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We study the properties of locally uniformly differentiable functions on N, a non-Archimedean
field extension of the real numbers that is real closed and Cauchy complete in the topology
induced by the order. In particular, we show that locally uniformly differentiable functions are
C1, they include all polynomial functions, and they are closed under addition, multiplication, and
composition. Then we formulate and prove a version of the inverse function theorem as well as a
local intermediate value theorem for these functions.

1. Introduction

We start this section by reviewing some basic terminology and facts about non-Archimedean
fields. So let F be an ordered non-Archimedean field extension of R. We introduce the
following terminology.

Definition 1.1 (∼, ≈, �, SF , λ). For x, y ∈ F∗ := F \ {0}, we say x ∼ y if there exist n,m ∈ N

such that n|x| > |y| and m|y| > |x|, where | · | denotes the usual absolute value on F:

|x| =
{
x if x ≥ 0,
−x if x < 0.

(1.1)

For nonnegative x, y ∈ F, one says that x is infinitely smaller than y andwrite x � y if nx < y
for all n ∈ N, and we say that x is infinitely small if x � 1 and x is finite if x ∼ 1; finally, we
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say that x is approximately equal to y and write x ≈ y if x ∼ y and |x − y| � |x|. We also set
λ(x) = [x], the class of x under the equivalence relation ∼.

The set of equivalence classes SF (under the relation ∼) is naturally endowed with an
addition via [x] + [y] = [x · y] and an order via [x] < [y] if |y| � |x| (or |x| � |y|), both of
which are readily checked to be well defined. It follows that (SF,+, <) is an ordered group,
often referred to as the Hahn group or skeleton group, whose neutral element is [1], the class
of 1. It follows from the previous part that the projection λ from F∗ to SF is a valuation.

The theorem of Hahn [2] provides a complete classification of non-Archimedean
extensions of R in terms of their skeleton groups. In fact, invoking the axiom of choice, it
is shown that the elements of any such field F can be written as formal power series over
its skeleton group SF with real coefficients, and the set of appearing exponents forms a well-
ordered subset of SF .

From general properties of formal power series fields [3, 4], it follows that if SF is
divisible, then F is real closed; that is, every positive element of F is a square in F and every
polynomial of odd degree over F has at least one root in F. For a general overview of the
algebraic properties of formal power series fields, we refer to the comprehensive overview
by Ribenboim [5], and for an overview of the related valuation theory, the book by Krull [6].
A thorough and complete treatment of ordered structures can also be found in [7].

Throughout this paper, we will denote by N any totally ordered non-Archimedean
field extension of R that is complete in the order topology and whose skeleton group SN
is Archimedean, that is, a subgroup of R. The coefficient of the qth power in the Hahn
representation of a given x will be denoted by x[q], and the number d will be defined by
d[1] = 1 and d[q] = 0 for q /= 1. It is easy to check that, for q ∈ SN, 0 < dq � 1 if and only if
q > 0, and dq � 1 if and only if q < 0; moreover, x ≈ x[λ(x)]dλ(x) for all x /= 0.

The smallest such field N is the field L of the formal Laurent series whose skeleton
group is SL = Z, and the smallest such field that is also real closed is the Levi-Civita field
R, first introduced in [8, 9]. In this latter case SR = Q, and for any element x ∈ R, the
set of exponents in the Hahn representation of x is a left-finite subset of Q; that is, below
any rational bound r there are only finitely many exponents. The Levi-Civita field R is of
particular interest because of its practical usefulness. Since the supports of the elements of
R (when viewed as maps from SR = Q into R) are left-finite, it is possible to represent these
numbers on a computer [1]. Having infinitely small numbers, the errors in classical numerical
methods can be made infinitely small and hence irrelevant in all practical applications.
One such application is the computation of derivatives of real functions representable on
a computer [10], where both the accuracy of formula manipulators and the speed of classical
numerical methods are achieved. For a review of the Levi-Civita field R, see [11, 12] and the
references therein.

In the wider context of valuation theory, it is interesting to note that the topology
induced by the order on N is the same as that introduced via the valuation λ, as shown
in Remark 1.2. It follows therefore that the field N is just a special case of the class of fields
discussed in [13].

Remark 1.2. The mapping Λ : N × N → R, given by Λ(x, y) = exp(−λ(x − y)), is an
ultrametric distance (and hence a metric); the valuation topology it induces is equivalent
to the order topology (we will use τv to denote either one of the two topologies in the rest of
the paper). If A is an open set in the order topology and a ∈ A, then there exists r > 0 in N
such that, for all x ∈ N, |x − a| < r ⇒ x ∈ A. Let l = exp(−λ(r)); then we also have that, for all
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x ∈ N, Λ(x, a) < l ⇒ x ∈ A, and hence A is open with respect to the valuation topology. The
other direction of the equivalence of the topologies follows analogously.

In this paper, we will study the properties of locally uniformly differentiable functions
on N, thus expanding on the work done in [14]. In particular, we will show that this class
of functions is closed under addition, multiplication, and composition of functions. Then
we will state and prove a more general version of the inverse function theorem than that
proved in [14], as well as a local intermediate value theorem for N-valued locally uniformly
differentiable functions on N. The stronger condition (local uniform differentiability) on the
function than that of the real case is needed for the proof of both theorems because of the total
disconnectedness of the fieldN in the order topology.

2. Preliminaries

In this section we review some of the topological properties of the field N which helps
the reader understand the differences between N and R. We begin this with the following
definition.

Definition 2.1. Let A ⊂ N. Then we say that A is compact in (N, τv) if every open cover of A
in (N, τv) has a finite subcover.

Remark 2.2. Since τv is induced by a metric on N, namely, the valuation metric Λ mentioned
in the Introduction, it follows by the Borel-Lebesgue Theorem (see, e.g., [15, Section 9.2]) that
A is compact in (N, τv) if and only if A is sequentially compact.

Theorem 2.3. (N, τv) is a totally disconnected topological space. It is Hausdorff and nowhere locally
compact. There are no countable bases. The topology induced to R is the discrete topology.

Proof. Let A ⊂ N contain more than one point, and let a/= b in A be given. Without loss of
generality, we may assume that a < b. Let

G1 = {x ∈ N : |x − a| � b − a}, G2 = N\G1. (2.1)

ThenG1 andG2 are disjoint and open in (N, τv), a ∈ G1∩A and b ∈ G2∩A, andA ⊂ G1∪G2 =
N. This shows that any subset of (N, τv) containing more than one point is disconnected,
and hence (N, τv) is totally disconnected. It follows that (N, τv) is Hausdorff. That (N, τv) is
Hausdorff also follows from the fact that it is a metric space ([16, p. 66, Problem 7(a)]).

