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Abstract

Given the ever-growing demand for radio spectrum, cognitive radio has recently emerged

as an attractive wireless communication technology. To put cognitive radio technology into

practice, the cognitive radios need to monitor the spectrum activities continuously to detect

a suitable spectrum band for possible utilization. This dissertation is concerned with de-

veloping spectrum sensing algorithms in cognitive radio networks where a single or multiple

cognitive radios assist in detecting licensed primary bands employed by single or multiple

primary users.

First, given that orthogonal frequency-division multiplexing (OFDM) is an important

wideband transmission technique, detection of OFDM signals in low-signal-to-noise-ratio

scenario is studied. It is shown that the cyclic prefix correlation coefficient (CPCC)-based

spectrum sensing algorithm, which was previously introduced as a simple and computa-

tionally efficient spectrum-sensing method for OFDM signals, is a special case of the con-

strained generalized likelihood ratio test (GLRT) in the absence of multipath. In addition to

CPCC-based algorithm, a simple and low-complexity algorithm called the multipath-based

constrained-GLRT (MP-based C-GLRT) algorithm is obtained by employing the inherent

structure of OFDM signals and exploiting multipath correlation in the GLRT algorithm.

Further performance improvement is achieved by combining both algorithms. A simple de-

tection algorithm is also developed for unsynchronized OFDM signals, whose performance

is only slightly degraded when compared with synchronized detection in a rich multipath

environment.

In the second part of the dissertation, a cognitive radio network model with multiple CRs

is considered in order to investigate the benefit of collaboration and diversity in improving

the overall sensing performance. Specifically, the problem of decision fusion for cooperative

spectrum sensing is studied when fading channels are present between the CRs and the

fusion center (FC). The CRs perform spectrum sensing using inexpensive energy detectors

and transmit their binary decisions to the FC for a final decision on the absence or presence

of the primary user activity. Considering the limited resources in CR networks, which makes
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it difficult to acquire the instantaneous channel-state information, noncoherent transmission

schemes with on-off keying (OOK) and binary frequency-shift keying (BFSK) are employed

to transmit the binary decisions to the FC. For each of the transmission schemes considered,

energy- and decoding-based fusion rules are developed first. Then, the detection threshold at

the CR nodes and at the FC, the combining weights (in the case of the energy-based fusion

rule), and the sensing time are optimized to maximize the achievable secondary throughput

of the CR network.

Finally, in order to reduce the required transmission bandwidth in the reporting phase

of the CRs in a cooperative sensing scheme, the last part of the dissertation examines

nonorthogonal transmission of local decisions by means of on-off keying. Proposed and

analyzed is a novel decoding-based fusion rule that essentially performs in three steps: (1)

estimating minimum mean-square error of the transmitted information from cognitive ra-

dios, (2) making hard decisions of the transmitted bits based on the estimated information,

and (3) combining the hard decisions in a linear manner. Simulation results support the

theoretical analysis and show that the added complexity of the decoding-based fusion rule

leads to a considerable performance gain over the simpler energy-based fusion rule when the

reporting links are reasonably strong.
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1. Introduction

1.1 Motivation

With the recent rapid growth in wireless communications systems and applications, the

traditional use of radio frequency via spectrum allocation to the license holders causes spec-

trum scarcity. The restricted use of spectrum bands has lead to the overcrowding of the

allocated spectrum bands with the increase in the variety of wireless services including voice,

multimedia, web, short message, etc. This overcrowding has consequently resulted in low

quality of service (QOS) for wireless applications [1].

On the other hand, measurements have verified that many frequency bands, such as tele-

vision bands, amateur radio, and paging, are often under-utilized with large spectral holes.

Therefore, cognitive radio systems have recently been proposed by the Federal Communica-

tions Commission (FCC) as a viable solution to overcome the problem of spectrum scarcity.

The idea of cognitive radio is to opportunistically detect and use a vacant licensed band

for transmission when it is not in use at a particular place or time, without causing any

significant interference to the transmissions of the licensed user. In fact, FCC has devel-

oped policies for unlicensed wireless devices to opportunistically use the vacant frequency

bands [2].

An example of cognitive radio (CR) technology is illustrated in Figure 1.1, in which a

major source of primary transmission coexists with a cognitive radio network. A base station

(BS) coordinates the cognitive radio users. Within the keep-out radius of the primary trans-

mitter, the CRs are forced not to use the primary channel to keep the signal-to-interference

ratio of the primary users above the acceptable limit [3].
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In order to take advantage of CR technology, the cognitive radios need to monitor the

primary user activities continuously to find a suitable spectrum band for possible utilization.

To this end, the secondary users may access the same occupied channel simultaneously

with the primary user (spectrum underlay) wherein the transmitted power of secondary

users is constrained so that it does not exceed the noise floor of the primary user. In

another scheme, which is more popular, the secondary users access only the spectrum white

spaces in an noninstructive way (spectrum overlay). In the latter scheme, which is also

referred to as opportunistic access, the CRs are allowed to communicate over the unoccupied

spectrum holes to avoid any possible interference to the primary users [4]. Since the primary

users have the priority of service, at any moment when a primary user becomes active

in the spectrum occupied by a cognitive user, the collision should be detected and the

communication channels should be relocated.

M

K
eep-out radius

Primary Transmitter

Cognitive Radio Network

BS

CR1

CR2

Figure 1.1 Example of a cognitive radio network.

From the above discussion, the ability of CRs to detect unoccupied spectrum holes is

very crucial in the operation of a cognitive radio network. Such an ability depends on the

spectrum sensing algorithm employed at the CRs. This research project is devoted to the
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problem of spectrum sensing in cognitive radio networks, especially those with spectrum

overlay access.

1.2 Overview of Spectrum Sensing

Spectrum sensing is a binary hypothesis testing problem. Let H0 and H1 denote the

idle and active states of the primary user, respectively. In order to classify the observations

into H0 or H1, a test statistics T is formed based on the received signal and a general test

decision is as follows:





Decide H0, if T ≤ ǫ

Decide H1, if T > ǫ

(1.1)

where ǫ is a specified threshold value. Two probabilities of interest are: (i) the probability

of detection, Pd, which is the probability that the primary user is correctly detected in its

active mode, and (ii) the probability of false alarm, Pf , which is the probability that the

primary user is detected (falsely) when it is in the idle state. Mathematically,

Pf = Pr {T > ǫ|H0} , (1.2)

and

Pd = Pr {T > ǫ|H1} . (1.3)

The probability that an active primary user is not identified by the CR user is called a

missed detection probability and is given by Pm = Pr {T < ǫ|H1} = 1 − Pd, which is the

probability that the active primary user is not identified by the CR user. Keeping Pf below

a certain value enables the CR user to efficiently utilize the available spectrum in order

to maximize the achievable CR network throughput [5]. On the other hand, minimizing

Pm ensures that the primary user is sufficiently protected, i.e., the amount of interference

introduced to the primary users is maintained at a reasonable level.

The efficiency of the employed spectrum-sensing algorithm determines the amount of

interference introduced into the primary users and the achievable CR network throughput.
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Therefore, in order to design a spectrum sensing algorithm, the decision statistics as well

as sensing parameters should be obtained to meet the requirements on the probability of

detection and the probability of false alarm, as well as the achievable secondary throughput

[5–7]. These requirements need a careful design of the time frame structure as an important

sensing parameter. This is elaborated in the next section.

1.2.1 Time Frame Structure and Achievable Throughput

An important parameter in spectrum sensing is the sensing time interval. For cognitive

radio applications, a frame structure is designed for periodic spectrum sensing and the sec-

ondary data transmissions. Figure 1.2 shows the time frame structure considered for periodic

spectrum sensing. There are two main phases in each frame: a sensing phase (duration of τ),

and a data transmission phase (duration of T − τ). In Figure 1.2, the sensing time interval

is specifically denoted by τs. Also a reporting delay, denoted by τr, is considered for the ap-

plications when the sensing results are reported to a central station. Commonly the sensing

and reporting delay are summed up and denoted as one general sensing interval τ . Generally,

the longer the sensing duration is, the more accurate the outcome of the spectrum-sensing

algorithm becomes and, therefore, the lower the potential of interference to the primary users

is. Using the given time frame structure, the achievable secondary throughput R0, under

the hypothesis H0 when the primary channel is vacant is defined as [5]

R0 = C0Pr(H0)
(
1− τ

T

)
[1− Pf ] , (1.4)

where C0 represents the throughput of the secondary network in the absence of the primary

user. Theoretically, an increase in the sensing time results in a higher detection probabil-

ity and lower false alarm probability, which in return leads to an improved utilization of

the available unused spectrum [8, 9]. However, given a target probability of detection, the

increase of the sensing time also results in a decrease of the data transmission time, hence

the achievable throughput [5]. Therefore, an inherent tradeoff exists between the amount of

interference introduced to the primary user and the achievable throughput of the cognitive

radio network in terms of the length of the sensing duration of the frame structure [4,6,10–12].
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Frame 1 Frame 2 Frame k...

Sensing Reporting Data Transmission

r
τ

T

s
τ

τ T τ−

Figure 1.2 Time frame structure in a cognitive radio network.

In the next section, the most well-known spectrum sensing techniques that can be em-

ployed for an efficient spectrum detection are introduced.

1.2.2 Spectrum Sensing Techniques

The spectrum sensing techniques that have been proposed so far mainly include the

energy detection [13], the likelihood ratio test (LRT) [8], and various feature detection algo-

rithms [14–17]. Once the decision statistics are known, different sensing parameters such as

the combining weights in a cooperative energy detection [18,19], decision threshold and sens-

ing time [5,20] can be determined by optimizing various objective functions. Because energy

detection is a simple and efficient algorithm and its performance can be analytically evalu-

ated [18, 21], many recent works have developed algorithms to optimize sensing parameters

for energy detection [5, 18–20, 22].

In [18], a joint sensing optimization problem for a multiband cognitive radio network is

proposed to find the combining weights as well as the decision thresholds for each subband.

Three objective functions were introduced with constraints on Pm and Pf : the opportunistic

secondary throughput as a function of Pf , the aggregate interference to the primary user as

a function of Pm and the modified deflection coefficient [18, 19]. Optimal and suboptimal

solutions have been obtained for these objective functions. In [5], a single carrier cognitive

radio system in additive white Gaussian noise (AWGN) channel is considered where the goal

is to find the optimal sensing time via maximizing the achievable throughput for the sec-
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ondary network. The approach is then extended to multi-slot cooperative spectrum sensing

where proper weights are assigned to each time slot to maximize the achievable secondary

throughput. In [20], the sensing time and power allocation are optimized for a multiband

cognitive radio network.

It has to be noted that the optimization problems carried out in [5, 18–20, 22] requires

some form of a priori knowledge of the received signal, including the exact noise power

or/and the primary signal covariance matrix, channel state information, etc. However, in

a cognitive radio network, perfect knowledge of fading channel or noise variance may not

be available at the cognitive radio receiver. Therefore, there is a need to develop efficient

wideband spectrum sensing algorithms which are robust to these uncertainties. In fact, a

comprehensive work has been carried out to develop and evaluate new and efficient test

statistics for specific types of cognitive radio systems (e.g. [13,15–17,23]), where a number of

uncertainties has also been involved in developing the system model as well as the decision

statistics. A few works have also been carried out to compare different spectrum sensing

approaches (e.g. [1]). In the following, a review of the main detection methods for cognitive

radio is presented and their requirements, advantages and disadvantages are discussed.

Energy Detection

Energy detection, by far, has been the most well known spectrum sensing method due

to its low complexity and the fact that the structure of the primary signal is not required to

be known. For the discussion in this section, the following signal model is adopted:

xn =





vn, H0

s̃n + vn, H1,

(1.5)

where s̃n is the received signal vector, which is distorted by the fading channel and vn is the

receiver noise vector at the time instance n. We also assume a Gaussian model for both the

received signal and noise. If the length of the signal vector is denoted by L, over N time
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samples, the energy detection rule will be:

N∑

n=1

|xn|2
H1

≷
H0

ǫ. (1.6)

The above rule applies equal weight combining over the signal vector components. Because

different components of the signal undergo different fading channels, a more general detection

rule considers weighted energy. That is [18]

κ =

L−1∑

k=0

gkκk
H1

≷
H0

ǫ, (1.7)

where κk is the energy over the kth component of the signal vector:

κk =
N∑

n=1

|xn(k)|2. (1.8)

Figure 1.3 shows the block diagram of the weighted energy detection-based spectrum

sensing. To find the weights, a set of objective functions involving the opportunistic sec-

ondary throughput as a function of Pf and the aggregate interference to the primary user as

a function of Pm with a set of constraints are considered in [18]. Due to the high complexity

and non-convex optimization problems that arise, a simpler solution based on a modified

deflection coefficient [18, 19] has also been introduced. The modified deflection coefficient is

defined as

d2(g) =
(E(κ|H1)− E(κ|H0))

2

Var(κ|H0)
, (1.9)

where g = [g1, g2, . . . , gL]
⊤. It is observed that this measurement only depends on the first

and second moments of the test statistics, therefore it is not required to find the distribution

of the test statistics. The weight coefficients are chosen in order to achieve the maximum

modified deflection coefficient for each subband under the given constraints.

For an energy detector, if there is no uncertainty on the noise variance, the performance is

very good. However, in the presence of typical noise variance uncertainties around 0.5 dB 1,

the performance of energy detection significantly degrades [13]. Therefore energy detection

is considered a non-robust detector.

1The measurement is with respect to the actual noise variance.
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Figure 1.3 Multiband spectrum sensing scheme.

Likelihood Ratio Test

The Neyman-Pearson (NP) criterion [24] provides a powerful tool to find the optimal

decision statistics for a binary hypothesis testing problem. The NP criterion maximizes the

probability of detection for a given probability of false alarm. Using the NP criterion results

in the following likelihood ratio test (LRT) [24]:

L(xn) =
fxn|H1(xn|H1)

fxn|H0(xn|H0)

H1

≷
H0

η, (1.10)

where η is the sensing threshold which is obtained based on the pre-selected probability of

false alarm. For a sensing period equivalent to N time samples, one has

L(x) = fx|H1
(x|H1)

fx|H0(x|H0)
, (1.11)

where x = [x1, . . . ,xN ] denotes a block of N time samples. Because the noise is a white

Gaussian random process, the distribution of x under H0 is

fx|H0
(x|H0) =

N∏

n=1

1

(2πσ2
v)
L/2

exp

[
− 1

2σ2
v

‖xn‖2
]
, (1.12)
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On the other hand, the distribution of x under H1 is

fx|H1
(x|H1) =

N∏

n=1

1

(2π)L/2det1/2(Rx)
exp

[
−xHn R

−1
x xn

]
, (1.13)

where Rx = E
{
xnx

H
n

}
.

When the primary signal components are independent and identically distributed (i.i.d),

Rx under H1 is a scaled identity matrix. It follows that the LRT reduces to an energy de-

tection algorithm. Thus for i.i.d primary signals, energy detection is the optimal spectrum

sensing method according to the NP criterion. However, if the received signal components

are not i.i.d, the energy detection performance degrades. This is the reason why in a co-

operative sensing scheme in which the received signals from multiple sources are not i.i.d,

many approaches were proposed to find the optimal weights for cooperative energy detection

(e.g. [5, 20, 22]).

Observing the signal model given in (1.5), it is obvious that for an AWGN channel, the

received signals become i.i.d and the energy detector will be the optimal detector. However,

if the multipath channel remains static over the short period of the spectrum sensing, the

received signal is correlated due to multipath effect and the energy detection is not opti-

mal. In particular, using the result in [25], the LRT decision statistics for the given binary

hypothesis test in (1.5) is obtained as

TLRT(x) =
N∑

n=1

xHn
[
Rs̃(Rs̃ + σ2

vI)
−1
]
xn, (1.14)

where Rs̃ = E
{
s̃ns̃

H
n

}
.

It can be seen from (1.14) that the weighting coefficients of LRT requires the a priori

knowledge of noise power and primary signal covariance matrix. In an actual cognitive radio

scenario, such information might not be available at cognitive radios. Therefore, it is of

great importance to develop spectrum sensing algorithms which do not require the precise

knowledge of channel taps and noise variance. Such algorithms are expected to be able to

extract and use some specific features of the received primary signal. In fact, a large number

of techniques has been proposed and evaluated, among them are the statistical covariance
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algorithm [17], eigenvalue-based algorithm (e.g. [15] and [16]) and cyclostationary algorithm

(e.g. [26]). These algorithms are briefly introduced in the context of wideband spectrum

sensing in the next section.

1.3 Wideband Spectrum Sensing

Wideband spectrum sensing algorithms involve detecting the presence or absence of li-

censed signals in low SNR environments. As such, it is necessary to develop algorithms

which are practical and reliable in low SNR scenarios and robust to other uncertainties. On

the other hand, orthogonal frequency division multiplexing (OFDM) is a multi-carrier mod-

ulation technique that has been recognized as a potential transmission technology for CR

systems due to its numerous advantages for high bit-rate communications as well as its ca-

pability to dynamically allocate unused spectrum among CR users. As a suitable wideband

modulation technique, OFDM can overcome the time dispersion of the channel which causes

inter-symbol interference (ISI). Other advantages of OFDM include high spectral efficiency,

robustness against narrow band interference (NBI), scalability, and easy implementation us-

ing the fast Fourier transform (FFT). The flexibility of OFDM provides opportunities to use

advanced techniques, such as adaptive loading, transmit and receive diversity, to improve

transmission efficiency [1,27,28]. After presenting the OFDM signal model in this section, a

review of the main detection methods for cognitive radio is presented and their requirements,

advantages and disadvantages are discussed.

1.3.1 Cognitive Radio Network with OFDM

The OFDM frame structure considered in this work is the same as that in [29] and [26]

and it is shown in Figure 1.4. It is assumed that both the CR and primary OFDM systems

employ L subcarriers and can be perfectly synchronized through pilot signals. Let {Sn,k}L−1
k=0 ,

with E{|Sn,k|2} = σ2
S, be the complex symbols to be transmitted in the nth OFDM block.

Then the baseband OFDM modulated signal can be expressed as

sn(m) =
1√
L

L−1∑

k=0

Sn,ke
j2πmk

L ; m = 0, . . . ,L− 1. (1.15)
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For a large number of subcarriers L (i.e., the size of DFT/IDFT), sn(m) can be approximately

modeled as a zero-mean circularly symmetric complex Gaussian random variable of variance

σ2
S, i.e., sn(m) ∼ CN (0, σ2

S).

Represent the length-(L+ Lp) vector of the nth transmitted OFDM block as

s+n =[sn(L− 1), sn(L− 2), . . . , sn(0), sn(L− 1), . . . , sn(L− Lp)︸ ︷︷ ︸
Cyclic Prefix

]⊤, (1.16)

where Lp denotes the number of samples in the guard interval, i.e., the length of the cyclic

prefix (CP). The corresponding received signal and noise vectors are denoted by

xn = [xn(L− 1), xn(L− 2), . . . , xn(0), xn(−1), . . . , xn(−Lp)]⊤, (1.17)

vn = [vn(L− 1), vn(L− 2), . . . , vn(0), vn(−1), . . . , vn(−Lp)]⊤, (1.18)

where the noise samples vn(l)’s are i.i.d. CN (0, σ2
v) random variables.

The primary user signal is received through a wireless multipath fading channel whose

discrete-time baseband model is represented by channel filter taps hi, i = 1, . . . ,Lc, where Lc

denotes the number of multipath components. If the multipath channel taps are unknown

constants, this implies that the received OFDM signal samples are correlated during the

period of spectrum sensing. As such, spectrum sensing methods that employ correlation

features of the signals, such as the multipath-induced correlation and the cyclic-based cor-

relation can be implemented in a cognitive radio network for an efficient detection of the

primary OFDM signals. A review of such methods is presented next.

1.3.2 Robust Spectrum Sensing Algorithms for OFDM Signal

Robust spectrum sensing algorithms do not need to know the noise variance and pri-

mary signal covariance matrix. They exploit the primary signal’s features or some side

information [30] to identify signal from noise, hence, they are very practical in cognitive

radio networks. Previously proposed robust detection algorithms that can be applied to

OFDM-based cognitive radio systems can be mainly divided into three groups, namely the

cyclostationary-based detection, covariance-based algorithms and the generalized likelihood

ratio test (GLRT).
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Cyclostationary-Based Detection

Due to the presence of a cyclic prefix (CP), an OFDM signal has a nonzero autocorrelation

coefficient at multiple delays of L OFDM samples. This property of the OFDM signal can be

exploited in the time domain to design an autocorrelation based detector. This approach is

very useful in a single user OFDM based system under an AWGN channel. For the multipath

channel, as it is shown in [31], there is a degradation in the expected performance of the

detector depending on the number of multipath channel taps.

For an AWGN channel, the binary hypothesis testing problem can be expressed as

xn(k) =





vn(k), H0

h1sn(k) + vn(k), H1

k = −Lp, . . . ,L− 1; n = 1, . . . ,N (1.19)

where vn(k) is the kth received noise sample of the nth OFDM symbol and sn(k) is the kth

sample of nth OFDM symbol. Let ρ = E(xn(k)x∗n(k±L))
E(xn(k)x∗n(k))

be the autocorrelation coefficient for

12



lags of ±L samples. Under the two hypotheses one has:

ρ = 0 : (given H0),

ρ = α : (given H1). (1.20)

If the CP length is not known, it is shown in [26] that:

α =
Lp

Lp + L

E(|h1|2)σ2
s

E(|h1|2)σ2
s + σ2

v

=
Lp

Lp + L

SNR

1 + SNR
. (1.21)

However, if the CP length is known a priori, then the expectation is only taken over the Lp

samples in the head and tail of the OFDM signal and therefore α = SNR
1+SNR

[26]. Let ρ̂ be an

estimate of the autocorrelation coefficient ρ from the finite received samples, given as,

ρ̂ =

∑N
n=1

∑L+Lp−1
k=L 2Re(xn(k)

∗xn(k − L))
∑N

n=1

∑L+Lp−1
k=L (|xn(k)|2 + |xn(k − L)|2)

. (1.22)

Then the decision rule is as follows [26], [31]:

ρ̂
H1

≷
H0

ǫ, (1.23)

In [26], it is shown that the sample autocorrelation test given in (1.23) is approximately

the log likelihood ratio test (LLRT) statistic for an AWGN channel when the SNR is low.

Covariance-Based Detection

Under H0, the received signal covariance matrix is a scaled identity matrix which rep-

resents the noise covariance matrix. If the primary signal is not an i.i.d random process,

the received signal covariance matrix under H1 is no longer a scaled identity matrix. Hence,

many researchers have developed spectrum sensing algorithms based on the statistics of the

received signal covariance matrix which is different from that of the noise. After receiving

the signal samples, the test statistic is derived from the received signal sample covariance

matrix. In what follows, different covariance-based spectrum sensing algorithms with their

application to OFDM-based cognitive radios are outlined.
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Spectrum Sensing based on the Minimum and Maximum Eigenvalues of the

Sample Covariance Matrix

For the binary hypothesis testing problem given in (1.5), denote the sample covariance

matrix by R̄x = 1
N

∑N
n=1 xnx

H
n . Under H0, the normalized sample covariance matrix R̄

′
x =

N
σ2v
R̄x is a complex white Wishart matrix. Its eigenvalues fall within a finite support called

the Marchenko-Pastur support. Whereas under H1 the largest eigenvalue increases outside

the Marchenko-Pastur support [16]. Therefore it is suggested in [16] to employ

lmax

lmin

=
λmax

λmin

(1.24)

as the decision test, where lmax and lmin denote the largest and smallest eigenvalues of R̄
′
x

and λmax and λmin denote the largest and smallest eigenvalues of R̄x. It is shown in [16] that

under H0, lmax and lmin converge as follows:

lmax
a.s.→ b = (N

1
2 + L

1
2 )

1
2

lmin
a.s.→ a = (N

1
2 − L

1
2 )

1
2 (1.25)

in the limit

N ,L→ ∞ with
L

N
→ c̄ (1.26)

where c̄ ∈ (0, 1) is a constant. Under H1, it is known that R̄
′
x belongs to the class of

spiked population models and its largest eigenvalue converges almost surely to a value b′ > b.

The authors of [16] have found a quite accurate expression for the limiting eigenvalue ratio

distribution under H0 using the properties of the Wishart matrices. The result is then

employed to calculate the decision sensing threshold as a function of a target probability of

false alarm.

