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Abstract 

 

Accurate population estimates are a central aspect in the management of any species, but 

especially for fish stocks subjected to harvest pressures. Commercial fisheries catch landings 

provide an abundant source of data, but are inherently biased due to the behaviour of the fishers. 

Unlike scientifically collected data, commercial landings are a product of fishers actively 

targeting or avoiding certain species and areas. I investigated how biases in the behaviour of the 

fishers may impact the overall abundance index through generalized additive mixed models with 

subsets of data that were selected based on the inferred behaviour of the fishers for two 

commercially valuable species on the east coast of Canada. For both haddock (Melanogrammus 

aeglefinus) and redfish (Sebastes spp), fishing sets targeting the species and sets where the 

species were caught as bycatch produced different relative abundance indices despite being 

drawn from the same underlying population. When these indices were used in a virtual 

population analysis stock assessment for haddock, the resulting spawning stock biomass 

estimates reflected the biases in the estimates. The bycatch index was more similar to the survey 

index than was the target index was. When targeting behaviour is constant, changes in the 

underlying population may not be detected, but when targeting behaviour is changing, then false 

trends may be produced. Indices produced from bycatch data provided a more robust population 

estimate than target data, and may be a suitable alternative for when survey data are unavailable. 
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Chapter One: General Introduction 

 

1.1 Background  

Sustainable harvest of any animal is reliant upon accurate population estimates. Although 

fish stocks were at one point considered to be inexhaustible, improvements in fishing power have 

allowed for the depletion and overfishing of many fish stocks (Garstang 1900, FAO 2016). Early 

advances in fishing power, such as the introduction of steam trawlers in the late 1800’s, were 

thought to have increased fishing power from three to six times that of fishing under sail 

(Garstang 1900). The continued advancement of fishing vessels and gear since the late 1800’s 

has allowed for fishing in previously inaccessible areas, and for longer periods of time resulting 

in the overall increased fishing power of vessels (Kerby et al. 2012). Combined with 

technological advances, such as GPS and navigational equipment, this allowed fishers to locate 

aggregations of fish, be more precise and efficient in their net placements, and return to specific 

fishing locations (Kerby et al. 2012, Robins et al. 1998). These improvements in fishing power 

have contributed to an increasing amount of fish stocks being overexploited and a global decline 

in fish biomass (Butchart et al. 2010,FAO 2016)  . Myers and Worm (2003) suggest that the 

ocean has lost 90% of its large predatory fishes since the industrialization of fishing. The loss of 

large predatory fish species has resulted in “fishing down the food web”, a global trend where 

the mean trophic level of landed catch has been in decline since the 1950’s (Pauly et al. 1998). 

Continued exploitation at the current rates will likely lead to widespread fisheries collapses 

(Pauly et al. 1998), but with drastic reductions in exploitation rates and changes to current 

fishing practices recovery of fish stocks is still attainable (Pauly et al. 2002, Worm et al. 2009). 

To ensure the recovery of overexploited fish stocks and prevent irreparable damage to 

future stocks, responsible management of our fisheries resources is increasingly important. 
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Producing stock assessments which are sensitive to changes in the underlying fish availability is 

a key factor in the management of commercial fisheries (Hilborn and Walters 1992). We are 

reliant upon our ability to infer population size from samples because fish populations cannot be 

directly estimated. Behavioural biases inherent to the data set used to produce stock size 

estimates have the potential to produce inaccurate population estimates which could result in the 

implementation of ineffective management strategies.  

The data used for abundance indices comes from two main sources, fishery independent 

data or fishery dependent data. Fishery independent data, such as scientific surveys, are designed 

to minimize bias in how the catch is obtained so that the catch rates can accurately reflect the 

underlying fish population. Survey data are preferable to fishery dependent data, but are not 

available for all fisheries. The cost of survey data relative to the amount of data being produced 

is very high and for this reason not always available. When survey data are unavailable, 

abundance indices are often based upon the landings of commercial fisheries (Maunder and Punt 

2004). Unlike surveys which are designed to minimize bias in how the catch was obtained, 

commercial fishers are actively targeting valuable species, resulting in non-random effort. 

Skilled fishers can sustain high catch rates of target species through moderate declines in 

underlying fish numbers.  

Targeting is the application of specific fishing techniques, gear selection or 

temporal/spatial gear placement with the goal of capturing a certain species or size class of fish 

within a multispecies fishery. Targeting of valuable species, by weight or market price, is 

beneficial to fishers. When fishing effort is limited, targeting may not impair the fish stocks 

ability to persist. Katsukawa and Matsuda (2003) have shown that switching between target 

species could potentially keep the overall productivity of the fishery high by reducing the fishing 
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pressure on both stocks. However, most economically important fish stocks are currently 

considered to be either fully fished or overfished (FAO 2016) .Globally in 2013, 58.1% of 

assessed stocks were considered to be fully fished, and 31.4% being fished at biologically 

unsustainable levels (FAO 2016).  

The issue arising with using data from fishers demonstrating targeting behaviour stems 

from the relationship between catch-per-unit-effort (CPUE) and the underlying abundance. The 

current standard in fisheries research is using CPUE to look at changes in abundance assuming 

that a change in catch, with constant effort, reflects a change in the underlying abundance 

(Biseau 1998). The relationship between CPUE and abundance is assumed to be proportional 

(Figure 1-1). Hyperstabiltiy occurs when the abundance rate declines at a greater rate than 

CPUE, while the opposite pattern, known as hyperdepletion, occurs when catch rates decline at a 

greater rate than the underlying abundance (Clark 1982, Hilborn and Walters 1992, Harley et al. 

2001, Figure 1-1). Effective targeting behaviour can result in a hyperstable relationship by 

selectively fishing high density areas. This results in a catch rate that remains high even when 

facing a decline in the underlying abundance. In order to detect overfishing of vulnerable stocks, 

which at the extreme could cause a crash in the fishery (cod; DFO 2011, anchovy; Glantz and 

Thompson 1981), it is important that the data we use to derive abundance estimates is 

representative of the underlying population.   

Differences in raw catch, or even CPUE, are unlikely to be solely impacted by the 

underlying abundance. Variables such as vessel characteristics, fishing location, and the time of 

year can all contribute to the amount of fish captured in a fishing set. In order to use catch data as 

an index of abundance, catch is “standardized” to remove the variability associated with changes 

in catch due to factors beyond changes in abundance. Year is often included as a variable when 
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standardizing catch regardless of significance, to explicitly represent underlying changes in the 

population (Maunder and Punt 2004). Before advancements in computing technologies allowed 

us to routinely fit complex statistical models, catch was standardized based on simpler methods 

focused on relative fishing power (Gulland 1956, Beverton and Holt 1957). The development of 

generalized linear models (GLM) allowed for linear models to be extended to data that was not 

described with a normal distribution (Nelder and Wedderburn 1972). For fisheries data this often 

means using a Poisson, or negative binomial distribution for count data, or a gamma distribution 

to account for the skew and heteroscedasticity common in continuous catch data (McCullagh and 

Nelder 1989, p30). Since their development, GLMs have been the common practice when 

standardizing catch and can be extended to include both fixed and random effects through 

generalized linear mixed models (GLMM; Helser et al. 2004, Venables and Dichmont 2004). 

Factors, such as the unique vessel, can be specified in GLMMs as a random effect which 

incorporates the variability associated with different fishing vessels, without having to quantify 

specific differences. In more recent years, GLMs and GLMMs have been extended into additive 

models. These account for trends through the use of smoothing functions that can fit non-linear 

trends while reducing the number of estimated parameters in the model (Wood 2006). 

Generalized additive models (GAM) have been used since the late 1990’s to standardize catch in 

the Black Sea, as well as much more recently applied to dogfish in the Gulf of Alaska (Daskalov 

1999, Gasper and Kruse 2013). For this study, I chose to use generalized additive mixed models 

(GAMM), which allows for both fixed and random effects to be used along with smoothing 

functions. 

Because the commercial data we have available is often the result of targeting behaviour 

by the fishers, there have been many studies which try to account for the variability in catch 
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associated with targeting behaviour. As a broad scale approach, fishing activities can be 

partitioned based on fishing tactic, a.k.a. fishing métiers (Pelletier and Ferraris 2000, Deporte et 

al. 2012). In a multispecies fishery, individual fishers are not all fishing in the same way or 

targeting the same species, so classifying fishing tactics can be useful in accounting for this 

source of variability in catch rates. Fishing tactics identified from performing clustering analyses, 

such as described in Pelletier and Ferraris (2000) can be used directly in GLM models as an 

explanatory variable. Carvalho et al. (2010) used GLMs to model blue shark catch from a 

Brazilian tuna fishery, accounting for targeting behaviour by including the fishing tactic as a 

multilevel factor. They found that fishing tactic accounted for up to 73% of the explained 

deviance. This agreed with Wiff et al. (2008) who also found that fishing tactic played an 

important role when standardizing catch for a demersal trawl fishery off central Chile. An 

alternative to using the overall fishing métier to account for targeting was proposed by Winker et 

al. (2013). Winker et al. (2013) produced a targeting variable based on principal component 

analysis (PCA) of catch composition and compared it to models where the target variable was 

based upon clustering methods. They found that the models using the PCA had the best fit to the 

data based on Akaike’s information criterion model selection (AIC; Burnham and Anderson 

2004) and greater predictive power based on bootstrap cross-validation of the models. Previous 

studies have also used simpler incorporation of targeting by including the natural logarithm of 

catch for an alternate target species (Marriott et al. 2013), or the proportion of catch of an 

alternative species (Chang et al. 2011) as a proxy for targeting.  

Even in studies where targeting behaviour was not accounted for directly in the model 

variables, consideration of the effects of targeting could be taken into account through data 

selection. Helle et al. (2015) compared CPUE standardizations between all fishing sets, fishing 
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sets presumed to be targeting ling (Molva molva), and fishing sets from vessels that often 

targeted ling. Tascheri et al. (2010) chose to account for possible changing of targeting behaviour 

by only selecting fishing sets where the species was identified as target sets through a logistic 

regression. All of the possible methods outlined above account for changes in targeting 

behaviour and how they may be influencing the catch rates. Although this in an important aspect 

of fishing effort, accounting for changes in targeting behaviour may not be accounting for the 

inherent hyperstabilty of directed fishing effort in general. 

When there is no commercial data from target fisheries, bycatch may be used as an 

alternative. Ortiz and Arocha (2004) used standardized bycatch of billfish species from a 

longline tuna fishery, while Zhang and Chen (2015) used bycatch of Atlantic cod and cusk from 

lobster traps in the Gulf of Maine. Bycatch is generally only used when target data are not 

available, but due to the more random nature of bycatch in relation to the distribution of fish it 

may be more proportionate to the underlying abundance than target data. This would make 

indices produced from bycatch data a more appropriate relative index than target data in stock 

assessments.  

In general, stock assessments aim to characterize stock dynamics and uncertainty, with 

the end goal being able to use the information about the stock dynamics to set management 

objectives (Haddon 2011). Not all stock assessment models are age-structured, i.e. biomass (or 

number) of fish are separated each year into separate ages or stages. Surplus production models, 

a.k.a. biomass dynamics models are considered to be one of the simplest stock assessment 

models used, and are not age-structured (Hilborn and Walters 1992). In general, surplus 

production refers to the production of a fish stock above and beyond the amount of fish needed 

to replace what is lost due to mortality. Rarely are there direct measurements of the biomass of a 
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fish stock, so an index of abundance is incorporated into these assessment models instead (e.g. 

CPUE). If there is an independent measure of the relationship between the index and the true 

abundance, then the biomass can be reconstructed directly. However, when this information is 

not available the production function of the stock and the link between the index and actual 

abundance must be specified.  

The most common production functions used are the Schaefer model and the Pella-

Tomlinson model (Schaefer 1954, Pella and Tomlinson 1969). The Schaefer model describes a 

symmetrical arch shaped function, with the highest production observed when the population is 

at half of the carrying capacity. The Pella-Tomlinson model incorporates an exponent to the 

Schaefer model which allows for an asymmetrical production function. In general, surplus 

production models assume that any amount of fish harvested at or below the surplus production 

is a sustainable yield, with a single maximum sustainable yield (MSY). Surplus production 

models treat the biomass of a fish stock as a single entity, whereas in reality the age-structure of 

the fish stock influences the dynamics of the population. 

 Age-structured models refer to any stock assessment model which incorporates catch-at-

age data, and can be broadly split into virtual population analysis methods (VPA) and statistical 

catch-at-age methods (SCA) (Hilborn and Walters 1992). Statistical catch-at-age uses a 

maximum likelihood approach to optimize parameters in the population dynamics model for the 

first year and youngest age class of fish, then projects the population estimates forwards (Hilborn 

and Walters 1992). SCA is a purely statistical approach to stock assessment, whereas traditional 

VPA (Gulland 1965) is calculated using the basic assumption that at an old enough age class, no 

individuals from a cohort will survive to the following year.  Cohorts are projected backwards, 
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instead of forwards as in SCA, by adding back individuals lost through natural and fishing 

mortality.   

The traditional VPA method uses commercial catch-at-age data to reconstruct cohorts 

which have no surviving members in the current fishery.  Auxiliary information is required to 

“tune” the VPA so that cohorts within the current fishery can be estimated. The auxiliary 

information is an index of the underlying abundance and may be in the form of a scientific 

survey, or CPUE trends from commercial fisheries. In general, the index of abundance is used to 

minimize the error between the estimated abundance from the VPA and the observed index. 

Depending on the data available and the assumptions made, methods such as extended survivor 

analysis (XSA; Shepherd 1999), ADAPT (Gavaris 1988) or CAGEAN (Deriso et al. 1985) 

methods can be used, each with their own strengths and weaknesses (Megrey 1989). These 

methods all rely upon a relative index of abundance to ‘tune’ the VPA, but the error 

minimization routine varies depending on the method. For example, XSA uses the estimated 

abundance of survivors while the ADAPT method uses catchability in the minimization routine. 

The ADAPT and CAGEAN methods are more of an integrated statistical approach. The 

population is still projected backwards through time, but the terminal year/age are estimated 

using statistical techniques. The ADAPT-VPA is used as the main stock assessment model for 

haddock on the Atlantic coast (Stone and Hansen 2015), and as such was chosen as the model to 

examine in this study.  

1.2 The Study Fishery and Species 

For this study the Northwest Atlantic Fisheries Organization (NAFO) division 4X 

groundfish fishery was used as a representative fishery to examine the effect of targeting 

behaviour on abundance indices (Figure 1-2). The Maritimes region of Canada supports a diverse 
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range of fisheries, including groundfish, shellfish, and pelagics, with an estimated value of $757 

million in 2012. Division 4X encompasses both the western part of the Scotian Shelf and the Bay 

of Fundy and a small portion of George’s Bank, although the commercial records used in this 

study include only landings from the Scotian Shelf. The term groundfish collectively refers to 

species that are found near the bottom, as opposed to pelagic species, such as herring and 

mackerel, which are found in the middle of the water column or near the surface. In the 

Maritimes region, haddock (Melanogrammus aeglefinus) and redfish (Sebastes sp.) are 

considered to be the main target species of the groundfish fishery, with other species such as 

pollock (Pollachius pollachius), hake (Merluccius sp.) and Atlantic cod (Gadus morhua) caught 

as well. The groundfish fishery in 4X is comprised of fishers using both fixed (longline and 

gillnets) and mobile gear (trawls). This study used only records from otter trawl landings, which 

is the dominant gear type in recent years (Stone and Hansen 2015). Fisheries and Oceans Canada 

employs at-sea observers on commercial fishing vessel to monitor the accuracy of reported catch 

and discards. For the 4X groundfish trawl fishery, observer coverage was approximately 2.5% in 

2008, increasing to about 10.7% in 2011 (Clark et al. 2015). The data available for the 4X 

commercial fishery is recorded at the level of a single fishing set. A fishing trip is defined as the 

time between leaving and returning to a homeport, with each trip made up of several fishing sets. 

A single fishing set refers to the actual activity of fishing, where the net is deployed, trawling 

occurs, and the catch is then sorted and stored. For each fishing set, information on species 

composition, fishing effort, location and vessel characteristics are recorded. The amount of data 

available, along with the relatively detailed information for each fishing set made the 4X division 

a good representative fishery for this study. Detailed information of the total landed catch by 

species and the average catch per set for the data used in this study can be found in Appendix A.  
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1.3 Aims and Objectives 

My thesis investigated the quantification of targeting behaviour, and how fisher 

behaviour may influence abundance estimates. This was accomplished with data from the NAFO 

4X groundfish fishery, but this thesis is not intended as an in-depth study of this particular 

fishery. The NAFO 4X fishery is being used as a representative fishery and thus the results are 

intended to represent overall concepts, not specific stock estimates.  

Chapter two modeled standardized catch per set with generalized additive mixed models 

to incorporate the underlying behaviour of the fishers, while chapter three used these models as a 

relative index of abundance in an age structured stock assessment. Overall, these two chapters 

investigated both how fisher behaviour may influence catch on a set-by-set level, and how this 

may affect the estimate of the underlying fish stock. Understanding the effects that biased 

commercial data may have on population estimates may help in the future with better 

management of fisheries where survey data may be unavailable.  
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Figure 1- 1 Relationship between catch-per-unit-effort and abundance for hyperstability (····), 

proportional (        ) and hyperdepletion (- - - - ) trends 
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Figure 1- 2 Map of Northwest Atlantic Fisheries Organization (NAFO) designated fishing areas. 

Data from NAFO 4X was used for this study. Dashed black lines are the border between the 

Canada and the USA. Grey dashed lines (top) are division areas. Solid grey lines (bottom) are 

unit area divisions. Grey dotted lines (bottom) are shelf contours. 
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Chapter Two: The Effect of Behavioural Bias When Standardizing Commercial Catch 

 

2.0 Abstract 

 

Management of fish stocks relies upon accurate abundance estimates. Commercial 

fishing records are often used as a relative index of abundance, either on their own or as part of a 

more in-depth stock assessment method. Standardizing catch aims to remove the uncertainty 

associated with how catch is obtained so that the remaining variability can be attributed to a 

change in the underlying abundance. Generalized additive mixed models (GAMM) were used to 

standardize behavioural subsets of data for haddock and redfish in the NAFO 4X division 

groundfish fishery to examine how fisher behaviour and data selection influence relative 

abundance indices. Target sets were selected using a 90% threshold of catch by weight, bycatch 

sets were selected as the remaining catch from target sets, and mixed sets included all sets that 

did not meet the criteria for target or bycatch classification. For both haddock and redfish 

species, the patterns in relative abundance differed across the behavioural subsets of data. 

Comparatively, target and bycatch indices varied in both amplitude and overall pattern. 

Additionally, patterns in nominal fishing effort (hours trawled) and number of sets per trip were 

variable between behaviours. Target sets were influenced by the number of fishing sets within a 

trip, whereas bycatch sets were more influenced by the length of each set within a trip. CPUE 

effort as a response variable relies upon the assumption that catch and effort are proportional. 

This assumption was not met by any of the models. The underlying fishing tactic of commercial 

data influences not only the patterns in relative abundance indices but how we incorporate and 

interpret fishing effort.  
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2.1 Introduction 

 Overexploitation of marine fisheries resources has been an ongoing issue for the past 

several decades (FAO 2016). Globally, large marine predatory fish stocks have shown drastic 

declines resulting in increased fishing pressure on stocks at lower trophic levels (Pauly et al. 

2008, Myers and Worm 2003). As both fishing power and fishing effort has increased through 

the latter part of the 20
th

 century, so has the proportion of global fish stocks considered to be 

overexploited (Butchart et al. 2010). Although many fish stocks have been fished down to 

critical levels, there may still be potential for recovery with the implementation of   more 

aggressive management strategies (Pauly et al. 2002, Worm et al. 2009). It is both unlikely and 

unreasonable to expect a repression of all fishing activities, but a reduction in fishing pressure is 

necessary for many fish stocks to begin recovery (Worm et al. 2009). Having an index of 

abundance that is sensitive to changes in the underlying population is an important aspect in the 

implementation of management decisions, along with monitoring their effectiveness. This 

chapter focuses on exploring how targeting behaviour of fishers, and the bias it introduces into 

commercial catch data, may influence standardized catch rates and their corresponding 

abundance indices.  

