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Abstract

In this thesis, we consider two estimation problems of the regression parame-

ters in generalized partial linear regression model and multiple linear regres-

sion model with many covariates. We consider the situation where some of

the regression parameters may be suspected to satisfy some restrictions and

the nonparametric part is considered as nuisance.

We first propose some novel and improved methods to estimate the regres-

sion coefficients of generalized partial linear models (GPLM). This model

extends the generalized linear model by adding a nonparametric component.

Like parametric models, variable selection is important in the GPLM to sin-

gle out the inactive covariates. Instead of deleting inactive covariates, we use

them as an auxiliary information. We define two models, the unrestricted

model includes all the covariates whereas the restricted one includes the ac-

tive covariates only. We then combine these two model estimators optimally

to form the pretest and shrinkage estimators. We study the asymptotic prop-

erties to derive the asymptotic biases and risks of the estimators. We show

that the asymptotic risks of the shrinkage estimators are strictly less than

that of the full model estimators. A simulation study is conducted to assess

the performance of the proposed estimators. We then apply our proposed

methods to analyze a real credit scoring data. Both simulation study and

real data example corroborate with the theoretical result.
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Optimal design plays an important role in achieving good estimation of the

parameters. Motivated by this fact, we propose another novel method to

further improve the pretest and shrinkage estimators. The results are very

promising. Apart from the modeling and post-modeling procedures, pre-

modeling stage plays a key role in achieving efficient estimators of the pa-

rameters. The optimal combinations of values of inputs which are normally

numeric must be chosen before running an experiment. We consider the

most popular D-optimality criterion and construct the optimal design using

a class of algorithms. We then generate the data according to the optimal

design and finally obtain our pretest and shrinkage estimators in multiple

linear regression models. Our studies evidently show that our proposed esti-

mators using optimal design theory outperform the estimators without using

optimal design.
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Chapter 1

Introduction

The linear regression model is a commonly used statistical tool for finding

the relationship between the response and covariates. It has been studied

rigorously and the simplicity of linearity makes it easily applicable to various

fields, including medical science, finance, environmental science, economet-

rics, social science and computer science. Regression analysis may include

variety of methods to model the relationship between variables and response.

For the parametric model, several estimation techniques have been consid-

ered, specifically least squares estimation (LSE) and maximum likelihood

estimation (MLE) methods to estimate the parameters. LSE has received a

significant attention in both theory and applications and no distributional

assumptions are required for deriving the parameter estimates. On the other
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hand, maximum likelihood estimation deliver a similar estimation as LSE,

however, assumption of distribution is required. Both LSE and MLE lead

to the best estimate among linear unbiased estimates which is called unre-

stricted estimator.

One common problem in regression analysis frequently occurs in select-

ing active covariates for the response, particularly when a large number of

active covariates is under investigation. This tells the researchers for two

choices. An unrestricted model with all covariates and a restricted model

that contains only active covariates. The pretest estimation technique de-

fined by Bancroft (1944) tests whether the coefficients of covariates or the

linear restrictions of coefficients are zero or not and include only those covari-

ates that are rejected by the test. Another way to select the active covariates

or restricted model is to use the existing variable selection techniques, such as

AIC or BIC, among others, when regression models are assumed to be sparse.

The goal here is to minimize the prediction error while reducing the number

of covariates in the model. The James-Stein shrinkage estimation method is

the improved estimation method that allows the researcher to achieve this

goal since it uses information from the inactive covariates for estimating the

coefficients of the active covariates.

To fix the idea of pretest and shrinkage estimators, let us consider the

19



estimation problem in a multiple linear regression model

yi = x>i β + εi, i = 1, 2, . . . n. (1.1)

where yi is the response for the ith individual, β = (β1, β2, . . . , βp)
>, x>i =

(xi1, xi2, . . . , xip), and εi is normally distributed with mean 0 and variance

σ2. Based on the sample information, the unrestricted maximum likelihood

estimator (MLE) of the regression coefficient is given by

β̂ML = (X>X)−1X>y, (1.2)

where X = (x1,x2, · · · ,xn)> is an n× p design matrix.

The unrestricted model includes all the p covariates and we estimate

the parameters of the model based on available sample data. The restricted

model includes p2 covariates when the parameters satisfies a set of p2 linear

restrictions Rβ = r (auxiliary information), where R is a p2 × p matrix of

rank p2 ≤ p, and r is a given p2 × 1 vector of known constants. Accordingly,

for a particular R matrix, we may partition the regression parameter vector

β into two components as β = (β>1 ,β
>
2 )>, where β1 and β2 are assumed to

have dimensions p1 × 1 and p2 × 1, respectively, such that p = p1 + p2. We

consider β in this way as we are interested in estimating β1 by incorporating

the auxiliary information of β2 into the estimation procedure. The restricted

maximum likelihood estimator (RMLE) under the restriction Rβ = r can
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be written as

β̂RML = β̂ML + (X>X)−1R>(R(X>X)−1R>)−1(r −Rβ̂ML).

Similary, we can construct restricted estimator under the restriction β2 = 0.

1.0.1 Pretest and Shrinkage Estimator

Once we get the restricted model estimator along with the unrestricted model

estimator, we can test the validity of the restriction using a suitable test

statistic, say ΛL. In the pretest estimation method, we test the restriction

in the form of null hypothesis H0 : Rβ = r. The pretest estimator of β

denoted as β̂P based on β̂ML and β̂RML is defined as

β̂P = β̂ML − I(∆L ≤ χ2
p1,α

)(β̂ML − β̂RML),

where I(·) is an indicator function that selects the unrestricted or restricted

model based on H0 is false or true and χ2
p1,α

is the α-level critical value of

the distribution of test statistic ΛL under H0. In a two-step procedure, one

would test the hypothesis H0 : Rβ = r first, based on the outcome of the

test result one should adapt the estimator. The pretest estimator combines

the resulted estimators from these two steps to a single estimator. That is,

testing and estimation are done simultaneously. For details, see Hossain and
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Lac (2021), Hossain et al. (2009), Ahmed et al. (2007), and others.

Unfortunately, the pretest estimator is not a continuous function that

changes based on the α-level. To avoid this discontinuity, we use the shrink-

age estimator which is a continuous function and expresses the MLE and the

RMLE in the form of a linear combination given as

β̂S = (1− (q − 2)Λ−1
L )β̂ML + (1− λ)β̂RML, q > 2.

When the value of ΛL is small, λ can be negative. Thus, the shrinkage

estimator will be less attractive and become over-shrinkage. To overcome

this issue, positive shrinkage estimator is considered. It is defined by

β̂S+ = λ+β̂
ML + (1− λ+)β̂RML,

where λ+ takes positve value of λ.

More discussions about pretest and shrinkage estimation can be found in

Ahmed and Fallahpour (2012), Ahmed (2014), Hossain et al. (2015), Hossain

et al. (2016), Hossain and Lac (2021), Fourdrinier et al. (2018), Battauz and

Bellio (2021), and Mandal et al. (2019).
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1.0.2 Partially Linear Models

A partially linear regression model is defined as

yi = x>i β +m(ti) + εi, i = 1, 2, . . . n. (1.3)

where xi and ti are p × 1 and q × 1 covariate vectors, respectively, β is a

p× 1 vector of parameters, m(·) is an unknown real-valued function defined

on [0, 1], and the εi’s are unobservable random errors.

Model (1.3) has many applications in medicine, economics, finance,

social and biological sciences. For example, in a clinical trial to compare two

treatments, a patient’s response may be related to the treatment received and

on some covariates (e.g. cholesterol level). In this situation, the researcher

may not know the effect of cholesterol level on the response, but may want

to estimate the treatment differences which are believed to be constant and

independent of cholesterol level. More details and estimation methods of

partially linear models can be found in Boente et al. (2006), Ni et al. (2009),

Hossain et al. (2009), and Härdle et al. (2012a).
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1.0.3 Generalized Partial Linear Models

The generalized linear model is a tool which covers many possible nonlinear

relations between covariates xi and the response variable yi. The partially

linear model in (1.3) can be extended to generalized partial linear models

(GPLM) which has the form as

E(yi|xi, ti) = G
{
x>i β +m(ti)

}
, i = 1, 2, . . . n, (1.4)

where G(·) is a link function. These models allow a nonparametric inclusion

of a part of the covariates. We assume a decomposition of the covariates into

two vectors xi and ti, where xi cover discrete and continuous covariables

and ti cover continuous covariables only. The details of these models and

estimation methods will be discussed in Chapters 2 and 3. More details of

these model can also be found in Boente et al. (2006), Boente et al. (2016),

Carroll et al. (1997), and Liang (2008).

1.1 Motivation and a Brief Summary

The motivation of this thesis is two-fold:

(i) to develop the pretest and shrinkage estimators in generalized partial

linear models,
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(ii) to further improve the pretest and shrinkage estimators using the the-

ory of optimal design.

Our first motivation came from a real credit scoring data. Credit scor-

ing data are quite important in the risk assessment process. We came across

a real dataset called German credit scoring data set, available at

https://archive.ics.uci.edu/ml/datasets/ statlog + (german+credit+data)

which contains observations on 20 socioeconomic variables for 1000 individ-

uals. All individuals belong to the same bank. The individuals have been

classified as good or bad credit risks. The response variable, Creditability,

in the dataset corresponds to the risk label, 0 has been classified as bad credit

risk (300 cases) and 1 has been classified as good credit risk (700 cases). It

was needed to determine if a new applicant for the bank is in good or bad

credit risk situation based on a set of socioeconomic variables. There were

many covariates. Because of insufficient number of observations in each cat-

egory and we only used ten covariates, in which nine were categorial and one

was continuous covariate. We tried with a backward elimination procedure

based on AIC and residual deviance criteria. This motivated us to model the

above credit scoring data based on a reduced GPLM that contains only the

significant covariates from the unrestricted GPLM.

GPLM is a flexible model in the sense that it extends the generalized

linear model by adding a nonparametric component. In many situations, the

relationship between the response variable and its associated covariates may
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not be addressed by either linear model or non-linear model. In addition,

the form of the function m(·) in the model may not always be defined in

advance. Semiparametric models, such as the partially linear model (PLM)

and GPLM become meaningful in finding this type of relationship because of

their robustness to model misspecification. As a tool for estimating the pa-

rameters, James-Stein shrinkage estimation method shrink the unrestricted

estimator towards the restricted estimator. From the best of our knowledge,

we have not found any research in the reviewed literature that develops the

pretest and shrinkage estimators for GPLM. Therefore, in this study, we de-

velop pretest and shrinkage estimation methods for GPLM and compare their

performance based on the asymptotic bias and asymptotic risk functions. A

Monte Carlo simulation study is conducted to compare the performance of

pretest and shrinkage estimators with the unrestricted generalized Speck-

man estimator. The German credit scoring data is analyzed to illustrate the

usefulness of our proposed methods.

Our second motivation came from the fact that optimal design theory

is a powerful tool to obtain best estimation of the parameters of a statistical

model. Motivated by this, we attempt to further improve the pretest and

shrinkage estimators using the optimal design theory. Applying the pretest

and shrinkage estimation methods in the optimal design technique in multi-

ple linear regression is a new concept in the literature. The idea is that the

optimal combinations of values of inputs are chosen before running an exper-
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iment according to a chosen criterion. There are a variety of criteria in the

literature, the most popular one is the D-optimality criterion. We generate

the data according to the optimal design and finally obtain our pretest and

shrinkage estimators. We conduct extensive simulation studies to compare

the performance of the pretest and shrinkage estimators under the setup with

and without optimal design. In overall comparison, our studies show that

the pretest and shrinkage estimators applying optimal design perform better

as compare with these estimators under regular design.

1.2 Organization of the Thesis

The rest of this thesis is organized as follows.

• Chapter 2 provides the introduction of GPLM, generalized Speckman

method, and backfitting procedures for estimating parametric compo-

nent.

• Chapter 3 derives the restricted, pretest, and shrinkage estimators for

the parametric part of GPLM. The asymptotic distribution, asymptotic

biases and risks of the proposed estimators will also be derived. The

performance of the proposed estimators is investigated by extensive

simulation studies. We further illustrate the proposed methodology

through an analysis of credit scoring data.
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• Chapter 4 is devoted to combine the shrinkage estimators with optimal

design theory and then obtain the optimal estimators under multiple

linear regression. The performance of the proposed estimators is inves-

tigated by extensive simulation studies as well.

• Chapter 5 presents our conclusions of this thesis and a brief discussion

of future works.

28



Chapter 2

Generalized Partial Linear

Models (GPLM)

2.1 Introduction

The linear regression model is widely studied to find the relationship between

the response and the covariates. However, in some situations the linear model

is not sufficient to explain the relationship between the response variable and

the covariates. The stringent requirement of linearity can increase the risk

of model misspecification that leads to invalid parameter estimates. There

are many statistical problems where the continuous response depends on the

covariates in a nonlinear way (Engle et al., 1986). The nonparametric meth-
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ods assume no predetermined functional form of covariates and this form is

estimated entirely using the information from the data. These methods suffer

from the curse of dimensionality which requires the sample size to increase

exponentially with the number of covariates. As a tradeoff, a semiparametric

model that includes parametric and nonparametric parts can avoid the curse

of dimensionality to a large extent.

Semiparametric models have been widely applied in medicine, eco-

nomics, finance, social and biological sciences because of their excellent sci-

entific utility, novelty and flexibility. An excellent discussion and assessment

of semiparametrics is given in Wellner et al. (2006). A landmark book on

semiparametrics is Bickel et al. (1993). Fitting parametric models instead of

semiparametric models generally leads to inconsistent estimators and faulty

inference due to a high probability of model misspecification. Researchers

consider the partially linear framework that allows most predictors to be

modelled linearly while one or a small number of covariates enter in the model

nonparametrically. Partially linear model (PLM) has been extensively stud-

ied (Härdle et al., 2012a,b; Ahmed et al., 2007) and several approaches have

been developed to construct the estimators (Ni et al., 2009; Chen and Shiau,

1991; Engle et al., 1986). A nice summary about PLM can be found in the

monograph of Härdle et al. (2012a). The other form of PLMs include partially

nonlinear regression models (Li and Nie, 2008), partially linear single-index

regression models (Yu and Ruppert, 2002; Carroll et al., 1997) and partially
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linear varying coefficient model (Ahmad et al., 2005).

Generalized linear models (GLM) are the extension of the linear re-

gression model that allow the response variable to be count and categorical

and it follows different distributions (Dunn and Smyth, 2018). For the GLM,

different link functions can be used that would denote a different relationship

between covariates and the response variable (e.g. log, logit, etc). We are

interested in a particular semiparametric model, so-called generalized partial

linear models (GPLM) which extend the GLM by adding one or a few contin-

uous covariates that may behave nonparametrically (Boente and Rodriguez,

2010). The PLM and GLM are the special cases of GPLM. For non-normal

responses, including binary, Poisson, and gamma (non-negative and positive-

skewed) responses, the classical PLM is not appropriate, and thus the GPLM

is adopted and extended by incorporating a link function. By introducing

the non-parametric function along with the parametric component, GPLM

have been used to explore the complicated relationship between the response

and the covariates of interest.

Many authors have tried to introduce algorithms to estimate the pa-

rameters of the GPLM. Müller (2001) reviewed different estimation proce-

dures based on kernel methods using profile likelihood and backfitting al-

gorithm for estimating parametric and nonparametric components simulta-

neously. Boente et al. (2006) introduced a family of robust estimates in

GPLM. Severini and Wong (1992) and Severini and Staniswalis (1994) con-
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sidered the estimation of GPLM using generalized profile likelihoods, and

they also provided a review of the literature on generalized profile likeli-

hoods. Liang (2008) studied GPLM with missing covariates and discussed

a method combining local linear regression, quasi-likelihood and weighted

estimating equation to estimate the parametric and non-parametric compo-

nents. Leng et al. (2011) proposed the use of GPLM and developed a least

squares approximation-based variable selection procedure to study the sig-

nificant predictors of condom use in HIV-infected adults. Rahman et al.

(2020) considered the semiparametric efficient inferences in the GPLM and

developed a bias-corrected estimating procedure and a bias-corrected empir-

ical log-likelihood ratio for point estimation and confidence regions for the

parameters of interest.

2.2 Generalized Partial Linear Models (GPLM)

For the response variable Y and covariates (X,T ), the model structure of

the PLM, which is widely used for continuous responses Y , is described as:

Y = Xβ +m(T ) + ε. (2.1)

In this form,

• X = (x1,x2, · · · ,xn)>, xi ∈ Rp for i = 1, 2, . . . , n and T ∈ Rq,
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• β = (β1, · · · , βp)> is a vector of unknown parameters,

• m(·) is an unknown smooth function, and

• ε are the independent errors, with a conditional mean zero given the

covariates and finite variance.

The generalization of PLM is defined by a known monotone link func-

tion G(·). This link function explains more complicated relationship between

covariates and response in the model. The extension of model (2.1) and its

variance are as follows.

E(Y |X,T ) = G{Xβ +m(T )}, V ar(Y |X,T ) = σ2V (µ), (2.2)

where

• µ = G(η) = E(Y |X,T ) = G{Xβ +m(T )},

• X denotes a p-dimensional covariate vector,

• T is a continuous q-dimensional covariate vector which is modeled non-

parametrically,

• β is the parameter of interest,

• m(·) is considered as a nuisance parameter,

• V (·) is a known function and σ2 is a dispersion parameter.
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The possible estimate of σ2 can be obtained from

σ̂2 =
1

n− 1

n∑
i=1

(yi − µ̂i)2

V (µ̂i)
, (2.3)

where µ̂i = G(η̂i) and η̂i = x>i β̂ + m̂(ti).