To prove that (N, τv) is nowhere locally compact, let x ∈ N be given and let U be a
neighborhood of x. We show that the closure U of U is not compact. Let ε > 0 in N be such
that (x − ε, x + ε) ⊂ U and consider the sets

M−1 =
{
y ∈ N : y < x or y − x � d · ε},

Mn = (x + (n − 1)d · ε, x + (n + 1)d · ε) for n = 0, 1, 2, . . . ,
(2.2)

where d is the infinitely small positive number defined in the introduction. Then it is easy
to check that Mn is open in (N, τv) for all n ≥ −1, and ⋃∞

n=−1 Mn = N; in particular,
U ⊂ ⋃∞

n=−1 Mn. But it is impossible to select finitely many of the Mn’s to cover U because



4 ISRN Mathematical Analysis

each of the infinitely many elements x + nd · ε ofU, n = −1, 0, 1, 2, . . ., is contained only in the
set Mn.

There cannot be any countable bases because the uncountably many open sets MX =
(X − d,X + d), with X ∈ R, are disjoint. The open sets induced on R by the sets MX are just
the singletons {X}. Thus, in the induced topology, all sets are open and the induced topology
is therefore discrete.

As an immediate consequence of the fact that (N, τv) is totally disconnected, it follows
that, for any x0 ∈ N, the connected component of x0 is {x0}. Moreover, there are sets that are
both open and closed, as we will show hereinafter.

Definition 2.4. LetΩ ⊂ N. Then we say thatΩ is clopen in (N, τv) if it is both open and closed.

Proposition 2.5. For any x0 ∈ N and for any a > 0 in N, the set Ω = {x : |x − x0| � a} is clopen
in (N, τv).

Proof. Let x ∈ Ω be given. For all y ∈ (x − ad, x + ad), we have that

∣∣y − x0
∣∣ ≤ ∣∣y − x

∣∣ + |x − x0| < ad + |x − x0| � a. (2.3)

Thus, (x − ad, x + ad) ⊂ Ω and hence Ω is open.
Now let x ∈ N \Ω. Then for all y ∈ (x − ad, x + ad), we have that

∣∣y − x0
∣∣ ≥ ∣∣∣∣y − x

∣∣ − |x − x0|
∣∣ ≈ |x − x0| ��� a; (2.4)

so y ∈ N\Ω. Thus, (x−ad, x+ad) ⊂ N\Ω and henceN\Ω is open. That is,Ω is closed.

Similarly we can show that the sets {x : |x − x0| ∼ a} and {x : |x − x0| ≈ a} are clopen
for any x0 ∈ N and any a > 0 in N.

Proposition 2.6. Let x0 ∈ N be given and letΩ be a neighborhood of x0. Then there is a clopen set L
such that x0 ∈ L ⊂ Ω.

Proof. Let ε > 0 in N be such that (x0 − ε, x0 + ε) ⊂ Ω. Let L = {x ∈ N : |x − x0| � ε}. Then L
is clopen by Proposition 2.5 and x0 ∈ L ⊂ (x0 − ε, x0 + ε) ⊂ Ω.

It follows that the clopen sets form a base for the order topology. Moreover, the quasi-
component of any x0 ∈ N is {x0}.

As an immediate consequence of the fact that (N, τv) is nowhere locally compact, we
obtain the following result.

Corollary 2.7. For all a < b inN, none of the intervals (a, b), (a, b], [a, b), or [a, b] are compact in
(N, τv).

Since τv is induced on N by the order, we define boundedness of a set in (N, τv) as
follows.
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Definition 2.8. Let A ⊂ N. Then we say that A is bounded in (N, τv) if there exists M > 0 in
N such that |x| ≤ M for all x ∈ A.

Proposition 2.9. Let A be compact in (N, τv). Then A is closed and bounded in (N, τv). Moreover,
A has an empty interior in (N, τv); that is,

int(A) := {a ∈ A : ∃r > 0 in N � (a − r, a + r) ⊂ A} = ∅. (2.5)

Proof. That A is closed in (N, τv) follows from the fact that (N, τv) is a Hausdorff topological
space and A is compact in (N, τv) (see [17, p. 36]).

Now we show that A is bounded in (N, τv). For each n ∈ N, let Gn = (−d−n, d−n).
Then, for each n ∈ N, Gn is open in (N, τv). Moreover, since the skeleton group of N is
Archimedean it follows that A ⊂ ⋃

n∈N
Gn = N. Since A is compact in (N, τv), we can choose

a finite subcover; thus, there ism ∈ N and there exist j1 < j2 < · · · < jm in N such that

A ⊂
m⋃
l=1
Gjl = Gjm =

(−d−jm , d−jm). (2.6)

It follows that |x| < d−jm for all x ∈ A, and hence A is bounded in (N, τv).
Finally, we show that int(A) = ∅. Assume not. Then there exist a < b in A such that

[a, b] ⊂ A. Since [a, b] is a closed subset of the compact set A, it follows that [a, b] is compact
in (N, τv), which contradicts Corollary 2.7.

The following examples show that there are (countably infinite) closed and bounded
sets that are not compact while there are uncountable sets that are compact in (N, τv).

Example 2.10. LetA = [0, 1] ∩Q. Then clearly,A is countably infinite and bounded in (N, τv).
We show that A is closed in (N, τv). Let x ∈ N \ A be given and let G0 = (x − d, x + d).
If G0 ∩ A/= ∅, then there exists q ∈ A such that G0 ∩ A = {q}. Let r = |q − x| and let
G = (x − r, x + r). Then G is open in (N, τv) and G ∩ A = ∅. Thus, N \A is open, and hence
A is closed in (N, τv).

Next we show that A is not compact in (N, τv). For each q ∈ A, let Gq = (q − d, q + d).
Then Gq is open in (N, τv) for each q and A ⊂ ⋃

q∈A Gq, but we cannot select a finite subcover
since each t ∈ A is contained only in Gt.

Example 2.11. Let CN denote the Cantor-like set constructed in the same way as the standard
real Cantor set C; but instead of deleting the middle third, we delete from the middle an open
interval (1 − 2d) times the size of each of the closed subintervals of [0, 1] at each step of the
construction. Then CN is compact in (N, τv).

It turns out that if we view N as an infinite dimensional vector space over R, then τv
is not a vector topology; that is, (N, τv) is not a linear topological space.

Theorem 2.12. τv is not a vector topology.

Proof. Assume to the contrary that (N, τv) is a vector topology. Then, by continuity of scalar
multiplication, there exists an open setOR ⊂ R and there exists an open setON ⊂ N such that
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αx ∈ (1 − d, 1 + d) for all α ∈ OR and for all x ∈ ON. Let α0 ∈ OR and x0 ∈ ON be given. Since
OR is open, there exists r > 0 in R such that (α0 − 2r, α0 + 2r) ⊂ OR. Hence

α0x0 ∈ (1 − d, 1 + d), (α0 + r)x0 ∈ (1 − d, 1 + d). (2.7)

Thus,

r|x0| = |(α0 + r)x0 − α0x0| < 2d, (2.8)

which contradicts the fact that r|x0| � 2d, since both r and |x0| are finite and d is infinitely
small.

Since any normed vector space, with the metric topology induced by its norm, is a
linear topological space ([18, Proposition III.1.3]), we readily infer from Theorem 2.12 that
there can be no norm onN that would induce the same topology as τv on N.

