
Dynamics of Multi-strain Age-structured Model for Malaria

Transmission

by

Farinaz Forouzannia

A Thesis submitted to the Faculty of Graduate Studies of

the University of Manitoba in partial fulfilment of the requirements of the degree of

MASTER OF SCIENCE

Department of Mathematics

University of Manitoba

Winnipeg

Copyright c© 2013 by Farinaz Forouzannia



Abstract

The thesis is based on the use of mathematical modeling and analysis to gain insight

into the transmission dynamics of malaria in a community. A new deterministic

model for assessing the role of age-structure on the disease dynamics is designed.

The model undergoes backward bifurcation, a dynamic phenomenon characterized

by the co-existence of a stable disease-free and an endemic equilibrium of the model

when the associated reproduction number is less than unity. It is shown that adding

age-structure to the basic model for malaria transmission does not alter its essential

qualitative dynamics. The study is extended to incorporate the use of anti-malaria

drugs. Numerical simulations of the extended model suggest that for the case when

treatment does not cause drug resistance (and the reproduction number of each of the

two strains exceed unity), the model undergoes competitive exclusion. The impact

of various effectiveness levels of the treatment strategy is assessed.
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Chapter 1

Introduction

Malaria is a major vector-borne disease that continues to inflict enormous public

health burden in many parts of the world [61]. The disease, which is endemic in

over 100 countries (representing nearly 40% of the world’s population; mostly in the

tropical and sub-tropical regions of the world [6]), accounts for about 300 million

cases and over one million fatalities annually (with children under the age of five

suffering the most mortality burden) [61]. In addition to the public health burden

it incurs, malaria also inflicts enormous socio-economic burden in malaria-endemic

nations. For example, the annual economic burden of malaria in Africa alone was

estimated to be around US $8 billion [6]. A global map of malaria, showing the

geographic spread of the disease, is depicted in Figure 1.1.

The study of malaria transmission dynamics is further motivated by the increased

mobility of people, increased distribution of mosquitoes due to climate change, the

ongoing global effort to eradicate malaria [62], and malaria spread in new geograph-

ical regions (due to immigration and global travel).

The incubation period of malaria is between from 7 to 30 days [12], and the

common symptoms of the disease malaria include: chills, fever, sweating, headache,

malaise, fatigue, muscular pains, occasional nausea, vomiting and diarrhea [46, 69].
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Figure 1.1: Malaria global map (source://www.cdc.gov).

There is currently no effective and safe vaccine for use against malaria in humans

(although concerted global efforts are underway to develop such a vaccine [5, 18, 19,

27, 35, 42, 43, 44, 47, 53, 54, 59, 63, 66]). Consequently, malaria control is based

on the use of preventive measures (such as mosquito-reduction strategies and per-

sonal protection against mosquito bite) and the use of anti-malaria drugs (see, for

instance, [23, 25, 50, 51, 69, 72]). The use of anti-malarial drugs is, however, known

to pose the problem of the emergence and transmission of drug-resistant malaria

strain [4, 6, 36, 46].

Numerous mathematical models have been designed and used to gain insight into

malaria transmission dynamics in a community, dating back to the classical malaria

models of Ross [52] and Macdonald [40]. Although these classical models have, over

the decades, been extended to incorporate various aspects related to malaria trans-

mission dynamics and control, such as repeated exposure [45], the use of preventive

and therapeutic strategies [72], effect of climate change [39] etc., not much work has

been done in modeling the effect of age-structure on malaria spread and control.

This is particularly important considering the fact that malaria mortality is age-

2



dependent (with, as stated above, children under the age of five bearing the most

burden [69]).

1.1 Reproduction Number and Bifurcation

Disease transmission models, typically obtained by splitting the total population

into mutually-exclusive compartments based on infection status, have contributed

greatly to providing insight into the dynamics of infectious diseases, dating back

to the pioneering works of Bernoulli, Ross, Kermack and McKendrick and others

(see, for instance, [2, 3, 32] and some of the references therein). The dynamics of

such models is often characterized by the reproduction number (R0), a threshold

quantity which measures the average number of new cases generated by a typical

infected individual in a completely-susceptible population [2, 16, 32].

Typically, when R0 is less than unity, a small influx of infected individuals will

not generate large outbreaks, and the disease dies out in time (in this case, the

corresponding disease-free equilibrium (DFE) of the model is asymptotically-stable).

On the other hand, the disease will persist in the population if R0 exceeds unity,

where, typically, an asymptotically-stable endemic equilibrium point (EEP) exists

[2, 32, 65]. This phenomenon, where the DFE and an EEP of a model exchange their

stability at R0 = 1, is known as forward bifurcation [28, 32, 57, 71]. Bifurcation

represents a change in the qualitative behaviour of the model as a related parameter

or quantity (typically R0) varies. A schematic description of forward bifurcation is

given in Figure 1.2.
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Figure 1.2: Forward bifurcation diagram, showing the infection rate (λ) as a function
of the reproduction number (R0).

In general, for models that exhibit forward bifurcation, the requirement R0 < 1 is

necessary and sufficient for effective community-wide disease control or elimination.

However, some modelling studies show that althoughR0 < 1 is necessary for effective

disease control or elimination, the condition may not be sufficient. This is owing to

a dynamic phenomenon known as backward bifurcation [10, 21, 28, 29, 30, 71, 26,

57, 55, 45], where two stable attractors (the DFE and a stable EEP) co-exist when

R0 < 1 (see Figure 1.3). The public health implication of backward bifurcation is

that disease control or elimination (when R0 < 1) is dependent on the initial sizes of

the sub-populations of the model. Thus, the presence of backward bifurcation in the

transmission dynamics of a disease in a population makes its effective community-

wide control difficult.

1.2 Thesis Outline

The aim of this thesis is to qualitative assess the role of age-structure and drug

treatment on the transmission dynamics and control of malaria in a population. The

thesis is organized as follows. Chapter 1 covers the introductory epidemiological

aspects of malaria transmission dynamics. The basic mathematical concepts relevant

to the thesis are reviewed in Chapter 2. A new age-structured model for malaria

4



Figure 1.3: Backward bifurcation diagram, showing the co-existence of a stable DFE
and two branches of endemic equilibria (a stable and an unstable branch) .

transmission dynamics is designed and rigorously analysed in Chapter 3. The model

is extended, in Chapter 4, to incorporate anti-malaria drug treatment. The resulting

two-strain age-structured model is also rigorously analysed. Some of the specific

questions to be addressed in the thesis include:

(a) What are the main qualitative features of an age-structured malaria model in

a population? The aim here is to determine conditions for the existence and

asymptotic stability of the associated equilibria, as well as to characterize the

types of bifurcation the model may undergo;

(b) What is the qualitative impact of the use of anti-malaria drugs on malaria

transmission dynamics? In particular, does the resulting two-strain malaria

model exhibit the phenomena of competitive exclusive and/or strain co-existence?

If yes, under what conditions do these phenomena occur?

(c) What is the community-wide impact of some of the standard non-pharmaceutical

interventions (i.e., anti-malaria control strategies based on using mosquito-

5



reduction strategies and personal protection against mosquito bite) for com-

bating malaria spread in the community?

(d) What is the impact of various effectiveness levels of the treatment strategy in

combating the spread of malaria in the community?
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Chapter 2

Mathematical Preliminaries

This chapter introduces some of the basic mathematical definitions, theories and

methodologies relevant used in the thesis.

2.1 Equilibria of Autonomous Systems of Ordi-

nary Differential Equations (ODEs)

It should be mentioned that the thesis only considers autonomous systems of ODEs,

given by (where a dot represents differentiation with respect to time)

ẋ = f(x), x ∈ Rn. (2.1)

That is, non-autonomous ODE systems of the form,

ẋ = f(x, t), x ∈ Rn, and t ∈ R, (2.2)

where f(x, t) ∈ Cr (with r ≥ 1) depend on the independent variable t, are not

considered in the thesis.

Definition 2.1. A point x̄ ∈ Rn is called an equilibrium point of the autonomous
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system (2.1) if f(x̄) = 0.

Theorem 2.1. (Fundamental Existence- Uniqueness Theorem [48]). Let E be an

open subset of Rn containing x0 and assume that f ∈ C1(E). Then, there exists an

a > 0 such that the initial value problem:

ẋ = f(x), x(0) = x0,

has a unique solution x(t) on the interval [−a, a].

Definition 2.2. The Jacobian matrix of f at the equilibrium x̄, denoted by Df(x̄),

is the matrix,

J(x̄) =


∂f1
∂x1

(x̄) · · · ∂f1
∂xn

(x̄)

...
...

...

∂fn
∂x1

(x̄) · · · ∂fn
∂xn

(x̄)

 ,

of partial derivatives of f evaluated at x̄.

Definition 2.3. The linear system ẋ = Ax, with the matrix A = Df(x̄), is called

the linearization of the system (2.1) at x̄.

Definition 2.4. An equilibrium point x̄ is called a hyperbolic equilibrium point of

the autonomous system (2.1) if none of the eigenvalues of Df(x̄) has zero real part.

Definition 2.5. An equilibrium point that is not hyperbolic is called non-hyperbolic.

2.2 Hartman-Grobman Theorem

Let,

ẋ = f(x), x ∈ Rn, (2.3)

ẏ = g(y), y ∈ Rn,
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be two Cr (r ≥ 1) vector fields on Rn.

Definition 2.6. [68]. The dynamics generated by the vector fields f and g of (2.3)

are said to be locally Ck conjugate (k ≤ r) if there exists a Ck diffeomorphisim h

which takes the orbits of the flow generated by f , φ(t, x), to the orbits of the flow

generated by g, ψ(t, y), preserving orientation and parameterization by time.

Theorem 2.2. (Hartman-Grobman Theorem [68]). Consider a Cr(r ≥ 1) vector

field

ẋ = f(x), x ∈ Rn, (2.4)

with domain of f to be a large open subset of Rn. Suppose also that (2.4) has

a equilibrium solutions which are hyperbolic. Consider the associated linear vector

field

ξ̇ = Df(x̄)ξ, ξ ∈ Rn. (2.5)

Then the flow generated by (2.4) is C0 conjugate to the flow generated by the lin-

earized system (2.5) in a neighborhood of the equilibrium point x = x̄.

It should be noted that the Hartman-Grobman Theorem guarantees a homeomor-

phism between the flow of the non-linear ODE system and that of its linearization.

In general, near a hyperbolic equilibrium point x̄, the non-linear system ẋ = f(x)

has the same qualitative structure as the linear system ẋ = Ax with A = Df(x̄).

2.3 Stability Theory

Definition 2.7. [68]. The equilibrium x̄ is said to be stable if given ε > 0, there exists

a δ = δ(ε) > 0 such that, for any solution y(t) of (2.1) satisfying |x̄− y(t0)| < δ,

|x̄− y(t)| < ε for t > t0, t0 ∈ R.

Definition 2.8. [68]. The equilibrium x̄ is said to be asymptotically-stable if it is
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stable and there exists a constant c > 0 such that, for any solution y(t) of (2.1)

satisfying |x̄− y(t0)| < c, then lim
t→∞
|x̄− y(t)| = 0.

Definition 2.9. An equilibrium solution which is not stable is said to be unstable.

Theorem 2.3. [68]. Suppose all the eigenvalues of Df(x̄) have negative real parts.

Then the equilibrium solution x = x̄ of the system (2.1) is locally asymptotically

stable, and unstable if at least one of the eigenvalues has positive real part.

2.4 Center Manifold Theory

Center Manifold theory is (essentially) a theory for reducing the dimensionality of a

given non-linear system near an equilibrium point. Consider the non-linear dynam-

ical system (2.1). Let,

ẋ = Ax, (2.6)

be the corresponding linearized system (with A = Df(x̄)) near a hyperbolic equilib-

rium point x̄.

Definition 2.10. The stable, unstable, and center subspaces of the linear system

(2.6) are defined by (where A ∈Mnn(R))

Es = span {uj, vj; aj < 0} ,

Eu = span {uj, vj; aj > 0} ,

Ec = span {uj, vj; aj = 0} ,

where wj = uj ± ivj are eigenvectors corresponding to the eigenvalues λj = aj ± ibj.

Remark 2.1. For a hyperbolic flow of a linear system, Rn = Es ⊕ Ec. These

subspaces become manifolds for nonlinear ODEs.
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Theorem 2.4. (Stable Manifold Theory [48]). Let f ∈ C1(E) where E is an open

subset of Rn containing the origin, and let φt be the flow of non-linear system (2.1).

Suppose that f(0) = 0 and D(0) has k eigenvalues with negative real parts, and

q = n − k eigenvalues with positive real parts. Then, there exists a k-dimensional

differentiable manifold S tangent to the stable subspace Es of the linear system (2.6)

at 0 such that for all t ≥ 0, φt(S) ⊂ S and for all x0 ∈ S

lim
t→∞

φt(x0) = 0,

and there exists a q-dimensional differentiable manifold U tangent to the unstable

subspace Eu of the linear system (2.6) at 0 such that for all t ≥ 0, φt(U) ⊂ U and

for all x0 ∈ U

lim
t→−∞

φt(x0) = 0.

Definition 2.11. [48]. Let φt be the flow of non-linear system (2.1). The global

stable and unstable manifolds of (2.6) at 0, defined, respectively, by

W s(0) =
⋃
t≤0

φt(S),

and

W u(0) =
⋃
t≥0

φt(U),

are also, respectively, referred to as the global stable and unstable manifolds of the

origin.

Theorem 2.5. [48]. Let f ∈ Cr(E) where E is an open subset of Rn containing

the origin and r ≥ 1. Suppose that f(0) = 0 and that Df(0) has k eigenvalues

with negative real parts, j eigenvalues with positive real parts, and m = n − k −

j eigenvalues with zero real parts. Then, there exists an m− dimensional center

manifold W c(0) of class Cr tangent to center subspace Ec of (2.6) which is invariant
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under the flow φt of (2.1).

Lemma 2.1. [48]. The local center manifold of the system (2.1) at 0,

W c
loc(0) = {(x, y) ∈ Rm × Rk | y = h(x) for |x| < δ}, (2.7)

for some δ > 0, where h ∈ Cr(Nδ(0)), h(0) = 0 and Dh(0) = O since W c(0) is

tangent to the center subspace

Ec = {(x, y) ∈ Rm × Rk | y = 0},

at the origin.

Theorem 2.6. (Center Manifold Theory [48]). Let f ∈ Cr(E) where E is an open

subset of Rn containing the origin and r ≥ 1. Suppose that f(0) = 0 and that Df(0)

has m eigenvalues with zero real parts and k eigenvalues with negative real parts,

where m+ k = n. The system (2.1) then can be written in diagonal form

ẋ = Cx+ F (x, y),

ẏ = Py +G(x, y),

where (x, y) ∈ Rm × Rk, C is a square matrix with m eigenvalues having zero real

parts, P is a square matrix with k eigenvalues with negative real parts, and F (0) =

G(0) = 0, DF (0) = DG(0) = O; furthermore, there exists a δ > 0 and a function

h ∈ Cr(Nδ(0)) that defines the local center manifold (2.7) and satisfies

Dh(x)[Cx+ F (x, h(x))]− Ph(x)−G(x, h(x)) = 0

for |x| < δ; and the flow on the center manifold W c(0) is defined by the system of
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differential equations

ẋ = Cx+ F (x, h(x))

for all x ∈ Rmwith |x| < δ.

Theorems 2.5 and 2.6 can be used to determine the flow near non-hyperbolic equi-

librium points [9, 48].

2.5 Bifurcation Theory

In general, real-life systems arising, for instance, in the natural and engineering

sciences typically involve parameters which appear in their governing system of

equations. As these parameters are varied, changes may occur in the qualitative

structures of the solutions of the system of equations for certain parameter values.

These changes are called bifurcations [34]. The parameter values where bifurcations

occur are called bifurcation values (or bifurcation points). A formal definition of

bifurcation at a point is given below.

Definition 2.12. [68]. Let

ẋ = f(x, µ), x ∈ Rn, µ ∈ R, (2.8)

be a one-parameter family of one-dimensional ODEs. An equilibrium solution of

(2.8) given by (x, µ) = (0, 0) is said to undergo bifurcation at µ = 0 if the flow for

µ near zero and x near zero is not qualitatively the same as the flow near x = 0 at

µ = 0.

There are numerous types of bifurcations, including saddle-node, transcritical, pitch-

fork, Hopf, and backward bifurcation [29, 31, 32, 48, 57]. The following theorem is

used to establish the existence of the backward bifurcation phenomenon for the mod-

els in Chapters 3 and 4.
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Theorem 2.7. [11, 20, 65]. Consider the following general system of ordinary dif-

ferential equations with a parameter φ

dx

dt
= f(x, φ), f : Rn × R→ Rn and f ∈ C2 (Rn × R) , (2.9)

where 0 is an equilibrium point of the system (that is, f(0, φ) ≡ 0 for all φ) and

assume

A.1) A = Dxf(0, 0) =
(
∂fi
∂xj

(0, 0)
)

is the linearization matrix of the system (2.9)

around the equilibrium 0 with φ evaluated at 0. Zero is a simple eigenvalue of

A and other eigenvalues of A have negative real parts;

A.2) Matrix A has a right eigenvector w and a left eigenvector v (each corresponding

to the zero eigenvalue).

Let fk be the k-th component of f and

a =
n∑

k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(0, 0),

b =
n∑

k,i=1

vkwi
∂2fk
∂xi∂φ

(0, 0).

Then the local dynamics of the system around the equilibrium point 0 is totally de-

termined by the signs of a and b. Particularly, if a > 0 and b > 0, then a backward

bifurcation occurs at φ = 0.

2.6 Lyapunov Function Theory

Definition 2.13. [48]. A point x0 ∈ Rn is called an ω−limit point of x ∈ Rn,

denoted by ω(x), if there exists a sequence {ti} such that

φ(ti, x)→ x0 as ti →∞.
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Definition 2.14. [48]. A point x0 ∈ Rn is called an α−limit point of x ∈ Rn,

denoted by α(x), if there exists a sequence {ti} such that

φ(ti, x)→ x0 as ti → −∞.

Definition 2.15. [48]. The set of all ω−limit points of a flow is called the ω−limit

set. Similarly, The set of all α−limit points of a flow is called the α−limit set.

Definition 2.16. [68]. Let S ⊂ Rn be a set. Then, S is said to be invariant under

the flow generated by ẋ = f(x) if for any x0 ∈ S we have φ(t, x0) ∈ S for all t ∈ R.

Lemma 2.2. [68]. A set S ⊂ Rn is positively-invariant if for every x0 ∈ S, φ(t, x0) ∈

S, ∀t ≥ 0.

Definition 2.17. [68]. A function V : Rn → R is said to be positive-definite if:

• V (x) > 0 for all x 6= 0,

• V (x) = 0 if and only if x = 0.

Definition 2.18. [68] Consider the system (2.1). Let, x̄ be an equilibrium solution

of (2.1) and let V : U → R be a C1 function defined on some neighbourhood U of x̄

such that

i) V is positive-definite,

ii) V̇ (x) ≤ 0 in U \ {x̄}.

Corollary 2.1. [68]. Any function, V, that satisfies Conditions (i) and (ii) above is

called a Lyapunov function.

Theorem 2.8. (LaSalle’s Invariance Principle [31]). Consider the system (2.1). Let,

S = {x ∈ Ū : V̇ (x) = 0} (2.10)
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and M be the largest positive invariant set of (2.1) in S. If V is a Lyapunov function

on U and γ+(x0) is a bounded orbit of (2.1) which lies in S, then the ω−limit set of

γ+(x0) belongs to M ; that is, x(t, x0)→M as t→∞.

Corollary 2.2. If V (x)→∞ as |x| → ∞ and V̇ ≤ 0 on Rn, then every solution of

(2.1) is bounded and approaches the largest invariant set M of (2.1) in the set where

V̇ = 0. In particular, if M = {0}, then the solution x = 0 is globally-asymptotically

stable (GAS).

2.7 Comparison Theorem

Consider the autonomous system

ẋ = f(x), x ∈ Rn, (2.11)

where f is continuously-differentiable on an open subset D ⊂ Rn. Let φt(x) denote

the solution of the system (2.11) with initial value x.

Definition 2.19. [58]. f is said to be Type K in D if for each i, fi(a) < fi(b) for

any two points in D satisfying a ≤ b and ai = bi.

The Type K Condition can be identified from the sign structure of the associated

Jacobian matrix of the system (2.11), as described above.

Definition 2.20. [58]. D is P-convex if tx+ (1− t)y ∈ D for all t ∈ [0, 1] whenever

x, y ∈ D and x < y.

It is clear that if D is a convex set, then it is also p-convex. Furthermore, if D is a

p-convex subset of Rn and

∂fi
∂xj
≥ 0, i 6= j, x ∈ D,
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then f is of Type K in D.

Another approach for establishing the global asymptotic stability of equilibria of

dynamical system is by using the comparison theorem [58]. This entails comparing

the solution of the non-linear system.

ẋ = f(t, x), (2.12)

with the solution of the differential inequality system

ż ≤ f(t, z), (2.13)

or,

ẏ ≥ f(t, y), (2.14)

on an interval. This method requires that the solution of the system (2.12) is unique,

and that f is of Type K.

Theorem 2.9. (Comparison Theorem [58]). Let f be continuous on R × D and of

Type K. Let x(t) be a solution of (2.12) defined on [a, b]. If z(t) is a continuous

function on [a, b] satisfying (2.13) on (a, b) with z(a) ≤ x(a), then z(t) ≤ x(t) for all

t in [a, b]. If y(t) is continuous on [a, b] satisfying (2.14) on (a, b) with y(a) ≥ x(a),

then y(t) ≥ x(t), for all t in [a, b].

2.8 Next Generation Operator Method

The next generation operator method [15, 65] is popularly used in the mathematical

biology literature to compute the reproduction number (R0) of disease transmis-

sion models (and, subsequently, to establish the local asymptotic stability of the

associated DFE). The formulation given in [65] is briefly described below. Suppose
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the given disease transmission model, with non-negative initial conditions, can be

written in terms of the following autonomous system:

ẋi = f(x) = Fi(x)− Vi(x), i = 1, ..., n, (2.15)

where Vi = V −i − V +
i and the functions satisfy the following axioms bellow. First

of all, {Xs = x ≥ 0|xi = 0, i = 1, ...,m} is defined as the disease-free states (non-

infected state variables) of the model, where x = (x1, ..., xn)t, xi ≥ 0 represents the

number of individuals in each compartment of the model.

(A1) If x ≥ 0, then Fi, V
+
i , V −i ≥ 0 for i = 1, ...,m.

(A2) If xi = 0, then V −i = 0. In particular, if x ∈ Xs then V −i = 0 for i = 1, ...,m.

(A3) Fi = 0 if i > m.

(A4) If x ∈ Xs, then Fi(x) = 0 and V +
i (x) = 0 for i = 1, ...,m.

(A5) If F (x) is set to zero, then all eigenvalues of D(f(x0)) have negative real parts.

In the formulation above, Fi(x) represents the rate of appearance of new infections in

compartment i, V +
i (x) represents the rate of transfer of individuals into compartment

i. It is assumed that these functions are at least twice continuously-differentiable in

each variable [65].

Definition 2.21. (M-Matrix). An n × n matrix A is an M-matrix if and only if

every of off-diagonal entries of A is non-positive and the diagonal entries are all

positive.

Lemma 2.3. (van den Driessche and Watmough [65]). If x̄ is a DFE of (2.15) and

fi(x) satisfy (A1)− (A5), then the derivative DF (x̄) and DV (x̄) are petitioned as

DF (x̄) =

F 0

0 0

 , DV (x̄) =

V 0

J3 J4

 ,
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where F and V are the m×m matrices defined by,

F =

[
∂Fi
∂xj

(x̄)

]
and V =

[
∂Vi
∂xj

(x̄)

]
with 1 ≤ i, j ≤ m.

Furthermore, F is non-negative, V is non-singular M-matrix and J3 and J4 are

matrices associated with the transition terms of the model, and all eigenvalues of J4

have positive real parts.

Theorem 2.10. (van den Driessche and Watmough [65]). Consider the disease

transmission model given by (2.15) with f(x) satisfying axioms (A1)-(A5). If x̄ is

a DFE of the model, then x̄ is LAS if R0 = ρ(FV −1) < 1 (where ρ is the spectral

radius), but unstable if R0 > 1.
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Chapter 3

Age-Structured Model

3.1 Introduction

Malaria, caused by the protozoan plasmodium parasite, is transmitted to humans

by female anopheles mosquitoes (after taking a blood meal from the human host).

