COLOR
SEGMENTATION AND CLASSIFICATION
OF FOOD IMAGES

BY
LING CHEN

A Thesis
Submitted to the Faculty of Graduate Studies
in Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Department of Electrical and Computer Engineering
University of Manitoba

Winnipeg, Manitoba

August, 1994

ional Lib
L7 R

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Weliington Street
Ottawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa (Ontario)

Your file Volre référence

"Ourtile Notre référence

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
metire des exemplaires de cette
these a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-13023-1

i+%

Canada

COLOR SEGMENTATION AND CLASSIFICATION
OF FOOD IMAGES
BY

LING CHEN

A Thesis submitted to the Faculty of Graduate Studies of the University of Manitoba
in partial fulfillment of the requirements of the degree of

MASTER OF SCIENCE

© 1995

Permission has been granted te the LIBRARY OF THE UNIVERSITY OF MANITOBA
to lend or sell copies of this thesis, to the NATIONAL LIBRARY OF CANADA to
microfilm this thesis and to lend or sell copies of the film, and LIBRARY
MICROFILMS to publish an abstract of this thesis.

The author reserves other publication rights, and neither the thesis nor extensive
extracts from it may be printed or other-wise reproduced without the author’s written

permission.

To My Husband

Chenglu Wen

I hereby declare that I am the sole author of this thesis.

I authorize the University of Manitoba to lend this thesis to other institutions or individuals

for the purpose of scholarly research.

I further authorize the University of Manitoba to reproduce this thesis by photocopying or
by other means, in total or in part, at the request of other institutions or individuals for the

purpose of scholarly research.

iii

Abstract

In nutrition studies, it is frequently important to obtain long term accurate estimates of food
intake. A color photograph of the meal, taken just before consumption, is a convenient way
of recording the information, provided that it can be correctly interpreted. The objective of
this thesis was fo study the possibility of identifying food items by color alone. Food plates
which were photographed on 35mm color slides were digitized into a Macintosh IIcx com-
puter. After pre-processing steps of compression, color model transformation, and image
blurring, the algorithms of segmentation and classification were applied to the image. There
were two steps of segmentation. The first was identification of the background and the plate
by a thresholding method based on the analysis of histograms. Then an algorithm which
combined 1'egi0n—g1'owiﬁg with splitting—and-merging was applied to the remaining area.
Once an image was segmented into several segments with above method, average hue and
saturation of every segment were calculated and were compared to each element of a pre-
viously measured training set. A segment was assigned as a food item if it matches one ele-
ment in the set. Alternatively, it was assigned as unknown if it did not match any element.
About 30 slides were used as training data, and about 10 slides were used to test the algo-
rithms and programs. The algorithms and programs were successful. The study shows that

it is possible to identify food items on a color image.

Acknowledgements

I'would like to thank Professor W. H. Lehn for his kindly guidance and sup-
port during the last two years. I would also like to thank Dr. G. P. Sevenhuy-
sen, of the department of Foods and Nutrition, Human Ecology, who pro-

posed and supported this research.

vi

CONTENTS

Chapter 1 INtrodUcCtion .uisiiinecriesiesssconsesssesssessssessessasssssonsserasssasss 1

L1 INEOUUCHION 1ocrvvrviiiiiitreenirireieeteseess e seereberesss et sate e enesesesensee e eeamensassasesnsass 1
1.2 Color Food IMage ProCESSING ..c.vvevvcvevieeerreeeieenisvesresiresteseeeesseensesesseesesessens 1
1.3 COlOr MOUEISecovereerireniinirieneictriesssesteneve s ess e reseetsessosesnestenesenesesnessensessens 2
L.3.1 RGB MOUE] ..ccviiiiiirinteiiteiecinetestsvsss s vessesteseesesse s eeneseensessesssssse s 2
1.3.2 HST and HSB MOAELooireeereceree et e ve e essenananes 4
1.3.3 Other MOGE] ..eevrieecieci ettt ivesest s sses s eees s snn e seses 7
1.4 Data Format and CONVENHONceeveeveeiecieeneeerisrenieseeseseesesessaesseseensseesessess 7

Chapter 2 System DeSCription weiiiiiescersimeesisessasissssssssessssssssesssnsasass 9

2.1 Image DIiliZINg ..vuvvevveeeeiiicieirrceineeiressestsisiesteescssssssesseesrsssssesssseosssssseneas 9
2.2 Tmage COMPIESSION .o.vvvviirreeriorrerinrartiertrssersnssesesessssessessessssonessessesesenseseesens 10
2.3 Color Model Transformationceveveverevenreesnecsisesneseeressssssseressesssssssens 10
2.4 BIUITINLZ evvveviereiceeeiecscnsesesesssnesonsnnssssessssssssssssensassssssssssssesconensosesmeseneenmneas 10
2.5 Identification of Background and Plateccoverineieineorecererecneeeeeseesseons 11
2.6 SeMENALION 1ovevveireireirereciesasirtrertrsneeessrrssseteessressesesesseseesensesesssneenessessssseens 11
2.7 ClasSHICALION wiuvevereeeeieienieirienirircineseriitseesers et sscsssscsnesssesssssssasseseesesesnens 12

Chapter 3 Pre—ProceSSing AL L e A LR T Ly I Ly Ly Yy P Y YT I Il 14

3.1 TransfOrMAtIONccereereeenrrrecrrcseeireeeeiseesnnnessessessseresesssresesesesssesessoneneeons 14
3.2 Image COMPIESSION ...cverieriererirrererarsererssiesseessssssesssressssessssesesassssssssessessssens 22
3.3 Image BIUITINE ..c.cvviviieiiriirireiinieniietseseriesssnsss et sessssessessrseseesessesssmesesossasens 23

Chapter 4 Training Data and Color VAriationeeeecssecsecsssssesssesses 29

4.1 Training DALA c..c.coeieeireecirieccenneneneres s e sre s e s b esessenessesesenseseses 29
4,2 COLOT VAFIATION cevvvererieesiereeeectrsseeesseeeessessssesssssassesssssesssssssssssssessssssssssssessenes 31

Chapter 5 Segmentation SRS ANC ORI NN E NN RN IR S SR ARERRENNNNEBRREISSERREIRNROIsRNESRED 34

5.1 SEGMENTALION 1.uvvsierisiirerreesisee ettt sssses et ssbeesseststsssnasaenens 34

vii

5.2 Color Segmentation—Survey of Related ReSEarcho.veveereevrreeereeeserreresennnn, 38

5.3 Color SEZMENLALIONe.veureerireeerreeeicienscee ettt eereeseeeseeeseesassesssesnenas 40

5.3.1 Identification of Background and PIateocovvveveeereserersersnnn. 41

5.3.2 Segmentation of FOOd TeMSc.covecvieeiennrieieeeereeseeeeee e 42

Chapter 6 Classificationceeeeres. toresesntsnsarersensasnnssssens ersertnsannesstnsesasssaseases 52
6.1 ClASSHICALION cu.eeriirerereristerisre ettt ses e e sess s seenssesesseeanseserane 52

6.2 Color Classification—Survey of Related Researchoveeeveeeervevereoressesnnnann, 55

6.3 Classification —Program and RESUILccveieiereeererienneeesessereeeresrsssssesenenns 56
Chapter 7 Conclusion and Discussioncue.. cesesestnnessessssssassasansensas ssseseanss 61
References PSS PRNIERAERES SIRENNISOSINNNENIENOEPRIRRRRRS AEANEBNINSEIBENNINNTNSORIRRIRD AGIRBDIISNINORNOOBSERERINS 63
Appendix ADescription of BArNeYSCAI . iiscsenseesssessssssassessssessessacse 85
Appendix B Segmentation Resultsccovnineernsninenas sessssensesssnssassssensenes 67
Appendix C.1 Program COMPA4.Cc..cceevurerrcereneres . 78
Appendix C-2 Program SEG"SAVE_CLASSOC SERBNSINSANSNISINEN NI ININNIItNRRRTRENRS 84

viii

CHAPTER 1 INTRODUCTION

1.1 Introduction

Color has been playing a more and more important role in segmentation and
classification of images. Part of its significance comes from the fact that color is
the most obvious information and has a greater amount of detailed information
which éenerally enables objects to be distinquished more easily. Thus, color seg-
mentation and classification are reasonable procedures to be considered in food
image processing. Segmentation and classification of color images by color dif-
ferences are usually done by using a variety of color models (or spaces) and crite-
ria for threshold selection. The RGB (red, green, blue) model and HSB (hue, sat-
uration, brightness) and HSI (hue, saturation, intensity) models are the most
common ones used for color segmentation and classification. Histograms of ev-
ery component in each space could be helpful for determining the criteria for

threshold selection.

1.2 Color Food Image Processing

Food image processing has been proposed by Dr. G. P. Sevenhuysen and some
of his colleagues as a method for accurately estimating individual food intake
over long periods [2],[3]. In determining the relationship of diet and chronic dis-
eases, such as heart disease and cancer, it is necessary to measure individual
food consumption. The methods most commonly used are the recall interview,

the diet history, and the food record using volume estimates of food. But all these

methods could not avoid the disadvantage of the subjectivity involved in quanti-
fying amounts eaten. Therefore, they proposed a photographic method to record
food consumption to minimize errors due to subjective estimation of food quanti-
ty by either investigator or respondent. A photographic record is made by the
subject, who takes a single photograph of each plate of food at the time of eating.
By segmentation and classification of the images by color, shape, texture,
mottling, and size, they would decide which kind of food the observed subject has
taken, and by a certain method of calculation of the amount of each kind of food

eaten, they achieve the goal of individual food consumption calculation.

This thesis concerns only the first step of the whole project: segmentation and
classification by color, which is a further step towards the totally automatic pro-
cessing of photographic records. The remaining work will be left for further

study.

1.3 Color Models

A color model (or a color space) is a specification of a 3-D coordinate system
and a subspace within that system where each color is represented by a single

point.

1.3.1 RGB Model

The most commonly used color model both in hardware and in image process-
ing is the RGB (red, green, blue) model. Owing to the structure of the human eye,
all colors are seen as variable combinations of the three primary colors red,

green, and blue. In the RGB model, each color appears in its primary spectral

components of red, green, and blue. Itis based on a cartesian coordinate system.

The color subspace of interest is the cube shown in Figure 1.1 [1].

For theoretical convenience, it is assumed that all color values have been nor-
malized so that the cube in Figure 1.1is the unit cube. For digital image process-
ing, color values could have different maximum values depending on different
systems. For example, for a 24-bit color system (which could have more than a
million colors), each component (R, G, and B) could have a value from 0 to 255

(one byte).