We finish this section with the following criterion for convergence for an infinite series,
which does not hold for real numbers series.

Proposition 2.13. For each n ∈ N, let xn be an element of N. Then the series
∑∞

n=1 xn converges if
and only if the sequence (xn) converges to zero.

Proof. Assume that
∑∞

n=1 xn converges, and let (yn) denote the sequence of partial sums of the
series: yn =

∑n
i=1 xi. Thus (yn) converges and hence it is Cauchy. Now let ε > 0 inN be given.

Then there exists N ∈ N such that for each n,m > N we have that |yn − ym| < ε. It follows
that |xn+1| = |yn+1 − yn| < ε for all n > N or, equivalently, |xn| < ε for all n > N + 1. Hence the
sequence (xn) converges to zero.

Now assume that the sequence (xn) converges to zero. Let (yn) be the sequence of
partial sums of the series

∑∞
n=1 xn and let ε > 0 be given in N. Then there is an N ∈ N such

that |xn| < dε for all n > N. Thus, for all n > m > N, we have that |yn−ym| = |∑n
i=m+1 xi| < (m−

n)dε � ε. Thus (yn) is Cauchy, and hence
∑∞

n=1 xn converges since (N, τv) is complete.

3. Local Uniform Continuity

In this sectionwe introduce the concept of local uniform continuity of a function from a subset
of N to N and study properties of such functions that will be relevant to our discussion
of locally uniformly differentiable functions later in Section 4. We start with the following
definitions.

Definition 3.1. Let A ⊂ N, let f : A → N, and let x0 ∈ A be given. Then one says that f is
continuous at x0 if for every ε > 0 there exists δ > 0 such that |f(x) − f(x0)| < ε whenever
x ∈ A and |x − x0| < δ.

Definition 3.2. LetA ⊂ N, let f : A → N, and let x0 ∈ A be given. Then one says that f locally
uniformly continuous at x0 if there is a neighborhood Ω of x0 in A such that f is uniformly
continuous on Ω. That is, for every ε > 0, there exists δ > 0 such that |f(y) − f(x)| < ε
whenever x, y ∈ Ω and |y − x| < δ.
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Exactly as in real calculus, one can easily show that if f, g : A → N are (locally
uniformly) continuous at x0 ∈ A and if α ∈ N, then f + αg is (locally uniformly) continuous
at x0. Moreover, if A,B ⊂ N and if f : A → B is (locally uniformly) continuous at x0 ∈ A
and g : B → N is (locally uniformly) continuous at f(x0), then g ◦ f : A → N is (locally
uniformly) continuous at x0.

Lemma 3.3. Let x0 ∈ N be given and let Ω be a neighborhood of x0. Then there exist sequences (xn)
and (yn) as well as mutually disjoint clopen setsUn and U0 and a continuous function f such that

(1) the set {xn, yn : n ∈ N} has no limit point;

(2) limn→∞|xn − yn| = 0;

(3) x0 /∈ {xn, yn : n ∈ N};
(4) xn ∈ Un for each n ∈ N ∪ {0};
(5) yn /∈ Um for any n,m ∈ N;

(6) f(∪n∈NUn) = {1}, f(N\ ∪n∈NUn) = {0}.

Proof. Since N is not compact, there is a sequence (xn) ⊂ Ω that has no limit point in N.
Without loss of generality, we can take x0 /∈ {xn : n ∈ N} since {xn : n ∈ N} \ {x0} will still
have no limit point. For each n ∈ N, let yn ∈ N be such that |yn − xn| < dn and yn /=xm for any
n ∈ N and m ∈ N ∪ {0}. Since (dn) is a null sequence in N, it follows that |yn − xn| → 0 as
n → ∞. Assume that {xn, yn : n ∈ N} has a limit point in N and let c be such a limit point.
Since (xn) has no limit point, there is an ε > 0 such that (c − ε, c + ε) ∩ {xn : n ∈ N} = ∅.
There exists N ∈ N such that, for all n ≥ N, |yn − xn| < ε/2. Since c is the limit point of
{xn, yn : n ∈ N}, there must be M > N such that yM ∈ (c − ε/2, c + ε/2). But then |xM − c| ≤
|xM − yM| + |yM − c| < ε/2 + ε/2 = ε. This is a contradiction. Hence {xn, yn : n ∈ N} has no
limit point.

Since {xn, yn : n ∈ N} has no limit point, there exist U′
n and U′

0 such that x0 ∈ U′
0,

{xn, yn : n ∈ N}∩U′
n = {xn} and {xn, yn : n ∈ N}∩U′

0 = ∅. For each n ∈ N∪{0} let εn > 0 inN be
such that εn ≤ dn and (xn−εn, xn+εn) ⊂ U′

n. Then (x0−ε0, x0+ε0) and all of (xn−εn/2, xn+εn/2),
n ∈ N, are mutually disjoint open sets. By Proposition 2.6, there are clopen neighborhoodsUn

of xn such that Un ⊂ (xn − εn/2, xn + εn/2) and a clopen neighborhood U0 of x0 such that
U0 ⊂ (x0 − ε0/2, x0 + ε0/2).

⋃∞
n=1 Un is open as it is the union of open sets, but it is also

closed as we will show hereinafter. Let x ∈ cl(
⋃∞

n=1 Un) be given. Then there exists a sequence
(zm) ⊂ ⋃∞

n=1 Un such that zn → x. (xn) has no limit points, so x is separated from (xn).
Therefore, there exists N ∈ N such that (x − dN, x + dN) ∩ {xn : n ∈ N} = ∅. Moreover, there
exists M ∈ N such that for every m ≥ M, |zm − x| < (1/2)dN . It follows that |zm − xk| ≥
||xk − x| − |zm − x|| > dN − (1/2)dN = (1/2)dN � dk for all k > N and for all m ≥ M.
Uk ⊂ (xk − dk, xk + dk), for each k ∈ N; it follows that {zm : m ≥ M} ∩⋃∞

k=N+1 Uk = ∅. That is,
{zm : m ≥ M} ⊂ ⋃N

k=1 Uk which is a finite union of closed sets and hence is itself closed. Since
zm → x and {zm : m ≥ M} ⊂ ⋃N

k=1 Uk which is closed, it follows that x ∈ ⋃N
k=1 Uk ⊂ ⋃∞

k=1 Uk.
Thus,

⋃∞
k=1 Uk = cl(

⋃∞
k=1 Uk) and hence

⋃∞
k=1 Uk is closed. Define f on N as follows:

f(x) =

⎧⎪⎨
⎪⎩
1 if x ∈

∞⋃
n=1

Un,

0 otherwise.
(3.1)

Then f is continuous on N because
⋃∞

n=1 Un is clopen.
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In the real case, any function that is continuous on a neighborhood is also locally
uniformly continuous on that neighborhood. This property does not hold in non-Archime-
dean fields.

Theorem 3.4. Let x0 ∈ N be given and let Ω be a neighborhood of x0. Then there is a continuous
function f : Ω → N that is not locally uniformly continuous at x0.

