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ABSTRACT 

This research addresses the design and development of a data-driven Agent-Based 

Modelling (ABM) framework to simulate transmission and spread of West Nile Virus (WNV) 

among heterogeneous mobile humans, various bird species, and Culex genus mosquitoes over a 

geographic region at a province-scale. A diverse variety of topics and techniques regarding the 

data collection phase is presented, as modelling WNV has many disparate attributes. WNV is a 

mosquito-borne disease influenced by avian species as their amplifying hosts. A significant 

amount of data, such as home range, flight speed, WNV competence index, etc., regarding over 

150 bird species along with their population estimates and locations in Manitoba, Canada are 

estimated and assembled. The primary contribution of this thesis is the development and 

validation of a data-driven Cellular Difference Equation (CDiffE) scheme for adoption in WNV-

ABMs or other mosquito-borne disease ABMs. The migration patterns of different bird species, 

nocturnal biting activities of Culex mosquitoes, daily temperature and rainfall, and land cover 

impact are incorporated into the CDiffE model. The CDiffE model at its core employs difference 

equations, which are computationally faster than commonly used differential equation models. 

The proposed CDiffE model is cellular to capture heterogeneity of various geographical areas. 

The CDiffE has been rigorously verified and validated. While the whole system is designed from 

an ABM perspective at a cellular level, it exhibits biologically compatible behaviour at the 

macro-level scale. The proposed CDiffE demonstrates high accuracy in predicting real-world 

mosquito population trends and geographical distributions, evidenced by the mosquito trap data 

from Manitoba. The proposed CDiffE model updates on an hourly step to act as an environment 

for a comprehensive ABM of WNV spread among peripatetic humans. Such a hybrid ABM is 

successfully built on top of the proposed CDiffE scheme to study the impact of human 
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movements on the prevalence of the virus. The human movement component is modeled on data 

available from cell phone trajectories as well as census and demographic datasets. Simulation 

results clearly illustrate the importance of human movement patterns and demonstrate the need 

for real-world data. Yet human mobility is often disregarded within current WNV modeling 

efforts.  
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Chapter 1: INTRODUCTION 

1.1 Introduction to Agent-Based Modelling and West Nile Virus 

This thesis research is to develop and validate an agent-based model (ABM) of West Nile 

Virus (WNV) transmission, using the Java-based Anylogic simulation software, in particular for 

southern Manitoba, Canada. While most agent-based models for health applications integrate one 

type of agent (e.g., humans acting and interacting to spread a contact-based infection such as 

influenza), the proposed research is significantly more complex in that it considers three distinct 

types of agents:  humans, mosquitoes, and birds, each of which are subsequently broken down 

into a near-realistic diverse array of agent profiles in terms of behaviours and interactions.  The 

proposed ABM uses weather and GIS information to spatially model the spread of WNV under 

given climate conditions at hourly time-steps. 

1.1.1 Agent-Based Modelling 

Agent-based simulation or Agent-based modelling (ABM) [1]–[3] is a natural and intuitive 

way of simulating systems where individual agents (e.g., people or mosquitoes) play significant 

roles. In this bottom-up approach, the system contains a set of autonomous individuals, i.e., 

agents, interacting based on a set of rules within an environment. From the micro-level inter-

actions between agents of the same or different types, the macro-level patterns of the system 

emerge. In its simplest form, a cellular automata (e.g., game of life [4]) can be considered an 

ABM where the agents are the cells governed by simple rules based of their neighbouring cell 

states (i.e., the environment). The conceptual depth of ABMs is due to capturing complex 

phenomena which are not explicitly programmed by the modeller, and cannot be explained by 
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the individual-level rules [5]. Often the outcome is greater than sum of all the individual 

components in an ABM. 

A heterogeneous population of agents is inherently suitable to an agent-based model where 

e.g., each person can have their own profile of movement and interaction. ABMs are generally 

well suited to model social networks when either the agents or the topology of the interactions is 

heterogeneous or complex. ABMs are naturally designed to model interaction between 

heterogeneous agents, and in WNV epidemiology, the main means of spread of the virus is the 

interaction cycles within different agent types. This makes ABMs an ideal tool to investigate the 

epidemiology of WNV. 

The value of ABMs is being established through a growing literature base in various fields. 

However, the modelling approach itself is still considered a relative newcomer in relation to 

mathematical models and more established simulation models of social and human agent 

systems. Although ABM has its roots in the 1960s [6] or even earlier, it has gained significant 

attention in last decade as a powerful method for modelling various systems with advances in 

computing capabilities and in the amount of human-centric data available. It is increasingly 

applied across many disciplines, ranging from natural, social, and physical sciences, engineered 

systems and beyond to business, and operations management [3], [7], [8].  

ABMs are recognized as computational models that permit a distinctive approach to 

complementary empirical research [9], [10]. In ABMs, dynamic social systems are modeled as a 

collection of highly stochastic agents (in many cases, primarily humans), their individual profiles 

or characteristics, their individual behaviours, and interactions between agents and between 

agents and the environment. Agents are purposeful and autonomous entities able to assess their 

situation, make decisions, and compete or co-operate with one another on the basis of a set of 
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rules. As noted, the conceptual depth of an ABM is derived from its ability to model behaviour 

that may be counterintuitive and/or to discern a complex behavioural whole that is greater than 

the sum of its parts. ABM provides a natural description of a system that can be calibrated and 

validated by representative expert agents and is flexible enough to be tuned to high degrees of 

sensitivity in agent behaviours and interactions. ABMs are particularly well suited to dissipative 

irreversible system modelling in which agent behaviour is complex, non-linear, stochastic, and 

may exhibit memory or path-dependence [2], [11]. Such systems support quantized or 

individuated characterization, and particularly exhibit heterogeneous aspects. 

Yet, the full potential of ABM remains unrealized as the methods to exploit massive 

amounts of data are still emerging.  The key challenges of an ABM approach applied to socio-

ecological systems are improving agent decision and adaption models, improving validation and 

verification, and improving spatial representation and levels of abstraction [12]. Further, the key 

challenges for the ABM approach to advance and realize its potential include validating agent 

behaviours and emergent phenomena, better agent behavioural models, improved simulation 

analytics, and improving hybrid and large scale ABMs [13]–[15]. 

1.1.2 West Nile Virus Background 

West Nile virus (WNV) is an arbovirus (arthropod-born virus) which was first isolated from 

a feverish woman in 1937 [16]. Its name comes from the district of West Nile in Uganda. In 

Egypt, at the beginning of the 1950s, the ecology of the virus was learned and its symptoms were 

discovered. The virus was detected in humans, birds and mosquitoes. Since then, outbreaks have 

been found in various European countries [17]. In 1996, there was a major human epidemic in 

Bucharest, Romania, where WNV became a concern for public health. The arrival of WNV in 

the American continent occurred in 1999, and more specifically in New York [18]. In Canada, 
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WNV reached southern Ontario in 2001, while the first human cases were detected in August 

2002. In Canada, the mosquito infection rate and mortality of birds have been used as a proxy for 

WNV transmission risk. The first appearance of infected birds in Manitoba was in 2002 [19]. 

The highest number of human cases associated with WNV for Manitoba was reported in 2007 

and 2003, with 587 and 143 cases, respectively [20].  This figure includes asymptomatic, 

neurological, non-neurological syndrome, and unclassified cases with positive test results [20]. 

In the most recent update on WNV information in Manitoba, a total of 24 human cases reported 

as of December 9, 2016 [20].  

A majority of people who become infected with WNV do not show any noticeable 

symptoms. As these people remain asymptomatic, these cases are not usually reported in 

statistics. Others who become ill with WNV mostly show mild flu-like symptoms within two 

weeks after infection [21]. This period is called the incubation period. Mild symptoms include 

headache, fever, fatigue and body aches. However, a few people who are infected will develop 

serious symptoms that could affect the central nervous system (CNS) and cause neurologic 

illnesses such as encephalitis/meningitis (acute inflammation of the brain/surrounding 

membranes). People of older ages or with weakened immune system are generally at a higher 

risk for severe illness. The severe symptoms includes serious headache, high fever, stiff neck, 

vomiting, blurred vision, confusion, coma and paralysis [6, 7]. Symptoms may last for months or 

years without treatment. Unfortunately, there is no vaccine for humans yet, and the infection can 

result in death. 

1.1.3 Transmission of West Nile Virus 

Mosquitoes of mainly the Culex genus are the vectors of WNV infection [23], i.e., they carry 

and transmit the virus to other animals including humans. Under certain environmental 
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conditions, adult female mosquitoes lay their eggs. As such, they need to take a blood meal from 

their hosts to obtain sufficient protein and iron for egg-laying.  During the next stages of the 

mosquito life-cycle, eggs hatch into larvae, and then begin molting their skins until they change 

into pupae that evolve into adult mosquitoes [24]. The newly emerged adult may inherit the virus 

but with low probability [25], [26]. This is called vertical transmission within the mosquitoes, 

which has a negligible transmission rate [27].  

It is believed the main means of transmission and spread of WNV is through birds [28], 

[29]. An infectious mosquito can infect a healthy bird by feeding on it. An infectious bird can in 

turn infect a healthy mosquito that bites the bird. In this transmission cycle, birds act as so-called 

amplifying hosts since the virus is amplified in their bloodstream. Amplifying hosts keep a high 

enough level of pathogen that it can be transmitted to the next feeding mosquitoes.  On the other 

hand, there are incidental or dead-end hosts in the WNV epidemiology that cannot pass the 

pathogen to another host or feeding mosquitoes. Dead-end hosts of WNV are various kinds of 

mammals including dogs, cats, sheep, goats, deer, horses and humans. Horse seroprevalence in 

some countries has been used as a proxy for WNV transmission risk [30]. Horses provide an 

ideal surveillance tool in that they are highly affected by the virus (with paralysis and death also 

being possible), and thus infection can be more readily detected. The whole transmission cycle of 

WNV is shown in Figure 1-1. 
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Figure 1-1 Mosquito life cycle and West Nile Virus transmission cycle diagram 

1.2 Overview of Key Factors in a WNV-ABM 

The primary objective of this thesis is to model the dynamics of WNV spread in southern 

Manitoba. Before an attempt to make any model, a number of key factors, each of which has a 

particular role in WNV transmission, need to be recognized. In this section, main factors 

affecting WNV transmission cycle are reviewed.  These factors become inputs into an ABM and 

govern the behaviours and interactions of the three types of agents: humans, birds, and 

mosquitoes. 
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1.2.1 Weather 

The duration of each stage of the mosquito life cycle as well as their biting rate and rate of 

virus maturation are a function of weather conditions. Birds’ migratory behaviour is influenced 

by climate. Human outdoor activities which expose them to mosquitoes are weather-dependant. 

Among the three agents, the impact of weather on mosquito conditions has the most significance 

influence on the emergence of WNV. This impact can be indexed and measured in different 

ways. All these indices are associated with temperature and/or precipitation. 

1.2.1.1 Precipitation 

There is no doubt that humidity is required for mosquitoes to lay their eggs. However, the 

desired level and frequency of rainfall for mosquitoes is controversial [30]–[32].  Any influence 

of rainfall on mosquito dynamics affects the WNV transmission. Further, various mosquito 

species considered can have different preferences with regard to water in their habitat. For 

instance, while Culex species put their eggs directly on the water surface, some other species 

produce eggs on damp soil [24]. An in-depth discussion on the impacts of precipitation needs to 

address the difference in the mosquito species across the different studies. 

Heavy rainfall obviously increases the water surface which may favor some mosquitoes, but 

it can also flush their habitat [33]. It may be safe to generally assume that wet weather conditions 

amplify occurrence of mosquito-borne diseases [34]. However, drought can unfortunately lead to 

similar situations as well. More precisely, drought, similar to heavy rainfall, has a two-sided 

ambiguous effect on mosquito habitat. At first glance, drought reduces the necessary water for 

mosquito breeding, but further investigation provides facts to reinforce a drought hypothesis in 

favor of mosquito habitat [34]–[36]. The basic idea of the hypothesis is that a mild winter can 

help mosquito larvae survive. If this winter is followed by a dry spring and summer, it drives 
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both birds and mosquitoes to come closer to the remaining shrinking water, which in turn 

increases rates of contact between mosquitoes and birds. Moreover, most mosquito predators 

(e.g., dragonflies and frogs) cannot survive a drought condition, plus concentrated stagnant water 

has an ideal high level of organic nutrients for mosquitoes [37].  

1.2.1.2 Temperature 

Temperature generally has a positive correlation with WNV activities. Temperature affects 

both mosquito population dynamics and the virus amplification. In the Culex genus, higher 

temperatures expedite the development of mosquitoes, increase the reproduction rate and the 

number of blood meals, boost vector competency and chances of the virus transmission by 

reducing the extrinsic incubation period (EIP)[24], [30], [31], [33], [38]–[43]. Decreasing the 

life-cycle of mosquitoes sometimes also decreases the longevity of mosquitoes at more extreme 

temperatures over 30° C. In other words, higher temperatures intensify the transmission of the 

virus, yet cool temperatures (in Summer around 15-20° C) could increase the life-time of 

mosquitoes from weeks to months [44]. Both effects are not desired from a public health 

perspective. 

The fluctuation of temperature generally does not favour the spread of WNV [43]. The 

development of mosquitoes and the virus both need warm weather over a period of time. A 

commonly used index to describe variations in mosquito population and their infection rates are 

cumulative degree-days [45]. Degree-days index for a given day shows the number of degrees 

Celsius the mean temperature of the day is below or above a pre-defined base threshold. For 

Culex tarsalis  (Diptera: Culicidae) mosquitoes, the base number is estimated to be 14.3° C, and 

the activation of virus (EIP) requires 109 Degree-Days (DD) [41]. 
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Other indexes used to measure temperature conditions in the WNV literature include Land 

Surface Temperature (LST) [46], [47], which may be computed from remote sensing imagery, 

and the elevation [48], [49], which is negativity linked to temperature [30]. 

1.2.2 Landscape Features  

Habitat quality for mosquitoes and birds depends on landscape features. In the WNV 

literature, landscape information is mainly used to determine habitat quality for mosquitoes. For 

mosquitoes, vegetation type and water bodies are the two main elements that need to be 

described by landscape variables or indexes. A common approach to describe landscape features 

is to classify different regions of land into various categories based on how the land is being 

covered or used by nature/humans. As such, it is sometimes called land cover or land use 

classification. These categories may include urban area, rural area, grassland, agricultural 

cropland, various forest types, sands, rocks, roads and water. Any existing land cover dataset 

categorizes the land into different number/type of classes as their intended usage can be 

different. For example, classification of land for agricultural purposes is different from that of 

nature conservation groups. When the classes are defined, remote sensing satellite images are 

usually used to classify each region. Then, for each class, mosquito habitat quality parameters 

can be assigned, usually according to an expert’s opinion. 

An alternative method in WNV modelling is to directly calculate mosquito-related indexes 

for the land. As an example, normalized difference vegetation index (NDV), which assess the 

land cover from a vegetation perspective with a numerical value between -1 and 1, has been 

identified and used as a risk factor for mosquito abundance models [34], [46], [50]. Other 

landscape parameters used in the WNV literature to describe mosquito habitat include road 
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density, stream density, slope percent, soil type, sumps along the roads and distance to the 

nearest wetlands/bogs [34], [46], [51], [52]. 

1.2.3 Birds and Mosquitoes Species as Distinct Agent Types in a WNV-ABM 

1.2.3.1 Birds 

In North America, at least 59 different species of mosquitoes [53] [54] and over 225 species 

of birds [23], [55] have been found infected with WNV. However, not all of the mosquito 

species act as bridge vectors by feeding on both birds and mammals, including humans. There 

are several studies with data on different mosquito species and bridge vectors [56]–[58]. Only 

some mosquito genera have been reported in various regions of the world, and their population 

count heavily depends on weather conditions and landscape features [59]. Among birds, some 

species such as corvidae (corvids), commonly referred to as the crow family, are known to be 

competent hosts. The crows become severely ill after the infection and often die, whereas many 

other species do not become ill and develop WNV antibodies to resist against infection [30]. 

Host competence is typically determined by the duration and magnitude of viremia. The 

contribution of different bird species to WNV transmission to mosquitoes is determined by the 

combination of competence, abundance, and mosquito feeding patterns. Several studies have 

quantitatively determined which host species are more important in different parts of North 

America [60], [61]. Many other studies offers insights on mosquito feeding patterns and the role 

of different bird species (and their community structure) in WNV amplification [62]–[65]. 

Avian hosts (birds) are believed to be responsible for large-scale spread of WNV mainly due 

to their food seeking activities and somewhat to their migration [29], [52]. Yet no model exists to 

explain the distribution of wild birds primarily because of longer flight spans compared to 

mosquitoes, coupled with the cost of bird monitoring and data collection and various rates of 



11 

 

migration within a species [30]. Traits and behaviour (e.g., roosting) of each species of birds also 

play an important role in the prevalence of WNV [66]–[68]. As an example, American crows are 

susceptible to become infected via means other than mosquito bites, such as vertical transmission 

and eating infected dead or nestling birds [69]. Studies on the relative role of birds in WNV 

transmission have also reported a positive correlation between seroprevalence and bird weight, 

which may be due to higher CO2 production and the longer expected lifespan of larger birds [70]. 

Nestling behaviour of birds might be another factor to play a role in WNV transmission. 

Nestlings are more exposed to mosquito bites as they are too young to move, have fewer feathers 

and immature immune systems [30]. Competent avian hosts also include the house finch, house 

sparrow, mourning dove, gray catbird, European starling, northern cardinal and corvids such as 

the American robin, American crow, western scrub-jay, yellow-billed magpie and blue jay [69], 

[71]–[74]. Among these species, some are preferred over the others by each mosquito species. 

However, in general, mosquito blood feeding patterns  depend mainly on accessibility of hosts in 

a certain area [75]. 

1.2.3.2 Mosquitoes 

Mosquito species differ in their preferred breeding habitats, biting behaviour, flight range, 

life-cycle period, host preference, etc. It is believed that differences in mosquito habitat 

preferences are the reason why both extreme (wet and dry) weather conditions could result in the 

outbreaks [34]. A recent study on weather drivers of WNV across North America can be found 

in the work of Paull et al. [32]. A summary of these differences for a few mosquito species are 

reported in Table 1-1 [28], [34], [76]. 
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Table 1-1 Differences in mosquito species properties [28], [34], [76] 

Mosquito 

Species 

Habitat 

Preference 

Flight 

Range 

Host 

Preference 

 Activity Time Life Cycle 

(days) 

Aedes aegypti  Shaded artificial 

containers, 

Tree holes 

 

200 m Mammals Crepuscular/day 10 - 20 

Ochlerotatus 

sollicitans 

 

Salt marshes, 

Freshwater  

2.5 km  Large 

mammals 

Crepuscular/day 7 - 10 

Culex pipiens Urban area, 

Water with high 

organic content 

 

2 km Birds Crepuscular/night 10 - 14 

Culex tarsalis Every fresh water 

source except tree 

holes 

 

>6 km Opportunistic Crepuscular/night 10 - 14 

Psorophora 

columbiae 

Rice fields, 

Temporary pools 

and ditches 

>16 km Opportunistic Day/Night  4 - 10 

 

Culex (Cx.) pipiens is the main competent WNV vector in the eastern United States and 

Canada, including southern Ontario and Quebec [54], [55]. Cx. pipiens is one of the most 

important vectors capable of amplifying WNV in the bird population [28]. These primarily bird 

biting mosquitoes may switch their hosts to mammals and humans during the late summer and 

early fall [54]. They are mostly found in urban areas and have habitat preferences for water with 

high organic content [34], [77], [78]. The specie can also lay eggs in artificial containers such as 

cans, tires or stagnant water in any trash container. Catch basins or storm drains in cities can be 

an ideal place for them to reproduce [79].  

Culex restuans mosquito is a competent primarily bird biting vector for WNV, which feeds 

infrequently on mammals [28], [55]. Its biting activity occurs mainly at night, and it has a similar 

breeding habitat to Cx pipiens.  
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Culex tarsalis is extremely efficient in preserving and intensifying WNV and is considered 

to be the main vector in the Prairie provinces of Alberta, Manitoba and Saskatchewan [20], [43], 

[55], [80], [81]. This species, similar to other Cx. species, can transmit WNV to their offspring 

[25]. Culex tarsalis feeds multiple times mostly on birds and sometimes mammals [55], [82].  

The larvae of this principal bridge vector in Manitoba can tolerate a wide range of water 

conditions [83]. The species can be found in almost any fresh water source except tree holes, 

including temporary water bodies (e.g., bird baths and used tires), alkaline lakes, and salty 

wetlands [55], [79], [83]. Larval habitat can be shared with other species such as Cx. pipiens and 

several species of Aedes and Anopheles [83]. A female one can produce eggs multiple times 

during a season [55], [79]. The eggs on the surface of water are attached together, forming rafts 

of around 200 eggs [24], [83]. A proportion of up to 95% of larvae can be lost by predation [83]. 

The life cycle duration depends on temperature. It takes approximately 14 days at 21° C and only 

10 days at 26° C [24] to go through their life cycle. In spring, the female adults feed mostly on 

birds at dusk, and during late summer they switch hosts to feed on mammals [54], [83]. They are 

reported to be persistent biters even during the day and dawn [55], [84], [85]. Their foraging 

flight is typically less than one kilometer, but it can be extended well beyond six kilometers up to 

27 km [28], [83]. The combination of traits that characterizes Cx. mosquitoes are essential 

knowledge when developing transmission models. 
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1.3 Overview of Related Work 

1.3.1 West Nile Virus non-ABM Literature 

According to [30], different approaches to model WNV transmission risk or spread can be 

categorized into three sometimes overlapping classes of “risk factor analysis,” “landscape 

epidemiology,” and “transmission dynamic modelling.” 

1.3.1.1 Risk Factor Analysis 

Risk factor analyses try to identify various variables associated with WNV occurrence 

through observing the natural environment and making a connection between conditions and 

WNV prevalence. It bears noting that risk factor models are normally associational than causal. 

In these models, mostly birds (in North America) and horses (in Europe and Middle East) have 

been used as infection markers to measure WNV prevalence [30]. Investigated variables such as 

climate, host competences and landscape characteristics are employed in statistical models to 

describe variations in WNV occurrence. These studies may be spatial and include landscape 

characteristics that could move it under the class of “landscape epidemiology.” 

1.3.1.2 Landscape Epidemiology 

Landscape epidemiology, which is also known as spatial epidemiology, can be used to 

produce risk maps over various landscapes. These approaches mostly use Geographical 

Information System (GIS) software to represent geographic distribution of disease as a result of 

several elements. Spatial statistical tools may be used to model data based on covariates [30]. 

These models can implement three types of layers: mosquitoes, birds and incidental hosts. Each 

layer can independently measure the degree of WNV severity based on landscape characteristics. 
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The layers can be then combined together based on a weighted linear combination to produce 

risk indices [86]. 

1.3.1.3 Transmission Dynamic Modelling 

The third approach of transmission dynamic modelling includes integrative studies where 

spatio-temporal co-occurrence of vectors and hosts can be modeled [30]. There are studies to 

introduce theoretical formulation for mosquito host feeding patterns [87]. Others have used t-test 

or Generalized Linear Mixed Models (GLMMs) to model competency of avian hosts [30]. Most 

notably, difference or differential equation (DE) models have been utilized to model WNV 

transmission dynamics. Thomas and Urena formulated a difference equation for WNV evolution 

in a mosquito–bird–human community with a focus on mitigation via pesticide [88]. Their model 

has no geographic element, and the incubation period is disregarded to simplify the model [88]. 

Wonham et al. developed a single-season classic susceptible-infectious-removed (SIR) DE 

model for WNV transmission in a bird-mosquito population [89]. Their focus is on estimating 

the disease reproduction number and the chance of an outbreak [89]. Bowman et al. propose a 

single-season DE model of WNV transmission dynamics in a mosquito–bird–human population 

to assess personal protection and mosquito reduction strategies [27]. Mosquito and bird 

compartments of their model have no exposed state. Also the effect of bird-to-bird vertical 

transmission and migration of birds are not studied in their model [27]. Cruz-Pacheco et al. [90] 

formulate and analyse a DE model of WNV transmission with a focus on hosts and estimating 

the competence of bird species. Simpson et al. [73] developed a DE model for WNV 

transmission with a focus on host feeding preferences using one vector species (Cx. pipiens) and 

two categories of preferred and non-preferred bird hosts 
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In this context, ABMs can be designed to combine features and strengths of all the DE 

models mentioned above into a single system. ABMs, intrinsically, can incorporate biodiversity 

of birds and mosquitoes, their heterogeneous contacts, and their interaction with mobile humans, 

without making any homogenous assumptions about the population or hard-coding any statistical 

rules/correlations at the system-level. Whereas exploring any additional factor in a DE model 

requires hard-coding of some new parameters or even re-designing the whole model at a 

population-level. Additionally, human behaviour and their community structure has an 

indisputable effect on the spread of an infectious virus (e.g., flu) [91], [92]. For instance, human 

behaviour can directly change variables in the abundance of mosquitoes and birds through 

larviciding, pesticiding, bird hunting, etc. Yet, these factors are generally neglected in WNV 

models as humans are dead-end WNV hosts. Weather and GIS information can easily be injected 

into ABMs to track and potentially predict the spatio-temporal dynamics of WNV in a given 

landscape under customized weather conditions. Depending on the level of details implemented 

in an ABM, the role of each characteristic/trait of various mosquitoes and birds in the WNV 

epidemiological system may be investigated. Also, to capture even more dynamics and 

phenomena, the model alterations can be conducted at an individual-level, if need be. More 

importantly, the impact of some uncertain intervention strategies and control scenarios can be 

effectively assessed. For example, one may wonder if building a school near a pond or a small 

stagnant lake (i.e., a potential hot-spot for mosquitoes) would make any difference to WNV 

prevalence in an area. In a WNV-ABM, it is very straightforward to discover how agents (e.g., 

people/mosquitoes) would respond to a change in the environmental conditions. Other capacities 

of ABMs can be summarized as: (1) representing geography at a continuous level (rather than a 

quantized level, which are typically vastly cruder representations in aggregate models); (2) 
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representing individual decision-making (e.g., with respect to personal protective behaviour, 

possible vaccination, municipal mosquito spraying, etc.) in a situated way that draws on local 

perception; (3) keeping track of individual longitudinal information about a person’s history.  

This allows reporting statistics and comparing/calibrating against individual longitudinal 

empirical data. 

1.3.2 Related Agent-Based Models 

ABMs have been extensively applied in health care applications [93]–[96] as well as in 

somewhat limited mosquito-related studies. A wind and odor driven ABM for host-seeking 

behaviour of mosquitoes is proposed in [97]. They explicitly formulate their ABM based on the 

Culex mosquito feeding behaviour on roosting birds. The model is 2D (i.e., at a fixed height from 

the ground), and generates movement trajectories for each mosquito as an individual agent. In 

[98], using the Repast toolkit, an ABM is proposed to simulate population of Aedes mosquitoes, 

which are the primary vector of Dengue and Chikungunya. Their agents include mosquitoes, 

humans, dogs, and cats. The mosquito agents can fly randomly, look for resting places, look for 

blood meal, bite hosts, etc. An ABM for simulation of dengue transmission in Thailand with a 

focus on vaccination practices is proposed in [99]. This ABM includes aggregated mosquito (per 

building) and human agents who can be either at home or work. Mosquito agents tend to stay at 

the same location. However, individual infectious mosquitoes may migrate to other locations 

with some low probability. In simulating multi-year epidemics, the human populations are 

assumed to become older and more susceptible to dengue.  In [100], an ABM for Malaria 

transmission is proposed where different intervention strategies are explored. A number of 

different Anopheles mosquitoes and humans are among the agents. In this ABM, a probabilistic 

decision-tree defines the life-cycle and behaviour of mosquito agents. In [101], a temperature-
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driven ABM of  Anopheles gambiae mosquitoes with an emphasize on its life-cycle is proposed. 

These mosquitoes are Malaria vectors. In [102], an ABM for the population dynamics of Aedes 

aegypti mosquitoes is proposed where two control strategies for Zika virus are simulated. The 

geographical scope of their ABM consists of three zones of human locations, vegetation, and 

breeding sites. The mosquito behaviour is driven by the present zone and monthly average 

temperature. 

There are other ABMs which focus on the impact of human behaviours in spread of these 

diseases, where an aggregation of mosquitoes is an agent. Typically, the dynamics of an 

aggregated mosquito agent update is based on a DE model. For example, in [103] an ABM is 

used to simulate spread of Chikungunya where mosquitoes have a network-patch model. In a 

network-patch model [104], mosquitoes are divided into patches of high, medium, and low 

densities. Each patch can contain a number of location nodes (i.e., buildings in a town). Humans 

can move from one node to another node within a virtual network. A similar approach is used in 

[105], where each network node is associated with one patch. A framework for modelling of 

mosquito-borne pathogen (e.g., Malaria and Dengue) transmission is proposed in [106], where 

humans spend various amounts of time at various virtual nodes. Another ABM for dengue 

transmission with houses arranged in 16 different mosquito patches is proposed in [107], where 

humans can visit these houses. 

It is notable that humans in the above-mentioned mosquito-borne diseases act as amplifying 

hosts, in contrast to WNV. In addition, generally these models do not need to explicitly account 

for a third agent type, i.e., birds. Indeed, often those models do not include any hosts within the 

virus cycle other than humans. The presence of such additional hosts, in general, makes WNV a 

more complex disease to model and more appropriate for an ABM approach. 
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1.3.3 West Nile Virus Agent-Based Models 

1.3.3.1 The WNV-ABM by Li et al. (2005) 

The usage of ABMs in the WNV literature is rather scant. In [52], using the Repast toolkit, a 

WNV-ABM is proposed. The scope of their model is an area of around 165 km2 in Cook county, 

Illinois, US. This area is modelled as a raster map where each cell of the array represents one 

acre (about 4046 m2). Landscape is classified into 63 classes of different land-uses, such as 

commercial, wetlands, agricultural, etc., each of which are associated with a habitat quality index 

of one to three. Each cell of the raster map contains various land-use classes. A weighted mean 

of the fixed values of land-use parameters are associated with the parameters of the cell.  

The ABM models birds and humans as individual agents being capable of flying or moving 

around the map as part of their daily activities. However, the population of mosquitoes and the 

transmission of the disease are controlled by a set of proposed differential equations. Their 

equations are controlled by weather-dependant parameters such as soil surface moisture. The 

weather data (i.e., temperature, precipitation and humidity) are updated hourly. 

Land-use parameters of each cell determine the initial distribution/density of birds, 

mosquitoes and human, habitat quality (food abundance) for birds and the likelihood of human 

outdoor activities. Chances of human outdoor activities are also affected by their age, which is 

grouped into different classes of ‘infants,’ ‘children and teenagers,’ ‘young and middle-aged,’ 

and ‘seniors.’ Basically, every day birds fly into neighbour cells of higher habitat quality based 

on the parameters of cells and return to their home cell at night. If humans are outdoor, and 

infectious mosquitoes are present at the same cell at the same time, the transmission of WNV 

may occur. The mathematical equation of transmission is based on the prevalence of infection 
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rate for humans, the number of infectious mosquitoes, and the total number of mosquitoes in the 

cell. 

There are heavily simplified assumptions throughout their paper. It is claimed that the three 

bird species of black-capped chickadee, blue jay, and American crow are modeled within the 

ABM. However, it is not known how they differentiate between these birds in the model. The 

equations for transmission of WNV between birds and mosquitoes are not reported. The 

mosquito model was too general to include any specific species or to distinguish different stages 

of its life-cycle. Finally, there is no report on any kind of model validation or results. 

1.3.3.2 The WNV-ABM by Bouden et al. (2008) 

An ABM with no human component is proposed by Bouden et al. [51]. The scope of their 

model is southern Quebec, Canada, with a daily time step and weekly assessments. GIS 

information is used in calculation of the locations and initial population of birds and mosquitoes. 

The map is divided into municipalities as the reference areas e.g., for visualization and mosquito 

habitat. Weather data (temperature and precipitation) are used in mathematical equations to 

compute the dynamics of the mosquito population at each time step. A DLL (Dynamic-link 

library) of the BIOSIM software [108] is used to interpolate values for temperature and 

precipitations at certain locations on the map based on four neighboring weather stations and 

elevation data. 

Two bird-biting species of Cx. pipiens and Cx. restuans are considered for the mosquitoes. 

The mosquitoes are modeled as intelligent density maps which are defined by a set of parameters 

assigned to municipalities in the map.  Two main stages of mosquito-life cycle, ‘adult 

mosquitoes’ and ‘larvae’ are separated in the equations. The dynamics of the population of the 

two stages and birds, as well as the transmission of disease are controlled by a DE model based 
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on Wonham et al.’s mathematical model [89]. In a new proposed DE, different bird species are 

distinguished. Climate effects are included in the new proposed DE model based on Madder and 

colleagues’ work [109]. Unfortunately, the new proposed DE model is not explained in their 

paper. 

Sumps along the roads are considered to be the main reservoirs of mosquitoes and larvae. 

Total length of roads for each municipality is computed from GIS information. On average, for 

each 30 linear meters of road, a sump is considered, and 20% of sumps are assumed to contain 

larvae. Heavy rainfall and larvicide spraying are supposed to flush sumps, killing a large 

proportion of larvae. The parameters such as emerging number of adult mosquitoes from each 

sump are set according to expert opinion.  

The main bird species studied is the American crow. The birds are divided into two classes 

of American crow and generic birds (i.e., other bird species known to carry WNV). The North 

American breeding bird survey data [110], ornithologists’ opinions and another database are 

employed to adjust the population of birds. Changes in the population of crows are calibrated 

based on data consisting of reports of counts of dead birds. Roost agents are used to represent a 

group of birds belonging to a roost. Location of roosts and the average number of crows per 

square kilometer for each region of the map are extracted from the data. Moving behaviour of a 

roost agent (a group of birds) is modeled with a particle system proposed by Reeves [111], 

wherein birds’ flight speed and home range are crucial model parameters. Each roost has 

different velocity and direction for their movement, and they can fly away during a day up to a 

maximum radius. The assumption is that generic birds belong to the municipality and do not 

leave it while searching food during the day, whereas crows may leave their home municipality. 