Spectrum Sensing based on the Covariance Absolute Values (CAV)

Using the fact that the off diagonal elements of Rx are nonzero in the presence of the

primary signal, the covariance-based absolute value (CAV) detection algorithm is proposed

in [15]. Let r̄kj, k, j = 1, . . . ,L, denote the elements of the sample covariance matrix R̄x for
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the duration of spectrum sensing. The CAV algorithm is proposed for real-valued r̄kj’s and

computes two decision values, T1 and T2, as

T1 =
L∑

k=1

L∑

j=1

|r̄k,j|, (1.27)

T2 =

L∑

k=1

|r̄k,k|. (1.28)

For the general case of complex r̄kj’s, the above decision values are extended to

T1 =

L∑

k=1

L∑

j=1

(|Re(r̄k,j)|+ |Im(r̄k,j)|) , (1.29)

T2 =
L∑

k=1

(|Re(r̄k,k)|+ |Im(r̄k,k)|) , (1.30)

where Re(x) and Im(x) denote the real and imaginary components of x. The presence of

the signal is determined based on T1 and T2, and a threshold ǫ. The detection algorithm

decides H1, if
T1
T2
> ǫ [17]. Since the probability of false alarm is a function of the sensing

threshold and does not depend on the primary signal information, the sensing threshhold

can be obtained given a target probability of false alarm. In [17], for the CAV algorithm,

the probabilities of false alarm and detection are also obtained in closed-form expressions

using the central limit theorem and some approximations. However, theoretical curves are

not very much in agreement with simulation results.

Because the CAV algorithm does not depend on the knowledge of noise variance, it shows

a reliable performance in the presence of noise uncertainty compared to the energy detection.

Simulation results verify this fact in [17].

Generalized Likelihood Ratio Test

If any of the two hypotheses describing a binary hypothesis testing problem involves

some unknown parameters, the hypothesis is called a composite hypothesis [24]. For a

composite hypothesis, one approach is to perform the maximum likelihood estimation (MLE)

of the unknown parameters. The estimated parameters are then used in the likelihood

ratio test as if they are correct values. The result is then called the generalized likelihood
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ratio test (GLRT) [24]. This approach enables the cognitive radio receiver to incorporate

the uncertainties in calculating the test statistics. Spectrum sensing based on GLRT was

presented in [25] for single antenna CR user and in [32,33] for multi-antenna CR receiver. The

decision tests have been obtained under different number of unknown parameters, e.g., noise

variance and/or signal covariance matrix. For the general case when both noise variance and

signal covariance matrix are unknown, exploiting the GLRT algorithm gives the arithmetic-

to-geometric mean (AGM) method. Denote the eigenvalues of the sample covariance matrix,

R̄x, by λi, i = 1, . . . ,L. The AGM test statistic is given as

TAGM(λ) =
1
L

∑L
i=1 λi

∏L
i=1 λi

1
L

, (1.31)

where λ = (λ1, . . . ,λL). If some information such as noise variance or the rank of signal

covariance matrix is available, this additional information can be incorporated into the test

statistics to give a modified test statistics as a function of the eigenvalues [25].

The key advantage of the GLRT approach is that by concentrating on a certain portion

of the observation, one can exploit structural properties of the covariance matrix to improve

its estimation in the GLRT. The decision statistic is then obtained as a function of the

signal observations. This is presented in detail in [31] and outlined in Chapter 2 for an

OFDM-based CR system.

Based on the discussion in this section, robust spectrum sensing algorithms which rely on

important features in the received signal, such as multipath structure, cyclic prefix or receive

diversity can be developed for efficient spectrum sensing. Moreover, utilizing multiple CRs

in a collaborative manner can further improve the sensing performance. In the next section,

the motivation, benefits and methods of implementing a cooperative cognitive radio network

are presented.

1.4 Cooperative Spectrum Sensing

Cooperative spectrum sensing exploits multiple cognitive radio users to improve the per-

formance of the sensing network in the detection of a primary user. The reason for imple-
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menting a cooperative network lies in the importance of the accuracy of spectrum sensing

since the interference resulting from the coexistence of cognitive radio and primary users

in the same spectrum band severely degrades the performance of the primary user. In the

presence of a fading channel, the spatial diversity gain obtained from cooperative CRs helps

to overcome the destructive effects such as multipath fading and/or shadowing.

With cooperative sensing, the local sensing data from multiple CR users which are dis-

tributed over the sensing area are transmitted to a fusion center (FC) to be combined. By

the combination of the results, the CR achieves a diversity gain which helps to improve the

reliability of the final sensing decision. The decision fusion can be performed as a soft fusion

scheme where each CR sends its observation to FC, or as the hard fusion scheme, where local

hard decisions are gathered at the fusion center to achieve the final decision. Depending on

the scenario in which the spectrum sensing is performed, soft decisions may outperform the

hard decision fusion, whereas hard decision fusion requires less signaling overhead [34–36].

Two phases, sensing and reporting, can be considered for cooperative sensing in a cog-

nitive radio network. In the sensing phase, each CR node listens and collects data from

the primary user. After processing the collected data at each CR node, the measurement

is transmitted through dedicated control channels to a fusion center. Two transmission

schemes, namely orthogonal and nonorthogonal can be considered to transmit the results to

the fusion center. In the orthogonal transmission scheme as shown in Figure 1.5, each CR

node transmits the data to the FC over the orthogonal sub-channels or time slots (TS1,TS2,

. . . ) equally divided in the time domain (TDMA manner). Therefore every CR node com-

municates with the fusion center in a distinct orthogonal channel without interference.

Contrary to the orthogonal transmission, in the nonorthogonal transmission scheme

shown in Figure 1.6, all the CR signal vectors are simultaneously transmitted to the fu-

sion center [37]. Therefore a better bandwidth efficiency is acquired since fewer reporting

channels, hence less spectrum resource is consumed for the transmission phase. Due to the

introduced interference in the non-orthogonal scheme, cooperative sensing with orthogonal

transmission typically outperforms the one with non-orthogonal transmission at the cost of
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requiring more resources. The observation is particularly true when the reporting channels

are strong and interference is the main cause of degrading the fusion rather than the added

noise at the fusion center. However in an orthogonal scheme, when the reliability of local
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Figure 1.5 Orthogonal transmission of local decisions in a cognitive radio network.

sensing results may vary due to the different fading/shadowing channels, assigning the same

weight to all different local sensing results for data combining at the fusion center limits

the efficiency of the cooperative sensing. For more efficient combining, the schemes in [38]

and [39] apply different weights to local sensing results in proportion to their reliability.

On the other hand, in the situation when the reliability of the individual sensing result

changes frequently, it takes additional time and spectrum resources to update the weights

at the fusion center. This drawback may negatively affect the sensing time requirement in

detecting the primary user as well as the bandwidth efficiency of the cognitive radio system.

The examples of these systems include the CR systems with mobile CR users (mobile CR

systems) and the CR systems where the primary user can appear at an arbitrary location.
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Based on the above discussion, careful design consideration is required with regard to the

tradeoff between the spectrum expenditure and the sensing performance of the cooperative

network.
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Figure 1.6 Non-orthogonal transmission of local decisions in a cognitive radio net-

work.

1.5 Organization and Contribution of the Thesis

This dissertation is organized in five chapters as follows. After the introduction (this

chapter), in Chapter 2, a GLRT algorithm is proposed for detecting the primary OFDM

signals to monitor the licensed bandwidth. It is first shown that the GLRT algorithm can

exploit both multipath and cyclic correlations to yield a novel blind spectrum sensing algo-

rithm. It is then verified that the cyclic-prefix correlation coefficient (CPCC)-based detection

algorithm is a special case of the constrained GLRT algorithm in the absence of multipath

fading channel. It is further shown that when multipath fading is present, which is the case

for OFDM applications, performance of the detection based on the cyclic-prefix correlation
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coefficient degrades. Furthermore, by exploiting the known structure of the OFDM chan-

nel matrix in a constrained GLRT algorithm, a detection algorithm is obtained which is

solely based on the multipath correlation coefficients. By combining the CPCC-based and

multipath correlation coefficients-based algorithms, an even more reliable spectrum sensing

method can be realized. The spectrum sensing algorithms developed in the first part of

Chapter 2 assume that perfect synchronization can be obtained at the cognitive radio re-

ceiver. As such, the detection performance of sensing algorithms in this case serves as an

upper bound for situations where synchronization has to be actually performed at the cog-

nitive radio receiver. An efficient blind synchronization of time and carrier frequency offsets

has been proposed to improve the sensing algorithm. However certain drawbacks still exist,

including but not limited to the complexity and the delay added to the sensing task and the

weak synchronization performance in the low SNR region These drawbacks motivate us to

develop a simple GLRT-based algorithm that does not require timing synchronization to be

established between the primary and secondary users.

In Chapter 3, the problem of decision fusion for cooperative spectrum sensing in cognitive

radio networks is studied. The CRs perform spectrum sensing using energy detection and

transmit their binary decisions over the orthogonal reporting channels to the FC for a final

decision on the absence or presence of the primary user activity. Considering the limited

resources in cognitive radio networks, which makes it difficult to acquire the instantaneous

reporting channel state information, noncoherent transmission schemes with on-off keying

(OOK) and binary frequency shift keying (BFSK) are employed to transmit the binary

decisions to the fusion center. For each of the transmission schemes considered, energy-

based and decoding-based fusion rules are first developed. Then the detection threshold at

the CR nodes as well as at the FC, the combining weights (in the case of energy-based fusion

rule) and the sensing time are optimized to maximize the achievable secondary throughput

of the cognitive radio network. A performance comparison between energy-based fusion rule

and the decoding-based fusion rule is made for different signal-to-noise ratios (SNRs) of the

reporting channels. Also it is shown that BFSK achieves a higher secondary throughput

than OOK at the expense of a larger transmission bandwidth.
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In Chapter 4, cooperative spectrum sensing in cognitive radio (CR) networks is studied

in which nonorthogonal transmission of local CR decisions is considered toward the fusion

center (FC) in order to reduce the required transmission bandwidth in the reporting phase.

To further reduce the transmission bandwidth, the transmission of local decisions by means

of on-off keying (OOK) is examined at each cognitive radio. The problem of interest is how

to efficiently report and combine the local decisions to/at the fusion center under fading

channels. To this end two main fusion rules, namely energy-detection as well as decoding-

based fusion rules are developed. Performance analysis of these fusion rules is carried out

and used to design the required sensing parameters. Simulation results support the theoret-

ical analysis and show that the added complexity of decoding-based fusion rule leads to a

considerable performance gain over the simpler energy-based fusion rule when the reporting

links are reasonably strong. It is also shown that in some situations the simpler energy-based

fusion rule can perform almost as well as the decoding-based fusion rule.

Finally Chapter 5 draws conclusions and gives suggestions for future study.
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2. Blind Spectrum Sensing for OFDM-Based

Cognitive Radio Systems

2.1 Introduction

Orthogonal frequency division multiplexing (OFDM) has been known to be one of the

most effective multicarrier techniques for broadband wireless communications. The main

reason lies in its inherent capability to combat multipath fading and avoid inter-symbol

interference. OFDM has attracted significant attention in the development of CR technology

[1, 27]. In an OFDM-based communication system, CR spectrum sensing can be performed

either in the time or frequency domain. In the frequency domain, subcarrier-wise detection

can be performed [18,40], which becomes attractive when the available bandwidth is divided

into subbands which are allocated to different primary users. In [18], a frequency-domain

spectrum sensing method has been proposed which optimizes sensing parameters over each

subcarrier, whereas the algorithm in [40] is proposed to detect available portions of the

spectrum. Although some OFDM-based technologies, such as digital audio broadcasting

(DAB) or IEEE 802.16 wireless MAN, employ data multiplexing for different primary users,

single-transmission OFDM systems are also common in practice. Among them are digital

video broadcasting (DVB), IEEE 802.11 wireless LAN and IEEE 802.16e mobile WiMAX.

For such wireless systems, the CR receiver needs to detect the primary OFDM signals to

monitor the licensed bandwidth 1.

The likelihood ratio test (LRT) is known to be the optimal algorithm for spectrum

sensing [8] if the exact knowledge of channel state information and noise variance can be made

1The contribution in this chapter is published in [31].
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available at the receiver. Unfortunately, such knowledge is generally difficult to obtain at the

cognitive radio receiver. On the other hand, the energy detection algorithm does not require

channel information and performs well if the noise variance is known. However, even a slight

uncertainty, around 0.5 dB in noise variance, causes its performance to severely drop below

the performance with known noise variance [13]. It should also be pointed out that the energy

detector is the optimal spectrum sensing method for independent and identically distributed

(i.i.d) primary signals and its performance is degraded if the received primary signals are

correlated [41]. Therefore, it is of great importance to develop efficient spectrum sensing

algorithms for the detection of signals which are not necessarily i.i.d distributed. To alleviate

the requirement on the precise knowledge of channel and noise variance which are generally

unavailable at the cognitive radio receiver, a suitable detection algorithm is expected to

extract and use some particular features of the received primary signals. In fact, a number

of techniques have been proposed and evaluated, among them are the statistical covariance

algorithm [17], eigenvalue-based algorithm [15, 16] and cyclostationary algorithm [26, 42].

As OFDM is an effective technique to combat multipath fading, it is expected that OFDM

is employed in rich scattering environments. With advanced compression techniques, the

information signals (in discrete-time complex basedband representation) can be considered

as independent and identically distributed (i.i.d) random variables. However, when these

signals are passed through a multipath fading channel, the received signals at the receiver are

correlated versions of the transmitted signals, which typically have different statistics from

the background noise. On the other hand, a very important feature of OFDM transmission

is the use of cyclic prefix, which results in nonzero correlation of the received primary signal

samples at certain delays. In [26], a method has been proposed based on the cyclic feature

of OFDM blocks in the time domain. Though the algorithm shows a good performance, the

signal correlation induced by multipath propagation is not exploited in such an algorithm.

The aim of a detection algorithm is to decide between the two hypotheses of whether

the primary signal is present or absent. In the case when some parameters (e.g., channel

state information and noise variance) are not known, the hypothesis is called a composite

hypothesis [24]. For a composite hypothesis, one approach is to obtain estimate of the un-
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known parameters (typically the maximum likelihood estimates). The estimated parameters

are then used in the likelihood ratio test as if they are the correct values. This results in

the so-called the generalized likelihood ratio test (GLRT) [8, 24]. GLRT has been widely

employed in many hypothesis testing problems, e.g. [42–44], including spectrum sensing

applications [25, 30].

In this chapter, it is first shown that the GLRT algorithm can exploit both multipath

and cyclic correlations to yield a novel blind spectrum sensing algorithm. It is then verified

that the cyclic-prefix correlation coefficient (CPCC)-based detection algorithm is a special

case of the constrained GLRT algorithm in the absence of multipath fading channel. It

is further shown that when multipath fading is present, which is the case for OFDM ap-

plications, performance of the detection based on the cyclic-prefix correlation coefficient

degrades. Furthermore, by exploiting the known structure of the OFDM channel matrix in

a constrained GLRT algorithm, a detection algorithm is obtained which is solely based on

the multipath correlation coefficients. By combining the CPCC-based and multipath corre-

lation coefficients-based algorithms, an even more reliable spectrum sensing method can be

realized.

The spectrum sensing algorithms developed in the first part of this chapter (Sections

2.4 and 2.5) assume that perfect synchronization can be obtained at the cognitive radio

receiver. As such, the detection performance of sensing algorithms in this case serves as an

upper bound for situations where synchronization has to be actually performed at the cog-

nitive radio receiver. In [45], a blind synchronization algorithm was proposed for maximum-

likelihood estimations of time and carrier frequency offsets of OFDM signals. While such a

blind synchronization algorithm can be conveniently incorporated in the spectrum sensing

framework considered in this chapter, there are two main drawbacks: (i) using a synchro-

nization algorithm adds more complexity and may cause delay to the sensing task, (ii) in

the low SNR region where the cognitive radio is operating, the synchronization performance

is far from perfect, hence the sensing performance is significantly degraded when compared

to the case of perfect synchronization. These drawbacks motivate us to develop a simple

GLRT-based algorithm in Section 2.6 that does not require timing synchronization to be
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established between the primary and secondary users.

This chapter is organized as follows. Section 2.2 describes the system model and formu-

lates the spectrum sensing problem. Section 2.3 presents a general framework of the GLRT

detection scheme and shows how to exploit cyclic prefix and multipath correlation features.

In Sections 2.4 and 2.5, two constrained GLRT algorithms are presented, where the data

and cyclic parts of the OFDM signal are considered separately to exploit the structure of

the covariance matrix in enhancing the performance of the GLRT algorithm. It is shown in

both cases that the constrained GLRT algorithms lead to detection algorithms which solely

depend on the sample correlation coefficients. A combined detection scheme is also proposed.

The spectrum sensing algorithm for unsynchronized OFDM signals is proposed in Section

2.6. Simulation results are presented in Section 2.7 and Section 2.8 concludes the paper.

For convenience, the main mathematical symbols used in this chapter and their meanings

are summarized in Table 2.1.

2.2 System Model

The OFDM signal model considered in this chapter is the same as that in [26] and [29],

which assumes that the primary OFDM system employs L subcarriers and the cognitive radio

and primary users can be perfectly synchronized. The case of no timing synchronization is

discussed and treated separately in Section 2.6. Let {Sn,k}L−1
k=0 , with E{|Sn,k|2} = σ2

S, be the

complex symbols to be transmitted in the nth OFDM block. Then the baseband OFDM

modulated signal can be expressed as

sn(m) =
1√
L

L−1∑

k=0

Sn,ke
j2πmk

L ; m = 0, . . . ,L− 1. (2.1)

For a large number of subcarriers L (i.e., the size of DFT/IDFT), sn(m) can be approximately

modeled as a zero-mean circularly symmetric complex Gaussian random variable of variance

σ2
S, i.e., sn(m) ∼ CN (0, σ2

S).
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Table 2.1 Mathematical symbols used in Chapter 2.

Symbol Description

sn, σ
2
S L-length vector of the nth OFDM symbol, and variance of elements of sn

s+n (L+ Lp)-length vector of the nth transmitted OFDM block

xn, σ
2
x Received OFDM signal vector, and variance of elements of xn

vn, σ
2
v Received noise vectors, and variance of elements of vn

yn, Ry M -length vector of the nth received signal block, and its covariance matrix

zn, σ
2
z M -length column vector of the noise samples, the noise variance

Sn,k kth complex symbol of the nth OFDM block

L Total number of subcarriers in an OFDM symbol

N , M Number of received blocks, and length of received vector

Lp Number of samples in the guard interval of an OFDM block

Lc Number of channel filter taps

ρ Cyclostationary correlation coefficient of the OFDM block

h Toeplitz matrix constructed from the channel filter taps

H0 Idle state of the primary user

H1 Active state of the primary user

Pd Probability that the primary user is correctly detected in its active mode

Pf Probability of a false detection of the primary user when it is in the idle state

Represent the length-(L+ Lp) vector of the nth transmitted OFDM block as

s+n =[sn(L− 1) . . . sn(0) sn(L− 1) . . . sn(L− Lp)︸ ︷︷ ︸
Cyclic Prefix

]⊤, (2.2)

where Lp denotes the number of samples in the guard interval, i.e., the length of the cyclic

prefix (CP). The corresponding received signal and noise vectors are denoted by

xn =[xn(L− 1) xn(L− 2) . . . xn(0)xn(−1) . . . xn(−Lp)]⊤, (2.3)

vn =[vn(L− 1) vn(L− 2) . . . vn(0)vn(−1) . . . vn(−Lp)]⊤, (2.4)

where the noise samples vn(l)’s are i.i.d. CN (0, σ2
v) random variables.

The primary user signal is received through a wireless multipath fading channel whose

discrete-time baseband model is represented by channel filter taps hi, i = 1, . . . ,Lc, where
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Lc denotes the number of multipath components. It is also assumed that the fading process

remains static during the interval of spectrum sensing. This implies that the channel filter

taps can be treated as unknown constants during the period of spectrum sensing. The

relationship of xn, sn and vn can be expressed in a matrix form as follows:

xn = hs̄n + vn, (2.5)

where s̄n = [s⊤n , sn−1(L − 1), . . . , sn−1(L − Lc + 1)]⊤ and h is (L + Lp)× (L + Lp + Lc − 1)

Toeplitz matrix constructed from the channel filter taps as

h =




h1 . . . hLc
0 . . . . . . . . . 0

0 h1 . . . hLc
0 . . . . . . 0

...
. . .

. . .
...

... . . . 0 h1 . . . hLc
0 0

...
. . .

. . .
. . . 0

0 . . . . . . . . . 0 h1 . . . hLc




(2.6)

Note that the last Lp samples of xn is the inter-symbol interference (ISI) part. Since xn(l)’s

are linear combinations of zero-mean complex Gaussian random variables, they are also

zero-mean complex Gaussian random variables. Based on (2.5), the variance of xn(l) is

σ2
x = σ2

S

∑Lc

i=1 |hi|2 + σ2
v when the primary user’s signal is present, otherwise σ2

x = σ2
v . It is

also of interest to define the signal-to-noise ratio (SNR) in the presence of the primary user’s

signal as SNR = σ2
S

∑Lc

i=1 |hi|2/σ2
v .

Two binary hypotheses H0 and H1 are defined in spectrum sensing, in which H0 denotes

the idle state of the primary user and H1 represents the active state of the primary user.

In order to classify the observations into H0 or H1, a test statistic T is formulated and a

general test decision is as follows:




Decide H0, if T ≤ ǫ

Decide H1, if T > ǫ

(2.7)

where ǫ is some threshold value. Two probabilities of interest are: (i) the probability of

detection, Pd, which is the probability that the primary user is correctly detected in its
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active mode, and (ii) the probability of false alarm, Pf , which represents the probability of

a false detection of the primary user when it is in the idle state. Mathematically,

Pf = Pr {T > ǫ|H0} , (2.8)

Pd = Pr {T > ǫ|H1} . (2.9)

2.3 Generalized Likelihood Ratio Test (GLRT)

As mentioned before, spectrum sensing based on GLRT has been presented in [25] in

which different tests are obtained under different parameter assumptions, i.e., unknown

noise variance and/or signal covariance matrix. In the sequel, the GLRT is reviewed in its

general form, and it will be employed for the detection of OFDM signals in the following

sections. Let yn ∼ CN (0,Ry) denote the length-M column vector of the nth received signal

block and zn ∼ CN (0, σ2
zI) denote the length-M column vector containing the noise samples.

In the scenario that the noise variance, σ2
z , and signal covariance matrix, Ry, are unknown,

the GLRT is as follows [25]:

LG(y) =
f
y|H1,R̂y

(y|H1, R̂y)

fy|H0,σ̂2z(y|H0, σ̂2
z)

H1

≷
H0

η, (2.10)

in which y = [y1, . . . ,yN ] is a collection of N received blocks. In the preceding test, R̂y

and σ̂2
z are the maximum likelihood estimates of Ry and σ2

z under hypothesis H1 and H0,

respectively.

The maximum likelihood estimate of σ2
z can be obtained as:

σ̂2
z = max

σ2z

{
lnfy|H0,σ2z

(y|H0, σ
2
z)
}
, (2.11)

where

fy|H0,σ2z(y|H0, σ
2
z) =

N∏

n=1

1

(πσ2
z)
M

exp

(
− 1

σ2
z

‖yn‖2
)
, (2.12)

and ‖ · ‖ denotes the vector Euclidean norm. It follows that [25]

σ̂2
z =

1

NM
tr(yyH) =

1

M
tr(R̄y). (2.13)
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where R̄y = yyH/N denotes the sample covariance matrix and H represents the Hermitian

transpose.

On the other hand, the maximum likelihood estimate of Ry can be obtained as:

R̂y = max
Ry∈SRy

lnfy|H1,Ry
(y|H1,Ry), (2.14)

where SRy
specifies the set of Ry having certain structures, and

fy|H1,Ry
(y|H1,Ry) =

N∏

n=1

1

πMdet(Ry)
exp

(
−yHn R

−1
y yn

)
. (2.15)

To obtain a more explicit expression of the test in (2.10), first rewrite fy|H0,σ2z(y|H0, σ
2
z)

and fy|H1,Ry
(y|H1,Ry) as follows:

fy|H0,σ2z(y|H0, σ
2
z) =

[
1

(πσ2
z)
M

]N
exp

(
− 1

σ2
z

N∑

n=1

‖yn‖2
)

=

[
1

(πσ2
z)
M

]N
exp

(
− 1

σ2
z

tr
(
yyH

))

=

[
1

πσ2
z

exp

(
− σ̂

2
z

σ2
z

)]NM
, (2.16)

and

fy|H1,Ry
(y|H1,Ry) =

[
1

πMdet(Ry)

]N N∏

n=1

exp
(
−yHn R

−1
y yn

)

=

[
1

πMdet(Ry)

]N
exp

(
−tr

(
yHR−1

y y
))

=

[
1

πMdet(Ry)

]N
exp

(
−tr

(
R−1

y yyH
))

yyH=NR̄y

=

[
1

πMdet(Ry)

]N
exp

(
−Ntr

(
R−1

y R̄y

))

=

[
1

(π)det
1
M (Ry)

exp

(
− 1

M
tr
(
R−1

y R̄y

))
]NM

. (2.17)

By substituting R̂y and σ̂2
z into (2.16) and (2.17), one has

fy|H0,σ̂2z
(y|H0, σ̂

2
z) =


 1

πσ̂2
z

exp (−1)



NM

=

[
1

π
M
tr(R̄y)

exp (−1)

]NM
, (2.18)
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and

f
y|H1,R̂y

(y|H1, R̂y) =


 1

πdet
1
M (R̂y)

exp

(
− 1

M
tr
(
R̂−1

y R̄y

))


NM

. (2.19)

Finally, substituting (2.18) and (2.19) into (2.10) yields the following GLRT algorithm:

TG(y) = {LG(y)}
1

MN =
1
M
tr(R̄y)

det
1
M (R̂y)

β(R̂y)
H1

≷
H0

ǫ, (2.20)

where

β(R̂y) =
exp

(
− 1
M
tr(R̂−1

y R̄y)
)

exp(−1)
. (2.21)

and ǫ = η
1

MN is a fixed threshold value selected to meet a requirement on the probability of

false alarm, and it is independent of the received primary signal characteristics.