Proof. Let Ω1 = Ω ∩ (x0 − d, x0 + d) and apply Lemma 3.3 to x0 and Ω1 to get f1, U1, (x1,n),
and (y1,n) which correspond to f , U0, (xn), and (yn), respectively, in that lemma. Let Ω2 =
U1 ∩ (x0 − d2, x0 + d2) and apply Lemma 3.3 to x0 and Ω2 to get f2, U2, (x2,n), and (y2,n).
Continuing inductively, we can apply Lemma 3.3 to x0 and Ωk+1 = Uk ∩ (x0 − dk+1, x0 + dk+1)
in order to getUk+1, fk+1, (xk+1,n), and (yk+1,n). The resulting fk’s satisfy fk(yl,n) = 0 for every
k, l, n ∈ N and fk(xl,n) = δk,l (the Kronecker delta) for every k, l, n ∈ N. Let f =

∑∞
k=1 d

kfk,
which converges (pointwise), by Proposition 2.13, since |dkfk(x)| ≤ dk → 0 as k → ∞ for all
x ∈ Ω.

To show that f is continuous on Ω, let t ∈ Ω be given. Let ε > 0 in N be given and
let N ∈ N be such that dN � ε. For each n < N, let δn > 0 be such that |fn(x) − fn(t)| < dN

whenever x ∈ Ω and |x − t| < δn, which is possible since each fn is continuous at t. Let
δ = min{δn : n < N}. Then for all x ∈ Ω satisfying |x − t| < δ, we have that

∣∣f(x) − f(t)
∣∣ =

∣∣∣∣∣
∞∑
n=1

dn(fn(x) − fn(t)
)∣∣∣∣∣ ≤

∣∣∣∣∣
N∑
n=1

dn(fn(x) − fn(t)
)∣∣∣∣∣

+

∣∣∣∣∣
∞∑

n=N+1

dnfn(x)

∣∣∣∣∣ +
∣∣∣∣∣

∞∑
n=N+1

dnfn(t)

∣∣∣∣∣ ≤
N∑
n=1

dn
∣∣∣dN

∣∣∣
+

∣∣∣∣∣
∞∑

n=N+1

dn

∣∣∣∣∣ +
∣∣∣∣∣

∞∑
n=N+1

dn

∣∣∣∣∣ < dN + dN + dN � ε.

(3.2)

Thus, f is continuous at t, for all t ∈ Ω, and hence f is continuous on Ω.
Now we show that f is not locally uniformly continuous at x0. Let Δ be a neigh-

borhood of x0, let M ∈ N be such that (x0 − dM, x0 + dM) ⊂ Δ, and let ε = (1/2)dM. So
ΩM ⊂ (x0 − dM, x0 + dM) ⊂ Δ. It follows that xM,n ∈ ΩM ⊂ Δ and yM,n ∈ ΩM ⊂ Δ are such
that |yM,n − xM,n| → 0 as n → ∞, but

∣∣f(yM,n

) − f(xM,n)
∣∣ =

∣∣∣∣∣
∞∑
k=1

dk(fk(yM,n

) − fk(xM,n)
)∣∣∣∣∣ = dM > ε. (3.3)

Therefore f is not locally uniformly continuous at x0.

One can in fact show that there are continuous functions which are not locally uni-
formly continuous without using the property of total disconnectedness of N. By using the
method prescribed previously, the derivatives of the constructed functions are calculated eas-
ily, and this will prove useful when dealing with local uniform differentiability in Section 4.



ISRN Mathematical Analysis 9

Example 3.5. In the following, we will provide an explicit example of a function which is
continuous but not locally uniformly continuous. Imitating the proof of Theorem 3.4, we let

xm,n = ndm,

ym,n = ndm + dn+m,

Um,n =
{
x ∈ N : |x − ndm| �

∼
dm+m+1

}
,

Um,o =
{
x ∈ N : |x| �

∼
dm+1

}
,

(3.4)

and let

f(x) =

{
dm if x ∈ Um,n for some m,n ∈ N,

0 otherwise.
(3.5)

Then f is well defined on N since the Um,n’s are mutually disjoint sets. We will show that f
is continuous onN but f is not locally uniformly continuous at 0. Let t ∈ N be given. We will
distinguish the following three cases.

Case 1 (t < 0). In this case, the function f is constant on the open set (−∞, 0) containing t,
and hence f is continuous at t.

Case 2 (t > 0). Let M ∈ N be such that dM+1 � t �
∼

dM. Then t ∈ UM−1,0 but t /∈ UM,0. Let

Δ = UM−1,0 \UM,0. Then Δ is clopen, and
⋃∞

n=1 UM,n ⊂ Δ is also clopen. f(
⋃∞

n=1 UM,n) = {dM}
and f(Δ \ ⋃∞

n=1 UM,n) = {0}. Therefore f is continuous on Δ since f is constant on disjoint
open sets that cover Δ. Hence f is continuous at t ∈ Δ.

Case 3 (t = 0). Let ε > 0 inN be given and letM ∈ N be such that dM � ε. Let δ = dM+1. Then,
for |x| < δ, we have that x /∈ Uk,n for all k < M and every n ∈ N. So |f(x) − f(0)| ≤ dM � ε.
This shows that f is continuous at t = 0.

Thus, f is continuous at t for all t ∈ N and hence f is continuous on N. To see that f
is not locally uniformly continuous at 0, let Ω be any neighborhood of 0. Let M ∈ N be such
that (−dM, dM) ⊂ Ω and let ε = (1/2)dM. Then the sequences (xM,n) and (yM,n) in Ω defined
previously are such that |yM,n−xM,n| = dn+M → 0 as n → ∞, but |f(yM,n)−f(xM,n)| = dM > ε.
Thus, for every neighborhood Ω of 0, there exists ε0 > 0 such that for each δ > 0, there are
x, y ∈ Ω such that |y − x| < δ while |f(y) − f(x)| ≥ ε0, which shows that f is not locally
uniformly continuous at 0.

4. Local Uniform Differentiability

Definition 4.1. Let A ⊂ N, let f : A → N, and let x0 ∈ A be given. Then we say that f is
locally uniformly differentiable (LUD) at x0 if there is a neighborhood Ω of x0 in A such that
for every ε > 0, there exists δ > 0 such that |f(y) − f(x) − f ′(x)(y − x)| < ε|y − x| whenever
x, y ∈ Ω and|y − x| < δ.
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Definition 4.2. Let A ⊂ N and let f : A → N. Then we say that f is locally uniformly
differentiable (LUD) on A if f is locally uniformly differentiable at x for all x ∈ A.

Definition 4.3. Let A ⊂ N, let f : A → N, and let k ∈ N be given. Then we say that f is LUDk

if kth derivative of f , f (k), exists and f (l) is LUD on A for each l ∈ {0, 1, . . . , k − 1}.
The following two results follow readily from Definition 4.3.

Proposition 4.4. LetA ⊂ N and let f : A → N be LUDk. Then f (n) is LUDl onA for all l ≥ 1 and
n ≥ 0 satisfying l + n ≤ k.