All birds return home to spend night in their roosts. 
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The WNV propagation is simulated from July 1 until October 1. The user can specify a day 

of heavy rainfall or larviciding in a given municipality. Many of parameters of the model can 

also be modified by the user. Due to lack of data, simulation results only for some municipalities 

are calibrated. For the calibration, the trend of average number of reported Cx. mosquitoes, 

reported infected mosquitoes and reported infected (dead) crows over 2003-2006 during the 

months of simulations are used to make similar trends in the output of the system. Their most 

complete data was for Laval municipality in 2003, where the number of Cx. mosquitoes in the 

simulation and field data had a similar trend.  They conclude that an important limit of the 

system is the lack of field data.  

The lack of a human component is the main shortcoming of their ABM. This limitation can 

be improved by a complementary ABM where strategies to minimize the exposure between 

humans and mosquitoes, e.g., applying insect repellent or wearing long-sleeved shirts, could be 

modeled and evaluated. From a public health point of view, defining WNV risk index based on 

the infection rate among humans would be better matched to reality than that of birds and 

mosquitoes. This is especially true for the Province of Manitoba where the bird surveillance 

system as an early indicator of WNV has not been in effect since 2006. In addition, allocating 

sumps along the roads as the only reservoir for mosquito larvae may be true for the urban 

mosquito Cx. pipiens, but it is not true in general. For example, in Manitoba, Canada the main 

recorded vector is Cx. tarsalis. 

In this research thesis, a more complete hybrid ABM is developed and validated to address 

some of these deficiencies. 
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1.4 Organization of the Work 

This section outlines how this thesis is organized. Chapter 2 explains the details and 

procedures of the data collection and preprocessing phase, in particular for landscape and bird 

species data. The obtained data drive the ABM, proposed in Chapter 3 and Chapter 4. Most of 

these data can be found in Appendix A. Chapter 3 presents and discusses the core of the 

proposed ABM which is indeed a Cellular Difference Equation (CDiffE) scheme. Further 

extraction and mining of WNV data of various bird species, and the analysis and validation of 

the ABM (i.e., CDiffE) output are also reported in Chapter 3. Chapter 4 elucidates how to 

develop a hybrid ABM on top of the proposed CDiffE scheme. It expands on the human 

component of the CDiffE scheme. The integration of mobile human agents into the CDiffE 

scheme is essential to complement the proposed hybrid ABM. Human population and movement 

data prepressing is explained in Chapter 4 as well. Chapter 5 provides concluding remarks, 

contribution to knowledge in the research area and a summary of the thesis. Appendix A gives 

some Java code snippets in addition to the data discussed in Chapter 1. Appendix B provides 

supplementary figures regarding the ABM simulations. These figures include weekly distribution 

of mosquitoes across the province, and average daily temperature and rainfall values observed in 

the simulations for a number of years. Appendix C presents an agent-based model of meme 

propagation in the Facebook online social network in order to compare its dynamics and trends 

against the spread of an infection disease such as WNV. 
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Chapter 2: DATA PREPARATION 

2.1 Introduction 

This chapter examines the data inputs into an agent-based model and simulation of WNV 

using the Anylogic software [112], with specific focus on data collection and compatibility, and 

preparation or processing techniques. 

Although Anylogic is a powerful multi-paradigm modelling framework, there are few user 

group resources or forums available for its users. To the best of author’s knowledge, there is only 

one active user community in LinkedIn for the Anylogic modelling software.  In addition to 

more traditional simulation, Anylogic (v. 7.0.3) also has relatively recent support for GIS 

simulation and modelling. Within GIS, Esri shapefiles are the most commonly used [113]–[117]. 

The shapefile format includes vector data representing location, shape, and attributes of 

geographic features such as lakes, mountains, buildings, and roads. 

However, it can be quite difficult to format shapefiles in a way that a modeller could easily 

apply or use them within the Anylogic framework for GIS-based simulations. This chapter 

explains (in a tutorial-based style) the procedures used to prepare the data required to develop an 

ABM of WNV spread in southern Manitoba, Canada. The region of interest is an area of 

approximately 148,812 km2 partially covered by grasslands (Canadian Prairies), where the 

primary WNV vector is Cx. tarsalis. 

As noted, WNV is carried and transmitted by mosquito vectors. Birds and humans are 

among the hosts for the infection. A WNV model requires, at a minimum, data on these three 

agent types. The mosquito-related data include (but are not limited to) weather for population 

dynamics, landscape features for habitat preferences, and twilight times and daylight duration for 

setting peak periods of mosquito agents’ biting activities. A conceptual ABM may model the 
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area as a grid, in which each cell has different properties regarding mosquito population 

dynamics. Such data would be used to tune or modulate the mosquito parameters of each cell 

according to weather, landscape, and daylight conditions, ultimately governing the mosquito 

behaviours and interactions. The bird-related data that are collected include nesting/roosting 

locations, population estimates of each species, home range areas, breeding season months, 

communal or solitary living habits, and typical flight speeds. A conceptual ABM may distribute 

and initialize the bird agents of different species based on the population estimates and roosting 

locations. The movement patterns of birds may be determined based on the home range, flight 

speed, and living habits of each species. For instance, in each time-step, birds could pick a 

random flight speed in a certain range and fly up to a certain maximum distance. The algorithms 

used for movement simulation may be different depending on whether the species are solitary, 

and whether they are mating at a particular time of the year.  The human-related data necessary 

to incorporate realistic human movement patterns include census counts, street networks, and 

coordinates of cellular telephone towers providing service for a number of anonymized mobile 

users, where mobile phones act as proxies for their users. A conceptual ABM may initially 

distribute human agents over the map based on the census data. Human agents may then move 

inside the street network according to cellular phone tower or trajectories provided by the data, 

with cellphones serving as proxies for individuals. The high-level architecture of such an ABM 

is illustrated in Figure 2-1. 
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Figure 2-1 High-level architecture of an arbitrary WNV-ABM 

The remainder of this chapter describes and presents the methodology and results for 

collecting, assembling and reformatting some of these data for each agent type of a conceptual 

ABM of WNV propagation.  

2.2 Procedures to Extract Agent Data 

The validity and relevance of any ABM relies on incorporating as much real and meaningful 

data as possible to characterize the environment and the agents. This section examines the 

collection and processing techniques of data most relevant for an ABM associated with WNV. 

These include agent data related to mosquitoes, birds, and humans. Similar data processing 

would be required for other mosquito transmitted diseases as well for whatever ABM framework 

being utilized elsewhere. 
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The applied techniques are described in some detail, in order to assist one using Anylogic 

and Esri ArcGIS, which combine to provide a powerful toolbox to modellers, particularly those 

working on geo-simulations. The details provided here would significantly reduce frustration for 

other modellers who are beginning to utilize the software, as there is a high-level of subtleties in 

the mechanism/interface of both suites of software. The techniques also illustrate a primarily 

challenge in ABM, that of combining different and often disparate datasets.   

2.2.1 Mosquito Data 

2.2.1.1 Weather 

Preparing weather data is a simple process, and does not need to be discussed in detail. This 

is primarily due to the familiarity everyone has with weather, as well as readily available data. 

For this work, one weather station per (urban and rural) municipality was considered. The 

weather data (including precipitation and temperature) for the years 2002-2014 were downloaded 

from Canada National Climate Data and Information Archive and BioSim databases [108] 

whenever possible. For the municipalities where there was no weather station, and for filling in 

any missing data in the real data, BioSim was used to provide simulated weather data. As an 

input point for the BioSim built-in simulator [108], whenever possible, the coordinates of an 

existing weather station were used. Otherwise, a location provided by Wikipedia and confirmed 

on Google maps was used as the coordinates of a municipality. These data were combined with 

the gathered hourly and daily data. Wherever simulated data were used (in 114 out of 118 

municipalities included), the data were flagged for future reference. 
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2.2.1.2 Landscape Features 

Recall that a common approach to describe landscape features is to classify different regions 

of land into various categories based on ground cover, ground features, as well as land use. 

Remote sensing satellite images, from the Manitoba Remote Sensing Centre in our case, are used 

to classify each region. 

This and other geospatial data are typically available in the shapefile format. The GIS library 

and components available in Anylogic have the ability to work with shapefiles. As such, one way 

to add land-based habitat characteristics for mosquitoes in a WNV model in any GIS-integrated 

software (such as Anylogic) is through shapefiles. A square grid shapefile of southern Manitoba 

was chosen, where each cell represents a 5 km × 5 km mosquito site. Within each cell, the area 

of each land cover class can be calculated and recorded in the shapefile database file. Then the 

shapefile can be loaded in Anylogic. So, for any given coordinate in the map, one could retrieve 

the covering mosquito cell and its associated information in the shapefile database. Here, the 

procedure to create such a shapefile using the Esri ArcMap (part of the ArcGIS software 

package) is explained in detail. It is noted that the changes in the land cover over the span of 

simulation years are negligible.  

First, the land cover data for each region of Manitoba was downloaded from the Manitoba 

Initiative Data Warehouse [118] in the shapefile format. The class of land cover for each feature 

(polygon) in the data was identified with a GridCode number in the shapefile database file. The 

coordinate system of these shapefiles is the UTM (Universal Transverse Mercator). This is a 

projected coordinate system that enables the ArcMap to calculate geometric properties of a 

polygon feature such as area or perimeter. For this reason, the coordinate system was kept 

unchanged at this time. 
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 All shapefiles were then added together to make a single general map of land cover using 

the append command in the geo-processing toolbox of ArcMap. Next, the geometry of the new 

map was repaired using the features toolset under the data management toolbox which is part of 

the geo-processing toolbox. Repairing the geometry was necessary to fix some common 

geometry problems (such as empty parts or duplicate vertices). The outcome was a map (or 

shapefile) with standard geometric specifications as shown in Figure 2-2, where blue colors 

represent water body or wetlands; green represents different forest types, orange represents 

agricultural or forage cropland. 

 

Figure 2-2 Manitoba Land Cover map (shapefile) by combining data from all regions 
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At this stage, the 5 km × 5 km mosquito grid had to be built to incorporate the land cover 

data from the previously prepared shapefile. An overlay grid of southern Manitoba (i.e., region 

of interest) with an accuracy of 5 km by 5 km using the Fishnet command in the geo-processing 

toolbox of ArcMap was created. The output of this procedure was a rectangle shaped map 

containing many square cells as shown in Figure 2-3, where the (urban and rural) municipalities 

are also shown (in color) for a better visual clarity of where the mosquito grids are located. It is 

noted that the coordinate system of this grid was the UTM, the same as that of the data source 

and data frame of all the layers in the ArcMap project. 

 

Figure 2-3 Mosquito grid beneath the map of municipal boundaries 
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Subsequently, the land cover shapefile from the previous step had to be attached to the 

mosquito grid. To do so, the identity command in the geo-processing toolbox was applied to find 

the geometric intersection of the grid and land cover map by setting the grid as the identity 

feature, and the land cover map as the input feature. As a result, the land cover map or portions 

thereof that overlap the grid obtain the attributes of the grid, which are basically the square cell 

ids. This means for every single pair of a square cell and a land cover polygon with some 

overlapping area, a new polygon feature is created in the new map (or shapefile). Figure 2-4 

illustrates an example of this operation. The new map is called the land cover grid. It is notable 

that polygons resulting from the intersection of the square (mosquito) grid and the land cover 

map are not necessarily squares (in UTM). However as most of these polygons are still shaped as 

squares, the map is called a grid. For all the entries (polygon features) with a known square cell 

id in the land cover grid, the land cover GridCode is also known. For the next step, the geometric 

area of each of these entries is required. Therefore, a new field called Area_Sq_M was added to 

the shapefile database using the attribute table in the ArcMap. Then the area of each feature in 

square meters was calculated and stored in this field using the calculate geometry feature in the 

attribute table. 

There are ways to find the proportional area of each land cover class for each square cell 

using ArcMap. Once these metadata are calculated, they can be stored in the shapefile database 

file. The extension of these files is DBF, they and can be accessed in a classical FoxPro database 

query. However, there are two techniques that a developer should consider. First, the filename 

plus its extension has to be less than eight characters. Second, there is only one table per 

database file. So, the table name in a Structured Query Language (SQL) select command is the 

same as the filename, and the database address in the connection string only includes the location 
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without the filename. Sample Java code is provided in Appendix A, illustrating how to connect 

to a shapefile database (DBF) file using a Microsoft (MS) Access dBase driver connection string. 

 

 

 

Figure 2-4 Result of the identity command by setting mosquito grid as the identity feature and 

municipal boundaries as the input feature 
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Given the limitation of shapefile databases, a decision was made to clone the shapefile 

database into a MS access database, and apply necessary queries and adjustments there. As such, 

the land grid shapefile database was exported into a text file. The text file was imported into a 

MS Access dBase. Then, using a small C# application, the proportional area of each land cover 

class within each square cell was calculated and stored in a MS Access table where the primary 

key was the square cell id. This means for any given mosquito cell, if the cell id is known, a 

simple SQL query could reveal the exact information regarding the land cover within the cell. 

The Anylogic GIS library is helpful in these instances. Once a shapefile is loaded into a GIS map 

component of Anylogic, for any given pair of latitude and longitude, the id (or any other 

attribute) of the shapefile feature at the same point is accessible using the findPoliticalArea 

function. So, in our case, Anylogic can be set to return the square cell id for the polygon feature 

over a given coordinate. The cell id can, in turn, be used to query land cover information of the 

area. 

The last step is to prepare the mosquito grid shapefile to be loaded into Anylogic. For this, 

the mosquito grid should be clipped to reduce the number of unnecessary cells where no 

information about the land cover is present. Mostly regions near the boundaries or outside of the 

province have no land cover information. The only possible impact of removing these regions is 

the case where some healthy birds fly out of the province and come back home infectious 

because of the infectious mosquitoes present within these disregarded regions. This is a 

systematic error and is simply not considered in the model. So, first, a mask of all the cells with 

useful information is created to clip out the remaining cells. The mask creation procedure is as 

follows. 
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1. The dissolve command from the geo-processing tool is applied by setting the the land 

cover grid (including the grid and land cover data) as the input. 

2. The “Create multipart feature” option is unchecked; no field is added to the dissolve 

or statistics fields. 

This would give a single polygon for the whole map of the land cover grid, which could be 

used as the boundary of the region of interest. At this stage, a hole was noticed in the single 

boundary (mask) polygon which was due to missing data in the land cover map. As such, a 

filling donut holes procedure was necessary as follows. 

1. The editor toolbar was added to the ArcMap toolbar. Then an edit session was 

started by selecting the editor toolbar. 

2. The mask in the create features bar was selected as the active layer. Then a template 

as the construction tool from the box below it was selected. 

3. A rectangle or a polygon over the donut hole was drawn. Then edits were saved and 

the edit session ended. 

4. Once again, the shapefile was dissolved to merge all polygons in this shapefile 

together. At this stage, the mask without any holes was ready, as shown in Figure 

2-5. The area in this figure indicates locations where the land cover data are known. 

To exclude the unnecessary mosquito cells, either the clip or intersection command must be 

applied on the mask and the mosquito grid. It is noted that while the intersect method saves a 

copy of feature id (FID) fields of both shapefiles in the new shapefile, the clip method keeps no 

record of FIDs. Therefore, if one uses the clip method, FID of each cell of the grid (i.e., mosquito 

cell id) should be copied into a new field beforehand. 
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Figure 2-5 Boundary mask of land cover grid 

Finally, the coordinate system has to be projected from UTM to World Geodetic System 

(WGS) 1984 so that it is consistent with Anylogic. One more vital technique is that the shapefile 

must have at least two fields (other than the default FID and Shape) so that it can be loaded 

within Anylogic, and in particular for use with the findPoliticalArea function. 
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2.2.2 Bird Data 

2.2.2.1 Population Estimate 

Many different data sources had to be combined to produce the bird population database. 

Since detailed population maps were not readily available for most species, a process had to be 

developed to estimate the population of individual species within relatively small areas. There 

would first be an emphasis on the geographic distribution, and then on temporal trends. 

Two approaches were developed to create these estimates. The first was a “top-down” 

approach, which relied heavily on population estimates for large regions and relative abundance 

maps for local distributions. The second method could be considered a “bottom-up” approach. 

This approach used localized point count surveys and species-specific correction factors to 

estimate population. Through the use of these two separate approaches, it is possible to establish 

population estimates that would be suitable for the models considered in this thesis. As with 

many ABM approaches attempting to use as realistic and meaningful data as possible, best guess 

estimations were required. As more accurate data becomes available, the veracity of the 

estimates improves. 

2.2.2.1.1 Partners In Flight (PIF) Approach 

The first “top-down” approach used the U.S. Geological Survey (USGS) abundance maps, 

which were created by USGS from their 50 roadside stops breeding bird surveys conducted at 

peak breeding season (June for most species) [110]. The files were downloaded from their 

website in the form of shapefiles [110]. Each cell in these maps contained a relative abundance 

value representing the average number of birds observed by the survey in that area. The data 

from these surveys had been extrapolated and processed so that a map of the entire United States 

and southern Canada was available (see Figure 2-6). 
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These abundance maps were then combined with a 10 km by 10 km grid, provided by the 

Manitoba Breeding Bird Atlas (MBBA) [119]. This was done to make the data compatible with 

the breeding location data from the MBBA. The grid was downloaded as a Keyhole Markup 

Language Zipped (KMZ) file from the MBBA website and combined with the abundance map 

shapefiles using a Python script in the Esri ArcMap. 

 

 

Figure 2-6 An example of the USGS abundance map, where the darker areas denote areas of high 

species abundance 

 Each 10 km by 10 km square received the relative abundance value of the abundance map 

cell that covered it. If a square was covered by parts of two or more cells, the relative abundance 

value was taken as the weighted mean between all the cells’ values, with more weight being 

given to those cells that covered the majority of the 10 km by 10 km square. If the square was 

not completely covered by the abundance map cells, the parts that were not covered were 

considered to be covered by a cell with a relative abundance value of zero. This assumed that the 

species in question did not live beyond the edges of the abundance map. In many places, this will 

have been a valid assumption, but at the edges of the USGS study area, this may cause an 
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underestimation of the abundance. In this way, the relative abundance data was combined with 

the MBBA 10 km by 10 km squares as shown in Figure 2-7. 

 

Figure 2-7 USGS abundance data for Manitoba quantized into a 10 km by 10 km grid 

Next, the relative abundances were combined with the Partners in Flight (PIF) population 

estimates for regions in Manitoba [120]. Each PIF population estimate was an estimated 

population of a certain species for an individual Bird Conservation Region (BCR) in Manitoba. 

The study area contained three BCR regions, and the PIF gave aggregate population estimates 

for each of the three regions for all of the species (see Figure 2-8  [121]). The population was 

distributed between the squares in each region in order to create real population estimates for 

each square. A greater population was given to squares with a higher relative abundance. Also, 
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some squares were not exactly 10 km by 10 km, and so a greater population was also given to the 

larger squares. The equation for the estimated real population of each square is given as follows. 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐵𝐶𝑅 × (
𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒(𝑅𝐴)𝑜𝑓 𝑡ℎ𝑒 𝑠𝑞𝑢𝑎𝑟𝑒 

∑𝑅𝐴 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑒𝑔𝑖𝑜𝑛
+

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑞𝑢𝑎𝑟𝑒

∑𝐴𝑟𝑒𝑎 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑒𝑔𝑖𝑜𝑛
)  2⁄  

Next, in order to achieve an idea of how the population changed over the course of a year 

(mostly because of migration), the population estimates of each square were combined with 

weekly abundance estimates of bird species in Manitoba made available by the Manitoba 

Naturalist Society [122]. The population estimate was assumed to be the population at the time 

of maximum abundance in June when the USGS point counts were conducted. From here, the 

rest of the data was scaled accordingly. In this way, the single population estimate was 

extrapolated over the year. 

Finally, the squares were filtered by whether or not the bird species bred in that area. Using 

the breeding status data provided by the MBBA, it was possible to remove each square that did 

not contain a nesting or roosting area within it. Considering the requirements of the WNV agent-

based model, no differentiation was made between roosting and breeding areas. The idea was to 

associate migratory birds to their exact nesting/roosting location, needed by the ABM. The 

migratory birds at that time of year (i.e., summer) would have a nesting/roosting place within the 

model area as it is the breeding season. Thus, removing those areas would not remove our 

migratory bird species from the model. 

An assumption was made that by filtering out squares after dividing up population estimates, 

the number of birds in each square was underestimated. However, efforts to divide up the 

population after filtering by breeding status led to negligibly different results (<0.5%), since 

most squares where a species was found contained breeding, and so this effect could be 

disregarded. 
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Figure 2-8 Bird Conservation Regions in Manitoba with example population estimates for each 

region [121] that did not include birds in the same BCR outside of Manitoba  
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2.2.2.1.2 Boreal Avian Modeling (BAM) Approach 

The population was also estimated using a second process, the “bottom-up” approach. In this 

approach, we began with point count data that was provided by the MBBA. This data was only 

for squares where breeding was suspected, and gave a larger sample size than that offered by the 

USGS abundance maps within Manitoba.  

The MBBA point counts were conducted by a participant standing in several pre-determined 

locations inside each 10 km by 10 km square and recording the number of birds that they 

observed or heard within 5 minutes. This system did not record all the birds in the area, but it did 

give a relative index into how many birds were in the area. In order to convert the point count 

data into a real population estimate for the square, correction factors needed to be applied. 

Correction factors were obtained from the Boreal Avian Modeling (BAM) project [123]. 

Although BAM takes many different and complex correction factors into consideration as they 

create their own population estimates, only two are considered here: the effective detection 

radius and singing rate. 

The effective detection radius (EDR) is defined as the distance from the point of observation 

where as many birds were detected beyond this radius as were undetected within this radius 

[123]. This factor took into consideration the fact that a bird further away would be less likely to 

be detected, and that certain species would be harder to detect at further distances. Thus, when 

the point count data were considered, it was reasonable to assume that the point count numbers 

correlated to the number of birds within the EDR. 

The singing rate was given as the rate at which a bird sang out per minute, or similarly, the 

proportion of a bird population that sang at least once in one minute. Since most point counts 

depend on hearing the sound of a bird more than seeing it to identify the species, the singing rate 
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gives a useful approximation of how many birds remain quiet, and thus undetected, during the 

point count. By multiplying the singing rate by the number of minutes spent in observation, one 

can find the proportion of birds that sang out and had a chance of being identified in the point 

count. If the point count was long enough, this proportion would rise above 100%, as birds began 

to sing more than once. However, the observer for each point count was trained to count 

individual birds, not individual bird songs, and so multiple bird songs by the same bird could be 

discarded [124]. Therefore, the singing rate-time product was capped at 100%. 

The population estimate for each square was calculated as follows. 

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑞𝑢𝑎𝑟𝑒 × (
𝐵𝑖𝑟𝑑𝑠 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑟𝑒𝑑

𝑃𝑜𝑖𝑛𝑡 𝐶𝑜𝑢𝑛𝑡𝑠 ×  𝜋(𝐸𝐷𝑅)2 × (𝑆𝑖𝑛𝑔𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 × 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑖𝑚𝑒 𝑠𝑝𝑒𝑛𝑡)
) 

After calculating population estimates for each square, the population was again modulated 

to show annual changes. This was done in the same way as the first “top-down” approach using 

the annual abundance data. In this way, both approaches were used to create usable population 

estimates for the model. 

2.2.2.2 Species Data 

Other data, collected and inferred from a diverse variety of sources regarding each species, 

are reported in Appendix A. These data include home range area, breeding season months, 

communal or solitary living habits, and typical flight speeds. 

The spring/summer home range of all birds was considered to be a circular area. As such, 

the average radius in meters was calculated and reported in Appendix A. The home range of a 

given species depends heavily on the habitat and food abundance conditions. The top priority 

was to collect the Manitoba data. Where possible, reported mean home ranges for the landscapes 

neighbouring the province were considered. When there were no data for similar landscapes, the 

mean of the home ranges (as reported in different sources and weighted by the sample sizes) was 
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used. It was also desirable to avoid underestimating the average home range as the conceptual 

agent-based model required the ceiling of an average home range to be set as the maximum flight 

distance for birds. 

Breeding timing and living habit data were primarily collected from the Birds of North 

America online database [125]. The breeding season range goes up to, but does not include the 

end month. The living habits were categorized into three groups: solitary roosting behaviour, 

year-round communal roosting, and semi-annual communal roosting. Semi-annual communal 

roosting included those species that roost individually or in pairs during the breeding season, and 

then form flocks for migration in the fall. In general, the roosting behaviours of birds are often 

difficult to categorise. These designations represent an estimate for which type of model of each 

species’ behaviour may best fit in the specific agent-based model, and are not intended to reflect 

any more universal definition of communal roosting.  

The mean flight speed is reported in the format of m/s in Table A.I in Appendix A. For 

many species, the data on flight speed were either very sparse or non-existent. For such species, 

certain approximations had to be made, such as using the reported speed for a similar species of 

that genus or taking the average of reported speeds of the whole family. It was decided to find 

the typical flight speed at which birds fly/forage during a day. However, in most sources, it was 

not clear as to the type of speed that they measured. Values were generally either “minimum 

power speed” (Vmp) or “maximum range speed” (Vmr). If a certain species had both Vmp and Vmr 

available, the smaller Vmp would have been recorded as the flight speed of the species. Whenever 

there were only reports on the maximum flight speed, the minimum number in the given range of 

maximum flight speeds was used as the typical speed. It is notable that a bird’s normal flight 

speed going from perch to perch is much less than the numbers reported in Table A.I in 
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Appendix A. These values were treated as the ceiling of typical speed in the birds’ movement 

component of the conceptual agent-based model, and the birds’ minimum flight speed was set at 

two m/s. 

2.2.3 Human data 

The Open Street Map (OSM) of the province was downloaded from GeoFabrik.de as a 

highly compressed Protocol-Buffer Binary Format (PBF) file. The street map was then extracted 

from this binary file using the routing features of Anylogic. A sample street map of southern 

Manitoba including only trunk, primary, and secondary roads can be seen in Figure 2-9. The A* 

pathfinding algorithm can be applied on this network for human agents’ routing. Census data for 

each municipality of the province for initial location of human agents were downloaded from 

Statistics Canada. Municipal boundaries in Manitoba were downloaded as a shapefile from the 

National Resources Canada website. The population of human agents then had to be distributed 

within these boundaries according to the census data for each municipality. Anylogic has a 

GISRegion component where one can call the function randomPointInside to randomly choose a 

point inside the given region. Therefore, this function can be used to initialize the human agents’ 

population inside each municipality. However, the shapefile polygon features, representing 

municipal boundaries, first had to be converted to Anylogic GISRegion(s). Up to Anylogic 

version 7.2, the built-in converter was not fully functional to convert all the shapefile features to 

Anylogic GISRegion(s). A sample Anylogic Java code for this non-intuitive conversion can be 

found in Appendix A. The code also gives hints to developers on how to extract all point 

coordinates of objects in a shapefile. It is notable that each shapefile has a different number of 

nested layers of objects. This may be the reason why the built-in converter does not work for all 

shapefiles.  
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Figure 2-9 Southern Manitoba street network showing only trunk, primary, and secondary roads 

For the purpose of this chapter and brevity, human movement patterns, data collection, and 

processing methods are not further discussed here, but are discussed in Chapter 4. In addition to 

readily available census data as mentioned above, other sources include those related to personal 

cellular devices as well as technologies being developed for intelligent transportation systems. 

2.3 Results 

2.3.1 Mosquito Data 

The final weather database has daily and hourly values of weather temperature and rainfall 

for 118 rural and urban municipalities in Manitoba from 2002 to 2014.This dataset could be used 

for any weather-dependent studies in the southern Manitoba region. The final land cover 

database has information on 6067 square cells in southern Manitoba. For each cell, the 
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corresponding municipality and weather station, total area, coordinates, and area of different land 

cover classes present in the cell are known. The land cover classes used in this dataset include 

Agricultural Field, Deciduous Forest, Water Body, Range and Grassland, Mixed-wood Forest, 

Wetland – Marsh, Wetland – Treed Bog, Treed Rock, Coniferous Forest, Fire-Burnt Area, Open 

Deciduous Forest/Shrub, Agricultural – Forage Crop, Cultural Features, Forest Cut Block, Sand 

and Gravel, Roads and Rail Lines, Wetland – Fen, and Lichen heath. The land cover database 

can be used in geo-spatial studies in southern Manitoba. Such studies are of particularly high 

importance for agricultural purposes. One limitation of the land cover database and the extraction 

procedure is that the land cover was assumed to be static. Generally, more work on land cover 

and in particular on dynamic land cover changes is ongoing. For instance, Murray-Rust et al. 

proposed an open-frame agent-based model to capture changes in land cover [126]. As a future 

work, the land cover extraction procedure could be automated using Python scripts in ArcGIS. 

Such an automated procedure makes the system adjustable in response to changes in land cover 

data. The land cover database in conjunction with the weather database could benefit studies that 

focus on the forecasting of mosquito-borne diseases in southern Manitoba. 

Future work on weather data may focus on improving algorithms used for simulating 

missing data, in particular, hourly rainfall values for a specific area if hourly estimates are 

necessary. In this thesis, the BioSim software was applied for this purpose. Depending on the 

fidelity of the application, one may need to include more weather stations for Manitoba by going 

through the same procedures explained earlier. 

2.3.2 Bird Data 

The final bird database contains information on 152 different bird species. For each species, 

there are population estimates for each of the 2056 square cells, which are roughly 10 km by 10 
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km areas located in southern Manitoba. Each of these population estimates was also used to 

create a weekly population estimate for each square to represent weekly impacts of migration. 

Only squares where some evidence of breeding had been found were included for each species, 

as these squares were assumed to also contain nocturnal roosts for the species [51]. This dataset 

could be used by other researchers working on topics such as modeling birds’ movements, bird 

interactions in various agent-based models, and geo-simulations including birds. The assets 

developed here could also be of considerable value in light of the significant importance of 

understanding the effects of climate change on risk of zoonoses such as WNV, and the impact of 

climate change, and land use and habitat disruption on ecosystem health. 

Due to fundamental differences between the two population estimation approaches, their 

assumptions, and availability of data, the two estimates show a degree of disparity in some areas. 

The chart in Figure 2-10 shows a comparison of population estimates of American crow species 

for various locations (squares) in Manitoba. The BAM population estimates are calculated using 

the methodology previously discussed. The EDR-USGS estimates in the figure are calculated in 

a similar manner, but use the USGS 50 stops data for point counts instead of the MBBA point 

counts. The PIF population estimates, as mentioned before, are calculated from the regional PIF 

estimates and abundance maps created from the USGS 50 stops data. The similarity between the 

EDR-USGS and PIF estimates in most of squares reveals the importance of availability of stops 

and point counts data. By contrast, the difference between the two estimates in the other squares 

confirms the differences between the two “top-down” and “bottom-up” approaches. Figure 2-11 

shows the physical location of selected squares in Figure 2-10. In order to achieve an idea of how 

the two estimates compare against some historical data in Manitoba, an average density for a 

number of species was calculated from the average BAM and PIF estimates for the species 
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across the province. In Figure 2-12 and Figure 2-13, these densities are compared against the 

Manitoban bird densities calculated for 1966-94 by Downes and Collins [127] and reported in 

the work of Kirk et al. [128] for two groups of species of short-distance and long-distance 

migrants. If a species winters mostly within Canada or North America, it is categorized as a 

short-distance migrant. If they mainly spend winters in Central or South America, they are 

considered long-distance migrants [128]. In general, for the long-distance migrants, the BAM 

densities have less disparity than the birds densities provided by Downes and Collins [127], 

compared to the PIF. Whereas, for the short-distance migrants, the PIF densities are closer to the 

birds densities provided by Downes and Collins [127]. 

 

 

Figure 2-10 Comparison of crow population estimates between the BAM and PIF methods in some 

selected squares 
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Figure 2-11 Physical location of some selected squares of bird roosts in Manitoba 

 

Figure 2-12 Comparison of the mean densities of BAM and PIF against the densities in [127] for a 

number of long-distance migrant species 
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Figure 2-13 Comparison of the mean densities of BAM and PIF against the densities in [127] for a 

number of short-distance migrant species 

Both bird population estimate approaches have several assumptions and shortcomings built 

in. The “top-down” approach used USGS abundance maps that were based on a very small 

sample size (< 2% of the birds’ project area, or approximately 4,112 out of 205,600 km2), and 

these points had only been surveyed approximately once a year (50 stops a year). Also, the PIF 

regional population estimates, although useful for large-scale conservation efforts and 

approximations [120], are not very accurate at a small scale. Thus, the first approach contains 

rather sparse data that has been heavily processed and extrapolated to pertain to a large detailed 

area. The “Bottom-up” approach sought to fix some of these problems. It was based on the 

MBBA point counts, which were available for all of the squares over several years. These 

squares were again not surveyed very many times over the year (15 times over 5 years) but much 
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to convert point counts into population estimates were in part designed by BAM to make up for 

the weaknesses in the PIF population estimates. However, the correction factors used here did 

not take every factor into account that could have influenced the point counts. The EDR and 

possibly the singing rate would have varied with different habitats and vegetation types, but the 

approach described here did not take this into account. The EDR has a large effect on the 

population estimate, and is consistently smaller than the radius used in the PIF estimates. As a 

result, the population estimates are likely to be higher than the PIF estimates. There is also likely 

a habitat bias against certain hard to reach habitats. The point counts were done by volunteers, 

and mostly beside roads, so the more remote locations were less likely to be surveyed. This may 

have caused an over- or under-representation, depending on the species and its preferred habitat. 

In addition to this, there is evidence that point counts done next to roads obtained biased results 

for some species. More work on correction factors and population estimates, in general, is 

ongoing, and future studies and data should be able to improve on these processes. 

Bird species data, including home range area, breeding months, communal or solitary living 

habits, and typical flight speeds are presented in Table A.I in Appendix A. As mentioned in the 

bird species data section (2.22.2.2.2), as well as Appendix A, many of the reported species data 

are estimations of some kind. Therefore, many more field studies and work on bird species - 

although improving - are consistently required.  

2.3.3 Human Data 

The procedures, explained in this chapter, for preparing the human data, has two outputs. 

The first output details a database of human census in municipalities of Manitoba with their 

boundary coordinates. These coordinates are saved as Anylogic GISRegion objects on file. The 

second output involves the street network of the province in a compatible format with Anylogic 
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GIS components. Chapter 4 discusses issues regarding extracting the trajectories for human 

agents according to cellular phone tower data.  