B
0,0,1
Blue T) Cyan

Magenta

0,1,0
Green

(1,0,0) :
/ Red Yellow

R

Figure 1.1 RGB Color Cube

Images in the RGB color model consist of three independent image planes,

one for each primary color. When fed into an RGB monitor, these three images

3

combine on the phosphor screen to produce a composite color image. Thus the
use of the RGB model for image processing makes sense when the images them-
selves are naturally expressed in terms of three color planes. Most color cameras
used for acquiring digital images utilize the RGB format, which alone makes this

an important model in image processing.

Sometimes the rgbh model is used instead of the RGB model. Here,

r=—————R— (1-1)
(R+G+B)
G
" ®+G+B) (-2
po B (1-3)
(R+G+B)

1.3.2 HSI and HSB Models

Another color model frequently used in image processing is the HSI or HSB
model. Here, hue is the color attribute of a color perception that describes a pure
color (for example pure yellow, orange, or red). It is associated with the dominant
wavelength in a mixture of light waves. Saturation gives a measure of the degree
to which a pure color is diluted by white light, i.e. it refers to relative purity or
the amount of white light mixed with a hue. Iis the intensity. It is decoupled from
the color information in the image. Brightness is the attribute of a visual sensa-
tion according to which a given visual stimulus appears to be more or less in-
tense. The color components of the HSI model are defined with respect to the col-

or triangle shown in Figure 1.2 [1].

Blue
H
Red
Magenta Cyan '
H
P
Red Yellow Green Black
Figure 1.2 (a) HSI Color Triangle (b) HSI Color Solid

White

Intensity

Green

The two models could be converted from one to the other based on Figure 1.2.

We have the expressions (1-4), (1-5), (1-6) [1], and (1-7) for the conversion from

RGB to HSI and HSB models.

H =cos™!

3 [(R-G)+(R-B)]

3
(R+G+B)

I=%(R+G+B)

B =max(R, G, B)

[min(R, G, B)]

[(R-G)*+(R-GNG -B)]z

(1-4)

(1-5)

(1-6)

(1-7)

The conversion from HSB to RGB depends on the range of hue (0°- 3609,

For the RG Sector(0° < H =< 120°)}, we have the expressions (1-8), (1-9), and

(1-10) [1].
__1_(1 S) (1-8)
- (1~
1 Scos H
r=-3—[1 N cos(600—H)] (1-9)
g=1-(+b) (1-10)

For the GB Sector(120° < H < 240%), we have the expressions (1-11), (1-12),
and (1-13) [1].

,,=_;_(1 5 (1-11)
1 ScosH

8 =§[I * cos(60°——H)] (1-12)

b=1-(r+g) (1-13)

For the BR Sector(240° < H =< 360°), we have the expressions (1-14), (1-15),
and (1-16) [1].

g =%(1~S) (1-14)

b:l[l + ScosH] (1_15)

r=1—(g+b) (1-13)

1.3.3 Other Models

There are some other models in use today oriented either toward hardware
(such as for color monitors and printers) or toward applications where color ma-
nipulation is a goal (such as in the creation of color graphics for animation). The
CMY model (cyan, magenta, yellow) is the model for color printers; and the YIQ
model (Y corresponds to luminance, and I and Q are two chromatic components
called inphase, and quadrature, respectively) is the standard for color TV broad-

cast.

L*a*b* is also a color model often used for color image processing, which was
developed to provide a computationally simple measure of color in agreement
with the formerly popular Munsell color system. Here L* is correlated with
brightness, a* with redness—greenness, and b* with yellowness—blueness. This

system could also be converted to the RGB system, and vice versa.

1.4 Data Format and Convention

An RGB color image is comprised of three bitmaps, separated into red, green,
and blue planes. They are produced by "Barneyscan” (a high resolution color dig-

itizer combined with software—see Appendix A) in three separate scan passes

across the source image. In a color plane, a pixel value of 255 is the maximum

brightness of that color primary, and 0 is the minimum.

An HSB image is an image made up of three channels: hue, saturation, and
brightness. When an image is converted from an RGB image to an HSB image,
brightness value of a pixel is the value of the largest of the R, G, or B color compo-

nents.

The RGB or HISB image file format used in this system is non—interleaved raw
format. In a non—interleaved raw file, data of the three component images are
saved successively. For an RGB image, for example, there are three parts in a
file. The first partis for red component. Values of red are saved pixel by pixel with
one byte for one pixel. Once the red values of all pixels have been saved, the green
values of all pixels start in the same way as the red values. Then the blue values
follow. A HSB image could be saved in the same way. The only difference is that
hue, saturation, and brightness values are located in three parts respectively,

instead of red, green, and blue values.

CHAPTER 2 SYSTEM DESCRIPTION

2.1 Image Digitizing

The purpose of this project is to study the possibility of segmentation and clas-

sification of color images of food.

The photographic record of each food plate is made on a 35mm color transpar-
ency. In each record, there are usually background (grey), plate (white), and 2-5
food items on the plate. The transparencies are made under natural light, avoid-
ing the influence of any artificial light on color. "Barneyscan” is a combination
of a high resolution digitizer for 35 mm transparencies with software that drives
the scanner and perform some basic image handling functions. It digitizes each
transparency to a 24-bit RGB colorimage with the resolution of 1520 x 1024 pix-
els and stores it in Macintosh computer, requiring a storage of 4.5 megabytes for
each image file. To save storage space (hard disk and memory) and processing
time, unnecessary background is cut off, resulting in an image of 800 x 800 with

24 bits per pixel, a file size about 1.9 Megabytes.

The Barneyscan can adjust exposure time automatically when scanning so
that the maximum values of R, G, or B in the image are 255. Since we use a white
plate, which could be a reference for color adjustment, we set the exposure time
for every slide so that the maximum R, G, and B values of the plate could be
around 250. With this method, we avoid over—exposure, which might result in
the loss of some color information. Theoretically, the R, G, B values of the white
plate should be roughly equal. But due to the exposure system, the three values

are slightly different sometimes. In this case, we can adjust the balance of color

for the whole image by "Barneyscan”, so that the three values become roughly

equal.

2.2 Image Compression

Because we are dealing with color information only and doing color segmenta-
tion and classification while neglecting details like texture or mottling, we com-
press the image by calculating the average R, G, B of four (2 x 2) connected pixels
to be the new R, G, B values for one pixel in the new image (see also 3.2). There-
fore the size of the new image is one quarter of the original size. The image ready

for processing is a 400 x 400 24-bit color image with the size of 480 Kbytes.

2.3 Color Model Transformation

The images we get from the scanner are in RGB form. Values of R, G, and B
are very sensitive to the brightness of images, i.e. they are very sensitive to the
exposure time both for making slides and for scanning. Experimental results in-
dicate that the HSB (hue, saturation, and brightness) model is relatively reli-
able. So we transform all RGB images into HSB images in this project (see also

3.1).

2.4 Blurring

When we only consider colors, too many details can make segmentation te-

dious. There are often sharp points in the image due to the high scanning resolu-

10

tion, noise, and the food itself. These pixels have very different colors than their
neighborhoods. It is not expected to segment them as distinct foods. They are of
no significance for color classification either. So we blur the image with a Gaus-

sian blurring filter before it is segmented (see also 3.3).

2.5 Identification of Background and Plate

The next step is picking up the background and plate based on histogram anal-
ysis, since every image has almost the same background and plate (if we ignored
the influence of different exposure on color). A set of thresholds in HSB space is
built up to detect the background cluster and the plate cluster according to train-
ing results. Once the background and plate are determined, these two areas are

not to be segmented.

2.6 Segmentation

The segmentation algorithm comes from the idea of combining a region grow-
ing algorithm and a region splitting—and-merging algorithm and is applied in
the remaining areas after removal of background and plate. We mainly use hue
and saturation as the variables to apply the segmentation algorithm with the
help of brightness. Thresholds of differences of hue, saturation, and brightness
of two succeeding pixels are set based on the analysis of training data. Values
of hue, saturation, and brightness of each pixel are compared to the values of its
neighbors. If the difference of every component between the pixel and one of its
neighbors is smaller than the threshold, the pixel is joined to the neighbor. Alter-

natively, the pixel will serve as the start of a new region, if at least one of three

11

components shows a difference between the pixel and any neighbor larger than
the threshold. This algorithm tests every pixel and results in an image (except
the parts of the background and the plate) which is segmented into several parts

according to their color vector values.

2.7 Classification

Now comes the last step to reach our goal: classification. The result from seg-
mentation leaves us several areas which cover the whole image. Our algorithm
of classification is suppose to recognize what they represent, e.g. how many

kinds of food on the plate? And what are they?

The system calculates the average hue and saturation of each segment, so that
each segment can have an average vector in HSB color space. This vector is com-
pared to clusters of food items, the knowledge which we acquired from a number
of training images. The decision is made when the location of the average vector
match one of the clusters. If the vector does not match any cluster, the decision

of "something else” would be given.

Figure 2.1 gives a flow chart of the system.

12

slide digitizing

l

cutting off unnecessary background

l

image compression

l

transformation from RGB to HSB

l

Gaussian blurring

l

identification of background and plate

l

segmentation of food image

l

classification of food image

l

giving the decisions

Figure 2.1 Flow Chart

13

CHAPTER 3 PRE-PROCESSING

3.1 Transformation

Original images digitized from 35mm slides by Barneyscan hardware and soft-
ware are in RGB form. Three bytes (24 bits) are used to represent each pixel: one
for red, one for green and one for blue. So R, G, B respectively could have any

value from 0 to 255.

The most important components for segmentation, especially for classifica-
tion, are hue and saturation, since hue is a color attribute of a color perception
that describes a pure color and saturation gives a measure of the degree to which
a pure color is diluted by white light. The higher the amount of white light mixed
with a hue, the lower the saturation is. So hue combined with saturation could
determine most colors. Brightness is the attribute of a visual sensation accord-
ing to which a given visual stimulus appears to be more or less intense. In some
particular case, when hue and saturation together are not encugh to determine
a color, we need the help of brightness. For example, the plate has the color
white, and itis the brightest object in animage. But the hue of pure white is arbi-
trary. It could be any value with the saturation zero (Figure 1.2). In practice,
plates in images are not pure white but close to pure white. Their hues are not
reliable, they are sensitive to the light reflecting from surrounding objects. The
values of saturation are very low (close to zero). In this case, hue is useless for
detecting the plate. Further, we can not detect the plate according to values of
saturation only, since other objects (food) might also have very low saturation,

which would result in confusion. Brightness can play a role now. None of the

14

foods could have brightness as high as the plates. We can combine the values of

saturation and brightness to detect plates.