The estimation methods for the GPLM are based on the idea that an

estimate β̂ can be obtained by holding m(·) fixed in the log-likelihood and

the resulting estimate β̂ can be then used to estimate the nonparametric part

m(·). The estimation methods are based on kernel smoothing for estimating

the nonparametric part of the model.

There are three methods to estimate the parametric and nonparamet-

ric parts for GPLM: profile likelihood, generalized Speckman, and backfitting

algorithm. In the literature, it was found that the profile likelihood method

and generalized Speckman method for identity link are equivalent as they

produce similar results when the bandwidth is small or when the nonpara-

metric part, m(T ), is small in magnitude compared to the parametric part,

Xβ (Härdle et al., 2012b).

Using Nadaraya-Watson type kernel smoothing, Müller (2001) showed

in the simulation study that the generalized Speckman method performs

best among three methods for small sample sizes and gives similar results for

parametric and nonparametric part estimates to the profile likelihood when
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the sample size increases. In this thesis we consider the generalized Speckman

and backfitting algorithm for large sample sizes based on Nadaraya-Watson

kernel smoothing (see Müller, 2001; Härdle et al., 2012b).

2.3 Estimation

2.3.1 Generalized Speckman Estimator

Generalized Speckman estimation (GSE) method refers to Speckman (1988).

For the identity link function G and normally distributed responses Y , the

GSE and profile likelihood methods coincide each other. No iterations are

required for simultaneous estimation of both β and m(·).

Following we will summarize the GSE method for identity link and

extend this method to other link functions based on log-likelihood function.

a. Partially Linear Model (PLM)

For the identity link, the GPLM becomes the PLM (2.1). Taking the condi-

tional expectation of (2.1) with respect to T and differencing the two equa-

tions leads to Ỹ = X̃β + ε̃, where X̃ = (I − S)X and Ỹ = (I − S)Y

(Härdle et al., 2012b, Section 7.1). The elements of smoother matrix S are
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given by

Sij =
Kh(ti − tj)∑n
k=1Kh(tk − tj)

,

where K denotes a multidimensional kernel function and h is the respective

bandwidth vector and Kh(u) = 1
h
K(u/h) for q-dimensional vectors u and

h. The Speckman estimators for β and m are, respectively

β̂ = (X̃>X̃)−1X̃>Ỹ , and m̂ = S(Y −Xβ̂). (2.4)

These are the estimators for the partially linear model proposed by Speckman

(1988).

b. Extend to Generalized Partial Linear Model (GPLM)

To extend Speckman’s approach to GPLM, we have to take inverse link

function of G and the distribution of Y takes into account. The estimation

method thus combines with the iteratively reweighted least squares (IRLS)

that used in the estimation of GLM (McCullagh and Nelder, 1989) and the

Speckman approach for the PLM. We will use the same maximum likelihood

method for the GPLM as we have used to estimate parameters in GLM.

To define the likelihood, we consider observation values (yi,xi, ti), i =

1, 2, · · · , n. Let µi,β = G(x>i β+mβ(ti)) from (2.2). We now denote the log-
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likelihood in a GPLM by

`(µ,y) = log
n∏
i=1

L(µi,β, yi) =
n∑
i=1

`
(
G(x>i β +mβ(ti)), yi

)
. (2.5)

We maximize the above log-likelihood to estimate µ which includes para-

metric and nonparametric parts of GPLM. The log-likelihood (2.5) differs

from the log-likelihood for GLM (McCullagh and Nelder, 1989) in terms of

nonparametric part mβ(ti).

In GLM we use an IRLS algorithm to implement the Newton-Raphson

method with Fisher scoring for an iterative solution to the likelihood equa-

tions ∂`/∂β = 0 without nonparametric part of (2.5). The estimated pa-

rameter vector from these equations through an iterative updating is β as

β̂new = (X>WX)−1X>Wz,

where z denotes the adjusted dependent variable and z = Xβ̂ + W−1v.

Here v is an n× 1 vector and W is a n× n diagonal matrix containing the

first and the second derivative of `(µ,y), respectively. Both derivatives are

evaluated at Xβ̂.

For the GPLM, the Speckman estimator is combined with the IRLS

method used in the estimation of GLM. In the IRLS algorithm we solve

the weighted least square problem at each iteration step of a GLM on the
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adjusted response. The same IRLS algorithm will be used for the GPLM

when we replace the weighted least squares fit with a partially linear fit on

the adjusted response given by

z = Xβ̂ + m̂(t)−W−1v, (2.6)

where v and W are defined as before but now evaluated at x>i β̂+ m̂(ti) and

S is a smoothing matrix with elements

Sij =
`′′i (x

>
i β +mβ(ti))KH(ti − tj)∑n

i=1 `
′′
i (x

>
i β +mβ(ti))KH(ti − tj)

. (2.7)

The generalized Speckman algorithm for the GPLM is summarized in

Table (2.1).

Table 2.1: Summary of generalized Speckman algorithm for GPLM.

1. Choose an initial value for β.
This value can be obtained from fitting a parametric GLM.

2. In each step, calculate:

X̃ = (I − S)X, and

z̃ = X̃β̂ −W−1v.

3. Update β̂:

β̂new = (X̃>WX̃)−1X̃>Wz̃.
4. Update m̂:

m̂new = S(z −Xβ̂).
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2.3.2 Backfitting Algorithm

The backfitting algorithm was proposed proposed by Buja et al. (1989) and

Hastie and Tibshirani (1990, Section 5.3). This algorithm regresses the ad-

ditive components separately on the partial residuals.

a. Partially Linear Model (PLM)

The PLM consists of additive parametric and nonparametric components.

The backfitting algorithm for estimating PLM can be thought of having two

smoothers:

1. a projection matrix P = X>(X>X)−1X from least squares fit Xβ̂ on

one or more covariates, and

2. a smoother S producing an estimate m̂.

The backfitting steps are Xβ̂ = P(Y −m) and m̂ = S(Y −Xβ̂). The

iteration is unnecessary since we can solve for β̂ and m̂ explicitly:

β̂ = (X>(I − S)X)−1X>(I − S)Y , m̂ = S(Y −Xβ̂).

b. Extend to Generalized Partial Linear Model (GPLM)

The above idea for the PLM estimation method can be extended to the

GPLM. We can apply the PLM approach using a weighted smoother matrix
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on the adjusted response (Hastie and Tibshirani, 1990, Section 6.7). Com-

putational steps of this method are summarized in Table (2.2).

Table 2.2: Summary of generalized backfitting algorithm for GPLM.

1. Compute starting value:
β = 0 and mβ(t) = G−1(Y ).

2. In each step, calculate:

X̃ = (I − S)X, and

z̃ = X̃β̂ −W−1v.

3. Update β̂:

β̂new = (X̃>WX̃)−1X̃>Wz̃.
4. Update m̂:

m̂new = S(z −Xβ).

The final estimate β̂ and m̂ of β andm are called the unrestricted GSE

(UG) estimators based on the GSE and backfitting methods. Under some

regularity conditions, Härdle et al. (2012b) mentioned in Section 7 that the

estimator β̂ is asymptotically normal with mean β and variance-covariance

matrix Σ, see details in Section 3.4. The nonparametric function mβ(t) can

be estimated with the usual univariate rate of convergence.
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Chapter 3

Pretest and Shrinkage

Estimations for Generalized

Partial Linear Models

3.1 Introduction

In this chapter we consider the problem of pretest and shrinkage estimation

methods for GPLM when there exist many covariates in the parametric part

and some of them may be inactive for the response. Researchers should

therefore exclude the inactive covariates from the parametric part of the

model to make the predictor space sparse so as to achieve the goal of good
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prediction accuracy (Hastie et al., 2015).

Initially we are interested in estimating both parametric and nonpara-

metric parts but our primary interest is on the parametric part while the

nonparametric part serves as a nuisance function. To implement this inter-

est researchers fit two models:

1. full or unrestricted model which includes all the covariates in the para-

metric part, and

2. submodel or restricted model which includes reduced number of covari-

ates.

The restricted model can be formed when the prior/auxilliary information

about the covariates in the model is available. We may get this prior infor-

mation from similar previous studies or expert knowledge. We can express

this information in terms of linear restrictions on the parameters of para-

metric part and test whether any of the parameters or linear combinations

of parameters are insignificant through a pretesting strategy. However, if

the information is not available, researchers can apply backward elimination

methods with AIC, BIC or other criteria to select active covariates. The

constraint on the full parameter vector is then placed by using the remaining

inactive predictors.

Specifically, let β be a p× 1 parameter vector for the parametric part
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and p2 be the number of inactive predictors. We would like to find the

restricted model that satisfies a set of p2 linear restrictions

Rβ = r,

whereR is a p2×p matrix of rank p2 ≤ p and r is a p2×1 vector of constants.

We then combine the unrestricted and restricted model estimators op-

timally to obtain shrinkage estimators. This approach is only effective for

moderate values of p2. For large p2, researchers may consider penalty meth-

ods to obtain sparse models and apply the shrinkage estimation strategy to

obtain efficient estimators.

Several authors studied the pretest and shrinkage estimators for semi-

parametric linear models. Ahmed et al. (2007) used a profile least squares

approach based on kernel smoothing estimation of the nonparametric com-

ponent to develop the pretest, shrinkage, and penalty estimators of the para-

metric part when nonparametric part is nuisance. Later on Hossain et al.

(2016) extended this work for longitudinal data. Raheem et al. (2012) ex-

tended this study to estimate the nonparametric part using the B-splines ba-

sis function and proposed estimators based on shrinkage strategies. Xu and

Yang (2012) introduced the preliminary test backfitting estimator and pre-

liminary test Speckman estimator when the validity of the linear restrictions

on the parameters is suspected. Hossain et al. (2015) introduced shrinkage
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and penalty estimators in a GLM when there are many active predictors

and some of them may not have influence on the response. Hossain and Lac

(2021) developed optimal estimation strategies such as, pretest and shrink-

age methods, for the analysis of binary longitudinal data under the partially

linear single-index model where some regression parameters are subject to

restrictions.

3.2 Restricted Estimator

Suppose we have a linearly independent restriction Rβ = r. Since R has

rank p2, this motivates us to determine the restricted parameter space Ω =

{β,m(t)|Rβ = r}. In order to maximize log-likelihood function (2.5) under

Ω, we define modified likelihood

F (β,mβ(t), λ) =
n∑
i=1

`
(
G(x>i β +mβ(ti)), yi

)
+

p2∑
j=1

(R>j β − rj)λi,

where Rj is the jth column of the R matrix, and rj is the jth component of

r, j = 1, 2, · · · , p2.

Let l′i and l′′i denote the first and second derivatives of the log-likelihood
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l with respect to the first argument, we have

∂F

∂β
=

n∑
i=1

l′i(xi +m′i) +

p2∑
l=1

Rljλl(R
>
j β − rj) = X̃v −R>Λr +R>ΛRβ,

∂2F

∂β∂β>
=

n∑
i=1

l′′i (xi +m′i)(xi +m′i)
> +

p2∑
i=1

λiRijRil = X̃>WX̃ +R>ΛR,

where

• X̃i = Xi +m′i,

• v = (l′1, l
′
2, · · · , l′n), W = (l′′1 , l

′′
2 , · · · , l′′n), and

• Λ is a p2 × p2 diagonal matrix with λj, j = 1, 2, · · · , p2, as diagonal

elements.

Finding the restricted estimator

Same IRLS algorithm in Section (2.3.1) will be applied to find the restricted

estimator at (d+ 1)th iteration. We have

β̂(d+1)(λ) = β̂(d) −
(

∂2F

∂β∂β>

)−1

×
(
∂F

∂β

)
= β̂(d) − (X̃>WX̃ +R>ΛR)−1(X̃v −R>Λr +R>ΛRβ̂(d)).

In Section (2.3) we have z̃ = X̃β̂(d) −W−1v and m̂ = S(z −Xβ̂(d)) that
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implies v = WX̃β̂(d) −Wz̃. Therefore, β̂(d+1)(λ) can be written as

β̂(d+1)(λ) = β̂(d) − (X̃>WX̃ +R>ΛR)−1(X̃v −R>Λr +R>ΛRβ̂(d))

= β̂(d) − (X̃>WX̃ +R>ΛR)−1(X̃WX̃β̂(d) − X̃W z̃ −R>Λr +R>ΛRβ̂(d))

= β̂(d) − (X̃>WX̃ +R>ΛR)−1(X̃WX̃ +R>ΛR)β̂(d)

+ (X̃>WX̃ +R>ΛR)−1(X̃WX̃ +R>ΛR).

Thus, the β̂(d+1)(λ) can be simplified as

β̂(d+1)(λ) = (X̃>WX̃ +R>ΛR)−1(X̃>Wz̃ +R>Λr). (3.1)

We first compute the 1st argument, (X̃>WX̃+R>ΛR)−1. For convenience

in computation, let M = X̃>WX̃, then we have

(X̃>WX̃ +R>ΛR)−1 = (M +R>ΛR)−1

= M−1 −M−1R>Λ(Λ + ΛRM−1R>Λ)−1ΛRM−1

= M−1 −M−1R>Λ(I + ΛRM−1R>Λ)−1RM−1.

Now, we can compute β̂(d+1)(λ).

β̂(d+1)(λ) = (X̃>WX̃ +R>ΛR)−1(X̃>Wz̃ +R>Λr)

= (M +R>ΛR)−1(X̃>Wz̃ +R>Λr)

=
(
M−1 −M−1R>Λ(I + ΛRM−1R>Λ)−1RM−1

)
(X̃>Wz̃ +R>Λr)
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= M−1X̃>Wz̃

+M−1R>Λ(I + ΛRM−1R>Λ)−1(I + ΛRM−1R>Λ)r

−M−1R>Λ(I + ΛRM−1R>Λ)−1RM−1X̃>Wz̃

−M−1R>Λ(I + ΛRM−1R>Λ)−1RM−1R>Λr

= M−1X̃>Wz̃ +M−1R>Λ(I + ΛRM−1R>Λ)−1r

−M−1R>Λ(I + ΛRM−1R>Λ)−1RM−1X̃>Wz̃

= M−1X̃>Wz̃ −M−1R>(Λ−1 +RM−1R>)−1(RM−1X̃>Wz̃ − r).

Substituting M as X̃>WX̃, the β̂(d+1)(λ) in (3.1) can be written as

β̂(d+1)(λ) = (X̃>WX̃ +R>ΛR)−1(X̃>Wz̃ +R>Λr)

= (X̃>WX̃)−1X̃>Wz̃

− (X̃>WX̃)−1R>
(
Λ−1 +R(X̃>WX̃)−1R>

)−1

×
(
R(X̃>WX̃)−1X̃>Wz̃ − r

)
.

According to Nyquist (1991), if the components of Λ are large, the restricted

generalized Speckman estimates of parametric and nonparametric parts are

β̃ = lim
Λ→∞

β̂(d+1)(λ)

= (X̃>WX̃)−1X̃>Wz̃

− (X̃>WX̃)−1R>
(
R(X̃>WX̃)−1R>

)−1 (
R(X̃>WX̃)−1X̃>Wz̃ − r

)
.

= β̂ − (X̃>WX̃)−1R>
(
R(X̃>WX̃)−1R>

)−1

(Rβ̂ − r), and
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m̃(t) = S̃(z −Xβ̃).

The estimators β̃ and m̃ are called restricted GSE (RG) for β andm, respec-

tively. It is clear that the estimators β̃ and β̂ are updated by a parametric

method with non-parametrically modified design matrix. Analogously, we

can derive β̃ and m̃ using the backfitting algorithm.

3.3 Pretest and Shrinkage Estimators

When the null hypothesis H0 : Rβ = r is true, the restricted estimator has

smaller mean squared error than the unrestricted estimator. However, for

Rβ 6= r the restricted estimator β̃ may be biased and inconsistent in many

cases. For this reason, Ahmed (2014) suggested to consider pretest estimator

by taking β̂ or β̃ based on whether H0 is rejected or accepted.

a. Pretest estimator

The pretest estimator (PT) denoted as β̂PT for the parameters β based on

β̂ and β̃ is defined as

β̂PT = β̂ − I(Λ̂ ≤ χ2
p2,α

)(β̂ − β̃),

where

48



• I(·) is the indicator function that chooses whether to use the unre-

stricted or restricted estimators, and

• Λ̂ is the test statistic which follows an approximate χ2
p2

distribution

with p2 degrees of freedom under the null hypothesis. This test statistic

is given in Section (3.4.1).

Based on the indicator function I(·), PT is a discontinuous function and

chooses between β̂ and β̃. This estimator depends on the acceptance or

rejection of H0 as well as the choice of α. To avoid this limitation of discon-

tinuity, we define the shrinkage estimator (SE).

b. Shrinkage estimator

The shrinkage estimator is a continuous function which shrinks the β̂ towards

β̃. Shrinkage estimator is expressed as a linear combination of β̂ and β̃,

β̂SE = β̃ + (1− (p2 − 2)Λ̂−1)(β̂ − β̃). (3.2)

Let φ = 1− (p2 − 2)Λ̂−1, the equation (3.2) can be rewritten as

β̂SE = φβ̂ + (1− φ)β̃.

