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Abstract

The thesis is based on the use of mathematical modeling and analysis to gain insight
into the transmission dynamics of malaria in a community. A new deterministic
model for assessing the role of age-structure on the disease dynamics is designed.
The model undergoes backward bifurcation, a dynamic phenomenon characterized
by the co-existence of a stable disease-free and an endemic equilibrium of the model
when the associated reproduction number is less than unity. It is shown that adding
age-structure to the basic model for malaria transmission does not alter its essential
qualitative dynamics. The study is extended to incorporate the use of anti-malaria
drugs. Numerical simulations of the extended model suggest that for the case when
treatment does not cause drug resistance (and the reproduction number of each of the
two strains exceed unity), the model undergoes competitive exclusion. The impact

of various effectiveness levels of the treatment strategy is assessed.
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Chapter 1

Introduction

Malaria is a major vector-borne disease that continues to inflict enormous public
health burden in many parts of the world [61]. The disease, which is endemic in
over 100 countries (representing nearly 40% of the world’s population; mostly in the
tropical and sub-tropical regions of the world [6]), accounts for about 300 million
cases and over one million fatalities annually (with children under the age of five
suffering the most mortality burden) [61]. In addition to the public health burden
it incurs, malaria also inflicts enormous socio-economic burden in malaria-endemic
nations. For example, the annual economic burden of malaria in Africa alone was
estimated to be around US $8 billion [6]. A global map of malaria, showing the
geographic spread of the disease, is depicted in Figure 1.1.
The study of malaria transmission dynamics is further motivated by the increased
mobility of people, increased distribution of mosquitoes due to climate change, the
ongoing global effort to eradicate malaria [62], and malaria spread in new geograph-
ical regions (due to immigration and global travel).

The incubation period of malaria is between from 7 to 30 days [12], and the
common symptoms of the disease malaria include: chills, fever, sweating, headache,

malaise, fatigue, muscular pains, occasional nausea, vomiting and diarrhea [46, 69].
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Figure 1.1: Malaria global map (source://www.cdc.gov).

There is currently no effective and safe vaccine for use against malaria in humans
(although concerted global efforts are underway to develop such a vaccine [5, 18, 19,
27, 35, 42, 43, 44, 47, 53, 54, 59, 63, 66]). Consequently, malaria control is based
on the use of preventive measures (such as mosquito-reduction strategies and per-
sonal protection against mosquito bite) and the use of anti-malaria drugs (see, for
instance, [23, 25, 50, 51, 69, 72]). The use of anti-malarial drugs is, however, known
to pose the problem of the emergence and transmission of drug-resistant malaria
strain [4, 6, 36, 46].

Numerous mathematical models have been designed and used to gain insight into
malaria transmission dynamics in a community, dating back to the classical malaria
models of Ross [52] and Macdonald [40]. Although these classical models have, over
the decades, been extended to incorporate various aspects related to malaria trans-
mission dynamics and control, such as repeated exposure [45], the use of preventive
and therapeutic strategies [72], effect of climate change [39] etc., not much work has
been done in modeling the effect of age-structure on malaria spread and control.

This is particularly important considering the fact that malaria mortality is age-



dependent (with, as stated above, children under the age of five bearing the most

burden [69]).

1.1 Reproduction Number and Bifurcation

Disease transmission models, typically obtained by splitting the total population
into mutually-exclusive compartments based on infection status, have contributed
greatly to providing insight into the dynamics of infectious diseases, dating back
to the pioneering works of Bernoulli, Ross, Kermack and McKendrick and others
(see, for instance, [2, 3, 32] and some of the references therein). The dynamics of
such models is often characterized by the reproduction number (Ry), a threshold
quantity which measures the average number of new cases generated by a typical
infected individual in a completely-susceptible population [2, 16, 32].

Typically, when R is less than unity, a small influx of infected individuals will
not generate large outbreaks, and the disease dies out in time (in this case, the
corresponding disease-free equilibrium (DFE) of the model is asymptotically-stable).
On the other hand, the disease will persist in the population if Ry exceeds unity,
where, typically, an asymptotically-stable endemic equilibrium point (EEP) exists
[2, 32, 65]. This phenomenon, where the DFE and an EEP of a model exchange their
stability at Ro = 1, is known as forward bifurcation [28, 32, 57, 71]. Bifurcation
represents a change in the qualitative behaviour of the model as a related parameter
or quantity (typically Rg) varies. A schematic description of forward bifurcation is

given in Figure 1.2.
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Figure 1.2: Forward bifurcation diagram, showing the infection rate (\) as a function
of the reproduction number (Ry).

In general, for models that exhibit forward bifurcation, the requirement Ry < 1 is
necessary and sufficient for effective community-wide disease control or elimination.
However, some modelling studies show that although R < 1 is necessary for effective
disease control or elimination, the condition may not be sufficient. This is owing to
a dynamic phenomenon known as backward bifurcation [10, 21, 28, 29, 30, 71, 26,
57, 55, 45], where two stable attractors (the DFE and a stable EEP) co-exist when
Ro < 1 (see Figure 1.3). The public health implication of backward bifurcation is
that disease control or elimination (when Ry < 1) is dependent on the initial sizes of
the sub-populations of the model. Thus, the presence of backward bifurcation in the
transmission dynamics of a disease in a population makes its effective community-

wide control difficult.

1.2 Thesis Outline

The aim of this thesis is to qualitative assess the role of age-structure and drug
treatment on the transmission dynamics and control of malaria in a population. The
thesis is organized as follows. Chapter 1 covers the introductory epidemiological
aspects of malaria transmission dynamics. The basic mathematical concepts relevant

to the thesis are reviewed in Chapter 2. A new age-structured model for malaria
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Figure 1.3: Backward bifurcation diagram, showing the co-existence of a stable DFE
and two branches of endemic equilibria (a stable and an unstable branch) .

transmission dynamics is designed and rigorously analysed in Chapter 3. The model
is extended, in Chapter 4, to incorporate anti-malaria drug treatment. The resulting
two-strain age-structured model is also rigorously analysed. Some of the specific

questions to be addressed in the thesis include:

(a) What are the main qualitative features of an age-structured malaria model in
a population? The aim here is to determine conditions for the existence and
asymptotic stability of the associated equilibria, as well as to characterize the

types of bifurcation the model may undergo;

(b) What is the qualitative impact of the use of anti-malaria drugs on malaria
transmission dynamics? In particular, does the resulting two-strain malaria
model exhibit the phenomena of competitive exclusive and /or strain co-existence?

If yes, under what conditions do these phenomena occur?

(c) What is the community-wide impact of some of the standard non-pharmaceutical

interventions (i.e., anti-malaria control strategies based on using mosquito-



reduction strategies and personal protection against mosquito bite) for com-

bating malaria spread in the community?

(d) What is the impact of various effectiveness levels of the treatment strategy in

combating the spread of malaria in the community?



Chapter 2

Mathematical Preliminaries

This chapter introduces some of the basic mathematical definitions, theories and

methodologies relevant used in the thesis.

2.1 Equilibria of Autonomous Systems of Ordi-

nary Differential Equations (ODEs)

It should be mentioned that the thesis only considers autonomous systems of ODEs,
given by (where a dot represents differentiation with respect to time)
T = f(z), zeR" (2.1)

That is, non-autonomous ODE systems of the form,

&= f(x,t), ze€R" and teR, (2.2)

where f(z,t) € C" (with r > 1) depend on the independent variable ¢, are not

considered in the thesis.

Definition 2.1. A point = € R" is called an equilibrium point of the autonomous



system (2.1) if f(z) = 0.

Theorem 2.1. (Fundamental Existence- Uniqueness Theorem [48]). Let E be an
open subset of R™ containing o and assume that f € C1(E). Then, there exists an

a > 0 such that the initial value problem:

has a unique solution x(t) on the interval [—a, a].

Definition 2.2. The Jacobian matriz of f at the equilibrium Z, denoted by Df(Z),

1s the matrix,

Gu(z) - S2(2)

of partial derivatives of f evaluated at T.

Definition 2.3. The linear system & = Ax, with the matrix A = D f(Z), is called

the linearization of the system (2.1) at .

Definition 2.4. An equilibrium point T is called a hyperbolic equilibrium point of

the autonomous system (2.1) if none of the eigenvalues of D f(Z) has zero real part.

Definition 2.5. An equilibrium point that is not hyperbolic is called non-hyperbolic.

2.2 Hartman-Grobman Theorem

Let,

t = f(z), ze€R" (2.3)

y = g(y), yeR"



be two C” (r > 1) vector fields on R".

Definition 2.6. [68]. The dynamics generated by the vector fields f and g of (2.3)
are said to be locally C* conjugate (k < r) if there exists a C* diffeomorphisim h
which takes the orbits of the flow generated by f, ¢(t,x), to the orbits of the flow

generated by g, V(t,y), preserving orientation and parameterization by time.

Theorem 2.2. (Hartman-Grobman Theorem [68]). Consider a C"(r > 1) wvector
field
&= f(z), zeR" (2.4)

with domain of f to be a large open subset of R™. Suppose also that (2.4) has
a equilibrium solutions which are hyperbolic. Consider the associated linear vector

field
£=Df(z)¢, £eR™ (2.5)

Then the flow generated by (2.4) is C° conjugate to the flow generated by the lin-

earized system (2.5) in a neighborhood of the equilibrium point x = Z.

It should be noted that the Hartman-Grobman Theorem guarantees a homeomor-
phism between the flow of the non-linear ODE system and that of its linearization.
In general, near a hyperbolic equilibrium point Z, the non-linear system & = f(z)

has the same qualitative structure as the linear system & = Az with A = D f(z).

2.3 Stability Theory

Definition 2.7. [68]. The equilibrium T is said to be stable if given € > 0, there ezists
ad = 0(e) > 0 such that, for any solution y(t) of (2.1) satisfying |z — y(to)| < 9,

|z —y(t)] <€ fort >ty ty €R.

Definition 2.8. [68]. The equilibrium T is said to be asymptotically-stable if it is



stable and there exists a constant ¢ > 0 such that, for any solution y(t) of (2.1)

satisfying |z — y(to)| < ¢, then tlim |z —y(t)| = 0.
—00
Definition 2.9. An equilibrium solution which is not stable is said to be unstable.

Theorem 2.3. [68]. Suppose all the eigenvalues of D f(Z) have negative real parts.
Then the equilibrium solution x = T of the system (2.1) is locally asymptotically

stable, and unstable if at least one of the eigenvalues has positive real part.

2.4 Center Manifold Theory

Center Manifold theory is (essentially) a theory for reducing the dimensionality of a
given non-linear system near an equilibrium point. Consider the non-linear dynam-
ical system (2.1). Let,

T = Auz, (2.6)

be the corresponding linearized system (with A = D f(z)) near a hyperbolic equilib-

rium point .
Definition 2.10. The stable, unstable, and center subspaces of the linear system

(2.6) are defined by (where A € M,,(R))

E° = span{uj,vj;a; <0},
E* = span{u;j,vj;a; >0},

E¢ = span{u;j,v;;a; =0},

where w; = u; £ iv; are eigenvectors corresponding to the eigenvalues \; = a; £ ib;.

Remark 2.1. For a hyperbolic flow of a linear system, R* = E°* @& E°. These

subspaces become manifolds for nonlinear ODFEs.
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Theorem 2.4. (Stable Manifold Theory [48]). Let f € C'(E) where E is an open
subset of R™ containing the origin, and let ¢; be the flow of non-linear system (2.1).
Suppose that f(0) = 0 and D(0) has k eigenvalues with negative real parts, and
q = n — k eigenvalues with positive real parts. Then, there exists a k-dimensional
differentiable manifold S tangent to the stable subspace E® of the linear system (2.6)

at 0 such that for allt > 0,¢,(S) C S and for all zy € S
Jim d(0) = 0,

and there exists a q-dimensional differentiable manifold U tangent to the unstable
subspace E* of the linear system (2.6) at 0 such that for all t > 0,¢,(U) C U and
for all xy € U

tﬁfnoo@(%) = 0.

Definition 2.11. [48]. Let ¢ be the flow of non-linear system (2.1). The global

stable and unstable manifolds of (2.6) at 0, defined, respectively, by

and

wH(0) = U¢t(U)7

>0

are also, respectively, referred to as the global stable and unstable manifolds of the
origin.

Theorem 2.5. [48]. Let f € C"(F) where E is an open subset of R™ containing
the origin and r > 1. Suppose that f(0) = 0 and that Df(0) has k eigenvalues
with negative real parts, j eigenvalues with positive real parts, and m = n — k —

7 eigenvalues with zero real parts. Then, there exists an m— dimensional center

manifold W¢(0) of class C” tangent to center subspace E of (2.6) which is invariant
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under the flow ¢, of (2.1).

Lemma 2.1. [48]. The local center manifold of the system (2.1) at 0,

Wiee(0) = {(z,y) ER™ xR* | y = h(w) for |z] <}, (2.7)

for some 6 > 0, where h € C"(Ns(0)), h(0) = 0 and Dh(0) = O since W(0) is

tangent to the center subspace

E¢={(z,y) € R™ x R* | y = 0},

at the origin.

Theorem 2.6. (Center Manifold Theory [48]). Let f € C"(FE) where E is an open
subset of R™ containing the origin and r > 1. Suppose that f(0) = 0 and that D f(0)
has m eigenvalues with zero real parts and k eigenvalues with negative real parts,

where m + k = n. The system (2.1) then can be written in diagonal form

t = Cax+ F(z,y),

y = Py+G(z,y),

where (x,y) € R™ x RX, C' is a square matriz with m eigenvalues having zero real

parts, P is a square matriz with k eigenvalues with negative real parts, and F(0) =
G(0) = 0, DF(0) = DG(0) = O; furthermore, there exists a § > 0 and a function
h € C"(Ns(0)) that defines the local center manifold (2.7) and satisfies

Dh(x)[Cz + F(z,h(z))] — Ph(z) — G(z,h(z)) =0

for |x| < §; and the flow on the center manifold W¢(0) is defined by the system of
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differential equations

& =Cx+ F(z,h(zx))
for all x € R™with |z| < 9.

Theorems 2.5 and 2.6 can be used to determine the flow near non-hyperbolic equi-

librium points [9, 48].

2.5 Bifurcation Theory

In general, real-life systems arising, for instance, in the natural and engineering
sciences typically involve parameters which appear in their governing system of
equations. As these parameters are varied, changes may occur in the qualitative
structures of the solutions of the system of equations for certain parameter values.
These changes are called bifurcations [34]. The parameter values where bifurcations
occur are called bifurcation values (or bifurcation points). A formal definition of

bifurcation at a point is given below.

Definition 2.12. [68]. Let

i = f(r,p),r € R", p € R, (2.8)

be a one-parameter family of one-dimensional ODFEs. An equilibrium solution of
(2.8) given by (x, ) = (0,0) is said to undergo bifurcation at p = 0 if the flow for
[t near zero and x near zero is not qualitatively the same as the flow near x = 0 at

pw=0.

There are numerous types of bifurcations, including saddle-node, transcritical, pitch-
fork, Hopf, and backward bifurcation [29, 31, 32, 48, 57]. The following theorem is
used to establish the existence of the backward bifurcation phenomenon for the mod-

els in Chapters 3 and 4.
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Theorem 2.7. [11, 20, 65]. Consider the following general system of ordinary dif-

ferential equations with a parameter ¢

C;—f:f(x,¢),f:R"xR—>R” and feC*(R" xR), (2.9)

where 0 is an equilibrium point of the system (that is, f(0,¢) = 0 for all ¢) and

assume

A1) A= D,f(0,0) = <37f;(0, O)) is the linearization matriz of the system (2.9)
around the equilibrium 0 with ¢ evaluated at 0. Zero is a simple eigenvalue of

A and other eigenvalues of A have negative real parts;

A.2) Matriz A has a right eigenvector w and a left eigenvector v (each corresponding

to the zero eigenvalue).

Let fi be the k-th component of f and

a = En VpW;wW O 1 (0,0)
a kWi jaxl(?x] ) )
k,i,j=1
. P fi

b = i 0,0
kzizl'”’“w PR AR

Then the local dynamics of the system around the equilibrium point 0 is totally de-
termined by the signs of a and b. Particularly, if a > 0 and b > 0, then a backward

bifurcation occurs at ¢ = 0.

2.6 Lyapunov Function Theory

Definition 2.13. [48]. A point g € R"™ is called an w—Ilimit point of v € R™,

denoted by w(x), if there exists a sequence {t;} such that

o(ti, ) > x9 as t; — o00.
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Definition 2.14. [48]. A point xo € R™ is called an a—Ilimit point of v € R",

denoted by a(x), if there exists a sequence {t;} such that
o(ti,x) > x9 as t; - —oo.
Definition 2.15. [48]. The set of all w—limit points of a flow is called the w—limit

set. Similarly, The set of all a—1limit points of a flow is called the a—Ilimit set.

Definition 2.16. [68]. Let S C R™ be a set. Then, S is said to be invariant under

the flow generated by @ = f(x) if for any xy € S we have ¢(t,xy) € S for all t € R.

Lemma 2.2. [68]. A set S C R™ is positively-invariant if for every xog € S, ¢(t,x0) €

S, vVt > 0.

Definition 2.17. [68]. A function V : R" — R is said to be positive-definite if:
o V(z)>0 forallx #0,
e V(z)=0 if and only if x = 0.

Definition 2.18. [68] Consider the system (2.1). Let, T be an equilibrium solution
of (2.1) and let V : U — R be a C function defined on some neighbourhood U of T

such that
i) V is positive-definite,
i) V(z) <0in U\ {z}.

Corollary 2.1. [68]. Any function, V, that satisfies Conditions (i) and (ii) above is

called a Lyapunov function.

Theorem 2.8. (LaSalle’s Invariance Principle [31]). Consider the system (2.1). Let,

S={zelU:V(z)=0} (2.10)
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and M be the largest positive invariant set of (2.1) in S. If V is a Lyapunov function
on U and v*(xg) is a bounded orbit of (2.1) which lies in S, then the w—Ilimit set of

vt (o) belongs to M; that is, x(t,x9) — M ast — oo.

Corollary 2.2. If V(z) — 00 as |z| — oo and V < 0 on R", then every solution of

(2.1) is bounded and approaches the largest invariant set M of (2.1) in the set where

V = 0. In particular, if M = {0}, then the solution x = 0 is globally-asymptotically
stable (GAS).

2.7 Comparison Theorem

Consider the autonomous system

&= f(z),z € R", (2.11)

where f is continuously-differentiable on an open subset D C R™. Let ¢;(x) denote

the solution of the system (2.11) with initial value z.

Definition 2.19. [58]. f is said to be Type K in D if for each i, f;(a) < f;(b) for

any two points in D satisfying a < b and a; = b;.

The Type K Condition can be identified from the sign structure of the associated

Jacobian matrix of the system (2.11), as described above.

Definition 2.20. [58]. D is P-convex if tx + (1 —t)y € D for all t € [0, 1] whenever

x,y €D and x < y.

It is clear that if D is a convex set, then it is also p-convex. Furthermore, if D is a

p-convex subset of R™ and

df;i
fz()7 1# 7, x €D,
8xj
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then f is of Type K in D.
Another approach for establishing the global asymptotic stability of equilibria of
dynamical system is by using the comparison theorem [58]. This entails comparing

the solution of the non-linear system.

i = f(t,x), (2.12)

with the solution of the differential inequality system

2 < f(t,2), (2.13)

or,

y > fty), (2.14)

on an interval. This method requires that the solution of the system (2.12) is unique,

and that f is of Type K.

Theorem 2.9. (Comparison Theorem [58]). Let f be continuous on R x D and of
Type K. Let x(t) be a solution of (2.12) defined on [a,b]. If z(t) is a continuous
function on [a,b] satisfying (2.13) on (a,b) with z(a) < z(a), then z(t) < x(t) for all
t in [a,b]. If y(t) is continuous on |a,b] satisfying (2.14) on (a,b) with y(a) > z(a),

then y(t) > x(t), for all t in |a,b.

2.8 Next Generation Operator Method

The next generation operator method [15, 65] is popularly used in the mathematical
biology literature to compute the reproduction number (Ry) of disease transmis-
sion models (and, subsequently, to establish the local asymptotic stability of the

associated DFE). The formulation given in [65] is briefly described below. Suppose
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the given disease transmission model, with non-negative initial conditions, can be

written in terms of the following autonomous system:

i; = f(z) = Fy(z) = Vi(z), i=1,..,n, (2.15)

where V; = V,- — V" and the functions satisfy the following axioms bellow. First
of all, {X; =2 > 0lz; = 0,7 = 1,...,m} is defined as the disease-free states (non-
infected state variables) of the model, where © = (x1, ..., x,)", x; > 0 represents the

number of individuals in each compartment of the model.

(A1) If x >0, then F;, V"', V." >0 fori=1,....,m.

(A2) If z; =0, then V;” = 0. In particular, if z € X then V" =0 for i =1,...,m.
(A3) F;=0ifi>m.

(A4) If x € X, then Fy(z) =0 and V;"(z) =0 fori =1,...,m.

(A5) If F(x) is set to zero, then all eigenvalues of D(f(x¢)) have negative real parts.

In the formulation above, F;(x) represents the rate of appearance of new infections in
compartment i, V" (z) represents the rate of transfer of individuals into compartment
i. It is assumed that these functions are at least twice continuously-differentiable in

each variable [65].

