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ABSTRACT 

This research contributes to improved risk analysis of performance measure 

forecasts in road safety engineering  by designing and applying a method to 

characterize uncertainty associated with forecast input data in cases where input 

uncertainty is not known. The research applies this method to quantify uncertainty 

in three categories of inputs used in risk analysis of performance measure 

forecasts in road safety engineering: (1) estimates of pedestrian exposure to 

collision risk; (2) estimates of vehicular exposure to collision risk; and (3) estimates 

of engineering economics parameters that assign valuations to mortality risk 

reductions based on individual willingness to pay. The common methods used in 

each of these categories are repeated comparisons of input ground truth to input 

estimations, the use of simulation approaches (e.g. the simulation of short-term 

counts by sampling permanent count data), and the use of non-parametric 

techniques to characterize input uncertainty. Some highlights of quantified input 

uncertainty levels include: (1) when obtaining pedestrian risk exposure estimates 

at a site in Winnipeg, MB by expanding two-hour short-term counts using the 

National Bicycle and Pedestrian Documentation Project method, 90% of errors are 

between -62% and 170%; (2) when obtaining estimates of vehicle exposure to 

collision risk by expanding two 48-hour counts using the individual permanent 

counter method for Manitoba highways, 92 % of errors are between -9.5% and 

10.8%; and (3) when applying an income-disaggregated transfer function to 

estimate value of a statistical life for road safety in developing countries, 90% of 

errors are between -53% and 54%. The results provide further detail on the 

structure of these input uncertainties. Analytic and computational capabilities in 
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forecasting and risk analysis have advanced beyond our understanding of 

corresponding input uncertainty levels; this research closes some of this gap and 

enables better risk analysis of performance measure forecasts in road safety 

engineering. 
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1. INTRODUCTION 

1.1. PURPOSE 

This research presumes that an objective of public investments in road safety is to 

reduce fatalities and injuries at a reasonable cost and that this objective is often 

translated into performance measures (such as a benefit-cost ratio) that are 

forecasted as part of the investment decision process. The performance measure 

forecasts are uncertain because the inputs and models used to generate the 

forecasts are uncertain, and this introduces risk to the investment process. Risk is 

often described as the product of the probability and severity of an undesirable 

performance outcome. So if a performance measure forecast for a road safety 

investment reveals an expected benefit-cost ratio of 1.5, a risk analysis of this 

performance measure forecast might reveal a 30% chance (probability) that the 

actual benefit cost ratio might be less than 1.0 (severity). Techniques to generate 

such a risk analysis are well established, but they depend on a robust 

understanding of uncertainties in the forecast inputs which is often missing. 

The purpose of this research is to contribute to improved risk analysis of 

performance measure forecasts in road safety engineering by designing and 

applying a method to characterize uncertainty associated with forecast input data. 

The research applies the method to quantify uncertainty in three categories of 

inputs used in risk analysis of performance measure forecasts in road safety 

engineering: (1) estimates of pedestrian exposure to collision risk; (2) estimates of 

vehicular exposure to collision risk; and (3) estimates of engineering economics 
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parameters that assign valuations to mortality risk reductions based on individual 

willingness to pay. 

While there are many techniques for risk analysis, this research deals specifically 

with probabilistic risk analysis, which generates estimates of probability 

distributions of future performance measure values. These distributions provide 

not only a most likely performance measure forecast, but also probabilities that the 

measure will be above or below any given threshold value. The type of probabilistic 

risk analysis supported by this research generates performance measure 

distributions by applying performance prediction models within a Monte Carlo 

simulation. Subjective elicitation from subject-matter experts (Galway, 2007) is a 

typical method to generate the required input uncertainty information.  In this 

method, the risk analysis practitioner first asks for statements from an expert on 

the input about the expert’s opinion on that input’s uncertainty range, and then 

uses those statements to generate an estimated distribution for that input. An 

alternative is the use of objective, evidence-based information on input uncertainty 

acquired from empirical data through measurement, experimentation, and 

analysis. The main contribution of this research is to support a transition to the use 

of objective, evidence-based information on input uncertainty from the current use 

of subjective elicitation from subject-matter experts.  

1.2. BACKGROUND AND NEED 

The integration of risk and performance management in road safety engineering 

requires risk-based performance measure forecasting tools and has the potential 
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to clarify key issues for investment decision-makers. However, a lack of adequate 

information on uncertainty associated with forecast input data restricts application 

of these tools to approaches based in subjective elicitation from subject matter 

experts. Practitioner concerns regarding subjective approaches can exclude risk 

analysis tools from the decision process entirely.  

Within road safety engineering, there are specific needs for evidence-based 

information on uncertainty associated with pedestrian intersection crossing risk 

exposure data, vehicle risk exposure data and mortality risk valuation data. These 

data are key inputs for forecasting the internal rate of return and the net present 

value of proposed road safety investments, which are performance measures used 

in the engineering analysis and decision-making processes. 

This section establishes the background and need for the proposed research in 

four sub-sections. Section 1.2.1 contextualizes the use of performance measure 

forecasts within the broader practice of performance management.  Section 1.2.2 

explains the current convergence of risk management and performance 

management in transportation engineering. Section 1.2.3 outlines the state of the 

practice of risk analysis of performance measure forecasts in transportation 

engineering. Section 1.2.4 describes the state of the practice of risk analysis of 

performance measure forecasts in road safety engineering and illustrates the 

specific knowledge gaps concerning the uncertainties associated with pedestrian 

crossing risk exposure, vehicle risk exposure and mortality risk valuation data.  

 



4         
 

1.2.1. Performance Forecasting within Performance Management 

Transportation performance measures are “a means of summarising the current 

position and direction and rate of change of progress toward a particular goal or 

objective” (Marsden, Kelly, & Snell, 2006, p. 22). Transportation agencies that use 

performance measurement usually do so for these benefits:  

1) improved decision-making (Karlaftis & Tsamboulas, 2012) (Knoop, Snelder, 

van Zuylen, & Hoogendoorn, 2012) (Börjesson & Eliasson, 2011) (Henning, 

Muruvan, Feng, & Dunn, 2011) (Chen & Kasikitwiwat, 2011) (Ramani, 

Zietsman, Knowles, & Quadrifoglio, 2011) (Cambridge Systematics, Inc. & 

High Street Consulting Group, 2010) (Hickman & Banister, 2007) (Stradling, 

Anable, & Carreno, 2007) (Meyer M. , 2005, p. 173) (Moynihan, 2005) 

(Short & Kopp, 2005) (Francis, Fry, & Humphreys, 2002) (Hauer, Kononov, 

Allery, & Griffith, 2002) (Yew & Friedman, 2002) (Baird & Stammer Jr., 

2000) (Gihring & Greene, 2000, p. 93) (Pratt & Lomax, 1996) (Campbell, 

1995) (Gargett & Wallis, 1989) (Lee D. , 1989); 

2) improved accountability (FHWA, 2012) (Cambridge Systematics, Inc. & 

High Street Consulting Group, 2010) (Baird & Stammer Jr., 2000) (Bremmer 

& Bryan, 2008a) (Bremmer & Bryan, 2008b) (Bremmer, Cotton, & Hamilton, 

2005) (Gifford & Carlisle, 2004) (Manzetti, 2003) (Yew & Friedman, 2002) 

(Baird & Stammer Jr., 2000) (Ball & Dunn, 1997) (Putterill & Maani, 1992); 

and,  



5         
 

3) improved focus and effort (Henning, Muruvan, Feng, & Dunn, 2011) 

(AASHTO, 2011) (Marsden G. , 2009) (Handy, 2008) (Marsden & Bonsall, 

2006) (Moynihan, 2006) (Foote, 2004) (Kassoff, 2001) (Abbott, Cantalupo, 

& Dixon, 1998) (DoT, 1996) (Etmanczyk, 1995).  

Studies concerning future values of performance measures, including 

performance forecast studies, contribute to the overall benefit of improved 

decision-making by allowing agencies to explore relationships between courses of 

action and future performance measure values (see, e.g., Hickman and Banister 

(2007); Börjesson & Eliasson (2011); and Guerre and Evans (2009)). Performance 

forecasting in transportation engineering dates at least to Manheim’s systems 

analysis approach (1979), which defines the core function of transport systems 

analysis as the prediction of flows and their associated performance levels. 

Questions about the reliability of performance forecasts have led to the integration 

of risk and performance management.  

1.2.2. Convergence of Performance Management and Risk Management 

There is a natural overlap of performance and risk management.  Managing 

transportation agency performance involves a focus on managing towards 

outcomes (Abbott, Cantalupo, & Dixon, 1998) which are inherently subject to 

uncertainty (Marsden & Bonsall, 2006). Managing agency risk involves managing 

the most important uncertainties faced by an organization (Curtis, D'Angelo, 

Hallowell, Henkel, & Molenaar, 2012). Risk can be thought of as the product of the 

severity and probability of an undesirable outcome. To analyze and manage these 
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risks, a transportation agency requires a categorization and definition of 

undesirable outcomes. For a coherent management approach, the categorization 

of undesirable outcomes for risk management should be aligned with the 

categorization of desired outcomes for performance management.  

Policies contained in legislation that periodically re-authorizes and sets out 

conditions for U.S. federal spending on transportation often serve as indicators of 

major trends with respect to the management of transport investments both in the 

US and globally (Canning, Hellawell, Hughes, Gatersleben, & Fairhead, 2010) 

(Mizusawa & McNeil, 2005) (Meyer M. , 2000) (Goldman & Deakin, 2000) 

(Giuliano, 2007). Policies in the most recent such legislation, Moving Ahead for 

Progress in the 21st Century (MAP-21) indicate a convergence of performance 

management and risk management as key investment decision support tools (US 

FHWA, 2012).  Hauer (1997) argues for the need to know - before a road safety 

investment is implemented - both the expected impact on reduced collisions 

(performance prediction) and also the variance around that impact (risk analysis), 

pointing to the convergence of risk and performance management specifically in 

the field of road safety.  

1.2.3. Risk Analysis of Performance Measure Forecasts in Transportation 

Transportation agencies began adapting private sector practices of strategic 

planning and management in the 1980s (Poister, Margolis, & Zimmerman, 2004) 

(Meyer, 1988). These practices naturally lead to use of risk analysis techniques 

because strategic management focuses on internal and external threats to the 
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attainment of mission-based objectives (Meyer, 1988) (Howard, 1988) (Bishop-

Edkins & Nethercut, 1988) (Poister T. , 2004). Since the 1980s, a wide variety of 

risk analysis techniques have emerged, and a classification scheme for these 

methods is useful. 

Figure 1-1 shows a taxonomy of methods for risk analysis by transportation 

agencies, with a top-level division between the qualitative methods used in broad 

strategic planning assessments and the quantitative assessments used in more 

detailed analyses. Within quantitative approaches, the taxonomy makes a division 

between those techniques that focus on clarifying a few discrete scenarios and 

those that aim to clarify decisions by providing probabilistic information across a 

continuous range of scenarios. Probabilistic techniques combine information on 

input uncertainty to estimate output uncertainty, and the taxonomy makes a final 

distinction based on the source of the input uncertainty information: it can be 

subjective (elicited from subject matter experts) or objective (based on empirical 

data). This research supports and enables a transition to the latter.  



8         
 

 

Figure 1-1: Taxonomy of risk analysis methods 
 

Examples of early risk analysis efforts in strategic management that are largely 

subjective and qualitative in nature are: the environmental scanning process at the 

Ontario Ministry of Transportation and Communications (Ontario MTC, 1983); the 

risk assessment procedures at Idaho Department of Transportation (Poister T. , 

2004); and the subjective threat assessment matrix at the Massachusetts 

Department of Public Works (Meyer M. , 1988). On the quantitative side of the 

taxonomy, examples of discrete scenario analysis can be found in most World 

Bank project assessment documents for transport projects: key parameters are 

varied (often by 10 to 20 percent) to illustrate impacts on the forecasted 

performance measure, which is usually project net present value or internal rate of 
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return (see, e.g., the assessment for a road safety project in Argentina (World 

Bank, 2010a)), and the assessment for a highway project in Ningxia, China (World 

Bank, 2010b)). On the quantitative side of the taxonomy, the alternative to discrete 

scenario analysis is probabilistic analysis, which determines the probability 

distribution of the performance forecast based on the probability distributions of 

the input variables. An example application of analytic techniques to arrive at the 

outcome probability distribution is given in Ismail and Sayed (2012). Examples of 

numerical techniques to arrive at the outcome probability distribution are more 

numerous: major examples are the Monte Carlo simulation models built into the 

Roads Economic Decision Model (Archondo-Callao, 2004) and into the Surface 

Transportation Efficiency Analysis Model (STEAM 2.0) (U.S. FHWA, 2000). The 

practice of subjectively estimating input uncertainties with judgements from subject 

matter experts is described in Hertz’s seminal work on Monte Carlo-based risk 

analysis of capital investment in the private sector (Hertz, 1964). Today, the 

subjective approach either persists or precludes the application of risk analysis 

altogether because informed practitioners know that the credibility of the risk 

analysis results depends on the credibility of the probability distributions assumed 

to represent the input uncertainty ranges, and informed practitioners know that 

these assumptions often have no empirical basis. Despite these limitations, the 

demand for increased risk analysis of performance forecasts is likely to increase 

due to MAP-21 legislation passed in the United States in 2012 that requires 

increased performance measurement and risk analysis programs on the part of 

recipients of federal transportation funding. 
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1.2.4. Risk Analysis of Performance Measure Forecasts in Road Safety 

Engineering 

One area where risk analysis of performance forecasting has gained traction within 

road safety engineering specifically is in the field of collision modification factor 

development. Collision modification factors (CMF) represent a percentage change 

in collisions expected to accompany the introduction of a road safety 

countermeasure in a specific context.  For example, installation of any type of 

centre median barrier on a rural multilane divided arterial when there was no 

median barrier previously is associated with a fatal collision CMF of 0.57; this 

means that the expected number of collisions after introduction of the measure is 

57 percent of the expected number of collisions before the introduction of the 

measure (U.S. FHWA, 2009). The adjusted standard error for this CMF is .10. 

Collections of collision modification factors (for example the online CMF 

clearinghouse (U.S. FHWA, 2013), the Handbook of Road Safety Measures (Elvik, 

Høye, Vaa, & Sørensen, 2009), and the Highway Safety Manual (AASHTO, 2010)) 

all present CMFs with standard error and confidence interval values whenever 

possible. This information on input uncertainty can aid in risk analysis of road 

safety performance forecasts.  

However, a countermeasure CMF is only one of several forecast inputs subject to 

uncertainty, and the uncertainty of most other inputs is usually unknown. To 

illustrate the specific need for the uncertainty information quantified in this 

research, consider a simple example to forecast the net present value of a road 
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safety countermeasure introduction where the only benefit considered is reduced 

fatalities. The net present value is  

𝑁𝑃𝑉 =  ∑ [(1 − 𝐶𝑀𝐹𝐹) ∗ 𝑆𝑃𝐹𝐹(𝐸𝑛, {𝐾}) ∗ 𝑉𝑆𝐿 − 𝐶𝑛]𝑦
𝑛=0 ∗ (1 + 𝑖)−𝑛  

where  

NPV is net present value, 

n = the year of analysis,  

y = the number of years in the analysis,  

CMFF is the collision modification factor for fatal collisions for the relevant 

countermeasure, expressing the expected number of collisions with the 

countermeasure as a proportion of the expected number of collisions without the 

countermeasure,  

SPFF is the safety performance function expressing the expected number of 

collisions for the relevant facility type without the countermeasure introduction,  

En is risk exposure (traffic volume) in year n,  

{K} is a vector of other independent variables in the safety performance function 

(for example number of lanes, divided status of roadway),  

VSL is the value of a statistical life for evaluation purposes,  

i is the social discount rate, and  
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Cn is the cost associated with countermeasure implementation in year n. 

In this formulation, uncertainties in exposure and in the value of statistical life (in 

addition to uncertainty in the collision modification factor) translate into uncertainty 

in the performance measure forecast.  

A thorough risk analysis for the NPV performance measure in the case illustrated 

above requires evidence-based uncertainty information pertaining to the risk 

exposure and value of statistical life inputs.  Evidence-based uncertainty 

information specifically does not exist for: 

1) pedestrian risk exposure metrics when these metrics are annual volumes 

derived from expanded short-term counts; 

2) vehicle risk exposure metrics when these metrics are annual average daily 

traffic derived from expanded short-term counts using the individual 

permanent counter method; and, 

3) value of statistical life estimates for road safety evaluation purposes when 

these estimates are derived from income-disaggregated meta-analysis 

benefit transfer functions. 

A fundamental reason this uncertainty information does not exist is the lack of a 

methodology to experimentally develop evidence-based information on the 

uncertainty associated with these types of inputs. This research is predicated on 

the specific need for uncertainty information for these three categories of 

performance measure inputs, and on the more general need for a methodology to 
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systematically characterize this type of uncertainty in ways practical for 

subsequent application to risk analysis. This kind of uncertainty information is also 

not available for several other inputs to safety performance forecasts (for example 

truck traffic estimates, many safety performance function parameters, many 

collision modification factors, and valuations for injury collisions). Application of the 

current methods to these inputs would be a natural extension of this research. 

1.3. OBJECTIVES AND SCOPE 

The research accomplishes three specific objectives in support of the overall 

purpose: 

Objective 1: Quantify uncertainty in estimates of pedestrian risk exposure when 

these estimates are derived from expanded short-term counts.  

Objective 2: Quantify uncertainty in estimates of vehicle risk exposure when these 

estimates are derived from expanded short-term counts using the individual 

permanent counter method. 

Objective 3: Quantify uncertainty in estimates of value of a statistical life (VSL) 

when these estimates are based on between-country transfer function results1. 

                                                      
 

 

1 A between-country transfer function for VSL gives a VSL estimate for a country based on some variables 

linked that country’s characteristics (for example income levels). The functions are built using data from 

countries that do have a VSL estimate to facilitate low-cost estimates in countries that do not have one. 
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The scope for Objective 1 is defined by the pedestrian risk exposure metric 

considered, the geography of the study, the expansion methods considered, and 

the temporal scope. The risk exposure metric considered for Objective 1 is annual 

pedestrian crossing volume at an intersection crosswalk. The question of what 

constitutes pedestrian exposure is not a simple one, and it has many answers 

depending on the context and the need for the exposure information. An exposure 

metric should have some correspondence with the target risk it is being associated 

with. The research uses annual pedestrian crossing volumes as an exposure 

metric because it corresponds with the target risk, and the practicality of this metric 

corresponds with available resources (Milligan, Poapst, & Montufar, 2013). 

Fitzpatrick and Park (2009) and Zegeer et al. (2005, p. 67) use this exposure metric 

as an input to safety performance measure calculations when researching 

pedestrian infrastructure design options. The geographic scope for Objective 1 

includes one downtown urban intersection pedestrian crossing site in Winnipeg. 

The major road of the intersection is a six-lane divided arterial street with average 

weekday daily traffic of about 35,000 vehicles per day and the minor road is a four-

lane one-way arterial street with average weekday daily traffic of about 18,000 

vehicles per day. The crossing accommodates over 4,000 pedestrians per day. 

The scope of Objective 1 includes evaluation of uncertainty associated with two 

expansion methods: expansion of short-term pedestrian counts with National 

Pedestrian and Bicycle Documentation Project  temporal factors (NBPD, 2009) 

and with local vehicle temporal factors (Hernandez, et al., 2011).  The NBPD 

factors expand short-term counts based on temporal patterns from pedestrians in 
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other cities. This practice (but not the NBPD factors specifically) is used by Zegeer 

et al. (2005). The practice of expansion with local vehicle factors is used by 

Fitzpatrick and Park (2009).  The temporal scope of Objective 1 includes one year 

of data from October 2009 to September 2010. 

The scope for Objective 2 is defined by the vehicle risk exposure metric 

considered, the geography of the study, the expansion method considered, and 

the temporal scope. The risk exposure metric considered for Objective 2 is annual 

average daily traffic (AADT) on road segments without permanent count stations. 

This exposure metric is used together with segment length to calculate annual 

vehicle-kilometres of travel (VKT), which forms the  denominator of collision rates 

- a widely used road safety performance measure. This exposure metric is also an 

argument in the safety performance functions which form the basis of the predictive 

methods in the Highway Safety Manual (AASHTO, 2010). The geographic scope 

of Objective 2 includes only highways in the province of Manitoba at the 

classification levels Provincial Trunk Highway (PTH) and Public Road (PR). Traffic 

volumes on these highways range from a few hundred to 25,000 vehicles per day. 

The expansion method considered is the individual permanent counter (IPC) 

method, which the Manitoba Highway Traffic Information System (MHTIS) uses to 

estimate AADT based on short-term counts. This method links each of about 2000 

short-term count sites to one of about 70 permanent counting sites as an individual 

permanent counter control station. The method expands two 48-hour counts from 

a short-term count site to an annual volume by using the ratio of the volume for the 

same 48-hour periods at the control station to the annual volume at the control 
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station (Poapst, et al., 2012). The temporal scope of Objective 2 includes five years 

of data. 

