
\

\
:::::a::t

10
-4

234
sNR (dB)

Error Pedonnance of (8,4) Code

55

Ë rc-z
Ètr

10
-3

Figure 4.2.1.

i00

10
-1

Ë ro-2
Êr

to -3

-6.. \

e.'-\

I \

-@*

to-a

;NR (dB)

Figure 4.2.2. Error perforrnance of (24,12) Cúe

4.3 Complexity

Chapter 3 showed how to measure the computational complexity of the stack algorithm.

In order to calculate the complexity, the number of nodes visited by the algorithm must be

known. At the same time that the error performance was measured, the averagenumber

and average squared number of nodes visited as a function of signal-to-noise ratio were

measured. Figures 4.3.7 and 4.3.2 show the average number of nodes visited for the (g,4)

and (24,72) codes with the Fano metric. The vertical axis of the graphs show the average

number of nodes, in excess of the minimum, that must be searched. For the (g,4) code,

the minimum number of nodes that must be searched is 12, and, for the (24,12) Golay

code, the minimum is 36 nodes. Figure 4.3.3 shows the average squared number of nodes

visited for the (24,12) code. These exponentially decaying curves are quite similar to the

average complexity curves for convolutional codes [ClCagl].

56

101

N-N--

100

012345678
sNR (dB)

Figure 4.3.1. Average Nodes Searched for the (g,4) Code

LO4

N - Nmin

ro2

0123456
sNR (dB)

Figure 4.3.2. Average Nodes Searched for the (24,12) Code

103

101

57

rc7

Ir'*---
I

\^

__*) \

K

0123456
sNR (dB)

Figure 4.3.3. Average Squared Nodes Searched for the (24,12) Code

In cerüain situations, the variability in computation of the sequential algorithm can

pose practical problems. The variance in number of nodes searched can be determined

from the average and average squared nodes searched. That is,

._
Variance=Nz-Nz g.3.L)

The variance for the (24,12) Golay code is plotted in Figure 4.3.4. The graph shows that

the variance decreases with the signal-to-noise ratio. Consequently, any problems caused

by variability are less hindering for high signal-to-noise ratios.

106

O{ - N'-f
10s

rc4

103

58

x

-K

234
sNR (dB)

Figure 4.3.4. variability in Nodes searched for (z4,rz) code

4.4 Comparisons

To judge the computational efficiency of the stack algorithm, comparisons are made

to well known maximum likelihood decoding techniques. The comparisons are for the

(24,12) extended Golay code only.

The conceptually simplest decoding technique is correlation decoding. For a

correlation decoder the complexity to decode an (n,k) block code is (n2k-1) addition equivalent

operations. This consists of (n-1)2k additions and (2k-1) comparisons. For the (Z4,IZ)

Golay code, the complexity is N"o = 98303 addition equivalent operations.

The Viterbi algorithm [Wolf78] is an improvement over a correlation decoder. The

complexity of the Viterbi algorithm consists of \ metric additions and \ metric comparisons.

The number of metric additions is equal to the number of branches in the trellis less two for

the first two branches where additions are not required. The number of comparisons is

rc7

106

il i05
Ë
.Ê
h

104

t03

rc2

59

equal to the number of nodes in the trellis with two entering branches. The calculation of

N- and N" and, in turn, the total complexity is shown in Appendix 4-4. The results are

given below.

N*=2n-k+L(2k-n+2)-6

N"=/n-k(2k-n+1)-1

Nve= 2n-k(6k-3n+ 5)-7

(4.4.4)

(4.4.s)

(4.4.r)

(4.4.2)

(4.4.3)

For the (24,12) Golay code, this amounts to N,ro = 20473 addition equivalent operations.

The complexity of Snyders and Be'ery's [SnBe89] algorithm for the (24,12) Golay

code is 683 on average and has a minimum of 539 and a maximum of 827 addition

equivalent operations. Recently, this has been bettered by Vardy and Be'ery [VaBe91].

Their algorithm has a maximum complexity of 651 addition equivalent operations. Other

low complexity techniques are those developed by Conway and Sloane [CoSl86] requiring

1674operations, Be'ery and Snyders [BeSn86] requiring 1551 (1i59 on average) operations,

and Forney [Forn88] requiring 1351 operations.

Given that the sequential algorithm visits N nodes rhe complexity is bounded by:

Nsa sf N2 + N

and the average complexity is bounded by:

r...-Nsa<fNz+N

By using this formula in conjunction with Figures 4.3.2 and,4.3.3, the complexity of the

sequential algorithm can be bounded as a function of the signal-to-noise ratio. The following

table lists the signal-to-noise ratio at which the sequential algorithm comparatively becomes

the better algorithm for decoding the Golay code.