Definition 2.21. (M-Matriz). An n X n matriz A is an M-matriz if and only if
every of off-diagonal entries of A is non-positive and the diagonal entries are all

positive.

Lemma 2.3. (van den Driessche and Watmough [65]). If z is a DFE of (2.15) and
fi(x) satisfy (A1) — (Ab), then the derivative DF(Z) and DV (Z) are petitioned as

DF(z) = ,DV(z) = :
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where F and V' are the m X m matrices defined by,

Vi, _
5 (@

p- [25

05 ] na v

1 with 1<1i,j<m.

Furthermore, F' is non-negative, V is non-singular M-matriz and Js and Jy are
matrices assoctated with the transition terms of the model, and all eigenvalues of Ju

have positive real parts.

Theorem 2.10. (van den Driessche and Watmough [65]). Consider the disease
transmission model given by (2.15) with f(x) satisfying axioms (A1)-(A5). If T is
a DFE of the model, then T is LAS if Ro = p(FV™') < 1 (where p is the spectral

radius), but unstable if Ry > 1.
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Chapter 3

Age-Structured Model

3.1 Introduction

Malaria, caused by the protozoan plasmodium parasite, is transmitted to humans
by female anopheles mosquitoes (after taking a blood meal from the human host).
Although malaria has been endemic in many parts of the world (notably the tropical
and subtropical region of Africa, Asia and South America) for hundreds of years,
the disease continues to inflict major public health burden in affected areas [69].
For instance, it accounted for 216 million cases and 655,000 million deaths in 2010
[69, 70]. Furthermore, malaria inflicts significant mortality among children under
the age of five [14]. As stated in Chapter 1, in the absence of a safe and effective
anti-malaria vaccine, malaria control is focussed on using preventive measures (such
as mosquito-reduction strategies and personal protection against mosquito bite) and
the use of anti-malaria drugs (see, for instance, [23, 25, 50, 51, 69, 72]). The aim of
this chapter is to design, and rigorously analyse, a new age-structured ODE model
for the transmission dynamics of malaria in a community. The model to be de-
signed represents an extension of other age-structured ODE models in the literature,

particularly those in [1, 49].
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3.2 Model Formulation

The new (single-strain) age-structured malaria model is designed by splitting the
total human population at time ¢, denoted by Ny (t), into the mutually-exclusive sub-
populations of susceptible juveniles (Sgs(t)), susceptible adults (Sga(t)), latently-
infected (asymptomatic) juveniles (Ey;(t)), latently-infected (asymptomatic) adults
(Ega(t)), symptomatic juveniles (Iy;(t)), symptomatic adults (I5a(t)), recovered

juveniles (Rp;(t)) and recovered adults (Rga(t)), so that

Ny(t) = Sus(t) + Sga(t) + Ens(t) + Ega(t) + Igs(t) + Igp(t) + Rys(t) + Rga(t).

It should be emphasized that individuals in the latently-infected (Ex; and Epa)
classes are infected (i.e, they are in the early stage of infection, but show no clinical
symptoms of the disease).

The total mosquito population at time ¢, denoted by Ny (t), is sub-divided into
the mutually-exclusive compartments of susceptible (Sy(¢)) and infected (Iy(t))

mosquitoes, so that

Ny (t) = Sy (t) + Iy (1).

The population of susceptible juveniles is generated by the birth (or immigration)
of juveniles (at a rate II;). Although vertical transmission of malaria can occur
(see [22] and some of the references there in), it is assumed that all children are
born susceptible (i.e., it is assumed, in this thesis that vertical transmission does
not occur). This population is increased by loss of infection-acquired immunity by
recovered juveniles (at a per capita rate ¥y ;). It is decreased by infection, following

effective contacts with infected mosquitoes, at a rate Ay, given by
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bi(Nv, Nu)BusIv

N (3.1)

)\HJ =

In (3.1), by(Ny, Ng) is the per capita biting rate of mosquitoes on susceptible hu-
mans (juveniles and adults) per unit time, and g is the probability of infection
of susceptible juveniles per bite by an infected mosquito. It is further decreased by
maturation to adulthood (at a rate £; this rate is assumed, for mathematical conve-
nience, to be same for all the epidemiological classes for humans) and natural death
(at a rate py; it is assumed that natural death occurs in all human epidemiological

classes at this rate). Thus,

dSus
dt

=14+ Ys;Ruy — AasSuys — (€ + pm)Suy. (3.2)

The population of susceptible adults is generated by the maturation of susceptible
juveniles (at the rate £) and by the loss of infection-acquired immunity by recovered

adults (at a rate ¥ 4). It is decreased by infection at a rate Aya, given by

bi(Nv, Nu)Bualy

N (3.3)

AHA =

where B 4 is the probability of infection of susceptible adults per bite by an infected

mosquito. This population is further decreased by natural death. Hence,

dSma
dt

=&SHs +Yalua — AuaSua — puSna. (3.4)

The population of latently-infected juveniles is generated, following the infection of
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susceptible juveniles (at the rate by (Ny, Ng)Brs). It is decreased by the development
of clinical symptoms of malaria (at a rate o), maturation to adulthood (at the

rate §) and natural death, so that

dE bi1(Ny, N, I
de = 1< v Ni)ﬁHJ VSHJ_(UHJ+€+/~LH)EHJ' (35)

Similarly, the population of latently-infected adults is generated by the maturation of
latently-infected juveniles (at the rate £) and by the infection of susceptible adults (at
the rate by (Ny, Ng)Bra). It is diminished by the development of malaria symptoms

(at a rate og4) and natural death. Hence,

dEma bi(Nv, Nu)Bualy
=¢F
It §Eny + Ny

SHA_ (UHA+NH)EHA- (36)

The population of symptomatic juveniles is generated when latently-infected ju-
veniles develop clinical symptoms of malaria (at the rate og;). It is decreased by
maturation (at the rate £), recovery (at a rate 7;), natural death and disease-induced

death (at a rate dp;). Hence,

dlpy
dt

=opsEny — (E+v5+ pm +6ms)Ins. (3.7)

Similarly, the population of symptomatic adults is generated at the rates £ and oy 4,
and reduced by recovery (at a rate v,4), natural death and disease-induced death (at

a rate dpg4), so that,
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dlga
dt

=0galua+ &Iy — (ya+ p +0ua)lua. (3.8)

The population of recovered juveniles is generated at the rate 77, and decreased by
the loss of infection-acquired immunity (at the rate 1), maturation (at the rate &)

and natural death. Thus,

dRp
dt

=v7In; — (b + &+ pm)Ruy. (3.9)

The population of recovered adults is increased by the recovery of symptomatic
adults (at the rate v4) and the maturation of recovered juveniles (at the rate £). It
is decreased by the loss of infection-acquired immunity (at the rate 14) and natural

death. Thus,

dRpa
dt

=Yalpga+ERpy — (Ya+ pm)Rua. (3.10)

The population of susceptible mosquitoes is generated by the birth of adult mosquitoes
(at a per capita rate I1y,). It is reduced by infection, following effective contacts with

infected humans, at a rate Ay, where

N — ba( Ny, Ny )Bv[n(Eng + Ega) + Iy + Inal 1
v = N : (3.11)

In (3.11), bo(Ny, Ng) is per capita biting rate of susceptible mosquitoes on infected
humans, [y is the probability of infection of a susceptible mosquito per bite on an

infected human) at a rate and 0 < 7 < 1 is a modification parameter accounting for
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the assumption that latently-infected humans are less infectious than symptomatic

humans. This population is further decreased by natural death (at a rate uy ). Hence,

as
d_tv = HV - )\st — ,ust. (312)

The population of infected mosquitoes is generated by the infection of susceptible
mosquitoes (at the rate bo(Ny, Ny)By) and decreased by natural death (at the rate
py ). Thus,

dl
M Sy~ oy (3.13)

It is assumed that mosquitoes do not suffer additional disease-induced death [49].
An important requirement for a mosquito-borne disease model, such as the model
given by equations {(3.1),...,(3.13)}, is that the total number of bites made by
mosquitoes must balance the total number of bites received by the human hosts
(see, for instance, [8, 24, 26, 45]). This constraint is implemented as follows. First
of all, mosquitoes bite both susceptible and infected humans. Hence, it is assumed
that the average number of mosquito bites received by humans depends on the total
sizes of the populations of mosquitoes and humans in the community. Furthermore,
it is assumed that the human hosts are always sufficient in abundance so that it is
reasonable to consider the biting rate bo(Ny, Ngy) = be, a constant. Thus, in order
for the total number of bites made by mosquitoes to balance the total number of

bites received by the human hosts, the following conservation law must hold:

bQNV = bl(Nv,NH)NH7 (314)
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so that,

Ny, Ny)N.
szb1< V’b w)Nu. (3.15)
2

It follows, based on the above derivations and assumptions, and using (3.1), (3.3)
and (3.11) with (3.15) in {(3.2),(3.4), (3.5), (3.6)}, that the new, single-strain, age-
structured model for the transmission dynamics of malaria in a community is given by
the following deterministic system of non-linear differential equations (a flow diagram
of the model is depicted in Figure 3.1, and the state variables and parameters of the

model are described in Tables 3.1 and 3.2, respectively):

dS b I
dItU =1+ vY;Ru; — %SHJ — (&4 pw)Suy,
H
dS b I
dHA =E&Shy +YaRpga — MSHA — 1uSHa,
t Ny
dE b I
de = 2%}; Y Sy — (s +&+ pu)Eny,
dE b I
HA _ EEny + MSHA — (oga+ pu)Ena,
dt Ny
dl gy

i ogiBEuy— (4 v+ pg + 6us) Iy,
t (3.16)

dl
dI;A =ogalua+&Ilyy— (ya+ p +0ma)lna,
dR
de =vyluy — (Vs + &+ pu)Ruy,
dR
de =yalga+ERuy — (Va+ pu)Rua,
dSy _ m, - boBvn(Eny + Ena) + Ing + Ina Sy — Sy
dt Ny
dly  bafvn(Ews+ Exa) + Iny + Il g
= v — uvly.
dt Ny

The model (3.16) is an extension of many of the malaria transmission models pub-

lished in the literature (such as those in [13, 17, 23, 39, 40, 45, 52]), by adding
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age-structure. Furthermore, it extends the age-structured (ODE) malaria model in

[49] by including:

(i) separate compartments for susceptible juveniles and susceptible adults (the two

compartments are lumped together in [49)]);

(ii) the dynamics of (and transmission by) latently-infected individuals (Fy; and

Epa; with n # 0);

(iii) loss of infection-acquired immunity by recovered individuals (¢; # 0 and ¥4 #
0);

(iv) disease-induced death (dy; # 0 and dga # 0).

Furthermore, the model (3.16) extends the age-structured malaria model in [1] (which

uses mass action incidence for the infection rate) by including:
(a) separate compartments for latently-infected juveniles and latently-infected adults;

(b) the dynamics of (and transmission by) latently-infected individuals (Eg; and

Epa; with n #£0).

It should be mentioned that, unlike in [1, 49|, detailed qualitative analysis of the
model developed in this chapter will be provided (only local asymptotic stability re-
sults are given for the disease-free equilibria of the models in [1, 49]. Local asymptotic

stability result is provided for the endemic equilibrium of the model in [49)]).

3.2.1 Basic properties

The basic dynamical features of the model (3.16) will now be explored. Since the
model monitors human and mosquito populations, all its associated parameters and
state variables are non-negative for ¢ > 0. For the model (3.16) to be epidemiologi-

cally meaningful, it is important to prove that all its state variables are non-negative
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for all times. In other words, solutions of the model (3.16) with positive initial data

will remain positive for all time ¢ > 0.

Theorem 3.1. Let the initial data be Sg;(0) > 0, Sga(0) > 0, Egs(0) > 0,
Ega(0) > 0, Ig;(0) > 0, Iga(0) > 0, Rgs(0) > 0, Rga(0) > 0, Sy(0) > 0 and
Iy (0) > 0. Then the solutions (Sgs(t), Sua(t), Egs(t), Ega(t), Igs(t), Iga(t), Ras(t),
Rua(t),Sy(t), Iv(t)) of the model (3.16), with positive initial data, will remain pos-

itive for all time t > 0.
The proof of Theorem 3.1 is given in Appendix A.

Lemma 3.1. The closed set

II
D ={(Sus,Sua, By, Enas Iug, Ina, Rug, Rua, Sv, Iy) € R : Ny < —
B (3.17)
Iy
Ny < —
Ky

is positively-invariant and attracting for the model (3.16).

Proof. Adding the first eight equations, and the last two equations, of the model

(3.16), gives, respectively,

dN
d—tH =y — paNu — Onslus +0nalna),
(3.18)
dN;
d_tv = Iy — py Ny.
dN dN dN
Since a <Il; — ug Ny and d_tv < Iy, — py Ny, it follows that a < 0 and
dNy . I, Iy, ) . .
—— < 0if Ny(t) > — and Ny(t) > —, respectively. Hence, it follows, using
dt HH %

comparison theorem [37], that

II
Ny(t) < NH(O)e’“H(t) 4 _‘][1 _ e*HH(t)]’

HH

and,
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I1
Ny (t) < NV(O)e_“V(t) + _V[l _ e—uv(t)]'
0%

IT IT IT II
In particular, Ny (t) < —2 if Ng(0) < —Z and Ny (t) < —% if Niy(0) < —, respec-
HH HH 2% 2%

tively. Thus, the region D is positively-invariant for the model (3.16). Furthermore,

IT IT
if Nyz(0) > —Z and Ny (0) > —2, then either the solution enters D in finite time or
HH 120%

II IT
Ny (t) — —2 and Ny (t) — —Z as t — oo. Hence, the region D attracts all solutions
HH %

n R_lf. O

Since the region D is positively-invariant, the usual existence, uniqueness, continu-
ation results hold for the system (hence, it is sufficient to consider the dynamics of

the flow generated by the system (3.16) in the region D [32]).

3.3 Stability of DFE

The DFE of the model (3.16), obtained by setting the right-hand sides of the equa-

tions in (3.16) to zero, is given by,

_ * * * * * * * * * *
50_ (SHJa HA?EHJ7EHA7[HJ7]HA7RHJ7 HA?SV7IV)

11 11 II
_(( ! 5 ! 7070’0’07070’_‘/’0).

§+pu) pa(€+ pm) py

The local asymptotic stability of the DFE & can be established using the next
generation operator method (as described in Section 2.9). The non-negative matrix
F (of new infection terms), and the matrix V (of the transition terms) associated

with the model (3.16), are given, respectively, by:

29



[0 0 0 0 D257 ]
N,

0 0 0 0 baBraSiia
Ny

F = 0 0 0 0 0 ;
0 0 0 0 0
nbaByv Sy, mbaBy Sy baByv Sy bafv Sy 0

N Ni, N, N |

and,

» 0 0 0 0
—£ g3 0 0 0
V= —O0OHJ 0 ga 0 0 )

0 —oga —§ g5 O

0 0 0 0 v

where gy = oy +&+ftr; 93 = omat i, 9 = 4V 007, 95 = Yat i +0ma,
IT

and Nj, = —L Tt follows, from [65], that the basic reproduction number (Ry =
HH

p(FV~1)), of the model (3.16), is given by (where p is the spectral radius of the next

generation matrix, FV 1)

Ro =

J V38vILy i { Brspr ngags (93 + &) + omygs(g9s + &) + omalga) + Bruaégaga(ngs + O'HA)}.

1ALy (€ + pmr) ( Ii gi)
- (3.19)

The result below follows from Theorem 2.10.

Lemma 3.2. The DFE, &, of the model (3.16), is LAS if Ro < 1, and unstable if
Ro > 1.

The epidemiological implication of Lemma 3.2 is that malaria can be eliminated

from the community (when Ry < 1) if the initial sizes of the sub-populations of the
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model (3.16) are in the basin of attraction of the DFE, &. The threshold quantity,
Ry, represents the average number of secondary infections that one infected individ-
ual (or infected mosquito) can generate if introduced into a completely-susceptible

population. It can be epidemiologically interpreted as follows.

3.3.1 Interpretation of R

Equation (3.19) can be re-written in the following convenient form:

Ro=+VRj+ Ra,

where,
b b 11 b 11
R, = ol i B T ( 2By pmlly I 2BV ILHO H.T V)’ (3'2())
pv (& + prr) ILrpvgo ILypy 9294

and,

_ baBal (befvumnlly | bafvpumomally boBr s ( baBvpanélly
Ra= + +

pv(§+pa) \ ypvgs ;10 9395 pv(§+ p) \ ipygags

boBvéomally  befyvugomElly
+ + .
L7 pv 929395 ILypv g2949s5

(3.21)

(a) Terms in the expression for R;

The threshold quantity R, given by (3.20), is associated with disease transmis-
sion by infected juveniles as well as the infection of susceptible juveniles by infected

mosquitoes. Susceptible mosquitoes acquire malaria infection from infected juveniles
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in two ways, namely by latently-infected or symptomatically-infected juveniles.
boBriiE

v (€ + pr)
ceptible juveniles by infected mosquitoes. It is the product of the infection rate

The factor, , in the expression for R;, captures the infection of sus-

b S7 b
of susceptible juveniles by infected mosquitoes ( 25[”* 2 — 20010 H) and the
Ny §+ pn
1
average duration in the infected mosquito (Iy) class (—) The first term in the
Ky

parenthesis of (3.20) represents the infection of susceptible mosquitoes by latently-

infected juveniles. It is the product of infection rate of susceptible mosquitoes by

bofBynSy _ bafvnpully
Ng Iy

latently-infected juveniles < ) and the average duration in

the latently-infected juveniles class (—) The second term in the parenthesis of
92

(3.20) accounts for the infection of susceptible mosquitoes by symptomatic juveniles.

It is the product of the the infection rate of susceptible mosquitoes by symptomatic

by By Sy _ ba By prlly
N Iy p

juveniles ( ), the probability that a latently-infected juvenile

o
survives the Fg; class and move to the Ig; class (ﬂ) and the average duration

92
1
in the Iy class (—) The sum of the above two terms, multiplied by the factor
94
b
—QﬁHJ'uH , gives R ;.
pv (€ + 1)

(b) Terms in the expression for R 4

The threshold quantity R4, given by (3.21), is associated with disease transmission
by infected adults (including by infected juveniles who mature into the correspond-
ing infected adults class) as well as the acquisition of infection by susceptible adults

(from infected mosquitoes). Susceptible adults acquire infection following effective

baBr A&

pv (€ + i)
in the first parenthesis of (3.21), which represents the product of the infection rate of

baBraST 4 _ boBrra&
Nu £+ pu

contacts with infected mosquitoes. This is accounted for by the factor

susceptible adults by infected mosquitoes < ) and the average
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1
duration in the Iy, class <—)
2%

The first term in the first parenthesis of (3.21) accounts for the infection of sus-
ceptible mosquitoes by infected adults (both latently-infected and symptomatically-

infected adults). The number of new mosquito infections generated by latently-

infected adults is given by the infection rate of susceptible mosquitoes by latently-

52/3\/775{5 _ b2ﬂv77MHHv
Ny Iy py

infected adults ( ) and the average duration in the Fgyu

1
class (—) Furthermore, latently-infected adults can infect susceptible mosquitoes
g3

after progressing to the symptomatic adults (/ga) class. This infection route is
represented by the second term in the first parenthesis of (3.21). It is given by

the product of the infection rate of susceptible mosquitoes by symptomatic adults

boBy Sy bafBy Il
( 26‘/* v — 20v V'uH), the probability that a latently-infected adult survives the
N H ILypy

Ep 4 class and move to the symptomatic adults (I 4) class (ULA) and the average
g3

1
duration in the symptomatic adults class (—)
9s

Susceptible mosquitoes can also be infected by infected juveniles after they ma-
ture to the corresponding infected adults class. This process is represented by the

three terms in the second parenthesis of (3.21) and by the aforementioned factor,
baBmpn
pv (& + )
first term in the second parenthesis of (3.21) is the product of infection rate of
ba By Sy, _ b25v77MHHv) the
Ny Iy ’
probability that a latently-infected juvenile matures to the latently-infected adults

(for the infection of susceptible juveniles by infected mosquitoes). The

susceptible mosquitoes by latently-infected adults (

1
class (é) and the duration in the latently-infected adults (Ey ) class (—) The
92 93

second term in the second parenthesis of (3.21) is the product of the infection rate
by By S§ b I1
251/* v o_ 2Bv im V)’ the
N o ILypy
probability that a latently-infected juvenile matures to the latently-infected adults

of susceptible mosquitoes by symptomatic adults (

class (é), the probability that a latently-infected adult survives the Eg, class
92

o
and move to the symptomatic adults class (LA) and the average duration in the
94
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1
symptomatic adults class (—> . The third term in the second parentheses of (3.21)
95

is the product of the infection rate of susceptible mosquitoes by symptomatic adults

(525\/5\*/ _ ba By pplly
N 1Ly py

>, the probability that a latently-infected juvenile survives

o
the Fg; class and move to the symptomatic juveniles class (ﬂ), the probability
92

that a symptomatic juvenile matures to the symptomatic adults class <£>, and
94

1
the average duration in the symptomatic adults class (—) The sum of the terms
9s
in the first and second parentheses of (3.21), multiplied by the respective factors
described in (b), gives R 4.

The geometric mean (accounting for the human-mosquito-human transmission

cycle) of the sum of equations (3.20) and (3.21) gives Ro.