2.4 Summary of Chapter 2 

2.4.1 Conclusions 

Anylogic simulation software in combination with Esri ArcGIS provides a powerful toolbox 

for developers and modellers to simulate almost any GIS-based environment or process. In this 

chapter, the application of interest was WNV propagation in the province of Manitoba. The land 

cover data of Manitoba was rasterized in an optimum sized shapefile compatible with Anylogic. 

Some hints and techniques regarding working with shapefiles in Anylogic were reviewed. A 

database of over 150 different bird species vulnerable to WNV, including their nesting locations, 

population estimates, home range radii, roosting behaviour, and start and end of breeding season 

was collected. The street network for Manitoba, extracted from OpenStreetMap, was loaded into 

Anylogic to be used in its pathfinding library. The procedures for collecting, combining, and 

reformatting all these data are explained in details in a tutorial-based style to benefit other 

modellers working in similar areas. 

Researchers are constantly exploiting new non-traditional sources of data for modelling 

different human diseases. For example, in a relatively recent study, google search data have been 

used for modelling transmission dynamics of the Zika virus [129]. On the contrary, in this 

chapter, more traditional data sources were gathered and prepared in a suitable way for agent-

based modelling of WNV. Inevitably, modeling natural or environmental processes depends 

heavily on the availability of appropriate data. This is particularly true for verification and 

validation of models, as models and simulations would not gain significant attention unless they 
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are shown to closely resemble reality. This resemblance can only occur with meaningful data; 

therefore, the importance of data cannot be overstated. The pertinent procedures and an overview 

of resultant data for WNV geo-modelling are presented in this chapter. 

2.4.2 Applications 

There are some limitations in the presented data mining and assembling procedures, each of 

which was discussed in the corresponding section. Notwithstanding, similar mining methods 

could be adopted by other researchers to compile such dataset according to their own specific 

needs for other geographic areas e.g., estimating population and location of birds in other 

provinces/states in North America. The research of this chapter should be useful to others 

working on a variety of mosquito-borne diseases, such as Zika, Dengue, and Chikungunya, by 

providing the data relating to Manitoba and/or a systematic path to follow for producing and 

processing such crucial data. The final complied dataset here could also be used to model 

mosquito population dynamics, for instance in order to evaluate control strategies. Some recent 

studies in this area can be found in the work of Ewing and Cobbold [130] and Marini et al. [131]. 
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Chapter 3: CELLULAR DIFFERENCE EQUATION SCHEME FOR WEST NILE VIRUS 

MODELLING 

3.1 Introduction 

In this chapter, a data-driven Cellular Difference Equation (CDiffE) model, including human 

component and multiple species of birds, is proposed to be used in ABMs for WNV propagation. 

As one of the goals here was to develop a WNV simulation software for Manitoba, the 

implementation of the CDiffE is based on the data available from (or appropriate for) this region. 

However, the model design is more general and applicable to other areas. Out of the WNV 

models reviewed in section 1.3.3, the work of Bouden et al. [51] is conceptually most similar to 

the proposed work here.  However, key differences to the work here are found in several key 

areas.  For instance, the authors in [51] use differential equations applied at the level of the 

municipality, the two category of birds are treated as mobile roost agents, and time advances are 

implemented on a daily step.  The work here applies differences equations, which are inherently 

faster than differential equations for numerical simulation.  Also, the work here applies a 

difference equation to each mosquito cell, which is a much more fine-grained implementation.  

The CDiffE scheme here consists of many different bird species, yet their movement are 

considered at a less detailed scale. Finally, our work implements hourly time-steps, trading speed 

for more fine-grained outputs.    

Compared to difference equation models, differential equation models have been applied 

more often in both WNV and ABM literature, and this chapter demonstrates that difference 

equation models offer a valuable approach to optimizing the trade-off between a model’s 

computational complexity and its inherent ability to consider multiple agent types at very fine-
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grained and individual profile levels. Difference equations are inherently faster for numerical 

computations, as they do not require a slow ordinary differential equation (ODE) solver to be 

triggered in each iteration of the algorithm. That is vital for ABMs as they generally suffer from 

computational complexities, as such, difference equations fit better within their realm. The 

proposed difference equation model is cellular, as it requires the spatial input domain to be 

rasterized. The process of creating an overlay grid of the input area of the model (i.e., southern 

Manitoba in this study) was explained in Chapter 2. Landscape feature impact on mosquito 

population is integrated in the proposed difference equation through the land cover combinations 

of each cell of the input grid. The impact of weather (i.e., temperature and rainfall) is added to 

mosquito breeding, development, biting, and death rates based on previously validated studies 

[132], [133]. Due to nocturnal activities of mosquitos of interest (i.e., Cx. tarsalis for southern 

Manitoba), the biting rate is further adjusted according to daylight conditions. The proposed 

equations are then altered to include weekly migration patterns of different species of birds. The 

distribution of birds is considered to be scattered across the input domain according to data 

specific to Manitoba as outlined in Chapter 2. Estimating birds-related WNV parameters for each 

species based on data from biological studies is discussed in this chapter. A simple but 

computationally fast method for modelling birds’ movement component based on their home-

range is introduced and implemented to be adopted in bird agents of an ABM. Finally, the model 

output is validated against carbon dioxide baited trap data from the Manitoban government in 

terms of Pearson and Spearman correlations. 

3.2 Methods 

In this section, the proposed cellular model is described. The region of study (i.e., Manitoba 

province) is modeled as a grid map where each cell represents a 5 km x 5 km area, called 
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“mosquito site.” Figure 3-1 shows the scope of the model and the mosquito grid with MapQuest 

tiles. Each mosquito site (or cell) has its own unique landscape features and is assigned to a rural 

municipality's weather station. There are around 6,000 mosquito sites covering the scope of the 

model in southern Manitoba, of which over 5,000 sites are active mosquito sites. If data 

regarding the bird populations within the neighbourhood of a mosquito site exists, the mosquito 

site is marked as active. Around 150 different species of birds, including local and migratory 

birds known to be infected with WNV, are present in Manitoba in summer. As noted, the data 

about the location and population count of these different bird species are collected (see Chapter 

2). These locations are referred to as bird roosts. A roost site is where birds spend their night and 

sleep. Unlike the mosquito sites, sizes of different roosting sites are different. A roost site is not a 

single point, but rather an area (of at most 10 km x 10 km) around a center point. A roosting site 

may be shared by more than one bird species at a time. In the model, due to differences of 

various bird species (such as different virus competence indices), a bird roost is considered for 

every single species of bird that are located at the same roosting site. For example, if at a certain 

point (longitude and latitude) both bird species of American Crow and Raven are present, two 

different bird roosts with the same coordinate are added to the model. From an Agent-Based 

Modelling perspective, mosquito sites and bird roosts can be considered as agents in the model. 

Using the BAM (Boreal Avian Modelling) estimation method, there are over 70,000 bird 

roosts in the model. During the breeding season, many birds (not all) tend to sleep at roosts near 

their nesting area within their daily home range. The home range is considered the area used by a 

bird for daily foraging activities. Each mosquito site is associated with a number of bird roosts 

depending on the size and coordinates of the roost, and the home range of the bird. On average, 

each active mosquito site is partially overlapped by (and consequently linked to) 30 bird roosts. 
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An arbitrary connection between some bird roosts and mosquito sites is displayed in Figure 3-2, 

where mosquito sites are drawn as squares and bird roosts are blue circles. 

 

Figure 3-1 Southern Manitoba map showing the mosquito grid as an overlay 

 

Figure 3-2 An arbitrary grid map displaying mosquito sites and bird roosts 
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3.2.1 Difference Equation Model Formulation 

An instance of the proposed difference equation model is cloned in each mosquito cell (site). 

In every hourly time-step, the equations update for all the active mosquito sites. The dynamics of 

all agents (mosquito sites, bird roosts, and humans) update based on the proposed set of 

difference equations, which consider the interactions of parameters shown in Table 3-1. The key 

parameters are Daily mean Temperature, T, Daily Rainfall, R, and the Landscape descriptor, L. 

The proposed difference equation model is built upon the differential equation model of 

Wonham et al. [89] using the approach in Lewis et al. [134], with further extensions to include 

humans, various bird species, and impact of temperature, rainfall, and landscape features (so-

called land use/cover). Initially, the natural birth and death rate of birds were also included in the 

model, but after adding the impacts of emigration and immigration of birds, those effects were 

no longer necessary to retain, as the population of birds were reset to their real-world population 

count on a weekly basis, no matter how many were born or died during the week. We begin by 

rewriting the corresponding set of difference equations of Lewis et al. [134] as follows with the 

parameters definition in Table 3-1. 

𝑀𝑎(𝑡 + 1) = 𝑟 (1 − 𝜇𝑎)(𝑀𝑠(𝑡) + 𝑀𝑒(𝑡) +  𝑀𝑖(𝑡)) + (1 − 𝜇𝑎)(1 − 𝛾)𝑀𝑎(𝑡)  (3.1) 

𝑀𝑠(𝑡 + 1) = (1 − 𝜇𝑚)(1 − 𝛽𝑚)
𝑏𝐵𝑖(𝑡)/𝐵𝑡(𝑡) 𝑀𝑠(𝑡) + (1 − 𝜇𝑚) 𝛾 𝑀𝑎(𝑡)   (3.2) 

𝑀𝑒(𝑡 + 1) = (1 − 𝜇𝑚) (1 − (1 − 𝛽𝑚)
𝑏𝐵𝑖(𝑡)

𝐵𝑡(𝑡) )  𝑀𝑠(𝑡) + (1 − 𝜇𝑚)(1 − 𝑘𝑚)𝑀𝑖(𝑡)   (3.3) 

𝑀𝑖(𝑡 + 1) = (1 − 𝜇𝑚)𝑘𝑚𝑀𝑒(𝑡) + (1 − 𝜇𝑚)𝑀𝑖(𝑡)      (3.4) 

𝐵𝑠(𝑡 + 1) = (1 − 𝛽𝑏)
𝑏𝑀𝑖(𝑡)/𝐵𝑡(𝑡) 𝐵𝑠

𝑗(𝑡)       (3.5) 

𝐵𝑖(𝑡 + 1) =  (1 − 𝛿)[1 − (1 − 𝛽𝑏)
𝑏𝑀𝑖(𝑡)/𝐵𝑡(𝑡)]𝐵𝑠(𝑡) + (1 − 𝛿)(1 − 𝜁𝑏)𝐵𝑖(𝑡)  (3.6) 

𝐵𝑟(𝑡 + 1) = 𝜁𝑏𝐵𝑖(𝑡)           (3.7)  
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Table 3-1 Parameters and variables of the CDiffE model 

 Mosquito Birds Human 

State variables    

  Aquatic stage (including eggs, larvae, and pupae) Ma   

  Susceptible (adult) Ms Bs Hs 

  Infectious (adult) Mi Bi Hi 

  Recovered (adult)  Br Hr 

  Total adults  Bt Ht 

    

Core parameters per time-step (hourly)    

  Reproduction number (combining egg laying and larval hatching) r   

  Maturation probability (i.e., developing into adult mosquitoes) γ   

  Natural death probability (for aquatic and adult mosquitoes) µa , µm   

  Probability of death due to infection (for birds)  δ , δj  

  Probability of virus transmission to βm βb βh 

  Mosquito biting on host (no. of bites per mosquito per time-step)  b , bj bh 

  Probability of recovery from virus  ζb ζh 

  Virus incubation probability km   

    

Bird migration (weekly) parameters    

  Weekly count of population (given by the data)  Bw  

  Number of (weekly) immigrant birds   Bm  

  Proportion of (weekly) non-emigrant birds (stayed in the model)  η  

    

Dynamic parameters    

  Mean daily positive Temperature (in Celsius)  T   

  Daily Rainfall (in mm) R   

  Mean correlation between mosquito land cover and virus L   

  Daylight hours D   

    

Other variables/parameters    

  Species index (for birds)  j  

  Normalized host competency index (for birds)  c *  

  Hourly average of  b, bj, or bh (per a 24-hour period)  b̅ b̅ 

  Hourly expected number of contacts with an infectious agent em eb eh 

  Hourly time-step t t t 

  Weekly time-step tw tw tw 

  Ratio of mosquito biting activities between nights and days ω > 1   

  Ratio of biting on birds to biting on humans λ > 1   

  Importance of landscape feature for mosquito habitat wL   

* The definition of additional related symbols can be found in Table 3-3. 
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The core of the proposed (and implemented) difference equation model has some 

fundamental changes compared to Lewis et al.'s. First, in the proposed difference equation 

model, by disregarding the virus incubation period, the exposed state for mosquitoes (Me) are 

removed to decrease the complexity of the model for computationally intensive applications such 

as those associated with ABM. This means equations (3.3) and (3.4) are merged together. 

Second, the exponents in the equations (3.2), (3.3), (3.5), and (3.6) must be modified to include 

multiple bird species, making the contact rate and the probability of transmission of virus from 

an infectious mosquito to a bird different for various bird species. This implies that the 

probability of transmission of virus from an infected bird to a mosquito (βm) is the same among 

all the bird species. Removing this assumption is discussed in section 3.5.2. Some other 

important assumptions regarding the difference equations can be found in section 3.2.3. Lastly, 

other extensions are necessary at the core of the proposed difference equation model to 

incorporate the human components and the impact of changes in the population of birds due to 

migration. By applying these modifications, the core of the proposed difference equation model 

is as follows. 

Mosquito Equations: 

𝑀𝑎(𝑡 + 1) = 𝑟 (1 − 𝜇𝑎)(𝑀𝑠(𝑡) + 𝑀𝑖(𝑡)) + (1 − 𝜇𝑎)(1 − 𝛾)𝑀𝑎(𝑡)   (3.8) 

𝑀𝑠(𝑡 + 1) = (1 − 𝜇𝑚)(1 − 𝛽𝑚)
𝑒𝑚(𝑡) 𝑀𝑠(𝑡) + (1 − 𝜇𝑚) 𝛾 𝑀𝑎(𝑡)     (3.9) 

𝑀𝑖(𝑡 + 1) = (1 − 𝜇𝑚)(1 − (1 − 𝛽𝑚)
𝑒𝑚(𝑡)) 𝑀𝑠(𝑡) + (1 − 𝜇𝑚)𝑀𝑖(𝑡)   (3.10) 

where  

𝑒𝑚(𝑡) =
∑ 𝑏𝑗𝐵𝑖

𝑗
(𝑡) 𝑗

𝐻𝑡(𝑡)+∑ 𝐵𝑡
𝑗

𝑗 (𝑡)
           (3.11) 

Bird Equations: 
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𝐵𝑠
𝑗(𝑡 + 1) = [(1 − 𝛽𝑏

𝑗
)
𝑒𝑏
𝑗
(𝑡)
𝐵𝑠
𝑗(𝑡)] 𝜂𝑗(𝑡𝑤) + 𝐵𝑚

𝑗
(𝑡𝑤)     (3.12) 

𝐵𝑖
𝑗(𝑡 + 1) = [(1 − 𝛿𝑗) (1 − (1 − 𝛽𝑏

𝑗
)
𝑒𝑏
𝑗
(𝑡)
)𝐵𝑠

𝑗(𝑡) + (1 − 𝛿𝑗)(1 − 𝜁𝑏
𝑗
)𝐵𝑖

𝑗(𝑡)] 𝜂𝑗(𝑡𝑤) (3.13) 

𝐵𝑟
𝑗(𝑡 + 1) = [ 𝜁𝑏

𝑗
𝐵𝑖
𝑗(𝑡) + 𝐵𝑟

𝑗(𝑡) ] 𝜂𝑗(𝑡𝑤)       (3.14) 

where 

𝑒𝑏
𝑗
(𝑡) =

𝑏𝑗𝑀𝑖(𝑡)

𝐻𝑡(𝑡)+∑ 𝐵𝑡
𝑗
(𝑡)𝑗

           (3.15) 

𝐵𝑚
𝑗
(𝑡𝑤) = {

𝐵𝑤
𝑗
(𝑡𝑤) − 𝐵𝑡

𝑗
(𝑡𝑤) ; 𝐵𝑤

𝑗 (𝑡𝑤) > 𝐵𝑡
𝑗
(𝑡𝑤) 

0 ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     (3.16) 

𝜂𝑗(𝑡𝑤) = {
1 ; 𝐵𝑤

𝑗 (𝑡𝑤) > 𝐵𝑡
𝑗
(𝑡𝑤) 

𝐵𝑤
𝑗
(𝑡𝑤)

𝐵𝑡
𝑗
(𝑡𝑤)

; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
       (3.17) 

Human Equations: 

𝐻𝑠(𝑡 + 1) = (1 − 𝛽ℎ)
𝑒ℎ(𝑡)𝐻𝑠(𝑡)        (3.18) 

𝐻𝑖(𝑡 + 1) = (1 − (1 − 𝛽ℎ)
𝑒ℎ(𝑡))𝐻𝑠(𝑡) + (1 − 𝜁ℎ)𝐻𝑖(𝑡)     (3.19) 

𝐻𝑟(𝑡 + 1) = 𝜁ℎ𝐻𝑖(𝑡) + 𝐻𝑟(𝑡)        (3.20) 

where 

𝑒ℎ(𝑡) =
𝑏ℎ𝑀𝑖(𝑡)

𝐻𝑡(𝑡)+∑ 𝐵𝑡
𝑗
(𝑡)𝑗

          (3.21) 

is the expected number of times a human is bitten by an infectious mosquito at the time-step t. 

Similarly, 𝑒𝑏
𝑗
(𝑡) is the expected number of times a bird of species j is bitten by an infectious 

mosquito, and em (t) is the expected number of times a mosquito bites an infectious bird. Also, 

the two parameters of 𝐵𝑚
𝑗
(𝑡𝑤) and 𝜂𝑗(𝑡𝑤) keep track of changes in the population of birds of 

species j in week tw according to the real weekly population data (Bw). Therefore, at the 

beginning of each week, the total number of each bird species 𝐵𝑡
𝑗
(𝑡𝑤) will match the real-world 



62 

 

count of the bird species 𝐵𝑤
𝑗
(𝑡𝑤) that are present during the week (tw). A value of less than one 

for η implies the real-world estimated population is less than the number of bird species within 

the simulation. As such, a proportion of birds from all compartments are assumed to leave the 

model scope (e.g., due to emigration); whereas when η is greater than one, (immigrant) birds are 

added to the susceptible compartment. As noted in Table 3-1, the variables t and tw indicate time-

steps; whereas the subscript t in Bt and Ht denotes the total value of its associated state variable 

(i.e., B for bird population and H for human population). 

Similar to the model of Lewis et al. [134], the manner in which the difference equation 

model is formed implies the following ordering of events: 

1) Maturation, infection, and transfer between the states occur at the beginning of the time-

step. 

2) Death either natural or due to the disease occurs at the end of the time-step. 

This means the events listed in (1) are conditioned upon surviving mortality in the previous time-

step. 

3.2.2 Weather and Landscape Impacts 

The core difference equation model is further modified to take into account the impacts of 

daily weather (i.e., T and R) variations and landscape features (L). As a result of these variations 

in temperature and rainfall, reproduction per time-unit, r, hourly maturation (or development) 

probability, γ, and hourly probability of natural death of aquatic and adult mosquitoes, µa and µm, 

in mosquito dynamics, equations (3.8 – 3.10) update on a daily basis according to the weather 

functions proposed in [132]. The reproduction, r, depends also on the different classes of land 

use/cover present in a mosquito site/cell. As such, the daily update equations for these core 

parameters are as follows. 



63 

 

𝑟 = 𝑟(𝑇, 𝑅, 𝐿) = [𝛼𝑏𝑒
−𝑎𝑏 (𝑇−𝑇𝑏)

2
] [
(1 + 𝑠𝑏) 𝑒

−𝑟𝑏(𝑅−𝑅𝑏)
2

𝑒−𝑟𝑏(𝑅−𝑅𝑏)
2
+ 𝑠𝑏

] [1 + 𝑤𝐿𝐿]     

𝛾 = 𝛾(𝑇, 𝑅) = [𝛼𝑑𝑒
−𝑎𝑑 (𝑇−𝑇𝑑)

2
] [
(1 + 𝑠𝑑) 𝑒

−𝑟𝑑(𝑅−𝑅𝑑)
2

𝑒−𝑟𝑑(𝑅−𝑅𝑑)
2
+ 𝑠𝑑

] 

𝜇𝑎 = 𝜇𝑎(𝑇, 𝑅) = [𝑐𝑎(𝑇 − 𝑇𝑎)
2 + 𝑑𝑎] [1 +

𝑒𝑎𝑅

1 + 𝑅
] 

𝜇𝑚 = 𝜇𝑚(𝑇) = [𝑐𝑚(𝑇 − 𝑇𝑚)
2 + 𝑑𝑚] 

where T and R are daily temperature and rainfall at time-step t. Temperature is truncated to be 

always positive. The landscape descriptor, L, evaluates the habitat suitability of a mosquito cell 

based on the land cover types present in the cell. Its value is calculated by a special linear 

combination of land cover correlations of a mosquito site, which will be explained shortly; and 

the parameter wL basically indicates the importance of land cover of a mosquito site. The rest of 

parameters in this set of functions controls how the temperature and rainfall-dependent functions 

react to the variations of weather conditions. A discussion of these weather functions parameters 

can be found in [132]. For the scope of this thesis, it is only important to tune these parameters 

according to the weather and mosquito surveillance data in southern Manitoba. This calibration 

procedure is explained in section 3.3. 

In addition to the function modifications above, the mosquito biting rate (i.e., number per 

unit of time) is also a function of temperature and host preference. The host preference is added 

to the model by multiplying a coefficient between zero and one to the mosquitoes’ biting rate, as 

discussed in subsection 3.2.3. The effect of temperature on (hourly) biting rate is assumed to be 

similar to that for Malaria transmission. As such, the quadratic biting rate function used in [133] 

for Malaria transmission is employed as follows. 

𝑏 = 𝑏(𝑇) =
1

24
⌊−0.00014 𝑇2 + 0.027 𝑇 − 0.322⌋+ 
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where 

⌊𝑓(𝑥)⌋+ = {
𝑓(𝑥) ; 𝑖𝑓 𝑓(𝑥) > 0
0 ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

The reproduction parameter, r, also depends on the different classes of land use/cover 

present in a mosquito site/cell (i.e., the parameter L). As shown in Figure 3-3, for each mosquito 

site, the proportional area of each land cover class is known. According to the Manitoba Land 

Initiative [118], there are 18 known and one unknown class of land cover identified in our land 

cover/use dataset. On the other hand, Bowden et al. [135] report Pearson correlations between 14 

types of land cover and West Nile Virus disease incidence in humans in the United States. The 

detailed description of their land cover types can be found in [136]. The Pearson correlation 

values and mapping from their types of land cover to our classes of land cover can be found in 

Table 3-2. These correlation values combined with the proportional areas of each type of land 

cover in our mosquito sites defines the parameter L as follows 

𝐿 =∑𝑙𝑖 × 𝑝𝑖
𝑖

 

where li is the proportional area of different land cover classes, and pi is the Pearson correlation 

for each class of land cover. For example, the value of L for the mosquito site/cell in Figure 3-3 

is as follows. 

𝐿Figure 3-3 = 0.2 𝑝𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 + 0.33 𝑝𝐴𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑎𝑙𝐹𝑖𝑒𝑙𝑑 + 0.15 𝑝𝑅𝑜𝑐𝑘𝑠 + 0.32 𝑝𝑊𝑎𝑡𝑒𝑟𝐵𝑜𝑑𝑦
= 20% × (−0.19) + 33% × 0.3 + 15% × (−0.05) + 32% × 0 = 0.0535

 

In other words, the landscape descriptor, L, is defined as the weighted average of correlations 

between a mosquito cell and human WNV cases in the United States. The impact of this 

parameter (L) on mosquito reproduction is controlled by another weight parameter, denoted wL. 
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Figure 3-3 An example of land use/cover classes in a mosquito cell/site 

Table 3-2 Adopted Pearson correlation values from [135] for land cover classes reported in [118] for 

Manitoba 

Land cover class in [135] Manitoba’s land cover class Correlation 

Barren Land 

 

Bare Rock/Gravel/Sand -0.05 

Deciduous forest 

 

Deciduous forest -0.51 

Evergreen forest 

 

Coniferous forest -0.29 

Mixed forest Mixed-wood forest; Treed rock; Wildfire Areas; 

Forest cutovers 

 

-0.32 

Shrub (non-significant) 

 

Open deciduous forest; Shrub 0 

Grassland 

 

Grassland/rangeland 0.46 

Pasture 

 

Forage crops -0.28 

Crops 

 

Agricultural cropland 0.3 

Woody wetland 

 

Treed Bog -0.19 

Herbaceous wetland 

 

Marsh; Fen 0.1 

Ave. of all developed area 

 

Cultural features; Roads/trails -0.19 

UNKNOWN Water bodies; Lichen heath 0 
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3.2.3 Multiple Bird Species 

Before describing how our implementation of the proposed CDiffE model differentiates 

between various bird species, a few facts and assumptions are reviewed:  

1. For most species, susceptibility to infection is 100% [137], that is, we can assume that the 

transmission probability from an infected mosquito bite to a bird is 100%. To be clear, 

this virus transmission makes a bird infected, but not all of the infected birds become 

infectious. 

2. There is no infected bird compartment in our proposed difference equation model, but 

only the infectious bird compartment (or state). This means a bird is marked as infectious 

only if the infected bird has the competency to transmit the virus to another mosquito 

vector. Otherwise, the infected bird remains a susceptible bird in the model. 

3. Reservoir competence indices of an infected bird describe the relative proportion of 

vector mosquitoes that become infectious after feeding on such a bird [74], [137]. These 

indices help estimate the probability of transmission from bird to mosquito, given the 

contact rate. This is important in determining when an infected bird species become 

infectious to mosquitoes. 

4. Given the way the difference equation model is currently formulated, it does not 

differentiate (i.e., per bird species) virus transmission probabilities from bird to mosquito. 

That is, βm cannot be a vector or an array. This is discussed in 3.5.2. 

5. For the estimation of the mosquito contact rate with each bird species, host-seeking 

mosquitoes’ abundance data and dynamic WNV data are necessary. Unfortunately, we 

did not have access to these data from Manitoba. Additionally, host preference of Cx. 
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tarsalis mosquitoes depends on the species available in a region [138], i.e., Cx. tarsalis 

mosquitoes have opportunistic host-seeking habits  [72], [139]. 

Considering items 1 – 4, the virus transmission probability from bird to mosquito (i.e., βm) is 

the same for all bird species, but the virus transmission probability from mosquito to bird (i.e., 

βb) is adjusted based on the reservoir competence index for each bird species. That is: 

{
∀𝑗 𝛽𝑚

𝑗
= 𝛽𝑚

βb
j
= 𝑐𝑗𝛽𝑏

 

where cj is the host competence index for the bird species j. A host competence index is a metric 

to indicate relative number of mosquitoes which become infectious as a result of biting the 

infected host [74], [137]. Collecting these indices and other bird species’ parameters is explained 

in subsection 3.2.3.1. 

Given item 5, and the tendency to lower the computational complexity of the model, in our 

implementation, the biting rate (i.e., the number of bites made per mosquito per time step) is the 

same among different bird species; and mosquito’s biting rate for humans is a proportion of 

birds’ biting rate. That is: 

{
∀𝑗  𝑏

𝑗 = 𝑏

𝑏ℎ =
1

𝜆
𝑏

 

where λ is the ratio of mosquito biting activities on birds to biting activities on humans. 

The next two parameters to calculate for bird species are recovery, ζb, and death due to 

infection, δ, probabilities per unit of time. The procedure to estimate these two probabilities and 

associated rates are explained in subsection 3.2.3.2. 
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3.2.3.1 Bird Species’ Competence Index 

Host competence indices are calculated from species viremia level reported in [74], [137], 

[148], [149], [140]–[147]. Indices are then normalized to be between zero and one. In the 

difference equation model, these normalized indices are used as weights to adjust the virus 

transmission probability from mosquito to bird (i.e., βb) for each species. The exact reasoning 

and formula to derive host competence indices can be found in [74]. Basically, if the host 

viremia is less than an infectious threshold in a day, its infectiousness is set at zero for the day. If 

not, the infectiousness is calculated. The average daily infectiousness of birds of the same 

species is then summed over the viremic period to produce the species index [74]. The 

infectiousness threshold used in these studies is for Cx. pipiens mosquitoes, and in general Cx. 

tarsalis mosquitoes are competent at a lower viremia level. However, the threshold is not as 

important as the fraction of infectious mosquitoes used in the calculation of species index [74]. 

Besides, these competence indices are normalized and used as relative weights. As such, the 

resulting effect on the difference equation model will be almost the same. For bird species that 

had not been tested, the average values from other species of the same family or order were used. 

Strictly speaking, for most of missing species, the order average was used except for a few 

Passeriformes where some data for the family was available. Normalized host competence 

indices for some of the bird species can be found in Table 3-3 on page 69. 
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Table 3-3 Birds’ species estimated WNV parameters 

Common name c*  pd
* pr

* nd
* nr

* 24θd
* δ* 24θr

* ζb
* 

Blue Jay 0.7565 75% 25% 4.7 4 0.295 0.01221 0.072 0.00299 

American Crow 0.5931 100% 0% 5.1 N/A 0.196 0.00814 0 0 

Common Grackle 0.4460 33% 67% 4.5 4 0.089 0.00370 0.277 0.01148 

House Finch 0.4057 100% 0% 7 N/A 0.143 0.00593 0 0 

House Sparrow 0.3917 50% 50% 4.7 5 0.147 0.00613 0.139 0.00576 

Black-billed Magpie 0.3563 100% 0% 6 N/A 0.167 0.00692 0 0 

American Robin 0.3287 - - - 3 0.112 0.00466 0.333 0.01379 

Song Sparrow 0.3084 - - - 5 0.112 0.00466 0.200 0.00830 

American Kestrel 0.2477 - - - 3 0 0 0.333 0.01379 

Brewer's Blackbird 0.2177 - - - 4 0.044 0.00185 0.250 0.01036 

Great Horned Owl 0.2133 - - - 4 0 0 0.250 0.01036 

Red-tailed Hawk 0.1623 - - - 5 0 0 0.200 0.00830 

Red-winged Blackbird 0.1349 - - - 3 0.044 0.00185 0.333 0.01379 

Northern Mockingbird 0.0934 - - - 2 0.112 0.00466 0.500 0.02062 

European Starling 0.0541 - - - 4 0.112 0.00466 0.250 0.01036 

Northern Flicker 0.0452 - - - 2 0 0 0.500 0.02062 

Swainson's Thrush 0.0376 - - - 1 0.112 0.00466 1 0.04081 

Mourning Dove 0.0285 - - - 3 0 0 0.333 0.01379 

Gray Catbird 0.0248 - - - 1 0.112 0.00466 1 0.04081 

Rock Pigeon 0.0013 - - - 1 0 0 1 0.04081 

Brown-headed Cowbird 0 - - - 1 0 0 1 0.04081 

Ring-necked Pheasant 0 - - - 1 0 0 1 0.04081 
* c: relative competence index 

  pd : percent of birds who died due to infection 

  pr : percent of birds who recovered 

  nd : mean number of days till death due to infection occured 

  nr : number of infectiosness days 

  24θd : daily death rate 

  δ : hourly death probability  

 24θr : daily recovery rate 

 ζb : hourly recovery probability 
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3.2.3.2 Bird Species’ Recovery and Death Rates and Probabilities 

To begin with, assume the experimental studies are available for a species. In this case, for 

each species, the following information is obtained [74], [137]: the overall fraction of birds who 

died, (pd), the overall fraction of birds who recovered, (pr), the average number of days to death, 

(nd), and the average number of days to recover from being infectious, (nr). From a statistical 

perspective, the average probability of death is pd for a period of nd days, and the probability of 

recovery in an interval of nr days is pr on average. 

Recall that the difference equation model is formed such that the events of death due to 

WNV infection and recovery from WNV infection are two independent events (see equation 

(3.13) or (3.6)). This means that infectious birds remain infectious if they do not die and at the 

same time do not recover. Therefore, in estimating each of these two hourly probabilities, the 

impact of the other is disregarded. As such, a Poisson model with rate parameter θ is fitted to the 

problem in order to determine the probability of the number of death events (or recovery events) 

that occurred per unit of time. Let kh be the number of events in an interval of h hours (or time-

steps). Thus, the probability of n events occurring in h hours is given by the probability mass 

function (PMF) of a Poisson distribution as follows. 

𝑃(𝑘ℎ = 𝑛) = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑘ℎ; 𝜃ℎ) =
(𝜃ℎ)𝑘ℎ𝑒−𝜃ℎ

𝑘ℎ!
       (3.22) 

where θ is the hourly rate (i.e., expected number of events per time-step), and (θh) is the average 

number of events in h hours.  