Although malaria has been endemic in many parts of the world (notably the tropical

and subtropical region of Africa, Asia and South America) for hundreds of years,

the disease continues to inflict major public health burden in affected areas [69].

For instance, it accounted for 216 million cases and 655,000 million deaths in 2010

[69, 70]. Furthermore, malaria inflicts significant mortality among children under

the age of five [14]. As stated in Chapter 1, in the absence of a safe and effective

anti-malaria vaccine, malaria control is focussed on using preventive measures (such

as mosquito-reduction strategies and personal protection against mosquito bite) and

the use of anti-malaria drugs (see, for instance, [23, 25, 50, 51, 69, 72]). The aim of

this chapter is to design, and rigorously analyse, a new age-structured ODE model

for the transmission dynamics of malaria in a community. The model to be de-

signed represents an extension of other age-structured ODE models in the literature,

particularly those in [1, 49].
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3.2 Model Formulation

The new (single-strain) age-structured malaria model is designed by splitting the

total human population at time t, denoted by NH(t), into the mutually-exclusive sub-

populations of susceptible juveniles (SHJ(t)), susceptible adults (SHA(t)), latently-

infected (asymptomatic) juveniles (EHJ(t)), latently-infected (asymptomatic) adults

(EHA(t)), symptomatic juveniles (IHJ(t)), symptomatic adults (IHA(t)), recovered

juveniles (RHJ(t)) and recovered adults (RHA(t)), so that

NH(t) = SHJ(t) + SHA(t) +EHJ(t) +EHA(t) + IHJ(t) + IHE(t) +RHJ(t) +RHA(t).

It should be emphasized that individuals in the latently-infected (EHJ and EHA)

classes are infected (i.e, they are in the early stage of infection, but show no clinical

symptoms of the disease).

The total mosquito population at time t, denoted by NV (t), is sub-divided into

the mutually-exclusive compartments of susceptible (SV (t)) and infected (IV (t))

mosquitoes, so that

NV (t) = SV (t) + IV (t).

The population of susceptible juveniles is generated by the birth (or immigration)

of juveniles (at a rate ΠJ). Although vertical transmission of malaria can occur

(see [22] and some of the references there in), it is assumed that all children are

born susceptible (i.e., it is assumed, in this thesis that vertical transmission does

not occur). This population is increased by loss of infection-acquired immunity by

recovered juveniles (at a per capita rate ψHJ). It is decreased by infection, following

effective contacts with infected mosquitoes, at a rate λHJ , given by
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λHJ =
b1(NV , NH)βHJIV

NV

. (3.1)

In (3.1), b1(NV , NH) is the per capita biting rate of mosquitoes on susceptible hu-

mans (juveniles and adults) per unit time, and βHJ is the probability of infection

of susceptible juveniles per bite by an infected mosquito. It is further decreased by

maturation to adulthood (at a rate ξ; this rate is assumed, for mathematical conve-

nience, to be same for all the epidemiological classes for humans) and natural death

(at a rate µH ; it is assumed that natural death occurs in all human epidemiological

classes at this rate). Thus,

dSHJ
dt

= ΠJ + ψJRHJ − λHJSHJ − (ξ + µH)SHJ . (3.2)

The population of susceptible adults is generated by the maturation of susceptible

juveniles (at the rate ξ) and by the loss of infection-acquired immunity by recovered

adults (at a rate ψA). It is decreased by infection at a rate λHA, given by

λHA =
b1(NV , NH)βHAIV

NV

, (3.3)

where βHA is the probability of infection of susceptible adults per bite by an infected

mosquito. This population is further decreased by natural death. Hence,

dSHA
dt

= ξSHJ + ψARHA − λHASHA − µHSHA. (3.4)

The population of latently-infected juveniles is generated, following the infection of
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susceptible juveniles (at the rate b1(NV , NH)βHJ). It is decreased by the development

of clinical symptoms of malaria (at a rate σHJ), maturation to adulthood (at the

rate ξ) and natural death, so that

dEHJ
dt

=
b1(NV , NH)βHJIV

NV

SHJ − (σHJ + ξ + µH)EHJ . (3.5)

Similarly, the population of latently-infected adults is generated by the maturation of

latently-infected juveniles (at the rate ξ) and by the infection of susceptible adults (at

the rate b1(NV , NH)βHA). It is diminished by the development of malaria symptoms

(at a rate σHA) and natural death. Hence,

dEHA
dt

= ξEHJ +
b1(NV , NH)βHAIV

NV

SHA − (σHA + µH)EHA. (3.6)

The population of symptomatic juveniles is generated when latently-infected ju-

veniles develop clinical symptoms of malaria (at the rate σHJ). It is decreased by

maturation (at the rate ξ), recovery (at a rate γJ), natural death and disease-induced

death (at a rate δHJ). Hence,

dIHJ
dt

= σHJEHJ − (ξ + γJ + µH + δHJ)IHJ . (3.7)

Similarly, the population of symptomatic adults is generated at the rates ξ and σHA,

and reduced by recovery (at a rate γA), natural death and disease-induced death (at

a rate δHA), so that,
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dIHA
dt

= σHAEHA + ξIHJ − (γA + µH + δHA)IHA. (3.8)

The population of recovered juveniles is generated at the rate γJ , and decreased by

the loss of infection-acquired immunity (at the rate ψJ), maturation (at the rate ξ)

and natural death. Thus,

dRHJ

dt
= γJIHJ − (ψJ + ξ + µH)RHJ . (3.9)

The population of recovered adults is increased by the recovery of symptomatic

adults (at the rate γA) and the maturation of recovered juveniles (at the rate ξ). It

is decreased by the loss of infection-acquired immunity (at the rate ψA) and natural

death. Thus,

dRHA

dt
= γAIHA + ξRHJ − (ψA + µH)RHA. (3.10)

The population of susceptible mosquitoes is generated by the birth of adult mosquitoes

(at a per capita rate ΠV ). It is reduced by infection, following effective contacts with

infected humans, at a rate λV , where

λV =
b2(NV , NH)βV [η(EHJ + EHA) + IHJ + IHA]

NH

. (3.11)

In (3.11), b2(NV , NH) is per capita biting rate of susceptible mosquitoes on infected

humans, βV is the probability of infection of a susceptible mosquito per bite on an

infected human) at a rate and 0 ≤ η < 1 is a modification parameter accounting for
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the assumption that latently-infected humans are less infectious than symptomatic

humans. This population is further decreased by natural death (at a rate µV ). Hence,

dSV
dt

= ΠV − λV SV − µV SV . (3.12)

The population of infected mosquitoes is generated by the infection of susceptible

mosquitoes (at the rate b2(NV , NH)βV ) and decreased by natural death (at the rate

µV ). Thus,

dIV
dt

= λV SV − µV IV . (3.13)

It is assumed that mosquitoes do not suffer additional disease-induced death [49].

An important requirement for a mosquito-borne disease model, such as the model

given by equations {(3.1), ..., (3.13)}, is that the total number of bites made by

mosquitoes must balance the total number of bites received by the human hosts

(see, for instance, [8, 24, 26, 45]). This constraint is implemented as follows. First

of all, mosquitoes bite both susceptible and infected humans. Hence, it is assumed

that the average number of mosquito bites received by humans depends on the total

sizes of the populations of mosquitoes and humans in the community. Furthermore,

it is assumed that the human hosts are always sufficient in abundance so that it is

reasonable to consider the biting rate b2(NV , NH) = b2, a constant. Thus, in order

for the total number of bites made by mosquitoes to balance the total number of

bites received by the human hosts, the following conservation law must hold:

b2NV = b1(NV , NH)NH , (3.14)
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so that,

NV =
b1(NV , NH)NH

b2

. (3.15)

It follows, based on the above derivations and assumptions, and using (3.1), (3.3)

and (3.11) with (3.15) in {(3.2), (3.4), (3.5), (3.6)}, that the new, single-strain, age-

structured model for the transmission dynamics of malaria in a community is given by

the following deterministic system of non-linear differential equations (a flow diagram

of the model is depicted in Figure 3.1, and the state variables and parameters of the

model are described in Tables 3.1 and 3.2, respectively):

dSHJ
dt

= ΠJ + ψJRHJ −
b2βHJIV
NH

SHJ − (ξ + µH)SHJ ,

dSHA
dt

= ξSHJ + ψARHA −
b2βHAIV
NH

SHA − µHSHA,

dEHJ
dt

=
b2βHJIV
NH

SHJ − (σHJ + ξ + µH)EHJ ,

dEHA
dt

= ξEHJ +
b2βHAIV
NH

SHA − (σHA + µH)EHA,

dIHJ
dt

= σHJEHJ − (ξ + γJ + µH + δHJ)IHJ ,

dIHA
dt

= σHAEHA + ξIHJ − (γA + µH + δHA)IHA,

dRHJ

dt
= γJIHJ − (ψJ + ξ + µH)RHJ ,

dRHA

dt
= γAIHA + ξRHJ − (ψA + µH)RHA,

dSV
dt

= ΠV −
b2βV [η(EHJ + EHA) + IHJ + IHA]

NH

SV − µV SV ,

dIV
dt

=
b2βV [η(EHJ + EHA) + IHJ + IHA]

NH

SV − µV IV .

(3.16)

The model (3.16) is an extension of many of the malaria transmission models pub-

lished in the literature (such as those in [13, 17, 23, 39, 40, 45, 52]), by adding
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age-structure. Furthermore, it extends the age-structured (ODE) malaria model in

[49] by including:

(i) separate compartments for susceptible juveniles and susceptible adults (the two

compartments are lumped together in [49]);

(ii) the dynamics of (and transmission by) latently-infected individuals (EHJ and

EHA; with η 6= 0);

(iii) loss of infection-acquired immunity by recovered individuals (ψJ 6= 0 and ψA 6=

0);

(iv) disease-induced death (δHJ 6= 0 and δHA 6= 0).

Furthermore, the model (3.16) extends the age-structured malaria model in [1] (which

uses mass action incidence for the infection rate) by including:

(a) separate compartments for latently-infected juveniles and latently-infected adults;

(b) the dynamics of (and transmission by) latently-infected individuals (EHJ and

EHA; with η 6= 0).

It should be mentioned that, unlike in [1, 49], detailed qualitative analysis of the

model developed in this chapter will be provided (only local asymptotic stability re-

sults are given for the disease-free equilibria of the models in [1, 49]. Local asymptotic

stability result is provided for the endemic equilibrium of the model in [49]).

3.2.1 Basic properties

The basic dynamical features of the model (3.16) will now be explored. Since the

model monitors human and mosquito populations, all its associated parameters and

state variables are non-negative for t ≥ 0. For the model (3.16) to be epidemiologi-

cally meaningful, it is important to prove that all its state variables are non-negative
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for all times. In other words, solutions of the model (3.16) with positive initial data

will remain positive for all time t > 0.

Theorem 3.1. Let the initial data be SHJ(0) > 0, SHA(0) > 0, EHJ(0) ≥ 0,

EHA(0) ≥ 0, IHJ(0) ≥ 0, IHA(0) ≥ 0, RHJ(0) ≥ 0, RHA(0) ≥ 0, SV (0) > 0 and

IV (0) ≥ 0. Then the solutions (SHJ(t), SHA(t), EHJ(t), EHA(t), IHJ(t), IHA(t), RHJ(t),

RHA(t), SV (t), IV (t)) of the model (3.16), with positive initial data, will remain pos-

itive for all time t > 0.

The proof of Theorem 3.1 is given in Appendix A.

Lemma 3.1. The closed set

D = {(SHJ , SHA, EHJ , EHA, IHJ , IHA, RHJ , RHA, SV , IV ) ∈ R10
+ : NH ≤

ΠJ

µH
,

NV ≤
ΠV

µV
}

(3.17)

is positively-invariant and attracting for the model (3.16).

Proof. Adding the first eight equations, and the last two equations, of the model

(3.16), gives, respectively,

dNH

dt
= ΠJ − µHNH − (δHJIHJ + δHAIHA),

dNV

dt
= ΠV − µVNV .

(3.18)

Since
dNH

dt
≤ ΠJ − µHNH and

dNV

dt
≤ ΠV − µVNV , it follows that

dNH

dt
≤ 0 and

dNV

dt
≤ 0 if NH(t) ≥ ΠJ

µH
and NV (t) ≥ ΠV

µV
, respectively. Hence, it follows, using

comparison theorem [37], that

NH(t) ≤ NH(0)e−µH(t) +
ΠJ

µH
[1− e−µH(t)],

and,
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NV (t) ≤ NV (0)e−µV (t) +
ΠV

µV
[1− e−µV (t)].

In particular, NH(t) ≤ ΠJ

µH
if NH(0) ≤ ΠJ

µH
and NV (t) ≤ ΠV

µV
if NV (0) ≤ ΠV

µV
, respec-

tively. Thus, the region D is positively-invariant for the model (3.16). Furthermore,

if NH(0) >
ΠJ

µH
and NV (0) >

ΠV

µV
, then either the solution enters D in finite time or

NH(t)→ ΠJ

µH
and NV (t)→ ΠV

µV
as t→∞. Hence, the region D attracts all solutions

in R10
+ .

Since the region D is positively-invariant, the usual existence, uniqueness, continu-

ation results hold for the system (hence, it is sufficient to consider the dynamics of

the flow generated by the system (3.16) in the region D [32]).

3.3 Stability of DFE

The DFE of the model (3.16), obtained by setting the right-hand sides of the equa-

tions in (3.16) to zero, is given by,

E0 = (S∗HJ , S
∗
HA, E

∗
HJ , E

∗
HA, I

∗
HJ , I

∗
HA, R

∗
HJ , R

∗
HA, S

∗
V , I

∗
V )

=

(
ΠJ

(ξ + µH)
,

ξΠJ

µH(ξ + µH)
, 0, 0, 0, 0, 0, 0,

ΠV

µV
, 0

)
.

The local asymptotic stability of the DFE E0 can be established using the next

generation operator method (as described in Section 2.9). The non-negative matrix

F (of new infection terms), and the matrix V (of the transition terms) associated

with the model (3.16), are given, respectively, by:
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F =



0 0 0 0
b2βHJS

∗
HJ

N∗H

0 0 0 0
b2βHAS

∗
HA

N∗H

0 0 0 0 0

0 0 0 0 0

ηb2βV S
∗
V

N∗H

ηb2βV S
∗
V

N∗H

b2βV S
∗
V

N∗H

b2βV S
∗
V

N∗H
0


,

and,

V =



g2 0 0 0 0

−ξ g3 0 0 0

−σHJ 0 g4 0 0

0 −σHA −ξ g5 0

0 0 0 0 µV


,

where g2 = σHJ +ξ+µH , g3 = σHA+µH , g4 = ξ+γJ +µH +δHJ , g5 = γA+µH +δHA,

and N∗H =
ΠJ

µH
. It follows, from [65], that the basic reproduction number (R0 =

ρ(FV−1)), of the model (3.16), is given by (where ρ is the spectral radius of the next

generation matrix, FV−1)

R0 =√√√√√b22βV ΠV µH{βHJµH [ηg4g5(g3 + ξ) + σHJg3(g5 + ξ) + σHAξg4] + βHAξg2g4(ηg5 + σHA)}

µ2
V ΠJ(ξ + µH)

(
5∏

i=2

gi

) .

(3.19)

The result below follows from Theorem 2.10.

Lemma 3.2. The DFE, E0, of the model (3.16), is LAS if R0 < 1, and unstable if

R0 > 1.

The epidemiological implication of Lemma 3.2 is that malaria can be eliminated

from the community (when R0 < 1) if the initial sizes of the sub-populations of the
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model (3.16) are in the basin of attraction of the DFE, E0. The threshold quantity,

R0, represents the average number of secondary infections that one infected individ-

ual (or infected mosquito) can generate if introduced into a completely-susceptible

population. It can be epidemiologically interpreted as follows.

3.3.1 Interpretation of R0

Equation (3.19) can be re-written in the following convenient form:

R0 =
√
RJ +RA,

where,

RJ =
b2µHβHJ
µV (ξ + µH)

(
b2βV µHηΠV

ΠJµV g2

+
b2βV µHσHJΠV

ΠJµV g2g4

)
, (3.20)

and,

RA =
b2βHAξ

µV (ξ + µH)

(
b2βV µHηΠV

ΠJµV g3

+
b2βV µHσHAΠV

ΠJµV g3g5

)
+

b2βHJµH
µV (ξ + µH)

(
b2βV µHηξΠV

ΠJµV g2g3

+
b2βV ξσHAΠV

ΠJµV g2g3g5

+
b2βV µHσHJξΠV

ΠJµV g2g4g5

)
.

(3.21)

(a) Terms in the expression for RJ

The threshold quantity RJ , given by (3.20), is associated with disease transmis-

sion by infected juveniles as well as the infection of susceptible juveniles by infected

mosquitoes. Susceptible mosquitoes acquire malaria infection from infected juveniles
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in two ways, namely by latently-infected or symptomatically-infected juveniles.

The factor,
b2βHJµH
µV (ξ + µH)

, in the expression for RJ , captures the infection of sus-

ceptible juveniles by infected mosquitoes. It is the product of the infection rate

of susceptible juveniles by infected mosquitoes

(
b2βHJS

∗
HJ

N∗H
=
b2βHJµH
ξ + µH

)
and the

average duration in the infected mosquito (IV ) class

(
1

µV

)
. The first term in the

parenthesis of (3.20) represents the infection of susceptible mosquitoes by latently-

infected juveniles. It is the product of infection rate of susceptible mosquitoes by

latently-infected juveniles

(
b2βV ηS

∗
V

N∗H
=
b2βV ηµHΠV

ΠJµV

)
and the average duration in

the latently-infected juveniles class

(
1

g2

)
. The second term in the parenthesis of

(3.20) accounts for the infection of susceptible mosquitoes by symptomatic juveniles.

It is the product of the the infection rate of susceptible mosquitoes by symptomatic

juveniles

(
b2βV S

∗
V

N∗H
=
b2βV µHΠV

ΠJµV

)
, the probability that a latently-infected juvenile

survives the EHJ class and move to the IHJ class

(
σHJ
g2

)
and the average duration

in the IHJ class

(
1

g4

)
. The sum of the above two terms, multiplied by the factor

b2βHJµH
µV (ξ + µH)

, gives RJ .

(b) Terms in the expression for RA

The threshold quantity RA, given by (3.21), is associated with disease transmission

by infected adults (including by infected juveniles who mature into the correspond-

ing infected adults class) as well as the acquisition of infection by susceptible adults

(from infected mosquitoes). Susceptible adults acquire infection following effective

contacts with infected mosquitoes. This is accounted for by the factor
b2βHAξ

µV (ξ + µH)

in the first parenthesis of (3.21), which represents the product of the infection rate of

susceptible adults by infected mosquitoes

(
b2βHAS

∗
HA

N∗H
=
b2βHAξ

ξ + µH

)
and the average
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duration in the IV class

(
1

µV

)
.

The first term in the first parenthesis of (3.21) accounts for the infection of sus-

ceptible mosquitoes by infected adults (both latently-infected and symptomatically-

infected adults). The number of new mosquito infections generated by latently-

infected adults is given by the infection rate of susceptible mosquitoes by latently-

infected adults

(
b2βV ηS

∗
V

N∗H
=

b2βV ηµHΠV

ΠJµV

)
and the average duration in the EHA

class

(
1

g3

)
. Furthermore, latently-infected adults can infect susceptible mosquitoes

after progressing to the symptomatic adults (IHA) class. This infection route is

represented by the second term in the first parenthesis of (3.21). It is given by

the product of the infection rate of susceptible mosquitoes by symptomatic adults(
b2βV S

∗
V

N∗H
=
b2βV ΠV µH

ΠJµV

)
, the probability that a latently-infected adult survives the

EHA class and move to the symptomatic adults (IHA) class

(
σHA
g3

)
and the average

duration in the symptomatic adults class

(
1

g5

)
.

Susceptible mosquitoes can also be infected by infected juveniles after they ma-

ture to the corresponding infected adults class. This process is represented by the

three terms in the second parenthesis of (3.21) and by the aforementioned factor,

b2βHJµH
µV (ξ + µH)

(for the infection of susceptible juveniles by infected mosquitoes). The

first term in the second parenthesis of (3.21) is the product of infection rate of

susceptible mosquitoes by latently-infected adults

(
b2βV ηS

∗
V

N∗H
=
b2βV ηµHΠV

ΠJµV

)
, the

probability that a latently-infected juvenile matures to the latently-infected adults

class

(
ξ

g2

)
and the duration in the latently-infected adults (EHA) class

(
1

g3

)
. The

second term in the second parenthesis of (3.21) is the product of the infection rate

of susceptible mosquitoes by symptomatic adults

(
b2βV S

∗
V

N∗H
=

b2βV µHΠV

ΠJµV

)
, the

probability that a latently-infected juvenile matures to the latently-infected adults

class

(
ξ

g2

)
, the probability that a latently-infected adult survives the EHA class

and move to the symptomatic adults class

(
σHA
g4

)
and the average duration in the
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symptomatic adults class

(
1

g5

)
. The third term in the second parentheses of (3.21)

is the product of the infection rate of susceptible mosquitoes by symptomatic adults(
b2βV S

∗
V

N∗H
=
b2βV µHΠV

ΠJµV

)
, the probability that a latently-infected juvenile survives

the EHJ class and move to the symptomatic juveniles class

(
σHJ
g2

)
, the probability

that a symptomatic juvenile matures to the symptomatic adults class

(
ξ

g4

)
, and

the average duration in the symptomatic adults class

(
1

g5

)
. The sum of the terms

in the first and second parentheses of (3.21), multiplied by the respective factors

described in (b), gives RA.

The geometric mean (accounting for the human-mosquito-human transmission

cycle) of the sum of equations (3.20) and (3.21) gives R0.

3.3.2 Existence of backward bifurcation

As discussed in Chapter 1, models for disease transmission typically undergo a for-

ward bifurcation at R0 = 1 (see, for instance, [28, 32, 57, 71]). However, certain

disease transmission models are known to exhibit the phenomenon of backward bi-

furcation, a dynamic scenario where the DFE of the model co-exists with a stable

endemic equilibrium of the model when the associated reproduction number of the

model is less than unity. Backward bifurcation has been observed in numerous disease

transmission models, such as those for (or with) behavioural responses to perceived

risk [30], multi-groups [10], re-infection [11, 29, 55], vaccination [21, 28, 57, 71], and

vector-borne diseases [26, 28, 45]. The epidemiological consequence of the backward

bifurcation phenomenon in disease transmission models is that having the associated

reproduction number of the model to be less than unity, while necessary, is no longer

sufficient for effective disease control (or elimination). In a backward bifurcation sit-

uation, effective community-wide control of the disease (when R0 < 1) is dependent

on the initial sizes of the sub-populations of the model. In other words, backward bi-
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furcation makes effective disease control in the community difficult. It is instructive,

therefore, to explore the possibility of backward bifurcation in the age-structured

malaria model (3.16).

Theorem 3.2. The model (3.16) undergoes backward bifurcation at R0 = 1 whenever

the Inequality (B-3), given in Appendix B, holds.

The proof of Theorem 3.2, based on using Centre Manifold theory [9, 11, 20, 65],

is given in Appendix B. Figure 3.2 depicts the backward bifurcation property of

the age-structured model (3.16). The possible causes of the backward bifurcation

phenomenon of the model (3.16) are investigated below.

Non-existence of backward bifurcation

Consider the model (3.16) with the associated disease-induced mortality rates, δHJ

and δHA, set to zero, so that,

dNH(t)

dt
= ΠJ − µHNH(t),

hence, NH(t) → ΠJ

µH
as t → ∞. It can be shown, by substituting N∗H = ΠJ

µH
into the

model (3.16), that the associated bifurcation coefficient, a, given by equation (B-2)

in Appendix B, reduces to

a =
2b2µH

ΠJ

{w10(βHJv3w1 + βHAv4w2) + v10w9[βV η(w3 + w4) + βV (w5 + w6)]},

(3.22)

where w1, w2, w9, v3, v4 and v10 are eigenvectors of the linearized system of the

model (3.16), and are defined in Appendix B. Since the eigenvectors w1, w2 and w9

are negative (see Appendix B), it follows from (3.22) that the associated backward

bifurcation coefficient, a, is negative. Hence, it can be concluded from Theorem
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4.1 of [11] that the single-strain model (3.16) will not undergo backward bifurca-

tion in the absence of malaria-induced mortality in humans. Thus, these analyses

show that the malaria-induced mortality in humans causes the backward bifurcation

phenomenon of the age-structured model (3.16). To further confirm the absence of

the backward bifurcation phenomenon, the DFE of the model (3.16) is shown to be

globally-asymptotically stable, for this special case, in Section 3.3.3.