• If φ = 1, no shrinkage occurs and the estimates are the same as the

unrestricted estimator UG.

• If φ = 0, the restricted estimator RG is selected.
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The scaler quantity (p2−2) controls the degree of shrinkage. If H0 is true, the

value of the test statistic is small and more weight is placed on β̂, otherwise

more weight is placed on β̃.

However, the drawback of the shrinkage estimator is that the factor

1 − (p2 − 2)Λ̂−1 can be negative (a phenomenon known as over-shrinkage)

and it is not a convex combination of β̂ and β̃ , although it performs well

over the entire parameter space relative to β̂. This issue can be improved by

taking its positive part of the estimator.

c. Positive shrinkage estimator

The positive part shrinkage estimator (PSE) is defined as

β̂PSE = β̃ +

(
1− (p2 − 2)

Λ̂

)
+

(β̂ − β̃), p2 ≥ 3,

where (·)+ = 1 if (·) > 0, else (·)+ = 0.

3.4 Asymptotic Properties of the Estimators

In this section we will investigate the asymptotic properties of β̂ and m̂β(·)

under some regularity conditions. We will show in Theorems 1 and 2 that the

estimators β̂ and m̂β(·) are consistent. The following regularity conditions

are needed to discuss the asymptotic properties of the estimators.
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1. T , xi, and σ take values in compact sets Rq, Rp, (0,∞), respectively.

2. The parameter β takes values in a compact set Rp and the parameter

m takes values in the set M = {g ∈ Rq : g is bounded}.

3. The functions G(·) is twice differentiable with bounded derivatives.

4. The functions m̂β(ti) and mβ(ti) are continuously differentiable with

respect to (β, t) and twice continuously differentiable with respect to

β.

5. The kernel function K(·) is a symmetric, continuously differentiable and

bounded probability density function on [−1, 1]. That is,
∫ 1

−1
K(u)du =

1,K ≥ 0,K(u) = K(−u).

3.4.1 Asymptotic Distribution of Unrestricted GPLM

Estimator β̂

Let β0, m0 and σ2
0 are the true parameter values of β, m and σ2, respectively,

we have

E0(Y |X,T ) = G{Xβ0 +m0(T )},

Var0(Y |X,T ) = σ2
0V (µ0)

where µ0 = G(X>β0 + m0(T )); E0 and Var0 denote the expectation and

variance under the true model, respectively.
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The estimator m̂β(t) plays an important role in the large sample properties

of β̂. Let Σ be a p× p matrix such that Σ−1 has (i, j)th value as

E0

(
∂2

∂βi∂βj
`(G(Xβ + m̂β(T )),y))

)
. (3.3)

• If the regularity conditions 1 − 5 hold and there exists a compact set

A ⊆ Rp such that limn→∞ P(β̂ ∈ A) = 1, then β̂
P−→ β0.

• If there exists t0 ⊆ B ⊆ Rq, then ||m̂β(t) − m0(t)||t0,∞
P−→ 0 and

σ̂2 P−→ σ2
0 (Severini and Staniswalis, 1994).

Based on the asymptotic distribution of β̂, the estimation of covariance ma-

trix Σ is required for testing

H0 : Rβ = r.

The next theorem will show the asymptotic normality of unrestricted GPLM.

Theorem 1: (Asymptotic normality distribution of unrestricted

GPLM estimator)

Assume that the regularity conditions 1− 5, nh8 → 0, and log(1/h)/nh→ 0

are satisfied. As n→∞, we have

√
n(β̂ − β)

D−→ N(0,Σ0),
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where Σ0 = σ2
0Σ
−1 and Σ is the p × p asymptotic covariance matrix. The

inverse of Σ is given by

E0

[
(I − S)X̃X̃>(I − S)ρ2(Xβ0 +m0(T ))

]
(3.4)

where ρ2(g) =
{
dµ(g)
dg

}2

V −1{µ(g)} with µ = G (Xβ +mβ(t)).

Let Σ̂0 be the estimate of Σ0. According to Severini and Staniswalis

(1994), the estimate of Σ0 can be obtained by replacing β0 and m0(T ) in

(3.4) by β̂ and m̂β̂(T )), respectively.

Above results can be used to construct a Wald-type statistic to make

inferences involving a subset of the regression parameter, that is, when the

parameters are in linear restriction, Rβ = r.

Suppose that the regularity conditions 1−5 and the conditions of The-

orem 1 hold, then

Λ̂ = (Rβ̂ − r)>(R(Σ̂0)R>)−1(Rβ̂ − r) + op(1) (3.5)

Under the null hypothesis, the test statistic Λ̂ follows an approximate χ2
p2

distribution with p2 degrees of freedom.

Note: Under the local alternative (3.6) and the regularity conditions 1− 5,

as n→∞, the test statistic Λ̂ converges to a non-central χ2
q(∆) distribution

53



with non-centrality parameter ∆ = δ>(RΣ0R
>)>δ (Ahmed and Fallahpour,

2012), where δ is defined in Section (3.4.2).

3.4.2 Asymptotic Joint Distribution of Unrestricted

and Restricted Estimators

To study the asymptotic bias (AB) and asymptotic risk (AR) of the proposed

estimators (Sections 3.4.3 and 3.4.4) using the local asymptotic normality

approach of Vaart (1998), we will start with asymptotic joint normality of

UG and RG.

Under the fixed alternative Ha : Rβ 6= r+δ, where δ = (δ1, δ2, · · · , δp2)

is a real fixed vector; the estimators β̂PT , β̂SE, and β̂PSE are asymptotically

equivalent in distribution to β̂, and β̃ has unbounded risk. As the result, we

cannot differentiate the bias and the risk properties of first three estimators

β̂PT , β̂SE, and β̂PSE. In order to differentiate, we consider the following

sequence of local alternative,

H(n) : Rβ = r +
δ√
n
, n > 0. (3.6)

The magnitude of the distance ||Rβ − r|| is determined by localizing the

fixed vector δ and the sample size n. For any fixed δ, the distance δ/
√
n

shrinks as the sample size increases. Under the local alternative (3.6) and
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the regularity conditions 1− 5, we have

√
n(Rβ̂ − r)

D−→ N(δ,RΣ0R
>).

The following joint asymptotic normality of UG and RG under (3.6) allows

us to facilitate the theoretical and numerical comparison of AB and AR of

the estimators β̂, β̃, β̂PT , β̂SE, and β̂PSE in next sections.

Theorem 2: (Aymptotic joint normality of UG and RG)

Under the local alternative (3.6) and the regularity conditions 1−5, we have

the joint distribution, as n→∞


η1

η2

η3

 L−−−→
n→∞

N3p




0

γ

−γ

 ,


Σ0 Σ0 − J0 J0

(Σ0 − J0)> Σ0 − J0 0

J>0 0 J0




where

• η1 =
√
n(β̂ − β),η2 =

√
n(β̃ − β),η3 =

√
n(β̂ − β̃),

• J0 = Σ0R
>(RΣ0R

>)−1RΣ0,

• γ = −Σ0R
>(RΣ0R

>)−1δ.
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Proof of Theorem 2:

E(η1) = E
(√

n(β̂ − β)
)

= 0.

E(η2) = E
(√

n(β̃ − β)
)

= E
(√

n(β̂ − β −Σ0R
>(RΣ0R

>)−1(Rβ̂ − r))
)

= −Σ0R
>(RΣ0R

>)−1E
(√

n(Rβ̂ − r)
)

= −Σ0R
>(RΣ0R

>)−1δ = γ.

E(η3) = E
(√

n(β̂ − β̃)
)

= E
(√

n(β̂ − β)−
√
n(β̃ − β)

)
= −γ.

Var(η1) = Var
(√

n(β̂ − β)
)

= Σ0.

Var(η2) = Var
(√

n(β̂ − β −Σ0R
>(RΣ0R

>)−1(Rβ̂ − r))
)

= Var
(√

n
(
β̂ − β

))
+ Σ0R

>(RΣ0R
>)−1Var

(√
n(Rβ̂ − r)

)
(RΣ0R

>)−1RΣ0

− 2Cov
(√

n
(
β̂ − β

)
,Σ0R

>(RΣ0R
>)−1
√
n(Rβ̂ − r))

)
= Σ0 + Σ0R

>(RΣ0R
>)−1RΣ0 − 2Σ0R

>(RΣ0R
>)−1RΣ0

= Σ0 −Σ0R
>(RΣ0R

>)−1RΣ0

= Σ0 − J0.

Var(η3) = Var
(√

n(β̂ − β̃)
)

= Var
(√

n(β̂ − β̂ + Σ0R
>(RΣ0R

>)−1(Rβ̂ − r))
)

= Σ0R
>(RΣ0R

>)−1Var
(√

n(Rβ̂ − r)
)

(RΣ0R
>)−1RΣ0

= Σ0R
>(RΣ0R

>)−1RΣ0 = J0.

Cov(η1,η2) = Cov
(√

n(β̂ − β),
√
n(β̃ − β)

)
= Cov

(√
n(β̂ − β),

√
n(β̂ − β −Σ0R

>(RΣ0R
>)−1(Rβ̂ − r))

)
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= Var
(√

n(β̂ − β)
)
− Cov

(√
n(β̂ − β),

√
nΣ0R

>(RΣ0R
>)−1Rβ̂

)
= Σ0 −Σ0R

>(RΣ0R
>)−1RΣ0 = Σ0 − J0.

Cov(η1,η3) = Cov
(√

n(β̂ − β),
√
n(β̂ − β̃)

)
= Cov

(√
n(β̂ − β),

√
n(β̂ − β)−

√
n(β̃ − β)

)
= Var

(√
n(β̂ − β)

)
− Cov

(√
n(β̂ − β),

√
n(β̃ − β)

)
= Σ0 − Cov(η1,η2) = J0.

Cov(η2,η3) = Cov
(√

n(β̃ − β),
√
n(β̂ − β̃)

)
= Cov

(√
n(β̃ − β),

√
n(β̂ − β)−

√
n(β̃ − β)

)
= Cov

(√
n(β̃ − β),

√
n(β̂ − β)

)
− Var

(√
n(β̃ − β)

)
= Σ0 − J0 − (Σ0 − J0) = 0.

3.4.3 Asymptotic Bias of Proposed Estimators

We now discuss the asymptotic bias of the proposed estimators. Let β̂∗ be

any of the proposed estimators. Then the asymptotic bias of β̂∗ is defined

by

AB(β̂∗) =

∫
zdF̃β̂∗(z),

where F̃β̂∗(z) is the asymptotic distribution function of
√
n(β̂∗ − β).

Note: Since AB(β̂∗) is not a scaler form, in order to do comparison, we will

57



use its asymptotic quadratic bias (QB) where QB(β̂∗) is defined as

QB(β̂∗) = AB(β̂∗)>(RΣ0R
>)AB(β̂∗).

We can find QBs and derive ABs using the following theorem.

Theorem 3: (Asymptotic bias of proposed estimators)

Let Z1 and Z2 be χ2
p2+2(∆) and χ2

p2+4(∆) random variables, respectively and

their distributions are generally denoted by Ψg(x,∆) = P
(
χ2
g(∆) ≤ x

)
. Let

χ2
p2,α

be the α-level critical value of central χ2-distribution. Under the local

alternative (3.6) and the regularity conditions 1− 5, we have

• AB(β̂ ) = 0

• AB(β̃ ) = γ

• AB(β̂PT ) = γΨp2+2(χ2
p2,α

,∆)

• AB(β̂SE) = γ(p2 − 2)E
(
Z−1

1

)
• AB(β̂PSE) = γ(p2 − 2)E

(
Z−1

1

)
+ γΨp2+2(p2 − 2,∆)

− γ(p2 − 2)E
(
Z−1

1 I(Z1 < p2 − 2)
)
.

Proof of Theorem 3:

We will use the following Lemma 1 to derive the proof of Theorem 3.

Lemma 1

LetX ∼ Np(δ,Σp), where Σp is a nonnegative definite matrix with rank p2 ≤
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p. Let Q be a p× p symmetric and positive definite matrix with rank p such

that ΣpQ is an idempotent matrix and ΣpQδ = δ. Let W = Q1/2W ∗Q1/2,

where W ∗ is a non-negative definite matrix.

For all h, Borel measurable and real-valued integrable function, we have

1. E
(
h
(
X>QX

)
WX

)
= E

(
ϕ
(
χ2
p+2(δ>Qδ)

))
Wδ

2. E
(
ϕ
(
X>QX

)
X>WX

)
= E

(
h
(
χ2
p+2(δ>Qδ)

))
tr(QΣp)

+ E
(
h
(
χ2
p+4(δ>Qδ)

))
δ>Wδ.

For the details and the proof of this Lemma, see Nkurunziza and Chen (2013).

Using the above Lemma 1, we now can derive ABs of the proposed estimators.

AB(β̂) = lim
n→∞

E
(√

n
(
β̂ − β

))
= 0.

AB(β̃) = lim
n→∞

E
(√

n
(
β̃ − β

))
= lim

n→∞
E
(√

n
(
β̂ − β + β̃ − β̂

))
= 0−Σ0R

>(RΣ0R
>)−1 lim

n→∞
E
(√

n
(
Rβ̂ − r

))
= −Σ0R

>(RΣ0R
>)−1δ = γ.

AB(β̂PT ) = lim
n→∞

E
(√

n
(
β̂PT − β

))
= lim

n→∞
E
(√

n
(
β̂ − I(Λ̂ ≤ χ2

p2,α
)(β̂ − β̃)− β

))
= 0− lim

n→∞
E
(
I(Λ̂ ≤ χ2

p2,α
)
√
n(β̂ − β̃)

)
= γΨp2+2(χ2

p2,α
,∆).
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AB(β̂SE) = lim
n→∞

E
(√

n
(
β̂SE − β

))
= lim

n→∞
E
(√

n
(
β̃ + (1− (p2 − 2)Λ̂−1)(β̂ − β̃)− β

))
= 0− lim

n→∞
E
(

(p2 − 2)Λ̂−1
√
n(β̂ − β̃)

)
= γ(p2 − 2)E

(
Z−1

1

)
.

AB(β̂PSE) = lim
n→∞

E
(√

n
(
β̂PSE − β

))
= lim

n→∞
E
(√

n
(
β̂SE − β

))
− lim

n→∞
E
(√

n(1− (p2 − 2)Λ̂−1)(β̂ − β̃)I(Λ̂ ≤ p2 − 2)
)

= AB(β̂SE)− lim
n→∞

E
(√

n(β̂ − β̃)(1− (p2 − 2)Λ̂−1)I(Λ̂ ≤ p2 − 2)
)

= AB(β̂SE) + γE
(
I(Λ̂ ≤ p2 − 2)

)
− γ(p2 − 2)E

(
Λ̂−1I(Λ̂ ≤ p2 − 2)

)
= γ(p2 − 2)E

(
Z−1

1

)
+ γΨp2+2(p2 − 2,∆)− γ(p2 − 2)E

(
Z−1

1 I(Z1 < p2 − 2)
)
.

Remarks:

The comparisons of ABs of the esitmators are summarized as follows.

• If δ = 0, the AB of any estimator is a 0 vector.

• If δ > 0 and let ∆ω = γ, where ∆ = δ>(RΣ0R
>)>δ, all the ABs are

scaler multiple of ∆ along with ω except the AB of β̂.

• While the AB of β̃ is an unbounded function of ∆, the ABs of β̂PT ,

β̂SE, and β̂PSE are bounded in ∆ as E(Z−1
1 ) is a non-increasing log-

convex function of ∆.

• Although the AB of β̂SE is close to β̂PSE, the bias curve of β̂PSE stays
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below the curve of β̂SE.

• When ∆ > 0, the AB of β̂PT will increases to a point then decrease

towards zero.

3.4.4 Asymptotic Risk of Proposed Estimators

We now discuss the asymptotic risk of the proposed estimators. To derive

expressions for the ARs of the estimators, we define a quadratic loss function

L(β̂∗;Q) =
(√

n(β̂∗ − β)
)>
Q
(√

n(β̂∗ − β)
)
,

where Q is a nonnegative definite weight matrix.

Typically when considering Q as a p× p identity matrix, L(β̂∗) is the

usual quadratic loss function. However, a loss function with general Q will

give different weights to different β’s. It leads to shrinkage estimators may

not outperform in the entire parameter space with respect to unrestricted

GPLM estimator. Therefore, for simplicity, we consider Q = Ip×p in the

simulation studies.

The mean squared error (MSE) matrix for any estimator β̂∗ under the
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quadratic loss function is

MSE(β̂∗) = lim
n→∞

E
{
n(β̂∗ − β)(β̂∗ − β)>

}
=

∫∫∫
zz>dF̃β̂∗(z), (3.7)

and the AR is defined as

AR(β̂∗;Q) =

∫∫∫
z>WzdF̃β̂∗(z) = trace

(
Q MSE(β̂

))
. (3.8)

We will use the formula (3.8) to calculate the numerical risks of all proposed

estimators in the simulation studies.

Theorem 4: (Asymptotic risk of proposed estimators)

If the condition of Theorem 3 holds, then the asymptotic risks of proposed

estimators are as follows.