Consequently, the probability of observing at least one event (e.g., death or recovery) per 

unit of time (i.e., h = 1) is given by 

𝑃(𝑘1 > 0) = 1 − 𝑃(𝑘1 = 0) = 1 − 𝑒
−𝜃       (3.23) 
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Now the information regarding each species from the literature can be applied to solve the 

equation (3.22) for θ, and the hourly probability is then given by equation (3.23). That is, if θd 

represents the hourly rate of dying due to infection, the probability of not dying due to infection 

in nd days (i.e., 24nd hours) is 

𝑃(𝑘24𝑛𝑑 = 0) = 1 − 𝑝𝑑 = 𝑒
−𝜃𝑑(24𝑛𝑑) 

where 0 ≤ pd  < 1 and nd > 0 can be taken from the literature in [137]. This yields  

𝜃𝑑 = −
ln(1−𝑝𝑑)

24𝑛𝑑
           (3.24) 

As such, the hourly probability of dying due to infection, δ, and leaving the infectious state 

can be derived from the corresponding rate as 

𝛿 = 1 − 𝑒−𝜃𝑑             (3.25) 

Similarly, if θr represents the hourly rate of recovery from infection, this rate will be 

calculated as 

𝜃𝑟 = −
ln(1−𝑝𝑟)

24𝑛𝑟
          (3.26) 

where 0 ≤ pr  < 1 and nr > 0 can be taken from the literature in [74], [137]; and consequently, the 

hourly probability of recovery, ζb, and leaving the infectious state, is derived from the 

corresponding rate as follows 

𝜁𝑏 = 1 − 𝑒
−𝜃𝑟           (3.27) 

For the corner case where pd  = 1 (and pr = 0),  i.e., all birds die due to infection (and no one 

recovers), the hourly recovery probability, ζb, is simply set to zero, but the hourly death 

probability, δ, is not set to one, thus avoiding changing the infectious birds’ state in only one 

time-step as desired. Therefore, in this case, instead of using the equation (3.24), the hourly rate 

of dying due to infection, θd, in equation (3.25) is deliberately set to 1 / 24nd. That is 
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𝛿 = 1 − 𝑒
−

1

24𝑛𝑑 ;  𝜁𝑏 = 0
         (3.28) 

Similarly, for the corner case where pr  = 1 (and pd = 0),  i.e., when all birds recover from 

infectiousness (and no one dies),  the hourly death probability, δ, is simply set to zero, but the 

hourly recovery probability, ζb,  is not set to one. Herein, the recovery probability, ζb, is given by 

equation (3.27) where the recovery rate of θr takes the value of 1 / 24nr instead of taking its 

value from the equation (3.26). That is  

𝜁𝑏 = 1 − 𝑒
−

1

24𝑛𝑟 ;  𝛿 = 0          (3.29) 

In summary, where the experimental studies are available for a species, death and recovery 

rates are estimated, and the corresponding probabilities are then calculated according to 

equations (3.24) - (3.27). Herein, the parameter nr for species is set to the number of days that the 

species maintain a high level of viremia in their bloodstream to be infectious for mosquitoes. 

These values are taken from the data used in [74]. The other three parameters of pd, pr,and nd are 

taken directly from [137] for a limited number of species. These values for a number of bird 

species can be found in Table 3-3. Where the experimental data are missing for a species, 

estimation of death and recovery rates for each species were made based on the following rules 

of thumbs and assumptions.  

1. For bird species with no reported experimental studies, the average values from other 

species of the same family or order were used when there were some data available 

regarding at least one species in these orders/families. 

2. Orders and families reported as incompetent in [150] were given a zero death rate, and 

one recovery rate; unless there was explicitly some data reported regarding at least one 

species in these orders/families. This assumption means incompetent birds do not die due 

to infection and will recover from infectiousness in one time-step. 
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3. When “no signs of clinical illness” were explicitly reported as in [137]  for a certain 

order, a zero death rate was given to all their species, unless there were explicitly some 

data reported regarding at least one species in this order. This assumption means that if 

birds of a certain order do not show any symptoms of the disease, they will not die due to 

infection. 

4. In all other cases where there was no general information available regarding a certain 

order, the recovery rate of a species was set to the average recovery rate of all birds with 

known data. The death rate of species of these orders was assumed to be zero. This means 

birds of high WNV mortality such as passerines (and especially corvids) are assumed to 

be already identified and studied by biologist. Therefore, birds with no experimental 

studies must have a negligible (or even zero) death rate. Even though these species may 

have been found dead while their bloodstream had an infection, yet one cannot confirm 

whether the death was a direct result of infection without proper experimental studies. 

Derived hourly rates and probabilities of recovery from infectiousness and death due to 

infection for a number of bird species can be found in Table 3-3. It is notable that a natural death 

is not possible for birds as the model is seasonal (i.e., it runs only for one spring and summer per 

simulation year). However, the data-driven weekly variation in bird population is accounted for 

in the proposed CDiffE model. 

3.2.4 Mosquito Nocturnal Activities 

The majority of host-seeking activities of Culex mosquito occurs at night [151], [152]. 

Therefore, an average hourly biting probability should at least be split into high and low biting 

activity values for nights and days, respectively. Assuming that the parameter b̅ indicates the 

average hourly probability of biting a certain species (e.g., humans), the following equations 
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derives the mosquito biting probabilities for night and day based on daylight hours, D, in a given 

day and ratio of biting activities between night and day, ω, such that the average hourly value 

holds true for a 24-hour day. 

{
 
 

 
 𝑏𝑛𝑖𝑔ℎ𝑡
𝑏𝑑𝑎𝑦

= 𝜔 > 1

∑𝑏𝑛𝑖𝑔ℎ𝑡 + 𝑏𝑑𝑎𝑦 = 24𝑏̅

         ⇒ 𝐷𝑏𝑑𝑎𝑦 + (24 − 𝐷)𝜔𝑏𝑑𝑎𝑦 = 24𝑏̅ 

⇒

{
 

 𝑏𝑑𝑎𝑦 =
24

(24 − 𝐷)𝜔 + 𝐷
𝑏̅

𝑏𝑛𝑖𝑔ℎ𝑡 = 𝜔𝑏𝑑𝑎𝑦

 

where bday and bnight are mosquito biting probabilities during days and nights, respectively. This 

means these two parameters would replace the parameter b in the equations (3.11) and (3.15) 

(and the parameter bh in equation (3.21)) based on the current hour of the day. 

3.2.5 Avian Flow 

In WNV epidemiology, the movement of birds is not as critical to the model as their 

roosting activities. The reason is that the majority of birds get bitten and infected while they 

roost. As such, spotting a bird roost is more influential than modelling bird (long-distance) 

movement patterns. Yet, short flights to surrounding areas in search of food are the primary way 

of spreading the infection. Consequently, the bird agents and avian flow of the system are 

designed based on this concept. Generally, the breeding seasons of the birds in the system are 

within the span of the simulation time (i.e., spring/summer).  Given this, and the tendency to 

simplify the computational complexity of the avian flow, birds were assumed to remain close to 

their nesting locations at night, and fly around during the day within their home-range but still 

close to their nests. 
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A typical bird roost is covered by a number of mosquito site agents. After each time-step, 

some birds of a roost may become infectious as a result of contact with different mosquito (site) 

agents. Therefore, at the beginning of the next step, there is a probability that a bird that became 

infectious from the mosquito site X would spread the infection to the mosquito site Y, as long as 

both mosquito sites X and Y reside within the home range of the bird. Basically, at each time-

step, the total population of birds of a roost is split proportionally among all the mosquito sites 

covered by the birds at the time, assuming a homogenous and well-mixed population of bird 

agents. For example, consider the case when a bird roost covers four mosquito sites called one, 

two, three, and four such that they are covering 10%, 15%, 45%, and 30% of the total area of the 

roost, respectively as shown in Figure 3-4a. So, if the total population of birds in this roost is 

1000 and of which 100 are infectious, then 100 birds (including 10 infectious) will be present 

over the mosquito site one, 150 birds (including 15 infectious) will be present over the mosquito 

site two, 450 birds (including 45 infectious) will be present over the mosquito site three, and 300 

birds (including 30 infectious) will be present in the mosquito site four. From the difference 

equation perspective, this assumption is inferred as multiplying all the bird state variables (Bs, Bi, 

Br, and Bt) for a given mosquito site by a factor proportional to the intersection area of the roost 

and the mosquito site. Strictly speaking, this factor is defined as the proportion of intersection 

area to the roost area i.e., 8/100 for the roost/site pair in Figure 3-4b. 

Moreover, unlike the classical assumption of difference and differential equation models 

where every vector (mosquito) could bite and infect every host (birds), it is considered here that 

only a certain proportion of mosquitoes in a site could bite birds of a certain roost provided that 

the roost is not completely covered by the mosquito site. For example, consider the case where a 

mosquito site with an area of 25 km2 has an intersection area of 8 km2 with a roost with an area 
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of 100 km2 as shown in Figure 3-4b. Under classical DE models, all the mosquitoes scattered in 

the 25 km2 region could bite the birds of the roost present in the 8 km2 intersection region. 

However, in the proposed CDiffE model, only mosquitoes present in the 8 km2 intersection 

region could bite the birds of the roost there. From the difference equation perspective, this 

assumption is implemented by multiplying the contact rate, 𝑏𝑗, in equations (11) and (15) by a 

factor proportional to the intersection area of the roost and the mosquito site. Strictly speaking, 

this factor is defined as the proportion of intersection area to the mosquito site area i.e., 8/25 for 

the roost/site pair in Figure 3-4b.  

 

a) Blue circular roost covered by four mosquito 

sites; bird roost population are distributed 

proportionally among the mosquito sites 

 

b) A Mosquito site / bird roost pair with an 

overlapping area; 8/25 of the mosquitoes may 

bite 8/100 of the birds. 

Figure 3-4 Examples of mosquito sites and bird roosts relative position to each other 

Each species of bird has different home ranges and may fly up to a certain maximum 

distance for their food seeking activities. While the average number of birds present in the 

simulation per mosquito cells can be calculated, the actual number of birds per each mosquito 
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cell is quite different at each hour. At the beginning of the simulation, the figure is over 11,000. 

It then goes up with a few fluctuations during the spring and summer until the last weeks of 

simulations where it gradually decreases to an approximate value of 8,000. 

3.3 Parameter Calibration and Model Validation 

The obtained Centers for Disease Control (CDC) carbon dioxide baited trap data in 

Manitoba [20] does not provide sufficient information regarding the number of infected 

mosquitoes for validation and tuning purposes, as the data only indicate if there is at least one 

infected mosquito in a given week in a community, and they do not provide any information 

about the number of infected pools. That is, the trap data are not reliable for assessing infection 

counts, but they are appropriate for total mosquito count. Therefore, the parameter calibration is 

achieved by comparing the total mosquito count in the model against the trap data. The trap data 

are the number of mosquitoes per collection night, which can be inferred as the average weekly 

count of total mosquitoes. These data were available from CDC week 22 to CDC week 36 (a 

total of 15 weeks) for approximately 30 communities in Manitoba from 2003 to 2014 [20]. As 

the data from 2003 is incomplete and not consistent with the other years, it was disregarded. The 

data from 2004 to 2013 are used as training data for calibration and tuning purposes, and the data 

from 2014 is then used for validation as the test data to assure the model is not over-fitted. 

Alternatively, one could have performed a k-fold cross-validation on the limited available dataset 

by partitioning the data into different training and test years and averaging the results over all the 

rounds to obtain an estimate of model generalization error. This is often carried out in statistical 

prediction models, particularly for selecting hyper-parameters when few data are available, and it 

would have been especially crucial if the intent was to report on an accuracy metric for a 

finalized software package for WNV prediction in Manitoba for all years. However, 
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the calibration process was very time-consuming in this work. As well, the goal here was to 

achieve acceptable behaviour to proceed with the CDiffE model for a higher-level ABM to study 

various scenarios. After performing the calibration procedure, either the test year or the average 

of all years was used for further studies of other phenomena of interest. 

In the model, the count of total adult mosquitoes from all mosquito sites of each community 

is recorded only at mid-night in a single time-step. Although recording the mosquito counts 

during the whole night was possible, tallying each mosquito only once was desired to avoid 

overestimating the nightly population counts. This is conceptually similar to having mosquito 

traps run for an hour each night. This figure is then divided by the number of days in a week and 

the total area of mosquito sites in each community, so that the average nightly count/density per 

one km2 is obtained for each community each week. For calibration purposes, the output for each 

simulated year is defined as a matrix of these average weekly mosquito counts. The matrix has 

around 30 rows (for communities) and 15 columns (for weeks). The correlation between this 

simulation output matrix and the trap data matrix are then calculated for each year. The average 

correlation between simulation output and trap data for years 2004 to 2013 is used as the fitness 

function of the optimization algorithm. While the optimization algorithm could be any 

metaheuristics search algorithm, the Grouped Bees Algorithm [153] in conjunction with the 

OptQuest optimization engine [154] is employed in this work. 

The correlation between the simulation output and the trap data indicates how well the 

model predicts weekly trends of mosquito population counts in different locations/communities. 

It also captures the variations in mosquito distributions over different locations/communities in a 

certain week. 
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There are two general choices for correlation calculations: Pearson and Spearman rank 

order, each with their own benefits and drawbacks. The Pearson correlation compares the 

absolute numbers. It is more sensitive to outliers, such as wrong trap data in this application, yet 

it uses most of the information available from the data. It is notable that other than many missing 

data, it was confirmed that some traps may have failed for various reasons for any given week. 

This failure information was not, however, available in the obtained data. Alternatively, 

Spearman rank order correlation does not need such accurate data, as it only considers the ranks 

(orders) of numbers. For example, as long as the model’s output for week two is higher than 

week one and less than week three, and this is also the case in the trap data, the correlation is 

100%. The Spearman rank correlation is only good to achieve the relative trend, and not the 

amplitude of changes. Therefore, the data across different communities for every single week 

were summed up and treated as the total count for the province for each week. This figure is 

compared against the total density of mosquitoes in those communities in the model for each 

week to be used in the sensitive Pearson correlation; whereas the Spearman rank correlation was 

applied to compare every single pair of weeks and communities. The next step was to decide on 

how to combine these correlation metrics, as it was not known which correlation choice would 

have produced a better fit for the parameters. After a few weeks of preliminary calibration 

attempts, a linear combination of both metrics with equal weights was chosen as the final fitness 

function. 

Unexpectedly, while the calibration/optimization process was running, it was consistently 

observed that the number of mosquitoes produced by the simulations is significantly lower than 

what data suggested, by several orders of magnitude. This is primarily due to large and complex 

input search space, lengthy simulation run-times, and some input parameters with high 
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sensitivity. Sensitivity analysis on the temperature and weather-related parameters can be found 

in [132]. This pre-mature convergence likely happens because the optimization process tends to 

fix some parameters near the boundaries of input intervals as constants while adjusting other 

parameters, and the fact that boundary values produce fewer mosquitoes than expected. 

Additionally, in many weeks, there should be few (i.e., almost zero) mosquitoes according to the 

trap data, so the optimization is likely trying to produce a low number of mosquitoes in general. 

Thus, the fitness function was altered to apply penalties to the solutions where the total density 

of mosquitoes generated by the simulation differs from the total number of mosquito trap counts 

by several powers of Euler's number, e, in each year. To apply this penalty, the trap data had to 

be scaled up to obtain a more accurate estimate of the actual number of mosquitoes in the field. 

However, the ratio of the number of captured mosquito to the actual population of mosquito 

varies by region and month [155]. The possible influence of weather conditions on trap 

effectiveness is also very likely to be strong. Based on the experiments in [155], it may be 

inferred that a captured Cx. tarsalis mosquito represents around 300 mosquitoes over one km2 in 

August. Consequently, a simplifying assumption was made that the scaling factor of 300 remains 

the same in the entire simulation time.  

Moreover, the optimization process produced some solutions with excellent performance in 

some years, but very poor matching trends in other years. Therefore, a minor penalty was applied 

to the solutions where the correlation was negative in a year. This penalty was imposed to 

achieve a general solution for producing a fair result in all years from 2004 to 2013. In the end, 

the calibration process resulted in acceptable trends of mosquito population dynamics for both 

test and training data. Detailed results of the calibration procedure can be found in following 

section. 
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3.4 Results and Discussion 

3.4.1 Calibration Results 

For the scope of this chapter, the human component is not yet added to the simulations 

implementations. This assumes Ht is zero in all corresponding equations. Depending on how the 

weights of correlation metrics are set and penalties in the fitness function assigned, the 

calibration procedures can end up with very different set of solutions. Here, the solutions for 

three general cases of correlation-oriented, population-oriented, and balanced-approach are 

presented as examples. The difference in these cases is the weight of population penalty used in 

their fitness function during the optimization process. Three evaluation metrics of Spearman’s 

rank-order correlation, Pearson correlation and logarithmic-scale population ratio for each 

solution is given in Table 3-4, where the logarithmic-scale population ratio is defined as 

Pop. Ratio =
ln(𝑃𝑠)

ln(𝑃𝑡 × 300)
 

where Pt is the total number of weekly captured mosquitoes from the trap data for each year and 

Ps is the sum of average weekly density of mosquitoes per one km2 in selected communities (i.e., 

corresponding to the trap data communities) generated by the simulation for each year.  The 

values of equation parameters for each solution are given in Table 3-5 on page 84. 

According to Table 3-4, the correlation-oriented solutions have higher correlations (both 

Spearman and Pearson) with an average of approximately 60% in all years (including both 

training and test years). The Population-oriented solutions have the lowest correlation values but 

the highest population ratio, with an average of approximately 73% in all years. The balanced-

approach solutions fall in between, with an average of approximately 52% correlation and 68% 

population ratio.  



82 

 

Table 3-4 Calibration results for three different sets of solutions 

 Correlation-oriented Population-oriented Balanced-approach 

 Pearson  Spearman  Pop. 

Ratio 

Pearson  Spearman  Pop. 

Ratio 

Pearson  Spearman  Pop. 

Ratio 

Training years 

2004 62% 60% 54% 76% 65% 65% 73% 66% 61% 

2005 90% 71% 54% 68% 65% 70% 86% 67% 61% 

2006 61% 39% 64% 22% 22% 79% 38% 29% 72% 

2007 44% 52% 53% 4% 15% 70% 24% 29% 62% 

2008 86% 70% 53% 63% 69% 64% 78% 70% 60% 

2009 18% 32% 64% 23% 28% 76% 23% 27% 70% 

2010 77% 71% 63% 28% 56% 78% 55% 63% 69% 

2011 79% 58% 63% 54% 55% 75% 66% 56% 70% 

2012 73% 52% 62% 39% 42% 76% 56% 45% 69% 

2013 35% 45% 66% 12% 50% 79% 28% 43% 72% 

Average 62% 55% 59% 39% 47% 73% 53% 50% 68% 

Test year 

2014 73% 64% 59% 51% 61% 74% 62% 60% 68% 

 

Generally, the correlation for some years with a mild summer (i.e., 2009 and 2013) and the 

year with the highest number of mosquitoes in the traps (i.e., 2007) have the lowest values. A 

correlation value of 50% to 60% for weekly variations over various regions may not be 

considered a high value. However, in a WNV study on birds infection rates in Ontario, Canada 

[156], the Pearson correlation between observed and predicted values for monthly variations in 

Ontario (i.e., only a single location) fall between 60% to 63% for training and test data using an 

artificial neural network technique.  It is notable that neural networks are theorized to be 
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universal approximators with acceptable accuracy. Although direct numerical comparison 

between the two models is not necessarily meaningful, there are conceptual links between the 

two. Generally, a high number of mosquitoes is correlated with high prevalence of infection in 

both mosquitoes and birds, assuming the presence of the virus. However, this should not be taken 

to imply that neural networks cannot achieve greater predictive power for WNV epidemiology. 

The value of the proposed CDiffE scheme, and in particular agent-based modelling, in this 

context is in construction of a virtual simulation framework in order to assess many different 

influential factors in WNV epidemiology before putting them in practice. Very specifically, it is 

important to emphasize that a mechanistic approach such as that explored here is able to look at 

the effect of counterfactual interventions in a way that the neural network approach is not able to.  

This reflects the fact the neural network is trained to the current data generating process, but 

counterfactual interventions alter that data generating process.  ABMs also allow for improving 

the underlying theory over time, as learning is made concerning accuracy of observations in 

different areas (e.g., along different generative pathways) in ways that neural network (and 

statistical models in general) do not. Such simulators will help to elucidate the underlying 

mechanism of WNV propagation. Generally transparent simulation methods such as ABM 

provide insight into the subject of study in comparison with the black box approach offered by 

soft computing techniques such as neural networks. Further discussion of the table is presented 

in section 3.4.2. 
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Table 3-5 Numerical values of equation parameters for each of the three solutions of calibration 

process 

 Correlation-oriented Population-oriented  Balanced-approach 

αb 12 12  12 

ab 1E-5 1E-06  3.866E-6 

Tb 22 25  24 

sb 2 1.799  1.819 

rb 0.006 0.008  0.009 

rd 0.004 0.006  0.006 

Td 23 26  25 

Rb 20 20  17 

ad 0.04 0.04  0.029 

αd 1E-5 6.36E-05  1.671E-5 

sd 2.245 3.655  3.774 

Rd 22 18  17 

ca 1E-10 1E-10  1.019E-10 

da 1.36E-4 6.64E-05  1.688E-4 

Ta 27 28  25 

ea 0.001 0.0001  0.001 

cm 1.474E-4 3.79E-05  4.587E-5 

Tm 25 28  28 

dm 2.725E-4 0.001  9.919E-4 

wL 0.1 0.1  0.1 
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All the simulation runs were given an initial (small) number of 2000 × (1 + wL L) 

mosquitoes in each mosquito site in the CDC week 21 (i.e., approximately the last week of 

April).  It is notable that the parameter αb and wL are the same in all solutions as the model is 

highly sensitive to changes of these two parameters (see [132] for a discussion on the sensitivity 

of model to the reproduction rate). Accounting for the impact of wL, an αb value of 12 is 

associated to a maximum of 288 eggs, laid by each adult female mosquito during a day, which is 

in agreement with biological studies [157]. The second fixed parameter of wL defines the impact 

of landscape features on mosquito habitat. While it may have been expected to have a high value 

of close to one for wL, its value was set at 0.1 by the optimizer. The reason can be explained via 

Figure 3-5 where the parameter L (i.e., land use correlation with the number of WNV human 

cases) for southern Manitoba is depicted, and the dark blue color denotes a non-positive 

correlation. 

As shown in Figure 3-5, land use in approximately the half of southern Manitoba (i.e., the 

area of interest of this study) has a negative correlation with WNV human cases in comparison to 

the whole North America. As such, high values of wL could have significantly reduced the total 

number of mosquitoes generated in many grid cells, which is not desired and is penalized in the 

fitness function of the optimization process. So, a low positive value of 0.1 was selected (by the 

optimizer) as wL to avoid underproduction of mosquitoes and to achieve a high Pearson 

correlation at the same time. However, if in a specific application where the population census is 

not as important as having a higher Pearson correlation, the value of wL could be carefully 

increased. Once the value of wL is updated, an optimizing search for tuning other parameters is, 

however, recommended. A report on the variations of wL is given in subsection 3.4.4. 
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Figure 3-5 Weighted average land cover correlation with the number of WNV human cases, i.e., the 

parameter L 

3.4.2 Model Validation 

Overall, according to Table 3-4, the model has an acceptable predictive power of 

approximately 60% in terms of correlation between the trap data and simulation output for 

mosquito population dynamics. To provide a better visual insight into these quantities, two more 

assessing figures are presented. First, Figure 3-6 compares the scaled weekly trend of total 

trapped mosquitoes from the data against the weekly mosquito densities generated by simulation 

using the balanced-approach solution. The figure is depicted for all the years (i.e., training and 
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test) from 2004 to 2014. In most years, the trend of mosquito population dynamics in simulation 

output is close to the total number of mosquitoes collected weekly in Manitoba traps. 

 

  

 

   

   

   

Figure 3-6 Weekly trends of sum of scaled trap data versus simulation’s weekly mosquito densities 

for 2004 to 2014 

The worst performance is for years 2009 and 2007. 2007 is when the highest number of 

WNV human cases and captured mosquito counts were observed in Manitoba. For some reasons, 

in 2007, a primary peak of mosquito (host-seeking) activity was observed in week 26 whereas 

the simulation does not capture any unusual increases in mosquito population. This might be due 

to unexpected changes in bird populations. In current simulations, bird populations are assumed 
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to have the same migration patterns and roosting locations in all of the simulated years. It is 

notable that trap data provides information on female host-seeking mosquitoes, not actually the 

count for the entire mosquito population. This means if there are not many hosts to feed on, there 

may not be many host-seeking mosquitoes, despite having a highly mosquito-populated area. On 

the other hand, if there are no real available hosts, then the traps, as they mimic a possible host 

by releasing CO2, may even capture more mosquitoes. 

In the selected communities, years 2009 and 2013 with 2004 are among the years with the 

coolest/mildest summers. They have the lowest number of days with an average (per-

community) daily temperature of greater than 17 °C. Also, this temperature value never reaches 

24 °C in 2009 and 2004. Yet, as shown in Table 3-4, the model has an acceptable predictive 

power in 2004, which caused us to re-examine the previous suggestion that the model accuracy 

deteriorated when summers were mild. So, we further analysed the weather conditions in 2009 

and 2013 where we initially believed the mild temperature made the model inaccurate. Upon 

further investigation of weather conditions in 2009 and 2013, we realized that there are days 

where both temperature and rainfall rise to values, respectively, above 20 °C and 10 mm at the 

same time. As a result, in 2009 and 2013, the model fails to fully take into account the impact of 

heavy rainfall in these days. That is, the model fails to kill a large proportion of larvae in these 

situations due to flushing, as is the case in reality (evidenced by the trap data). This suggests, in 

general, that the model has learned to be highly sensitive to temperature (in developing more 

mosquitoes) but not sensitive enough to rainfall to determine the exact threshold of rainfall 

values to flush a correct amount of larvae. This is partially due to the data we had, which biased 

the model to give more weight to temperature, as this was the safest approach for the model to 
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gain the maximum average fitness in all years. Arguably, there needs to be also a consideration 

of the impact of rainfall on the probability of capturing a given mosquito. 

Surprisingly, it was observed that the same conditions occurred other times, and the model 

prediction suffered in those weeks as well. However, the impacts were strong enough in some 

years to significantly drop the correlation values. Generally, when rain of around 10 mm to 25 

mm with temperature of occasionally 20°C (or slightly above it) occurs in the same week, the 

model fails to flush a sufficient number of larvae. Therefore, a visible increase (or maybe a jump 

depending on temperature) in the number of mosquitoes in the model is often observed when a 

drop or only a slight increase is expected. Examples of such co-incident events include week 27 

in 2005, week 32 in 2006 and 2007, weeks 25 and 32 in 2009, week 32 in 2010, weeks 26 and 34 

in 2013, and week 34 in 2014. Average (per-community) daily temperature and rainfall values 

for a number of years are shown in the figures in Appendix B. 

 As can be seen, in general, in the last weeks of simulation, the system has more mosquitoes 

than the trap data suggests. This is most likely due to diapause, when mosquitoes become 

dormant towards the fall based on the changing daylight duration. Put differently, in those 

relatively cool weeks, there are still mosquitoes in the area, but they are not active enough to get 

captured at the traps. Incorporating the diapause process would be particularly important to 

obtain a better fit of mosquito population, if the simulation had to capture whole year dynamics. 

Moreover, always in week 22, the simulation has more mosquitoes than the trap data, which 

likely is because of the initial simulation conditions. 
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For further visual comparison, Figure 3-7 compares the mosquito geographic distribution in 

a number of weeks between the simulation and trap data in Manitoba. For each week, in Figure 

3-7, from left to right, two images are shown: (1) trap data of the week on the left (image source: 

[20]), (2) mosquito density generated by the simulation during the same week on the right. It is 

immediately clear from the screenshots in Figure 3-7 that the model output correctly identifies 

the mosquito patterns at the province-scale. In addition, Figure 3-8 shows degree day 

accumulation base 14.3 °C [20], [158] for further visual comparison. The degree day function 

used in Figure 3-8 is derived from [159]. The simulation screenshots for this experiment were 

taken while the simulation was running for the test year of 2014. Screenshots and figures of other 

weeks are provided in Appendix B. 

Cumulative degree days maps [158] are shown in Figure 3-8 as the Manitoba government as 

well as many modellers explicitly employ degree days as an indicator of WNV activities. Recall 

that the development of mosquitoes and the virus both need warm weather over a period of time. 

Reference [45] gives an example of degree days WNV models. Although degree days were not 

explicitly used in the proposed cellular model, the model output considers it to some extent. This 

confirms the importance of temperature on the mosquito life-cycle and WNV activities. The 

impact of temperature is explicitly assessed and reported in section 3.4.4. Figure 3-7  also 

suggests the Victoria beach area could be a potential hot spot for mosquito activities; however, 

no mosquito trap is installed there to judge this conjecture. This must be mainly due to the 

generally warm weather conditions of this area over a long period of time. In fact, in most years 

in our dataset, the vicinity of the Victoria beach was one of the hottest areas in the province from 

the middle of July until the first weeks of September. 
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Trap data in week 27 in 2014 Simulation state in week 27 in 2014 

  
Trap data in week 30 in 2014 Simulation state in week 30 in 2014 

  
Trap data in week 34 in 2014 Simulation state in week 34 in 2014 

Figure 3-7 Weekly distribution of mosquitoes according to the trap data (source: [14]) and simulation 

 

Victoria Beach 
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Week 27 in 2014 

 
Week 30 in 2014 

 
Week 34 in 2014 

Figure 3-8 Map of cumulative degree-days (source: Agriculture and Agri-Food Canada  [158]) 
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3.4.3 Infection Propagation 

Simulations of infection propagation demonstrated that the birds are the main factors for 

spreading WNV to distant areas. The test year of 2014 with a small alteration in its temperature 

conditions was selected as the input for the simulation. The mean daily temperature was 

increased by 1 °C to capture more visible patterns of WNV spread. Alterations in temperature 

and rainfall values are discussed in subsection 4.4. A total of half a percent (0.005) of mosquito 

population was set to be infectious by infecting half of the population of one percent of mosquito 

cells/sites. The number of initially infected mosquitoes is high enough to initially infect a few of 

birds before those mosquitoes die out. Therefore, it is quite reasonable to assume some 

competent birds at those initially infected mosquito sites are infectious until they either recover 

or die. Figure 3-9 shows variation of daily rainfall, temperature, and the number of total 

mosquitoes and infected ones for this simulation in a logarithmic-scale. Figure 3-10 on page 95 

illustrates the spread of the infection across the province over a number of weeks. Week 21 in 

Figure 3-10 shows the initial location of infected mosquito sites in a lime color. These 

mosquitoes infect some birds around them. By the middle of week 29 (i.e., day no. 194), the 

majority of the infected mosquitoes die out as the map is entirely blue, but there still exist some 

infectious birds. Beginning the week 32, the infection in mosquitoes has begun emerging, mostly 

in the areas close to the initially infected mosquito sites as these areas have the highest number 

of infectious birds, and they may still have infected mosquitoes. The infectious birds from these 

areas could fly over other mosquito sites and spread WNV to them. During the weeks 34-35, a 

rather sharp increase occurs in the population of mosquitoes in mosquito-favored areas, such as 

the Victoria Beach on top right of the map. Therefore, these highly mosquito-populated sites 

have a relatively high probability of biting an infectious bird, even though there were not any 
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infectious birds/mosquitoes, initially. Later on, at the beginning of week 39, the mosquitoes’ 

activities (and consequently the number of infected mosquitoes) is reduced everywhere due to 

changes in weather conditions. Figure 3-10 confirms the avian flow of the system is a significant 

factor in WNV propagation to other locations. 

 

  
a) Number of total adult and infectious adult 

mosquitoes on a logarithmic-scale 

b) Daily values of mean Temperature (°C) and 

mean Rainfall (mm) 

Figure 3-9 Daily weather variations and adult mosquito population dynamics 
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Week 21 (initial conditions) 

LEGEND 

 

 
The middle of week 29 

 
Beginning the week 32 

 
The end of week 36 

 
Beginning the week 39 

Figure 3-10 Distribution of infected mosquitoes across the province in a number of weeks 
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3.4.4 Sensitivity Report 

The primary findings of the sensitivity analysis were that the output of the CDiffE model is 

sensitive to all the key inputs (i.e., temperature, rainfall, and land cover factor). Increasing the 

value of wL (i.e., landscape impact) yields an increase in the average Pearson correlation between 

the trap data and simulation output. Increases in daily temperature and rainfall values up to some 

thresholds also increase mosquito infection rates. Temperature has a more influential impact, 

however. 

Changes of the average of the three evaluation metrics for the balanced-approach solution in 

response to variations of wL is plotted in Figure 3-11 for all of the years from 2004 to 2014. 

Expectedly, the average Pearson correlation gradually increases as the value of wL goes up to a 

maximum threshold of approximately 1.3, and then a marginal decreasing trend begins. For the 

low or even negative values of wL, the Spearman rank-order correlation remains almost constant 

at around 50%, followed by a sharp decrease beginning at a positive value of 0.2 for wL; whereas 

the population scale has a steady declining trend as the value of wL increases. 

In addition to the three evaluation metrics of mosquito population, a weekly infection ratio is 

calculated for mosquitoes during the simulations. Recall that weather conditions play a vital role 

in mosquito dynamics and consequently in the infection ratio of their population. The weekly 

infection ratio can be used to decide whether an input scenario results in an outbreak depending 

on the competence-level of target hosts. Investigating the outbreaks, in particular with regards to 

humans, and possible prevention policies, is an important direction for the future work of this 

thesis. Figure 3-12 and Figure 3-13 demonstrates changes of the ‘total average’ and ‘average of 

yearly maxima’ of weekly infection ratios with respect to changes in daily values of mean 

temperature and rainfall for all the years from 2004 to 2014. 
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Figure 3-11 Variations of average of the three metrics for 2004 to 2014 with respect to landscape 

weight (wL) 

For each input value along the horizontal axes in Figure 3-12 and Figure 3-13, the values of 

Rainfall and Temperature for all days were changed accordingly. For example, an input value of 

-10 mm in Figure 3-12 means 10 mm is subtracted from the rainfall values of all simulated days 

(and truncated at zero). Similarly, a value of 10 °C on the horizontal axis in Figure 3-13 means 

10 °C is added to the mean daily temperature of all simulated days. The temperature value is also 

truncated at zero (i.e., it never has a negative value). 
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Figure 3-12 Variations of weekly infection ratio, being averaged for 2004 to 2014, with respect to 

changes in the daily value of Rainfall (R) 

 

 
Figure 3-13 Variations of weekly infection ratio, being averaged for 2004 to 2014, with respect to 

changes in the daily value of mean Temperature (T) 
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As the initial conditions for these two experiments, half a percent (0.005) of mosquitoes are 

infected. As shown in subsection 3.4.3, the initially infected mosquitoes could infect a few of 

birds initially. Then, during the simulation, if the number of mosquitoes grows sufficiently, the 

susceptible mosquitoes will get infected from those initially infectious birds and the WNV 

spread grows. Generally, both maximum and average weekly infection ratios have similar trends 

as shown in Figure 3-12 and Figure 3-13. Overall, the two plots indicate the model is extremely 

sensitive to weather conditions, as expected. 