Changes in fishery catch rates are often used as an indicator of changes in underlying fish 

abundance. Raw catch, or catch-per-unit-effort, is unlikely to be representative of the underlying 

population size due to spatial and temporal trends in the fish distribution (Hilborn and Walters 

1992, Maunder and Punt 2004). The fishing efficiency of individual vessels also influences catch 

rates (Maunder and Punt 2004). Standardizing catch instead of using raw catch data reduces the 

effect that unknown factors have on the relative abundance index by removing the variability in 

catch not associated with changes in population size (Chen et al. 2004, Maunder and Punt 2004).  
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Nominal effort is often treated as if it were random in catch standardizations, but effort is 

usually directed towards valuable species, either by weight or market price (Maunder and Punt 

2004). Fishers aim to maximize yield by directing their fishing activities towards a certain 

species, such as fishing select areas or times, and thus introducing bias into the data set (Hilborn 

and Walters 1992, Pelletier and Ferraris 2000). This directed effort, or “targeting” behaviour, 

may result in abundance estimates that do not reflect changes in underlying abundance (Hilborn 

and Walters 1992, Biseau 1998). Effective targeting behaviour can mask changes in underlying 

abundance when the relationship between catch and effort is assumed to be proportional (Clark 

1982, Harley et al. 2001). The lack of change in catch rates may be interpreted as a stable 

underlying population even if it is in decline. If fishing pressure remains high there could be a 

crash in the fishery such as the one seen in Grand Banks Atlantic cod (Gadus morhua) in the 

early 1990’s (DFO 2011). Therefore, accounting for targeting behaviour is important when 

developing an unbiased index of relative abundance.  

Many methods have been used to incorporate aspects of targeting behaviour when 

standardizing catch. Studies may only select data targeting the species of interest (Tascheri et al. 

2010, Stephens and MacCall 2004) or use data from fisheries targeting a single species 

(Cosgrove et al. 2014). When data from target fisheries is non-existent or unavailable, catches 

may be standardized from data where the species of interest is caught as bycatch (Gasper and 

Kruse 2013, Ortiz and Arocha 2004). Additionally, targeting behaviour may not be consistent 

and fishers may choose to switch between multiple target species to keep productivity high 

(Katsukawa and Matsuda 2003). This fishing practice reduces fishing pressure on both stocks; 

however, an undetected change in target species could bias catch standardizations. Including 

covariates for gear type (Li et al 2015), amount of other species caught (Marriott et al. 2013), 
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proportion of other species in the catch (Chang et al. 2011), or principal component analysis 

scores (Winker et al. 2014) along with many others have been used as ways to account for 

changes in targeting behaviour in a fishery.  

In this study, “fishing tactics” refer to the short-term objectives of the fishing vessel, with 

regard to their realized catch (Sampson 1991, Pelletier and Ferraris 2000). Some studies use 

“fishing strategy” in place of “fishing tactic” (e.g. Rogers and Pikitch 1992, Babcock and Pikitch 

2000) when discussing short-term fishing choices. For this study the term “strategy” will be 

reserved for reference to long-term objectives. This may be at the vessel level (intended target 

species is considered the overall strategy) or referring to management strategies of entire 

fisheries (e.g. Mace 1994, Smith et al. 2009). Some fisheries require the logbook data to indicate 

the target species, corresponding to the intended fishing strategy (long-term objective), but the 

tactics used to achieve this may vary between sets.  

Previous studies have compared standardized catch rates for target catches vs. all catches 

(Helle et al. 2015) or catches from different fleets (Chang et al. 2011). However, bycatch trends 

tend to only be included when no other data sources are available (Zhang and Chen, 2015, 

Brodziak and Walsh 2013). Using standardized CPUE as an index assumes that CPUE is 

proportional to the underlying abundance. This relationship also assumes that within the CPUE 

index, catch is proportional to effort. However, in many studies catch and effort are 

disproportionate (Aljafary 2016). Having an index of abundance that is both representative of the 

underlying population size and responds to changes in abundance is crucial to the effective 

management of fisheries. Consistent targeting behaviour in commercial fisheries has the 

potential to keep catch rates high, resulting in an insensitive index of abundance (Clark 1982, 

Harley et al. 2001). In this study, the main objective was to partition commercial fishing records 
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based on targeting behaviour of fishers to compare the effect that behaviour may have on the 

resulting index of abundance.  

2.2 Materials and Methods 

2.2.1 Data Selection and Manipulation 

The data used for this study spans six years of commercial catch records from the 

Northwest Atlantic Fisheries Organization (NAFO) 4X division groundfish fishery from 2008 to 

2013. Each logbook entry is for one fishing set, which is comprised of a single bottom trawl. For 

each fishing set, information is recorded about the location, date, length of the trawl and what 

was caught. Catch information consists of weight in kilograms by species. One fishing trip is 

made up of multiple fishing sets where the catch is stored onboard between sets. Trips generally 

last for multiple days, whereas sets are on the scale of hours. Along with spatial and temporal 

information about the fishing sets, information about the fishing vessels was also recorded. Each 

vessel was assigned a unique, but anonymous, identifier within the data set so that fishing sets 

can be attributed to the same vessel across multiple fishing seasons. Vessel characteristics such 

as length and tonnage were recorded, along with the gear type used. For this study, the gear type 

was restricted to otter trawls.  

The data provided was not used in its raw form, but was sorted and selected based on the 

requirements of the study in the order described. Incomplete records (at least one required 

column was missing) were removed and the remaining data was aggregated so that there was 

only a single weight per set by species, instead of being split by size or market class. Using the 

latitude and longitude coordinates, fishing sets which fell outside a reasonable fishing area were 

removed from the data set, i.e. sets that were on land, off the shelf edge or outside of the 4X 

boundary. Data from 2014 was removed from the analysis as it did not span the entire year and 
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was thus inconsistent with the timeframe of fishing activities from previous years. The original 

data set contained sets from both inshore and offshore vessels. Inshore vessels are classified as 

having a length overall (LOA) less than 65’, while offshore vessel can have a LOA greater than 

65’ and are regulated separately (Department of Fisheries and Oceans 2010). The original data 

set was made up primarily of inshore vessels, so to keep records consistent, offshore vessels 

were dropped from the analysis along with any sets where trawls lasted greater than nine hours. 

As a final data selection criterion, only vessels with greater than 100 fishing sets per year for all 

6 years of data were retained. This provided a data set where fishers were likely to be more 

experienced, and thus have realized catch that is reflective of their intent, as any fishers who only 

fished periodically were excluded. Only using vessels with a large number of observations also 

allowed fishing vessel to be included as a random effect in the standardized catch models. Of the 

original 277778 records, 126413 records were retained; accounting for 50.1% of the fishing sets 

and 51.6% of the total catch by weight.  Detailed information on the number of fishing sets and 

associated records removed from the original data set can be found in Table 2-1. 

2.2.2 Fishery Catch, Trip and Set Overview 

Summary information on fishery catch and effort was calculated for the sixteen fishing 

vessels across the 6 years of data. Fishery catch, in kg, was aggregated by species across all years 

and reported as total catch. The proportion of catch was calculated as the total catch of species 

divided by the total catch of all reported species. Average catch per set was calculated using only 

sets where the catch was greater than zero, and thus does not reflect the average catch across all 

sets that occurred. 

The length of each fishing trip was calculated in number of days, corresponding to the 

dates of the first and last fishing set. This ignores initial and final travel to and from port, which 
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could not be determined from the data. The number of fishing sets per trip was calculated before 

any fishing sets were removed from the analysis during the data manipulation stage.  

2.2.3 Target Species ID 

Fishery wide targeting was assessed using methods from Biseau (1998) and Gillis et al. 

(2008). Following the method from Biseau (1998), cumulative distribution functions (c.d.f) of 

proportion of catch per set were produced for species which had greater than 1000 non-zero 

records. Biseau (1998) demonstrated that the behaviour of the fishery can be classified based on 

the overall shape of the c.d.f. Bycatch species have the majority of their landings made up of 

small catches, whereas target species have the greatest proportion of catches in medium to large 

landings. The cumulative distribution functions were calculated on a set by set basis, instead of 

by trip as used in Biseau (1998), with each of the six years of data calculated separately. 

In addition to using the cumulative catch distributions, target species were assessed by 

the skew of the distribution of log transformed non-zero catch following methods developed in 

Gillis et al. (2008). They show that the distribution of the logarithm of catch is negatively 

skewed when fishers are targeting a certain species and more symmetrical for bycatch species 

(Gillis et al. 2008). When fishers are targeting a species, they tend to have a larger proportion of 

high catches with a long tail of smaller catches. An exception to this is when a target species is 

fished too intensively, and even smaller aggregations of fish are exploited.  

Skews were calculated on a yearly basis for species with greater than 1000 non-zero 

records. Distributions of catch were made up of the log10 catch (kilograms) on a set by set basis 

and the degree of skew was calculated using the skewness() function from the moments package 

(Komsta and Novomestky 2015). To account for the frequency at which species were landed, the 

proportion of zero catches was calculated for each species per year along with skew. Proportion 
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of zeros in the catch is a measure of frequency of occurrence but does not reflect the total landed 

weight. It is possible for a species which is landed less frequently to have a larger total landed 

weight than a species that is landed more often. Proportion of zeros can range from zero, 

indicating the species was found in all deliveries, to one, indicating the species was not seen in 

any deliveries. 

Proportion of set by weight was used as the criteria to identify targeting behaviour on a 

set by set basis. To examine the effect of targeting behaviour on abundance indices, catch 

records were subset by fishing tactic into three categories, “target”, “mixed” or “bycatch”, for 

haddock and redfish. Target sets were determined by selecting sets where a minimum of 90% of 

the catch by weight was the species of interest (either haddock or redfish). Using proportion of 

catch, instead of absolute catch removes the effect of total catch size (Pelletier and Ferraris 

2000). Previous studies have used proportion of catch as a way of classifying targeting, such as 

Chang et al. (2011), which used % of catch to define fishing fleets and account for targeting in 

longline tuna fisheries, although on a vessel by year basis. Preliminary modeling using catch 

threshold levels of 80%, 85% and 95% indicated that the patterns in relative abundance remained 

consistent across threshold levels. Setting the threshold level at 90% of catch by weight allowed 

for a large enough data subset to estimate model parameters, while minimizing the chance that 

the catch not the intended target. Bycatch sets were determined by selecting sets where a 

minimum of 90% of the catch by weight was a single species that was not the species being 

modeled. Mixed sets were any set where the species of interest was caught, but did not meet the 

criteria to be classified as either target or bycatch. These three data subsets based upon the 

fishing tactic; target, mixed or bycatch, will be referred to as behavioural data subsets.  
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Along with the three behavioural data subsets for each species, catch was modeled for all 

of the data together with an additional variable to account for targeting. Including models which 

utilize the full data set allows for the comparison of trends between the behavioural data subsets 

and a more typical approach to standardizing catch. This behavioural proxy was the calculated 

proportion of catch by weight for the species of interest. For each of the two species, haddock 

and redfish, my manipulations resulted in five data sets each, as summarized in Table 2-2. 

2.2.4 Standardized Catch Models 

Standardizing catch aims to remove as much variability as possible in how the catch was 

obtained, so that the remaining variability can be attributed to the underlying abundance. Catch 

per set was standardized for the ten data sets outlined in Table 2-2 using a generalized additive 

mixed model (GAMM) approach. Generalized models allow for the data to be non-normally 

distributed, where a general linear model would require transformation (Zuur et al. 2007). 

Generalized models (generalized linear model (GLM), generalized additive model (GAM) and 

their mixed effect versions (GLMM, GAMM)) can be described with three main components; 

the distribution of the response variable, the linear predictor and a link function which provides 

the relationship between the first two components. GAM’s are an extension of GLM’s which 

represent trends in explanatory variables as smoothed functions, such as splines or loess, which 

better describe nonlinear relationships (Wood 2006, Gasper and Kruse 2013). This also provides 

the benefit of reducing the degrees of freedom in the model by using a smoothed trend. In this 

study, smoothed parameters are estimated using thin-plate regression splines as they provide a 

better representation of the smoothing function relative to traditional regression splines (Wood 

2003, Wood 2006). The distribution of the response variable (i.e. catch per set) can be described 

with a gamma distribution to account for the skew and heteroscedasticity inherent to fisheries 
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data. The probability of y, where y is a value drawn from the Gamma distribution, can be 

described using  and  as in Eq. 2-1 (McCullagh and Nelder 1989, pg. 287). 

(2-1)   𝑃(𝑦) =
1

Γ(𝜈)
(

𝜈𝑦

𝜇
) exp (−

𝜈𝑦

𝜇
) 𝑑(log 𝑦)          

𝑤ℎ𝑒𝑟𝑒     𝑦 ≥ 0, 𝜈 > 0, 𝜇 > 0  

Using the parameterization from equation 2-1, each observation in the data set, Y, can be 

described as: 

(2-2) Y ~ Gamma () 

E(Y) =  

Var(Y) = 

/

 

Where Y is the response variable distributed with a gamma distribution, the expectation 

of Y is equal to the mean of the response distribution, , and is a constant that relates the 

square of the mean to the variance of Y. 

In general terms, the linear predictor, , for a simple (random intercept) additive mixed 

effect model is described by Eq. 2-3 

(2-3)     = 0 +1X1 + s(X2)…+ j 

    j = normal (0, j) 

where  represents estimated parameters for fixed effect variables such as area, s() denotes a 

smoothed fixed effect variable such as year, and j represents the random intercept effect, 

vesselID. The random effect is distributed normally with a mean of 0 and a standard deviation 

estimated from the data.  
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The random intercept effect imposes a correlation structure onto the data, in that 

observations within each group are considered to be more similar than between groups. Because 

our data are made up of consecutive fishing sets within a trip, autocorrelation was incorporated 

in the model when necessary to account for the correlation between sets, in order, within each 

unique fishing trip. A first order autocorrelation parameter,  was estimated using the corAR1() 

function from the nlme package(Pinheiro and Bates 2016). 

The final component of a generalized model is the link function which relates the mean 

of the response variable to the linear predictor. For all models a log link (Eq. 2-4) was used. 

(2-4)    log () =  

    =e 

 The log link if often used in fisheries work despite not being the canonical link for the 

gamma distribution (Venables and Dichmont 2004). The typical equation relating catch and 

effort (Eq. 2-5) assumes catch is proportional to effort (Gulland 1969, Maunder and Punt 2004).  

(2-5)    C=q f N 

Where C is catch, q is the catchability coefficient, f is the nominal fishing effort and N is the 

population size. This represents a relationship where the amount of fish caught is directly related 

to the underlying population size and nominal fishing effort. By logging the effort variable, f, and 

using a log link, the resulting model allows for a disproportionate relationship between catch and 

effort. See Appendix B for detailed equation transformations. 

2.2.5 Model Fitting and Selection 

Generalized additive mixed models are a fairly recent development and as such, the 

methods and functions used to fit them in R are not as well developed and documented as 



29 
 

generalized linear mixed models. The methods available for fitting a generalized additive mixed 

model with a defined autocorrelation structure are limited and make variable selection by 

likelihood or information theoretic methods invalid (Wood 2016). 

 Model variables were selected using backwards elimination. Starting with a model 

containing all variables, the least significant variables were removed one at a time until all 

remaining variables, apart from year, were significant at an level of 0.05. This was 

accomplished with the gam() function from the mgcv package (Wood 2016). The gam() function 

uses a maximum likelihood approach to fit the model and can be used in conjunction with the 

anova () function from the stats package. When used on a single model object, the anova () 

function tests the significance of each model term and returns a p-value associated with each. 

This can be used to obtain a single p-value for multilevel factors to be used as the selection 

criterion to keep or remove the variable (Zuur 2012). Unfortunately, autocorrelation cannot be 

directly specified using the gam() function, so alternative methods were used. Using the gamm() 

function, also from the mgcv package, autocorrelation structures can be directly specified, but 

models are fit using a penalized quasi-likelihood (PQL). Because the models are fit using PQL 

methods, the likelihood ratio test needed to return the single p-value for multilevel factors could 

not be used for backwards elimination (Zuur 2012). Backwards elimination of variables was 

accomplished using the gam() function,  then the model was re-fit using the gamm() function to 

account for autocorrelation.  

Because area is included in the model as an unordered factor, the p-values associated 

with each area are a comparison to a reference area. In my models, 4XN is the reference area, 

with areas 4XO, 4XP and 4XQ having p-values indicating if the area is significantly different 

from 4XN. To obtain a single value for area, indicating the significance of the term as a whole, 
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the anova () function, from the mgcv package was used on the models fit using the gam () 

function.   

An estimated degrees of freedom (edf) is returned for each of the smoothed variables, 

indicating the number of knots used to describe the trend in the variable (Wood 2006). Knots are 

the number of connecting points between splines in a smoothed line.  An edf of 1 indicates a 

linear pattern, therefore when this occurred the model was rerun with the variable included as a 

non-smoothed variable and backwards elimination continued (Wood 2006).  

A random effect already imposes a correlation structure on the data, in that values within 

the random effect levels are more similar than between effect levels but there is no specific 

structure (Zuur et al. 2013). This is known as compound symmetry (Zuur 2009). Because fishing 

sets within a trip are ordered temporally, an autocorrelation structure was explicitly specified for 

each model if the first order autocorrelation of the residuals was greater than 0.2. Autocorrelation 

was assessed using the acf () function from the stats package and incorporated into the models 

using the corAR1() function from the nlme package. To improve convergence of the model, the 

autocorrelation parameter,, was initially set to the value of the first order autocorrelation 

indicated by the acf () function to the nearest 0.05. 

The possible variables included in our models, which aim to account for variation in the 

location, time of year, effort and vessel characteristics that may influence the amount of fish 

which are caught, can be found in Table 2-3. Values ranges and factor levels of each possible 

model explanatory variable can be found in Table 2-4. Detailed descriptions of the variables 

follow. The response variable for all models was catch (in kg) per fishing set. For model 

selection purposes, the full model is considered: 
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Catch per set ~ s (year) + s (day of season) + s (log (hours)) + s (nsets) + area + VCF  

+ random effect of vessel 

Year and day of season are representative of inter and intra-annual variation. Day of 

season is included to account for changes in catch due to temporal changes in the fish 

distribution as well as the effect of quota filling. The groundfish fishing season in the NAFO 4X 

division runs from April 1 to March 31 every year. Accounting for leap years, the day of the 

fishing season (from 1 to 366) was calculated accordingly from the day of year recorded in the 

original data set. ‘Hours’ is the classic measure of nominal fishing effort, recorded as the number 

of hours trawled. Nsets is the number of fishing sets per trip, area is the sub-area with the 4X 

division where the fishing set occurred and VCF (Vessel condition factor) represents vessel 

shape. Details on the calculation of the VCF can be found in section 2.2.10. Finally the random 

effect, vesselID, is included to account for the inherent variability between fishing vessels. 

Because vessel effects are included as both random (vesselID) and fixed effects (VCF) in the 

model, they may compete for variance. VCF accounts for variability in catch per set due to 

vessel shape, while vessel as a random effect accounts for variability in catch due to any and all 

vessel characteristics. Along with vessel shape and size, the overall vessel characteristics may 

include aspects such as a captain’s experience level and behaviour which may affect the realized 

catch. If the random effect accounts for the variability due to fishing vessel, then VCF may be 

dropped from the model during model selection.  

2.2.6 Relative Abundance Index (Year) 

In order to produce time series of catch, a covariate which is representative of inter-

annual variation must be included. Year was included in all models, regardless of significance, as 

our indicator of the relative abundance (Maunder and Punt 2004). If the covariate for year was 

not significant, then the underlying abundance was considered to be unchanged across years. 
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2.2.7 Nominal Fishing Effort 

Often nominal fishing effort is incorporated in the response variable as catch-per-unit-

effort (CPUE), but for our models effort was included as an explanatory variable. This allows for 

the relationship between catch and effort to be estimated instead of assumed proportional as 

discussed in the introduction. In all GAMMs fit for this study nominal fishing effort was 

represented as the number of hours trawled. 