3.3.3 Global asymptotic stability of the DFE: special case:

Consider the special case of the model (3.16) in the absence of disease-induced mor-

tality (i.e., δHJ = δHA = 0, so that N∗H = ΠJ

µH
). Furthermore, the loss of infection-

acquired immunity parameters, ψJ and ψA, are set to zero for computational conve-

nience.

Define the region:

D1 ={(SHJ , SHA, EHJ , EHA, IHJ , IHA, RHJ , RHA, SV , IV ) ∈ D :

SHJ ≤ S∗HJ , SHA ≤ S∗HA, SV ≤ S∗V }.
(3.23)

Lemma 3.3. The region D1 is positively-invariant for the model (3.16) with δHJ =

δHA = ψJ = ψA = 0.

Proof. It follows from the first equation of the model (3.16), with ψJ = ψA = 0, that

dSHJ
dt

= ΠJ −
b2βHJIV
NH

SHJ − (ξ + µH)SHJ ,

≤ ΠJ − ξSHJ − µHSHJ = (ξ + µH)
ΠJ

ξ + µH
− (ξ + µH)SHJ ,

= (ξ + µH)(S∗HJ − SHJ).

(3.24)

Thus, SHJ(t) ≤ SHJ(0)e−(ξ+µH)t + ΠJ

ξ+µH
(1 − e−(ξ+µH)t). Furthermore, if N(0) ≤ ΠJ

µH
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and SHJ(0) ≤ S∗HJ for all t ≥ 0, then SHJ(t) ≤ S∗HJ for all t ≥ 0. Similarly, it follows

from the second equation of the model (3.16), with ψJ = ψA = 0, that

dSHA
dt

= ξSHJ −
b2βHAIV
NH

SHA − µHSHA,

≤ ξSHJ − µHSHA,

= ξ

(
ΠJ

µH
− SHA − EHJ − EHA − IHJ − IHA −RHJ −RHA

)
− µHSHA,

≤ ξ
ΠJ

µH
− ξSHA − µHSHA,

≤ (ξ + µH)
ξΠJ

µH(ξ + µH)
− (ξ + µH)SHA = (ξ + µH)(S∗HA − SHA).

(3.25)

Hence, SHA(t) ≤ SHA(0)e−(ξ+µH)t+ ξΠJ

µH(ξ+µH)
(1− e−(ξ+µH)t). Thus, if N(0) ≤ ΠJ

µH
and

SHA(0) ≤ S∗HA for all t ≥ 0, then SHA(t) ≤ S∗HA for all t ≥ 0. Finally, it follows from

the ninth equation of the model (3.16), with ψJ = ψA = 0, that

dSV
dt

= ΠV −
b2βV [η(EHJ + EHA) + IHJ + IHA]

NH

SV − µV SV ,

≤ ΠV − µV SV = µV
ΠV

µV
− µV SV = µV (S∗V − SV ),

(3.26)

so that, SV (t) ≤ SV (0)e−µV t+ ΠV

µV
(1−e−µV t). Similarly, if N(0) ≤ ΠV

µH
and SV (0) ≤ S∗V

for all t ≥ 0, then SV (t) ≤ S∗V for all t ≥ 0. Thus, the region, D1, is positively-

invariant for the model (3.16) with δHJ = δHA = ψJ = ψA = 0.

Theorem 3.3. The DFE, E0, of the model (3.16), with δHJ = δHA = ψJ = ψA = 0,

is GAS in D1 whenever R1 = R0 |δHJ=δHA=0< 1.

The proof of Theorem 3.3, based on using Lyapunov function theory, is given in

Appendix C. It should be recalled that the loss of infection-acquired immunity pa-

rameters, ψA and ψJ , do not feature in the expression for R0 (hence, they do not

affect R1). Figure 3.3 depicts the solution profiles of the model (3.16) for the case

when R1 < 1 (showing convergence to the DFE, in line with Theorem 3.3).
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Extensive numerical simulations of the age-structured model (3.16), in the ab-

sence of the requirement for the absence of the loss of infection-acquired immunity

of recovered humans (i.e., with ψJ 6= 0 and ψA 6= 0), show convergence of the ini-

tial solutions to the DFE (E0) whenever R1 < 1. Thus, these simulations suggest

that the requirement for the loss of infection-acquired immunity of recovered humans

(ψJ = ψA = 0) is not necessary for the GAS property of the DFE (E0) of the model

(3.16) for the case when R1 < 1. This suggests the following conjecture.

Conjecture 3.1. The DFE, E0, of the model (3.16) with δHJ = δHA = 0 is GAS in

D1 whenever R1 < 1.

3.3.4 Existence of endemic equilibrium point (EEP): special

case:

In this section, conditions for the existence of endemic equilibria (i.e., equilibria

where the infected components of the age-structured model (3.16) are non-zero) will

be derived. Owing to the complexity of the model (3.16), the analyses in this section

will be carried out for the special case of the model with no disease-induced mortality

(δHJ = δHA = 0), and no disease transmission by latently-infected individuals (η =

0). Substituting δHJ = δHA = η = 0 into the model (3.16) gives the following

reduced model (it should be noted that setting δHJ = δHA = 0 in (3.16) results in

N∗H = ΠJ

µH
):
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dSHJ
dt

= ΠJ + ψJRHJ −
µHb2βHJIV

ΠJ

SHJ − (ξ + µH)SHJ ,

dSHA
dt

= ξSHJ + ψARHA −
µHb2βHAIV

ΠJ

SHA − µHSHA,

dEHJ
dt

=
µHb2βHJIV

ΠJ

SHJ − (σHJ + ξ + µH)EHJ ,

dEHA
dt

= ξEHJ +
µHb2βHAIV

ΠJ

SHA − (σHA + µH)EHA,

dIHJ
dt

= σHJEHJ − (ξ + γJ + µH)IHJ ,

dIHA
dt

= σHAEHA + ξIHJ − (γA + µH)IHA,

dRHJ

dt
= γJIHJ − (ξ + µH + ψJ)RHJ ,

dRHA

dt
= γAIHA + ξRHJ − (µH + ψA)RHA,

dSV
dt

= ΠV −
µHb2βV (IHJ + IHA)

ΠJ

SV − µV SV ,

dIV
dt

=
µHb2βV (IHJ + IHA)

ΠJ

SV − µV IV .

(3.27)

It can be shown that the reproduction number of the reduced model (3.27) is given

by

R2 = R0|η=δHJ=δHA=0

=

√√√√√b2βV ΠV µH{b2βHJµH [σHJg3(g5 + ξ) + σHAξg4] + b2βHAξσHAg2g4}

ΠJµ2
V (ξ + µH)

(
5∏
i=2

gi

) ,
(3.28)

where, now, g2 = σHJ + ξ+µH , g3 = σHA +µH , g4 = ξ+ γJ +µH and g5 = γA +µH .

Let E1 = (S∗∗HJ , S
∗∗
HA, E

∗∗
HJ , E

∗∗
HA, I

∗∗
HJ , I

∗∗
HA, R

∗∗
HJ , R

∗∗
HA, S

∗∗
V , I

∗∗
V ) represents an arbi-

trary endemic equilibrium of the model (3.27). Furthermore, let

λ∗∗HJ =
µHb2βHJI

∗∗
V

ΠJ

, λ∗∗HA =
µHb2βHAI

∗∗
V

ΠJ

and λ∗∗V =
µHb2βV (I∗∗HJ + I∗∗HA)

ΠJ

,

(3.29)
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be the force of infection (i.e., rate of infection) for susceptible juveniles, susceptible

adults and susceptible mosquitoes at steady-state, respectively. Solving the equations

of the reduced model (3.27) at steady-state gives:

S∗∗HJ =
g2g4g6ΠJ

g1{[σHJ(γJ + g6) + g4g6]λ∗∗HJ + g2g4g6}
,

E∗∗HJ =
g4g6ΠJλ

∗∗
HJ

g1{[σHJ(γJ + g6) + g4g6]λ∗∗HJ + g2g4g6}
,

R∗∗HJ =
σHJγJΠJλ

∗∗
HJ

g1{[σHJ(γJ + g6) + g4g6]λ∗∗HJ + g2g4g6}
,

I∗∗HJ =
σHJλ

∗∗
HJg6ΠJ

g1{[σHJ(γJ + g6) + g4g6]λ∗∗HJ + g2g4g6}
,

S∗∗HA =
ξS∗∗HJ + ψAR

∗∗
HA

λ∗∗HA + µH
,

E∗∗HA =

ξΠJλ
∗∗
HJ

{
βHAλ

∗∗
HJ [ψAσHJ(γJg5 + γAg6) +

7∏
i=4

gi] + q0

}
g1µHq1q2

,

I∗∗HA =
ξΠJλ

∗∗
HJ{βHAλ∗∗HJ [g6g7(σHAg4 + σHJg3) + σHAσHJγJψA] + q3}

g1µHq1q2

,

R∗∗HA =
ξΠJλ

∗∗
HJ{βHAλ∗∗HJ [g4g6σHAγA + σHJg3(g6γA + g5γJ)] + q4}

g1µHq1q2

,

(3.30)

S∗∗V =
ΠV

λ∗∗V + µV
, I∗∗V =

λ∗∗V ΠV

µV (λ∗∗V + µV )
,

where,

q0 = (βHAg2 + βHJµH)

( 7∏
i=4

gi

)
,

q1 = [σHJ(γJ + g6) + g4g6]λ∗∗HJ + g2g4g6,

40



q2 = {βHAλ∗∗HJ [σHA(γA + g7) + g5g7] + g3g5g7βHJ},

q3 = g6g7[βHJµH(σHAg4 + σHJg3) + g2g4σHAβHA],

q4 = g4g6σHAγA(βHAg2 + βHJµH) + g3σHJβHJµH(g6γA + g5γJ),

with, g6 = ξ + µH + ψJ and g7 = µH + ψA.

Substituting the expressions for I∗∗HJ and I∗∗HA in (3.30) into the equation for λ∗∗V

in (3.29), and simplifying, gives

λ∗∗V =
ΠJλ

∗∗
HJ(a0λ

∗∗
HJ + a1)

M0

, (3.31)

where,

a0 = βHA{σHJµHg6[σHA(γA + g7) + g5g7] + σHAξ(σHJγJψA + g4g6g7)},

a1 = g6g7{βHJµH [σHJg3(g5 + ξ) + σHAξg4] + σHAβHAξg2g4}.

Furthermore, substituting the equation for I∗∗V in (3.30) into the equation for λ∗∗HJ in

(3.29) gives

λ∗∗HJ =
µHb2βHJΠV λ

∗∗
V

ΠJµV (λ∗∗V + µV )
. (3.32)

Finally, solving for λ∗∗V from (3.32) and substituting the result into (3.31), and sim-

plifying, shows that the non-zero equilibria of the model (3.27) satisfy the following

quadratic

c0(λ∗∗HJ)2 + c1λ
∗∗
HJ + c2 = 0, (3.33)

41



with,

c0 = ΠJb2βV βHAµHµV ξ[σHJσHAγJψA + g6g7(g3σHJ + g4σHA)]

+ ΠJβHAµHµV [σHA(γA + g7) + g5g7]{b2βV σHJµHg6 + µV g1[σHJ(γJ + g6) + g4g6]},

c2 = βHJµHg6g7ΠJµ
2
V

( 5∏
i=1

gi

)
(1−R2

2).

The components of the positive equilibrium (or equilibria) of the reduced model

(3.27) can then be obtained by solving for λ∗∗HJ in (3.33), and substituting the result

in the steady-state expressions in (3.30). Furthermore, it follows from (3.33) that

the coefficient c0 is always positive and c2 is positive (negative) if R2 is less than

(greater than) unity. These results are summarized below.

Theorem 3.4. The reduced model (3.27) has a unique endemic equilibrium whenever

R2 > 1.

Numerical simulations of the model (3.27), depicted in Figure 3.4, show convergence

to an endemic equilibrium when R2 > 1 (suggesting that the unique EEP of the

reduced model (3.27) is asymptotically stable when it exists).

3.4 Effect of Age-structure

The effect of age-structure on the dynamics of the age-structured model (3.16) will

now be qualitatively assessed by comparing its dynamical features with those for

the equivalent model with no age structure. The equivalent model with no age-

structure, obtained by setting SH = SHJ +SHA, EH = EHJ +EHA, IH = IHJ + IHA,

RH = RHJ +RHA, so that (NH = SH +EH + IH +RH), ΠH = ΠJ , βH = βHJ +βHA,

σH = σHJ + σHA, ψH = ψHJ + ψHA, δH = δHJ + δHA, ξ = 0 and γH = γHJ + γHA in

(3.16), is given by
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dSH
dt

= ΠH + ψHRH −
b2βHIV
NH

SH − µHSH ,

dEH
dt

=
b2βHIV
NH

SH − (σH + µH)EH ,

dIH
dt

= σHEH − (γH + µH + δH)IH ,

dRH

dt
= γHIH − (ψH + µH)RH ,

dSV
dt

= ΠV −
b2βV (ηEH + IH)

NH

SV − µV SV ,

dIV
dt

=
b2βV (ηEH + IH)

NH

SV − µV IV .

(3.34)

The DFE of the model (3.34) is given by

E01 = (S∗H , E
∗
H , I

∗
H , R

∗
H , S

∗
V , I

∗
V ) =

(
ΠH

µH
, 0, 0, 0,

ΠV

µV
, 0

)
,

and the associated reproduction number is given by

R01 =
√
RV 01RH01, (3.35)

where,

RV 01 =
b2βH
µV

and RH01 =
ΠV µHb2βV [η(γH + δH + µH) + σH ]

ΠHµV (σH + µH)(γH + δH + µH)
.

It can be shown (using the approaches in Sections 3.3 and 3.3.2) that the DFE of

the model (3.34) is LAS if R01 < 1, and that the model (3.34) undergoes backward

bifurcation whenever the associated backward bifurcation coefficient, a, given by

a =
1

g4(ΠHµV g2g3)2

{
δH [g4(σHp3 + ηp4) + p5 + σHγHηµV ]

− µH [σHγHµV p0 + g4(b1βV p1 + µV p2)]

}
,

(3.36)

is positive. In (3.36),
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p0 = ηψH + γH + σH , p1 = (µHη)2 + σ2
H + ηγH ,

p2 = σH(3µH + 2σH + γH) + η[γH(2µH + γH) + µH ],

p3 = 2b1βV µHη + µV [2µH(1 + η)− g2],

p4 = b1βV η[δH + 2η(γH + µH)],

p5 = µV (2µH − g2)[2(γH + µH) + δH ].

It should be mentioned that, as in the case of the age-structured model (3.16), the

backward bifurcation property of the reduced model (3.34) disappears whenever the

disease-induced mortality rate (δH) is set to zero. In particular, setting δH = 0 (i.e.,

N∗H =
ΠH

µH
) in model (3.34), it can be shown that the associated backward bifurcation

coefficient reduces to:

a =
−µH

g4(ΠHµV g2g3)2
[σHγHµV p0 + g4(b1βV p1 + µV p2)] < 0.

Hence, it follows, from Theorem 4.1 of [11], that the reduced model (3.34) will not

undergo backward bifurcation when δH = 0. Furthermore, the following Lyapunov

function

F =
ΠV µHb2βV (ηg4 + σHJ)

ΠHµV R̂01g2g4

EH +
ΠV µHb2βV

ΠHµV R̂01g4

IH + IV ,

can be used to prove the GAS property of the DFE, E01, of the model (3.34), for the

case when R̂01 = R01|δH=0 < 1. Thus, in summary, the analyses in Section 3.4 show

that the age-structured model (3.16), and its equivalent model (3.34) without age-

structure, have the same qualitative dynamics with respect to the phenomenon of

backward bifurcation and the local and global asymptotic stability of the associated
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DFE.

The two models, (3.16) and (3.34), will now be compared in terms of the dynamics

of their corresponding endemic equilibrium points. Let Ê1 = (S∗∗H , E
∗∗
H , I

∗∗
H , R

∗∗
H , S

∗∗
V , I

∗∗
V )

represents an arbitrary endemic equilibrium of the reduced model (3.34) with δH =

ψH = η = 0. Furthermore, let

λ∗∗H =
µHb2βHI

∗∗
V

ΠH

and λ∗∗V =
µHb2βV I

∗∗
H

ΠH

, (3.37)

be the force of infection for susceptible juveniles, adults and mosquitoes at steady-

state, respectively. Solving the equations of the reduced model (3.34), with δH =

ψH = η = 0, at steady-state, gives:

S∗∗H =
ΠH

λ∗∗H + µH
, E∗∗H =

λ∗∗HΠH

(λ∗∗H + µH)(σH + µH)
,

I∗∗H =
σHλ

∗∗
HΠH

(λ∗∗H + µH)(σH + µH)(γH + µH)
,

R∗∗H =
γHσHλ

∗∗
HΠH

(ψH + µH)(λ∗∗H + µH)(σH + µH)(γH + µH)
,

S∗∗V =
ΠV

λ∗∗V + µV
, I∗∗V =

λ∗∗V ΠV

µV (λ∗∗V + µV )
.

(3.38)

Substituting (3.38) into (3.37) shows that the positive endemic equilibrium of the

model (3.34), with δH = ψH = η = 0, satisfy

λ∗∗H =
[µH(σH + µH) + (γH + µH)](R02 − 1)

βV σHb2µV µH + (σH + µH) + (γH + µH)
, (3.39)

where R02 = R01|δH=ψH=η=0. Hence, the model (3.34), with δH = ψH = η = 0, has a

unique endemic equilibrium (obtained by substituting (3.39) into (3.38)) whenever

R02 > 1. Define the following invariant region for the model (3.34):
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D2 =

{
(SH , EH , IH , RH , SV , IV ) ∈ R6

+ : SH + EH + IH +RH ≤
ΠH

µH
; SV + IV ≤

ΠV

µV

}
.

Let,

D0 = {(SH , EH , IH , RH , SV , IV ) ∈ R6
+ : EH = IH = IV = 0}.

Theorem 3.5. The unique endemic equilibrium of the reduced model (3.34), with

δH = ψH = η = 0, is GAS in D2\D0 whenever R02 > 1.

The proof of Theorem 3.5 is given in Appendix D.

In summary, it follows from the analyses in Sections 3.3 and 3.4 that both the age-

structured model (3.16) and the reduced model (3.34), without age-structure, have a

unique endemic equilibrium whenever their associated reproduction number exceeds

unity. The models (3.16) and (3.34) have essentially the same qualitative properties

with respect to the existence of their associated unique endemic equilibrium points,

as well as with respect to (local and global) asymptotic stability of the associated

DFE and the backward bifurcation property observed in malaria transmission dy-

namics. Consequently, it is shown, in this chapter, that adding age-structure to the

basic malaria transmission model (3.34) does not alter its qualitative dynamics with

respect to the existence and stability of equilibria, as well as with respect to its

backward bifurcation property.

3.5 Numerical Simulations

The single-strain age-structured model (3.16) is simulated, using the parameter val-

ues given in Table 3.3 (unless otherwise stated), to assess the impact of various

non-pharmaceutical anti-malaria intervention (namely, mosquito-reduction and per-
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sonal protection strategies (against mosquito bite)) on the transmission dynamics of

malaria in a community. In this thesis, mosquito-reduction measures are modelled

using the parameters ΠV , µV and b2. While a reduction in ΠV signifies effective lar-

vaciding (i.e. spraying mosquito breading sites using suitable chemical agents, such as

Israelensis [25]), reduction in the average lifespan of mosquitoes ( 1
µV

) is achieved by

effective adulticiding (such as by the use of DDT [51, 69]). Similarly, the use of per-

sonal protection against mosquito bites (by using suitable insect repellents and insec-

ticide treated bed nets (ITNs) [50, 69]) is modelled by the parameter b2 (a reduction

in b2 implies effective personal protection against mosquito bites). In these simula-

tions, the following initial conditions, based on the population of Kenya [64], are used:

(SHJ(0), SHA(0), EHJ(0), EHA(0), IHJ(0), IHA(0), RHJ(0), RHA(0), SV (0), IV (0)) =

(18, 684, 000, 18, 684, 000, 6, 000, 600, 0, 0, 0, 0, 2, 0000, 1, 000, 0). Furthermore, the as-

sociated demographic parameters, ΠJ and µH , are chosen such that the total popu-

lation, at the DFE (N∗H = ΠJ

µH
), is 38 million (the current population of Kenya [64]).

Figure 3.5A depicts the cumulative number of new cases of infection for juveniles

for various values of the average lifespan of mosquitoes. The figure shows a decrease

in the cumulative number of new cases with decreasing mosquito lifespan (as ex-

pected). Similar results are obtained for adults (Figure 3.5B). Plots for cumulative

mortality, as a function of average lifespans of mosquitoes, are depicted in Figures

3.6, where it is shown that mortality decrease with decreases mosquito lifespan. It

is worth noting, from Figure 3.6, that the cumulative mortality in juveniles is higher

than in adults. This is in line with the fact that malaria-induced mortality is higher

in juveniles than in adults [69]. Furthermore, the decrease in mortality is more

pronounced in adults than in juveniles (this may be due to higher initial values of

infected juveniles used in the simulations [69]). Unlike in Figure 3.6B, Figure 3.6A

shows that a decrease in mosquito lifespan has marginal effect on the cumulative

malaria-induced mortality in juveniles.
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The effect of larvaciding is monitored by simulating the model (3.16) with vari-

ous values of ΠV . The results obtained, depicted in Figure 3.7, show a decrease in

the cumulative number of new cases in juveniles (Figure 3.7A) and adults (Figure

3.7B) for decreasing values of ΠV , as expected. A contour plot of the reproduction

number R1, as a function of the mosquito biting rate (b2) and average mosquito lifes-

pan ( 1
µV

), is depicted in Figure 3.8. As expected, the plot shows a decrease in R1

values with decreasing values of the average lifespan and biting rate of mosquitoes.

For instance, if the use of insect repellents and ITNs in the community reduces the

mosquito biting rate to b2 = 2, malaria will be effectively controlled (or eliminated)

in the community if the use of mosquito-reduction strategies can reduce the average

lifespan of mosquitoes to about 10 days (since, in this case, R1 < 1; and, in line

with Theorem 3.3, the DFE of the model (3.16), with δHJ = δHA = ψJ = ψA = 0, is

globally-asymptotically stable for this case).

It should be mentioned that the simulation results discussed in this chapter are

subject to the uncertainties in the estimates of the parameter values (tabulated in

Table 3.3) used in the simulations. The effect of such uncertainties on the results

obtained can be assessed using a sampling technique, such as Latin Hypercube Sam-

pling [7, 41].

3.6 Summary of the Chapter

A new, single-strain age-structured, deterministic model for the transmission dynam-

ics of malaria in a community is designed and rigorously analysed in this chapter.