Recall that the desired level and frequency of rainfall for mosquitoes is controversial [30]–

[32]. According to Figure 3-12, if the amount of daily rainfall for each day increases by 2 to 32 

mm, a visible increase occurs in weekly infection ratios, compared to a change of zero mm in 

daily rainfalls. This change has three phases of a sharp positive slope for the values 

approximately from 2 to 7 mm, relatively constant with some fluctuations for 8 to 25 mm, and a 

sharp negative slope for 26 to 32 mm. The double-sided effect of rainfall can be explained 

through mosquito habitat preferences for breeding and a larvae-flushing effect of heavy rainfalls. 

This trend verifies the fact that small increases in rainfall generally creates more stagnant water 

for mosquitoes to lay eggs, whereas heavy rainfall flushes and kills them [33]. The other 

interesting and less intuitive phenomenon was slight changes of infection ratios for negative 

values of the horizontal axis (i.e., rainfall changes) in Figure 3-12. While it may not be visible in 

the plot-scale of Figure 3-12, the rainfall change of -40 to -15 mm resulted in a slightly higher 

infection ratio, compared to rainfall change of -15 to 0 mm. This means the mosquitoes generally 

may do slightly better in drought conditions compared to normal rainfall conditions. 

By comparing the amplitude of infection ratio changes in Figure 3-12 and Figure 3-13, it is 

evident that mosquito dynamics are considerably more sensitive to temperature than 
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precipitation. This is confirmed by biological studies, as the temperature affects more mosquito 

conditions, such as reproduction rate, biting rate and even WNV incubation period [24], [30], 

[31], [33], [38]–[43]. The general trend of the plot of Figure 3-13 indicates increasing the mean 

daily temperature generally increases the infection ratio at different rates up to a high 

temperature where mosquitoes begin to die out due to extremely hot temperatures. Figure 3-13 

suggests that if the mean temperature of every day increases by over 20 °C, the death rate of 

mosquitoes would be so high that infection ratio would probably decline. Similar to rainfall 

changes, the impact of temperature changes from -20 to 0 °C is not visible in the plot-scale of 

Figure 3-13. However, interestingly, in consistent cool/cold day conditions (i.e., high negative 

values on the far left of horizontal axis), the infection ratio is slightly higher than relatively 

normal cases with temperature change ranges approximately from -5 to 0 °C. Overall, this means 

lower death rates and biting activities produces more infected mosquitoes than normal death 

rates and biting activities do. Recall that the simulated temperature was truncated at zero, which 

means a high value of -20 °C on the horizontal axis forces the simulated temperature to be 

exactly zero degree Celsius at cooler days (where the actual temperature is 20 °C or less). This 

result can be explained through the fact that mosquitoes are somewhat resistant to mild-cold 

temperatures and some hibernate in cold weather conditions. 

3.5 Summary of Chapter 3 

3.5.1 Conclusions  

In this chapter, a cellular difference equation (CDiffE) structure for modelling WNV 

dynamics is proposed for adoption in data-driven WNV-ABMs. Differential Equations or other 

aggregative approaches do not have the capacity to capture WNV at a fine-grained scale. Straight 
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ABMs are too expensive to model virus transmissions at the agent-levels (i.e., triggering rules 

per every single mosquito). In a hybrid ABM-based approach, difference equations should be 

exploited as opposed to differential equations. In addition, a cellular map, as opposed to 

polygon-shaped boundaries [51] or virtual networks [104], makes it easy to effectively analyze 

spatial aspects of WNV such as human mobility. This ease of usage is verified in Chapter 4. This 

chapter showed how hybrid methods can effectively capture the spatio-temporal dynamics with 

an acceptable accuracy and computational cost. 

The work here focussed on including as many WNV factors related to mosquito population 

dynamics as possible.  The parameters of the difference equation are temperature- and rainfall-

driven during the mosquito season. The impacts of landscape features (i.e., land cover) are 

included in the equations. Multiple species of local and migratory birds with their weekly 

migration patterns are considered as the amplifying hosts in the equations. Human agents as the 

dead-end hosts are included in the set of proposed equations. Twilight times are employed to set 

the mosquito biting rates. These parameters, specific to southern Manitoba (see Chapter 1), are 

fed into the simulations for numerical analyses. The parameters regarding the mosquito 

population development are calibrated based on the trap data available from the Manitoba 

government. For over 150 bird species, WNV-related parameters, such as competence indices 

and recovery rates (and probabilities), are estimated based on viremia studies. 

As part of model validation, variation of mosquito densities over 15 weeks during the spring 

and summer for the years 2004 to 2014 is compared against the simulation outputs. Generally, 

simulations produce trends of mosquito population close to the actual mosquito population as 

judged via trap data. The system identifies the patterns of mosquito density in approximately 30 

communities over 15 weeks relatively well. The average and median system prediction power 
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among all generated set of solutions are 52% and 56% in terms of correlations between the 

simulation output and real trap data, respectively.  

A key contribution of the work of this chapter is that given a set of input climate data, the 

system could be used as a tool to detect whether the mosquito population would be increasing, 

decreasing or staying constant, assuming no unexpected changes to bird conditions and land 

cover structures. The model output can be used as risk maps for guiding practitioners and public 

health authorities in Manitoba.   

Key findings from the simulations suggest the vicinity of Victoria Beach in Manitoba has a 

relatively high potential to be a home-base for Culex mosquitoes. Installing mosquito traps in its 

proximity may be an option for the local health authorities, considering the operational expenses. 

The simulations predict that global warming has a drastic impact on mosquito population if no 

larviciding program is in effect. Moreover, the simulations exhibit biologically compatible 

behaviour for extreme weather conditions such as drought where mosquitoes could do relatively 

well in retaining their population. 

The proposed CDiffE model on its own can be seen as a cellular agent-based model.  Direct 

applications to other diseases are possible, in that the CDiffE architecture with some 

modifications can be utilized to describe dynamics of other mosquito-borne diseases such as 

Zika and Dengue in other geographical areas with known historical data. 

3.5.2 Limitations and Directions for Future Research 

Certainly, more simulations can be set up to further investigate the impact of many other 

parameters, such as bird migration patterns, their competence indices and so on. At this stage, the 

entire proposed CDiffE model can act as a complex environment for a higher-level agent-based 

model of WNV propagation, including humans. Such an ABM is the focus of Chapter 4. 
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The calibration results presented here may not be most optimum outcomes of the system. In 

this regard, a genetic algorithm with its superior ability to escape from local optima, due to its 

mutation operator, can be employed in the calibration process. The simulated annealing 

algorithm with its strengths in combinatorial problems could be also used in the calibration 

process to find the best combination of equation parameters. Furthermore, upon availability of 

quantitative data regarding the infected mosquito pools or birds, the infection-related parameters 

can be tuned. Currently these parameters, including biting rates and transmission parameters, are 

taken or estimated from other studies. 

More recent publications by entomologists and ornithologists on bird viremia and their 

WNV-competence can always be adopted to further tune the estimates of corresponding 

parameters. One essential limitation with the proposed model is the implicit assumption of 

having the same virus transmission probabilities from different bird species to mosquitoes. A 

meaningful extension of current model is incorporating various transmission probabilities from 

birds to mosquitoes. Such an extension can be achieved by changing equation (3.9) as follows 

𝑀𝑠(𝑡 + 1) = (1 − 𝜇𝑚) [∏(1 − 𝛽𝑚
𝑗
)

𝑏𝑗𝐵𝑖
𝑗
(𝑡)

𝐻𝑡(𝑡)+∑ 𝐵𝑡
𝑗

𝑗 (𝑡)

𝑗

]𝑀𝑠(𝑡) + (1 − 𝜇𝑚) 𝛾 𝑀𝑎(𝑡) 

where 𝛽𝑚
𝑗

 is the virus transmission probability from bird species j to mosquitoes. Improvement 

in initialization methods for the mosquito populations, including the adult-stage and infected 

mosquitoes could be another possible direction for future work. Such methods may help change 

the model from a seasonal model to a year-around powerful simulation tool. 

Lastly, the model does provide the capability to apply the impact of land cover/use on 

mosquito breeding rates. However, our collected data regarding the land cover parameter, L, may 

not have appropriate values. In other words, using the reported incident case count for WNV 
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among humans in North America to indicate the importance of each specific land cover class for 

mosquito breeding is likely not the best solution. As such, the weight, wL, of the land cover 

parameter, L, may not have proper impact to describe the capacity of an environment for 

mosquito production. This is the primary reason why there is a relatively high number of 

generated mosquitoes in water regions, which have an unknown value of L in the collected 

dataset. If suitable data regarding the landscape features are available, the land cover parameter 

(L) could also directly affect the alpha parameter of the birth rate (αb) as to indicate the 

environment carrying capacity of female adult mosquitoes. Alternative solutions to quantitatively 

map each land cover class to a mosquito density descriptor could be crucial future research. 

Within this context, simple fuzzy rule-based systems could be used to transfer experts’ 

knowledge of preferred land cover by mosquitoes. Such a fuzzy system would consider the 

proportion of each land cover class present in a mosquito cell, and then would produce one (or 

more) descriptor(s) for mosquito birth rate or habitat preference. Once the fuzzy system is 

constructed, all the wL values or other similar metrics could be pre-calculated for each mosquito 

cell. The values would then be loaded when the simulation is started to boost the performance. 

  



105 

 

Chapter 4: AGENT-BASED MODEL OF PERIPATETIC HUMANS 

4.1 Introduction 

As mentioned in Chapter 1, a number of Difference Equation (DiffE) or Differential 

Equation (DE) models has been proposed to capture dynamics of WNV transmission [27], [88]–

[90]. However, none has the capacity to model or consider a heterogeneous population of 

humans and/or their movement. Indeed, straight difference/differential equation or other 

aggregative approaches are built on the assumption of a homogenous population of agents (i.e., 

hosts and vectors). ABMs can be utilized to integrate heterogeneity and movement of humans, 

birds, mosquitoes, as well as their interaction with one another. 

This chapter presents a detailed data driven ABM of mobile humans adopting the CDiffE 

model from Chapter 3 as its environment to simulate WNV transmission, employing various data 

from southern Manitoba, as outlined in Chapter 2. The CDiffE scheme provides the ABM with 

fine-grained mosquito cell agents, driven by temperature, rainfall, land cover, daylight, and 

various bird mobility and distributions. 

Despite the importance of human motion in the spread of infectious viruses [160]–[166], 

often the impacts of human behaviours and mobility are disregarded in many health related 

ABMs as well as in WNV modeling attempts. In the case of WNV, the reason may be that 

humans are dead-end hosts in the WNV transmission cycle. In contrast, for some other mosquito-

borne diseases such as Malaria, Dengue, and Chikungunya humans are amplifying hosts. As 

such, there are some studies that focus on the impact of human behaviour in spread of these 

diseases. A number of these studies were reviewed in Chapter 1. In regard to human movement, 

all the models reviewed either used simulated displacement through virtual nodes or have 

adopted some kinds of models/assumptions for human behaviour given the limited data (e.g., 
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census and demography) that was available. The proposed ABM in this chapter implements a 

fine-scale movement trajectory for each human agent according to a fair amount of real-world 

cellular phone tower connectivity data. Heterogeneous exposure of individuals to mosquitoes and 

non-random contacts between them are key properties of the human movement component. The 

proposed ABM assesses whether (fine-scale) human movement is a critical component 

underlying WNV transmission and infection rates. Simulations are run to examine the reliability 

of ABM results for counts of infected humans against real WNV data. 

4.2 Material and Methods 

The ABM consists of the three main agent types, namely, mosquito, bird and human. The 

transmission cycle of the virus between mosquito and bird is considered to be within the 

environment of human agents. The environment is validated in Chapter 3. This environment 

consists a grid of cells, each of which is centered on a certain coordinate within Manitoba. The 

human agents move through these cells according to trajectories extracted from anonymized 

cellular phone data, provided by Manitoba Telecom Services (MTS). The following two 

subsections review the properties of the environment and details of the human agent. 

4.2.1 The CDiffE Environment 

The environment of the proposed ABM is structured as a cellular difference equation model 

(CDiffE) as explained in Chapter 3. Recall that in the CDiffE scheme, the region of study is a 

cellular map where each 5 km x 5 km cell is driven by a difference equation, interacting with one 

another through bird agents. There are 6067 cells overlaid on southern Manitoba, covering an 

area of approximately 148,812 km2. 
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At hourly time-steps, every cell updates mosquito and bird dynamics according to weather 

conditions, landscape features, bird migration and the time of day (i.e., sunlight). These hourly 

dynamics include the total number of different bird species, Bj, the number of infectious 

mosquitoes, Mi, and their biting rates on humans, bh. Recall that the CDiffE scheme also 

proposes a set of equations to capture dynamics of WNV in humans as follows. 

𝐻𝑠(𝑡 + 1) = (1 − 𝛽ℎ)
𝑒(𝑡)𝐻𝑠(𝑡)         (4.1) 

𝐻𝑖(𝑡 + 1) = (1 − (1 − 𝛽ℎ)
𝑒(𝑡))𝐻𝑠(𝑡) + (1 − 𝜁ℎ)𝐻𝑖(𝑡)      (4.2) 

𝐻𝑟(𝑡 + 1) = 𝜁ℎ𝐻𝑖(𝑡) + 𝐻𝑟(𝑡)         (4.3) 

where 

𝑒(𝑡) =
𝑏ℎ𝑀𝑖(𝑡)

𝐻𝑡(𝑡)+∑ 𝐵𝑗(𝑡)𝑗
          (4.4) 

is the expected number of infectious bites that a single human agent is likely to receive. Other 

parameters used in the above set of equations can be found in Table 3-1 on page 59. The first 

coefficient in equation (4.2) i.e., (1-(1-βh)e(t)) is considered the force of infection for any 

susceptible human agent at the time-step t. This means this coefficient gives the probability of 

infection for every human agent in each time-step. Similarly, the first coefficient in equation 

(4.3) i.e., ζh, is the per time-step probability of recovery from the virus for every human agent. 

The former term is provided by the complex environment for each cell through the CDiffE 

mechanism, whereas the latter term is static. Both parameters are further altered based on each 

human agent’s immune system. 

4.2.2 Human Agents 

Two main sources of data for the behaviours of human agents are the census data [36] and 

trajectories extracted from anonymized cellular phone data provided directly to the author’s lab 
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by a telecommunications service provider [37]. In this section, first the data preprocessing 

procedure is explained. Secondly, the agent behaviour is discussed. 

4.2.2.1 Data Preprocessing 

The census data were downloaded from Statistics Canada [167]. Based on the census data, 

there are 198 population centers (including cities, villages, towns, rural municipalities, etc.), of 

which 94 are associated with the scope of the model, comprising a total of approximately 

1,032,000 people out of the 2011 population of the province of 1,141,000 people. This means, 

for example, in order to simulate a total population of 300k humans in the province, 

approximately 271k agents are associated with the scope of model. These agents can then be 

driven by the ABM. The remainder of the population live in areas of the province which are 

unknown to the ABM and, in particular, the CDiffE environment. 

Providing each human agent with a reasonable and reality-based movement trajectory is the 

main challenge. Trajectories are extracted from anonymized cellular phone data of a number of 

users over a limited number of days, provided by Manitoba Telecom Services (MTS). A cellular 

phone database has many records with the following information: a telecommunications user’s 

anonymized ID, a passive (such as a ping) access time-stamp, and an associated tower ID. The 

tower IDs can be mapped to actual physical coordinates of a tower within the province. Two 

different set of cellular phone data from the same provider are combined to create a single 

trajectory database. The first set of data had information regarding approximately 180,000 

distinct users over a span of five days in October 2010. The second database contains 

information of approximately 80,000 distinct users over a span of 28 days in December 2011. 

Both datasets had a large number of either missing time-stamps or non-decodable tower IDs. 
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After pre-processing and re-assembling the data using C#.NET and MySQL, a total of over 

six million hourly trajectory records were extracted. These records comprise over 258,000 

unique users with decodable locations at hourly intervals. The trajectory database has 289 

distinct tower coordinates. As the hourly trajectories are extracted to implement mobile human 

agents, if only a single (tower) location is assigned to a user, the user is disregarded. As such, a 

total of approximately 71,000 users were removed from the trajectory database. Although this 

type of data was removed from the trajectory database, it may still provide some indirect input as 

to actual movement. It is also notable that people who may not move much (i.e., under a radius 

of two to three km) are already considered in the model due to the structure of the CDiffE 

environment. In addition, because of a high number of missing access time-stamps, many of the 

mobile human agents still spend most of their time within a single cell. 

As noted, for extracting hourly trajectories, users with missing time-stamps were assumed to 

remain within the coverage area of the last-connected tower. Moreover, if a user were connected 

to different tower IDs within an hour, the first connected tower was chosen as the representative 

location of the user. This is because the ABM and its CDiffE environment have an hourly time-

step (or accuracy). Movements of human agents within the hour-long interval were assumed to 

be within an area of 25 km2 i.e., within the same CDiffE cell. Recall that the foraging flight of 

Cx. tarsalis mosquitoes, the primary vector of WNV in Manitoba, may be extended well beyond 

six kilometers, up to 27 km [28], [83]. 

4.2.2.2 Behaviour Implementation 

Mobile human agents are modeled with a simple Susceptible-Infected-Recovered (SIR) state 

machine (Markov process) with respect to WNV infection. Initially, all people are in the 

susceptible state with different (random) susceptibility parameters. Therefore, all people in the 
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same CDiffE cell in the environment may become infected with different probabilities despite 

having the same force of infection provided by the environment at each time-step. When a 

person is infected, a recovery count-down timer is turned on for them to keep track of their 

recovery process. Once the timer hits zero, the infected person goes into the recovered state. 

Given the time-span of simulations and the fact that recovery from WNV may take several 

months, implementing the recovery counter may not be necessary. After updating the WNV state 

machine, each person may move within the environment, if their pre-defined trajectory implies 

movement. It is assumed the infection does not affect a person’s movement. This means human 

agents follow their assigned trajectories no matter what their WNV states are. 

The population of human agents are initially distributed across a number of population 

centers based upon census data [167]. Considering the computational (time) complexity of the 

ABM, the human population in the simulations is fixed at 300,000. As a result, there are over 

271,000 autonomous human agents with heterogeneous properties (i.e., susceptibility and 

cellular trajectory) initialized to be in southern Manitoba. During the simulations, each of these 

mobile agents moves about mostly in southern Manitoba, but they may also temporarily leave 

southern Manitoba depending on their assigned trajectories. While a human agent is outside the 

CDiffE environment (i.e., southern Manitoba), they cannot become infected as the environment 

would be completely unknown to the ABM. 

As the population of human agents is distributed according to census data, the trajectories 

are categorized based on their initial location (tower). This means each population center is 

assigned a set of trajectories. So, during the initialization, each human agent picks a trajectory 

from the set of trajectories available in their initial population center rather a completely random 



111 

 

trajectory. It is notable that a number of hourly trajectories were disregarded as their initial 

location was outside of southern Manitoba. There are a total of over 180,000 unique trajectories. 

Using the cellular phone tower locations, the CDiffE environment was partitioned into 

different telecommunication regions according to a Voronoi diagram [168]. As such, each 

telecommunication region is considered to be the coverage area of a single telecommunication 

tower. This means each cellular phone tower location is linked to a unique set of the CDiffE 

cells. At the end of each time-step, a human user may decide to change their tower location 

based on their own trajectory. Every time a user changes their tower location, first they remove 

themselves from their current CDiffE cell. They then pick one random CDiffE cell from the new 

tower location as their next CDiffE cell to move to. At the end of a trajectory cycle, a human 

agent remains within the coverage area of the last-known tower until midnight. The agent then 

moves back to their initial telecommunication tower region at 1:00 am. This is how the 

trajectory-driven movement algorithm loops through cellular phone trajectories to exhibit more 

natural and practicable (realistic) movement patterns. 

4.3 Results and Simulation Studies 

Recall that the WNV data in Manitoba [20] provide weekly mosquito counts from the 

Centers for Disease Control (CDC) week 22 to CDC week 36 for the years from 2004 to 2014. 

These data were previously used to validate the CDiffE component in Chapter 3.  The WNV data 

also provide the total number of WNV human cases for each year from 2004 to 2014. To 

compare the ABM results to the human cases from the WNV data, simulations were set up to run 

from CDC week 21 until the end of CDC week 39. The CDiffE environment settings are set 

according to the population-oriented solution from Chapter 3. For each year from 2004 to 2014, 

simulations were repeated 100 times for a total of 1100 runs. The average of total number of 
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infected people in each year is shown in Figure 4-1. The figure also shows the total human cases 

and mosquito count from the real WNV data. Recall that, seroprevalence studies suggest that the 

number of actual infections is far above the number of reported cases, with many individuals 

having very limited symptoms. Also, it bears noting that seroprevalence data is worth 

considering as a data source, as it can be compared with the numbers of recovered individuals. 

In general, the output of the ABM produces a proportionately similar trend to the actual 

number of WNV human cases reported in each year, except for 2010. Statistically speaking, 

there is an approximately 44% correlation between the output of the ABM and the WNV data 

over the years. However, if 2010 were excluded, the correlation increases to 84%. In 2010, 

despite having a relatively high number of mosquitoes (as occurred in the simulation and 

evidenced by the trap data), surprisingly, no WNV human cases are reported. There are multiple 

possibilities for this outlier.  For example, there might have been a unique larviciding program in 

effect in 2010 that changed the initial number of infectious mosquitoes. Alternatively, the 

infectious population of migratory birds may have been different in 2010, or it may simply be 

that infected people in 2010 did not report to health departments. In any case, the simulation does 

not distinguish between the initial conditions in different years. The only difference between 

years is the weather conditions. Additionally, while the mosquito contact rate could have been 

adjusted by some coefficient to obtain a lower number of infected humans, it was carefully 

increased not to have zero infected humans in more than a year (i.e., 2004). Such a relatively 

high contact rate can reveal the impact of different scenarios on the number of infected humans 

in low-activity years such as 2004 and 2009. It is notable that as the data regarding the number of 

infectious mosquitoes were not sufficient, no calibration or parameter tuning was performed on 

any infection-related parameters.  
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Figure 4-1 Comparison of the ABM output against the WNV data 

The weekly human infection counts for all the 1100 runs are shown in Figure 4-2 as a 2D 

histogram with different colors for each year. The color intensity of each bar corresponds to the 

relative frequency of each 2D histogram bin within the X-axis interval. Each 2D histogram bin 

counts the number of runs with a specific interval of infected human count in a certain week as 

shown on the axes. As expected, the general weekly pattern of WNV incidences in all years is 

quite similar. Every year, WNV infections begin around week 32 (i.e., beginning towards the 

middle of August). By the end of week 34 or 35, a substantial increase in the number of 

infections occurs, and by the end of week 37 it plateaus. Figure 4-3 depicts the same 2D 

histogram in an aggregate form where all years together consist of a single histogram per each X-

axis interval. Also, instead of 2D histogram bins, 2D histogram envelopes are drawn which can 

be considered as extended boxplots showing empirical quartiles around the median. 
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Figure 4-2 Histogram of weekly infected human counts for each year from 2004 to 2014 

 

Figure 4-3 Aggregate summary of the simulation runs of all years in the form of a 2D extended 

boxplot 
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All the results presented thus far are obtained by employing the regular data-driven 

movement algorithm explained earlier in sub-section 4.2.2. Now, to determine the impact of 

mobility in WNV spread, four more movement scenarios are considered. These four scenarios 

can be characterized into two general categories. First, assume there is no movement at all where 

the initial distribution of human agents can be either uniformly random or based on the census 

data. Within this category of movement scenarios, agents remain in the same CDiffE cell for the 

entire simulation time. The difference between the two scenarios is whether the population 

density is practicable (realistic). Second, assume human agents move randomly where movement 

can be either fully random or based on cell tower density. In the fully random movement, there 

are no restrictions for agents to pick their destination CDiffE cell. However, in the random 

movement based on cellular tower density, agents first pick a tower coverage region at random. 

Then, they randomly pick their destination from the associated CDiffE cells of the tower. As 

such, while agents still move at random, the regions of map with higher densities of cellular 

towers have higher human population at any given time-step. This approach may be a reasonable 

measure of movement in some applications when no other form of data is available. 

Simulations are set-up to examine each of these movement scenarios in addition to the 

regular stochastic movement mode. Screenshots of all different movement scenarios in a single 

time-step are found in Figure 4-4. Due to the stochastic nature of all scenarios, each simulation 

was repeated 200 times for a total of 1000 runs. The 2D histogram of weekly infection counts for 

each movement mode is shown in Figure 4-5. As expected, while all the scenarios have similar 

general patterns of weekly infection prevalence, each and every movement scenario has a quite 

distinctive number of infected humans at the end of simulation period. The average of the final 

outcome (i.e., total number of infected humans) for each mode is displayed in Table 4-1 on page 
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117. Additionally, using a number of two-sample t-tests, the difference between the mean 

outcome of every pair of scenarios is statistically significant at a very small alpha significance 

level i.e., around 1E-122. 

 

a) Movement mode I (Static census distribution) 

 

b) Movement modes II and III (Random) 

 

c) Movement mode IV (Towers density based) 

 

d) Movement mode V (Data-driven trajectory) 

Figure 4-4 ABM screenshots of different movement modes showing density of human population 

spread 
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Figure 4-5 Weekly dynamics of infected population under five movement modes in the form of a 2D 

histogram 

 

Table 4-1  Descriptive statistics of number of infected humans for different movement modes 

Movement Mode Average Median Variance 

I. Static with Census distribution 241.725 241 243.5672 

II. Static with random distribution 375.245 375 260.4975 

III. Fully random movement 516.865 516 440.248 

IV. Random but towers based movement 664.25 665 613.2035 

V. Regular data-driven movement 317.885 317.5 276.1626 
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4.4 Summary of Chapter 4 

4.4.1 Discussion and Limitations 

Empirical WNV and mosquito trap data demonstrated the strength of the ABM to predict 

yearly trends of reported counts of WNV infected humans. However, the ABM, as it is now, 

cannot produce or justify years with a high number of mosquitoes but few infected people. Other 

than mosquito abundance, the results suggest that other crucial parameters affecting the 

transmission of virus to humans are present and must be accounted for. For example, winds may 

decrease the host-seeking activities of mosquitoes. Wearing protective clothing (such as long-

sleeved shirts) can decrease the chances of getting bitten by mosquitoes. Another potentially 

important consideration could be the time that people spend outside, which also depends on 

weather. Given the ABM outputs, it may be even that patterns of human movements had slightly 

changed in some years, which affected the number of human cases. In general, the majority of 

prevention strategies e.g., applying mosquito repellants, spraying insecticide, larviciding, and 

minimizing exposure at peak time and places can all be well studied with this particular ABM. 

Moreover, other human activities with potential indirect impact on WNV transmission (e.g., 

increased bird reconnaissance) can easily be incorporated into ABMs. 

The work here demonstrates that ABMs, in contrast to DE and other aggregative 

approaches, can be used to model mobility in WNV epidemiology. It was shown that the exact 

number of people infected is highly sensitive to where and when they spend time. This aspect of 

the WNV transmission can easily be examined using ABMs. Practitioners can benefit from 

employing ABMs to guide their decisions regarding prevention and mitigation strategies for 

humans. Statistical approaches can be employed to obtain general insight through the virus 

transmission cycle and to identify risk factors. However, in regard to mobile humans who can 
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move across a town or province, individual-based models can explicitly capture heterogeneity of 

contacts, resulting in detailed estimates of human infection patterns. Such tools could help 

identify key potential locations of disease transmission for effective surveillance and control 

strategies. 

The work of this chapter used combinations of census data, cell tower connection times, and 

tower density as different measures of movements. There are a number of general sources of data 

that may be used to provide a measure of human mobility at such a large scale. These sources 

include usage of survey-based information, participatory Global Positioning System (GPS) 

trackers, and Cell data. Survey-based information needs cooperation of interviewees and may be 

used for validation of other data types [164]. It can be difficult and expensive to have everyone 

actively use GPS devices, although many people tend to share their location information, through 

social media. Cell data, in contrast, is already technically available in many countries, yet with a 

lower precision compared to GPS. Other than cell tower connection periods, tower traffic may be 

a reasonable option to be combined with the census distribution. Extracting and recording the 

aggregated tower traffic is routinely conducted by service providers. This data would improve 

the precision of cell data trajectories and may be considered as an option for modellers.  Service 

providers are also becoming aware of the utility of providing anonymized or aggregated cell 

trajectory data as parts of public health responsibilities and individuals are becoming less reticent 

in providing their location based data for enhanced service or features. 

4.4.2 Conclusions 

An agent-based model of peripatetic humans is constructed to examine the spread of West 

Nile Virus infection. The ABM has cells of different and dynamic environmental conditions and 

habitats for Cx. tarsalis mosquitoes in Manitoba. The cellular difference equation at the heart of 
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the ABM considers multiple species of birds, their roosting locations and migration patterns. 

Humans with different susceptibility move across the province according to their cell tower 

trajectories as well as census data. The simulation outcomes have high correlation indices with 

actual reported WNV human cases data within the province. The importance of fine-grained 

movement of humans regarding human infection rate is shown through simulations. The work of 

this chapter suggests a fine-accuracy human movement model is necessary in order to simulate 

and properly assess non-pharmaceutical prevention strategies as is often unnoticed in WNV 

models. 
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Chapter 5: CONCLUDING REMARKS 

Chapter one provides an introduction to WNV, its history and symptoms. Chapter one also 

reviews the current state of agent-based modelling within mosquito-borne diseases, and in 

particular WNV. These ABMs often capture one or more of mosquito population dynamics, 

virus transmission cycle, weather and landscape (or other mosquito-habitat) variations, different 

bird species’ movement patterns, and humans’ behaviour, outdoor/indoor activities, as well as 

their mobility. While there are a relatively high number of studies on both ABMs and WNV 

models on their own, very few WNV-ABMs exist. 

Typically, as the number of components of an ABM increases, the individual agents are 

merged together and modeled as an aggregated agent. ABMs with aggregated agents are often 

hybrid with some means of controlling the dynamics of the aggregated group (e.g., a DE model). 

ABMs allow for fine-scale accuracy in prediction as well as less homogenous assumptions. 

However, these powerful systems are generally computationally expensive. Two other 

difficulties associated with ABMs are a robust validation procedure and extraction of appropriate 

and sufficient data from the phenomenon of interest. ABMs in general offer remarkable potential 

for a detailed understanding of complex systems.  

WNV has been able to permanently establish itself in North America as it can infect birds, 

humans, horses, etc., giving the virus a wide variety of hosts. WNV is also tightly correlated with 

modelled human movement patterns, weather and habitat for various hosts and mainly vectors. 

Chapter two elaborates on the integration and compilation of data related to these components in 

Manitoba. The main technology used in chapter two is based on Anylogic and ArcGIS software. 

Anylogic simulation software in combination with Esri ArcGIS provides a powerful toolbox for 
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developers and modellers to simulate almost any GIS-based environment or process. The 

research of chapter two should be useful to others working on a variety of mosquito-borne 

diseases, such as Zika, Malaria, Dengue, and Chikungunya by introducing tools and providing a 

systematic way to extract the required data. In chapter two, different maps are combined together 

to create a grid land cover map of Manitoba, Canada in a shapefile format compatible with 

Anylogic in order to modulate mosquito parameters. A significant amount of data regarding 152 

birds’ species along with their population estimates and locations in Manitoba are gathered and 

assembled. Municipality shapefile maps are converted to Anylogic built-in GIS regions for better 

compatibility with census data and initial placement of human agents. Accessing shapefiles and 

their databases in Anylogic are also discussed. 

The primary contribution of this thesis towards an enhanced understanding of WNV 

transmission is the proposal and validation of a comprehensive and efficient data-driven Cellular 

Difference Equation (CDiffE) structure for modelling WNV dynamics for adoption in WNV-

ABMs, as elaborated upon in chapter three. ABMs are computationally intensive, and applying 

fast and simple algorithms (within each agent) is a must. Modelling WNV, compared to many 

other mosquito-transmitted diseases, such as Zika, Malaria, Dengue, and Chikungunya, is more 

complex as it includes three distinct types of agents: humans, mosquitoes, and various bird 

species. This makes it even more important to have a computationally efficient ABM for 

applying an agent-based modelling framework to WNV epidemiology. In chapter three, a 

computationally fast difference equation is adopted to lay the foundations for the CDiffE scheme 

and consequently a higher-level hybrid ABM. The CDiffE model on its own can be viewed as an 

early-stage deterministic ABM. It can be climate-driven and include multiple species of 

migratory and local birds and humans as hosts for WNV. The geographical output map of the 
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CDiffE model can be seen as a decision support tool for public health policymakers by providing 

risk maps of mosquito densities. The mosquito population trends within the CDiffE model over 

15 weeks in approximately 30 communities of Manitoba has Pearson and Spearman correlation 

values of around 60% compared with the real-world trap data. In varying the CDiffE model 

parameters, some theoretically verified as well as counterintuitive findings were observed. Also, 

WNV-related parameters for different bird species are estimated according to biological studies 

on avian viremia in chapter three.  