It is important to point out that the form in (2.20) is still very general and encompasses a

large class of GLRT. What it says is that the test itself and hence its performance depends on

how one estimates the covariance matrix of the received signal block under H1. According

to [46], under the mild condition that both Ry and its variation, δ(Ry), have the same

structure (e.g., Ry does not have any constant entries), the structured maximum likelihood

estimate of Ry satisfies tr(R̂−1
y R̄y) =M . This implies that β(R̂y) = 1 and the test becomes

TG(y) =
1
M
tr(R̄y)

det
1
M (R̂y)

=
1

MN
tr(yyH)

det
1
M (R̂y)

H1

≷
H0

ǫ. (2.22)

Since the covariance matrices involved in our study meet the aforementioned structural

condition, the test in (2.22) shall be employed for spectrum sensing in this chapter.

On the other hand, for the special case when there is no constraint on the structure of

the covariance matrix, the maximum likelihood estimate of Ry is R̂y = R̄y and the test is

the same as the one developed in [25] and has the following form:

T̄G(y) =
1
M
tr(R̄y)

det
1
M (R̄y)

H1

≷
H0

ǫ. (2.23)

The preceding unconstrained GLRT (U-GLRT) is described for a general observation

y = [y1, . . . ,yN ], where yn ∼ CN (0,Ry), n = 1, . . . ,N . When applied to the OFDM-based
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cognitive radio system in Section 4.2, one can simply replace yn by xn of (2.5). Furthermore,

it is also possible to use only a portion of the complete observation y in the GLRT algorithm.

Although this appears to be counterproductive, the key advantage is that by concentrating

on a certain part of the observation, one can exploit structural properties of the covariance

matrix to improve its estimation in the GLRT. This is presented in detail in the next sections

for an OFDM-based CR system.

2.4 GLRT Based on Cyclic Prefix Correlation

One way to exploit a strong structural correlation property of the observation is to use

only the head and tail of each received OFDM block in the GLRT algorithm. To this end,

define

ẋn =[xn(L− 1) . . . xn(L− Lp), xn(0) . . . xn(−Lp)]⊤, (2.24)

as the vector containing 2Lp samples, Lp samples in the first part and Lp samples in the

last part, of the nth OFDM block. The corresponding transmitted signal and additive white

Gaussian noise vectors are defined as

ṡn =[sn(L− 1) . . . sn(L− (Lp + Lc − 1))sn(L− 1) . . .

sn(L− Lp)sn−1(L− 1) . . . sn−1(L− Lc + 1)]⊤,

v̇n =[vn(L− 1) . . . vn(L− Lp), vn(−1) . . . vn(−Lp)]⊤.

Then, one has

ẋn = ḣṡn + v̇n, (2.25)

where ḣ is the following 2Lp × 2(Lp + Lc − 1) block diagonal channel matrix:

ḣ =


 ḣA 0

0 ḣA


 ,
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and

ḣA =




h1 . . . . . . hLc
0 . . . 0

0 h1 . . . . . . hLc

. . . 0

. . .
. . . 0

0 . . . 0 h1 . . . hLc



Lp×(Lp+Lc−1)

(2.26)

Let ẋ = [ẋ1 . . . ẋN ] and ṡ = [ṡ1 . . . ṡN ]. The covariance matrix Rẋ = E{ẋnẋHn } under H1

can be shown to be:

Rẋ =ḣRṡḣ
H + σ2

vILp
=


 ḣAḣ

H
A ḣBḣ

H
B

ḣBḣ
H
B ḣAḣ

H
A


 σ2

S + σ2
vILp

, (2.27)

where ḣB is the first Lp ×Lp block of matrix ḣA and ILp
denotes the identity matrix of size

Lp.

A cyclic prefix correlation coefficient (CPCC)-based spectrum sensing algorithm was in

fact proposed in [26] with the focus on additive white Gaussian noise (AWGN) channels.

Next it is shown that this CPCC-based sensing algorithm is exactly the constrained version

of the GLRT algorithm based on observation ẋ and in the absence of multipath environment.

It will be shown in Section 2.7 that the constrained GLRT algorithm provides a substantial

performance improvement over the U-GLRT algorithm when only the observation ẋ is used.

Furthermore, since the CPCC-based algorithm is only equivalent to the constrained GLRT

(C-GLRT) algorithm when there is no multipath, it shall also be explicitly shown that its

performance is degraded in a multipath environment.

2.4.1 No-Multipath Propagation

In the absence of the multipath propagation effect, Lc = 1, and the covariance matrix

Rẋ in (2.27) has the following simpler form:

Rẋ =σ2
x


 ILp

ρILp

ρILp
ILp


 , (2.28)
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where ρ = E{xn(k)x∗n(k±L)}
E{xn(k)x∗n(k)}

, k = L − 1, . . . ,L − Lp, is the correlation coefficient among the

corresponding Lp samples in the head and tail of the OFDM block. It is simple to show that

this correlation coefficient is given as:

ρ =





0, H0

σ2
S
|h1|2

σ2
S
|h1|2+σ2v

= SNR
1+SNR

, H1

(2.29)

Given the structure of the covariance matrix in (2.28), estimating Rẋ is equivalent to

estimating ρ and σ2
x. Their maximum likelihood estimates are given as follows:

(ρ̂, σ̂2
x) = max

ρ,σ2x

lnfẋ|H1,ρ,σ2x(ẋ|H1, ρ, σ
2
x). (2.30)

Substituting y = ẋ, M = 2Lp and Ry = Rẋ in (2.15) gives:

lnfẋ|H1,Rẋ
(ẋ|H1,Rẋ) = −NLln(2π)−N ln (det(Rẋ))−

N∑

n=1

ẋHn R
−1
ẋ ẋn. (2.31)

Using the identities det(rAM×M) = (rM)det(AM×M) and det


 A B

C D


 = det(A −

BD−1C), one has det(Rẋ) = (σ2
x)

2Lp(1− ρ2)Lp. In addition,R−1
ẋ = 1

σ2x(1−ρ2)


 ILp

−ρILp

−ρILp
ILp


.

Substituting these expressions in (2.31) evaluates to:

lnfẋ|H1,ρ,σ2x

(
ẋ|H1, ρ, σ

2
x

)

= −NLln(2π)−N ln((σ2
x)

2Lp(1− ρ2)Lp)

= − 1

σ2
x(1− ρ2)

(g1(ẋ)− ρg2(ẋ)), (2.32)

where g1(ẋ) =
∑N

n=1(ẋ
H
1,nẋ1,n+ ẋH2,nẋ2,n) and g2(ẋ) =

∑N
n=1(ẋ

H
1,nẋ2,n+ ẋH2,nẋ1,n) and ẋ1,n and

ẋ2,n are the vectors containing the first and last Lp components of ẋn, respectively.

Let a = 1/σ2
x. Then (2.31) can be rewritten as:

f(ρ, a) = −NLln(2π) + 2NLpln(a)−NLpln(1− ρ2)− a

(1− ρ2)
(g1(ẋ)− ρg2(ẋ)) . (2.33)
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The first derivatives of (2.33) with respect to ρ and a can be obtained as:

∂f(ρ, a)

∂a
=

2NLp
a

− 1

(1− ρ2)
(g1(ẋ)− ρg2(ẋ)) , (2.34)

∂f(ρ, a)

∂ρ
=

2NLpρ

1− ρ2
− 2aρ

(1− ρ2)2
(g1(ẋ)− ρg2(ẋ)) +

ρag2(ẋ)

1− ρ2
. (2.35)

By simultaneously solving ∂f(ρ,a)
∂a

= 0 and ∂f(ρ,a)
∂ρ

= 0, one obtains:

σ̂2
x =

1

â
=
g1(ẋ)

2NLp
=

∑N
n=1(ẋ

H
1,nẋ1,n + ẋH2,nẋ2,n)

2NLp
, (2.36)

ρ̂ =
g1(ẋ)

g2(ẋ)
=

∑N
n=1(ẋ

H
1,nẋ2,n + ẋH2,nẋ1,n)∑N

n=1(ẋ
H
1,nẋ1,n + ẋH2,nẋ2,n)

. (2.37)

which are exactly the sample variance and sample correlation coefficient, respectively.

Next, (2.22) can be employed to obtain the test statistics by setting M = 2Lp and

Ry = R̂ẋ. With the aid of (2.28), the test is:

TG(ẋ) =

1
2NLp

tr(ẋẋH)

det
1

2Lp (R̂ẋ)
=

1√
1− ρ̂2

H1

≷
H0

ǫ̇, (2.38)

or equivalently

ρ̂
H1

≷
H0

√
ǫ̇2 − 1

ǫ̇
. (2.39)

As can be seen, the test statistics in (2.39) simply compares the cyclic correlation coefficient

with a threshold. It is therefore identical to the detection algorithm proposed in [26].

2.4.2 Multipath Channel Propagation

In this part, the asymptotic behavior of ρ̂ under H1 is analyzed in order to illustrate the

performance degradation of the test in (2.39) in the multipath scenario. First, observe that

in an AWGN channel one has the following limit:

lim
N−→∞

ρ̂ =
SNR

1 + SNR
. (2.40)

The sample covariance matrix R̄ẋ can be decomposed into four Lp × Lp block matrices as

follows:

R̄ẋ =


 R̄ẋ,11 R̄ẋ,12

R̄ẋ,21 R̄ẋ,22


 , (2.41)
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where R̄ẋ,21 = R̄H
ẋ,12. Thus, (2.37) can be expressed as:

ρ̂ =
tr(R̄ẋ,12 + R̄ẋ,21)

tr(R̄ẋ,11 + R̄ẋ,22)
. (2.42)

Employing (2.27), the denominator of (2.42) has the following asymptotic behavior under

H1:

Dh = lim
N−→∞

tr(R̄ẋ,11 + R̄ẋ,22) = 2
(
tr(ḣAḣ

H
A )σ

2
S + Lpσ

2
v

)

=2Lp

[
Lc∑

i=1

|hi|2σ2
S + σ2

v

]
= 2Lpσ

2
v(1 + SNR). (2.43)

For the numerator of (2.42), we have:

Nh = lim
N−→∞

tr(R̄x̄,12 + R̄x̄,21) = 2tr(ḣBḣ
H
B )σ

2
S = 2σ2

S

Lp∑

j=1

j∑

i=1

|hi|2

<2σ2
S

Lp∑

j=1

Lc∑

i=1

|hi|2 = 2Lpσ
2
S

Lc∑

i=1

|hi|2 = 2Lcσ
2
vSNR. (2.44)

It then follows that the CP correlation coefficient in the multipath channel, ρ̃h, is equal to:

H1 : ρ̃h = lim
N−→∞

ρ̂ =
Nh

Dh

=

∑Lp

j=1

∑j
i=1 |hi|2σ2

S

Lp

[∑Lc

i=1 |hi|2σ2
S + σ2

v

] < SNR

1 + SNR
= ρ, (2.45)

where the subscript h indicates the dependency on channel realization h = [h1, . . . , hLc
]T .

Note that for a given Pf , the threshold in (2.39) is fixed and does not depend on the correla-

tion coefficient. Therefore, (2.40) and (2.45) can be compared to observe the degradation of

the detection performance of CPCC-based detection algorithm in the presence of multipath

propagation. In order to understand the role of Lp and Lc in the detection performance, one

simple way is to obtain the expected value of ρ̃h with respect to all channel realizations with

a fixed SNR. In Appendix A.1, it is shown that:

H1 : ρ̃ = E{ρ̃h} =
SNR

1 + SNR

[
2Lp − Lc + 1

2Lp

]

= ρ

[
2Lp − Lc + 1

2Lp

]
. (2.46)

From (2.46), it is clearly seen that for a fixed Lp and SNR, the average CP correlation

coefficient decreases with an increase in the number of multipath delay components.
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2.5 Generalized Likelihood Ratio Test Algorithm Based on Mul-

tipath Correlation

As shown in the previous section, the CPCC-based detection algorithm suffers a per-

formance degradation in a multipath channel. On the one hand, this is expected, because

the CPCC-based algorithm only uses observation in the head and tail of an OFDM block to

exploit the correlation structure, which results from the use of the cyclic prefix. On the other

hand, multipath also introduces strong correlation to the received OFDM samples, which

could also be exploited in the constrained GLRT algorithm. This is precisely the motivation

and objective of this section. The developed algorithm shall use the portion of the received

OFDM symbol that does not include the ISI part. In this way, the known structure of the

observation can be taken into account to improve the estimation of the signal covariance

matrix. Furthermore, a simplified test statistic is derived as a function of the received signal

correlation coefficients.

2.5.1 Constrained GLRT Algorithm

The portion of the received OFDM block without the ISI part and the corresponding

transmitted signal and noise vectors can be represented, respectively, as ẍn = [xn(L −
1) . . . xn(0)]

⊤, s̈n = [sn(L − 1) . . . sn(0)]
⊤ and v̈n = [vn(L − 1) . . . vn(0)]

⊤. They are related

according to

ẍn = ḧs̈n + v̈n, (2.47)

where ḧ is the L× L circulant channel matrix whose first row is [h1 · · · hLc−1 hLc
0 · · · 0].

Let Rẍ ≡ [rk,j]k,j=1,...,L = E{ẍnẍHn } be the signal covariance matrix. Using (2.47), under

H1 one has

Rẍ = ḧḧ
Hσ2

S + σ2
vI. (2.48)

The matrix Rẍ has the following properties:

(i) Rẍ is Hermitian: rk,j = r∗j,k.

(ii) All the diagonal elements are equal: rk,k =
∑Lc

i=1 |hi|2σ2
S + σ2

v , k = 0, . . . ,L− 1
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(iii) Since ḧḧH is circularly symmetric, Rẍ is also circularly symmetric. This last property

is specific to OFDM transmission.

From the above properties, one has the following proposition.

Proposition: Let Lp denote the length of the cyclic prefix. To obtain an estimate of the

covariance matrix Rẍ, it is sufficient to estimate Lp values.

Proof: Since Lc ≤ Lp, the circulant channel matrix ḧ has at most Lp nonzero values in

each row. Therefore ḧḧH has at most 2Lp − 1 nonzero values in each row that also appear

in all the other rows of ḧḧH due to its circularity. Since ḧḧH is also a Hermitian matrix,

there are Lp−1 conjugate pairs in each row, excluding the diagonal element. Therefore only

Lp values are needed to completely define Rẍ. �

The first row of the covariance matrix can be expressed as

[r1,0r1,1 . . . r1,L−1] =
[
γ0 γ1 . . . γLp−1 0 . . . 0 γ∗Lp−1 . . . γ∗1

]
. (2.49)

The consecutive rows are obtained through a right circular shift of the previous row. To

employ the GLRT algorithm, the vector γ = [γ0, γ1, . . . , γLp−1] can be estimated based on

the criterion in (2.14), which is equivalent to

γ̂ = max
γ

lnfẍ|H1,γ(ẍ|H1,γ). (2.50)

Solving the preceding problem is quite challenging since the term R−1
ẍ can not be easily dif-

ferentiated with respect to γ. Instead an equivalent optimization problem shall be considered

and it is described next.

Since Rẍ is a circulant matrix, all the vectors wk = 1√
L
[1, e−j2πk/L, . . . , e−j2πk(L−1)/L]⊤,

k = 0, . . . ,L− 1, are its eigenvectors with the corresponding eigenvalues:

λk =
L−1∑

i=0

r1,ie
− j2πki

L = γ0 +

Lp−1∑

m=1

Re
{
γme

− j2πkm
L

}
. (2.51)

LetW = [w0, . . . ,wL−1] denote the matrix of eigenvectors (which is also an IDFT matrix)

and Λ = diag(λk) the diagonal matrix of the eigenvalues. Then Rẍ = WHΛW is the
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eigenvalue decomposition of Rẍ and one has

WHRẍW = WHWΛWHW = Λ. (2.52)

Let Xn = WHẍn = [X0,n, . . . ,XL−1,n]
⊤ be the DFT of ẍn. It is obvious that

RX = E{XnX
H
n } =E{WHẍnẍ

H
n W} = WHE{ẍnẍHn }W = Λ. (2.53)

The preceding means that λk’s represent the average energy per each subcarrier, and hence,

they are positive. From (2.51), it is observed that

γm =
1

L

L−1∑

k=0

λke
j2πkm

L , m = 0, . . . ,Lp − 1. (2.54)

Therefore, if one can find the maximum likelihood estimate of λk’s by solving

λ̂k = max
λk

lnfẍ|H1,Rẍ
(ẍ|H1,Rẍ), (2.55)

then the maximum likelihood estimate of γm’s can be obtained as

γ̂m =
1

L

L−1∑

k=0

λ̂ke
j2πkm

L , m = 0, . . . ,Lp − 1. (2.56)

To express lnfẍ|H1,Rẍ
(ẍ|H1,Rẍ) as a function of λk’s, first, substitute y = ẍ and M = L

in (2.15) to yield

lnfẍ|H1,Rẍ
(ẍ|H1,Rẍ) = −NLln(2π)−N lndet(Rẍ)−

N∑

n=1

ẍHn R
−1
ẍ ẍn. (2.57)

With the aid of (2.53) it is observed that

ẍHn R
−1
ẍ ẍn = ẍHn WΛ−1WH ẍn = XH

n Λ
−1Xn =

L−1∑

k=0

|Xn,k|2
λk

, (2.58)

and

det(Rẍ) =
L−1∏

k=0

λk. (2.59)

Using (2.58) and (2.59), (2.57) can be equivalently expressed as:

ψ(λ0, . . . ,λL−1) = −NLln(2π)−N ln

L−1∏

k=0

λk −
N∑

n=1

L−1∑

k=0

|Xn,k|2
λk

. (2.60)
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For convenience, define αk =
1
λk
> 0 and rewrite (2.60) as

φ(α0, . . . ,αL−1) = −NLln(2π) +N ln

L−1∏

k=0

αk −
N∑

n=1

L−1∑

k=0

αk|Xn,k|2. (2.61)

It is simple to verify that

∂φ(α0, . . . ,αL−1)

∂αk
=

N

αk
−

N∑

n=1

|Xn,k|2, (2.62)

∂2φ(α0, . . . ,αL−1)

∂α2
k

= −N

α2
k

< 0. (2.63)

Therefore φ(α0, . . . ,αL−1) is a concave function of α0, . . . ,αL−1. Setting (2.62) to zero

yields

λ̂k =
1

α̂k
=

1

N

N∑

n=1

|Xn,k|2. (2.64)

Employing (2.64) in (2.56) gives

γ̂m =
1

NL

L−1∑

k=0

N∑

n=1

|Xn,k|2e
j2πkm

L

=
1

NL

L−1∑

k=0

N∑

n=1

X∗
n,ke

j2πkm
L

1√
L

L−1∑

i=0

xn(i)e
− j2πki

L

=
1

NL

N∑

n=1

L−1∑

i=0

xn(i)
1√
L

L−1∑

k=0

X∗
n,ke

− j2π(i−m)k
L

=
1

NL

N∑

n=1

L−1∑

i=0

xn(i)

[
1√
L

L−1∑

k=0

Xn,ke
j2π(i−m)k

L

]∗

=
1

NL

N∑

n=1

L−1∑

i=0

xn(i)x
∗
n ([i−m] mod L) , m = 0, . . . ,Lp − 1, (2.65)

which represent the sample correlation values up to the maximum delay of Lp − 1 samples.

Next, the covariance matrix estimate, R̂ẍ, can be constructed from the sample correlation

values obtained in (2.65). The resulting test statistics can then be established by exploiting

(2.22) with y = ẍ, R̂y = R̂ẍ and M = L. In the time domain, one has:

TG(ẍ) =
1
LN

tr(ẍẍH)

det
1
L (R̂ẍ)

H1

≷
H0

ǫ̈. (2.66)
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2.5.2 MPCC-Based Test

The spectrum sensing framework elaborated so far in this section makes use of the corre-

lation property of the primary signal to identify it from the background noise. It is of interest

to establish an approximated, but simpler test that can still capture the multipath correla-

tion of the primary signal. Some recent works [47, 48] have also intuitively developed test

statistics as functions of the received signal in the time domain by exploiting the multipath

correlation property. Appendix A.2 shows that by making an appropriate approximation in

the low SNR region, the test in (2.66) can also be simplified as a function of the sample

correlation coefficients. In particular, the simplified test is:

T̃ (ẍ) =

Lp−1∑

m=1

|̺̂m|2, (2.67)

where ̺̂m represents the sample correlation coefficient corresponding to a delay ofm samples,

given as:

̺̂m =

∑N
n=1

∑L−1
i=0 xn(i)x

∗
n ((i−m) mod L)

∑N
n=1

∑L−1
i=0 |xn(i)|2

. (2.68)

It is demonstrated in Section 2.7 that the performance of the above simplified test is very

close to that of the constrained GLRT in Section 2.5.1.

2.5.3 Combination of CPCC-Based and MPCC-Based Detection

Algorithms

As discussed at the end of Section 2.3, the full multipath and cyclic correlations can be

jointly considered in one covariance matrix. However, the success of the constrained GLRT

algorithms introduced in Sections 2.4 and 2.5 with a finite sample size and at low SNR

value lies in the structural constraints of their covariance matrices. A simple but effective

approach to combine multipath and cyclic correlations is to decide H1 whenever one of the

two constrained GLRT algorithms detects the presence of the primary user. The combined

test always yields the best performance between the two detection algorithms in each channel

realization. It should be noted that the threshold values have to be selected in such a way

that the overall probability of false alarm meets the required constraint.
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Figure 2.1 Timing relation between transmitter and receiver in the unsynchronized

case.

2.6 Detection Algorithm for Unsynchronized Orthogonal Frequency

Division Multiplexing Signals

As pointed out before, the spectrum sensing algorithms presented in Sections 2.4 and

2.5 require symbol timing synchronization between the secondary and primary users. In the

absence of symbol timing synchronization, the cyclic correlation is taken into account by

considering samples located within the lags of ±L [26]. The consequence of this approach

is a decrease of the correlation coefficient to ρ̆ = Lp

L+Lp
ρ [26], which causes a drop in the

performance of the detection algorithm.

At the secondary user’s receiver, the received signal samples are divided into blocks of L

samples each. This means that the corresponding samples in adjacent blocks are correlated

due to the CP [26]. Compared with the received signal model in the synchronized case (see,

e.g., (2.5)), the receiver in the unsynchronized case does not know when an OFDM block will

start. As such, the timing index in this section is with reference to the time the secondary

user’s receiver starts to collect the receive signal samples. In general, the timing origin at

the secondary user’s receiver can be lead or lag over the timing origin at the transmitter

by τ samples, as illustrated in Fig. 2.1. For N transmitted OFDM blocks, the number of

sample blocks processed by the receiver is N̆ =
⌊
N(L+Lp−τ)

L

⌋
.
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To develop an efficient GLRT-based detection algorithm for unsynchronized OFDM sig-

nals, consider only the last portion of L̆ = L − Lp + 1 samples in each block of L samples

(see Fig. 2.1), which can be represented as:

x̆n = [x̆n(L− 1), . . . , x̆n(Lp − 1)]⊤ = h̆s̆n + v̆n, n = 1, . . . , N̆ . (2.69)

In the preceding expression, h̆ is the L̆ × L Toeplitz channel matrix with the first row

[h1, . . . , hLc
, 0, . . . , 0] and first column [h1, 0, . . . , 0]

⊤. The corresponding length-L transmit-

ted signal vector is denoted by s̆n = [s̆n(L− 1), . . . , s̆n(0)]
⊤, n = 1, . . . , N̆ . It is important to

emphasize that, due to unsynchronization, s̆n does not necessarily align with the transmit-

ted OFDM blocks and it generally contains data symbols from two consecutive transmitted

OFDM blocks. It also has to be noted that the reason for employing the signal model in

(2.69) in the analysis is to efficiently exploit the correlation among the transmitted sig-

nals due to the presence of CP. Based on this model, all the corresponding samples in the

neighboring transmitted vectors, i.e., s̆n and s̆n−1 are correlated with the average correlation

coefficient ϑ = E{s̆n(i)s̆∗n−1(i)}/E{|s̆n(i)|2} = Lp/L+ Lp. Consequently, the corresponding

samples in the neighboring received vectors, i.e., x̆n and x̆n−1, are correlated with the corre-

lation coefficient ρ̆ = E{x̆n(i)x̆∗n−1(i)}/E{|x̆n(i)|2} = ϑ(σ2
S

∑Lc

i=1 |hi|2/σ2
S

∑Lc

i=1 |hi|2 + σ2
v) =

ϑ(SNR/SNR + 1).