2.2.8 Sets-per-trip 

In addition to fine scale decisions made on a set by set basis, catch per set may also be 

influenced by fisher decisions at the trip level. Number of sets per trip provided a covariate to 

represent trip by trip decisions that may affect catch rates. In addition to deciding on which 

species to direct their fishing effort, fishers may elect to make smaller hauls (by weight) due to 

factors such as bycatch limits, testing out new areas, or high temperatures which increase 

spoilage (pers com. Peter Comeau). Although catches may be smaller by weight, the number of 

fishing sets-per-trip is independent of the number of hours trawled. Number of sets per trip was 

calculated before any sets were removed from the analysis (incomplete records, duplicate 

species, location errors, etc.).  

2.2.9 Vessel Characteristics 

Length and weight are generally highly correlated variables, so often body condition, 

such as Fulton’s K in fish (Fulton 1904, Ricker 1975), is used as a measurement to examine 

shape independent of size. A fishing vessel’s length, measured as LOA, and weight, measured as 

tonnage, are highly correlated. To account for both aspects of size while avoiding issues 

stemming from collinearity, a “body condition” of each fishing vessel, which I called vessel 

condition factor (VCF), was calculated (Eq. 2-6).  
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(2-6)     VCF = a * (W/L
b
) 

where a is a scaling factor to make the VCF values closer to one, W is the tonnage, L is the LOA 

and b is the slope of the relationship between tonnage and LOA (Eq. 2-7).  

(2-7)    Tonnage = 0 + b·Length 

Fulton’s K uses b=3 when calculating body condition, but fitting a linear regression 

model to the data allows the slope to be directly estimated. Fishing regulations limit vessel length 

but not tonnage. Allowing for  b >3 more closely matches the relationship between length and 

tonnage observed in the fishery, as ships tend to get proportionally wider as they get longer. The 

slope of the relationship was calculated using a simple linear regression of the logged values of 

tonnage and LOA. Both the VCF and tonnage were included in preliminary models to account 

for both vessel shape and size, but there was no indication of a significant relationship between 

vessel size (tonnage) and catch per set. Variable selection proceeded with only VCF, as the 

variability in catch due to vessel size was likely accounted for through the random effect.   

2.2.10 Spatial Effects 

Spatially, fishing effort tends to be patchy and not consistent across the designated 

fishing area. To simplify the spatial aspect of the fishery, spatial trends are accounted for in the 

models by including the fishing unit area as a four level factor. Unit area boundaries can be seen 

in Figure 1-2. Additionally, using a simplified variable for fishing location provides enough data 

contrast, as none of the four levels contains less than 30 observations.  

2.2.11 Analytical Tools  

All data manipulations and analyses were performed using the statistical language R (R 

Core Team 2015). Custom code was developed to manipulate the data into a form suitable for 
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input into the models. Additional software packages and functions are noted in the description of 

the methods. 

2.3 Results 

2.3.1 Data Selection and Manipulation 

Comparatively, there were only minor differences between proportion of catch by weight 

by species between the 16 representative fishers and all fishers from the original data set (Figure 

2-1). The top five species by weight were retained in the same order between the two data 

subsets. In decreasing order, these were redfish, haddock, pollock, cod, winter flounder and all 

others. The largest difference between all fishers and the 16 representative fishers was an 

increase in from 30.9% to 37.5% in redfish. Haddock and pollock catch declined slightly 

between catches from all vessels and the 16 vessels, decreasing from 28.3% to 26.7% for 

haddock and from 21.2% to 17.9% in pollock. From here on “the fishery” will refer to only the 

information obtained from the 16 frequently fishing vessels. 

The relationship between LOA and tonnage, seen in Figure 2-2, resulted in a slope of 

4.36. LOA and tonnage both increased up to a point, where LOA stopped increasing due to 

licensing regulations but tonnage continued to increase. Preliminary data exploration indicated 

that when both LOA and tonnage were included in the same model, the variance inflation factors 

were 5.2 for the haddock model, and 4.5 for the redfish model. Using VCF in place of tonnage 

and LOA allowed us to retain the information about vessel shape without having to be concerned 

with issues arising from collinearity. Tonnage and LOA were not considered in addition to VCF 

during model selection methods due to lack of significance in preliminary models. The 

variability in catch associated with vessel size was likely accounted for in the random effect (i.e. 

vesselID). 
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2.3.2 Fishery Catch, Trip and Set Overview 

On average our 16 vessels included in the analysis each made 20.7 trips per year with an 

average of 13.7 fishing sets per trip (Table 2-5). Each trip lasted an average of three days, with 

the maximum trip length being 9 days, and the minimum being a single day. Nominal effort 

(measured as hours trawled per set) averaged 4 hours, but ranged from less than an hour to 9.5 

hours. During the data selection process, 58 fishing sets were dropped for having trawl durations 

greater than 9.5 hours. These were generally data entry errors, i.e. hours fished recorded in 

1000’s of hours, or “non-typical” sets, with less than 10 data points (often only 1; Table 2-1). 

Haddock and redfish catches dominated the fishing records, making up 27% and 37% of the total 

catch by weight respectively (Table 2-6). Comparatively, the other three species that were caught 

in the top five made up 18% (pollock) and 6% (each cod and winter flounder) of the fishery by 

weight. Redfish tended to have larger sets by weight, than haddock but were found in a smaller 

proportion of the fishing sets.  

2.3.3 Target Species ID 

Collectively, haddock and redfish made up the majority of the fishery by weight (64%) 

from 2008-2013, but these two main species in our data set were also successfully identified 

through more objective measures. Figure 2-3 shows the cumulative distribution function (c.d.f) 

of the proportion of catch by weight per set for the fifteen most commonly caught species. Both 

haddock and redfish were found in the majority of sets and demonstrated a c.d.f, with a relatively 

large proportion of catches made up of >50% single species catch, indicative of targeting (Biseau 

1998). Winter flounder also demonstrated a “targeting” c.d.f, but unlike haddock and redfish, 

was found in less than a quarter of the sets.  
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When all fifteen species with greater than 1000 records were included in the skew-zero 

plot, most species had negative skews of log-transformed catch (Figure 2-4). Cod, pollock, 

monkfish and flounder were the only four species who did not show a median negative skew. 

Most of the species from the c.d.f. plots in Figure 2-3, indicated non-targeted catch, which 

disagrees with the skew-zero plot in Figure 2-4. When only the top five species (in total catch by 

weight, representing over 90% of the total weight landed) were considered (Figure 2-5), the 

indicated target species agreed for both the Biseau (1998) c.d.f. method and Gillis et al. (2008) 

skew-zero method.  

Total fishing effort, as the number of sets per year, remained relatively constant across 

years with minor changes in the proportion of sets in each of the three fishing tactics (target, 

bycatch, or mixed). Haddock was landed in an average of 3408 ± 117 (mean ± SE) fishing sets 

per year, divided on average into 12.7 ± 1.49 % target sets, 72.3 ± 1.33 % mixed sets, and 15.0 ± 

1.22 % bycatch sets. Redfish was found on average in fewer fishing sets than haddock, with 

2401 ±111 sets per year. The proportion of sets in each data subset was not as consistent across 

years in redfish as it was with haddock. On average sets were divided annually into 17.0 ±2.52 % 

target sets, 73.8 ±2.40 % mixed sets, and 9.19 ±1.31% bycatch sets.  

2.3.4 Standardized Catch Models and Model Selection 

For each of the two target species, haddock and redfish, I was successful in fitting five 

generalized additive mixed models with autocorrelation to the data. Three of the models were 

subsets of the non-zero catch records, i.e. target, mixed or bycatch, and the remaining two fit all 

non-zero catch records with and without accounting for fisher behaviour. All ten models 

indicated that there was autocorrelation in the residuals, which was then accounted for in the 
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model specification. Autocorrelation of catches within a fishing trip ranged from 0.331 to 0.580 

for haddock (Tables 2-7 and 2-8), and 0.216 to 0.494 for redfish (Tables 2-9 and 2-10).  

2.3.5 Relative Abundance Index (Year) 

Year was included in all models as an indicator of the relative abundance. For both 

haddock and redfish, the patterns in relative abundance were different depending on the data 

subset used. Patterns in relative abundance can be examined using the smooths of year from each 

model. Smooths are plotted on the scale of the linear predictor and centered around zero. 

Comparisons between the smooths of year can be made by looking at the relative changes from 

zero when all other covariates are held constant.  

For haddock, the target subset indicated a higher starting catch per set, declining across 

years while the patterns for bycatch was more optimistic (Figure 2-6A). Like the target model, 

bycatch started high with a decline in catch per set across years, but unlike targeting, indicated 

increasing catch per set for the last year (Figure 2-6C). The mixed set, which contained the 

largest portion of the data, was more variable in the pattern of catch per set across years than 

either target or bycatch. Catch started lower, increasing until 2010, decreasing in 2011 and 2012 

with increased catch again for 2013 (Figure 2-6B). When all of the data was included in a single 

model without accounting for targeting, the relative index of abundance was the same as in the 

mixed set (Figure 2-7A). Once proportion of catch was included in the model as an indicator of 

targeting, relative changes in catch were not as extreme between years but indicated an increase 

from 2008 to 2009 and a decrease from 2009 onwards (Figure 2-7B). Much of the variability in 

year was accounted for by proportion of catch (Figure 2-8A), as large (by weight) catches tended 

to also be catches where the species made a large proportion of the landed weight.   
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The relative index of abundance for redfish was fairly consistent across years for the 

target subset with a slight downward trend, more variable for the mixed subset and in-between 

for the bycatch (Figure 2-9). The mixed subset indicated changes in catch per set that cycled 

between high and low, with a slight downward trend. Bycatch sets indicated a lower starting and 

ending point with a peak in 2009, but the relationship was not as well defined as targeting and 

mixed sets. As with the haddock models, the redfish model with all the data was the same as with 

the mixed set, but once proportion of catch was included in the model (Figure 2-8B), the relative 

index of abundance was fairly stable with only a slight decrease in catch per set across years 

(Figure 2-10). 

When the models are used to predict catch per set for each year of the study, with all 

other covariates held at their mean values, target sets have the highest catch for both haddock 

(Figure 2-11) and redfish (Figure 2-12). With the random vessel effect set to its mean of zero, 

(the black lines) target sets for haddock are around 2000 kg per set, with mixed and bycatch sets 

less than 200 kg per set (Figure 2-11). Targeted redfish sets were around 3000 kg per set, with 

mixed sets under 1000 kg and bycatch sets around 20 kg per set (Figure 2-12). The grey lines in 

the figures represent the catch per set for each of the individual vessels. For all models, the 

random effect modifies the intercept and not the slope. Some vessels are inherently better and 

will have consistently higher catches, as seen in Figures 2-11 and 2-12.  

2.3.6 Nominal Fishing Effort 

For all models, catch per set was used as the response variable, allowing for nominal 

fishing effort to be directly estimated as a covariate in the model. This is in contrast to many 

standardized catch models which use CPUE as the response variable, and assume that the 

relationship between catch and nominal effort is proportionate. For all models, with the 
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exception of the haddock target model, as nominal effort (hours) increased catch generally 

increased as well but not proportionally. Doubling effort did not result in double catch, as the 

relationship is assumed to be when CPUE is the response variable (Tables 2-7, 2-8, 2-9, 2-10). 

Within the different fishing tactics, (target, mixed, bycatch) for both species the pattern in catch 

per hours fished was variable. In haddock target sets, the parameter for hours fished was not 

significantly different from zero. For mixed sets, catch tended to increase with hours fished to a 

point and then plateaued and finally bycatch sets continued to increase across hours fished 

(Figure 2-13). Within the redfish behavioural models, target and bycatch sets indicated 

increasing catch with increasing effort, but the increase was more extreme for bycatch sets. 

Similar to haddock, mixed sets for redfish increased to a point with increasing effort, but 

plateaued and slightly declined with increasing hours fished (Figure 2- 13). 

2.3.7 Sets-per-trip 

Overall trends in the target and mixed sets for both haddock and redfish, indicated 

decreasing catch per set with increasing number of sets per trip (Figure 2-14). In the bycatch sets 

for both species, catch per set did not significantly change across the number of fishing sets per 

trip, and therefore Nsets was dropped as a covariate in the models. 

2.3.8 Vessel Characteristics  

Vessel condition factor was dropped as a predictor variable in all redfish models, but was 

retained in the haddock mixed set model and the full model without proportion of catch as a 

covariate (Tables 2-7 and 2-8). For both models that vessel condition factor was selected for to 

remain in the model, as VCF increased catch per set tended to decrease. 
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2.3.9 Spatial Effects 

Unit area overall was found to be significant at an alpha of 0.05.For both haddock and 

redfish, the catch per set varied between unit area locations for all models. For sets targeting 

haddock, catch tended to be highest in area 4XN, while sets targeting redfish tended to be have 

the largest catch per set in area 4XO. Because unit area was included in all models as a 4 level 

factor, the estimated parameter for each of the three areas shown (Tables 2-7, 2-8, 2-9, 2-10) 

indicated the difference from the baseline unit area,4XN.  

2.4 Discussion 

My analysis showed that abundance indices based on targeting and bycatch fishing tactics 

indicated different population trends. I was able to use generalized additive mixed models with 

autocorrelation to produce relative indices of abundance for fishery catch records that reflected 

fishing tactics. Fisher behaviour is difficult to quantify but has the potential to both diminish our 

ability to detect true population trends and to introduce trends that are erroneously attributed to 

changes in abundance.  Selecting only a single method, i.e. data selection vs. variable selection, 

when standardizing commercial catch may not be sufficient to account for the impacts behaviour 

has on catch rates. Considering multiple fisher behaviours and methods to incorporate behaviour 

into models, provides a more complete picture of the underlying fish stock.   

 Targeting of a widely occurring, abundant species results in fishing sets where the species 

is caught frequently, caught in relatively large amounts and makes up a large proportion of each 

fishing set (Biseau 1998, Gillis et al. 2008). Haddock and redfish were found to have patterns 

consistent with wide-scale targeting behaviour in both the weight of catch and the proportion of 

catch for the NAFO 4X fishery. The Biseau (1998) method used proportion of catch per set, 

independent of the absolute catch weight, while the Gillis et al. (2008) method used the 



41 
 

distribution of the logarithm of catch to identify targeting behaviour. The cumulative distribution 

function of proportion of catch, indicated that both redfish and haddock had a large number of 

landings made up of sets with a high proportion of the species. Additionally, the two species 

made up the majority of the fishery by weight (>60%) and the distribution of log catch indicated 

that when all non-zero catch is considered, there is a disproportionate number of large catches 

(i.e. negative skew). Combined, this is indicative of fishery wide targeting of haddock and 

redfish. 

 Winter flounder is likely targeted periodically. Despite being caught in only a small 

proportion of fishing sets (22%), both the c.d.f. of proportion of catch and the distribution of 

catch weights were consistent with a target species. When winter flounder is caught, it often 

makes up a large proportion of the fishing set. When the distribution of catch weight is 

considered, winter flounder is disproportionately landed in larger amounts (i.e. negative skew). 

Unlike haddock and redfish which are both found in >50% of fishing sets and each make up 

>25% of the fishery by weight, winter flounder is found in <25% of sets and makes up <6% of 

the fishery by weight. Additionally, winter flounder is known to be a bait fish in the lobster 

fishery (pers com. Peter Comeau). Combined, this provides objective evidence of a species that 

is not bycatch, but is intermittently targeted for bait.  

 When all fifteen species found in >1000 sets were included in the skew-zero plot, the 

majority of the rarely caught species presented distributions of log-transformed catch with 

negative skews indicative of targeting. This is in contrast to the Biseau (1998) plots where the 

majority of the species had distribution functions consistent with bycatch species. In general, a 

more negative skew indicates a more heavily targeted species but the degree of skew is relative 

to other species and must also be considered with the number of zero catches. Although many of 
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the species had negative skews, the majority of the species each made up less than 1% of the 

fishery by weight. It is possible that some of the species may be very periodically targeted for 

bait, but unlike winter flounder, the Biseau (1998) plots did not indicate targeting. On its own, a 

negative skew does not indicate targeting. Sporadic large catches of a rarely caught species, or 

close ecological or technological association with a target species, would result in highly 

negative catch skews, but could still produce the c.d.f observed. In conjunction with the 

frequency and the total weight at which the species is caught, this gives a broader picture of a 

bycatch species.  

 Skew of the logarithm of catch is a useful tool when skews are examined relative to other 

co-occurring species. When the catch skews from the three main gadidae species (haddock, cod, 

and pollock) are considered together, haddock has a negative skew consistent with a target 

species. Cod and pollock are both caught at similar frequencies as haddock, but both have catch 

skews not significantly different from zero and a c.d.f. of proportion of catch more in line with 

bycatch than a target species. When the top five species by weight (redfish, haddock, pollock, 

cod and winter flounder) are considered together, the combined evidence from both the Biseau 

(1998) and Gillis et al. (2008) methods illustrate the overall strategy of the fishery well. Haddock 

and redfish are the main, frequent target species, winter flounder is likely an infrequent target 

species, and cod and pollock are frequently caught bycatch species.  

To examine how directed fishing effort affects the index of abundance from the catch 

records, I needed to identify targeting not just at a fishery wide level, but the finest scale 

available. Quantifying targeting behaviour becomes more difficult as the scale becomes finer. 

When all fishing activity in an area is considered, fishing métiers based on gear, vessels 

characteristic or species group may be used to identify fishing tactics on a broad scale (Deporte 
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et al. 2012). With the data set from this fishery, I was already close to, if not at, the finest métier 

scale considered in Deporte et al. (2012). Additionally, targeting behaviour for this study was 

classified on a set by set basis, not at the trip level. The data was fairly uniform relative to many 

other studies who examined targeting behaviour (e.g. Winker et al. 2013, Stephens and MacCall 

2004, Pelletier and Ferraris 2000). The data set used by Winker et al. 2013 contained information 

from a linefishery in South Africa that targeted pelagic, demersal and reef associated species, 

unlike my data set which only targeted groundfish. Stephens and MacCall (2004) were able to 

select target sets based on habitat type to use in CPUE standardization, excluding sets from areas 

where the species was not expected to be found. Haddock and redfish are both groundfish 

species but redfish tend to spend more time off the bottom, feeding in more open water. Despite 

these differences in habitat usage, both haddock and redfish were caught together in many of the 

fishing sets. It’s possible that there were only caught together due to the fishing gear being pulled 

through multiple habitat types in a single trawl. This had the potential to make the identification 

of target sets more difficult, but by avoiding methods based on fishing location to ID targeting 

(e.g. Stephens and MacCall 2004) and by setting the threshold for targeting high enough (90%), I 

had more confidence in the accurate identification of target sets.  In the Senegal fishery described 

by Pelletier and Ferraris (2000) there were 121 species compared to the 22 in this study. The 

large number of species allowed for fishing métier classification to describe clusters of related 

species instead of for individual species, as with my data set. Due to all fishing sets in this study 

using the same gear type (otter trawls) to target the same type of fish (groundfish), proportion of 

catch was ultimately used to identify targeting of a single species on a set by set basis.  

Selecting 90% of the catch as the criteria for targeting allowed us to have a large enough 

(>1000 observations) data set in each of the three subsets, while maintaining a high enough 
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threshold that it was unlikely for targeting misspecification. Chang et al. (2011) have previously 

used proportion of catch to classify fishing fleets on a vessel by year basis, along with using 

proportion of catch within each standardization model to account for changes in targeting 

behaviour. Chang et al. (2011) used thresholds as high as >95% annual catch to define fleet 

types. Landings in the 4X division are considered to be a target sets if >50% of the set is a single 

species (pers com. Peter Comeau). As the two main target species, it was initially expected that 

there would be a clear definition between sets catching haddock and sets catching redfish. 

Preliminary data exploration revealed that there was a continuum in catch proportions from 

>95% haddock though to >95% redfish and that a 50% threshold would be insufficient to use for 

data selection. Although larger than the definition of “targeting” from this fishery, a 90% 

threshold was used to balance the need for sufficient data and confidence in representing trends 

in catch that existed at the two extremes of fisher behaviour.   