The scope for Objective 3 is defined by the theoretical approach to establishing 

value of statistical life (VSL) in road safety, the benefit transfer method, and the 

geographic scope. The theoretical approach to establishing VSL considered in 

Objective 3 is the stated preference (SP) willingness to pay (WTP) approach. Other 

theoretical approaches – the major ones are the revealed preference willingness 

to pay approach and the human capital approach (Milligan & Kosior, 2013) – were 

considered but not selected for reasons given in Chapter 4. The stated preference 

willingness to pay approach establishes VSL as the ratio of willingness to pay for 

a small change in mortality risk to the size of the risk change offered, when the 

willingness to pay is elicited from respondents in a contingent valuation survey and 

taken as the average of responses from a population-representative sample 

(Milligan & Kosior, 2013). The benefit transfer function considered in Objective 3 

is the income-disaggregated meta-analysis based transfer function, which is a new 

type of benefit transfer function created in this research that will guide future benefit 

transfer efforts in road safety by the World Bank. The OECD (2012) defines five 

categories of benefit transfer methods: (1) simple unit value transfer, (2) unit value 

transfer with income adjustments, (3) unit value transfer for separate age groups, 

(4) benefit function transfer, and (5) meta-analysis-based transfer function. The 

transfer function method tested in this research is an extension of the fifth category 

of transfer methods. This research develops this method extension because the 

nature of the relationship between VSL and its explanatory variables is found to 
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vary significantly across income levels, and income-aggregated approaches to 

meta-analysis, which tend to be dominated by high-income datasets, obscure the 

nature of the relationships for low and middle income countries.  The geographic 

scope for Objective 3 includes all countries with GDP per capita above $1268 when 

expressed in 2005 International Dollars (there are no original values in the meta-

analysis dataset from countries with a lower GDP per capita).  

The scope definitions have natural implications on the limitations of the results. For 

geographic, temporal, or methodological contexts outside of the scope covered by 

the objectives, the actual uncertainty results are not necessarily transferable, 

although the method to quantify this uncertainty is transferable. Furthermore, only 

a limited number of inputs to safety performance forecasts are considered, and 

quantifying uncertainty for these inputs could further improve risk analysis 

capabilities.  

1.4.  METHOD 

The method for the experimental objectives in this research follows a three-part 

approach to quantify uncertainty in an input to a performance measure forecast. 

The first part of the method involves the identification of a source of ground truth 

data for an input that is usually estimated.  

Once a source of ground truth is identified or created for a class of performance 

forecast inputs that are usually estimated, the second part of the method involves 

a test to define the error structure associated with using the usual estimation 
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methods for these inputs. Application of these usual estimation methods generates 

an estimated value for the input corresponding to the ground truth value for the 

input, and the difference between these values is a sample error value for that 

performance measure forecast input. When this is repeated many times, a large 

set of sample error values is generated. 

The third part of the method for each experiment involves analyzing and 

interpreting the error structure results for application to evidence-based risk 

analysis of performance measure forecasts. The primary method for this is the 

estimation of reference percentiles of the distribution of non-absolute relative 

errors and (in two of three cases) the estimation of confidence intervals for these 

reference percentiles. Confidence intervals for the reference percentile values are 

estimated by applying non-parametric resampling techniques (bootstrapping) to 

the original set of sample error values, following the guidelines in Mooney and 

Duval (1993).  

The chapters providing research papers that accomplish the individual objectives 

include more methodological detail for the individual experiments. 

1.5. THEME AND CONNECTING CONCEPTS 

The three papers presented in this thesis are organized around the central theme 

of enabling better risk analysis of road safety performance measure forecasts by 

designing and applying methods to characterize uncertainty in inputs to these 

forecasts where this uncertainty was previously not well understood. Additional 

connecting concepts common to the papers are the general approach of 
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understanding uncertainty by repeated comparisons of input ground truth to input 

estimations, the use of simulation approaches (e.g., the simulation of short-term 

counts by sampling permanent count data), and the use of non-parametric 

techniques to characterize input uncertainty. The non-parametric techniques 

characterize input uncertainty primarily in terms of reference percentiles of the 

distribution of input estimate errors without imposing any kind of assumed 

distributional form. This allows a risk analysis practitioner to apply specific 

percentiles in a quick sensitivity analysis or to use the whole empirical distribution 

in a Monte Carlo approach to risk analysis as described in Hertz (1964). In two of 

the papers, non-parametric resampling techniques are also used to characterize 

confidence levels in the input uncertainty characterization (e.g., a 5th percentile 

error may be estimated as -62%, with a 90% confidence interval of -53% to -66%, 

with the confidence interval estimated by the non-parametric percentile bootstrap 

method (Mooney & Duval, 1993)). 

1.6. THESIS ORGANIZATION  

The thesis organization follows the “Manuscripts Within a Thesis” approach 

described in the University of Manitoba Faculty of Graduate studies guidelines 

(University of Manitoba Faculty of Graduate Studies, 2014). The introduction 

describes the essence of the research,  background literature, the need for the 

research, objectives and scope, general methods used throughout, the overall 

theme and connecting concepts linking the individual works, and the contribution 

to knowledge made.  
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Following the introduction, three chapters reproduce self-contained research 

articles, forming the main substance of the thesis and accomplishing the objectives 

set out in the introduction. Chapter 2 provides a research paper on uncertainty 

associated with pedestrian crossing exposure estimates. Chapter 3 provides a 

paper on uncertainty associated with vehicle exposure estimates. Chapter 4 

provides a paper on uncertainty associated with value of statistical life estimates. 

Each paper considers a common input to safety performance measure forecasts, 

creates a new understanding of uncertainty associated with that input, and thereby 

allows improved risk analysis of safety performance measure forecasts. 

Chapter 5 provides a conclusion to the thesis that summarizes the contributions to 

knowledge in the context of the road safety, performance measurement, and risk 

analysis fields. The concluding chapter also makes recommendations for future 

research. 

1.7. THESIS TERMINOLOGY 

Exposure – “being in a situation which has some risk of involvement in a road 

traffic accident” (Wolfe, 1982). For example, driving down a road is being in a 

situation which has some risk, and an exposure metric could be the average daily 

number of vehicles driving on a road, or crossing a road as a pedestrian is being 

in a risk situation, and the average daily number of pedestrians could be the metric. 

Performance: “The carrying out, discharge, or fulfilment of a command, duty, 

promise, purpose, responsibility, etc.” (Oxford University Press, 2014). 
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Performance Measure: “a means of summarising the current position and 

direction and rate of change of progress toward a particular goal or objective” 

(Marsden, Kelly, & Snell, 2006, p. 22).  

Performance Measure Forecast: “A prediction of the future value of a 

performance measure based on some input information and forecasting tools or 

models” 

Performance Measure Forecast Input: “An input data element, which is itself 

often estimated and subject to uncertainty, that is used as a variable in a 

performance measure forecasting tool or model – for example, traffic volume” 

Probabilistic Risk Analysis: Risk analysis techniques that combine information 

on input uncertainty to estimate output uncertainty in the form of a probability 

distribution of possible outcome values, usually with Monte Carlo simulation 

methods (adapted from Hertz (1964)). 

Risk: “A product of the probability and severity of an adverse outcome”. (Adapted 

from the Level of Risk concept in IS0 31000 (ISO, 2009, term 3.6.1.8.) 

Risk Analysis: “clarifying uncertainty for decision-makers.” While there are many 

techniques for risk analysis, this research deals specifically with probabilistic risk 

analysis, which is further defined above.  

Risk Analysis of Performance Measure Forecast: “Systematically estimating 

the likelihoods of various future performance measure values or ranges based on 

an understanding of forecast inputs and their uncertainty.” 
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Road Safety: “the number of accidents (crashes) by kind and severity, expected 

to occur on the entity during a specified period” (Hauer E. , 1997, p. 25) 

Uncertainty: “the quality of being indeterminate as to magnitude or value” (Oxford 

University Press, 2014). 

Value of Statistical Life: “the value a given population places ex ante on avoiding 

the death of an unidentified individual” (OECD, 2012, p. 13). 
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2. PERFORMANCE MEASURES AND INPUT UNCERTAINTY FOR 

PEDESTRIAN CROSSING EXPOSURE ESTIMATES 

The material in this chapter is published in (Milligan, Poapst, & Montufar, 2013), 

and reprinted with permission of co-authors Rob Poapst and Jeannette Montufar. 

In following the paper, the chapter is self-contained with its own abstract, 

introduction, conclusion, and references. The author of this thesis had principal 

responsibility for all aspects of the paper, while co-authors provided advice, 

reviews, and spreadsheet programming from co-authors. 

ABSTRACT: Pedestrian safety performance measures often use estimates of 

annual crossing exposure as inputs – but relatively little information exists on the 

uncertainty associated with these inputs. This research considers two sources of 

temporal information for expanding short-term counts: (1) a composite of 

pedestrian counts from other cities, and (2) local vehicle counts. A database of 

pedestrian flows from video review covering 12 months and including over 350,000 

pedestrian observations provides a known reference annual volume and a set of 

short-term counts for expansion and testing.  The research compares the temporal 

information sources with observed pedestrian volumes by analyzing the times and 

magnitudes of volume peaks. The temporal patterns based on local vehicle counts 

match observed pedestrian patterns more closely than the external composite 

pedestrian patterns. To quantify exposure estimate uncertainty, the research uses 

the local vehicle and external composite pedestrian patterns to expand a sample 

of short term counts to generate a set of 200 annual estimates, and then compares 

the estimates to the known reference volume. Exposure estimates developed by 
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expanding counts with local vehicle factors have the lowest errors (mean: -2%; 

median: -3%, standard deviation: 33%; 90 percent of errors between -53% and 

50%).  Exposure estimates based on external composite pedestrian patterns have 

higher errors (mean: 27%; median: 9%; standard deviation: 73%; 90 percent of 

errors between -62% and 170%).  If methods to obtain pedestrian exposure 

estimates based on short-term counts are improved, more confidence can be 

placed in safety performance measures that use these estimates as inputs. 

2.1. INTRODUCTION 

Pedestrian safety analysis often uses exposure information based on expanded 

short term volume counts. This research considers two fundamental questions 

related to this practice. First, where should we get temporal information to expand 

short term counts? Second, how good are the expanded counts?  

In addressing the first question, the research compares observed temporal 

patterns of pedestrian travel at a site to various temporal patterns that could be 

used for expansion.  In addressing the second question, the research compares a 

known reference annual volume to many estimates based on expanded short term 

counts in order to analyze the distribution of errors. 

The main impetus for this investigation is interest in the potential to use temporal 

factors from the National Bicycle and Pedestrian Documentation Project (factors 

based on pedestrian and bicycle counts taken across the United States) to expand 

short term counts (which are common in many jurisdictions) for use in safety 

performance measurement and analysis.  
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This investigation uses extensive video-based data on the volumes of users of a 

pedestrian facility (an intersection crosswalk in downtown Winnipeg, Canada). For 

simplicity, we call these users pedestrians, even though the counts include a 

subset (less than five percent) of users in wheelchairs, strollers, or on bicycles. 

Exposure in this research is annual pedestrian crossing volumes at an intersection 

crosswalk. The question of what constitutes pedestrian exposure is not a simple 

one and it has many answers depending on the context and the need for the 

exposure information. An exposure metric should have some correspondence with 

the target risk it is being associated with. So if the target risk is pedestrian falls, or 

pedestrians struck by vehicles leaving the road, then time or distance spent 

walking might be an appropriate exposure metric. If the target risk is pedestrian 

collisions with vehicles while crossing the street, then number of crossings, number 

of lanes crossed, time spent crossing streets, number of crossings with pedestrian 

right-of-way, or number of crossings without pedestrian right-of-way are all 

possible exposure metrics, among other metrics such as numbers of crossings 

disaggregated by pedestrian characteristics, lighting conditions, weather, or cross-

street traffic characteristics. These metrics would provide a variety of insights for 

analysis, but some are difficult to record from a practical perspective. This study is 

concerned with the type of exposure information intended to support the analysis 

of collisions between vehicles and pedestrians while crossing the street. The 

research uses annual pedestrian crossing volumes as an exposure metric because 

it corresponds with the target risk, and the practicality of this metric corresponds 

with available resources. 



26         
 

2.2. EXISTING KNOWLEDGE, PRACTICES AND NEEDS 

Transportation agencies increasingly use performance measurement as a system 

management tool (Marsden, Kelly, & Nellthorp, 2009). Road safety performance 

measures are often calculated or analyzed using volume or exposure estimates as 

inputs. Understanding uncertainty associated with performance measure 

estimates and the implications of that uncertainty in collision analysis involves 

understanding uncertainty in performance measure inputs. The ability to make 

defensible decisions based on a road safety estimate is linked to understanding 

the uncertainty (bias and variance) of that estimate (Hauer E. , 1997, p. 63). Within 

data systems for performance measurement and management, there are trade-

offs between cost, precision, credibility, and timeliness – users of performance 

information should be aware of and comfortable with these trade-offs (Zall Kusek 

& Rist, 2004, p. 86). 

For pedestrians, continuous/permanent volume counts are rare (Fitzpatrick & 

Park, 2009), as is the amount of data on temporal volume variation which could be 

used to estimate annual exposure based on a short-term count (Aultman-Hall, 

Lane, & Lambert, 2009).  Even though continuous counts are rare, it is known that 

pedestrian activity in many locations exhibits periodicities with respect to month-

of-year, day-of-week, and time-of-day (see, e.g. studies summarized by Schneider 

et al. (2009)). While information about pedestrian activity at specific times is useful 

for many applications (e.g. capacity considerations, operational planning, 

crosswalk warrant studies) information about annual activity is useful for other 

applications such as developing safety performance functions.  
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Practitioners are responding to the shortage of pedestrian data through increased 

installations of new automated continuous counting technologies and through 

collaborative data efforts. In particular, the National Bicycle and Pedestrian 

Documentation (NBPD) project has developed a set of publicly available temporal 

adjustment factors based on a composite of 310 counts in 93 communities 

throughout the U.S. (NBPD, 2009). The NBPD temporal factors, which are 

provided for two facility types (multi-use pathways and high-density pedestrian and 

entertainment areas) and three climate zones (long winter/short summer, 

moderate, and very hot summer/mild winter), are designed to expand 2-hour 

pedestrian and bicycle crossing counts to estimates of yearly crossing volumes. 

The NBPD factors consist of hourly, day-of-week, and monthly factors. There are 

four sets of hourly factors: summer weekday, summer weekend, winter weekday, 

and winter weekend. With these four sets, the NBPD method applies more hour-

of-day temporal information than a typical expansion effort would (where usually a 

single set of hourly factors is used (FHWA, 2001)). It is possible that further 

increasing the number of hourly factor groups used (e.g., with separate hourly 

factors for Saturdays and Sundays) could further increase accuracy by accounting 

for different hourly peaking characteristics on these days. This is not addressed in 

this research, however, since the main impetus is to investigate the NBPD 

methods. 

Several jurisdictional surveys (Hudson et al., 2010, Schneider et al., 2005, Cottrell 

& Pal, 2003) indicate an increasing focus on continuous automatic pedestrian 

counts and the temporal information that they can provide for exposure estimates. 
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Bu et al. (2007) and Ozbay et al. (2010) review costs, capabilities, and technical 

limitations of technologies available to continuously count pedestrians. These 

technologies are: infrared counters, piezoelectric mats, laser scanners, computer 

vision (video), and microwave detection.  

Two pedestrian safety studies that resulted in changes to the U.S. Manual on 

Uniform Traffic Control Devices used techniques to estimate annual crossing 

exposure by expanding short-term counts. Fitzpatrick and Park (2009) expand two-

hour pedestrian counts at each of 123 sites in their study with a two-step approach: 

(1) two-hour volumes are expanded to daily volumes based on factors from four 

24-hour video pedestrian counts taken during the study; and  (2) daily volumes are 

expanded to annual volumes with seasonal vehicle temporal factors from the same 

city. Zegeer et al. (2005, p. 67) expand 1-hour counts at 2000 sites across the U.S. 

with temporal factors developed from two sources: (1) 8- to 12-hour pedestrian 

counts during the study at 22 sites, and (2) 24-hour pedestrian counts conducted 

20 years earlier in Seattle. 

Previous studies that aim to characterize the accuracy or precision of vehicle traffic 

volume estimates based on short-term counts follow a four step approach: (1) 

obtain a reference value through continuous monitoring at a site; (2) sample the 

continuous monitoring data to create a set of short-term counts; (3) expand short-

term counts to create a set of traffic volume estimates using the method being 

tested; and (4) compare the estimates to the reference value  (Jiang et al., 2006) 

(Yang and Davis,  2002) (Hu, et al., 1998) (Sharma et al., 1996) (Granato, 1998) 

(Chen S. , 1981). While this four-step approach has been repeatedly applied to 
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test vehicle volume estimates, it has not been applied to test annual pedestrian 

volume exposure estimates.  

The need for this research is predicated on: (1) the increasing data demands of 

performance measures; (2) the need to understand uncertainty in performance 

measures; (3) the need to balance trade-offs between data cost and precision; (4) 

the lack of pedestrian travel monitoring data; (5) the creation of the NBPD count 

expansion tools; and (6) the absence of prior studies using a known reference 

volume to test annual pedestrian crossing exposure estimates based on expanded 

short-term counts. 

2.3. METHODOLOGY 

The following questions drive the methodology for this research: (1) where should 

temporal information for expansion come from (Figure 2-1), and (2) how good are 

expanded counts (Figure 2-2). Figure 2-1 illustrates that, to answer the first 

question, the research uses video data of pedestrians at the study location to 

develop observed hourly, day-of-week, and month-of-year temporal patterns for 

pedestrian crossing activity. The patterns are in the form of percentages of total 

volume to facilitate comparison with patterns from other composite sources with 

different absolute volumes. These graphs then provide a reference point to 

methodically address differences in periodicities. 
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Figure 2-1: Research Approach: where should we get temporal information 
to expand short-term counts? 

 

 

Figure 2-2: Research approach: how good are expanded short term 
counts? 

 

Figure 2-2 illustrates that, to answer the second question, we use a large sample 

of counts from the continuous video data to develop one reference (close to true) 

annual volume. The research uses the same continuous video data to sample a 

large set of short-term pedestrian counts. The research applies the expansion 

methods under investigation to this sample of short-term counts to generate a large 

set of annual estimates, generates a corresponding set of errors based on the 
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difference between these estimates and the reference volume, and analyzes the 

distribution of these errors to quantify the uncertainty associated with using these 

methods. The remainder of this section explains the methodology in more detail. 

2.3.1. Study Location and Database Development 

The research develops a database of pedestrian flows based on a manual review 

of 84 days of video resulting in 351,000 crossing observations in Winnipeg, 

Canada. For each of the 84 days counted, a 16-hour count from 06:00 h to 22:00 

h, with data in one-hour intervals, is multiplied by 1.05 to obtain a daily reference 

volume in accordance with the NBPD methodology. The intersection of interest is 

in Winnipeg’s central business district and is surrounded by an arena, an exhibition 

centre, shopping and eating establishments, hotels, bus stops, and office towers. 

Because of these land use characteristics, the research uses the NBPD factors 

corresponding to the “high-density pedestrian and entertainment area” facility type. 

The major road of the intersection is a six-lane divided arterial street with a median 

and with average weekday daily traffic of about 35,000 vehicles per day. The minor 

road of the intersection is a four-lane one-way arterial street with average weekday 

daily traffic of about 18,000 vehicles per day. All four corners of the intersection 

have two curb cuts and ramps, one for each crossing direction. The specific facility 

considered in this study is the crosswalk traversing the minor street on the north 

side of the intersection. 

2.3.2. Selection of Expansion Methods to Test 

This research investigates three expansion methods: 
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 The Base Case expands a short term count without applying any temporal 

information – using an intentionally naïve assumption that volumes do not 

fluctuate by time of day, day of week, or month of year. This method is not 

recommended, but provides a reference to determine the reductions in 

uncertainty offered by subsequent methods. 

 The NBPD method uses temporal factors developed from a composite of 

counts of bicycle and pedestrian volumes in other cities. While the factors can 

be used to expand just a two-hour count, the NBPD recommends expanding 

three two-hour counts to three annual volume estimates, and then producing a 

final annual estimate as the average of the three annual estimates. This 

research follows this recommendation.  

 The Vehicle Factors method uses temporal factors from a local vehicle traffic 

pattern group. The factors in this pattern group are based on continuous vehicle 

traffic monitoring on provincial highways in and around Winnipeg. The research 

considers the use of local vehicle factors to expand pedestrian counts based 

on the following: (1) they represent a simple and low cost option; (2) previous 

research (e.g. Fitzpatrick and Park, 2009) used local vehicle factors; and (3) 

the similarity in travel patterns of users of different modes within a city may be 

enough to make the approach viable. 

2.3.3. Sample Size & Sampling Method 

The first sample size decision concerns how much video review data was required 

at the site to obtain a reference annual volume. The research obtains the minimum 
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amount of data to include a volume for at least one day of week for each month of 

each year in order to conserve resources but still have a sample that is 

representative of day-of-week and month-of-year variations. This corresponds to 

a sample size of 84 days. The sampling of the 84 days was random subject to the 

constraints of taking one week per month while avoiding statutory holidays and 

days with missing video data. The average of these 84 daily volumes multiplied by 

365 represents the reference annual pedestrian crossing exposure estimate. This 

is not a perfect annual value for comparison - a practical impossibility. Instead, it 

is called a reference value, because it is a nearly true value used as a reference 

point for comparison. Because the reference value is itself an estimate, the 

research evaluates this value based on the sample size and variation within the 

sample to determine it’s suitability as a reference point for determining errors. The 

reference value is 1,605,187 crosswalk users per year, representing an Annual 

Average Daily Traffic (AADT) of about 4400 users per day. Evaluation using the 

student’s t test statistic estimates a 95 percent confidence interval for this 

reference value to be within +/- 7 percent of the point estimate. We consider the 

range of +/- 7 percent to be small enough to be not meaningful from an engineering 

perspective, and accept the point estimate as a reference for determining errors.  