Proposition 4.5. Let l ∈ N be given, letA ⊂ N, and let f : A → N be such that f is LUDl and f (l)

is LUD on A. Then f is LUDl+1 on A.

A noteworthy property of local uniform differentiability is that it is not inherited by
the function from its derivatives, nor passed from the function onto its derivatives. Indeed,
the following is an explicit example of a function whose derivative is everywhere zero, but it
is not itself locally uniformly differentiable.

Example 4.6. Let xm,n, ym,n, and Um,n be as in Example 3.5. Define g : N → N by

g(x) =

{
(n − 1)2d2m if x ∈ Um,n for some m,n ∈ N,

0 otherwise.
(4.1)

Then g is well defined since the Um,n are mutually disjoint. Let x ∈ N be given. If x ∈ Um,n

for some m,n ∈ N, then x ≈ ndm and hence |g(x)| = (n − 1)2d2m < |x|2. Also, if x /∈ Um,n for
any m,n ∈ N, then |g(x)| = 0 < |x|2. Therefore, |g(x)| < |x|2 for all x ∈ N.

Note that g is locally constant on N \ {0} and hence g ′ = 0 on N \ {0}. We will show
that g is differentiable at 0 with g ′(0) = 0 too. So let ε > 0 in N be given. Let δ = ε. Then for
0 < |x| < δ, we have that

∣∣∣∣g(x) − g(0)
x

∣∣∣∣ =
∣∣∣∣g(x)x

∣∣∣∣ < |x| < δ = ε. (4.2)

This shows that g is differentiable at 0 with g ′(0) = 0. Altogether, g ′ = 0 on N. Therefore g is
C∞ on N with g(k) = 0 for all k ∈ N.

Now we show that g is not LUD at 0. Consider the sequences (xn,n)n∈N
and (yn,n)n∈N

,
where xn,n = ndn and yn,n = ndn + d2n. Both of these sequences converge to zero. Moreover,

∣∣yn,n − xn,n

∣∣ = d2n −→ 0 as n −→ ∞, (4.3)

but

∣∣g(yn,n

) − g(xn,n)
∣∣ = (n − 1)2d2n ≥ d2n =

∣∣yn,n − xn,n

∣∣ for n ≥ 2. (4.4)

Thus, for any neighborhood Ω of 0, ε0 = 1, and for any δ > 0, there are y, x ∈ Ω such that
|y − x| < δ, but |g(y) − g(x) − g ′(x)(y − x)| ≥ |y − x|. This shows that g is not LUD at 0.
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Example 4.6 shows that the property LUD is not necessarily inherited from the
derivatives of the function, since g ′ = 0 is LUD∞. Here is another example that shows that the
LUD property is not passed on from a function to its derivatives.

Example 4.7. Let f : N → N be given by

f(x) =

{
xdλ(x) if x /= 0,
0 if x = 0.

(4.5)

We will show that f is LUD on N with derivative

f ′(x) = g(x) =

{
dλ(x) if x /= 0,
0 if x = 0,

(4.6)

and then we will show that f ′ is not LUD by showing that it is not LUD at 0. So let x0 /= 0 be
given. Let Ω = {x ∈ N : x ∼ x0} which is an open (clopen) neighborhood of x0. Then for all
x, y ∈ Ω, we have that

∣∣f(y) − f(x) − g(x)
(
y − x

)∣∣ = ∣∣∣ydλ(y) − xdλ(x) − dλ(x)(y − x
)∣∣∣

=
∣∣∣ydλ(x0) − xdλ(x0) − dλ(x0)

(
y − x

)∣∣∣ = 0.
(4.7)

This shows that f is locally uniformly differentiable at x0 with derivative f ′(x0) = g(x0) =
dλ(x0).

For x0 = 0, let ε > 0 in N be given. Let δ = εd. Then for all x /=y in (−δ, δ), we will
show that

∣∣f(y) − f(x) − g(x)
(
y − x

)∣∣ < ε
∣∣y − x

∣∣. (4.8)

Case 1 (x = 0). Then f(x) = g(x) = 0 and y /= 0. It follows that

∣∣f(y) − f(x) − g(x)
(
y − x

)∣∣ = ∣∣f(y)∣∣ = dλ(y)∣∣y∣∣ = dλ(y)∣∣y − x
∣∣ < ε

∣∣y − x
∣∣. (4.9)

because dλ(y) ∼ |y| < δ � ε.

Case 2 (y = 0). Then f(y) = 0 and x /= 0. It follows that

∣∣f(y) − f(x) − g(x)
(
y − x

)∣∣ = ∣∣−f(x) + g(x)x
∣∣ = ∣∣∣−dλ(x)x + dλ(x)x

∣∣∣
= 0 < ε

∣∣y − x
∣∣. (4.10)



12 ISRN Mathematical Analysis

Case 3 (x /= 0/=y). Then

∣∣f(y) − f(x) − g(x)
(
y − x

)∣∣ = ∣∣∣dλ(y)y − dλ(x)x − dλ(x)(y − x
)∣∣∣

=
∣∣∣dλ(y) − dλ(x)

∣∣∣∣∣y∣∣ < d−1∣∣y − x
∣∣∣∣y∣∣

< d−1δ
∣∣y − x

∣∣ = ε
∣∣y − x

∣∣.
(4.11)

Thus, f is locally uniformly differentiable at 0 with derivative f ′(0) = g(0) = 0. Altogether, it
follows that f is LUD on N with derivative

f ′(x) = g(x) =

{
dλ(x) if x /= 0,
0 if x = 0.

(4.12)

Next we show that f ′ is not differentiable at 0. Take the sequence (xn) = dn and the
sequence (yn) = 2dn. Then both sequences converge to 0. But

lim
n−→∞

f ′(xn) − f ′(0)
xn

= lim
n−→∞

dn

dn
= 1,

lim
n−→∞

f ′(yn

) − f ′(0)
yn

= lim
n−→∞

dn

2dn
=

1
2
.

(4.13)

If f ′(x) were differentiable at 0, then both limits in (4.13) would be equal to f ′′(0). Since the
two limits are different, we conclude that f ′ is not differentiable at 0, and hence f ′ is not LUD
on N.

The previous two examples illustrate that themost natural definition for LUDk is given
in Definition 4.3.

Proposition 4.8. Let f : A → N be LUD at x0 ∈ A. Then f is C1 at x0.

Proof. LetΩ be a neighborhood of x0 inA such that f is uniformly differentiable onΩ and let
δ0 > 0 be such that (x0 − δ0, x0 + δ0) ⊂ Ω. Let ε > 0 in N be given. Then there is δ > 0, δ ≤ δ0,
such that for all x, y ∈ Ω satisfying |y − x| < δ we have that

∣∣f(y) − f(x) − f ′(x)
(
y − x

)∣∣ < ε

2
∣∣y − x

∣∣. (4.14)

It follows that for 0 < |x − x0| < δ,

∣∣f ′(x) − f ′(x0)
∣∣ ≤ ∣∣∣∣f(x0) − f(x)

x0 − x
− f ′(x)

∣∣∣∣ +
∣∣∣∣f(x) − f(x0)

x − x0
− f ′(x0)

∣∣∣∣ < ε

2
+
ε

2
= ε . (4.15)

Remark 4.9. Proposition 4.8 shows that the class of locally uniformly differentiable functions
is a subset of the class of C1 functions. However, this is still large enough to include all
polynomial functions as Corollary 4.14 will show.
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Proposition 4.10. Let f : A → N be locally uniformly differentiable at x0 ∈ A. Then f is locally
uniformly continuous at x0.