As expected, the predicted catch for a “typical” fishing set (all covariates set to their 

means) was much greater for target sets than either bycatch or mixed, for both species. For 

redfish, the predicted catch of mixed sets was more similar to the predicted catch of target sets 

than the same comparison for haddock. Because sets targeting a species result in higher catch 

weight per set than bycatch sets (Biseau 1998), high redfish catch in mixed sets may indicate the 

threshold for targeting was set too high for redfish. A lower threshold for targeting classification 

would reallocate the high redfish catch from the mixed sets to target sets, which may be more 

appropriate for future models. To maintain consistency between species in this study, the 

threshold was left at 90% for both haddock and redfish.  

Although all data was collected from the same fishery, and thus the same underlying 

population, the patterns in the relative index of abundance were different between data subsets. 
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From Biseau (1998), I expected target sets would show the least change between years, and 

bycatch sets would show the most. The relative index of abundance for redfish targeted sets 

agreed with the prediction in that it showed the least amount of variation in catch between years, 

relative to the bycatch and mixed sets. However, the haddock models were most variable in the 

mixed model and had conflicting patterns of relative abundance between the target and bycatch. 

Often the concern with using target vs. bycatch data are that the amplitude of the changes in 

relative abundance are expected to be different, with underestimation in targeting and 

overestimation in bycatch (Biseau 1998). I have shown that an additional concern is that the 

relative patterns may also differ depending on the directed effort of the fisher. 

In this study, proportion of catch was used as a proxy for targeting behaviour when all 

sets were considered together. Previous studies have used proportion of catch to represent 

changes in targeting behaviour as discussed previously (i.e. Chang et al. 2011), but changes in 

targeting have also been incorporated into standardized catch models through additional means. 

Catch weight of another species has been used as a covariate in Marriott et al. (2013), while 

Winker et al. (2014) used principal component analysis scores. Accounting for changes in 

targeting behaviour, be it through any of the aforementioned methods, is necessary when 

behaviour of the fishers is not consistent across the dataset. For both haddock and redfish, 

including proportion of catch as a covariate in the model accounted for much of the variability in 

the abundance index compared to when all data was modeled together without consideration of 

targeting. As proportion of catch increased, total catch increased as well. This is in agreement 

with targeting sets (high proportion) being larger sets by weight than bycatch (low proportion).  

Although accounting for changes in targeting behaviour when standardizing catch is important to 

consider, it does not necessarily remove the potential effect of hyperstability in catch records.  
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Standardization of catch can account for the observed sources of variability in the data, but 

cannot resolve issues stemming from lack of data contrast (Hilborn and Walters 1992) 

The pattern in relative abundance for the model including all data plus the target proxy 

appeared to include aspects of both the targeting and bycatch indices for both species. 

Additionally, the pattern in abundance when accounting for targeting behaviour through a model 

covariate produced an index with less extreme highs and lows than either the target or bycatch 

alone. Each model is a representation of the same underlying fish population but they resulted in 

different patterns of relative abundance. This demonstrates how different representations of the 

system through model covariate or data selection may alter the perception of the underlying 

abundance. Compared to the abundance index for haddock from the Scotian Shelf summer 

survey, neither the bycatch nor the target index aligned for all years (DFO 2017, DFO 2016). 

The survey indicated an increase in biomass between 2008 and 2009, which agreed with the 

target index and not the bycatch. Conversely between 2012 and 2013 both the survey and 

bycatch indicated an increase in biomass with the target index declining. For redfish, the trend 

was more similar between the survey and bycatch then between the target and bycatch. The 

comparisons between the survey and commercial trends can only be made with some trepidation, 

as they do not cover the same geographic area. The survey is comprised of both the Bay of 

Fundy and the Scotian Shelf, while the commercial data is from the Scotian Shelf only. While no 

single index represents the system perfectly, I would recommend the bycatch index over the 

target index (if only a single index is used), as it more closely matched the survey for both 

species. Consideration of the effect that data selection has on relative abundance indices should 

be taken when using standardized catch rates to make inferences about the true population size.  
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Of the many methods available, selecting only sets where the species was targeted, such 

as in Tascheri et al. (2010), may not provide the best representation of the system.  Targeting 

behaviour can result in catch rates that do not reflect changes in population size due to issues 

arising from hyperstability (as discussed in Hilborn and Walters (1992)). With this study, I have 

also shown that target data may produce indices that show trends that are not only different in 

amplitude (i.e. redfish), but may also have contrasting patterns to other representation of the 

abundance (ie. haddock). Furthermore, target data may be more susceptible to changes in fisher 

behaviour, as it is directly related to the intent of the fishing vessels.  

Spatially, fish are not distributed randomly but tend to be clustered. When commercial 

fishers target these high density areas, catch rates can remain high even when the overall 

population size is declining (Harley 2001, Hamilton et al. 2016). This assumes that targeting 

behaviour remains consistent, but changes in targeting behaviour of the fishers due to market 

value or quota pressures may produce abundance indices that reflect a change in fishing effort 

more than a change in population size (Pinnegar et al. 2002, Campbell 2004).  

In my study area, the decline in haddock catch in the target subset may be attributed 

partially to changes in fishing tactics to avoid catching Atlantic cod and may not be 

representative of an underlying decline in haddock. In 2010 Atlantic cod in the 4X NAFO 

division was reassigned from special concern to endangered (COSEWIC 2010). In 2011 the total 

allowable catch for cod in the 4X division was reduced by 45% to alleviate some of the fishing 

pressure on the stock (DFO 2015). Haddock and cod have a high biological association resulting 

in them often being caught in the same set (Scott and Scott 1988). Decrease in haddock catch per 

set for sets targeting haddock are likely due to fishers making smaller sets overall or fishing in 

suboptimal habitats to reduce the chance of large cod catches.  
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When a species is not targeted, bycatch data from other directed fisheries has been used 

instead for catch derived abundance indices. For many shark species, such as spiny dogfish 

(Gasper and Kruse 2013) and oceanic whitetip shark (Brodziak and Walsh 2013), bycatch from 

longline fisheries is used in standardized catch models to look at changes in CPUE. Similar to 

the concerns with only using targeted data sets, using only bycatch sets may not represent the 

true underlying population size. Zhang and Chen (2015) found that the abundance index from 

models using bycatch of Atlantic cod from lobster traps did not agree with all indices derived 

from survey data. Presence or absence of lobster in the traps had a significant effect on the 

presence of Atlantic cod in the trap, which impacted the overall catch rates. In a multispecies 

fishery where each species may be considered both a target and a bycatch species, comparison of 

standardized catch between the two behaviours may provide more insight than either behaviour 

on its own. Although bycatch sets are expected to be more “random” than target sets, and thus a 

better representation of the underlying availability, interactions between target and non-target 

species along with changes in the demand or market value, may influence trends in the bycatch 

index. While not explored in this thesis, describing potential factors which may influence trends 

in bycatch indices (outside of fish abundance) would be valuable for the interpretation of bycatch 

trends and give more confidence in attributing changes in the index to a corresponding change in 

the fish availability. 

In addition to changes in the relative abundance index depending on fishing tactic, the 

relationship between catch and effort was also variable between behaviours. The pattern of 

plateauing catch with increasing effort also indicates how one unit of fishing effort may not be 

equal across all levels of effort. Using catch-per-unit-effort as a response variable assumes that 

the relationship between catch and effort is proportional and remains consistent across all levels 
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of effort. I found that the relationship between nominal fishing effort (hours trawled) and catch 

was not proportional. Furthermore, the relationship differed between target, mixed, and bycatch 

models for each species. Disproportionate relationships may result from the spatial dynamics of 

the fishery (competition, interference, facilitation; Hilborn 1985) or how the data are aggregated 

before analysis (Aljafary 2016). For haddock target sets, there was no significant relationship 

between hours trawled and catch per set. This could reflect fishers targeting haddock that only 

pulled up their nets once they were full, resulting in no relationship between catch and effort. For 

sets where haddock was bycatch, longer sets resulted in larger catches which is more in line with 

the assumptions of using CPUE. For redfish, catch increased with trawl duration for both target 

and bycatch sets, but at a greater degree for bycatch. Mixed sets indicated increasing catch with 

hours trawled for the first few hours then plateauing. This is likely an artifact of multiple fishing 

tactics included in a single model. If all fishers are not fishing to fill their nets with a single 

species (or are not successful), then catch tends to increase with trawl length, such as with the 

bycatch models. Because the mixed sets likely included targeting to some degree, at a certain 

point increasing the trawl length no longer increased the catch, as seen in the target model. The 

difference between the catch and effort relationship seen in haddock and redfish may reflect 

different fishing practices between the two species.  

For fishing sets targeting the species of interest, number of sets per trip may be more 

informative than hours trawled, whereas with bycatch fishing effort is a good predictor of catch. 

In the target models, catch per set decreased with increasing number of sets per trip whereas 

there was no relationship between number of fishing sets per trip and catch for the bycatch 

models. Vessels have limited storage space, so if fishers are making large catches, they will fill 

up the hold faster resulting in fewer sets per trip. Smaller sets would produce the opposite pattern 
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where vessels can make a greater number of sets to fill up the hold. Fishers may elect to make 

smaller sets for a variety of reasons. For example, during periods of hot weather, fish must be 

processed quicker so they do not spoil while on deck (pers com. Peter Comeau). A greater 

number of smaller sets reduces the amount of time it takes to process each individual haul. 

Number of sets per trip and hours trawled per set are not correlated, so vessels making smaller 

sets may still be implementing a “filling the net” strategy but with a reduced volume of what is 

considered full. When a species was caught as bycatch, there was no significant relationship 

between number of sets per trip and the amount of fish caught, but instead catch size increased 

the longer a net was in the water. In future studies, this pattern may be used as evidence that a 

species is caught as bycatch and is not the intended target.  

Modeling catch directly instead of using CPUE allows greater insight into the 

relationship between catch and effort and ultimately a more useful model. Based on results of the 

models from this study, CPUE would not have been an appropriate way to incorporate fishing 

effort. The relationship between catch and effort, especially for haddock, was variable depending 

on the fishing tactic of the data subset. For future studies, if multiple fishing tactics are included 

in a single model, it may be beneficially to include an interaction effect between fishing effort 

and fishing tactic.  

Although only significant in two of the ten models, vessel condition factor (VCF) 

allowed us to incorporate aspects of both vessel length and tonnage without the collinearity 

associated with including both. Because I used mixed effect models to incorporate the inherent 

differences between fishing vessels, specific vessel characteristics were not required for the 

majority of the models. The two models that did retain VCF were the haddock mixed set and 

haddock all data without accounting for targeting. Fisheries data tends to be very “noisy” so the 
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significance of VCF for haddock when fishing tactic was not specified may indicate a weak 

pattern between vessel shape and fisher behaviour for haddock but not redfish. When fishing 

tactic was incorporated in some way, either specified using proportion of catch or using data 

subsets with a single tactic, the VCF was no longer significant.  

Through this study I was able to demonstrate that trends in relative abundance indices are 

influenced by fishing tactic. Along with changes in relative abundance, the relationship between 

catch and effort also varied depending on fishing tactic, which is further evidence against using 

CPUE as a direct index of abundance. Consideration of data selection when standardizing catch 

is imperative to the interpretation of the resulting abundance indices and understanding the 

fishery is key in selecting the appropriate data to use. Only selecting records where the species of 

interest was successfully targeted may not only bias the estimate, but can actually produce a 

different overall pattern in relative abundance then when bycatch sources are used. The best 

approach is likely to compare multiple indices using different behavioural subsets of data, 

incorporate predictor variables which account for targeting behaviour, and to avoid using indices 

that are based solely on data from target sets.  
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Table 2- 1 Number of fishing sets and corresponding records (where each record is the weight 

for one species) excluded from data analysis out of the original 46347 sets and 277778 records. 

Data comes from the NAFO 4X groundfish fishery from 2008 to 2014. Records were removed in 

the order listed below. 

Selection criteria N (sets) Prop (sets) N (records) Prop (records) 

Incomplete data 1785 0.0385 7216 0.0260 

Duplicate species  - - 34722 0.1250 

Onshore sets 11 <0.0100 53 <0.0100 

Offshelf sets 54 <0.00100 244 <0.0100 

Outside 4X 8 <0.0100 50 <0.0100 

2014 incomplete 1178 0.0254 6473 0.0233 

Offshore vessels (>65ft) 702 0.0152 3593 0.0129 

Trawls longer than 9h 58 <0.0010 337 <0.0010 

<100 sets per year 19324 0.4169 98677 0.3552 
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Table 2- 2 Description of data subsets used in fitting standardized catch models for haddock 

(Melanogrammus aeglefinus) and redfish (Sebastes spp.) The target, mixed and bycatch data are 

subsets of the full data set, whereas All + target proxy data consist of all records where the 

species was caught.  

Species Data Description 

 

 

Haddock Target sets Haddock ≥90% of catch by weight 

Haddock Mixed sets No single species is ≥90% of catch by weight 

Haddock Bycatch sets Non-haddock species ≥90% of catch by weight 

Haddock All All data 

Haddock All + target All data with targeting covariate 

Redfish Target sets Redfish ≥90% of catch by weight 

Redfish Mixed sets No single species is ≥90% of catch by weight 

Redfish Bycatch sets Non-redfish species ≥90% of catch by weight 

Redfish All All data 

Redfish All + target All data with targeting covariate 
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Table 2- 3 Potential variables included in the generalized additive mixed models for haddock 

(Melanogrammus aeglefinus) and redfish (Sebastes spp.) to standardize catch rates from the 

NAFO 4X division multispecies groundfish trawl fishery 

Variable  Type  Smoothed Description  

Fixed Effects  

Year  Continuous  Y  Year (indicator of relative abundance)  

DayofSeason Continuous  Y  Day of fishing season Day 1 is April 1 

UnitArea  Categorical N  DFO regulation fishing zone  

Hours  Continuous  Y Length of trawl in hours  

Nsets  Continuous  Y  Number of sets per fishing trip 

(efformeasure)  VCF Continuous  N Vessel condition factor 

Proportion Continuous  Y Proportion of catch by weight 

Random effect    

Vessel ID  Categorical N  Unique vessel identifier  
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Table 2- 4 Summary of numeric and factor variables used in the generalized additive mixed 

models for haddock (Melanogrammus aeglefinus) and redfish (Sebastes spp.). Data are a subset 

from NAFO 4X division commercial catch records from 2008 to 2013. 

Numeric variables  

Variable  Mean SD Median Max Min 

DayofSeason 161 122 123 366 1 

Hours  4.05 1.50 4.5 9.5 0.5 

Nsets  15.5 5.10 15 36 1 

VCF 1.18 0.239 1.13 1.67 0.836 

Factor variables  

Variable N. Factor 

levels 

Description 

UnitArea  4 “4XN”, “4XO”, “4XP”, “4XQ” * 

* Unit areas can be found on NAFO division map (Figure 1-2) 
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Table 2- 5 Summary of fishery effort from 16 unique fishing vessels selected from NAFO 4X 

division commercial fishing records. The data set is made up of 1988 fishing trips from 2008-

2013.  

 Mean SD Median Max Min N 

Trips per year 331.3 19.28 333.5 360 304 6 

Trips per vessel 124.3 29.88 128 164 80 16 

Trips per vessel per year 20.71 6.815 21 37 7 96 

Length of trip (days) 3.435 1.297 4 9 1 1988 

Nsets per trip 13.72 5.203 14 36 1 1988 

Hours/set 4.046 1.504 4.5 9.5 0.5 23227 

Sets per vessel 1452 345.0 1384 2126 944 16 

Sets per vessel per year 241.9 82.18 241.5 454 101 96 
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Table 2- 6 Summary of catch weights for top five species from fishing sets made by 16 unique 

fishing vessels in the NAFO 4X division. The data set consists of 23227 fishing sets from 2008-

2013. N is the number of fishing sets where catch was greater than 0. All catches are recorded in 

kg, with proportion being the proportion of total catch by weight. Mean (set>0) is the average 

catch per set across sets where the species was landed. Mean (all) is the average catch per set 

across all sets that occurred including zero catch.  

 

Species Total 

Catch 

Prop of 

Total 

Mean 

(set>0) 

Mean 

(all) 

SD Medi

an 

Max Min N 

Redfish  14396181 0.3743 999.4 619.8 1380 492.4 26133 0.001 14405 

Haddock  10260974 0.2668 501.8 441.8 1108 157.1 18766 0.001 20450 

Pollock  6892133 0.1792 421.0 296.7 1234 62.83 21337 0.001 16371 

Cod  2346750 0.0610 120.4 101.0 328.8 33.31 9616 0.001 19496 

Winter 

Flounder  

2139781 0.0556 414.6 92.1 527.0 249.9 8117 0.001 5161 
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 Table 2- 7 Parameter estimates from three generalized additive mixed models for haddock 

(Melanogrammus aeglefinus) from the NAFO 4X division commercial fishery. The data set was 

subset by fishing tactic, one of targeting, mixed or bycatch.  

 

Model Term Estimate SE T value Edf F p-value 
 Fixed Effects       

Target Intercept 7.520 0.089 85.00   <0.001 

N=2620 4XO -0.305 0.136 -2.43   0.021 

 4XP -0.087 0.072 -1.21   0.228 

 4XQ -0.525 0.176 -2.98   0.003 

 s(year)    3.26 36.30 <0.001 

 s(dayofseason)    6.13 8.08 <0.001 

 s(Nsets)    2.48 53.10 <0.001 

 Random effect Sigma      

 vesselID 0.848      

 Autocorrelation Phi      

  0.331      

 Fixed Effects       

Mixed Intercept 7.050 0.221 31.9   <0.001 

N=14801 4XO -0.399 0.070 -5.69   <0.001 

 4XP -0.339 0.061 -5.58   <0.001 

 4XQ -0.779 0.065 -11.9   <0.001 

 Nsets -0.024 0.004 -5.56   <0.001 

 VCF -0.545 0.169 -3.22   0.001 

 s(year)    3.87 29.3 <0.001 

 s(dayofseason)    7.61 108 <0.001 

 s(log(hours))    3.22 118 <0.001 

 Random effect Sigma      

 vesselID 1.390      

 Autocorrelation Phi      

  0.552      

 Fixed Effects       

Bycatch Intercept 3.180 0.121 26.30   <0.001 

N=3029 4XO -0.554 0.128 -4.33   <0.001 

 4XP 0.040 0.105 0.383   0.702 

 4XQ -0.203 0.113 -1.80   0.072 

 log(hours) 0.411 0.055 7.47   <0.001 

 s(year)    2.94 8.31 <0.001 

 s(dayofseason)    6.13 20.2 <0.001 

 Random effect Sigma      

 vesselID 1.30      

 Autocorrelation Phi      

  0.521      
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Table 2- 8 Parameter estimates from two generalized additive mixed models for haddock 

(Melanogrammus aeglefinus) from the NAFO 4X division commercial fishery. Both models 

used the full data set, but behaviour of the fisher was only accounted for in the second (prop). 

Model Term Estimate SE T value Edf F p-value 

 Fixed Effects       

All Intercept 7.600 0.221 34.4   <0.001 

N=20450 4XO -1.220 0.065 -18.8   <0.001 

 
 4XP -1.070 0.055 -19.5   <0.001 

 4XQ -1.550 0.060 -25.9   <0.001 

 VCF -0.653 0.180 -3.63   <0.001 

 s(year)    3.86 39.0 <0.001 

 s(dayofseason)    8.30 144 <0.001 

 s(log(hours))    3.84 124 <0.001 

 s(Nsets)    2.36 28.0 <0.001 

 Random effect Sigma      

 vesselID 1.58      

 Autocorrelation Phi      

  0.580      

 Fixed Effects       

All+prop Intercept 4.740 0.070 67.7   <0.001 

N=20450 4XO -0.106 0.034 -3.12   0.002 

 4XP 0.019 0.027 0.68   0.498 

 4XQ -0.078 0.031 -2.52   0.012 

 log(hours) 0.326 0.015 21.5   <0.001 

 s(year)    3.76 74.3 <0.001 

 s(dayofseason)    8.31 63.0 <0.001 

 s(Nsets)    2.39 93.0 <0.001 

 s(prop)    8.97 3163 <0.001 

 Random effect Sigma      

 vesselID 0.811      

 Autocorrelation Phi      

  0.411      
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Table 2- 9 Parameter estimates from three generalized additive mixed models for redfish 

(Sebastes spp.) from the NAFO 4X division commercial fishery. The data set was subset by 

fishing tactic, one of targeting, mixed or bycatch.  