3.3.2 Existence of backward bifurcation

As discussed in Chapter 1, models for disease transmission typically undergo a for-
ward bifurcation at Ro = 1 (see, for instance, [28, 32, 57, 71]). However, certain
disease transmission models are known to exhibit the phenomenon of backward bi-
furcation, a dynamic scenario where the DFE of the model co-exists with a stable
endemic equilibrium of the model when the associated reproduction number of the
model is less than unity. Backward bifurcation has been observed in numerous disease
transmission models, such as those for (or with) behavioural responses to perceived
risk [30], multi-groups [10], re-infection [11, 29, 55|, vaccination [21, 28, 57, 71], and
vector-borne diseases [26, 28, 45]. The epidemiological consequence of the backward
bifurcation phenomenon in disease transmission models is that having the associated
reproduction number of the model to be less than unity, while necessary, is no longer
sufficient for effective disease control (or elimination). In a backward bifurcation sit-
uation, effective community-wide control of the disease (when Ry < 1) is dependent

on the initial sizes of the sub-populations of the model. In other words, backward bi-
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furcation makes effective disease control in the community difficult. It is instructive,
therefore, to explore the possibility of backward bifurcation in the age-structured

malaria model (3.16).

Theorem 3.2. The model (3.16) undergoes backward bifurcation at Ry = 1 whenever

the Inequality (B-3), given in Appendiz B, holds.

The proof of Theorem 3.2, based on using Centre Manifold theory [9, 11, 20, 65],
is given in Appendix B. Figure 3.2 depicts the backward bifurcation property of
the age-structured model (3.16). The possible causes of the backward bifurcation

phenomenon of the model (3.16) are investigated below.

Non-existence of backward bifurcation

Consider the model (3.16) with the associated disease-induced mortality rates, g

and g4, set to zero, so that,

AN (t)
dt

=1y — paNg(t),

hence, Ny (t) — E—;{’ as t — oo. It can be shown, by substituting N}, = E—; into the

model (3.16), that the associated bifurcation coefficient, a, given by equation (B-2)

in Appendix B, reduces to

§— 202101
11,

{wio(Brvswy + Braviws) + vipws|Byn(ws + ws) + By (ws + we)]},
(3.22)
where wy, ws, wy, v3, vy and vy are eigenvectors of the linearized system of the
model (3.16), and are defined in Appendix B. Since the eigenvectors wi, ws and wg
are negative (see Appendix B), it follows from (3.22) that the associated backward

bifurcation coefficient, a, is negative. Hence, it can be concluded from Theorem
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4.1 of [11] that the single-strain model (3.16) will not undergo backward bifurca-
tion in the absence of malaria-induced mortality in humans. Thus, these analyses
show that the malaria-induced mortality in humans causes the backward bifurcation
phenomenon of the age-structured model (3.16). To further confirm the absence of
the backward bifurcation phenomenon, the DFE of the model (3.16) is shown to be

globally-asymptotically stable, for this special case, in Section 3.3.3.

3.3.3 Global asymptotic stability of the DFE: special case:

Consider the special case of the model (3.16) in the absence of disease-induced mor-
tality (i.e., 0y = dga = 0, so that N}, = E—é) Furthermore, the loss of infection-
acquired immunity parameters, ©; and 1,4, are set to zero for computational conve-
nience.

Define the region:

Dy ={(Sus,Sua, Euy, Eya, Iy, Ina, Ry, Rua, Sy, Iv) € D: 53

Sy < Sty Saa < Sha Sy < Sy}

Lemma 3.3. The region Dy is positively-invariant for the model (3.16) with 0y ; =

Oma =1y =14 =0.

Proof. 1t follows from the first equation of the model (3.16), with ¢»; = ¥4 = 0, that

dsS b I
dIZJ =1I; — QBNL;VSHJ — (&4 pw)Suy,

<My —&Sus — puSus = (§+ 1)

— (& + pr)Sw, (3.24)

J
§+ pn
= (&4 pm)(Siry — Su)-

Thus, Sp(t) < Spy(0)e=EFrt 4 éL(l — e~ (&rm)t) - Furthermore, if N(0) < Lz

+hH KH
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and Sy ;(0) < Sy, forallt > 0, then Sy, (t) < Sj, for all ¢ > 0. Similarly, it follows

from the second equation of the model (3.16), with ¢; = ¥4 = 0, that

dSpga baBraly
7 ESHJ N,

SHa — paSHA,
< &Sus— 1ESHA,
11
=¢ <M—J —Sua—FEn;—Ega—Iny—Iga — Ry — RHA) — LESHA,
H

11
<€—L — €Sy — pnSua,
12974

gl

S uH)/wH(f + pr)

— (& + pm)Sua = (€ + pm)(Sia — Sua).
(3.25)

Hence, Spa(t) < Spa(0)e=EFrat 4 #H(gg"#H)(l — e~ &)ty Thus, if N(0) < E—Ij and

Sura(0) < Sy 4 forallt >0, then Sya(t) < Sy, for all ¢ > 0. Finally, it follows from
the ninth equation of the model (3.16), with ¢; = 14 = 0, that

dSy bofv [n(Ews + Ega) + Iny + Inal
dt Ny

Sy — py Sy,
(3.26)

II
<Ily — puySy = ,uvu—v — py Sy = pv(Sy — Sv),
%

so that, Sy (t) < Sy(0)e #V 4+ ¥ (1—e~#v!). Similarly, if N(0) < 7 and Sv(0) < S5,
for all ¢ > 0, then Sy (t) < Sy, for all ¢ > 0. Thus, the region, D, is positively-

invariant for the model (3.16) with 05y = dga = 1y = 14 = 0. O

Theorem 3.3. The DFE, &, of the model (3.16), with dpjy = dga =y =14 =0,

is GAS in Dy whenever Ry = Ro |sy,=644=0< 1.

The proof of Theorem 3.3, based on using Lyapunov function theory, is given in
Appendix C. It should be recalled that the loss of infection-acquired immunity pa-
rameters, 4 and vy, do not feature in the expression for Ry (hence, they do not
affect Rq). Figure 3.3 depicts the solution profiles of the model (3.16) for the case

when Ry < 1 (showing convergence to the DFE, in line with Theorem 3.3).
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Extensive numerical simulations of the age-structured model (3.16), in the ab-
sence of the requirement for the absence of the loss of infection-acquired immunity
of recovered humans (i.e., with 1; # 0 and 14 # 0), show convergence of the ini-
tial solutions to the DFE (&) whenever R; < 1. Thus, these simulations suggest
that the requirement for the loss of infection-acquired immunity of recovered humans
(; =14 = 0) is not necessary for the GAS property of the DFE (&) of the model

(3.16) for the case when R; < 1. This suggests the following conjecture.

Conjecture 3.1. The DFE, &y, of the model (3.16) with 6y = 0ga = 0 is GAS in

Dy whenever Ry < 1.

3.3.4 Existence of endemic equilibrium point (EEP): special

case:

In this section, conditions for the existence of endemic equilibria (i.e., equilibria
where the infected components of the age-structured model (3.16) are non-zero) will
be derived. Owing to the complexity of the model (3.16), the analyses in this section
will be carried out for the special case of the model with no disease-induced mortality
(0gy = dga = 0), and no disease transmission by latently-infected individuals (n =
0). Substituting dg; = dgya = n = 0 into the model (3.16) gives the following
reduced model (it should be noted that setting 0y = dga = 0 in (3.16) results in

N}, = &):

HH
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dSyy prbeBrsly

i II;+4YsRuy — 1, Sty — &+ pw)Suy,
ds b I
na _ §ESHT +VaRpA — MHQB—HAVSHA — 1 SHa,
at 1,
dFE b I
HJ _ trrbo By VSHJ _ (UHJ Ty MH)EHJ,
dt I1;
dFE b I
LE EEuy + M—HAVSHA — (oga+ pu)Ega,
dt I1;
dl
i _ oraiBuy — (& +v5+ pa)las,
; Id’f (3.27)
dIZA =opaEua+&uy— (va+ pu)lua,
dR
dfj =Ygy — (4 pm +5)Ruy,
dR
de =Yalga+ &Ry — (b +Ya)Rua,
dSy prbaByv(Lmy + Iha)
pra Iy — I, Sy — pv Sy,
dlv — pboBy(Imy + Iga)
- I, Sy — pyly.

It can be shown that the reproduction number of the reduced model (3.27) is given

by

Ro = Roln=65,=61 4=0
bo By Uy i {b2Brsiin [01193(95 + &) + 0 aégal + baBrualonagegs} (3.28)
5 )
M ¢+ ) It )

where, now, g = opy +&+pu, 93 = ona+ pu, 9o = §+ s+ pm and gs = ya + pu.
Let & = (S35, Sitas Eifrs Extas Ity Iifas Rir gy Rifas S5, 1Y) represents an arbi-

trary endemic equilibrium of the model (3.27). Furthermore, let

v _ PabeBusly o pabeBualy e b By Ty + Iia)
Ay = T Ma = o and v = Il ’
J J J
(3.29)
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be the force of infection (i.e., rate of infection) for susceptible juveniles, susceptible
adults and susceptible mosquitoes at steady-state, respectively. Solving the equations

of the reduced model (3.27) at steady-state gives:

o 92919611,

7 gi{lons (v + g6) + 9496 Nig s + 929196}
o 9a961Ls N5

7 gi{lons (v + g6) + 9496 Nsg s + 929196}
o oY\

7 gi{lons (v + g6) + 9496 Nsgy + 929196}
I oI 9611

HJ

gi{lons(vs + g6) + 9496 N5y + 929496}
R é-SEKJ +wAR>lk'{*A

HA Aifa + b ’
. (3.30)
§HJ)\§J{5HA>\E*J [Waors(vr9s +vags) + 11 9i] + qo}
HA = ’

J1HHA192

e SILUNGABEANT 19697(0nAgs + 0B IG3) + OHATH VIV A] + g3}

oA qlHG192
R — ENL NG A BraNis 91960 mAYA + 0HI93(967a + 9570)] + @a}
HA g1tHq192 ’
II NI
S;* = *k . ) [‘t'* = ‘*/* . ?
AV py py (A + py)
where,

7
90 = (Brage + Bustiw) ( H%) ;

i=4

¢ = louns (Vs + 96) + 9496) N7y + 92946,
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¢ = {BuaXiysloma(ya + 97) + 9597] + 93959781}
03 = 9697(Brspr(0nAgs + 0H193) + 92940 HABH A,

Q1 = 91960 aYA(Brage + Brusiie) + 930m1Buspn(geva + 957.),

with, g¢ = & + g + ¢y and g7 = py + Ya.
Substituting the expressions for I}, and I}, in (3.30) into the equation for A

in (3.29), and simplifying, gives

A3 (aoAg; + aa)
Mo

A = : (3.31)

where,

ao = Baa{oninagsloma(va + g7) + 9597) + o a&(oaiviba + 9a9697)},

a1 = gegr{Britm(onigs(gs + &) + 0ralga] + oHABHAE G294}

Furthermore, substituting the equation for I in (3.30) into the equation for A}, in

(3.29) gives

oo PbeB Uy Ay

= . 3.32
W T O + ) 332

Finally, solving for A{* from (3.32) and substituting the result into (3.31), and sim-
plifying, shows that the non-zero equilibria of the model (3.27) satisfy the following

quadratic

N5, + X, + =0, (3.33)
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with,

co = boByv Buapaivlomiomayiva + 9697(930m7 + gaoma)]

+ 1y Buapapvioma(ya + g7) + g5971{b2Bvomsiings + pvgi[oms (Vs + g6) + 9196) }

5
¢ = Brttugegrllip, ( H gi) (1-R3).

=1

The components of the positive equilibrium (or equilibria) of the reduced model
(3.27) can then be obtained by solving for Aj;; in (3.33), and substituting the result
in the steady-state expressions in (3.30). Furthermore, it follows from (3.33) that
the coefficient ¢q is always positive and ¢y is positive (negative) if Ry is less than

(greater than) unity. These results are summarized below.

Theorem 3.4. The reduced model (3.27) has a unique endemic equilibrium whenever

Ro > 1.

Numerical simulations of the model (3.27), depicted in Figure 3.4, show convergence
to an endemic equilibrium when Ro > 1 (suggesting that the unique EEP of the

reduced model (3.27) is asymptotically stable when it exists).

3.4 Effect of Age-structure

The effect of age-structure on the dynamics of the age-structured model (3.16) will
now be qualitatively assessed by comparing its dynamical features with those for
the equivalent model with no age structure. The equivalent model with no age-
structure, obtained by setting Sy = Sys+ Sga, Ex = Egs+ Ega, Iy = g5+ 1ga,
Ry = Ryj+ Rya, so that (Ny = Sy + Ep +Ig+ Ry), g =1, By = Buy+ Bua,
og =0ps+oga, Yu =Yus+¥ua, 0g =0gs +0ma, § =0 and yg = ygs + yga in

(3.16), is given by
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dSy baBr Ly

— =11 Ry — Sy — pupS

0t g+ YuRy Ny H — MHOH,
dEy  bofulv

- Sy — E

I Ny m— (og + pr) By,

dl

d_f =ougEg — (va + pu + 0u) 1w,

(3.34)

dRy
ek Yulg — (Yu + pu)Ra,

dSy baBv(NEu + In)

— =1y — Sy — uy S

di 14 Ni VvV = Hvov,

dly — bfv(nEn + In)

= Sy — uyly.
di Ny vV — pviy
The DFE of the model (3.34) is given by
IT IT
501 = (S;D E}k'—la IE) R}kqv S;k/a II*/) = (_Ha 07 07 07 _Va 0) )
129%4 124%
and the associated reproduction number is given by
Ro1 = vV Rvo Ruor, (3.35)

where,

~ baBm My ppbBvn(ye + 6 + pu) + oml

Ryo = and  Rpo = .

[ Wrpy(on + pr) (v + 0m + prr)

It can be shown (using the approaches in Sections 3.3 and 3.3.2) that the DFE of
the model (3.34) is LAS if Ro; < 1, and that the model (3.34) undergoes backward

bifurcation whenever the associated backward bifurcation coefficient, a, given by

1
- J
a 91 (L v g2gs )2 { wlgs(oups + npa) + ps + o yaniy]

(3.36)
— prloayapvpo + ga(bifvpr + NVPZ)]};

is positive. In (3.36),
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po =¥y + v + o, p1 = (pan)® + o3 + mym,

pe = on(3um + 20 +vm) + nlve2um + va) + pal,
p3 = 201 By e + pv 20 (1 + 1) — gol,

pa = biByndu + 20(ya + pr)),

ps = v (2pm — 92)[2(ve + pr) + Om].

It should be mentioned that, as in the case of the age-structured model (3.16), the
backward bifurcation property of the reduced model (3.34) disappears whenever the
disease-induced mortality rate (0p) is set to zero. In particular, setting ég = 0 (i.e.,
Ny = E) in model (3.34), it can be shown that the associated backward bifurcation

HH
coeflicient reduces to:

—HH
) b <0.
' 91(Mr v 9293)° loavapvpo + 9a(b1Bypr + pvp2)]

Hence, it follows, from Theorem 4.1 of [11], that the reduced model (3.34) will not
undergo backward bifurcation when 6y = 0. Furthermore, the following Lyapunov

function

_ Iy peprbe By (ngs + UHJ)EH N Iy g be By

F >
Mgy Ro19294 g pyRo194

IH + [Va

can be used to prove the GAS property of the DFE, £y, of the model (3.34), for the
case when 7%01 = Ro1lsy=0 < 1. Thus, in summary, the analyses in Section 3.4 show
that the age-structured model (3.16), and its equivalent model (3.34) without age-
structure, have the same qualitative dynamics with respect to the phenomenon of

backward bifurcation and the local and global asymptotic stability of the associated
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DFE.

The two models, (3.16) and (3.34), will now be compared in terms of the dynamics
of their corresponding endemic equilibrium points. Let & = Sy, B, Iy, Ry, Sy, IYY)
represents an arbitrary endemic equilibrium of the reduced model (3.34) with §y =

Yy = n = 0. Furthermore, let

prrba B I3
Iy

prba By If

)\** —
H HH )

and AJ = (3.37)

be the force of infection for susceptible juveniles, adults and mosquitoes at steady-
state, respectively. Solving the equations of the reduced model (3.34), with 6y =

vy =n =0, at steady-state, gives:

SH = e H — Kok ’
A+ 1w (N5 + p) (o + )
[ on A n
R Yaou Ny g
T Wn + ) N+ pw) (on + p) (v + pm)’
Kok HV Hk )\*V*HV
Ve e
AV + 1y v (A + )

Substituting (3.38) into (3.37) shows that the positive endemic equilibrium of the

model (3.34), with 0y = ¥y = n = 0, satisfy

e Lm(om + ) + (v + )| (Rop — 1)
T Bvowbopv i + (om + pm) + (vir + )’

(3.39)

where Ro2 = Ro1|sy=pn=y=0- Hence, the model (3.34), with 0y =1y =n =0, has a
unique endemic equilibrium (obtained by substituting (3.39) into (3.38)) whenever

Ro2 > 1. Define the following invariant region for the model (3.34):

45



II IT
DQ: {(SH7EH7[HaRH7‘SV7[V) ERE_SH‘{'EH“‘[H—{—RH < ILL—H, SV+IV§ lu—v}
H \%

Let,

DO = {(SH7EH7]H7RH75V7IV) € Ri : EH :[H — [V — 0}

Theorem 3.5. The unique endemic equilibrium of the reduced model (3.34), with
o =g =n=0, is GAS in Dy\Dy whenever Roy > 1.

The proof of Theorem 3.5 is given in Appendix D.

In summary, it follows from the analyses in Sections 3.3 and 3.4 that both the age-
structured model (3.16) and the reduced model (3.34), without age-structure, have a
unique endemic equilibrium whenever their associated reproduction number exceeds
unity. The models (3.16) and (3.34) have essentially the same qualitative properties
with respect to the existence of their associated unique endemic equilibrium points,
as well as with respect to (local and global) asymptotic stability of the associated
DFE and the backward bifurcation property observed in malaria transmission dy-
namics. Consequently, it is shown, in this chapter, that adding age-structure to the
basic malaria transmission model (3.34) does not alter its qualitative dynamics with
respect to the existence and stability of equilibria, as well as with respect to its

backward bifurcation property.

3.5 Numerical Simulations

The single-strain age-structured model (3.16) is simulated, using the parameter val-
ues given in Table 3.3 (unless otherwise stated), to assess the impact of various

non-pharmaceutical anti-malaria intervention (namely, mosquito-reduction and per-
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sonal protection strategies (against mosquito bite)) on the transmission dynamics of
malaria in a community. In this thesis, mosquito-reduction measures are modelled
using the parameters Ily, py and by. While a reduction in Ily signifies effective lar-
vaciding (i.e. spraying mosquito breading sites using suitable chemical agents, such as
Israelensis [25]), reduction in the average lifespan of mosquitoes (/%V) is achieved by
effective adulticiding (such as by the use of DDT [51, 69]). Similarly, the use of per-
sonal protection against mosquito bites (by using suitable insect repellents and insec-
ticide treated bed nets (ITNs) [50, 69]) is modelled by the parameter by (a reduction
in by implies effective personal protection against mosquito bites). In these simula-
tions, the following initial conditions, based on the population of Kenya [64], are used:
(S15(0), Sa4(0), Ens(0), Ea(0), I115(0), Ima(0), R (0), Rra(0), Sv(0), Iv(0)) =
(18,684,000, 18, 684, 000, 6, 000, 600, 0, 0,0, 0, 2,0000, 1,000, 0). Furthermore, the as-
sociated demographic parameters, I1; and py, are chosen such that the total popu-
lation, at the DFE (N}, = E—;), is 38 million (the current population of Kenya [64]).
Figure 3.5A depicts the cumulative number of new cases of infection for juveniles
for various values of the average lifespan of mosquitoes. The figure shows a decrease
in the cumulative number of new cases with decreasing mosquito lifespan (as ex-
pected). Similar results are obtained for adults (Figure 3.5B). Plots for cumulative
mortality, as a function of average lifespans of mosquitoes, are depicted in Figures
3.6, where it is shown that mortality decrease with decreases mosquito lifespan. It
is worth noting, from Figure 3.6, that the cumulative mortality in juveniles is higher
than in adults. This is in line with the fact that malaria-induced mortality is higher
in juveniles than in adults [69]. Furthermore, the decrease in mortality is more
pronounced in adults than in juveniles (this may be due to higher initial values of
infected juveniles used in the simulations [69]). Unlike in Figure 3.6B, Figure 3.6A
shows that a decrease in mosquito lifespan has marginal effect on the cumulative

malaria-induced mortality in juveniles.
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The effect of larvaciding is monitored by simulating the model (3.16) with vari-
ous values of Ily,. The results obtained, depicted in Figure 3.7, show a decrease in
the cumulative number of new cases in juveniles (Figure 3.7A) and adults (Figure
3.7B) for decreasing values of IIy,, as expected. A contour plot of the reproduction
number R, as a function of the mosquito biting rate (by) and average mosquito lifes-
pan (I%V), is depicted in Figure 3.8. As expected, the plot shows a decrease in R
values with decreasing values of the average lifespan and biting rate of mosquitoes.
For instance, if the use of insect repellents and ITNs in the community reduces the
mosquito biting rate to by = 2, malaria will be effectively controlled (or eliminated)
in the community if the use of mosquito-reduction strategies can reduce the average
lifespan of mosquitoes to about 10 days (since, in this case, R; < 1; and, in line
with Theorem 3.3, the DFE of the model (3.16), with dg; = dga =¥y =14 =0, is
globally-asymptotically stable for this case).