Proof. Let Δ be a neighborhood of x0 in A such that f is uniformly differentiable on Δ. By
Proposition 4.8, f ′ is continuous at x0. Let Ω ⊂ Δ be a neighborhood of x0 such that for every
x ∈ Ω, |f ′(x)| < 1 + |f ′(x0)|. Since f is uniformly differentiable on Δ, there exists δ1 > 0 such
that for all x, y ∈ Ω ⊂ Δ satisfying |y − x| < δ1, we have that

∣∣f(y) − f(x) − f ′(x)
(
y − x

)∣∣ < ∣∣y − x
∣∣. (4.16)

Let ε > 0 in N be given. Let δ = min{δ1, ε/(2 + |f ′(x0)|)}. Then for all x, y ∈ Ω ⊂ Δ satisfying
|y − x| < δ, we have that

∣∣f(y) − f(x)
∣∣ < ∣∣y − x

∣∣ + ∣∣f ′(x)
∣∣∣∣y − x

∣∣ < ∣∣y − x
∣∣(2 + ∣∣f ′(x0)

∣∣)
< δ

(
2 +

∣∣f ′(x0)
∣∣) < ε.

(4.17)

Proposition 4.11. Let A ⊂ N, let x0 ∈ A be given, let α ∈ N be given, and let f, g : A → N be
LUD at x0. Then f + αg is LUD at x0, with derivative

(
f + αg

)′(x0) = f ′(x0) + αg ′(x0). (4.18)

Proof. Without loss of generality, we may assume that α/= 0. Let ε > 0 in N be given. Then
there exists δ > 0 in N such that (x0 − δ, x0 + δ) ⊂ A,

∣∣f(y) − f(x) − f ′(x)
(
y − x

)∣∣ < ε

2
∣∣y − x

∣∣,∣∣g(y) − g(x) − g ′(x)
(
y − x

)∣∣ < ε

2|α|
∣∣y − x

∣∣, (4.19)

whenever x, y ∈ (x0 − δ, x0 + δ). It follows that, for all x, y ∈ (x0 − δ, x0 + δ), we have that

∣∣(f + αg
)(
y
) − (

f + αg
)
(x) − f ′(x)

(
y − x

) − αg ′(x)
(
y − x

)∣∣
=
∣∣[f(y) − f(x) − f ′(x)

(
y − x

)]
+ α

[
g
(
y
) − g(x) − g ′(x)

(
y − x

)]∣∣
≤ ∣∣f(y) − f(x) − f ′(x)

(
y − x

)∣∣ + |α|∣∣g(y) − g(x) − g ′(x)
(
y − x

)∣∣
<

ε

2
∣∣y − x

∣∣ + |α| ε

2|α|
∣∣y − x

∣∣ = ε
∣∣y − x

∣∣.
(4.20)

Proposition 4.12 (Chain Rule). Let A,B ⊂ N, let x0 ∈ A be given, and let g : A → B and
f : B → N be such that g is LUD at x0 and f is LUD at g(x0). Then f ◦ g is LUD at x0 with
derivative (f ◦ g)′(x0) = (f ′ ◦ g(x0)) · g ′(x0).

Proof. Let Δ be a neighborhood of g(x0) in B such that f is uniformly differentiable on Δ,
and let Ω be a neighborhood of x0 in A such that g(Ω) ⊂ Δ and g is uniformly differentiable



14 ISRN Mathematical Analysis

and uniformly continuous on Ω (Proposition 4.10). The condition that g(Ω) ⊂ Δ is always
possible because g is continuous. Since g is continuous at x0 and f ′ is continuous at g(x0)
(Proposition 4.8), it follows that f ′ ◦ g is continuous at x0. So there exists δ1 > 0 in N such
that (x0 − δ1, x0 + δ1) ⊂ Ω and for all x ∈ (x0 − δ1, x0 + δ1) we have that

∣∣f ′ ◦ g(x)∣∣ < ∣∣f ′ ◦ g(x0)
∣∣ + 1. (4.21)

Also, since g ′ is continuous at x0, there is a δ2 > 0 in N such that (x0 − δ2, x0 + δ2) ⊂ Ω, and
for all x ∈ (x0 − δ2, x0 + δ2), we have that

∣∣g ′(x)
∣∣ < ∣∣g ′(x0)

∣∣ + 1
2
. (4.22)

Since g is uniformly differentiable onΩ, there is a δ3 > 0 inN such that (x0 − δ3, x0 + δ3) ⊂ Ω,
and for all x, y ∈ (x0 − δ3, x0 + δ3) satisfying |y − x| < δ3, we have that

∣∣g(y) − g(x)
∣∣ < (∣∣g ′(x)

∣∣ + 1
2

)∣∣y − x
∣∣ ≤ (∣∣g ′(x0)

∣∣ + 1
)∣∣y − x

∣∣. (4.23)

Let ε > 0 in N be given. Then, since f is uniformly differentiable on Δ, there exists an η > 0
such that whenever u, v ∈ Δ and |u − v| < η, it follows that

∣∣f(v) − f(u) − f ′(u)(v − u)
∣∣ < ε

2
(∣∣g ′(x0)

∣∣ + 1
) |v − u|. (4.24)

Since g is uniformly differentiable onΩ, there exists δ4 > 0 inN such that (x0−δ4, x0+δ4) ⊂ Ω,
and for all x, y ∈ (x0 − δ4, x0 + δ4) satisfying |y − x| < δ4, we have that

∣∣g(y) − g(x) − g ′(x)
(
y − x

)∣∣ < ε

2
(∣∣f ′ ◦ g(x0)

∣∣ + 1
)∣∣y − x

∣∣. (4.25)

Finally, g is uniformly continuous on Ω. Thus, there exists δ5 > 0 inN such that (x0 − δ5, x0 +
δ5) ⊂ Ω, and for all x, y ∈ (x0 − δ5, x0 + δ5) satisfying |y − x| < δ5, we have that

∣∣g(y) − g(x)
∣∣ < η. (4.26)

Let

δ = min{δ1, δ2, δ3, δ4, δ5}. (4.27)
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Then (x0 − δ, x0 + δ) ⊂ Ω, and for all x, y ∈ (x0 − δ/2, x0 + δ/2), we have that |y − x| < δ and
|g(y) − g(x)| < η; g(y), g(x) ∈ Δ and hence

∣∣f ◦ g(y) − f ◦ g(x) − f ′ ◦ g(x)g ′(x)
(
y − x

)∣∣
≤ ∣∣f ◦ g(y) − f ◦ g(x) − f ′ ◦ g(x)(g(y) − g(x)

)∣∣
+
∣∣f ′ ◦ g(x)g(y) − f ′ ◦ g(x)g(x) − f ′ ◦ g(x)g ′(x)

(
y − x

)∣∣
=
∣∣f(g(y)) − f

(
g(x)

) − f ′(g(x))(g(y) − g(x)
)∣∣

+
∣∣f ′ ◦ g(x)∣∣∣∣g(y) − g(x) − g ′(x)

(
y − x

)∣∣
<

ε

2
(∣∣g ′(x0)

∣∣ + 1
)∣∣g(y) − g(x)

∣∣ + ε

2
(∣∣f ′ ◦ g(x0)

∣∣ + 1
)(∣∣f ′ ◦ g(x0)

∣∣ + 1
)∣∣y − x

∣∣
<

ε

2
∣∣y − x

∣∣ + ε

2
∣∣y − x

∣∣ = ε
∣∣y − x

∣∣.