Model Term Estimate SE T value Edf F p-value 

 Fixed Effects       

Target Intercept 7.650 0.093 81.9   <0.001 

N=2391 4XO 0.090 0.064 1.40   0.161 

 4XP -0.219 0.048 -4.59   <0.001 

 4XQ -0.194 0.053 -3.66   <0.001 

 log(hours) 0.182 0.034 5.35   <0.001 

 s(year)    2.88 8.16 <0.001 

 s(Nsets)    2.31 55.2 <0.001 

 Random effect Sigma      

 vesselID 0.634      

 Autocorrelation Phi      

  0.216      

 Fixed Effects       

Mixed Intercept 5.91 0.252 23.42   <0.001 

N=10692 4XO -0.228 0.0846 -2.693   0.007 

 4XP -0.0937 0.0577 -1.62   0.104 

 4XQ -0.0444 0.0614 -0.724   0.469 

 s(year)    3.90 25.0 <0.001 

 s(dayofseason)    6.17 10.9 <0.001 

 s(log(hours))    3.41 8.91 <0.001 

 s(Nsets)    5.49 14.6 <0.001 

 Random effect Sigma      

 vesselID 1.25      

 Autocorrelation Phi      

  0.486      

 Fixed Effects       

Bycatch Intercept 2.74 0.247 11.1   <0.001 

N=1309 4XO -0.140 0.282 -0.498   0.619 

 4XP 0.774 0.142 5.44   <0.001 

 4XQ 0.626 0.199 3.15   0.002 

 log(hours) 0.339 0.110 3.09   0.002 

 dayofseason -0.00226 0.000487 -4.65   <0.001 

 s(year)    2.89 2.92 0.035 

 Random effect Sigma      

 vesselID 1.37      

 Autocorrelation Phi      

  0.488      



67 
 

Table 2- 10 Parameter estimates from two generalized additive mixed models for redfish  

(Sebastes spp.) from the NAFO 4X division commercial fishery. Both models used the full data 

set, but behaviour of the fisher was only accounted for in the second (prop). 
 

Model Term Estimate SE T value Edf F p-value 

 Fixed Effects       

All Intercept 6.100 0.288 21.2   < 0.001 

N=14405 4XO 0.405 0.075 5.37   <0.001 

 4XP -0.210 0.053 -3.96   <0.001 

 4XQ -0.172 0.061 -3.00   <0.001 

 s(year)    3.93 36.3 < 0.001 

 s(dayofseason)    8.25 18.8 < 0.001 

 s(log(hours))    3.53 30.8 <0.001 

 s(Nsets)    5.24 20.4 < 0.001 

 Random effect Sigma      

 vesselID 1.35      

 Autocorrelation Phi      

  0.494      

 Fixed Effects       

All+prop 

prop 

Intercept 5.780 0.102 56.6   <0.001 

N=14405 4XO -0.007 0.041 -0.17   0.867 

 4XP 0.057 0.027 2.12   0.034 

 4XQ 0.012 0.030 0.40   0.689 

 log(hours) 0.267 0.018 15.1   <0.001 

 Nsets -0.027 0.002 -12.8   <0.001 

 s(year)    2.74 27.5 <0.001 

 s(dayofseason)    6.48 16.0 < 0.001 

 s(prop)    8.97 3747 < 0.001 

 Random effect Sigma      

 vesselID 0.766      

 Autocorrelation Phi      

  0.331      
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Figure 2- 1 Comparison of the proportion of catch by weight for all vessels in the original data 

set and the 16 representative fishers from the NAFO 4X division groundfish fishery. 
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Figure 2- 2 Relationship between length overall and tonnage for 16 vessels from the NAFO 4X 

division groundfish fishery. Tonnage = 4.36 * Length – 188.4 
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Figure 2- 3 Cumulative distribution functions of proportion of catch by weight per set for 15 

species landed in a minimum of 1000 sets from the NAFO 4X division groundfish fishery. Each 

line represents a single year, with only non-zero catch used. 
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Figure 2- 4 Skew of the logged-non zero catch and how often the species is landed for 15 species 

landed in a minimum of 1000 sets from the NAFO 4X division groundfish fishery. Skews and 

zeros were calculated on an annual basis, with the point representing the median value and bars 

the 25
th

 and 75
th

 percentiles.  
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Figure 2- 5 Skew of the logged-non zero catch and how often the species is landed for the five 

most commonly landed species by weight from the NAFO 4X division groundfish fishery. 

Skews and zeros were calculated on an annual basis, with the point representing the median 

value and bars the 25
th

 and 75
th

 percentiles.  
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Figure 2- 6 Smoothed trends in year (relative abundance index) from standardized catch 

GAMMS for target (A), mixed (B), and bycatch (C) data subsets of non-zero haddock catch from 

the NAFO 4X division fishery. Smooths are plotted on the scale of the linear predictor, with all 

covariates, other than year, held constant. Black is the relationship with the grey shading the 95% 

confidence interval around the relationship. 

(A) 

(B) 

(C) 
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Figure 2- 7 Smoothed trends in year (relative abundance index) from standardized catch 

GAMMS for all non-zero sets without accounting for targeting behaviour (A), all non-zero sets 

with proportion of catch included as a covariate to account for targeting behaviour (B) for 

haddock catch from the NAFO 4X division fishery. Smooths are plotted on the scale of the linear 

predictor, with all covariates, other than year, held constant. Black is the relationship with the 

grey shading the 95% confidence interval around the relationship. 
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Figure 2- 8 Smoothed trends in proportion of catch from standardized catch GAMMS for 

haddock (A) and redfish (B) data sets of non-zero catch from the NAFO 4X division fishery. 

Smooths are plotted on the scale of the linear predictor, with all covariates, other than year, held 

constant. Black is the relationship with the grey shading the 95% confidence interval around the 

relationship. 
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Figure 2- 9 Smoothed trends in year (relative abundance index) from standardized catch 

GAMMS for target (A), mixed (B), and bycatch (C) data subsets of non-zero redfish catch from 

the NAFO 4X division fishery. Smooths are plotted on the scale of the linear predictor, with all 

covariates, other than year, held constant. Black is the relationship with the grey shading the 95% 

confidence interval around the relationship. 

(A) 

(B) 

(C) 



77 
 

 

Figure 2- 10 Smoothed trends in year (relative abundance index) from standardized catch 

GAMMS for all non-zero sets without accounting for targeting behaviour (A), all non-zero sets 

with proportion of catch included as a covariate to account for targeting behaviour (B) for redfish 

catch from the NAFO 4X division fishery. Smooths are plotted on the scale of the linear 

predictor, with all covariates, other than year, held constant. Black is the relationship with the 

grey shading the 95% confidence interval around the relationship. 
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Figure 2- 11 Predicted catch per set from 2008 to 2013 from standardized catch GAMMS for 

target (A), mixed (B), and bycatch (C) data subsets of non-zero haddock catch from the NAFO 

4X division fishery. All continuous covariates were held at their means to represent a “typical” 

fishing trip. Black is the predicted catch when there is no random effect with the greys lines 

representing the random intercept effect of the 16 unique vessels used in the study. 

 

(A) 

(B) 

(C) 
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Figure 2- 12 Predicted catch per set from 2008 to 2013 from standardized catch GAMMS for 

target (A), mixed (B), and bycatch (C) data subsets of non-zero redfish catch from the NAFO 4X 

division fishery. All continuous covariates were held at their means to represent a “typical” 

fishing trip. Black is the predicted catch when there is no random effect with the greys lines 

representing the random intercept effect of the 16 unique vessels used in the study 

 

(A) 

(B) 
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Figure 2- 13 Predicted catch across hours fished (nominal effort) from standardized catch 

GAMMS for target (A, B), mixed (C,D), and bycatch (E,F) data subsets of non-zero haddock 

(A,C,E) and redfish (B,D,F) catch from the NAFO 4X division fishery. Grey shading is the 95% 

confidence interval around the predicted catch. Haddock target model (A) had no significant 

relationship between catch and hours fished. 

 

(A) 

(C) 

(E) 
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(D) 
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Figure 2- 14 Predicted catch across number of sets per fishing trip from standardized catch 

GAMMS for target (A, B), and mixed (C,D), data subsets of non-zero haddock (A,C) and redfish 

(B,D) catch from the NAFO 4X division fishery. Grey shading is the 95% confidence interval 

around the predicted catch. There was no significant relationship between catch and number of 

fishing sets for the bycatch models.  
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Chapter Three: The Effect of Biased Tuning Indices on Virtual Population Analysis Stock 

Assessment 

3.0 Abstract 

Using survey data as part of a stock assessment is preferable when estimating population 

abundance, but for many fisheries only commercial data are available. When using commercial 

fisheries data as an alternative, fishing records may reflect sets where the species of interest is 

the main target species, a bycatch species or a combination of both. This study examined how 

using commercial data as a tuning index in an age-structured stock assessment method (ADAPT-

VPA) may influence the spawning stock biomass estimates. An age-structured index was 

constructed using GAMMs for sets where haddock (Melanogrammus aeglefinus) was caught as 

either a target species or a bycatch species, and compared to a model using survey data as a 

tuning index. Spawning stock biomass estimates were most similar between the survey and the 

bycatch index, with the target index indicating a SSB on average 5000 t less than the bycatch. 

The terminal year (2013) in the index played a large role in the final stock size estimate, 

indicating how changes in fisher behaviour in more recent years can have a large impact on 

estimates of stock size. The bycatch model was more robust to manipulation of the terminal year 

than the target model, and when survey data are unavailable bycatch may be a more reliable 

choice to use in models that affect the management of fishery resources. 
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3.1 Introduction 

 Fishery independent data is widely considered to be the preferred source of data when 

performing stock assessments, but due to the high cost, or the shortage of time or infrastructure, 

it is not available for many fisheries worldwide (Maunder and Punt 2004). The alternative to 

using fishery independent data is to use the abundantly available, but potentially biased, fishery 

dependent data.  To obtain an estimate of abundance, which can then be used as the basis to 

make management decisions, age-structured stock assessments are employed for many 

commercially valuable fish species, such as haddock and tuna, (DFO 2012, ICCAT 2012). 

Comparing how standardized catch indices from fishery dependent sources, based on fisher 

behaviour, perform against fishery independent data in an age-structured stock assessment 

framework will help to decide how to better incorporate commercial fishery based indices when 

fishery dependent data are unavailable. 

 Age-structured analyses are a common methodology employed by fisheries managers to 

obtain an estimate of the stock size for commercially valuable fish species (Punt et al. 2013, 

Hilborn and Walters 1992). The term “age-structured model” refers to any methodology where 

each year of data is separated by age-class, such as statistical catch-at-age (SCA; Fournier and 

Archibald 1982) and virtual population analysis (VPA; Gulland 1965). Age-structured data 

allows for a more in-depth assessment than aggregated data, as individual cohorts can be tracked 

through time allowing for better estimation of population dynamics. This study focuses on VPA 

methodology, as it is the currently used method for the assessment of haddock stocks off of Nova 

Scotia (DFO 2012). 

VPA methods work backwards through cohorts, based on the assumption that at an old 

enough age, a cohort will have no surviving members. By adding back fish that were removed 
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through either fishing mortality or natural mortality, individual cohorts can be reconstructed. 

While simplistic in concept, accounting for natural mortality is difficult, as estimates are 

challenging to obtain (Vetter 1988). Natural mortality is often estimated through analysis of 

catch curves (Ricker 1975), and incorporated into stock assessments as a fixed rate (e.g. Brooks 

and Legault 2016). Alternatively, it may be more appropriate to let natural mortality vary across 

age classes and time (Johnson et al. 2015).  

Classical VPA, as introduced by Gulland (1965), is unable to estimate cohorts which 

have not made their way completely through the fishery. Gavaris (1988) developed an adaptive 

VPA methodology (referred to as ADAPT-VPA) that incorporates a more statistical approach to 

parameter estimation of incomplete cohorts.  ADAPT-VPA uses additional data sources to 

“tune” the VPA through an iterative process using the sum squared error (SSE) to predict the 

most likely fishing mortality for the oldest age class and the terminal year. The predicted fishing 

mortalities can then be used to reconstruct the population in order to estimate all age-classes and 

years. Alternative methods have been developed to deal with the issue of incomplete cohorts, 

such as extended survivor analysis (XSA; Shepherd 1999), which has been used for European 

fisheries, and CAGEAN (Deriso et al. 1985), which is a more statistical approach to VPA. The 

ADAPT method was selected for this study as it is the current method employed for the haddock 

stocks on the east coast of Canada.    

Many stock assessments and studies integrate survey data and the catch at age data when 

estimating stock size (Carpi et al. 2015, Stenevik et al. 2015, DFO 2012). This process of using 

an auxiliary data set to produce a more informed stock estimate is known as “tuning” the model. 

Tuning may also be completed with catch-per-unit-effort data from the fishery itself (Sweke et 

al. 2015, Abaunza et al. 2003, Biseau 1998). When survey data are available, it is often the 
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preferred abundance index with CPUE used when survey data are unavailable. Comparing VPA 

models tuned with survey and catch data from the same fishery will provide valuable information 

on how commercial data performs relative to survey data.  

 Scientific surveys are designed to capture fish in an unbiased manner so that the survey 

index is representative of the underlying population abundance. Alternatively, commercial 

fishing data contains several sources of bias which could potentially affect the CPUE-abundance 

relationship. One of the concerns with using commercial data (standardized catch or CPUE) is 

the issue of targeting behaviour and the ecological or technological association of non-target 

species with target species. Unlike surveys, commercial fishers can choose where and when to 

fish, resulting in catch rates that may not reflect the underlying abundance. In the previous 

chapter, fishing sets were divided based on the behaviour of the fishers into target and bycatch 

sets. In multispecies fisheries, studies tend to focus on sets where the target species was caught 

(Helle et al. 2015), and use bycatch data when no target data are available (Zhang and Chen 

2015). Using the models from the previous chapter, it is possible to compare survey data to target 

sets and bycatch sets and evaluate how they each perform in a VPA. These comparisons can be 

used to determine if bycatch indices are an appropriate alternative when survey data are 

unavailable.  

 Many studies compare methodologies (Carpi et al. 2015, Butterworth and Rademeyer 

2008, Megrey 1989), but not as much research has been directed at comparing indices within a 

method. The objective of this chapter is to calculate and compare spawning stock biomass (SSB) 

estimates calculated using different tuning indices representing targeting behaviour, bycatch 

behaviour and unbiased survey data. The survey index is assumed to be the best representation of 

the underlying fish abundance as the survey is designed to minimize bias in how the catch was 
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obtained. Because survey data are not always available, commercial fisher indices of abundance 

from targeted (deliberately biased) sets and bycatch (potentially unbiased) sets are also 

examined. Understanding how biases in input data may be influencing the SSB estimates is 

crucial to making informed management decisions regarding our fishery resources.  

3.2 Materials and Methods 

3.2.1 Analytical Tools 

 All data manipulations and analyses were performed using the statistical language R (R 

Core Team 2015). There are many packaged analytical tools available for performing a VPA, 

such as the NOAA Fisheries Toolbox, and Fisheries and Oceans ADAPT software, but the 

underlying details and assumptions are often not documented in detail or the descriptions are 

incomplete. Custom code was developed to perform the VPA within R, so that underlying 

assumptions of the method could be directly specified. A summary of abbreviations and terms 

used in this chapter can be found in Table 3-1. 

3.2.2 Adaptive Virtual Population Analysis Methodology 

Virtual population analysis (VPA) is an age-structured analysis where cohorts are 

reconstructed by working backwards through time, adding back fish which were removed from 

the population due to fishing (F) and natural mortality (M). In general terms this can be 

expressed as:  

(3-1)  Population last year = population this year + loss due to last year’s total mortality 

Total mortality (Z) = fishing mortality (F) + natural mortality (M)  

For this study, cohorts were reconstructed using the Baranov catch equation: 
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(3-2)  Cay = (Fay/ (Fay+M)) * Nay * (1-e
-(Fay + M)

) 

where  a = age 

  y = year 

  C = commercial catch in numbers 

  F = instantaneous fishing mortality rate 

  M = instantaneous natural mortality rate 

  N = Population size 

 Virtual population analyses are conducted through the use of matrices with the two 

dimensions representing age and year. For a more complete explanation see Appendix C. 

Because cohorts are projected backwards through time, there is an issue with incomplete cohorts 

from the more recent years. Classic VPA works backwards from the oldest age class, assuming 

that no individuals of the oldest age survive to the following year. For the cohorts currently in the 

fishery, the number of fish in the oldest age class is unknown and therefore the cohort cannot be 

projected back. Given that stock assessments are used to inform population projections and 

fishing quotas, population estimates are critical for the most recent years.  

The ADAPT-VPA method developed by Gavaris (1988) can produce population 

estimates for all cohorts through the use of auxiliary data to “tune” the population reconstruction. 

ADAPT-VPA is an iterative process which finds the most likely fishing mortality values for the 

commercial data, given a certain tuning index, based on catchability. Catchability (q) refers to 

how many fish are caught in one unit of effort relative to the total population (N). Catchability of 

an index series (I) can be calculated as:  

(3-3)   qay = Iay/Nay  

The most likely fishing mortalities, given the catch data and index series, are calculated 

through an iterative process which minimizes the sum squared error (SSE) equation (eq. 3-4). 
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The SSE calculates the error between the natural log of q (eq. 3-5) and the natural log of the 

mean q for each age class (eq. 3-6). Catchability is assumed to be constant across years. 

(3-4)  SSE= ∑ay (ln(q) – ln(qa))
2
 

(3-5)  ln(q) = ln(Indexay) – ln(Nay) 

(3-6)  ln(qa) = ∑y (ln(Indexay) – ln(Nay))) / n 

 

Where  a = age 

  y = year 

  q = catchability 

Indexay = Catch-at-age from index series 

Nay = population estimate from commercial catch and estimated F using the     

Baranov catch equation (Eq. 3-2) 

  n = number of years 

 A detailed explanation of the methodology and iterative process can be found in Lassen 

and Medley (2001), chapter 8 and Appendix C of this thesis. The result of the ADAPT-VPA 

population reconstruction is in number of fish.  

3.2.3 Data Sources and Model Inputs 

This chapter focuses on producing a spawning stock biomass estimate for haddock 

(Melanogrammus aeglefinus) from the NAFO 4X5Y division fishery, which encompasses both 

the Bay of Fundy and the Scotian Shelf (Figure 3-1). ADAPT-VPA methods require the 

following input data; 

1. Age-structured catch data from the commercial fishery (C) 

2. Estimate of the natural mortality rate (M) 

3. Age-structured catch data from an index series (I) 
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Additionally, to calculate spawning stock biomass, information on the weight-at-age of each age 

class and an estimate of maturity is required to transform population estimates (numbers) into 

biomass estimates (weight) of mature fish. 

The catch-at-age data (Appendix D), weight-at-age (Appendix D), natural mortality 

(Table 3-2), and maturity (Table 3-2) from the commercial fishery data was obtained from the 

Fisheries and Oceans Canada Haddock Stock Assessment Framework meeting (Stone and 

Hansen 2015). Commercial landings, generally recorded in weight, are sub-sampled for length 

and weight of the landed fish to produce length distributions and annual length-weight keys for 

each year of the fishery.  Annual age-length keys from the commercial fishery are then applied to 

obtain estimates for the number of fish in each age class (Wang et al. 2017). The natural 

mortality rate estimates (M) used in this study were obtained from Wang et al. (2017), which 

conducted VPAs with mortality estimates that varied by year and age to determine the most 

appropriate natural mortality estimates to use. M was set at 0.2 for ages 1 to 9 in all years, 0.62 

for age 10 and 11+ in 2008 and 2009, and 0.9 for ages 10 and 11+ from 2010 onwards. For this 

study M was fixed and not allowed to vary during the optimization process.  