Some of the main mathematical and numerical simulation results obtained are sum-

marized below:

(i) the model (3.16) undergoes the phenomenon of backward bifurcation atR0 = 1

whenever a certain inequality holds;
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(ii) the backward bifurcation property of the model (3.16) can be removed if the

disease-induced mortality in humans is set to zero (δHJ = δHA = 0). That is,

it is shown in this chapter that the backward bifurcation property of the model

(3.16) is caused by malaria-induced mortality in humans;

(iii) it is shown that the disease-free equilibrium of the model (3.16) is globally-

asymptotically stable, in the absence of disease-induced mortality and loss

of infection-acquired immunity, whenever the associated reproduction number

(R1) is less than unity;

(iv) a reduced version of the model (3.16) (in the absence of disease-induced mor-

tality and transmission by exposed individuals), given by (3.27), is shown to

have a unique endemic equilibrium whenever its associated reproduction num-

ber (R2) exceeds unity. Numerical simulations suggest that this equilibrium is

asymptotically-stable;

(v) the equivalent model without age-structure, given by (3.34), exhibits the same

essential qualitative dynamics as the age-structured model (3.16), and its unique

endemic equilibrium is shown to be globally-asymptotically stable whenever its

reproduction number (R02) is greater than unity. Thus, this study shows that

adding age-structure to the basic model for malaria transmission in a commu-

nity does not alter the qualitative dynamics of the basic model (with respect to

the existence and asymptotic stability of its equilibria, as well as with respect

to its backward bifurcation property);

(vi) numerical simulations of the model (3.16) show that the cumulative number of

new cases of infection and malaria-induced mortality increase with increasing

average lifespan and birth rate of mosquitoes.
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Variable Description

SHJ Population of susceptible juveniles

SHA Population of susceptible adults

EHJ Population of latently-infected juveniles

EHA Population of latently-infected adults

IHJ Population of symptomatic juveniles

IHA Population of symptomatic adults

RHJ Population of recovered juveniles

RHA Population of recovered adults

SV Population of susceptible mosquitoes

IV Population of infected mosquitoes

Table 3.1: Description of the state variables of the single-strain model (3.16).
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Parameters Description

b2 Average per capita biting rate of mosquitoes

βHJ Probability of infection of susceptible juveniles per mosquito bite

βHA Probability of infection of susceptible adults per mosquito bite

βV Probability of infection of susceptible vectors per mosquito bite
of the infected host

µH Natural death rate of humans

µV Natural death rate of mosquitoes

σHJ Rate of development of clinical symptoms of malaria for
latently-infected juveniles

σHA Rate of development of clinical symptoms of malaria for
latently-infected adults

δHJ Disease-induced mortality rate for juveniles

δHA Disease-induced mortality rate for adults

γJ Recovery rate of juveniles

γA Recovery rate of adults

ψJ Rate of loss of natural immunity for juveniles

ψA Rate of loss of natural immunity for adults

ξ Maturation rate for juveniles

η Modification parameter for reduction in infectiousness of
latently-infected humans

ΠJ Recruitment (birth or immigration) rate of juveniles

ΠV Birth rate of adult mosquitoes

Table 3.2: Description of parameters of the single-strain model (3.16).
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Parameter Value Reference

b2 0.5 day−1 [23]

βHJ 0.181 [23]

βHA 0.181 [23]

βV 0.8333 [45]

µH 0.00004 day−1 [45]

µV 0.05 day−1 [45]

σHJ 0.10333 day−1 [13]

σHA 0.08333 day−1 [13]

δHJ 0.0003454 day−1 [1]

δHA 0.0000174 day−1 [1]

γJ 0.0014 day−1 [1]

γA 0.0035 day−1 [1]

ψJ 0.0027 day−1 [1]

ψA 0.0027 day−1 [1]

ξ 0.00000986 day−1 [1]

η [0, 1) Variable

ΠJ 1520 day−1 Assumed

ΠV 500 day−1 Assumed

Table 3.3: Parameter values for the single-strain model (3.16).
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Figure 3.1: Schematic diagram of the single-strain model (3.16).
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Figure 3.2: Backward bifurcation diagram for the single-strain model (3.16), showing
the total number of symptomatic individuals (juveniles and adults) as a function of
the backward bifurcation parameter β∗HJ . (A) Symptomatically-infected juveniles
(IHJ). (B) Symptomatically-infected adults (IHA). Parameter values used are as
given in Table 3.3, with: ΠJ = 100, ΠV = 20000, µH = 0.062, µV = 0.6, δHJ = 0.9,
δHA = 0.7, ξ = 1

15
, γJ = 1, γA = 1, σHJ = 0.6, σHA = 0.5, ψJ = 0.8, ψA = 0.7,

βHA = 0.0001, βV = 0.1867, η = 0, b2 = 1 (so that, a = 0.0003225760046 > 0 and
R0 = 1 ).
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Figure 3.3: Simulations of the single-strain model (3.16), showing the total number of
infected individuals as a function of time, using various initial conditions. Parameter
values used are as given in Table 3.3, with ΠJ = 1520, ΠV = 1000, µV = 1

20
, µH =

0.00004, ξ = 0.00000986, γJ = 0.0014, γA = 0.0035, σHJ = 0.10333, σHA = 0.08333,
ψJ = ψA = δHJ = δHA = 0, βHA = 0.1 βHJ = 0.2, βV = 0.6, η = 0 and b2 = 0.8 (so
that, R1 = 0.6862).

Figure 3.4: Simulations of the single-strain model (3.27), showing the total number of
infected individuals as a function of time, using various initial conditions. Parameter
values used are as given in Table 3.3, with ΠJ = 1520, ΠV = 1000, µV = 1

20
, µH =

0.00004, ξ = 0.00000986, γJ = 0.0014, γA = 0.0035, σHJ = 0.10333, σHA = 0.08333,
ψJ = ψA = δHJ = δHA = 0, βHA = 0.1 βHJ = 0.2, βV = 0.9, η = 0 and b2 = 3 (so
that, R2 = 3.1518).
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Figure 3.5: Simulations of the single-strain model (3.16), showing the cumulative
number of new cases for juveniles and adults as a function of time, for various values
of average lifespan of mosquitoes ( 1

µV
). (A) Juveniles. (B) Adults. Parameter values

used are as given in Table 3.3, with ΠJ = 1520, ΠV = 500, µH = 0.00004, δHJ =
0.0034, δHA = 0.00034, ξ = 0.00000986, γJ = 0.0014, γA = 0.0035, σHJ = 0.10333,
σHA = 0.08333, ψJ = 0.0027, ψA = 0.0027, βHA = 0.2 βHJ = 0.3, βV = 0.8333,
η = 0 and b2 = 0.5.

56



Figure 3.6: Simulations of the single-strain model (3.16), showing the cumulative
mortality for juveniles and adults as a function of time, for various values of average
lifespan of mosquitoes ( 1

µV
). (A) Juveniles. (B) Adults. Parameter values used are

as given in Table 3.3, with ΠJ = 1520, ΠV = 500, µH = 0.00004, δHJ = 0.0034,
δHA = 0.00034, ξ = 0.00000986, γJ = 0.0014, γA = 0.0035, σHJ = 0.10333, σHA =
0.08333, ψJ = 0.0027, ψA = 0.0027, βHA = 0.2 βHJ = 0.3, βV = 0.8333, η = 0 and
b2 = 0.5.
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Figure 3.7: Simulations of the single-strain model (3.16), showing the cumulative
number of new cases for juveniles and adults as a function of time, for various values
of birth rate of adult mosquitoes (ΠV ). (A) Juveniles. (B) Adults. Parameter values
used are as given in Table 3.3, with ΠJ = 1520, µV = 1

14
, µH = 0.00004, δHJ = 0,

δHA = 0, ξ = 0.00000986, γJ = 0.0014, γA = 0.0035, σHJ = 0.10333, σHA = 0.08333,
ψJ = 0, ψA = 0, βHA = 0.2 βHJ = 0.3, βV = 0.8333, η = 0 and b2 = 0.5.

58



Figure 3.8: Simulations of the single-strain model (3.16), showing a contour plot of
R1 as a function of the biting rate (b2) and average lifespan ( 1

µV
) of mosquitoes.

Parameter values used are as given in Table 3.3, with ΠJ = 1520, ΠV = 300, µH =
0.00004, δHJ = δHA = 0, ξ = 0.00000986, γJ = 0.0014, γA = 0.0035, σHJ = 0.10333,
σHA = 0.08333, ψJ = 0.0027, ψA = 0.0027, βHA = 0.2 βHJ = 0.3, βV = 0.8333 and
η = 0.
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Chapter 4

Age-structured Treatment Model

4.1 Introduction

In this chapter, the single-strain model in Chapter 3 is extended to assess the

community-wide impact of the use of anti-malaria drugs to treat individuals with

clinical symptoms of malaria. As stated in Chapter 1, various drugs are currently

being used to treat people infected with malaria (such as Aralen, Chloroquine,

Malaraquine and Nivaquine [6, 46]). The use of these drugs in the community,

some of which are administered in combinations (combination therapy), is known

to result in the emergence and transmission of drug-resistant malaria strain in the

community [6, 46]. Malaria drug resistance is attributed to factors such as [6]:

(a) spontaneous mutations that confer reduced sensitivity to a given drug or class

of drugs;

(b) treatment failure (due to incorrect dosing, non-compliance with duration of

dosing regimen, poor drug quality, drug interactions, poor or erratic absorption

and misdiagnosis etc.).

Anti-malaria drug resistance clearly poses great challenges to the global effort to

effectively control the spread of malaria (or to eradicate the disease) [6, 67]. Con-
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sequently, it is important to study the qualitative impact of treatment (using the

currently-available anti-malaria drugs) on the transmission dynamics of malaria in a

population. To achieve this objective, the model in Chapter 3 will now be extended to

incorporate the dynamics of two strains of malaria (wild and drug-resistant strains).

4.2 Model Formulation

The age-structured treatment model for malaria is designed by splitting the to-

tal human population at time t, denoted by NH(t), into the mutually-exclusive

sub-populations of susceptible juveniles (SJ(t)), susceptible adults (SA(t)), latently-

infected (asymptomatic) juveniles with the wild strain (EJW (t)), latently-infected

(asymptomatic) adults with the wild strain (EAW (t)), latently-infected (asymp-

tomatic) juveniles with the resistant strain (EJR(t)), latently-infected (asymptomatic)

adults with the resistant strain (EAR(t)), symptomatic juveniles with the wild strain

(IJW (t)), symptomatic adults with the wild strain (IAW (t)), symptomatic juve-

niles with the resistant strain (IJR(t)), symptomatic adults with the resistant strain

(IAR(t)), effectively-treated juveniles (TJ(t)), effectively-treated adults (TA(t)), re-

covered juveniles (RJ(t)) and recovered adults (RA(t)), so that

NH(t) = SJ(t) + SA(t) + EJW (t) + EAW (t) + EJR(t) + EAR(t) + IJW (t) + IAW (t)

+ IJR(t) + IAR(t) + TJ(t) + TA(t) +RJ(t) +RA(t).

As in Chapter 3, individuals in the latently-infected classes (EJW , EAW , EJR and

EAR) are asymptotically-infected (and can transmit malaria infection to susceptible

mosquitoes).

The total mosquito population at time t, denoted by NV (t), is sub-divided into

the compartments of susceptible mosquitoes (SV (t)) and mosquitoes infected with
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the wild (VW (t)) and resistant (VR(t)) strains, so that

NV (t) = SV (t) + VW (t) + VR(t).

The population of susceptible juveniles is generated by the birth (or immigration) of

juveniles (at a rate ΠJ). Although vertical transmission of malaria can occur (see [22]

and some of the references therein), it is assumed, in this study, that all children are

born susceptible (so that there is no vertical transmission of malaria from mother-

to-child). This population is increased by the loss of infection-acquired immunity by

recovered juveniles (at a per capita rate ψJ). It is decreased by infection, following

effective contacts with infected mosquitoes, at a rate λJ , given by

λJ =
βJb1(NV , NH)(VW + θRVR)

NV

. (4.1)

In (4.1), βJ is the probability of infection of susceptible juveniles per bite by an

infected mosquito and b1(NV , NH) is the per capita biting rate of mosquitoes on

susceptible humans (juveniles and adults) per unit time. Furthermore, θR > 0 is

a modification parameter accounting for the possible variability of infectiousness

of mosquitoes infected with the resistant strain (VR) in comparison to mosquitoes

infected with the wild strain. It is further decreased by maturation to adulthood (at a

rate ξ; as in Chapter 3, this rate is assumed to be same for all humans compartments)

and natural death (at a rate µH ; it is assumed that natural death occurs in all human

epidemiological classes at this rate). Thus,

dSJ
dt

= ΠJ + ψJRJ − λJSJ − (ξ + µH)SJ . (4.2)

62



The population of susceptible adults is generated by the maturation of susceptible

juveniles (at the rate ξ) and by the loss of infection-acquired immunity by recovered

adults (at a rate ψA). It is decreased by infection at a rate λA, given by

λA =
βAb1(NV , NH)(VW + θRVR)

NV

, (4.3)

where βA is the probability of infection of susceptible adults per bite by an infected

mosquito. This population is further decreased by natural death. Hence,

dSA
dt

= ξSJ + ψARA − λASA − µHSA. (4.4)

The population of latently-infected juveniles with the wild (resistant) strain is gen-

erated by the infection of susceptible juveniles with the wild (resistant) strain at the

rate βJb1(NV , NH) (θRβJb1(NV , NH)). It is decreased by the development of clinical

symptoms of malaria at a rate σJW (σJR), maturation to adulthood (at the rate ξ)

and natural death, so that

dEJW
dt

=
βJb1(NV , NH)VW

NV

SJ − (σJW + ξ + µH)EJW , (4.5)

dEJR
dt

=
θRβJb1(NV , NH)VR

NV

SJ − (σJR + ξ + µH)EJR. (4.6)

Furthermore, the population of latently-infected adults with the wild (resistant)

strain is generated by the maturation of latently-infected juveniles with the wild

(resistant) strain (at the rate ξ) and by the infection of susceptible adults with the
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wild (resistant) strain at the rate βAb1(NV , NH) (θRβAb1(NV , NH)). It is diminished

by the development of malaria symptoms at a rate σAW (σAR) and natural death.

Hence,

dEAW
dt

= ξEJW +
βAb1(NV , NH)VW

NV

SA − (σAW + µH)EAW , (4.7)

dEAR
dt

= ξEJR +
θRβAb1(NV , NH)VR

NV

SA − (σAR + µH)EAR. (4.8)

The population of symptomatic juveniles with the wild strain is generated when

latently-infected juveniles with the wild strain develop clinical symptoms of malaria

(at the rate σJW ). It is decreased by treatment (at a rate τJ), maturation to adult-

hood (at the rate ξ), natural recovery (at a rate γJ), natural death and disease-

induced death (at a rate δJ). Hence,

dIJW
dt

= σJWEJW − (τJ + ξ + γJ + µH + δJ)IJW . (4.9)

The population of symptomatic juveniles with the resistant strain is generated by the

development of malaria symptoms by latently-infected juveniles with the resistant

strain (at the rate σJR) and by the development of resistance by treated symptomatic

juveniles (at a rate (1 − fJ)τJ , where 0 < fJ < 1 is the fraction of symptomatic

juveniles who are effectively-treated). It is decreased by maturation (at the rate

ξ), recovery (at a rate φ1γJ , where φ1 > 0 is a modification parameter accounting

for the possible variability of the recovery rate of symptomatic juveniles with the

resistant strain in comparison to symptomatic juveniles with the wild strain), natural
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death and disease-induced death (at a rate θ1δJ , where θ1 > 0 is a modification

parameter accounting for the possible variability of the mortality rate of symptomatic

juveniles with the resistant strain in comparison to symptomatic juveniles with the

wild strain). Hence,

dIJR
dt

= σJREJR + (1− fJ)τJIJW − (ξ + φ1γJ + µH + θ1δJ)IJR. (4.10)

Similarly, the population of symptomatic adults with the wild strain is generated at

the rates ξ and σAW , and reduced by treatment (at the rate τA), natural recovery

(at a rate γA), natural death and disease-induced death (at a rate δA), so that (it

should be mentioned that δJ > δA, since malaria mortality rate is higher in children

than in adults [14, 69]),

dIAW
dt

= ξIJW + σAWEAW − (τA + γA + µH + δA)IAW . (4.11)

Furthermore, the population of symptomatic adults with the resistant strain is gen-

erated at the rates ξ, σAR and (1− fA)τA, and reduced by recovery (at a rate φ2γA,

where φ2 > 0 is a modification parameter accounting for the possible variability of

the recovery rate of symptomatic adults with the resistant strain in comparison to

symptomatic adults with the wild strain), natural death and disease-induced death

(at a rate θ2δA, where θ2 > 0 is a modification parameter accounting for the possible

variability of the mortality rate of symptomatic adults with the resistant strain in

comparison to those with the wild strain), so that,

dIAR
dt

= ξIJR + σAREAR + (1− fA)τAIAW − (φ2γA + µH + θ2δA)IAR. (4.12)
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The population of effectively-treated juveniles is generated at the rate fJτJ , and

decreased by maturation (at the rate ξ), recovery (at an increased rate φ3γJ , where

φ3 > 1 is a modification parameter accounting for the assumed increase in the

recovery rate of treated juveniles in comparison to the recovery rate of untreated

symptomatic juveniles [60]), natural death and disease-induced death (at a rate θ3δJ ,

where θ3 < 1 is a modification parameter accounting for the assumed reduction in

mortality rate of treated symptomatic juveniles with the wild strain in comparison

to untreated symptomatic juveniles [60]), so that,

dTJ
dt

= fJτJIJW − (ξ + φ3γJ + µH + θ3δJ)TJ . (4.13)

Similarly, the population of effectively-treated adults is generated at a rate fAτA and

by the maturation of treated juveniles (at the rate ξ). It is decreased by recovery (at

a rate φ4γA, where φ4 > 1 is a modification parameter accounting for the assumed

increase in the recovery rate of treated symptomatic adults with the wild strain in

comparison to untreated symptomatic adults), natural death and disease-induced

death (at a rate θ4δA, where θ4 < 1 is a modification parameter accounting for the

reduced mortality rate of treated adults in comparison to untreated symptomatic

adults). Thus,

dTA
dt

= fAτAIAW + ξTJ − (φ4γA + µH + θ4δA)TA. (4.14)

The population of recovered juveniles is generated by the recovery of symptomatic

juveniles with the wild strain, resistant strain and effectively-treated juveniles (at the

rates γJ , φ1γJ and φ3γJ , respectively). This population is decreased by the loss of

infection-acquired immunity (at the rate ψJ), maturation (at the rate ξ) and natural
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death. Thus,

dRJ

dt
= γJIJW + φ1γJIJR + φ3γJTJ − (ψJ + ξ + µH)RJ . (4.15)

Similarly, the population of recovered adults is generated by the maturation of re-

covered juveniles (at the rate ξ), recovery of symptomatic adults with the wild and

resistant strains as well as the recovery of effectively-treated individuals (at the γA,

φ2γA and φ4γA, respectively). It is decreased by the loss of infection-acquired immu-

nity (at the rate ψJ) and natural death. Thus,

dRA

dt
= ξRJ + γAIAW + φ2γAIAR + φ4γATA − (ψA + µH)RA. (4.16)

The population of susceptible mosquitoes is generated by the birth of adult mosquitoes

(at a per capita rate ΠV ). It is reduced by infection, following effective contacts with

infected humans, at a rate λV , where

λV =
βV b2(NV , NH)[IJW + IAW + ηR(IJR + IAR)]

NH

. (4.17)

In (4.17), βV is the probability of infection of a susceptible mosquito per bite on an

infected human and b2(NV , NH) is per capita biting rate of susceptible mosquitoes

on infected humans. Furthermore, the parameter ηR > 0 accounts for the possible

variability of the infectiousness of symptomatic humans with the resistant strain in

comparison to symptomatic humans with the wild strain. This population is further

decreased by natural death (at a rate µV ). Hence,
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dSV
dt

= ΠV − λV SV − µV SV . (4.18)

The population of infected mosquitoes with the wild strain is generated by the infec-

tion of susceptible mosquitoes with the wild strain (at the rate βV b2(NV , NH)) and

decreased by natural death (at the rate µV ). Thus,

dVW
dt

=
βV b2(NV , NH)(IJW + IAW )

NH

SV − µV VW . (4.19)

Similarly, the population of infected mosquitoes with the resistant strain is gener-

ated by the infection of susceptible mosquitoes with the resistant strain (at the rate

ηRβV b2(NV , NH)) and decreased by natural death (at the rate µV ). Thus,

dVR
dt

=
ηRβV b2(NV , NH)(IJR + IAR)

NH

SV − µV VR. (4.20)

As in Chapter 3, the following conservation law of mosquito bites must hold:

b2NV = b1(NV , NH)NH , (4.21)

so that,

NV =
b1(NV , NH)NH

b2

. (4.22)

It follows, based on the above derivations and assumptions, and using (4.1) and (4.3)
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with (4.22) in {(4.2), (4.4), (4.5), (4.6), (4.7), (4.8)}, that the age-structured model for

the transmission dynamics of the wild and resistant strains of malaria in a community

is given by the following deterministic system of non-linear differential equations (flow

diagrams of the model are depicted in Figures 4.1 and 4.2, and the state variables

and parameters of the model are described in Tables 4.1 and 4.2, respectively):

dSJ
dt

= ΠJ + ψJRJ −
βJb2(VW + θRVR)

NH

SJ − (ξ + µH)SJ ,

dSA
dt

= ξSJ + ψARA −
βAb2(VW + θRVR)

NH

SA − µHSA,

dEJW
dt

=
βJb2VW
NH

SJ − (σJW + ξ + µH)EJW ,

dEJR
dt

=
θRβJb2VR

NH

SJ − (σJR + ξ + µH)EJR,

dEAW
dt

= ξEJW +
βAb2VW
NH

SA − (σAW + µH)EAW ,

dEAR
dt

= ξEJR +
θRβAb2VR

NH

SA − (σAR + µH)EAR,

dIJW
dt

= σJWEJW − (τJ + ξ + γJ + µH + δJ)IJW ,

dIJR
dt

= σJREJR + (1− fJ)τJIJW − (ξ + φ1γJ + µH + θ1δJ)IJR,

dIAW
dt

= ξIJW + σAWEAW − (τA + γA + µH + δA)IAW ,

dIAR
dt

= σAREAR + ξIJR + (1− fA)τAIAW − (φ2γA + µH + θ2δA)IAR,

dTJ
dt

= fJτJIJW − (ξ + φ3γJ + µH + θ3δJ)TJ ,

dTA
dt

= ξTJ + fAτAIAW − (φ4γA + µH + θ4δA)TA,

dRJ

dt
= γJIJW + φ1γJIJR + φ3γJTJ − (ψJ + ξ + µH)RJ ,

dRA

dt
= ξRJ + γAIAW + φ2γAIAR + φ4γATA − (ψA + µH)RA,

dSV
dt

= ΠV −
βV b2[IJW + IAW + ηR(IJR + IAR)]

NH

SV − µV SV ,

dVW
dt

=
βV b2(IJW + IAW )

NH

SV − µV VW ,

(4.23)
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dVR
dt

=
ηRβV b2(IJR + IAR)

NH

SV − µV VR.

The two-strain age-structured malaria model (4.23) is an extension of the single-

strain age-structured malaria model (3.16), developed in Chapter 3, by including:

(i) the dynamics of the wild and resistant strains for humans and vectors (single

malaria strain was considered in the model (3.16));

(ii) compartments for treated individuals (TJ and TA).

Furthermore, the model (4.23) extends the two-strain malaria model in [23] by:

(i) adding age-structure (i.e., the dynamics of juveniles and adults in the commu-

nity);

(ii) adding the dynamics of exposed individuals;

(iii) adding the dynamics of recovered individuals.

The objective of this chapter is to address the following main questions:

(a) What are the main qualitative features of the two-strain age-structured malaria

model (4.23)?

(b) In particular, under what conditions can the disease persist, or be effectively-

controlled (or eliminated), from the community?

4.2.1 Basic properties

The following two results can be established using the approach in Appendix A and

Section 3.2.1.
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Theorem 4.1. Let the initial data be SJ(0) > 0, SA(0) > 0, EJW (0) ≥ 0, EJR(0) ≥

0, EAW (0) ≥ 0, EAR(0) ≥ 0, IJW (0) ≥ 0, IJR(0) ≥ 0 IAW (0) ≥ 0, IAR(0) ≥ 0,

RJ(0) ≥ 0, RA(0) ≥ 0, TJ(0) ≥ 0, TA(0) ≥ 0, SV (0) > 0 and VW (0) ≥ 0, VR(0) ≥ 0.

Then the solutions (SJ(t), SA(t), EJW (t), EJR(t), EAW (t), EAR(t), IJW (t), IJR(t),

IAW (t), IAR(t), RJ(t), RA(t), TJ(t), TA(t), SV (t), VW (t), VR(t)) of the model (4.23),

with positive initial data, will remain positive for all time t > 0.