To take the correlation between the neighboring vectors x̆n into account, define the

length-2L̆ vectors x̃n = [x̆⊤
n , x̆

⊤
n−1]

⊤, n = 2, . . . , N̆ . The covariance matrix of x̃n is expressed

and approximated as:

Rx̃ = E{x̃nx̃Hn } = h̆σ2
S


 IL ϑIL

ϑIL IL


 h̆H + σ2

vI2L

∼=


 Rx̆ ρ̆Rx̆

ρ̆Rx̆ Rx̆


 . (2.70)

The matrix Rx̆ is an L̆ × L̆ Hermitian Toeplitz matrix and it can be described by

its first row [γ̆0, . . . , γ̆Lp−1, 0, . . . , 0] and its first column [γ̆∗0 , γ̆
∗
1 , . . . , γ̆

∗
Lp−1, 0, . . . 0]⊤. Let
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x̃ = [x̃2, . . . , x̃N̆ ] and x̆ = [x̆1, . . . , x̆N̆ ]. To facilitate matrix manipulations and parameter

estimations, the correlation among adjacent x̃n’s is ignored. This allows one to apply the

general GLRT test in (2.23) to the observation x̃ by substituting y = x̃, M = 2L̆ and

N = N̆ − 1. The resulting test is:

T̆G(x̃) ∼=
1

2L̆(N̆−1)
tr(x̃x̃H)

det
1
2L̆ (R̂x̃)

=
1
L̆N̆

tr(x̆x̆H)
√

(1− ̂̆ρ2)det1/L̆(R̂x̆)

H1

≷
H0

ǫ̆. (2.71)

where R̂x̃, R̂x̆ and ̂̆ρ are estimates of Rx̃, Rx̆ and ρ̆ respectively. From the expression in

(2.71), it is seen that both Rx̆ and ρ̆ need to be estimated.

Since obtaining the ML estimate of Rx̆ appears to be very cumbersome, the entries of

Rx̆ shall be estimated by the sample correlation coefficients as follows:

̂̆γm =
1

N̆L̆




N̆∑

n=1

L∑

i=m

x̆n(i)x̆
∗
n (i−m) +

N̆−1∑

n=1

m−1∑

i=1

x̆n(i)x̆
∗
n−1(L+ i−m)


, m = 0, . . . ,Lp − 1.

(2.72)

To obtain the ML estimate of ρ̆, the log-likelihood function of x̃ is approximately ex-

pressed as:

lnfx̃|H1,Rx̃
(x̃|H1,Rx̃) ∼= −(N̆ − 1) · L̆ · ln(2π)− (N̆ − 1) · L̆ · ln(det(Rx̃))−

N̆∑

n=1

x̃Hn R
−1
x̃ x̃n.

(2.73)

It can be easily verified that:

R−1
x̃ =

1

1− ρ̆2


 R−1

x̆ −ρ̆R−1
x̆

−ρ̆R−1
x̆ R−1

x̆


 . (2.74)

Using the above and det(Rx̃) = (1− ρ̆2)L̆det2(Rx̆), (2.73) can be equivalently expressed

as:

ψ̆(ρ̆,Rx̆) =− (N̆ − 1)L̆ln(2π)− (N̆ − 1)L̆ln(1− ρ̆2)− 2(N̆ − 1)ln(Rx̆)

− 1

1− ρ̆2
·
N̆−1∑

n=2


x̆Hn R−1

x̆ x̆n − ρ̆x̆Hn−1R
−1
x̆ x̆n − x̆Hn R

−1
x̆ x̆n−1x̆

H
n−1R

−1
x̆ x̆n−1


. (2.75)
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Solving ∂ψ̆(ρ̆,Rx̆)
∂ρ̆

= 0 gives:

2ρ̆(N̆ − 1)L̆

(1− ρ̆2)
− 2ρ̆

(1− ρ̆2)2

N̆∑

n=2


x̆Hn R−1

x̆ x̆n − ρ̆x̆Hn−1R
−1
x̆ x̆n − ρ̆x̆Hn R

−1
x̆ x̆n−1 + x̆Hn−1R

−1
x̆ x̆n−1




+
1

(1− ρ̆2)

N̆∑

n=2


x̆Hn−1R

−1
x̆ x̆n + x̆Hn R

−1
x̆ x̆n−1


 = 0. (2.76)

To simplify (2.76), one can make use of the following approximation under the assumption

of sufficiently large N̆ :

1

2(N̆ − 1)L̆




N̆∑

n=2

x̆Hn R
−1
x̆ x̆n + x̆Hn−1R

−1
x̆ x̆n−1




=
1

2(N̆ − 1)L̆
tr


R−1

x̆




N̆∑

n=2

x̆nx̆
H
n +

N̆∑

n=2

x̆n−1x̆
H
n−1






=
1

L̆
tr
(
R−1

x̆ R̄x̆

) ∼= 1. (2.77)

where R̄x̆ = 1

2(N̆−1)

(∑N̆
n=2 x̆nx̆

H
n +

∑N̆
n=2 x̆n−1x̆

H
n−1

)
represents the sample covariance matrix

of x̆’s. Using (2.77), (2.76) can be simplified to:

ρ̆+
2ρ̆

(1− ρ̆2)


−1 +

ρ̆

2(N̆ − 1)L̆

N̆∑

n=2


x̆Hn−1R

−1
x̆ x̆n + x̆Hn R

−1
x̆ x̆n−1






+
1

2(N̆ − 1)L̆

N̆∑

n=2


x̆Hn−1R

−1
x̆ x̆n + x̆Hn R

−1
x̆ x̆n−1


 ∼= 0. (2.78)

It can be shown that the following solution satisfies (2.78):

̂̆ρ = 1

2(N̆ − 1)L̆

N̆∑

n=2


̂̆xHn−1R

−1
x̆
̂̆xn + ̂̆x

H

n R
−1
x̆
̂̆xn−1


. (2.79)

In summary, after finding R̂x̆ based on (2.72), ̂̆ρ can be obtained from (2.79). The results

are then used in (2.71) to realize the test.
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2.7 Simulation Results

The simulation parameters are chosen similarly to those in [26]. In particular, the primary

user’s OFDM system has L = 32 subcarriers and transmits i.i.d 16-QAM symbols with

normalized unit power. The detection period is taken to be equal to N = 100 OFDM blocks

and the results are averaged over 1000 random realizations of a Rayleigh multipath fading

channel. Except for Fig. 2.9, the channel coefficients are i.i.d. complex Gaussian random

variables. The case of correlated channels is considered for Fig. 2.9. Note that for an OFDM

system having bandwidth of 5 MHz, 32 subcarriers and a cyclic prefix length of 8 (similar

to [26]), the sensing time is roughly ((32 + 8)/5× 106) × 100 = 8 × 10−4 s, or 0.8 ms. The

performance of different spectrum sensing algorithms is evaluated and compared via the

probability of detection, Pd, for a constant false alarm rate of Pf = 0.05.

First, Fig. 2.2 compares the detection performance of the energy detector (ED) and three

spectrum sensing algorithms developed and analyzed in this chapter under perfect synchro-

nization assumption, namely CPCC-based algorithm (Section 2.5.1 and reference [26]), multi-
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Figure 2.2 Performance comparison of constrained-GLRT and unconstrained-

GLRT spectrum sensing algorithms, Lc = Lp = 8.
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path correlation-based constrained GLRT (MP-based C-GLRT algorithm, Section 2.5.1) and

the simpler MPCC-based algorithm (Section 2.5.2). For this particular figure, Lp = Lc = 8

is used. As pointed out before, the ED algorithm requires a precise knowledge of the noise

variance and a small noise uncertainty, e.g., 0.5 dB or 1.0 dB, causes a huge performance

degradation as can be seen from the figure. In contrast, the three other algorithms are com-

pletely blind, and their performances are impressive. Note that the simplified MPCC-based

algorithm performs closely with the MP-based C-GLRT algorithm, and both of them clearly

outperform the CPCC-based algorithm. This superior performance is expected since, with

a large number of channel taps (Lc = 8), it would be more beneficial to exploit multipath

correlation than CP correlation.

Next, Fig. 2.3 shows performance improvement of the constrained GLRT algorithms over

their unconstrained counterparts, both with multipath correlation and CP correlation. For

this figure Lp and Lc are also set to be Lp = Lc = 8. Recall that the U-GLRT algorithm

is basically (2.23), but using only cyclic prefix portions of the observations in the CP-based

algorithm, or ISI-free portions of the observations in the multipath-based algorithm. In both

cases, the improvements in detection performance are very large.

Fig. 2.4 shows the detection performance of both MP- and CPCC-based C-GLRT al-

gorithms under different values of Lp and Lc. Observe that the performance of MP-based

C-GLRT changes very little between Lp = Lc = 4 and Lp = Lc = 8. This can be explained as

follows: While a bigger value of Lc is desirable in terms of having stronger correlation prop-

erty, there is a larger number of quantities to estimate with the same size of observations.

These opposing effects appear to cancel out in the scenarios considered in Fig. 2.4. In con-

trast, the performance of CPCC-based algorithm can be significantly improved by increasing

the length of the CP (comparing the settings of Lp = Lc = 4 with Lp = 8, Lc = 4). Such

a performance improvement is obviously expected, but comes at the expense of additional

resources since, as far as ISI avoidance is concerned it is desirable to use the minimum CP

length of Lp = Lc = 4. Furthermore, performance degradation of the CPCC-based C-GLRT

algorithm in environment with a higher channel taps (rich multipath environment) can also

be observed by comparing the curves with Lp = 8, Lc = 4 and Lp = Lc = 8. Such an
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Figure 2.5 Performance of MP-based C-GLRT algorithm with respect to observa-
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observation agrees with the analysis in (2.46). Recall that this was theoretically proved in

Section 2.4.2.

Fig. 2.5 shows the convergence behavior of the probability of detection of the proposed

MP-based C-GLRT algorithm as a function of N . As can be seen from the figure, for

every SNR value, the probability of detection can be made arbitrarily close to 1 by allowing

sufficient observations.

Fig. 2.6 shows the performance of the combined algorithm (discussed in Section 2.5.3)

for the case Lc = Lp = 8. It is seen that the combined sensing algorithm outperforms both

the MP-based and CPCC-based C-GLRT algorithms. Such a result is as expected since the

combined algorithm takes into account all the observations (both ISI-free and CP portions

of received blocks) and at the same time benefits from the covariance structures exploited

in MP-based and CPCC-based algorithms.

Fig. 2.7 shows the performance of the MP-based C-GLRT and CPCC-based algorithms

when the synchronization algorithm in [45] is performed first over the sensing interval. The

normalized residual carrier frequency offset (CFO) is set to 0.5, which is the worst case. Note

that the types of sensing algorithm are distinguished by different line styles, while the com-

binations of imperfect/perfect timing synchronization (indicated as “I-Syn” and “P-Syn”)

and CFO values are identified by different markers. The carrier frequency offset introduces a

phase shift to the time domain samples of an OFDM signal [45]. Nevertheless, the circularity

of the received signal covariance matrix is preserved in this case and the MP-based C-GLRT

algorithm is not affected by a CFO. However, the CP correlation coefficient becomes a com-

plex value when frequency offset is present. The effect of CFO on the CPCC-based spectrum

sensing algorithm can be compensated by considering the magnitude of the sample corre-

lation coefficient in the CPCC-based algorithm [45]. As can be seen from Fig. 2.7, the

performance of sensing algorithms remains unchanged in the presence of CFO. On the other

hand, it is seen that the imperfect symbol timing causes performance degradation in both

algorithms. For the MP-based C-GLRT in the presence of timing offset, the degradation

is due to the fact that the ISI part cannot be perfectly removed; therefore, the covariance
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Figure 2.7 Performance of the spectrum sensing algorithms in the presence of

residual time and carrier frequency offsets, Lc = Lp = 8. Note that

the types of sensing algorithm are distinguished by different line styles,

while the combinations of imperfect/perfect timing synchronization (in-

dicated as “I-Synch” and “P-Synch”) and CFO values are identified by

different markers.

matrix of the received signal is not truly circulant. The time offset also degrades the per-

formance of CPCC-based algorithm, since the identical head and tail of the OFDM signal

cannot be perfectly retrieved at the receiver.

Fig. 2.8 compares performance of the proposed sensing algorithms for perfectly synchro-

nized, imperfectly synchronized, and unsynchronized OFDM signals, which are labeled in

the figure as “P-Syn”, “I-Syn” and “Unsyn”, respectively. In particular, the combined algo-

rithm in Section 2.5.3 is compared against the algorithm in (2.71) for two different numbers

of channel taps, namely Lc = 8 and Lc = 1 as well as when the CP length is set to Lp = 8.

Observe the opposite performance behaviors when the number of channel taps reduces from

Lc = 8 to Lc = 1; the performance gets better for the synchronized and imperfectly syn-
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Figure 2.8 Performance comparison of spectrum sensing algorithms in synchro-

nized, imperfectly synchronized and unsynchronized transmission sce-
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chronized case, whereas it gets worse for the unsynchronized case. The latter behavior is, in

fact, expected since performance degradation of the proposed detection algorithm for unsyn-

chronized OFDM signals is mainly due to the reduction in the cyclic correlation coefficient.

Because the cyclic prefix correlation strongly determines the performance of the detection

algorithm in a fading environment with a fewer channel taps, the unsynchronized detection

algorithm performs quite poorly in such an environment. In contrast, in a rich multipath

environment, for example, with Lc = 8, there is only a small performance loss when detect-

ing unsynchronized OFDM signals. In addition, in such an environment, the imperfectly

synchronized algorithm performs worse than the unsynchronized algorithm. Considering the

added complexity due to performing synchronization, the algorithm developed for unsyn-

chronized OFDM signals in Section 2.6 is a better candidate for spectrum sensing in a rich

multipath environment.

Finally, Fig. 2.9 shows the performance of MP-based C-GLRT algorithm over time-

varying Rayleigh fading channels when the doppler frequency, fd, is set to different values.

Typical doppler shifts correspond to the mobile velocities of about 3–60 km/h. If the sys-

tem is operated in frequency bands of 2–4 GHz (e.g., IEEE 802.11, IEEE 802.16 and IEEE

802.20), the doppler shifts are about 5–200 Hz. From the maximum Doppler frequency fd,

the coherence time τc can be approximated as τc =
1

4fd
[49]. The coherence time τc, when

fd = 200 Hz is thus obtained to be 1.25 ms. It can be seen that, for typical Doppler frequen-

cies, the coherence time is greater than the sensing time of 0.8 ms and multipath correlation

is still very beneficial. Since the change in the channel taps is small during the sensing time,

the sensing performance is not substantially degraded, even for fast changes in channel taps.

2.8 Conclusions

In this chapter, a spectrum sensing method for OFDM-based cognitive radio systems has

been developed based on the GLRT framework. The key feature in such development is to

explicitly take into account the structure (constraint) of the covariance matrix of the under-

lying OFDM signal so that the ML estimations of unknown parameters are improved, which

leads to robust and efficient spectrum sensing tests. In particular, it has been shown that

52



the CPCC-based test, which was recently proposed in [26], can be obtained as a constrained

GLRT for an AWGN channel. It was also shown that the performance of CPCC-based test

degrades in a multipath environment. Moreover, by exploiting the multipath correlation in

the GLRT framework, an efficient test was obtained which can be sequentially updated with

any new reception of OFDM symbols. A simplified MPCC-based test was also presented.

Simulation results verify that both the CPCC-based and MP-based C-GLRT algorithms

greatly outperform energy detection in an environment with noise uncertainty. The MP-

based C-GLRT algorithm performs better than the CPCC-based algorithm in a rich multi-

path environment. Furthermore, a simple algorithm that combines both the CPCC-based

and MP-based C-GLRT algorithms is suggested, which can further improve the detection

performance in a multipath environment.

While the studies in this chapter mainly focused on detection of synchronized OFDM sig-

nals, the developed algorithms can be applied together with the synchronization algorithm

in [45], and they experience only a small performance loss due to imperfect synchronization.

Lastly, a simple GRLT-based algorithm was also proposed for the detection of unsynchro-

nized OFDM signals from the primary user. Simulation results demonstrated satisfactory

performance of such an algorithm in a rich multipath fading environment.
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3. Cooperative Spectrum Sensing in Cognitive

Radio Networks with Noncoherent

Transmission

3.1 Introduction

As it is pointed out in the preceding chapters, dynamic spectrum sensing is the key

in enabling cognitive radio (CR) technology, since it allows for opportunistic identification

and use of the available spectrum bands from a licensed primary network. The detection

performance of a spectrum sensing algorithm is affected by the wireless channel conditions

between the primary user and cognitive radios (CRs). When the channel is in a deep fade,

the sensing result can be completely unreliable. Moreover, as the received signal from the

primary user is usually very weak, the sensing time may get prohibitively long. Robust

spectrum sensing methods that can identify the available licensed spectrum over a reasonable

amount of time are of great interest. Recent studies show that, cooperative spectrum sensing

methods using energy-based detectors [18,21,50], which can be inexpensively implemented at

each cooperative node, are good candidates to significantly improve the sensing performance

of the CR network, particularly in a low signal–to–noise ratio (SNR) regime, which is very

common in CR applications [47, 50–52] 1.

Accordingly, designing efficient cooperative networks and algorithms to achieve a proper

tradeoff between complexity and performance has been the focus of ongoing research. Co-

operative spectrum sensing is usually deployed in two successive phases: 1) sensing and 2)

reporting. In the sensing phase, each CR performs spectrum sensing for a specific amount

1The contribution in this chapter is published in [39].
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of time and acquires a decision based on its own observation. In the reporting phase, all the

local sensing decisions are transmitted to a fusion center (FC) and then a final decision is

made to indicate the absence (hypothesis H0) or presence (hypothesis H1) of the primary

user [53]. Typically, the reporting link for each cognitive radio uses a control channel to

report its sensing result to the FC [54]. Since the control channel bandwidth is limited, a

summary of the node decision is reported using one or a few modulated bits [55], [56]. This

type of cooperative sensing scheme is called decision fusion [57].

One of the key parameters that strongly affects the sensing performance is the sensing

time. A longer sensing time will improve the detection performance. However, if the frame

duration is fixed, a longer sensing time will reduce the data transmission time of the secondary

users in the cognitive radio network. In [5], the sensing-throughput tradeoff problem has been

formulated to find the optimal sensing time that maximizes the secondary users’ throughput

while providing adequate protection to the primary users. Recognizing that both the sensing

time and cooperative fusion scheme affect the throughput of the secondary users, a joint

optimization of the sensing time and cooperative fusion scheme was recently considered

in [38]. In [38, 52, 58] the k-out-of-N fusion rule has been examined, where all the CRs’

reporting links are considered error free. However, in practice, reporting channels are neither

ideal nor perfectly known at the FC. Therefore, efficient cooperative schemes that consider

sensing, transmission and fusion still need to be properly designed to achieve the maximum

efficiency.

As aforementioned, because the control channels are band limited, estimating the instan-

taneous channel gains is impractical. To bypass the need of (instantaneous) channel esti-

mation, simple noncoherent modulation schemes such as on-off keying (OOK) and binary

frequency shift keying (BFSK) can be employed for the transmission of local decisions. In

fact, [59] has developed sensing algorithms over different fading channels using OOK signal-

ing. However, performance evaluation and optimization of the sensing parameters have not

been carried out in [59]. The study in this chapter is similar to [59] in the sense that the spec-

trum sensing algorithm is developed under unknown Rayleigh fading channels. In addition

to OOK signaling, BFSK is also studied. The obtained theoretical analysis and simulation
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results will show that BFSK performs better than OOK. Furthermore, cooperative sensing

parameters (including the sensing thresholds, combining weights and sensing time) are de-

termined for each transmission scheme to achieve the maximum secondary throughput. In

particular, it is verified that the throughput function is a concave function of the sensing

time and has a unique solution. As such, efficient algorithms can be readily employed to

obtain the optimal sensing time.

The rest of this chapter is organized as follows. Section 3.2 reviews the system model

considered in this chapter and describes the spectrum sensing problem. In Section 3.3, the

fusion of the local decisions that were transmitted over fading channels is addressed, in which

the following two efficient fusion rules are developed: 1) the energy-based fusion rule and 2)

the decoding-based fusion rule. Analytical evaluations of these fusion rules are carried out

in Section 3.4. Section 3.5 addresses the problem of optimizing the sensing thresholds, the

combining weights (for the case of energy-based fusion), and the sensing time to achieve the

maximum secondary throughput. Simulation results are presented in Section 3.6. Section

3.7 concludes this chapter.

For convenience, the main mathematical symbols used in this chapter and their meanings

are summarized in Table 3.1.

3.2 System Model

Fig. 3.1 illustrates the structure of cooperative spectrum sensing. As shown in the figure,

there is one primary source, K CR nodes and one FC. For convenience, the source, CR nodes

and fusion center are denoted and indexed by node 0, node i, i = 1, . . . ,K, and node K +1,

respectively.

All CR nodes operate in a half-duplex mode, i.e., a node cannot simultaneously transmit

and receive. Each CR observes the primary user’s signal, processes it using an energy

detector, and makes a local decision on the binary hypotheses H0 and H1. These local

decisions are then transmitted over independent Rayleigh fading channels to the FC.
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Table 3.1 Mathematical symbols used in Chapter 3.

Symbol Description

x(t) Low-pass equivalent transmitted signal from the primary user

i Index of the ith CR

h0,i Channel fading coefficient between node 0 (primary user) and CR node i

E0 Average transmitted symbol energy of the source

n0,i(t) Filtered Gaussian noise process at CR node i

Ts, fs = 1/Ts Sampling period, and sampling rate

N Number of samples collected for spectrum sensing

K Number of CRs

W Bandwidth of the BP filter at each CR

γi, ǫi Received SNR, and decision threshold at CR node i

pf i, pdi Probability of false alarm, and probability of detection at CR node i

hi,K+1 Channel fading coefficient between the ith CR and the FC (in OOK)

ḣi,K+1 Channel fading vector between the ith CR and the FC (in BFSK)

ui, a, ȧ Binary decision bit at CR, and transmission powers (OOK, BFSK)

vi, v̇i OOK modulated signal, and BFSK modulated signal

ρ, ρ̇ Average received SNR at the FC (OOK, BFSK)

zi, ni,FC Received signal, and noise component at the FC in OOK transmission

żi, ṅi,FC Received signal, and noise component at the FC in BFSK transmission

η Sensing threshold at the FC

ξi , (σ2
i,K+1a

2)/σ2
FC Channel SNR corresponsing to CR node i at the FC

Γi = |zi|2/σ2
FC Normalized signal energy received from the ith CR at the FC

wi The ith weight coefficient at the FC for energy detection

λ Sensing threshold at the FC

ûi Decoded bit of CR i at FC

̟i, ϑi Correct and error probabilities for ûi = 1 at FC (OOK)

℘di, ℘f i Probabilities of detection, and false alarm of the ith CR at the FC

λ(D) Threshold for the decoding-based fusion rule

ϕ0,i, ϕ1,i Weights for the decoding-based fusion rule

PD, PF Probability of detection, and probability of false alarm at the FC
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Figure 3.1 Structure of cooperative spectrum sensing under consideration.

Let x(t) be the low-pass equivalent transmitted signal from the primary user. As de-

scribed in [60], the received signal at each CR node is first passed to an ideal band-pass

(BP) filter in order to limit the average noise power. The low-pass equivalent of the output

of the BP filter at each node i, i = 1, . . . ,K, can be represented as:

x0,i(t|H0) = n0,i(t) (3.1)

x0,i(t|H1) =
√
E0h0,ix(t) + n0,i(t) (3.2)

where E0 is the average transmitted symbol energy of the source, and h0,i ∼ CN (0, σ2
0,i)

denotes the channel fading coefficient between node 0 (primary user) and CR node i. In

addition, n0,i(t) is the filtered additive white Gaussian noise process. The received signal

x0,i(t) at each node is sampled with a rate of fs =
1
Ts

Hz over a time duration of τ = NTs s,

where Ts denotes the sampling period, and N denotes the number of samples collected for

spectrum sensing. Let W be the bandwidth of the BP filter and assume that the sampling

rate fs is equal to the Nyquist rate of 1/W Hz.