Experimental results indicated that HSB color model is more effective than
RGB color model in this system. Slides made at different times may have slightly
different exposure. When they are digitized to computer, even with adjusted
scanning exposure time, they will still have different RGB values for the same
food. The reason for thisis that R, G, B values are sensitive to the power of light,
since the RGB values of a color corresponds directly to the absolute spectral ra-
diant power distribution . Hue and saturation are less sensitive to this variation
of color, since they mainly depend on the relative power distribution. The most
sensitive component to the variation is brightness, which is not as important as
hue and saturation in segmentation and classification; whereas the three com-

ponents in the RGB model have the same importance.

Table 3.1 gives the experimental result which indicates the sensitivity of R,
G, B, and H, S, B to the variation of color caused by different exposures. Here,
all variables take the value from 0 to 255 (hue value is mapped from 0°-360%into
0-255).

Checking the means and variances through Table 3.1, we found that for most,
food items the variances of hue and saturation are smaller than the variances
of R, G, and B compared with their means, except the saturations of green—apple
and broccoli which are not green at all the areas but yellow somewhere. The vari-
ances of brightness of most items are much higher than other variances com-

pared to their means.

These results show that hue and saturation have smaller color variation.
Based on these results the HSB color system was chosen. The transformation

from RGB to HSB was implemented by Barneyscan. Figure 3.1 and Figure 3.2

15

are sample images of hue, saturation, and brightness components. Figure 3.1

comes from a unblurred image. Figure 3.2 comes from a Gaussian blurred

image.

R G B H S B
tomatol 192 78 54 6 187 192
tomato2 175 72 44 8 195 175
tomato3 148 51 31 6 208 148
tomato4 159 68 51 6 178 159
tomatob 153 52 36 5 196 153
tomato6 209 90 60 7 183 209
tomato7 182 69 45 6 193 182
mean 174 68 45 6 191 174
variance 422 163 88 0 83 422

(a) Tomatoes

R G B H S B
carrotl 151 39 15 6 230 151
carrot2 173 51 18 7 228 173
carrot3 139 33 11 5 235 139
carrot4 141 34 10 6 236 141
carroth 110 34 9 8 235 110
carrot6 140 35 11 6 236 140
carrot7 149 36 11 5 237 149
carrot8 137 30 10 5 237 137
mean 142 36 11 6 234 142
variance 269 36 8 1 10 269

(b) Carrots

R G B H S B
orangel 229 123 26 19 226 229
orange?2 237 133 26 21 227 237
oranged 228 120 23 19 229 228
orange4 227 118 23 19 229 227

16

orangeb 178 93 30 16 219 178
orange6 199 98 26 16 225 199
mean 216 114 25 18 225 216
variance 434 198 6 3 12 434
(c¢) Oranges
R G B H S B
applel 153 147 45 41 183 154
apple2 187 173 54 39 184 187
apple3 150 149 50 43 176 156
apple4 130 126 35 41 191 132
appleb 137 137 70 42 143 141
apple6 150 151 73 43 148 155
mean 151 147 54 41 170 154
variance 323 206 179 2 342 291
(d) Green Apples

R G B H S B

broccolil 13 20 9 69 142 20
broccoli2 31 41 18 65 157 42
broccoli3 19 26 9 62 178 26
broccolid 15 23 6 61 202 23
broccolib i6 23 7 60 190 24
broccoli6 11 16 3 58 212 16
broccoli7 19 32 7 64 201 32
broccoli8 18 25 9 65 180 26
broccoli9 17 26 8 64 179 26
mean 17 25 8 63 182 26
variance 29 46 14 9 442 49

(e) Brocceoli

R G B H S B

peasl 11 22 6 69 169 22
peas2 17 31 10 68 176 31

17

peas3 9 18 4 67 193 18
peas4d 10 21 5 67 194 21
peasb 9 18 4 65 204 18
peas6 8 16 3 64 217 16
peas’ 18 26 8 59 195 27
peas8 10 20 4 64 207 20
peas9 10 21 5 69 198 21
peasl0 9 19 5 66 193 19
mean 11 21 5 65 194 21
variance 10 17 4 8 176 18
(f) Green Peas
R G B H S B
potatol 192 176 144 28 72 192
potato2 225 210 180 27 51 225
potato3 234 218 178 31 60 234
potatod 236 218 172 31 70 236
potatob 240 228 187 35 57 240
potato6 235 215 176 28 65 235
potato7 170 160 136 33 57 170
potato8 244 228 179 33 67 244
potato9 220 207 169 32 60 220
potato10| 218 202 167 30 60 218
mean 221 206 168 30 61 221
variance 494 438 240 6 38 494
(g) Potatoes
R G B H S B
cornl 180 116 26 24 219 180
corn2 194 126 27 24 221 194
corn3d 191 122 27 24 220 191
cornd 175 107 22 22 225 175
cornd 140 95 24 26 216 140
corn6 164 101 20 23 227 164

18

corn? 192 125 26 24 223 192
corn8 182 114 24 23 223 182
mean 177 113 24 23 221 177
variance 285 113 5 1 11 285
(h) Corns
R G B H S B
beefl 48 29 19 14 169 48
beef2 32 16 11 16 170 32
beef3 23 11 7 20 178 23
beefd 21 9 5 15 190 21
beefb 24 10 6 16 188 24
beef6 18 7 4 16 199 18
beef7 32 16 11 21 174 32
beefB8 25 12 8 20 180 25
mean 27 13 8 17 181 27
variance 79 42 21 6 97 79
(i) Beef
R G B H S B
toastl 224 171 98 24 145 224
toast2 175 122 65 21 163 175
toast3 235 181 108 24 139 235
toastd 152 116 61 25 159 152
toastd 158 108 51 22 177 158
toast6 174 131 70 25 152 174
toast7 229 176 103 24 145 229
mean 192 143 79 23 154 192
variance | 1087 836 451 2 146 1087
(j) Toasts

Table 3.1 Sensitivity of R,G,B,H,S, and B(bright) to the Variation of Color

19

(a) Hue (b) Saturation

(¢) Brightness

Figure 3.1 Images of Three Components of A Food Image

20

(a) Hue (b) Saturation

(c) Brightness

Figure 3.2 Images of Three Components of A Blurred Food Image

21

3.2 Image Compression

An image, after digitizing by Barneyscan and cutting off unnecessary back-
ground, still requires about 1.9 megabytes of storage. It would take the computer
(Macintosh cxII) too much time to fulfill the process of blurring, segmentation
and classification (about 20 minutes). On the other hand, the same image with
less resolution is sufficient for the purpose of color segmentation and classifica-
tion. Therefore, the pre—processing of image compression is introduced into the

system.

A simple compression algorithm is applied to the system. Average values of
hue, saturation, and brightness (or red, green, and blue) of 4 (2% 2) connected
pixels in the original image are calculated to form the values of hue, saturation

and brightness of one pixel in the new image.

If we have an original image with the horizontal size of hsize and the vertical
size of vsize, the compressed image will have the new horizontal size of newhsize

and the new vertical size of newvsize. Where:

newhsize = hsize/?2 and

newvsize = vsize 2

Let hueli x hsize+jl, saturation[ix hsize+jl, and brightness[ix hsize+j] repre-
sent the three component values at the position (i,j) in the original image, and
let newhue[m x newhsize+k], newsaturation[m x newhsize+k], and newbright-
ness [mx newhsize+k] represent the values at the position (in,k) in the new

image, where i, j, m, and k are integers and

22

i=2 X m and

j=2xk

Then

|
newhue[m X newhsize + k] = Z{hue[i X hsize + jl+ hueli X hsize + j+ 1]

+ hue[(i + 1) X hsize +j] + hue[(i + 1) X hsize +j+ 1]}

(3-1)

1
newsatulm X newhsize + k] = —Z{satu[i X hsize + j| + satuli X hsize + j+ 1]

+satu[(i + 1) X hsize + jl+ satu[(i + 1) X hsize +j+ 1]}

(3-2)

|
newbright[m X newhsize + k] = Z[bright[i X hsize + j1 + bright[i X hsize + j+ 1]

+ bright[(i + 1) X hsize + jl1 + bright[(i + 1) X hsize +j+ 1]}
(3-3)

Theoretically, this method of compression only reduces the high frequency de-
tails which are not important for color segmentation and classification, while
leaving low frequency information unchanged. This process is experimentally
feasible. It would not result in significant image change for the purpose of seg-
mentation and classification, but the storage (both in hard disk and in memory)
is reduced from 1.9 Megabytes for the original image to 480 Kbytes for the new
image. The time required for all processing (blurring, segmentation and classifi-

cation) is reduced to less than 4 minutes.

23

3.3 Image Blurring

Blurring (one of the smoothing filters) is usually used in pre—processing steps
such as noise reduction, removal of small details from an image prior to (large)

object extraction, and bridging of small gaps in lines or curves.

The objects in the images, which are expected to be segmented are relatively
large; there are only 2—5 items of food in an image plus the background and the
plate. Too many details could not be beneficial to the process of segmentation and
classification and would take a long time to process. So blurring is implemented
before segmentation. Another reason to choose blurring is that there are some
noise points in images. These arise from the food itself(e.g. shadow areas). How-
ever some of the noise appears to arise from film grain resolved by the high reso-
lution scanner (1520 x 1024 pixels, not adjustable). A smoothing filter is impor-

tant to reduce the effect of these noisy pixels on segmentation.

There are several types of blurring filters. Frequency domain methods were
not considered, since the FFT and IFFT transformations should be applied for
using these filters. This would make the system more complicated and more
time-consuming. Among spatial blurring filters, the simplest one is the lowpass
spatial filter, which attenuates or eliminates high—frequency components in the
Fourier domain (e.g. details and noise in the spatial domain) while leaving low

frequencies (basic information of images) untouched.

In the spatial domain, a convolution of the image with the filter function is
carried out. Because of the symmetry of most functions, building a filter is build-

ing a mask. A 3x 3 mask (smallest) is built as in Figure 3.3(a).

24

1 1 1 1 1 1 1 1
1 1
X 1 1 1 55 11 1 1 111
1 1 i 1 1 1 1 1

(a) 38x3 mask (b) Bxb mask

Figure 3.3 Spatial Lowpass Filters of Various Sizes

In order to perform 3 x 3 mask blurring, the central point of the mask is moved
throughout the image pixel by pixel. Once the central point of the mask covers
a pixel in an image, the values of H, S, B of the nine pixels (the pixel in the center
and its 8 neighbors} are averaged. The average values are used to replace the

old values of H, S, B of this Pixel.

To build the blurring filter for the system, the 3% 3 mask and the 5% 5 mask

(Figure 3.3(b)) have been tested. A 5% 5 mask can blur the image more strongly,
but none of them produce satisfactory results for segmentation. Hence we con-

sidered Gaussian blurring as an alternative.