60

Technique
Maximum
Complexity SNR

Correlation Decoder
Viterbi Algorirhm
Conway-Sloane (86)
Be'ery-Snyders (86)
Forney (88)
Snyders-Be'ery (89)
Vardy-Be'ery (91)

98303
20473
1614
1551
i351
827
651

2dB
3dB
5dB
5dB
5dB
6dB
6dB

The table shows that whenever the signal power is at least four times larger than the

noise power the sequential algorithm is the most efficient algorithm for decoding the

(24,12) Golay code. As signal-to-noise ratios increase, the sequential algorithm quickly

approaches its minimum complexity of 294 addition equivalent operations. Of course, the

possibility always remains that the noise will cause the algorithm to search the entire code

tree. In that unlikely situation the algorithm will have to perform 57342metric additions

and about 2i4 million metric comparisons.

4.5 Surnrnary

Simulations were performed to measure the effectiveness of the sequential algorithm

as a decoding alternative for linear block codes. As expected from the theory in chapter 2,

the sequential algorithm performs maximum likelihood decoding. Using rhe complexity

measures of chapter 3, the sequential algorithm has a favorable average complexity at

moderate to high signal-to-noise ratios. In fact, by 3 dB it outperforms the Viterbi algorithm,

and by 6 dB it is the most efficient algorithm for decodin gthe (24,72) Golay code.

61

.Appendix 4-.& Cornptexity of Viterbi Algonithm

To calculate N- and N" the trellis should be divided into three regions as shown

below (for a (5,3) block code). Regions I,2 and3 correspond to where the trellis grows,

stays constant, and collapses, respectively. Assuming that the rate of the code is greater

than one half, region 1 extends to a depth of (n - k) symbols, region 2 falls between the

depths of (n - k) and k symbols, and region 3 contains all nodes at depths greater than k.

Regions

#_r_@>@-2w_3_@

Figure 4.A.L. Trellis Regions

In region 1 the number of branches doubles for each step into the trellis. Therefore,

N$l= 2+4+...+ 2n-k-2tt-k+7 -2 (4.A.1)

In region 2 the trellis has a constant number of branches and nodes. Thus,

Ng)= 2n-k+r(k-(n-k))=2n-k+t(2k-n) Ø.A.2)
In region 3 the number of branches halves as the trellis contracts. Hence,

NS)= Zn-k+2n-k+l+...+2-2n'k+t-2 Ø.A.3)

The total number of metric additions is:

N.=NÍ1)* Nf)* NS)- z -2n-k+1 (2k-n+2) -6 (4.A.4)

Comparisons are only needed in regions 2 and 3 since two branches enter every node in

these regions. The number of nodes in region 2 is:

N[') = 2n-k(k- (n-k))= 2"-kqzk-n¡ (4.A.5)

The number of nodes in region 3 halves for each step into the trellis so:

N!')=2n-k-r*2n-k-2+...+ L-Zn-k-I Ø.A.6)

Adding gives the total number of comparisons:

N" = ¡¡[z) + N!3) - Zn-k (2k _ n+ 1) _ 1 (4.A.7)

Therefore, the total complexity of the Viterbi algorithm is:

Nve = N*, * N" = /n-k (6k - 3n + 5) - 7

equivalent real number additions.

(4.A.8)

63

chapter 5 - suboptirnum Imprernentations of the ssA

It has been shown that the stack algorithm can be applied to block codes once a tree

or trellis is established. Using the Fano metric, the stack algorithm can perform maximum

likelihood soft decision decoding. As well, the computational complexity of the algorithm

decreases quickly with an increasing signal-to-noise ratio. Therefore, the stack algorithm is

a viable candidate for soft decision decoding of linear block codes at moderate to high

signal-to-noise ratios.

There are several unattractive features of the stack algorithm when applied to

convolutional codes. These are unbounded computation, input buffer overflow, stack

overflow, stack sort, and path storage. When the algorithm is used for block codes some

of these problems no longer exist or are alleviated.

First of all, sequential decoding should not be used with convolutional codes that

have rates above the computational cutoff rate of the channel. In other words, the sequential

algorithm should only be used when the signal-to-noise ratio is sufficiently high to push the

computational cutoff rate above the code rate. The reason for this is that the average

number of computations becomes unbounded (infinite) at rates above the computational

cutoff rate. On the other hand, for block codes, only a finite number of computations (e.g.

maximum of 4k for an (n,k) binary block code) can be performed before decoding is

completed.