(4.28)

Proposition 4.13 (Product Rule). Let A ⊂ N, let x0 ∈ A be given, and let f, g : A → N be LUD
at x0. Then fg is LUD at x0 with (fg)

′(x0) = f ′(x0)g(x0) + f(x0)g ′(x0).

Proof. Let Ω be a neighborhood of x0 in A such that f and g are uniformly differentiable on
Ω and g is uniformly continuous onΩ (Proposition 4.10). Since f , g, and f ′ are continuous at
x0, there exists δ1 > 0 inN such that (x0 − δ1, x0 + δ1) ⊂ Ω, and for all x ∈ (x0 − δ1, x0 + δ1), we
have that

∣∣f(x)∣∣ < ∣∣f(x0)
∣∣ + 1,

∣∣g(x)∣∣ < ∣∣g(x0)
∣∣ + 1,

∣∣f ′(x)
∣∣ < ∣∣f ′(x0)

∣∣ + 1. (4.29)

Let ε > 0 in N be given. Since f and g are uniformly differentiable on Ω, and g is uniformly
continuous onΩ, there exists δ > 0 such that whenever |y − x| < δ and x, y ∈ Ω, we have that

∣∣g(y) − g(x)
∣∣ < ε

3
(∣∣f ′(x0)

∣∣ + 1
) ,

∣∣f(y) − f(x) − f ′(x)
(
y − x

)∣∣ < ε

3
(∣∣g(x0)

∣∣ + 1
)∣∣y − x

∣∣,
∣∣g(y) − g(x) − g ′(x)

(
y − x

)∣∣ < ε

3
(∣∣f(x0)

∣∣ + 1
)∣∣y − x

∣∣.
(4.30)

Let x, y ∈ (x0 − δ1, x0 + δ1) be such that |y − x| < δ. Then,

∣∣f(y)g(y) − f(x)g(x) − (
f ′(x)g(x) + f(x)g ′(x)

)(
y − x

)∣∣
≤ ∣∣f(y)g(y) − f(x)g

(
y
) − f ′(x)g(x)

(
y − x

)∣∣
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+
∣∣f(x)g(y) − f(x)g(x) − f(x)g ′(x)

(
y − x

)∣∣
≤ ∣∣f(y)g(y) − f(x)g

(
y
) − f ′(x)g

(
y
)(
y − x

)∣∣
+
∣∣f ′(x)

(
y − x

)(
g
(
y
) − g(x)

)∣∣
+
∣∣f(x)g(y) − f(x)g(x) − f(x)g ′(x)

(
y − x

)∣∣
=
∣∣g(y)∣∣∣∣f(y) − f(x) − f ′(x)

(
y − x

)∣∣
+
∣∣f ′(x)

∣∣∣∣g(y) − g(x)
∣∣∣∣y − x

∣∣
+
∣∣f(x)∣∣∣∣g(y) − g(x) − g ′(x)

(
y − x

)∣∣
<
(∣∣g(x0)

∣∣ + 1
) ε

3
(∣∣g(x0)

∣∣ + 1
)∣∣y − x

∣∣
+
(∣∣f ′(x0)

∣∣ + 1
) ε

3
(∣∣f ′(x0)

∣∣ + 1
)∣∣y − x

∣∣
+
(∣∣f(x0)

∣∣ + 1
) ε

3
(∣∣f(x0)

∣∣ + 1
)∣∣y − x

∣∣
=
(
ε

3
+
ε

3
+
ε

3

)∣∣y − x
∣∣ = ε

∣∣y − x
∣∣.

(4.31)

Since the function f(x) = x is LUD on N, as can be easily checked, it follows from
Propositions 4.11 and 4.13 that any polynomial function is LUD on N.

Corollary 4.14. Let f : N → N be a polynomial function. Then f is LUD on N.

Since the derivative of a polynomial function is again a polynomial function, we
readily obtains the following result.

Corollary 4.15. Let f : N → N be a polynomial function. Then f is LUD∞ onN.

Proposition 4.16. The function h : N\ {0} → N \ {0} defined as h(x) = 1/x is LUD∞.

Proof. First we note that h is infinitely often differentiable on N\ {0}, with derivatives

h(l)(x) =
(−1)ll!
xl+1

for each l ∈ N. (4.32)

Now we prove that h is LUD on N\ {0}. So let x0 ∈ N \ {0} and let ε > 0 inN be given. Let

Ω =

{
x ∈ N : |x − x0| < min

{
|x0|d, εd

|x0|3
}}

. (4.33)
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Then Ω is a neighborhood of x0 and x ≈ x0 for all x ∈ Ω. Moreover, for all x, y ∈ Ω, we have
that

∣∣∣∣h(y) − h(x) +
1
x2

(
y − x

)∣∣∣∣ =
∣∣∣∣ 1y − 1

x
+

1
x2

(
y − x

)∣∣∣∣ =
∣∣∣∣ 1
x2

− 1
xy

∣∣∣∣∣∣y − x
∣∣

=

∣∣y − x
∣∣

x2
∣∣y∣∣

∣∣y − x
∣∣ < ε

∣∣y − x
∣∣, (4.34)

since

x2
∣∣y∣∣ ≈ |x0|3,

∣∣y − x
∣∣ ≤ ∣∣y − x0

∣∣ + |x − x0| < 2εd

|x0|3
� ε

|x0|3
, (4.35)

so that

∣∣y − x
∣∣

x2
∣∣y∣∣ < ε. (4.36)

Thus, for all x0 ∈ N \ {0}, h is LUD at x0, and hence h is LUD on N\ {0}.
Applying Propositions 4.11 and 4.13, it then follows that h(l)(x) = (−1)ll!/xl+1 is LUD

on N\ {0} for all l ∈ N, and hence h is LUD∞ on N\ {0}.

5. Inverse Function Theorem

The following version of the inverse function theorem for LUD functions was proven in [14].