Denote by x0,i[n] the received sample at time index n. Then, using (3.1) and (3.2), it
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can be expressed as:

x0,i[n|H0] =n0,i(nTs), 1 ≤ n ≤ N ; (3.3)

x0,i[n|H1] =
√
E0h0,ix(nTs) + n0,i(nTs), 1 ≤ n ≤ N , (3.4)

where n0,i(nTs) are the samples of n0,i(t), which can be shown to be independent and iden-

tically distributed (i.i.d.) complex Gaussian random variables with mean 0 and variance

σ2
CR = WN0 [60–62]. Here N0 is the one-sided power spectral density (PSD) of the white

noise before the BP filter.

Without loss of generality, the noise variance at each CR node can be normalized to 1,

i.e., σ2
CR = 1. Then, the distribution of the received sample at each CR node is given as:

x0,i[n|H0] ∼ CN (0, 1), (3.5)

x0,i[n|H1] ∼ CN (0, γi + 1), (3.6)

where γi , E0σ
2
0,i/σ

2
CR is the received SNR at each node. After collecting N signal samples,

each of the CRs obtains its test statistics as follows:

yi =
1

N

N∑

n=1

|x0,i[n]|2, i = 1, . . . ,K. (3.7)

In essence, the above test statistic is a measure of the average energy of the band-limited

signal at each CR node over a duration of τ s. When the number of collected samples, N ,

is large, the central limit theorem can be applied to model yi under both hypotheses with

Gaussian distributions [5, 18, 19, 41]. Specifically 2,

f(yi|H0) ∼ N
(
1,

1

N

)
, (3.8)

f(yi|H1) ∼ N
(
γi + 1,

(γi + 1)2

N

)
. (3.9)

The decision device at the ith CR node produces a binary decision (0 or 1, corresponding

2The notation N (m,Σ) means a real Gaussian random vector (or variable) with mean vector m and

covariance matrix Σ.
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to hypothesis H0 or H1, respectively) by comparing yi to a decision threshold ǫi as follows:

ui =





0, if yi < ǫi

1, if yi ≥ ǫi

.

Let pf i and pdi denote the probability of false alarm and the probability of detection, respec-

tively, at the ith CR node. They can be obtained as [18]:

pf i = Pr(yi ≥ ǫi|H0) = Q
(
(ǫi − 1)

√
τfs

)
, (3.10)

pdi =Pr(yi ≥ ǫi|H1) = Q

((
ǫi

γi + 1
− 1

)√
τfs

)
. (3.11)

After making a local spectrum-sensing decision, every node modulates its binary decision

and sends it to the FC. As aforementioned, to bypass the need of channel estimation, simple

noncoherent communication schemes, namely OOK and BFSK shall be considered. In trans-

mission with OOK, if a node decides H0, it remains silent and does not send a signal to the

fusion center. In contrast, if the node decides H1, it sends a signal (specifically a sinusoidal

carrier) to the fusion center. In the equivalent baseband representation, this modulation can

simply be expressed in the following form:

vi = aui. (3.12)

On the other hand, for BFSK, the binary decision ui is mapped to a pair of sinusoidal carriers

and the corresponding frequency samples are:

v̇i =





[ȧ, 0]T , if ui = 1

[0, ȧ]T , if ui = 0

(3.13)

Note that the parameters a and ȧ in (3.12) and (3.13) set the average transmitted powers of

OOK and BFSK schemes, respectively.

The CRs transmit their local sensing decisions to the FC through orthogonal channels.

As far as OOK signaling is concerned, the received signal at the FC that corresponds to the

ith CR node can be expressed as:

zi = hi,K+1vi + ni,FC. (3.14)
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where hi,K+1 ∼ CN (0, σ2
i,K+1) represents the channel-fading coefficient between the ith CR

and the FC, and ni,FC ∼ CN (0, σ2
FC) is the noise component of the received signal at the FC.

Now, let ρ denote the average received SNR at the fusion center. For OOK modulation, ρ is

given by

ρ =
1

K

K∑

i=1

a2σ2
i,K+1

2σ2
FC

[
Pr(H0)pf i + Pr(H1)pdi

]
. (3.15)

On the other hand, for BFSK, the received signal at the fusion center from the ith CR

node can be represented as a 2× 1 vector in the following form:

żi = ḣi,K+1 ⊙ v̇i + ṅi,FC. (3.16)

where the symbol ⊙ defines element-wise multiplication of two vectors,

ḣi,K+1 ∼ CN (02×1, σ
2
i,K+1I2×2) is the channel vector, ṅi,FC ∼ CN (02×1, σ

2
FCI2×2) is the noise

vector, and 02×1 denotes the all-zero vector. The average received SNR for BFSK signalling

is obtained as:

ρ̇ =
1

K

K∑

i=1


 ȧ

2σ2
i,K+1

2σ2
FC

(
Pr(H0)pf i + Pr(H1)pdi

)

+
ȧ2σ2

i,K+1

2σ2
FC

(
Pr(H0)(1− pf i) + Pr(H1)(1− pdi)

)



=
ȧ2σ2

i,K+1

2σ2
FC

. (3.17)

The received signal samples at the FC are collectively represented as vectors z = [z1, . . . , zK ]
T

and ż = [żT1 , . . . , ż
T
K ]

T for the OOK and BFSK schemes, respectively. Note that, during the

sensing phase, the BFSK transmission of local decisions requires about twice as much the

bandwidth as compared with OOK transmission. The relevant question is whether the extra

bandwidth required for BFSK results in better sensing performance and higher achievable

throughput for the secondary network. This issue will be examined in Sections 3.4 and 4.5

when the analysis and numerical results are presented.

The next section discusses fusion processing of the received signals in z and ż in order to

achieve a desirable sensing performance. It starts with the likelihood ratio test (LRT) which
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is the optimal fusion algorithm according to the Neyman-Pearson criterion [9]. Given the high

complexity of the LRT, two sub-optimal fusion rules, the energy- and decoding-based fusion

rules are then developed explicitly for OOK and BFSK schemes. The energy-based fusion

rule with carefully designed weights is a simple, yet efficient fusion rule, while the decoding-

based fusion rule normally achieves a better performance for high SNRs of the reporting

links but at the expense of added complexity in the decoding step. These suboptimal fusion

rules are analyzed in detail and the obtained analytical expressions are used in Section 3.5

to optimize the sensing parameters of both the fusion rules.

3.3 Fusion of Local Decisions Transmitted over Imperfect Report-

ing Channels

In general, the objective at the FC is to keep the probability of detection equal to or

above a target value P̄D, while minimizing the probability of false alarm. As discussed in [63],

such a sensing problem resembles the Neyman-Pearson hypothesis testing problem [9], and

hence, the detection statistics can be obtained using the LRT. The following analysis mainly

focuses on OOK signaling, whereas similar analysis can be performed for BFSK signaling.

Consider the vector z = [z1, . . . , zK ]
T of OOK received samples. Because zi’s are in-

dependent observations, the likelihood ratio under independent Rayleigh fading channels

is [59]:

L(z) =
f(z|H1)

f(z|H0)
=

K∏

i=1

f(zi|H1)

f(zi|H0)
. (3.18)

The quantities f(zi|H1) and f(zi|H0) can be computed as follows:

f(zi|H1) =f(zi|H1, ui = 1)Pr(ui = 1|H1) + f(zi|H1, ui = 0)Pr(ui = 0|H1)

=
1

π


 1

σ2
FC + σ2

i,K+1a
2
e
− |zi|

2

σ2
FC

+σ2
i,K+1

a2 pdi +
1

σ2
FC

e
− |zi|

2

σ2
FC (1− pdi)


. (3.19)

f(zi|H0) =f(zi|H0, ui = 1)Pr(ui = 1|H0) + f(zi|H0, ui = 0)Pr(ui = 0|H0)

=
1

π


 1

σ2
FC + σ2

i,K+1a
2
e
− |zi|

2

σ2
FC

+σ2
i,K+1

a2 pf i +
1

σ2
FC

e
− |zi|

2

σ2
FC (1− pf i)


. (3.20)
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It then follows that:

L(z) =
K∏

i=1

1
σ2FC+σ2

i,K+1a
2 e

− |zi|
2

σ2
FC

+σ2
i,K+1

a2 pdi +
1
σ2FC

e
− |zi|

2

σ2
FC (1− pdi)

1
σ2FC+σ2

i,K+1a
2 e

− |zi|
2

σ2
FC

+σ2
i,K+1

a2 pf i +
1
σ2FC

e
− |zi|

2

σ2
FC (1− pf i)

. (3.21)

The main disadvantage of using the aforementioned likelihood ratio as the decision statis-

tic for the spectrum sensing problem considered in this paper is that it is mathematically

intractable. As a consequence, to obtain a sensing threshold at the FC, extensive simula-

tion has to be performed. Moreover it is very difficult, if not impossible, to optimize other

sensing parameters to achieve an optimal sensing performance. In light of this difficulty, the

following subsections develop two suboptimal fusion rules: 1) an energy-based fusion rule

which is essentially a soft fusion of the received signals, and 2) a decoding-based fusion rule

that combines the hard decisions of the signals received from individual CRs.

3.3.1 Energy-Based Fusion Rule

First, note that, under certain scenarios, the LRT can be approximated by an energy-

based fusion rule. The first scenario is when the decisions made by individual sensors are

reliable, i.e., pf i ≪ 1− pf i and pdi ≫ 1− pdi. Then L(z) is well approximated as:

L(z) ≃
K∏

i=1

(
σ2
FC

σ2
FC + σ2

i,K+1a
2

)
e
− |zi|

2

σ2
FC

+σ2
i,K+1

a2 pdi

e
− |zi|

2

σ2
FC (1− pf i)

. (3.22)

By taking the logarithm of the above expression, the following test is obtained:

K∑

i=1

ξi
1 + ξi

|zi|2
σ2
FC

H1

≷
H0

η (3.23)

where η is a sensing threshold at the FC and ξi is the ith channel SNR at the FC, given

by ξi , (σ2
i,K+1a

2)/σ2
FC. The above test describes a weighted energy detector, where the

weights are determined by the SNRs of the reporting channels. Furthermore, for the case

that ξi ≫ 1, ξi/(1 + ξi) ≃ 1 and (3.23) simplifies to the conventional energy detector, which

is
∑K

i=1 |zi|2
H1

≷
H0

η.
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The second scenario is when the reporting channels are in a very poor condition, or

equivalently σ2
FC → ∞. As it is verified in [59], the LRT simplifies to

K∑

i=1

(pdi − pf i)
ξi

1 + ξi

|zi|2
σ2
FC

H1

≷
H0

η, (3.24)

which is also in the form of a weighted energy detector.

Based on the simplified energy-based tests in (3.23) and (3.24), a more general weighted

energy detector at the fusion center is proposed as follows:

Γ =

K∑

i=1

wiΓi
H1

≷
H0

λ. (3.25)

where Γi = |zi|2/σ2
FC is the normalized signal energy received from the ith CR, wi > 0 is

the weight coefficient assigned to the ith CR, and λ is the sensing threshold used at the FC.

For the specific case in (3.23), the weights are given as functions of the channel SNRs at the

FC, whereas for the case of very low “reporting” SNRs in (3.24), the weights mainly depend

on the local performance of the CRs. For the general form in (3.25), the weights can be

optimized for a given sensing performance according to both local sensing performance at

CRs and the quality of the reporting links.

With BFSK signalling, a similar derivation gives the following general weighted energy

detector:

Γ̇ =
K∑

i=1

ẇiΓ̇i
H1

≷
H0

λ̇. (3.26)

where Γ̇i =
|żi[0]|2−|żi[1]|2

σ2FC
and żi[0] and żi[1] are the components of vector zi = [żi[0], żi[1]]

T in

(3.16). The above test makes a final sensing decision by determining the signal component

(i.e., frequency) that has the dominant weighted energy.

3.3.2 Decoding-Based Fusion Rule

As shown, the weighted energy detectors in (3.25) and (3.26) involve simple linear com-

binations of signals received from CRs. One alternative and relevant strategy is to make a

hard decision on the signal received from each individual CR and then combine the hard
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decisions in some way. To see what would be the combining scheme of the hard decisions,

proceed as follows.

Let u = [u1, . . . , uK ] denote the vector of bits sent by CRs, and û = [û1, . . . , ûK] denote

the vector of decoded bits at the FC. Whether ûi is the same as ui, i = 1, . . . ,K is determined

by the correct/error probabilities of detection over the ith reporting channel. For OOK

modulation, the detection rule for the ith reporting channel is:

|zi|2
σ2
FC

ûi=1

≷
ûi=0

(1 + ξi) ln(1 + ξi)

ξi
, ̺i. (3.27)

It follows that the correct and error probabilities for ûi = 1 are as follows:

̟i =Pr (ûi = 1|ui = 1) = Pr

( |zi|2
σ2
FC

> ̺i

∣∣∣ui = 1

)
= e

− ̺i
1+ξi ,

ϑi =Pr (ûi = 1|ui = 0) = Pr

( |zi|2
σ2
FC

> ̺i

∣∣∣ui = 0

)
= e−̺i . (3.28)

Similarly, for ûi = 0, one has

Pr (ûi = 0|ui = 1) = 1−̟i,

Pr (ûi = 0|ui = 0) = 1− ϑi. (3.29)

For BFSK modulation, the detection rule is:

|żi[1]|2 − |żi[2]|2
ûi=1

≷
ûi=0

0. (3.30)

The correct and error probabilities can be easily shown to be:

̟i =Pr (ûi = 1|ui = 1) = Pr (ûi = 0|ui = 0) =
1 + 2ξ̇i

2(1 + ξ̇i)
,

ϑi =Pr (ûi = 1|ui = 0) = Pr (ûi = 0|ui = 1) =
1

2(1 + ξ̇i)

= 1−̟i. (3.31)

where ξ̇i ,
ȧ2σ2i,K+1

2σ2FC
is the SNR of the ith reporting channel at the fusion center under BFSK

transmission.
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Figure 3.2 Equivalent binary channel models for OOK and BFSK transmissions.

Note that the transmission and detection of bit ui from the ith CR can be represented

succinctly by binary asymmetric channel (BAC) and binary symmetric channel (BSC) models

corresponding to OOK and BFSK, respectively (see Fig. 3.2).

Now, at the fusion center, the following likelihood ratio can be formed for the decoded

bits:

L̂(û) =
Pr(û|H1)

Pr(û|H0)
=

∏K
i=1(1− ℘di)

(1−ûi)℘d
ûi
i∏K

i=1(1− ℘f i)
(1−ûi)℘f

ûi
i

. (3.32)

where ℘di = Pr(ûi = 1|H1) and ℘f i = Pr(ûi = 1|H0) are the probabilities of detection

and probabilities of false alarm associated with the decoded bit ûi. They are determined as

follows:

℘di = Pr(ûi = 1|H1) =Pr(ûi = 1|ui = 1)Pr(ui = 1|H1)

+Pr(ûi = 1|ui = 0)Pr(ui = 0|H1)

=pdi̟i + (1− pdi)ϑi. (3.33)

℘f i = Pr(ûi = 1|H0) =Pr(ûi = 1|ui = 1)Pr(ui = 1|H0)

+Pr(ûi = 1|ui = 0)Pr(ui = 0|H0)

=pf i̟i + (1− pf i)ϑi. (3.34)

Working with the logarithm of (3.32), the decoding-based fusion rule is given as:

L(D)(û) =

K∑

i=1

ϕ0,i(1− ûi) + ϕ1,iûi
1

≷
0
λ(D) (3.35)

where λ(D) is the threshold, while the weights are ϕ0,i = log
(
(1− ℘di) /

(
1− ℘f i

))
and

ϕ1,i = log
(
℘di/℘f i

)
. Thus, according to (3.35), the combining of hard decisions is also a
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linear combination, where the weights are inherently adjusted according to both the decision

of the ith CR and the quality of its reporting link. In addition, note that the fusion rule in

(3.35) resembles the one proposed in [38] for error-free reporting channels.

To optimize different sensing parameters and to compare the performance of the energy-

and decoding-based fusion rules developed in this section, the next section obtains the ex-

pressions of the probability of detection, PD, and the probability of false alarm, PF , at the

FC for both fusion rules.

3.4 Analysis of the Fusion Rules

Note that the focus of this chapter is to investigate how a large number of cheaply

implemented sensors can help improving sensing performance. If the purpose is to find the

exact distribution of the test statistics in (3.25), it can be done by using the distribution of

quadratic forms in Gaussian random variables (for example, see [64]). However, by using the

exact distribution, the individual roles of sensing parameters will not be easily reflected and

interpreted in the analysis, and the optimization problem becomes intractable. On the other

hand, finding the distribution of the detection statistics in (3.35) for the case of decoding-

based fusion rule is a mathematically complex and intractable problem. By focusing on the

case that the number of CRs K is large enough, the distributions of the test statistics in

both fusion rules are approximated by Gaussian distributions according to the central limit

theorem. Thus, to describe the statistical distributions of the test statistics, it suffices to

find the mean and variance of the corresponding approximated Gaussian distribution for

each fusion rule. The task is performed in the following two sections.
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3.4.1 Energy-Based Fusion Rule

The mean and variance of the test statistics (3.25) can be obtained as:

µj = E[Γ|Hj ] =

K∑

i=1

wiE[Γi|Hj] =

K∑

i=1

wiµi,j, j = 0, 1, (3.36)

ν2j = var[Γ|Hj ] =
K∑

i=1

w2
i var[Γi|Hj ] =

K∑

i=1

w2
i ν

2
i,j , j = 0, 1. (3.37)

where µi,j = E[Γi|Hj ] and ν
2
i,j = var[Γi|Hj]. Using the total probability theorem yields:

f(Γi|Hj) =f(Γi|Hj, ui = 1)Pr(ui = 1|Hj)

+f(Γi|Hj, ui = 0)Pr(ui = 0|Hj), j = 0, 1. (3.38)

Therefore,

µi,0 = E[Γi|H0] = E[Γi|H0, ui = 1] Pr(ui = 1|H0) + E[Γi|H0, ui = 0] Pr(ui = 0|H0)

= (ξi + 1) pf i +
(
1− pf i

)
= pf iξi + 1, (3.39)

µi,1 = E[Γi|H1] = E[Γi|H1, ui = 1] Pr(ui = 1|H1) + E[Γi|H1, ui = 0] Pr(ui = 0|H1)

= (ξi + 1) pdi + (1− pdi) = pdiξi + 1. (3.40)

The variance of Γi is obtained as:

ν2i,j =var[Γi|Hj] = E[Γ2
i |Hj ]− E2[Γi|Hj], j = 0, 1. (3.41)

First

E[Γ2
i |H0] =E[Γ2

i |H0, ui = 0] Pr(ui = 0|H0) + E[Γ2
i |H0, ui = 1] Pr(ui = 1|H0)

=2 (ξi + 1)2 pf i + 2(1− pf i) = 2
[
(ξi + 1)2pf i + (1− pf i)

]
. (3.42)

Similarly,

E[Γ2
i |H1] = 2

[
(ξi + 1)2pdi + (1− pdi)

]
. (3.43)

It follows from (3.39), (3.40), (3.42) and (3.43) that:

ν2i,0 = 2
[
ξ2i + ξi

]
pf i − ξ2i pf

2
i + 1, (3.44)

ν2i,1 = 2
[
ξ2i + ξi

]
pdi − ξ2i pd

2
i + 1. (3.45)
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Based on the distribution N
(
µj , ν

2
j

)
of Γ|Hj, the probability of false alarm and proba-

bility of detection at the fusion center are obtained as:

PF (pf ,w,λ) = Pr (Γ > λ|H0) = Q

(
λ− µ0

ν0

)
, (3.46)

PD(pd,w,λ) = Pr (Γ > λ| H1) = Q

(
λ− µ1

ν1

)
. (3.47)

where pf ,
{
pf 1, . . . , pfK

}
, pd , {pd1, . . . , pdK} and w , {w1, . . . ,wK}. The quantities µ0

and ν0 are functions of pf , while w, µ1 and ν1 are functions of pd and w. Therefore, PF

and PD are expressed as functions of the sets pf , pd and w.

As far as BFSK is concerned, the mean and variance of the detection statistics Γ̇ in (3.26)

can be obtained in the same manner as that done for OOK signaling. The results are:

µ̇i,0 =E(Γ̇i|H0) = 2ξ̇i
[
2pf i − 1

]
,

µ̇i,1 =E(Γ̇i|H1) = 2ξ̇i [2pdi − 1] . (3.48)

ν̇2i,0 =2
[
4ξ̇2i + 2ξ̇i + 1

]
− 4ξ̇2i

[
2pf i − 1

]2
,

ν̇2i,1 =2
[
4ξ̇2i + 2ξ̇i + 1

]
− 4ξ̇2i [2pdi − 1]2 . (3.49)

Consequently, the probabilities of false alarm and the probability of detection at the FC

under BFSK are:

ṖF (pf ,w, λ̇) = Q

(
λ̇− µ̇0

ν̇0

)
, ṖD(pd,w, λ̇) = Q

(
λ̇− µ̇1

ν̇1

)
. (3.50)

where µ̇j =
∑K

i=1 ẇiµ̇i,j and ν̇
2
j =

∑K
i=1 ẇ

2
i ν̇

2
i,j , j = 0, 1.

3.4.2 Decoding-Based Fusion Rule

To perform the analysis, first from (3.33) and (3.34), one has:

E[ûi|H0] =℘f i = ̟ipf i + ϑi(1− pf i),

E[ûi|H1] =℘di = ̟ipdi + ϑi(1− pdi). (3.51)
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Using the above expression along with (3.35), one can obtain the means of the test statistic

as:

m0 =E[L(D)(û)|H0] =

K∑

i=1

mi,0,

mi,0 =
[
̟ipf i + ϑi(1− pf i)

]
[ϕ1,i − ϕ0,i] + ϕ0,i. (3.52)

m1 =E[L(D)(û)|H1] =
K∑

i=1

mi,1,

mi,1 = [̟ipdi + ϑi(1− pdi)] [ϕ1,i − ϕ0,i] + ϕ0,i. (3.53)

The variances are:

δ20 = Var[L(D)(û)|H0] =

K∑

i=1

δ2i,0,

δ2i,0 =
[
mi,0 −m2

i,0

]
[ϕ1,i − ϕ0,i]

2 . (3.54)

δ21 = Var[L(D)(û)|H1] =
K∑

i=1

δ2i,1,

δ2i,1 =
[
mi,1 −m2

i,1

]
[ϕ1,i − ϕ0,i]

2 . (3.55)

Thus, the false alarm and detection probabilities of the decoding-based fusion rule are

obtained as:

P
(D)
F (pf ,λ

(D)) = Pr
(
L(D)(û) > λ(D)

∣∣H0)

= Q

(
λ(D) −m0

δ0

)
, (3.56)

P
(D)
D (pd,λ

(D)) = Pr
(
L(D)(û) > λ(D)

∣∣H1)

= Q

(
λ(D) −m1

δ1

)
. (3.57)

Note that the aforementioned analysis for the decoding-based fusion rule applies to both

OOK and BFSK schemes. The difference between the two schemes is reflected in the equiv-

alent channel models in Fig. 3.2: For BFSK one has ϑi = 1−̟i.
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After establishing the fusion rules at the fusion center and obtaining the expressions of

PF , PD, P
(D)
F and P

(D)
D , the next important step is to find the sensing parameters for each

fusion rule. The next section considers the secondary throughput as the objective function

to be maximized and shows how different sensing parameters can be efficiently determined

to achieve this goal.

3.5 Joint Optimization of the Sensing Parameters

It is desired to obtain the maximum secondary throughput while ensuring that the pri-

mary user is sufficiently protected. To this end, sensing parameters at the CRs and the fusion

center should be efficiently optimized. In the following sections, the optimization problems

for both the energy-based and decoding-based fusion rules are addressed.

3.5.1 Optimizing Parameters for Energy-Based Fusion Rule

For the energy-based fusion rule, the sensing thresholds at the CR nodes and the fusion

center, namely ǫ, λ, the sensing weights w and the sensing time τ can be jointly optimized

to achieve the maximum secondary throughput. Similar to [5], the optimization problem is

formulated as:

max
τ ,ǫ,w,λ

R0(τ , ǫ,w,λ) ≡

max
τ ,ǫ,w,λ

C0 Pr(H0)
(
1− τ

T

)
[1− PF (pf ,w,λ)] (3.58)

s.t. PD(pd,w,λ) ≥ P̄D.

In the aforementioned optimization problem, C0 represents the throughput of the secondary

network in the absence of the primary user, P̄D determines the required protection to the

primary user and T is the total frame duration. The aforementioned equation explains

that, when there is no false alarm, the CR network is able to transmit with a rate of

C0

(
1− τ

T

)
[1− PF (pf ,w,λ)] b/s.