Weight-at-age is the average weight per age of fish from the commercial fishery with 

maturity representing the proportion of fish in each age class which are considered mature. To 

remain consistent with current methods for this stock, recruitment to adulthood is considered to 

be “knife-edged” where fish from 0 to 3 years of age are considered immature and all fish age 4+ 

are considered mature (Beverton and Holt 1957). For this fish stock, the terms age 4+ biomass 

and spawning stock biomass (SSB) are used interchangeably.  

 To examine how stock estimates are influenced by the tuning index, three different catch-

at-age (CAA) tuning indices were used (Figure 3-2); 
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1. CAA for commercial sets where haddock is targeted 

2. CAA for commercial sets where haddock is bycatch 

3. CAA from DFO Scotian Shelf summer survey  

 Detailed information on the input data can be found in Appendix D. The data used for the 

targeting and bycatch indices came from the GAMMs produced in chapter two. Using the 

models, catch (in kg) was predicted for each year for a fishing set on January 1, in area 4XN with 

the other predictor variables set to their means. Because the models produce a single weight per 

year, the model index was manipulated (see below) to produce an age structured index as is 

required by VPA methods. For both the target and bycatch indices, one unit of effort is 

considered to be one fishing trawl. 

The CAA data from the DFO Scotian Shelf summer survey was obtained from Stone and 

Hansen (2015). Unlike the target and bycatch indices, which are on the scale of catch per fishing 

set (each number in the table represents 1 fish), the summer survey index is on the scale of the 

entire population size (each number in the table represents 1000 fish). Because it is the relative 

values that are important when tuning a VPA and not the absolute value, this does not impact the 

population estimate. It does affect the interpretation of catchability (q), as catchability is 

proportional to the entire population relative to one unit of effort. Because one unit of effort is 

the entire survey, catchability can be equal to or greater than one if the population estimate from 

the survey is greater than or equal to the population estimate from the VPA.  

3.2.4 Data Manipulations  

The model output from the chapter two GAMMs, was in weight (kg) per fishing set and 

therefore required some manipulation to obtain age-structured data suitable for tuning the VPA. 

Using the commercial CAA and WAA data, the proportion of fish in each age class (by weight) 
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was applied to the model output then divided by the WAA to obtain an age structured index with 

number of fish in each age class.  

Although there is a long term data set available for commercial catch-at-age data and the 

Scotian Shelf summer survey, I used only the years that were available from the chapter two 

GAMMs (2008 to 2013). Because VPA is based on backwards projection of cohorts, without 

tuning data from years previous to 2008 the stock estimates would be solely based on 

assumptions of the terminal age population. Shelton and Morgan (2012) argue that including all 

available commercial CAA data, even when a tuning index is unavailable, better describes the 

dynamics between SSB and recruitment than excluding data. Although this may be true when 

performing a stock assessment with the end goal of setting reference points and quota 

recommendations, for this study I was focused on investigating the potential impact that biased 

tuning indices have on SSB estimates. To avoid incorporating additional assumptions into the 

model, only years where both commercial CAA data and survey data were available were used in 

the study. In both the commercial catch and summer survey ages ranged from 1 to 16 but ages 

over 10 were aggregated into an 11 + age class. Age one was dropped from the analysis due to 

several 0 observations in the commercial catch.  

For the bycatch index, the number of age two fish in 2009 and 2010 was calculated as 

less than one, resulting in convergence issues when estimating the model’s parameters. Because 

VPA indices rely on relative differences, and not absolute values, the index was rescaled so the 

smallest value was 1.1 to resolve this issue. 

3.2.5 Model Fitting in R 

To produce the VPA models in R, custom functions were created to calculate sum 

squared errors (SSE) and reconstruct the final population estimate from the estimated fishing 
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mortalities. The SSE function created in R used the Newton-Raphson iteration method to solve 

the Baranov catch equation (Lassen and Medley 2001). The minimum SSE was calculated by 

optimizing the fishing mortalities (F) using the optim () function from the default stats package 

in R. To keep the optimization method from investigating unrealistic F values, upper and lower 

limits were set at 15 and 0.001 respectively.  

Models were fit for each of the three tuning indices using all fishing mortalities (F) set to 

0.5 as a starting value. The SSE was calculated for ages 2 to 10, ignoring the plus class. For the 

population reconstruction, the fishing mortalities (F) for the plus class were considered to be 

equal to the age 10 fish. From here on, models will be referred to as either target, bycatch or 

survey, depending on which index was used to tune the VPA. All three models used the same 

commercial CAA and WAA data, and differed only in the tuning index. 

3.2.6 Spawning Stock Biomass  

Population estimates, in thousands of fish, were transformed into biomass estimates by 

multiplying the number of fish in each age class by the average weight-at-age (in kg) and the 

maturity of each age class (Eq. 3-6). The biomass was then summed across ages for each year, 

resulting in a single biomass estimate per year. 

(3-6) SSBy = a (Nay * way * may) 

Where  a = age 

  y = year 

  N = population size in numbers 

  w = average weight in kg 

  m = maturity  

3.2.7 Terminal Year Effects 

Virtual population analysis methods rely on backwards projection of cohorts and 

therefore the terminal year (2013) is crucial for accurate population estimates. To evaluate how a 
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change in the index value in the terminal year may affect the overall SSB, I artificially modified 

the number of fish in each age class. To maintain the proper age structure, the catch per set in kg 

was modified and the age structure in number of fish was recalculated using the methods 

described in the previous section. In the raw data, the target index suggests a decrease in 

population from 2012 to 2013, whereas the raw bycatch index suggests an increase between the 

two years. To examine how the opposite pattern would affect the SSB estimate, the 2013 value 

for the target index was increased to the maximum value observed in the raw index (2552 kg 

seen in 2009). The bycatch index for 2013, was decreased to the lowest value previously 

observed in the index (87 kg seen in 2011), then rescaled so the smallest value was 1.1.  

3.2.8 Retrospective Analysis 

The retrospective analysis was completed by iteratively refitting the ADAPT-VPA 

models, with one less year of data each time. Because there are only six years of data, the 

retrospective analysis was limited in how many years could be removed. The model was fit with 

3, 4, 5 and all 6 years of data, resulting in four SSB patterns for each of the three indices.  

3.3 Results 

3.3.1 Model Fitting and Output 

All three models were successfully fit with no convergence errors, resulting in three 

separate population estimates based on different tuning indices. For all three VPA models 

(target, bycatch, and survey) the general pattern in abundance by age per year was consistent 

across models (Figure 3-3). Overall, the target tuned model tended to have the lowest number of 

fish in each age class, with the bycatch and survey models having a larger number of fish. The 

discrepancy between models decreased with increasing age class, with the largest differences 

observed for the youngest age classes. 
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Fishing mortality (F) for all models increased with increasing age class for all six years 

(Figure 3-4). Between the three models, fishing mortality tended to be highest for the target 

tuned model, with bycatch and survey tuned models having more similar estimates of F. For the 

oldest single age class (10) and the plus class (11+), fishing mortality in the target model ranged 

from 2.14 to 12.45, with 4 out of 6 years having an F estimate greater than 5. In contrast, the 

bycatch tuned model had an F range from 0.62 to 2.12, and the survey tuned model ranged from 

0.64 to 6.58, with only a single year having a fishing mortality above 2. Catchability increased 

across ages, with a greater proportion of older fish caught than younger fish. Detailed 

information on the estimated population size, fishing mortality, catchability, and error terms can 

be found in Appendix D. 

3.3.2 Spawning Stock Biomass 

Spawning stock biomass (SSB) was calculated as the biomass, in metric tons, of age 4+ 

fish each year. All three models, target, bycatch and survey, showed a general trend of declining 

biomass throughout the six years (Figure 3-5). The bycatch and survey models both had a slight 

increase in biomass between 2008 and 2009, which did not appear in the target model. Although 

the three models indicated the same general declining trend, the different tuning indices did 

produce slightly different patterns between years, most notably in the terminal year, 2013.  

Spawning stock biomass for the target model ranged from a high of 23244 t in 2008, to a 

low of 7507 t in 2013. Bycatch and survey models tended to have a more similar range in 

biomass in comparison to the target model. Bycatch ranged from 27722 t in 2009, to 14206 t in 

2013, while the survey ranged from 29102 t in 2009 to a low of 10324 t in 2013.  

The largest difference in SSB estimates was between the target and bycatch models. The 

target SSB estimates were consistently lower for each year, with an average of 5680 t less than 
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the bycatch model and 4680 t less than the survey model. Overall, the bycatch and survey SSB 

estimates were the most similar with only an average 10% difference between the two models. 

The survey SSB estimate was slightly higher in 2008 and 2009, and lower than the bycatch 

estimates from 2010 onwards. The SSB estimates for 2013 showed the greatest deviation from 

the overall patterns described above. Both the survey and target models indicated a decline from 

2012 to 2013, with the bycatch model indicating an increase. 2013 was the only year where the 

SSB estimate from the survey model was closer to the target model estimate than to the bycatch. 

In 2013 SSB was estimated at 15054 t for the bycatch model, 10323 t for the survey model and 

7507 t for the target model.  

3.3.3 Probing Terminal Year Effects 

When the most recent year of data in the index series was arbitrarily modified, the 

resulting SSB estimate changed (Figure 3-6). For the target series, the terminal year index was 

modified so that the catch per set weight (in kg) was equal to the highest catch per set weight 

observed, and the bycatch was decreased to the lowest catch per set weight. For the target index 

the 2013 catch per set weight was increased from 1137 kg to 2552 kg, and the bycatch was 

decreased from 114 kg to 88 kg. These modified indices will be referred to as target increased 

and bycatch decreased. Although the raw index value, in kg, was equal for two years in the 

index, the resulting number at age between the two years was different as the fishery data had a 

different age structure between the two years. The total number of age 2+ fish in 2013 was 

increased from to 1399 to 3139 for the target index and decreased from 140 to 108 for the 

bycatch. This corresponded to a percent difference of 77% for the target series and 26% for the 

bycatch series.  
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 By modifying the index values for 2013, the model tuned with the target index went from 

the lowest SSB estimates to, on average, the highest. By decreasing 2013 for the bycatch index, 

the overall SSB estimates from the model also decreased. With the exception of the original 

target index model, the SSB estimates for 2008 were all within 650 t of each other. The 

divergence between the original and unmodified indices for both the target and bycatch models 

increased from 2008 to 2013. The difference in SSB estimates for the original and increased 

target indices increased from slightly under 4000 t in 2008 to over 9000 t in 2013. The change 

between the bycatch models was not as drastic, but still noticeable. There was less than a 300 t 

difference in 2008 through to a 2756 t difference in 2013. As with the original indices, the 

modified bycatch index was more similar to the survey index than to the modified target index.  

3.3.4 Retrospective Analysis 

Because of the small number of years available in this study, the retrospective analysis 

provided only a limited look at how well the models performed (Figure 3-7). For the target 

index, all retrospective analyses without 2013 indicated a greater SSB. The results of both the 

bycatch and survey models were more robust to the removal of 2013, with similar SSB estimates 

to the full models with 2013 included.  

3.4 Discussion 

Comparing the results of VPAs tuned with both fishery dependent and independent data 

allowed for the evaluation of how commercial data performs when used as a tuning index 

relative to a scientific survey. When using a tuning index in any stock assessment method, it is 

assumed that the amount of fish in the index is proportional to the true abundance (Francis 

2011). Deviation from this assumption can bias the stock estimates that are ultimately used to 

make management decisions. Unfortunately, for many fisheries, survey data are unavailable and 
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commercial data (often as CPUE) is used in its place. With this data I was able to show that three 

different indices of abundance, all drawn from the same underlying population provided three 

different estimates of SSB. Because the commercial data and survey data did not produce SSB 

estimates that were in complete agreement with each other, it is likely at least one index violates 

the assumption that the index is representative. Francis (2011) states that it is best to omit 

unrepresentative data sets from being used in a stock assessment, but when only one index is 

available it is difficult to tell if it is truly representative.  

Because of the non-random nature of commercial fishing, I expected the tuning index 

based on target data to mask some of the variation in the fishery by selectively fishing high 

density areas. Bycatch has been used previously as an index that is collected in a more random 

manner, such as using fish bycatch in lobster traps, and therefore considered to be more 

representative than data from target catches (Zhang and Chen 2015). Comparatively in this 

study, the bycatch model was in closer agreement with the survey model than the target model. 

This suggests that the bycatch can provide a more representative index of the underlying 

abundance than target sets and thus may be an appropriate alternative to survey data.  

A representative bycatch index could be the result of fish harvesters exploiting 

populations with changing distributions. Marshall and Frank (1994) found that as population size 

of haddock increased, the number of fish in areas surrounding previous high density areas, 

tended to increase in abundance at a faster rate than in the high density area. This indicates that, 

as population size increases, fish tend to expand into suboptimal habitats, and retract back into 

optimal habitats when population size decreases. Fishers tend to distribute themselves non-

randomly on the water, aggregating in productive areas where catch rates tend to be higher for 

their target species (Gillis and van der Lee 2012, Lee et al. 2010, Campbell 2004). This can lead 
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to hyperstability of the fishery and catch rates that are not reflective of the underlying abundance 

(Harley et. al. 2001). Bycatch of non-target species is likely to be more sensitive to the changes 

in abundance and range than the target index of that species, due to bycatch being obtained from 

a larger range of underlying densities. If fishing sets targeting a species are aggregating where 

fish are found in high densities, they are not being exposed to the changes in density associated 

with the usage of sub-optimal habitats, as expected from bycatch sets.  Brodziak and Walsh 

(2013) found that their calculated abundance index for shark bycatch in a longline fishery agreed 

with previous studies indicating an overall decline in shark population (Clarke et al. 2013). This 

is in agreement with the results of the bycatch tuned VPA being more similar to the fishery 

independent survey tuned VPA, than the target model. This supports using a bycatch index 

instead of a target index when survey data are unavailable. 

Although I expected the bycatch tuned SSB estimates to be more representative than the 

target tuned VPA, it was not expected that the target biomass estimates would be much lower 

than either the survey or bycatch. If targeting behaviour remains consistent, then the index of 

abundance would be less sensitive to the underlying changes in population size due to the fishers 

selectively fishing in productive areas only (Harley et al. 2001). For the index series used in this 

study, this did not seem to be the case. The target index series indicated decline in catch from 

2009 to 2013, whereas the bycatch and survey indices indicated relative abundance beginning to 

increase in 2013. The idea that a target series is less sensitive to underlying population changes 

than a bycatch series relies on the assumption that targeting behaviour has been consistent across 

the time frame of the index. Outside factors such as changes in the management of the fishery, or 

market value may influence how targeting fishers choose to fish (Babcock and Pikitch 2000). 

During the timeframe of this study (2008-2013), market value of haddock remained relatively 
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stable around $0.70 /lb, and was therefore not likely influential regarding the behaviour of the 

fishers. Incorporating market value of the target species as well as potentially valuable bycatch 

species may be informative for future studies regarding this fishery. Changes in targeting 

behaviour that reduce landed catch, independent of abundance, ultimately result in lowered SSB 

estimates as were observed in this analysis. 

 In more recent years in the NAFO 4X division fishery, fishers targeting haddock have 

been increasingly limited by the amount of cod they can land. Cod total allowable catch (TAC) 

in the 4X5Y fishery has decreased from 5000 t in 2008 to 3000 t in 2009 and 2010, and finally to 

the current level of 1650 t (DFO 2015). During the same timeframe, haddock TAC was also 

reduced from 7000 t in 2008 and 2009, to 6000 t in 2010 and 2011 and finally 5100 t in 2012 and 

2013 (Stone and Hansen 2015). Although both species TAC has been reduced since 2008, cod 

quotas have been reduced by a larger margin. This may limit haddock catches due to a biological 

association with cod. The two species occupy similar habitat niches resulting in them often 

caught together (Scott and Scott 1988). Krag et al. (2010) demonstrated that fishers may exclude 

cod from their haddock sets by fishing slightly above the sea bed, allowing cod to escape 

underneath the trawl. An alternative tactic, which may better match the data seen in the target 

index, is for fishers to elect to fish in suboptimal habitats where both cod and haddock 

population size is lower. This would reduce cod catch, but also haddock catch as observed in the 

target index. If fishers are limited in the amount of cod they are allowed to land, then it is 

advantageous to avoid catching cod, even at the expense of the amount of haddock caught per 

set. If the cod quota is filled then haddock fishing opportunities would end for the season. 

 The reduced catch per set over time from the target index, which did not match the 

increase in numbers seen in the bycatch and survey indices, produced SSB estimates that were on 
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average 5576 t less than the estimated SSB from the bycatch tuned model. The average 

difference between the two indices was greater than the TAC in 2013. Errors in population 

estimates can propagate through the management process, so a discrepancy of this magnitude is 

concerning. Although underestimating SSB is not as detrimental to the fish stock as an 

overestimation of SSB would be, if the stock is considered too low then a fishing moratorium 

may be introduced. Fishing moratoriums, such as the one introduced in 1992 for Newfoundland 

cod, have detrimental socio-economic impacts such as unemployment, poor individual health, 

and a general decline in community well-being (Gien 2000). Both the overestimation and 

underestimation of fish stocks can have negative consequences, be it for the fish or the fishers.  

 The terminal year of the tuning index was shown to have a large impact on the SSB 

estimate from the models. When the target index was modified so that the last year reflected an 

increase, the SSB estimate was increased for all years. Decreasing the number of fish in 2013 in 

the bycatch index had the opposite effect, resulting in a lower SSB estimate for all years. 

Because VPA is a cohort analysis, fish added or removed from the terminal year propagate 

backwards (Lassen and Medley 2001). Each additional fish added in the terminal year implies 

that the fish was also present the previous year in the previous age class, as VPA works 

backwards through time. This is especially true for the oldest age class, as their cohort has been 

present in a greater number of years, relative to the younger age classes who have not yet moved 

through the fishery.  

The SSB estimate from the modified bycatch model was similar to the effect of removing 

2013 altogether, as seen in the retrospective analysis. Retrospective bias can result from changes 

not taken into account in model assumptions (Mohn 1999). Therefore minimal retrospective bias 

in a model can be a valuable indicator of how appropriate the model is at representing population 
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trends. A typical retrospective bias results in a pattern which fans out, overestimating the 

biomass in the terminal year, as each successive year of data is removed. The target model did 

not have a typical retrospective pattern, but instead biomass estimates were elevated for all years. 

The target tuned model estimates were more in line with the bycatch and survey, once 2013 was 

removed. In conjunction with the increased SSB estimate for the modified target model, this 

highlights the impact that a single year of unrepresentative data may have on the outcome of a 

stock assessment. Both the bycatch index and survey index SSB estimates were more robust to 

the removal of 2013, than the target index. Removing more than a single year of data did change 

the SSB estimates for both the bycatch and survey models, but with such a short time series, the 

patterns are of limited diagnostic use. The retrospective pattern in the survey and bycatch models 

were what you would typically expect, with the pattern “fanning” out as each year of data is 

removed, although estimates decreased for the bycatch model. Although the time series is quite 

short, the atypical retrospective pattern observed for the target index provides further evidence 

that target data may not be the best representation of population trends. A longer time series of 

catch for the commercial catch indices would allow further comparison between the SSB 

estimates and should be considered before applying this methodology.  

 The main inconsistency of the bycatch model relative to the survey model was that the 

number of fish was estimated to be much higher for the terminal year than either the target or 

survey, especially in the younger age classes. The most recent stock assessment for NAFO 4X5Y 

haddock indicates the stock has been increasing since 2013 (DFO 2017). It may be possible that 

the bycatch index was sensitive enough to be an early detector of an increasing population. 

Updating the model with more recent years of data would allow for a more in-depth evaluation. 
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 In this study the bycatch model SSB estimates were more similar to the survey index 

SSB, the SSB estimate was robust to the removal of 2013, and in general the fishing mortalities 

rates in the bycatch model were more similar to the survey model. Changes in fishing tactics and 

strategies that affect catch rates for target fishing sets may also affect bycatch sets, but overall 

bycatch estimates may provide the more reliable indicator of changes in relative abundance.  