• AR(β̂ ;Q) = trace (QΣ0) ,

• AR(β̃ ;Q) = AR(β̂;Q)− trace (QJ0) + γ>Qγ,

• AR(β̂PT ;Q) = AR(β̂;Q)− trace (QJ0) Ψp2+2(χ2
p2,α

,∆),

− γ>Qγ
(
Ψp2+4(χ2

p2,α
∆)− 2Ψp2+2(χ2

p2,α
,∆)

)
,

• AR(β̂SE;Q) = AR(β̂;Q) + (p2 − 2)trace (QJ0)
(
(p2 − 2)E(Z−2

1 )− 2E(Z−1
1 )
)
,

+ (p2 − 2)
(
(p2 − 2)E(Z−2

2 )− 2E(Z−1
2 − Z−1

1 )
)
γ>Qγ,

• AR(β̂PSE;Q) = AR(β̂SE;Q)− trace (QJ0) E
(
(1− (p2 − 2)Z−1

1 )2I(Z1 < p2 − 2)
)

− E
(
(1− (p2 − 2)Z−1

2 )2I(Z2 < p2 − 2)
)
γ>Qγ
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+ 2E
(
(1− (p2 − 2)Z−1

1 )I(Z1 < p2 − 2)
)
γ>Qγ.

Proof of Theorem 4:

Based on the definition of AR function, to derive the ARs of the proposed

estimators, we will first derive their covariance matrices. The covariance

matrix of any estimator β̂∗ is defined as

Var(β̂∗) = lim
n→∞

E
(
n(β̂∗ − β)(β̂∗ − β)>

)
.

a. AR of unrestricted estimator β̂

Var(β̂) = lim
n→∞

E
(
n(β̂ − β)(β̂ − β)>

)
= lim

n→∞
E
(√

n(β̂ − β)
√
n(β̂ − β)>

)
= E(η1η

>
1 ) = Σ0, and

AR(β̂;Q) = trace (QΣ0) .

b. AR of restricted estimator β̃

Var(β̃) = lim
n→∞

E
(
n(β̃ − β)(β̃ − β)>

)
= lim

n→∞
E
(
n
(
β̂ − β −Σ0R

>(RΣ0R
>)−1(Rβ̂ − r)

)
×

(
β̂ − β −Σ0R

>(RΣ0R
>)−1(Rβ̂ − r)

)>)
= lim

n→∞
E
(
n(β̂ − β)(β̂ − β)>

)
+ lim

n→∞
E
(
nΣ0R

>(RΣ0R
>)−1(Rβ̂ − r)(Rβ̂ − r)>(RΣ0R

>)−1RΣ0

)
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− 2 lim
n→∞

E
(
nΣ0R

>(RΣ0R
>)−1(Rβ̂ − r)(β̂ − β)>

)
, where

1st term = lim
n→∞

E
(
n(β̂ − β)(β̂ − β)>

)
= Var(β̂),

2nd term = lim
n→∞

E
(√

nΣ0R
>(RΣ0R

>)−1(Rβ̂ − r)
√
n(Rβ̂ − r)>(RΣ0R

>)−1RΣ0

)
= Σ0R

>(RΣ0R
>)−1RΣ0 + Σ0R

>(RΣ0R
>)−1δδ>(RΣ0R

>)−1RΣ0

= J0 + γγ>, and

3rd term = −2 lim
n→∞

E
(
nΣ0R

>(RΣ0R
>)−1(Rβ̂ − r)(β̂ − β)>

)
= −2Σ0R

>(RΣ0R
>)−1RΣ0 = −2J0, Therefore, we have

Var(β̃) = Var(β̂)− J0 + γγ>, and

AR(β̃;Q) = AR(β̂;Q)− trace (QJ0) + γ>Qγ.

c. AR of pretest estimator β̂PT

Var(β̂PT ) = lim
n→∞

E
(
n(β̂PT − β)(β̂PT − β)>

)
= lim

n→∞
E
(
n(β̂ − β)(β̂ − β)>

)
+ lim

n→∞
E
(
I(Λ̂ ≤ χ2

p2,α
)(β̂ − β̃)(β̂ − β̃)>

)
− 2 lim

n→∞
E
(
nI(Λ̂ ≤ χ2

p2,α
)(β̂ − β̃)(β̂ − β)>

)
, where

1st term = lim
n→∞

E
(
n(β̂ − β)(β̂ − β)>

)
= Var(β̂)

2nd term = lim
n→∞

E
(
nI(Λ̂ ≤ χ2

p2,α
)(β̂ − β̃)(β̂ − β̃)>

)
= Σ0R

>(RΣ0R
>)−1 lim

n→∞
E
(
I(Λ̂ ≤ χ2

p2,α
)n(Rβ̂ − r)(Rβ̂ − r)>

)
× (RΣ0R

>)−1RΣ0

= Σ0R
>(RΣ0R

>)−1RΣ0Ψp2+2(χ2
p2,α

,∆)
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+ Σ0R
>(RΣ0R

>)−1δδ>(RΣ0R
>)−1RΣ0Ψp2+4(χ2

p2,α
∆)

= J0Ψp2+2(χ2
p2,α

,∆) + γγ>Ψp2+4(χ2
p2,α

∆).

3rd term = −2 lim
n→∞

E
(
nI(Λ̂ ≤ χ2

p2,α
)(β̂ − β̃)(β̂ − β)>

)
= −2Σ0R

>(RΣ0R
>)−1

+ lim
n→∞

E

(√
n(Rβ̂ − r)

(√
n(β̂ − β̃)

)>
I(Λ̂ ≤ χ2

p2,α
)

)
− lim

n→∞
E
(√

n(Rβ̂ − r)
(
Σ0R

>(RΣ0R
>)−1
√
n(Rβ − r)

)>
I(Λ̂ ≤ χ2

p2,α
)
)

= −2Σ0R
>(RΣ0R

>)−1

+ lim
n→∞

E

(√
n(Rβ̂ − r)

(
Σ0R

>(RΣ0R
>)−1
√
n(Rβ̂ − r)

)>
I(Λ̂ ≤ χ2

p2,α
)

)
− lim

n→∞
E
(√

n(Rβ̂ − r)
(
Σ0R

>(RΣ0R
>)−1
√
n(Rβ − r)

)>
I(Λ̂ ≤ χ2

p2,α
)
)

= −2Σ0R
>(RΣ0R

>)−1RΣ0Ψp2+2(χ2
p2,α

,∆)

− 2Σ0R
>(RΣ0R

>)−1δδ>(RΣ0R
>)−1RΣ0

(
Ψp2+4(χ2

p2,α
∆)−Ψp2+2(χ2

p2,α
,∆)

)
= −2J0Ψp2+2(χ2

p2,α
,∆)− 2γγ>

(
Ψp2+4(χ2

p2,α
∆)−Ψp2+2(χ2

p2,α
,∆)

)
,

Therefore,

Var(β̂PT ) = Var(β̂)− J0Ψp2+2(χ2
p2,α

,∆)− γγ>
(
Ψp2+4(χ2

p2,α
∆)− 2Ψp2+2(χ2

p2,α
,∆)

)
AR( ˆβPT ;Q) = AR(β̂;Q)− trace (QJ0) Ψp2+2(χ2

p2,α
,∆)

− γ>Qγ
(
Ψp2+4(χ2

p2,α
∆)− 2Ψp2+2(χ2

p2,α
,∆)

)
.

d. AR of shrinkage estimator β̂SE

Var(β̂SE) = lim
n→∞

E
(
n(β̂SE − β)(β̂SE − β)>

)
= lim

n→∞
E
(
n(β̂ − β)(β̂ − β)>

)
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+ lim
n→∞

E
(
n(p2 − 2)2Λ̂−2(β̂ − β̃)(β̂ − β̃)>

)
− 2 lim

n→∞
E
(
n(p2 − 2)Λ̂−1(β̂ − β̃)(β̂ − β)>

)
,where

1st term = lim
n→∞

E
(
n(β̂ − β)(β̂ − β)>

)
= Var(β̂).

2nd term = lim
n→∞

E
(
n(p2 − 2)2Λ̂−2(β̂ − β̃)(β̂ − β̃)>

)
= (p2 − 2)2 lim

n→∞

(
Σ0R

>(RΣ0R
>)−1

× E
(

Λ̂−2
√
n(Rβ̂ − r)

√
n(Rβ̂ − r)>

)
(RΣ0R

>)−1RΣ0

)
= (p2 − 2)2Σ0R

>(RΣ0R
>)−1RΣ0E(Z−2

1 )

+ (p2 − 2)2Σ0R
>(RΣ0R

>)−1δδ>(RΣ0R
>)−1RΣ0E(Z−2

2 )

= (p2 − 2)2J0E(Z−2
1 ) + (p2 − 2)2γγ>E(Z−2

2 ),where Z2 = χ2
p2+4,α(∆),

3rd term = −2 lim
n→∞

E
(
n(p2 − 2)Λ̂−1(β̂ − β̃)(β̂ − β)>

)
= −2(p2 − 2)Σ0R

>(RΣ0R
>)−1 lim

n→∞
E
(

Λ̂−1
√
n(Rβ̂ − r)

√
n(β̂ − β)>

)
= −2(p2 − 2)Σ0R

>(RΣ0R
>)−1

× lim
n→∞

E
(√

n(Rβ̂ − r)
√
n(Rβ̂ − r)>Λ̂−1

)
(RΣ0R

>)−1RΣ0

+ 2(p2 − 2)Σ0R
>(RΣ0R

>)−1

× lim
n→∞

E
(√

n(Rβ̂ − r)Λ̂−1
)√

n(Rβ − r)>(RΣ0R
>)−1RΣ0

= −2(p2 − 2)J0E(Z−1
1 )− 2(p2 − 2)γγ>E

(
Z−2

2 − Z−1
1

)
, by Lemma 1.

Therefore,

Var(β̂SE) = Var(β̂) + (p2 − 2)J0

(
(p2 − 2)E(Z−2

1 )− 2E(Z−1
1 )
)

+ (p2 − 2)γγ>
(
(p2 − 2)E(Z−2

2 )− 2E(Z−1
2 − Z−1

1 )
)
, and
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AR(β̂SE;Q) = AR(β̂;Q) + (p2 − 2)trace(QJ0)
(
(p2 − 2)E(Z−2

1 )− 2E(Z−1
1 )
)

+ (p2 − 2)
(
(p2 − 2)E(Z−2

2 )− 2E(Z−1
2 − Z−1

1 )
)
γ>Qγ.

e. AR of positive shrinkage estimator β̂PSE

Var(β̂PSE) = lim
n→∞

E
(
n(β̂PSE − β)(β̂PSE − β)>

)
= Var(β̂SE) + lim

n→∞
E
(
n(1− (p2 − 2)Λ̂−1)2(β̂ − β̃)(β̂ − β̃)>I(Λ̂ < p2 − 2)

)
− 2 lim

n→∞
E

(
n(1− (p2 − 2)Λ̂−1)(β̂ − β̃)

(
(β̃ − β)(1− (p2 − 2)Λ̂−1)(β̂ − β̃)

)>
× I(Λ̂ < p2 − 2)

)
= Var(β̂SE)− lim

n→∞
E
(
n(1− (p2 − 2)Λ̂−1)2(β̂ − β̃)(β̂ − β̃)>I(Λ̂ < p2 − 2)

)
− 2 lim

n→∞
E
(
n(1− (p2 − 2)Λ̂−1)I(Λ̂ < p2 − 2)(β̂ − β̃)(β̂ − β̃)>

)
,where

2nd term = Var(β̂SE)− lim
n→∞

E
(
n(1− (p2 − 2)Λ̂−1)2(β̂ − β̃)(β̂ − β̃)>I(Λ̂ < p2 − 2)

)
= −J0E

(
(1− (p2 − 2)Z−1

1 )2I(Z1 < p2 − 2)
)

− γγ>E
(
(1− (p2 − 2)Z−1

2 )2I(Z2 < p2 − 2)
)

, and

3rd term = −2 lim
n→∞

E
(
n(1− (p2 − 2)Λ̂−1)I(Λ̂ < p2 − 2)(β̂ − β̃)(β̂ − β̃)>

)
= −2Σ0R

>(RΣ0R
>)−1

× lim
n→∞

E
(

(1− (p2 − 2)Λ̂−1)I(Λ̂ < p2 − 2)
√
n(Rβ̂ − r)

√
n(β̃ − β)>

)
= 2γγ>E

(
(1− (p2 − 2)Z−1

1 )I(Z1 < p2 − 2)
)
, by Lemma 1.

Therefore,

Var(β̂PSE) = Var(β̂SE)− J0E
(
(1− (p2 − 2)Z−1

1 )2I(Z1 < p2 − 2)
)
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− γγ>E
(
(1− (p2 − 2)Z−1

2 )2I(Z2 < p2 − 2)
)

+ 2γγ>E
(
(1− (p2 − 2)Z−1

1 )I(Z1 < p2 − 2)
)
, and

AR(β̂PSE;Q) = AR(β̂SE;Q)− trace (QJ0) E
(
(1− (p2 − 2)Z−1

1 )2I(Z1 < p2 − 2)
)

− E
(
(1− (p2 − 2)Z−1

2 )2I(Z2 < p2 − 2)
)
γ>Qγ

+ 2E
(
(1− (p2 − 2)Z−1

1 )I(Z1 < p2 − 2)
)
γ>Qγ.

Remarks:

• If δ = 0 (i.e the non-centrality parameter ∆ = 0), the ARs of β̂ and β̃

are trace (QΣ0) and AR(β̂;Q)− trace (QJ0), respectively.

• The AR of β̂ is constant while the AR of β̃ becomes unbounded as δ

in γ = −Σ0R
>(RΣ0R

>)−1δ away from the null vector.

• β̂PT , β̂SE, and β̂PSE have the lower risks than β̂ when ∆ = 0. However,

for any intermediate value of ∆, AR of β̂PT is larger than AR of β̂.

• If ∆→∞, the AR of β̂PT → β̂.

• As ∆ > 0, ARs of β̂SE and β̂PSE increase. However, both estimators

outperform β̂ and are admissible estimators when compared to β̂.

• β̂PSE is asymptotically superior to β̂SE in the entire parameter space

induced by ∆.

The comparison of performance among estimators will be explored nu-

68



merically through a simulation study with different number of insignificant

covariates and sample sizes in next section (3.5).

3.5 Simulation Study

In this section we conduct simulation studies in various settings to evalu-

ate the performance of the proposed pretest and shrinkage estimators, in

estimating the parametric part of GPLM to compare with the unrestricted

GPLM estimator.

Our simulations are based on sample sizes n = 200, 250, 300, and 350.

We consider a logistic partially linear model and generate data from this

model

logit(yi = 1|xi, ti) = x>i β +mβ(ti), i = 1, 2, · · · , n, (3.9)

where

• the parametric covariates xi are drawn from a multivariate normal

distribution with mean 0 and covariance Ip,

• ti is generated from the uniform distribution [−1, 1] with x and t are

independent, and

• mβ(t) is assumed as mβ(t) = 1.5× sin(2πt).
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To investigate the performance of the pretest and shrinkage estimators with

respect to the unrestricted GPLM estimator, we first define three models as

follows.

a. Simulation model

We consider model (3.9) as our simulation model and assume two sets of true

values of coefficients βsim for the parametric part of model (3.9),

• βsim = (1.5,−2.1,−1.25, 3,−0.75),

• βsim = (1.5,−2.1,−1.25, 3,−0.75, 1.45, 0.3).

Given the values of the parameters, the design matrix, and the nonparametric

part mβ(t), we then generate binary responses from this simulation model.

b. Unrestricted model

The unrestricted model is defined as the logistic partially linear model (3.9),

with βU = (β>1 ,β
>
2 )>. In this model β1 = βsim and β2 is a p2 × 1 vec-

tor of zeros, that is, insignificant covariates. Thus, the true values of the

parameters are β1 = βsim, where β1 is either (1.5,−2.1,−1.25, 3,−0.75) or

(1.5,−2.1,−1.25, 3,−0.75, 1.45, 0.3) and β2 = 0p2×1.

With this set up, the covariates related to β2 turn out not to be statistically

significant with the response, that means these covariates may not make

any contribution in the presence of other significant covariates. We consider

several scenarios: p1 = 5 and 7; and p2 = 3, 5, 8, 10, 13 and 15.
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c. Restricted model

The restricted model is just the unrestricted model subject to the constraint

H0 : Rβ = r. The restricted estimator will be based on an R with

H0 : Rβ = 0 where R =
[
0p2×(p−p2), Ip2

]
, r = 0p2×1, where 0p2×1 is an

p2× 1 zero vector and βR = (β>1R,β
>
2R)>. The dimension of β1R and β2R are

p1 × 1 and p2 × 1, respectively, such that p = p1 + p2.

With the restriction Rβ = 0, the restricted GPLM is not substantially dif-

ferent from the unrestricted GPLM. In this case, ∆ = ||β−βR||2 = 0, where

|| · || denotes the Euclidian norm.

To evaluate the behavior of the pretest and shrinkage estimators when the

restricted model is significantly different from the unrestricted model, we

assume β2R = (
√
d, 0, 0, . . . , 0)′ so that ∆ = ||β − βR||2 = d, where d is a

positive constant. Here ∆ is the difference between the unrestricted and the

restricted model according to the local alternative.

The numerical performance of the pretest and shrinkage estimators is evalu-

ated under both H0 : ∆ = 0 and Ha : ∆ = d for 0 < d ≤ 2.0.