The second sample size decision concerns how many annual estimates to 

generate by expanding short-term counts. The research uses the percentile 

bootstrap method for confidence interval estimation. Guidelines in Mooney and 

Duval (1993) indicate that when using the bootstrap method, parameter estimation 

improves only slightly for B > 1000, and that few dispute the quality of parameter 
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estimation when n reaches the range of 30 to 50 (where n is the original sample 

size and B is the number of bootstrap resamples). The research conservatively 

exceeds these guidelines by a factor of four with an original sample size of 200 

annual exposure estimates and 4000 bootstrap resamples. The conservative 

approach is possible because the 84 days required for the AADT formula provide 

a sufficient database to sample for this many short-term counts. In order to 

generate the 200 annual exposure estimates, the research requires a sample of 

two-hour periods for expansion. The research randomly selects two-hour periods 

for expansion from the 84 days of video counts subject to the constraint of avoiding 

Monday and Friday counts (a requirement of the NBPD methodology being tested).  

2.3.4. Analysis Method 

First, the analysis plots the observed hourly, daily, and monthly temporal patterns 

from the 84 days of video data together with the patterns built into the expansion 

methods (the external composite patterns from the NBPD and the local Vehicle 

Factors). The analysis compares the times and sizes of travel maximums and 

minimums and methodically addresses differences that are present. 

Second, the analysis compares, for the four expansion methods, the distribution 

of errors that results when many short term counts are expanded and compared 

to the known reference value for annual exposure.  

Each expansion method produces a set of 200 annual pedestrian crossing 

exposure estimates.  For each estimate, the error is Error = (Estimate – Reference 
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Value)  and the percent error is  Percent Error = 100*(Estimate – Reference Value) 

/ Reference Value. 

The analysis plots the distribution of the 200 error values for each expansion 

method, and identifies the following sample parameters for these values: 

 Mean error (indicator of expansion method accuracy); 

 Median error (indicator of expansion method accuracy); 

 Standard deviation of errors (indicator of expansion method precision); and, 

 90 percent reference interval (indicator of expansion method precision). 

The 90 percent reference interval (defined by the 5th and 95th percentile values of 

the error distribution) is distinguished from a confidence interval as follows: instead 

of predicting a range that has a 90 percent likelihood of containing the true 

distribution mean, the reference interval gives a range of likely error values. This 

is useful because a practitioner will likely only generate one annual estimate at a 

site, and the range of likely error values that this one estimate may take is for some 

purposes as relevant or more relevant than the likely average error of many 

estimates. The 90 percent reference interval can be thought of as a range of ‘not 

unusual’ values. 

In order to provide a basis for comparison of error parameters among expansion 

methods, the research uses the non-parametric technique of bootstrapping 

(percentile method) to estimate confidence intervals (CIs) for these parameters. 
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This statistical method is appropriate because parametric techniques require 

imposed distributional assumptions such as normality (Mooney & Duval, 1993) 

(Effron & Tibshirani, 1986), and the Kolmogorov-Smirnov test suggests that for 

each expansion method, it is very unlikely (p < 0.01) that the errors are normally 

distributed. The research also uses bootstrapping (percentile method) to test for 

statistically significant differences in error parameter values between the methods, 

using a procedure as described in (Mooney & Duval, 1993) and using B = 4000 

resamples. The null hypothesis for each of these tests is shown in Table 2-2 with 

the test results.  

2.4. RESULTS 

2.4.1. Comparison of Observed Pedestrian Temporal Patterns in Winnipeg 

with Patterns in Expansion Methods 

If the periodicities in an expansion method correlate well with actual periodicities 

at a site, the expansion method is likely to produce good estimates based on short 

term counts at that site. Figure 2-3 through Figure 2-8 compare observed 

periodicities at the site to those in the NBPD and the Vehicle Factors Expansion 

methods. There are some similarities but also some striking differences. Areas of 

poor correlation among periodicities can lead to errors in expanded estimates. 

Figure 2-4 provides an example of how these errors can occur, where the actual 

observed volumes on Wednesdays are 17 percent of total weekly volume but the 

NBPD expansion factor factors suggest assuming that Wednesday volumes are 

12 percent. To expand a Wednesday volume at this site to a weekly volume, it 



37         
 

should be divided by 0.17 (based on observed patterns), but using the NBPD 

factors, it would be divided by 0.12, resulting in a weekly estimate 1.42 times what 

it should be (.17/.12). This 42 percent error is one of three errors that is introduced 

when applying hour-of-day, day-of-week, and month-of-year factors to a two-hour 

count.  

 

Figure 2-3: Monthly variation in pedestrian volumes 
 

 

Figure 2-4: Day-of-week variation in pedestrian volumes 
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Figure 2-5: Hourly variation in pedestrian volumes (1: weekday Apr-Sep; 2: 
single yearly set of factors) 

 

 

Figure 2-6: Hourly variation in pedestrian volumes (1: weekday, Oct-Mar; 2: 
single yearly set of factors) 
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Figure 2-7: Hourly variation in pedestrian volumes (1: weekend, Apr-Sep; 2: 
single yearly set of factors) 

 

 

Figure 2-8: Hourly variation in pedestrian volumes (1: weekend Oct-Mar, 2: 
single yearly set of factors) 
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resulting in four separate graphs. The hourly Vehicle Factors, however, as 

provided by the traffic monitoring program, are not distinguished by time of year or 

type of day and are the same on all four graphs. If the traffic monitoring program 

provided separate hourly factors by season and type of day, the match between 

observed patterns and Vehicle Factor patterns in Figure 2-5 through Figure 2-8 

might be improved.  

Figure 2-3 shows that all three patterns of monthly variations are approximately in 

phase, exhibiting summer maximums and winter minimums. The amplitude of 

observed monthly variations closely matches the Vehicle Factors, but the 

amplitude of monthly variations in the NBPD factors is more extreme than both of 

the other patterns. Maximum observed monthly volume is 11 percent of yearly 

volume, while the NBPD maximum is 14 percent. The minimum monthly volume 

for NBPD is 3 percent of yearly volume, which is half of the observed minimum of 

6 percent. These discrepancies lead to overestimates of annual exposure when 

expanding a winter monthly volume with the NBPD factors and underestimates of 

annual exposure when expanding a summer monthly volume. On the other hand, 

using vehicle factors to expand monthly pedestrian volumes to annual volumes at 

this site introduces little error. 

Figure 2-4 shows that the observed day-of-week variations are approximately in 

phase with the Vehicle Factors (maximum on weekdays and minimum on 

weekends), but the observed variations have greater amplitude than Vehicle 

Factor variations. The differences in maximums are small: maximum daily 

observed and Vehicle Factor volumes are 17 percent and 16 percent of total 
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weekly volume, respectively. The differences in minimums are larger: minimum 

daily observed and Vehicle Factor volumes are 7 percent and 12 percent of weekly 

volume, respectively. These discrepancies lead to slight overestimates of weekly 

exposure when expanding a weekday daily volume using Vehicle Factors and 

large underestimates when expanding a weekend daily volume. 

Figure 2-4 also shows that the NBPD factors, with maximum travel on weekend 

days at 18 percent of weekly volume and minimum travel on weekdays at 12 

percent, are completely out of phase with the observed day-of-week pedestrian 

volume variations. The discrepancies between NBPD  and observed patterns at 

the site lead to underestimates of weekly exposure when expanding a weekend 

daily volume using NBPD factors and overestimates when expanding a weekday 

volume. 

Figure 2-5 shows that, during summer months on weekdays, NBPD hour-of-day 

variations in pedestrian volume show a single peak between 12:00 and 13:00 at 9 

percent of daily volume. Corresponding observed variations follow a bimodal 

distribution with peaks occurring between 12:00 and 13:00 at 13 percent of daily 

volume and between 16:00 and 17:00 at 9 percent of daily volume. The Vehicle 

Factors  follow a bimodal distribution with an earlier first peak between 07:00 and 

08:00 at 7 percent of daily volume and an second peak between 16:00 and 17:00 

at 9 percent. When a two-hour volume is expanded to a daily volume, the 

discrepancies between observed patterns and those in the expansion methods 

leads to errors in the daily volume estimate.  The size and sign of these errors 

depends on the time of the count and the expansion method used. Figure 2-6 
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shows results for hour-of-day variations during weekdays of winter months that are 

similar to the summer results.  

Figure 2-7 and Figure 2-8 show wide peaks in observed weekend pedestrian 

volumes centred between 14:00 and 15:00 at 11 and 12 percent of daily volume. 

The bimodally distributed Vehicle Factors, which are not specific to weekends, are 

substantially different from observed hourly variations on weekends. This 

discrepancy leads to underestimates of daily volumes if a weekend hourly count is 

expanded using Vehicle Factors if the count is taken before 10:00, and 

overestimates if the count is taken between 10:00 and 16:00. The summer 

weekend NBPD factors show high volumes continuing to 9:00 PM, which is not 

consistent with observed volumes. This would lead to an underestimate of daily 

volume if NBPD factors were used to expand a summer evening weekend count 

(which is an unlikely time for an agency to conduct a count, but an important time 

for pedestrian safety).  

The discrepancies among observed temporal patterns and those in the expansion 

methods result in underestimate and overestimate errors; Section 2.4.2. quantifies 

and compares these errors. Among all the temporal patterns compared, the best 

match is between observed volumes and local Vehicle Factors in the case of 

month-of-year variations. This suggests the potential to achieve low annual 

exposure estimate errors by taking a full week pedestrian count and using only the 

monthly Vehicle Factors for the annual expansion, avoiding the two expansions 

where there are greater discrepancies in the temporal patterns. The nature of 

variation in trip-making activity as a function of time can be influenced by a number 
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of interrelated factors such as trip purpose, land use, feelings of comfort, weather, 

feelings of security, light levels, opening and closing times of businesses, socio-

economic activity patterns, level of service attributes and cost considerations, 

modal options, and socio-economic attributes of the trip maker. Because these 

factors vary from place to place (and within places) and from mode to mode (and 

within modes), discrepancies exist in temporal activity patterns as shown in Figure 

2-3 through Figure 2-8. Since using temporal patterns drawn from other modes or 

cities can be less expensive than obtaining site and mode-specific temporal 

patterns, the question of whether or not the size of errors resulting from using these 

methods is acceptable is important. 

2.4.2. Error Distributions Among Expansion Methods 

This section first presents results of error distributions for various expansion 

methods, and then presents the results of a test for differences in these parameters 

between expansion methods. Errors are primarily characterized in terms of 

percentage deviation from the reference annual volume of just over 1.6 million 

pedestrians using the crosswalk. For the reader’s convenience, in the tables and 

figures, the error parameters are also presented in terms of actual deviation from 

the reference annual volumes. 

Figure 2-9 shows a histogram of 200 annual estimate errors for each of the 

expansion methods. Figure 2-9 shows that the error distributions are generally 

positively skewed, with long right tail overestimate errors exceeding 200 percent 

(3.2 million pedestrians) for the Base Case and NBPD methods. By contrast, 
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underestimate errors are limited to about -80 percent (-1.3 million pedestrians) for 

all three methods. The error distribution using the Vehicle Factors method is 

noticeably narrower than the distribution for the other methods, having mean and 

median errors near zero. Figure 2-9 suggests a bias towards overestimation of 

exposure for the Base Case and Vehicle Factors methods. 
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Figure 2-9: Distribution of annual pedestrian crossing exposure estimate 
errors for each expansion method.  Note: (Error represents difference between 
estimates and the reference volume of 1.6 million) 
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Figure 2-10, and Figure 2-11, and   
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Table 2-1 highlight several parameters of these error distributions and estimates 

of 90 percent confidence intervals for these parameters. In terms of accuracy, the 

mean and median errors for the Base Case are both around 40 percent (.6 million 

pedestrians) revealing a bias towards overestimation significant at the 90 percent 

confidence level when no temporal information is applied during expansion.  For 

the NBPD, mean error is about 30 percent (.48 million pedestrians), which is 

significantly different from zero at the 90 percent confidence level, while the 

median error is about 10 percent (.16 million pedestrians), which is not significantly 

different from zero at the 90 percent confidence level.  This reveals a bias towards 

overestimation using the NBPD method. The NBPD method has a tendency at this 

site to produce some estimates with very large errors. For the estimates based on 

Vehicle Factors, mean and median errors are nearly zero and not significantly 

different from zero, revealing no bias in the method. In terms of precision, the 

standard deviation of errors is about 50 percent (.8 million pedestrians) for the 

Base Case, 70 percent (1.2 million pedestrians) for the NBPD and about 30 

percent (.5 million pedestrians) for the Vehicle Factors. The 90 percent reference 

intervals show ranges of normal errors; one in ten errors is more extreme than this 

range. For the Base Case, the range is about -40 percent to 120 percent, for the 

NBPD the range is about -60 to 170 percent, and for the Vehicle Factors, the range 

is about -50 percent to 50 percent.  
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Figure 2-10: Accuracy of annual pedestrian crossing estimates by 
expansion method with 90% CI's (based on percentile bootstrap; n = 200, B 
= 4000) 

 

Figure 2-11: Precision of annual pedestrian crossing estimates by 
expansion method with 90% CI's (based on percentile bootstrap; n = 200; B 
= 4000) 
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Table 2-1: Accuracy and precision of annual pedestrian crossing exposure 
estimates by expansion method with 90% CI's 

Error Parameters Expansion Method 

  Base Case NBPD Vehicle Factors 

Accuracy Parameters       

Mean error, percent 38% (32% to 44%) 27% (19% to 35%) -2% (-6% to 2%) 

Mean error, millions 0.6 (0.5 to 0.7) 0.4 (0.3 to 0.6) 0.0 (-0.1 to 0.0) 

Median error, percent 37% (29% to 45%) 9% (-1% to 20%) -3% (-8% to 3%) 

Median error, millions 0.6 (0.5 to 0.7) 0.1 (-0.0 to 0.3) -0.1 (-0.1 to 0.0) 

Precision Parameters    

SD of errors, percent 51% (47% to 46%) 73% (67% to 79%) 33% (30% to 35%) 

SD of errors, millions 0.8 (0.8 to 0.7) 1.2 (1.1 to 1.3) 0.5 (0.5 to 0.6) 

5th percentile error, 

percent 

-39% (-33% to -

44%) 

-62% (-53% to -

66%) 

-53% (-44% to -

58%) 

5th percentile error, 

millions 
-0.6 (-0.5 to -0.7) -1.0 (-0.8 to -1.1) -0.8 (-0.7 to -0.9) 

95th percentile error, 

percent 

124% (114% to 

135%) 

170% (139% to 

191%) 
50% (46% to 54%) 

95th percentile error, 

millions 
2.0 (1.8 to 2.2) 2.7 (2.2 to 3.1) 0.8 (0.7 to 0.9) 

Note: For each method, parameter and CI estimates based on percentile 
bootstrap with n = 200 and B = 4000.  
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Table 2-2: Tests for differences between expansion methods in the 
accuracy and precision of annual crossing exposure estimates 
Percent Error 
Parameter 

Symbol Null Hypothesis Result 
(percent) 

Result 
(millions) 

Two-tailed 
p-value 

Base Case – NBPD      
Mean Error µ H0,a:  (µBASE - 

µNBPD) = 0 
11% 0.2 0.07 

Median Error x.5 H0,b:  (x.5,BASE - 
x.5, NBPD) = 0 

28% 0.4 <0.0005 

Standard 
Deviation of Errors 

σ H0,c: (σ BASE – σ 

NBPD) = 0 
-21% -0.3 <0.0005 

90% Ref. Interval 
Lower Bound 

x.05 H0,e: (x.05,BASE - 
x.05,NBPD ) = 0 

22% 0.4 0.0015 

90% Ref. Interval 
Upper Bound 

x.95 H0,d: (x.95,BASE - 
x.95,NBPD) = 0 

-45% -0.7 0.0035 

      

Base Case – 
Vehicle 

     

Mean Error µ H0,f:  (µBASE - 
µVEH) = 0 

41% 0.7 <0.0005 

Median Error x.5 H0,g:  (x.5,BASE - 
x.5, VEH) = 0 

40% 0.6 <0.0005 

Standard 
Deviation of Errors 

σ H0,h: (σ BASE - σ 

VEH) = 0 
19% 0.3 <0.0005 

90% Ref. Interval 
Lower Bound 

x.05 H0,j: (x.05,BASE - 
x.05,VEH ) = 0 

13% 0.2 0.01601 

90% Ref. Interval 
Upper Bound 

x.95 H0,i: (x.95,BASE - 
x.95,VEH) = 0 

74% 1.2 <0.0005 

      

NBPB – Vehicle      
Mean Error µ H0,k:  (µNBPD - 

µVEH) = 0 
29% 0.5 <0.0005 

Median Error x.5 H0,l:  (x.5,NBPD - 
x.5, VEH) = 0 

12% 0.2 0.0775 

Standard 
Deviation of Errors 

σ H0,m: (σ NBPD - σ 

VEH) = 0 
40% 0.6 <0.0005 

90% Ref. Interval 
Lower Bound 

x.05 H0,o: (x.05,NBPD - 
x.05,VEH ) = 0 

-9% -0.1 0.1205 

90% Ref. Interval 
Upper Bound 

x.95 H0,n: (x.95,NBPD - 
x.95,VEH) = 0 

120% 1.9 <0.0005 

      

Notes: Results based on percentile bootstrap with n=200 and B=4000; result 
represents mean of 4000 differences, two-tailed p-value based on the percentile 
at which the distribution of 4000 differences becomes more extreme than zero; 
p<0.0005 indicates that none of the 4000 differences was more extreme than 
zero.  

 

Table 2-2 shows the results of a test for differences in error parameters between 

the expansion methods. In terms of accuracy, the results indicate that the NBPD 
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performs better than the Base Case, especially when considering median error 

which is lower for the NBPD by almost 30 percent with p < 0.0005. In terms of 

precision, however, the Base Case performed better than the NBPD, with the lower 

and upper bounds of the 90 percent reference interval for the NBPD more extreme 

than the Base Case by 22 percent and 45 percent, respectively.  Using external 

composite pedestrian factors improves overall accuracy but also introduces the 

possibility of some very large errors vis-à-vis the Base Case alternative of using 

no temporal information to expand the count. 

The results show that the Vehicle Factors also outperforms the Base Case in terms 

of accuracy with lower mean and median errors by 41 and 40 percent with p < 

0.0005.  In terms of precision, the Vehicle Factors produces a standard deviation 

of errors about 20 percent lower than that produced by the Base Case, with p < 

0.0005. The 5th percentile error for the Vehicle Factors is more extreme than the 

same parameter for the Base Case by 13 percent with p = 0.016, but the 95th 

percentile error for Vehicle Factors is less extreme than the Base Case by 74 

percent with p < 0.0005.  

The test comparing Vehicle Factors to the NBPD indicates that the Vehicle Factors 

produce a substantially lower mean error (difference of 29 percent, p < 0.0005), 

but only a moderately lower median error (difference of 12 percent, p = 0.077). 

Compared to the NBPD, the Vehicle Factors also produce a substantially lower 

standard deviation of errors (difference of 40 percent, p < 0.0005), and a 

substantially lower 95th percentile error (difference of 120 percent, p < 0.0005). 
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2.5. DISCUSSION 

This discussion first explores, through illustrative examples, the safety 

performance measurement implications of exposure uncertainty revealed in the 

test. Second, it examines what the results may mean with respect to the relative 

influence of travel mode, geography, climate, and land use on pedestrian travel 

patterns.  Finally, it presents some considerations for moving forward, given the 

characteristics and implications of exposure estimate uncertainty revealed in the 

test. 

2.5.1. Implications of Uncertainty in Performance Measurement 

While Vehicle Factors performed better than NBPD (in terms of accuracy and 

precision), and NBPD performed better than the Base Case (in terms of accuracy), 

annual estimates of pedestrian crossing exposure based on all methods tested are 

associated with high uncertainty. When exposure estimates based on these 

methods are used to generate safety performance measures or analyses, the 

uncertainty is transferred to the results. This investigation demonstrates 

uncertainty when the four methods tested were applied in the Winnipeg, Manitoba 

context – applications in other contexts or with variations in methodology may 

result in lower or higher uncertainty. The single site is a limitation of the study, and 

future research can clarify the ranges of uncertainty at other sites.  

The 90% reference intervals, seen in Figure 2-11, show a range of ‘not unusual’ 

error values. In the best case (expansion based on vehicle factors), this reference 
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interval is about -50 to 50 percent. This reference interval of -50 to 50 percent is 

useful for thinking about the implications of using annual exposure estimates as 

an input for safety performance analysis, when that estimate is generated by 

expanding a short term count with a method similar to one tested in this study 

(keeping in mind that estimates in other contexts may have different uncertainty 

characteristics):  

 It would not be unusual for the denominator of a collision rate to be off by 

half.  

 It would not be unusual for the argument of a safety performance function 

(SPF) to be off by half.   

 Collision modification factors (CMFs), which may be based on comparing 

collision rates or SPFs of various entities or of the same entity before and 

after a treatment, may need to be re-thought in light of the following 

questions: (1) is a treatment CMF so large that even with possible 50% 

errors in the inputs, the presence and direction of a treatment effect is still 

known with any confidence? and (2) to what extent does the sample size of 

a CMF study mitigate impacts of this uncertainty by allowing overestimates 

of exposure at some sites to balance underestimates of exposure at other 

sites? 