In (3.58), because PD and PF are functions of pdi(τ , ǫi) and pf i(τ , ǫi) at the CR nodes, they

are functions of τ and ǫ as well. Observe that, in (3.58), only PF (pf ,w,λ) and PD(pd,λ,w)
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are functions of the sensing thresholds and weights. Therefore, (3.58) is equivalent to:

max
τ ,ǫ,w,λ

R0(τ , ǫ,w,λ) ≡

max
τ

[(
1− τ

T

)(
1− min

ǫ,w,λ
PF (pf ,w,λ)

)]
(3.59)

s.t. PD(pd,w,λ) ≥ P̄D

The optimization problem in (3.59) is separated into two sub-problems.

Sub-Problem 1 (Obtaining the optimal sensing thresholds and combining weights):

max
ǫ,w,λ

R0(ǫ,w,λ) ≡ min
ǫ,w,λ

PF (pf ,w,λ) (3.60)

s.t. PD(pd,w,λ) ≥ P̄D

The following proposition offers a solution to the preceding problem.

Proposition 1: The set of sensing thresholds which optimize the sub-problem in (3.60)

are closely approximated as:

ǫ∗i =

(
1 +

1

γi

)
log (γi + 1) , (3.61)

and

λ∗(τ) = ν̄1 (τ)Q
−1
(
P̄D
)
+ µ̄1 (τ) . (3.62)

The combining weights are obtained as:

w∗
i (τ) = ξi

pdi(τ)− pf i(τ)

ν̄i,0(τ)
. (3.63)

In (3.62), µ̄1(τ) and ν̄1(τ) are obtained by replacing pd = pdi(τ) and wi = w∗
i (τ) in (3.36),

(3.37), (3.40), and (3.45). That is,

µ̄1(τ) ,
K∑

i=1

w∗
i (τ) [pdi(τ)ξi + 1] . (3.64)

and

ν̄21(τ) ,
K∑

i=1

w∗
i
2(τ)

(
2
[
ξ2i + ξi

]
pdi(τ)− ξ2i pd

2
i (τ) + 1

)
. (3.65)
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Furthermore, using (3.10), (3.11), one has:

pf i(τ) = pf i(τ , ǫi)
∣∣∣
ǫi=ǫ∗i

= Q

(((
1 +

1

γi

)
log (1 + γi)− 1

)√
τfs

)
. (3.66)

and

pdi(τ) = pdi(τ , ǫi)
∣∣∣
ǫi=ǫ∗i

= Q

((
1

γi
log (1 + γi)− 1

)√
τfs

)
. (3.67)

Also in (3.63), ν̄i,0(τ) is defined using (3.44) as:

ν̄2i,0(τ) , 2
[
ξ2i + ξi

]
pf i(τ)− ξ2i pf

2
i
(τ) + 1. (3.68)

Proof: Refer to Appendix B.1.

Remark: When the received SNR at each CR node is very small, i.e., γi ≪ 1, one can use

the tight approximation log (γi + 1) ≃ γi − γ2i
2
, which is obtained by truncating the Taylor

series. As a result, ǫ∗i can be closely approximated as ǫ∗i = (1+ 1
γi
)log (γi + 1) ≃ (γi+1)(1− γi

2
).

Consequently, pf i and pdi at each CR node are obtained as:

pf i

∣∣∣
ǫi=ǫ∗i

=Q

((
(1 +

1

γi
)log(γi + 1)

)√
τfs

)

≃Q
(
1

2
γi (1− γi)

√
τfs

)
Q
(γi
2

√
τfs

)
,

pdi

∣∣∣
ǫi=ǫ∗i

≃Q
(
−γi

2

√
τfs

)
. (3.69)

It then follows that, pdi + pf i ≃ 1. This approximation is also helpful to make a comparison

between the average received SNRs at the fusion center for BFSK and OOK. By comparing

(3.15) and (3.17) and using pf i + pdi ≃ 1, it is seen that ρ̇ ≃ 2( ȧ
a
)2ρ.

Sub-Problem 2 (Optimizing the sensing time): To obtain the optimal sensing time, the

problem in (3.58) is simplified by replacing the optimal sensing parameters from solving

Sub-Problem 1 into (3.58). This gives the following problem:

max
τ

R̄0(τ) =C0Pr(H0)
(
1− τ

T

) (
1− P̄F (τ)

)
, (3.70)
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where it follows from (3.46) that:

P̄F (τ) = Q

(
λ∗(τ)− µ̄0(τ)

ν̄0(τ)

)
. (3.71)

The parameters µ̄0(τ) and ν̄0(τ) are obtained by substituting pd = pdi(τ) and wi = w∗
i (τ) in

(3.44), (3.36) and (3.37). This yields:

µ̄0(τ) ,
K∑

i=1

w∗
i (τ)

[
pf i(τ)ξi + 1

]
, (3.72)

and

ν̄20(τ) ,
K∑

i=1

(w∗
i (τ))

2
(
2
[
ξ2i + ξi

]
pf i(τ)− ξ2i pf

2
i
(τ) + 1

)
. (3.73)

To solve (3.70), the following proposition is employed.

Proposition 2: R̄0(τ) is a concave function for P̄F (τ) ≤ 0.5 and has a unique maximum

point.

Proof: See Appendix B.2.

Because R̄0(τ) is a uniomodal function, (3.70) can be easily solved by standard algorithms

such as the bisection method, Golden section method, Newton’s method, etc. [63]. Table 3.2

summarizes the algorithm to find the sensing parameters for the energy-based fusion rule.

3.5.2 Optimizing Parameters for the Decoding-Based Fusion Rule

The throughput optimization problem for decoding-based fusion rule can be described

in the same fashion as it was done for the energy-based fusion rule in (3.58). The major

difference is that there is no need to optimize for the combining weights as they are already

incorporated in the fusion rule itself (see (3.35)). Similar sub-problems to that of (3.60) and

(3.70) are discussed as follows.

Sub-Problem 3 (Obtaining the optimal sensing thresholds):

min
ǫ,λ(D)

P
(D)
F (pf ,λ

(D)) (3.74)

s.t. P
(D)
D (pd,λ

(D)) ≥ P̄D
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Table 3.2 Procedure to find the sensing parameters for energy-based fusion rule.

1 Set PD = P̄D.

2 Find the sensing threshold at each CR node ǫ∗i from (4.12):

ǫ∗i =
(
1 + 1

γi

)
log (γi + 1) .

3 Obtain P̄F (τ) from (3.71) as:

P̄F (τ) = Q
(
λ∗(τ)−µ̄0(τ)

ν̄0(τ)

)
.

4 Find the sensing duration τ ∗ by solving (3.70).

τ ∗ = arg max
{(

1− τ
T

) (
1− P̄F (τ)

)}

5 Find the sensing threshold at the fusion center, λ∗, from (3.62):

λ∗ = ν̄1 (τ
∗)Q−1

(
P̄D
)
+ µ̄1 (τ

∗)

6 Find the weight coefficients at the fusion center, w∗
i , from (3.63):

w∗
i = ξi

(
pdi(τ

∗)−pf i
(τ∗)

ν̄i,0(τ∗)

)

As it is verified in Appendix B.3, the set of sensing thresholds that optimize the afore-

mentioned subproblem are closely approximated as:

ǫ
(D)∗
i =

(
1 +

1

γi

)
log (γi + 1) (3.75)

λ(D)∗(τ) = δ̄1(τ)Q
−1
(
P̄D
)
+ m̄1(τ) (3.76)

where δ̄1(τ) and m̄1(τ) are obtained from (3.53) and (3.55) by replacing pdi with pdi(τ) and

pf i with pf i(τ).

Similar to Proposition 2, it can be verified that using the above sensing thresholds leads

to a concave throughput function in terms of the sensing time. A such, the algorithm to

optimize the sensing parameters for the decoding-based fusion rule is basically the same as

that given in Table 3.2.

3.6 Simulation Results

This section presents numerical and simulation results on the performance of the pro-

posed fusion rules with noncoherent transmission of local decisions over i.i.d Rayleigh fading

channels. Each point in the simulation curves is obtained with 106 random realizations for
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the primary transmitted signal, fading channels and noise. For each realization, the CR

decision is transmitted over the Rayleigh fading channel to the FC. The sensing and fusion

results are then obtained by averaging over all the realizations. For convenience, in all sim-

ulations, it is simply assumed that Pr(H0) = Pr(H1) = 0.5. Unless stated otherwise, the

average received SNR is set to be 7 dB (i.e., ρ = ρ̇ = 7 dB) at the FC, whereas K = 50 and

fs = 1 MHz. When γi = γ and ρi = ρ, i.e., all the SNRs at the CRs and FC are respectively,

equal, equal combining is used in the energy-based fusion rule. All the simulation and an-

alytical results are obtained by applying the optimized sensing threshold at the CR nodes

given as ǫ∗i = (1 + 1
γi
)log (γi + 1).

First, Fig. 3.3 depicts the probability of a missed detection versus the average SNR at

the CRs when the energy-based fusion rule is used. The figure considers the case when all

CR nodes have the same average SNR, i.e., γi = γ for i = 1, . . . ,K. The missed detection

probabilities are determined at each CR (pm = 1 − pd) and at the fusion center with OOK

(PM = 1 − PD) and BFSK (ṖM = 1 − ṖD). For this figure N = 0.2ms × 1MHz = 200

samples. Similarly, Fig. 3.4 illustrates the false alarm probability at the nodes (pf) and the

fusion center (PF and ṖF ). From these two figures, it is clearly seen that cooperation among

CRs significantly decreases the missed detection probability and the false alarm probability

at the fusion center. It can also be observed that the analytical and simulation results match

very well. Furthermore, one can see that the BFSK scheme performs better than OOK for

the same set of parameters.
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Figure 3.3 Theoretical and simulation results for the missed detection probabilities

at the nodes and fusion center versus the SNR at each node. The

energy-based fusion rule is applied.

Figs. 3.5 and 3.6 compare the false alarm probabilities achieved with the energy- and

decoding-based fusion rules when P̄D = 0.9, K = 30, N = 100 and the SNRs of all reporting

links are equal (i.e., ξi = ξ) and vary from−5 to 15 dB. For both figures, the received SNRs at

the CRs are set at γ = −10dB. The two figures clearly show that for both OOK and BFSK

schemes, the decoding-based fusion rule performs better than energy-based fusion rule at

high “reporting” channel SNR. This result can be explained by the fact that performing

hard decisions on individual reporting channels at high “reporting” SNRs can completely

remove the noise on each channel (i.e., most of the decision bits can be perfectly retrieved

at the FC), whereas the noise is always accumulated in the energy-based fusion rule. At

low “reporting” channel SNR values, both decoding-based and energy-based fusion rules

have the same performance for OOK scheme, whereas for BFSK, the energy-based fusion

rule outperforms the decoding-based fusion rule. From the results in Figs. 3.5 and 3.6, it

can be concluded that for low channel SNRs, the energy-based fusion rule is preferred over

the decoding-based fusion rule as it has a lower complexity while delivering equal or better
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Figure 3.4 Theoretical and simulation results for the false alarm probabilities at

the nodes and fusion center versus the SNR at each node. The energy-

based fusion rule is applied.

performance.

In Fig. 3.7, the normalized throughput, defined as (1− τ/T )
(
1− P̄F (τ)

)
versus an entire

time frame of 1ms, which is equivalent to 1, 000 samples, is illustrated when λ is selected to fix

the probability of a missed detection at 1−P̄D = 0.1 while γi = γ = −15 dB. It is shown that,

for the same set of parameters (pf , pd, P̄D and average SNR), BFSK signalling achieves a

higher secondary throughput than OOK signalling. As mentioned, the superior performance

of BFSK over OOK in terms of achievable secondary throughput in the transmission phase

comes at the expense of a larger transmission bandwidth used in the sensing phase. It is also

shown that the throughput functions are concave and BFSK attains a maximum point which

is higher than that of the OOK scheme by about 0.1. This case means that, by employing

BFSK for sensing, the CR network is capable of transmitting about 10% more data than the

rate achieved with OOK. By comparing the analytical and simulation results, it is observed

that the central limit theorem which has been employed for analytical evaluations leads to

78



−5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SNRs of reporting channels at fusion center, ξi = ξ (dB)

P
F

a
t

fu
si

o
n

ce
n
te

r
w

it
h

O
O

K
tr

a
n
sm

is
si

o
n

 

 

Energy−based (simulation)
Energy−based (theory)
Decoding−based (simulation)
Decoding−based (theory)

 p
f
 at cognitive radio

Figure 3.5 Comparison of the false alarm probability achieved with energy-based

and decoding-based fusion rules. The SNRs of individual reporting

channels at the FC are the same (ξi = ξ) and vary. OOK transmission

is considered.

a very good approximation even when the number of CRs is limited to K = 50.

Fig. 3.8 compares the analytical evaluations for throughput of BFSK and OOK when

γi = γ = −15 dB and two sensing thresholds are employed at CR nodes. The first one, ǫ∗

minimizes the probability of error, pe and the second one, denoted as optimal ǫ, is obtained by

exhaustive search to minimize P̄F (τ , ǫ) = Q(φ(τ , ǫ)) (OOK scheme) and ˙̄PF (τ , ǫ) = Q(φ̇(τ , ǫ))

(BFSK scheme) by maximizing the arguments of the Q functions (see Appendix B.3). It

is seen that for OOK signaling, there is only a slight difference between the achievable

secondary throughputs obtained with the two different threshold values. On the other hand,

for BFSK signalling, the throughputs resulting from both thresholds overlap. As discussed in

Appendix B.3, the reason is that ǫ∗ is a very good approximation to the optimal ǫ for BFSK.

In order to justify the above discussion using analytical evaluations, the arguments of Q

functions, i.e., φ(τ , ǫ) and φ̇(τ , ǫ), are evaluated and plotted as functions of sensing time for
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Figure 3.6 Comparison of the false alarm probability achieved with energy-based

and decoding-based fusion rules. The SNRs of individual reporting

channels at FC are the same (ξ̇i = ξ̇) and vary. BFSK transmission is

considered.

two different sensing thresholds in Fig 3.9. As can be seen, for BFSK, both thresholds give the

same result, while for OOK, approximations cause a slight difference between the arguments.

This difference increases with sensing time since the approximations work well around pf =

pd = 0.5 (see Appendix B.1). As the sensing time increases, pf and pd diverge from 0.5

causing the discarded terms in the approximation of φ(τ , ǫ) to become more significant.

Finally, simulation results in Figs. 3.10 and 3.11 demonstrate the effect of choosing the

weighting coefficients in the energy-based fusion rule (w in (3.25) and (3.26)) for the situ-

ation when the SNRs are different at the CR nodes as well as at the FC. For comparison

purposes, the CRs are divided into 10 groups of 5 CRs each and two different scenarios are

examined. In the first scenario, all CRs transmit their sensing results to the fusion center

with equal SNR of ξ = ξ̇ = 5 dB, but each group of CRs experiences a different “sensing”

SNR from the primary user. The “sensing” SNRs spread over a large range of values given as
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Figure 3.7 Comparison of analytical and simulation results for throughput with

ǫ = ǫ∗ and energy-based fusion rule.
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Figure 3.8 Comparison of analytical throughput for different sensing thresholds

used at CR nodes when the energy-based fusion rule is employed.
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Figure 3.10 Comparison of using equal and optimized weights in the energy-based

fusion rule for scenario 1.
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Figure 3.11 Comparison of using equal and optimized weights in the energy-based

fusion rule for scenario 2.

{−10,−15,−12,−18,−19,−20,−21,−22,−23,−24} dB. In the second scenario, the “sens-

ing” SNRs are considered to be {−11,−12,−13,−14,−15,−15,−14,−13,−12,−11} dB,

which in comparison to the first scenario are higher in average and have a smaller varia-

tion. Moreover, for the second scenario, the received signals at the FC experience different

SNRs of {−10,−5, 0, 5, 10,−10,−5, 0, 5, 10} dB. As can be seen, both figures show that the

throughput is improved with the proposed optimal combining weights as compared to the

simple equal combining in both cases of OOK and BFSK signalling. The improvement is

much larger in the first scenario than in the second scenario. This is because in the second

scenario the sensing results at CRs are almost the same, and even with the optimal combin-

ing weights, the reporting links with high SNRs are mainly involved in the combining (with

weights close to 1), which is essentially equal combining.
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3.7 Conclusions

In this chapter, cooperative spectrum sensing schemes for cognitive radio networks where

the channel impairments prevent the CR signals to be perfectly received at the FC were

proposed and analyzed. To overcome the problem of channel estimation, the noncoherent

OOK and BFSK signalling schemes were employed to transmit binary decisions to the fusion

center. Since the likelihood-ratio fusion rule is not practically attractive nor analytically

tractable, energy- and decoding-based fusion rules were developed. For each of these fusion

rules, the optimum sensing parameters are obtained to achieve the maximum secondary

throughput. For both fusion rules, it was shown that the secondary throughput with the

optimum sensing parameters is a concave function of sensing time and hence there exists

an optimum solution for the sensing time. The excellent match between simulation and

analytical results verify the accuracy of the analysis.
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4. A Decoding-Based Fusion Rule for

Cooperative Spectrum Sensing with

Nonorthogonal Transmission of Local

Decisions

4.1 Introduction

As outlined in the previous chapters, cognitive radio (CR) is an attractive technology to

deal with the spectrum scarcity issue and to provide wireless access to potential users by

opportunistically detecting the unused licensed bands. The technique of distributed spectrum

sensing has also been studied as an attractive technology for enabling a reliable spectrum

sensing technique, in which the observations of CR nodes are collected and transmitted to a

fusion center (FC) for a final sensing decision. The fusion center aggregates the information

pieces transmitted from the CRs and combines them according to some fusion rule in order

to make a final decision about the absence (denoted by H0) or presence (denoted by H1) of

the primary user in the band of the interest. The research in the preceding chapter proposes

a collaborative weighted energy-based fusion rule with noncoherent transmission of one-bit

decisions where the sensing results are reported to the FC over orthogonal channels. The

main focus is to optimize the sensing thresholds at the local CRs, the combining gains at the

fusion center and the sensing time to maximize the secondary throughput of a CR network1.

However, for large-scale CR networks, assigning orthogonal channels to all CRs might lead

to an unaffordable bandwidth expenditure.

Since the transmission of the local sensing data to the FC can be costly in terms of

1The contribution in this chapter is published in [65].
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bandwidth requirement, particularly for large-scale distributed CR networks, some form of

local data compression is preferred in which each CR sends to the FC only one or a few bits of

data, representing its local sensing result. To further reduce bandwidth consumption while

maintaining simple fusion processing, nonorthogonal transmission of local decisions can be

employed by means of on-off keying (OOK) [37]. In such a transmission technique, the CRs

are allocated with nonorthogonal (correlated) signature vectors (SVs). If the length of the

signature vectors is substantially less than the number of CRs, the bandwidth efficiency can

be significantly improved [37, 66].

This chapter adopts the nonorthogonal transmission framework of [37] for the report-

ing phase. Different from [37], the main contribution here is to develop a low-complexity

decoding-based fusion rule as an alternative to the energy-based fusion rule in order to ef-

ficiently suppress the noise in the received signal at the fusion center and achieve a better

sensing performance when the reporting channels are strong. The performance of the pro-

posed fusion rule is analyzed and compared with the performance of the energy-based fusion

rule under different scenarios. It has to be noted that the most of the development in this

chapter mimics that of Chapter 3 but is included for completeness so that Chapter 4 can

be read independently of Chapter 3 with the essential difference that there is nonorthogonal

transmission of the decisions.

The chapter is organized as follows. Section 4.2 introduces the model of cooperative spec-

trum sensing with nonorthogonal transmission of local decisions. Section 4.3 summarizes the

energy-based fusion rule, whereas the decoding-based fusion rule is developed and analyzed

in Section 4.4. Simulation results are presented and discussed in Section 4.5. Finally, Section

4.6 draws conclusions. It is also noted that most of the mathematical symbols used in this

chapter are the same as those of Chapter 3 (see Table 3.1).

4.2 System Model

The structure of cooperative spectrum sensing under consideration is illustrated in Fig.

4.1. There is one primary source, K CR nodes, and one fusion center. For simplicity, the
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Figure 4.1 Structure of cooperative spectrum sensing with nonorthogonal trans-

mission in the reporting phase.

primary source is indexed by node 0, CR nodes are denoted by nodes i, i = 1, . . . ,K, and

the fusion center is identified as node K + 1.

During the sensing period, each CR collects its observations from the primary user’s sig-

nal in order to make a local decision on the binary hypothesis H0 or H1. Due to the presence

of Rayleigh fading channels between the primary user and CRs, the local observations at

CRs can be treated as independent and identically distributed (i.i.d) random variables. For

processing the observations at each CR, an energy detector is implemented. In particular,

local binary decisions are obtained by comparing the energy of the collected signals to a

sensing threshold.

In the reporting phase, the local decisions are transmitted to the fusion center over

Rayleigh fading channels. For such transmission, the same framework presented in [37] is

adopted. The local decision at the kth CR is multiplied (i.e., modulated) with a unique

signature vector gk whose length is M < K. All the K ‘modulated’ signature vectors are

then transmitted simultaneously in M chip intervals to the fusion center. As mentioned

before, the main reason for having M < K is to reduce the transmission bandwidth when
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compared to the case of M = K, i.e., orthogonal transmission. The latter has been studied

in Chapter 3.

The following description of signal processing at CRs in the sensing phase is basically

the same as that in Chapter 3 and it is briefly described so that Chapter 4 can be read

independently from Chapter 3. The low-pass equivalent of the output of the BP filter at CR

node i, i = 1, . . . ,K, is denoted by x0,i(t) and it is represented in (3.1) and (3.2) under H0

and H1 respectively. At the ith CR node, x0,i(t) is sampled with a rate of fs =
1
Ts

Hz over a

time duration of τ = NTs seconds, where Ts denotes the sampling period and N denotes the

number of samples collected for spectrum sensing. As given in (3.7), yi represents the average

energy of the sampled band-limited signal at each CR node over a duration of τ seconds,

where f(yi|H0) ∼ N
(
1, 1

N

)
, and f(yi|H1) ∼ N

(
γi + 1, (γi+1)2

N

)
. The decision device at the

ith CR node produces a binary decision (0 or 1, corresponding to hypothesis H0 or H1,

respectively) by comparing yi to a decision threshold ǫi (see page 60). The probability of

false alarm and the probability of detection at the ith CR node are denoted, respectively, as

pf i and pdi, and they are given in (3.10) and (3.11).

After making a local binary decision, if the CR decides H1 (i.e., ui = 1), the signal vector

to be transmitted to the fusion center is obtained as the product of ai and theM×1 signature

vector gi. All the signature vectors have unit energy, i.e., ‖gi‖2 = 1, i = 1, . . . ,K. On the

other hand, if a node decides H0 (ui = 0), it remains silent and does not send a signal to

the fusion center. Equivalently, the transmission scheme can also be viewed as a censoring

scheme, where only the CRs with non-zero decisions transmit [37]. The transmitted signal

from the ith CR can simply be expressed as vigi = (aiui)gi, where vi = aiui. It should be

noted that the parameter ai sets the average transmitted power of the ith CR. Here, we

assume that all CRs are similar and without loss of generality they can transmit with an

average gain of ai = 1. For the case of M = K, one can choose gi = ei, where ei is a

column vector of length K with the ith element equal to 1 and all other elements equal to

0. Obviously, the choice leads to orthogonal transmission of OOK modulated signals, which

has been treated in Chapter 3. In contrast, the main focus of this chapter is the case when

M < K and the SVs cannot be made orthogonal. The key benefit of using shorter SVs is
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that the transmission in the reporting phase can be conducted with a smaller bandwidth.

After all the K signal vectors are transmitted in M chip intervals to the FC over inde-

pendent Rayleigh fading channels, the M × 1 received signal vector z = [z1, . . . , zM ]⊤ at the

FC is given as:

z =

K∑

i=1

hi,K+1vigi + nFC, (4.1)

where hi,K+1 ∼ CN (0, σ2
i,K+1) represents the channel fading coefficient between the ith CR

and the FC, and nFC = [n1,FC, . . . ,nM ,FC]
⊤ ∼ CN (0, σ2

FCI) is the M × 1 noise vector at the

FC. Let G = [g1, g2, . . . , gK ] be a M ×K matrix whose columns are the SVs of the CRs,

H be a K ×K diagonal matrix whose diagonal entries are {h1,K+1, h2,K+1, . . . , hK,K+1} and

define v = [v1, v2, . . . , vK ]
⊤. Then (4.1) can also be written as:

z = GHv + nFC. (4.2)

The next sections examine two fusion rules, namely, the energy-based fusion rule and the

decoding-based fusion rule. In fact, the simple energy-based fusion rule was also discussed

in [37]. However its analysis does not explicitly take into account the signal processing at the

CRs and cannot be used for parameter optimizations. On the other hand, the decoding-based

fusion rule presented in this chapter is novel and offers an attractive performance-complexity

tradeoff when compared to the simple energy-based fusion rule or the optimum fusion rule

in [37]. It should also be pointed out that the optimum fusion rule in [37] not only has

the complexity that is exponential in the number of CRs, but is also difficult to analyze

for the purpose of parameter optimizations. Similar to Chapter 3 and [5], the objective

of optimizing parameters for a fusion rule is to maximize the secondary throughput while

maintaining the probability of detection equal or above a target value P̄D. For a given sensing

time, maximizing the throughput function for a target P̄D is equivalent to minimizing the

probability of false alarm.
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4.3 Energy-Based Fusion Rule

Let Υ = zHz/σ2
FC denote the normalized output of the energy detector. The energy-

based fusion rule is simply:

Υ
H1

≷
H0

λ(E), (4.3)

where λ(E) is the decision threshold at the FC.