Based on the above setups of three defined models, the responses were

generated using different ∆ values, where ∆ = (0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5,

1.75, 2.0) to study the effect of n, p2 and ∆ on restricted, pretest and shrink-

age estimators in terms of bias and mean squared error.

We used 1000 replications for each scenario since the result did not

change significantly with any increase in the number of replication. General-
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ized Speckman method were applied to estimate parameters. In this simula-

tion and the application to credit score data in next section, we consider the

Epanechnikov kernel function K(u) = 15
16

(1− u2)2I(|u|≤1). The weight matrix

Q in the quadratic loss function is Section (3.4.4) was set to Ip×p. We then

calculate β̂, β̃, β̂PT , β̂SE, and β̂PSE numerically for each simulated data set.

Bandwidth selection is quite important to visualize the distributions.

For the estimation of nonparametric part mβ(t) = 1.5 × sin(2πt) of our

procedure, we used the Scott’s rule of thumb to compute the bandwidth

h = 1.06 ∗ σ̂n−1/5 which satisfies the conditions of Theorem 1.

The quadratic bias, mean squared error (MSE), and relative mean

squared error (RMSE) are used to evaluate the performance of any proposed

estimator β̂g with respect to UG (β̂). The relative RMSEg is defined as

RMSEg =
MSE(β̂)

MSE(β̂g)
,

where g = 1, 2, 3, 4 denote the relative MSE of the RG, PT, SE and PSE,

respectively with respect to UG.

The MSE for g = 1, 2, 3, 4 is calculated based on the formula

MSE(β̂g) = trace[var(β̂g)] + ||bias(β̂g)||2.

The trace of a covariance matrix of β̂g and the average of ||bias(β̂g)||2 are
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calculated from 1000 simulated data sets to compute MSE(β̂g).

Note: When RMSEg > 1, it indicates either the RG, PT, SE or PSE is

better or has lower risk than the UG.

3.5.1 Quadratic Biases of UG, RG, PT, SE and PSE

when ∆ ≥ 0

The quadratic bias (QB) for each estimator is calculated as the difference

between the mean of the estimates obtained from the 1000 replications and

the true value of the parameter. As it is a scaler quantity, we can compare all

estimators of logistic partially linear model for varying sample sizes n = 250

to n = 350.

The QBs of UG, RG, PT, SE and PSE when ∆ ≥ 0 are given in

Theorem 2, it shows that the non-centrality parameter ∆ is common in the

QB expressions except for UG, that is, we mainly compare biases for different

values of ∆ when the sample size varies.

The plots of QBs of the UG, RG, PT, SE and PSE with α = 0.05 are

provided in Figure 3.1 with different values of ∆. Some findings from these

plots are as follows.

• For all values of ∆, the QB of the UG is approximately 0. However,
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due to sampling fluctuation, the simulated QB is not exactly zero.

• The QB of RG is unbounded as ∆ increases and tends to∞ as ∆→∞.

• The QB of PT is a function of ∆ and the significance level α. In this

simulation study, we provided the result of PT for α = 0.05.

• The QB of PT approaches to that of the UG as ∆ increases.

• The SE and PSE are biased but are bounded in ∆ and the PSE has

lower or equal QB than the SE.

• As ∆ increases, more sampling fluctuations occur in the QBs of all

estimators for n = 250 as compared to the QBs for n = 350.

3.5.2 RMSEs of UG, RG, PT, SE and PSE when ∆ ≥ 0

The RMSE results from the simulation study are presented in Figure 3.8 and

Table 3.1 when the number of significant covariates p1 = 5 and 7 along with

the different number of insignificant covariates p2.

Note: RMSEs for RG, PT, SE and PSE are presented by the dash (in green),

dotted (in gold), dotdash (in blue), and longdash (in red) lines, respectively,

and the curves are split up for sample sizes n = 250 and n = 350 by the filled

circle and filled triangle point-up, respectively. The dotted pink line is the

benchmark line for UG.
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Summary of findings from Figure 3.8 and Table 3.1

• RMSEs of all the estimators relative to UG are highest when ∆ is 0, n

is fixed and p2 varies, subject to the random sampling fluctuations.

• RG consistently outperforms all other estimators at and near the null

hypothesis because of its unbiasedness.

• As ∆ increases, the risk of the RG increases and becomes unbounded,

that is, the RMSE of the RG decreases and approaches zero. Therefore,

if RG is nearly correctly specified, it is an optimal estimator over the

entire parameter space.

• When ∆ = 0 and p2 values range from small to medium, PT outper-

forms the PSE and SE. However, the performance of PT diminishes

compared to PSE and SE as p2 increases. Therefore, for large p2, PT

underperforms SE and PSE.

• For example, when n = 250 and 350, we see that PSE outperforms SE

(in terms of RMSE) for ∆ close to zero (see Figures 3.8(a) and (f)).

Nevertheless, SE and PSE are superior to UG in terms of RMSE for

all the combinations of p2 and n.

• For fixed n, SE and PSE gain the highest RMSEs when p2 is large (e.g.,

p2 ≥ 13; see the curves with crosses at each data point) and ∆ is zero.
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It is interesting to see that the improvement due to shrinkage depends

on the value of p2 relative to n.

• As an example, note that p2 = 5 relative to n = 250 is larger than p2 =

5 relative to n = 300; a comparison between the RMSE in Table 3.1

indicates more improvement due to shrinkage for p2 = 5 with n = 250

as compared to p2 = 5 with n = 300. Similarly, p2 = 5 with n = 250

produces more accurate estimates than p2 = 5 with n = 350.

• For small-sized ∆ (e.g 0 ≤ ∆ < 0.5), the PSE outperforms the SE.

However, when ∆ is large, the RMSE of PSE quickly converges to SE

(β̂PSE = β̂SE). Thus, shrinkage is the most beneficial when there is

no substantial difference between the unrestricted and the restricted

GPLM.

• The improvement due to shrinkage depends on the value of p2 relative

to n. In general, shrinkage is useful when p2 is large relative to n and

∆ = 0.

To explore the effect of p2 and n, we also make a comparison between the

MSE curves in Figure 3.15. For fixed n, we see that the larger the value of

p2, the less accurate the estimates are, a well known result in the real data

analysis. We also see that as n increases with p2 fixed, the accuracy of the

estimates increases (e.g., compare Figures 3.15((a)-(f)).

We did not report the simulation results for backfitting algorithm as the
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Table 3.1: RMSE of RG, PT, SE, and PSE with respect to UG when ∆ = 0.
Here, p1 = 5, 7 and n = 250, 300, 350.

p2 = 5 p2 = 10 p2 = 15 p2 = 3 p2 = 8 p2 = 13
Estimators n = 250, p1 = 5 n = 250, p1 = 7

RG 1.81 3.03 5.47 1.41 2.31 4.33
PT 1.53 2.06 2.19 1.27 1.69 1.94
SE 1.34 1.98 2.78 1.10 1.63 2.24

PSE 1.40 2.05 2.86 1.13 1.68 2.27
Estimators n = 300, p1 = 5 n = 300, p1 = 7

RG 1.73 2.63 4.73 1.37 2.23 3.51
PT 1.49 2.00 2.20 1.26 1.63 2.13
SE 1.34 1.92 2.68 1.09 1.61 2.30

PSE 1.38 1.99 2.80 1.12 1.65 2.35
Estimators n = 350, p1 = 5 n = 200, p1 = 7

RG 1.67 2.59 3.97 1.37 2.03 3.17
PT 1.46 2.13 2.37 1.27 1.72 1.92
SE 1.32 1.90 2.57 1.06 1.57 2.12

PSE 1.37 1.98 2.69 1.12 1.61 2.18

quadratic biases and MSEs, and RMSE of this algorithm are very similar to

generalized Speckman method.

In summary, our simulation study provides the following features:

(a) the PT, SE and PSE have uniformly lower risk than the UG across the

entire parameter space;

(b) shrinkage is most useful when (i) there is no substantial difference be-

tween the unrestricted and the restricted GPLM (∆ ≈ 0), and (ii) the

number of auxiliary covariates (p2) is large relative to the sample size
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n; and

(c) PSE outperforms SE when (i) ∆ ≈ 0, and (ii) p2 is large relative to n.

3.6 Application to Credit Scoring Data

Credit scores are markers that allow lenders and financial institutions to

check a person’s reliability for paying off the debt in time. Thus credit

scoring data are quite important in the risk assessment process. We apply

our proposed estimation methods to one such real credit scoring data.

The German credit scoring data set (available at https://archive.ics.uci.

-edu/ml/datasets/ statlog + (german+credit+data)) contains observations

on 20 socioeconomic variables for 1000 individuals, on the basis of which

they have been classified as good or bad credit risks. All individuals belong

to the same bank. The response variable, Creditability in the dataset

corresponds to the risk label, 0 has been classified as bad credit risk (300

cases) and 1 has been classified as good credit risk (700 cases).

Our objective here is to construct a logistic partially regression model

and to apply proposed methods to estimates the regression parameter effi-

ciently that can be used to determine if a new applicant is in good or bad

credit risk situation based on a set of socioeconomic variables. For fitting
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logistic regression, we merge classes of several categorical predictors because

of insufficient number of observations in each category and we only used

10 out of 20 covariates. The following Table (3.2) presents nine categorial

and one continuous covariates with their classes which are either numeric or

categorical in nature.

Table 3.2: Descriptions of the selected variables of credit scoring dataset

Name of variable Description Value
1. Account.Balance Status of existing No account (0)

checking account Having account (1)
2. Savings.Stocks Savings account No (0)

or stocks Yes (1)
3. Length.Employment Current employment Unemployed/ < 1 year (0)

period 1 year or more (1)
4. Type.Apartment Type of apartment Not rented (0)

Rented (1)
5. Purpose Purpose of Credit For tangible items (0)

Others (1)
6. Payment.Status Payment Status No loan balance (0)

Some outstanding loan (1)
7. No.Credits Number of existing One (0)

credits at the bank Two or more (1)
8. Instalment Installment rate in % Less than 20% (0)

of disposable income 20% or more (1)
9. Occupation Occupation Unskilled (0)

Skilled (1)
10. Age Age of applicant Number of years

We initially take the unrestricted logistic partially regression model and
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fit this model using the Epanechnikov kernel

log

(
p

1− p

)
= β0 + β1 Account.Balance + β2 Savings.Stocks

+ β3 Length.Employment + β4 Type.Apartment + β5 Purpose

+ β6 Payment.Status + β7 No.Credits + β8 Instalment

+ β9 Occupation + f(age).

The backward elimination procedure based on AIC and residual de-

viance criteria are used to select a reduced GPLM that contains only the

significant covariates from the unrestricted GPLM.

To find a restricted model which fits the data adequately, where the

observed value does not differ so much from the predicted value, we look at

the deviance residuals. We also look at the AIC value for the fitted model.

We find that the deviance residual and AIC value for the unrestricted model

are 1082.21 and 1112.4, respectively and also for restricted model are 1089.3

and 1114.1, respectively. This suggest that the restricted model is a useful

and parsimonious approximation to the unrestricted model.

This procedure selects five significant predictors from the unrestricted

GPLM: Account.Balance, Savings.Stocks, Length.Employment, Type.Apartment,

and Purpose. We assume that β2 = (β6, β7, β8, β9)> and fit the restricted

model including only the significant predictors (Account.Balance, Savings.Stocks,

80



Length.Employment, Type.Apartment, and Purpose) subject to the restric-

tion β2 = 0. We use Scott’s rule method (Scott, 1992) to select average

optimal bandwidth of 7.53.

Table 3.3: Credit scoring data analysis – unrestricted, restricted, pretest,
shrinkage and positive shrinkage estimates of the GPLM parameters and
their standard errors
Coefficients UG (SE) RG (SE) PT (BSE) SE (BSE) PSE (BSE)
β1 (Account.Balance) 1.00(0.162) 1.03(0.161) 0.88(0.215) 0.87(0.214) 0.87(0.214)
β2 (Savings.Stocks) 0.55(0.164) 0.52(0.161) 0.42(0.217) 0.42(0.216) 0.42(0.215)
β3 (Length.Employment) 0.48(0.173) 0.47(0.171) 0.28(0.234) 0.28(0.234) 0.28(0.233)
β4 (Type.Apartment) 0.51(0.164) 0.50(0.161) 0.26(0.218) 0.26(0.218) 0.26(0.218)
β5 (Purpose) −0.80(0.155) −0.75(0.152) −0.68(0.201) −0.68(0.198) −0.68(0.198)
β6 (Payment.Status) 0.04(0.190)
β7 (No.Credits) 0.13(0.195)
β8 (Instalment) 0.36(0.152)
β9 (Occupation) −0.22(0.184)

Since we have one dataset, we use case resampling bootstrap method to

calculate the estimates and standard errors of pretest, shrinkage and positive

shrinkage estimators. In the bootstrap, we draw 1000 new samples (of size

800) from the data matrix (y∗i ,x
∗
i , T

∗
i ). We then refit the GPLM using these

data based on the method described in Section 2. We compute the bootstrap

parameter estimates using 1000 bootstrap samples. Table 3.3 presents the

mean of the estimates obtained by the resampling bootstrap method for

the credit scoring dataset and the bootstrap standard errors (SE: standard

error and BSE: bootstrap standard error) of the estimated coefficients. The

RMSEs of RG, PT, SE, and PSE with respect to UG are 1.43, 1.00, 1.14

and 1.15, respectively. The results are consistent with the simulation study

and our theoretical findings provide recommendations about the usefulness

of the proposed pretest and shrinkage estimators.
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3.7 Summary

We have applied the maximum likelihood method with generalized Speckman

algorithm to estimate the regression parameters of GPLM and named this

as unrestricted estimate, UG. We also estimate the parameters when some of

them are restricted to a subspace and named this as restricted estimate, RG.

We study the relative risk dominance of the pretest and shrinkage estimators

which are defined based on the UG and RG. We derive the expressions of

biases and risks and used a Monte Carlo simulation study to calculate the

numerical biases, mean squared errors and risks (inverse of relative mean

squared error) of the estimators.

Our simulation studies show that the restricted estimator offer a nu-

merically superior performance compared to the unrestricted, pretest and

shrinkage estimators near the null hypothesis Rβ = r, but this estimator

performs poorly when the restriction is seriously violated. The risk of the

pretest estimator is lower than that of the UG (or higher relative MSE with

respect to the UG) at and near the restriction in the simulation study. Our

simulation study also shows that the shrinkage estimators have smaller mean

squared error than the unrestricted estimators in terms of MSE for large

region of parameter space even when there exist omitted significant predic-

tor in the specified model. Under alternative hypothesis, it shows that the

relative MSEs of PT, SE and PSE converge to one.
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We applied the proposed estimation method to the credit scoring data.

We calculated the RMSEs of RG, PT, SE and PSE with respect to UG based

on the bootstrap resampling method as we cannot calculate RMSE based on

one data set. It shows that RG, SE, and PSE perform better than the UG

but PT does not show good performance for this dataset.

To summarize, it shows that simulation and real data results justify the

better performance of shrinkage estimators in terms of higher accuracy and

lower variability in the estimation of regression parameters for GPLM. It is

of great interest to study the proposed method for the longitudinal data and

when the number of covariates grows with the sample size.
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Figure 3.1: Simulated QB curves of proposed estimators in GPLM for n =
250, 350 and p2 = 3, 5, 8, 10, 13, 15.

84



0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0
Delta

Q
ua

dr
at

ic
 b

ia
s

Sample size n=250 n=350

Estimators Positive shrinkage Pretest Restricted Shrinkage Unrestricted

Figure 3.2: Simulated QB curves of proposed estimators in GPLM for n =
250, 350 and p = 10, p1 = 5, p2 = 5.
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Figure 3.3: Simulated QB curves of proposed estimators in GPLM for n =
250, 350 and p = 10, p1 = 7, p2 = 3.
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Figure 3.4: Simulated QB curves of proposed estimators in GPLM for n =
250, 350 and p = 15, p1 = 5, p2 = 10.
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Figure 3.5: Simulated QB curves of proposed estimators in GPLM for n =
250, 350 and p = 15, p1 = 7, p2 = 08.