There is a growing interest in modelling infectious disease transmission often in order to 

ultimately attain better prevention strategies. A primary objective of this study was to design and 

implement an efficient ABM of WNV spread, considering highly-mobile humans with a high 

level of heterogeneous properties. The undeniable value of such an ABM lies in simulating and 

assessing virtually all epidemiological scenarios and strategies (e.g., prevention policies, 

larviciding practices, etc.) regarding a serious and infectious mosquito-borne disease. Mobile 

human agents are augmented to the CDiffE model, forming such a hybrid ABM for WNV 

transmission in chapter four. The proposed (hybrid) ABM was used to evaluate WNV prevalence 

under different scenarios of human movement patterns. The ABM outcome in chapter four 

confirms the importance and effects of human movements on WNV spread. The ABM revealed 

that much more accurate human movement models are required to effectively assess prevention 

strategies or even to correctly model WNV prevalence among people. Currently human mobility 

is among the least-concerned issues in WNV modelling studies. The work here clearly 

demonstrates the need for real-world data regarding human movement. This data is becoming 

increasingly available and eventually will be integrated into even more sophisticated agent based 

models for WNV as well as for other mosquito borne diseases. 
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There are limitations throughout this thesis, each of which was acknowledged and discussed 

in the corresponding section/chapter(s). The primary limitation of the work here is lack of 

sufficient and appropriate data in many parts to further tune the system. Despite adoption of a 

relatively fast difference equation as the core of the ABM, a secondary limitation is still 

computational limits of current hardware which made the system consider more homogenous 

assumptions regarding its components. A tertiary limitation is regarding the structure and 

formulation of CDiffE itself. There may exist better mathematical models to capture the impacts 

of bird species, weather, habitat, land cover, etc. on the dynamics of mosquitoes and WNV to be 

utilized at the core of the CDiffE. Alternatively, pre-trained neural networks or other complex 

function approximators may be adopted at the core of the ABM, trading speed for greater 

prediction accuracy.    
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APPENDICES  

Appendix A: Sample Java Codes and Bird Species Data 

A.1 Sample Codes 

A.1.1 Shapefile Database Connection String 

The correct connection string for connecting to the database of a shapefile depends on the 

OS and the dBase associated drivers installed on it. In the example here, the OS is a 64-bit 

Microsoft Windows with a 64-bit Access Database Engine installed on it. If Anylogic is running 

on a 32-bit Java virtual machine, the required database driver must exist in the 32-bit version of 

ODBC data sources, and vice-versa for the 64-bit versions. This driver could be either MS 

Access dBase drive or FoxPro driver. The following Java example code is using the MS Access 

driver. 

try { 

    Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 

    String connString = "jdbc:odbc:Driver={Microsoft Access dBASE Driver 

(*.dbf, *.ndx, *.mdx)}; DefaultDir=D:\\"; 

    // D:\ is the database location 

    // Microsoft Access dBASE Driver (*.dbf, *.ndx, *.mdx) exists in Data 

Sources (ODBC) 

    java.sql.Connection conn = 

java.sql.DriverManager.getConnection(connString);  

    String sql="SELECT * from Grid"; // Grid.dbf is the file name 

    java.sql.Statement stmt=conn.createStatement(); 

    java.sql.ResultSet resultSet=stmt.executeQuery(sql); 

    while (resultSet!= null & resultSet.next()) 

        traceln(resultSet.getString(1)); 

 

    traceln("Done!"); 

 }  

catch (ClassNotFoundException e) 

 { 

    e.printStackTrace(); 

 } 

 catch (SQLException e) { 

  e.printStackTrace(); 

 } 
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Another connection string sample for C#.NET is as follows. 

System.Data.OleDb.OleDbConnection connTest = new 

System.Data.OleDb.OleDbConnection(); 

connTest.ConnectionString = @"Provider=Microsoft.Jet.OLEDB.4.0;Data 

Source=D:\;Extended Properties=dBASE IV;User ID=Admin;Password=;"; 

connTest.Open(); 

OleDbCommand com = new OleDbCommand("SELECT * FROM Grid",connTest); 

 

A.1.2 Conversion of Shapefile Polygon Features to Anylogic GIS Regions 

Polygon features in a shapefile are known as PoliticalArea(s) in Anylogic. The code below 

demonstrates how to extract the coordinates of all political areas in a shapefile, and store them in 

binary file using the libraries available in Anylogic 7.0.3. First a Java class called GISPolygon 

needs to be defined with the minimal functions. The coordinates of shapefile polygons are then 

stored in an instance of GISPolygon, and is saved as a binary file on the hard disk. 

java.util.LinkedHashMap <Integer, GISPolygon> ShapefilePolygons = new 

java.util.LinkedHashMap<Integer, GISPolygon>(); 

// Let's assume there's a GIS map component called map, and // 

// the first shapefile on the map is the shapefile of our interest // 

Object[] politicalAreasObjects =  

map.getLayers()[0].getPoliticalAreas().toArray(); 

PoliticalArea polArea; 

GISPolygon gisPolygon; 

int featureID=-1; // FID in shapefiles 

for (int i=0;i<politicalAreasObjects.length;i++) 

{ 

    polArea = (PoliticalArea) politicalAreasObjects[i]; 

    featureID = (int) Float.parseFloat(polArea.name); // The name coloumn 

index of the shapefile on the map is set to refer to the FID 

    OMGeometryList gmList = polArea.getGeometry();   

    OMGraphicList grList = (OMGraphicList) gmList; 

    Object parent = grList.getOMGraphicAt(0); 

    Object child = ((OMGraphicList) parent).getOMGraphicAt(0); 

    // There may be a number of nested layers of features in the shapefile// 

    while (child.getClass().equals(OMGraphicList.class)) { 

        child = ((OMGraphicList) child).getOMGraphicAt(0); 

        parent = ((OMGraphicList) parent).getOMGraphicAt(0); 

    } 

    int polyCount = ((OMGraphicList) parent).size(); // The number of 

political areas under the same FID 

    gisPolygon = new GISPolygon(featureID);  

    for(int j=0;j<polyCount;j++) 

    { 

        OMPoly poly = (OMPoly) ((OMGraphicList) parent).getOMGraphicAt(j); 

        double[] polyCoords =  poly.getLatLonArray(); 
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        ProjMath.arrayRadToDeg(polyCoords); 

        gisPolygon.AddLatLonArray(polyCoords); 

    } 

    ShapefilePolygons.put(featureID, gisPolygon); 

} 

gisPolygon.SaveShapefilePolgons(ShapefilePolygons, "D:\\MyShapefile.dat"); // 

Store on hard disk as a binray file 

 

The source code for the GISPolygon class is as follows. 

public class GISPolygon implements Serializable { 

    public ArrayList<double[]> latLonArrayList; 

    public int npolygons=0; 

    public int featureID; 

    public GISPolygon() { 

        this.featureID = -1; this.npolygons=0; 

    } 

    public GISPolygon(int featureID) { 

        this.npolygons = 0; this.featureID = featureID; 

    } 

    public void AddLatLonArray(double[] latLonArray) { 

        if (this.latLonArrayList == null) 

                    this.latLonArrayList = new ArrayList<double[]>();  

         

            this.latLonArrayList.add(latLonArray); 

            this.npolygons ++;       

    } 

    public void SaveShapefilePolgons(Object shapefilePolygons, String 

filePath) {  

        try { 

            FileOutputStream fout = new FileOutputStream(filePath); 

            ObjectOutputStream oos = new ObjectOutputStream(fout);    

            oos.writeObject(shapefilePolygons); 

            oos.flush(); oos.close(); 

            System.out.println("File saved!"); 

        } 

        catch(Exception ex) { 

            traceln(ex.toString()); 

        } 

    } 

    private static final long serialVersionUID = 1L; 

} 

 

Some functions and libraries used above, such as casting from OMGeometryList to 

OMGraphicList, may not be available in all Anylogic versions. However, the coordinate 

extraction procedure is still similar, and could be adopted by developers.  
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Finally, the code below shows how to restore saved coordinates, and display them as 

Anylogic GISregion(s) on a map. It is notable that the GISregion component is not available in 

Anylogic 7.0.3, as such the code below was tested in Anylogic 7.2.0 PLE. 

LinkedHashMap <Integer ,GISPolygon> loadedPolygon = new 

java.util.LinkedHashMap<Integer, GISPolygon>(); 

LinkedHashMap <Integer ,GISMultiRegion> MultiGISRegionsList = new 

LinkedHashMap<Integer, GISMultiRegion>(); 
try { 

    ObjectInputStream in = new ObjectInputStream(new 

FileInputStream("D:\\MyShapefile.dat")); 

    loadedPolygon = (LinkedHashMap<Integer, GISPolygon>) in.readObject(); 

    in.close(); 

} 

catch(Exception ex) { 

    traceln(ex.toString()); 

} 

GISRegion gisRegion; 

GISMultiRegion gisMulti; 

for (Integer entryKey : loadedPolygon.keySet()){ 

    GISPolygon poly = loadedPolygon.get(entryKey); 

    gisMulti = new GISMultiRegion(entryKey.toString()); 

    for (int i=0; i<poly.latLonArrayList.size();i++) { 

        gisRegion = new GISRegion(map, poly.latLonArrayList.get(i)); 

        gisMulti.add(gisRegion); 

        map.add(gisRegion); 

    } 

    MultiGISRegionsList.put(entryKey, gisMulti); 
} 
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A.2 Birds Species Data 

The collected data on bird species can be found in Table A.I below. 

Table A.I Birds Species Properties 

Family and Species Common Name Home 

Range a 

Flight 

Speed b 

Roosting c Breeding 

Months 

Sources 

Accipitridae       

  Accipiter cooperii Cooper's Hawk 905 9 Solitary 4 - 7 [1]–[3] 

  Accipiter striatus Sharp-shinned Hawk 918 7 Solitary 4 - 8 [1], [4] 

  Buteo jamaicensis Red-tailed Hawk 1163 9 Solitary 2 - 9 [5]–[8] 

  Buteo platypterus Broad-winged Hawk 583 11 Solitary 5 - 8 [9], [10] 

  Buteo regalis Ferruginous Hawk 1652 16 Solitary 4 - 8 [11]–[13] 

  Buteo swainsoni Swainson's Hawk 2249 7 Communal 4 - 8 [11], [14], [15] 

  Circus cyaneus Northern Harrier 910 9 Solitary 4 - 9 [6], [16], [17] 

  Haliaeetus leucocephalus Bald Eagle 2622 13 Solitary 4 - 9 [18]–[20] 

Alaudidae       

  Eremophila alpestris Horned Lark 127 11 Flocking 3 - 8 [21]–[23] 

Alcedinidae       

  Megaceryle alcyon Belted Kingfisher 1609 8 Solitary 4 - 8 [24]–[26] 

Apodidae       

  Chaetura pelagica Chimney Swift 4000 13 Communal 6 - 8 [27], [28] 

Bombycillidae       

  Bombycilla cedrorum Cedar Waxwing 36 9 Communal 6 - 10 [29]–[31] 

Calcariidae       

  Calcarius ornatus Chestnut-collared Longspur 112 9 Flocking 5 - 8 [32], [33] 

Caprimulgidae       

  Chordeiles minor Common Nighthawk 523 10 Flocking 6 - 9 [11], [34] 

Cardinalidae       

  Passerina cyanea Indigo Bunting 160 9 Solitary 6 - 9 [11], [35] 

  Pheucticus ludovicianus Rose-breasted Grosbeak 140 8 Solitary 6 - 8 [36]–[38] 

  Piranga olivacea Scarlet Tanager 199 8 Solitary 6 - 8 [37], [39] 

  Spiza americana Dickcissel 390 11 Flocking 5 - 8 [11], [40], [41] 

Cathartidae       

  Cathartes aura Turkey Vulture 12657 13 Communal 5 - 9 [42]–[44] 

Certhiidae       

  Certhia americana Brown Creeper 500 7 Solitary 5 - 8 [37], [45] 

Columbidae       

  Columba livia Rock Pigeon 5300 16 Communal 4 - 11 [46], [47] 

  Zenaida macroura Mourning Dove 4000 17 Communal 3 - 10 [27], [48], [49] 

  Corvus brachyrhynchos American Crow 1555 11 Flocking 3 - 6 [50]–[52] 

Corvidae       
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  Corvus corax Common Raven 3590 11 Communal 3 - 7 [50], [53] 

  Cyanocitta cristata Blue Jay d 103 9 Solitary 4 - 6 [22], [54]–[56] 

  Perisoreus canadensis Gray Jay d 455 9 Solitary 3 - 6 [55], [57] 

  Pica hudsonia Black-billed Magpie 126 8 Flocking 4 - 6 [58], [59] 

Cuculidae       

  Coccyzus erythropthalmus Black-billed Cuckoo 305 10 Solitary 6 - 10 [11], [60], [61] 

Emberizidae       

  Ammodramus bairdii Baird's Sparrow 200 7 Flocking 6 - 9 [62], [63] 

  Ammodramus leconteii Le Conte's Sparrow 200 7 Solitary 6 - 9 [62], [64] 

  Ammodramus savannarum Grasshopper Sparrow 75 7 Solitary 6 - 8 [62], [65], [66] 

  Chondestes grammacus Lark Sparrow 139 12 Flocking 5 - 8 [11], [31], [67] 

  Junco hyemalis Dark-eyed Junco 82 8 Flocking 5 - 9 [26], [37], [68] 

  Melospiza georgiana Swamp Sparrow 113 13 Flocking 5 - 8 [11], [69], [70] 

  Melospiza lincolnii Lincoln's Sparrow 100 13 Solitary 6 - 8 [11], [71] 

  Melospiza melodia Song Sparrow 113 13 Solitary 3 - 9 [11], [72], [73] 

  Passerculus sandwichensis Savannah Sparrow 170 16 Flocking 6 - 9 [22], [74], [75] 

  Pipilo erythrophthalmus Eastern Towhee 300 8 Solitary 5 - 8 [37], [76] 

  Pipilo maculatus Spotted Towhee 157 8 Solitary 4 - 8 [37], [77]–[79] 

  Pooecetes gramineus Vesper Sparrow 142 7 Flocking 5 - 9 [11], [80], [81] 

  Spizella pallida Clay-colored Sparrow 99 9 Flocking 6 - 8 [11], [38], [82] 

  Spizella passerina Chipping Sparrow 99 9 Flocking 4 - 9 [11], [38], [73], [83] 

  Zonotrichia albicollis White-throated Sparrow 93 8 Flocking 6 - 8 [11], [84] 

Falconidae       

  Falco columbarius Merlin 2523 14 Solitary 3 - 9 [85], [86] 

  Falco sparverius American Kestrel 671 10 Solitary 4 - 8 [6], [87], [88] 

Fringillidae       

  Carpodacus mexicanus House Finch 1500 6 Communal 4 - 8 [89]–[91] 

  Carpodacus purpureus Purple Finch 380 6 Solitary 4 - 9 [90], [92], [93] 

  Coccothraustes vespertinus Evening Grosbeak 359 17 Flocking 5 - 8 [94]–[96] 

  Loxia curvirostra Red Crossbill 254 9 Communal 1 - 10 [22], [37], [70], [97], [98] 

  Loxia leucoptera White-winged Crossbill 1000 9 Communal 1 - 11 [37], [99] 

  Spinus pinus Pine Siskin 113 15 Communal 4 - 8 [70], [100], [101] 

  Spinus tristis American Goldfinch 800 7 Communal 7 - 9 [22], [102], [103] 

Hirundinidae       

  Hirundo rustica Barn Swallow 600 7 Communal 5 - 9 [104]–[106] 

  Petrochelidon pyrrhonota Cliff Swallow 1500 8 Communal 5 - 8 [107], [108] 

  Progne subis Purple Martin 2871 12 Communal 5 - 8 [22], [49], [109]–[111] 

  Riparia riparia Bank Swallow 800 14 Communal 4 - 8 [16], [106], [112] 

  Stelgidopteryx serripennis Northern Rough-winged Swallow 500 7 Solitary 5 - 7 [105], [113] 

  Tachycineta bicolor Tree Swallow 4000 7 Communal 5 - 7 [49], [106], [114], [115] 

Icteridae       

  Agelaius phoeniceus Red-winged Blackbird 1609 7 Communal 4 - 8 [116]–[119] 

  Dolichonyx oryzivorus Bobolink 90 7 Flocking 6 - 8 [119]–[121] 
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  Euphagus carolinus Rusty Blackbird 345 8 Communal 5 - 8 [122] 

  Euphagus cyanocephalus Brewer's Blackbird 1600 12 Communal 2 - 8 [123]–[125] 

  Icterus galbula Baltimore Oriole 100 11 Solitary 5 - 7 [11], [70], [126] 

  Icterus spurius Orchard Oriole 113 11 Communal 6 - 8 [11], [31], [127] 

  Molothrus ater Brown-headed Cowbird 1186 13 Communal 4 - 8 [128], [129] 

  Quiscalus quiscula Common Grackle 12921 14 Communal 4 - 7 [27], [116], [130], [131] 

  Sturnella neglecta Western Meadowlark 149 9 Flocking 4 - 9 [70], [132] 

  Xanthocephalus xanthocephalus Yellow-headed Blackbird 1600 10 Communal 5 - 8 [26], [133], [134] 

Laniidae       

  Lanius ludovicianus Loggerhead Shrike 207 13 Solitary 3 - 7 [6], [88], [135], [136] 

Mimidae       

  Dumetella carolinensis Gray Catbird 37 7 Solitary 5 - 8 [11], [70], [137] 

  Mimus polyglottos Northern Mockingbird 102 8 Solitary 3 - 8 [6], [37], [70], [138], [139] 

  Toxostoma rufum Brown Thrasher 113 10 Solitary 4 - 8 [37], [140], [141] 

Motacillidae       

  Anthus spragueii Sprague's Pipit 143 6 Solitary 5 - 8 [142], [143] 

Pandionidae       

  Pandion haliaetus Osprey 14000 13 Solitary 5 - 9 [27], [144] 

Paridae       

  Poecile atricapillus Black-capped Chickadee 216 5 Communal 4 - 7 [6], [145]–[147] 

  Poecile hudsonicus Boreal Chickadee 216 5 Flocking 5 - 9 [146], [148], [149] 

Parulidae       

  Cardellina canadensis Canada Warbler 80 7 Flocking 6 - 8 [37], [150]–[152] 

  Cardellina pusilla Wilson's Warbler 213 7 Solitary 6 - 8 [37], [152]–[154] 

  Geothlypis philadelphia Mourning Warbler d 113 7 Solitary 6 - 9 [6], [37], [70], [155], [156] 

  Geothlypis trichas Common Yellowthroat 96 7 Solitary 6 - 8 [37], [70], [157], [158] 

  Mniotilta varia Black-and-white Warbler 145 7 Solitary 5 - 8 [37], [152], [159], [160] 

  Oporornis agilis Connecticut Warbler 39 7 Solitary 6 - 8 [37], [152], [159], [161] 

  Oreothlypis celata Orange-crowned Warbler 80 7 Solitary 4 - 8 [37], [152], [162], [163] 

  Oreothlypis peregrina Tennessee Warbler 124 7 Flocking 7 - 9 [31], [37], [152], [164], [165] 

  Oreothlypis ruficapilla Nashville Warbler d 113 7 Solitary 6 - 8 [37], [70], [152], [166] 

  Parkesia noveboracensis Northern Waterthrush 206 8 Solitary 6 - 8 [37], [167] 

  Seiurus aurocapilla Ovenbird 98 8 Solitary 5 - 8 [6], [37], [168] 

  Setophaga americana Northern Parula 45 7 Solitary 4 - 8 [37], [70], [169] 

  Setophaga castanea Bay-breasted Warbler 106 7 Solitary 6 - 8 [37], [70], [170] 

  Setophaga coronata Yellow-rumped Warbler 169 7 Flocking 6 - 8 [37], [171], [172] 

  Setophaga fusca Blackburnian Warbler 59 7 Flocking 6 - 8 [6], [37], [173] 

  Setophaga magnolia Magnolia Warbler 113 7 Solitary 6 - 9 [6], [37], [70], [174] 

  Setophaga palmarum Palm Warbler 110 7 Solitary 5 - 8 [37], [175] 

  Setophaga pensylvanica Chestnut-sided Warbler 95 7 Flocking 6 - 9 [31], [37], [176] 

  Setophaga petechia Yellow Warbler 490 11 Flocking 6 - 8 [152], [177] 

  Setophaga pinus Pine Warbler 99 7 Flocking 5 - 7 [37], [178], [179] 

  Setophaga ruticilla American Redstart 45 6 Solitary 6 - 8 [6], [37], [70], [180] 
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  Setophaga striata Blackpoll Warbler 117 6 Flocking 6 - 8 [37], [181], [182] 

  Setophaga tigrina Cape May Warbler 56 7 Solitary 6 - 8 [37], [183] 

  Setophaga virens Black-throated Green Warbler 113 7 Flocking 5 - 8 [6], [37], [70], [184] 

  Vermivora chrysoptera Golden-winged Warbler 138 7 Solitary 5 - 8 [37], [164], [185] 

Passeridae       

  Passer domesticus House Sparrow 1500 13 Communal 4 - 9 [27], [49], [186], [187] 

Phasianidae       

  Bonasa umbellus Ruffed Grouse 164 8 Solitary 4 - 11 [188], [189] 

  Meleagris gallopavo Wild Turkey 3586 14 Communal 4 - 11 [22], [190] 

  Perdix perdix Gray Partridge 623 13 Communal 4 - 7 [191]–[193] 

  Phasianus colchicus Ring-necked Pheasant 339 12 Flocking 4 - 10 [194]–[196] 

  Tympanuchus phasianellus Sharp-tailed Grouse 608 13 Communal 5 - 8 [11], [197] 

Picidae       

  Colaptes auratus Northern Flicker 282 7 Solitary 5 - 7 [198], [199] 

  Dryocopus pileatus Pileated Woodpecker 896 7 Solitary 5 - 7 [56], [70], [199], [200] 

  Melanerpes erythrocephalus Red-headed Woodpecker 164 5 Solitary 5 - 9 [201], [202] 

  Picoides arcticus Black-backed Woodpecker 594 7 Solitary 6 - 8 [199], [201] 

  Picoides dorsalis American Three-toed Woodpecker 608 7 Solitary 6 - 8 [199], [201], [203] 

  Picoides pubescens Downy Woodpecker 126 6 Solitary 4 - 7 [199], [204] 

  Picoides villosus Hairy Woodpecker 460 8 Solitary 4 - 8 [199], [205]–[208] 

Regulidae       

  Regulus calendula Ruby-crowned Kinglet 138 6 Solitary 5 - 8 [37], [209] 

  Regulus satrapa Golden-crowned Kinglet 89 6 Solitary 6 - 9 [37], [70], [210] 

Sittidae       

  Sitta canadensis Red-breasted Nuthatch 178 5 Solitary 5 - 8 [70], [211], [212] 

  Sitta carolinensis White-breasted Nuthatch 219 5 Solitary 5 - 7 [70], [146], [213] 

Strigidae       

  Asio flammeus Short-eared Owl 511 12 Flocking 4 - 7 [11], [214], [215] 

  Bubo virginianus Great Horned Owl 981 17 Solitary 3 - 4 [214], [216]–[218] 

  Strix varia Barred Owl 689 6 Solitary 2 - 10 [219], [220] 

Sturnidae       

  Sturnus vulgaris European Starling 7500 11 Communal 4 - 7 [27], [49], [116], [221], [222] 

Trochilidae       

  Archilochus colubris Ruby-throated Hummingbird 183 13 Solitary 5 - 10 [223]–[226] 

Troglodytidae       

  Cistothorus palustris Marsh Wren 56 7 Solitary 4 - 9 [227]–[229] 

  Cistothorus platensis Sedge Wren 139 7 Solitary 6 - 9 [37], [230]–[232] 

  Troglodytes aedon House Wren 75 7 Solitary 5 - 9 [6], [37], [233], [234] 

  Troglodytes hiemalis Winter Wren 138 7 Solitary 5 - 9 [37], [235] 

Turdidae       

  Catharus fuscescens Veery d 113 15 Flocking 6 - 7 [70], [236], [237] 

  Catharus guttatus Hermit Thrush 103 15 Communal 5 - 9 [70], [237], [238] 

  Catharus ustulatus Swainson's Thrush 128 15 Solitary 6 - 9 [237], [239], [240] 
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  Sialia currucoides Mountain Bluebird 147 8 Flocking 4 - 9 [11], [241], [242] 

  Sialia sialis Eastern Bluebird 247 8 Communal 3 - 9 [6], [11], [243] 

  Turdus migratorius American Robin 400 9 Communal 4 - 8 [27], [37], [244]–[247] 

Tyrannidae       

  Contopus cooperi Olive-sided Flycatcher 219 7 Solitary 6 - 9 [248], [249] 

  Contopus sordidulus Western Wood-Pewee 82 7 Solitary 5 - 9 [250]–[252] 

  Contopus virens Eastern Wood-Pewee 118 7 Solitary 5 - 9 [38], [250], [253] 

  Empidonax alnorum Alder Flycatcher 98 13 Solitary 6 - 8 [70], [254], [255] 

  Empidonax flaviventris Yellow-bellied Flycatcher 113 13 Flocking 6 - 8 [70], [255], [256] 

  Empidonax minimus Least Flycatcher 60 13 Communal 6 - 8 [6], [70], [255], [257], [258] 

  Empidonax traillii Willow Flycatcher 81 13 Solitary 6 - 9 [255], [259], [260] 

  Myiarchus crinitus Great Crested Flycatcher 101 10 Solitary 5 - 8 [70], [248], [255], [261] 

  Sayornis phoebe Eastern Phoebe e 95 10 Solitary 4 - 8 [70], [262], [263] 

  Sayornis saya Say's Phoebe e 94 10 Solitary 5 - 8 [264], [265] 

  Tyrannus tyrannus Eastern Kingbird 212 10 Flocking 6 - 8 [11, p. 67], [38], [263], [266] 

  Tyrannus verticalis Western Kingbird 219 8 Solitary 5 - 7 [11, p. 67], [22], [267], [268] 

Vireonidae       

  Vireo flavifrons Yellow-throated Vireo 100 8 Solitary 6 - 8 [37], [269] 

  Vireo gilvus Warbling Vireo 100 8 Solitary 5 - 8 [37], [270]–[272] 

  Vireo olivaceus Red-eyed Vireo 109 8 Flocking 5 - 8 [37], [270], [273] 

  Vireo philadelphicus Philadelphia Vireo 113 8 Solitary 6 - 8 [37], [274] 

  Vireo solitarius Blue-headed Vireo 100 8 Solitary 6 - 8 [37], [275] 

a. Home range values are the ceiling for the average radius of an estimated circular home range 

area in meters. 

 
b. Flight speed values are reported in meters per second. As it was not clear as to the type of speed 

that different papers reported, it is not recommended to compare the birds’ speed by these 

values. 

 
c. Flocking under the Roosting column means that the species roost individually or in pairs during 

the breeding season, and then form flocks for migration in the fall. 

 
d. It is notable that for the Mourning Warbler, Veery, and Nashville Warbler, the sources of data 

were not clear as to the type of roosting that they did. The entries given represent a best guess, 

but further data would be needed for greater precision. Specifically, for the Veery, no mention 

of communal roosting was found in literature, but no mention of any other type was found. The 

Blue Jay and Gray Jay were difficult to properly categorize due to ambiguity in literature 

regarding their roosting behaviour. 

 
e. For the flight speeds of Eastern Phoebe and Say's Phoebe species, the average speed of the 

Tyrannidae birds in the dataset is used. 
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Appendix B: Supplementary Figures  

Daily mosquito counts in selected Manitoba communities, and average (per-community) 

daily temperature and rainfall values for a number of years are provided in figures below. 

 

 

Figure B-1 Total number of adult mosquitoes in selected communities per day for years 2005, 2009, 

2007, 2013, and 2014 
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Figure B-2 Temperature and rainfall daily variations in 2004; CDC week 22 began on day 151 i.e., 

Sunday May 30, 2004 

 

Figure B-3 Temperature and rainfall daily variations in 2005; CDC week 22 began on day 149 i.e., 

Sunday May 29, 2005 
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Figure B-4 Temperature and rainfall daily variations in 2007; CDC week 22 began on day 147 i.e., 

Sunday May 27, 2007 

 

Figure B-5 Temperature and rainfall daily variations in 2009; CDC week 22 began on day 151 i.e., 

Sunday May 31, 2009 
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Figure B-6 Temperature and rainfall daily variations in 2013; CDC week 22 began on day 146 i.e., 

Sunday May 26, 2013 

 

Figure B-7 Temperature and rainfall daily variations in 2014; CDC week 22 began on day 145 i.e., 

Sunday May 25, 2014 
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Comparison of weekly distribution of mosquitoes across the province according to Manitoba 

trap data [20] and simulation, and the map of cumulative degree-days [20], [158] from week 22 

to week 37 of 2014 are given in figures below. 

  

 

Week 22 (Trap data and degree-days image sources: [20], [158]) 
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Week 23 

(Trap data and degree-days image sources: [20], [158]) 
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Week 24 

(Trap data and degree-days image sources: [20], [158]) 
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Week 25 

(Trap data and degree-days image sources: [20], [158]) 
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Week 26 

(Trap data and degree-days image sources: [20], [158]) 
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Week 27 

(Trap data and degree-days image sources: [20], [158]) 



170 

 

  

 

Week 28 

(Trap data and degree-days image sources: [20], [158]) 
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Week 29 

(Trap data and degree-days image sources: [20], [158]) 
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Week 30 

(Trap data and degree-days image sources: [20], [158]) 
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Week 31 

(Trap data and degree-days image sources: [20], [158]) 
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Week 32 

(Trap data and degree-days image sources: [20], [158]) 
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Week 33 

(Trap data and degree-days image sources: [20], [158]) 
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Week 34 

(Trap data and degree-days image sources: [20], [158]) 
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Week 35 

(Trap data and degree-days image sources: [20], [158]) 
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Week 36 

(Trap data and degree-days image sources: [20], [158]) 
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Week 37 

(Trap data and degree-days image sources: [20], [158]) 
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Appendix C: Agent-Based Model of Facebook Post Propagation 

This appendix demonstrates the author’s depth of knowledge in ABMs by outlining an ABM 

which simulates the spread of a meme, the associated difficulties with using real data, and the 

difficulties associated with verification and validation of a non-trivial ABM.  All of these 

priorities similarly apply to the WNV model which is the focus of the thesis, although the WNV 

model is considerably more complex than the Facebook meme model.  This appendix may be 

omitted without detracting from the thesis.  

A large scale agent-based model of common Facebook users was designed to develop an 

understanding of the underlying mechanism of information diffusion within online social 

networks at a micro-level analysis. The agent-based model network structure is based on a 

sample from Facebook. Using an erased configuration model and the idea of common 

neighbours, a new correction procedure was investigated to overcome the problem of missing 

graph edges to construct a representative sample of the Facebook network graph. The model 

parameters are based on assumptions and general activity patterns (such as posting rate, time 

spent on Facebook etc.) taken from general data on Facebook. Using the agent-based model, the 

impact of post length, post score and publisher’s friend count on the spread of wall posts in 

several scenarios was analyzed. Findings indicated that post content has the highest impact on 

the success of post propagation. However, amusing and absorbing but lengthy posts (e.g., a 

funny video) do not spread as well as short but unremarkable ones (e.g., an interesting photo). In 

contrast to product adoption and disease spread propagation models, the absence of a similar 

“epidemic” threshold in Facebook post diffusion is observed. 
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C.1 Introduction 

Marketers have widely accepted the importance of Word-Of-Mouth (WOM) for a product 

success [1], [2]. For example, Philips in 2006, Hewlett-Packard (HP) in 2008, Microsoft in 2009 

and Ford in 2009 all developed different types of word-of-mouth seed marketing campaigns to 

promote their sales [3]. The objective is to seed a marketing campaign with the intention of 

fostering message propagation or spread.  This kind of viral marketing is not necessarily only for 

promoting a product; it can also help in acquiring new members or broadcasting a message or 

trends in general. In comparison with traditional marketing, WOM has a longer lasting 

impression to a new member [4]. Moreover, word-of-mouth can work well in cyberspace such as 

online communities, emails, product ratings, blogs, forums and electronic social networks. In 

particular, online WOM could be more attractive to companies because of associated lower 

costs, wider accessibility, immediate distribution, ease of use [5], and better tracking analytics. 

The importance of online social networks for venders to advertise their products can also be 

verified by considering the numerous blogs and publications regarding online social networks in 

marketing science [6], [7]. 

Among online social networks, Facebook is currently the most well-known social network 

on the internet. However, the answer to the mysterious question of how to make a post go viral 

on Facebook still remains somewhat of an enigma. There are many recommendations, anecdotes 

and hints on different blogs to help one reach maximum influence. Apart from the complex news 

feed algorithm of Facebook, including a very large network of different people with complex 

psychologies and so many soft factors, a better understanding of message propagation 

mechanisms through this type of online social network is needed. Some detailed studies of the 

Digg social news website [8] and Twitter social network [9] exist that pay specific attention to 
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the rules and structure of those social networks. However, many of the other works in the context 

of social networks and diffusion are either too generic or at a macro-level aggregate, without 

utilizing a detailed model of an online social network (see section C.4).  

In this appendix, the Facebook message propagation process is examined at a micro-level. 

We focus on two properties of a Facebook post (post length and post interest) and one attribute 

of the sender (friend count within Facebook). As an instance, an attempt is made to determine 

which of the two properties of post length and post content (interest) plays a more impactful role 

in the success of post diffusion. By inspecting Facebook at the level of individuals, a better 

understanding of the underlying dynamics of message propagation process in Facebook is 

hopefully obtained. Moreover, ultimately the goal is to understand the similarities and 

differences between the propagation of relatively intangible entities such as messages and memes 

and the propagation of tangible entities such as infectious diseases within a population (see 

section C.4). 

An Agent-Based Model (ABM) of aspects of the Facebook social network was created to 

delineate and understand the patterns of message propagation. Agent-based modeling [10], [11] 

is a natural way of simulating systems where individual agents (e.g., people) play significant 

roles. In this bottom-up approach, the system contains a set of autonomous individuals, i.e., 

agents, interacting based on a set of rules within an environment. From the micro-level inter-

actions of reading a friend’s post and sharing the post among friends, the macro-level patterns of 

diffusion of the post evolves. This makes ABMs a suitable method of analyzing Facebook where 

both micro-level and macro-level analyses are of interest. In addition, we have a heterogeneous 

population of Facebook users, which is inherently suitable to an agent-based model where each 

user can have their own profile, in this case, preferences of when to sign in or share a post. 
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ABMs are generally well suited to model social networks when either the agents or the topology 

of the interactions is heterogeneous or complex [12].  

The idea of deploying an ABM is not only for analysing the impact of post length versus 

post score, but rather for making a tool potentially capable of including a variety of features to 

set up different experiments that empirical work cannot address. Cellular Automata as a limited 

form of ABM has previously been applied for modeling a seeding program [3]. In our study, 

similar to cellular automata, agents have an internal state machine but are not modeled as 

(limited) cells. The agents are people modeled as nodes within a graph. Each has its own internal 

parameters such as the number of friends within the social network. They can asynchronously 

and independently act (see section C.2). As an example, agents can decide when to log in/out, 

read and share a note among friends. The detailed behaviour of agents is explained in section 

C.2. ABMs are also inherently extendable to almost infinite levels of details, and in this case the 

ABM can be extended to study other possible actions by Facebook users (see section C.5). 

Depending on the scope of the research, one can add or remove rules and states to or from 

agents. An advantage of ABM over Differential Equation (DE) or Statistical models is its lack of 

complex math, which means we do not have to understand relatively complex model 

formulations [12]. In other words, we just need to be able to describe the system and agent 

behaviour in detail with a set of “what-if” rules, in a problem-specific and natural lexicon. These 

characteristics make ABMs well suited to problems that are computationally irreducible [13]. 