Although Υ has a quadratic form of zero-mean Gaussian random variables, we shall

approximate it by a Gaussian distribution. The mean and variance of random variable Υ

under each hypothesis are obtained as follows. First, it follows from (4.2) that:

µ0 , E [Υ|H0] =
K∑

i=1

ξipf i‖gi‖22 +M =
K∑

i=1

ξipf i +M , (4.4)

µ1 , E [Υ|H1] =

K∑

i=1

ξipdi‖gi‖22 +M =

K∑

i=1

ξipdi +M , (4.5)

where ξi , σ2
i,K+1/σ

2
FC.

Next, the variance is calculated as var [Υ] = E [Υ2]− (E [Υ])2. Using (4.2) one has:

E
[
Υ2
]
=

E




K∑

i,j=1,i 6=j
u2iu

2
jξiξj

(
gHi gj

)2
+ 2

K∑

i=1

u4i ξ
2
i +

K∑

i,j=1,i 6=j
u2iu

2
jξiξj +M +M2 + (2 + 2M)

K∑

i=1

u2i ξi


.

(4.6)

Then, the variance conditioned on each hypothesis is:

ν20 , var [Υ|H0] =

K∑

i,j=1,i 6=j
pf ipf jξiξj

(
gHi gj

)2
+ 2

K∑

i=1

pf iξ
2
i +

K∑

i,j=1,i 6=j
pf ipf jξiξj +M +M2

+ (2 + 2M)

(
K∑

i=1

pf iξi

)
− µ2

0. (4.7)

ν21 , var [Υ|H1] =
K∑

i,j=1,i 6=j
pdipdjξiξj

(
gHi gj

)2
+ 2

K∑

i=1

pdiξ
2
i +

K∑

i,j=1,i 6=j
pdipdjξiξj +M +M2

+(2 + 2M)

(
K∑

i=1

pdiξi

)
− µ2

1. (4.8)
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It is noted that only the conditional variances depend on the set of SVs. Furthermore, for the

special case of orthogonal transmission, one can easily verify that the means and variances

reduce to the expressions given in Chapter 3 (see page 68).

The probability of false alarm and probability of detection are then obtained as:

P
(E)
F (pf ,λ

(E)) = Pr
(
Υ > λ(E)

∣∣H0) = Q

(
λ(E) − µ0

ν0

)
, (4.9)

and

P
(E)
D (pd,λ

(E)) = Pr
(
Υ > λ(E)

∣∣H1) = Q

(
λ(E) − µ1

ν1

)
. (4.10)

From (4.9) and (4.10), for a target P̄D we obtain:

P
(E)
F (pf , P̄D) = Q

(
Q−1

(
P̄D
)
ν1 + µ1 − µ0

ν0

)
. (4.11)

For a given set of SVs, it is of interest to find the optimal sensing thresholds at the

cognitive radios in order to minimize P
(E)
F (pf , P̄D) in (4.11). The solution for the case of low

sensing SNR, i.e., γi ≪ 1 can be derived in a similar way as in Chapter 3. The result is:

ǫ∗i =

(
1 +

1

γi

)
log (γi + 1) . (4.12)

Furthermore, one can also try to find the set of signature vectors to further minimize

P
(E)
F (pf , P̄D). Unfortunately, such an optimization problem in its general form appears to

be very complex, and finding a closed-form solution for optimal G seems intractable. Nev-

ertheless, a good set of signature vectors can be found by generating a large set of random

signature vectors and picking the one that maximizes the expression in (4.11).

For the simple case when the sensing channels as well as the reporting channels have

the same average SNRs, i.e., γi = γ and ξi = ξ, it can be shown that the so-called Welch-

bound equality (WBE) sequences 2 [67] yield the optimal signature vectors. The proof is as

2Welch’s bound for a set of M complex equi-energy sequences is a lower bound on the sum of the squares

of the magnitudes of the inner products between all pairs of these sequences. If the sequences meet the

Welch bound with equality, they are referred to as WBE sequences.
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follows: Observe from (4.7) and (4.8) that both ν0 and ν1 are functions of the total squared

correlation (TSC), namely
∑K

i,j=1,i 6=j
(
gHi gj

)2
. Then, in order to maximize

Q−1(P̄D)ν1+µ1−µ0
ν0

,

it is clear that
∑K

i,j=1,i 6=j
(
gHi gj

)2
has to be minimized. It is well-known that the WBE

sequences minimize the TSC [66].

4.4 Decoding-Based Fusion Rule

Though being very simple, the energy-based fusion rule might not work well in certain

channel conditions. This is because noise is also included in the energy calculation. To see

how one can improve the performance of the energy-based fusion rule, define

D = diag
(
a21|h|21,K+1, . . . , a

2
K |h|2K,K+1

)
. Then the energy computed at the FC can be written

as:

zHz = uTDGTGDu+ nH
FCnFC + 2uTDGTnFC. (4.13)

As can be seen, zHz is actually a weighted sum of the local decisions and noise terms. This

suggests that one might decode the received signal first and then combine the hard decisions

in the hope of achieving a better performance due to better noise reduction under certain

channel conditions.

To develop a decoding-based fusion rule, it is proposed to perform the minimum mean-

square error (MMSE) estimation of the transmitted vector vh , Hv first, followed by a

detection of the transmitted bits from the estimated vector v̂h. The MMSE estimation

yields [68]:

v̂h = Cz, (4.14)

where C , D̄GT
[
GD̄GT + σ2

FCI
]−1

, D̄ = diag
(
d̄1, . . . , d̄K

)
with d̄i = a2iσ

2
i,K+1κi and

κi ,
[
pf i Pr(H0) + pdi Pr(H1)

]
. It is not hard to show the following relationship between v̂h

and vh:

v̂h = vh + χ, (4.15)

where v̂h = [v̂h,1, . . . , v̂h,K ]
T and χ = [χ1, . . . ,χK ] is a zero-mean Gaussian vector. More
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importantly, the normalized MMSE for each decoded bit can be shown to be:

E
[
(v̂h,i − vh,i)

2]

d̄i
= 1− gTi

(
GD̄GT + σ2

FCI
)−1

gid̄i. (4.16)

In general, the MMSE is a useful performance measure for parameter estimation. In many

research papers concerning the detection performance over overloaded code-division multi-

ple access (CDMA) systems, signature vectors are obtained by minimizing MMSE-related

metrics and WBE sequences (or weighted WBE sequences) turn out to be the optimum

signature vectors [66, 68]. However, in the spectrum sensing problem the main performance

measures are mainly related to the probability of false alarm and probability of detection,

and the WBE sequences are not necessarily the ones that optimize the performance.

The influence of the choice of the SVs on the performance of the proposed decoding-based

fusion rule can be analyzed as follows. First, the likelihood ratio test (LRT) for decoding

the bits sent by the ith CR is:

f(v̂h,i|ui = 1)

f(v̂h,i|ui = 0)

ûi=1

≷
ûi=0

Pr(ui = 0)

Pr(ui = 1)
=

1− pf i Pr(H0)− pdi Pr(H1)

pf i Pr(H0) + pdi Pr(H1)
. (4.17)

where the above threshold is obtained by calculating Pr(ui = 0) = Pr(yi < ǫi|H0) Pr(H0) +

Pr(yi < ǫi|H1) Pr(H1) = (1 − pf i) Pr(H0) + (1− pdi) Pr(H1) = 1 − pf i Pr(H0)− pdi Pr(H1).

Similarly, Pr(ui = 1) = pf i Pr(H0) + pdi Pr(H1). It is noted that for the case of Pr(H0) =

Pr(H1) and having pf i + pdi
∼= 1 when the signal-to-noise ratios of the sensing links are

low [39], the threshold in (4.17) is approximately 1. Note also that each density function in

the above LRT is the density of a zero-mean complex Gaussian variable. As such, the LRT is

determined by E(|v̂h,i|2|ui = 1) and E(|v̂h,i|2|ui = 0). These two expectations are computed

as follows. First, according to (4.14), one has:

E(|v̂h,i|2|ui = 1) = [CKi,1C]i,i , ζi,1. (4.18)

where

Ki,1 = E(zzH |ui = 1) = GD̄i,1G
T + σ2

FCI, (4.19)

and [D̄i,1]k,k = d̄k, k 6= i, and [D̄i,1]i,i =
d̄i
κi
. Similarly,

E(|v̂h,i|2|ui = 0) = [CKi,0C]i,i , ζi,0, (4.20)
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with

Ki,0 = E(zzH |ui = 0) = GD̄i,0G
T + σ2

FCI. (4.21)

and [D̄i,0]k,k = d̄k, k 6= i, and [D̄i,0]i,i = 0. Simplifying (4.17) gives:

|v̂h,i|2
ûi=1

≷
ûi=0

ln
(

1−pf i
Pr(H0)−pdi Pr(H1)

pf i
Pr(H0)+pdi Pr(H1)

· ζi,1
ζi,0

)

ζi,1−ζi,0
ζi,1ζi,0

, ̺i. (4.22)

The reliability of the hard decision rule in (4.22) concerning the bit sent by the ith CR

can be evaluated by the following set of correct/error probabilities:

̟i =Pr (ûi = 1|ui = 1) = Pr
(
|v̂h,i|2 > ̺i

∣∣∣ui = 1
)
= e

− ̺i
ζi,1 , (4.23)

ϑi =Pr (ûi = 1|ui = 0) = Pr
(
|v̂h,i|2 > ̺i

∣∣∣ui = 0
)
= e

− ̺i
ζi,0 . (4.24)

Note that Pr (ûi = 0|ui = 1) = 1−̟i and Pr (ûi = 0|ui = 0) = 1− ϑi.

The next processing step in the fusion center is to combine the hard decisions ûi, i =

1, . . . ,K, to make a final sensing decision. This can be done in the same manner as in

Chapter 3 by forming the following likelihood ratio for the decoded bits:

L(D)(û) =
Pr(û|H1)

Pr(û|H0)
=

∏K
i=1(1− ℘di)

(1−ûi)℘d
ûi
i∏K

i=1(1− ℘f i)
(1−ûi)℘f

ûi
i

, (4.25)

where ℘di = Pr(ûi = 1|H1) and ℘f i = Pr(ûi = 1|H0) are the probabilities of detection and

probabilities of false alarm associated with the decoded bits ûi. They are shown in Chapter

3 to be given as ℘di = pdi̟i + (1− pdi)ϑi and ℘f i = pf i̟i + (1− pf i)ϑi.

Working with the logarithm of (4.25), the decoding-based fusion rule is given as:

L(D)(û) =

K∑

i=1

[ϕ0,i (1− ûi) + ϕ1,iûi]
H1

≷
H0

λ(D), (4.26)

where λ(D) is the threshold, while the weights are ϕ0,i = log 1−℘di

1−℘f i

and ϕ1,i = log℘di

℘f i

. Note

that the above fusion rule is simply a weighted linear combinations of the hard-decision bits.

Moreover, the weights are inherently adjusted according to both the decision of the ith CR

and the quality of the reporting channel.
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By approximating L(D)(û) as a Gaussian random variable under each hypothesis, the

expressions of the probability of false alarm and the probability of detection at the fusion

center are as follows:

P
(D)
F (pf ,λ

(D)) = Pr
(
L(D)(û) > λ(D)

∣∣H0) = Q

(
λ(D) −m0

δ0

)
, (4.27)

and

P
(D)
D (pd,λ

(D)) = Pr
(
L(D)(û) > λ(D)

∣∣H1) = Q

(
λ(D) −m1

δ1

)
. (4.28)

The mean values, m0 andm1, and the variances, δ20 and δ
2
1, can be determined in a similar

fashion as in Chapter 3. The means are given as:

m0 =E [L(D)(û)|H0] =
K∑

i=1

mi,0,

mi,0 =
[
̟ipf i + ϑi(1− pf i)

]
[ϕ1,i − ϕ0,i] + ϕ0,i, (4.29)

and

m1 =E [L(D)(û)|H1] =

K∑

i=1

mi,1,

mi,1 = [̟ipdi + ϑi(1− pdi)] [ϕ1,i − ϕ0,i] + ϕ0,i. (4.30)

Using the fact that E [ûi|H0] = ℘f i and E [ûi|H1] = ℘di, the variances are:

δ20 = Var[L(D)(û)|H0] =
K∑

i=1

E
[
û2i |H0

]
[ϕ1,i − ϕ0,i]

2

+

K∑

i,j=1,i 6=j
[ϕ1,i − ϕ0,i] [ϕ1,j − ϕ0,j ] E [ûiûj|H0]−m2

0

=
K∑

i=1

℘f i [ϕ1,i − ϕ0,i]
2 +

K∑

i,j=1,i 6=j
[ϕ1,i − ϕ0,i] [ϕ1,j − ϕ0,j] C0(i, j)−m2

0, (4.31)
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and

δ21 = Var[L(D)(û)|H1] =

K∑

i=1

E
[
û2i |H1

]
[ϕ1,i − ϕ0,i]

2

+
K∑

i,j=1,i 6=j
[ϕ1,i − ϕ0,i] [ϕ1,j − ϕ0,j] E [ûiûj|H1]−m2

1

=

K∑

i=1

℘di [ϕ1,i − ϕ0,i]
2 +

K∑

i,j=1,i 6=j
[ϕ1,i − ϕ0,i] [ϕ1,j − ϕ0,j ] C1(i, j)−m2

1. (4.32)

Observe that, different from the case of orthogonal transmission considered in Chapter 3,

the above variances depend on the correlations of the decoded bits, ûi and ûj, under the two

hypotheses. These correlations are determined as follows:

C0(i, j) , E [ûiûj|H0] = Pr
(
|v̂h,i|2 > ̺i, |v̂h,j|2 > ̺j|H0

)
= e−̺T

ij([ζ0(i,j)])
−1̺ij , (4.33)

C1(i, j) , E [ûiûj|H1] = Pr
(
|v̂h,i|2 > ̺i, |v̂h,j|2 > ̺j|H1

)
= e−̺T

ij([ζ1(i,j)])
−1̺ij . (4.34)

where ̺ij , [̺i, ̺j]
T , ζ0 , GD0G

T + σ2
FCI, and ζ1 , GD1G

T + σ2
FCI.

Recall that an approximation of the optimal sensing thresholds used at the cognitive

radios for the energy-based fusion rule is given in (4.12). The same result applies to the

decoding-based fusion rule presented in this section. The proof of this follows the same steps

in Appendix B.3.

The next section compares the performance of the energy-based and decoding-based

fusion rules and also verifies the accuracy of our analysis. It is pointed out that the simple

expressions of the probability of false alarm and the probability of detection ((Eqns. (4.9),

(4.10) for energy-based fusion rule or Eqns. (4.27), (4.28) for energy-based fusion rule) are

very convenient not only in determining the threshold at the fusion center (λ(E) or λ(D)) for

a given target probability of false-alarm (or probability of detection), but also in evaluating

the performance of different sets of signature vectors used in nonorthogonal transmission of

local decisions.
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Figure 4.2 Probability of detection versus probability of false alarm for the energy-

based fusion rule.
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Figure 4.3 Probability of detection versus probability of false alarm for the

decoding-based fusion rule.
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4.5 Simulation Results

Each point in the simulations results is obtained by averaging over 104 random realizations

for primary transmitted signal, fading channels and noise. For the sake of simplify, it is

assumed that Pr(H0) = Pr(H1) = 0.5. Unless otherwise stated, the number of the CRs is

set to K = 30, the number of samples taken is N = 500 and the set of WBE signature

sequences are assigned to CR users.

Fig. 4.2 and Fig. 4.3 depict the probabilities of detection versus the probabilities of false

alarm when the energy-based and decoding-based fusion rules are used, respectively. For

both figures, all the sensing channels have the same average SNR of γi = γ = −15dB,

and also all the reporting channels have the same SNR of ξi = ξ = 20 dB. The sensing

threshold is chosen as ǫi = ǫ∗ =
(
1 + 1

γ

)
log (γ + 1) at each CR node. For the energy-

based fusion rule, it is clearly seen from Fig. 4.2 that by increasing the length of signature

vectors from M = 5 to M = 15 the probability of detection versus the probability of false

alarm increases significantly, whereas increasing M beyond 15 only improves the sensing

performance slightly. This suggests that, compared to the case of orthogonal transmission,

the transmission bandwidth for the reporting phase can be reduced by half by using WBE

sequences with M = 15 while not loosing too much the sensing performance. It can also

be observed that the analytical and simulation results match very well.3 For comparison

purpose, the performance with random signature vectors was also obtained and plotted in

Fig. 4.2 for M = 15. Specifically, the result is obtained by averaging over 104 random

realizations of the signature vectors. As expected, the performance of using WBE sequences

significantly outperforms the performance with random sequences.

On the other hand, for the proposed decoding-based fusion rule, Fig. 4.3 shows that

the sensing performance is significantly improved not only when increasing M from 5 to

15, but also by further increasing M to 30. Such an improvement can be explained by the

fact that detection of the transmitted bits from CRs strongly depends on the interference

3To avoid having too many curves on the same figure, only the analytical result for the case of M = 15

is shown.
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caused by nonorthogonal transmission. As the interference reduces with longer signature

vectors (larger M), the detection performance is greatly enhanced when all the reporting

channels are fairly strong. The figure also shows that the theoretical result (with M = 15)

follows the simulation result closely. Another observation from Fig. 4.3 is that with random

signature vectors, the sensing performance is slightly better than the performance with WBE

sequences. As pointed out before, it is difficult to obtain the optimal set of signature vectors

for the proposed decoding-based fusion rule. The results in Fig. 4.3 suggest that either

randomly-generated or WBE sequences can be used for the proposed decoding-based fusion

rule.
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Figure 4.4 Probability of detection versus probability of false alarm: Comparison

between decoding-based and energy-based fusion rules.

Fig. 4.4 compares the probabilities of detection obtained by simulation with the energy-

based and decoding-based fusion rules for different values ofM and when the WBE sequences

are used. As can be seen, even in the presence of strong reporting channels, the energy-based

fusion rule performs equally or better than the decoding-based fusion rule when M ≤ 15.

On the contrary, for M > 15, the decoding-based fusion rule outperforms the energy-based
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Figure 4.5 Probability of detection versus probability of false alarm for scenario 1.

fusion rule. The obtained results suggest that the energy-based fusion rule can be employed

as an efficient fusion rule in cognitive radio applications under very limited transmission

bandwidth (i.e., M ≤ 15).

Figs. 4.5 and 4.6 present performance comparison between the two sensing algorithms for

the situations when the SNRs are different at the CRs and/or the FC. In the first scenario

all the CRs experience the same “sensing” SNR of γ = γi = −15 dB from the primary

user but each group of CRs transmit their sensing results to the fusion center with the

“reporting” SNRs of −5 dB (6 CRs), −1 dB (6 CRs), 0 dB (12 CRs) and 5 dB (6 CRs). In

the second scenario, the CRs are divided into 6 groups of 5 CRs each. The “sensing” SNRs

are given as {−15,−24,−5,−10,−20} dB, whereas the reporting SNRs are considered to

be {5, 10, 1, 1, 5} dB. In comparison to the first scenario, the second scenario has stronger

reporting channels.

As can be seen in Figs. 4.5 and 4.6, both figures show performance improvement when

M increases from 15 to 30. However for the first scenario with the weak reporting links the
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Figure 4.6 Probability of detection versus probability of false alarm for scenario 2.

improvement is marginal. This is because the sensing performance in this scenario is mostly

affected by the noise at the FC rather than the interference caused by shorter signature

vectors. Another important observation is that the energy-based fusion rule outperforms the

decoding-based rule. Thus it can be concluded that for low channel SNRs, the energy-based

fusion rule is preferred over the decoding-based fusion rule due to its lower complexity while

at the same time delivering equal or better performance.

For the second scenario, when the channels are fairly strong, the decoding-based detection

significantly outperforms the energy-based detection. Also as M increases, the performance

of the decoding-based fusion rule quickly improves due to the reduction of interference.

However for the energy-based fusion rule, interference reduction does not play a significant

role in improving the sensing performance.

Fig. 4.7 presents a comparison between the probabilities of detection of the two sensing

algorithms for the situation when N = 500 and PF is fixed at 0.05 at the fusion center.

The sensing SNRs are −12 and −9 dB at the CRs and the reporting SNRs are 20 dB.
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Figure 4.7 Probability of detection versus M for PF = 0.05.

As can be seen, for a lower sensing SNR, the performance of both algorithms improves

significantly with increasing M . Such an improvement can be explained by the fact that

as M increases, the interference caused by nonorthogonal transmission is reduced, which

helps to enhance the sensing quality. On the other hand, when the sensing SNR increases,

the individual CR sensing performance quickly improves, which makes the overall desirable

sensing performance be achieved by using shorter-length signature vectors. For example,

given the target PF = 0.05 and the sensing time of 500 samples, in order to achieve a target

PD = 0.9 when the sensing SNRs are −12 dB, it is seen that setting M = 15 is sufficient.

The use of such shorter signature vectors translates to half of the bandwidth as required by

orthogonal signature vectors.

Finally, in Fig. 4.8, the normalized throughput, defined as
(
1− N

T

)
(1− PF ), is plotted

versus the entire time frame of 1 ms (which is equivalent to T = 1, 000 samples). Here the

threshold λ(D) is selected to fix the probability of detection at PD = 0.8. Two sets of signature

vectors, whose lengths areM = 25 andM = 10, are considered. For the given target PD and

for the case M = 25, it can be seen that the decoding-based fusion rule achieves a higher
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Figure 4.8 Normalized throughput versus time samples N for PD = 0.8.

secondary throughput than the energy-based fusion rule. However, for the case M = 10,

both the decoding-based and energy-based fusion rules achieve almost the same secondary

throughput. These results are in agreement with our previous discussion concerning Fig. 4.4.

Another important observation of Fig. 4.8 is that the throughput functions are concave and

attain a maximum point at a certain sensing time. This means that for a given a target PD,

an optimal sensing time can be found to maximize the secondary throughput. Alternatively,

for a given target PD, the minimum length of the signature vectors can be determined to

achieve a target secondary throughput within the allowable sensing time.

4.6 Conclusions

In this chapter, a low-complexity decoding-based fusion rule for cognitive radio networks

is proposed with nonorthogonal transmission of local decisions in the presence of channel

impairments and noise. The proposed fusion rule first performs the MMSE estimation of the

transmitted information, makes decisions on the individual bits sent by the cognitive radios

and then combines these hard-decision bits in a linearly-weighted manner. Performance com-

103



parison with the energy-based fusion rule shows the superiority of the proposed fusion rule

when the reporting channels are reasonably strong. The excellent match between simulation

and analytical results verify the accuracy of the performance analysis of the proposed fusion

rule.
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5. Summary and Suggestions for Further Studies

5.1 Summary

This thesis focused mainly on developing spectrum sensing schemes for wireless cognitive

radio networks with different network topologies and channel state information assumptions.

Specifically, the main contributions of this thesis are summarized as follows:

• Regarding wideband spectrum sensing, a spectrum sensing method for OFDM-based

cognitive radio systems has been developed based on the GLRT framework. In order

to enhance the ML estimations of unknown parameters, the structure (constraint) of

the covariance matrix of the underlying OFDM signals has been taken into account

(Chapter 2). Simulation results with different channel scenarios revealed the robustness

and efficiency of the proposed method. In particular, the developed algorithms greatly

outperform energy detection in an environment with noise uncertainty.

• As a further step in improving the reliability of spectrum sensing, the thesis also devel-

oped a collaborative spectrum sensing scheme for cognitive radio networks with orthog-

onal CR transmissions (Chapter 3). To overcome the problem of channel estimation,

the noncoherent OOK and BFSK signalling schemes were employed to transmit binary

decisions to the fusion center. A detailed comparison between the noncoherent OOK

and BFSK signalling schemes has been carried out to illustrate the trade-offs involved

in implementing these two transmission schemes. Due to their practical feasibility for

a large CR network, energy- and decoding-based fusion rules were implemented at the

FC. For both fusion rules, it was shown that the secondary throughput with the opti-

mum sensing parameters is a concave function of sensing time and hence there exists
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an optimum solution for the sensing time. The accuracy of the analysis was verified

by the excellent match between simulation and analytical results.