A Gaussian blurring filter is a mask with a kernel of Gaussian shape. The
kernel for a 2—-dimension of Gaussian smoothing operator in (x,y) coordinates is

(wherex,y=0,1, 2, ..):

2 2
G =5 exp(— &ty)) (3-4)

20.2

25

G(x,y) is circularly symmetric, so we can build a mask according to it. The
smoothing effect may be controlled through ¢ . In this system, o is chosen as

2. So the kernel can be expressed as (3-5):

2 2
G(x, y)=iexp(- @ty)) (3-5)

8n 8

where, the x and y represent the relative coordinates from the center of the
mask. An 11x 11 mask was built. The mask is moved from the left—top corner
to the right—bottom throughout the image pixel by pixel. When the center of the
maskis located at a point, all hue, saturation, and brightness values of every pix-
el covered by the mask are multiplied by the coefficients and added up. This job
was done by "Barneyscan”. Figure 3.4 shows an example of histograms compar-
ing hue, saturation, and brightness of an unblurred image and a blurred image.
We can see from the histograms that the histogram of the blurred images have
narrower distributions and sharper peaks. Statistical data shows that the
blurred images have much smaller standard deviations. This means that the
blurred images are much smoother in color. It is easier to segment blurred
images. Although the edges of objects are also blurred, it is still acceptable for

segmentation purposes. Therefore, Gaussian blurring was adopted.

26

— Channel: Black — Channel: Black

Mean: 66.21 Levek Mean: 66.26 Level:
S{d Dew: 7.54 Count: Std Dew: 4.43 Count:
Median: 65 Percentile: Median: 66 Percentile:
Pitels: 9408 Pixels: 9408
(a) Hue of Brocceoli (b} Hue of Blurred Broceoli
r—l:hannel: Black — Channel: Black

Mean; 25.596 Lepel: Mean: 25.65 Levei:
$id Dey: 9.35 Count; Std Dev: 6.43 Count:
Median: 25 Percentile: Median: 26 Percentile:
Pixels; 8730 Pixels: 87138
(¢) Saturation of Broceoli (d) Saturation of Blurred Broceoli
— Channel: Black — Channel: Black

Mean: 161.35 Levek Mean: 161.31 Level:
Std Beu: 36.44 Count: Std Dev: 22.3t Count:
Median: 160 Perceatile: Median: 160 Percentile:
Pixtels: 826t Pigels: 8261
(e) Brightness of Broccoli (f) Brightness of Blurred Broccoli

27

— Channel: Black — Channel: Black

Mean: 27.22 Lepel: Mean: 27.2? Level:
§td Dev: 12.85 Count; $td Dew: 6.08 Count;
Median; 27 Percentile: Median: 27 Percentile:
Pixels: 8527 Pidels: 8527
(g) Hue of Corn (h) Hue of Blurred Corn
— Channel: Black) — Channel: Black

Mean: 222.38 Level: Mean: 222.12 Level:
§td Dew: 19.74 Count: Std Dev: 12,54 Count:
Median: 227 Percentile: Median: 224 Percentile:
Pinels: 7916 Pidels: 1916
(i) Saturation of Corn (j) Saturation of Blurred Corn
|——-£hannel: Black |—Chaﬁnel: Black

Mean: 189.42 Level: Mean: 189.38 Levek
Std Dew: 31.66 Count: Std Peu: 20.39 Count:
Median: 198 Percentile: Median: 193 Percentile:
Pixels: 7191 Pigels: 2191
(k) Brightness of Corn (1) Brightness of Blurred Corn

Figure 3.4 Comparison of Histograms

28

CHAPTER 4

TRAINING DATA AND COLOR VARIATION

4.1 Training Data

Color segmentation and, especially, classification of food images rely on the
results of training experiments. A number of color images of food have been ana-
lysed to get the histograms, means, standard deviations and medians of hue, sat-

uration, and brightness of different items of foods.

The means of histograms of hue, saturation and brightness (e.g. average hue,
saturation, and brightness) of each item of food from sample images form a clus-
ter in HSB space. These clusters can be used for the color classification. And the

variances and medians can be helpful for setting the thresholds of segmentation.

We have used 30 slides of plates for training. There are 2-5 items in every
slide. For every food item in every slide, we calculate its histograms, means,

standard deviations, and medians of hue, saturation, and brightness.

Figure 4.1 shows the distribution of means of hue and saturation. Every point
represents a food item from a plate. There are 20 points for the tomato, 12 for
the carrot, 11 for the orange, 13 for the peas, 18 for the broceoli, 11 for the green
apple, 10 for the corn, 22 for the potato, 18 for the beef, 19 for the toast. Some
points overlap. Figure 4.1 shows that every item forms a cluster in the hue—satu-

ration plane. We set classification rules later on from this result.

29

0t
uorjeanjeg pue oSNy Jo SUBSY JO UOTINGLIISI(] ['F 9IS

. tomato.dat: (1

: carrot.dat: (1)

’ orange.dat: (1
e R B S B A) apple-dat: (1)

250 D AR I A peas.dat: (1)

RCTE BT : : : . : broce.dat: (1)
: - : : - : : . corn.dat; (1)

)
)

: i : : ; : : ’ beei.dat: (1)
200 —ee S Yaalige : : ’ toast.dat: (1)

. ‘2
0 !
u L 24
Ty P
— L :
Iy L]
R 4
a 4 5
s
3
s

on
=3
42
o

l

Saturat
>
[}

I

Bl 7
7
1
BO —f b, OO SO RO SOV SO
R T S o
7 b4

Hue

4.2 Color Variation

Due to different exposure times both in making a slide and in scanning with
Barneyscan, the same object could appear in slightly different color. Some tests
are made to examine these color variations. The tests are made on a standard
color chart, and the colors for testing are typical saturated colors: red, yellow,
green, blue. Table 4.1 shows average hue, saturation, and brightness values of
different colors in a single slide with different exposure times when scanning
with Barneyscan. For this slide, the automatic (suitable) exposure time of Bar-

neyscan is 376 (relative time).

exposure time 150 200 300 400 500
red 8 4 4 0 0
yellow 32 32 33 36 42
green 77 77 78 79 80
blue 167 167 166 166 166

(a) Average Values of Hue

exposure time 150 200 300 400 500
red 251 2561 248 247 247
yellow 239 239 236 234 231
green 214 216 211 207 204
blue 232 240 236 238 239

(b) Average Values of Saturation

exposure time 150 200 300 400 500
red 50 54 71 103 139
yellow 107 116 152 219 255

31

green 28 30 41 64 86
blue 14 15 21 33 46

(c) Average Values of Brightness

Table 4.1 Values of Color Chart for Different Exposure Time of Scanning

We could see from Table 4.1 that hue and saturation values are slightly differ-
ent but do not change much for most colors {(except red), and the most sensitive

variable is brightness.

Table 4.2 shows the color variation caused by different exposure when a slide
is made. In Table 4.2, the object is the same thing (color chart). But one slide is
slightly darker (the automatic exposure time of Barneyscan is 500), and the oth-
er is slightly brighter (the automatic exposure time of Barneyscan is 378). The

average values of hue and saturation are slightly different.

magenta yellow green blue
bright slide 250 33 74 154
dark slide 253 27 78 158

(a) Average Values of Hue

magenta yellow green blue
bright slide 225 234 220 235
dark slide 232 240 230 248

(b) Average Values of Saturation

Table4.2 Values of Color Chart From Slides With Different Exposure Time

32

Table 4.1 and Table 4.2 show a bigger color variation caused by different expo-
sure time when making a slide than caused by a different exposure time when
scanning from a slide to the computer. Even with the adjustment of scanning ex-

posure time, the variation is still visible.

Because the colors for this test are typical saturated colors and the slides are
made under very good conditions, the variation is not significant. But for other
colors and for slides which are not made under good conditions, especially with

non—pure-white light background, color variation is not negligible.

33

CHAPTER 5 SEGMENTATION

Image Segmentation refers to the decomposition of a scene into its compo-
nents. Itis a key step inimage analysis. Segmentation by color is the most impor-

tant and the most difficult part of the project.

5.1 Segmentation

For image analysis, segmentation is generally the first step and autonomous
segmentation is one of the most difficult tasks in image processing. Segmenta-
tion subdivides animage into its constituent parts or objects, and stops when the
objects of interest in an application have been isolated; segmentation subdivides
~ animage into regions that are uniform and homogeneous with respect to some
characteristic. There is no complete theory of image segmentation although
there are a variety of techniques for segmenting images. Segmentation tech-
niques differ in the way they emphasize one or more properties and in the way
they balance and compromise one desired property against another. The proper-
ties on which segmentation techniques are generally based are the properties
of gray—level value (for monochrome images), texture, or some basic properties
of color vectors in color spaces: RGB, HSB and so on (for color images). The two
concepts of discontinuity and similarity of these values or vectors could be used
to segment images. Using the discontinuity, we can partition an image based on
abrupt changes of these values or vectors. This approach is mainly used for the
detection of isolated points, lines and edges in an image. Using the similarity,

the region based algorithms such as thresholding, region growing and region

34

splitting—and—merging are used to segment areasin animage. For region based
techniques, we can describe the principle as follow. Let R represent the entire
image region. We may view segmentation as a process that partitions R into n

subregions: Ry, R, ..., Ry, such that [1]

=H

(@) Lg Ri=R (6-1)
i-

(b) R; is a connected region, i=1,2,..,n, (6-2)

() Ri{\Rj=¢for all i and j, i =] (5-3)

(d) P(R;)=TRUE for i=1,2,...,nand (5-4)

(e) PR; U Rj) = FALSE for i # j (5-5)

where P(R;) is a logical predicate over the points in set R; and ¢ is the null set.
For monochromic images P(r;) could be |G(r)-G{r)) | <threshold,where 1,1
€ Ry, G(ry) is the grey level at the point ry.. For color images, the P(R;) could be

that most color vectors in R; are located in a certain area in color space.

In our project, area segmentation is the purpose. To apply thresholding ap-
proaches, the histogram of each component should be calculated, then thresh-
olds in each histogram of every variable should be determined. Decisions are
made based on these thresholds to find clusters in an image. These are effective
approaches when there are only a couple of objects in animage, but cluster seek-
ing becomes an increasingly complex task as the number of variables increases
(for color images, there are at least 3 or 2 variables), especially when there are

many objective clusters to be sought.