This has however left ABMs open to critique as being more difficult to validate. 

Obviously, there are also other limitations within ABMs. ABMs can easily be slow and 

computationally intensive. In fact, the speed performance was one of the main obstacles 
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encountered here in obtaining the results which are presented in section C.3. These limitations 

are acknowledged in section C.5. 

The remainder of this appendix addresses the following:  

•  A realistic agent-based model of Facebook posts diffusion was created. This framework 

can easily be extended to include more features of Facebook and its users. 

• In an initial set of simulations, the relative importance of each input factor such as post 

score, post length and publisher’s friend count is compared. 

• A second set of simulations explores the impact of the details of post score versus post 

length particularly for shorter posts like URLs or photos more specifically. 

• A third set of simulations sheds light on two seeding strategies relative to a mass of users 

versus a few hub users. 

• Generally, post content has the highest impact for information propagation within the 

electronic social network; however, among the posts which spread fairly well through the 

network, post length is of more importance than the post content (interest) and the initial 

seeder’s friend count. 

• Surprisingly, it is shown that there is no tipping point [14] for post diffusion analogous to 

the transition to epidemic spread observed in infectious diseases. On average, the moment 

a post is submitted is when it reaches its peak of the probability of being shared or read 

by friends. 

It is also shown, unlike product adoption or disease spread, that it is unlikely for a Facebook 

post to go viral and reach a fair percentage of the entire network. In this case (like other celebrity 

phenomena), the fact that some posts obviously do go viral may skew a typical Facebook user’s 

perception of the probability of their own post doing so. 
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C.2 ABM Architecture 

The ABM is implemented in the Java-Based educational version of the Anylogic software 

toolkit, which supports Agent-Based, Discrete Event and System Dynamics Modeling. In this 

section, the agent-based model, agents’ properties, the structure of their environment, and the 

governing rules are explained in detail.  

C.2.1 The Big Picture 

People using Facebook can either visit the webpage on their browser or use the Facebook 

application on their mobile device. In either case, once you open your Facebook profile, you may 

receive a list of notifications of what has previously happened since your last login. The 

difference is that in the second case, you can stay signed into your Facebook profile with your 

Facebook phone or tablet application, which results in receiving notifications when they occur. 

Once a person truly decides to check their Facebook profile, they usually go through the 

notifications and then generally switch to their news feed (home) page to see the activities and 

posts from friends or other Facebook pages/groups to which they are affiliated. At any time 

during the visit on Facebook, a user might decide to post a text note or upload a photo/video on 

their Facebook (wall/timeline) page. They might also copy a post previously shared by a friend 

and paste it on their own page in order to share it with their own friends. Through this feature, a 

post would spread over the network. The other common way to interact with a post is to “like” 

which is invoked by clicking a like button below a post. Currently, there are also many other 

features available on Facebook such as private messaging and applications that all act like 

incoming stimuli to a Facebook user to draw their attention. The current scope of this study is 

general posts by users on their own wall page. We recognize that this is a simplification of actual 

social networking via Facebook. The simplification was necessary in the first attempt at creating 
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a model. Detailed simplifying assumptions are presented in subsection C.2.4 where the rules of 

behaviors by agents are explained. 

Herein, akin to reality, time passes continuously in minutes and seconds. Agents (Facebook 

users) are connected to one another within a virtual social network. Each agent, independently 

from all the other events, decides when to log in and when to log off. During the interval they are 

logged into the system, they go and check their friends’ Facebook wall pages, each post one by 

one, until they decide to switch to another friend’s page. Each post has some interest score and 

requires its own unique time to be read. Once an agent finds out something interesting on a 

friend’s page, they might decide to share it again on their own page. Also at any time when an 

agent is online, they can publish a new post of their own. This agent is denoted the initial 

seeder/publisher of the post. Agents - when they are online - are able to receive notification of 

recent activities from their immediate friends. In the current agent-based model, this activity only 

includes the case where a friend shares a post on their own wall page. In this agent-based model, 

similar to the real Facebook where users check their notifications, upon receiving a notification 

by an online agent, they go through the notification and read the post shared by their friend.  

C.2.2 Agents and Parameters 

The agent-based model consists of only one type of agent which is a Facebook user or 

individual. Agents can create and publish different posts with two important properties of Post 

Length and Post Score. Each agent has a set of internal parameters including Activity, Average 

Login Time, Average Post Rate, Friend Time and Friend Count.  

Wherever possible, published reports on Facebook user statistics were used to set agent 

parameters, and where a given parameter was reported in several references, reasonable 

inferences and consolidations were made [15], [16], etc. 
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The Activity parameter is the main parameter that characterizes the heterogeneity in 

individual preferences for posting/sharing notes. In other words, each user posts new notes at a 

given rate, which depends on the user's Activity parameter. Also, the chance of sharing a post 

already shared by a friend is related to this parameter.  This parameter is assigned a uniform 

random value from 0% to 100%. Obviously, the higher the value, the more posts the user 

generates. Generally, the more active users (users who post more often) are also online more 

often. The exact association between the frequency of activity and online time is described 

below. 

The Average Login Time parameter indicates how many minutes a user is online in a day, 

on average. This parameter has a normal distribution and is used to calculate the Login Time 

parameter by the following formula: Login Time = 2 × Activity × Average Login Time. This 

means that a typical user, whose activity parameter is 50%, has a Login Time parameter value 

around the value of Average Login Time parameter. Also the formula states that active users 

spend more time online on average. Furthermore, the login time follows a long tail distribution 

that also accounts for ‘lurkers’ (high online time but low Activity). 

The Average Login Time parameter has a normal distribution. There are different choices 

for its normal distribution properties. In 2011, Facebook Press Room reported the average 

Facebook user spends more than 11 hours per month on Facebook [17]. Assuming 30-day 

months, this means over 22 minutes per day. In addition, [18] claims the “average user spends an 

average 15 hours and 33 minutes on Facebook per month,” which equates to roughly 31 minutes 

per day. There are also some reports on mobile usage, such as an average of 441 minutes per 

visitor in each month (i.e., 14.7 minutes per day) reported in [19]. Consolidating these sources, 

the average online time was set at 23 minutes per day, which may change in the future work. 
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Considering the fact that most obsessed Facebook users spend daily average of 8 hours on the 

site [20], the average online time is bounded by a maximum of 10 hours per day. 

Assuming a day is 1440 minutes, a login time of 23 minutes results in having a logout time 

of 1440 – 23 = 1417 minutes. This means if the login time for a user is calculated to be 23 

minutes, they will be online for 23 minutes and will be offline for 1417 minutes in a day. 

However, since most people tend to check their Facebook profile more than once a day (e.g., It is 

reported that “on average, [a person] visits the Facebook app/site 13.8 times during the day, for 

two minutes and 22 seconds each time” [21]) these 23 and 1417 minutes have to be divided into 

different intervals. These intervals are drawn from an exponential distribution with the mean 

value of 1440/1417 and 1440/23 minutes per a day (1440 minutes), for the login and logout 

times respectively. The choice of exponential distributions for login/logout rates where the 

probability to login is the highest immediately after logging out may sound irrelevant. However, 

similar to working out at gym, people are likely to check their social profiles within a certain 

period of day (e.g., it is reported that “peak Facebook time is during the evening, just before bed” 

[21]). Although for some smartphone users with Facebook application installed on their phone, 

this period might be from 6 am to 11 pm. In either case, it would be safe to assume that people 

would not check their Facebook profiles when they are asleep! In the agent-based model, the 

login intervals should not be too far away from one another, and there has to be a limit to control 

when people log into their profile. The choice of exponential distributions attempts to keep the 

online intervals close to each other. In addition, a login rate of an average of 23 minutes/day 

compared to a logout rate of an average of 1417 minutes/day is low enough to span the daytime. 

The choice of the exponential distribution is also related to performance issues. Since it is the 

default distribution for rate triggers in Anylogic, deploying another distribution would 
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significantly have decreased the speed of simulation. Part of the reason may be that the triggers 

scheduler in Anylogic can be set ahead in outer code loops of the program. 

The Average Post Rate parameter defines the average number of new notes published per 

month by each user. It has a truncated normal distribution based on the parameters shown in 

Table I. The actual distribution of the number of posts is calculated as: Post Rate = 2 × Activity × 

Average Post Rate. This distribution is plotted in Fig. 1. Assuming a month is 30 days, the exact 

time when an agent publishes a new note is drawn from an exponential distribution every time 

the user logs in with a rate of 30/Post Rate. There are several different reports on the rate of 

different posts in Facebook. Additionally, these numbers are intuitively known to keep changing. 

However, we had to adopt one of these reports, which is that in every 20 minutes, over 1 million 

links are shared, 1.8 million statuses are updated and 2.7 million photos are uploaded [22]. This 

results in having 11.9 billion posts per month. Add to that, the knowledge that Facebook had 

845 million monthly active users as of December 31, 2011 [16], implies that there are 

approximately 14 posts per month for each person. This justifies the choice of an average of 13.8 

posts per month for each user. 

 

Fig. 1.  Post Rate density function 
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Each user is connected to some other users known as friends. The number of friends a user 

has is controlled by the Friend Count parameter. The number of seconds dedicated for each 

friend to check their posts is set by the Friend Time parameter. Every time a user begins 

checking their friend’s posts, this timeout value is generated based on the associated normal 

distribution. Once the time is up, the user leaves the current friend and looks at another friend’s 

recent posts. Complementary to this parameter, the Post Length parameter dictates how many 

seconds are required to completely read a certain post. When a user publishes a new note, this 

value and the Post Score parameter are calculated and assigned to the post. The Post Score 

parameter represents how interesting and appealing a post is.  

Table I Simulation parameters and their distributions 

Parameter Distribution Values 

 Mean Std. Dev. Min Max 

Activity  Uniform 0.5 1/√12 0 1 

Average Login Time* (minutes/day) Normal 23 120 0 1080 

Average Post Rate* (times/month) Normal 13.8 13.8 0 300 

Friend Time (seconds) Normal 30 30 10 600 

Post Length (seconds) Normal 30 30 10 600 

Post Score  Uniform 0.5 1/√12 0 1 

* Multiplied by 2 times Activity for calculating the associated rates 

 

Table I summarizes the model parameters and their distribution properties. As shown in the 

table, the Activity and Post Score parameter are drawn from standard uniform distributions 

between 0 and 1. For the other parameters, sampling from truncated normal distributions in 

Anylogic is employed. This kind of distribution is essentially the standard normal distribution 

which is stretched by the Mean coefficient, then shifted to the right by Std. Dev., after that it is 
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truncated to fit in [Min, Max] interval. Truncation is performed by discarding every sample 

outside this interval and taking a subsequent try. 

C.2.3 Environment  

Akin to online social networks, the environment is a graph where each node represents a 

user/agent whose social friends are neighbour nodes in the graph. In this subsection, we describe 

this graph and its properties in detail. 

The Facebook network graph can be viewed as a small-world network [23], [24] as most 

nodes can be reached from every other by a small number of hops. Generally, however, scale-

free networks are a better choice to model a social network graph, as they have a more realistic 

degree for the power law distribution. In fact, it is shown that scale-free networks themselves are 

ultra-small worlds, where the shortest paths become even smaller [25]. Yet the strict power-law 

distribution is not accurate enough to represent Facebook’s degree distribution [26]. More 

precisely, if the power-law distribution of 𝑃(𝑘) = 𝑘−𝛼 is accepted to be the degree distribution 

of nodes, two sections for 1 ≤ k <300 and 300 ≤ k ≤ 5000 can be approximated by a power law 

with exponents αk<300 = 1.32 and αk≥300 = 3.38, respectively [15]. Therefore it was decided to 

synthesize the graph by directly sampling from the Facebook graph. Ideally one should generate 

multiple sample graphs and run the experiments on all the sampled graphs to ensure the results 

are not specific to just one graph. But due to processing time-limitations, only a few graphs were 

sampled; as all the sampled graphs shared comparable properties, one representative graph was 

selected for the basis of the agent-based model.  

A dataset of the Facebook social graph released by the Networking Group of the University 

of California, Irvine [15] was used. Two datasets of uniform sampling and Metropolis-Hastings 

Random Walks (MHRW) were available. The Metropolis-Hastings algorithm is a Markov Chain 
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Monte Carlo (MCMC) method to simulate a complex distribution from which direct sampling is 

difficult. The MHRW option was chosen, as the Facebook IDs within this dataset are consecutive 

numbers, which makes it easier to construct the graph. Gjoka et al. obtained this dataset by 28 

Facebook-wide independent MHRWs in April of 2009 [15]. The dataset contains the number of 

friends and their Facebook IDs for approximately 957K unique users. It was not possible to 

directly build our network structure on the dataset itself, as it was missing a large number of 

edges. Strictly speaking, the dataset has a uniform random sample of users in Facebook. Here, 

however, a dataset was required which would densely cover only some small region of the 

Facebook graph. Such a dataset could be obtained by a Breadth First Search (BFS) crawling 

method.  Hence the following approach was taken: 

1) The first 500 sampled Facebook user IDs were assigned to the 500 primary agents in the 

model. 

2) Each primary agent was connected to a number of new secondary agents according to the 

number of friends of their corresponding Facebook user in the dataset. This resulted in a 

network of total 89,977 agents, but the number of edges was not sufficient. 

3) Extra links between the secondary agents were inserted based on a custom distribution of 

all the sampled users in the dataset. This resulted in a network with a total of 7,528,164 

edges. 

The network was created and used (saved) for further experiments. After the second step, 

each node on average had only one connection, which is not at all the case in the real-world 

Facebook graph. The reason is that the dataset tells us the node x is connected to x1,x2,…,xn; but 

hardly ever is any information available for each of xi’s. As a result, the third step is necessary. 

The first and second steps are quite straightforward. The challenge is in the third, where creating 
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an undirected graph of n nodes according to a certain degree distribution (here denoted 

distribution F) is desired. In this case n = 89,477 and the probability distribution F is given by the 

dataset.  

Furthermore, it was desirable to create the graph in such a way that nodes with more mutual 

friends have higher probability of making friends than that of total random nodes. Therefore, the 

approach is based on the idea of common neighbours as well as the Erased Configuration Model 

[27]. It is defined as follows. For each node ni, draw a degree di according to the probability 

distribution F. Make di half-links (or stubs) and connect them to the node ni. When all the stubs 

are created, start the following loop procedure through the stub pool: 

1) Choose three distinct random stubs d1, d2 and d3 and remove them from the stub pool. 

Notice that each stub is already connected to a node. 

2) Among these three stubs, find the two stubs di and dj with more mutual neighbours 

between their corresponding connected nodes in such a way that they neither make 

multiple edges between the nodes ni and nj nor make a loop on the node ni or nj. 

3) If the step 2)2 was successful, join the two stubs di and dj to make a connection between 

the two different nodes of ni and nj; otherwise return one of the stubs (e.g., d1) to the stub 

pool.  

The above procedure removes two stubs from the stub pool at each repetition. Therefore, 

after exactly ⌊∑ 𝑑𝑖
𝑖=𝑛
𝑖=1 2⁄ ⌋ iterations it terminates; it could be that one stub is left behind in the 

stub pool. This is quite natural in the Erased Configuration Model, and the proof of its 

convergence to the desired degree distribution can be found in [27]. 

To ensure that the graph represents the ‘six degrees of separation’ phenomenon, the diameter 

of the synthesized graph (i.e., the longest shortest path) was estimated. To measure such a 
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statistic, 6K nodes (out of roughly 90K nodes) were randomly selected and the Breadth-First 

Search (BFS) algorithm was run for each node to count the number of reachable nodes at each 

hop. It was found that all the nodes after three to five hops reach 100% connectivity to all the 

rest. The percentage of reachable pairs within a certain distance is shown in Fig. 2, which is 

similar to the graph of degrees of separation of Facebook reported in [26]. The average distance 

was calculated to be 4.0074, which is comparable to 4.7 and 4.3 of the global and U.S. 

population of Facebook users in May 2011, respectively [26], [28]. 

 

Fig. 2.  Degrees of Separation: Percentage of user pairs within x hops of each other 

The other statistics regarding the constructed graph, the dataset [15] and the Facebook graph 

[26] are illustrated in Table II, demonstrating that the dataset with a smaller number of nodes 

was sampled successfully. As the constructed graph has a much smaller number of nodes (but 

retains the same number for maximum possible number of friends), it is much less sparse than 

the real Facebook graph. This is part of the reason the mean distance has been reduced, 

compared to Facebook. Most conservatively, the synthesized graph can be considered as an 

acceptable example of Facebook connectivity structures of a sub-region of Facebook network 

graph. Nevertheless, 90K is almost the maximum possible number of users to handle during the 
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simulations. The reason for this is that all the nodes have their own autonomous behaviour and 

processes, and their interaction with each other is a function of the number of edges in the graph. 

The time complexity of only constructing the network graph itself is O(|E|), where |E| is on the 

order of a million.  

Finally, the complementary cumulative degree distribution function (CCDF) of the dataset 

and our graph is illustrated in Fig. 3, displayed on a log-log scale. As can be seen in this line 

graph, the distributions do not strictly follow power-law distributions, which are straight lines on 

a log-log plot. 

Table II Network graph statistical properties 

 

Facebook [26] Dataset [15] Our Graph 

Mean Degree  190 168 169 

Median Degree 99 110 111 

Min Degree 0 0 1 

Max Degree 5000 4979 3734 

No. of Nodes 721 M 957 K 90 K 

Mean Distance 4.74 N/A 4.0072 
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Fig. 3.  Degree Distribution: The fraction of users who have degree x or greater 

C.2.4 Rules 

In delineating the scope of the model, the following assumptions have to be made: 

1) As we know, there are many different pieces of content, such as photos, videos, links, 

status updates, event invites, notes and etc. [29] that can be published on a Facebook 

wall/timeline page. However, throughout the rest of this appendix the word “post” or 

“note” is used to indicate generic content that is posted on a wall page. This is because all 

content shared on a Facebook page act as incoming stimuli to a Facebook user. The 

objective in this study does not aim to cover the detailed properties of a successful or 

uneventful post.  Regardless of the specific type of note, each post requires some time to 

be noticed by user agents. This is why the post length is of interest to us. In addition, each 

post is trying to convey a message to the viewer/reader. The message could be a warning, 

funny picture, personal news, an inspirational quote, amazing fact, etc. Each might be 

appealing to specific types of people. However, to keep the model simple, we considered 

a single scalar value to represent the general interest in a post as the post score. Each 

user, depending on their activity level, may share an interesting post. 

2) Users cannot send private messages to one another. They can neither make comments on 

any post nor share any note on somebody else’s wall except for their own wall; in other 

words, they are only able to share something on their own wall. Adding the private 

messaging property could have only increased the complexity of the model as the model 

is limited to public means of sharing a post over the network. Posting notes directly on 

someone else’s page is not at all as common as sharing posts on personal wall pages. 

Incorporating these features would have demanded obtaining more statistical data about 
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the activity behaviour of people on Facebook. Here an effort was made to not increase the 

number of model parameters, as tuning these parameters is one of the most challenging 

parts of designing an agent-based model. Even at the current model, values of some 

parameters are based on intuitive rational assumptions rather than actual data. 

Commenting on posts is a very important feature of Facebook social network. Through 

comments or lack thereof, a post can stay alive or die. Comments and Likes in Facebook 

have a direct relationship with the news feed algorithm of Facebook. In simple words, 

users are more likely to receive more (recent) posts on their home page from those 

friends to whom they had most interaction in the past. One way of making interaction 

with friends is via liking or commenting on their posts. The exact Facebook algorithm to 

rank the news feed page is unknown. In our model, we let each user agent choose which 

friends to have interaction with. The commenting feature is removed from the model to 

decrease its complexity. Adding these features back into the model could be a very nice 

extension of current model. 

3) The only possible relationship between users is bidirectional friendship. This means 

subscriptions to Pages or Groups held in common between two or more agents, and any 

other similar features are ignored in the model. Page and groups can be considered as 

normal user agents in the graph with higher number of friends and activity level. In social 

science, they are referred to as hubs. So there is no need to distinguish pages from people 

in our model. Subscription to a Facebook user is similar to a unidirectional friendship. 

This feature was added later to Facebook. One can think of the current agent-based model 

as a model of Facebook in its first years without this feature.  
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4) Similar to the notification feature in Facebook, when a user is online, if a friend of theirs 

shares a note, the user will receive a notification message within the model. As a result, 

considering assumption 1) above, there is no way to receive or potentially save a 

notification for an offline user. In this model, when users go online they begin to check 

recent posts by friends; as such, adding a notification feature to the model would not have 

made a significant change to the results; but it would make a difference in time 

complexity of the model.  

5) The network is static. This means users cannot make or remove any friendship 

connections so as not to change the reality-based network graph. The scope of the current 

agent-based model does not include effects of dynamics of the network graph. There is a 

viral marketing study where the evolution of network graph and changes in preferences 

of users for different subjects have been analyzed [30]. This heterogeneity of preferences 

in different topics is controlled by the activity parameter in our agent-based model. 

Changing a user’s friends does not significantly change chances of repost. Because the 

activity parameter is uniformly distributed and there is no similarity between friends’ 

activities. One might say more active people are more likely to be friends with one 

another. But there are many more important demographics characteristics between 

friends such as nationality and age which trends to be similar. Thus, the activity 

parameter cannot be considered as a significant factor in this list. 

The agent-based model keeps an inner state for each user, controlling their behaviour. This 

stochastic hierarchical state machine is shown in Fig. 4. All the users are in one of the two 

general states of Online or Offline. Every time the model restarts, the login and logout rate for 

switching between these two general states are assigned to each user. The intervals when a user 
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is in the Online/Offline state are controlled by login and logout rate. When the login/logout 

transition is triggered, they log into/log out of the system. Login transition times are drawn by an 

exponential distribution with the mean value of 
 𝐿𝑜𝑔𝑖𝑛 𝑇𝑖𝑚𝑒

1440 
 minutes per a day (1440 minutes). 

This was explained in more detail in section C.2.1. 

 
Fig. 4.  User state machine 

As seen in Fig. 4, all the interactions and events for a user happen when they are in the 

Online state. Users in the Online state can either produce a note and share it or repost a note 

which was shared before by another user (which then appears on their own wall, in keeping with 

assumption 1) above). As mentioned earlier, each user posts new notes with a given rate based 

on the user's activity.  

During these intervals between publishing a new note, users check their friends’ wall pages. 

It was possible to employ a stack to sort recently posted notes for each user. However, in order to 

increase the level of autonomy of users, the freedom to choose which friend to see their posts is 

given to users. In the preliminary builds of the model, users sorted their friends based on 
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nationality and differences in their ages. As we did not aim to analyze clustering effects of 

nationality and ages, in the final version, they randomly select friends to review their most-recent 

wall posts to speed up the simulation. This is also accordant with the Facebook policy to make a 

ranked list of friends’ posts for each user in their homepage (News Feed). This feed is an 

algorithmically ranked list of friends’ posts based on a number of optimization criteria [31]. In its 

simplest case, the feed contains recent posts of those friends with higher probability of having 

interaction with the user. For each friend, a normally distributed random value is given as the 

maximum time threshold to check their wall page. When the time is passed, the user selects next 

friend to check their wall posts. This loop continues until one of high-level timeouts, such as 

logging off or publishing a new post, happens. 

As shown in Fig. 4, when a user is checking friends’ wall posts, if one of their friends 

publishes or reposts a note, they will be notified. Consequently, the user stops their current task 

of checking friends’ page and begins reading the new shared note, which may be considered a 

result of human curiosity. Users are able to recognize a duplicate post and skip it in one second. 

Otherwise they would spend time in the amount of the post’s length to read it. 

When a user completely reads a note, they may decide to copy the note from the friend's 

wall page and repost it. The likelihood of this decision increases with the product of the post 

score and the user’s activity. As an instance, a super active user with the activity value equal to 

100% would definitely share an interesting post with the score of one (with probability 1 × 100% 

=1). One could have picked other formulas to define the probability of sharing. Multiplication, 

however, was found to be the simplest (and fastest) to proceed with the simulation. By this 

mechanism, posts propagate over the network, which is the subject of this study. It was also 

possible to let users share the post before they themselves read it completely. This scenario 
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usually happens when people see a public warning that they think it might be of use to others. 

Again, adding a new parameter and possibility into the system would have decreased the speed 

of simulation. It was decided to keep the model as simple as possible in the current version. 

One might ask if it is not more likely that the marginal score of a post also increases as the 

post is shared over and over by users. This is the case for product adoption models, mostly 

inspired by the classical Bass diffusion model [32] or disease epidemic modeling approaches 

such as the Susceptible-Infected-Removed (SIR) models [33]. In the product adoption models, it 

makes sense that as the number of people/friends using a certain product grows, others would 

become more interested in purchasing the product as well. Also, in epidemic models, as the 

number of infected people with a certain virus increases, the chance of transmission of the virus 

to others increases. However, propagation of a meme through a social network might be 

different. Similar to product adoption, some individuals might find sharing a popular post very 

cool or helpful, such as posts asking to unify people on some belief or giving alerts. On the other 

hand, some may consider repeated exposure to a specific peace of content as being boring or 

démodé. The second case is verified in Digg social news website where people have a tendency 

of not sharing repeated news [34]. Thus, as herein all various types of content are modeled as 

posts with different scores, we neither increase nor decrease post score as it disseminates through 

the users; each user, depending on their activity level, might pick a post and share it. A post 

score, which is fixed, can be determined by external factors which are not part of this study. For 

example, assuming a post is a product advert, a combination of the market conditions and 

psychological and sociological characteristics of consumers would determine this factor for each 

person. There are different studies concerning this aspect such as the decoy effect in [35]. 

Having implemented an agent-based model, they showed how an individual consumer’s 
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judgment on purchasing a product changes from brand A toward brand B after the introduction 

of a decoy brand, in a competitive market. 

In the current simulations, for a given post, the post length time must be passed until we can 

conclude that the user has read the post. For instance, in the situation where a user decides to log 

out while reading a post, the post will not be checked as a read post. 

C.2.5 Verification and Validation 

As per Rand and Rust [36], verification of a model ensures the simulated model matches the 

conceptual model. This procedure is mainly through documentation, program testing and test 

cases [36]. In the present case, the exact written assumptions and rules of behaviour defined 

above were coded. The programming code is also extensively commented. Each function and 

module of the agent-based model was solely tested on a small network of users to receive a 

known output for a given input. After all the debugging was done, corner cases with extreme 

values (such as full connectivity, no connectivity, zero activity-level users,  one activity-level 

user, zero post score, one post score, etc.) were run. 

As per Rand and Rust [36], the four major steps of ABM validation were followed. These 

are micro-face validation, macro-face validation, empirical input validation and empirical output 

validation. At the micro-face level, actions of users are a limited form of a real Facebook user’s 

possible actions. Also, the mechanism through which a post propagates is a type of cascade 

model corresponding to the real world. This paradigm has been validated by various studies over 

the past. At the macro-face level, it is observed that most posts will not be shared by a friend, 

which is the same scenario for a typical Facebook user. Also, our aggregate pattern of the post 

share distribution on-face is similar to Facebook and other social network statistics. At the 

empirical input level, the ranges of all the parameters are drawn from either Facebook network 



203 

 

statistics or reasonable assumptions. Further explanation of the input parameters is discussed in 

section C.5. 

Relative to empirical output validation, it is not possible to exactly validate the agent-based 

model against reality at this stage, nor is this the claim in this work. The correct way is to run our 

experiments on Facebook; firstly however,  it is not clear how to set a post’s probability of being 

shared (i.e., its score), therefore it cannot be validated in this way in practice, apart from the fact 

we should be able to monitor exactly how many users have indeed read a post completely. Again 

this cannot be measured in practice. We may be able to only distinguish if someone has seen the 

post for at least a few seconds. Unless Facebook or similar social media service providers were 

using, for example, built-in counters to calculate how many seconds each user spends on a 

specific post, which is very unlikely for non-video posts; and if there exists such a counter, it 

would only work when you actually open a post (e.g., a photo) but could not be calculated when 

you are at your Facebook home page displaying more than one post, as it is not known which 

post you are exactly looking at. Having said that, it is still possible to demonstrate that real world 

data are possible outputs of our agent-based model, meaning that our average results match 

average results in reality. 

A set of experiments was performed in order to validate the results here against the 

Facebook statistics reported in [31]. According to the statistics for users’ most recent post, “the 

median post reached 24% of a user’s friends (mean = 24%, SD = 10%),” provided that the most 

recent post was at least 48 hours old. Their population size is 589 different users with the median 

friend count of 335 (mean = 457, SD = 465). 

To do such an experiment, 20 unique users were selected such that their friend counts were 

drawn from a normal distribution with the same mean and standard deviation. As a result, the 
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population of our selected users had a median friend count of 335 (mean = 464, SD = 337) which 

is quite close to the sample they used in [31]. 

Then their Activity parameter was set to be 1%, to prevent them from publishing any other 

note, since we wanted to perform the test for their most recent post; after that a post with score of 

zero and a short length of 10 seconds was published by the user.  The score is set to zero to make 

sure the post does not spread over the network as we are interested in the number of immediate 

friends who read the post. The length was set to 10 seconds as this is our minimum post length at 

the current model. As mentioned above, the statistics reported by Facebook is in fact the number 

of people who have seen the post, although not necessarily read a long post completely. Then we 

ran the model. The model ran for 24 simulated hours as an initial warm up stage. Then a chosen 

user published a specific post. The simulation ran for another 48 simulated hours, after that the 

result was saved. The whole experiment for all 20 users was repeated two times, for a total of 40 

runs. The results were very close in both runs for each user. Real time computation for each run 

was 9-12 hours on workstations equipped with an Intel Xenon CPU W3679 @3.2GHz with 16 

GB RAM or higher configuration. 

We observed that the median perceived audience size was 19% of a user’s friends (mean = 

25%, SD = 18%), which is near although slightly less than the expected 24% median of 

Facebook [31]. One difference in our experiment and Facebook statistics is that our results are 

the statistics after exactly 48 hours, whereas the Facebook ones are the statistics after at least 48 

hours. So it is reasonable to reach a lower percent of immediate friends. Strictly speaking, in our 

agent-based model, the post life time is defined to be the last moment when the post is read. The 

average and median post life time in this set of experiments was 47.08 and 46.81 hours, 

respectively. 



205 

 

C.3 Simulation Studies 

In this section, the agent-based model was run with different input settings to explore the 

impacts of each factor in the post diffusion process.  

In the current model, the targeted input parameters include: (1) Post length; (2) Post score; 

(3) Friend count which is the number of friends of the first publisher of the note. As each minute 

in the simulated world takes 7-10 seconds to run computationally in the real world, we have 

limited our initial exploration to these three parameters.  Future simulations will explore the 

impact of other parameters, including the day/time to disseminate the note over the graph.   

The following statistics as the model output were recorded: (1) The number of users who 

have read the note; (2) The number of users who have reposted the note; (3) The times when the 

note was read / reposted; (4) The last time when the note was read as its life time.  

The Analysis Of Variance (ANOVA) procedure between different scenarios is employed to 

find the importance of each parameter relative to the spread of a message within the online social 

network. In some cases, multivariate regression was run to test the magnitude of each factor. 

However as the outputs of an agent-based simulation should not be interpreted quantitatively 

[11], [12], the numerical values of a linear regression coefficients are interpreted qualitatively. 

This means even if we obtained numbers as the magnitude of importance of each parameter, they 

have to be discussed at the qualitative level. 

C.3.1 Study 1: General Insight on Input Parameters 

Within the first study, a total of 19 unique scenarios (simulations) were set up and each 

simulation was repeated 20 times, for a total of 380 runs for eight simulated days each.  The real-

world computing time required for each run was one to two days. The total computing time 

required for these simulations was over 380 days. In each scenario, our chosen user publishes a 
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certain post after one simulated day of warmup phase, then one week after the spread, the outputs 

are saved and the simulation ends. 

The results of the first set of simulations are illustrated in Table III. According to the first 

(six) rows of the table, it is immediately clear that as long as the number of repost is near zero, 

the post score does not have much impact on the number read. Because the post is not shared by 

anyone except for the first publisher, the number read is directly related to the number of 

immediate friends of the publisher, which is trivial. For the simulation IDs 1-6 plus IDs 9-11, 

with the fixed post length of 30 seconds, where the post score is relatively small, Analysis Of 

Variance (ANOVA) yielded a significant effect of friend count (F7.53 = 25.07, p < 0.01), no 

significant effect of post score (F7.53 = 0.22, p = 0.8) and no significant interaction effect on 

friend count × post score (F5.12 = 0.23, p = 0.9). 

Table III Results in first set of simulations after one week 

ID Post Score Post Length Friend Count No. of Reads No. of Reposts 

Mean Median Std. Dev. Mean Median Std. Dev. 

1 0.001 30 9 2.3 2 1.4 0 0 0 

2 0.01 30 9 1.7 2 0.7 0 0 0 

3 0.1 30 9 2.0 1 1.2 0.2 0 0.4 

4 0.001 30 139 13.0 10 10.3 0 0 0 

5 0.01 30 139 10.5 8 7.7 0 0 0 

6 0.1 30 139 17.1 13 16.5 1.30 1 1.9 

7 0.3 30 139 33.0 25 28.8 6.2 5 6.5 

8 0.5 30 139 101.1 13 341.7 32.1 4 110.2 

9 0.001 30 530 45.8 28 46.6 0 0 0 

10 0.01 30 530 57.0 41 45.9 0.3 0 0.5 

11 0.1 30 530 55.9 42 50.6 4.2 2 4.8 

12 0.3 30 530 73.3 50 68.0 14.0 8 13.6 

13 0.5 30 530 2075.5 1588 2109.5 702.1 532 724.1 

14 0.1 60 530 30.4 20 24.1 2.3 2 2.2 

15 0.3 60 530 33.4 24 25.9 6.1 6 4.6 

16 0.5 60 530 41.6 23 52.7 13.8 7 18.5 

17 0.1 90 530 12.3 10 8.2 0.6 0 1.1 

18 0.3 90 530 12.8 10 11.7 2.6 2 3.1 

19 0.5 90 530 14.1 11 12.5 3.7 2 3.8 
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Among these simulations with almost no reposts, higher variances in the number of reads 

are observed for the experiment IDs of 9-11. This is in line with the Facebook observation that “a 

post produced by a user with many friends has more variability in the audience size than one 

produced by a user with few friends” [31]. Here, part of the reason is due to the differences in the 

first publisher’s activity parameter. For example, in simulation #9 with zero reposts, it was 

observed that one repetition of the experiment had a very low activity parameter of 5%; for this 

reason, the post remained as the most recent post of the publisher and did not slide down the wall 

page. Consequently, more friends had chance to read this post. In this simulation, we had the 

highest number of reads which in turn increased the variance of the number of reads. 