It should be mentioned that the simulation results discussed in this chapter are
subject to the uncertainties in the estimates of the parameter values (tabulated in
Table 3.3) used in the simulations. The effect of such uncertainties on the results
obtained can be assessed using a sampling technique, such as Latin Hypercube Sam-

pling [7, 41].

3.6 Summary of the Chapter

A new, single-strain age-structured, deterministic model for the transmission dynam-
ics of malaria in a community is designed and rigorously analysed in this chapter.
Some of the main mathematical and numerical simulation results obtained are sum-

marized below:

(i) the model (3.16) undergoes the phenomenon of backward bifurcation at Ry = 1

whenever a certain inequality holds;
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(i)

(iii)

the backward bifurcation property of the model (3.16) can be removed if the
disease-induced mortality in humans is set to zero (dy; = dga = 0). That is,
it is shown in this chapter that the backward bifurcation property of the model

(3.16) is caused by malaria-induced mortality in humans;

it is shown that the disease-free equilibrium of the model (3.16) is globally-
asymptotically stable, in the absence of disease-induced mortality and loss
of infection-acquired immunity, whenever the associated reproduction number

(R1) is less than unity;

a reduced version of the model (3.16) (in the absence of disease-induced mor-
tality and transmission by exposed individuals), given by (3.27), is shown to
have a unique endemic equilibrium whenever its associated reproduction num-
ber (Ry) exceeds unity. Numerical simulations suggest that this equilibrium is

asymptotically-stable;

the equivalent model without age-structure, given by (3.34), exhibits the same
essential qualitative dynamics as the age-structured model (3.16), and its unique
endemic equilibrium is shown to be globally-asymptotically stable whenever its
reproduction number (Rg2) is greater than unity. Thus, this study shows that
adding age-structure to the basic model for malaria transmission in a commu-
nity does not alter the qualitative dynamics of the basic model (with respect to
the existence and asymptotic stability of its equilibria, as well as with respect

to its backward bifurcation property);

numerical simulations of the model (3.16) show that the cumulative number of
new cases of infection and malaria-induced mortality increase with increasing

average lifespan and birth rate of mosquitoes.
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Variable | Description

Suy Population of susceptible juveniles
SHA Population of susceptible adults

Eyy Population of latently-infected juveniles
Ea Population of latently-infected adults
Iy Population of symptomatic juveniles
Iya Population of symptomatic adults
Ry Population of recovered juveniles
Ra Population of recovered adults

Sy Population of susceptible mosquitoes
Iy Population of infected mosquitoes

Table 3.1: Description of the state variables of the single-strain model (3.16).
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Parameters | Description

)
B

ﬁHA

By

120: 4
123%

OHJ

OHA

Vg
VA
Vg
Va

Average per capita biting rate of mosquitoes
Probability of infection of susceptible juveniles per mosquito bite
Probability of infection of susceptible adults per mosquito bite

Probability of infection of susceptible vectors per mosquito bite
of the infected host

Natural death rate of humans
Natural death rate of mosquitoes

Rate of development of clinical symptoms of malaria for
latently-infected juveniles

Rate of development of clinical symptoms of malaria for
latently-infected adults

Disease-induced mortality rate for juveniles
Disease-induced mortality rate for adults
Recovery rate of juveniles

Recovery rate of adults

Rate of loss of natural immunity for juveniles
Rate of loss of natural immunity for adults
Maturation rate for juveniles

Modification parameter for reduction in infectiousness of
latently-infected humans

Recruitment (birth or immigration) rate of juveniles

Birth rate of adult mosquitoes

Table 3.2: Description of parameters of the single-strain model (3.16).
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Parameter | Value Reference
by 0.5 day* 23]
Buy 0.181 23]
Bra 0.181 23]
By 0.8333 [45]
Lt 0.00004 day " [45]
fy 0.05 day™! [45]
ony 0.10333 day* [13]
oHA 0.08333 day* [13]
Smy 0.0003454 day' | [1]
Sma 0.0000174 day' | [1]
o 0.0014 day™! 1]
Ya 0.0035 day ! [1]
oy 0.0027 day ™' 1]
Va 0.0027 day ™' [1]
3 0.00000986 day ' | [1]
n 0,1) Variable
I1, 1520 day* Assumed
Ty, 500 day~! Assumed

Table 3.3: Parameter values for the single-strain model (3.16).
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Figure 3.1: Schematic diagram of the single-strain model (3.16).
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Figure 3.2: Backward bifurcation diagram for the single-strain model (3.16), showing
the total number of symptomatic individuals (juveniles and adults) as a function of
the backward bifurcation parameter 55;;,. (A) Symptomatically-infected juveniles
(Igs). (B) Symptomatically-infected adults (/g4). Parameter values used are as
given in Table 3.3, with: II; = 100, Iy, = 20000, pug = 0.062, puy = 0.6, dyy = 0.9,
opa =07, 6 =%, 7 =1,7a =1, 055 = 06, oga = 0.5, ¥; = 0.8, b4 = 0.7,
Bra = 0.0001, By = 0.1867, n = 0, by = 1 (so that, a = 0.0003225760046 > 0 and
Ro=1).
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Figure 3.3: Simulations of the single-strain model (3.16), showing the total number of
infected individuals as a function of time, using various initial conditions. Parameter
values used are as given in Table 3.3, with II; = 1520, II,, = 1000, py = 2%, by =
0.00004, ¢ = 0.00000986, v; = 0.0014, v4 = 0.0035, o; = 0.10333, oz = 0.08333,
Yy =14 =05 =0ga=0, fya=0.1Pr; =02, By =0.6,n =0 and by = 0.8 (so
that, Ry = 0.6862).
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Figure 3.4: Simulations of the single-strain model (3.27), showing the total number of
infected individuals as a function of time, using various initial conditions. Parameter
values used are as given in Table 3.3, with II; = 1520, II;, = 1000, puy = 2%, pyg =
0.00004, ¢ = 0.00000986, v; = 0.0014, v4 = 0.0035, oy = 0.10333, o4 = 0.08333,
IDJ iQﬂA = 6HJ = 6HA = 0, BHA =0.1 /BHJ :0.2, ﬂv = 09, 77:0 and bQ =3 (SO
that, Ry = 3.1518).
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Figure 3.5: Simulations of the single-strain model (3.16), showing the cumulative
number of new cases for juveniles and adults as a function of time, for various values
of average lifespan of mosquitoes (;%v> (A) Juveniles. (B) Adults. Parameter values
used are as given in Table 3.3, with I, = 1520, II,, = 500, uyg = 0.00004, 6g; =
0.0034, 574 = 0.00034, £ = 0.00000986, v; = 0.0014, v4 = 0.0035, 055 = 0.10333,
oga = 0.08333, ¢; = 0.0027, ¥4 = 0.0027, Bya = 0.2 By; = 0.3, By = 0.8333,
n =0 and by = 0.5.
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Figure 3.6: Simulations of the single-strain model (3.16), showing the cumulative
mortality for juveniles and adults as a function of time, for various values of average
lifespan of mosquitoes (‘%V) (A) Juveniles. (B) Adults. Parameter values used are
as given in Table 3.3, with II; = 1520, IIy, = 500, puy = 0.00004, 65, = 0.0034,
d0ga = 0.00034, & = 0.00000986, v; = 0.0014, v4 = 0.0035, og; = 0.10333, oga =
0.08333, 1y = 0.0027, ¥4 = 0.0027, Bya = 0.2 By = 0.3, By = 0.8333, n = 0 and
by = 0.5.
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Figure 3.7: Simulations of the single-strain model (3.16), showing the cumulative
number of new cases for juveniles and adults as a function of time, for various values
of birth rate of adult mosquitoes (IIy/). (A) Juveniles. (B) Adults. Parameter values
used are as given in Table 3.3, with II; = 1520, py = 1—14, pr = 0.00004, o4, = 0,
d0ga =0, & =0.00000986, v; = 0.0014, v4 = 0.0035, oy = 0.10333, oy4 = 0.08333,
wj = O, wA - 0, BHA =0.2 6[{] = 03, BV = 08333, n= 0 and bg = 0.5.
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Figure 3.8: Simulations of the single-strain model (3.16), showing a contour plot of
R1 as a function of the biting rate (by) and average lifespan () of mosquitoes.
Parameter values used are as given in Table 3.3, with II; = 1520, I, = 300, puy =
0.00004, dgy = dpga = 0, & = 0.00000986, v; = 0.0014, v4 = 0.0035, og; = 0.10333,
oga = 0.08333, ¢¥; = 0.0027, ¢4 = 0.0027, Bya = 0.2 By = 0.3, By = 0.8333 and
n = 0.
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Chapter 4

Age-structured Treatment Model

4.1 Introduction

In this chapter, the single-strain model in Chapter 3 is extended to assess the
community-wide impact of the use of anti-malaria drugs to treat individuals with
clinical symptoms of malaria. As stated in Chapter 1, various drugs are currently
being used to treat people infected with malaria (such as Aralen, Chloroquine,
Malaraquine and Nivaquine [6, 46]). The use of these drugs in the community,
some of which are administered in combinations (combination therapy), is known
to result in the emergence and transmission of drug-resistant malaria strain in the

community [6, 46]. Malaria drug resistance is attributed to factors such as [6]:

(a) spontaneous mutations that confer reduced sensitivity to a given drug or class

of drugs;

(b) treatment failure (due to incorrect dosing, non-compliance with duration of
dosing regimen, poor drug quality, drug interactions, poor or erratic absorption

and misdiagnosis etc.).

Anti-malaria drug resistance clearly poses great challenges to the global effort to

effectively control the spread of malaria (or to eradicate the disease) [6, 67]. Con-

60



sequently, it is important to study the qualitative impact of treatment (using the
currently-available anti-malaria drugs) on the transmission dynamics of malaria in a
population. To achieve this objective, the model in Chapter 3 will now be extended to

incorporate the dynamics of two strains of malaria (wild and drug-resistant strains).

4.2 Model Formulation

The age-structured treatment model for malaria is designed by splitting the to-
tal human population at time ¢, denoted by Ng(t), into the mutually-exclusive
sub-populations of susceptible juveniles (S;(t)), susceptible adults (Sa(t)), latently-
infected (asymptomatic) juveniles with the wild strain (F w(t)), latently-infected
(asymptomatic) adults with the wild strain (Eaw(t)), latently-infected (asymp-
tomatic) juveniles with the resistant strain (E;g(t)), latently-infected (asymptomatic)
adults with the resistant strain (E4r(t)), symptomatic juveniles with the wild strain
(Iyw(t)), symptomatic adults with the wild strain (Zaw(t)), symptomatic juve-
niles with the resistant strain (/;z(t)), symptomatic adults with the resistant strain
(Iar(t)), effectively-treated juveniles (77;(t)), effectively-treated adults (T'4(t)), re-

covered juveniles (R;(t)) and recovered adults (R4(t)), so that

Nu(t) = Sy(t) + Sa(t) + Eyw(t) + Eaw(t) + Es(t) + Eap(t) + Ly (t) + Lay(t)

+ 1yr(t) + Lar(t) + Ty (t) + Ta(t) + Ry(t) + Ra(t).

As in Chapter 3, individuals in the latently-infected classes (FE w, Faw, E g and
Esgr) are asymptotically-infected (and can transmit malaria infection to susceptible
mosquitoes).

The total mosquito population at time ¢, denoted by Ny (), is sub-divided into

the compartments of susceptible mosquitoes (Sy(t)) and mosquitoes infected with
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the wild (Viy(¢)) and resistant (Vz(t)) strains, so that

Ny (t) = Sv(t) + Vip(t) + Vr(2).

The population of susceptible juveniles is generated by the birth (or immigration) of
juveniles (at a rate I1;). Although vertical transmission of malaria can occur (see [22]
and some of the references therein), it is assumed, in this study, that all children are
born susceptible (so that there is no vertical transmission of malaria from mother-
to-child). This population is increased by the loss of infection-acquired immunity by
recovered juveniles (at a per capita rate 1;). It is decreased by infection, following

effective contacts with infected mosquitoes, at a rate A;, given by

Ay = 6Jbl(NV7N1;I\2(VW+6RVR). (4.1)
1%

In (4.1), B; is the probability of infection of susceptible juveniles per bite by an
infected mosquito and b;(Ny, Ny) is the per capita biting rate of mosquitoes on
susceptible humans (juveniles and adults) per unit time. Furthermore, 0z > 0 is
a modification parameter accounting for the possible variability of infectiousness
of mosquitoes infected with the resistant strain (Vz) in comparison to mosquitoes
infected with the wild strain. It is further decreased by maturation to adulthood (at a
rate &; as in Chapter 3, this rate is assumed to be same for all humans compartments)
and natural death (at a rate py; it is assumed that natural death occurs in all human

epidemiological classes at this rate). Thus,

dS
=M+ Ry = XSy = (€4 pm) Sy (42)
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The population of susceptible adults is generated by the maturation of susceptible
juveniles (at the rate &) and by the loss of infection-acquired immunity by recovered

adults (at a rate 14). It is decreased by infection at a rate A4, given by

_ Babi(Ny, Ng)(Viv + 0rVE)
Ny

A4 , (4.3)

where (4 is the probability of infection of susceptible adults per bite by an infected

mosquito. This population is further decreased by natural death. Hence,

dS
d—tAzf,S'J—i—wARA—)\ASA—,uHSA- (4'4)

The population of latently-infected juveniles with the wild (resistant) strain is gen-
erated by the infection of susceptible juveniles with the wild (resistant) strain at the
rate 5;01(Nv, Ng) (0rBsb1(Ny, Ny)). It is decreased by the development of clinical
symptoms of malaria at a rate o (0sg), maturation to adulthood (at the rate )

and natural death, so that

dE bi(Ny, Ng)V;
diw _ b 1 XTV i) VS, — (osw + € + ) Egw, (4.5)

dE OrBsb1(Nyv, Ng)V,
dZR — RBJ 1(N“// H) RSJ— (O'JR—Ff‘FMH)EJR- (46>

Furthermore, the population of latently-infected adults with the wild (resistant)
strain is generated by the maturation of latently-infected juveniles with the wild

(resistant) strain (at the rate &) and by the infection of susceptible adults with the
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wild (resistant) strain at the rate Sab1(Ny, Ng) (OrBabi(Nyv, Ng)). It is diminished
by the development of malaria symptoms at a rate oaw (04r) and natural death.

Hence,

dE by(Ny, N Vi
W eEw + fabi(Nv, Nu) VS, — (oaw + por) Eaw, (4.7)
dt Ny

dE 0B.aby(Nv, Ny )V,
d?R =8 R+ rfa I(N‘; ) RSA — (0ar + pu)Ear. (4.8)

The population of symptomatic juveniles with the wild strain is generated when
latently-infected juveniles with the wild strain develop clinical symptoms of malaria
(at the rate oy ). It is decreased by treatment (at a rate 7;), maturation to adult-
hood (at the rate ), natural recovery (at a rate 7;), natural death and disease-

induced death (at a rate §;). Hence,

dI yw
dt

:O'JwEJW—(TJ+5+’YJ+MH—|—5])[J{/V. (49)

The population of symptomatic juveniles with the resistant strain is generated by the
development of malaria symptoms by latently-infected juveniles with the resistant
strain (at the rate o) and by the development of resistance by treated symptomatic
juveniles (at a rate (1 — f;)7y, where 0 < f; < 1 is the fraction of symptomatic
juveniles who are effectively-treated). It is decreased by maturation (at the rate
€), recovery (at a rate ¢17;, where ¢; > 0 is a modification parameter accounting
for the possible variability of the recovery rate of symptomatic juveniles with the

resistant strain in comparison to symptomatic juveniles with the wild strain), natural
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death and disease-induced death (at a rate #;0;, where ¢; > 0 is a modification
parameter accounting for the possible variability of the mortality rate of symptomatic
juveniles with the resistant strain in comparison to symptomatic juveniles with the

wild strain). Hence,

dljr
dt

=osrEjr+ (1 — fr)milyw — (4 017y + pa + 0105) 1 k. (4.10)

Similarly, the population of symptomatic adults with the wild strain is generated at
the rates £ and o4, and reduced by treatment (at the rate 74), natural recovery
(at a rate v4), natural death and disease-induced death (at a rate d4), so that (it
should be mentioned that §; > 4, since malaria mortality rate is higher in children

than in adults [14, 69]),

dl aw
dt

=E&Lyw +oawEaw — (Ta+va+ pg +04)Law. (4.11)

Furthermore, the population of symptomatic adults with the resistant strain is gen-
erated at the rates £, o4r and (1 — f4)74, and reduced by recovery (at a rate ¢oy4,
where ¢o > 0 is a modification parameter accounting for the possible variability of
the recovery rate of symptomatic adults with the resistant strain in comparison to
symptomatic adults with the wild strain), natural death and disease-induced death
(at a rate 0304, where 6 > 0 is a modification parameter accounting for the possible
variability of the mortality rate of symptomatic adults with the resistant strain in

comparison to those with the wild strain), so that,

dlar
dt

=&+ 0arEar + (1 — fa)Talaw — (d27a + par + 0204) LaR- (4.12)
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The population of effectively-treated juveniles is generated at the rate f;7;, and
decreased by maturation (at the rate £), recovery (at an increased rate ¢37;, where
¢3 > 1 is a modification parameter accounting for the assumed increase in the
recovery rate of treated juveniles in comparison to the recovery rate of untreated
symptomatic juveniles [60]), natural death and disease-induced death (at a rate 630,
where 03 < 1 is a modification parameter accounting for the assumed reduction in
mortality rate of treated symptomatic juveniles with the wild strain in comparison

to untreated symptomatic juveniles [60]), so that,

Ty

o forilow — (§+ d3vs + pm + 636) T (4.13)

Similarly, the population of effectively-treated adults is generated at a rate f474 and
by the maturation of treated juveniles (at the rate £). It is decreased by recovery (at
a rate @44, where ¢4 > 1 is a modification parameter accounting for the assumed
increase in the recovery rate of treated symptomatic adults with the wild strain in
comparison to untreated symptomatic adults), natural death and disease-induced
death (at a rate 6,04, where 6, < 1 is a modification parameter accounting for the
reduced mortality rate of treated adults in comparison to untreated symptomatic

adults). Thus,

dT's

g = faralaw + €15 = (¢ava + g + 0204)Ta. (4.14)

The population of recovered juveniles is generated by the recovery of symptomatic
juveniles with the wild strain, resistant strain and effectively-treated juveniles (at the
rates 7y, @177 and ¢37v;, respectively). This population is decreased by the loss of

infection-acquired immunity (at the rate ¢;), maturation (at the rate ¢) and natural
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death. Thus,

dR;

T Yilow + O1v5lir + ¢3v,T — (Vg + €+ pu)Ry. (4.15)

Similarly, the population of recovered adults is generated by the maturation of re-
covered juveniles (at the rate &), recovery of symptomatic adults with the wild and
resistant strains as well as the recovery of effectively-treated individuals (at the 74,
Goya and @44, respectively). It is decreased by the loss of infection-acquired immu-

nity (at the rate ¢;) and natural death. Thus,

dR

T ERy + valaw + povalar + GavaTa — (Va + pm)Ra. (4.16)

The population of susceptible mosquitoes is generated by the birth of adult mosquitoes
(at a per capita rate Ily ). It is reduced by infection, following effective contacts with

infected humans, at a rate Ay, where

)\V _ ﬁvbg(Nv,NH)[[JW }IAW_FUR([JR_FIAR)]' (417)
H

In (4.17), By is the probability of infection of a susceptible mosquito per bite on an
infected human and by(Ny, Ny ) is per capita biting rate of susceptible mosquitoes
on infected humans. Furthermore, the parameter ng > 0 accounts for the possible
variability of the infectiousness of symptomatic humans with the resistant strain in
comparison to symptomatic humans with the wild strain. This population is further

decreased by natural death (at a rate uy ). Hence,
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as
d_tv = HV — )\st — ,ust. (418)

The population of infected mosquitoes with the wild strain is generated by the infec-
tion of susceptible mosquitoes with the wild strain (at the rate Sy by(Ny, Ny)) and

decreased by natural death (at the rate uy ). Thus,

A% ba( Ny, Ny)(I I
wo_ Bvba(Nv, Nu)(Lyw + AW)SV — v Viy. (4.19)
dt Ny

Similarly, the population of infected mosquitoes with the resistant strain is gener-
ated by the infection of susceptible mosquitoes with the resistant strain (at the rate

nrPvba(Ny, Ny)) and decreased by natural death (at the rate uy ). Thus,

dVg _ NrBvb2(Nv, Ny )Ly + Iar)
dt Ny

Sy — uv V. (4.20)

As in Chapter 3, the following conservation law of mosquito bites must hold:

bQNV = bl(Nv,NH)NH7 (421)

so that,

bi(Ny, Ni)N.
Ny = i V’b )N, (4.22)
2

It follows, based on the above derivations and assumptions, and using (4.1) and (4.3)

68



with (4.22) in {(4.2), (4.4), (4.5), (4.6), (4.7), (4.8) }, that the age-structured model for
the transmission dynamics of the wild and resistant strains of malaria in a community
is given by the following deterministic system of non-linear differential equations (flow
diagrams of the model are depicted in Figures 4.1 and 4.2, and the state variables

and parameters of the model are described in Tables 4.1 and 4.2, respectively):

1S bo(Viy + ORV;
_J:HJ+¢JRJ_5J 2(Viw + O R)SJ—(5+MH)SJa
dt Ny
ds bo(Viv + 0RrV)
_A:€SJ+wARA_ﬁA 2(Viw + O R>SA_“HSA’
dt N
dFE bW
diw = BJ]\?stJ — (UJW + 5 + ,UH)EJW7
dE OrBrba V]
d;R = Rﬁ]‘\]/_: RSJ — (UJR +€+[1’H>EJR7
dE A%
AW B+ Paby LSu — (0w + o) Eaw,
dt Ny
dE OrBAbV
AR _ gEJR + MSA _ (UAR + ,UH)EARa
dt Ny
dl
thW =oywEyw — (TJ +&+vs+ pE +5J)[JW7
dl
d‘;R =orEr+ (1 = f)riliw — (§ + ¢1vs + pm + 616,) g, (4.23)
dl |
dAtW = £IJW + UAWEAW — (TA + YA + 199; 4 + 5A)IAW7
dl
djzR = 0ArEar +Elr + (1 — fa)Talaw — (d2va + pr + 0204) 4R,
dT
d_tJ = fJTJ[JW — (f + ¢3’7J + pug + 935J)TJ7
dT’
d_tA =Ty + faTalaw — (dava + pim + 0464) T4,
dR
d_tJ =vilow + 0175 LR + 0375 T — (V5 + &+ pu) Ry,
dR
d_tA =Ry +valaw + dovalar + dayaTa — (Va + pu)Ra,
d byl I I I
& 0y Byba[Lyw + Law + nr(Lir + AR)]SV — v Sy,
dt Ny
dVw — Bvba(Lyw + Law)
7 = NH SV ,UVVW7
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dVg _ NrBvba(Lir + Lar)
dt Ny

Sy — py Vk.