86



0

2

4

6

0.0 0.5 1.0 1.5 2.0
Delta

Q
ua

dr
at

ic
 b

ia
s

Sample size n=250 n=350

Estimators Positive shrinkage Pretest Restricted Shrinkage Unrestricted

Figure 3.6: Simulated QB curves of proposed estimators in GPLM for n =
250, 350 and p = 20, p1 = 5, p2 = 15.
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Figure 3.7: Simulated QB curves of proposed estimators in GPLM for n =
250, 350 and p = 20, p1 = 7, p2 = 13.
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Figure 3.8: Simulated RMSE curves of proposed estimators in GPLM for
n = 250, 350 and p2 = 3, 5, 8, 10, 13, 15.
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Figure 3.9: Simulated RMSE curves of proposed estimators in GPLM for
n = 250, 350 and p = 10, p1 = 5, p2 = 5.
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Figure 3.10: Simulated RMSE curves of proposed estimators in GPLM for
n = 250, 350 and p = 10, p1 = 7, p2 = 3.
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Figure 3.11: Simulated RMSE curves of proposed estimators in GPLM for
n = 250, 350 and p = 15, p1 = 5, p2 = 10.
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Figure 3.12: Simulated RMSE curves of proposed estimators in GPLM for
n = 250, 350 and p = 15, p1 = 7, p2 = 08.
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Figure 3.13: Simulated RMSE curves of proposed estimators in GPLM for
n = 250, 350 and p = 20, p1 = 5, p2 = 15.
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Figure 3.14: Simulated RMSE curves of proposed estimators in GPLM for
n = 250, 350 and p = 20, p1 = 7, p2 = 13.
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Figure 3.15: Simulated MSE curves of proposed estimators in GPLM for
n = 250, 350 and p2 = 3, 5, 8, 10, 13, 15.
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Figure 3.16: Simulated MSE curves of proposed estimators in GPLM for
n = 250, 350 and p = 10, p1 = 5, p2 = 5.
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Figure 3.17: Simulated MSE curves of proposed estimators in GPLM for
n = 250, 350 and p = 10, p1 = 7, p2 = 3.
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Figure 3.18: Simulated MSE curves of proposed estimators in GPLM for
n = 250, 350 and p = 15, p1 = 5, p2 = 10.
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Figure 3.19: Simulated MSE curves of proposed estimators in GPLM for
n = 250, 350 and p = 15, p1 = 7, p2 = 08.
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Figure 3.20: Simulated MSE curves of proposed estimators in GPLM for
n = 250, 350 and p = 20, p1 = 5, p2 = 15.
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Figure 3.21: Simulated MSE curves of proposed estimators in GPLM for
n = 250, 350 and p = 20, p1 = 7, p2 = 13.
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Chapter 4

Optimal Design for Pretest and

Shrinkage Estimators

4.1 Introduction

We often forget that a crucial step in statistical inference is the design stage.

A research design is carefully used for data collection to obtain good esti-

mation of the model parameters. A carefully designed study can provide

valid, precise and efficient inference for the estimators at minimal time and

cost. This fact motivated us to further improve our pretest and shrinkage

estimators using optimal design theory.
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In this chapter, we will first construct an optimal design according to

some criterion of interest. Given an optimal design, we generate our data

to obtain our pretest and shrinkage estimators. Our studies evidently show

that the proposed estimators using optimal design theory outperform the

estimators without using optimal design.

As our work is based on optimal design, we start with a general de-

scription of optimal design theory and some optimal design concepts such as

design definition, design measure, variance-function, information matrix, dif-

ferent criterion functions. We also discuss some important properties. Later

we will describe different types of design, requirements for a good design, and

a class of optimization problems that may be needed according to the differ-

ent types of designs. We will determine the optimality conditions according

to our optimization problem and consider some algorithms to construct the

optimal designs.

4.1.1 Experimental Design

Let y be the response variable. The models used to consider the problem of

selecting a design have the form as

y ∼ π(y|x,θ, σ),
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where

• π(.) is a probability model;

• x = (x1, x2, . . . , xm)> are design variables, x ∈ X ⊆ Rm with X being

the design space;

• θ = (θ1, θ2, ..., θk)
T are unknown parameters. The true value of θ be-

longs to a set Θ ∈ Rk.

• σ is an unkown fixed nuisance parameter.

In most applications, the design space X is compact. For each x ∈ X , an

experiment is performed and the outcome is a random variable y(x), where

Var(y(x)) = σ2.

A value for x is selected first from the design space to obtain an obser-

vation on the response y. Given that x can be set to any chosen value in X ,

a natural question comes in mind is at what values of x should observations

on y be taken so that we obtain a best inference for all or some of the pa-

rameters θ. Suppose that we take n observations. Such a best selection of

the values of x or how to allocate the n observations to the elements of the

design space is known as an optimal design.
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4.1.2 Estimation of Parameters

Generally the mode of inference is decided first. Suppose this is point esti-

mation of the parameters. The solution considered for this case will hold for

other modes of inference as well.

It is important to choose n values (x1, x2, . . . , xn) to yield the “best”

point estimates θ̂ of θ. Given the availability of methods in obtaining the

esitmator θ̂ of θ and let θ̂ be an unbiased estimator for θ in which the

components θ̂j are correlated, the k × k dispersion matrix of θ̂ about θ is

defined by

D(θ̂) = E([θ̂ − θ][θ̂ − θ]>).

Here D(θ̂) contains information about the accuracy of the parameter esti-

mators not only in its diagonal elements (which measure the mean squared

deviation of θ̂j from θj), but also in the off-diagonal cross product elements.

Therefore, the smaller is D(θ̂) the better is the accuracy of the parameter

estimators.

Let yi be the observation obtained at xi, the linear models can be

written as

E(yi) = v>i θ, (4.1)

where vi = (f1(xi), f2(xi), . . . , fk(xi))
> for i = 1, 2, . . . , n. There will be

several equalities between the xi’s and more than one observation is taken
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at the same value of x.

Suppose that y1, y2, . . . , yn are independent random variables with equal

variance σ2, yi’s then satisfy the linear model given as

E(Y ) = Xθ, D(Y ) = σ2In×n, (4.2)

where

• y = (y1, y2, . . . , yn),

• X is an n× k design matrix whose (i, j)th element is fj(xi)

• In×n is an n× n identity matrix,

• D(y) is the dispersion matrix of y.

Least squares estimators are usually a conventional choice for the standard

linear model (4.2) and have the property of being the best linear unbiased

estimators (BLUE). The estimators are the solution of the following equation

(X>X) θ̂ = X>y. (4.3)

Here, X>X is a k× k information matrix of θ. The larger the X>X is, the

greater the information is in the experiment. However, if all the parameters

θ are of interest, we select x in such a way that the X>X is nonsingular. In
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this case, the equation (4.3) will give a unique solution which has the form

as

θ̂ = (X>X)−1X>y. (4.4)

The expectation and dipersion matrix of the estimator θ̂ are θ and σ2(X>X)−1,

respectively. The predicted value of the response at x is

Ŷ (x) = f>(x)θ̂

where f(x) = (f1(x), f2(x), . . . , fk(x))T .

Remarks:

1. As we can see the dispersion matrix of θ̂ does not depend on θ but de-

pends proportionally on the parameter σ2. Therefore, {x1, x2, . . . , xn}

needs to be selected in such way to make D(θ̂) as small as possible or

to make (X>X) large in some sense.

2. The explicit form of the expected value of y(x) can be written as

E(y|v) = v>θ, where v = (f1(x), f2(x), . . . , fk(x))T for v ∈ V ; and

{v ∈ Rk : v = (f1(x), f2(x), . . . , fk(x))T , x ∈ X}. In this case,

choosing a vector x from the design space X is same as choosing a

k-vector v in the k-dimensional space V = f(X ). Hence V is the image
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under f of the original design space X . Thus, V is also an induced

design space.

4.1.3 Discrete Design Space

The original design space X is continuous. To express the design problem

more precisely, we consider discretization. After the discretization of X ,

we can deal with the induced design space V which consists of J distinct

vectors v1,v2, . . . ,vJ . At this point, typically V is a discrete design space.

A value for v must be chosen from the J elements of the space V to obtain

an observation on y.

We now need to find the answer to two questions. First, at which of

the points vj should observations be taken? Second, how many observations

should be taken at these points to obtain “best” least squares estimators of

the parameters?

There are two options to solve this problem; one is by means of an exact

design problem and the other one is by an approximate design problem.
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4.1.4 Exact Design Problem

Suppose we observe n observations. We must decide how many of these, say

nj, to take at vj,
J∑
j=1

nj = n. Let n = (n1, n2, . . . , nJ)>, the matrix (X>X)

can be expressed as

X>X = M(n) =
J∑
j=1

njvjv
>
j = V NV >

where V = [v1,v2, . . . ,vJ ] and N = diag(n1, n2, . . . , nJ).

Our problem is to choose n in such way to make M(n) big in some

sense. Due to integer programming problem, nj’s are required to be integer.

In this context, this is known as an exact design problem. However, as the

theory of calculus cannot be used to identify optimal solutions, integer pro-

gramming problems are usually difficult to solve even without any additional

constraints. Fortunately, there is a convenient way to solve this problem,

which is given in the following.

4.1.5 Approximate Design Problem

To overcome the limitation of interger programming problem, approximate

design is preferrable. Consider M(n) = nM(p) where M(p) can be ex-
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pressed as

M (p) =
J∑
j=1

pj vj v
>
j = V PV >.

In this form, P = diag(p1, p2, . . . , pJ) with pj=
nj

n
for j = 1, 2, . . . , J . Here,

pj is the proportion of observations taken at vj , pj ≥ 0, and
J∑
j=1

pj = 1 and

p = (p1, p2, . . . , pJ) gives the resultant distribution on the induced design

space V .

The matrix M (p) is known as the information matrix. Thus the prob-

lem becomes choosing p in such way to make M(p) large subject to pj=nj/n.

Relaxing the latter design to pj ≥ 0 and
J∑
j=1

pj = 1 will give an approximate

design problem. This is a simpler or more flexible problem to solve. Another

advantage is that it is not much visibly different from the original.

4.1.6 Design Measure and the Variance Function

Consider p as a defining probability distribution on V we have

M(p) = Ep[v v
>] where P (v = vj) = pj. (4.5)

Since the information matrix M (p) is symmetric and nonnegative definite,

a design can be defined by a set of weights or probabilities pj, where pj is

assigned to vj ∈ V . In this design, the weight pj may be set to 0.
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The notation p is referred as the vector (p1, p2, . . . , pJ) and also as a

probability distribution on V that induces a distribution or measure on the

original design space X . We have the full form as

p =

 x1 x2 . . . xJ

p1 p2 . . . pJ

 (4.6)

where the first line gives the design points with pj the associated design

weights. Note that
J∑
j=1

pj = 1 and 0 ≤ pj ≤ 1 for all j.

The support of a design measure p in the design space V is defined to

be those vertices vj with nonzero weights under p, and it is given by:

Supp(p) = {vj ∈ V : pj > 0, j = 1, 2, . . . , J}

An optimal design, say p∗ often existes in such way that Supp(p∗) is a strict

subset of V . The standardized variance of the predicted response at x for

the design (4.6) is given by

d(x, p) = f>(x)M−1(p)f(x), (4.7)

where M(p) is the information matrix. This standardized variance plays an

important role in our optimization problem.
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4.2 Design Criteria

In statistical modeling, the first objective is to obtain the good estimation of

the parameters. Good estimation is usually defined by a variety of criteria.

The criterion function, say φ, can be expressed in terms of the information

matrix M(p). We have

φ(p) = ψ{M (p)}

where M(p) =
∑J

j=1 pj vj v
>
j = V PV >.

It may be possible to obtain the best inference for all or some of the

unknown parameters θ ∈ Θ by making M (p) large. Therefore, serveral ways

to maximize the real valued function φ(p) = ψ{M(p)} may be considered to

make M(p) large.

The criterion defined by the function φ is usually called φ-optimality

and the design which maximizes φ(p) is called a φ-optimal design. Variety

of criteria has been studied in the literature. Some possible criteria in the

context of our estimation strategy in pretest and shrinkage estimation are D-

optimality, A-optimality, G-optimality, linear optimality and c-optimality. In

this research, we will generate our data for pretest and shrinkage estimation

based on the D-optimality criterion. This criterion is also the most important

design criterion in applications.
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4.2.1 D-optimality

In D-optimality, we maximize the determinant of the information matrix

M (p) or the logarithm of its determinant log det {M (p)}. The criterion

function being maximized is defined as

φD(p) = ψD{M (p)} = log det{M(p)} = −log det{M−1(p)}. (4.8)

Maximizing the determinant of the information matrix is equivalent to mini-

mizing the determinant of the covariance matrix of the parameter estimators

(the reciprocity property of the covariance matrix and the information ma-

trix). Therefore, in D-optimality, we minimize the generalized variance of

the parameter estimators.

There is also an interesting link between the D-optimal design and the

standardized variance of the predicted response. Suppose we have a design

variable x for a given model and let p∗ be the D-optimal design.

Kiefer and Wolfowitz (1960) show that maximizing the D-optimal cri-

terion is equivalent to

inf
p

sup
x

d(x, p) = sup
x

d(x, p∗) = k

where d(x, p) = f>(x)M−1(p)f(x) is the standardized variance of the pre-
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dicted response and k is the number of parameters.

Various motivations forD-optimality extend beyond to the idea of point

estimation and joint inference of the parameters θ. If the error terms are as-

sumed to follow a normal distribution, the general form of the joint confidence

region for θ ∈ Θ is described by an ellipsoid

{θ : (θ − θ̂)>M (p) (θ − θ̂) ≤ c}, (4.9)

where c is a critical value and θ̂ is the least squares estimator or the maximum

likelihood estimator of θ. In D-optimality criterion, M(p) is choosen to

make the volume of the ellipsoid as small as possible since this volume is

proportional to [det{M (p)}]− 1
2 . The value of [log det{M (p)}] is finite if and

only if M (p) is non-singular (i.e. when all the unknown parameters are

estimable).

On the other hand, the above D-optimality criterion can be expressed

in terms of the eigenvalues of M(p). Let λ1, λ2, . . . , λk be the eigenvalues of

M (p), the eigenvalues ofM−1(p) are 1/λ1, 1/λ2, . . . , 1/λk. These eigenvalues

are proportional to the squares of the lengths of the axes of the confidence

ellipsoid. Thus we see that the D-optimal design minimizes the product of

the eigenvalues of M−1(p):
∏k

i=1 1/λi.

This is the most extensively studied of all design criteria. The ref-
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erences include Kiefer (1959), Fedorov (1972), Silvey (1980), Berger and

Wong (2009), Atkinson et al. (2007), Shah and Sinha (1989), Pukelsheim

(1993), Mandal and Torsney (2006), Mandal et al. (2005), Torsney and Man-

dal (2001), Torsney (1983), and Torsney (1988).

4.2.2 An Important Property of D-optimality

The D-optimality criterion [φD(p)] has several useful properties. We will

discuss one of the notable properties of this criterion. Since the D-optimality

criterion is a concave function of the positive definite symmetric matrices,

whenever the criterion function φD is finite, it is differentiable and its first

partial derivatives are given by

∂φD
∂pj

= v>j M
−1(p)vj. (4.10)

Property:

The criterion function φD is invariant under a non-singular linear transfor-

mation of V . That is, the D-optimal design is invariant under linear trans-

formation of the scale of the independent variables.

Proof:

Recall M(p): M (p) = V PV >. SupposeW = [ω1, ω2, . . . , ωJ ] is the trans-

formation of V = [v1, v2, . . . , vJ ] under the linear transformation ωj = Avj,

where A is a k × k non-singular matrix, the information matrix of a design
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after assigning weight pj to ωj has the form as

Mω(p) =WPW> = AV PV >A>.

The criterion function φD{Mω(p)} then can be obtained as follows.

φD{Mω(p)} = log det{Mω(p)}

= log det{AV PV >A>}

= log [ det{V PV >} × det{A}2 ]

= log det{M (p)} + log det{A}2

= φD{M(p)} + c, where c is a constant.

4.2.3 Relative Efficiency

To compare different designs, we consider the relative efficiency which is a

function or measure that enables us to compare the efficiencies of two designs.

Let p be a design of any given model of k parameters and let p∗ be the D-

optimal design, the relative efficiency of the design p with respect to the

D-optimal design p∗ (i.e., D-efficiency of the design p) is defined as

Deff =

{
detM (p)

detM(p∗)

}1/k

. (4.11)

110



Note that taking the kth root of the ratio of the determinants will give us

an efficiency measure that is proportional to design size, irrespective of the

dimension of the model.

4.2.4 Other Criteria

As mentioned in previous subsection, apart from D-optimality there are

also several other choices of criteria of interest, such as: A-optimality, G-

optimality, linear optimality and c-optimality. Following is a summary of

criterion functions of c-optimality, linear optimality, and DA-optimality.

1. c-optimality: ψ{M (p)} = -c>M−1(p)c.

2. Linear optimality: ψ{M (p)} = -Trace (AM−1(p)A>).

3. DA-optimality: ψ{M(p)} = -logdet(AM−1(p)A>).

Here, c and A are respectively a given vector and s× k matrix where s < k.

It is noted that c-optimality is appropriate if the interest is only about c>θ.

However, if the interest is in the inference for Aθ, linear optimality or DA-

optimality will be more suitable.

111



4.3 Optimality Conditions

Our goal is to obtain an optimal design based on a criterion function. This

is equivalent to choosing the proportion pj of observations, taken at xj to

ensure good estimation of θ by optimizing some criterion. Once the criterion

function is defined, we need to determine the optimality conditions based

on the constraints of the proposed optimization problem. For any of the

optimality criteria as listed in previous subsection, the criterion function

φ(p) will be optimized subject to the constraints pj ≥ 0 and
J∑
j=1

pj = 1. This

optimization problem is considered as a general problem.

Various problems in statistics require the calculation of such probability

distributions or measures and optimal regression design is an example. Other

examples are parameter estimation, adaptive design, and stratified sampling.

Generally, to find an optimizing distribution, we need to determine optimality

conditions for a given class of optimization problems.

4.3.1 Examples of the general problems

To find an optimizing distribution, says p∗, of the above general problem,

recall that p can be referred as a probability distribution on both the induced

design space V and the original design space X .
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We express our optimization problem in two different formats - one in

terms of the design p and the other in terms of the information matrix M (p).

Optimization problem one in terms of the design p:

Maximize a criterion φ(p) over P ≡
{
p = (p1, p2, . . . , pJ) : pj ≥ 0,

J∑
j=1

pj = 1
}

.