Also, the time of publishing a note relative to other events at the time is another important 

factor to receive a high number of reads. In fact, the activity parameter and timing both represent 

the complexity and heterogeneity of users and their interaction within the system. We did not 

explicitly analyze the impact of the activity parameter in the number of reads. However we did 

observe that for a certain post length in cases where the post score is low, the friend count 

parameter has the greatest impact and the publisher’s activity is the second dominant parameter 

in determining the audience size. The reason is that, if the post is not interesting enough to be 

shared by others, it would only be read by the immediate friends of the publisher. So in order to 

increase the number of reads in this case, a higher friend count would help. Secondly, a lower 

activity level by the publisher keeps the post recent and top on their wall page. This in turn 

increases chances of being seen by others. 

The initial implication is that if one cannot make an attractive post with high interest, at 

minimum, one needs to have it posted by a user with large number of friends in order to reach its 

maximum audience. 
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Of further interest is knowing more about the importance of a post score versus a publisher’s 

friend count.  Assuming the note is interesting, the question is whether one should focus on 

finding a hub user with many friends to post it or should one improve the quality of note as much 

as possible. Consider the simulation IDs 6-8 and 11-13, all of which have the same post length 

but relatively high scores published by users with different friend counts. Among these 

experiments, ANOVA yielded a major effect of post score (F4.8 = 19.04, p < 0.01), a bit weaker 

but still strong effect of friend count (F6.86 = 18.43, p < 0.01) and major interaction effect on post 

score × friend count (F4.8 = 16.36, p < 0.01). We can conclude that in cases where the post 

interest and the friend count are large enough, the former parameter is more influential than the 

latter.  Keep in mind that friend count is still important, and one needs to consider the combined 

effect of both together. However, if one is able to find a user with an acceptable number of 

friends, it is recommended to focus more on post content rather that necessarily finding a hub 

user with many friends. This phenomenon implies that having a good seeder may help 

reach/saturate a local cluster of the network faster, but ultimately a higher post score is needed to 

reach further regions of the network. 

The next question is the trade-off between post quality and post length when we have a well-

connected user with relatively high number of friends to publish the desired post. To compare the 

impact of post score versus post length, for simulation IDs 11-19, the number of reads is shown 

as a heat-map in Fig. 5. According to the figure, post length dominates post score within all the 

range of post scores and lengths simulated. This means in order to reach a maximum audience, 

keeping the message brief is more significant rather than making an impressive but lengthy one. 

For example, by comparing the simulations #11 and #16, both of which have similar number of 

reads, it is observed that for a long note, more reposts (and consequently more time) is required 
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to reach a similar audience size of a short note with a lesser score.  Statistically speaking, for the 

simulation IDs 11-19, ANOVA yielded a strong effect of post score (F4.73 = 18.33, p < 0.01), a 

bit stronger effect of post length (F4.73 = 20.35, p < 0.01) and a significant interaction effect on 

post score × post length (F3.43 = 18.03, p < 0.01). Therefore both post length and post score are 

important properties, and their combined effect has to be considered when making a post; yet, 

depending on the situation, the post length can be considered of more importance as if the length 

extends over a certain threshold it severely affects the post reachability no matter what the post 

score is. The reason is that users generally do not spend much time to judge a post. For example, 

a post might be very amusing, but as it is lengthy a typical user never spend sufficient time to 

recognize true score of the post. 

 
Fig. 5.  Impact of Post Score versus Post Length on number of reads (medium to long notes) 

C.3.2 Study 2: Importance of Score versus Length in Short Posts 

After inferring that a post should not be too long if it is to propagate, in the second study, 12 

more scenarios were simulated to test a broad scale of different post scores versus relatively 

short post lengths. In this set of simulations, the user who publishes the post for first time is a 
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new user with a different position in the network and a subsequently changed local network 

structure. This ensures our results are not specific only to some local region of the network 

structure. 

This time, a total of 12 unique simulations were set up and each simulation was repeated 10 

times, for a total of 120 runs for two simulated days each. In each simulation, the post spread 

began after a 24-hour initial warm-up phase, and then one day later the outputs were saved and 

simulation ended. In these experiments, smaller post lengths of 10 and 30 seconds with higher 

chances of sharing were tested. The post score changed from 0.001 to 1 to study a broader scale 

of scores. The results of our second set of experiments are shown in Table IV. 

Table IV Results in second set of experemints after one day 

ID Post Score Post Length Friend Count No.  of Reads No. of Reposts 

Mean Median Std. Dev. Mean Median Std. Dev. 

20 0.001 30 319 33.8 28 25.4 0 0 0 

21 0.1 30 319 35.2 19 32.9 2.6 2 2.5 

22 0.25 30 319 48.4 41 26.4 7.6 7 3.9 

23 0.5 30 319 1857.2 58 2465.4 635.8 17 852.7 

24 0.75 30 319 7651.8 6670 8085.1 3815.3 3324 4035.3 

25 1 30 319 23559 23468 507.6 15325.6 15213 340.8 

26 0.001 10 319 46.7 46 12.3 0 0 0 

27 0.1 10 319 92.2 101 55.2 5.1 4 4.7 

29 0.25 10 319 120.7 91 95.7 18.1 10 18.9 

30 0.5 10 319 12449.9 16964 8,608 4077.9 5565 2,825.3 

31 0.75 10 319 32473.5 32297 1,007.3 15375 15256 457 

32 1 10 319 41165.8 41036 1071.6 25424.1 25330 587.5 

 

According to Table IV, as a post score increases from 0.25 to 0.5, a significant change in the 

number of reads is observed. Obviously, post score should likely have the greatest impact in 

general. For a more detailed comparison, the simulation is split into two subsections of low and 

high post scores. One heat-map for each part is shown in Fig. 6. From the heat-map on the left 

corresponding to low score posts, it can be seen that post length dominates the post score. On 
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average, all the scenarios of shorter (i.e., 10 seconds) posts reach comparable size or larger 

audiences than longer (i.e., 30 seconds) posts with any scores, as long as post score is not very 

high (less than 25%). This verifies the previous result with a different seeder and time to collect 

the result. However, for the heat-map on right, this inference does not hold true any longer. For 

higher score posts, shorter posts do not necessarily reach more users, and it depends on both post 

score and post length together. For example, simulation #25 with a post length of 30 seconds and 

score of 100% has reached a larger audience than simulation #30 with a shorter post length of 10 

seconds but lower score of 50%. Yet simulation #31 with a short post length of 10 seconds and 

score of 75% has larger audience than simulation #30. From an ANOVA perspective, a 

significant effect of post length (F6.88 = 190.99, p < 0.01), a more significant effect of post score 

(F3.19 = 293.77, p < 0.01) and a significant interaction effect on post score × post length (F3.37 = 

46, p < 0.01) is observed. Therefore, generally both post score and post length are very important 

in the success of a post propagating. However, the relationship with these two parameters and 

audience size is not linear. 

 
Fig. 6.  Impact of Post Score versus Post Length on number of reads (short notes) 

Assuming it would be desirable to explain impacts of each factor in the number of reads 

with a linear model, Table V shows the result of fitting a linear model to our second study. The 

linear regression model has an adjusted R2 of 76%. However, expectedly, the plot of residuals 

does not suggest a linear model as being a suitable model for these scenarios. The coefficients 
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statistics confirm our previous inference using ANOVA and heat-maps. According to Table V, 

considering a α significance level of 1%, the activity parameter does not have any significant 

impact on the number of reads with a p-value of 0.4. Both post score and post length have 

significant impacts. Post score has higher influence within all the simulations studied in the 

second set of simulations together. 

In order to obtain a better model of number of reads, each of the following (five) functions 

was applied to our model inputs: Inverse, Logarithm, Square root, Square and Cube. So instead 

of three inputs of Post Score, Post Length and Activity, there are now 3×6 = 18 inputs to choose 

from. The best linear model based on all these inputs was found to be a linear model of post 

score squared and inverse of post length. The new model has a better adjusted R2 of 81% with 

the coefficients shown in Table VI. Properties of over one million posts were saved after two 

days from the starting point of simulations in different runs for another linear regression.  The 

basic inputs were post score, post length and friend count. However, once again the five 

functions of Inverse, Logarithm, Square root, Square and Cube were applied to each of the basic 

inputs to find the best combination of inputs for the regression model. The best model was found 

to have an adjusted R2 of only 32%. Subsequently, posts with zero repost were excluded from 

our input data to have more coherent input data, which resulted in almost half a million posts 

remaining. With the objective to have only one function of each of the basic inputs as an input to 

our linear model, the best fitted model was found to be a linear model of post score squared, 

logarithm of post length and square root of friend count. This model has an adjusted R2 of 54%. 

The coefficients of the model are shown in Table VII. The scatterplot of standardized residuals 

versus standardized predicted value is shown in Fig. 7. Ideally it would be desirable to have a 
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uniform scattering of points around the zero reference line; but as the agent-based model is 

highly non-linear, a better linear model could not be fit to its outcome. 

 

Table V Coefficients of linear model of number of reads fitted to second study 

Model input Coefficients Std. Error Standardized 

Coefficients 

t Stat P-value 

Intercept (constant) 3552.302 1981.203  1.793 0.076 

Post Score* 33077.74 1788.742 0.820 18.492 2.2E-36 

Post Length* -441.586 63.51394 -0.308 -6.953 2.25E-10 

Activity 1923.83 2441.076 0.035 0.788 0.432 

* Significant at an alpha level of 0.01 

 

 

Table VI Coefficients of transformed inputs of linear model of number of reads fitted to second study 

Model input Coefficients Std. Error Standardized 

Coefficients 

t Stat P-value 

Intercept (constant) -9029.287 1353.794  -6.670 ≤0.001 

(Post Score)2 3.396 0.158 0.849 21.443 ≤0.001 

1 / (Post Length) 132908.250 17021.300 0.309 7.808 ≤0.001 

 

 

Table VII Coefficients of general model of number of reads for those posts for which number of 

reposts ≥ 1 

Model input Coefficients Std. Error Standardized 

Coefficients 

t Stat P-value 

Intercept (constant) 27952.530 69.463  402.410  

√ (Friend Count) 149.849 1.636 .094 91.583 ≤0.001 

Log (Post Length) -21236.924 42.333 -.510 -501.659 ≤0.001 

(Post Score)2 1.905 .004 .553 542.076 ≤0.001 
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Fig. 7.  Scatterplot of standardized residuals of linear model versus standardized predicted value of 

number of reads 

All the inputs have coefficients significantly different from zero. Additionally, by looking at 

the standardized coefficients, it is clear that generally both ‘logarithm of post length’ and ‘post 

score squared’ have significant impacts on number read. Yet post score squared is a stronger 

predictor. 

According to the second study, one needs to avoid lengthy posts, and the post still needs to 

have some minimum score. There are certain thresholds for post lengths and post scores that post 

properties should lie within. Initially, it is better to focus on post score to gain some interest and 

chances of sharing, then one should try to shorten the post length considering the limited time of 
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users. Lastly, when the message is brief enough, fine-tuning the post score can achieve better 

results than slightly reducing of post length.  

There is an uncommon difference between the median and average number of reads in 

simulation #23. The low median number of reads can suggest that a typical user may not read a 

long post. However if, with the help of good timing, users read a long (but interesting) post, the 

post would propagate very well through the network increasing the total number of reads. 

Therefore in simulation #23 when the timing is matched, we observe a high number of reads 

increasing the average number of reads, and when timing does not cooperate well, users show 

little interest in the post. 

C.3.2 Study 3: Comparison of two Seeding Strategies 

In the third and last study, the objective was to gain insight by comparing a classical seeding 

strategy of a small number of hub users with many friends versus seeding a large of number 

users with few friends. First, a special post was published by four randomly chosen users in the 

network, each of which has exactly 50 friends. Then, the simulation was repeated for two 

randomly chosen users with 100 friends each. The details are described below. 

All four users had a fixed activity level of 50%. At a certain time after the initial warm-up 

phase, they all shared a unique short post with 50% score and 10 seconds length. Then 24 

simulation hours after the spread, the numbers of reads were collected and saved. The simulation 

was repeated 10 times. Then the whole simulation was repeated for two more sets of four 

random users with exactly 50 friends, for a total of 30 runs for the 4×50-friend case. The same 

simulation was carried out for three different sets of two users with exactly 100 users each, for a 

total of 30 runs for the 2×100-friend case. The average number read for the 4×50-friend case and 
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the 2×100-friend case is 13300.7 and 9540.1, respectively. The statistics are shown in Table 

VIII. 

Table VIII Statistics of number of reads in third study 

Case Mean Std. Deviation Std. Error Mean 

4×50-friend 13300.73 8228.25 1502.27 

2×100-friend 9540.10  9096.65 1660.81 

 

The average results suggest that a mass of small seeders may broadcast a certain post better 

than a few hub users. However, assuming the more general case of not-equal variances for these 

two cases, one cannot reject the null hypothesis of having equal means in these two cases. 

Technically, the null cannot be rejected by t-test with a t stat of 1.679 and the degrees of freedom 

of 57.426. This is equivalent to a non-significant p-value of 0.099. In other words, the difference 

between the two cases is not statistically significantly different. 

To see the trend of message propagation, Fig. 8 plots the number of reads and number of 

reposts versus time for a run of simulation #13 on a log-log scale. All other simulations where 

the post is shared by some users have a similar trend. The only time required for the outbreak to 

propagation is the seconds required to read the post. Unlike other diffusion patterns such as 

product adoption or the spreads of infectious disease, this trend is not s-shaped for Facebook 

posts. In other words, there is no classical tipping point or epidemic threshold for post 

propagation after which we could expect an outbreak in the number read. The reasons are 

discussed in section C.4. This trend may sound surprising at first, yet it is consistent with real 

observations of Facebook. According to a select group of brand posts data of Facebook in 

November 2012, each post, on average, reached half of their target audience within 30 minutes 
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after publication [37]. Also a quite similar trend is reported for the number of retweets in Twitter 

[38]. 

Another surprising result is that the median number of reposts is zero. This means it is quite 

common that posts by a typical user on Facebook do not attain even a single repost. We confirm 

that there exist posts with high number of reposts in both Facebook and our agent-based model. 

These highly shared contents are mostly (high scored) posts published by popular pages, which 

can be thought of as hub users in our agent-based model. Yet many of the posts, especially the 

ones submitted by typical users receive few or very limited reposts. Most of the published results 

about social networks are generally focused on successful posts and their properties, and as such, 

statistics regarding the failed ones submitted by random usual users could not be found. The total 

distribution of number of reposts is shown in Fig. 9. This long-tailed distribution indicates only a 

few posts gain a huge number of reads. The distribution is also consistent on the surface with that 

of retweets (popularity) for twitter reported by [38]. Section C.4 discusses this consistency. 

 

Fig. 8.  Trend of message propagation 
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Fig. 9.  Reposts distribution 

Initially, we expected that having a score of 10% would be enough for a post to be broadcast 

and seen by everybody. Firstly, in this case, the average probability of reposting is 1/20. 

Secondly, when the post is published for the first time, only the immediate friends will see the 

post. The immediate friends should be online in a certain time period to catch the post. 

Therefore, if the friend count is not sufficient, the post will never have any chances to spread 

further. In other words, if the network were fully connected so that users observe the whole 

population, the reposting probability of 1/20 might have been adequate, however this is not the 

case in this agent-based model. 

C.4 Related Work and Discussion 

Diffusion is a core process in many areas such as energy flows in physics, disease spread in 

biology, behavioral contagion in sociology and product adoption in economics. Several 

researchers have studied aspects of this phenomenon in human systems. In human systems, a 

general way of social contagion is through the word-of-mouth (WOM) mechanism which is quite 

similar to spread of an infectious disease within a population. Below, the current simulation 
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results are discussed in relation to other common diffusion processes of product adoption 

(marketing), disease spread (epidemiology), and electronic networks. 

Within product adoption research, Moldovan et al. studied the importance of WOM to new 

product success [1]. In their research, a product score is divided into two dimensions of 

originality and usefulness of a product, and the number of online reviews is used as a proxy for 

the amount of WOM. Reference [3], using an ABM, studies the actual value of a seeding 

program for WOM in terms of market expansion and purchase acceleration for a certain product. 

Reference [30] attempted to predict users’ adoption of a given product on the Digg social news 

website. They studied the effect of network-level dynamics and changes in individual 

preferences for different topics, and proposed a viral marketing strategy which was tested with 

an agent-based model. Reference [39] studies social commerce where individual sellers are 

connected to each other through an online social network. Using time series analysis at the 

marketplace level and Bayesian statistical analysis at the shop level, they explore whether 

connecting the sellers to each other increase the sale, and how the position of a seller within the 

networks influences their value. Reference [40] studies impact of different connection patterns 

among individuals on the diffusion process in a European online social network. Using a hazard-

rate model, they investigate characteristics and local structure of potential adopters and their 

neighbours. 

Tirunillai and Tellis also confirm the importance of user-generated content as a type of 

WOM and in particular study the impact of online product reviews and ratings on stock market 

performance using multivariate time-series models [5]. Similarly, [41] finds that consumer 

generated online product ratings has a direct relation with the product sales; although the 

previously submitted ratings affect the future ratings. Reference [42] also investigates the 
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evolution of online reviews of books over time and sequence. Weblogs as a part of the larger set 

of online social media can also influence purchase/adoption of a product. An analytical model 

for a blogger is made and studied in [43]. In particular, they explain why blogs may link to 

rivals, and what the relative benefits and costs of such linking are. 

Goldenberg et al. study the role of hubs in the diffusion process of products over the 

Cyworld social networking site in Korea [44]. They define two types of innovator hubs who need 

little exposure to adopt a product and follower (social) hubs who are well-connected. Using an 

ABM, they analyzed the impact of each type on the market eventual size and the speed of 

adoption. 

Cellular automata modeling and aggregate level modeling together are used in [45] to study 

growth rate of a new product. By separating network externalities effects such as mass media and 

advertising from internal interactions (i.e., word of mouth through the network), they found a 

chilling effect on growth rate of a product. This is a “wait-and-see” state for a product when 

potential consumers wait for others to adopt a certain product and then decide whether to 

purchase or not. This partially explains why product adoption has an s-shaped growth rate. Thus 

growth of products can follow a two-stage process which includes a slow start due to the chilling 

effect and then a fast growth because of the bandwagon effect. However, a similar concept for 

post-sharing does not exist.  One does not need to see if others have shared a post to decide 

whether one should or not; basically because one is not purchasing a post with real currency.   

In the context of contagious disease, [46] studies SIR models of epidemic disease spread in 

networks. Rahmandad and Sterman compare AB and DE models of epidemic spread on different 

networks [47]. There are some similarities and differences between the spread of an electronic 

post and an infectious disease. The propagation is similar in the way in which it cascades through 
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the network. Unlike posts and similar to products, disease has an s-shaped spread rate (for basic 

review, see [48]). In a disease epidemic, the rate of people entering from a susceptible into the 

infected state depends on the number of people in other states (such as the infective state). As 

people become more and more infected, chance of transmission of disease is increasing until the 

epidemic threshold is passed and the disease rapidly spreads throughout the population. In our 

agent-based model, it is assumed that a post score, corresponding to chances of reposting, is 

constant. In epidemiology, a quicker recovery rate makes a smaller epidemic; it takes a longer 

time to happen as people recover faster and the number of infected in the beginning of the 

process is not enough to form an outbreak. In our agent-based model, users need to read a post 

completely (i.e., become infected) then may spread it. With a short post, a shorter time is 

expected for the outbreak to occur, and it has a higher peak, as the time needed to read the post is 

smaller and more people are likely to read it. During the infection period of the disease epidemic 

case, the chance of transmission of the disease is constantly present; so the epidemics with a 

slower recovery (removal) rate (i.e., a long infected period) that slowly kill people are more 

dangerous to the populations having more deaths at the end (for discussion see [48] pages 21-

22). In social networks, users generally share a post only once and their friends usually read the 

post once and decide whether to share or not. As the assumption is people do not share a post 

while reading it, a longer post (unlike a longer infected period of a disease) does not provide a 

better opportunity to spread the post. Lastly, the ultimate objective in disease modelling is 

mitigating against the spread of the disease such as targeted vaccinations as a means of achieving 

herd immunity; but in social networks, more spread and penetration are desired. 

Diffusion of applications in Facebook is studied in [49] using a customized commercial 

application about the movie industry to track user behaviour. Using hazard modeling, they test 
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effectiveness of passive-broadcast messaging versus active-personalized messaging. In another 

study on Facebook, susceptibility of various type of users (e.g., young, women, married etc.) to 

influence their adoption decisions is measured [50]. Application adoption and social influence in 

Facebook is also studied in [51] using fluctuation scaling (FS) method. They track popularity of 

a set of applications among all users in their dataset collected in 2007. Their observation is 

limited to the adoption of an application, and not necessarily the usage. Similarly, sharing a post 

needs an increased level of engagement, rather than simply reading it.  

Reference [52] analyzed the prevalence data reported by a computer virus for a time window 

of 50 months. They found the absence of an epidemic threshold for virus spread on scale-free 

networks due to an infinite connectivity effect phenomenon in large scale-free networks. This 

effect happens because of a heterogeneous rising and falling in the number of links of nodes in 

the scale-free graph. This factor is also applicable to the current agent-based model as the 

synthesized graph shares this feature of scale-free networks. 

There are various and sometimes conflicting recommendations regarding choosing the 

optimal set of users to publish a message (see [53] for summary of previous research). Reference 

[53] analyzes four different seeding strategies for both messages and products using two small-

scale field experiments and one real-life viral marketing campaign. Their four seeding strategies 

are: 1) seeding well-connected hub users; 2) seeding low-degree members, called the fringes; 3) 

seeding high-betweenness users, called the bridges that connect different sub-networks; and 4) 

random seeding. They find high-degree and high-centrality strategies are preferable in general. In 

contrast, [54] finds large cascades are driven by critical mass of individuals, but not necessarily 

influentials (hubs). In the current third simulation, some evidence in favor of this strategy of 

mass of individuals also emerged. However, the test was limited and the results were not 
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significantly different from seeding a few hub users. In summary, it is safe to conclude each 

strategy may work well under certain conditions. 

Furthermore, in the current agent-based model, by investigating properties of the most 

successful posts, it was found that as long as a post is not qualified enough to be reposted by 

typical users, it does not have any chance to diffuse across the whole network. In other words, 

relying only on reposts by active users (with high tendency to share) does not guarantee message 

propagation. Because wall pages of active users who repost many notes tend to be crowded with 

different notes, the note would only have a minimal chance to be read by someone else. 

Nevertheless, if the note is reposted by a selective hub user with many connections but low 

activity to post other notes, a significant growth in the number of reads and reposts will be 

achieved. As the post remains as the most recent post of the hub, it gains maximum exposure to 

the hub’s friends, although one still needs the post to be highly scored to be ultimately reposted 

by a critical mass of users.  Therefore, to achieve a maximum audience, it is recommended to 

produce the desired post and begin its publishing by different hubs who have many connections 

but (who) are quite discerning about their willingness to share other notes. 

Reference [55] analyzes the impact of the degree distribution of a network on adoption 

process, using an agent-based model. They discovered that while most researchers simply 

assume the adoption process propagates over the entire visible (overt) network, the actual active 

subset of the network over which the propagation occurs may have quite different properties 

from the entire network. They provided evidence that the degree distribution of the active 

network is generally different from that of the entire network. The degree distribution has a 

significant effect on contagion properties of nodes within the network.  
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In an inspiring paper by Lerman and Ghosh, the active network of users on Digg and Twitter 

is extracted, and then it is studied to see how the structure of the (active) network affects the 

dynamics of information flow on each network [38]. The general mechanism of the spread of 

information in both sites are similar to Facebook, where users watch their friends’ activity, and 

they may share/tweet/vote for a post to make the post visible to their own friends/fans/followers. 

The precise underlying details vary from case to case though. As mentioned in section C.3, the 

evolution of number of tweets received by each post in Twitter reported in [38] is utterly similar 

to that of reposts in the current work as displayed in Fig. 8; (successful) posts display a burst of 

growth at the beginning, and the growth saturates after a while. The point at which growth 

saturates is the cascade size indicating how far and wide the post has penetrated though the 

network. Reference [38] reports that Digg’s (active) social network of their dataset has a larger 

clustering coefficient than Twitter’s, meaning that its network is denser. As such, initially posts 

spread easier in the more highly interconnected Digg’s network, but they eventually spread more 

distance in Twitter’s less densely connected network. The distribution reported for the number of 

retweets (or reposts) in [38] is somewhat analogous to the distribution of number of reposts in 

the current agent-based model displayed in Fig. 9. Retweets distribution in Twitter has a small 

number of posts (or tweets) with almost zero retweets, followed by an exponential peak and then 

a gradual decrease of retweets to zero again, creating a long tail. This means a majority of posts 

gain a few (but non-zero) retweets in Twitter and very few posts exist with many retweets. Fig. 9 

states the same fact finding, except that it claims that the majority of posts in Facebook have 

almost zero reposts. The reason is that the Twitter dataset used in [38] does not include any non-

popular tweets (with low score). They collected only frequently-retweeted posts on Twitter using 

the Tweetmeme.com site at the time. In addition, tweets can only have a limited number of 
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characters. As such, they all can be considered as short-length posts as in the current agent-based 

model, with higher chances of being reposted. However the distribution reported in Fig. 9 

corresponds to all the posts with various length and score simulated within the agent-based 

model. 

Reference [56] employs an agent-based model to simulate reposting behaviour of users in 

the Twitter social network. They explicitly model the competition for humans’ limited attention 

among different posts (memes), and how it affects memes’ popularity. They developed a 

memory mechanism to reflect users’ past behaviour to what they would share in the future, as 

users are likely to share posts similar to what they shared before. Similar to the result we 

presented in this appendix, long-tailed distributions for memes’ popularity and lifetime are 

reported. They found extremely heterogeneous behaviour; a few memes are extremely successful 

while most of them die out quickly. Reference [57] proposes a coupled hidden Markov model to 

capture neighbour users’ influence on users’ posting activity. Their model is also tested on 

Twitter. 

An interesting study on information cascades on Digg by Steeg et al. revealed that a high 

level of clustering structure of the Digg network limits the overall growth of cascade [34]. In 

highly clustered networks, people are usually exposed to a certain post multiple times through 

multiple friends, which in turn lowers the epidemic threshold, speeding the spread up initially. 

However, the surprising effect reported by [34] is that repeated exposure to the same post does 

not encourage people to repost it. This is a fundamental difference between the spread of 

information and classical spread of products or diseases. Reference [34] shows this effect 

drastically limits the overall cascade/epidemic size. As an example, while many posts with a fast 

starting spread exist in their dataset, only one post about Michael Jackson’s death reached a 
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significant fraction of 5% of active Digg users. They observed that the effective number of 

people who have not been exposed to a post is gradually decreasing. In addition, other effects 

such as decay of visibility and novelty could be other reasons why the epidemic stops [34]. In 

one more study on Twitter, rapid decay of visibility combined with the limited attention of users 

are determined to be the primary reasons for preventing the growth of propagation of online 

information [9].  

The way the current model network described in this appendix is synthesized does not 

produce a high (and desired) level of clustering coefficient. This means that the number of reads 

for successful posts may have been overestimated. That being said, most successful posts in the 

current simulations end up reaching around 30% of the entire network. The percentage of viral 

posts is less than 2.5% of all the posts generated within the model. Moreover, it was discovered 

that all these posts had extremely high scores of mostly over 90% and short lengths of mostly 10-

15 seconds published by users with various friend counts. Precisely speaking, these viral posts 

have scores ranged from 70% to 100% with a mean and median of 89% and 91%, respectively. 

The post lengths are varied from 10 to 25 seconds with a mean and median of 15 and 14.5 

seconds, respectively. It implies that viral messages can be published by a user with low number 

of friends, but certainly various users including hubs would have to repost it during the spread. 

More importantly, the post must be brief while extremely highly qualified. We used a singular 

numerical value to represent a post score, but a post can have different aspects to be engaging to 

different kinds of people. There are various categories of posts: promotional offers/deals, advice 

and tips, warnings, amusing video clips, amazing pictures, personal news, motivating speeches, 

campaigns recalls etc. Thus, a score of 90% in our simulations represents a high quality post in a 

variety of features. But in reality, it is nearly impossible to make such a universally fascinating 
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post. Certainly, viral posts exhibit a variety of features. For example, death news of a famous 

celebrity has a wide range of viral features making it likely to go viral. Such a post has 

information, novelty, may contain stimulating quotes or represent a group of people’s mourning 

or respect. 

C.5 Conclusion and Limitations 

There has been a great deal of work on dissemination of information in online social 

networks especially on Twitter and Digg. Studies on application adoption in Facebook also exist. 

The work of this appendix presents a large scale stochastic agent-based approach for modeling 

wall post propagation within the Facebook network.  Network and other input parameters have 

been drawn from and tuned to published sources of Facebook statistics. Other studies on the 

realm of social media diffusion have confirmed the importance of various factors including 

underlying network structure, local network structure of following spreaders, influence degree 

and activity level of each spreader, type and novelty of a post and people’s response to repeated 

exposure. At the current stage, analyzing all these factors in a single study would be too complex 

or too generic. The agent-based platform created here is potentially capable of testing all factors 

by some code modifications.  In some cases, one would have to insert a few more parameters 

into the system, such as a social influence parameter for each person for example. 

In this study, various scenarios have been explored to investigate the impact of post length, 

post score, and the post publisher’s friend count on post diffusion.  It is observed that posts with 

small scores hardly ever spread farther than the immediate friends of the publisher, meaning that 

higher friend count for the publisher has a stronger impact on audience size than higher post 

score does. However, beyond a certain level of message quality, the post score has a larger 

influence on message propagation through the network than publisher’s friend count. This 
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intuitively means the content of a message is more important than who has delivered it. In cases 

with relatively medium post interests and medium friend counts where there definitely exists 

some reposting, the post length is the most influential parameter followed by the post score and 

the friend count as the second and third influential factors, respectively. This implies that 

creating a long post makes it boring and significantly affects its chances of getting shared by 

others. Whereas for relatively short posts, increasing the quality of post contributes more to the 

audience size than cutting the post length any shorter, which does not necessarily boost the 

growth of number of reads. The intuition behind this result is that people spend a minimum 

amount of time on each post, and once a post length is below that minimum length, there would 

be no need to make the post any shorter. Keeping these hints in mind could help marketers to 

find a balance between length and content of post making their ideal post advert for example.  

Adjustments are needed to study other online social networks using this agent-based model. 

For example, reconstructing the network, limiting post lengths and the way users look through 

the posts from friends have to be changed in order to study the Twitter social network. However, 

the results reported here may not be limited only to the Facebook online social network. Less 

intuitive findings about the dynamic of post spread mechanism such as lack of epidemic 

threshold in the propagation of information have been previously confirmed in other online 

social networks. Along with other work on seeding strategies, it is observed that both hub-

seeding and having a large number of individual seeders could result in having a viral post 

reaching an epidemic portion of population of at least a sub-region of the network graph. The 

simulations performed to compare these two strategies were limited to conclude a general 

statement though. 
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Achieving an ‘epidemic reach’ of the entire Facebook network is nearly impossible. People 

are online at different times and it is vital for a post to catch their attention when they are online. 

Assuming the timing can be handled through the interface design of online social networking 

websites, a viral post still needs to be highly scored in a variety of features. Each person is likely 

to become engaged in a certain category of posts. Modeling a post score based on a single scalar 

value may be an over simplistic assumption. A much more realistic way to define a post score is 

using a vector where each component describes post content in a different perspective. Then 

users’ activity parameters also need to be vectorized to capture the heterogeneity of population in 

different directions. Add to this the fact that certain categories of contents (e.g., politics, 

fashions, and sports) are being shared more on certain social networking sites (e.g., Twitter, 

Pinterest, and Facebook) [58]. The limitation in the current study is that an active user is likely to 

share any type/category of posts, and also a high-scored post has all the features of all sorts of 

appealing posts which cannot be true in practice. 

One more realistic extension of current research would be the insertion of dynamic scores 

for post. There are different ways and reasons to change a post’s score during the spread. A 

rational reason is that after users spend a few seconds on a post, they get a better idea of how 

interesting the post is. So they may decide to continue reading/watching the post or disregard it. 

This is especially true for video posts. Once the dynamic scoring feature is added into the model, 

one can let users share a post even before they read it completely. 

There are other limitations with the current study which bring opportunities for further 

extensions of this research. Sensitivity analyses for input parameters such as average post length 

or login rate were limited only to the primary stages of making the agent-based model. The 

parameters and distributions were tuned on the basis of a smaller network and Facebook’s known 
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statistics. The parameters were fixed once it was observed that the main agent-based model of 

the larger network had rational functionality in line with the conceptual model. Testing 

sensitivity of all the outputs to all input parameters on such a large set of data would require a lot 

of time and effort. Such reports could offer insights on what to expect if people begin spending 

twice as much time on Facebook for example, or investigate robustness of results across a range 

of parameters and distributions. In addition, the exact correlations, threshold values and 

interactive effects of simulation inputs (post length, post score and publisher’s friend count) still 

need to be determined through more simulations. 

One crucial direction for future work is a more comprehensive way of modeling the 

Facebook news feed ranking algorithm, which used to be called the EdgeRank algorithm. Our 

current model of EdgeRank emphasizes Recency of posts too highly, meaning that if a post is 

recently published, it has the highest chance to be seen by users. Facebook tries to identify those 

who have most interaction with a user. Currently the algorithm is considering numerous factors 

(including recency) to decide which posts to show for each person in their home news page. For 

example, if one likes or comments on posts by a person/group, chances of receiving more posts 

from those persons/groups will be increased. So, modeling these two Facebook features could be 

an essential feature to complement the current agent-based model. 
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