 A wide variety of economic analyses attempt to support decisions by 

comparing the cost of installing a treatment to a pecuniary estimate of the 

benefit of reduced accidents. These calculations often involve projecting 
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future exposure using an estimate of current exposure together with growth 

assumptions. Uncertainty in the initial exposure estimate could translate 

into corresponding uncertainty in the results of the economic analysis. 

When this uncertainty is quantified, it can be accounted for in risk-based 

analysis and forecasting.  

 

2.5.2. Relative Influence of Pedestrian Travel Pattern Determinants 

The fact that the local Vehicle Factors method outperformed the NBPD method in 

both accuracy and precision suggests that pedestrian travel patterns may have 

more in common with local vehicle travel patterns than they have in common with 

external pedestrian travel patterns – even when the external patterns are taken 

from composites of locations with broadly similar land use and climate 

characteristics. It may also mean that the facility/land use categorizations 

contained in the NBPD are still too coarse for widespread application. For example, 

the fact that the actual day-of-week variations at the site were completely out of 

phase with the NBPD factors means that the overall facility/land use category 

“high-density pedestrian and entertainment area” does not adequately distinguish 

between areas that are and are not influenced by high work-related weekday traffic 

in addition to shopping, entertainment, recreation, and other discretionary traffic 

that tends to concentrate on weekdays. Since the NBPD is an ongoing project, this 

may improve in the future.  The group working on the NBPD plans to update their 

factors as they continue receiving counts from collaborating jurisdictions.  
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2.5.3. Moving Forward 

Based on our results, several considerations emerge for moving forward. First, 

performance measures and predictions of performance measures using 

pedestrian exposure estimates as inputs should be interpreted with caution. When 

uncertainty characteristics of a performance measure estimate are known, there 

are cases when that uncertainty information can and should be incorporated to 

integrate risk-based and performance-based transportation planning. A program 

of road safety investments may be based on – and justified through - predicted 

safety improvement benefits which may or may not be realized. This uncertainty 

poses some degree of risk to a transportation agency’s strategic mission. For 

example, an agency may have a strategic goal of reducing pedestrian crossing 

fatalities by 30 percent. If the agency implements improvements expected (by point 

estimates of present and future performance measures) to achieve this goal, there 

is a good chance they will not achieve it. With uncertainty information, the agency 

can perform a stochastic analysis using Monte Carlo simulations to design a 

program with an estimated likelihood of meeting their strategic target. The cost of 

the program would likely go up with the predicted likelihood of meeting the target, 

creating a trade-off scenario. Integrating risk-based and performance-based 

management means making an informed decision about this tradeoff. 

Second, for now, it may be better to use local vehicle temporal patterns rather than 

external pedestrian patterns if expanding a short-term pedestrian count to be used 

in safety performance measurement and analysis.  The word may should be 

stressed – on the one hand, these results are based on one site in the Winnipeg, 
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Manitoba context, and repeated studies elsewhere could confirm or call into 

question this result, but on the other hand these results are based on a very large 

sample of observed pedestrians (84 days and over 350,000 observations).  

Third, increased deployment of continuous count technologies, together with 

increased research on the determinants of pedestrian travel patterns, could 

eventually lead to better exposure estimates to be used as inputs for safety 

performance measure calculation and analysis. Schneider et al. (2012) and 

Miranda-Moreno and Fernandes (2012) are examples of research using increased 

installations of continuous pedestrian counters. One specific study that could be 

undertaken in this regard is to install continuous counters in cities where local 

vehicle factors are available. The present paper found very low median and mean 

errors with the vehicle factors method. A multiple city study could determine the 

consistency of this result across jurisdictions and facility types. The present paper  

also found a very good match between the local seasonal vehicle patterns and 

observed pedestrian flows (a better match than hourly and day-of-week patterns). 

If this is consistent in a multiple city vehicle factors study, then a practitioner or 

researcher seeking pedestrian crossing exposure information could employ the 

strategy of using automatic counters for one week at a time and using available 

local vehicle factors to expand these counts to good yearly estimates. This strategy 

has the potential to provide about 50 times higher return on investment in terms of 

exposure data per automatic pedestrian counter compared to the strategy of 

leaving a counter at one site for an entire year. A second study could investigate 

the impact of using a finer resolution facility typology to create external composite 
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pedestrian factors. The present study suggests that “high-density pedestrian and 

entertainment area” is not a discrete enough facility type for one temporal pattern 

group. A study of a finer resolution facility typology could define facility types, for 

example, according to relevant characteristics identified in (Schneider, Henry, 

Mitman, Stonehill, & Koehler, 2012), and then create a multiple city study group 

with representation of each facility type in each city. For each facility type, the 

temporal patterns in each city can be compared to the composite of temporal 

patterns from same facility type from the other cities. The NBPD is an ongoing 

collaborative project and could be improved if the results from such a study were 

positive.  

2.6. CONCLUSION 

This paper investigates the accuracy and precision of pedestrian exposure 

estimates using four methods to expand short term counts. A database of 

pedestrian flows developed from video review covering 12 months provides a 

reference annual volume and a sample set of short-term counts for expansion and 

testing. The method applying local vehicle temporal factors yields the best 

precision and accuracy results. The method applying no temporal factors yields 

the worst accuracy, while the methods applying temporal patterns based on a 

composite of external pedestrian counts yields the worst precision. Pedestrian 

travel patterns may have more in common with local vehicle travel patterns than 

external pedestrian travel patterns. 
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While the application of vehicle factors produced the best results, the range of 

observed errors is still quite high: over- or under-estimates of exposure by about 

50 percent were not uncommon in the data. A main reason for the high errors is 

the difference between the periodicities at the site and the periodicities assumed 

in the temporal patterns used for expansion. A source of temporal information can 

be used for good expansions only if the periodicities in the source correlate well 

with the periodicities in activity at the site. When exposure estimates with 

associated uncertainty are used as inputs for safety performance measure 

calculation and analysis, there are wide-ranging implications: the use of rates, 

safety performance functions, collision modification factors, and economic impact 

assessments is affected. Given the significant degree of uncertainty associated 

with annual estimates of pedestrian crossing volumes based on expanded short-

term counts, future work to install continuous count technologies and investigate 

the determinants of travel patterns could be useful. 

2.7. ACKNOWLEDGEMENTS 

This work was supported by funding from the Natural Sciences and Engineering 

Research Council of Canada and the City of Winnipeg Department of Public 

Works.  The authors also gratefully acknowledge helpful statistics-related 

comments from Dr. Depeng Jiang, the assistance of those who conducted the 

video review, and the helpful suggestions by anonymous reviewers. 

 

 



59         
 

2.8. REFERENCES 

Aultman-Hall, L., Lane, D. & Lambert, R. R., 2009. Assessing Impact of Weather 

and Season on Pedestrian Traffic Volumes. Transportation Research Record 

2140, 35-43. 

Bu, F., Greene-Roesel, R., Diogenes, M. C. & Ragland, D., 2007. Estimating 

Pedestrian Accident Exposure: Automated Pedestrian Counting Devices Report. 

UC Berkeley Safe Transportation Research & Education Center, Berkeley, CA. 

Chen, S., 1981. Improved Methods for State-Wide Vehicle Counting. Purdue 

University Joint Highway Research Project, West Lafayette, Indiana. 

Cottrell, W. & Pal, D., 2003. Evaluation of Pedestrian Data Needs and Collection 

Efforts. Transportation Research Record, Journal of the Transportation Research 

Board 1828, 12-19. 

Effron, B. & Tibshirani, R., 1986. Bootstrap methods for standard errors, 

confidence intervals, and other measures of statistical accuracy. Statistical 

Science, Volume 1, pp. 54-75. 

FHWA, 2001. Traffic Monitoring Guide, Washington, DC: U.S. Department of 

Transportation Federal Highway Adminsteration. 

Fitzpatrick, K. & Park, E. S., 2009. Safety Effectiveness of HAWK Pedestrian 

Treatment. Transportation Research Record, Journal of the Transportation 

Research Board 2140, 214-223. 



60         
 

Granato, S., 1998. The Impact of Factoring Traffic Counts for Daily and Monthly 

Variation in Reducing Sample Counting Error. Iowa State University Center for 

Transportation Research and Education, 122-125, Ames, Iowa, 

Hauer, E., 1997. Observational Before-After Studies in Road Safety. Elsevier 

Science Ltd, Oxford. 

Hudson, J., Qu, T.-B. & Turner, S., 2010. Forecasting Bicycle and Pedestrian 

Usage and Research Data Collection Equipment. Texas Transportation Institute, 

College Station, TX. 

Hu, P. S., Wright, T. & Esteve, T., 1998. Traffic Count Estimates for Short-Term 

Traffic Monitoring: Simulation Study. Transportation Research Record 1625, 26-

34. 

Jiang, Z., McCord, M. R. & Goel, P. K., 2006. Improved AADT Estimation by 

Combining Information in Image- and Ground-Based Traffic Data. Journal of 

Transportation Engineering, 523-530. 

Marsden, G., Kelly, C. & Nellthorp, J., 2009. The likely impacts of target setting 

and performance rewards in local transport. Transport Policy (16) 59-97. 

Miranda-Moreno, L. F. & Fernandes, D., 2012. Pedestrian Injury Risk at Signalized 

Intersections: Exposure Measures and Geometric Designs. In:Proceedings of the 

Transportation Research Board 91st Annual Meeting,  Washington DC. 



61         
 

Mooney, C. Z. & Duval, R. D., 1993. Bootstrapping: A nonparametric approach to 

statistical inference (Sage University Paper series on Quantitative Applications in 

the Social Sciences, series no. 07-095). Sage, Newbury Park, CA. 

NBPD, 2009. Extrapolation Workbook, Extrapolation Detailed Explanation, and 

NBPD Facts and FAQs. [Online]  Available at: http://bikepeddocumentation.org/ 

[Accessed 30 11 2011]. 

Ozbay, K. et al., 2010. Automatic Pedestrian Counter. New Jersey Department of 

Transportation, Trenton, New Jersey. 

Schneider, R. J., Arnold, L. S. & Ragland, D. R., 2009. Methodology for Counting 

Pedestrians at Intersections: Use of Automated Counters to Extrapolate Weekly 

Volumes from Short Manual Counts. Transportation Research Record: Journal of 

the Transportation Research Board 2140, 1-12. 

Schneider, R. J. et al., 2012. Development and Application of San Francisco 

Pedestrian Intersection Volume Model. In: Proceedings of the Transportation 

Research Board 91st Annual Meeting, Washington, DC. 

Schneider, R., Patton, R., Toole, J. & Raborn, C., 2005. Pedestrian and Bicycle 

Data Collection in United States Communities: Quantifying Use, Surveying Users, 

and Documenting Facility Extent.  FHWA Pedestrian and Bicycle Information 

Center, Chapel Hill, NC. 



62         
 

Sharma, S. C., Kilburn, P. & Wu, Y., 1996. The precision of average annual daily 

traffic estimates from seasonal traffic counts: Alberta example. Can. J. Civ. Eng., 

(23), 302-304. 

Yang, S. & Davis, G. A., 2002. Bayesian estimation of classified mean daily traffic. 

Transportation Research Part A,  365-382. 

Zall Kusek, J. & Rist, R. C., 2004. Ten Steps to a Results-Based Monitoring and 

Evaluation System. The International Bank for Reconstruction and Development / 

The World Bank, Washington, DC. 

Zegeer, C. V. et al., 2005. Safety Effects of Marked versus Unmarked Crosswalks 

at Uncontrolled Locations: Final Report and Recommended Guidelines. Office of 

Safety Research and Development, Federal Highway Administration, McLean, VA. 

 

  



63         
 

3. ROAD SAFETY PERFORMANCE MEASURES AND AADT 

UNCERTAINTY FROM SHORT-TERM COUNTS 

The material in this chapter was submitted for publication in Accident Analysis and 

Prevention on August 18, 2014, and printed here with permission of co-authors 

Jeannette Montufar, and Jonathan Regehr; the journal editor has been notified. In 

following the paper, the chapter is self-contained with its own abstract, introduction, 

conclusion, and references. The author of this thesis had principal responsibility 

for all aspects of the paper, while co-authors provided advice and reviews. 

ABSTRACT: OBJECTIVE: The objective of this paper is to enable better risk 

analysis of road safety performance measures by creating the first knowledge base 

on uncertainty surrounding annual average daily traffic (AADT) estimates when the 

estimates are derived by expanding short-term counts with the individual 

permanent counter method. BACKGROUND: Many road safety performance 

measures and performance models use AADT as an input. While there is an 

awareness that the input suffers from uncertainty, the uncertainty is not well known 

or accounted for. METHOD: The paper samples data from a set of 69 permanent 

automatic traffic recorders in Manitoba, Canada, to simulate almost 2 million short-

term counts over a five year period. These short-term counts are expanded to 

AADT estimates by transferring temporal information from a directly linked nearby 

permanent count control station, and the resulting AADT values are compared to 

a known reference AADT to compute errors. The impacts of four factors on AADT 

error are considered: length of short-term count, number of short-term counts, 

distance from a count to its expansion control station, and the AADT at the count 
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site. RESULTS: The mean absolute transfer error for expanded AADT estimates 

is 6.7%, and this value varied by traffic pattern group from 5% to 10.5%. Reference 

percentiles of the error distribution show that almost all errors are between -20% 

and +30%. Error decreases substantially by using a 48-hour count instead of a 24-

hour count, and only slightly by using two counts instead of one. Mean absolute 

transfer error increases with distance to control station (elasticity .121, p = .001), 

and increases with AADT (elasticity .857, p < .001). IMPLICATIONS: These results 

can support evidence-based risk analysis of road safety performance measures 

that use AADT as inputs. Analytical frameworks for such analysis exist but are 

infrequently used in road safety because the evidence base on AADT uncertainty 

is not well developed. 

3.1. INTRODUCTION 

A widely used input to road safety performance measures is annual average daily 

traffic (AADT), which analysts often estimate by applying temporal factors to 

expand short-term counts. At permanent count stations, AADT may also be 

calculated directly from the data. The uncertainty in AADT from short-term counts 

propagates into safety performance measures and is often overlooked.  

This paper develops a new knowledge base on AADT uncertainty to enable better 

risk analysis of performance measures in road safety engineering. A sampling 

experiment uses permanent count station data to simulate approximately 2 million 

short-term counts along with corresponding expanded AADT estimates and errors 

to develop a new knowledge base on AADT uncertainty associated with using the 
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individual permanent counter (IPC) expansion method (Section 3.2.1 describes 

IPC). The paper also investigates four factors affecting the magnitude of 

uncertainty: the distance between a short-term count site and an expansion control 

station, the AADT (e.g. does AADT uncertainty change over a range of AADT 

values), number of short-term counts (e.g. error when expanding two counts 

instead of one), and length of short-term counts (e.g. error when expanding 48-

hour counts instead of 24-hour counts).  

Questions of risk and uncertainty in performance measures seem increasingly 

relevant to decision-makers in the current transport policy context (articulated, for 

example, in the U.S. MAP-21 legislation). To address these questions of risk and 

uncertainty, techniques such as Monte Carlo simulation modelling use information 

on input uncertainty to develop information on output uncertainty. However, the 

techniques depend on the availability of the evidence base on input uncertainty, 

and in the case of AADT, this evidence base is usually not available. As a result, 

the awareness that AADT uncertainty can cause road safety modelling and 

forecasting problems is more widespread than the practice of techniques to deal 

with these problems using a risk-based approach. 

3.2. BACKGROUND AND NEED 

3.2.1. Estimating AADT from Short-Term Counts: Group Factors and 

Individual Permanent Counter Methods 

In basic traffic monitoring programs, analysts create AADT estimates at short-term 

count sites by expanding them with temporal data transferred from permanent 
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count sites (FHWA, 2013).  Most United States and Canadian jurisdictions use the 

group factor method to make these adjustments (Yang & Davis, 2002) as does the 

United Kingdom (Government of the United Kingdom, 2005). Analysts using the 

group factor method arrange permanent and short-term counting stations into 

traffic pattern groups that exhibit similar temporal patterns. Methods for traffic 

pattern group creation and assignment include cluster analysis, land use attribute 

analysis, functional class grouping, engineering judgement (Li, Zhao, & Chow, 

2006), Bayesian estimation (Yang & Davis, 2002), and hybrid methods (Reimer & 

Regehr, 2013). Once the traffic pattern groups are created, analysts use various 

averaging methods to calculate group day-of-week factors (Dh) and month-of-year 

factors (Mh) based on data from the permanent count sites in a group.  This is 

represented in the FHWA Traffic Monitoring Guide (FHWA, 2013) formula for 

estimating AADT from a short-term count: 

AADThi = VOLi*Mh*Dh*Ai*Gh    (3-1), 
 

where AADT is the expanded estimate, VOL is the short-term count volume 

expressed in axle counts, M and D are the month and day-of-week group 

expansion factors, A is an axle correction factor to convert axle counts to vehicle 

counts, G is a growth factor in the case of using old short-term counts to estimate 

AADT, h represents a traffic pattern group, and i represents a site in that group.  

Albright (1987) introduces the individual permanent count (IPC) method for 

expanding short term counts by transferring temporal information from an 

individual permanent count station that is considered as the ‘control station’ for that 



67         
 

short-term count station. Lucas (1996) describes the initial implementation of this 

method for Manitoba highways, where traffic pattern groups are first created by 

cluster analysis and then the individual permanent count control stations are 

selected from within these traffic pattern groups for each short-term count station. 

Poapst et al., (2013, pp. I-8) describe the current application of this method in 

Manitoba. Unlike the group factor method described above, which transfers 

general temporal information from a group, the IPC method transfers specific 

temporal information from one individual permanent count control site and from the 

same time period as the short-term count. In the IPC method, the equation to 

estimate AADT (adapted from Albright (1987) is:  

AADTx,est = V48,x*AADTxc/V48,xc (3-2),  
 

where x is the short-term count site, xc is the volume control site (which is the 

closest permanent automatic traffic recorder (ATR) in the same traffic pattern 

group (TPG) as site x), and V48 is a 48-hour volume during the short-term count 

period. In Manitoba, two 48-hour short-term counts are expanded in this way and 

the final AADT estimate is taken as the average of the two expanded estimates. In 

other applications of the method, the length or number of short-term counts may 

be different.  Lucas (1996) cites the following benefits of the IPC method: (1) no 

need to re-calculate group factors every year; and (2) improved opportunity to 

capture localized spatial and temporal traffic patterns in the expansion process. 

The accuracy of this method is not well understood, and neither are the 

implications of this accuracy for safety performance measures that rely on AADT 
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as inputs, such as expected collisions, collision rates, countermeasure 

effectiveness estimates, or expected collision reductions from an intervention. 

 

3.2.2. Past Studies on Estimating AADT Uncertainty from Expanded Short-

Term Counts 

Table 3-1 summarizes previous studies that investigate accuracy of vehicle AADT 

estimates produced from expanded short-term counts. Recently, more focused 

studies have investigated uncertainties in expanded estimates of truck volumes 

(NCHRP, 2005) and expanded estimates of active transportation volumes 

(Nordback, Marshall, & Stolz, 2013) (Esawey, Lim, & Sayed, 2013) (Milligan, 

Poapst, & Montufar, 2013).  
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Table 3-1: Past studies on vehicle AADT accuracy from expanded short-
term counts 
Study Expansion 

method 
Findings Uncertainty measurement 

(Gadda, 
Kockelman, & 
Magoon, 2007) 

Group factors, 
one 24-hr count 

11.5%  to 18.5% Mean absolute percent 
error 

(Jiang, 
McCord, & 
Goel, 2006) 

Group factors, 
one 48-hr count 

8% Mean absolute relative 
error 

(Hu, Wright, & 
Esteve, 1998) 

Group factors, 
one 24-hr count 

5.7% to 15.7% Relative root mean square 
error 

Sharma, 
Kilburn, and 
Wu (1995) 

IPC; two, three, 
or four one-
month counts 
per year 

+/- 3.6%, +/-5.6%, 
and +/-8%  

95 percent intervals for 
percent error for four, three, 
and two one-month counts 
respectively 

(Bodle, 1966) Group factors, 
various count 
lengths. 

12.4%, 
9.7%,9.5%,5.6%, 
and 5.7%  

Relative root mean square 
error for one 24-hr, 24-hr-
no-Friday, 48-hr, 5-day, 
and 7-day count 
respectively 

(Granato, 
1998) 

Group factors, 
various count 
lengths, urban 
areas 

6.7%, 6.3%, 6.3%, 
and 6.4%  

Average absolute deviation 
for one 24-hr, 48-hr, 72-hr, 
and 96-hr count 
respectively 

(Chen S. , 
1981) 

Group factors, 
one 48-hr count 

7.3% to 13.9%  Standard deviation of 
relative errors 

 

Some broad generalizations from Table 3-1 are that for expanded short-term 

vehicle counts, a typical error magnitude ranges from about 5 to 15 percent and 

that this error depends on the number and length of short-term counts expanded. 

Table 3-1 also shows that only one study has investigated IPC but it did so in the 

context of long seasonal counts and not the more typical short-term counts used 

in a conventional traffic monitoring program. 