This problem can be viewed as a constrained optimization problem. The full

constraint region is a closed bounded convex set.

Optimization problem two in terms of the design M (p):

Maximize ψ(x) over the convex hull (of the points G(v1), . . . , G(vJ))

CH{G(V)} =
{
x = x(p) =

J∑
j=1

pj G(vj) : p = (p1, p2, . . . , pJ) ∈ P
}
,

where G(.) is a given one-to-one function and V = {v1, . . . ,vJ} is a known

set of vector (or matrix) vertices of fixed dimension.

Alternatively, assuming the value G(vj) with probability pj, we can

express x(p) as x(p) = Ep[G(v)], where G(v) is a random variable. So the

previous problem can be solved for

φ(p) = ψ{Ep[G(v)]}, x = Ep[G(v)] =
J∑
j=1

pjG(vj). (4.12)

An example of either the above two problems is clearly a general optimal

linear regression design problem. However, as with our design problem, a
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generalization of the second problem would be to seek a probability measure

which is defined on V to maximize a function φ(p).

When we consider optimality conditions for an optimization problem,

we could approach in two ways. First, we could find an optimizing p∗ directly.

Second, we can first find an x∗ which maximizes ψ(x) over CH{G(V)} and

then find a p∗ such that x(p∗) = x∗. However, we will consider the former

one as the principal approach. This approach requires conditions explicitly

to define an optimizing p∗.

4.3.2 Directional derivatives:

The emphasis in finding the optimizing distribution is on a differential calcu-

lus approach. One of the tools playing an important simplifying role in the

differential calculus of optimization is the directional derivative of Whittle

(1973). We define optimality conditions in terms of point to point directional

derivatives of a criterion function φ(p) at a point p in the direction of another

point q. The directional derivative Fφ{p, q} of a criterion function φ(.) at p

in the direction of q is defined as

Fφ{p, q} = lim
ε→0+

φ{(1− ε)p+ εq} − φ(p)

ε
. (4.13)
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Here the criterion function φ(.) can be any function with no constraints on p.

The derivative of Fφ{p, q} exists even if φ(.) is not differentiable. However,

if φ(.) is differentiable, then (4.13) becomes

Fφ(p, q) = (q − p)>∂φ
∂p

=
J∑
j=1

(qj − pj) dj, where dj = ∂φ/∂pj, j = 1, 2, . . . , J,

(Mandal and Torsney, 2006).

Let Fj denote the vertex directional derivative of φ(.) at p. To find

the directional derivatives towards the vertices of the feasible region, we first

need to simplify Fφ(p, q) by taking q as ej where ej is the jth unit vector in

RJ . Thus Fj can be expressed as

Fj = Fφ(p, ej) =
∂φ

∂pj
−

J∑
i=1

pi
∂φ

∂pi
= dj −

J∑
i=1

pidi.

Remarks:

• If φ(.) is differentiable at an optimizing distribution p∗, the first-order

conditions for φ(p∗) to be a local maximum of φ(.) in the feasible region

of the problem are

F ∗j = Fφ{p∗, ej}

 = 0 for p∗j > 0

≤ 0 for p∗j = 0.
(4.14)
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• If the criterion φ(.) is concave on the feasible region, the first-order

condition (4.14) is both necessary and sufficient for optimality. This

result is known as the general equivalence theorem in optimal design

(Kiefer, 1974).

4.4 A Class of Algorithms

Typically it is not possible to evaluate an optimal solution p∗ explicitly.

Therefore, in order to determine the optimal weights, we often require an

algorithm. A class of multiplicative algorithms which neatly satisfy the con-

straints of the general problem has the form as given by

p
(r+1)
j ∝ p

(r)
j f(d

(r)
j ), (4.15)

where d
(r)
j = ∂φ/∂pj|p=p(r) and the function f(.) satisfies certain conditions

and may depend on a free positive parameter δ. In view of the conditions

for optimality, a solution to our maximization problem is a fixed point of the

iteration but can also be the solutions to the problem when any subset of

weights is set to zero.

Torsney (1977) first proposed this type of iteration which requires

derivatives to be positive by taking f(d) = dδ with δ > 0. Subsequent em-

pirical studies include Silvey et al. (1978) which is a study of the choice of δ
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when f(d) = dδ, δ > 0. Torsney (1988) considered f(d) = eδd in a variety of

applications. Mandal and Torsney (2006) explored systematic choices of f(.).

Torsney and Mandal (2001) and Mandal et al. (2005) considered constrained

optimal design problems. Mandal et al. (2017) considered the logistic cumu-

lative density function as a choice of f(.) to optimize a non-standard crite-

rion. Titterington (1976) did a monotonicity proof for D-optimality. Torsney

(1983) studied monotonicity of some particular values of δ for some criterion

φ(p). Torsney (1983) established a sufficient condition for monotonicity when

the criterion is homogeneous of certain degree and also proved this condition

to hold for design criteria such as c- and A-optimal criteria. In other cases

the value δ = 1 can be shown to yield an expectation–maximization (EM)

algorithm. This algorithm is known to be monotonic and convergent (see

Dempster et al. (1977)). Fedorov (1972) and Wynn (1972) considered vertex

direction algorithms. These are useful when many weights are zero at the

optimum. At the other case, constrained steepest ascent or Newton type

iterations are appropriate (see Wu (1978) and Atwood (1980)).

We maximize a criterion function φ(p) subject to the basic constraints

on the design weights: pj ≥ 0, j = 1, 2, . . . , J and
∑J

j=1 pj = 1. The iteration

(4.19) neatly submits to these basic constraints. Convergence of this algo-

rithm could be slow if we do not choose the function f(.) and its arguments

in an objective way. Thus the goal is to find appropriate choice(s) of these,

that is, to develop strategies for better convergence of the algorithm for con-
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structing designs that optimize standard regression design criteria. Following

this the general form of the algorithm is given below. The iteration at the

(r + 1)th step is

p
(r+1)
j =

p
(r)
j f(x

(r)
j , δ)

J∑
j=1

p
(r)
j f(x

(r)
j , δ)

, (4.16)

where x can be taken as the partial derivatives and f(x, δ) is a positive and

strictly increasing function in x and δ is a free positive parameter.

4.5 Properties of the Algorithm

The choice of f(.) plays an important role in the convergence of the algorithm.

We will study some important properties of the directional derivatives to

make a proper choice of f(.).

1. Under the conditions imposed on f(.), algorithm (4.16) guarantees

Fφ{p(r), p(r+1)} ≥ 0 where Fφ{p(r), p(r+1)} is the directional derivative

of φ(.) at the current iteration p(r) in the direction of the next iteration

p(r+1).

2. Let supp(p) = {vj ∈ V : pj > 0} denote the support of the distribution

p. Under the above iteration, we have supp(p(r+1)) ⊆ supp(p(r)), but
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some weights can converge to zero.

3. If p(r) = p∗, then p(r+1) = p∗ so that Fφ{p(r), p(r+1)} = 0, with p∗ being

a fixed point of the iteration.

4. The partial derivatives dj corresponding to nonzero p∗j must share a

common value.

In next section, we will construct our optimal designs, generate data, ob-

tain pretest, shrinkage, and positive shrinkage estimators and compare their

performances.

4.6 Simulation Study

To see the finite-sample performance of pretest, shrinkage, and positive

shrinkage estimators with and without using optimal design technique in

the pre-modeling stage, we conduct Monte Carlo simulation studies under

the various scenarios. The data are generated from the following multiple

linear regression model

yi = x>i θ + εi, i = 1, 2, · · · , n, (4.17)

where the covariates xi are generated from a uniform distribution U(−1, 1)

without applying the optimal design technique. The D-optimality criterion
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are applied when we used optimal design for generating covariates from the

interval [−1, 1]. In this case we get the optimal values of the covariates from

the interval [−1,−1] using optimal design instead of taking random covariate

values from U(−1, 1). The errors εi are generated from standard normal

distribution. For each scenario, we calculate the relative mean squared error

for sample size n = 128, 192, 256, and 320 and repeat each simulation 1000

times.

In this simulation, we have partitioned the coefficient θ = (θ>1 ,θ
>
2 )>,

where θ1 and θ2 are p1×1 and p2×1 vectors, respectively. We consider three

sets of true θ1 values (p1 = 1, 2, and 3), that is, θ1 = 1.5, θ1 = (1.5,−2.1),

and θ1 = (1.5,−2.1,−1.25) and also the number of corresponding inactive

covariates p2 in the model are 5, 3 and 2, respectively.

To explore the behavior of the pretest and shrinkage estimators, we

define ∆ = ‖θ − θ0‖, where ‖.‖ is the Euclidean norm, θ0 = (θ>1 ,0
>)>, and

0 is a zero vector with different dimensions p2. Note that ∆ is the difference

between the unrestricted and restricted models and the performance of the

pretest and shrinkage estimators is assessed when H0 : ∆ = 0 and Ha :

∆ = d∆ for 0 ≤ d∆ ≤ 2. For each simulation set up, 1000 simulation

runs are conducted using ∆ = (0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0). For

each simulated data set, the relative mean squared errors of restricted (RE),

pretest (PT), shrinkage (SE), and positive shrinkage (PSE) with respect to

unrestricted (UE) are calculated when the covariates xi are generated from
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U(−1, 1) and the interval [−1, 1] using optimal design technique. Quadratic

bias and mean squared error (MSE) of the estimators are also calculated for

each simulated data set with and without optimal design settings.

4.6.1 Covariates generated using D-optimal criterion

We consider m = 6 and rewrite the model (4.17) as follows.

y = θ0 + θ1x1 + θ2x2 + θ3x3 + θ4x4 + θ5x5 + θ6x6 + ε = v>x θ + ε, (4.18)

where vx = (1, x1, x2, x3, x4, x5, x6)> and θx = (θ0, θ1, θ2, θ3, θ4, θ5, θ6).

In order to find the optimal design, we first need to discretize the design

space. An ideal discretization would be some form of uniform grid on a

continuous design space. In practice the discretization that is used is the

image under the regression function of a uniform grid on the design space.

Let this induced design space be V with J points or vertices. In our model,

we have a standardized continuous design space. Therefore, the design space

consists of J = (5)6 = 15625 combinations of (x1, x2, x3, x4, x5, x6). Let pr

be the arbitrary weight of each combination, the design can be written as

ζ =

(x11, x21, · · · , x61) (x11, x21, · · · , x62) · · · (x15, x25, · · · , x65)

pr1 pr2 · · · pr15625


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where the first row gives the values of combinations of (x1, x2, x3, x4, x5, x6)

respectively while the second row gives the corresponding proportions or

weights. In our design, the variables pr1, pr2, . . . , prJ must be nonnegative

and sum to 1. An iteration which neatly submits to these and enjoys some

properties is the following algorithm:

pr
(r+1)
j = pr

(r)
j f(x

(r)
j , δ)

/ J∑
i=1

pr
(r)
i f(x

(r)
i , δ) (4.19)

where x
(r)
j = d

(r)
j , d

(r)
j = ∂φ

∂prj

∣∣∣
pr=pr(r)

(partial derivatives at rth iteration, i.e.,

at pr = pr(r)). The function f(x, δ) must be positive and strictly increasing

in the first argument x. Its second argument δ is a free positive parameter.

We will see that it is actually a tuning parameter for the convergence of the

algorithm.

We apply the above optimization algorithm by assigning initial weights pr0
j =

1/J for j = 1, 2, · · · , J. Let f(x) = xδ, where x = d and d is the partial

derivatives of D-optimality criterion. We use δ = 1.9 in the above algorithm.

According to the design criterion, the partial and directional derivatives are

calculated and then we can run the algorithms to obtain the optimal design

points ζ and weights until it converges.

Here Fj’s are the vertex directional derivatives of the criterion function. In

our case, the criterion function is the D-optimality criterion. In order to

calculate the directional derivatives, we first need to calculate the partial

122



derivatives of the criterion function.

The final optimal design has 64 combinations of (x1, x2, x3, x4, x5, x6) where

values for each xi is −1 or 1 and the corresponding optimal weight for each

combination is 0.015625. The results are summarized in the following table.

Table 4.1: Optimal weights with the corresponding values of
x1, x2, x3, x4, x5, x6

x1 x2 x3 x4 x5 x6 pr x1 x2 x3 x4 x5 x6 pr

-1 -1 -1 -1 -1 -1 0.015625 1 -1 -1 -1 -1 -1 0.015625

-1 1 -1 -1 -1 -1 0.015625 1 1 -1 -1 -1 -1 0.015625

-1 -1 1 -1 -1 -1 0.015625 1 -1 1 -1 -1 -1 0.015625

-1 1 1 -1 -1 -1 0.015625 1 1 1 -1 -1 -1 0.015625

-1 -1 -1 1 -1 -1 0.015625 1 -1 -1 1 -1 -1 0.015625

-1 1 -1 1 -1 -1 0.015625 1 1 -1 1 -1 -1 0.015625

-1 -1 1 1 -1 -1 0.015625 1 -1 1 1 -1 -1 0.015625

-1 1 1 1 -1 -1 0.015625 1 1 1 1 -1 -1 0.015625

-1 -1 -1 -1 1 -1 0.015625 1 -1 -1 -1 1 -1 0.015625

-1 1 -1 -1 1 -1 0.015625 1 1 -1 -1 1 -1 0.015625

-1 -1 1 -1 1 -1 0.015625 1 -1 1 -1 1 -1 0.015625

-1 1 1 -1 1 -1 0.015625 1 1 1 -1 1 -1 0.015625

-1 -1 -1 1 1 -1 0.015625 1 -1 -1 1 1 -1 0.015625

-1 1 -1 1 1 -1 0.015625 1 1 -1 1 1 -1 0.015625

-1 -1 1 1 1 -1 0.015625 1 -1 1 1 1 -1 0.015625

Continued on next page
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Table 4.1 – Continued from previous page

x1 x2 x3 x4 x5 x6 pr x1 x2 x3 x4 x5 x6 pr

-1 1 1 1 1 -1 0.015625 1 1 1 1 1 -1 0.015625

-1 -1 -1 -1 -1 1 0.015625 1 -1 -1 -1 -1 1 0.015625

-1 1 -1 -1 -1 1 0.015625 1 1 -1 -1 -1 1 0.015625

-1 -1 1 -1 -1 1 0.015625 1 -1 1 -1 -1 1 0.015625

-1 1 1 -1 -1 1 0.015625 1 1 1 -1 -1 1 0.015625

-1 -1 -1 1 -1 1 0.015625 1 -1 -1 1 -1 1 0.015625

-1 1 -1 1 -1 1 0.015625 1 1 -1 1 -1 1 0.015625

-1 -1 1 1 -1 1 0.015625 1 -1 1 1 -1 1 0.015625

-1 1 1 1 -1 1 0.015625 1 1 1 1 -1 1 0.015625

-1 -1 -1 -1 1 1 0.015625 1 -1 -1 -1 1 1 0.015625

-1 1 -1 -1 1 1 0.015625 1 1 -1 -1 1 1 0.015625

-1 -1 1 -1 1 1 0.015625 1 -1 1 -1 1 1 0.015625

-1 1 1 -1 1 1 0.015625 1 1 1 -1 1 1 0.015625

-1 -1 -1 1 1 1 0.015625 1 -1 -1 1 1 1 0.015625

-1 1 -1 1 1 1 0.015625 1 1 -1 1 1 1 0.015625

-1 -1 1 1 1 1 0.015625 1 -1 1 1 1 1 0.015625

-1 1 1 1 1 1 0.015625 1 1 1 1 1 1 0.015625

We compare the proposed estimators using quadratic bias (QB) and mean
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squared error (MSE). Figures 4.1 - 4.8 show the QB curves and Figures 4.15

- 4.22 show the MSE curves of the estimators for different values of ∆ and

different combination of inactive covariates p2. These figures also provide the

comparison of quadratic biases and MSE among different sample sizes with

and without optimal design settings.

The key findings of QB and MSE for proposed estimators in both settings are

summarized below when ∆ ≥ 0. First we start with without-optimal-design

technique:

1. All figures show that the quadratic bias and MSE of restricted estimator

(RE) is lower than the pretest and shrinkage estimators (SE and PSE)

at and near ∆ = 0 and this is obvious because of its unbiasedness.

2. The RE is consistently outperforming all other estimators near the null

hypothesis. However, as ∆ increases, the quadratic bias and MSE of

the RE increases and becomes unbounded. Therefore, if RE is nearly

correctly specified, it is the optimal estimator over entire parameter

space. Because of the nature of RE, this estimator heavily depends on

the validity of H0.

3. Since ∆ is the deviation from the null hypothesis value, it is clear

that one cannot go wrong with the use of shrinkage estimators despite

∆ > 0, that is, in worst case the risk of pretest and shrinkage estimators

125



will be same as UE. If ∆ = 0 then pretest and shrinkage estimators

have lower bias and MSE compared to the UE.

4. The pretest, shrinkage and positive shrinkage estimators have uniformly

lower risk than the UE across the entire parameter space.

In summary, RE performs better than PT, SE and PSE but these three esti-

mators are not as sensitive to an increase in ∆ as compared to the RE. Thus

the shrinkage strategy is preferable when the number of inactive predictors

is three and greater.