 Around the world, many harvested species lack the data that is needed to conduct a full 

age-structured stock assessment. Smith et al. (2009) have suggested using data-rich fisheries to 

help with the assessments of data-poor fisheries. By using information from a data-rich fishery, I 

was able to compare multiple fisher behaviours from commercial data along with survey data 

and have shown that fisher behaviour in the collection of the data may have a large influence on 

the relative population estimates. This study can be used to inform data selection of commercial 

fishing sets when survey data is unavailable, encouraging the use of bycatch sets over target sets 

to produce abundance estimates. Differences between the tuning indices were enough to impact 

the SSB estimates of the ADAPT-VPA and as such stresses the importance of tuning indices 

which account for the underlying behaviour of the fishers.  

 Stock assessment methods are only as useful as the data given to them, and as such, the 

quality of the output and subsequent interpretation is heavily reliant upon the quality of the data. 

Survey indices are considered to be the most useful representation of relative abundance and 

with the exception of 2013, the bycatch index performed similarly in comparison. When survey 

data are unavailable, it may be difficult to decide on an alternative source of data. Although both 

bycatch data and target data have inherent biases, this study has shown that using data from 

commercial sets that are targeting the species being assessed may be less reliable than data from 

bycatch sets.   
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Table 3- 1 Definitions of abbreviations and terms used in chapter three 

Term Definition 

VPA Virtual population analysis 

ADAPT Adaptive virtual population analysis 

TAC Total allowable catch 

CAA Catch-at-age (number of fish) 

WAA Weight-at-age (average kg per fish) 

SSB Spawning stock biomass (weight of age 4+ fish in 000’s kg) 

M Natural mortality 

F Fishing mortality 

Q catchability  
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Table 3- 2 Maturity and natural mortality (M; Wang et al. 2017) for age 2 to 11+ haddock 

(Melanogrammus aeglefinus) in NAFO 4X5Y divison. Maturity is recorded as the proportion of 

fish. Natural mortality (M) is an instantaneous rate of decline. 

  2 3 4 5 6 7 8 9 10 

Maturity 0 0 1 1 1 1 1 1 1 1 

M 2008-2009 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.62 0.62 

M 2010-2013 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.9 0.9 
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Figure 3- 1 Map of 4X5Y management area. Map is taken from Stone and Hansen 2015 
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Figure 3- 2 Number of greater than age 2 fish in the (A) target, (B) bycatch, and (C) survey 

indices used to tune the ADAPT-VPA. The target and bycatch indices are number of fish per 

fishing set, while the survey index is a population estimate calculated from the Scotian Shelf 

summer survey. 
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Figure 3- 3 Estimated number of fish in 000’s by year and age, for ADAPT-VPA tuned with 

target (solid line), bycatch (dashed line) or survey (dotted line) data. Grey lines indicate axis 

break. 
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Figure 3- 4 Estimated fishing mortality by year and age, for ADAPT-VPA tuned with target 

(solid line), bycatch (dashed line) or survey (dotted line) data.  
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Figure 3- 5 Estimated spawning stock biomass (000’s kg) from the ADAPT-VPA tuned with 

target, bycatch, or survey data from 2008 to 2013. 
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Figure 3- 6 Number of fish age two and greater in the (A) target and artificially increased target 

indices, (B) bycatch and artificially decreased bycatch indices, and (C) survey index used to tune 

the ADAPT-VPA. (D) Estimated spawning stock biomass (000’s kg, age 4+) from the ADAPT-

VPA tuned with the five indices from panels A, B and C.  
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Figure 3- 7 Retrospective analysis of the estimated spawning stock biomass (000’s kg) from the 

ADAPT-VPA tuned with target, bycatch, or survey data from 2008 to 2013. Solid lines represent 

all years included, with the dashed lines the SSB when a year of data was removed. 
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Chapter Four: Conclusion 

The focus of my thesis has been to evaluate the effect of targeting behaviour on 

standardized catch rates from commercial fisheries and role that biased indices may play when 

performing stock assessments. Ultimately, catch data (either commercial or survey) is used for 

the purpose of estimating population size. As it is impossible to know the true population size, 

catch-per-unit-effort (CPUE) has become the standard in fisheries research as an index of 

abundance (Maunder and Punt 2004). Commercial CPUE is widely known to potentially bias 

population estimates due to non-random fishing effort (Cooke and Beddington 1984, Harley et 

al. 2001). Fishers can keep catch rate high due to selectively fishing productive areas, even to the 

extreme of maintaining high rates of catch during drastic decreases in population size (Rose and 

Kulka 1999). Standardizing catch rates to account for the sources of variability not related to 

population size is common practice (Maunder and Punt 2004), but can still result in a biased 

indicator if the standardization model is underfit (Ye and Dennis 2009). With this study I was 

able to demonstrate the impact that bias in catch rate derived indices has on stock assessments, 

and the appropriateness of using bycatch indices as an alternative to target data.  

Quantification of the effects of targeting behaviour was accomplished through two 

projects using catch information from fishing vessels in the NAFO 4X division, off the coast of 

Nova Scotia. Chapter two focused on producing separate relative abundance indices for fishing 

sets partitioned based on fishing tactic, for haddock (Melanogrammus aeglefinus) and redfish 

(Sebastes sp.). Chapter three used the models from chapter two as a tuning index in an ADAPT-

virtual population analysis (Garvaris 1988, Lassen and Medley 2001).  

Estimating the population size of fish stocks has many challenges and traditional stock 

assessment methods rely upon the assumption that catch is proportional to abundance (Gulland 
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1969). Commercial fishing data, although plentiful, is subject to many potential sources of bias, 

from the actual fishing activity to how the data are selected in analyses. Any of which may 

violate the assumption that catch is proportional to abundance. Directed fishing effort (i.e. 

targeting) of a certain species can result in hyperstability where catch rates do not reflect changes 

in the underlying availability of the fish stock (Clark 1982, Hilborn and Walters 1992, Harley et 

al. 2001). This can result from fish harvesters who consistently keep catch rates high even in the 

presence of an overall decline in population due to selectively fishing high density areas.   

In chapter two, I classified fishing sets based on catch composition into target, bycatch or 

mixed sets. By standardizing catch for these three fishing tactics in separate models, I was able to 

compare patterns among their relative abundance indices. Although more complex ways of 

defining target and bycatch sets were considered and investigated, such as statistical clustering 

methods used in previous studies (Pelletier and Ferraris 2000, Holley and Marchal 2004, Deporte 

et al 2012), they did not effectively distinguish the tactics in this data set. The patterns in the 

catch composition for the NAFO 4X data set were not easily discernable using statistical 

clustering methods, and did not readily pull out a haddock or redfish target cluster. Using 

proportion of catch, based on the species composition, provides a metric for selecting catch 

records that is simple to define and implement in a variety of fisheries (Biseau 1998). For this 

study, I choose to use a threshold of 90% to consider a set to be successful targeting. This high 

threshold allowed there to be enough data in each subset to model, while minimizing the chance 

of a fishing set being incorrectly classified as targeting. Helle et al. (2015) used a threshold as 

low as 30% to define targeting but with the catch composition observed in the NAFO 4X data 

set, I was not confident that a low threshold would be sufficient to model targeting behaviour. A 

goal of this study was to model trends in fishing sets that were targeting the species of interest 
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and although fishers are highly successful at targeting species fishing is still an inexact practice. 

Setting the threshold too low runs the risk of including sets where the species of interest was 

caught incidentally and not truly targeted. Setting a high threshold for targeting when selecting 

data in a mixed species fishery, may more closely match the successful targeting behaviour 

observed in other fisheries. Therefore, the trends discussed in this thesis could be applied more 

readily to target fisheries that rely solely on commercial catch data.  

Comparing the catch trends between years for the target, bycatch and mixed subsets of 

data resulted in the detection of different trends in the perceived underlying abundance for both 

haddock and redfish. Comparatively, Helle et al. (2015) did not report any major differences in 

the overall pattern of relative abundance between all fishing sets and target fishing sets with a 

target threshold of 30%. It may be possible that by setting the threshold for targeting too low, 

they did not capture the impacts that highly successful targeting may have on the patterns in 

relative abundance.  

Along with comparing the relative index of abundance, I was also able to compare the 

patterns between catch and nominal effort between the three tactics. The patterns in fishing 

effort, as the number of hours trawled, varied between fishing tactics, with a smaller increase in 

catch with an increase in effort for target sets, and a greater increase in catch with effort for 

bycatch sets.  Fishing with the intent to fill the net can result in little to no relationship between 

catch and effort, as the gear is deployed until it reaches capacity regardless of how long it takes. 

Depending on the density of the fish in the fishing location, filling the net may take a vessel 

under an hour to several hours. Furthermore, fishing high density areas and only bringing up the 

net once it is full contributes to the potential hyperstable relationship between catch and 

abundance. Accounting for potential interaction effects between hours trawled and fishing tactic 
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may help to improve catch standardizations in future for studies using data sets containing 

multiple fishing tactics. When only data from fishing sets targeting the species of interest are 

used for catch standardizations, nominal effort alone may not be useful at describing trends. 

Additionally, using nominal effort as an offset in the response variable (i.e. CPUE) may bias the 

abundance index if there is no relationship between catch and hours trawled. Modelling catch 

directly (instead of CPUE) and including information about the number of fishing sets per trip 

may be beneficial to improving catch standardizations when only targeting data is used for 

analysis.  

Overall, with this chapter I was able to demonstrate how selecting data based on the 

underlying fisher behaviour can result in different relative abundance indices, but I could only 

speculate on if the indices were representative of the true population size. Relative to commercial 

catch records, scientific survey data are considered to be an unbiased estimate of population size 

and can provide a benchmark to evaluate the different indices. Population estimates for haddock 

from the Scotian Shelf scientific survey combined elements from both the target and the bycatch 

indices produced in chapter two. Unlike the commercial records, the survey data encompasses 

both the Scotian Shelf and the Bay of Fundy, so a direct comparison between the survey index 

and the commercial catch indices is done with some reservation. For each of the two species in 

this chapter, the five models per species each gave a different relative pattern in abundance. Even 

when all fishing sets were considered together, with behaviour accounted for by using the 

proportion of catch as a variable in the model, the resulting relative abundance trends were not in 

alignment with either target or bycatch sets. Campbell (2004) recommends that multiple 

abundance indices may be preferable to using any single index. Although this recommendation is 

in the context of the spatial aspects of fishing effort, I have shown that it may also be beneficial 
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to explore multiple indices based on the targeting behaviour of the fishing vessels. Divergent 

trends between fisher behaviour could then be integrated into stock assessment models through 

weighted  averages of the different indices.  

Trends in catch standardizations alone can be used to infer changes in population 

abundance (Maunder and Punt 2004), but they are also used in conjunction with age-structured 

methods of abundance estimation (e.g. VPA ; Lassen and Medley 2001). For this study, survey 

data provided a non-biased index to use as a comparison for target and bycatch data. By using 

the GAMMs from chapter two, I was able to examine the effect that biased indices may have on 

stock size estimation, as well as evaluate if bycatch index series provide an appropriate 

alternative to those based on survey data.  

Using trends in standardized catch as an index of abundance, does not account for the 

age-structure of the underlying population. Age-structured methods are likely to be more 

representative of fish stock dynamics and thus provide a better representation of the population 

size than catch (or CPUE) indices alone (Megrey 1989). In general, using an age-structured 

model, such as a VPA, along with auxiliary information provides a population estimate that 

incorporates multiple sources of data and thus is more likely to represent the underlying 

population size. Comparing how the target and bycatch indices performed relative to a scientific 

survey index when used as the auxiliary information in the age-structured model allowed for the 

evaluation of each index as a representation of the underlying abundance. Scientific survey data 

are considered to be less vulnerable to bias introduced by fishing behaviour, as the surveys are 

designed to minimize this bias, and therefore provide a more reliable index (Maunder and Punt 

2004). Overall, I found that using bycatch as a tuning index provided a close estimate to the 

survey tuned model and a more robust biomass estimates than the target index. The terminal year 
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of the index series played a large role in the overall estimate of spawning stock biomass and was 

investigated through artificially modifying the index and through a retrospective analysis. The 

bycatch estimates remained more consistent than the target index did when the terminal year was 

modified. Using bycatch as auxiliary information may be an appropriate alternative when survey 

data are unavailable. Although bycatch from another fishery has been used when target 

information is unavailable (Zhang and Chen 2015), selecting bycatch records from a 

multispecies fishery may provide a more representative index to use in stock assessment models 

than all sets or those that target the species of interest.  

 Extending the time-series used to create the GAMMs in chapter two would provide an 

opportunity to investigate the effect of limited data on biomass estimates. With this study, the 

bycatch and tuning indices were relatively short compared to the survey index available, which 

extended back to 1985. Both the estimated haddock biomass and commercial landings have 

decreased substantially from a peak in the 1980s (DFO 2012). Comparing the relative 

performance of bycatch versus target indices over a longer time period where the stock size has 

been in decline would allow for a more in-depth discussion on the suitability of each index. I 

would still expect bycatch indices, especially in the context of large declines in abundance, to be 

a better representation of the true abundance than targeting indices due to the hyperstability 

issues previously discussed. In the short time-series of catch available for this study, the 

retrospective analysis was of limited use. A longer index time-series would allow for the biomass 

estimates to be well anchored in the past and provide a better understanding of how bycatch and 

target indices perform long term.  

 Fish populations cannot be directly estimated, so as scientists we rely on models to 

provide us with the population assessments necessary for the management of commercial harvest 
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and species conservation. The many different types of models discussed in this thesis (CPUE 

standardization; Maunder and Punt 2004, surplus production, VPA, etc.; Hilborn and Walters 

1992) are unified under the assumption that the data we use accurately represents the underlying 

abundance. The inferences we make about the population size from whichever model is used, are 

influenced by the data we input into the analysis. The exploration in this thesis of the trends in 

catch based on fisher behaviour and data selection contribute to a broader knowledge of how 

biases in fishing behaviour may influence population estimates. Mismanagement of fish stocks 

can have far reaching detrimental effects, from impacts to the biology of the ecosystem through 

to the socioeconomic factors affecting people and communities who rely on them. Shifting away 

from indices which standardize catch based on fishing tactics that may mask underlying trends, 

and unrepresentative depictions of fishing effort, will help to improve our management of 

Canada’s traditionally important fishery resources. 
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Appendix A: Catch Information for All Species  

Table AA- 1 Common and scientific names of species found in the NAFO 4X division otter 

trawl landings from 2008 to 2013 

Common name Scientific Name 

Redfish Sebastes spp 

Haddock Melanogrammus aeglefinus 

Pollock Pollachius virens 

Cod Gadus morhua 

Winter flounder Pseudopleuronectes americanus 

White hake Urophycis tenuis 

Monkfish Lophius americanus 

Witch flounder Glyptocephalus cynoglossus 

Sculpin  Family Cottidae 

Halibut Hippoglossus hippoglossus 

Skate  Family Rajidae 

American plaice Hippoglossoides platessoides 

Cusk Brosme brosme 

Yellowtail flounder Limanda ferruginea 

Red hake Urophycis chuss 

Dogfish  Family Squalidae 

Stripped wolffish Anarhichas minor 

Silver hake Merluccius bilinearis 

Greenland halibut Reinhardtius hippoglossoides 

Wolffish, unspecified Family Anarhichadidae 

Tilefish Lopholatilus chamaeleonticeps 

Northern wolffish Anarhichas denticulatus 

 

 

 

 

 

  



126 
 

Table AA- 2 Total catch in kgs and proportion of total catch by weight for 16 vessels from the 

NAFO 4X division otter trawl landings from 2008 to 2013 

Species Total Catch Prop of Total 

Redfish 14396181 0.3743 

Haddock 10260974 0.2668 

Pollock 6892133 0.1792 

Cod 2346750 0.06101 

Winter flounder 2139781 0.05563 

White hake 947112 0.02462 

Monkfish 587272 0.01527 

Witch flounder 259356 <0.01 

Sculpin  200762 <0.01 

Halibut 81276 <0.01 

Skate  69809 <0.01 

American plaice 67693 <0.01 

Flounder, unspecified 62881 <0.01 

Cusk 53508 <0.01 

Yellowtail flounder 31668 <0.01 

Red hake 29480 <0.01 

Dogfish  29101 <0.01 

Stripped wolfish 7284 <0.01 

Silver hake 2231 <0.01 

Greenland halibut 401 <0.01 

Groundfish, unspecified 318 <0.01 

Wolffish, unspecified  185 <0.01 

Tilefish 56 <0.01 

Northern wolfish <1 <0.01 
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Table AA- 3 Mean, median, max and minimum catch in kgs per fishing set for NAFO 4X 

division otter trawl landings from 2008 to 2013 made by 16 unique vessels. N is the number of 

sets where the species was found out of a total of 23227 

Species Mean SD Median Max Min N 

Redfish 999.4 1380.0 492.4 26133 0.001 14405 

Haddock 501.8 1108.0 157.1 18766 0.001 20450 

Pollock 421.0 1234.0 62.83 21337 0.001 16371 

Cod 120.4 328.8 33.31 9616 0.001 19496 

Winter flounder 414.6 527.0 249.9 8117 0.001 5161 

White hake 86.5 152.6 30.52 2499 0.001 10945 

Monkfish 84.8 291.6 7.558 4667 0.001 6923 

Witch flounder 25.5 71.8 8.316 3328 0.001 10185 

Sculpin  71.4 101.1 42.56 1445 0.001 2811 

Halibut 19.7 77.2 11.51 4703 0.001 4125 

Skate  176.3 331.1 45.73 3191 0.218 396 

American plaice 21.5 55.8 3.519 758.8 0.001 3149 

Flounder, unspecified 57.5 142.9 15.79 1654 0.001 1093 

Cusk 10.5 21.7 4.082 338.1 0.001 5101 

Yellowtail flounder 24.0 67.8 7.288 858.3 0.001 1321 

Red hake 842.3 1211.0 11.56 4113 2.678 35 

Dogfish  363.8 755.3 38.74 4303 1.063 80 

Stripped wolfish 1.9 3.3 0.6740 68.95 0.001 3938 

Silver hake 97.0 95.7 75.66 485 6.061 23 

Greenland halibut 2.5 8.7 0.3160 94 0.001 159 

Groundfish, unspecified 8.0 8.0 6.467 26 0.064 40 

Wolffish, unspecified  1.7 2.3 0.7070 12 0.001 111 

Tilefish 0.8 2.4 0.2100 13 0.020 67 

Northern wolfish <0.01 <0.01 <0.01 0.001 0 28 
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Appendix B: Disproportionate Catch and Effort Relationship 

 

When catch-per-unit-effort (CPUE) is used in fisheries research, catch is related to the nominal 

fishing effort through eq. B-1 

(B-1)      C=qfN 

Where     C =catch 

     q = catchability coefficient 

     f = nominal fishing effort 

     N = population size 

A disproportionate relationship between catch and effort can be included by the addition of an 

exponent () to the effort term (eq. B-2) 

(B-2)     C = qf

N 

 

The exponent  can be estimated through the linear predictor () from a generalized linear 

model. 

When considered with the log link function (eq. B-3) and linear predictor (; eq. B-4) from a 

generalized linear model (the mean of the response variable) 

(B-3)      = e
 

(B-4)      = 0 + 1X1 

If we combine equations B-3 and B-4, and include log(f) in place of the covariate X from eq. B-

4, we get eq. B-5 

(B-5)               = e
0 + 1 ·log(f) 

This can be rearranged to eq. B-6 

(B-6)               = e
0 

·
 
e

 log(f)^1 

And reduced further to eq. B-7 

(B-7)               = e
0 

·
 
f
1 
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Appendix C: VPA Methodology 

 Virtual population analysis is an age-structured population model, where cohorts are 

reconstructed backwards through time (Gulland 1965). Simply put, this means that the 

population last year is equal to the population this year plus the loss due to mortality. This 

reconstruction is completed using the Baranov catch equation  

  Cay = (Fay/ (Fay+M)) * Nay * (1-e
-(Fay + M)

) 

Where  a = age 

  y = year 

  C = commercial catch in numbers 

  F = instantaneous fishing mortality rate 

  M = instantaneous natural mortality rate 

  N = Population size 

 Population reconstructions are completed using matrices with year increasing 

horizontally, and ages increasing vertically downward. Based on the assumption that no 

members of the oldest age class survive into the next year (i.e. N=0), we can calculate the 

population estimate for the oldest age class in each year and work backwards to reconstruct the 

population. The oldest age class is known as the terminal age, and is highlighted in Figure AC-1.  