 

 



70         
 

3.2.3. Treatment of AADT Uncertainty in Road Safety Performance 

Measurement 

Hauer (2014) notes that uncertainty in AADT is one of the main difficulties in road 

safety regression modelling.  While it is somewhat common for authors building 

road safety models to make some comment about the AADT uncertainty, it is less 

common for authors to explicitly account for this uncertainty, perhaps because the 

evidence base on this uncertainty or methods for dealing with it are not well 

understood. There are a few exceptions where the AADT uncertainty is explicitly 

considered: 

 El-Bayouni and Sayed (2010) note that AADT uncertainty can bias 

estimates of effect and increase estimates of dispersion in SPFs. This is 

important in practical engineering terms because a main use of SPFs is to 

apply them to network screening in an Empirical Bayes approach where the 

weight assigned to the SPF prediction decreases with increasing 

dispersion. The authors implement what they call a ‘measurement error 

negative binomial’ (MENB) approach, which is a model including three 

equations: response, exposure, and measurement error. The MENB 

approach provided superior goodness of fit to the conventional negative 

binomial approach in the case of large measurement errors. The approach 

requires evidence on the variance to mean ratio (VMR) as a quantification 

of AADT uncertainty. 
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 Nordback, Marshall and Johnson  (2014) developed bicycle SPFs for a U.S. 

city where the uncertainty in bicycle AADT estimates had been quantified. 

The authors used this uncertainty information to conduct a sensitivity 

analysis and found that bicycle SPF parameters were sensitive to the 

uncertainty in bicycle AADT. 

 Maher and Summersgill (1996) outline and implement two approaches for 

dealing with errors in flow estimates. First, randomization experiments were 

used to vary the flow values according to a lognormal distribution with a 

variance to mean ratio of 10 percent. The approach showed that a bias of 

about 20 percent can be removed from parameter estimates when 

accounting for flow uncertainty in this way. Second, a formal functional 

model can be implemented to explicitly account for flow uncertainty in the 

log likelihood function; the approach showed that true standard errors may 

be appreciably larger than those estimated using a basic model that ignores 

flow uncertainty. 

3.3. METHOD 

The research uses 5 years of continuous hourly traffic volume data from 69 

permanent automatic traffic recorders (ATRs) on provincially operated highways 

in Manitoba, Canada. Regehr et al (2006) arrange the 69 ATRs into seven traffic 

pattern groups (TPGs) using a hybrid method combining cluster analysis and 

engineering judgement. Usually, a short-term count site is assigned to one of these 

TPGs and counts are expanded by transferring temporal information from the 
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closest ATR in the TPG. This research simulates short-term counts at an ATR 

where a reference AADT is known by sampling 24-hour and 48-hour periods from 

the continuous data. The research then expands the simulated short-term counts 

by transferring temporal information from the closest ATR in the same TPG. The 

expanded count can then be compared to the reference AADT to obtain error 

values. To generate a large set of sample errors for analysis, the research uses 

the following sequential simulation approach: 

 

1. Select an ATR as site x; 

2. Identify the expansion control site xc as the closest ATR in the same TPG; 

3. Sample the continuous data at site x to simulate a set of short-term counts; 

4. For each sampled short-term count, expand the count by using temporal 

data from xc to estimate an AADT at site x (this process is applied 

individually and also applied and averaged across pairs of short-term counts 

to test the practice of using two short-term counts in a year);  

5. Compute errors by comparing the estimate  of AADT to the reference AADT; 

6. Select another ATR as site x and repeat previous steps. 

This research computes four types of errors for each expansion: transfer error 

(TE), absolute transfer error (ATE), relative transfer error (RTE), and absolute 

relative transfer error (ARTE). The errors are called transfer errors because they 
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are associated with the transfer of temporal information from a control site to the 

short-term count site. TE and RTE are defined as follows:   

TE = AADTx,est – AADTx   (3-3); 
 

RTE = ((AADTx,est) – (AADTx))/AADTx  (3-4). 
 

The method excludes cases where a transfer error cannot be calculated with the 

IPC method. While up to about 3 million error values are possible during the study 

period, there are cases where  V48,x, V48,xc, AADTx, or AADTxc are not available 

because an ATR is out of service. In these cases, Manitoba uses the group factor 

method instead of the IPC method to estimate AADT. About 2 million error values 

are considered in the paper, all based on the IPC method. 

The new knowledge base on AADT uncertainty using the IPC method is provided 

in the form of reference percentiles of the RTE distribution as well as the mean 

absolute relative transfer error, which can provide the required evidence to inform 

a risk-based approach to SPF development and application. 

The investigation of factors contributing to uncertainty in expanded AADT 

estimates includes a comparative analysis of RTE distributions for select numbers 

of short-term counts (1 vs 2 per year) and lengths of short-term counts (24- vs 48-

hour). The investigation also includes a regression analysis of mean absolute 

transfer error and mean absolute relative transfer error against two variables 

thought to impact the magnitude of these errors: the actual reference AADT and 

the distance to the control stations.  
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3.4.  RESULTS 

The results section describes summary characteristics of the database, the 

distributions of expansion errors, and regression outcomes showing the effect of 

volume and distance on mean error magnitude. 

3.4.1. Summary Characteristics of the Database 

Table 3-2 shows summary characteristics of the database developed for this 

research.  The main contribution of the database is the set of AADT transfer errors 

from expansions using the IPC method on a set of simulated short-term counts 

where a reference AADT value is known. 

Table 3-2: Database summary 

Parameter Value 

Number of Stations 69 

Years of Data 5 

AADT Mean: 3932;  SD:  4297 

d Mean:  47.3 km; SD:  50.1 

km 

TPGs 7 

Number of AADT estimates and expansion 

errors 

1,986,931 

Notes: AADT = Annual Average Daily Traffic, d = distance to expansion 
control station; TPGs = traffic pattern groups 
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3.4.2. Distribution of Expansion Transfer Errors 

Table 3-3 shows seven-figure summaries for the distribution of relative transfer 

errors (RTE) as well as the mean absolute relative transfer error (MARTE). A 

seven-figure summary describes a distribution with seven reference percentiles – 

in this case, the 2nd, 9th, 25th, 50th, 75th, 91st, and 98th percentiles. The table 

gives overall results and results by traffic pattern group. The table shows an overall 

MARTE value of .067, with values across TPGs ranging from .050 to .105. This 

indicates a typical error magnitude of about +/- 6.7 percent. The 50th percentile 

RTE values near zero indicate little to no bias in the expansion method. Finally the 

9th and 91st percentiles indicate that over 80 percent of errors are limited to the 

range of about +/- 10 percent.  

Table 3-3: Distribution of transfer errors when using individual permanent 
counter method to expand two 48-hour short-term counts 

TPG n 
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PG1 216732 0.068 -0.187 -0.102 -0.043 0.001 0.048 0.123 0.272 

PG2 787759 0.073 -0.217 -0.094 -0.037 0.002 0.044 0.114 0.467 

PG3 120403 0.059 -0.196 -0.088 -0.036 0.008 0.048 0.094 0.160 

PG4 442817 0.058 -0.156 -0.088 -0.041 0.000 0.043 0.100 0.196 

PG5 96431 0.105 -0.305 -0.126 -0.058 -0.007 0.043 0.121 0.634 

PG6 171437 0.065 -0.176 -0.111 -0.056 -0.003 0.050 0.104 0.171 

PG7 151352 0.050 -0.161 -0.083 -0.020 0.001 0.024 0.110 0.216 

ALL 1986931 0.067 -0.194 -0.095 -0.040 0.001 0.044 0.108 0.289 

Notes: TPG = traffic pattern group; MARTE = mean absolute relative transfer 
error; RTE.n = nth percentile of the relative transfer error distribution. TPG 
definitions given in background section. Errors are based on comparing an 
AADT estimate obtained by expanding two 48-hour short-term counts at a site 
to the reference AADT value for that site. 
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Figure 3-1 shows empirical probability density functions for the relative transfer 

error based on the length and number of short-term counts expanded to estimate 

AADT. The “Two 48-hr” curve corresponds to Table 3-3 above and to the practice 

in Manitoba of estimating AADT at a short-term count site by conducting two 48-

hour counts at different points in the year, expanding them both using the IPC 

method, and taking the average of both expansions.  Additional curves show the 

impact on the relative transfer error distribution of expanding only one count or 

limiting the short-term count length to 24-hours. The results show a substantial 

improvement for expanding 48-hour counts instead of 24-hour counts, and a 

moderate improvement for expanding two counts instead of one. 

 

Figure 3-1: RTE distribution by number and duration of expanded short-
term counts 
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3.4.3. Regressions of Transfer Errors on AADT and Distance to Expansion 

Control Station 

An understanding of the factors influencing the magnitude of transfer errors can 

assist practitioners in counting program design and can also provide guidance in 

adjusting risk analysis for specific scenarios. For example, if it is known that RTE 

is lower for higher AADT values, a practitioner may use lower RTE values than 

those given in Table 3-3 for a risk analysis if the application context is a facility with 

high AADT. 

The regressions consider two explanatory variables thought to influence error 

magnitude: facility AADT and the distance between the short-term count site and 

the expansion control station (exploratory regressions also considered the effect 

of year on error, finding the year effects to be not meaningful and/or not significant). 

The regressions consider the impact of these variables on two dependent 

variables: mean absolute transfer error (MATE), and mean absolute relative 

transfer error (MARTE). In both cases, the mean refers to the mean by site and 

year. For example, for a given count station and year, the database may contain 

6000 simulated errors, and these 6000 errors would yield one MATE and one 

MARTE for the regression dataset. The almost 2 million error values in the 

knowledge-base yield 240 means by site and year as records in the regression 

dataset. Figure 3-2 shows natural and log-transformed scatterplots of the 

dependent and independent variables. These scatterplots are used to help select 

the regression model specification. In the transformed scatterplots, error 

magnitude appears to increase strongly with AADT, while relative error appears to 
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decrease slightly with AADT. Error magnitude and relative errors appear to 

increase slightly with the distance to the expansion control station. Because these 

relationships are not as evident or do not appear linear in the untransformed 

dataset, the log-transformed relationships are used in the following regression 

model specification, where 𝛽 and 𝜀 represent coefficients and normal random 

errors, respectively: 

 ln(𝑀𝐴𝑇𝐸) = 𝛽0 + 𝛽1 ∗ ln(𝐴𝐴𝐷𝑇) + 𝛽2 ∗ ln (𝑑) + 𝜀  (3-5) 

 

  ln(𝑀𝐴𝑅𝑇𝐸) = 𝛽0 + 𝛽1 ∗ ln(𝐴𝐴𝐷𝑇) + 𝛽2 ∗ ln (𝑑) + 𝜀.  (3-6) 

 

The two ordinary least squares linear regression models were estimated in R 

software (R Core Team, 2013). 

Table 3-4 gives the regression results and reveals that AADT and the distance 

from the short-term count site to the control station have statistically significant 

relationships with error values. The model coefficients have a natural interpretation 

as the elasticity of the error value with respect to the explanatory variable. MATE 

errors (not normalized to AADT) increase with AADT at an elasticity of .86 and 

increase with distance at an elasticity of .12. MARTE errors (normalized to AADT) 

decrease slightly with AADT at an elasticity of -.14, and increase slightly with 

distance at an elasticity of .12; all of these relationships are statistically significant 

with p-values below .01. The MATE model has reasonable explanatory power with 

r2
adj  of  .552 while the MARTE model has low explanatory power with r2

adj  of  .111 
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. This indicates that once the errors are normalized to volume, most of the 

remaining variation in errors is either random or due to unobserved factors, with a 

small portion still explained by volume (relative error decreases) and by distance 

(relative error increases). An assumption in ordinary least squares modeling is that 

the model residuals (difference between observed and fitted values) should be 

relatively randomly distributed across the ranges of explanatory variables. As a 

check on this assumption, Figure 3-3 gives the model residuals against 

explanatory variables, revealing no unusual patterns. 
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Figure 3-2: Scatterplots of errors against potential explanatory variables. 
Notes: MATE = Mean Absolute Transfer Error (by count site and year), MARTE = 
Mean absolute relative transfer error (by count site and year), AADT = Annual 
Average Daily Traffic, d = distance from short-term count site to expansion 
control station (in km). 
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Table 3-4: Regression of error values on volume and distance to control 
station 

  

ln(MATE)  

(n=240, r2
adj = .552) 

ln(MARTE ) 

(n=240, r2
adj = .111) 

  ß SE p ß SE p 

Intercept -2.181 0.455 3E-06 -2.181 0.455 3E-06 

ln(AADT) 0.857 0.051 8E-43 -0.143 0.051 0.005 

ln(d) 0.121 0.037 0.001 0.121 0.037 0.001 

Notes: MATE - model predicts ln(mean absolute transfer error); MARTE - 
model predicts ln(mean absolute relative transfer error); ß = coefficient 
estimate; SE = standard error of coefficient estimate; AADT = Annual Average 
Daily Traffic; d = distance from short-term count site to expansion control 
station; n = the number of mean errors in the regression where the mean is by 
site and by year. 
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Figure 3-3: Residual plots for regressions of error values against 
explanatory variables. Notes: MATE = mean absolute transfer error (by site and 
year); MARTE = mean absolute relative transfer error (by site and year); AADT = 
annual average daily traffic; d = distance from short-term count site to expansion 
control station, in km. 
 

3.5. DISCUSSION AND CONCLUSION 

While AADT is acknowledged as uncertain and the parameter is heavily leaned on 

as an input to safety performance measures, explicit treatment of uncertainty of 

AADT in safety performance estimates is not common. This study represents, to 

the authors’ knowledge, the first empirical information on AADT uncertainty when 

AADT is estimated by expanding short-term counts using the IPC method.  This in 

turn can allow explicit treatment of AADT uncertainty in safety performance 
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measures that depend on AADT as an input.  The distribution of relative transfer 

errors yielded by the research shows that the IPC expansion method is unbiased, 

with median relative transfer errors of less than one percent.  The overall mean 

absolute relative transfer error of 6.7% can be a useful figure for a discrete 

sensitivity analysis of the influence of AADT uncertainty on safety performance 

measure uncertainty. More extreme values of the distribution – for example the 2nd 

and 98th percentile RTE values of -19% and +29% can be used for a  more 

comprehensive probabilistic risk analysis that uses Monte Carlo simulation (for 

example, as in the type of risk analysis used in the Road Economic Decisions 

software of the World Bank (Archondo-Callao, 2004) or other similar risk based 

software).These risk analysis values are relevant to the context investigated in this 

paper  (short-term counts expanded in Manitoba using the IPC method), while the 

method provided in the paper can be used to obtain analogous risk analysis values 

for other contexts. 

In addition to characterizing AADT uncertainty for risk analysis, the paper also 

investigated factors that may impact the magnitude of this uncertainty. The 

investigation revealed two statistically significant relationships. First, while AADT 

errors increase with AADT, they do so at an elasticity of .86, so that the relative or 

percentage error decreases slightly with AADT. Second, AADT errors increase 

slightly (elasticity .12) with the distance from the short-term count site to the 

expansion control station, meaning that when temporal information is transferred 

from a control station further away, errors are slightly higher. A comparative 

analysis of RTE distributions with varying count length and duration showed lower 
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RTE for 48-hour counts as opposed to 24-hour counts, and lower RTE for taking 

the average of two expanded counts as opposed to using only one expanded 

count. However, the uncertainty reduction from using two counts is not large and 

should be weighed against the cost of counting locations twice. 

This paper has some natural limitations related to its scope. In other contexts, 

where traffic patterns are different, or methods to create traffic pattern groups or 

to expand short-term counts are different, the resulting analysis of AADT 

uncertainty will be different. However, most jurisdictions that have a short-term 

count program linked to a permanent count program for expansion purposes could 

apply the methodology in this paper to assess the resulting uncertainty in AADT 

estimates for safety performance purposes. 

The practice of performance-based decision-making in road safety engineering is 

continually progressing with the quality of safety performance information. The 

dissemination and adoption of safety performance analysis tools such as those in 

the Highway Safety Manual  (AASHTO, 2010) or in the Collision Modification 

Factors Clearinghouse (FHWA, 2013) has enabled improved performance-based 

decision making in road safety. However, the usefulness of these tools can be 

limited and results questioned when the tools rely on inputs for which the 

uncertainty is unknown. With an expanded knowledge base on AADT uncertainty, 

safety performance measurement tools can be applied within a risk-based 

approach. 
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4. VALUE OF A STATISTICAL LIFE IN ROAD SAFETY: A BENEFIT-

TRANSFER FUNCTION WITH RISK-ANALYSIS GUIDANCE BASED ON 

DEVELOPING COUNTRY DATA  

The material in this chapter is published in (Milligan et al., 2014), and reprinted 

with permission of co-authors Andreas Kopp, Said Dahdah, and Jeannette 

Montufar. In following the paper, the chapter is self-contained with its own abstract, 

introduction, conclusion, and references. The author of this thesis had principal 

responsibility for all aspects of the paper, while co-authors provided advice and 

reviews. 

ABSTRACT: We model a value of statistical life (VSL) transfer function for 

application to road-safety engineering in developing countries through an income-

disaggregated meta-analysis of scope-sensitive stated preference VSL data. The 

income-disaggregated meta-analysis treats developing country and high-income 

country data separately. Previous transfer functions are based on aggregated 

datasets that are composed largely of data from high-income countries. Recent 

evidence, particularly with respect to the income elasticity of VSL, suggests that 

the aggregate approach is deficient because it does not account for a possible 

change in inter-country income elasticity across income levels. Our dataset (a 

minor update of the OECD database published in 2012) includes 123 scope-

sensitive VSL estimates from developing countries and 185 scope-sensitive 

estimates from high-income countries. The transfer function for developing 

countries gives VSL = 1.3732E-4*(GDP per capita)^2.478, with VSL and GDP per 

capita expressed in 2005 international dollars (an international dollar being a 
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notional currency with the same purchasing power as the U.S. dollar). The function 

can be applied for low- and middle-income countries with GDPs per capita above 

$1268 (with a data gap for very low-income countries), whereas it is not useful 

above a GDP per capita of about $20,000. The corresponding function built using 

high-income country data is VSL = 8.2474E+3*(GDP per capita)^.6932; it is valid 

for high-income countries but over-estimates VSL for low- and middle-income 

countries. The research finds two principal significant differences between the 

transfer functions modeled using developing-country and high-income-country 

data, supporting the disaggregated approach. The first of these differences relates 

to between-country VSL income elasticity, which is 2.478 for the developing 

country function and .693 for the high-income function; the difference is significant 

at p<0.001. This difference was recently postulated but not analyzed by other 

researchers. The second difference is that the traffic-risk context affects VSL 

negatively in developing countries and positively in high-income countries. The 

research quantifies uncertainty in the transfer function using parameters of the 

non-absolute distribution of relative transfer errors. The low- and middle-income 

function is unbiased, with a median relative transfer error of -.05 (95% CI: -.15 to 

.03), a 25th percentile error of -.22 (95% CI: -.29 to -.19), and a 75th percentile error 

of .20 (95% CI: .14 to .30). The quantified uncertainty characteristics support 

evidence-based approaches to sensitivity analysis and probabilistic risk analysis 

of economic performance measures for road-safety investments. 
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4.1.  INTRODUCTION 

Analyses of investments to prevent road fatalities often use the net present value 

(NPV), the internal rate of return (IRR) or the social benefit-cost ratio as a 

prospective transport performance measure. These performance measures 

require estimates of both the value of a statistical life (VSL) and the value of a 

statistical injury (VSI). A robust and conservative engineering economic analysis 

using these performance measures also requires estimates of uncertainty in VSL 

and VSI. Many developing countries do not have appropriate VSL estimates and 

need to adapt existing estimates from elsewhere using transfer functions in a 

process called benefit-transfer. The currently available benefit-transfer functions 

are based on meta-analyses of datasets composed primarily of high-income 

country data, which may not be appropriate for application in developing countries. 

The objectives of this research are to (1) develop a new VSL transfer function for 

application to transport safety in developing countries that is based on VSL 

estimates from developing countries, (2) determine whether this function differs 

significantly from functions that are based on VSL estimates from developed 

countries and (3) quantify the uncertainty associated with this new transfer function 

for practical application to the risk analysis of performance measures.  

The study accomplishes these objectives by performing a new meta-analysis on a 

database of VSL estimates that has been made available as an accompaniment 

to the publication Mortality Risk Valuation in Environment, Health and Transport 

Policies (OECD 2012). Meta-analysis, which is widely used in road safety and 
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other fields of research, is “a quantified synthesis of the results of several studies” 

(Elvik, Høye, Vaa, & Sørensen, 2009, p. 20). The research also expands on the 

existing techniques for transfer error analysis and interpretation to validate the 

transfer function and enable its application in a stochastic framework.  

The work is a subset of a project at the World Bank to develop a flagship report 

entitled Comprehensive Assessment of Transport Policies and Projects that will 

provide ex ante evaluation instruments to allow engineers to incorporate wider, 

multi-sectoral benefits of transport as well as environmental and safety costs into 

decision-making supports. 

 

4.2. EXISTING KNOWLEDGE, PRACTICES, AND NEEDS 

This section is organized into four subsections. Section 4.2.1 presents the general 

need for VSL estimates as inputs to the social benefit-cost analysis of road safety 

investments. Section 4.2.2 provides an overview of the methods used to create 

original VSL estimates along with their strengths and weaknesses. Section 4.2.3 

describes the process of transferring VSL estimates to policy contexts in which no 

appropriate original VSL estimate exists and the current practice for assessing the 

uncertainty related to these transfers. Finally, Section 4.2.4 describes the state of 

existing practice for obtaining VSL estimates in developing countries and the 

emergence of opportunities to improve the state of this practice. 
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4.2.1. The Transport Safety Problem and the Need for VSL Estimates in 

Benefit-Cost Analysis 

The need for this research is fundamentally predicated on the transport safety 

problem in developing countries, which has the dimensions of a global disease. 