Region growing is a procedure that groups pixels or sub-regions into large
regions. The simplest of these approaches is pixel aggregation, which starts with
a set of "seed” points and from these grows regions by appending to each seed
point those neighboring pixels that have similar properties (such as color). A

simple example using this method is shown in Figure 5.1[1]. Figure 5.1(a) is the

35

original image with gray levels represented in each point. Using two seeds (3,2)
and (3,4) should result in a segmentation consisting of, at most, two regions: Ry
associated with seed (3,2) and Ry associated with seed (3,4). The property P to
be used to include a pixel in either region is that the absolute difference between
the gray level of that pixel and the gray level of the seed be less than a threshold
T. Figure 5.1(b) shows the result obtained using T=3, and Figure 5.1(c) shows
the result when T=8. In Figure 5.1(c), since the threshold (T=8) of the absolute
difference is higher than the difference of the two seed pixels, each region which
grows from a seed includes the other seed and the all pixels. As a result, there

is only one region.

1] | O | 5 |16 |7 ala|b |Db|Db
211 {1 }5 817 a |la|b|b|b
3o 116 |2 |7 ala|{b b {b
412 |0 |7 |6 |6 ala|b |b|b
50 |1 |5 |6 |5 al|laj|jb|lb|Db

(a) Original Image (b) Result With T=3

a a a a a

(¢) Result With T=8

Figure 5.1 Example of Region Growing Using Known Seed Points

36

Using above approaches, choosing seed pixels is important, and it is not easy
to automatically and appropriately choose seed pixels. In this case, region split-
ting—and—merging can be a practical method. The principle of these approaches
is to subdivide an image into a set of arbitrary, disjointed regions and then merge
and /or split the regions in an attempt to satisfy a pre—set criterion condition.
It begins with the entire image as the initial segment. Then it successively splits
each of its current segments into quarters if the segment is not homogeneous
enough as judged by the criterion. Figure 5.2 [1] can simply describe the split-

ting—and-merging algorithm for a simple monochrome image.

R1 | Rg Rago

Ryg

(d)

{c)

Figure 5.2 Example of Splitting-and-Merging Algorithm

37

(a). The image is split into Ry, Rg, R, Ry;

(b). Ry, R3, and Ry are split respectively into Rgy, Rga, Ros, Ras, Rs1, Rsn, Ras, Ray,
Ra1, Rag, Rys, Ryyq. Merge Ry1, Rgg, Rog, Rag, Ryg, Rg1, and Ras to the background
(R1), and merge Rog, Rag, and Ry, to the object;

(c). Raq, and Ryg are split into Rg41, Rgag, Raas, Raad, Ras1, Ruse, Rass, Rass;

(d). merge Raq1, Rgq9, Rag;, and Rygg to the object, and merge Rags, Rags, Rass, and

Ry34 to the background.

5.2 Color Segmentation--Survey of Related Research

The classical method for the segmentation of color images is to segment the
individual component images separately, e.g. the red component image, the
green component image, and the blue component image. The resultant segmen-
tations are then combined to produce the complete color segmentation. The seg-
mentation of individual component images is usually combined with histogram
techniques. The most important aspect of this type of method lies in the tech-
niques that are used to combine the results of componentimages. Rosenfeld and
Kak described color segmentation schemes based on simple thresholds of the col-
or vector components [4]. R. Weill and Y. Nes also applied RGB and rgb system
to the separation of fruits and background with the help of intensity histograms

[5].

There are some expansions of this type of method. R. B. Ohlander[6] used nine
histograms, one for each component, in red, green, and blue(RGB), YIQ, and a
perceptual model space based on hue, saturation, and intensity(HSI). He deter-
mined the most sharply defined feature, as measured by one of the nine parame-

ters, then obtained a cluster of points that were uniform for the given feature,

38

applying thresholding on limits provided by the minimal bounding of the best
peak. He extracted the region so isolated and eliminated it from further consid-
eration. As a result of this, features that were formerly obscured may become
more distinct. This procedure is applied iteratively until there is no prominent
peak in any histogram. This approach results in regions that are approximately
uniform in all nine components. Another expansion is made in other color spaces
such as HSI [9],[10] or L*a*b* [7]. S. H. Ong and C. C. Hew segmented color
images by iterative thresholding of hue, saturation and intensity components

and reduced fragmentation by a merging procedure after each thresholding[9].

Baker, Hwang and Aggarwal [7] translated the RGB to the CIELAB (L#*a*b*)
transformation and combined the histograms of L (luminance), C (chroma), H
(hue), and scattergram of the a*b* coordinates. This approach needs the trans-
formation from RGB model to the CIELAB model and the calculation of every
component’s histogram. All schemes above are based on the proper combined

thresholds of the component histograms.

Miyake, Saitohn, Yaguchi and Tsukada [8] used an experimental expression
about r (r=R/(R+G+B)), g (g=G/R+G+B)), b (b=B/(R+G+B)) to determine the re-
- gion of skin color for TV pictures. This kind of method needs a large amount of
experimentation for single color extraction to get the means and standard vari-

ance of each component.

When there are more than one objects appearing in an image, or if color varia-
tion for the same objects on different images exists, a better approach of segmen-
tation might be splitting—and-merging. Trying to recognize a piece of ham on a
conveyor belt, F. Diaz Pernas and J. Lopez Coronada [11] developed an analysis
process for the recognition of the objects appearing in an image according to color

criteria. Due fo color variation existing in each area, a splitting—and-merging

39

algorithm was used so that the grouping of nodes is based on their belonging in
one of the three regions of interest (meat, fat and background), but not on their

color homogeneity.

In our project, there are 2-5 objects involved and the color variation seems
unavoidable. We identify and remove the plate and background according to the
clusters in HSB space; and then apply an algorithm, coming from the combina-
tion of region growing and splitting—and-merging algorithms based on HSB col-

or space to segment the rest of the image into several parts:objects.
5.3 Color Segmentation

Theoretically, regions of a color segmentation should be uniform and homoge-
neous with respect to color characteristics. Interiors of regions should be simple
and without many small holes. Adjacent regions of segmentation should have
significantly different values with respect to the color characteristics. Bound-

aries of each segment should be simple, not ragged, and spatially accurate.

Achieving all these desired properties is difficult because strictly uniform and
homogeneous regions are typically full of small holes and have ragged bound-
aries. Insisting that adjacent regions have large differences in values can cause

regions to merge and boundaries to be lost.

There is no general theory of image segmentation, including color segmenta-
tion. Techniques in use have to differ precisely in the way they emphasize one
or more of the desired properties and in the way they balance and trade off one

desired property against another.

The objective of color segmentation in this system is to segment an image by

color into several regions of which each region represents one of the food items

40

in the image, and each item in the image would have one region represented. Be-
cause classification is to follow, a region-based segmentation scheme would be
preferred. The system uses two different schemes in two steps: first, remove out

the background and the plate and then segment the remaining area.

5.3.1 Identification of Background and Plate

All images processed in this system have almost the same color background
(grey) and the same color plate (white). This means that there are two clusters
at almost the samé positions in color space for every image. One represents the
background and the other represents the plate. This makes it possible to detect
the two clusters in HSB space and remove the corresponding points from the
image. In fact, we can only use saturation and brightness as variables to detect
the plate because of the randomness of its hue values. We can use hue, satura-
tion, and brightness as variables to detect the background. In Table 5.1 are the
average values of hue and saturation of blurred backgrounds. Values of bright-
ness are from 90-140. In Table 5.2 are the average values of saturation of

blurred plates. Values of brightness are from 200-255.

SLIDE 1 2 3 4 5 6 7
H 164.88 | 168.24 | 160.81 | 14245 | 139.57 | 144.62 | 162.71
S 35.24 48.22 37.33 27.94 29.33 2441 46.07
SLIDE 8 9 10 11 12 13 14
H 180.76 | 167.10 | 190.24 | 179.71 | 151.48 | 160.40 | 170.77
S 33.56 23.40 24.07 25.68 27.55 27.40 31.98
SLIDE 15 16 17 18 19 20
H 156.75 | 17137 | 163.44 | 167.01 | 164.29 | 177.49
S 34.63 33.30 44.75 38.01 46.27 12.97

Table 5.1 Average Hue and Saturation Values of Blurred Background

4]

SLIDE 1 2 3 4 5 6 7
S 6.36 19.43 10.81 8.07 8.89 9.17 10.29
SLIDE 8 9 10 11 12 13 14
S 8.41 3.95 9.67 | 7.72 8.33 7.24 6.77
SLIDE 15 16 17 18 19 20
S 7.53 7.76 10.24 4.74 8.55 6.12

Table 5.2 Average Saturation Values of Blurred Plate

In this step, classification and segmentation are completed simultaneously.

From histogram analysis, the following thresholds are established. For back-

grounds:

hue: 100-180

saturation: 0-40

brightness: 90-140 (5-6)
For plates:

saturation: 0-45

brightness: 200-255 (5-7)

Every pixel in the image is checked against these thresholds. The pixels that
satisfy the conditions 5-6 are joined the region ’background’. The pixels satisfy-
ing the conditions 5~7 are joined the region 'plate’. Pixels in other areas are re-

tained for the next segmentation procedure.

5.3.2 Segmentation of Food Items

Color variation of food items in images could be larger than the color variation
of backgrounds and plates. But color differences among different food items

should maintain certain values, e.g. different colored items should have some

42

color differences whenever we make transparencies. Because of the color varia-
tion and more than one object to be segmented, the histogram thresholding
method is not used, since some foods could have overlapping histograms and a
threshold could not be fixed. Instead, an algorithm coming from the combination
of region grovﬁng and region splitting—and—merging approaches is designed to

segment food items.

In this algorithm, every pixel in an image will be compared with its neighbor-
hood with respect to hue, saturation, and brightness. Thresholds of differences
of the three values are set on the basis of the training data by calculating the
variances inside every item and checking the color values jumping between dif-
ferent items for about 30 slides (see also 4.1). If the differences between the pixel
and any of the neighbors are smaller than the thresholds, the pixel will join the
regionin which the neighbor is located. If none of the neighbors have values close

to those of the pixel, the pixel will start a new region.

Using the algorithm in a computer program, comparing pixel values starts
from the left—top corner of the image and proceeds to the right-bottom, pixel by
pixel and row by row. Every pixel’s values are compared with the values of the
left neighboring pixels and the above neighboring pixel. If the pixel is close
enough to the left neighborhood with respect to the values of hue, saturation,
and brightness, it joins the region which the left neighborhood belongs to. If the
pixel is close enough to the above one with respect to the three values, it joins
the region which the above neighbor belongs to. If the pixel is élose to neither
the left one nor the above one, a new region starts from this pixel. Figure 5.2 il-

lustrates a simple example of the algorithm.

In Figure 5.2, the comparing starts at the pixel P;. Region R, starts at Py since

there is no pixel which could be compared with it. Py is compared only to Py, since

43

Pyt Pyt Par Py
LI SR R
Py Py} !