The two-strain age-structured malaria model (4.23) is an extension of the single-

strain age-structured malaria model (3.16), developed in Chapter 3, by including:

(i) the dynamics of the wild and resistant strains for humans and vectors (single

malaria strain was considered in the model (3.16));

(ii) compartments for treated individuals (7; and T}y).
Furthermore, the model (4.23) extends the two-strain malaria model in [23] by:

(i) adding age-structure (i.e., the dynamics of juveniles and adults in the commu-
nity);
(ii) adding the dynamics of exposed individuals;

(iii) adding the dynamics of recovered individuals.
The objective of this chapter is to address the following main questions:

(a) What are the main qualitative features of the two-strain age-structured malaria

model (4.23)7
(b) In particular, under what conditions can the disease persist, or be effectively-

controlled (or eliminated), from the community?

4.2.1 Basic properties

The following two results can be established using the approach in Appendix A and
Section 3.2.1.
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Theorem 4.1. Let the initial data be S;(0) > 0, S4(0) >0, E;u(0) >0, E;r(0) >
0, Eaw(0) > 0, Ear(0) > 0, Iyw(0) > 0, I;r(0) > 0 Law(0) > 0, 14r(0) > 0,
R;(0) >0, Ra(0) >0, T;(0) >0, T4(0) >0, Sy(0) > 0 and Viy(0) > 0, Vz(0) > 0.
Then the solutions (S;(t), Sa(t), Eyw(t), Ejr(t), Eaw (t), Ear(t), Liw(t), Iir(t),
Law (8), Lar(t), By (1), Ra(t), T(t), Ta(t), Sv(t), Vir(t), V() of the model (4.23),

with positive initial data, will remain positive for all time t > 0.

Lemma 4.1. The closed set

D = {(Ss,54, Esw, Esr, Eaw, Ear, Liw, Lir, Law, Lar, Ry, Ra, Sv, iy, V) € R :

NH S &7NV S &
193; ) HH

(4.24)

is positively-invariant and attracting for the model (4.23).

4.3 Stability of DFE

The DFE of the two-strain model (4.23) is given by,

_ * * * * * * * * * * * * * * * * *
EOT - (SJ>SAﬂEJW>EJR7EAW7EAR7]JW7IJvavafAPnTJﬂTA? J?RA75V>VW7VR)

B (( HJ o;

, ,o,o,o,o,o,o,o,o,o,o,o,o,&,0,0>.
E+pm) pa(§+ pm) Ly

The associated non-negative matrix F (of new infection terms) and the matrix V (of

the transition terms) are given, respectively, by:
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_ . _
b25JSJ
0000 0 0 0 0 00 —— 0
N*
H
Orb23;57
0000 0 0 0 0 00 0 E—
N*
H
*
baBaS%
0000 0 0 0 0 0o ——= 0
N*
H
0000 0 0 0 0 00 eRbQﬂASZ
F = N}, ,
0000 0 0 0 0 00 0 0
0000 0 0 0 0 00 0 0
0000 0 0 0 0 00 0 0
0000 0 0 0 0 00 0 0
0000 0 0 0 0 00 0 0
0000 0 N 0 0 . 0 00 0 0
b25VSV bQBVSV
0000 ——— 0 _— 00 0 0
N N
H H
* *
nrb2 By Sy nrb2 By Sy
0000 0 _— 0 — 00 0 0
N N;
L H H i
and,
- g2 0 0 0 0 0 0 0O 0 0O 0 019
0 g3 0 0 0 0 0 0O 0 0 0 O
£ 0 g 0 0 0 0 00 0 0 0
0  —£ 0 95 0 0 0 00 0 0 0
—Oo W 0 0 0 g6 0 0 0O 0 0 0 O
V . 0 —O0OJR 0 0 —(l—fJ)TJ ar 0 0 0 0 0 0
- 0 0 —0 AW 0 — 0 g8 0O 0 0O 0 O )
0 0 0 —oar 0 & —(1-=fa)Tago 0 0 0 O
0 0 0 0 —f;ry 0 0 0go 0 0 0
0 0 0 0 0 0 —fata 0 —£g11 0 0
0 0 0 0 0 0 0 0 0 O py O
(] 0 0 0 0 0 0 0 0 0 0 pyd

where, g1 =+ pm, 9o = oyw + &+ pm, 93 = 0ur +§ + pu, 912 = Oaw + pm, g5 =
Oart1m, g6 = Ty +HEFV T 1a+04, g1 = E+O1Y+pa+0107, gs = Ta+7ya+ i +04,
9o = G274 + prg + 0204, gio = £+ @37 + pu + 0305, 911 = Qava + pu + 0404,
G2 =Yy + &+ pm, 13 =Ya+ pn and Nj = %

The reproduction number, associated with the DFE (&yr) of the model (4.23),
denoted by Rr, is then given by Ry = p(FV™1). It follows from [65] that Ry =

max{Rw, Rr}, where
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Ruy = \/b%BVHVNH{BJMH[UJWg4(98 + &) + oawége] + @‘UAW@?‘%}, (4.25)

;1% 9192949695

and,

Rr = \/bgﬁvﬂveRnRMH{ﬁJuH[UJR95(99 +&) +oargr] + 5,4@1359397}‘ (4.26)

17143 6193959799

The threshold quantity, Ry, represents the average number of new malaria infections
generated by a single infected individual (or infected mosquito) in a completely-

susceptible population. The result below follows from Theorem 2 in [65].

Lemma 4.2. The DFE, Eyr, of the model (4.23) is LAS if Ry < 1, and unstable if
R > 1.

In the absence of treatment (i.e., 73 = 7=0), Ry reduces to Ror = Rr |n=r=0=

max{Row, Ror}, where,

Row = 30y Iy e { Bapie [0 sw 9a(gos + &) + oawos] + Baoaw€gagos } (4.27)
ow = , .
HJN%/919294906908
and,
Ron = b3 0vILy Ornrpa{Bpulorrgs (9o + &) + 0arEgr] + Baoarfgsgr} (4.28)
HJM%/9193959799 7

with, gos = & + vy + pg + 05 and gos = Ya + pg + 04. It is worth stating that the
quantity Ror, defined above, is the same as the reproduction number (Rg) for the

single-strain, treatment-free, age-structured model (3.27), given by (3.28). It should
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be recalled that, as in the model (4.23), no transmission by exposed individuals was

assumed in the model (3.27). That is, the parameter 7 is set to zero in both models.

4.3.1 Backward bifurcation

Theorem 4.2. The two-strain model (4.23) undergoes backward bifurcation at Ry =

1 whenever the Inequality (E-3), given in Appendiz E, holds.

The proof of Theorem 4.2, based on using Centre Manifold theory, is given in Ap-
pendix E. Thus, like the single strain model (3.16), the two-strain model (4.23) also

undergoes backward bifurcation (under certain conditions).

Non-existence of backward bifurcation

As in Chapter 3, consider the model (4.23) with the associated disease-induced mor-

tality rates, d; and d 4, set to zero. This gives:

dNp(t)
dt

=1y — paNg(t),

so that Ny (t) — B—; as t — oo. It can be shown, by substituting Nj; = E—; into the
model (4.23), that the associated bifurcation coefficient, a, given by equation (E-2)

in Appendix E, reduces to

0 2024011
11,

{Bs0rw1v4w17 + BaORrwovswir + Py [wisvizn(ws + wi)]} < 0, (4.29)

where wy, wq, ws, Wiy, Wi, W7, V4, Vg and vy are eigenvectors of the linearized
system of the model (4.23), and are defined in Appendix E (noting that the eigen-
vectors wy, wy and wis are negative). Hence, these analyses show, as in Chapter
3, that the two-strain model (4.23) does not undergo backward bifurcation in the

absence of malaria-induced mortality in humans.
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4.3.2 Global asymptotic stability of DFE: special case

The absence of backward bifurcation in (4.23) when 0; = 04 = 0 suggests that the
DFE of the model (4.23) may be globally-asymptotically stable under this setting.
Let 0; = 04 = 0. Furthermore, for mathematical convenience, let ¢; = 14 = 0
(that is, a special case of the two-strain model (4.23), in the absence of mortality in
humans (d; = 4 = 0) and loss of infection-acquired immunity (¢»; = ¥4 = 0), is

considered). Define:

Dy ={(Sy, 54, Eyw, Esr, Eaw, Eag, Liw, Ijr, Law, Lar, T, Ta, Ry, Ra, Sv, Vi, Vi)

€D:S; <S5, 84 < 5% Sy < Sh}
(4.30)

The following result can be shown (using, for example, the approach in Section 3.3.3).

Lemma 4.3. The region Dy is positively-invariant for the model (4.23) with §; =

We claim the following.

Theorem 4.3. The DFE, Eyr, of the model (4.23), with 05 = d4 =1¥; =14 =0, is
GAS in Dy whenever Ry = Ry |5,=5,=0 < 1.

The proof of Theorem 4.3 is given in Appendix F. The epidemiological consequence
of Theorem 4.3 is that malaria will be effectively-controlled (or eliminated) from the
community if the associated reproduction threshold (R;) can be brought to (and
maintained at) a value less than unity. In other words, this study shows that if the
use of anti-malaria drugs in the community can lead to Ry < 1, then malaria can
be effectively-controlled (or eliminated) from the community. Figure 4.3 depicts the
solution profiles of the model (4.23) for the case when Ry < 1, showing convergence

to the DFE (&yr) (in line with Theorem 4.3).
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4.4 Existence and Stability of Boundary and En-
demic Equilibria: Special Case

In this section, conditions for the existence of positive equilibria of the model (4.23)
will be explored for the special case with no disease-induced mortality (0, = 04 = 0).

The possible non-trivial equilibria of the model (4.23), with §; = 4 = 0, are:

() resistant strain-only boundary equilibrium (an equilibrium of model (4.23) in

the absence of the wild strain in the community), denoted by Eg;

(ii) low-endemicity equilibrium (an endemic equilibrium of model (4.23) for the

case where the resistant strain is not transmitted), denoted by &p;

(iii) high-endemicity equilibrium (an equilibrium of model (4.23) where both the

wild and resistant strains are transmitted in the community), denoted by Ep.

It is worth stating that, unlike in other models for the dynamics of two strains of
a disease in a certain population (such as some models reported in [56]), the two-
strain model (4.23) does not have a wild strain-only boundary equilibrium (i.e., an
equilibrium with the wild strain only). This is due to the fact that two infected
classes, I;g and I4g, are never zero (asymptotically) in the absence of the resistant
strain (since f; # 1 and f4 # 1; which also equivalent to 7; # 0 and 74 # 0). Such
a wild strain-only boundary equilibrium is only feasible if treated individuals do not
develop resistance (so that f; = f4 = 1), or if anti-malaria drug treatment is not

administered in the community (i.e., 7; = 74 = 0).

4.4.1 Resistant-strain-only boundary equilibrium

Let,
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_ kok kok kok kok kk kk kok kk kok kok Kk ok kok kok kk kok
8R - (SJ ) SA ) ij, EAW> EJRv EAR? IJW’ IAW’ IJR> IAR? TJ 7TA ) RJ ’ RA ) SV ) VW )

Vi) = (S7,5%,0, E7,, 0, EX%. 0, 175%,0, I3%,0,0, R, Ry, Sy, 0, VR,

represents a resistant strain-only boundary equilibrium of the model (4.23) (i.e., an
equilibrium of the model (4.23) in the absence of the wild strain). To investigate
the existence of the boundary equilibrium &g, a special case of the model (4.23)
with 6; = d4 = 0 is considered (this assumption is made to ensure mathematical
tractability of the ensuing algebraic manipulation). In the absence of the wild strain,
the model (4.23), with 6; = d4 = 0, reduces to the following resistant strain-only

age-structured system:

ds baB10RV
T 1, 4R, — wSJ— (& + pm)Sy,
dt 1,
dS by Ba0RV,
BN _ g, 4 puRry — P02PAORVR G o
dt 'y
dE by B10RV
IR _ parbalr0r RSJ - (U]R+§+MH)EJR7
dt 11,
dE baBA0RV]
AR _ fEJR + MSA _ (UAR —|—/1JH)EAR,
dt I1;
dI
2JR = UJREJR — (f + (ﬁl’}/J + ,LLH)[JPU
d;lt (4.31)
d‘:R = &lr +0arEar — (G274 + pirr)lar,
dR
d_tJ — (ﬁl’}/J[JR — (£+//LH +wJ>RJ7
dR
—th = &Ry + dovalar — (b + Ya)Ra,
ds b I I
By _n, - balnlln g g,
dt 11,
dV, b I I
r _ pabBvir(Lir + AR)SV — vy
dt 11,

The reproduction number of the resistant strain-only age-structured model (4.31) is

given by
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Ry — b3 0y Iy Opnerpu{Biimlorrgs(ge + &) + oarbyr] + /BAUAng?,g?} (4.32)
11,143 9193959799

where, now, g1 = { + pg,93 = ogr + &+ i, 95 = Oar + pm, g7 = §+ ¢1vs + pm

and g9 = ¢oy4 + . It is convenient to let

Lrrbe By Or( JR+]X}%)
11,

by B0V A" boBAORV A"
)\3} HH 2@1 RVER 7 )\AR_ 12%; 25,4 RVR and )‘ﬂ\;kR—
11, 11,

(4.33)

Solving the equations of the resistant strain-only model (4.31) at steady-state gives:

S — 939791211,

gi{losr(é17s + g12) + grg12] NS5 + 9397912}
By, — g7912117 AT

gi{losr(é17s + g12) + gr912) NS5 + 9397912}
Ry, = o P17V AR

gi{losr(é17s + g12) + gr912) NS5 + 9397912}
I — o R TRG1211;

HJ

G{losr(d17s + 912) + 97012 A5 + G397012}

g ESHs+ Valit,

HA — Kk
Nig +

o E AT BaNT RV A0 1R (D199 + P2va912) + Q0] + Go(Bags + Bypm)}

HA — )
g1H1G2

I AT BANTRI912913(0ARGT + 0 1RGS) + AR IRO1VIVA] + Q3}

HA =

g1Hq192
(4.34)
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e EIL N BaNTR979120 ARD2YA + T 1RG5 (G12027A + Gob17s)] + @u}
HA — )

g11HG192
ok HV ok /\t/*RHV
Vo NSty Y i (W )]

where,

do = 9799912913,

¢ = [oyr(917s + g12) + 97912] AR + 9397912,

G2 = BaNTRlOAR(D274 + 913) + gogu3] + 959991381,
a3 = 912013[B101 (0 ARGT + O1RYS) + 93970 ARSBA],

G = 979120 ARDP2YA(Bags + Bipirr) + 950 1rBkE (Gr20274 + God177),

with, g1 = &+ pm, 93 = oyr + &+ by 95 = Oar + pmy 97 = §+ Gy + b,
9o = G27a + pm, G12 =& + pg + Py and gi3 = pg 4 Pa.
Substituting the expressions for I75, and I35 in (4.34) into the equation for A,

in (4.33), and simplifying, gives

o HyATR(aoATR + a1)

= 4.35

where,

ao = Bal{osrpagiz[ona(dava + q13) + gogis] + 0arE (T rOL1YVIVA + 97G12913) }s

a1 = g12913{Bspu [0 1RG5 (99 + &) + 0arEgr] + TarBaEgsyr}.

*

Furthermore, substituting the equation for I in (4.34) into the equation for A%} in

(4.33) gives
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o _ prrbo B 1Ly AT
T Wy (N + )

(4.36)

Finally, solving for A}y from (4.36) and substituting the result into (4.35), and
simplifying, shows that the non-zero equilibria of the resistant strain-only model

(4.31) satisty the following quadratic (in terms of \%%)

co(N5)2 4 el N + ey = 0, (4.37)

where,

co = IL;baBy Bapepvé|osrOARY VA + G12013(950 7R + 970 AR)]
+ 1L Bapupv]oar(Paya + gi2) + gogia)
{b2Bvosrptagiz + v g1losr(017s + g12) + 97912)},

cs = Brpngi2913(Ls 13 91939799)[1 — (Rr)?]-
Hence, as in Chapter 3, the following result is obtained.
Theorem 4.4. The resistant strain-only model (4.31) has a unique positive equilib-

rium if Rg > 1.

4.4.2 Low-endemicity equilibrium

In the absence of malaria transmission by individuals or vectors infected with the
resistant strain (i.e., \jg = Aag = Ayg = 0), the model (4.23) has endemic equilibria

(low-endemicity equilibria) of the general form:
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_ *kok kok kok kok *kk kok kok kok *kk kk ok Kk ok kok kok kok
8L - (SJ ) SA ) EJW> EJR> EAW? EAR> IJW> IJRa [AWa [ARv TJ >TA ) RJ ) RA ’ SV ’ VW )

VR") = (577,55, Eqw, 0, Eiw, 0, Iy, 0, Ly, T57, T, B R, SV, V!, 0).

Setting Ajr = Aar = Avr = 0 (and using 6; = da = 0 for simplicity; so that

IT
N} = —7Y in (4.23) gives the following reduced (low-endemicity) two-strain model:

HH
ds b,B; V4
R S L L L AL AT By S o
dt I1;
ds boBaV4
Da _eg g, PPV o
dt I1;
dFE bo B V4
Al 2By WSJ — (ogyw + &+ pu)Eyw,
dt II;
dFE by BAV;
dAW =E{Ew + wSA — (oaw + pr)Eaw,
t I1;
Fr owEw — (75 + &+ 75+ pu)Lw,
dl
ﬁ =1 —fr)rlyw — (E+ o1y + pu)lir,
dl aw

i ELyw + oaw Eaw — (Ta + 74 + pr) Law,
t (4.38)

dl
diR =&+ (1 — fa)Talaw — (Pp2va + pir) I ar,
dT
d_tJ = fstilyw — (§+ @375 + pu)Ty,
drT
d_tA =&y + fatalaw — (Pava + pu)Ta,
dR;
e Yolow + 01vslir + o375 Ly — (€4 pr +Y5)Ry,
dR A
T ERy + valaw + p2valar + payaTa — (e + Ya)Ra,
dSy prba By (Lyw + Law)
=V I, — Sy — uy S
o v 1, vV — Hvov,
AV _ pubeByv(Liw + Taw) Sy — .
dt I1;

The reproduction number of the low-endemicity model (4.38) is given by
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7~3L _ b3 0y Iy { Brpm[oowga(gs + &) + cawge] + Baoaw&gags (4.39)
HJN%/9192949698 ’

where, now, g1 = § + pum, 92 = ogw +§ + pm, 94 = oaw + g, 9o = T +E§+ s+ pm

and gs = T4 + 74 + pg. It is convenient to let:

Nw=—7"7, aw = ——=—— and Ay = .
I1; II; 11,

(4.40)
It can be shown, using the approach in Section 4.4.1, that the non-zero equilibria of

the low-endemicity model (4.38) satisfy:

Co()\"j’;‘/)2 + Ay + 2 =0, (4.41)

where,

co = bofBvBapiupvE[onsonayia + 96971(930ms + gaoma))

HLBuapapviona(ya+ g7) + gs971{b2Bvonsiings + v giloms (s + g6) + gage)

5
62 = Brspingoo Ty ( ng-) 11— (Ru)2,
=1

with, g1 = &+ pun, g2 = ogw +&§ + pa, 92 = caw + pu, g6 = 77 +E§ + V5 + pm,
98 = Ta+ A+ pm, gro = &§ + @375 + pa, g1 = Qava + pu, g12 = & + pg + . The

result below follows from (4.41).