While transport risks to individual users may appear low, the cumulative impact of 

these risks places a high burden on society. Nordfjærn et al. (2012) describe the 

problem as “increasing towards endemic proportions in developing countries” 

(p.1862). Worldwide, there are approximately 1.3 million road transport fatalities 

per year—or approximately 3500 per day (WHO, 2012). Analysts expect these 

rates to increase, and developing countries bear a high share of the burden (World 

Bank and WHO, 2004). Because of the magnitude of the problem and in 

recognition of health-related millennium development goals, the World Bank 

focuses on safety as the first of three themes in its transport business strategy for 

2008 to 2012, entitled Safe, Clean, and Affordable Transport for Development 

(World Bank, 2008). 

Many engineering countermeasures—in the form of policies or projects—are 

available to reduce the risk of transport fatalities and injuries. Elvik et al. (2009) 

review the expected effectiveness levels of various countermeasures, as do 

several other handbooks and toolkits. With the resulting estimated changes to 

physical indicators in hand (i.e., reductions in fatalities or serious injuries), 

governments turn to social benefit-cost analysis (BCA) to develop performance 

measures that evaluate transport safety spending vis-à-vis other potential public 

spending from the perspective of overall welfare. An in-depth guide to project 
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evaluation using social BCA is provided by Dasgupta, Sen and Marglin (1972). 

Market prices often provide suitable information about public preferences for use 

in BCA, but in many cases, they do not. In these cases, social BCA requires the 

use of shadow prices, which are notional prices for the physical costs and benefits 

used by the government to reflect public preferences for evaluation purposes 

(Dasgupta, Sen, & Marglin, 1972). When social BCA addresses transport safety, 

shadow prices are required for the benefits of reduced transport risks because no 

market directly deals in these benefits. Most work to develop shadow prices for 

road safety produces a VSL or a VSI. The costs of property damage only (PDO) 

collisions are more amenable to evaluation at market prices because there are 

functioning markets that deal in the repair or replacement of damaged property 

(namely, vehicles). Furthermore, although the PDO costs are significant, they are 

small compared with the costs of injuries and fatalities. It is important to note that 

the VSL values do not reflect the moral value of a person’s life. An appropriate VSL 

value is one that supports social BCA by reflecting the preferences of individual 

members of the public related to their individual marginal rates of substitution 

between risk and income. Although social BCA is a widely used tool to evaluate 

road safety investments according to public preferences, it is not the only 

approach. Other approaches to evaluate road safety investments include cost-

effectiveness analysis, vision zero (see support in (Rosencrantz, Edvarsson, & 

Hansson, 2007) and criticism in (Elvik, 1999)), multi-criteria analysis (e.g., an 

impact tableau (Manheim, 1979)), and citizen’s juries (see arguments in favor by 

(Hauer E. , 2011)). Although some researchers prefer and argue for these other 
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approaches, this paper develops a new VSL benefit transfer function for 

application to road safety BCA in developing countries—though alternative 

approaches to BCA exist—under the assumption that the conventional practice of 

social BCA will continue for some time and that social BCA is useful for evaluation 

purposes. 

 

4.2.2. Methods to Estimate VSL and their Strengths and Weaknesses 

The methods used to estimate the value of a statistical life fall into two categories: 

the human capital (HC) method and the willingness to pay (WTP) method. The HC 

method uses lost productivity calculations, and analysts have almost completely 

abandoned this method because it fails to account for intangible dimensions, such 

as suffering and grief. They instead favor the WTP method, which implicitly 

includes these dimensions and is based on consumer preferences, which form the 

basis of BCA under the new welfare economics paradigm. The WTP method is 

further classified into two categories: the stated preference (SP) and revealed 

preference (RP) methods. 

The stated preference (SP) method uses surveys that are designed to elicit from 

participants a statement about the quantity of money that they would be willing to 

spend to achieve a small reduction in mortality risk. These surveys are based on 

an assumption that individuals can state their real preferences regarding a 

marginal rate of substitution between wealth and a specific type of mortality risk 

reduction when asked hypothetical questions about these preferences. If a person 

states a willingness to pay $10,000 towards a policy that will reduce their risk of 
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dying from 1.5% to .5%, the value of a statistical life is calculated as the willingness 

to pay divided by the risk reduction, or $10,000 divided by 1%, giving VSL = $1 

million. If there were 100 identical people, the expected number of deaths reduced 

by implementing the policy for the entire group is 1 (reduced from 1.5 to .5), and 

as a group, the total willingness to pay to save that one statistical life is $1 million 

(100 people times $10,000). 

The revealed preference (RP) method observes behavior in a proxy market to 

measure the actual willingness to pay for small reductions in mortality risk; the 

method then calculates the VSL in the same way that the SP method uses. The 

RP method requires a market for behavior observation. The RP method uses two 

markets: (1) the labor market and (2) the market for risk-reducing consumer goods 

(OECD, 2012) (Hauer E. , 2011) (Kochi, Hubbell, & Kramer, 2006) (Viscusi & Aldy, 

The value of a statistical life: a critical review of market estimates throughout the 

world, 2003) (Miller, 2000). The labor market method attempts to identify the wage 

premium associated with risk in jobs. The risk-reducing consumer goods market 

method attempts to identify the WTP for risk reduction by combining prices for 

protective goods—such as smoke alarms or safer cars—with estimates of the 

corresponding risk reductions offered by these goods. This WTP reflects a lower-

bound WTP for the buyers of the good and an upper-bound WTP for the non-

buyers of the good. Within RP methods, the wage-risk market is used more 

frequently than the risk-reducing consumer goods market. 

Among developed countries, the United States has traditionally relied on RP 

methods using the labor market for VSL estimates, whereas European countries, 
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Canada, and Australia tend to use the SP approach (OECD, 2012). Overall, there 

is a growing emphasis on SP methods (OECD, 2012), and the use of RP methods 

has slowed significantly since 1990 (Miller, 2000).  

Table 4-1 summarizes the literature on the strengths and weaknesses of the SP 

and RP methods for obtaining VSL estimates for use in engineering economics. 

The main strengths of the SP method are its ability to match survey questions to 

the policy risk context and achieve broad representation through survey design 

and control. The main strength of the RP method is its basis on actual behavior. 

Table 4-1 indicates that one of the weaknesses of RP wage-risk market studies is 

the lack of equilibrium in the employment market because of the high transaction 

costs associated with changing jobs, which results in an upward bias in RP-based 

VSL estimates. For a given risk difference between two jobs, the wage premium 

required to switch jobs is thus higher than the actual risk premium because of the 

transaction costs. Because this method bases VSL on the ratio of the wage 

premium to the risk difference, the transaction cost effectively upwardly biases the 

VSL estimate. Another factor that can introduce an upward bias in the RP wage-

risk methods is a tendency of regression modelers to remove workplace injury risk 

from the regression models to avoid any associated multicollinearity issues, with 

the result that the calculated wage premium for mortality risk is actually the 

premium for mortality and injury risk together (Miller, 2000). This theoretical 

upward bias is also demonstrated empirically: Kochi et al. (2006) compare 

distributions of VSL estimates based on SP and RP methods and find that RP 

estimates are higher and more dispersed than SP estimates. 
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Table 4-1: Strengths and weaknesses of the stated and revealed preference 
methods 
Stated Preference Revealed Preference 

Strengths Weaknesses Strengths Weaknesses 

-Flexibility to control 
for many variables 
including risk 
contexta 

-Based on 
hypothetical 
behavioura,b 

-Based on actual 
behavioura,c 

-Context-
insensitive, but risk 
valuation is context-
sensitivea,d,e,f 

-Can elicit 
preferences for 
non-observable 
attributesg 

-Lack of systematic 
responses to very 
small risk 
changesa,f,g,h 

-Some research 
finds consensus 
that wage is 
responsive to riski 

-Some research 
finds that the wage-
risk relationship is 
spuriouse,j 

-Can be 
representative of 
population if well 
designedf  

  -Difficult to account 
for non-risk 
determinants of 
wage variationa,b,f,k 

   -Panel data only 
gives cross-
individual rates of 
substitutiond 

   -High transaction 
costs means that 
workers not at 
wage-risk 
equilibriumh 

   -Wage-earners are 
not representative 
of the populationf 

   -Estimates are 
distorted by the gap 
between real and 
perceived risksa,f,h 

Notes: a (Hauer E. , 2011); b (Kochi, Hubbell, & Kramer, 2006); c (Cnaan & Kang, 
2011), d (Grüne-Yanoff, 2009); e (Mrozek & Taylor, 2002) f (OECD, 2012) g 
(Goldberg & Roosen, 2007); h (McConnel, 2006); i (Ruser & Butler, 2009); j 
(Miller, 2000);  k (Viscusi & Aldy, 2003). 

  

The main weakness of the SP method, stemming from its hypothetical basis, is 

that SP surveys sometimes fail to elicit systematic responses to very small risk 

changes. People have difficulty comprehending small numbers and small risk 

changes (Hauer E. , 2011), and they may sometimes respond with the same WTP 

for risk changes that differ significantly.  
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Although both methods have weaknesses, there are opportunities to address 

these weaknesses by applying the methods within a careful design. For example, 

in SP surveys, the use of visual aids to help participants understand risk changes 

greatly reduces the variability in the resulting VSL estimates (OECD, 2012). In RP 

wage-risk studies, the use of multivariate regression modelling can be employed 

to isolate risk factors from other determinants of wages.  

This paper uses VSL estimates developed using SP methods to model transfer 

functions, principally due to the method’s ability to investigate risk context. There 

is some degree of uncertainty in all VSL estimates, and this should be quantified 

and accounted for to support robust economic assessments to the greatest extent 

possible. 

 

4.2.3. Transferring VSL Estimates Between Policy Contexts: Needs, 

Methods, and Uncertainty 

Many countries do not have SP-based VSL (Dahdah & McMahon, 2008) (Miller, 

2000). When a social BCA is required to support engineering economic analysis 

in a policy context without an appropriate VSL estimate, analysts use benefit-

transfer to obtain an estimate for the policy context based on estimates that have 

been derived elsewhere. The OECD (2012) gives details on five methods to 

conduct benefit-transfer. In order of the amount of information incorporated into 

the transfer process, these methods are: (1) simple (naïve) unit value transfer; (2) 

unit value transfer with income adjustments; (3) unit value transfer for separate 

age groups; (4) benefit function transfer from a single study; and (5) benefit 
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function transfer by meta-analysis. This paper uses benefit function transfer by 

meta-analysis, which incorporates the greatest amount of information in the 

transfer process.  

The quality of a benefit transfer function and the uncertainty associated with using 

it are measured using a process called transfer error analysis. The OECD (2012) 

describes this process as follows, drawing on Navrud and Ready (2007), 

Kristofersson and Navrud (2005), and Kristofersson and Navrud (2007). For one 

application of a transfer function where the result of the transfer function, VSLTF, 

can be compared with a benchmark value, VSLB, the transfer error is commonly 

defined as 

TE = 100% * |VSLTF - VSLB| / VSLB.  (4-1) 
 

After many comparisons are made and a set of TE values is generated, previous 

studies have summarized transfer error performance using the mean or median 

TE values. The OECD (2012) tests the transfer function results using the actual 

estimates in the database as benchmark values. This allows as many tests of the 

transfer function as there are estimates in the database.  

Previous studies (e.g., OECD 2012) summarize benefit transfer performance using 

the mean or median absolute transfer error. A summary of benefit transfer 

performance using the mean of absolute transfer errors has some limitations—

namely, that this measure (1) is actually a description of the dispersion of non-

absolute errors, (2) does not account for bias or asymmetry in the data, and (3) is 

highly sensitive to outliers. Some past studies have suggested ways to expand the 
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approach to transfer error analysis. For example, Lindhjem and Navrud (2008) 

note the influence of TE outliers in the discussion of their Figure 3, prompting a 

focus on the 40th, 50th, and 70th percentiles of the absolute TE distribution. 

Rosenberger and Loomis (2000) show both absolute and non-absolute values of 

percent errors in their Table 5; the ranges of values that they obtain for the absolute 

errors show a clear asymmetry around zero of the error data, which in turn 

suggests that the use of absolute errors leads to some information loss.  

 

4.2.4. VSL and VSI in Developing Countries 

All of the transfer functions used to estimate VSL for a developing country rely on 

evidence or assumptions about the between-country income elasticity of VSL. This 

elasticity is a ratio of the percentage difference in VSL between two countries to 

the percentage difference in incomes between two countries. Between-country 

income elasticity may differ from within-country income elasticity; consequently, 

generalizations from one to the other can be misleading. This paper focuses on 

between-country income elasticity rather than within-country income elasticity 

because the former is the elasticity that is relevant to transfer functions. 

In early work on VSL transfer to developing countries, Miller (2000) develops a set 

of preliminary VSL transfer functions, but they are based on a regression of 

estimates from 13 primarily high income countries. Miller (2000) proposes that the 

functions could provide reasonable estimates for developing countries but notes 

an urgent need for more research to investigate the ability of these functions to 

predict VSL for lower-income countries that are beyond the range of the source 
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data for the functions. The functions, built using a database composed largely of 

high-income country VSL estimates, indicate an income elasticity for VSL between 

.85 and 1.0. 

Viscusi and Aldy (2003) provide a meta-analysis based on 60 estimates from 

wage-risk studies. The study uses a database composed largely of high-income 

country estimates, although four of the studies in the meta-analysis are based on 

developing countries. They find an income elasticity of VSL in the range of .5 to .6. 

They note that the regression results for the income elasticity of VSL are sensitive 

to the choice of studies included in the meta-analysis. This paper systematically 

includes and excludes studies from the meta-analysis based on income level, 

offering insight regarding whether the sensitivity of a model’s income elasticity to 

the included studies noted by Viscusi and Aldy (2003) is related in part to the 

income levels of the countries on which the studies are based. 

Dahdah and McMahon (2008) develop an engineering rule-of-thumb approach for 

estimating VSL in developing countries using a regression of official VSL figures 

from 12 developed countries and 10 developing countries. Of the 10 developing 

country estimates, two are based on the WTP method, whereas eight are based 

on the HC method. The rule of thumb suggests a VSL value of 70 times GDP per 

capita with upper and lower values for sensitivity analysis of 60 and 80 times GDP 

per capita, respectively. An initial log-log model specification for their data yields 

an income elasticity of 1.125, so they opt for a simpler linear model specification 

because the elasticity is so close to 1.0. This rule of thumb transfer function has 

been widely used in developing countries by the International Road Assessment 
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Programme (iRAP) and by international financial institutions, such as the World 

Bank. Dahdah and McMahon (2008) also develop a rule of thumb for the value of 

a serious injury at 25% of VSL for developing countries, which is based on the VSI 

/ VSL ratios in developed countries adjusted upwards to account for higher collision 

severity in developing countries. As described below, new data now exist to update 

the work of Dahdah and McMahon (2008) for VSL values. A primary reason for the 

update is that the rule of thumb was built using only 2 WTP-based values from 

developing countries, and the new dataset contains 123 WTP-based values from 

developing countries. 

Hammit and Robinson (2011) raise the question of whether the income elasticity 

of VSL changes with income level, postulating that it makes sense for elasticity to 

be greater than 1.0 at low income levels and less than 1.0 at higher income levels. 

They review longitudinal within-country wage-risk studies, a limited sample of 

between-country VSL comparisons, and two within-country cross-sectional wage-

risk studies employing quantile regression, finding increasing evidence that the 

income elasticity of VSL is greater than 1.0 at lower income levels. Hammit and 

Robinson (2011) indicate that a substantial degree of uncertainty exists in the VSL 

estimates for developing countries obtained using transfers of high-income 

estimates, and they suggest that more research on VSL for low-income countries 

is required to improve transfer functions. The elasticity evidence presented by 

Hammit and Robinson (2011) is based on a small sample of mostly wage-risk data. 

Additionally, both Bhattacharya et al. (2006) for India and Mahmud (2008) for 

Bangladesh find SP-based VSL values that are lower than the values that would 
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be obtained using a high-income based transfer function with an elasticity of 1.0 

or nearly 1.0. These VSL values located below a linear VSL-income plot suggest 

convexity of the relationship (elasticity above 1.0) in the low-income range. 

Extensive information on SP-based VSL estimates from developing countries that 

became available after publication of Hammit and Robinson (2011) provides an 

opportunity to systematically test their elasticity findings. 

The OECD (2012)2 provides a rich database of VSL estimates from SP surveys in 

transport, health, and environmental risk contexts, including 221 estimates from 

developing countries. A few other developing country estimates have been 

published since then. The evidence presented by Hammit and Robinson (2011) 

for a possible income elasticity greater than 1.0 in developing countries suggests 

a research need to re-examine the transfer functions developed by Miller (2000) 

(with elasticity below 1.0) and the rule-of-thumb transfer function of Dahdah and 

McMahon (2008) (with elasticity = 1.0). The database provided in (OECD, 2012), 

along with a few additional studies published since then, presents a new 

opportunity to address this research need by a meta-analysis of VSL estimates 

from developing countries. To the authors’ knowledge, this paper is the first to 

develop a VSL transfer function for application to transport safety engineering in 

                                                      
 

 

2 (OECD 2012) compiles results from Braathen et al.(2009), Biausque (2010), Lindhjem et al. (2011), and 

Lindjhjem et al.(2010), which in turn draw on a large number of primary valuation studies. 
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developing countries that is based on VSL estimates from developing countries 

alone. 

 

4.3. METHODOLOGY 

This section describes the methodology for the research in three subsections 

organized according to the objectives of the research. Overall, the methodology 

follows the approach used by the OECD (2012), with some departures. Section 

4.3.1 describes the methodology and data sources for developing the transfer 

functions through meta-analytic regression models disaggregated by income level. 

Section 4.3.2 describes the methodology used to test for significant differences 

between the transfer functions obtained for different income groups. Section 4.3.3 

describes the methodology for quantifying the uncertainty associated with the 

transfer functions. 

 

4.3.1. Data Sources and Methodology for the Development of the Transfer 

Function 

To obtain a developing-country VSL transfer function, the method follows five 

steps: (1) selecting the original database of VSL estimates; (2) disaggregating the 

database by income level; (3) applying quality screening to the disaggregated 

database of estimates; (4) establishing the characteristics of the quality-screened 

subset relevant to meta-analysis; and (5) selecting an appropriate model 

specification and a regression approach. This section outlines the methods used 

in each of these five steps.  
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4.3.1.1. Selection of the original database of VSL estimates 

The original database for this meta-analysis is a comprehensive set of 862 VSL 

estimates from around the world. The OECD (2012) has compiled 856 of these 

estimates, which are available at www.oecd.org/env/policies/vsl, and we add six 

estimates that were published between the compilation of the OECD database and 

December 2013. The additional estimates are from Mongolia (Hoffman, et al., 

2012), South Korea (Lee, Lim, Yang, Kim, Shin, & Shin, 2011), the United States 

(Viscusi, Huber, & Bell, 2013), and Sweden (Svensson, 2009). In addition to 

updating the OECD database with six estimates from new studies, we add a field 

to the database that gives the country GDP per capita from the year of the survey 

expressed in 2005 international dollars. The database consists only of VSL 

estimates based on stated preference studies. Some researchers prefer revealed 

preference estimates. However, the use of stated preference studies allows for the 

investigation of risk-context effects and the inclusion of population-representative 

samples (see the background discussion in Section 4.2.2).  

 

4.3.1.2.  Disaggregation of the original database of VSL estimates by income 

levels 

Disaggregating the regression by income levels indicates whether the influence of 

the explanatory variables (including income) changes significantly with income 

level. This research represents the first income-disaggregated meta-analysis of 

VSL estimates in the literature. This methodology requires a threshold for income 

http://www.oecd.org/env/policies/vsl
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disaggregation. The World Bank provides a widely used threshold, which is 

updated annually, for grouping countries according to GNI per capita. The country 

income groups are as follows: low income, lower middle income, upper middle 

income, and high income. Countries in the first three groups are commonly called 

developing countries, though the use of the term “developing country” does not 

imply that all countries in these groups are developing or that all countries in the 

high-income group have finished developing. We disaggregate the original 

database by comparing the survey year country GNI per capita, expressed in 

constant 2005 USD to the 2005 threshold between high-income and upper-middle-

income countries, which is a GNI per capita of $10,725 USD, with currency 

conversion by the Atlas Method.  

4.3.1.3. Application of quality screening to the disaggregated database of VSL 

estimates 

A prerequisite for a suitable transfer function is that the original studies meet an 

acceptable level of quality and rigor. In this study, we require that original estimates 

meet four criteria: (1) the survey is from a country-representative sample3; (2) the 

survey sample size is at least 200, and the subsample from which the estimate is 

derived is at least 100; (3) the original study reports the size of the risk change 

valued to obtain the VSL estimates; and (4) the estimates have passed an external 

                                                      
 

 

3 The qualitative assessment of whether a study was ‘representative’ was made 
by OECD (2012); studies were excluded if they focused on a narrow group (e.g. 
income, students, motorcyclists, particular occupation, age, etc). 
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or internal scope-sensitivity test. This quality-screening approach follows one of 

the screening levels used in the OECD (2012) meta-analysis.4 From our database 

of 862 estimates, 308 pass the quality screening (i.e., 123 from developing 

countries and 185 from high income countries). Although we adopt the quality 

screening criteria of the OECD, we differ in one small way when applying these 

criteria: the OECD rejected all estimates from a study in India (Bhattacharya, 

Alberini, & Cropper, 2006) because the sample of respondents was not considered 

representative of the country in terms of income and education. However, in 

reviewing this study, we found that five of the estimates were derived from a large 

and representative sample, whereas the remaining 13 were from non-

representative sub-samples. These five estimates also met the other three quality 

criteria, and we retained them for our meta-analysis. 