The unbounded computation leads to a second problem which is input buffer overflow.

That is' the decoding is not finished before new data arrives that fills and eventually

overflows a finite input buffer. As a result, data is lost causing future decoding errors.

This problem can be controlled for block codes by allotting a maximum number of nodes

that the algorithm can visit before proceeding to the next codeword (see section 5.1).

A third problem related to the problem of unbounded computation is stack overflow.

64

Too many decoding steps will add too many entries to the stack with the result that the

stack fills and overflows. Further entries to the full stack will either be, or cause other

entries to be, lost resulting in degraded error performance. For block codes there are only

qk paths that the algorithm can possibly visit. Since the head of each parh is stored in the

stack, the stack will contain qk entries at most. Therefore, the stack will never overflow for

block codes provided that it can hold qk entries. Unfortunately, the stack size becomes

prohibitively large as the number of information symbols increases. Therefore a smaller

stack must be used which, in turn, has a probability of overflowing. In section 5.2 the

effects of a reduced stack size are described.

The fourth problem with the stack algorithm is the computationally burdensome

stack sort needed to determine the partial path with the best metric. The priority queue

solves this problem for both convolutional and block codes.

Finally, when the Viterbi algorithm or the sequential algorithm is used with

convolutional codes the length of the explored path can grow quite large. Therefore, the

decoder has to be able to manipulate long and variable length paths. For (n,k) block codes

the maximum path length is n symbols. Therefore, the decoder can be designed to work

with paths of this length and the decoder can output n symbols at a time as a codeword is

decoded.

5. I R.educing Cornputational Complexity

In order to reduce the complexity a scheme where the algorithm is limited to a

maximum number of branches or nodes that it can search can be used. If the codeword is

not decoded after L branches are searched, then the decoder can either output hard decisions

on the individual bits, force the algorithm through the trellis (i.e. no backtracking), or

output an erasure symbol.

65

If this maximum number of nodes, L, happens to be less than q* then not only will

the computational complexity be reduced but the priority queue size can also be reduced.

Since L nodes are only visited there will only be L inse¡tions into the priority queue (one

insertion per node visited) and hence the queue will only need to hold less than L entries.

using this scheme for an (n,k) block code over GF(q) limits the stack to:

maximum queue size < min Iqk, L]

The computational complexity will be reduced since L will be less than the maximum

number of nodes the algorithm can possibly visit. Without limiting the number of nodes

the average complexity of the sequential atgorithm is given by:

(s.1.1)

(s.1.2)

(s.1.3)

(s.1.4)

ñ; =ñ+ +1N, =,ui:_ (*. #i.rz)
e, ¡ N 1

where

Nmin=qk+(n-k)

Nma* = (, - r.. oh)o- ah
and N is the number of nodes visited.

The average complexity with limited searching is:

ñ-xi-r - (r-. #rz)rrI
rv =r-] .*'i (*. #N,)erIN]

(s 1 s)

which is clearly less than the average complexity with full searching since L. N.*.

The following theorem can be used as a guide to choose a search limit. It should be

realized that limiting the amount of searching will invariably reduce the performance of the

decoder as determined by the WER.

Theonern 3

A sequenrial decoder must be allowed to visit a minimum number of nodes in order

to guarantee tfuit errors due to insfficíent decoding occur less frequently than errors due to

channel noise. When a binary block code is transmitted over an AWGN channel using

BPSK modulation, a sofÍ-decision decoder must be allowed to visit a minimum number of

nodes, L, that is lower bounded as:

L 2 Nn ¡u2R'd""

N^*is the minimum number of nodes that must be visited to decode a codeworcl, R is the

code rate, and d.,n is The minimum distance of the code.

The attractiveness of this theorem is that the result is independent of the signal-to-noise

ratio. Intuitively, this can be explained by realizing that at low signal-to-noise ratios the

word error rate is already high so errors due to insufficient searches can also be large so the

ordinarily large searches can be reduced. At high signal-to-noise ratios the error rate is low

so the algorithm must allow for large searches in order to keep decoding failures small.

Two proofs of this theorem are provided in Appendix 5-A.

Using the previous theorem as a guide, simulations were performed to determine

the degradation in error performance with limited searching. The simulations were performed

for the (24,12) extended Golay code transmitted over an AWGN channel with BpSK

modulation. This code has a minimum distance of 8 and consequently, by the above

theorem, the minimum number of nodes to be searched is 576. The search limits used in

the simulations were 500, 1000, 2000, and 4000 nodes.