Theorem 4.5. The low-endemicity model (4.38) has a unique positive equilibrium

Zf,]éL > 1.
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High-endemicity equilibria

The non-zero equilibria of the system (4.23) are called high-endemicity equilibria to
distinguish them from the low-endemicity equilibria (where the resistant strain is
not transmitted in the community). The complexity of the system (4.23) makes the
analysis of its associated non-zero equilibria not mathematically tractable (and not

reported in the thesis).

4.5 Effect of Development of Drug Resistance

The effect of the emergence of drug resistance on the transmission dynamics of
malaria in the community will now be qualitatively analysed. Consider the model
(4.23) in the absence of resistance development by treated individuals (so that,

fr = fa = 1). Furthermore, for computational convenience, let 6; = d4 = 0.
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Consequently, the model (4.23), with f; = f4a =1 and §; = d4 = 0, reduces to:

dsS bo(Viy + 0rV]
—J:HJ+wJRJ_MHﬁJ o (Viv R R)SJ—(f—i-[LH)SJ,
dt 11,
is b (Vi + 0V,
orA Sy +YaRa — a1 Baba(Viv + 9rVie) Sa — pESa,
dt I,
dE b4
W = 'LLH/BJ 2 WSJ — (O'JW +£+/1/H>EJW7
dt 11,
dE 0 by Vi
JR = it Rﬁj 2 RSJ — (UJR +£+ MH)EJRa
dt 11,
dE A%
AW B+ NHBA—QWSA — (oaw + pu)Eaw,
dt 1y
dE 0 bV,
AR _ ey HORDAbSVR G ) B,
dt I1;
dl
CZfW = JJWEJW — (TJ +£+’}/J + ,UH)IJW7
dl
d;R = 0srEir — (€ + G177 + 1) g,
dl
C;/W = é-[JW + UAWEAW — (TA + va + NH)LAW? <442)
dl
d‘;‘R = 0arBar +&Lyr — (¢27a + pu)lar,
dT
d_tJ = 7sLw — (§+ @375 + pa) T,
dT
d_tA =&y + Talaw — (Pava + pa)Ta,
dR
d_tJ =vsLyw + ¢1vslir + @371 — (5 + €+ pm) Ry,
dR
d_tA = &Ry +yalaw + ¢2valar + GayaTa — (Ya + pr) Ra,
boll I I 1
dSy _ I, — i Bvbal Low + Law + nellsn & AR)]SV — pvSv,
dt iy
AV puBvba(Lyw + Law)
dt 11, v
d by (1 I
Ve _ panrPv o(L7r + AR)SV Vi
dt 1y

Define Rw = Rw |fJ:fA:175J:0 < 1, Rr = Rr |fJ:fA:175J:5A:0 < 1 and the

positively-invariant region:
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Dyw ={(Ss, 54, Eyw, Esr, Eaw, Ear, Lyiw, Lir, Law, Iar, Ry, Ra, Sv,Vw,Vg) € D :

S; < %S4 <S4, Sy < Si ).

(4.43)
The DFE of the wild strain-only component of the system (4.42) is given by
I, €11, Iy
S5 S Esw s Evws i, T, Sv, Vi) = ) ,0,0,0,0,—,0].
(57, 5% Eyw, Eaws Lyw, Law, Svs Vi) €+ pum pn(€ + o) .

Theorem 4.6. The DFE of the wild strain-only component of the model (4.42) is
GAS in Dy if Ry < 1.

Proof. Consider the following Lyaponuv function

F = fiEyw + foEaw + fsliw + falaw + Vv,

with,

_ Iy pupbe By [0 yw ga(gs + &) + 0 awé ge) e Iy prrba By o aw

fl ~ - ~ )
1Ly pv Rw 92949698 1Ly Rw gags
- HyprbBv(gs +§&) . ypubyfBv
f3 - i Y f4 - ~ 9
1Ly v Rw g6 93 Iy Rwgs

where, now, go = o w+E+pm, g4 = Caw+pH, 96 = Ty VI E, 98 = TA+ YA+ H.

The Lyapunov derivative of F is given by

F= flEJW + szAW + ijJW + f4jAW + VW,
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by B V;
['MH 2By vs, — (ogw +E+ MH)EJW]

:quQ/BAWVW

+ f2 {f I, — 54— (oaw + MH)EAW}

+ f3 [UJWEJW —(+E+ MH)IJI/V:|

+ fa {gljw + oawEaw — (74 + ,UH)IAW:|

|:,qu2ﬁV([JW + Law)
_l’_
11,

Sy — ,UVVW] :

which can be simplified to

My pybsByoswga(gs + &) + cawégel (0

F = ~ w+ &+ pm)
ILypy Rw 92949698
n HVﬂHbQAﬁVUAwg n HVMHb2BAV(98 + f)UJW} o
Iy Rw gags Iy Rw g gs
[ II b 11 b
L= VHH %/BVUAW (UAW-I-MH)-i— VUHAZBV O'AI/V:| Eaw
ILypv Rw gags ILypy Rw gs
11 b + II b b
| - v 25}/(98 £) (v + € + i) + VMHA25V€+ /LHﬂzﬁvsv} Ly (4.44)
1Ly Rw g6 gs 1L v Rwgs J
Iy e bo By LebBy
+ ——A<”)/A+,UH)+ SV [AW
L 1Ly Rw gs 1,
N My prrba By [0 5w ga(gs + &) + o aw € ge] (MH525J SJ)
I I pov Rw 92949693 I,
II b b
4 Mvin 2Bvoaw (MHH25A SA) _ ,U«V} Vig.
ILypy Rw gags J

Since S; < 5%, Sa < 8%, and Sy < S}, in Dy, it follows from (4.44), after some

algebraic manipulations, that

F < (1 1 ) <HvMHb25v[ o HypnbafBy

. I RuVir | <0
R Ty JW e AW T vy Rw W> <

for Ryy < 1. Thus, F < 0if Ry < 1 with F = 0 if and only if Ejy = Eay =
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Lyw = Iaw = Vi = 0. Substituting I,y = T4 = 0 into the eleventh and twelfth
equations of (4.42) implies that (T(t),Ta(t)) — (0,0) as t— oo. The proof is

completed as in Appendix C. m

Theorem 4.6 shows that the wild strain component of the model (4.42) becomes zero
asymptotically if Ry < 1 (that is, the wild strain is eliminated from community
whenever Ry, < 1). It should be recalled that the model (4.23), with 6; = 64 = 0,
has a unique resistant strain-only boundary equilibrium, in the absence of the wild
strain, where Rz > 1 (Theorem 4.4). Extensive numerical simulations of the model

(4.42) suggest the following conjecture.

Conjecture 4.1. The unique positive equilibrium of the resistant strain-only com-

ponent of the model (4.42) is GAS whenever R <1< Rg.

The epidemiological implication of Conjecture 4.1 is that the system (4.42) will
undergo competitive exclusion, where the resistant strain drives out the wild strain
to extinction (as depicted in Figure 4.4). Thus, this study shows (via qualitative
analysis and numerical simulations) that, for the case when treatment does not cause
resistance, the two-strain model (4.23) undergoes competitive exclusion (where the
malaria strain with the higher reproduction number greater than unity drives the
other, with reproduction number less than one, to extinction).

The DFE of the resistant strain-only component of the system (4.42) is given by

1y $l 0.0.0.0. v g

*75*7E* 7E* >I* 7]* ) *7V* = ’
( Jr~MA JR) AR *JR» TAR» MV R) f‘i‘,UzH MH(£+NH) Ly

Theorem 4.7. The DFFE of the resistant strain-only component of the model (4.42)
is GAS in Dy if Rp < 1.

Theorem 4.7 can be proved using the following Lyapunov function:

87



F = fiEjr+ foFar + f3ljr + falar + Vg,

with,

£ = Wy pgba By [O-JRQA5(99 + &) + 0aréyr] = HV#HbZAﬁVO'AW’
v RRrg3959799 ;v RRrY599
Iy = HVMHbzﬁy(gg + 5), _ HV,UH?QBV’
;v RRrg799 Iy pvRRrgo

where, now, g3 = oyr+&+pm, g5 = oar+t i, g7 = EF 1Y+ E, g9 = G2yat . T
is worth recalling that in the absence of the resistance strain, the model (4.23), with
8; = 84 = 0, has a unique wild strain-only equilibrium whenever R, > 1 (Theorem

4.5). Numerical simulations (see Figure 4.5) suggest the following conjecture.

Conjecture 4.2. The unique positive equilibrium of the wild strain-only component

of the model (4.42) is GAS whenever Rr<1<Rw.

Simulations of the model (4.42), for the case when treatment does not cause
resistance (i.e., f; = fa = 1), shows that (for the case when each of the reproduction
number of the two strain exceeds unity) the strain with the higher reproduction
number drive the other to extinction (Figures 4.6 and 4.7). These simulations suggest

the following conjecture (similar result was established for the two-strain model in

[23]).

Conjecture 4.3. The model (4.42) has no co-existence equilibria if Ri > 7A€j >1(

i,.j ={W,R}; 1 #j).
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4.6 Assessment of Treatment Strategies

The model (4.23) is simulated to assess the impact of anti-malaria drug treatment
on the transmission dynamics of malaria in a community. The following effectiveness
levels of the treatment strategy are considered (these levels are arbitrary chosen to
account for the uncertainty in the estimate of the treatment-related parameters of

the model):
(i) low effectiveness level: 7, = 74 = 0.009, f; = f4 = 0.05;
(ii) moderate effectiveness level: 7, = 74 = 0.05, f; = fa = 0.1;
(iii) high effectiveness level: 7; =74 =5, f; = fa = 0.9.

The simulation results obtained, depicted in Figure 4.8, show a reduction in the
cumulative number of new infections (for both juveniles and adults) for increasing
effectiveness levels of the treatment strategy. Similar results were obtained for the

cumulative malaria-induced mortality (Figure 4.9).

4.7 Summary of the Chapter

The model in Chapter 3 is extended, in Chapter 4, to assess the effect of drug
treatment on the transmission dynamics of malaria in a population. The resulting 17-
dimensional, age-structured, two-strain deterministic model is rigorously analysed.

Some of the main mathematical and numerical simulation results obtained are:

(i) the model (4.23) undergoes the phenomenon of backward bifurcation at Ry = 1
under certain conditions. As in Chapter 3, the backward bifurcation phe-

nomenon arises due to disease-induced mortality in humans;

(ii) it is shown that the disease-free equilibrium of the model (4.23) is globally-

asymptotically stable, in the absence of disease-induced mortality and loss
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(iii)

(vi)

(vii)

of infection-acquired immunity, whenever the associated reproduction number

(Rr) is less than unity;

for the case when anti-malaria treatment causes drug resistance, the model
(4.23) (with §; = 04 = 0) can have resistant-only boundary equilibrium, low-
endemicity equilibrium or high-endemicity equilibrium. On the other hand,
when such treatment does not cause drug resistance, the low-endemicity equi-

librium reduces to a wild strain-only boundary equilibrium;

the reduced model (4.42) undergoes competitive exclusion, where the strain
with the higher reproduction number (greater than unity) drives the other

(with reproduction number less than unity) to extinction;

numerical simulations show that, for the case when treatment does not cause
drug resistance, the model (with §; = 4 = 0) undergoes competitive exclusion
when the associated reproduction numbers of the two strains exceed unity. In
this case, the strain with the higher reproduction number drives the other to

extinction;

in the absence of disease-induced mortality, the model (4.23) has a unique re-
sistant strain-only boundary equilibrium whenever the associated reproduction

number (Rg) exceeds unity;

numerical simulations of the model (4.23) show (as expected) that the cumula-
tive number of new cases and malaria-related mortality decrease with increasing

effectiveness levels of the treatment strategy.
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Variable | Description

Sy Population of susceptible juveniles

Sa Population of susceptible adults

Enw Population of latently-infected juveniles with the wild strain
Eir Population of latently-infected juveniles with the resistant strain
Eaw Population of latently-infected adults with the wild strain

Far Population of latently-infected adults with the resistant strain
Lyw Population of symptomatic juveniles with the wild strain

IR Population of symptomatic juveniles with the resistant strain

L aw Population of symptomatic adults with the wild strain

Isr Population of symptomatic adults with the resistant strain

Ty Population of effectively-treated juveniles

Ty Population of effectively-treated adults

Ry Population of recovered juveniles

Ryga Population of recovered adults

Sy Population of susceptible mosquitoes

Vi Population of mosquitoes infected with the wild strain

Vr Population of mosquitoes infected with the resistant strain
Table 4.1: Description of the state variables of the two-strain model (4.23).
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Table 4.2: Description of parameters of the two-strain model (4.23).

Parameters | Description

by Average per capita biting rate of mosquitoes

B Probability of infection of susceptible juveniles per mosquito
bite

Ba Probability of infection of susceptible adults per mosquito bite

By Probability of infection of susceptible vectors per mosquito bite
of the
infected host

e Natural death rate of humans

Ly Natural death rate of mosquitoes

ow Rate of development of clinical symptoms of malaria of wild
strain for latently-infected juveniles

OJR Rate of development of clinical symptoms of malaria of resistant
strain for latently-infected juveniles

AW Rate of development of clinical symptoms of malaria of wild
strain for latently-infected adults

OJR Rate of development of clinical symptoms of malaria of resistant
strain for latently-infected adults

0y Disease-induced mortality rate for juveniles

da Disease-induced mortality rate for adults

Yy Recovery rate of juveniles

YA Recovery rate of adults

V1 Modification parameter for recovery rate in juveniles with the
resistant strain

V2 Modification parameter for recovery rate in adults with the
resistant strain

V3 Modification parameter for recovery rate in treated juveniles
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Parameters

Description

(21

01

02

03

04

Or

MR

T
TA
fi
fa
(o
Va

Modification parameter for recovery rate in treated adults

Modification parameter for disease-induced mortality rate for
juveniles with the resistant strain

Modification parameter for disease-induced mortality rate for
adults with the resistant strain

Modification parameter for disease-induced mortality rate for
treated juveniles

Modification parameter for disease-induced mortality rate for
treated adults

Modification parameter for reduction in infectiousness of
resistant individuals

Modification parameter for reduction in infectiousness of
treated individuals

Treatment rate for juveniles

Treatment rate for adults

Fraction of symptomatic juveniles who are effectively treated
Fraction of symptomatic adults who are effectively treated
Rate of loss of natural immunity for juveniles

Rate of loss of natural immunity for adults

Maturation rate for juveniles

Recruitment (birth or immigration) rate of juveniles

Birth rate of adult mosquitoes
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Table 4.3: Parameter values for the two-strain model (4.23).

Parameter | Value Reference
by 0.5 day* [23]
By 0.181 [23]
Ba 0.181 [23]
By 0.8333 [45]
(L 0.00004 day™' | [45]
[y 0.05 day ! [45]
o w 0.10333 day ' | [13]
o AW 0.08333 day ' | [13]
OIR 0.10333 day ' | [13]
OAR 0.08333 day ' | [13]
Sy 0.0003454 day ' | [1]
5a 0.0000174 day* | [1]
o 0.0014 day™' [1]
on 0.0035 day~' [1]
01 0.8 day* Assumed
103 0.8 day ! Assumed
o3 >1 day ! Assumed
04 >1 day ! Assumed
0, 1 day™* Assumed
0y 1 day™* Assumed
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Parameter | Value Reference
05 (0,1) day™* Assumed
04 (0,1) day™! Assumed
Or >0 day ! variable
R >0 day ! Variable
Ty >0 day* variable
TA >0 day ! variable
I [0,1] day™! variable
fa 0,1] day™ variable
oy 0.0027 day™! 1]

a 0.0027 day ™! [1]

13 0.00000986 day ' | [1]

I1; 1520 day! Assumed
ITy 500 day~! Assumed
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Figure 4.1: Schematic diagram of the human component of the two-strain model (4.23).
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Figure 4.2: Schematic diagram of the mosquito component of the two-strain model (4.23).
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Figure 4.3: Simulations of the two-strain model (4.23), showing the total number of
infected individuals as a function of time using various initial conditions. Parameter
values used are as given in Table 4.3, with II; = 40, Iy, = 1000, py = %, g =
0.00004, 6; =0, 04 = 0, £ = 0.00000986, v; = 0.0014, v4 = 0.0035, o = 0.10333,
AW = 0.08333, OJR = 0.10333, AW = 0.08333, 1[)(] = O, 77/)14 = O, 5,4 =0.3 ﬁ] = 0.4,
6\/ = 09, Nr = 005, HR = 005, Ql = 1, 62 = 1, 93 = 05, 94 = 05, ¢1 = 08,
qbz = 08, ¢3 = 15, ¢4 =15 T] — 03, TA — 03, fJ = 05, fA = 05, and bQ =1 (SO
that, Ry = max{0.6734,0.5162} = 0.6734).
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Figure 4.4: Simulations of the two-strain model (4.42), showing the total number of
infected individuals as a function of time using various initial conditions. Parameter
values used are as given in Table 4.3, with II; = 40, Iy, = 1000, py = %, g =
0.00004, 6; =0, 04 = 0, £ = 0.00000986, v; = 0.0014, v4 = 0.0035, o = 0.10333,
AW = 0.08333, OJR = 0.10333, AW = 0.08333, 1[)(] = O, 77/)14 = O, 5,4 =0.3 ﬁ] = 0.4,
BV = 09, Nr = 08, QR = 08, Ql = 1, 02 = 1, 93 = 05, 94 = 05, ¢1 = 08, gbg = 08,
¢3 = 1.5, ¢4y =157, =015, 74 = 0.15, f; =1, fa =1, and by = 0.8 (so that,
Ry = 0.7596 and Rz = 6.6068).
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Figure 4.5: Simulations of the two-strain model (4.42), showing the total number of
infected individuals as a function of time using various initial conditions. Parameter
values used are as given in Table 4.3, with II; = 40, Iy, = 1000, py = %, g =
0.00004, 6; =0, 04 = 0, £ = 0.00000986, v; = 0.0014, v4 = 0.0035, o = 0.10333,
AW = 0.08333, OJR = 0.10333, AW = 0.08333, 1[)(] = O, 77/)14 = O, 5,4 =0.2 ﬁ] = 0.3,
6\/ = 09, Nr = 007, HR = 007, Ql = 1, 62 = 1, 93 = 05, 94 = 05, ¢1 = 08,
¢2 =08, 03 =15, ¢, =157, =0.01, 74 =0.01, f; =1, f4 =1, and by = 1.5 (so
that, Ry = 4.4041 and Rz = 0.9350).
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Figure 4.6: Simulations of the two-strain model (4.42), showing the total number of
infected individuals as a function of time using various initial conditions. Parameter
values used are as given in Table 4.3, with II; = 40, Iy, = 1000, py = %, g =
0.00004, 6; =0, 04 = 0, £ = 0.00000986, v; = 0.0014, v4 = 0.0035, o = 0.10333,
AW = 0.08333, OJR = 0.10333, AW = 0.08333, 1[)(] = O, 77/)14 = O, 5,4 =0.3 ﬁ] = 0.4,
BV = 09, Nr = 05, QR = 05, Ql = 1, 02 = 1, 93 = 05, 94 = 05, ¢1 = 08, gbg = 08,
¢3 = 1.5 ¢4 =157, =001, 74 =001, f; =1, f4 = 1, and by = 1 (so that,
Rw = 3.4161 and Ry = 5.1615).

101



10000

8000 -

6000

‘Wild strain
4000

Total Number of Infected Individuals

Resistant strain

0 2000 4000 6000 8000 10000
Time (days)

Figure 4.7: Simulations of the two-strain model (4.42), showing the total number of
infected individuals as a function of time using various initial conditions. Parameter
values used are as given in Table 4.3, with II; = 40, Iy, = 1000, py = %, g =
0.00004, 6; =0, 04 = 0, £ = 0.00000986, v; = 0.0014, v4 = 0.0035, o = 0.10333,
AW = 0.08333, OJR = 0.10333, AW = 0.08333, 1[)(] = O, 77/)14 = O, 5,4 =0.3 ﬁ] = 0.4,
6‘/ = 09, Nr = 02, QR = 02, Ql = 1, 02 = 1, 93 = 05, 04 = 05, ¢1 = 08, gbg = 08,
¢3 = 1.5, ¢4, =157, =001, 74 =001, f; =1, fa =1, and by = 1.7 (so that,
Ry = 5.8073 and Ry = 3.5098).
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Figure 4.8: Simulations of the two-strain model (4.23) for various effectiveness levels
of the treatment strategy, showing the cumulative number of infected individuals
as a function of time using various initial conditions. (A) juveniles. (B) adults.
Parameter values used are as given in Table 4.3, with II; = 1520, IIy, = 500, uy =
55, g = 0.00004, §; = 0.000345, 64 = 0.000174, £ = 0.00000986, ~, = 0.0014,
va = 0.0035, oy = 0.10333, oaw = 0.08333, o, = 0.10333, o4z = 0.08333,
Yy = 0.0027, Y4 = 0.0027, 4 = 0.2 B; = 0.3, By = 0.9, ng = 0.05, O = 0.05,
491 = ]_, 02 = 1, 03 == 05, 94 = 057 le == 08, ¢2 = 087 ng == ]_5, ¢4 = 157 and
by = 0.5.
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Figure 4.9: Simulations of the two-strain model (4.23) for various effectiveness levels
of treatment strategy, showing the cumulative mortality as a function of time using
various initial conditions. (A) juveniles. (B) adults. Parameter values used are as
given in Table 4.3, with II; = 1520, [Ty = 500, py = 55, pg = 0.00004, 0, =
0.000345, 64 = 0.000174, £ = 0.00000986, v, = 0.0014, v4 = 0.0035, 0w = 0.10333,
oaw = 0.08333, oyr = 0.10333, oar = 0.08333, v»; = 0, Y4 = 0, 4 = 0.181
By = 0.281, By = 0.9, ng = 0.05, 0 = 0.05, 6, =1, 6, = 1, 3 = 0.5, 6, = 0.5,
¢1 = 08, gbg = 08, ng = ]_5, ¢4 = ]_5, and bg =0.5.
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Chapter 5

Contributions and Future Work

The thesis contributes in three main areas, namely the formulation of new mathe-
matical models for malaria transmission dynamics, qualitative analyses of the models
and the provision of some public health insights for effective control of malaria in a

community. The specific contributions of the thesis are summarized below.