L
'
L.l

e - .-
e N R Y

'
¥
1
1
1
]
)
]
1
[
[
[
b
)
-t -
5

L L S N

Figure 5.2 IHustration of the Segmentation Algorithm

there is no pixel above Py. Py joins to Ry because P, and Py are close enough. Then
the same thingis done with Pg, P4, and the succeeding pixels in the first row until
pixel Pg is reached. Since Pgis not close to Ps, it starts a new region Ry. The pixels
to the right of Pg in the row join Rg because they all have values below the Ry
threshold. In the second row, Pg is compared to P, and joins R;. Py is compared
to Pg and Py and is also joined R; too. So do the succeeding pixels until Py;. P1q
is compared to P1p and to Pg. It joins Ry because it is not close to P1g but is close
Pg. The succeeding pixels join Ry, since they are close both to the left neighboring
pixels and to the above pixels. The pixels in the following row are compared in

the same way, except that Py starts region Rg and P14 starts the region Ry.

This simple logic could not segment an image well when the situation shown

in Figure 5.3 happens. We suppose there are four regions in Figure 5.3, Ry, Ry,

44

Rg+R4, and Rs+Rg. In Figure 5.3, P; would start a new region Rg because it is
close neither to the left neighbor nor to the above neighbor (they are in Ry). P
would start another new region Ry. But in fact, region Rg and Ry are the same
thing. For the same reason, every pixel on line; would start a new region. There-
fore Rg would be segmented into many small vertical regions with one pixel

width.

R, Ry
Po
L L]
)
-
Py 3
Pgs 1 Pyt Py
[P T | — Tl ala © e 0 0 = o o o e oo ooale s eeeee ooeeess o=
R4 Iinel R5

Figure 5.3 Check-Back Algorithm

A check-back algorithm is applied to solve this problem. In this algorithm,
every pixel, except those without left neighbors or above neighbors, is compared
with its left neighborhood and its above neighborhood. The pixels that are close
enough in their values are given a similar sign to indicate that they are in the
same region. Ifit is close both to the left neighboring pixel and to the one above,
the sign of the left neighboring pixel is compared to the sign of the above neigh-
boring pixel. If the two signs are the same, the pixel will take the same sign,

meaning that the pixel joins the region. This causes no problem. If the two signs

45

are different, a problem occurs. This means that the two close pixels are in two
different regions. In this case, the sign of the above neighboring pixel is given
to the pixel, and all pixels with the same sign as the left neighboring pixel are

checked out and given the sign of the above neighboring pixel.

In Figure 5.3, P; starts Rg and Py starts Rs. When P3 is compared to its above
neighboring pixel P4 and the left neighboring pixel P, it is found that Py is close
both to P4 and to P5 and that the sign of Py is different from the sign of P5. Py
takes the sign of P4, and all pixels which already have a sign are checked. Any
pixel with the sign of P5 changes its sign to the sign of P4. Therefore the region

R4 disappears, and all pixels that used to be in region R4 join R,

Figure 5.4 illustrates the complete algorithm of segmentation, where Hth, Sth,

and Bth are thresholds of hue, saturation, and brightness respectively.

The first steps are for identifying background and plate using the rules (5-6)
and (5-7). The next steps segment the remaining area by examining the differ-
ence of the values of hue, saturation, and brightness between a pixel and its up-
per neighbor and left neighbor. If the difference between the pixel and its upper
neighbor is smaller than the thresholds, it joins the region to which the upper
neighbor belongs. If this difference is larger than the thresholds, but the differ-
ence between the pixel and its left neighbor is smaller than the thresholds, it
joins the region to which the left neighbor belongs. If neither is smaller than the
thresholds, the pixel starts a new region. If both the difference are smaller than
the thresholds, but the regions to which the upper neighbor and the left neighbor
belong, respectively, are different, the check—back algorithm is applied and the
region to which the left neighbor belongs joins the region to which the upper

neighbor belongs. The pixel joins the same region. The procedure starts at the

46

START

from i=0 to i<=vsize and

from j=0 to j<=hsize

100<hueli,jl<180

O<saturationli,j]<40

O<brightnessli,jl<14Q
? .

if
0<saturiation[i,j]<45
00<brighness<25

to plate}

/ signlijl=2
et the pixel belongs to

W remained are

from j=1 to j<=hsize

if
yes sign[0,j]=0 or

sign[0,jl=1

Isaturation Ojj 0

—saturation[[
Ibrightness|0,j]-brightness

?

sign[i,0}=max
max-++
ves
@n [i,0}=sign[i-1 ,O>

< ¥

Figure 5.4 Diagram of Segmentation (continued on pp. 48-49)

y

0,j—T1}<Bib

; if
Ihue[lo,']J—hue[D,j—T]kHt

47

F

| from i=1 to i<=vsize m
A >|\/__’.

lhue[i,0]-hue[i—-1,0]l<Hth
fsaturation[i,0]-saturation[i—1,0]l<Sth
brightness{i,0]-brightness[i—1,0]i<Bth

from j=1 to j<=hsize

if
sign(i,j]=0 or
signi,ji=1
? _

yes

i
Ihueli,jl-hueli,j-1]l<Hth
|saturationi,j —saturaiion[E,J—1 |<Sth

Ibrightnessli,jj-brightnessi,j-T]l<Bth no

hwel[i,jl~hueli-1,jli<Hth
Isaturation[i-1,j]-saturation{i—1,j]l<Sth
Ibrightness[i-1, j]—brig_hmess[i-l .jll<Bth

?
a<Csignlijl=sionli-T>
yes
—Gignlijl-signli-L.]

if
1gn[i,j—1]=sign[i-1,]
?

no

Figure 5.4 Diagram of Segmentation (continued on pp. 49)

48

¥

tem=sign{i,j-1]
sign[i,j]=sign[i—1,j]

Y

from k=j-1to 0 >
(——égn{i,khsign[i—l,j
r '
from m=0 to i-1
from k=0 to hsize >

sign[m,k}=tem
?

q_égn[m,kksign[i-—l,j]

Y

if
Ihuel[i,jl-hueli,j-1jl<Hth
Isaturationli,| —sa,turaﬂon[r;ﬂ I<Sth
Ibrightnessli,|}-brightness]i,j—1]i<Bt

?

no

YES

<sign[i,j}=sign{i—1 D

signli,jjl=max

max++

Figure 5.4 Diagram of Segmentation

49

upper-left corner of the image and ends at the bottom~right corner. The exami-

nation is implemented pixel by pixel.

Figure 5.5(b) (an image as the result of segmentation) is the result of the seg-
mentation of Figure 5.5(a) (a food image).The segments are background(1),
plate(2), peas(3), potato{4), tomato(b), and beef(6).

More segmentation results are shown in Appendix B. In Figure 5.5(b) and seg-
mentation results in Appendix B, a black pixel indicates that the color change
between that point and its neighbor is large than the threshold. A white pixel

indicates a small change or on change.

50

— ¢s3.tiff (RGB, 1:1) — [

(a) the Image

(b) the Segmentation

Figure 5.5 Segmentation of Color Image

51

CHAPTER 6 CLASSIFICATION

6.1 Classification

Classification and segmentation processes have closely related objectives.
Classification, which classifies the object into one of several categories, can lead
to segmentation, and vice—versa. Classification of pixels in an image is another
form of component labeling that can result in segmentation of various objectsin

the image, which is what we have done for removal of background and plate.

Classification is generally implemented in a feature space. A feature can be
any variable, with which we identify one object from another, such as graylevels,
shapes, sizes, or colors. A set of P features is extracted from the image. These
features may either be pixel-based or object—based. In the pixel-based case, it
is often impossible to perform a segmentation with a single feature. More than
one feature for each pixel is needed to separate different classes of objects from
- each other and from the background. In the object—based classification, the ob-
jects could already be separated from the background. We can calculate all the
average values of pixel-based features over the whole area of the object. These
features could be gray level value, color value (RGB or HSB), or local orientation.
Based on these, the shape of the objects could be described. The object-based
classification is preferable, if possible, since much less data must be handled;

that is only one set of P features for each object detected.

The set of P features forms a P-dimensional space, which is denoted as the
feature space. Each pixel or object is represented as a feature vector in this

space. If the features represent an object class well, all feature vectors of the ob-

52

jects from this class should lie close to each other in the feature space. By statisti-
cal calculation, we can build a P-dimensional histogram. A narrow peak in the
histogram represents a cluster. It will be possible to separate the objects into the
given object classes if the clusters for the different object classes are well sepa-
rated from each other, as shown in Figure 6.1(a). With less suitable features, the
clusters overlap each other (Figure 6.1(b)). In this case, an error—free classifica-

tion is not possible [18].

(a) Well Separated Object Classes (b} Overlapping Object Classes

Figure 6.1 A Two-dimensional Feature Space With Four Object Classes [18]

If we perform classification by analyzing the structure of the feature space,
one object is thought of as a pattern in the feature space. There are two basic ap-
proaches to classification: supervised and nonsupervised. By supervised classifi-
cation, we determine the clusters in the feature space with known objects before
hand and find out the number of classes, and their location and extension in the
feature space. With unsupervised classification, no knowledge is presumed
about the objects to be classified, even the number of classes. The result comes

from the analysis of the clusters in the feature space and the separation of the

33

clusters. This method is more objective, butit may resultin a less favorable sepa-

ration.

There are learning methods if the feature space is updated by each new object
which is classified. Learning methods can compensate any temporal trends in
the object features. Such trends may be due to simple reasons such as changes
in the illumination which could easily occur in an industrial environment be-

cause of changes in daylight, aging or dirtying of illumination systems [18].

There are different classification techniques. As for supervised classification,
which our system belongs to, the simplest classification method is the look—up
method, known as labeling. By this method, we give a number indicating the ob-
ject class to each point in the discrete feature space. This approach is difficult
only if the distributions of two classes overlap. When this happens, we could ei-
ther take the class which shows the higher probability at this point or argue that
an error—free classification is not possible with this feature. The same attribute
is given to all the points in the feature space which do not belong to any object
class. Then the only thing that we have to do is to look up which class a feature
vector belongs to. We regard the feature space as a multi~dimensional look—up
table. This method is the best with respect to the computing time. However, con-
cerning the memory needed to store the feature space it is not so advantageous.
A three dimensional 64 x 64 x 64 feature space already requires 1/4 Megabyte
memory. Consequently, the look—up method is only feasible for low—dimensional

feature spaces.

All other classification methods model the pattern classes in the feature space
to reduce storage requirements. The box method approximates a class by a sur-
rounding box. If this method does not work, we can use the minimum distance

method to determine which class a feature vector belongs to: we compute the dis-

54

tance of the feature vector to all cluster centers and choose the class which has
the minimum distance. The maximum probability method and other methods

could be used when the above methods do not work well [18].