The following graph shows the WER as a function of signal-to-noise ratio for the

67

four search limits and for the unlimited search. The lower curve is for the unlimited

searched, and the curves move up as the search limit is reduced.

10
-l

Ê1 .
H 10-"
F

10
-3

500

10m

2000

4000

10
-4

23
sNR (dB)

Figure 5.1.1. WER with Search Limits of 4O00, 20m,
1000, and 500 Nodes. (Lower curve
represents an unlimited search)

The simulations show that limiting the search to 40@ nodes has a negligible effect

on the error perforlnance of the decoder. A small degradation in the WER is noticeable for

search limits of 1000 and 2000 nodes. For these limits, the loss in error performance is

less than 1 dB. Reducing the search limit further results in greater losses in error performance.

For the (24,12) Golay code, the maximum number of nodes that can be visited by

the stack algorithm is 57342 nodes. The simulations show that a limit of about 4O0O nodes

is sufficient to guarantee essentially optimal error performance. This represents a decrease

of over an order of magnitude.

Since the number of comparisons increases with the square of the number of nodes

searched, the decrease in nodes searched results in a decrease of over two orders of

68

magnitude in the maximum number of comparisons. Consequently, the variation in

computational complexity of the sequential algorithm can be reduced by a factor of 1@ for

the (24,12) Golay code by limiting the search ro 40@ nodes.

As well as measuring the degradation in error performance, the probability that a

search reaches its limit was measured. This is shown below for four search limits, L,

where Pr [N > L] is the probability that the number of nodes searched, N, exceeds L. The

lower curve is for a limit of 4@0 nodes while the upper curve is for 5oo nodes.

100

l0 -1

--:1 \ \
[-\ 1\

x
E b

\ \
Y::=:::::À

b1 @

ro-2

t0 -3

500rl
.¡l

A

Ê{

4000

t0-4
LJ

sNR (dB)

Figure 5.I.2. Pr [N > L] for Search Limits of 4@0,
2000, i000, and 500 Nodes.

These simulations show that the probability that the number of nodes exceeds some

search limit decays exponentially with the signal-to-noise ratio. Thus, the number of errors

introduced by limiting the search will decrease exponentially with the signal-to-noise ratio.

Since the WER with limited searching is composed of errors due to noise and errors due to

insufficient searching, the search limit should be selected to guarantee that pr I N > L]

69

decays as fast as or faster than the WER without limited searching. This can be shown by

using a union bound. First, the WER with limited searching is:

WER(L) - P. I error due to noise OR search exceeds limit]

where WER(L) designates the WER with searching limited ro L nodes.

Using the union bound, this can be approximated as:

wER(L) =wER+nrfN =L]

for high signal-to-noise ratios, where

WER - Pr I error due to noise]

and

er IN = L]= Pr I search exceeds limit]

(s.1.6)

(s.1.7)

(s.1.8)

(s.1.e)

This shows that in order to guarantee the same rate of decay with signal-to-noise

ratio for the WER(L) the probability of exceeding the search limit must decay at a rate

greater than or equal to the rate of decay of the WER. This is the criteria used in Appendix

5-A to prove the theorem for choosing a search limit.

For the (24,12) Golay code, the probability that the number of nodes searched is

Sreater than or equal to 4000 is much smaller and decays much faster than the WER.

Consequently, this search limit should have a negligible effect on the overall WER. As

previously noted, this observation is confirmed by the simulations.

5.2 Reducing Flardware Complexity

The second problem with the optimum implementation of the sequential stack algorithm

70

for block codes is that the required stack size grows exponentially with the number of

information symbols in the code. That is, the required stack size for optimum decoding of

an (n,k) block code over GF(q) is qk. Therefore, in order to use the stack algorithm for

one of these larger codes the optimal stack size has to be sacrificed in favor of a more

practical size. Since the decoder uses only a small portion of the entire stack under

reasonable noise levels - a complete stack is only needed when the decoder visits every path

(i.e. considers every codeword) - reducing the stack size should be feasible.

To determine the effect of a reduced stack on the error performance of the decoder

simulations were performed. Again, ihe simulations were for the (24,12) extended Golay

code transmitted over an AWGN channel using BPSK modulation. This code optimally

requires a stack with 4096 elements. The simulations were for stack sizes of 100, 40 and

10 elements. The WER as a function of signal-to-noise ratio is shown in the next figure for

these three cases as well as the optimum WER (lower curve).