Lemma 4.1. The closed set

D = {(SJ , SA, EJW , EJR, EAW , EAR, IJW , IJR, IAW , IAR, RJ , RA, SV , VW , VR) ∈ R17
+ :

NH ≤
ΠJ

µH
, NV ≤

ΠV

µH
}

(4.24)

is positively-invariant and attracting for the model (4.23).

4.3 Stability of DFE

The DFE of the two-strain model (4.23) is given by,

E0T = (S∗J , S
∗
A, E

∗
JW , E

∗
JR, E

∗
AW , E

∗
AR, I

∗
JW , I

∗
JR, I

∗
AW , I

∗
AR, T

∗
J , T

∗
A, R

∗
J , R

∗
A, S

∗
V , V

∗
W , V

∗
R)

=

(
ΠJ

(ξ + µH)
,

ξΠJ

µH(ξ + µH)
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

ΠV

µV
, 0, 0

)
.

The associated non-negative matrix F (of new infection terms) and the matrix V (of

the transition terms) are given, respectively, by:
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F =



0 0 0 0 0 0 0 0 0 0
b2βJS

∗
J

N∗H
0

0 0 0 0 0 0 0 0 0 0 0
θRb2βJS

∗
J

N∗H

0 0 0 0 0 0 0 0 0 0
b2βAS

∗
A

N∗H
0

0 0 0 0 0 0 0 0 0 0 0
θRb2βAS

∗
A

N∗H
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0
b2βV S

∗
V

N∗H
0

b2βV S
∗
V

N∗H
0 0 0 0 0

0 0 0 0 0
ηRb2βV S

∗
V

N∗H
0

ηRb2βV S
∗
V

N∗H
0 0 0 0



,

and,

V =



g2 0 0 0 0 0 0 0 0 0 0 0
0 g3 0 0 0 0 0 0 0 0 0 0
−ξ 0 g4 0 0 0 0 0 0 0 0 0
0 −ξ 0 g5 0 0 0 0 0 0 0 0

−σJW 0 0 0 g6 0 0 0 0 0 0 0
0 −σJR 0 0 −(1−fJ )τJ g7 0 0 0 0 0 0
0 0 −σAW 0 −ξ 0 g8 0 0 0 0 0
0 0 0 −σAR 0 −ξ −(1−fA)τA g9 0 0 0 0
0 0 0 0 −fJτJ 0 0 0 g10 0 0 0
0 0 0 0 0 0 −fAτA 0 −ξ g11 0 0
0 0 0 0 0 0 0 0 0 0 µV 0
0 0 0 0 0 0 0 0 0 0 0 µV


,

where, g1 = ξ + µH , g2 = σJW + ξ + µH , g3 = σJR + ξ + µH , g4 = σAW + µH , g5 =

σAR+µH , g6 = τJ+ξ+γJ+µH+δJ , g7 = ξ+φ1γJ+µH+θ1δJ , g8 = τA+γA+µH+δA,

g9 = φ2γA + µH + θ2δA, g10 = ξ + φ3γJ + µH + θ3δJ , g11 = φ4γA + µH + θ4δA,

g12 = ψJ + ξ + µH , g13 = ψA + µH and N∗H =
ΠJ

µH
.

The reproduction number, associated with the DFE (E0T ) of the model (4.23),

denoted by RT , is then given by RT = ρ(FV−1). It follows from [65] that RT =

max{RW ,RR}, where
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RW =

√
b2

2βV ΠV µH{βJµH [σJWg4(g8 + ξ) + σAW ξg6] + βAσAW ξg2g6}
ΠJµ2

V g1g2g4g6g8

, (4.25)

and,

RR =

√
b2

2βV ΠV θRηRµH{βJµH [σJRg5(g9 + ξ) + σARξg7] + βAσARξg3g7}
ΠJµ2

V g1g3g5g7g9

. (4.26)

The threshold quantity, RT , represents the average number of new malaria infections

generated by a single infected individual (or infected mosquito) in a completely-

susceptible population. The result below follows from Theorem 2 in [65].

Lemma 4.2. The DFE, E0T , of the model (4.23) is LAS if RT < 1, and unstable if

RT > 1.

In the absence of treatment (i.e., τ1 = τ2=0), RT reduces to R0T = RT |τ1=τ2=0=

max{R0W ,R0R}, where,

R0W =

√
b2

2βV ΠV µH{βJµH [σJWg4(g08 + ξ) + σAW ξg06] + βAσAW ξg2g06}
ΠJµ2

V g1g2g4g06g08

, (4.27)

and,

R0R =

√
b2

2βV ΠV θRηRµH{βJµH [σJRg5(g9 + ξ) + σARξg7] + βAσARξg3g7}
ΠJµ2

V g1g3g5g7g9

, (4.28)

with, g06 = ξ + γJ + µH + δJ and g08 = γA + µH + δA. It is worth stating that the

quantity R0T , defined above, is the same as the reproduction number (R0) for the

single-strain, treatment-free, age-structured model (3.27), given by (3.28). It should

73



be recalled that, as in the model (4.23), no transmission by exposed individuals was

assumed in the model (3.27). That is, the parameter η is set to zero in both models.

4.3.1 Backward bifurcation

Theorem 4.2. The two-strain model (4.23) undergoes backward bifurcation at RT =

1 whenever the Inequality (E-3), given in Appendix E, holds.

The proof of Theorem 4.2, based on using Centre Manifold theory, is given in Ap-

pendix E. Thus, like the single strain model (3.16), the two-strain model (4.23) also

undergoes backward bifurcation (under certain conditions).

Non-existence of backward bifurcation

As in Chapter 3, consider the model (4.23) with the associated disease-induced mor-

tality rates, δJ and δA, set to zero. This gives:

dNH(t)

dt
= ΠJ − µHNH(t),

so that NH(t)→ ΠJ

µH
as t→∞. It can be shown, by substituting N∗H = ΠJ

µH
into the

model (4.23), that the associated bifurcation coefficient, a, given by equation (E-2)

in Appendix E, reduces to

a =
2b2µH

ΠJ

{βJθRw1v4w17 + βAθRw2v6w17 + βV [w15v17η(w8 + w10)]} < 0, (4.29)

where w1, w2, w8, w10, w15, w17, v4, v6 and v17 are eigenvectors of the linearized

system of the model (4.23), and are defined in Appendix E (noting that the eigen-

vectors w1, w2 and w15 are negative). Hence, these analyses show, as in Chapter

3, that the two-strain model (4.23) does not undergo backward bifurcation in the

absence of malaria-induced mortality in humans.
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4.3.2 Global asymptotic stability of DFE: special case

The absence of backward bifurcation in (4.23) when δJ = δA = 0 suggests that the

DFE of the model (4.23) may be globally-asymptotically stable under this setting.

Let δJ = δA = 0. Furthermore, for mathematical convenience, let ψJ = ψA = 0

(that is, a special case of the two-strain model (4.23), in the absence of mortality in

humans (δJ = δA = 0) and loss of infection-acquired immunity (ψJ = ψA = 0), is

considered). Define:

D1 ={(SJ , SA, EJW , EJR, EAW , EAR, IJW , IJR, IAW , IAR, TJ , TA, RJ , RA, SV , VW , VR)

∈ D : SJ ≤ S∗J , SA ≤ S∗A, SV ≤ S∗V }.
(4.30)

The following result can be shown (using, for example, the approach in Section 3.3.3).

Lemma 4.3. The region D1 is positively-invariant for the model (4.23) with δJ =

δA = ψJ = ψA = 0.

We claim the following.

Theorem 4.3. The DFE, E0T , of the model (4.23), with δJ = δA = ψJ = ψA = 0, is

GAS in D1 whenever R̃T = RT |δJ=δA=0 < 1.

The proof of Theorem 4.3 is given in Appendix F. The epidemiological consequence

of Theorem 4.3 is that malaria will be effectively-controlled (or eliminated) from the

community if the associated reproduction threshold (R̃T ) can be brought to (and

maintained at) a value less than unity. In other words, this study shows that if the

use of anti-malaria drugs in the community can lead to R̃T < 1, then malaria can

be effectively-controlled (or eliminated) from the community. Figure 4.3 depicts the

solution profiles of the model (4.23) for the case when R̃T < 1, showing convergence

to the DFE (E0T ) (in line with Theorem 4.3).
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4.4 Existence and Stability of Boundary and En-

demic Equilibria: Special Case

In this section, conditions for the existence of positive equilibria of the model (4.23)

will be explored for the special case with no disease-induced mortality (δJ = δA = 0).

The possible non-trivial equilibria of the model (4.23), with δJ = δA = 0, are:

(i) resistant strain-only boundary equilibrium (an equilibrium of model (4.23) in

the absence of the wild strain in the community), denoted by ER;

(ii) low-endemicity equilibrium (an endemic equilibrium of model (4.23) for the

case where the resistant strain is not transmitted), denoted by EL;

(iii) high-endemicity equilibrium (an equilibrium of model (4.23) where both the

wild and resistant strains are transmitted in the community), denoted by EH .

It is worth stating that, unlike in other models for the dynamics of two strains of

a disease in a certain population (such as some models reported in [56]), the two-

strain model (4.23) does not have a wild strain-only boundary equilibrium (i.e., an

equilibrium with the wild strain only). This is due to the fact that two infected

classes, IJR and IAR, are never zero (asymptotically) in the absence of the resistant

strain (since fJ 6= 1 and fA 6= 1; which also equivalent to τJ 6= 0 and τA 6= 0). Such

a wild strain-only boundary equilibrium is only feasible if treated individuals do not

develop resistance (so that fJ = fA = 1), or if anti-malaria drug treatment is not

administered in the community (i.e., τJ = τA = 0).

4.4.1 Resistant-strain-only boundary equilibrium

Let,
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ER = (S∗∗J , S
∗∗
A , E

∗∗
JW , E

∗∗
AW , E

∗∗
JR, E

∗∗
AR, I

∗∗
JW , I

∗∗
AW , I

∗∗
JR, I

∗∗
AR, T

∗∗
J , T

∗∗
A , R

∗∗
J , R

∗∗
A , S

∗∗
V , V

∗∗
W ,

V ∗∗R ) = (S∗∗J , S
∗∗
A , 0, E

∗∗
JR, 0, E

∗∗
AR, 0, I

∗∗
JR, 0, I

∗∗
AR, 0, 0, R

∗∗
J , R

∗∗
A , S

∗∗
V , 0, V

∗∗
R ),

represents a resistant strain-only boundary equilibrium of the model (4.23) (i.e., an

equilibrium of the model (4.23) in the absence of the wild strain). To investigate

the existence of the boundary equilibrium ER, a special case of the model (4.23)

with δJ = δA = 0 is considered (this assumption is made to ensure mathematical

tractability of the ensuing algebraic manipulation). In the absence of the wild strain,

the model (4.23), with δJ = δA = 0, reduces to the following resistant strain-only

age-structured system:

dSJ
dt

= ΠJ + ψJRJ −
µHb2βJθRVR

ΠJ

SJ − (ξ + µH)SJ ,

dSA
dt

= ξSJ + ψARA −
µHb2βAθRVR

ΠJ

SA − µHSA,

dEJR
dt

=
µHb2βJθRVR

ΠJ

SJ − (σJR + ξ + µH)EJR,

dEAR
dt

= ξEJR +
µHb2βAθRVR

ΠJ

SA − (σAR + µH)EAR,

dIJR
dt

= σJREJR − (ξ + φ1γJ + µH)IJR,

dIAR
dt

= ξIJR + σAREAR − (φ2γA + µH)IAR,

dRJ

dt
= φ1γJIJR − (ξ + µH + ψJ)RJ ,

dRA

dt
= ξRJ + φ2γAIAR − (µH + ψA)RA,

dSV
dt

= ΠV −
µHb2βV ηR(IJR + IAR)

ΠJ

SV − µV SV ,

dVR
dt

=
µHb2βV ηR(IJR + IAR)

ΠJ

SV − µV IV .

(4.31)

The reproduction number of the resistant strain-only age-structured model (4.31) is

given by
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R̃R =

√
b2

2βV ΠV θRηRµH{βJµH [σJRg5(g9 + ξ) + σARξg7] + βAσARξg3g7}
ΠJµ2

V g1g3g5g7g9

, (4.32)

where, now, g1 = ξ + µH , g3 = σJR + ξ + µH , g5 = σAR + µH , g7 = ξ + φ1γJ + µH

and g9 = φ2γA + µH . It is convenient to let

λ∗∗JR =
µHb2βJθRV

∗∗
R

ΠJ

, λ∗∗AR =
µHb2βAθRV

∗∗
R

ΠJ

and λ∗∗V R =
µHb2βV θR(I∗∗JR + I∗∗AR)

ΠJ

.

(4.33)

Solving the equations of the resistant strain-only model (4.31) at steady-state gives:

S∗∗HJ =
g3g7g12ΠJ

g1{[σJR(φ1γJ + g12) + g7g12]λ∗∗JR + g3g7g12}
,

E∗∗HJ =
g7g12ΠJλ

∗∗
JR

g1{[σJR(φ1γJ + g12) + g7g12]λ∗∗JR + g3g7g12}
,

R∗∗HJ =
σJRφ1γJΠJλ

∗∗
JR

g1{[σJR(φ1γJ + g12) + g7g12]λ∗∗JR + g3g7g12}
,

I∗∗HJ =
σJRλ

∗∗
JRg12ΠJ

g1{[σJR(φ1γJ + g12) + g7g12]λ∗∗JR + g3g7g12}
,

S∗∗HA =
ξS∗∗HJ + ψAR

∗∗
HA

λ∗∗AR + µH
,

E∗∗HA =
ξΠJλ

∗∗
JR{βAλ∗∗JR[ψAσJR(φ1γJg9 + φ2γAg12) + q0] + q0(βAg3 + βJµH)}

g1µHq1q2

,

I∗∗HA =
ξΠJλ

∗∗
JR{βAλ∗∗JR[g12g13(σARg7 + σJRg5) + σARσJRφ1γJψA] + q3}

g1µHq1q2

,

(4.34)
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R∗∗HA =
ξΠJλ

∗∗
JR{βAλ∗∗JR[g7g12σARφ2γA + σJRg5(g12φ2γA + g9φ1γJ)] + q4}

g1µHq1q2

,

S∗∗V =
ΠV

λ∗∗V R + µV
, I∗∗V =

λ∗∗V RΠV

µV (λ∗∗V R + µV )
,

where,

q0 = g7g9g12g13,

q1 = [σJR(φ1γJ + g12) + g7g12]λ∗∗JR + g3g7g12,

q2 = βAλ
∗∗
JR[σAR(φ2γA + g13) + g9g13] + g5g9g13βJ ,

q3 = g12g13[βJµH(σARg7 + σJRg5) + g3g7σARβA],

q4 = g7g12σARφ2γA(βAg3 + βJµH) + g5σJRβJµH(g12φ2γA + g9φ1γJ),

with, g1 = ξ + µH , g3 = σJR + ξ + µH , g5 = σAR + µH , g7 = ξ + φ1γJ + µH ,

g9 = φ2γA + µH , g12 = ξ + µH + ψJ and g13 = µH + ψA.

Substituting the expressions for I∗∗JR and I∗∗AR in (4.34) into the equation for λ∗∗V R

in (4.33), and simplifying, gives

λ∗∗V =
ΠJλ

∗∗
JR(a0λ

∗∗
JR + a1)

M1

, (4.35)

where,

a0 = βA{σJRµHg12[σHA(φ2γA + g13) + g9g13] + σARξ(σJRφ1γJψA + g7g12g13)},

a1 = g12g13{βJµH [σJRg5(g9 + ξ) + σARξg7] + σARβAξg3g7}.

Furthermore, substituting the equation for I∗∗V in (4.34) into the equation for λ∗∗JR in

(4.33) gives
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λ∗∗JR =
µHb2βJΠV λ

∗∗
V

ΠJµV (λ∗∗V + µV )
. (4.36)

Finally, solving for λ∗∗V R from (4.36) and substituting the result into (4.35), and

simplifying, shows that the non-zero equilibria of the resistant strain-only model

(4.31) satisfy the following quadratic (in terms of λ∗∗JR)

c0(λ∗∗JR)2 + c1λ
∗∗
JR + c2 = 0, (4.37)

where,

c0 = ΠJb2βV βAµHµV ξ[σJRσARγJψA + g12g13(g5σJR + g7σAR)]

+ ΠJβAµHµV [σAR(φ2γA + g12) + g9g12]

{b2βV σJRµHg12 + µV g1[σJR(φ1γJ + g12) + g7g12]},

c2 = βJµHg12g13(ΠJµ
2
V g1g3g7g9)[1− (R̃R)2].

Hence, as in Chapter 3, the following result is obtained.

Theorem 4.4. The resistant strain-only model (4.31) has a unique positive equilib-

rium if R̃R > 1.

4.4.2 Low-endemicity equilibrium

In the absence of malaria transmission by individuals or vectors infected with the

resistant strain (i.e., λJR = λAR = λV R = 0), the model (4.23) has endemic equilibria

(low-endemicity equilibria) of the general form:
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EL = (S∗∗J , S
∗∗
A , E

∗∗
JW , E

∗∗
JR, E

∗∗
AW , E

∗∗
AR, I

∗∗
JW , I

∗∗
JR, I

∗∗
AW , I

∗∗
AR, T

∗∗
J , T

∗∗
A , R

∗∗
J , R

∗∗
A , S

∗∗
V , V

∗∗
W ,

V ∗∗R ) = (S∗∗J , S
∗∗
A , E

∗∗
JW , 0, E

∗∗
AW , 0, I

∗∗
JW , 0, I

∗∗
AW , T

∗∗
J , T

∗∗
A , R

∗∗
J , R

∗∗
A , S

∗∗
V , V

∗∗
W , 0).

Setting λJR = λAR = λV R = 0 (and using δJ = δA = 0 for simplicity; so that

N∗H =
ΠJ

µH
) in (4.23) gives the following reduced (low-endemicity) two-strain model:

dSJ
dt

= ΠJ + ψJRJ −
µHb2βJVW

ΠJ

SJ − (ξ + µH)SJ ,

dSA
dt

= ξSJ + ψARA −
µHb2βAVW

ΠJ

SA − µHSA,

dEJW
dt

=
µHb2βJVW

ΠJ

SJ − (σJW + ξ + µH)EJW ,

dEAW
dt

= ξEJW +
µHb2βAVW

ΠJ

SA − (σAW + µH)EAW ,

dIJW
dt

= σJWEJW − (τJ + ξ + γJ + µH)IJW ,

dIJR
dt

= (1− fJ)τJIJW − (ξ + φ1γJ + µH)IJR,

dIAW
dt

= ξIJW + σAWEAW − (τA + γA + µH)IAW ,

dIAR
dt

= ξIJR + (1− fA)τAIAW − (φ2γA + µH)IAR,

dTJ
dt

= fJτJIJW − (ξ + φ3γJ + µH)TJ ,

dTA
dt

= ξTJ + fAτAIAW − (φ4γA + µH)TA,

dRJ

dt
= γJIJW + φ1γJIJR + φ3γJTJ − (ξ + µH + ψJ)RJ ,

dRA

dt
= ξRJ + γAIAW + φ2γAIAR + φ4γATA − (µH + ψA)RA,

dSV
dt

= ΠV −
µHb2βV (IJW + IAW )

ΠJ

SV − µV SV ,

dVR
dt

=
µHb2βV (IJW + IAW )

ΠJ

SV − µV IV .

(4.38)

The reproduction number of the low-endemicity model (4.38) is given by
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R̃L =

√
b2

2βV ΠV µH{βJµH [σJWg4(g8 + ξ) + σAW ξg6] + βAσAW ξg2g6}
ΠJµ2

V g1g2g4g6g8

, (4.39)

where, now, g1 = ξ + µH , g2 = σJW + ξ + µH , g4 = σAW + µH , g6 = τJ + ξ + γJ + µH

and g8 = τA + γA + µH . It is convenient to let:

λ∗∗JW =
µHb2βJV

∗∗
W

ΠJ

, λ∗∗AW =
µHb2βAV

∗∗
W

ΠJ

and λ∗∗VW =
µHb2βV (I∗∗JW + I∗∗AW )

ΠJ

.

(4.40)

It can be shown, using the approach in Section 4.4.1, that the non-zero equilibria of

the low-endemicity model (4.38) satisfy:

c0(λ∗∗JW )2 + c1λ
∗∗
JW + c2 = 0, (4.41)

where,

c0 = ΠJb2βV βAµHµV ξ[σHJσHAγJψA + g6g7(g3σHJ + g4σHA)]

+ΠJβHAµHµV [σHA(γA + g7) + g5g7]{b2βV σHJµHg6 + µV g1[σHJ(γJ + g6) + g4g6]},

c2 = βHJµHg6g7ΠJµ
2
V

( 5∏
i=1

gi

)
[1− (R̃L)2],

with, g1 = ξ + µH , g2 = σJW + ξ + µH , g4 = σAW + µH , g6 = τJ + ξ + γJ + µH ,

g8 = τA + γA + µH , g10 = ξ + φ3γJ + µH , g11 = φAγA + µH , g12 = ξ + µH + ψJ . The

result below follows from (4.41).

Theorem 4.5. The low-endemicity model (4.38) has a unique positive equilibrium

if R̃L > 1.
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High-endemicity equilibria

The non-zero equilibria of the system (4.23) are called high-endemicity equilibria to

distinguish them from the low-endemicity equilibria (where the resistant strain is

not transmitted in the community). The complexity of the system (4.23) makes the

analysis of its associated non-zero equilibria not mathematically tractable (and not

reported in the thesis).

4.5 Effect of Development of Drug Resistance

The effect of the emergence of drug resistance on the transmission dynamics of

malaria in the community will now be qualitatively analysed. Consider the model

(4.23) in the absence of resistance development by treated individuals (so that,

fJ = fA = 1). Furthermore, for computational convenience, let δJ = δA = 0.
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Consequently, the model (4.23), with fJ = fA = 1 and δJ = δA = 0, reduces to:

dSJ
dt

= ΠJ + ψJRJ −
µHβJb2(VW + θRVR)

ΠJ

SJ − (ξ + µH)SJ ,

dSA
dt

= ξSJ + ψARA −
µHβAb2(VW + θRVR)

ΠJ

SA − µHSA,

dEJW
dt

=
µHβJb2VW

ΠJ

SJ − (σJW + ξ + µH)EJW ,

dEJR
dt

=
µHθRβJb2VR

ΠJ

SJ − (σJR + ξ + µH)EJR,

dEAW
dt

= ξEJW +
µHβAb2VW

ΠJ

SA − (σAW + µH)EAW ,

dEAR
dt

= ξEJR +
µHθRβAb2VR

ΠJ

SA − (σAR + µH)EAR,

dIJW
dt

= σJWEJW − (τJ + ξ + γJ + µH)IJW ,

dIJR
dt

= σJREJR − (ξ + φ1γJ + µH)IJR,

dIAW
dt

= ξIJW + σAWEAW − (τA + γA + µH)IAW ,

dIAR
dt

= σAREAR + ξIJR − (φ2γA + µH)IAR,

dTJ
dt

= τJIJW − (ξ + φ3γJ + µH)TJ ,

dTA
dt

= ξTJ + τAIAW − (φ4γA + µH)TA,

dRJ

dt
= γJIJW + φ1γJIJR + φ3γJTJ − (ψJ + ξ + µH)RJ ,

dRA

dt
= ξRJ + γAIAW + φ2γAIAR + φ4γATA − (ψA + µH)RA,

dSV
dt

= ΠV −
µHβV b2[IJW + IAW + ηR(IJR + IAR)]

ΠJ

SV − µV SV ,

dVW
dt

=
µHβV b2(IJW + IAW )

ΠJ

SV − µV VW ,

dVR
dt

=
µHηRβV b2(IJR + IAR)

ΠJ

SV − µV VR.

(4.42)

Define R̂W = RW |fJ=fA=1,δJ=0 < 1, R̂R = RR |fJ=fA=1,δJ=δA=0 < 1 and the

positively-invariant region:
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DW ={(SJ , SA, EJW , EJR, EAW , EAR, IJW , IJR, IAW , IAR, RJ , RA, SV , VW , VR) ∈ D :

SJ ≤ S∗J , SA ≤ S∗A, SV ≤ S∗V }.
(4.43)

The DFE of the wild strain-only component of the system (4.42) is given by

(S∗J , S
∗
A, E

∗
JW , E

∗
AW , I

∗
JW , I

∗
AW , S

∗
V , V

∗
W ) =

[
ΠJ

ξ + µH
,

ξΠJ

µH(ξ + µH)
, 0, 0, 0, 0,

ΠV

µV
, 0

]
.