Figure 4-1 shows the estimates that pass and those that fail the screening process 

plotted against GDP per capita. The Figure shows that the screening process 

                                                      
 

 

4We originally followed one of the less strict quality screening criteria from the 
OECD (2012) that did not require the fourth criteria of scope sensitivity. Many 
studies do not report scope sensitivity. We thank the reviewers for noting the 
importance of using only scope-sensitive estimates, which is emphasized in 
(Viscusi, Huber, & Bell, 2013). Scope sensitivity refers to the sensitivity of WTP 
answers to the size of the risk change offered in a contingent valuation survey. It 
can be evaluated at the individual level by offering the same person multiple risk 
changes (internal scope sensitivity) or at the cross-group level by offering a 
different risk change to multiple independent groups (external scope sensitivity) 
(OECD, 2012). An example of the failure of a scope sensitivity test would be if 
the same individual expressed the same WTP for risk changes of different 
magnitudes. This undermines the premise of VSL calculations (VSL = WTP/(risk 
change)) and suggests participant difficulty in understanding low risks. 
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excludes some estimates that are obvious outliers. For example, the group of 

exclusions includes very high estimates at just under $10,000 GDP per capita from 

a study in Brazil that failed screening because the study focuses on high-income 

vehicle owners rather than a country-representative population. This does not 

mean that the Brazil study is a bad study; it simply does not suit the purposes of 

this research. Variability in the data at any given income level occurs partly a result 

of variation in other explanatory variables in addition to income (e.g., risk context). 

Because of this, a best-fit line in Figure 4-1 does not necessarily represent the 

relationship between income and VSL in the transport risk context. Multiple linear 

regression accounts for the effects of these other explanatory variables.  

 

 
Figure 4-1: VSL by GDP per capita for estimates passing and failing the 
quality screening. Note: To maintain reasonable vertical scale, the Figure omits 
22 of the 554 estimates that fail quality screening. 
 
 

4.3.1.4. Establishment of the characteristics of the quality-screened subset 

relevant to meta-analysis 
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Table 4-2 shows that the 123 developing country VSL estimates that pass the 

quality screening came from six surveys in five developing countries, with between 

1 and 85 estimates per survey.  

Table 4-2: Overview of surveys and VSL estimate used for developing 
country transfer function 
IDa Year Countryb Publication Mean 

VSLc 

Std. Dev Nd Scope-

sensitive?e 

8 2003 Thailand (Vassanadumrondgee 

& Matsuoka, 2005) 

1,555,256 225,888 4 Yes 

34 2005 India (Bhattacharya, 

Alberini, & Cropper, 

2006) 

41,805 10,387 5 Yes 

36 2005 China (Krupnick, Hoffman, 

Larsen, Peng, Tao, & 

Yan, 2006)  

378,458 189,787 85 Yes 

37 2005 China (Krupnick, Hoffman, 

Larsen, Peng, Tao, & 

Yan, 2006) 

213,545 60,789 24 Yes 

38 2003 Bangladesh (Mahmud, 2008) 3,138 707 4 Yes 

- 2010 Mongolia (Hoffman, et al., 

2012) 

378,275 - 1  Yes 

Total      123  

Notes: aCorresponds to an identifier in the OECD dataset at 
www.oecd.org/env/policies/vsl. bAll are classified as low- and middle-income 
(developing) countries according to the 2005 World Bank thresholds for 2005 
GNI per capita. cThe mean of the included value of statistical life (VSL) estimates 
from each survey, in 2005 international dollars. dThe number of the included VSL 
estimates from each survey, used as a weight in the regression to account for 
each survey equally. eThe study reported passing either an internal or external 
scope-sensitivity test. (Published paper contained minor typos in totals that are 
corrected here). 
 

The five developing countries represented include countries from the low-, lower-

middle-, and upper-middle-income country groups. The survey years of the 

estimates range from 2003 to 2010, and the mean survey VSL values range from 

http://www.oecd.org/env/policies/vsl
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$3138 to $1.5 million. The fact that the quality screened subset contains multiple 

estimates per survey requires a weighting approach to avoid bias, and Section 

4.3.1.5 further discusses this aspect of the method. 

 

4.3.1.5. Selection of appropriate model specification and regression approach 

The regression model specification follows (OECD, 2012), which in turn is based 

on standard practice in the meta-analytic literature. The model is 

𝒍𝒏𝒗𝒔𝒍 =  𝜷𝟎 + 𝜷𝟏𝒍𝒏𝒈𝒅𝒑𝒄𝒂𝒑 + ∑ 𝜷𝒌𝑿(𝒌)  𝒌 +   𝜺,   (4-2) 
 

where vsl is the value of statistical life, gdpcap is the PPP-adjusted GDP per capita, 

X(k) is a vector of k mostly binary explanatory variables describing risk context and 

study method (defined in Table 4.3), and the various βs represent the model 

coefficients. In this model specification, the coefficient for lngdpcap has the natural 

interpretation as the between-country income elasticity of VSL.  

The model includes explanatory variables based on two revisions to those included 

in the fourth scope-sensitive screening model used by the OECD (OECD, 2012). 

Table 4-3 shows the resulting variables in the model for this research, after the 

following two revisions to the OECD model.  

 First, the model includes the target lnvsl and the variable lngdpcap in 2005 

international dollars using standard purchasing power parity exchange 

rates, whereas the OECD (2012) model uses purchasing power parity 

(PPP) exchange rates that are adjusted for actual individual consumption 

(AIC). AIC-adjusted values are helpful in that they reflect the individual 
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consumption situation better than does GDP per capita because they 

include non-GDP sources of consumption (e.g., foreign aid) and because 

they do not include the portion of GDP per capita directed away from 

consumption. Despite these advantages, AIC-adjusted values are available 

at intermittent time intervals and only for select countries through the 

International Comparison Program of the World Bank, whereas the more 

common values using standard PPP exchange rates are available for more 

countries and are provided on a more regular basis. The latter were 

selected to facilitate practical application of the transfer function.  

 Second, the model removes the following explanatory variables that are 

constant for the developing country data set:  public (a binary risk-context 

variable that is set to 1 if the survey concerned personal valuation of public 

risk changes as opposed to valuation of private risk changes) and noexplan 

(a methodological variable that is set to 1 if the survey included no risk 

explanation tools such as a 1000-square grid to help the respondents 

understand risks). All of the surveys in the developing country dataset 

valued private rather than public risk changes, and all of the surveys used 

risk explanation tools.  

The regression approach must account for the fact that, in many cases, several 

VSL estimates in the database are derived from the same survey. The regression 

used is a weighted least-squares regression with the weights equal to the inverse 

of the number of estimates in a given survey to give equal weighting to each survey 

rather than to each estimate, following several previous studies (OECD, 2012) 
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(Lindhjem H. , Navrud, Braathen, & Biausque, 2011) (Nelson & Kennedy, 2009, p. 

355). The weighting can reduce the bias resulting from multiple estimates derived 

from one study that are potentially non-independent. Nelson and Kennedy (2009) 

provide a discussion on non-independence resulting from multiple estimates per 

study included in a meta-analysis. They find that almost 80 percent (110 of 140) of 

the reviewed meta-analyses used multiple estimates per study, creating a potential 

non-independence problem. One third of the meta-analyses (40 of 140) also 

implement no controls to address this potential dependency. They discuss several 

options to address this potential dependence. As a best option, if sufficient data 

are available, they recommend using only one estimate per primary study to avoid 

dependency problems altogether. This option is not ideal for this meta-analysis 

because it would result in an unacceptably low sample size. This option is also not 

ideal because, in several cases, the explanatory variables under investigation vary 

within a group of estimates in a primary study, and drawing only one estimate per 

primary study would reduce the ability to investigate the impact of these 

explanatory variables. A second option that they identify is the use of a multilevel 

or panel regression approach. This option is also not ideal, because some of the 

primary study surveys, which define the panels, have only one estimate, and could 

not be included in a panel approach, resulting in unacceptable information loss 

given the size of the data set. A third option that they identify is to apply a weighting 

procedure that recognizes equal contributions from each primary survey. We apply 

this option, which is the most suitable given our dataset and the independent 

variables (particularly income and risk context) that we are interested in 
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investigating. All regression analyses use R (R Core Team, 2013) with the robust 

linear modeling tools of the MASS package (Venebles & Ripley, 2002). The 

analysis uses robust modelling with MM estimates. Robust modelling is a group of 

techniques that are used to reduce the influence of unusual observations on 

regression results; the use of MM-estimates is a specific technique within robust 

modelling that offers the combined advantages of high efficiency and a high 

breakdown point (Yohai, 1987). 

Table 4-3: Variables included in regression models 
Variable Type Description 

lnvsl target, continuous natural log of VSL in 2005 international dollars 
lngdpcap explanatory, continuous natural log of GDP per capita in 2005 

international dollars 
lnchrisk explanatory, continuous natural log of the size of the risk change valued 

in a survey 
turnbull explanatory 

(methodological), binary 
1 if the estimate is based on a turnbull lower 
bound estimator, 0 otherwise 

env explanatory (risk 
context), binary 

1 if the estimate is based on a valuation of 
environmental risks, 0 otherwise 

traffic explanatory (risk 
context), binary 

1 if the estimate is based on a valuation of 
transport related risks, 0 otherwise 

household explanatory (risk 
context), binary 

1 if the estimate is based on a valuation of 
risks to a person’s entire household, 0 
otherwise  

cancer explanatory (risk 
context), binary 

1 if the estimate is based on a valuation of 
cancer risks, 0 otherwise 

latenta explanatory (risk 
context), binary 

1 if the estimate is based on a valuation of 
risks with a long gap between risk exposure 
and consequence, 0 otherwise, 0 for all traffic 
risks 

  a This variable is relevant in health and environment contexts where, e.g., 
exposure to a carcinogenic substance can lead to a cancer death 20 years later; 
it is not relevant to transport risks and should be set to 0 in the transport policy 
context (personal communication with Ståle Navrud, Nils-Axel Braathen, and 
Henrik Lindhjem, authors of the OECD report, August 9, 2012). 
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4.3.2. Methodology to Test for Significant Differences Between Transfer 

Functions 

To test for differences between transfer functions (such as different elasticity) 

under a null hypothesis of zero difference for each coefficient, this research uses 

the methodology proposed by Paternoster et al. (1998). This method calculates a 

z-score for a difference in coefficients as follows: 

𝒛 =  
𝜷𝟏 − 𝜷𝟐

√𝑺𝑬𝜷𝟏
𝟐+𝑺𝑬𝜷𝟐

𝟐
, (4-3) 

 

where 𝛽1 and 𝛽2 are the coefficients for the same variable from the two groups 

being tested for a difference and 𝑆𝐸𝛽1
 and  𝑆𝐸𝛽2

 are the standard errors of these 

coefficients. The two-tailed p-value corresponding to this z-score can be used to 

evaluate the statistical significance of observed differences by indicating the 

likelihood that the observed difference in coefficients occurred by chance alone. 

 

4.3.3. Methodology to Quantify and Apply Transfer Function Uncertainty 

Information 

To quantify transfer function uncertainty, this paper compares records in the 

database to the corresponding transfer function predictions, generally following the 

OECD (2012) method described in Section Transferring VSL Estimates Between 

Policy Contexts: Needs, Methods, and Uncertainty, but with some adaptations 

designed to offer additional insight. The first adaptation is to not use absolute 

values of the transfer errors because the distribution of errors is asymmetric 
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around zero and because taking absolute values removes information about the 

differences between the function over-estimates and the function under-estimates. 

The second adaptation is to present a set of reference percentiles of the 

distribution of transfer errors instead of only the mean or median absolute error 

value. Although the mean or median absolute error value is a good summary 

statistic for the dispersion of the error distribution, a set of reference percentiles of 

the non-absolute error distribution gives an analyst more information to apply in a 

sensitivity or risk analysis. Some of the limitations with mean absolute transfer 

error that motivate this approach are set out in Section Transferring VSL Estimates 

Between Policy Contexts: Needs, Methods, and Uncertainty A final adaptation is 

the use of the term “relative transfer error” (RTE) to emphasize that we are dealing 

with normalized errors (although past studies dealing with TE also have used 

normalized values). The adapted formula for RTE corresponding with the TE 

formula in Section 4.2.3 is  

RTE = (VSLTF - VSLB) / VSLB, (4-4) 
 

with the terms as described in Section 4.2.3. Using this adaptation, when the RTE 

distribution is analyzed, the central tendency measures no longer indicate the 

magnitude of a typical RTE—instead, they indicate the size and direction of any 

overall bias in the transfer function. The median RTE is used for this purpose 

because of its insensitivity to large outliers. Reference percentiles of the non-

absolute RTE distribution indicate reliability of the transfer function. For example, 

the 25th percentile RTE gives the magnitude of a typical underestimate, and the 

75th percentile RTE gives the magnitude of a typical overestimate, and half of all 
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RTEs lie between these two values. This also allows asymmetry in the RTE 

distribution to be reflected in the summary statistics, and it provides statistics with 

natural interpretations for practical application. This paper uses the percentile 

bootstrap method described by Mooney and Duval (1993) to estimate confidence 

intervals for the reference percentiles of the error distribution using the boot 

package in R (Canty & Ripley, 2013) (Davison & Hinkley, 1997). 

To apply transfer function uncertainty information in a policy context, the result 

given by the transfer function can be adjusted correspondingly with a given (xth) 

percentile of the relative transfer error distribution (RTEx). This procedure, based 

on the definition of RTE, is relatively straightforward. The adjustment equation is  

VSLTFadj = (1 + RTEx)-1 * VSLTF, (4-5) 
 

where (1+RTEx)-1 represents an adjustment factor linked to the xth percentile of the 

RTE distribution, VSLTFadj represents an adjusted transfer function result for 

sensitivity or risk analysis, and the other terms are as described earlier. There are 

two common types of uncertainty analyses in the engineering economic 

assessment portion of transport project appraisals in World Bank projects: 

sensitivity analysis (see, e.g., the assessment for a road safety project in Argentina 

(World Bank, 2010a)), and probabilistic risk analysis (see, e.g., the assessment for 

a highway project in Ningxia, China (World Bank, 2010b)). Sensitivity analysis 

checks the change in the output values corresponding to a few discrete changes 

in individual input values, generally using a typical or expected high and low input 

value. This paper proposes using the 25th and 75th percentile RTE values to 
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develop adjustments to the VSL transfer function results corresponding with the 

typical high and low values for sensitivity analysis. Probabilistic risk analysis often 

uses a Monte Carlo simulation that randomly varies all input values according to a 

triangular probability distribution to generate a simulated probability distribution for 

the output value. This process is described in the documentation for the Roads 

Economic Decision Model (RED) (Archondo-Callao, 2004). This process requires 

practical maximum and minimum values for the input parameters to define the 

triangle distributions. For the process to be realistic, the maximum and minimum 

values should result in a triangle distribution that reasonably approximates the 

actual distribution for the input parameter. In the case of a parameter distribution 

with long, flat tails, the use of actual maximums and minimums is not practical 

because doing so would result in a triangle distribution that over-estimates the 

likelihood of more extreme parameter values. Practical maximum and minimum 

values for generating the triangle distributions may be selected on the basis of 

achieving a reasonable match between the triangle distribution and the actual 

distribution.  

4.4. RESULTS 

4.4.1. Transfer function regression results 

Table 4-4 shows the summary results for three transfer functions based on the 

weighted robust least-squares regression. Each function gives lnvsl as the sum of 

each coefficient, β, times the corresponding variable value for that coefficient. For 

example, the all-income function gives lnvsl = (4.387+(.551)*lngdpcap + (-
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.534)*lnchrisk+ … + (-.382)*latent). The r2 values in the Table show that the models 

have reasonably strong explanatory power. However, higher r2 values are 

expected in a robust regression because they indicate the amount of variability 

explained in the weight-transformed dataset; they should thus not be relied on as 

the sole criterion for a goodness-of-fit assessment (Willett & Singer, 1988). 

Instead, model performance is more thoroughly assessed in Section 4.4.2 with the 

relative transfer error distributions. 
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The Table shows that the coefficients in the all-income and high-income models 

are fairly similar but that some significant differences exist between the coefficients 

for the high-income model and the low- and middle-income model. Although the 

between-country income elasticity (the lngdpcap coefficient) for the high-income 

function is .693, the Table indicates a between-country income elasticity of VSL of 

2.478 for the low- and middle-income country model. This is consistent with the 

finding of Hammit and Robinson (2011), who provide theoretical reasoning behind 

this finding and discuss increasing evidence in support of elasticity greater than 1 

among low-income countries; it is also consistent with previous studies (Mahmud, 

2008) (Bhattacharya, Alberini, & Cropper, 2006), which note that the VSL values 

obtained in Bangladesh and India are lower than what would be obtained under 

transfer from high-income countries with elasticities of 1. The difference in 

between-country income elasticities is significant at a p-value of less than .001.  

A second difference between the high-income model and the low- and middle-

income model is the coefficient for the traffic-risk context parameter. If the 

coefficient for this parameter is positive, the WTP for traffic-related VSL is, in 

general, higher than the WTP for VSL in other risk contexts—people value saving 

a life on the road more than saving a life elsewhere. If it is negative, the opposite 

is true. The coefficient is significant in both models: it is positive in the high-income 

model (.823) and negative in the low-income model (-2.377), and the difference in 

the coefficient between models is significant at p < 0.001. This difference may be 

related to cultural factors, such as fatalistic attitudes towards traffic risks, which are 

explored by Nordfjærn et al. (2012). 
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A possible reason for the differences found in the low- and middle-income country 

model is that baseline risks and competing risks may affect VSL beyond the 

explanatory variables considered. Andersson and Treich (2011) present a 

theoretical argument for relationships between VSL and baseline risks and 

between VSL and competing risks, but they also note that the empirical evidence 

in support of these relationships is mixed. The nature of the dataset limited the 

ability of this meta-analysis to investigate these possible reasons in detail. For 

example, half of the studies in the low- and middle-income country dataset do not 

report baseline risk, and little information is available on competing risks. 

The significantly different coefficients in the models indicate that it is more 

appropriate to use transfer functions based on developing country data for 

application in developing countries than to use transfer functions based on all- or 

high-income country data. Section 4.4.3 further illustrates this point for the road-

safety context.  

 

4.4.2. Transfer function errors and the uncertainty analysis 

Figure 4-2 and Table 4-5 show the results of a transfer error analysis on the models 

by presenting the frequency distributions of relative transfer error (RTE). RTE, 

described in Section 4.3.3, compares the estimates in the database to what the 

transfer function would predict for that estimate.  
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Figure 4-2: Relative transfer errors for the all-income, high-income, and 
low- and middle-income VSL transfer functions 
 

Figure 4-2 shows that the low- and middle-income country function has the 

narrowest RTE distribution; however, for all functions, the majority of relative 

transfer errors lie within +/-50%. The Figure also shows asymmetry in the RTE 

distributions for the high-income and all-income functions, but not in the low- and 

middle-income function. Table 4-5 shows the reference percentiles of the RTE 

distributions along with the confidence intervals for these percentiles obtained by 

bootstrap resampling. 
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Table 4-5: Percentiles of the relative transfer error distribution with 
bootstrapped 95% confidence intervals for low- and middle-income, high 
income, and all-income transfer functions 
Percentile RTE.LMI RTE.HI RTE.AI 

0% -0.745 (-0.745, -0.593) -0.985 (-0.985, -0.798) -0.994 (-0.994, -0.836) 

5% -0.533 (-0.624, -0.43) -0.68 (-0.754, -0.562) -0.675 (-0.772, -0.483) 

10% -0.434 (-0.498, -0.309) -0.527 (-0.667, -0.413) -0.458 (-0.532, -0.405) 

15% -0.333 (-0.442, -0.253) -0.41 (-0.525, -0.322) -0.37 (-0.438, -0.315) 

20% -0.268 (-0.371, -0.201) -0.333 (-0.413, -0.203) -0.308 (-0.363, -0.23) 

25% -0.223 (-0.29, -0.185) -0.218 (-0.358, -0.132) -0.229 (-0.299, -0.177) 

30% -0.191 (-0.253, -0.169) -0.139 (-0.234, -0.078) -0.174 (-0.229, -0.126) 

35% -0.181 (-0.212, -0.13) -0.094 (-0.172, 0.006) -0.127 (-0.179, -0.069) 

40% -0.156 (-0.188, -0.06) -0.019 (-0.119, 0.064) -0.071 (-0.129, -0.023) 

45% -0.128 (-0.176, -0.01) 0.028 (-0.066, 0.116) -0.034 (-0.075, 0.039) 

50% -0.047 (-0.149, 0.032) 0.086 (0.01, 0.211) 0.03 (-0.036, 0.118) 

55% -0.005 (-0.125, 0.097) 0.198 (0.068, 0.276) 0.111 (0.026, 0.145) 

60% 0.042 (-0.043, 0.145) 0.227 (0.121, 0.324) 0.134 (0.09, 0.212) 

65% 0.114 (0.006, 0.181) 0.315 (0.213, 0.397) 0.206 (0.131, 0.275) 

70% 0.161 (0.065, 0.229) 0.373 (0.284, 0.501) 0.274 (0.202, 0.365) 

75% 0.202 (0.136, 0.295) 0.478 (0.333, 0.621) 0.368 (0.267, 0.483) 

80% 0.258 (0.179, 0.332) 0.598 (0.445, 0.726) 0.49 (0.373, 0.603) 

85% 0.308 (0.237, 0.409) 0.712 (0.568, 0.852) 0.664 (0.518, 0.789) 

90% 0.4 (0.302, 0.493) 0.861 (0.707, 2.444) 0.86 (0.723, 2.276) 

95% 0.543 (0.404, 0.682) 3.29 (1.072, 5.098) 4.027 (1.758, 13.528) 

100% 0.749 (0.645, 0.749) 12.506 (5.888, 12.506) 67.74 (22.773, 67.74) 

Notes: RTE = relative transfer error; LMI = low- and middle-income; HI = high-
income; AI = all-income. Confidence intervals by percentile bootstrap method 
with B = 2000 resamples. 