100

10
-4

ló*\i \i\
@

\

¡Þ-
w*-"

23
sNR (dB)

Figure 5.2.1. WER with Stacks of 100,40, and 10 Elements.
(I-ower curve represents an optimum stack)

10-1

rï
H t0-"
lf

10
-3

10

40

r00

71

The simulations show that a stack of 1@ elements does not degrade the performance

of the sequential algorithm significantly. The degradation is less than 0.5 dB in this

simulation. This represents a stack reduction of about 97.5 percent. Further reductions in

the stack size result in larger degradations in error performance.

The side effect of a reduced stack is a reduced computational complexiry. Since all

adjacent elements in the stack are compared after every insertion and deletion, the number

of comparisons is directly proportional to the number of elements in the stack. Therefore, a

smaller stack size translates into less metric comparisons in the priority queue.

N - Nmin

sNR(dB)

Figure 5.2.2. Average Nodes Searched for Stacks of
100, 40, and 10 Elements. (Upper curve
represents an optimum stack)

The number of nodes searched as a function of signal-to-noise ratio is plotted in the

above graph for the three stack sizes along with the optimum stack size. The simulations

show that the algorithm visits less nodes with a reduced stack. Since the number of nodes

100

to4

103

rc2

101

10

\

ìq- R-&.
_:1X
3, ><

72

visited is reduced, this will iranslate into less metric additions and less metric comparisons

performed by the decoder.

Thus, reducing the stack size has a doubly positive effect on the computational

complexity. If the algorithm were to visit the same number of nodes as it would with a

complete stack then the complexity would be smaller since less comparisons are made in

the stack. The reduced stack causes the algorithm to visit less nodes, though. Consequently,

even less metric additions and comparisons need to be performed by the algorithm. Hence

reducing the stack size not only reduces the ha¡dware complexity but reduces the computational

complexity.

5.3 Summary

Two obsüacles to the practical implementation of the sequential stack algorithm for

block codes are the variability in computational complexity and the stack (priority queue)

size. The variation in computational complexity can be reduced by limiting the length of the

search performed by the sequential algorithm. Since a full stack is only required for the

rare occasion (at moderate to high signal-to-noise ratios) when the decoder considers a

large number of potential codewords, the hardware complexity (stack size) can be dramatically

decreased.

Unfortunately, both of these techniques come at the expense of error performance,

though, this might be a small price to pay for the reductions in complexity. Fortunately,

both techniques have the added advantage that they reduce both compuiational and hardware

complexity.

It must be remembered, though, that these conclusions are based to a large degree

on observations of the techniques as applied to a single code. While not anticipated, the

gains may not be as sparkling for other block codes. Unfortunately, it is difficult to

73

precisely predict the effects of any complexity reduction technique used with sequential

decoders. In fact, most aspects of sequential decoders can not be predicted accurately.

This was noted by Wozencraft and Jacobs very early in the study of sequential decoding

algorithms:

"[TheJ analytical dfficulties witlt sequential clecoding are such

that even the tightest bounds that have been d.eríved are not

numerically accurate enough for the purposes of engiræering

design." [WoJa65J

14

.A.ppendix 5-A-tr First Fnoof of T'heore¡n

Theorern

A sequential decoder must be allowed to vßit a minimum number of nodes in order

to guarantee tfuit errors due to íttsfficient decoding occur less frequently than errors due to

channel noise. When a binary block code is transmitted over an AWGN channel using

BPSK modulalion, ø sofi-decision decoder m.ust be allowed to vísit a minimum number of

nodes, L, that is lower bounded as:

L à N,r¡n2R'd^'n

N
^,nis

the minímum number of nodes that must be visited to decode a codeword, R is the

code rate, and d,nu, is the minimum distance of the code.

Before proving the theorem a result about the Gallager function must be shown.

For a symmetric discrete memoryless channel (DMC) the Gallager function is given by

lClCaSll:

F.(p) - - losz (s.A.1)

where K and J are the number of channel inputs and outputs, respectively, and Pr (j I k)

are the channel transition probabilities.

The DMC Gallager function can be extended to an unquantized channel by replacing

the summation over the channel outputs by an integral and replacing the channel transition

:-t l-rc-t lt+o
I I I #tPr(jlk)l'/'+el
¡=oltloN l

75

probabilities by the conditional channel output density funcrions, p (r I k). That is,

(s.A.2\

Since [ViOm79],

ôIL(p) , o, p>o
ôp

l-r-l ll+o

L,.¿.fitnrrrk)lt/t+o_]
drFo(p) - - tos,

f-

'.(*)
--tos,/

l:=r: '(rrk)]"o0,
J-æ

(s.A.3)

the Gallager function is a non-decreasing function for positive values of p and is upper

bounded by its asymptotic value as p tends to infinity. That is,

Eo(p) < lim Eo(p) = Eo(æ), p>0 (5.A.4)
p-__à0O

where

(s.A.s)

as shown in Appendix 5-8.