6.2 Color Classification--Survey of Related Research

Color classification is usually combined with color segmentation, and uses the
result of segmentation. In this case, a color space could be a feature space. An
intuitive method for color classification is the detection and analysis of vector
clusters in color space (it could be any space which can represent a color image
appropriately). By the analysis of histograms of every component, the clusters
which represent certain objects could be found. By comparing the properties of
clusters with previous knowledge (from a training procedure), decisions could

be made.

Tominaga [12][13][14] did color classification of natural color images with a
similar method based on uniform color spaces, which partitioned color image
data into a set of uniform color regions. The ability to classify spatial regions of
the measured image into a small number of uniform regions can also be useful
for several essential problems of color image analysis including color segmenta-
tion. The input image data are mapped from device coordinates (RGB) into an
approximately uniform perceptual color space (L*a*b*). Colors are classified by
means of cluster detection in the uniform color space. The process is composed
of two stages of basic classification and reclassification. The basic classification
is based on histogram analysis to detect color data, which are extracted for effec-
tive discrimination of clusters. At the reclassification stage, the representative

colors extracted by the color classification are reclassified on a color distance.

55

There is also a scheme of color classification which is not based on 3-D color
space. J. Parkkinen and T. Jaaskelainen[15][16][17] proposed a vector subspace
method of color classification which used the whole color spectrum instead of
three—parameter methods (RGB, HSB, etc.). To use this method, sometimes re-
sulting in improved accuracy, we should calculate the whole color spectrum of

each image and each probable item which could exist in the images.

6.3 Classification--Program and Result

In this system, we apply color classification to an image after it is segmented
into several subregions which could represent some food items. So the classifica-
tion is object—based. It is also supervised, since we have training data (before-

hand knowledge) before the classification is applied to images.

The simplest clustering method is applied for this system. There are ten items
to be identified. They are tomato, carrot, orange, broccoli, green peas, green ap-
ple, potato, corn, roast beef, and toasted bread. Average values of hue and satu-
ration are calculated for each item in every image. About ten to twenty sémples

were checked before we set the parameters as shown in Table 6.1.

As a first parameter we consider the hue. According to their distribution, we
can divide the ten items into six groups. Group 1 includes the tomato and the
carrot. Group 2 includes the orange, the beef, and the toast bread. Group 3 in-
cludes the corn. Group 4 includes the potato. Group 5 includes the green apples.
Group 6 includes the broccoli and the green peas. Items in different groups do
not overlap. But items in the same groups have some areas overlapped. So hue
alone is not sufficient to separate all items. Similarly, saturation alone is not suf-

ficient to separate all items either. However, using both parameters, we can sep-

56

arate almost all of these ten items. In group 1, although they have some common

area in hue, their saturation values are different. In group 2, orange, beef, and

toast also have different distributions of saturation values. However in group 6,

broccoli and green peas not only have the same hue area but also have the same

saturation area. By observing their brightnesses and histograms, we found out

that they even have same brightness area and similar histograms. With this re-

sult, we can only conclude that broccoli and green peas could not be separated

only by color. This conclusion is not surprising, since it is even difficult to sepa-

rate them by human eye only by color.

Tomato Carrot Orange G—-Apple Broceoli
Hue 3-7 6-9 1218 45-50 6282
Saturation | 210-225 230-250 225-240 180-195 90-170
G—Peas Potato Corn R—Beef T-Bread
Hue 52-74 29-38 24-28 11-17 14-19
Saturation | 115-240 40-90 215-230 140-180 185220

Table 6.1 Parameters for Classification of Food

The following are the conditions used in the program for color classification

shown in Table 6.1.

Tomato :

Carrot :

Orange : 12 < hue < 18

G-—Apple: 45

Broccoli

3< hue <7

< hue <

< hue <

&& 210 < saturation < 225

6<hue<9 && 230 < saturation < 250

&& 225 = saturation < 240

50 &&

180 =< saturation < 195

82 && 90 < saturation < 170

57

(6-1)

(6-2)

(6-3)

(6-4)

(6-5)

G-Peas: 52 < hue <74 && 115 < saturation < 240 6-6)

Potato : 29 = hue = 38 && 40 < satwration < 90 (6=7)
Corn . 24 < hue < 28 && 215 < saturation < 230 (6-8)
Beef : 11 < hue < 17 && 140 < saturation < 180 (6-9)
T—Bread: 14 < hue < 19 && 185 < saturation < 220 6-10)

Figure 6.2(b) is the result of the segmentation and classification of Figure
6.2(a).

Since there are still some details left after blurring, the result of segmentation
contains some small regions. Because very small sizes of food are not expected
to be served, these small regions are only the subregions of some large regions,
which represent food items. They are not important for classification. So we ig-

‘nore them and only calculate the average hue and saturation values of large re-
gions. The average values do not change much in the absence of those small re-
gions. Therefore, the result of classification is not significantly affected by
ignoring these small parts. A threshold is set to decide if a region is small enough

to be ignored. Threshold for this system is 200 pixels.

Ten slides are tested by the segmentation and classification program. Figure
6.3 shows the rules in the Hue—Saturation plane for classification expressed by
(6—-1)-(6-10) and clusters of every object from every slide. They group well ex-
cept broccoli and peas, where 1 is tomato; 2 carrot; 3 orange; 4 green apple; 5

broccoli; 6 peas; 7 potato; 8 corn; 9 beef; 10 toast.

58

cs10 photo.tiff (RGB, 1:1)

(a) image

(b) result of segmentation

Figure 6.2 Segmentation and Classification of Image by Color

59

0 : -

1 T

| |
o o
O o
- -

uoljeinies

Figure 6.3 Clusters of Segments

60

0

40 50 60 70 80

Hue

30

CHAPTER 7 CONCLUSION AND DISCUSSION

7.1 Conclusion

The objective of this project is to study the possibility of identifying food items
by color.

The first question presented to us was which color system is the best. The intu-
itive choice is the RGB system, since it comes directly from the digitization. By
checking more than fifty color transparencies of food plates, we found out that
the HSB system is more reliable. Using the HSB color system can save process-
ing time too, because most of the classification (except plate and background)

can be implemented without the parameter B.

The second problem addressed was segmentation: the processing time for seg-
mentation is too long and the result of segmentation contains too much detail.
Therefore this would cause a problem: how to classify so many small regions, es-
pecially when a small region can not represent a food item. In this case, a blur-
ring filter was chosen to blur the details and smooth the images. The result is
very satisfactory. We can get the results of segmentation with very good quality

after blurring.

Segmentation and classification by color are the major tasks in this project.
After examining thirty transparencies, thresholds of hue, saturation and bright-
ness differences were set for segmentation, and parameter conditions were set
for classification. The programs developed for color segmentation and classifica-
tion all worked successfully. They provide a method to segment and classify ob-

Jjectsin animage by color. The result shows that segmenting and classifying food

61

itemsin plate images by coloris a feasible method. Combined with more features

of images, it could lead to a successful automatic food identification in images.

7.2 Discussion and Recommendation

The goal for this project has been achieved. However, there are still problems

remaining to be studied in further work.

1. Different background light could make the color of images very different.
Therefore, the colors of food items could have big variations, which could make
the classification difficult, or even impossible. A color adjustment pre—proces-
sing could reduce the effect of this color variation on segmentation and classifica-
tion. But this procedure could not eliminate the effect totally. The other method
may by more effective: to design simple, but special photographic equipment to
make transparencies, which have fixed background light for every exposure. Dr.
Sevenhuysen already had special equipment for this purpose. Only a little im-

provement is need to avoid color variation.

2. Some food items have almost the same colors. It is even difficult for human
eyes to identify them only by color. In this case, segmentation and classification
only by color is not enough. Other features, such as sizes, shapes, and textures,
should be introduced for the segmentation and classification. For most food
items one more feature added into the segmentation and classification system
could be enough. The only cost is a little speed reduction and a larger memory
requirement, which would not cause a big problem for the purpose of segmenta-

tion and classification.

62

REFERENCE

[1]. Rafael C. Gonzalez, and Richard E. Woods, Digital Image Processing, Addi-
son—Wesley Publishing Co.Ltd, 1992.

[2]. G. P. Sevenhuysen, and L. A. Wadsworth, "Food Image Processing: A Poten-
tial Method for Epidemioclogical Surveys”, Nutrition Reports International, Vol.

39, 1989.

[3]. G. P. Sevenhuysen, W. V. Steveren, K. Dekker, and E. Spronck, ” Estimates
of Daily Individual Food Intakes Obtained by Food Image Processing”, Nutrition
Research, Vol. 10, 1990.

[4]. A. Rosenfeld, and A. C. Kak, Digital Picture Processing, Academic Press,
New York, 1982.

[6]. R. Weill, and Y. Nes, “Use of Color Vision for Citrus Plucking”, Proceedings
of the IFIP TC5 /WG 5.8 International Conference, 1990.

[6]. R. B. Ohlander, "Analysis of Natural Scenes”, Doctoral Dissertation, Carne-
gie-Mellon University, Pittsburgh, PA. 1975.

[7]. D. C. Baker, S. S. Hwang, and J. K. Aggarwal, "Detection and Segmentation
of Man Made Objects in Outdoor Scenes: Concrete Bridges”, Optical Society of
America, Vol.6, No.6, 1989.

[8]. Y. Miyake, H. Saitoh, H. Yaguchi, and N. Tsukada, "Facial Pattern Detection
and Color Correction From Television Picture for Newspaper Printing”, Journal
of Imaging Technology, Vol.16, No.5, 1990.

[9]. S. H. Ong, and C. C. Hew, "Segmentation of Color Images Based on Iterative
Thresholding and Merging”, ICIP 92. Proceedings of the 2nd Singapore Interna-

tional Conference on Image Processing, 1992.

63

[10]. D.C. Tseng, and D. H. Cheng, "Color Segmentation Using Perceptual At-
tributes”, 11th IAPR International Conference on Pattern Recognition, Vol.3,
1992.

[11]. F. Diaz Pernas, and J. Lopez Coronada, A New Method for Recognition Us-
ing Color Image Segmentation”, Proceedings of the 16th International Confer-

ence on Image Analysis and Processing, 1992,

[12]. S. Tominaga, "Color Classification of Natural Color Images”, Color Re-
search & Application, Vol.17, Iss.4, 1992,

[13]. S. Tominaga, "A Color Classification Method for Color Images Using A Uni-
form Color Space”, IEEE Comput. Soc. Press, 1990.

[14]. S. Tominaga, "Color Classification of Color Images Based On Uniform Color
Spaces”, Proceedings of The SPIE-the International Society for Optical Engi-

‘neering, 1990.