Theorem 4.6. The DFE of the wild strain-only component of the model (4.42) is

GAS in DW if R̂W < 1.

Proof. Consider the following Lyaponuv function

F = f1EJW + f2EAW + f3IJW + f4IAW + VW ,

with,

f1 =
ΠV µHb2βV [σJWg4(g8 + ξ) + σAW ξg6]

ΠJµV R̂Wg2g4g6g8

, f2 =
ΠV µHb2βV σAW

ΠJµV R̂Wg4g8

,

f3 =
ΠV µHb2βV (g8 + ξ)

ΠJµV R̂Wg6g8

, f4 =
ΠV µHb2βV

ΠJµV R̂Wg8

,

where, now, g2 = σJW+ξ+µH , g4 = σAW+µH , g6 = τJ+ξ+γJ+µH , g8 = τA+γA+µH .

The Lyapunov derivative of F is given by

Ḟ = f1ĖJW + f2ĖAW + f3İJW + f4İAW + V̇W ,
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= f1

[
µHb2βJVW

ΠJ

SJ − (σJW + ξ + µH)EJW

]
+ f2

[
ξEJW +

µHb2βAWVW
ΠJ

SA − (σAW + µH)EAW

]
+ f3

[
σJWEJW − (γJ + ξ + µH)IJW

]
+ f4

[
ξIJW + σAWEAW − (γA + µH)IAW

]
+

[
µHb2βV (IJW + IAW )

ΠJ

SV − µV VW
]
,

which can be simplified to

Ḟ =

[
− ΠV µHb2βV [σJWg4(g8 + ξ) + σAW ξg6]

ΠJµV R̂Wg2g4g6g8

(σJW + ξ + µH)

+
ΠV µHb2βV σAW

ΠJµV R̂Wg4g8

ξ +
ΠV µHb2βV (g8 + ξ)

ΠJµV R̂Wg6g8

σJW

]
EJW

+

[
− ΠV µHb2βV σAW

ΠJµV R̂Wg4g8

(σAW + µH) +
ΠV µHb2βV

ΠJµV R̂Wg8

σAW

]
EAW

+

[
− ΠV µHb2βV (g8 + ξ)

ΠJµV R̂Wg6g8

(γJ + ξ + µH) +
ΠV µHb2βV

ΠJµV R̂Wg8

ξ +
µHb2βV

ΠJ

SV

]
IJW

+

[
− ΠV µHb2βV

ΠJµV R̂Wg8

(γA + µH) +
µHbβV

ΠJ

SV

]
IAW

+

[
ΠV µHb2βV [σJWg4(g8 + ξ) + σAW ξg6]

ΠJµV R̂Wg2g4g6g8

(
µHb2βJ

ΠJ

SJ

)
+

ΠV µHb2βV σAW

ΠJµV R̂Wg4g8

(
µHb2βA

ΠJ

SA

)
− µV

]
VW .

(4.44)

Since SJ ≤ S∗J , SA ≤ S∗A, and SV ≤ S∗V in DW , it follows from (4.44), after some

algebraic manipulations, that

Ḟ ≤
(

1− 1

R̂W

)(
ΠV µHb2βV

ΠJµV
IJW +

ΠV µHb2βV
ΠJµV

IAW + µV R̂WVW

)
≤ 0

for R̂W ≤ 1. Thus, Ḟ ≤ 0 if R̂w ≤ 1 with Ḟ = 0 if and only if EJW = EAW =
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IJW = IAW = VW = 0. Substituting IJW = IAW = 0 into the eleventh and twelfth

equations of (4.42) implies that (TJ(t), TA(t)) −→ (0, 0) as t−→ ∞. The proof is

completed as in Appendix C.

Theorem 4.6 shows that the wild strain component of the model (4.42) becomes zero

asymptotically if R̂W < 1 (that is, the wild strain is eliminated from community

whenever R̂W < 1). It should be recalled that the model (4.23), with δJ = δA = 0,

has a unique resistant strain-only boundary equilibrium, in the absence of the wild

strain, where R̃R > 1 (Theorem 4.4). Extensive numerical simulations of the model

(4.42) suggest the following conjecture.

Conjecture 4.1. The unique positive equilibrium of the resistant strain-only com-

ponent of the model (4.42) is GAS whenever R̂W < 1 < R̂R.

The epidemiological implication of Conjecture 4.1 is that the system (4.42) will

undergo competitive exclusion, where the resistant strain drives out the wild strain

to extinction (as depicted in Figure 4.4). Thus, this study shows (via qualitative

analysis and numerical simulations) that, for the case when treatment does not cause

resistance, the two-strain model (4.23) undergoes competitive exclusion (where the

malaria strain with the higher reproduction number greater than unity drives the

other, with reproduction number less than one, to extinction).

The DFE of the resistant strain-only component of the system (4.42) is given by

(S∗J , S
∗
A, E

∗
JR, E

∗
AR, I

∗
JR, I

∗
AR, S

∗
V , V

∗
R) =

[
ΠJ

ξ + µH
,

ξΠJ

µH(ξ + µH)
, 0, 0, 0, 0,

ΠV

µV
, 0

]
.

Theorem 4.7. The DFE of the resistant strain-only component of the model (4.42)

is GAS in DW if R̂R < 1.

Theorem 4.7 can be proved using the following Lyapunov function:
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F = f1EJR + f2EAR + f3IJR + f4IAR + VR,

with,

f1 =
ΠV µHb2βV [σJRg5(g9 + ξ) + σARξg7]

ΠJµV R̂Rg3g5g7g9

, f2 =
ΠV µHb2βV σAW

ΠJµV R̂Rg5g9

,

f3 =
ΠV µHb2βV (g9 + ξ)

ΠJµV R̂Rg7g9

, f4 =
ΠV µHb2βV

ΠJµV R̂Rg9

,

where, now, g3 = σJR+ξ+µH , g5 = σAR+µH , g7 = ξ+φ1γJ+µH , g9 = φ2γA+µH . It

is worth recalling that in the absence of the resistance strain, the model (4.23), with

δJ = δA = 0, has a unique wild strain-only equilibrium whenever R̃L > 1 (Theorem

4.5). Numerical simulations (see Figure 4.5) suggest the following conjecture.

Conjecture 4.2. The unique positive equilibrium of the wild strain-only component

of the model (4.42) is GAS whenever R̂R < 1 < R̂W .

Simulations of the model (4.42), for the case when treatment does not cause

resistance (i.e., fJ = fA = 1), shows that (for the case when each of the reproduction

number of the two strain exceeds unity) the strain with the higher reproduction

number drive the other to extinction (Figures 4.6 and 4.7). These simulations suggest

the following conjecture (similar result was established for the two-strain model in

[23]).

Conjecture 4.3. The model (4.42) has no co-existence equilibria if R̂i > R̂j > 1 (

i, j = {W,R}; i 6= j).
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4.6 Assessment of Treatment Strategies

The model (4.23) is simulated to assess the impact of anti-malaria drug treatment

on the transmission dynamics of malaria in a community. The following effectiveness

levels of the treatment strategy are considered (these levels are arbitrary chosen to

account for the uncertainty in the estimate of the treatment-related parameters of

the model):

(i) low effectiveness level: τJ = τA = 0.009, fJ = fA = 0.05;

(ii) moderate effectiveness level: τJ = τA = 0.05, fJ = fA = 0.1;

(iii) high effectiveness level: τJ = τA = 5, fJ = fA = 0.9.

The simulation results obtained, depicted in Figure 4.8, show a reduction in the

cumulative number of new infections (for both juveniles and adults) for increasing

effectiveness levels of the treatment strategy. Similar results were obtained for the

cumulative malaria-induced mortality (Figure 4.9).

4.7 Summary of the Chapter

The model in Chapter 3 is extended, in Chapter 4, to assess the effect of drug

treatment on the transmission dynamics of malaria in a population. The resulting 17-

dimensional, age-structured, two-strain deterministic model is rigorously analysed.

Some of the main mathematical and numerical simulation results obtained are:

(i) the model (4.23) undergoes the phenomenon of backward bifurcation atRT = 1

under certain conditions. As in Chapter 3, the backward bifurcation phe-

nomenon arises due to disease-induced mortality in humans;

(ii) it is shown that the disease-free equilibrium of the model (4.23) is globally-

asymptotically stable, in the absence of disease-induced mortality and loss
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of infection-acquired immunity, whenever the associated reproduction number

(R̃T ) is less than unity;

(iii) for the case when anti-malaria treatment causes drug resistance, the model

(4.23) (with δJ = δA = 0) can have resistant-only boundary equilibrium, low-

endemicity equilibrium or high-endemicity equilibrium. On the other hand,

when such treatment does not cause drug resistance, the low-endemicity equi-

librium reduces to a wild strain-only boundary equilibrium;

(iv) the reduced model (4.42) undergoes competitive exclusion, where the strain

with the higher reproduction number (greater than unity) drives the other

(with reproduction number less than unity) to extinction;

(v) numerical simulations show that, for the case when treatment does not cause

drug resistance, the model (with δJ = δA = 0) undergoes competitive exclusion

when the associated reproduction numbers of the two strains exceed unity. In

this case, the strain with the higher reproduction number drives the other to

extinction;

(vi) in the absence of disease-induced mortality, the model (4.23) has a unique re-

sistant strain-only boundary equilibrium whenever the associated reproduction

number (R̃R) exceeds unity;

(vii) numerical simulations of the model (4.23) show (as expected) that the cumula-

tive number of new cases and malaria-related mortality decrease with increasing

effectiveness levels of the treatment strategy.
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Variable Description

SJ Population of susceptible juveniles

SA Population of susceptible adults

EJW Population of latently-infected juveniles with the wild strain

EJR Population of latently-infected juveniles with the resistant strain

EAW Population of latently-infected adults with the wild strain

EAR Population of latently-infected adults with the resistant strain

IJW Population of symptomatic juveniles with the wild strain

IJR Population of symptomatic juveniles with the resistant strain

IAW Population of symptomatic adults with the wild strain

IAR Population of symptomatic adults with the resistant strain

TJ Population of effectively-treated juveniles

TA Population of effectively-treated adults

RHJ Population of recovered juveniles

RHA Population of recovered adults

SV Population of susceptible mosquitoes

VW Population of mosquitoes infected with the wild strain

VR Population of mosquitoes infected with the resistant strain

Table 4.1: Description of the state variables of the two-strain model (4.23).
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Table 4.2: Description of parameters of the two-strain model (4.23).
Parameters Description

b2 Average per capita biting rate of mosquitoes

βJ Probability of infection of susceptible juveniles per mosquito
bite

βA Probability of infection of susceptible adults per mosquito bite

βV Probability of infection of susceptible vectors per mosquito bite
of the
infected host

µH Natural death rate of humans

µV Natural death rate of mosquitoes

σJW Rate of development of clinical symptoms of malaria of wild
strain for latently-infected juveniles

σJR Rate of development of clinical symptoms of malaria of resistant
strain for latently-infected juveniles

σAW Rate of development of clinical symptoms of malaria of wild
strain for latently-infected adults

σJR Rate of development of clinical symptoms of malaria of resistant
strain for latently-infected adults

δJ Disease-induced mortality rate for juveniles

δA Disease-induced mortality rate for adults

γJ Recovery rate of juveniles

γA Recovery rate of adults

ϕ1 Modification parameter for recovery rate in juveniles with the
resistant strain

ϕ2 Modification parameter for recovery rate in adults with the
resistant strain

ϕ3 Modification parameter for recovery rate in treated juveniles
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Parameters Description

ϕ4 Modification parameter for recovery rate in treated adults

θ1 Modification parameter for disease-induced mortality rate for
juveniles with the resistant strain

θ2 Modification parameter for disease-induced mortality rate for
adults with the resistant strain

θ3 Modification parameter for disease-induced mortality rate for
treated juveniles

θ4 Modification parameter for disease-induced mortality rate for
treated adults

θR Modification parameter for reduction in infectiousness of
resistant individuals

ηR Modification parameter for reduction in infectiousness of
treated individuals

τJ Treatment rate for juveniles

τA Treatment rate for adults

fJ Fraction of symptomatic juveniles who are effectively treated

fA Fraction of symptomatic adults who are effectively treated

ψJ Rate of loss of natural immunity for juveniles

ψA Rate of loss of natural immunity for adults

ξ Maturation rate for juveniles

ΠJ Recruitment (birth or immigration) rate of juveniles

ΠV Birth rate of adult mosquitoes
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Table 4.3: Parameter values for the two-strain model (4.23).
Parameter Value Reference

b2 0.5 day−1 [23]

βJ 0.181 [23]

βA 0.181 [23]

βV 0.8333 [45]

µH 0.00004 day−1 [45]

µV 0.05 day−1 [45]

σJW 0.10333 day−1 [13]

σAW 0.08333 day−1 [13]

σJR 0.10333 day−1 [13]

σAR 0.08333 day−1 [13]

δJ 0.0003454 day−1 [1]

δA 0.0000174 day−1 [1]

γJ 0.0014 day−1 [1]

γA 0.0035 day−1 [1]

φ1 0.8 day−1 Assumed

φ2 0.8 day−1 Assumed

φ3 > 1 day−1 Assumed

φ4 > 1 day−1 Assumed

θ1 1 day−1 Assumed

θ2 1 day−1 Assumed
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Parameter Value Reference

θ3 (0, 1) day−1 Assumed

θ4 (0, 1) day−1 Assumed

θR > 0 day−1 variable

ηR > 0 day−1 Variable

τJ > 0 day−1 variable

τA > 0 day−1 variable

fJ [0, 1] day−1 variable

fA [0, 1] day−1 variable

ψJ 0.0027 day−1 [1]

ψA 0.0027 day−1 [1]

ξ 0.00000986 day−1 [1]

ΠJ 1520 day−1 Assumed

ΠV 500 day−1 Assumed
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Figure 4.1: Schematic diagram of the human component of the two-strain model (4.23).
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Figure 4.2: Schematic diagram of the mosquito component of the two-strain model (4.23).
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Figure 4.3: Simulations of the two-strain model (4.23), showing the total number of
infected individuals as a function of time using various initial conditions. Parameter
values used are as given in Table 4.3, with ΠJ = 40, ΠV = 1000, µV = 1

20
, µH =

0.00004, δJ = 0, δA = 0, ξ = 0.00000986, γJ = 0.0014, γA = 0.0035, σJW = 0.10333,
σAW = 0.08333, σJR = 0.10333, σAW = 0.08333, ψJ = 0, ψA = 0, βA = 0.3 βJ = 0.4,
βV = 0.9, ηR = 0.05, θR = 0.05, θ1 = 1, θ2 = 1, θ3 = 0.5, θ4 = 0.5, φ1 = 0.8,
φ2 = 0.8, φ3 = 1.5, φ4 = 1.5 τJ = 0.3, τA = 0.3, fJ = 0.5, fA = 0.5, and b2 = 1 (so
that, R̃T = max{0.6734, 0.5162} = 0.6734).
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Figure 4.4: Simulations of the two-strain model (4.42), showing the total number of
infected individuals as a function of time using various initial conditions. Parameter
values used are as given in Table 4.3, with ΠJ = 40, ΠV = 1000, µV = 1

20
, µH =

0.00004, δJ = 0, δA = 0, ξ = 0.00000986, γJ = 0.0014, γA = 0.0035, σJW = 0.10333,
σAW = 0.08333, σJR = 0.10333, σAW = 0.08333, ψJ = 0, ψA = 0, βA = 0.3 βJ = 0.4,
βV = 0.9, ηR = 0.8, θR = 0.8, θ1 = 1, θ2 = 1, θ3 = 0.5, θ4 = 0.5, φ1 = 0.8, φ2 = 0.8,
φ3 = 1.5, φ4 = 1.5 τJ = 0.15, τA = 0.15, fJ = 1, fA = 1, and b2 = 0.8 (so that,
R̂W = 0.7596 and R̂R = 6.6068).
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Figure 4.5: Simulations of the two-strain model (4.42), showing the total number of
infected individuals as a function of time using various initial conditions. Parameter
values used are as given in Table 4.3, with ΠJ = 40, ΠV = 1000, µV = 1

20
, µH =

0.00004, δJ = 0, δA = 0, ξ = 0.00000986, γJ = 0.0014, γA = 0.0035, σJW = 0.10333,
σAW = 0.08333, σJR = 0.10333, σAW = 0.08333, ψJ = 0, ψA = 0, βA = 0.2 βJ = 0.3,
βV = 0.9, ηR = 0.07, θR = 0.07, θ1 = 1, θ2 = 1, θ3 = 0.5, θ4 = 0.5, φ1 = 0.8,
φ2 = 0.8, φ3 = 1.5, φ4 = 1.5 τJ = 0.01, τA = 0.01, fJ = 1, fA = 1, and b2 = 1.5 (so
that, R̂W = 4.4041 and R̂R = 0.9350).
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Figure 4.6: Simulations of the two-strain model (4.42), showing the total number of
infected individuals as a function of time using various initial conditions. Parameter
values used are as given in Table 4.3, with ΠJ = 40, ΠV = 1000, µV = 1

20
, µH =

0.00004, δJ = 0, δA = 0, ξ = 0.00000986, γJ = 0.0014, γA = 0.0035, σJW = 0.10333,
σAW = 0.08333, σJR = 0.10333, σAW = 0.08333, ψJ = 0, ψA = 0, βA = 0.3 βJ = 0.4,
βV = 0.9, ηR = 0.5, θR = 0.5, θ1 = 1, θ2 = 1, θ3 = 0.5, θ4 = 0.5, φ1 = 0.8, φ2 = 0.8,
φ3 = 1.5, φ4 = 1.5 τJ = 0.01, τA = 0.01, fJ = 1, fA = 1, and b2 = 1 (so that,
R̂W = 3.4161 and R̂R = 5.1615).
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Figure 4.7: Simulations of the two-strain model (4.42), showing the total number of
infected individuals as a function of time using various initial conditions. Parameter
values used are as given in Table 4.3, with ΠJ = 40, ΠV = 1000, µV = 1

20
, µH =

0.00004, δJ = 0, δA = 0, ξ = 0.00000986, γJ = 0.0014, γA = 0.0035, σJW = 0.10333,
σAW = 0.08333, σJR = 0.10333, σAW = 0.08333, ψJ = 0, ψA = 0, βA = 0.3 βJ = 0.4,
βV = 0.9, ηR = 0.2, θR = 0.2, θ1 = 1, θ2 = 1, θ3 = 0.5, θ4 = 0.5, φ1 = 0.8, φ2 = 0.8,
φ3 = 1.5, φ4 = 1.5 τJ = 0.01, τA = 0.01, fJ = 1, fA = 1, and b2 = 1.7 (so that,
R̂W = 5.8073 and R̂R = 3.5098).
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Figure 4.8: Simulations of the two-strain model (4.23) for various effectiveness levels
of the treatment strategy, showing the cumulative number of infected individuals
as a function of time using various initial conditions. (A) juveniles. (B) adults.
Parameter values used are as given in Table 4.3, with ΠJ = 1520, ΠV = 500, µV =
1
20

, µH = 0.00004, δJ = 0.000345, δA = 0.000174, ξ = 0.00000986, γJ = 0.0014,
γA = 0.0035, σJW = 0.10333, σAW = 0.08333, σJR = 0.10333, σAR = 0.08333,
ψJ = 0.0027, ψA = 0.0027, βA = 0.2 βJ = 0.3, βV = 0.9, ηR = 0.05, θR = 0.05,
θ1 = 1, θ2 = 1, θ3 = 0.5, θ4 = 0.5, φ1 = 0.8, φ2 = 0.8, φ3 = 1.5, φ4 = 1.5, and
b2 = 0.5.
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Figure 4.9: Simulations of the two-strain model (4.23) for various effectiveness levels
of treatment strategy, showing the cumulative mortality as a function of time using
various initial conditions. (A) juveniles. (B) adults. Parameter values used are as
given in Table 4.3, with ΠJ = 1520, ΠV = 500, µV = 1

20
, µH = 0.00004, δJ =

0.000345, δA = 0.000174, ξ = 0.00000986, γJ = 0.0014, γA = 0.0035, σJW = 0.10333,
σAW = 0.08333, σJR = 0.10333, σAR = 0.08333, ψJ = 0, ψA = 0, βA = 0.181
βJ = 0.281, βV = 0.9, ηR = 0.05, θR = 0.05, θ1 = 1, θ2 = 1, θ3 = 0.5, θ4 = 0.5,
φ1 = 0.8, φ2 = 0.8, φ3 = 1.5, φ4 = 1.5, and b2 = 0.5.
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Chapter 5

Contributions and Future Work

The thesis contributes in three main areas, namely the formulation of new mathe-

matical models for malaria transmission dynamics, qualitative analyses of the models

and the provision of some public health insights for effective control of malaria in a

community. The specific contributions of the thesis are summarized below.

5.1 Model Formulation

Two new models for the transmission dynamics of malaria in a community are de-

signed in this thesis.

(a) The first model, given by equation (3.16), incorporates the effect of age-structure

on the transmission dynamics of malaria. The model extends numerous malaria

transmission models published in the literature (such as those in [13, 17, 23,

39, 40, 45, 52]), by adding age-structure. Furthermore, it extends the age-

structured malaria model in [49] by including:

(i) separate compartments for susceptible juveniles and susceptible adults

(the two compartments are lumped together in [49]);

(ii) the dynamics of (and transmission by) latently-infected individuals;
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(iii) loss of infection-acquired immunity;

(iv) disease-induced death.

The model (3.16) extends the age-structured malaria model in [1] (which uses mass

action incidence for the infection rate) by including:

(i) separate compartments for latently-infected juveniles and latently-infected adults;

(ii) the dynamics of (and transmission by) latently-infected individuals.

(b) The second model, given by (4.23), is an extension of the age-structured model

developed in Chapter 3, by including:

(i) the dynamics of the wild and resistant malaria strains for humans and vectors

(a single strain was considered in (3.16));

(ii) compartments for treated individuals.

Furthermore, the model (4.23) extends the two-strain malaria model in [23] by:

(i) adding age structure;

(ii) adding the dynamics of exposed and recovered individuals.

5.2 Mathematical Analysis

The thesis further contributes by giving detailed qualitative analyses of the two mod-

els, using a diverse collection of theories and techniques from non-linear dynamical

systems (such as, comparison theorem, centre manifold theory, Lyapunov function

theory, next generation operator method etc.). Some of the main mathematical

results obtained are summarized below.
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5.2.1 Chapter 3

The age-structured model (3.16) is, first of all, shown to have a locally-asymptotically

stable disease-free equilibrium whenever the associated reproduction number is less

than unity. The epidemiological implication of this finding is that effective control of

malaria in the community is feasible if the initial sizes of the sub-populations of the

model are small enough. A notable contribution of this chapter is establishing the

presence of the phenomenon of backward bifurcation in the model (3.16). Although

models for the transmission dynamics of vector-borne disease are known to exhibit

backward bifurcation (see, for instance, [26, 28, 45]), this study is arguably the first

to prove the existence of such phenomenon in an age-structured model for malaria

transmission in a community. This phenomenon has major epidemiological conse-

quence, since, in a backward bifurcation setting, having the associated reproduction

number of the model less than unity is no longer sufficient (albeit necessary) for

effective disease control. It is further shown that the backward bifurcation property

of the model is caused by disease-induced mortality in humans. This chapter shows

that more efforts will be required in the quest for effective control of malaria, owing

to the presence of backward bifurcation in its transmission dynamics.

It is shown that a reduced version of the model has a unique endemic equilibrium

when the associated reproduction number exceeds unity. It should be mentioned

that, in general, establishing (rigorously) the existence of an endemic equilibrium

of relatively large systems of non-linear equations, such as the age-structured model

(3.16), is often a daunting (or impossible) mathematical task. Finally, it is shown

that the corresponding malaria transmission model with no age-structure, given by

(3.34), has essentially the same qualitative dynamics as the age-structured model

(3.16). In other words, one of the main novel contributions of this thesis is establish-

ing that adding age-structure to a basic malaria transmission model does not alter

the essential qualitative dynamics of the basic model.
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5.2.2 Chapter 4

The model (4.23), for the transmission dynamics of drug-sensitive (wild) and drug-

resistant malaria strains in a community, was also rigorously analysed. Results for the

local asymptotic stability of the disease-free equilibrium, as well as the mortality-

induced backward bifurcation property, of the model were derived. In line with

earlier multi-strain models for malaria transmission (such as the model in [23]),

it is shown that the model could have resistant strain-only boundary equilibrium

and low(high)-endemicity equilibria. Furthermore, it was shown that for the case

when anti-malaria treatment does not cause the emergence of drug resistant strain,

the low-endemicity equilibrium reduces to a wild strain-only boundary equilibrium.