For an AWGN channel with BPSK modulation K = 2 and:

76

p(rrk) =Gk;".p1 (' rzt-tl vql'
1

Substi tuting and simpl ifying,

B(*)=# 6.A.7) and

wER-^ o(
q
No

%(p)<H

(s.A.6)

(s.A.8)

where R is the code rate and y o is the signal-to-noise ratio per information bit.

Armed with the bound on the Gallager function the theorem can be proved.

WER can be approximated by:

for high signal-to-noise ratios.

In order to choose a limit on the number of nodes the sequential algorithm should

be allowed to visit, the distribution of the number of nodes visited should be known. A

typical plot of this distribution can be found in [Sava66] or [LiCo83]. The pareto like

di stri buti on i s characteri sti c of sequential al gori thms.

The Pr I N > L] curve is bounded by:

(^fr) '=erlN>Ll=r(^trù '

where B > 1.

Approximating Pr I N > L] by the upper bound and rewriting gives:

erI N = L] - "
(ñkù.p - B

""p[-p'" (ñkt)]

=*"*r[- *.0-,".t0] (s.A.e)

(s.A.10)

17

(5.A.11)

For Pr I N > L] to decay as the wER the following equalify must hold:

oh (,ufo) = *.o,",n.ro

or

hl L ì=R'd.in'Yu
\N-in I p

The pareto exponent p is the implicit solution of:

Eo(p)
l(=-

p

where R is the code rate and E (p) is the Gallager function.

The bound on the Gallager function, bounds the pareto exponent p as:

R'To

o=la(p) .ø = Yb'RRlnZ

Substituting the bound for p gives:

or

L > N*in 2R'd't

which proves the theorem.

t(ñk)=ry== R'd.in'ln 2=tn2R'd-' (s.4.16)

1"2

(s.A.12)

(s.A.13)

(s.A.14)

(s.A.1s)

(s.A.17)

78

,Appendix 5-A-Z Second Froof of T'heonern

The second proof uses a result from Viterbi and Omura [ViOm79] for decoding

convolutional codes. When sequentially decoding convolutional codes the number of

branch extensions per node can be limited to:

(s.A.18)

for an (n,k) constraini length (M + i) convolutional code. This will guarantee that errors

due to insufficient searching have the same exponential decay with signal-to-noise ratio as

errors due to noise.

Using the following bound on a convolutional code's free distance:

dr<n(M+l) (5.4.19)

lowers bound the number of branch extensions per node to:

Ñ,n = *-=
branch extensions per node - 2k(M + 1)

Ñ. = *fi-> 2R'd'

L > Nn'i,r 2R'd"o'

which proves the theorem.

where R is the code rate.

Replacing d, by d-, (the minimum distance of a block code) and multiplying by the

minimum number of nodes the sequential algorithm must visit to decode a linear block code

gives:

(s.A.20)

(5.A.2r)

79

.&ppendix S-ts Froof, of Gallagen Functior¡ l-imit

The Gallager function for an unquantized memoryless channel is defined as:

r+(p) - - rosz

{ fÞ* å,p (r rk¡ 1'r,.0]'*o o,

Therefore, the limit as p tends to infinity is:

f-r*-r lr*p
R,(*)=rimE(p)= tim-roe, I IIåtp(rtk¡1r/r+oI

'o. (s.B.z)
p-+æ p_-+oo

J_*rk=0,*
I

which can be rewritten as:

(s.8.1)

B(*) - "szj
:-['*

K-1
rn) frtnrrtk;1i/t+o

].,

(s.8.3)
1

i+p

80

ra(*) - - to/,

f _.-rL
-1: å'n o rr r r<r

]or

I in<
p{rrr<)j dr

Using l'Hospital's rule this becomes:

which is the desired result.

or

(s.8.4)

(s.B.s)ri(*)-.,oszl]ln

81

Chapter 6 - Conctr¿¡sion

Unlike convolutional codes, there are no general algorithms for efficient maximum

likelihood soft decision decoding of linear block codes. Instead of trying to find such an

algorithm, though, it might be easier to adapt a convolutional algorithm to a block code.

Perhaps, an even easier solution is to make a block code look like a convolutional code.