Next we start comparing QB and MSE when applying optimal design tech-

nique:

1. The QB and MSE curves in Figures 4.1 - 4.8 and Figures 4.15 - 4.22

show that the QB and MSE curves when applying optimal design are

always under the curves when without applying optimal design. It gives

evidence that optimal design points and weights are helping to reduce

the bias and MSE of pretest, shrinkage, positive shrinkage estimators.

2. It supports another great strong point that even with smaller sample

size (n=128 compared to n=320), the proposed estimators with optimal

design setup outperform the unrestricted estimator.

In summary it shows that the larger the sample size is, the lower the bias
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and MSE are. However, cost will increase when sample size increases. The

differences of QB and MSE curves of the estimators with and without using

optimal design are significant.
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Figure 4.1: Simulated QB curves of proposed estimators with and without
optimal design for n = 128, 192 and p2 = 3, 4, 5
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Figure 4.2: Simulated QB curves of proposed estimators with and without
optimal design for n = 128 and p = 6, p1 = 3, p2 = 3.
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Figure 4.3: Simulated QB curves of proposed estimators with and without
optimal design for n = 192 and p = 6, p1 = 3, p2 = 3.
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Figure 4.4: Simulated QB curves of proposed estimators with and without
optimal design for n = 128 and p = 6, p1 = 2, p2 = 4.
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Figure 4.5: Simulated QB curves of proposed estimators with and without
optimal design for n = 192 and p = 6, p1 = 2, p2 = 4.
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Figure 4.6: Simulated QB curves of proposed estimators with and without
optimal design for n = 128 and p = 6, p1 = 1, p2 = 5.
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Figure 4.7: Simulated QB curves of proposed estimators with and without
optimal design for n = 192 and p = 6, p1 = 1, p2 = 5.
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Figure 4.8: Simulated QB curves of proposed estimators with and without
optimal design for n = 256, 320 and p2 = 3, 4, 5
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Figure 4.9: Simulated QB curves of proposed estimators with and without
optimal design for n = 256 and p = 6, p1 = 3, p2 = 3.
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Figure 4.10: Simulated QB curves of proposed estimators with and without
optimal design for n = 320 and p = 6, p1 = 3, p2 = 3.
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Figure 4.11: Simulated QB curves of proposed estimators with and without
optimal design for n = 256 and p = 6, p1 = 2, p2 = 4.
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Figure 4.12: Simulated QB curves of proposed estimators with and without
optimal design for n = 320 and p = 6, p1 = 2, p2 = 4.
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Figure 4.13: Simulated QB curves of proposed estimators with and without
optimal design for n = 256 and p = 6, p1 = 1, p2 = 5.
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Figure 4.14: Simulated QB curves of proposed estimators with and without
optimal design for n = 320 and p = 6, p1 = 1, p2 = 5.
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Figure 4.15: Simulated MSE curves of proposed estimators with and without
optimal design for for n = 128, 192 and p2 = 3, 4, 5
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Figure 4.16: Simulated MSE curves of proposed estimators with and without
optimal design for n = 128 and p = 6, p1 = 3, p2 = 3.
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Figure 4.17: Simulated MSE curves of proposed estimators with and without
optimal design for n = 192 and p = 6, p1 = 3, p2 = 3.
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Figure 4.18: Simulated MSE curves of proposed estimators with and without
optimal design for n = 128 and p = 6, p1 = 2, p2 = 4.
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Figure 4.19: Simulated MSE curves of proposed estimators with and without
optimal design for n = 192 and p = 6, p1 = 2, p2 = 4.
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Figure 4.20: Simulated MSE curves of proposed estimators with and without
optimal design for n = 128 and p = 6, p1 = 1, p2 = 5.
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Figure 4.21: Simulated MSE curves of proposed estimators with and without
optimal design for n = 192 and p = 6, p1 = 1, p2 = 5.
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Figure 4.22: Simulated MSE curves of proposed estimators with and without
optimal design for n = 256, 320 and p2 = 3, 4, 5
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Figure 4.23: Simulated MSE curves of proposed estimators with and without
optimal design for n = 256 and p = 6, p1 = 3, p2 = 3.
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Figure 4.24: Simulated MSE curves of proposed estimators with and without
optimal design for n = 320 and p = 6, p1 = 3, p2 = 3.
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Figure 4.25: Simulated MSE curves of proposed estimators with and without
optimal design for n = 256 and p = 6, p1 = 2, p2 = 4.
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Figure 4.26: Simulated MSE curves of proposed estimators with and without
optimal design for n = 320 and p = 6, p1 = 2, p2 = 4.
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Figure 4.27: Simulated MSE curves of proposed estimators with and without
optimal design for n = 256 and p = 6, p1 = 1, p2 = 5.
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Figure 4.28: Simulated MSE curves of proposed estimators with and without
optimal design for n = 320 and p = 6, p1 = 1, p2 = 5.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis we have tried to solve two new estimation problems. We are

not aware of any literature in which these two problems have been addressed.

In particular, we have addressed the problems in developing pretest

and shrinkage estimators for generalized partial linear models (GPLM) and

extending shrinkage estimators using optimal design theory in multiple linear

regression. In each problem, a detailed Monte Carlo simulation study is

conducted to examine the performance of the proposed pretest and shrinkage

estimators. Application of the pretest and shrinkage estimators have been
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demonstrated in generalized partial linear regression models with a real credit

scoring data.

In Chapters 2 and 3, we have applied the maximum likelihood method

with generalized Speckman algorithm to estimate the regression parameters

of GPLM and named this as unrestricted estimate, UG. We also estimate the

parameters when some of them are restricted to a subspace and named this as

restricted estimate, RG. We also developed pretest and shrinkage estimators.

We study the relative risk dominance of the pretest and shrinkage estimators

which are defined based on the UG and RG by deriving mathematically their

asymptotic risks and biases. We derive the expressions of biases and risks.

We used a Monte Carlo simulation study to calculate the numerical biases,

mean squared errors and risks (inverse of relative mean squared error) of the

estimators. Our simulation studies show that the restricted estimators offer

numerically superior performance compared to the unrestricted, pretest and

shrinkage estimators near the null hypothesis Rβ = r, but this performs

poorly when the restriction is seriously violated. The risk of the pretest es-

timator is lower than that of the UG (or higher relative MSE with respect

to the UG) at and near the restriction in the simulation study. Our sim-

ulation study also shows that the shrinkage estimators have smaller mean

squared error than the shrinkage estimators in terms of MSE for large region

of parameter space even when there exist omitted significant predictor in

the specified model. Under alternative hypothesis, it shows that the relative
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MSEs of PT, SE and PSE converges to one.

In Chapter 4, we extend the proposed pretest and shrinkage estima-

tors incorporating with optimal design theory, specifically the most popular

D-optimality criterion. The combinations of numerical inputs or level of

values are obtained using the optimization algorithm under D-optimality cri-

terion. Optimal weights with the corresponding sizes of each combination of

covariates are obtained. For this purpose we used a class of multiplicative

algorithms that are indexed by a function. This function has to be positive

and increasing. The function may depend on a free positive parameter. This

algorithm satisfies the basic constraints of our optimization problem and pos-

sesses many nice properties. We also determined the optimality conditions

using directional derivatives. We estimated the regression parameters of mul-

tiple linear model using maximum likelihood estimation and named it unre-

stricted estimator. The restricted maximum likelohood estimator of mulitple

linear regression then was obtained under constraints as that of applying for

GPLM in Chapter 2. Then, we combined unrestricted and restricted estima-

tors optimally to obtain pretest and shrinkage estimators. A Monte Carlo

simulation was conducted to investigate the performance of proposed estima-

tors while applying pre-modeling optimal design theory. Simulation studies

show that estimators with applying optimal design theory in advance will far

outperform than the regular proposed pretest and shrinkage estimators.
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5.2 Future Work

The focus of this thesis was to develop pretest and shrinkage estimators to

generalized partial linder models for independent data and hybrid of shrink-

age and optimal design has only applied to multiple linear regression model.

A possible future work would be to extend our proposed estimators to ge-

nealized partially linear models for longitudinal data. Furthermore, the joint

work of shrinkage estimators and optimal design can be expanded to more

complicated models.

It is of great interest to study the proposed method for the longitudinal

data and when the number of predictor grows with the sample size (e.g. high-

dimensional data) in which pre-planning optimal design theory may help in

minimizing cost and time. Another possible work could be to construct an

optimal design subject to a given cost (budget), then accordingly we can

develop the shrinkage estimators.
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Härdle, W., Müller, M., Sperlich, S., and Werwatz, A. (2012b). Nonpara-

metric and semiparametric Models. Springer Science and Business Media,

New York.

Hastie, T. J., Tibshirani, R., and Wainwright, M. J. (2015). Statistical

Learning with Sparsity: The Lasso and Generalizations. Chapman and

Hall/CRC, Boca Raton.

Hastie, T. J. and Tibshirani, R. J. (1990). Generalized additive models.

Chapman and Hall, New York.

Hossain, S., Ahmed, S. E., and Doksum, K. A. (2015). Shrinkage, pretest, and

penalty estimators in generalized linear models. Statistical Methodology,

24:52–68.

Hossain, S., Ahmed, S. E., Yi, Y., and Chen, B. (2016). Shrinkage and pretest

estimators for longitudinal data analysis under partially linear models.

Journal of Nonparametric Statistics, 28:531–549.

Hossain, S., Doksum, K. A., and Ahmed, S. E. (2009). Positive-part shrinkage

and absolute penalty estimators in partially linear models. Linear Algebra

and its Applications, 430:2749–2761.

Hossain, S. and Lac, L. A. (2021). Optimal shrinkage estimations in par-

151



tially linear single-index models for binary longitudinal data. TEST.

https://doi.org/10.1007/s11749-021-00753-3.

Kiefer, J. (1959). Optimum experimental designs (with discussion). Journal

of the Royal Statistical Society, Series B, 21:272–319.

Kiefer, J. (1974). General equivalence theory for optimum designs (approxi-

mate theory). Annals of Statistics, 2:849–879.

Kiefer, J. and Wolfowitz, J. (1960). The equivalence of two extremum prob-

lems. Canadian Journal of Mathematics, 12:363–366.

Leng, C., Liang, H., and Martinson, N. (2011). Parametric variable selection

in generalized partially linear models with an application to assess condom

use by HIV-infected patients. Statistics in Medicine, 30(12):2015–2027.

Li, R. and Nie, L. (2008). Efficient statistical inference procedures for par-

tially nonlinear models and their applications. Biometrics, 64(3):904–911.

Liang, H. (2008). Generalized partially linear models with missing covariates.

Journal of Multivariate Analysis, 99:880–895.

Mandal, S., Arabi Belaghi, R., Mahmoudi, A., and Aminnejad, M. (2019).

Stein-type shrinkage estimators in gamma regression model with applica-

tion to prostate cancer data. Statistics in Medicine, 38:4310–4322.

Mandal, S. and Torsney, B. (2006). Construction of optimal designs us-

152



ing a clustering approach. Journal of Statistical Planning and Inference,

136(3):1120–1134.

Mandal, S., Torsney, B., and Carriere, K. (2005). Constructing optimal

designs with constraints. Journal of Statistical Planning and Inference,

128:609–621.

Mandal, S., Torsney, B., and Chowdhury, M. (2017). Optimal designs for

minimizing covariances among parameter estimators in a linear model.

Australian & New Zealand Journal of Statistics, 59(3):255–273.

McCullagh, P. and Nelder, J. A. (1989). Generalized linear models, vol. 37 of

monographs on statistics and applied probability, second edition. Chapman

and Hall, London.

Müller, M. (2001). Estimation and testing in generalized partial linear models

– a comparative study. Statistics and Computing, 11:299–309.

Ni, X., Zhang, H., and Zhang, D. (2009). Automatic model selection for

partially linear model. Journal of Multivariate Analysis, 100:2100–2111.

Nkurunziza, S. and Chen, F. (2013). On extension of some identities for the

bias and risk functions in elliptically contoured distributions. Journal of

Multivariate Analysis, 122:190–201.

Nyquist, H. (1991). Restricted estimation of generalized linear models. Ap-

plied Statistics, 40:133–141.

153



Pukelsheim, F. (1993). Optimal design of experiments. Wiley Series in Prob-

ability and Mathematical Statistics, New York.

Raheem, S. E., Ahmed, S. E., and Doksum, K. A. (2012). Absolute penalty

and shrinkage estimation in partially linear models. Computational Statis-

tics and Data Analysis, 56(4):874–891.

Rahman, J., Luo, S., Fan, Y., and Liu, X. (2020). Semiparametric efficient

inferences for generalised partially linear models. Journal of Nonparametric

Statistics, 32(3):704–724.

Scott, D. W. (1992). Multivariate density estimation: theory, practice, and

visualization. John Wiley and Sons, New York.

Severini, T. A. and Staniswalis, J. G. (1994). Quasi-likelihood estimation in

semiparametric models. Journal of the American Statistical Association,

89:501–511.

Severini, T. A. and Wong, W. H. (1992). Generalized profile likelihood and

conditionally parametric models. The Annals of Statistics, 20:1768–1802.

Shah, K. and Sinha, B. (1989). Theory of optimal designs. Lecture Notes in

Statistics, volume 54. Springer-Verlag.

Silvey, S. (1980). Optimal Design. Chapman and Hall, London.

Silvey, S. D., Titterington, D. M., and Torsney, B. (1978). An algorithm for

154



optimal designs on a finite design space. Communications in Statistics -

Theory and Methods, 7(14):1379–1389.

Speckman, P. E. (1988). Kernel smoothing in partial linear models. Journal

of Royal Statistical Society. Series B, 50(3):413–436.

Titterington, D. M. (1976). Algorithms for computing D-optimal designs

on a finite design space. Proc. 1976 Conf. on Information Sciences and

Systems, pages 213–216.

Torsney, B. (1977). Contribution to discussion of ’maximum likelihood es-

timation via the em algorithm’ by dempster et al. Journal of the Royal

Statistical Society. Series B (Methodological), 39:26–27.

Torsney, B. (1983). A moment inequality and monotonicity of an algorithm.

In: Fiacco A.V., Kortanek K.O. (eds) Semi-infinite programming and ap-

plications. Lecture notes in economics and mathematical systems, volume

215. Springer, Berlin, Heidelberg.

Torsney, B. (1988). Computing optimizing distributions with applications in

design, estimation and image processing. In Dodge, Y., Fedorov, V. V.,

and Wynn, H. P., editors, Optimal design and analysis of experiments,

chapter 15, pages 361–370. Elsevier Science Publishers B. V., North Hol-

land.

Torsney, B. and Mandal, S. (2001). Construction of constrained optimal

designs Optimum design 2000, volume 215. Kluwer Academic Publishers.

155



Vaart, A. (1998). Asymptotic Statistics (Cambridge Series in Statistical and

Probabilistic Mathematics). Cambridge University Press, Cambridge.

Wellner, J. A., Klaassen, C. A. J., and Ritov, Y. (2006). Semiparametric

models: a review of progress since bkrw (1993). In: Fan, J.; Koul, HL.,

editors. Frontiers in Statistics, pages 25–44.

Whittle, P. (1973). Some general points in the theory of optimal experimental

design. Journal of the Royal Statistical Society. Series B (Methodological),

35:123–130.

Wu, C. F. J. (1978). Some iterative procedures for generating nonsingular

optimal designs. Communications in Statistics – Theory and Methods,

14:1399–1412.

Wynn, H. P. (1972). Results in the theory and construction of D-optimum

experimental designs (with discussion). Journal of the Royal Statistical

Society. Series B (Methodological), 34(2):133–147.

Xu, J. and Yang, H. (2012). On the preliminary test backfitting and Speck-

man estimators in partially linear models and numerical comparisons.

Communications in Statistics–Simulation and Computation, 41:327–341.

Yu, Y. and Ruppert, D. (2002). Penalized spline estimation for partially

linear single-index models. Journal of the American Statistical Association,

97:1042–1054.

156


	Contents
	List of Tables
	List of Figures
	Introduction
	Pretest and Shrinkage Estimator
	Partially Linear Models
	Generalized Partial Linear Models

	Motivation and a Brief Summary
	Organization of the Thesis

	Generalized Partial Linear Models (GPLM)
	Introduction
	Generalized Partial Linear Models (GPLM)
	Estimation
	Generalized Speckman Estimator
	Backfitting Algorithm


	Pretest and Shrinkage Estimations for Generalized Partial Linear Models
	Introduction
	Restricted Estimator
	Pretest and Shrinkage Estimators
	Asymptotic Properties of the Estimators
	Asymptotic Distribution of Unrestricted GPLM Estimator 
	Asymptotic Joint Distribution of Unrestricted and Restricted Estimators
	Asymptotic Bias of Proposed Estimators
	Asymptotic Risk of Proposed Estimators

	Simulation Study
	Quadratic Biases of UG, RG, PT, SE and PSE when 0
	RMSEs of UG, RG, PT, SE and PSE when 0

	Application to Credit Scoring Data
	Summary

	Optimal Design for Pretest and Shrinkage Estimators
	Introduction
	Experimental Design
	Estimation of Parameters
	Discrete Design Space
	Exact Design Problem
	Approximate Design Problem
	Design Measure and the Variance Function

	Design Criteria
	D-optimality
	An Important Property of D-optimality
	Relative Efficiency
	Other Criteria

	Optimality Conditions
	Examples of the general problems
	Directional derivatives:

	A Class of Algorithms
	Properties of the Algorithm
	Simulation Study
	Covariates generated using D-optimal criterion


	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