 

Figure AC - 1. Illustration of an age-year matrix used for a virtual population analysis. Cohorts are 

backfilled and require an estimate of population size or fishing mortality in the terminal age class (darkest 

grey). Medium grey indicates an estimated population size, with the lightest grey indicating no estimate. 
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 This method works well for the complete cohorts (i.e. cohorts who have reached the 

terminal age), but leaves a number of un-estimated values for the incomplete cohorts (lightest 

grey in Figure AC-1). Because incomplete cohorts make up the current fishery, they are the 

population estimates that we are most interested in. To fill in the matrix in its entirety, we need 

an estimate of either population size (N) or fishing mortality (F) for each age class in the 

terminal year (last column, highlighted below). 

 

Figure AC - 2 Illustration of an age-year matrix used for a virtual population analysis. Cohorts are 

backfilled and require an estimate of population size or fishing mortality in the terminal age class (bottom 

row) and terminal year (rightmost column) to estimate the population size for the previous years of the 

cohort. Estimated values are highlighted in the dark grey.  

 To obtain the parameter estimates needed to complete the matrix, auxiliary information, 

such as a scientific survey or CPUE time-series, is used to “tune” the VPA. The ADAPT-VPA 

method used in this thesis uses an iterative process to estimate the most likely fishing mortalities 

given commercial catch-at-age data and a secondary tuning index (Gavaris 1988). The most 

likely values for fishing mortality (F) are calculated by minimizing the sum- squared error in the 

calculated catchabilities as described below. 
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The steps described by Lassen and Medley (2001; in bold) are explained as follows: 

(i) Initiate the unknown parameters ln(F), with guessed estimates.  
 

These are the fishing mortalities for the terminal year and age class (dark grey in 

figure AC-2). Initial values were set to 0.5. 

 

(ii) Perform a VPA to estimate the population (N) for all age groups and years.  
 

The Baranov catch equation can be rearranged to solve for N in the terminal year and 

age class, given the catch (C), fishing mortality (F) and natural mortality (M). With a 

value of N for each age in the terminal year, and each year in the terminal age class, 

the entire matrix can be backfilled. 

  

(iii) Calculate the ln(q) parameters.  
 

Catchability (q) is the link the between the true population size and the index: 

Index = catchability * population size  

The VPA is “tuned” using the index series through the ln(catchabilities), as 

logarithmic values are more appropriate than raw values in stock assessments (Lassen 

and Medley 2001). Using logged values changes the equation for catchability from 

q = Index/N; to 

ln(q) = ln(Index) – ln(N) 

After the N matrix is reconstructed (ii), the catchability of the index series is 

calculated for each age and year (ln(q)) as well as the average catchability for each 

age class (ln(qa)).  

ln(q) = ln(Indexay) – ln(Nay) 

ln(qa) = ∑y (ln(Indexay) – ln(Nay))) / n 

(iv) Calculate the sum-of-squares using the VPA solution and the calculated log 

catchabilities. 
The sum-squared error (SSE; simplified from the Lassen and Medley equation) of the 

catchabilities from the index series are calculated as: 

SSE= ∑ay [ln(q) – ln(qa)]
2
 

Steps (ii) to (iv) are imbedded in an iterative optimization routine to find the minimum SSE. 

A more detailed descriptions of the methodology can be found in the ADAPT chapter of Lassen 

and Medley (2001 pg. 55-61). 



132 
 

References 

Gavaris, S., 1988. An adaptive framework for estimation of population size. CAFSAC Res. Doc. 

88/129 

Gulland, J.A., 1965. Estimation of mortality rates. Annex to Arctic fisheries working group 

report ICES C.M. Doc. 3 (mimeo).  

Lassen, H., and Medley, P. 2001. Virtual Population Analysis – A Practical Manual for Stock 

Assessment. FAO Fisheries Technical Paper. No. 400. Rome, FAO. 129 p  



133 
 

Appendix D: ADAPT-VPA Output Tables 

Table AD- 1 Commercial catch-at-age (000's) for NAFO 4X5Z haddock (Melanogrammus 

aeglefinus) 2008 to 2013. 

Year 2 3 4 5 6 7 8 9 10 11+ 

2008 96 328 597 2179 352 382 689 484 261 159 

2009 31 372 505 589 1772 418 256 406 238 216 

2010 14 73 585 541 734 1837 369 170 347 302 

2011 68 85 284 877 422 625 794 176 73 104 

2012 289 307 279 272 1016 410 569 702 200 205 

2013 315 1721 512 240 194 468 320 140 288 154 
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Table AD- 2 Commercial weight-at-age (kg) per fish for NAFO 4X5Z haddock 

(Melanogrammus aeglefinus) 2008 to 2013.  

Year 2 3 4 5 6 7 8 9 10 

2008 0.626 0.731 0.827 0.971 0.895 0.995 1.047 1.089 1.197 

2009 0.612 0.697 0.937 1.06 1.192 1.284 1.352 1.285 1.316 

2010 0.61 0.744 0.832 1.006 1.119 1.218 1.209 1.279 1.21 

2011 0.626 0.731 0.772 0.91 1.065 1.061 1.27 1.372 1.368 

2012 0.582 0.686 0.766 0.885 0.919 1.013 1.089 1.154 1.274 

2013 0.473 0.672 0.736 0.876 0.868 0.968 0.998 1.129 1.161 

Year 11 12 13 14 15 16    

2008 1.243 1.352 1.29 1.854 0 3.979    

2009 1.322 1.487 1.302 2.177 0 0    

2010 1.407 1.338 1.835 1.427 0 2.191    

2011 1.508 1.465 1.284 1.624 0 4.045    

2012 1.269 1.268 1.319 0.971 1.115 0    

2013 1.32 1.348 1.225 1.124 1.535 0    
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Table AD- 3 Catch-at-age index for commercial sets targeting haddock. Values were calculated 

for a fishing set on January 1 using the GAMM produced in chapter two for sets where haddock 

made up >90% of the catch. Index is recorded as number of fish per age class 

Year 2 3 4 5 6 7 8 9 10 11+ 

2008 40.37 137.92 251.04 916.27 148.02 160.63 289.72 203.52 109.75 66.86 

2009 14.38 172.58 234.29 273.26 822.10 193.93 118.77 188.36 110.42 100.21 

2010 5.73 29.88 239.47 221.46 300.46 751.97 151.05 69.59 142.04 123.62 

2011 36.06 45.08 150.61 465.10 223.80 331.46 421.08 93.34 38.71 55.15 

2012 114.68 121.82 110.71 107.93 403.15 162.69 225.78 278.56 79.36 81.34 

2013 101.23 553.07 164.54 77.13 62.34 150.40 102.84 44.99 92.55 49.49 
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Table AD- 4 Catch-at-age index for commercial sets where haddock is caught as bycatch. Values 

were calculated for a fishing set on January 1 using the GAMM produced in chapter two for sets 

where a non-haddock species made up >90% of the catch. . Index is recorded as number of fish 

per age class 

Year 2 3 4 5 6 7 8 9 10 11+ 

2008 2.65 9.04 16.45 60.05 9.70 10.53 18.99 13.34 7.19 4.38 

2009 0.64 7.69 10.43 12.17 36.61 8.64 5.29 8.39 4.92 4.46 

2010 0.24 1.26 10.10 9.34 12.67 31.72 6.37 2.94 5.99 5.21 

2011 1.60 2.00 6.69 20.65 9.94 14.72 18.70 4.14 1.72 2.45 

2012 6.25 6.64 6.03 5.88 21.97 8.87 12.30 15.18 4.32 4.43 

2013 10.18 55.61 16.54 7.75 6.27 15.12 10.34 4.52 9.31 4.98 
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Table AD- 5 Catch-at-age abundance index for haddock (Melanogrammus aeglefinus) from the 

DFO summer survey. Index is recorded as estimated total stock size in 000’s of fish 

Year 2 3 4 5 6 7 8 9 10 11+ 

2008 19145 8983 6292 16109 2052 2249 4967 3806 2176 1607 

2009 1899 22183 12096 7070 13719 3186 3262 5835 5463 1981 

2010 3203 1586 12893 6387 6623 9388 4870 2014 1512 1898 

2011 10722 3564 3584 15157 5174 5715 7258 3030 1263 3326 

2012 16385 8745 1935 2117 4879 2937 2170 2326 1990 665 

2013 20310 23063 6651 910 1900 2943 2758 1147 878 503 
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Table AD- 6 Population size estimate (000’s) for haddock VPA tuned with a) Target, b) Bycatch 

or c) Survey data. 

a) Target Index 

Year 2 3 4 5 6 7 8 9 10 11+ 

2008 9693 5491 5900 11903 2377 1218 1856 887 286 174 

2009 2860 7849 4200 4293 7785 1629 655 902 295 268 

2010 2342 2313 6091 2983 2984 4781 958 307 376 327 

2011 6823 1904 1828 4459 1956 1783 2269 454 100 142 

2012 30650 5525 1483 1241 2862 1222 900 1147 214 220 

2013 25298 24833 4246 963 771 1433 633 232 316 169 

           

b) Bycatch Index 

Year 2 3 4 5 6 7 8 9 10 11+ 

2008 13689 7029 6991 13318 2568 1381 2275 1255 734 447 

2009 4240 11121 5459 5185 8942 1785 788 1244 595 540 

2010 3813 3443 8769 4014 3714 5727 1086 415 655 570 

2011 12746 3109 2753 6652 2799 2381 3041 558 188 268 

2012 71292 10374 2469 1998 4656 1912 1388 1777 299 307 

2013 84459 58108 8216 1770 1391 2898 1196 627 826 442 

           

c) Survey Index 

Year 2 3 4 5 6 7 8 9 10 11+ 

2008 13459 7327 6459 11937 3218 1810 2287 2127 715 435 

2009 2882 10933 5703 4750 7812 2317 1138 1254 1306 1186 

2010 2213 2331 8615 4214 3358 4803 1521 702 662 577 

2011 8060 1799 1843 6526 2963 2089 2288 914 422 601 

2012 17458 6538 1397 1253 4553 2045 1150 1161 590 604 

2013 18246 14032 5076 892 781 2814 1306 434 328 175 
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Table AD- 7 Estimated fishing mortality F, from the VPA for haddock tuned with a) target, b) 

bycatch or c) survey data 

a) Target Index 

Year 2 3 4 5 6 7 8 9 10 11+ 

2008 0.01 0.07 0.12 0.22 0.18 0.42 0.52 0.90 6.54 6.54 

2009 0.01 0.05 0.14 0.16 0.29 0.33 0.56 0.68 3.00 3.00 

2010 0.01 0.04 0.11 0.22 0.31 0.55 0.55 0.92 10.80 10.80 

2011 0.01 0.05 0.19 0.24 0.27 0.48 0.48 0.55 2.71 2.71 

2012 0.01 0.06 0.23 0.28 0.49 0.46 1.15 1.09 12.45 12.45 

2013 0.01 0.08 0.14 0.32 0.32 0.44 0.80 1.06 9.37 9.37 

           

b) Bycatch Index 

Year 2 3 4 5 6 7 8 9 10 11+ 

2008 0.01 0.05 0.10 0.20 0.16 0.36 0.40 0.55 0.62 0.62 

2009 0.01 0.04 0.11 0.13 0.25 0.30 0.44 0.44 0.73 0.73 

2010 0.00 0.02 0.08 0.16 0.24 0.43 0.47 0.59 1.32 1.32 

2011 0.01 0.03 0.12 0.16 0.18 0.34 0.34 0.42 0.81 0.81 

2012 0.00 0.03 0.13 0.16 0.27 0.27 0.59 0.57 2.12 2.12 

2013 0.00 0.03 0.07 0.16 0.17 0.20 0.35 0.28 0.70 0.70 

           

c) Survey Index 

Year 2 3 4 5 6 7 8 9 10 11+ 

2008 0.01 0.05 0.11 0.22 0.13 0.26 0.40 0.29 0.64 0.64 

2009 0.01 0.04 0.10 0.15 0.29 0.22 0.28 0.44 0.28 0.28 

2010 0.01 0.04 0.08 0.15 0.27 0.54 0.31 0.31 1.29 1.29 

2011 0.01 0.05 0.19 0.16 0.17 0.40 0.48 0.24 0.30 0.30 

2012 0.02 0.05 0.25 0.27 0.28 0.25 0.77 1.07 0.67 0.67 

2013 0.02 0.15 0.12 0.35 0.32 0.20 0.31 0.44 6.58 6.58 
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Table AD- 8 Estimated log(q) where log(q)=log(Index)-log(N). N is the estimated population 

size in 000’s of fish, with the index recorded as number of fish for the target (a) and bycatch (b) 

tuned index. For the model tuned with the survey (c) the index is recorded as 000’s of fish and is 

an estimate of the total population size. 

a) Target Index 

Year 2 3 4 5 6 7 8 9 10 11+ 

2008 -5.48 -3.68 -3.16 -2.56 -2.78 -2.03 -1.86 -1.47 -0.96 -0.96 

2009 -5.29 -3.82 -2.89 -2.75 -2.25 -2.13 -1.71 -1.57 -0.98 -0.98 

2010 -6.01 -4.35 -3.24 -2.60 -2.30 -1.85 -1.85 -1.48 -0.97 -0.97 

2011 -5.24 -3.74 -2.50 -2.26 -2.17 -1.68 -1.68 -1.58 -0.95 -0.95 

2012 -5.59 -3.81 -2.59 -2.44 -1.96 -2.02 -1.38 -1.41 -0.99 -0.99 

2013 -5.52 -3.80 -3.25 -2.52 -2.52 -2.25 -1.82 -1.64 -1.23 -1.23 

           

b) Bycatch Index 

Year 2 3 4 5 6 7 8 9 10 11+ 

2008 -7.12 -5.23 -4.63 -3.98 -4.16 -3.45 -3.36 -3.12 -3.20 -3.20 

2009 -7.34 -5.85 -4.84 -4.63 -4.08 -3.91 -3.58 -3.58 -3.37 -3.37 

2010 -8.15 -6.47 -5.34 -4.64 -4.26 -3.78 -3.71 -3.52 -3.27 -3.27 

2011 -7.55 -5.92 -4.60 -4.35 -4.22 -3.66 -3.67 -3.48 -3.26 -3.27 

2012 -7.92 -5.93 -4.59 -4.40 -3.94 -3.95 -3.30 -3.34 -2.81 -2.81 

2013 -7.60 -5.53 -4.79 -4.01 -3.98 -3.83 -3.33 -3.51 -3.06 -3.06 

           

c) Survey Index 

Year 2 3 4 5 6 7 8 9 10 11+ 

2008 0.35 0.20 -0.03 0.30 -0.45 0.22 0.78 0.58 1.11 1.31 

2009 -0.42 0.71 0.75 0.40 0.56 0.32 1.05 1.54 1.43 0.51 

2010 0.37 -0.39 0.40 0.42 0.68 0.67 1.16 1.05 0.83 1.19 

2011 0.29 0.68 0.67 0.84 0.56 1.01 1.15 1.20 1.10 1.71 

2012 -0.06 0.29 0.33 0.52 0.07 0.36 0.64 0.69 1.22 0.10 

2013 0.11 0.50 0.27 0.02 0.89 0.04 0.75 0.97 0.99 1.05 
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Table AD- 9 Error terms from the ADAPT VPA models tuned with a) target, b) bycatch and c) 

survey data. Error terms were calculated as log(q) – average log(q) by age class, where log(q) = 

log(Index) – log(N). N is the estimated population size. 

a) Target Index 

Year 2 3 4 5 6 7 8 9 10 11+ 

2008 0.04 0.18 -0.22 -0.04 -0.45 -0.04 -0.14 0.05 0.07 0.04 

2009 0.23 0.05 0.05 -0.23 0.08 -0.13 0.00 -0.03 0.02 0.23 

2010 -0.49 -0.48 -0.30 -0.08 0.03 0.15 -0.13 0.02 0.06 -0.49 

2011 0.28 0.13 0.44 0.26 0.15 0.32 0.04 -0.05 0.01 0.28 

2012 -0.07 0.05 0.34 0.08 0.36 -0.03 0.34 0.12 0.04 -0.07 

2013 0.00 0.06 -0.32 0.00 -0.19 -0.27 -0.11 -0.12 -0.20 0.00 

           

b) Bycatch Index 

 Year 2 3 4 5 6 7 8 9 10 11+ 

2008 0.49 0.59 0.17 0.36 -0.05 0.31 0.13 0.30 -0.04 0.49 

2009 0.27 -0.03 -0.04 -0.30 0.03 -0.14 -0.09 -0.15 -0.21 0.27 

2010 -0.54 -0.65 -0.55 -0.30 -0.15 -0.01 -0.22 -0.10 -0.11 -0.54 

2011 0.07 -0.09 0.20 -0.02 -0.11 0.10 -0.18 -0.05 -0.10 0.07 

2012 -0.30 -0.11 0.21 -0.07 0.17 -0.19 0.19 0.08 0.35 -0.30 

2013 0.01 0.29 0.01 0.33 0.13 -0.07 0.16 -0.08 0.10 0.01 

           

c) Survey Index 

Year 2 3 4 5 6 7 8 9 10 11+ 

2008 0.25 -0.13 -0.42 -0.12 -0.83 -0.22 -0.15 -0.42 0.00 0.25 

2009 -0.52 0.37 0.35 -0.02 0.18 -0.12 0.13 0.53 0.32 -0.52 

2010 0.26 -0.72 0.00 0.00 0.29 0.23 0.24 0.05 -0.29 0.26 

2011 0.18 0.35 0.27 0.43 0.17 0.57 0.23 0.19 -0.01 0.18 

2012 -0.17 -0.04 -0.07 0.11 -0.32 -0.07 -0.29 -0.31 0.10 -0.17 

2013 0.00 0.16 -0.13 -0.40 0.50 -0.39 -0.17 -0.03 -0.13 0.00 
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Table AD- 10 Spawning stock biomass (4+, kg) in each age class. Population size in numbers is 

related to SSB through the commercial weight-at-age. 11+ class weight-at-age is a weighted 

average of ages 11 to 16. 

a) Target Index 

Year 4 5 6 7 8 9 10 11+ 4+ biomass 

2008 4880 11558 2128 1212 1943 965 342 217 23244 

2009 3935 4550 9279 2092 885 1159 388 354 22643 

2010 5067 3001 3339 5823 1159 392 455 460 19697 

2011 1411 4058 2083 1892 2882 623 137 215 13301 

2012 1136 1098 2630 1238 980 1323 273 279 8957 

2013 3125 843 670 1387 631 262 366 223 7508 

           

b) Bycatch Index 

Year 4 5 6 7 8 9 10 11+ 4+ biomass 

2008 5781 12931 2298 1374 2382 1367 879 556 27569 

2009 5115 5496 10659 2292 1065 1599 782 713 27722 

2010 7296 4038 4156 6975 1313 531 792 802 25904 

2011 2125 6053 2981 2526 3862 766 257 404 18975 

2012 1891 1768 4279 1936 1511 2050 381 389 14206 

2013 6047 1550 1207 2805 1194 708 959 583 15055 

           

c) Survey Index 

Year 4 5 6 7 8 9 10 11+ 4+ biomass 

2008 5341 11591 2880 1801 2394 2316 856 541 27720 

2009 5344 5035 9312 2975 1539 1611 1719 1567 29102 

2010 7168 4239 3758 5850 1839 897 802 811 25363 

2011 1423 5938 3155 2217 2905 1253 577 906 18374 

2012 1070 1109 4184 2072 1252 1340 751 767 12545 

2013 3736 782 678 2724 1303 490 380 231 10324 

 

 

  