In chapter 2 it was shown that all block codes have a tree representation and all

linear block codes also have a trellis representation. This being so, it should be possible to

use the Viterbi algorithm or a sequential algorithm to decode a linear block code. Furthermore,

instead of trying to suit the algorithms to the block code it is easier to design block code

encoders suited to the algorithms. One encoder realizationtreats a block code as if it were a

rate one time-varying convolutional code. If the block code is cyclic, then the convolutional

code need no longer be time-varying. Using the convolutional encoder realization, the

sequential algorithm (with the Fano metric) is able to perform maximum likelihood decoding

of linear block codes.

Chapter 3 dealt with the issue of computational complexity. Normally, the complexity

of the sequential algorithm is measured in terms of the average amount of searching that it

performs. For block codes, though, the complexity is normally measured in terms of

equivalent real number additions. Chapter 3 gives an expression to translate the measured

complexity (average nodes searched) into the complexity (equivalent real number additions)

for block codes. The complexity of the sequential algorithm can be summarized as follows:

the number of additions grows linearly with the number of nodes searched while the

number of comparisons grows quadratically with the number of nodes searched.

Consequently, too much searching will make the sequential algorithm inefficient. Therefore

the algorithm is best used at moderate to high signal-to-noise ratios when the amount

searching is small.

82

Chapter 4 gives a summary of computer simulations of the sequential algorithm.

The simulations confirmed that the sequential algorithm is maximum likelihood. As well,

the simulations showed that the algorithm is computationally efficient for moderate signal-

to-noise ratios. In fact, by 6 dB, the sequential algorithm is the most efficient algorithm for

decoding the (24,12) Golay code.

Finally, chapter 5 discussed some refinements that can be made to

algorithm to reduce its complexity. These included setting an upper limit to

nodes the algorithm can search, and reducing the size of the stack that

contending paths. These refinements come at the cost of error performance.

To conclude, the sequential algorithm is definitely a viable alternative for decoding

linear block codes. All that is required is that the block code be made to look like a

convolutional code. Once that step is done, any convolutional decoding algorithm, including

the sequential algorithm, can be applied easily.

The convolutional code approach to linear block codes is one of the three key

contributions of this thesis. The second contribution is the observation and proof that the

sequential algorithm is able to perform maximum likelihood decoding when the metric

satisfies cerüain conditions. Finally, the complexity measures of chapter 3, together, form

the last of the three key contributions of the thesis.

6.1, R.ecommendations for Further Study

It may be interesting to pursue the following ideas:

1. In 1979, Solomon and van Tilborg coauthored a paper that showed how to transform

a rate l/n quasi-cyclic code into a rate l/n convolutional code [SoVa79]. This

approach requires that the encoder be pre-loaded with the end of the information

the sequential

the number of

holds all the

83

sequence. Unfortunately, when an information sequence has to be decoded, the

end of the sequence is not known with certainty. in its current form, the sequential

algorithm can not be used successfully when the initial encoder state is unknown.

Modifying the sequential algorithm to suit this encoder is an open problem.

2. By casting a block code in the form of a convolutional code, perhaps time-varying,

it has been possible to borrow convolutional decoding algorithms for the purpose of

decoding block codes. There may be other results for convolutional codes that can

be extended to block codes (i.e. rate one convolutionar codes).

3. For convolutional codes, the sequential algorithm has a pareto distribution of

computation. This distribution has been used to determine the signal-to-noise ratio

at which the average number of nodes searched by the sequential algorithm becomes

unbounded. For block codes, due to the finite tree or trellis, the average number of

nodes searched will never become unbounded. A more useful measure for a block

code might be the signal-to-noise ratio at which the complexity of the sequential

algorithm is worse than the Viterbi algorithm. For example, this occurred at 3 dB

for the (24,12) Golay code. So far, no results have been developed to predict the

signal-to-noise ratio at which this would occur.

4. The memory between successive trees for concatenated codes may cause practical

problems' This can be avoided by clearing the contents of the convolutional encoder.

A better solution may be to ignore the memory and determine the degradation in

error perforrnance caused by this assumption.

84

Ref'erences

lAnMo9ll

[BeSn86]

lBlahs3l

lChasT2l

lChYaS6l

[ClCa81]

[CoSl86]

[Forn66]

IForn88]

lHeNoSSl

[LiCo83]

MaMoS2l

[Mass78]

Anderson, J.8., and Mohan, 5., Source and Chnrutzl Codirtg: An Algorithmic
Approach, Kluwer Academic Publishers, 1991.

Be'ery, Y., and Snyders, J., "Optimal Soft Decision Block Decoders Based
on Fast Hadamard Transform," IEEE Transactions on Information Theory,
vol. IT-32, No. 3, May i986, pp. 355-364.