For this (latter) setting, it is shown that the model undergoes the phenomenon of

competitive exclusion, where the strain with the higher reproduction number (where

both numbers are greater than unity) drives the other to extinction. This result

provides insight into which of the two strains will establish itself in the community

in the long run.

5.3 Public Health

Extensive numerical simulations of the models developed in this thesis, using a set

of parameter values (obtained from the literature), are carried out to gain insight

into malaria transmission dynamics in a population. Some of the main public health

contributions of the thesis, derived from these simulations, are summarized below:

(a) The cumulative number of new cases of infection and malaria-induced mortality

increase with increasing average lifespan and birth rate of mosquitoes;

(b) reduction in mosquito lifespan has marginal effect on cumulative mortality in

juveniles;
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(c) the cumulative number of new cases and malaria-induced mortality decrease

with increasing effectiveness level of the treatment strategy;

(d) disease-induced mortality in humans causes backward bifurcation in malaria

transmission dynamics (which makes malaria control in the community diffi-

cult);

(e) competitive exclusion occurs in malaria transmission dynamics for the case

when drug treatment does not cause resistance.

5.4 Future Work

The work carried out in this thesis can be extended in several directions relevant to

malaria transmission dynamics, including:

(i) incorporating the effect of climate change on the dynamics of the malaria vector

(mosquito) as well as on the human host. Climatic factors, such as temperature,

humidity, rainfall and vapor pressure, are known to significantly affect the

incidence of vector-borne diseases, such as malaria (either through changes in

the duration of vector and parasite/pathogen life cycles, or by influencing host,

vector, or parasite behavior);

(ii) incorporating the effect of vector and host mobility (due to immigration/migration,

global travel etc.) This is relevant, considering the cases of incursion of diseases

into non-endemic areas (such as the incursion of West Nile virus into North

America in the late 1990s [8]);

(iii) assessing the impact of a potential anti-malaria vaccine;

(iv) establishing the global asymptotic stability of the boundary and endemic equi-

libria of the model in Chapter 4.
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Appendix A

Proof of Theorem 3.1

Proof. Let

t1 = sup{t > 0 : SHJ(t) > 0, SHA(t) > 0, EHJ(t) ≥ 0, EHA(t) ≥ 0, IHJ(t) ≥ 0,

IHA(t) ≥ 0, RHJ(t) ≥ 0, RHA(t) ≥ 0, SV (t) > 0, IV (t) > 0} > 0.

It follows from the first equation of the model (3.16) that

dSHJ
dt

= ΠJ + ψJRHJ − λHJSHJ − (ξ + µH)SHJ ≥ ΠJ − λHJSHJ − (ξ + µH)SHJ ,

which can be written as

d

dt

{
SHJ(t)exp

[∫ t

0

λHJ(u)du+ (ξ + µH)t

]}
≥ ΠJexp

[∫ t

0

λHJ(u)du+ (ξ + µH)t

]
,

so that,
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SHJ(t1)exp

[∫ t1

0

λHJ(u)du+ (ξ + µH)t1

]
− SHJ(0) ≥∫ t1

0

ΠJexp

[∫ x

0

λHJ(u)du+ (ξ + µH)x

]
dx.

Hence,

SHJ(t1) ≥ SHJ(0)exp

[
−
∫ t1

0

λHJ(u)du− (ξ + µH)t1

]
+ exp

[
−
∫ t1

0

λHJ(u)du− (ξ + µH)t1

]
×
∫ t1

0

ΠJexp

[∫ x

0

λHJ(u)du+ (ξ + µH)x

]
dx > 0.

Similarly, it can be shown that SHA(t) > 0, EHJ(t) ≥ 0, EHA(t) ≥ 0, IHJ(t) ≥ 0,

IHA(t) ≥ 0, RHJ(t) ≥ 0, RHA(t) ≥ 0, SV (t) > 0 and IV (0) ≥ 0 for all time t > 0.

Hence, all solutions of the model (3.16) remain positive for all non-negative initial

conditions, as required.
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Appendix B

Proof of Theorem 3.2

Proof. Theorem 3.2 will be proved using Centre Manifold theory [9, 11, 20, 65]. To

apply this theory, it is convenient to let x1 = SHJ , x2 = SHA, x3 = EHJ , x4 = EHA,

x5 = IHJ , x6 = IHA, x7 = RHJ , x8 = RHA, x9 = SV and x10 = IV . Furthermore, let

f̂ = [f1, ..., f10]T denote the vector field of the model (3.16). Thus, the model (3.16)

can be re-written as:
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dx1

dt
= f1 = ΠJ + ψJx7 −

b2βHJx10

8∑
i=1

xi

x1 − g1x1,

dx2

dt
= f2 = ξx1 + ψAx8 −

b2βHAx10

8∑
i=1

xi

x2 − µHx2,

dx3

dt
= f3 =

b2βHJx10

8∑
i=1

xi

x1 − g2x3,

dx4

dt
= f4 = ξx3 +

b2βHAx10

8∑
i=1

xi

x2 − g3x4,

dx5

dt
= f5 = σHJx3 − g4x5,

dx6

dt
= f6 = ξx5 + σHAx4 − g5x6,

dx7

dt
= f7 = γJx5 − g6x7,

dx8

dt
= f8 = γAx6 + ξx7 − g7x8,

dx9

dt
= f9 = ΠV −

b2βV [η(x3 + x4) + x5 + x6]
8∑
i=1

xi

x9 − µV x9,

dx10

dt
= f10 =

b2βV [η(x3 + x4) + x5 + x6]
8∑
i=1

xi

x9 − µV x10,

(B-1)

where, g1 = ξ + µH , g2 = σHJ + ξ + µH , g3 = σHA + µH , g4 = ξ + γJ + µH + δHJ ,

g5 = γA + µH + δHA, g6 = ψJ + ξ + µH and g7 = ψA + µH .

The Jacobian of the transformed system (B-1), evaluated at the DFE (E0), is

given by:
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J(E0) =



−g1 0 0 0 0 0 ψJ 0 0 −
b2βHJx

∗
1

x∗1 + x∗2

ξ −µH 0 0 0 0 0 ψA 0 −
b2βHAx

∗
2

x∗1 + x∗2

0 0 −g2 0 0 0 0 0 0
b2βHJx

∗
1

x∗1 + x∗2

0 0 ξ −g3 0 0 0 0 0
b2βHAx

∗
2

x∗1 + x∗2
0 0 σHJ 0 −g4 0 0 0 0 0
0 0 0 σHA ξ −g5 0 0 0 0
0 0 0 0 γJ 0 −g6 0 0 0
0 0 0 0 0 γA ξ −g7 0 0

0 0 −
b2βV ηx

∗
9

x∗1 + x∗2
−
b2βV ηx

∗
9

x∗1 + x∗2
−
b2βV x

∗
9

x∗1 + x∗2
−
b2βV x

∗
9

x∗1 + x∗2
0 0 −µV 0

0 0
b2βV ηx

∗
9

x∗1 + x∗2

b2βV ηx
∗
9

x∗1 + x∗2

b2βV x
∗
9

x∗1 + x∗2

b2βV x
∗
9

x∗1 + x∗2
0 0 0 −µV



.

Consider the case when R0 = 1. Suppose, further, βHJ = β∗HJ is chosen as a

bifurcation parameter. Solving for βHJ from R0 = 1 gives

βHJ = β∗HJ =
ΠJµ

2
V g1g3g5 − βHAβV ΠV µHξb

2(ηg5 + σHA)

ΠV βV b2µ2
H{g4[ηg5(g3 + ξ) + σHAξ] + σHJg3(g5 + ξ)}

.

It is convenient to define:

A0 = −g3σHJ{g1g5γJµH + g6[γAψA + n0(g1 + δHJ)]} − g1g4g6(γAψAµH + n0g3) < 0,

A1 = −[g3(ψAσHA + g5µH) + g5ψAµH ] < 0,

A2 = g4[σHAξ + g5η(ξ + g3)] + g3σHJ(g5 + ξ) > 0,

A3 = σHA + g5η > 0,

where n0 = g7(σHA + µH) + γAµH .

The right eigenvector of J(E0)|βHJ=β∗
HJ

is given by

w = (w1, w2, w3, w4, w5, w6, w7, w8, w9, w10)T , where (since A0 < 0, A1 < 0,

114



A2 > 0 and A3 > 0)

w1 =
−β∗HJb2µH{ψJ [γJg1 + (ξ + δHJ + µH)g2] + g1g2g4}

g2
1g2g4g6

w10 < 0,

w2 =
b2ξ(β

∗
HJµHA0 + g1g2g4g6βHAA1)

µHg2
1

(
7∏
i=2

gi

) w10 < 0,

w3 =
b2β

∗
HJµH
g1g2

w10, w4 =
b2ξ(g2βHA + β∗HJµH)

3∏
i=1

gi

w10, w5 =
b2σHJβ

∗
HJµH

g1g2g4

w10,

w6 =
b2ξ[g2g4σHAβHA + β∗HJµH(g4σHA + g3σHJ)]

5∏
i=1

gi

w10, w7 =
b2σHJβ

∗
HJγJµH

g1g2g4g6

w10,

w8 =
b2ξ[β

∗
HJ(g3g5σHJγJ + g3g6σHJγA + g4g6σHAγA) + g2g4g6σHAβHAγAµH ]

7∏
i=1

gi

w10,

w9 =
−(b2)2βV µHΠV (β∗HJµHA2 + g2g4βHAξA3)

µ2
V ΠJ

(
5∏
i=1

gi

) w10 < 0, w10 = w10 > 0.

Similarly, J(E0)|βHJ=β∗
HJ

has a left eigenvector v = (v1, v2, v3, v4, v5, v6, v7, v8, v9, v10),

where

v1 = 0, v2 = 0, v3 =
b2βV µHΠV (g3σHJξ + g4ξg5η + g3g5g4η + g3σHJg5 + g4ξσHA)

µV ΠJ

(
5∏
i=2

gi

) v10,

v4 =
b2βV µHΠV (g5η + σHA)

g5g3µV ΠJ

v10, v5 =
b2βV µHΠV (g5 + ξ)

g4g5µV ΠJ

v10, v6 =
b2βV µHΠV

g5µV ΠJ

v10,

v7 = 0, v8 = 0, v9 = 0, v10 > 0.
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The transformed system (B-1), with βHJ = β∗HJ , has a simple eigenvalue with zero

real part (and all other eigenvalues have negative real part). Hence, Centre Manifold

theory can be used to analyse the dynamics of (B-1) near βHJ = β∗HJ [9, 11, 20, 65].

In particular, Theorem 2.7 will be used.

For the transformed system (B-1), the associated non-zero partial derivatives of

the right-hand side functions, fi (i = 1...10), are given by:

∂2f1

∂x1∂x10

=
∂2f1

∂x10∂x1

=
−b2β

∗
HJµHξ

ΠJg1

;
∂2f1

∂x2∂x10

=
∂2f1

∂x3∂x10

=
∂2f1

∂x4∂x10

=
∂2f1

∂x5∂x10

=

∂2f1

∂x6∂x10

=
∂2f1

∂x7∂x10

=
∂2f1

∂x8∂x10

=
∂2f1

∂x10∂x2

=
∂2f1

∂x10∂x3

=
∂2f1

∂x10∂x4

=
∂2f1

∂x10∂x5

=

∂2f1

∂x10∂x6

=
∂2f1

∂x10∂x7

=
∂2f1

∂x10∂x8

=
b2β

∗
HJµ

2
H

ΠJg1

;
∂2f2

∂x1∂x10

=
∂2f2

∂x3∂x10

=
∂2f2

∂x4∂x10

=

∂2f2

∂x5∂x10

=
∂2f2

∂x6∂x10

=
∂2f2

∂x7∂x10

=
∂2f2

∂x8∂x10

=
∂2f2

∂x10∂x1

=
∂2f2

∂x10∂x3

=
∂2f2

∂x10∂x4

=

∂2f2

∂x10∂x5

=
∂2f2

∂x10∂x6

=
∂2f2

∂x10∂x7

=
∂2f2

∂x10∂x8

=
b2βHAµHξ

ΠJg1

;

∂2f2

∂x2∂x10

=
∂2f2

∂x10∂x2

=
−b2βHAµ

2
H

ΠJg1

;
∂2f3

∂x1∂x10

=
∂2f3

∂x10∂x1

=
b2β

∗
HJµHξ

ΠJg1

;

∂2f3

∂x2∂x10

=
∂2f3

∂x3∂x10

=
∂2f3

∂x4∂x10

=
∂2f3

∂x5∂x10

=
∂2f3

∂x6∂x10

=
∂2f3

∂x7∂x10

=
∂2f3

∂x8∂x10

=

∂2f3

∂x10∂x2

=
∂2f3

∂x10∂x3

=
∂2f3

∂x10∂x4

=
∂2f3

∂x10∂x5

=
∂2f3

∂x10∂x6

=
∂2f3

∂x10∂x7

=
∂2f3

∂x10∂x8

=

−b2β
∗
HJµ

2
H

ΠJg1

;
∂2f4

∂x1∂x10

=
∂2f4

∂x3∂x10

=
∂2f4

∂x4∂x10

=
∂2f4

∂x5∂x10

=
∂2f4

∂x6∂x10

=
∂2f4

∂x7∂x10

=

∂2f4

∂x8∂x10

=
∂2f4

∂x10∂x1

=
∂2f4

∂x10∂x3

=
∂2f4

∂x10∂x4

=
∂2f4

∂x10∂x5

=
∂2f4

∂x10∂x6

=
∂2f4

∂x10∂x7

=

∂2f4

∂x10∂x8

=
−b2βHAµHξ

ΠJg1

;
∂2f4

∂x2∂x10

=
∂2f4

∂x10∂x2

=
b2βHAµ

2
H

ΠJg1

;
∂2f9

∂x1∂x3

=
∂2f9

∂x1∂x4

=

∂2f9

∂x2∂x3

=
∂2f9

∂x2∂x4

=
∂2f9

∂x3∂x1

=
∂2f9

∂x3∂x2

=
∂2f9

∂x3∂x7

=
∂2f9

∂x3∂x8

=
∂2f9

∂x4∂x1

=

∂2f9

∂x4∂x2

=
∂2f9

∂x4∂x7

=
∂2f9

∂x4∂x8

=
∂2f9

∂x7∂x3

=
∂2f9

∂x7∂x4

=
∂2f9

∂x8∂x3

=
∂2f9

∂x8∂x4

=
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b2βV ηµ
2
HΠV

Π2
JµV

;
∂2f9

∂x1∂x5

=
∂2f9

∂x1∂x6

=
∂2f9

∂x2∂x5

=
∂2f9

∂x2∂x6

=
∂2f9

∂x4∂x5

=
∂2f9

∂x4∂x6

=

∂2f9

∂x4∂x6

=
∂2f9

∂x5∂x1

=
∂2f9

∂x5∂x2

=
∂2f9

∂x5∂x7

=
∂2f9

∂x5∂x8

=
∂2f9

∂x6∂x1

=
∂2f9

∂x6∂x2

=

∂2f9

∂x6∂x7

=
∂2f9

∂x6∂x8

=
∂2f9

∂x7∂x5

=
∂2f9

∂x7∂x6

=
∂2f9

∂x8∂x5

=
∂2f9

∂x8∂x6

=
b2βV µ

2
HΠV

Π2
JµV

;

∂2f9

∂x1∂x5

=
∂2f9

∂x1∂x6

=
∂2f9

∂x2∂x5

=
∂2f9

∂x2∂x6

=
∂2f9

∂x4∂x5

=
∂2f9

∂x4∂x6

=
∂2f9

∂x4∂x6

=

∂2f9

∂x5∂x1

=
∂2f9

∂x5∂x2

=
∂2f9

∂x5∂x7

=
∂2f9

∂x5∂x8

=
∂2f9

∂x6∂x1

=
∂2f9

∂x6∂x2

=
∂2f9

∂x6∂x7

=

∂2f9

∂x6∂x8

=
∂2f9

∂x7∂x5

=
∂2f9

∂x7∂x6

=
∂2f9

∂x8∂x5

=
∂2f9

∂x8∂x6

=
b2βV µ

2
HΠV

Π2
JµV

;

∂2f9

∂x3∂x3

=
∂2f9

∂x3∂x4

=
∂2f9

∂x4∂x3

=
∂2f9

∂x4∂x4

=
2b2βV ηµ

2
HΠV

Π2
JµV

;
∂2f9

∂x5∂x5

=
∂2f9

∂x5∂x6

=

∂2f9

∂x6∂x5

=
∂2f9

∂x6∂x6

=
2b2βV µ

2
HΠV

Π2
JµV

;
∂2f9

∂x5∂x9

=
∂2f9

∂x6∂x9

=
∂2f9

∂x9∂x5

=
∂2f9

∂x9∂x6

=

−b2βV µH
ΠJ

;
∂2f9

∂x3∂x9

=
∂2f9

∂x4∂x9

=
∂2f9

∂x9∂x3

=
∂2f9

∂x9∂x4

=
−b2βV ηµH

ΠJ

;
∂2f9

∂x3∂x5

=

∂2f9

∂x3∂x6

=
∂2f9

∂x4∂x5

=
∂2f9

∂x4∂x6

=
∂2f9

∂x5∂x3

=
∂2f9

∂x5∂x4

=
∂2f9

∂x6∂x3

=
∂2f9

∂x6∂x4

=

b2βV µHΠV (1 + η)

ΠJµV
;
∂2f10

∂x1∂x3

=
∂2f10

∂x1∂x4

=
∂2f10

∂x2∂x3

=
∂2f10

∂x2∂x4

=

∂2f10

∂x3∂x1

=
∂2f10

∂x3∂x2

=
∂2f10

∂x3∂x7

=
∂2f10

∂x3∂x8

=
∂2f10

∂x4∂x1

=
∂2f10

∂x4∂x2

=
∂2f10

∂x4∂x7

=

∂2f10

∂x4∂x8

=
∂2f10

∂x7∂x3

=
∂2f10

∂x7∂x4

=
∂2f10

∂x8∂x3

=
∂2f10

∂x8∂x4

=
b2βV ηµ

2
HΠV

Π2
JµV

;
∂2f10

∂x1∂x5

=

∂2f10

∂x1∂x6

=
∂2f10

∂x2∂x5

=
∂2f10

∂x2∂x6

=
∂2f10

∂x4∂x5

=
∂2f10

∂x4∂x6

=
∂2f10

∂x4∂x6

=
∂2f10

∂x5∂x1

=

∂2f10

∂x5∂x2

=
∂2f10

∂x5∂x7

=
∂2f10

∂x5∂x8

=
∂2f10

∂x6∂x1

=
∂2f10

∂x6∂x2

=
∂2f10

∂x6∂x7

=
∂2f10

∂x6∂x8

=

∂2f10

∂x7∂x5

=
∂2f10

∂x7∂x6

=
∂2f10

∂x8∂x5

=
∂2f10

∂x8∂x6

=
b2βV µ

2
HΠV

Π2
JµV

;
∂2f10

∂x3∂x3

=
∂2f10

∂x3∂x4

=

∂2f10

∂x4∂x3

=
∂2f10

∂x4∂x4

=
2b2βV ηµ

2
HΠV

Π2
JµV

;
∂2f10

∂x5∂x5

=
∂2f10

∂x5∂x6

=
∂2f10

∂x6∂x5

=

∂2f10

∂x6∂x6

=
2b2βV µ

2
HΠV

Π2
JµV

;
∂2f10

∂x5∂x9

=
∂2f10

∂x6∂x9

=
∂2f10

∂x9∂x5

=
∂2f10

∂x9∂x6

=
−b2βV µH

ΠJ

;

∂2f10

∂x3∂x9

=
∂2f10

∂x4∂x9

=
∂2f10

∂x9∂x3

=
∂2f10

∂x9∂x4

=
−b2βV ηµH

ΠJ

;
∂2f10

∂x3∂x5

=
∂2f10

∂x3∂x6

=

∂2f10

∂x4∂x5

=
∂2f9

∂x4∂x6

=
∂2f10

∂x5∂x3

=
∂2f9

∂x5∂x4

=
∂2f10

∂x6∂x3

=
∂2f9

∂x6∂x4

=
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b2βV µHΠV (1 + η)

ΠJµV

It then follows from Theorem 2.7, and using the above expressions for the non-zero

partial derivatives fi (i = 1, ..., 10) and eigenvectors wi and vi (i = 1, ..., 10), that the

associated backward bifurcation coefficients, denoted by a and b, are, respectively,

given by:

a =
11∑

k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(0, 0),

= 2

{
µHb2βV

ΠJ

[
ΠV µH
ΠJµV

(h0 − h1)− h4

ΠJ

+ h2 − ηh3

]
+
µ2
Hb2β

∗
HJ

ΠJ

(
h8

ΠJ

− h5

ξ + µH

)
+ b2βHA

(
µ2
H

Π2
J

h7 −
ξ

ξ + µH
h6

)}
,

(B-2)

and,

b =
11∑

k,i,j=1

vkwi
∂2fk
∂xi∂φ

(0, 0) =
(b2µH)2βV ΠVC0

ΠJµV

(
5∏
i=1

gi

) v10w10 > 0.

In (B-2),

h0 = v10[w5(w1 + w2) + w6w3]

( 8∑
i=4

wi

)
,
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h1 = v10

[ 8∑
i=6

wi + w1 + w2 + w4 + w3(w3 − w9) + w4w5

]
,

h2 = v10[(w1 + w2 + w9) + w5w9], h3 = v10w3w5, h4 = v10w3w5,

h5 = v3

(
w1 +

8∑
i=2

wi

)
, h6 = v4

(
w2 +

8∑
i=4

wi

)
, h7 = v4w2, h8 = v3w1,

C0 = g3σHJ(g5 + ξ) + g4g5η(g3 + ξ) + g4σHAξ.

It can be shown from (B-2) that the bifurcation coefficient, a, is positive whenever,

K0 > K1, (B-3)

where,

K0 =− ΠV µ
2
Hb2βV

Π2
JµV

[v10(w1 + w2)(w5 + η)]

−
(

b2

ξ + µH

)[
µ2
Hβ
∗
HJ

ΠJ

v3(w1 + w2) + βHAξv4w2

]
,

K1 =− ΠV µ
2
Hb2βV

Π2
JµV

( 8∑
i=4

wi

)
v10w6w3

− ΠV µ
2
Hb2βV η

Π2
JµV

v10[w4 + w6 + w7 + w8 + w3(w3 − w9) + w4w5]

+
µHb2βV

ΠJ

v10[(w1 + w2 + w9) + w5w9]− µHb2βV η

ΠJ

v10w3w5

− ΠV µHb2βV
ΠJµV

v10w3w5 −
µ2
Hb2β

∗
HJv3

ΠJ(ξ + µH)

( 8∑
i=3

wi

)

− ΠV µHb2βV v4

ΠJµV

( 8∑
i=4

wi

)
+
µ2
Hb2βHA

Π2
J

v4w2 +
µ2
Hb2β

∗
HJ

Π2
J

v3w1.

Thus, it follows from Theorem 2.7 that the model (3.16) undergoes a backward

bifurcation at R0 = 1 whenever the inequality (B-3) holds.
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Appendix C

Proof of Theorem 3.3

Proof. Consider the model (3.16) with δHJ = δHA = ψJ = ψA = 0 and R1 < 1. The

proof is based on using the following Lyapunov function:

F = f1EHJ + f2EHA + f3IHJ + f4IHA + IV , (C-1)

where,

f1 =
ΠV µHb2βV {g3g5(ηg4 + σHJ) + ξ[g4(ηg5 + σHA) + σHJg3]}

ΠJµVR1

(
5∏
i=2

gi

) ,

f2 =
ΠV µHb2βV (ηg5 + σHA)

ΠJµVR1g3g5

, f3 =
ΠV µHb2βV (g5 + ξ)

ΠJµVR1g4g5

, f4 =
ΠV µHb2βV
ΠJµVR1g5

.