5.1 Model Formulation

Two new models for the transmission dynamics of malaria in a community are de-

signed in this thesis.

(a) The first model, given by equation (3.16), incorporates the effect of age-structure
on the transmission dynamics of malaria. The model extends numerous malaria
transmission models published in the literature (such as those in [13, 17, 23,
39, 40, 45, 52]), by adding age-structure. Furthermore, it extends the age-

structured malaria model in [49] by including:

(i) separate compartments for susceptible juveniles and susceptible adults

(the two compartments are lumped together in [49]);
(ii) the dynamics of (and transmission by) latently-infected individuals;
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(iii) loss of infection-acquired immunity;

(iv) disease-induced death.

The model (3.16) extends the age-structured malaria model in [1] (which uses mass

action incidence for the infection rate) by including:

(i) separate compartments for latently-infected juveniles and latently-infected adults;

(ii) the dynamics of (and transmission by) latently-infected individuals.

(b) The second model, given by (4.23), is an extension of the age-structured model

developed in Chapter 3, by including:

(i) the dynamics of the wild and resistant malaria strains for humans and vectors

(a single strain was considered in (3.16));

(ii) compartments for treated individuals.
Furthermore, the model (4.23) extends the two-strain malaria model in [23] by:

(i) adding age structure;

(ii) adding the dynamics of exposed and recovered individuals.

5.2 Mathematical Analysis

The thesis further contributes by giving detailed qualitative analyses of the two mod-
els, using a diverse collection of theories and techniques from non-linear dynamical
systems (such as, comparison theorem, centre manifold theory, Lyapunov function
theory, next generation operator method etc.). Some of the main mathematical

results obtained are summarized below.
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5.2.1 Chapter 3

The age-structured model (3.16) is, first of all, shown to have a locally-asymptotically
stable disease-free equilibrium whenever the associated reproduction number is less
than unity. The epidemiological implication of this finding is that effective control of
malaria in the community is feasible if the initial sizes of the sub-populations of the
model are small enough. A notable contribution of this chapter is establishing the
presence of the phenomenon of backward bifurcation in the model (3.16). Although
models for the transmission dynamics of vector-borne disease are known to exhibit
backward bifurcation (see, for instance, [26, 28, 45]), this study is arguably the first
to prove the existence of such phenomenon in an age-structured model for malaria
transmission in a community. This phenomenon has major epidemiological conse-
quence, since, in a backward bifurcation setting, having the associated reproduction
number of the model less than unity is no longer sufficient (albeit necessary) for
effective disease control. It is further shown that the backward bifurcation property
of the model is caused by disease-induced mortality in humans. This chapter shows
that more efforts will be required in the quest for effective control of malaria, owing
to the presence of backward bifurcation in its transmission dynamics.

It is shown that a reduced version of the model has a unique endemic equilibrium
when the associated reproduction number exceeds unity. It should be mentioned
that, in general, establishing (rigorously) the existence of an endemic equilibrium
of relatively large systems of non-linear equations, such as the age-structured model
(3.16), is often a daunting (or impossible) mathematical task. Finally, it is shown
that the corresponding malaria transmission model with no age-structure, given by
(3.34), has essentially the same qualitative dynamics as the age-structured model
(3.16). In other words, one of the main novel contributions of this thesis is establish-
ing that adding age-structure to a basic malaria transmission model does not alter

the essential qualitative dynamics of the basic model.

107



5.2.2 Chapter 4

The model (4.23), for the transmission dynamics of drug-sensitive (wild) and drug-
resistant malaria strains in a community, was also rigorously analysed. Results for the
local asymptotic stability of the disease-free equilibrium, as well as the mortality-
induced backward bifurcation property, of the model were derived. In line with
earlier multi-strain models for malaria transmission (such as the model in [23]),
it is shown that the model could have resistant strain-only boundary equilibrium
and low(high)-endemicity equilibria. Furthermore, it was shown that for the case
when anti-malaria treatment does not cause the emergence of drug resistant strain,
the low-endemicity equilibrium reduces to a wild strain-only boundary equilibrium.
For this (latter) setting, it is shown that the model undergoes the phenomenon of
competitive exclusion, where the strain with the higher reproduction number (where
both numbers are greater than unity) drives the other to extinction. This result
provides insight into which of the two strains will establish itself in the community

in the long run.

5.3 Public Health

Extensive numerical simulations of the models developed in this thesis, using a set
of parameter values (obtained from the literature), are carried out to gain insight
into malaria transmission dynamics in a population. Some of the main public health

contributions of the thesis, derived from these simulations, are summarized below:

(a) The cumulative number of new cases of infection and malaria-induced mortality

increase with increasing average lifespan and birth rate of mosquitoes;

(b) reduction in mosquito lifespan has marginal effect on cumulative mortality in

juveniles;
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(c) the cumulative number of new cases and malaria-induced mortality decrease

with increasing effectiveness level of the treatment strategy;

(d) disease-induced mortality in humans causes backward bifurcation in malaria
transmission dynamics (which makes malaria control in the community diffi-

cult);

(e) competitive exclusion occurs in malaria transmission dynamics for the case

when drug treatment does not cause resistance.

5.4 Future Work

The work carried out in this thesis can be extended in several directions relevant to

malaria transmission dynamics, including:

(i) incorporating the effect of climate change on the dynamics of the malaria vector
(mosquito) as well as on the human host. Climatic factors, such as temperature,
humidity, rainfall and vapor pressure, are known to significantly affect the
incidence of vector-borne diseases, such as malaria (either through changes in
the duration of vector and parasite/pathogen life cycles, or by influencing host,

vector, or parasite behavior);

(ii) incorporating the effect of vector and host mobility (due to immigration/migration,
global travel etc.) This is relevant, considering the cases of incursion of diseases
into non-endemic areas (such as the incursion of West Nile virus into North

America in the late 1990s [8]);
(iii) assessing the impact of a potential anti-malaria vaccine;

(iv) establishing the global asymptotic stability of the boundary and endemic equi-

libria of the model in Chapter 4.
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Appendix A

Proof of Theorem 3.1

Proof. Let

tl = sup{t >0: SHJ(t) > O, SHA(t) > O,EHJ(t) > O,EHA(t) > O, [HJ(t) > O,

[HA(t) >0, RH](t) >0, RHA(t) >0, Sv(t) > O,Iv(t) > O} > 0.

It follows from the first equation of the model (3.16) that

dt

=11, +YsRus — AwsSus — (E+ pm)Sus > 1y — AgySus — (€ + pw)Suy,

which can be written as

d

- {SHJ(t)exp { /0 t Aey(w)du + (€ + uH)t] } > Tl exp { /0 t Ang(uw)du + (§+ pn)t|,

so that,
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Suy(ti)exp [/Otl A (u)du + (€ + ,UH)t1:| — Sws(0) >

/ 1 IIexp {/x Agg(u)du + (€ + [LH)SE] dx.
0 0

Hence,

t1
Suy(t1) > Sus(0)exp [—/ Ay (w)du — (€ + ,UH)t1:|
0
t1
+ exp {—/ Agg(uw)du — (€ + MH)t1:|
0
t1 x
X / Iyexp {/ A g(u)du + (§+uH)x} dx > 0.
0 0
Similarly, it can be shown that Sga(t) > 0, Egs(t) > 0, Ega(t) > 0, Ig,(t) > 0,
[HA(t) > 0, RHJ(t) > 0, RHA(t) > 0, Sv<t) > 0 and Iv<0) > 0 for all time ¢t > 0.

Hence, all solutions of the model (3.16) remain positive for all non-negative initial

conditions, as required. O
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Appendix B

Proof of Theorem 3.2

Proof. Theorem 3.2 will be proved using Centre Manifold theory [9, 11, 20, 65]. To
apply this theory, it is convenient to let x1 = Sy, 9 = Sga, 3 = Egj, x4 = Ega,
x5 = Iy, ¢ = Iga, v7 = Ry, xr8 = Rya, xg = Sy and x19 = I,. Furthermore, let
f =11, fro]" denote the vector field of the model (3.16). Thus, the model (3.16)

can be re-written as:
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dx b x
B =T gy — 2T

dt
>
i=1
dx baBrax
d_t2 = fo = &1 + Yams — 0wy — g,
>
i=1
dxs bzﬁHﬂho
ar f3= —=s L1 G2s,
t
>
i=1
dx b T
d_t4 = fa=Exsz + @@ — 34,
i=1
dl’5 f
— = fs = ogJgr3s — 4T
di 5 HJT3 — g4s5,
dx
d_t6 = fo = &5 + OHATs — G5T6,
d$7 f
— = fr = v5T5 — gex
i 7="7JT5 — g7,
dx
d_t8 = fs = vax6 + {x7 — grs,
d b
R N N
t
>
i=1
dl’lo . . bgﬁv[n(.fg + I4) —+ Ty + 136]
T Jio= 3 L9 — HvTio,

>

i=1
where, g1 = £+ pu, 92 = ons + &+ iy g3 = oa+ pims 9o =&+ 75+ i+ Ony,
95 =V + pr + 0na, g6 = Yy + &+ pg and g7 = Ya + p.

The Jacobian of the transformed system (B-1), evaluated at the DFE (&), is

given by:
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_ . -
0 0 0 0 0 vy 00 —bZBHﬂl
—3g1 J _
] + 75
*
¢ 0 0 0 0 0 ¥ b At
—kH A - - . .
¥+ xd
1 2
bzﬁHJff
0 0 —g2 0 0 0 0 0 I
T+ x5
0 0 ¢ 0 0 0 0 boBnats
— —g3 T —
J<50) = ] + 25
0 0 oy 0 —g4 0 0 0 O 0
0 0 0 OHA € —g5 0 0 O 0
0 0 0 0 vy 0 —g6 0 O 0
0 0 0 0 0 YA € —gr O 0
* *
. baSynzy  baBynxy  befyxy  befyay . .
- - - - %
] +xy oy tay 2]ty 2]+
* * * *
. bofvnxy  bafBynxy  bafyay  bafyag .
—py
| ry+ay  xy+ay i +as x] + ) |

Consider the case when Ry = 1. Suppose, further, Sy; = [, is chosen as a

bifurcation parameter. Solving for Sg; from Ry = 1 gives

Byy = BY = 11,143 919395 — BrraBvIly pu€b?(ngs + ora)
7 My By b2 12 {94 ngs (g3 + &) + omal] + omrgs(gs + €)'}

It is convenient to define:

Ao = —g30mi{91957 008 + gs[vata + no(gr + 0m)l} — 919296(Yaapir + nogs) < 0,
Ay = —[g3(Yaoua + gspin) + gsapn] <0,
Ay = galomal + gsn(§ + g3)] + g30m.(g5 + &) > 0,

As =opa+ gsn > 0,

where ng = gr(oma + pm) + vapm.
The right eigenvector of J(&o)|s, =gz, is given by

T .
w = (w1, we, w3, Wy, W5, We, Wy, Ws, We, Wig)" , Where (since Ag < 0, A; < 0,
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A2>OandA3>0)
w0, = —Brsbopa{vslvig + (§+ 6y + pm)ge) + 919294}w1

2 0 < 07
91929496
b * Ag + A
Wy — 25(5HJMH 0 9;9294966HA 1)w10 <0,
umﬁ( [1 gi)
=2
b2 3% b26(928m4 + 55 bao 155
w3 = el Ptk HJMHw107w4 =2 ( 2 H3 HJ“H)IU10,IU5 — 2T HIPHIPH HJHHU/lo,
9192 919294
H gi
i=1
 02€l9291054BmA + B site(940HA + 9308 7)) _ beon By viin
We = 5 Wi, W7 = Wio,
91929496
H Gi
i=1
e — bo€ (B (93950 1577 + 93960 VA + GaG60HAYA) + 9294960 1 ABHAY AL
8 — 7 10,
H gi
i=1
—(by)? Iy (B As + A
wo = (b2)? By pr Iy (B it Az + G29aBr a& 3>w10 < 0119 = wyy > 0.

5
M%/HJ( 1:[1 gi>

has a left eigenvector v = (vy, va, v3, V4, U5, Vg, V7, Us, Vg, U10),

Similarly, J(&)

’ﬁHJ=5EJ

where

_ baPypmllv(gsons€ + ga€gsn + 939594 + 930 H.195 + 9a€0ma)

U = O7U2 = 07”3 - 5 V10,
MVHJ( 11 gi)
=2
_ beBvpnlly(gsn + opa) DBy pnlly(gs +§) _ baBvpnlly
Vg = 10, Vs = V10,6 = — = V10,
g593pvIly gagspvIly gspv 1Ly

’U7:0,U8:0,09:0,U10 > 0.
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The transformed system (B-1), with Sy, = 55, has a simple eigenvalue with zero
real part (and all other eigenvalues have negative real part). Hence, Centre Manifold
theory can be used to analyse the dynamics of (B-1) near Sy, = S5, [9, 11, 20, 65].
In particular, Theorem 2.7 will be used.

For the transformed system (B-1), the associated non-zero partial derivatives of

the right-hand side functions, f; (i = 1...10), are given by:

9% fi _ *fi _ —bofBy sl 0% fi _ 9% f1 _ 9% f1 _ 9% f1 _
0xr10x19 0110071 [I;g1 ' Ox90x19 0130110 0140719  Ow507T10
>’H PH P/ A PH 0P Pfi
OreOry  O0r70T10  Ox80T19  OT100T9  OT100T3  OT100T4  OT100T5
d* fi _ *fi _ *fi _ b25;uﬂ%1' 9% f _ 9% f _ 9% f _
0r100xs  O0x100x7  O0T100%3 [I;g1  0x10x19 Ox30x19 0140710
Pl Pfs  Pfo  Pfs  0Pfy  Pfs  OPfy
0r50xr10  O0x60T10  Ox70T19  Ox80T19  OT100T1  OT100T3  OT100T4
P f _ D fa _ D fa _ D fa _ bzﬂHAﬂHf,
0x100T5  01100x6  O0x100T7 0119073 ;g1 '
Pl Pfys —bBuapd Pfs Pfs baBpun§
0x90x10 0110072 II;g1 ' 0110119 Ox10071 ;g '
Pfs  Pfs Pfs  Pfs  Pfs  Pfs Pfs
0x90x19  Ox30T10  Ox40T19  Ox50T10  Ox60T10 070719  Ox80T10
Pfs Pfs  Pfs  Pfs  0Pfs  Pfs  Pfs
0r100Ts 01003  OT100Ts  OT100T5 01006  OT100T7  OT100TS
0By, s Pf _ Pfs _ Pfs _ OPfs _ OPfi
II;g1 010119 Ox30119 0340710 Ox50T19 OT60T10  O1707710
Pl Pfs  Pfs  Pfs  Pfs P OPfs
0rs0r19  Or100T1  Ox190T3  Ox100Ts  OT100T5  OT100T8 0110077
9% 4 _ —beBuapn§. 0 fa _ 0 fa _ boBrapt  0°fo _ 9 fo _
0110073 Iy,  0x90x19 0Ox190T2 Mg, ' O0x10w3 Ox1014

Ply  Pfy  Pfy  Pfy o Pf o Pfy  Pfy
8$28$3 N 81'261’4 N 89038:701 N 83738I2 N 81‘381‘7 N 8x38x8 N 01‘48271 N
Ply _ Pfy  Pfy  Pfy  Pfy Pl Pfy

0r40xy  OxyOx7  Oxy0rs  Oxs0x3  Ox70r4  OxsOrs  Ox074 -
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ba By Iy

. 0%y

0*f

9 fo

0% fo

0*fo

0% fo

Ppy ' 0r10rs 011016 019075 019076 014075 014076
Pfy  Pfy  Pfy  Ofy  Pfy  Pfy  Pfy
Ors0xg  Oxsdr;  Oxs0ry  OrsOrs  OrsOxrs  Oxgdry  Oxgdry
Pl Py 0Pfoe  Pfy  Pfy  Pfo bofyuglly
Oxg0ry;  OxgOxs  Ow70xs  Ox70m6  Ox3075 010X 1% iy
Pl Pfe  Pfy  Pfy  Pfe  Pfo  Pfy
Or10xs  Or10x5  Oxe0Ts  O0r90rg  Or4Oxs  Oxs0T6  Oxs0Tg
Pfe  Pfe  Pfe  Pfy  Pfy  Pfy  Pfy
Ors0x,  Oxsdxe  OrsOrs  Oxsdxs  Orgdry  Oxgdrs  OrgOrr
Pl Pfo  Pfy  Dfy Pfo  byfyuylly
Org0rg  Ox7015  O170x6  Ox80T5 018076 2y 7
9 fo _ 9 fo _ 9 fo _ 9% fo - 2b2BV77ﬂ%rHV_ 9” fo - d” fo -
0x30rs  Ox30Ty O0140x3 014074 Zpy " Oxs0xs  OxsOug
Pl Pfo  2uPypflly  0Pfy  Pfe  Pfy  0f
OrgO0rs  Oxgdrg Zpy 7 Oxs0xg " Oxg0rg  Ox90T5  OT90T4
—bafypn - 0% fo _ D fo _ 9 fo _ Pfo  —bofvnum  Pfy
II; '0Ox30xr9g Ox40r9 O190T3  OT9O0T4 1, " 03015
P fo 9 fo 9 fo P fo 9 fo P fo P fo

8x33x6 N 8x48x5 - 8x48x6 - 8x58x3 - 8x58x4 - 8.77681'3 - 8x68x4 -

oSy pully (1 4+1n)  0*fio

a2f10

0 fio

62flO

L0y "Ox10x3 Or0xy  Ox00T3 B 012074 B
Pho _ Pho _ Pho _ Pho _ Pfo _ Phe _ Pho
Ox30x1  O0x30xe  Ox30x7;  O0x30x8 014017  0x40T9  Ox40%7
9% 1o _ 92 f1o _ J” fio _ 9” fro - d fio - bzﬁvmﬁqﬂv. 9” fro o
0x40rs  Ox70x3 Or70x4 Ox30T3  O18074 Zpy 7 0x10xs
Pfo  Pfo  Pfo  Pfo  Pfo Pfu Pfo
0x10xg  Ox90xs  O0x90xg  O0x40xs5  O0x40xg  0x40Tq 0501
9” fro _ J fio _ Pfo  Pfio  Pfo  Pf  Pfio
0x50r9y  Oxs0xy  Oxs0rs  Oxg0xry  Oxg0T2  Oxg0x7  OxgOxs
J” fio _ & fio _ & fio _ 9? f1o _ bofvpflly  *fio  Pfio
0x70x5  Ox70x6  Oxg0rs 013076 By Oxsdxs  Oxszduy
Pfo  Pho  20fynuidly  Pfio Pfu  Pfe
0r40x3 014074 2y 7 0xs0rs  Ows0re Ol
J” fio _ 2525&/#?{1_[\/, J fio _ & fio _ & fio - 9” fro - —b25V,UH_
0x60T¢ Zpy 7 0x;0xg  Orgdrg  Oxgdrs  Ox90T6 I1;
9 fio . 9 fio o d” fio B 9? f1o . —52/3\/77MH_ 9 fio B d” fio o
0x30r9  O0x40T9  OT90T3  Ox90T4 I1; "Ox30x5  Ox3016
9” f1o _ d” fo _ d” fio _ Pfy  Pfo  Pfy
0x40x5  O0x40x¢ Ox50x3 05014  OT60T3  O0X60T4
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bo By pr Iy (1 4 1)
Wypy

It then follows from Theorem 2.7, and using the above expressions for the non-zero
partial derivatives f; (i = 1,...,10) and eigenvectors w; and v; (i = 1, ..., 10), that the
associated backward bifurcation coefficients, denoted by a and b, are, respectively,

given by:

11

_ 0 fi
a = Z vkwiwjm(o, 0),
? J

k,i,j=1

b 11 h 2 by 3% h h
ZQ{UH 25\/{ VMH(hg—hl)——4+h2—nh3}+'uH 25111(_8 5 )

Iy, [ ypy 11, 1y My &+ pn
[ 3
+ b2Bra (H—?]fw — Fn ,uHhG) }7
(B-2)
and,
11
0? b 26, 11,C
b= Z Uszwgkgb(o,()) = ( QIUH) 5‘2 v Ovlowlg > 0.
kiij=1 ' HJMV( [1 gi)
i=1
In (B-2),

8
h[) = Ulo[wg,(wl + w2> + w6w3] <Z U)Z> R

=4

118



8
hi = vy [sz + wy + wy + wy + ws(ws — wy) +w4w5},
i=6

ha = vip|(w1 + we + wg) + wswg|, hy = vipwsws, hy = vVigwsws,

8 8
hs = vs (wl + Zwi):hﬁ = U4 <w2 + Zwi),fw = V4W2, hg = v3wy,

i=2 =4

Co = 9301.(g5 + &) + 9a95n(93 + &) + gaoma€.