Blahut, R.8., Theory and Practice of Enor Control Codes, Addison-Wesley
Publishing Company, i983.

Chase, D., "A Class of Algorithms for Decoding Block Codes With Channel
Measurement Information," IEEE Transactions on Information Theory, vol.
IT-18, No. 1, January 1972, pp. l7O-I82.

Chang, C.Y., and Yao, K., "Systolic Array Architecture for the Sequential
Stack Decoding Algorithm," SPIE vol. 696 Advanced Algorithms and
Architectures for Signal Processing, 1986, pp. 196-203.

Clark, G.C. and Cain, J.8., Error-Coruectton Coding for Digital
Communications, Plenum Press, 1981.

Conway, J.H. and Sloane, N.J.A., "Decoding Techniques for Codes and
l.attices, Including the Golay Code and the Leech [-attice," iEEE Transactions
on Information Theory, vol. IT-32, No. 1, January 1986, pp. 41-50.

Forney, G.D. Jr., "Generalized Minimum Distance Decoding," IEEE
Transactions on Information Theory, vol. IT-12, No. 2, April 1966, pp.
125-13r.

Forney, G.D. Jr., "Coset Codes II: Binary Lattices and Related Codes,"
IEEE Transactions on Information Theory, vol. IT-34, No. 5, September
1988, pp. 1152-1187.

Herro, M.4., and Nowack, J.M., "Simulated Viterbi Decoding Using
Importance Sampling," IEE Proceedings, vol. 135, No. 2, April 1988, pp.
133-142.

Lin, S., and Costello, D.J., Error Control Coding: Fundamentals and
Applications, Prentice-Hall, Inc., 1983.

Matis, K.R., and Modestino, J.Vy'., "Reduced-Search Soft-Decision Trellis
Decoding of Linear Block Codes," IEEE Transactions on Information Theory,
vol IT-28, No. 2, March 1982, pp.349-355.

Massey, J.L., "Foundations and Methods of Channel Coding," Proceedings
of the International Conference on Information Theory and Systems, vol.
65, NTG-Fachberichte, September 1978.

85

[ofPe91]

IPFTVssl

lProaS9l

ISava66]

lsiBa54l

[SnBe89]

ISoVa79]

[VaBe91]

IVaT169]

[Viom79]

IWoJa65]

[Wolf78]

Offer, E., and Perkins, M.G., "Soft Decision Decoding of Block Codes
and Concatenated Block-Convolutional Codes Using the Stack Algorithm,"
Globecom 91, pp. 765-769.

Press, W.H., Flannery, 8.P., Teukolsky, S.4., and Vetterling, W.T.,
N_umerical Recipes in C - The Art of Scientific Computing, Cambridge
University Press, 1988.

Proakis, J.G., Digital Communicatíons, 2nd ed., McGraw-Hill Book
Company, 1989.

Savage, J.E., "Sequential Decoding - The Computation Problem," The Bell
System Technical Journal, January 1966, pp. 149-175.

Silverman, R.4., and Balser, M., "Coding for Constant-Data-Rate Systems
- Part I. A New Error-Correcting Code," Proceedings of the IRE, vol. 42,
September 1954, pp. 1428-1435.

!gVO_"r1 J.., and Belery, Y., "Maximum Likelihood Soft Decoding of Binary
Block Codes and Decoders for the Golay Codes," IEEE Transãctions on
Information Theory, vol IT-35, No. 5, September 1989, pp. 963-9i5.

Solomon, G., and van Tilborg, H.C.A., "A Connection Between Block
and Convolutional Codes," SIAM Journal of Applied Math, vol.37, No. 2,
October 1979, pp. 358-369.

Yuldy,4., and Be'ery, Y., "Even More Efficient Soft Decoding of the
Golay Codes," Proc. IEEE ISIT, Budapest, Hungary, June 24-ZB, I99I,
p. 190.

Van Trees, H.L., Detection, Estimation, and Moclulation Theory, John Wiley
and Sons, Inc., 1969.

Viterbi, A.J. and Omura, J.K., Principles of Digital Communicatíons and
Coding, McGraw-Hill, New Y ork, I9-/9.

Wozencraft, J.M. and Jacobs, I.M., Principles of Communication
Engineering, John Wiley and Sons, Inc., New York, 1965, p. 444.

wolf, J.K., "Efficient Maximum Likelihood Decoding of Linear Block codes
Using a Trellis," IEEE Transactions on Information Theory, vol.IT-24,
No. 1, January i978, pp. 76-80.

86