(C-2)

The Lyapunov derivative of (C-1) is given by
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Ḟ = f1ĖHJ + f2ĖHA + f3İHJ + f4İHA + İV ,

= f1

[
µHb2βHJIV

ΠJ

SHJ − (σHJ + ξ + µH)EHJ

]
+ f2

[
ξEHJ +

µHb2βHAIV
ΠJ

SHA − (σHA + µH)EHA

]
+ f3

[
σHJEHJ − (γJ + ξ + µH)IHJ

]
+ f4

[
ξIHJ + σHAEHA − (γA + µH)IHA

]
+

{
µHb2βV [η(EHJ + EHA) + IHJ + IHA]

ΠJ

SV − µV IV
}
,

which can be simplified to

Ḟ =

[
− ΠV µHb2βV (ηg3g4g5 + ηξg4g5 + σHJg3g5 + ξσHAg4 + ξσHJg3)

ΠJµVR1

(
5∏
i=2

gi

) (σHJ + ξ + µH)

+
ΠV µHb2βV g2g4(ηg5 + σHA)

ΠJµVR1

(
5∏
i=2

gi

) ξ +
ΠV µHb2βV g2g3(g5 + ξ)

ΠJµVR1

(
5∏
i=2

gi

) σHJ +
µHηb2βV

ΠJ

SV

]
EHJ

+

[
− ΠV µHb2βV g2g4(ηg5 + σHA)

ΠJµVR1

(
5∏
i=2

gi

) (σHA + µH) +
ΠV µHb2βV
ΠJµVR1g5

σHA +
µHηb2βV

ΠJ

SV

]
EHA

+

[
− ΠV µHb2βV g2g3(g5 + ξ)

ΠJµVR1

(
5∏
i=2

gi

) (γJ + ξ + µH) +
ΠV µHb2βV
ΠJµVR1g5

ξ +
µHb2βV

ΠJ

SV

]
IHJ

+

[
− ΠV µHb2βV

ΠJµVR1g5

(γA + µH) +
µHbβV

ΠJ

SV

]
IHA

(C-3)
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+

[
ΠV µHb2βV (ηg3g4g5 + ηξg4g5 + σHJg3g5 + ξσHAg4 + ξσHJg3)

ΠJµVR1

(
5∏
i=2

gi

) (
µHb2βHJ

ΠJ

SHJ

)

+
ΠV µHb2βV g2g4(ηg5 + σHA)

ΠJµVR1

(
5∏
i=2

gi

) (
µHb2βHA

ΠJ

SHA

)
− µV

]
IV .

Since SHJ ≤ S∗HJ , SHA ≤ S∗HA, and SV ≤ S∗V in D1, it follows that

Ḟ ≤
(

1− 1

R1

)(
ΠV µHηb2βV

ΠJµV
EHJ +

ΠV µHηb2βV
ΠJµV

EHA

+
ΠV µHb2βV

ΠJµV
IHJ +

ΠV µHb2βV
ΠJµV

IHA + µVR1IV

)
≤ 0 for R1 ≤ 1.

Thus, Ḟ ≤ 0 if R1 ≤ 1 with Ḟ = 0 if and only if EHJ = EHA = IHJ = IHA = IV = 0.

Furthermore, the largest compact invariant set in

{(SHJ , SHA, EHJ , EHA, IHJ , IHA, RHJ , RHA, SV , IV ) ∈ D1 : Ḟ = 0}

is the singleton {E0}. Thus, it follows from the LaSalle′s invariance principle (The-

orem 6.4 of [38]) that every solution to the equations of the model (3.16), in the

absence of disease-induced (i.e, δHJ = δHA = 0) and loss of infection-acquired im-

munity (i.e., ψJ = ψA = 0), with initial conditions in D1 converges to the DFE, E0,

as t→∞. That is,

(EHJ(t), EHA(t), IHJ(t), IHA(t), IV (t))→ (0, 0, 0, 0, 0) as t→∞.

Substituting EHJ = EHA = IHJ = IHA = IV = 0 into the first, second and ninth

equations of the age-structured model (3.16), with δHJ = δHA = ψJ = ψA = 0, gives

SHJ(t)→ S∗HJ , SHA(t)→ S∗HA and SV (t)→ S∗V as t→∞. Thus,
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[SHJ(t), SHA(t), EHJ(t), EHA(t), IHJ(t), IHA(t), RHJ(t), RHA(t), SV (t), IV (t)]

→ (S∗HJ , S
∗
HA, 0, 0, 0, 0, 0, 0, S

∗
V , 0) as t→∞

Thus, the DFE of the model (3.16), is GAS in D1 if R1 ≤ 1 and ψJ = ψA = 0.
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Appendix D

Proof of Theorem 3.5

Proof. Consider the reduced model (3.34) with R02 > 1 (so that the unique EEP, Ê1,

of the model (3.34), exists). It is clear from (3.34) that, for the case when ψH = 0,

the recovered population RH(t) → 0 as t → ∞ (this, together with the fact that

the state variable RH(t) does not feature in any of other equations of the model

(3.34) when ψH = 0, imply that the equation for RH(t) can be temporarily removed

form the analyses of the model (3.34) for this special case). Consider, further, the

following non-linear Lyapunov function of Goh-Volterra type:

F = d1

(
SH − S∗∗H − S∗∗H log

SH
S∗∗H

)
+ d2

(
EH − E∗∗H − E∗∗H log

EH
E∗∗H

)
+ d3

(
IH − I∗∗H − I∗∗H log

IH
I∗∗H

)
+ d4

(
SV − S∗∗V − S∗∗V log

SV
S∗∗V

)
+ d5

(
IV − I∗∗V − I∗∗V log

IV
I∗∗V

)
,

(D-1)

where,

d1 = d2 =
b2βV µHI

∗∗
H S

∗∗
V

ΠH

, d3 =
(b2)2βV βH(µH)2I∗∗V I

∗∗
H S

∗∗
V S

∗∗
H

Π2
HσHE

∗∗
H

,

d4 = d5 =
b2βHµHI

∗∗
V S

∗∗
H

ΠH

.

(D-2)
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The Lyapunov derivative of (D-1) is given by,

Ḟ = d1

(
1− S∗∗H

SH

)(
ΠH −

b2βHµHIV
ΠH

SH − µHSH
)

+ d2

(
1− E∗∗H

EH

)[
b2βHµHIV

ΠH

SH − (σH + µH)EH

]
+ d3

(
1− I∗∗H

IH

)[
σHEH − (γH + µH)IH

]
+ d4

(
1− S∗∗V

SV

)(
ΠV −

b2βV µHIH
ΠH

SV − µV SV
)

+ d5

(
1− I∗∗V

IV

)(
b2βV µHIH

ΠH

SV − µV IV
)
.

(D-3)

The following steady-state relations (obtained from (3.34), with δH = η = ψH = 0,

at the EEP (Ê1)) will be used to simplify (D-3):

ΠH =
b2βHµHI

∗∗
V

ΠH

S∗∗H + µHS
∗∗
H ,

(σH + µH) =
b2βHµHI

∗∗
V

ΠHE∗∗H
S∗∗H ,

(γH + µH) =
σHE

∗∗
H

I∗∗H
,

ΠV =
b2βV µHI

∗∗
H

ΠH

S∗∗V + µV S
∗∗
V ,

µV =
b2βV µHI

∗∗
H

ΠHI∗∗V
S∗∗V .

(D-4)

Substituting (D-2) and (D-4) into (D-3), and simplifying, gives

Ḟ = −b2βV µ
2
HI
∗∗
H S

∗∗
V

ΠH

(SH − S∗∗H )2

SH
− b2βHµHµV I

∗∗
V S

∗∗
H

ΠH

(SV − S∗∗V )2

SV

+
b2

2βV βHµ
2
HI
∗∗
V I
∗∗
H S

∗∗
V S

∗∗
H

Π2
HσHE

∗∗
H

(
5− S∗∗H

SH
− S∗∗V
SV
− SHE

∗∗
H IV

S∗∗H EHI
∗∗
V

− SV IHI
∗∗
V

S∗∗V I
∗∗
H IV

− EHI
∗∗
H

E∗∗H IH

)
.

(D-5)

The first two terms of (D-5) are automatically negative. Furthermore, since the

arithmetic mean exceeds the geometric mean, it follows that the third term of (D-5)

is also negative. Hence, Ḟ ≤ 0, so that
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lim
t→∞

(SH(t), EH(t), IH(t), SV (t), IV (t))→ (S∗∗H (t), E∗∗H (t), I∗∗H (t), S∗∗V (t), I∗∗V (t)).

Substituting IH(t) = I∗∗H into the equation for RH(t) in (3.34) shows that RH(t) →

R∗∗H =
γHI

∗∗
H

ψH+µH
as t→∞. The proof is concluded as in Appendix C. Thus, the unique

EEP, Ê1, of the reduced model (3.34), is GAS in D2\D0 whenever R02 > 1.
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Appendix E

Proof of Theorem 4.2

Proof. Let x1 = SJ , x2 = SA, x3 = EJW , x4 = EJR, x5 = EAW , x6 = EAR, x7 = IJW ,

x8 = IJR, x9 = IAW , x10 = IAR, x11 = TJ , x12 = TA, x13 = RJ , x14 = RA, x15 = SV ,

x16 = VW and x17 = VR. Furthermore, let f̂ = [f1, ..., f10]T denote the vector field of

the model (4.23). Thus, the model (4.23) can be re-written as:

dx1

dt
= ΠJ + ψJx13 −

b2βJ(x16 + θRx17)
14∑
i=1

xi

x1 − g1x1,

dx2

dt
= ξx1 + ψAx14 −

b2βA(x16 + θRx17)
14∑
i=1

xi

x2 − µHx2,

dx3

dt
=
b2βJx16

14∑
i=1

xi

x1 − g2x3,

dx4

dt
=
b2βJθRx17

14∑
i=1

xi

x1 − g3x4,

(E-1)
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dx5

dt
= ξx3 +

b2βAx16

14∑
i=1

xi

x2 − g4x5,

dx6

dt
= ξx4 +

b2βAθRx17

14∑
i=1

xi

x2 − g5x6,

dx7

dt
= σJWx3 − g6x7,

dx8

dt
= σJRx4 + (1− fJ)τJx7 − g7x8,

dx9

dt
= ξx7 + σAWx5 − g8x9,

dx10

dt
= σARx6 + ξx8 + (1− fA)τAx9 − g9x10,

dx11

dt
= fJτJx7 − g10x11,

dx12

dt
= ξx11 + fAτAx9 − g11x12,

dx13

dt
= γJx7 + φ1γJx8 + φ3γJx11 − g12x11,

dx14

dt
= ξx13 + γAx9 + φ2γAx10 + φ4γAx12 − g13x14,

dx15

dt
= ΠV −

b2βV [x7 + x9 + ηR(x8 + x10)]
14∑
i=1

xi

x15 − µV x15,

dx16

dt
=
b2βV (x7 + x9)

14∑
i=1

xi

x15 − µV x16,

dx17

dt
=
b2βV ηR(x8 + x10)

14∑
i=1

xi

x15 − µV x17,

where, g1 = ξ + µH , g2 = σJW + ξ + µH , g3 = σJR + ξ + µH , g4 = σAW + µH ,

g5 = σAR + µH , g6 = τJ + ξ + γJ + µH + δJ , g7 = ξ + φ1γJ + µH + θ1δJ , g8 =

τA+γA+µH+δA, g9 = φ2γA+µH+θ2δA, g10 = φ3γJ+µH+θ3δJ , g11 = φ4γA+µH+θ4δA,
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g12 = ψJ + ξ + µH , g13 = ψA + µH .

The Jacobian of the transformed system (E-1), evaluated at the DFE (E0T ), is

given by:

J(E0T ) =

−g1 0 0 0 0 0 0 0 0 0 0 0 ψJ 0 0 −y1 −y2
ξ −µH 0 0 0 0 0 0 0 0 0 0 0 ψA 0 −y3 −y4
0 0 −g2 0 0 0 0 0 0 0 0 0 0 0 0 y1 0

0 0 0 −g3 0 0 0 0 0 0 0 0 0 0 0 0 y2
0 0 ξ 0 −g4 0 0 0 0 0 0 0 0 0 0 y3 0

0 0 0 ξ 0 −g5 0 0 0 0 0 0 0 0 0 0 y4
0 0 σJW 0 0 0 −g6 0 0 0 0 0 0 0 0 0 0
0 0 0 σJR 0 0 (1−fJ )τJ −g7 0 0 0 0 0 0 0 0 0
0 0 0 0 σAW 0 ξ 0 −g8 0 0 0 0 0 0 0 0
0 0 0 0 0 σAR 0 ξ (1−fA)τA −g9 0 0 0 0 0 0 0
0 0 0 0 0 0 fJτJ 0 0 0 −g10 0 0 0 0 0 0
0 0 0 0 0 0 0 0 fAτA 0 ξ −g11 0 0 0 0 0
0 0 0 0 0 0 γJ φ1γJ 0 0 φ3γJ 0 −g12 0 0 0 0
0 0 0 0 0 0 0 0 γA φ2γA 0 φ4γA ξ −g13 0 0 0

0 0 0 0 0 0 −h1 −h2 −h1 −h2 0 0 −µV 0 −µV 0 0

0 0 0 0 0 0 h1 0 h1 0 0 0 0 0 0 −µV 0
0 0 0 0 0 0 0 h2 0 h2 0 0 0 0 0 0 −µV



,

where y1 =
b2βJx

∗
1

x∗1+x∗2
, y2 =

b2βJθRx
∗
1

x∗1+x∗2
, y3 =

b2βAx
∗
2

x∗1+x∗2
, y4 =

b2βAθRx
∗
2

x∗1+x∗2
, h1 =

b2βV θRx
∗
15

x∗1+x∗2
and

h2 =
b2βV ηx

∗
15

x∗1+x∗2
. Without loss of generality, consider the case when RW > RR and

RT = 1 (so that RW = 1). Furthermore, let βV = β∗V be a bifurcation parameter.

Solving for βV from RW = 1 gives

βV = β∗V =
ΠJµ

2
V g1g2g4g6g8

b2
2ΠV µH{βJµH [σJWg4(g8 + ξ) + σAW ξg6] + βAσAW ξg2g6}

> 0.

It is convenient to define:
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A0 = g12{ψAφ2γA(σJRθ1δJg5 + µHg1g7)

+ g5[ψA(θ2δA + µH) + µHg9][σJR(ξ + µH + θ1δJ) + g1g7]}

+ σJRφ1γJµHg1g5g9 > 0,

A1 = ψAφ2γAµH + g5[γAφ2µH + g13(θ2δA + µH)] > 0,

A2 = σJW τJg4g8(1− fJ)(g9 + ξ) + τAξg7(1− fA)(σAWg6 + σJWg4) > 0.

The right eigenvector of J(E0)|βV =β∗
V

is given by

w = (w1, w2, w3, w4, w5, w6, w7, w8, w9, w10)T , where (since A0 > 0, A1 > 0 and

A2 > 0)

w1 =
−βJb2θRµH{σJR[φ1γJg1 + g12(ξ + µH + θ1δJ)] + g1g7g12}

g2
1g3g7g12

w17 < 0,

w2 = −b2ξθR(βJµHA0 + g1g3g7g12βAA1)

µHg2
1g3g5g7g9g12g13

w17 < 0, w3 = 0, w4 =
b2βJθRµH
g1g3

w17,

w5 = 0, w6 =
b2ξθR(βAg3 + βJµH)

g1g3g5

w17, w7 = 0, w8 =
b2βJσJRθRµH

g1g3g7

w17,

w9 = 0, w10 =
b2ξθR[βJµH(σJRg5 + σARg7) + βAσARg3g7]

g1g3g5g7g9

w17, w11 = 0, w12 = 0,

w13 =
b2βJθRσJRγJφ1µH

g1g3g7g12

w17,

w14 =
b2ξθR{βJµH [φ2γAg12(σJRg5 + σARg7) + σJRφ1γJg5g9] + βAσARφ2γAg3g7g12}

g1g3g5g7g9g12g13

w17,

w15 = −b
2
2β
∗
V ΠV θRηµH{βJµH [σJRg5(ξ + g9) + σARξg7] + βAσARξg3g7}

µ2
V ΠJg1g3g5g7g9

w17 < 0,

w16 = 0, w17 > 0.

Similarly, J(E0)|βV =β∗
V

has a left eigenvector v = (v1, v2, v3, v4, v5, v6, v7, v8, v9, v10),

where
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v1 = 0, v2 = 0, v3 =
β∗V b2ΠV µH{v16g7g9[σAW ξg6 + σJWg4(g8 + 1)] + v17ηA2}

ΠJµV g2g4

(
9∏
i=6

gi

) ,

v4 =
b2β

∗
V ΠV ηµH [σJRg5(ξ + g9) + σARξg7]

ΠJµV g3g5g7g9

v17,

v5 =
b2β

∗
V ΠV σAWµH [v16g9 + v17τAη(1− fA)]

ΠJµV g4g8g9

, v6 =
b2β

∗
V ΠV σARηµH
ΠJµV g5g9

v17,

v7 =
b2β

∗
V ΠV µH{v16g7g9(g8 + ξ) + v17η[τJg8(g9 + ξ)(1− fJ) + τAηg7(1− fA)]}

ΠJµV

(
9∏
i=6

gi

) ,

v8 =
b2β

∗
V ΠV ηµH(ξ + g9)

ΠJµV g7g9

v17, v9 =
b2β

∗
V ΠV µH [v16g9 + v17ητA(1− fA)]

ΠJµV g8g9

,

v10 =
b2β

∗
V ΠV ηµH

ΠJµV g9

v17, v11 = 0, v12 = 0, v13 = 0, v14 = 0, v15 = 0, v16 > 0, v17 > 0.

Using the approach in Appendix B, it can be shown that the backward bifurcation

coefficients associated with the model (E-1) are, respectively, given by:

a =
11∑

k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(0, 0),

=
−2b2µ

2
H

Π2
J

{
β∗V ΠJη

µ2
H

[−v17w15(w10 + w8)] +
βJΠJθR
g1

v4w17

(
− ξ

µH
w1 + w2 + n0

)
+
βAΠJθR
g1

v6w17

[
− w2 +

ξ

µH
(w1 + n0)

]
+
βV ΠV η

µV
v17[w8(w1 + w2 + n0) + w10n1]

}
(E-2)

(with, n0 = w4 +w6 +w8 +w10 +w13 +w14, n1 = w1 +w2 +w4 +w6 +w10 +w13 +w14)

and,

b =
11∑

k,i,j=1

vkwi
∂2fk
∂xi∂φ

(0, 0) =
(b2µH)2β∗V ΠV ηθR[σJRg5(g9 + ξ) + σARξg7]

ΠJµV g1g3g5g7g9

v17w17 > 0.

It follows from (E-2) that the bifurcation coefficient, a, is positive whenever,
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K0 > K1, (E-3)

where,

K0 = −ΠJθR
µHg1

w17(βJµHv4w2 + βAξv6w1)− β∗V ΠV η

µV
v17(w1 + w2)(w8 + w10),

K1 = −β
∗
V ΠJη

µ2
H

[v17w15(w8 + w10)]− βJΠJθR
µHg1

w17[v4(ξw1 − µHn0) + v6w2 − v16n0]

+
β∗V ΠV η

µV
v17[w8n0 + w10(w4 + w6 + w10 + w13 + w14)].

Thus, it follows from Theorem 2.7 that the model (4.23) undergoes a backward

bifurcation at RT = 1 whenever the inequality (E-3) holds.
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Appendix F

Proof of Theorem 4.3

Proof. It can be shown that the system (4.23) satisfies the Type K condition (as de-

scribed in Section 2.7). Hence, comparison theorem [37] can be used. The equations

for the infected components of the model (4.23) can be re-written in terms of

d

dt



EJW

EJR

EAW

EAR

IJW

IJR

IAW

IAR

TJ

TA

VW

VR



= (F − V − S)



EJW

EJR

EAW

EAR

IJW

IJR

IAW

IAR

TJ

TA

VW

VR



, (F-1)

where,
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S =



0 0 0 0 0 0 0 0 0 0 s1 0
0 0 0 0 0 0 0 0 0 0 0 s2
0 0 0 0 0 0 0 0 0 0 s3 0
0 0 0 0 0 0 0 0 0 0 0 s4
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 s5 0 s5 0 0 0 0 0
0 0 0 0 0 s6 0 s6 0 0 0 0

 ,

with, s1 =
b2βJ(S∗J − SJ)

N∗H
, s2 =

b2βJθR(S∗J − SJ)

N∗H
, s3 =

b2βA(S∗A − SA)

N∗H
, s4 =

b2βAθR(S∗A − SA)

N∗H
, s5 =

b2βV (S∗V − SV )

N∗H
, s6 =

b2βV ηR(S∗
V −SV )

N∗
H

,

F =



0 0 0 0 0 0 0 0 0 0
b2βJS

∗
J

N∗H
0

0 0 0 0 0 0 0 0 0 0 0
b2βJθRS

∗
J

N∗H

0 0 0 0 0 0 0 0 0 0
b2βAS

∗
A

N∗H
0

0 0 0 0 0 0 0 0 0 0 0
b2βAθRS

∗
A

N∗H
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0
b2βV S

∗
V

N∗H
0

b2βV S
∗
V

N∗H
0 0 0 0 0

0 0 0 0 0
b2βV ηRS

∗
V

N∗H
0

b2βV ηRS
∗
V

N∗H
0 0 0 0



,

and,

V =



g2 0 0 0 0 0 0 0 0 0 0 0
0 g3 0 0 0 0 0 0 0 0 0 0
−ξ 0 g4 0 0 0 0 0 0 0 0 0
0 −ξ 0 g5 0 0 0 0 0 0 0 0

−σJW 0 0 0 g6 0 0 0 0 0 0 0
0 −σJR 0 0 −(1−fJ )τJ g7 0 0 0 0 0 0
0 0 −σAW 0 −ξ 0 g8 0 0 0 0 0
0 0 0 −σAR 0 −ξ −(1−fA)τA g9 0 0 0 0
0 0 0 0 −fJτJ 0 0 0 g10 0 0 0
0 0 0 0 0 0 −fAτA 0 −ξ g11 0 0
0 0 0 0 0 0 0 0 0 0 µV 0
0 0 0 0 0 0 0 0 0 0 0 µV


,

with, g1 = ξ+µH , g2 = σJW+ξ+µH , g3 = σJR+ξ+µH , g4 = σAW+µH , g5 = σAR+µH ,

g6 = τJ + ξ + γJ + µH , g7 = ξ + φ1γJ + µH , g8 = τA + γA + µH , g9 = φ2γA + µH ,
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g10 = ξ + φ3γJ + µH , g11 = φ4γA + µH , g12 = ψJ + ξ + µH , g13 = ψA + µH and
ΠJ

µH
.

Since all the elements of the matrix S are non-negative in D1, it follows that

d

dt



EJW

EJR

EAW

EAR

IJW

IJR

IAW

IAR

TJ

TA

VW

VR



≤ (F − V)



EJW

EJR

EAW

EAR

IJW

IJR

IAW

IAR

TJ

TA

VW

VR



.

Using the fact that the eigenvalues of the matrix F − V all have negative real

parts (since when R̃T < 1, the DFE, E0T , of the model (4.23) is locally-asymptotically

stable; which is equivalent to F − V having eigenvalues with negative real parts), it

follows that the linearized differential inequality system is stable whenever R̃T < 1.

Consequently, it follows, by comparison theorem [37], that

(EJW (t), EJR(t), EAW (t), EAR(t), IJW (t), IJR(t), IAW (t), IAR(t), TJ(t), TA(t), VW (t),

VR(t))→ (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) as t→∞.

Substituting EJW = EJR = EAW = EAR = IJW = IJR = IAW = IAR = TJ = TA =

VW = VR = 0 into the first, second and fifteenth equations of the model (4.23) show
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that

(SJ(t), SA(t), SV (t))→ (S∗J , S
∗
A, S

∗
V ) as t→∞.

Thus, the DFE, E0T , of the model (4.23), with δJ = δA = ψJ = ψA = 0, is GAS in

D1 if R̃T < 1.
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