Theorem 5.1 (inverse function theorem). LetA ⊂ N be open, let f : A → N be locally uniformly
differentiable on A, and let x0 ∈ A be such that f ′(x0)/= 0. Then there is a neighborhood Ω of x0 in A
and a function g : f(Ω) → N, such that

(i) g = f |−1Ω ;

(ii) f |Ω is injective;

(iii) f(Ω) is open;

(iv) g is locally uniformly differentiable on f(Ω), with g ′ = 1/f ′ ◦ g.
In this paper, we state and prove a more general version of the inverse function

theorem for functions from (a subset of)N toN.

Theorem 5.2 (General Inverse Function Theorem for One-Variable Functions). Let A ⊂ N
be open, let f : A → N be LUDl on A, and let x0 ∈ A be such that f ′(x0)/= 0. Then there is a
neighborhood Ω of x0 in A and a function g : f(Ω) → N, such that

(i) g = f |−1Ω ;

(ii) f |Ω is injective;

(iii) f(Ω) is open;
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(iv) g is LUDl on f(Ω);

(v) g ′ = 1/f ′ ◦ g.

Proof. (i), (ii), (iii), and (v) are proven in [14]. To prove (iv), first recall that the function
h : N \ {0} → N \ {0} given by h(x) = 1/x is LUD∞ on N \ {0} (by Proposition 4.16). Let
y ∈ f(Ω) be given; then there exists ξ ∈ Ω such that y = f(ξ). We show by induction on n
that g is LUDn at f(ξ) for all n ≤ l. We know that g is LUD1 at f(ξ) from [14]. Now assume
that g is LUDk (k < l) at f(ξ). Then g(k) = (g ′)(k−1) = (h ◦ f ′ ◦ g)(k−1) (by (v)). We have that
h is LUDk on N \ {0} (by Proposition 4.16), f ′ is LUDk at ξ (by Proposition 4.4), and g is
LUDk at f(ξ). Thus, by the Chain Rule (Proposition 4.12), it follows that h ◦ f ′ ◦ g is LUDk at
f(ξ). It follows that g(k) = (h ◦ f ′ ◦ g)(k−1) is LUD at f(ξ) (by Proposition 4.4) and hence g is
LUDk+1 at f(ξ) (by Proposition 4.5). This completes the induction and shows that g is LUDl at
f(ξ).

6. Intermediate Value Theorem

The intermediate value theorem is an important key result in real analysis. However, while
all continuous real-valued functions on R have the intermediate value property, this is not
the case for N-valued functions on N. In fact, since N is not connected, any function which
takes on two distinct constant values on a separation of the field will be continuous but will
not attain any value between the constants. The following example illustrates this.

Example 6.1. Let f : [0, 1] → N be given by

f(x) =

{
1 if x ∼ 1,
0 if x � 1.

(6.1)

Then f is LUD∞ on [0, 1] as f is locally constant everywhere. But f(x) does not attain on
[0, 1] any values between f(0) = 0 and f(1) = 1. So even the property of LUD∞ is not strong
enough to ensure an intermediate value property for the function.

The next question is whether any kind of local intermediate value property can be
assured. That is, can we find sufficient conditions for a function to have the intermediate
value property on some neighborhood of a point? The answer is yes as we will see in
Theorem 6.3, but first we present the following example which shows that even the LUD∞

property is not quite sufficient to ensure the local intermediate value property, and it
demonstrates the need for the added hypothesis to Theorem 6.3.

Example 6.2. Let f : N → N be given by

f(x) =

{
d2λ(x) if x /= 0,
0 if x = 0.

(6.2)

We will show that f is LUD∞ on N. First, note that f is locally constant everywhere but at
0. Hence f is trivially LUD∞ on N \ {0} with f ′ = 0. It remains to show that f is LUD at 0
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with f ′(0) = 0. Let Ω = (−1, 1) and let ε > 0 in N be given. Let δ = εd. Let x, y ∈ Ω be such
that |y − x| < δ. Without loss of generality, we may assume that |x| < |y|. We distinguish two
possible cases.

Case 1 (|y| ∼ |x|). Then |f(y) − f(x)| = 0 < ε|y − x|.

Case 2 (|y| � |x|). Then
∣∣f(y) − f(x)

∣∣ ≈ d2λ(y) ∼ ∣∣y∣∣2 < δ
∣∣y∣∣ � ε

∣∣y − x
∣∣, (6.3)

since δ � ε and |y| ≈ |y − x|, and this shows that |f(y) − f(x)| � ε|y − x|. So, f is LUD∞

on N (with all derivatives equal to 0 everywhere); however, clearly f does not have the
intermediate value property in any neighborhood of 0.

Theorem 6.3 (Local intermediate value theorem). Let A ⊂ N and let f : A → N be LUD at
x0 ∈ A with f ′(x0)/= 0. Then there is a neighborhood Ω of x0 such that for any a < b in f(Ω) and
for any c ∈ (a, b), there is an x ∈ Ω such that f(x) = c. Moreover, x is strictly between f (−1)(a) and
f (−1)(b).

Proof. Without loss of generality, we may assume that f ′(x0) > 0, since if f ′(x0) < 0, we
could then apply this proof to (−f) and get the desired result. Since f is LUD at x0, there
exists a neighborhood Δ of x0 in A such that f is uniformly differentiable on Δ. Since f ′ is
continuous at x0 (by Proposition 4.8), there is δ1 > 0 such that (x0 − δ1, x0 + δ1) ⊂ Δ, and for
any x ∈ (x0 − δ1, x0 + δ1), we have that

f ′(x) >
2
3
f ′(x0). (6.4)

Since f is uniformly differentiable onΔ, there exists δ < δ1 such that for all x, y ∈ (x0−δ1, x0+
δ1) satisfying |y − x| < δ we have that

∣∣f(y) − f(x) − f ′(x)
(
y − x

)∣∣ < f ′(x0)
3

∣∣y − x
∣∣. (6.5)

It follows that for y, x ∈ (x0 − δ/2, x0 + δ/2) we have that

f
(
y
) − f(x)
y − x

> f ′(x) − f ′(x0)
3

>
1
3
f ′(x0) > 0. (6.6)

Hence f is strictly increasing onΩ1 = (x0−δ/2, x0+δ/2). Applying Theorem 5.2 to f yields a
neighborhoodΩ2 ⊂ Ω1 of x0 such that f(Ω2) is open. Let ε > 0 be such that (f(x0)− ε, f(x0) +
ε) ⊂ f(Ω2) and letΩ = f−1((f(x0)−ε, f(x0)+ε))which is an open neighborhood of x0. Now let
a, b ∈ f(Ω) be such that a < b, and let c ∈ (a, b) be given. Then c ∈ (f(x0)−ε, f(x0)+ε) ⊂ f(Ω2)
since a, b ∈ (f(x0) − ε, f(x0) + ε) and (f(x0) − ε, f(x0) + ε) is a convex set. So there is x ∈ Ω2

such that f(x) = c. It follows that x ∈ Ω because f(x) = c ∈ (f(x0) − ε, f(x0) + ε). It is also
true that a < c = f(x) < b; and since f is increasing on Ω, it follows that f−1(a) < x < f−1(b).
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