 

Based on Figure 4-2 and Table 4-5, the following points indicate the transfer error 

analysis results concerning (1) transfer function bias, (2) likely high and low values 
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for sensitivity analysis, and (3) practical maximum and minimum values for 

probabilistic risk analysis using triangle distributions.  

1) Bias: Table 4-5 shows that there is no statistically significant bias in the low- 

income and all-income transfer functions and a small but a statistically 

significant bias in the high-income transfer function, based on the 95% CI 

for the median RTE. 

2) Likely low and high values for sensitivity analysis: The first and third 

quartiles of the error distributions provide a range of likely errors when using 

the transfer function: half of all relative transfer errors are between these 

values. With the methodology explained in Section 4.3.3 and the first and 

third quartile RTE values from Table 4-5, adjustment factors ((1 + RTEx)-1) 

can be estimated to apply to the transfer function results and obtain high 

and low values for sensitivity analysis. The low adjustment factors are .83, 

.68, and .73, and the high adjustment factors are 1.29, 1.28, and 1.30 for 

the low- and middle-, high-, and all-income transfer functions, respectively.  

3) Practical minimum and maximum values for probabilistic risk analysis using 

triangle distributions: Some forms of probabilistic risk analysis, as described 

in Section 4.3.3, require practical maximum and minimum values to 

generate a triangular distribution for an input parameter that roughly 

approximates the actual distribution. The high-income and all-income RTE 

distributions are positively skewed and have longer tails; the 5th and 85th 

percentiles of these provide values that can be used to create a reasonable 
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triangle distribution. The low- and middle-income RTE distribution is not 

seriously skewed, and its 5th and 95th percentiles can be used to create a 

reasonable triangle distribution. Based on Table 4-5, the adjustment factors 

((1+RTEx)-1) to obtain practical minimums for risk analysis are .65, .58, and 

.60, and the adjustment factors to obtain practical maximums for risk 

analysis are 2.14, 3.12, and 3.07 for the low- and middle-, high-, and all-

income transfer functions, respectively.  

4.4.3. Results applied to the transport safety policy context  

This section presents the transfer function results for the transport safety policy 

context. Adapting the function for this context involves setting the binary risk 

context and methodological variables appropriately (turnbull = 0; env = 0; traffic = 

1; household = 0; cancer = 0; latent = 0), setting the risk change variable, and 

taking the antilog of the model defined by the coefficients in Table 4-5. Setting the 

risk change variable involves some ambiguity. There are two options for setting 

the risk change variable: 

 

 Option 1: Set the risk change variable to a constant value for policy 

purposes. This gives a consistent VSL across road-safety projects in a 

given country. In this option, there is ambiguity as to what constant value 

should be used, beyond the fact that the value should be some proportion 

of the baseline risk for the group represented by the transfer function. 
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 Option 2: Set the risk change variable on a project-by-project basis 

according to the estimated risk change offered by the project. This would 

give different VSL values for different projects in a country. 

For the presentation and discussion of our results, we follow Option 1. Within 

Option 1, we set the risk change values in each transfer function to be half of the 

baseline risk for the respective income group using 2011 baseline risk data from 

the World Health Organization (World Health Organization, 2014). The 2011 

baseline health risks for road mortality in all-income, high-income, and low- and-

middle-income countries were 18.2, 9.0, and 19.9 per 100,000, respectively; we 

set the risk change values in the transfer functions at 9.1, 4.5, and 10.0 per 

100,000, respectively. In an application context, a practitioner could follow Option 

1 with these risk change values or Option 1 with different risk change values (e.g., 

a quarter of the baseline risks); alternatively, a practitioner could follow Option 2. 

This ambiguity in application could have been removed by not including risk 

change in the model, but this would have been at the expense of achieving less 

clarity with respect to the coefficients for other variables of interest. 

With the variables set for the transport policy context, VSL becomes a function of 

GDP per capita. The low- and middle-income transfer function is 

VSLTF,LMI = 1.3732x10-4 * gdpcap2.478,  (4-6) 
 

the high-income transfer function is   
 

VSLTF,HI = 8.2474x103 * gdpcap.6932, (4-7) 
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and the all-income transfer function is  

VSLTF,AI = 2.3834x104 * gdpcap.5508. (4-8) 
 

The functions are modelled for GDP per capita and VSL values expressed in 2005 

international dollars, whereas a typical assessment of economic performance 

measures will likely require results in either US dollars or national currency values 

at current prices. Because the functions are non-linear with respect to income, 

function application using the wrong currency units can yield errors; correct 

function application requires attention to currency conversions and price deflators.5 

Figure 4-3 shows that the transfer functions with VSL vary by GDP per capita for 

the transport-policy context, illustrating the impact of modeling transfer functions 

for the developing-country context based on developing country data. The function 

modeled using high-income data provides transferred VSL values in the low- and 

middle-income range that are significantly higher than the functions modeled using 

low- and middle-income country data. The same is true for the function modeled 

                                                      
 

 

5 The transfer function calculates VSLi,n,ID,2005 (country i in year n in international 
dollars at 2005 prices) using GDP_CAPi,n,ID,2005 , which is calculated as 
GDP_CAPi,n,NC,CP * (PPPi,n)-1 * (GDP_DEFUS,2005 / GDP_DEFUS,n), where NC 
denotes national currency, CP denotes current prices, PPP denotes the implied 
purchasing power parity exchange rate, and GDP_DEF denotes the GDP 
deflator (to reflect changes in the price levels connected to the international 
dollar, which is linked to the purchasing power of the US dollar). After obtaining 
VSLi,n,ID,2005 from the transfer function, VSLi,n,NC,CP (the VSL for country i in year n 
in national currency at current prices) may be obtained by reversing the above 
conversion. All of the parameters required for this conversion are available in the 
International Monetary Fund’s World Economic Outlook Database (IMF, 2012). 
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using an aggregate of all-income data. The low- and middle-income country 

function crosses the all-income country function at just below $20,000 GDP per 

capita and crosses the high-income function at just above $20,000 GDP per capita; 

this figure of $20,000 GDP per capita is near the upper limit of usefulness for the 

low- and middle-income function. The lower limit of usefulness for the low- and 

middle-income function is approximately $1268 GDP per capita; there are no VSL 

estimates in the database below this value. Twenty-two countries, most of which 

are located in Sub-Saharan Africa, have estimates of the 2012 GDP per capita 

below this value, and at these very low values, policy makers may consider 

alternatives to WTP-based VSL values in the road-safety context. 

The iRAP rule of thumb is a rough transfer function used by the International Road 

Assessment Programme and the World Bank that estimates VSL by applying a 

factor of 70 to GDP per capita (Dahdah & McMahon, 2008). Figure 4-3 shows that 

below a GDP per capita of about $7,000, the iRAP rule of thumb gives slightly 

higher values than does the new low- and middle- income transfer function, 

whereas above $7,000 GDP per capita, the new low- and middle-income transfer 

function gives significantly higher values than does the iRAP rule of thumb.  

Figure 4-3 also shows what can be interpreted as a changing economic-good 

nature of transport safety-risk reductions across income levels. In the lower-

income range, with a between-country income elasticity of 2.478, WTP-based VSL 

increases more than proportionally with income; the function is convex. Among 

high-income countries, with a between-country income elasticity of .6932, WTP-

based VSL increases less than proportionally with income; the function is concave.  
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Figure 4-3: VSL by GDP per capita for the transport policy context 
according to new income-disaggregated benefit-transfer functions. Note: 
70GDP reference indicates the iRAP rule of thumb for calculating VSL = 70 * 
(GDP per capita). Section 2.4 explains this rule of thumb (Dahdah & McMahon, 
2008). In this graph, the risk-change variable in each function is set to half of the 
baseline road-mortality risk for the countries in the income group represented by 
the function. 
 

4.4.4. Results for other contexts 

Whereas the main objectives of this research relate to road safety, the results can 

also be applied to environmental, health, and cancer risk contexts by using the 

coefficients from Table 4-5 and specifying appropriate values for the risk-context 

variables. Furthermore, the high-income function in Table 4-5 can be applied to 

various risk contexts in developed countries, either in the absence of appropriate 

local VSL estimates or as an overall appropriateness check on the reasonableness 

of local estimates. 
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4.5. CONCLUSIONS 

This paper presents the development of a new value of a statistical life (VSL) 

transfer function for application to transport-safety engineering in developing 

countries that is based on VSL estimates from developing countries. The transfer 

function estimates the value of statistical life as  

VSLTF,LMI = 1.3732x10-4 * gdpcap2.478 (4-9)  
 

where VSLTF,LMI0  represents the value of statistical life given by the transfer 

function for low- and middle-income countries and gdpcap represents gross 

domestic product (GDP) per capita expressed in 2005 international dollars. The 

function is applicable for countries with GDPs per capita between $1268 and 

$20,000, expressed in 2005 international dollars. Below this income range, policy 

makers may wish to apply alternative methods to the valuation and evaluation of 

transport-risk reductions. This transfer function is significantly different from a 

transfer function modeled on data from high-income countries, supporting this new 

approach, which develops transfer functions that are disaggregated by income 

level. In particular, the between-country income elasticity of 2.478 in developing 

countries, compared with that of .6932 in developed countries, is significantly 

different, at p < 0.001. This finding provides confirmation of initial evidence found 

by Hammit and Robinson (2011).  

This paper also analyzes the uncertainty associated with the new transfer function 

using adaptations to the transfer error analysis techniques in (OECD, 2012) and 

other previous literature. This analysis shows that there is no statistically significant 
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bias in the new transfer function. Furthermore, the transfer error analysis develops 

adjustments to the transfer function results to support the use of VSL values in 

robust economic assessments during the project appraisal process. 

 The results and some of the database limitations suggest a need for specific 

further research on this subject. The number of studies providing scope-sensitive 

estimates from developing countries is still rather low, and all of these are from 

Asia. With additional scope-sensitive studies from developing countries, the 

following could be investigated: (1) validity of functions for very low income 

countries; (2) regional effects; (3) effects of further disaggregating the models 

within subsets of ‘developing country’ income levels; and (4) alternative model 

forms that may represent the elasticity transition across income levels change with 

an ‘S’ shaped curve that does not require model disaggregation.  

 To support the common practice of using one VSL per population on equity 

grounds (OECD, 2012), this paper does not investigate or try to predict VSL for 

sub-segments of a population based on factors such as income or age. While a 

wide literature exists on these within-country relationships, two interesting 

research topics to extend this literature are: (1) the impact of conditions such as a 

wide income gap on the estimation of an aggregate VSL for a country; and (2) 

appropriate policy treatments of the externalities inherent with high-income 

persons creating the bulk of mortality risk by driving and low-income persons 

bearing the bulk of mortality risk as vulnerable road users. 
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 Taken together, these results can support the prospective performance 

measurement of projects impacting road safety in developing countries in a way 

that is practical, accounts for input uncertainty, and is amenable to application in a 

comprehensive assessment framework. 
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5. CONCLUSION 

5.1. PERFORMANCE MEASUREMENT AND RISK ANALYSIS AS 

FOUNDATIONS FOR TRANSPORT AGENCY MANAGEMENT 

Organizations tasked with fulfilling a mandate – like transport agencies – can often 

benefit by expressing that mandate in a series of performance measures which 

become a focal point for management tasks such as: making decisions about 

resource allocation, design, operations, regulation, or maintenance; creating 

accountability structures; and creating agency focus. The ability of performance 

measures to serve as such a focal point depends on the certainty levels in the 

measures or forecasts of these measures. Where uncertainty exists, an 

understanding of that uncertainty helps provide proper context for professionals 

relying on performance measures as a focal point for management tasks. One way 

to understand uncertainty in performance measures is to conduct a risk analysis. 

In this research, risk analysis refers to clarifying uncertainty for decision-makers. 

While there are many techniques for risk analysis, this research deals specifically 

with probabilistic risk analysis. This type of risk analysis generates estimates of 

probability distributions of future performance measure values, usually with Monte 

Carlo simulation methods. These methods require information on input 

uncertainty, which can be either subjective or objective information. Objective 

information on input uncertainty provides a stronger foundation for risk analysis, 

leading to more confident clarification of performance measure forecast 

uncertainty for decision-makers. In road safety, the ability to conduct a risk analysis 
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of performance measure forecasts has been constrained by the lack of information 

on input uncertainty.  

5.2. CONTRIBUTIONS TO KNOWLEDGE  

The research makes methodological, empirical, and ancillary contributions to 

knowledge in the fields of road safety engineering, performance measurement, 

and risk analysis. The methodological contribution to knowledge is the design and 

demonstration of methods to characterize input uncertainty for application to 

probabilistic risk analysis of performance measure forecasts. The method is 

transferable across jurisdictions, across disciplines within transportation 

engineering and planning, and to other socio-technical application contexts where 

performance models use uncertain inputs to forecast uncertain outcomes. In all 

cases, method transferability requires the ability to establish a sample of inputs for 

which ground truth is available.  

The empirical contributions consist of the first quantifications of uncertainty for 

three categories of inputs to road safety performance measure forecasts in specific 

contexts, based on the results of the three experimental demonstrations of the 

methodology. These are: (1) the uncertainty characteristics of annual pedestrian 

crossing risk exposure estimates when these estimates are derived from 

expanding short-term counts with external temporal information at a downtown site 

in Winnipeg, Manitoba; (2) the uncertainty characteristics of vehicle risk exposure 

estimates for highways in Manitoba when these estimates are derived from 

expanding short-term counts using temporal information from the individual 
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permanent counter (IPC) method; and (3) the uncertainty characteristics of value 

of statistical life estimates when these estimates are obtained using an income-

disaggregated meta-analysis transfer function.  

The empirical results for uncertainty in pedestrian crossing risk exposure estimates 

are based  on a database of pedestrian flows from video review covering 12 

months and including over 350,000 pedestrian observations. Exposure estimates 

developed by expanding counts with local vehicle factors have the lowest errors 

(mean: -2%; median: -3%, standard deviation: 33%; 90 percent of errors between 

-53% and 50%).  Exposure estimates based on external composite pedestrian 

patterns have higher errors (mean: 27%; median: 9%; standard deviation: 73%; 90 

percent of errors between -62% and 170%).   

The empirical results for uncertainty in vehicle risk exposure estimates are based 

on a set of almost 2 million short-term counts at 69 sites in Manitoba, Canada. The 

results show that exposure estimates developed by expanding short-term counts 

using the individual permanent counter method have mean absolute transfer error 

of 6.7%  (varies by traffic pattern group from 5% to 10.5%), and that over 90% of 

errors lie between -20% and +30%.  

The empirical results for uncertainty in value of statistical life (VSL) estimates are 

based on testing a database of 123 scope-sensitive VSL estimates from 

developing countries against results of an income-disaggregated VSL transfer 

function. The results show that the income-disaggregated low- and middle-income 

function is unbiased, with a median relative transfer error of -.05 (95% CI: -.15 to 
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.03), a 25th percentile relative transfer error of -.22 (95% CI: -.29 to -.19), and a 

75th percentile relative transfer error of .20 (95% CI: .14 to .30).  

The internal validity of the empirical results (the robustness of the results within the 

context of the studies) is tested and described using non-parametric techniques 

for confidence interval estimation (in the case of expanded vehicle counts this step 

is omitted because the sample size of 2 million error estimates makes 

bootstrapping the results unnecessary for assessing internal validity). The external 

validity of the empirical contributions – whether similar uncertainty characteristics 

hold for the same inputs in different contexts – is not assessed and is outside the 

scope of this research. The only way to determine external validity of the results – 

and the conditions under which such validity holds – is to repeat the experiments 

across contexts and compare the results of the error distributions.  

The main ancillary contribution to knowledge – one that is not directly linked to the 

connected theme of the papers – consists of substantial advances in the practice 

of VSL estimation by transfer function for developing countries. VSL is an important 

input to economic performance measures in road safety engineering. Before 

testing uncertainty in VSL estimates, this research develops the first income-

disaggregated benefit transfer function for VSL in road safety in developing 

countries. Previous transfer functions for application in developing countries were 

based largely on high-income country data that hid the unique relationship 

between VSL and its influencing factors in developing countries. For example, the 

transfer function used before this research to guide the road safety evaluation of 

$4 to $7 billion in annual transport lending by the World Bank was based on meta-
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analysis of a dataset that contained 2 data points from developing countries and 

25 data points from high-income countries (Dahdah & McMahon, 2008). The 

function developed in this research, to be used by the World Bank going forward, 

uses a dataset with 123 data points from developing countries and no data points 

from high-income countries. In addition to providing the first income-disaggregated 

transfer function, the research contributes the first statistically significant empirical 

evidence for two phenomena related to willingness to pay for road safety mortality 

risk reduction that have previously been postulated but never quantitatively proven. 

The first phenomenon is that the income-elasticity of VSL is higher for developing 

countries than it is for high-income countries – Hammit and Robinson (2011) 

outline the postulated case for this. The second phenomenon is that the relative 

valuation of road mortality risk reduction vis-à-vis other categories of mortality risk 

reduction is much lower in developing countries than the same relative valuation 

in high-income countries - Nordfjærn et al. (2012) outline the postulated case for 

this phenomenon. The income-disaggregated transfer function development 

approach allows quantitative testing of these phenomena by comparison of 

function coefficients between the developing country and high-income country 

functions.  

These contributions to knowledge can serve to advance and improve the practice 

of risk analysis of road safety performance forecasts, which in turn can generate a 

clearer understanding of key issues for investment decision-makers.  While 

advancing the state of academic research, these contributions to knowledge also 

have direct relevance to engineering practitioners in the following five ways: 
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(1) A common comment by practicing engineers in road safety when 

considering use of advanced tools starts like this: “but our data”.  The 

comment reflects a sense that uncertainty in the input data can limit the 

usefulness of advanced. For these hesitant practitioners, the research 

shows that the advanced tools can still be used with imperfect input data by 

applying quantitative approaches to deal with the input uncertainty.  

(2) A practicing engineer can use these results to perform quick sensitivity 

checks on the results of their analysis. 

(3) A practicing engineer who is using advanced forecasting methods can 

employ a simplified version of these studies to quantify the uncertainty in 

their own inputs, thereby gaining a better understanding of the limitations 

inherent in their results. 

(4) A practicing engineer can anticipate that future forecasting tools may 

increasingly incorporate risk-analysis approaches that require 

understanding of input uncertainty. 

(5) Given the fact that some input uncertainties revealed in this research are 

quite large, a practicing engineer at a highway agency procuring a safety 

analysis through a consultant may stipulate that the consultant explicitly 

address analysis input uncertainty and the resulting impact on forecasts. 
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5.3. RECOMMENDATIONS FOR FUTURE RESEARCH 

Several areas connected to the theme of this research but outside of its scope 

could benefit from further investigation. More inputs to road safety performance 

forecasts could be tested (for example, the input parameters of microsimulation 

models used to create some safety performance forecasts are subject to 

uncertainty). The external validity of the empirical contributions can be evaluated 

by conducting similar experiments in different contexts (for example, repeating the 

pedestrian crossing volume experiment at locations in other Canadian cities). 

Additional methods for estimating inputs can be tested (for example, expanding 

short-term vehicle counts with the group factor method). While this research 

focused on establishing the degree of input uncertainty relevant to risk analysis, 

further research could investigate the root causes of this uncertainty and 

mechanisms to reduce it for gaining more confident performance measure 

forecasts (for example, the methods for arranging sites into traffic pattern groups 

can impact the uncertainty of AADT estimates). In the case of VSL estimates, a 

transfer function leading to lower VSL uncertainty may be obtained by a new meta-

analysis after an increased number of original studies are conducted in more low-

income countries. Hertz (1964) noted that our performance forecast capabilities 

advanced beyond our probabilistic risk analysis capabilities, potentially leading to 

false confidence in performance forecasts. Since then, probabilistic risk analysis 

techniques such as Monte Carlo simulation have advanced and become widely 

understood. However, the development of these techniques has in turn outpaced 

the growth of the evidence base on input uncertainty that the techniques require. 
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In the area of road safety engineering, continued population of this evidence base 

fills a knowledge gap that enables risk analysis of performance forecasts, which in 

turn enables stronger decision-making. 
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