• Finally, Chapter 4 developed and analyzed spectrum sensing algorithms under a non-

orthogonal transmission of local decisions. Such a transmission scheme is particularly

suitable for large-scale distributed CR networks in which the bandwidth consumption

can be reduced while maintaining simple fusion processing. In particular, a decoding-

based fusion rule was investigated in which the MMSE estimation of the transmitted

bits from the CRs are obtained at the fusion center and then they are combined in

a linearly-weighted manner. The proposed decoding-based fusion rule was shown to

be superior to the energy-based fusion rule when the reporting channels are reason-

ably strong. The simulation and analytical results also showed the accuracy of the

performance analysis for different scenarios.

5.2 Suggestions for Further Studies

Currently, research efforts on different aspects of spectrum sensing techniques are still

needed in order to incorporate the cooperative/wideband spectrum sensing schemes into

real-world applications. While conducting this research, several issues arose that should be

interesting for further studies. These issues are elaborated next.

• The first issue that exists in any cognitive radio network is the rate of primary user

activity. In this thesis, it is implicitly assumed that the primary user has a low activity

rate so that the CR network can take advantage of the licensed bandwidth most of

the time. In such an overlay scheme, if the primary user becomes active, the cognitive

radio users have to stop their transmission. However, in a more desirable situation,

the cognitive radios can switch to the underlay paradigm when the licensed bandwidth

is concurrently shared with the CR network. In that case, the transmission power

distribution has to be carefully designed among the CRs according to the interference

issues. The mutual dependence between spectrum sensing and power allocation for

cognitive radios manifests itself in the average secondary throughput. Since the main
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goal for a cognitive radio network is to maximize the opportunistic throughput, it is

important to obtain the best sensing time and power allocations to achieve the target

opportunistic throughput while satisfying the interference constraints.

• Regarding the wideband spectrum sensing, there is a need to investigate OFDM stan-

dard signals. One of the main standards for OFDM-based cognitive radio applications

is the mobile worldwide interoperability for microwave access (WiMAX) and third-

Generation Partnership Project Long Term Evolution (3GPP LTE). The particular

structure of these signals allows for developing robust spectrum sensing algorithms

which take into account preambles, pilots, and reference signals (RS). Conforming

to the OFDM structure, both mobile WiMAX and LTE OFDM signals exhibit CP-

induced cyclostationarity. In particular, it is promising to incoporate the distinctive

preamble-induced correlation of the mobile WiMAX OFDM-based signals and the dis-

tinctive RS-induced correlation of the LTE OFDM-based signals in a GLRT-based test

statistics to improve the detection performance.

• OFDM can be used as a multiple access scheme allowing simultaneous frequency-

separated transmissions to/from multiple mobile terminals using OFDMA (Orthogo-

nal Frequency Division Multiple Access) technology. Among the mobile broadband

wireless access standards, IEEE 802.20 is an efficient OFDMA-based air interface that

is optimized for the transport of IP-based services to enable worldwide deployment

of affordable multi-provider networks for full mobility up to vehicular speeds of 250

km/h [69]. In the scenario when the primary user employs OFDMA as the air inter-

face, the cognitive radio network has to be able to carefully detect the idle portions

of the licensed spectrum. The timing misalignment due to the mobility and multipath

channels may deteriorate the synchronization and decoding of the received signals due

to introduced inter-carrier interference (ICI) [70]. In order to implement a CR network

with OFDMA-based primary signal the following issues need to be considered:

(i) There is a need to develop and compare efficient spectrum sensing methods which

are robust to the timing misalignment. The aim is to minimize the false and
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missed detections probabilities.

(ii) A cooperative sensing mode is worthwhile to be developed for detecting OFDMA-

based primary signals. In computing the test statistics at each CR, different

subcarriers have to be allocated different weights to minimize the ICI effect in

sensing. Since the CRs’s sensing data is transmitted over fading channels, the

performance reliability of each CR has to be taken into account in the final decision

at the fusion center. The design of the weights at the CRs and fusion center can

be carried out so that the total transmission rate of the CR network is maximized

while the interference introduced to the primary users is maintained within an

acceptable limit.
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A. Appendices for Chapter 2

A.1 Proof of Equation (2.46)

For a fixed SNR and an i.i.d channel with E{|hi|2} = σ2
h, one has

SNR = E

{
σ2
S

σ2
v

Lc∑

i=1

|hi|2
}

=
Lcσ

2
Sσ

2
h

σ2
v

(A.1)

First rewrite Nh as

Nh = 2σ2
S

[
Lc−1∑

j=1

j∑

i=1

|hi|2 +
Lp∑

j=Lc

j∑

i=1

|hi|2
]
. (A.2)

It can be easily seen that

E{Nh} = 2σ2
Sσ

2
h

[
Lc(Lc − 1)

2
+ (Lp − Lc)Lc

]
= 2σ2

vSNR

[
2Lp − Lc + 1

2

]
, (A.3)

and

E{Dh} = Dh = 2Lpσ
2
v [SNR + 1] . (A.4)

Therefore

H1 : ρ̃ = E{ρ̃h} =
E{Nh}
Dh

=
SNR

1 + SNR

[
2Lp − Lc + 1

2Lp

]
. (A.5)

A.2 Developing the MPCC Test

First observe from (2.66) that

(
det(R̂ẍ)

) 1
L

= e
ln

(
det(R̂ẍ)

1
L

)

(A.6)
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and

ln
(
det(R̂ẍ)

) 1
L

=
1

L
ln
(
det(R̂ẍ)

)
=

1

L

L∑

k=1

ln(λ̃k), (A.7)

where λ̃k’s are the eigenvalues of R̂ẍ. From (2.51), one has

λ̃k = γ̂0 +

Lp−1∑

m=1

Re
(
γ̂me

− j2πkm
L

)
. (A.8)

Hence,

ln(λ̃k) =ln

(
γ̂0 +

Lp−1∑

m=1

Re
(
γ̂me

j2πkm
L

))
= ln


γ̂0


1 +

∑Lp−1
m=1 Re

(
γ̂me

j2πkm
L

)

γ̂0






=ln(γ̂0) + ln


1 +

∑Lp−1
m=1 Re

(
γ̂me

j2πkm
L

)

γ̂0


 . (A.9)

Since

∑Lp−1
m=1 Re

(
γ̂me

j2πkm
L

)

γ̂0
≪ 1 for low SNR values, the second term of (A.9) can be

expanded by keeping the first two terms of the Taylor series. That is

ln


1 +

∑Lp−1
m=1 Re

(
γ̂me

j2πkm
L

)

γ̂0




≈
∑Lp−1

m=1 Re
(
γ̂me

j2πkm
L

)

γ̂0
− 1

2



∑Lp−1

m=1 Re
(
γ̂me

j2πkm
L

)

γ̂0




2

. (A.10)

Therefore

1

L

L∑

k=1

ln(λ̃k)

∼= lnγ̂0 +
1

L

L∑

k=1



∑Lp−1

m=1 Re
(
γ̂me

− j2πkm
L

)

γ̂0
− 1

2



∑Lp−1

m=1 Re
(
γ̂me

− j2πkm
L

)

γ̂0




2 
. (A.11)

The first term inside the square brackets of (A.11) can be simplified as follows:

∑Lp−1
m=1

∑L
k=1Re

(
γ̂me

− j2πkm
L

)

γ̂0
=

∑Lp−1
m=1 Re

(
γ̂m
∑L

k=1 e
− j2πkm

L

)

γ̂0
= 0. (A.12)
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And the second term can be rewritten as

L∑

k=1



∑Lp−1

m=1 Re
(
γ̂me

− j2πkm
L

)

γ̂0




2

=

L∑

k=1



∑Lp−1

m=1
1
2

(
γ̂me

− j2πkm
L + γ̂∗me

j2πkm
L

)

γ̂0




2

=
L∑

k=1

∑Lp−1
m=1

∑Lp−1
q=1

1
4

(
γ̂mγ̂qe

− j2π(k+q)m
L + γ̂∗mγ̂

∗
q e

j2π(k+q)m
L )

)

γ̂20

+

L∑

k=1

∑Lp−1
m=1

∑Lp−1
q=1

1
2
Re(γ̂mγ̂

∗
qe

− j2π(k−q)m
L )

γ̂20

=

∑Lp−1
m=1

∑Lp−1
q=1

1
4

∑L
k=1

(
γ̂mγ̂qe

− j2π(k+q)m
L + γ̂∗mγ̂

∗
qe

j2π(k+q)m
L

)

γ̂20

+

∑Lp−1
m=1

∑Lp−1
q=1

1
2
Re(γ̂mγ̂

∗
q

∑L
k=1 e

− j2π(k−q)m
L )

γ̂20

=0 +
1

4

∑Lp−1
m=1 ‖γ̂m‖2
γ̂20

=
1

4

∑Lp−1
m=1 ‖γ̂m‖2
γ̂20

. (A.13)

Therefore, (A.11) can be approximated by

1

L

L∑

k=1

ln(λ̃k) ∼= lnγ̂0 −
1

4

Lp−1∑

m=1

|γ̂m|2
γ̂20

. (A.14)

Consequently,

(
det(R̂ẍ)

) 1
L ∼= γ̂0e

− 1
4

∑Lp−1
m=1

‖γ̂m‖2

γ̂2
0 . (A.15)

By noting that 1
L

(
tr(R̂ẍ)

)
= γ̂0, the test statistics given in (2.66) can be closely approxi-

mated as

TG(ẍ) =
1
L
tr(R̂x)

det(R̂x)
1
L

∼= γ̂0

γ̂0e
− 1

4

∑Lp−1
m=1

|γ̂m|2

γ̂0
2

= e
1
4

∑Lp−1
m=1

‖γ̂m‖2

γ̂0 . (A.16)

Taking the logarithm of the above test yields the following equivalent test:

T̃ (ẍ) =

∑Lp−1
m=1 ‖γ̂m‖2
γ̂20

. (A.17)
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The ratio ̺̂m = γ̂m
γ̂0

can be easily obtained from (2.56) and is given by

̺̂m =

∑N
n=1

∑L−1
i=0 xn(i)x

∗
n ((i−m) mod L)

∑N
n=1

∑L−1
i=0 |xn(i)|2

. (A.18)

Recall that ̺m = E{xn(k)x∗n(k−m)}
E{xn(k)x∗n(k)}

, m = 0, . . . ,Lp−1, is the correlation coefficients between the

ISI-free portions of OFDM block. On the other hand, ̺̂m represents the sample correlation

coefficient corresponding to a delay of m samples.

112



B. Appendices for Chapter 3

B.1 Proof of Proposition 1

First, from (3.47), λ is obtained to satisfy the target probability of detection P̄D as:

λ̄ = ν1Q
−1
(
P̄D
)
+ µ1 (B.1)

The choice of the above threshold toward maximizing the secondary throughput is justified

by a similar argument as in [5]: When all other parameters are fixed, choosing λ1 < λ̄

gives PD(pd,w,λ1) > P̄D and also PF (pd,w,λ1) > PF (pd,w,λ), which results into a lower

secondary throughput.

Replacing λ̄ into problem (3.60) yields the following optimization problem:

min
ǫ,w

P̄F (τ , ǫ,w). (B.2)

From (3.46) and (B.1), one has:

P̄F (τ , ǫ,w) =Q

(
ν1Q

−1(P̄D) + (µ1 − µ0)

ν0

)

=Q

(
ν1Q

−1(P̄D) +
∑K

i=1wiξi
(
pdi − pf i

)

ν0

)

=Q (φ(τ , ǫ,w)) . (B.3)

where

φ(τ , ǫ,w) =
ν1Q

−1(P̄D) +
∑K

i=1wiξi
(
1− (pmi + pf i)

)

ν0
. (B.4)

and pmi = 1−pdi represents the misdetection probability at the ith CR. Note also that ϑi =
pmi+pf i

2
is the overall probability of error for each CR. From (B.3), it is seen that P̄F (τ , ǫ,w)

is minimized when the argument of the Q function, namely φ(τ , ǫ,w) is maximized.
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Since finding an exact solution for ǫ in terms of other parameters to maximize φ(τ , ǫ,w)

appears intractable, in what follows, approximations are applied to obtain a closed-form

solution for ǫ that does not depend on the fading channels between CR nodes and FC. First,

by taking the first derivative of φ(τ , ǫ,w) with respect to ǫi, it is seen that the following

expression has to set to zero to find ǫi:

θ(ǫi) =

[
−Q−1(P̄D)

∂ν1
∂pdi

∂pmi
∂ǫi

− 2wiξi
∂ϑi
∂ǫi

]
− φ(τ , ǫ,w)

∂ν0
∂pf i

∂pf i
∂ǫi

. (B.5)

where ∂ν1
∂pdi

=
w2

i (ξ2i [1−pdi]+ξi)
ν1

≪ wiξi for K ≫ 1. Also from (B.3), it is seen that for a typical

value of P̄D ≃ 0.9, Q−1(P̄D) ≃ −1.2. Consequently the first term in the square brackets of

(B.5) is negligible compared to the second term. As such (B.5) can be approximated as:

θ(ǫi) ≃ −2wiξi
∂ϑi
∂ǫi

− φ(τ , ǫ,w)
∂ν0
∂pf i

∂pf i
∂ǫi

. (B.6)

Furthermore, the second term in (B.6) is also negligible when compared to the first term.

This is because −1 < φ(τ , ǫ,w) < 1.5 for 0.06 < P̄F < 0.8 and ∂ν0
∂pf i

=
w2

i (ξ2i [1−pf i
]+ξi)

ν0
≪ wiξi

for K ≫ 1. As such the first term is the significant part of (B.6) and ǫi is found by solving

∂ϑi
∂ǫi

= 0.

As it is verified in [50], the sensing threshold which minimizes ϑi at each CR node is

given as:

ǫ∗i =

(
1 +

1

γi

)
log (γi + 1) (B.7)

which is fixed and depends solely on the signal to noise ratio of the primary received signal

at each CR node.

Remark 1: For BFSK, in a similar manner carried out for OOK, one has:

˙̄PF (τ , ǫ,w) = Q

(
ν̇1Q

−1(P̄D) + (µ̇1 − µ̇0)

ν̇0

)
= Q

(
φ̇(τ , ǫ,w)

)
(B.8)

where φ̇(τ , ǫ,w) = ν̇1Q−1(P̄D)+(µ̇1−µ̇0)
ν̇0

.

From (3.49) it is seen that ν̇0 and ν̇1 vary slightly with the changes in pf and pd. In

fact ∂ν̇1
∂pdi

∣∣∣
pdi=0.5

= ∂ν̇0
∂pf i

∣∣∣
pf i

=0.5
= 0. On the other hand, for OOK, ∂ν1

∂pdi

∣∣∣
pdi=0.5

= ∂ν0
∂pf i

∣∣∣
pf i

=0.5
≈

1
2

w2
i ξ

2
i

ν1
. Also from (3.48) it is seen that for BFSK, µ̇1 − µ̇0 = 2

∑K
i=1 ẇiξ̇i

(
pdi − pf i

)
, while
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for OOK µ1 − µ0 =
∑K

i=1wiξi
(
pdi − pf i

)
. Hence for the same received SNR at FC, one has

µ̇1 − µ̇0 = µ1 − µ0. These observations suggest that the variation in φ̇(τ , ǫ,w) is mostly due

to the variation in the term µ̇1− µ̇0 = 4
∑K

i=1 ẇiξ̇i
(
pdi − pf i

)
. As such the value ǫ∗i obtained

by maximizing ϑi will be a closer to the optimal ǫi for BFSK than for OOK.

From the previous discussion it is seen that ν1 and ν0 in (B.3) demonstrate only small

variations in terms of pdi and pf i when compared to the term
∑K

i=1wiξi
(
pdi − pf i

)
. There-

fore, to optimize w, the following problem can be solved:

max
w

wTq

ν0
≡ max

w

(
wTq

)2

wΦwT
(B.9)

wherew = [w1, . . . ,wK ]
T , q =

[
ξ1
(
pd1 − pf 1

)
, . . . , ξK

(
pdK − pfK

)]T
,Φ = diag

(
ν21,0, . . . , ν

2
K,0

)
.

Using the Rayleigh-Ritz theorem [71], the solution to (B.9) is given as:

w = cΦ−1/2q. (B.10)

where c is a scalar constant. Without loss of generality c can be set to 1 and wi’s are obtained

as:

wi(τ , ǫ) =
ξi
(
pdi − pf i

)

νi,0
. (B.11)

Substituting pf i(τ) = pf i(τ , ǫ
∗) and pdi(τ) = pdi(τ , ǫ

∗) in the above yields w∗
i (τ) = wi(τ , ǫ

∗)

and the proof is completed. �

B.2 Proof of Proposition 2

We need to show that ∂2R̄0(τ)
∂τ2

< 0. First, one has:

∂R̄0(τ)

∂τ
= −C0

(
1− P̄F (τ) + (T − τ)

∂P̄F (τ)

∂τ

)
, (B.12)

∂2R̄0(τ)

∂τ 2
= C0

(
2
∂P̄F (τ)

∂τ
− T

∂2P̄F (τ)

∂τ 2

)
. (B.13)

It follows from (3.62), (3.63) and (3.71) that

P̄F (τ) = Q



Q−1(P̄D)ν̄1(τ) +

∑K
i=1

ξi
ν̄0(τ)

(
pdi(τ)− pf i(τ)

)2

ν̄0(τ)︸ ︷︷ ︸
φ̄(τ)


 . (B.14)
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Next, one obtains ∂P̄F (τ)
∂τ

as follows:

∂P̄F (τ)

∂τ
= − 1

√
2πexp

(
−φ̄(τ)2/2

) ∂φ̄(τ)
∂τ

= − 1√
2πν̄0(τ)

exp
(
−φ̄(τ)2/2

)
×


−Q−1(P̄D)

K∑

i=1

(
∂ν̄1(τ)

∂pdi(τ)

∂pdi(τ)

∂τ

)

︸ ︷︷ ︸
t(τ)

−
K∑

i=1

ξi

(
2

ν̄i,0(τ)

(
pdi(τ)− pf i(τ)

)(∂pdi(τ)
∂τ

−
∂pf i(τ)

∂τ

)
−
(
pdi(τ)− pf i(τ)

)2

ν̄i,0(τ)
2

∂ν̄i,0(τ)

∂pf i(τ)

∂pf i(τ)

∂τ

)

︸ ︷︷ ︸
u(τ)

−φ̄(τ)
K∑

i=1

∂ν̄0(τ)

∂pf i(τ)

∂pf i(τ)

∂τ
︸ ︷︷ ︸

v(τ)


. (B.15)

From (3.10) and (3.11), one has:

∂pf i(τ)

∂τ
= − αi

√
fs

2
√
2τπ

exp
(
−α2

i τfs/2
)

(B.16)

and

∂pdi(τ)

∂τ
= − βi

√
fs

2
√
2τπ

exp
(
−β2

i τfs/2
)

(B.17)

where αi = (1 + 1
γi
)log (1 + γi)−1 > 0 and βi =

1
γi
log (1 + γi)−1 < 0. Therefore,

∂pf i
(τ)

∂τ
< 0,

∂pdi(τ)

∂τ
> 0. Moreover, ∂ν̄0(τ)

∂pf i
(τ)

> 0, ∂ν̄1(τ)
∂pdi(τ)

> 0 and
∂ν̄i,0(τ)

∂pf i
(τ)

> 0. Also, for P̄F (τ) ≤ 0.5,

φ̄(τ) > 0. Thus it can be seen from (B.15) that ∂φ̄(τ)
∂τ

> 0 which proves that that ∂P̄F (τ)
∂τ

< 0.

Next, consider:

∂2P̄F (τ)

∂τ 2
= − 1√

2π
exp

(
−φ̄(τ)2/2

)
(
−φ̄(τ)

(
∂φ̄(τ)

∂τ

)2

+
∂2φ̄(τ)

∂τ 2

)
(B.18)

It follows from (B.16) and (B.17) that:

∂2pf i(τ)

∂τ 2
=
β3
i fs

√
fs

4
√
2τπ

exp
(
−β2

i τfs/2
)
+

βi
√
fs

4τ
√
2τπ

exp
(
−β2

i τfs/2
)
< 0 (B.19)

∂2pdi(τ)

∂τ 2
= −α

3
i fs

√
fs

4
√
2τπ

exp
(
−α2

i τfs/2
)
− αi

√
fs

4τ
√
2τπ

exp
(
−α2

i τfs/2
)
> 0 (B.20)
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Using the above along with (B.16) and (B.17), it can be easily seen from (B.15) that ∂2φ̄(τ)
∂τ2

=

∂(t(τ)+v(τ)+u(τ))
∂τ

< 0. Clearly for P̄F (τ) ≤ 0.5, φ̄(τ) > 0, so in (B.18) the term(
−φ̄(τ)

(
∂φ̄(τ)
∂τ

)2
+ ∂2φ̄(τ)

∂τ2

)
< 0 and ∂2P̄F (τ)

∂τ2
> 0. Combining the results of ∂P̄F (τ)

∂τ
< 0 and

∂2P̄F (τ)
∂τ2

> 0 in (B.13) leads to ∂2R̄0(τ)
∂τ2

< 0 and the proof is concluded. �

B.3 Obtaining Sensing Thresholds

First, λ(D) is obtained from (4.28) to satisfy the target probability of detection P̄D as:

λ̄(D) = δ1Q
−1
(
P̄D
)
+m1. (B.21)

Then from (4.28) and (B.21), one has:

P̄F (τ , ǫ) = Q

(
δ1Q

−1(P̄D) + (m1 −m0)

δ0

)
= Q

(
φ(D)(τ , ǫ)

)
, (B.22)

where

φ(D)(τ , ǫ) =
δ1Q

−1(P̄D) +
∑K

i=1

[(
pdi − pf i

)
(̟i − ϑi) (ϕ1,i − ϕ0,i)

]

δ0
. (B.23)

By taking the first derivative of φ(D)(τ , ǫ) with respect to ǫi, it is seen that the following

expression has to set to zero to find ǫi:

θ(D)(ǫi) =


Q−1(P̄D)

∂δ1
ǫi

+
∂
(
pdi − pf i

)

∂ǫi
(̟i − ϑi) (ϕ1,i − ϕ0,i)

+
(
pdi − pf i

)
(̟i − ϑi)

∂ (ϕ1,i − ϕ0,i)

∂ǫi


− φ(D)(τ , ǫ)

∂δ0
∂ǫi

. (B.24)

Since ∂δ1
∂ǫi

=
δi,1
δ1

∂δi,1
∂ǫi

≪ 1, θ(D)(ǫi) can be well approximated as:

θ(D)(ǫi) ≃
∂
(
pdi − pf i

)

∂ǫi
(̟i − ϑi) (ϕ1,i − ϕ0,i) +

(
pdi − pf i

)
(̟i − ϑi)

∂ (ϕ1,i − ϕ0,i)

∂ǫi
. (B.25)

where

∂ (ϕ1,i − ϕ0,i)

∂ǫi
= (̟i − ϑi)×

[
1

℘di(1− ℘di)

∂pdi
∂ǫi

− 1

℘f i(1− ℘f i)

∂pf i
∂ǫi

]
. (B.26)
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On the other hand, from (4.27) and (4.28), one has:

℘di − ℘f i = (̟i − ϑi)
(
pdi − pf i

)
. (B.27)

If the reporting link to FC is good enough, i.e., ̟i → 1 and ϑi → 0, (e.g., ̟i = 0.9,

ϑi = 0.1) then ℘di ≃ pdi and ℘f i ≃ pf i. Now assume that ǫi = ǫ∗i which is a solution to
∂(pdi−pf i)

∂ǫi
= 0. Since pdi + pf i ≃ 1 for ǫi = ǫ∗i , it is then concluded that ℘f i(1− ℘f i) ≃

℘di(1− ℘di). So ǫi = ǫ∗i is also the solution to
∂(ϕ1,i−ϕ0,i)

∂ǫi
= 0 and θ(D)(ǫ∗i ) = 0.

If on the other hand, ̟i and ϑi are far from 1 and 0 respectively, (̟i − ϑi) < 1. Also
(
pdi − pf i

)
< 1, therefore ℘f i(1− ℘f i) − ℘di(1− ℘di) = (̟i − ϑi)(pdi − pf i)(2℘di − 1) ≃ 0

and again ǫ∗i will be a close solution to
∂(ϕ1,i−ϕ0,i)

∂ǫi
= 0 and consequently θ(D)(ǫ∗i ) = 0.

The above analysis implies that

ǫ
(D)∗
i = ǫ∗i ≃ arg max φ(D)(τ , ǫ), (B.28)

which completes the proof. �
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