It can be shown from (B-2) that the bifurcation coefficient, a, is positive whenever,

K() > Kl, (B'3)

where,

B Iy p3;028v
115 v

by /]JJ%IB;IJ
({ n NH) [ T, vg(wy + we) + Bralvsws |,

Ky = [v10(w1 + wa)(ws + )]

Ty 12, i
Ky =— M(ZM) V10WeW3

Wiy i=4
Iy p42,b
- Wg—mvm[uu + we + wr 4+ ws + wy(ws — wy) + waws|
I py
b b
+ MHHZBV vio[(w1 + w2 + wy) + wswy] — MH;MU10M3W5
J J
. 8
~ Hyprbafy ProWsts — Hirb2 Bt 503 (Z w-)
1Ly (€ +pum) \ =
8
11 b Sy 2.0y 2bo3%
- Vlf{l} QVV 4 (sz) i #Hl_iz HAU4U)2 + #Hriz HJ pyap,.
K =4 J J

Thus, it follows from Theorem 2.7 that the model (3.16) undergoes a backward

bifurcation at Ry = 1 whenever the inequality (B-3) holds. O
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Appendix C

Proof of Theorem 3.3

Proof. Consider the model (3.16) with dy; = dga =¥y =14 =0 and Ry < 1. The

proof is based on using the following Lyapunov function:

F=filu;+ foEBua+ falgyg + falga + Iv, (C-1)
where,
£ = Oy pibaBy {9395(Ngs + omy) + E[ga(ngs + 0ma) + omsgsl}
5 b
v Ry (}32 gi) (C-2)
fy— Iy prbe By (ngs + oria) _ My ppboBv(gs +&) ,  yvppbafy

s J4 — .
;v R1g39s5 ILypvR19ags Iy Rigs

The Lyapunov derivative of (C-1) is given by
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F= flEHJ + fQEHA + ijHJ + f4jHA + jv,

b I
= fi [MSHJ — (o +&+ MH)EHJ]

prrbaBraly

i Spa— (0ga+ ,UH)EHA:|
J

{UHJEHJ — (v +E+ MH)[HJ]

+ f4{

n {MHbzﬁv (Erg + Exa) + Ing + Il
11,

Elpy+ogaFua— (ya+ ,UH)IHA‘|

Sy — MVIV} :

which can be simplified to

F— { My ppbaPv(ngsgags + 1€gags + ona9sgs + Eomags + E0ms9s) (0a1s + € + )

5
Iy Ry ( I1 gi)
1=2
b
HVMHbQ/B\/g2g4(77595 - crHA)5 N Hqubz/ng2g35(95 +£) it %S‘/] Eys
1Ly Ry ( I1 gi) Iy v Ry < I1 gi)
1=2 =2

[ Mypmb + My b b

| - Oven 251/9294(71595 OHA) (0sa + 1at) + MJHA + Msvl Ena
7y Rigs 11,
My Ry I1 9i
=2

[ Ty pab - [y pub b

Ll VHH 25\/92935(95 f) (w +€+#H) i VHH 25{/€+ 125z 251/5‘/} Iy
v R1gs 11,
My Ry IT 9i
=2
[ My prbafy pabBy
_ VPR TAEY Sv |1
* ;v R1gs WA - MH) " 1L, e
(C-3)
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[HVMHb2BV(77939495 +1€9ags + 0119395 + E0rags + E0mIg3) (FLHb2/BHJ SHJ)
5 11
1Ly Ry ( I1 gi) /
=2
Iy perrbe By 9294(ngs + oma) ( 1rb2Bra g 7
5 I, HA | — pv i ly.
1Ly R ( I1 gz)
=2

Since Spy < Sty Swa < Si4, and Sy < Sy in Dy, it follows that

1— —

F< ( 1 ) (HqunbgﬁvE n Iy prmba By Eia

R My 0 Typy
11 b 11 b
4 Avi 25VIHJ | LVHH 26VIHA —l—,uvR1lv> <0 for Ry <1
Iy Iy py

Thus, F < 0if Ry <1 with F = 0ifand only if Eyyy = Ega = Iy = Iya = Iy = 0.

Furthermore, the largest compact invariant set in

{(SHJ7SHAaEHJaEHAaIHJ7[HA7RHJaRHAasV7[V) € Dl : F = 0}

is the singleton {&}. Thus, it follows from the LaSalle’s invariance principle (The-
orem 6.4 of [38]) that every solution to the equations of the model (3.16), in the
absence of disease-induced (i.e, dg; = dya = 0) and loss of infection-acquired im-
munity (i.e., ¥y = 14 = 0), with initial conditions in D; converges to the DFE, &,

as t — oo. That is,

(Eus(t), Ena(t), Ins (), Ia(t), I (1)) — (0,0,0,0,0) as ¢ — oo.

Substituting Eg; = Ega = Igy = Iga = Iy = 0 into the first, second and ninth
equations of the age-structured model (3.16), with 0y = 0ga = ¥y = ¥4 = 0, gives

Suy(t) = St Sua(t) = S5 4 and Sy (t) — S} as t — oo. Thus,
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(St (), Serat), B (t), Egat), Ins(t), Ia(t), Rus(t), Rua(t), Sv(t), [y (t)]

— (S377,S34,0,0,0,0,0,0,5;,0) as t— o0

Thus, the DFE of the model (3.16), is GASin D; if Ry <land ¢y =¢,=0. O
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Appendix D

Proof of Theorem 3.5

Proof. Consider the reduced model (3.34) with Rg > 1 (so that the unique EEP, &,
of the model (3.34), exists). It is clear from (3.34) that, for the case when ¢z = 0,
the recovered population Ry (t) — 0 as t — oo (this, together with the fact that
the state variable Ry (t) does not feature in any of other equations of the model
(3.34) when ¢y = 0, imply that the equation for Ry (t) can be temporarily removed
form the analyses of the model (3.34) for this special case). Consider, further, the

following non-linear Lyapunov function of Goh-Volterra type:

S E
]-":dl(SH—S}‘;“— “*log H)+d2(EH—E;;—E;;*zog H)

Sy Eyf
+d3 [H_[H_IHZOQ? —|—d4 SV—SV—SVZOQ? (D—l)
Iy Sy
I
+ds (]V — I} — Ilog— ) ,
I
where,
o baPypnli Sy (b2)?ByBu(pm ) I T SIS
dl — W2 = 7d3 - P} P )
o boBupu Ly St
dy = ds = ————F.
Iy
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The Lyapunov derivative of (D-1) is given by,

Fenio5)
( >[bzﬁHuHIv

———Sg — MHSH)

( _ beBupuly
Iy

S — (om + ,UH)EH]

( I}?) {UHEH = (yu + MH)IH] (D-3)

( iv ) < bzﬁvNH]HS _ MVSV)
1%

bafv e Ln
+ d (1 ]V) (H—HSV /Lvlv) .

The following steady-state relations (obtained from (3.34), with 0y = n = ¥y = 0,

at the EEP (&;)) will be used to simplify (D-3):

b2BH,uHIV S**

[ — + S**,
H HH HESH
 boBupnly
O'HE**
(Ve + pm) = I**H ) (D-4)
H
b
My, = MS** + v S,
Iy
wy = baBv iy
V= ———— .
HHI‘*/* |4

Substituting (D-2) and (D-4) into (D-3), and simplifying, gives

bafv i 157 SV (S — Sif)* _ baBupspy I Sif (Sv — St7)

F=-
HH SH 1—IH SV
N 030v Byl L SV S (o S SV SuBilv.  Svialy  Exly

(D-5)
The first two terms of (D-5) are automatically negative. Furthermore, since the

arithmetic mean exceeds the geometric mean, it follows that the third term of (D-5)

is also negative. Hence, F <0, so that
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B (S (8), Ea (1), Tu (1), Sv(t), Iv(t)) — (S5 (t), By (), 17 (), Sy (1), Iy (1)),

Substituting Iy (t) = I} into the equation for Ry (t) in (3.34) shows that Ry(t) —

Ry = J;jﬁH as t — o0o. The proof is concluded as in Appendix C. Thus, the unique

EEP, &, of the reduced model (3.34), is GAS in D5\ D, whenever Roy > 1. O
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Appendix E

Proof of Theorem 4.2

Proof. Let w1 = S;, w3 = Sa, v3 = Ejw, 24 = Ejr, 15 = Eaw, 6 = Ear, 17 = Lw,
xg = IR, T9 = Law, T10 = IaR, ¥11 = Ty, 112 = Ta, 113 = Ry, v14 = Ra, 115 = Sy,
216 = Viy and x17 = Vi. Furthermore, let f = [f1, flo]T denote the vector field of

the model (4.23). Thus, the model (4.23) can be re-written as:

dx b 16 + Orx

_dtl =1I; + a3 — 20 11(1 RI17) T1 — G121,
>
i=1

d b 0

iz §x1 +YaTiy — 20a(210 + 391717)962 — 1ET,

dt 14
> T
i=1
(E-1)
dz3 N b2y 16
a1

>

=1

T1 — gas3,

dzy . baB10RrT17
dt 14
> T

i=1

T1 — g3y,
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dzs _¢ bofamis
a 3 " T2 — 94s,

> T
=1

drg baBaOrr17
= §xq + —— T2 — g5%s,
> Ti
i=1

dZL'7

di JWI3 — e,

dx

_dtg = OjpT4 + (1 — fJ)TJZL'7 — g7%s,

diL‘g

—— = §x7 + OawTs — gso,

dt
dz
dz1, f

di JTJT7 — 10211,
dz
712 = &x11 + faTaTy — gu1T12,
dz
dx 4
d_; = X153 + YaTg + GaYaT10 + GaYaT12 — G13T14,
d$15 . bQBV[xW + g + UR<5U8 + 5510)]
W =11, — T15 — Uy T1s,

14
> T
=1

dris  bafv(rr + 9)
dt 14
D Ti
=1

T15 — v Tie,

dziz  befBynr(rs + 210)
i T15 — Hv 17,

14
Z L
i=1

where, g1 = § + pu, g2 = ogw + &+ pu, 93 = oyr + &+ P, g1 = Oaw + Lm,
95 = Oar + pu, g6 = Tg + &+ + pg + 05, g7 = £+ d1vs + p + 0105, gs =

TA+Ya+ma+0a, g9 = Gayatpa+0204, gio = P3vs+pa+0507, g11 = Paya+pr+0404,
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G2 =Yy + &+ pm, G153 =Ya+ pu.
The Jacobian of the transformed system (E-1), evaluated at the DFE (&), is

given by:
J(&or) =
-1 0 0 0 0 0 0 0 0 0 0 0 ¥; 0 0 -y —y2]
€ —ug 0O 0 0 0 0 0 0 0 0 0 0 s 0 -—yz —ys
0 0 —go 0 0 0 0 0 0 0 0 0 0 0 0 gy O
0 0 0 —g3 0 0O 0 0 0 0 0 0 0 0 0 0 |y
0 0 ¢ 0 —ga O 0 0 0 0 0 0 0 0 0 y3 O
0 0 0 ¢ 0 —g5 O 0 0 0 0 0 0 0 0 0 1y
0 0 oyjw 0 0 0  —gs 0 0 0o 0 0 0 0 0 0 0
0 0 0 oy 0 0 (I—f))75 —gr 0 o 0 0 0 0 0 0 ©
0 0 0 0 oaw O ¢ 0 —gs o 0 0 0 O 0 0 0 |°
0 0 0 0 0 oar O € (1—fa)ta =99 0O 0O 0O 0 0 0 0
0o 0 0 0 0 0 f;7y O 0 0 -go 0 0 0 0 0 0
0 0 0 0 0 0 0 0 fata O €& —gu O 0 0 0 0
0 0 0 0 0 0 Vg D17 0 0 ¢37vg 0 —gi12 O 0 0 0
0 0 0 0 0 0 0 0 YA ¢2va 0 daya & —g13 O 0 0
0 0 0 0 0 0 —hq —ha —hq —ho 0 0O —puy 0 —py O 0
0 0 0 0 0 0 hy 0 h 0 0 0 0 0 0 —py O
L 0o 0o 0o 0 0 0 0 ha 0 ha 0 0 0 0 0 0 —py]
_ bapya} _ b2By0Ra] _ bafaxl _ b2BabRrz; _ baBvOgrais
where y, = witas 0 Y2 T Torqar 0 BT wia Y4 T Toyar hy = ot and
b x . . .
hy = % Without loss of generality, consider the case when Ry, > Rpr and
1 2

Ry =1 (so that Ry = 1). Furthermore, let By = 5} be a bifurcation parameter.

Solving for fy from Ry = 1 gives

0.

By = B = I3 91929496 s -
Vo by s { Brpm[oowga(gs + &) + cawéges] + Bacawgage}

It is convenient to define:
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Ao = gi2{vag2va(01r01095 + 1111 g197)
+ 95[Va(0204 + pr) + i gollosr(§ + i + 0105) + 9197}
+ o ROV G19599 > 0,

A1 = adovapn + gs[vapapim + g13(0204 + pm)] > 0,

Ay = o ywTr9a98(1 — f1) (g0 + &) + 74897 (1 — fa)(oawge + o ywgs) > 0.

The right eigenvector of J(&o)|s, =gz is given by

w = (wy, wa, w3, Wy, Ws, We, W7, Wy, We, Wig)~, where (since 49 > 0, A; > 0 and
Ay > 0)
= Bibabrpa{osrl@1vigr + 912(§ + pm + 0105)] + 9197912}
wy = 5 wyr < 0,
919397912
_ balOR(Brpr Ao + 91939791284 A1) B _ baBsO0rpE
wy = — 5 wyr < 0,w3 = 0, wg = ———wyy,
HH9193959799912913 9193
B _ 0280r(Bags + Bapin) _ _ baByorRrORpH
ws = 0, ws = wyr, wr = 0, wg = —————wyy,
919395 919397
B _ b2l0R[Bipn(0 R + OARGT) + BaT ARG B B
wg = 0,wyp = w7, wy; = 0, wip =0,
9193959799
_ beBsOrOIRYIOIE
w3 = Wi,
919397912
L= bolOr{ Britr[P274912(0 7RG + OARGT) + O RO1V.1G590) + ﬁAUAR¢2’VAgag7g12}w17
14 — )
9193959799912913
S 38y v Ornpa{Brinlosrgs (€ + go) + oarbgr] + BAUAR@?)Q?}U} <0
15=— 17 <0,
1311 79193959799

wig = 0, wy7 > 0.

Similarly, J(&)|s,=p; has a left eigenvector v = (vi,va,vs,v4, Vs, Vs, U7, Vs, Vg, V10),

where
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_ By 011y i {v169799[0aw€gs + oywga(gs + 1)] + virnAs}

9
HJNV9294< I1 gi)
1=6

. bo By Iy [0 7rgs (€ + g90) + 0 4rEGT]
=

(%1 :O,’UQZO,’Ug

?

V17,
1Ly v 93959799
e — bo By Iy o aw prr[v16ge + v177an(1 — fa)] Vg = bo By 1Ly o arn e orn
Iy pv 919899 ’ Iyt 9599 ’
v = bo By Iy i {vi69799(gs + &) + virn[119s(90 + &)(1 — f1) + Tangz(1 — fa)]}

)

9
Iy ( I1 gi)
1=6

DBy Iy (€ + go) by Ily pmlviege + virnTa(l — fa)]
Vg = V17, V9 =

1y 9799 Iyt gsgo ’
by 811
V19 = MUI?; v = 0,012 = 0,013 = 0,014 = 0,015 = 0, v16 > 0,017 > 0.
1Ly g9

Using the approach in Appendix B, it can be shown that the backward bifurcation

coefficients associated with the model (E-1) are, respectively, given by:

2
a= Z vkwiwjaai(0,0),

ki g1 $ial'j
—2bo3, [ B 1T 5,110
= QQMH { v an [—v17w15(wio + ws)] + It RU4w17 - iw1 + wa + Ny
IT5 e a1 HH
11,60 II
+ %JU(SU)H |: — wg + ,ui(wl + no) + /BVM ann[wg(wl —+ wy + no) + wlonl]
1 H Vv

(E-2)
(With, Ng = Wy +’LU6 +w8 ~|—w10 +’LU13 +w14, ny = w; +ZU2 +’LU4—|-2U6 +w10 +"LU13 —|—’LU14)

and,

2 b 28* 1Ty n0
b= Z vkwiﬂ(o,o) _ (boprr)* By Iy nOr[0sRY5 (9o + §) + 0AREY7]
vi, 0109 1141y 9193959790

vi7wir > 0.

It follows from (E-2) that the bifurcation coefficient, a, is positive whenever,
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KO > Kl> (E_3>

where,
11,60 oIl
Ko = ——""wi7(Bypuvaws + Balvswr) — il Y (wy + wz) (ws + wio),
HHGL
oI 11,0
K, = —BV Qm [U17w15(w8 + w1o)] - Pl Rw17[?}4(€w1 - ,MHno) + VW2 — V1670
Hir Mgl
oIl
+ by anw[wsno + wio(ws + we + Wi + Wiz + wig)].

Ky

Thus, it follows from Theorem 2.7 that the model (4.23) undergoes a backward

bifurcation at Ry = 1 whenever the inequality (E-3) holds. O
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Appendix F

Proof of Theorem 4.3

Proof. 1t can be shown that the system (4.23) satisfies the Type K condition (as de-
scribed in Section 2.7). Hence, comparison theorem [37] can be used. The equations

for the infected components of the model (4.23) can be re-written in terms of

Ew Ew
E;r Eir
Eaw Eaw
Ear Ear
Iw Iyw
% bl oy sy | (F-1)
Taw Law
Iap Iar
Ty Ty
Ty Ty
Vi Vi
Vr Vi

where,
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1 1

o fo Joocoococoo
@ 0

Ho fooococococococo

COOOOOOOOOoO O
[elejoleialolelaolololaia]

coocoocoooooo ¥
cooooocoooo Yo
coocoococoococo §

coooococococoo o

OO0 OOOOOOO O
SO0 OOOOOOoO O
SO0 OOOOoOOoOOoOoO O
COOCOOOCOO0OO0O O
L 1

Il
)

5S4

baBa(S% — Sa)
Ny

Y

-
e} n
¥a) |

>
\I/-/ m»(\w\*H
o 5

>
_ Q.

&

)

NEE

S~—

e}

- b

~ -

Naj

[a\

X

52
bafy (Sy — Sy)
Ny

baf3;(S7 — Sy)
Ng
y S5

baBa0R(S) — Sa)
N

with, s; =

0

0000

baB50RS%

00

0

0000

*

0

0000

baB40RS

00

0

0000

H

*

cococooco © o
cococooco © o
cococooco © o
cococooco © o
* >
~
*
coocococo  © < =
>
Q.
N
=
* >
*
cocococoo > = o
Q.
al
=

[e]elelelelen] [e=]

ba By nr Sy
i

* >
*

cococooo > = o

N

=)
cococococo © =)
cococococo  © o
cococococo  © o
cocoococo © o

and,

wr
o
S

B

OWOOOOOOO

OARTH,

OAW +1H; g5

oyr+E+ 1w, 94

oqw+E+um, g3 =
§+ O1vs + 1, g8

with, g1 = {+pm, g2

TA + YA+ [E, §9 = P2VA + [LH,

96 = T+ &+ v+ pa, g7
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11
gio = &+ G3vg + s G11 = Gava + pa, G2 = Y5+ &+ i, 913 = Ya + pg and M—J
H

Since all the elements of the matrix S are non-negative in D, it follows that

Eyw Eyw
Esr Esr
Eaw Eaw
Ear Ear
Iyw Iyw
% IR <(F-V) IR
Taw Law
Iar Iar
Ty Ty
T Tx
% Vi
Vr Vr

Using the fact that the eigenvalues of the matrix F — ) all have negative real
parts (since when Ry < 1, the DFE, &7, of the model (4.23) is locally-asymptotically
stable; which is equivalent to F — )V having eigenvalues with negative real parts), it
follows that the linearized differential inequality system is stable whenever Ry < 1.

Consequently, it follows, by comparison theorem [37], that

(Eyw(t), Esr(t), Eaw(t), Ear(t), Lyw (), Lir(t), Law (1), Lar(t), T5(t), Ta(t), Vi (),

Ve(t)) = (0,0,0,0,0,0,0,0,0,0,0,0) as t— oo.

Substituting EJW :EJR: EAW :EAR:_[JW = [JR:_[AW = ]AR:TJ :TA =

Viy = Vg = 0 into the first, second and fifteenth equations of the model (4.23) show
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that

(S5(t), Sa(t), Sy (1)) — (8%, 5%, 85) as t — oo

Thus, the DFE, &, of the model (4.23), with §; = 04 = ¥; = b4 = 0, is GAS in
D, if Ry < 1. O
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