[15]. T. Jaaskelainen, S. Toyooka, S. Izawa, and Kadono, "Color Classification
by Vector Subspace Method and Its Optical Implementation Using Liquid Crys-
tal Spatial Light Modulator”, Optics Communications, Vol.89, Iss.1, 1992

[16]. J. Parkkinen, and T. Jaaskelainen, "Color Vision:Machine and Human”,

Optical Engineering, Vol.1199, Iss.pt.2, 1989,

[17]. 4. Parkkinen, E. Oja, and T. Jaaskelainen, "Color Analysis by Learning
Subspaces and Optical Processing”, IEEE International Conference on Neural

Networks, Vol.2, 1988.
[18]. B. Jahne, Digital Image Processing, Springer—Verlag, 1991.

[19]. Barneyscan Manual, Bayneyscan Cooperation, Berkeley, California, 1989.

64

APPENDIX A DESCRIPTION OF BARNEYSCAN

Barneyscan for the Macintosh is a color desktop scanning system which will
quickly transform 356mm slides into digital information. We can immediately
display this information as an image on a Macintosh II monitor. With software
support supplied by Barneyscan, we can manipulate, adapt, and store the image
information. Then we can readily transfer it to other applications, to merge into
publications, presentation graphics, animage data—base, or in other chosen con-

text.

The process of scanning a slide casts a narrow band of light through a slide,
then through a colored or neutral gray filter. The portions of spectrum that are
not absorbed by the slide or filter reach a photo—detector consisting of a stack
of 1024 sensors. Each sensor responds to the light that has passed through an
area of the slide about a thousandth of an inch square. Every sensor reading is
assigned a numerical value on a scale of 0—-255; corresponding to no light re-
ceived and the maximum received, respectively. The slide is then moved over
very slightly, and the next vertical slice of the slide is scanned. This process is
repeated 1520 times, until the entire width of the slide has been scanned. As a
result, we get an image with resolution 1024 X 1520 which can not be adjusted.
A color scan uses three color filters in succession to measure the red, green and
blue components of the image. The full color image seen on the screen combines

the data from the red, green and blue scan.

Barneyscan image editing software can do most of things which an image pro-
cessing software can generally do. It can display an image (either in color or gray
scale) on screen with magnification ratio from 16:1to 1:16. It is available to read

gray-level value or color values (RGB) and position information on the image.

65

It can make color changes to images, including adjustment of brightness, con-
trast, gamma, and color balance. There are some built—in filters we can use di-
rectly to modify images, including an additive noise filter, smoothing filters,
sharpening filters, and so on. Different types of image (RGB, HSB, HSL—L is
lightness) can be converted between each other. All these image types contain
more than one channel. Barneyscan can split or merge channels of animage and
do some editing on a single channel, From the tool palette, we can choose an edit-
ing function from the grabber to scroll the image, the zoom tool to zoom in or
zoom out the image, the eraser to erase part of the image, the smudge tool to sim-
ulate the effect of dragging a finger through wet paint, the blur tool to blur a part
of the image, the sharpen tool to sharpen part of an image, the eyedropper to se-
lect the current foreground and background colors from colors in an image, the
pencil to create either freehand or straight lines, the paint brush to paint the
foreground color into the image, the airbrush to lay down a diffused spray of
paint on an image, the line tool to draw a straight line on an image, the rubber
stamp tool to pick up a sample of a particular part of animage and place an exact
copy or a modified version of that part on the same image or some other image,
the paint bucket to fill areas with the foreground color, and the blend tool to

create a gradient fill.

The functions used for this project are: capturing the image through scanning,
converting an RGB image to an HSB image, and using a Gaussian blur filter.

The author developed the other programs for this project [19].

66

APPENDIX B SEGMENTATION RESULTS

(a) The Image

(b) The Segments

@

67

(b) The Segments

(m

68

(b) The Segments

(IID)

69

(a) The Image

orange

(b) The Segments

v)

70

(a) The Image

(b) The Segments

V)

71

(a) The Image

(b) The Segments

(VD)

72

(a) The Image

(b) The Segments

(VII)

73

(a) The Image

(b) The Segments

(VIII)

74

(a) The Image

(b) The Segments

(IX)

k)

(a) The Image

(b) The Segments

X)

76

(a) The Image

(b) The Segmentation
(XI)

71

APPENDIX C.1 PROGRAM COMP4.C

* COMP4.C

*Get R, G, B values of an image from the non—interleaved raw file.

* Compress the image into a guarter of the original size by calculating the average R, G, B values of 4 (2 X 2)

* connected pixels.

* The horizonal size and vertical size of the image should be the same.

* This is a program for Macintosh I1

*
#
#

&

#include <math.h>
#include <stdio.h>

#define HEADER_SIZE

#define BASE_RES_ID

#define NIL,_ POINTER

#idefine MOVE_TO_FRONT
#define REMOVE_ALL_EVENTS

#define ERROR_ALERT_ID
#define CANT _OPEN_FILE
#define GET_EOF_ERROR
#define HEADER_TOO_SMALL
#define OUT_OF_MEMORY
#define CANT_READ_HEADER
fldefine CANT_READ PICT
#define CANT_WRITE_HEADER
#define CANT _WRITE_PICT
#define CANT_CLOSE_FILE
#define NOTHING_WRONG
#define CANT_GET_F_INFO
#define CANT_CREATE _FILE

#define NI, PRPORT
#define NIL_IOBUFFER
#define NIL,_DEVBUF

#ldefine NIL_STRING
#define IGNORED_STRING
#define NIL_FILE_FILTER

By Ling Chen

512
400
OL
-1L
0

BASE_RES_ID+1
BASE_RES_ID
BASE_RES_ID+1
BASE _RES_ID+2
BASE_RES_ID+3
BASE_RES_ID+4
BASE_RES_ID+5
BASE_RES_ID+6
BASE RES ID+7
BASE_RES_ID+8
BASE_RES_ID+9
BASE_RES_ID+10
BASE_RES_ID+11

NIL_POINTER
NIL_POINTER
NIL_POINTER

’\P "
NIL_STRING
NIL_POINTER

78

#define NIL_DIALOG_HOOK NIL_POINTER

#define DONT_SCALE_OUTPUT NIL_POINTER
#define HOPELESSLY FATAL ERROR "PGame over, man!”
void ToolBoxInit();

void WindowlInit();

void GetRAWName(}

void PrintRAWFile();

void ErrorHandler();

PicHandle newPICTHand;

PicHandle gThePicture;

WindowPir gPiciure Window;

short int globalRef;

int PICTCount;

SFReply reply;

ToolBoxInit();
WindowInit(});
GetRAWName(&reply);

if (reply.good) /* The User didn’t hit Cancel when asked for a file name */

{
PrintRAWFile(&reply);

MoveTo(320,360);
DrawString(’™p press buiton!™),

while(!Button());
¥

I */

ToolBoxInit() /*—— initial the ToolBox *f

{

InitGraf (&thePort);

InitFonts();

FlushEvents(everyEvent, REMOVE_ALL_EVENTS);
InitWindows();

InitMenus();

TEInit();

InitDialogs(NIL_POINTER };

InitCursor();

79

)3 /# end of ToolBoxInit() *f

WindowInit() /= initial and open the window ::::%/
{ ,
gPictureWindow=GetNewWindow(BASE_RES_ID, NIL_POINTER, (WindowPtr)MOVE_TO_FRONT);
ShowWindow(gPictureWindow };
SetPort(gPictureWindow);

} Pepnnnnnnnnnnnnunnnnnnnnin end of Windowlnit() s ¥/
/A ===%/
GetRAWName(replyPtr) [*====choose an image raw file ====%/
SFReply _ *replyPtr;
{

Point myPoint;

SFTypeList typeList;

int mmTypes;

myPoint.h=100;

myPoint.v=100;

typeList{0} = 'RRRR’;

numTypes = {;

SFGetFile(myPoint,IGNORED_STRING,NIL_FILE_FILTER,numTypes,typeList,
NIL_DIALOG_HOOK,replyPtr };

} /* end of GetRAWName() =¥/
void PrintRAWFile(replyPtr) /** get the R, G, B values; compress the image; save the new image **/
SFReply *replyPtr;
{

short int temcolor,srcFile,newsrcFile,vrefnum;

fong pictSize,n,new,npictSize,nlongcount,longcount;

Iong i,j,m, k,cc,vv,hh,hsize,vsize,nhsize,nvsize;

RGBColor cPix;

unsigned char tem,*red,*green,*blue,*sl, *s2;

SFReply *replyPtr2;

OSErr myErr;

Point myPoint;

if (FSOpen((*replyPr).fName, (*replyPtr).vRefNum, &srcFile } l=noErr)
{

ESClose(srcFile);

ErrorHandler(CANT_OPEN_FILE);

80

if (GetEOF(srcFile, &pictSize) !=noEr }
{

FSClose(srcFile),

ErrorHandler{ GET_EOF_ERROR);
3

n=pictSize/3;
hsize=(long) sqrt(n);
vsize=(long) sqri(n);

if ((red=(unsigned char*}NewPir(n) }==NIL_POINTER)
{

FSClose(srcFile);

ErrorHandler(OUT_OF _MEMORY);

}

if ((green=(unsigned char*)NewPtr(n) }==NIL,_POINTER)
{

FSClose(srcFile);

ErrorHandler(OUT_OF_MEMORY);

}

if ((blue=(unsigned char*)NewPtr(n) }==NIL._POINTER)

{
FSClose(srcFile);

ErrorHandler(OUT_OF_MEMORY);
¥

longcount=n*sizeof(unsigned char);

if { FSRead(srcFile, &longcount, red}!=noErr)

{
FSClose(sicFile);
ErrorHandler{ CANT_READ_PICT);
b
if (ESRead(srcFile, &longcount, green)!l=noErr)
{
FSClose(srcFile);
ErrorHandler(CANT_READ_ PICT);
}
if (FSRead(srcFile, &longcount, blue)l=noErr)
{
ESClose(srcFile);
ErrorHandler(CANT_READ_PICT);
¥
FSClose(srcFile);

81

nhsize=hsize/2;

nvsize=vsize/2;

new=n/4;

npictSize=new*3;
nlongcount=new*sizeof(unsigned char);

for (i=0; i<nvsize; i++) /[#¥**%* gtart to compress **#+%/

{
for { j=0; j<nhsize; j++)
{
vv=2%;
hh=2%j;
red[i*nhsize+j]=(red[vv*hsize+hh]+red{(vv+1)*hsize+hh]+red[vv*thsize+hh+1]
+red[(vv+1)*hsize+hh+1])/4.;
green[i*nhsize-+jl=(green]vv*hsize+hh]+green[(vv+1)*hsize+hh]
+green[vv*hsize-+hh+1]+green[(vv+1)*hsize+hh+1])/4,;
blue[i*nhsize+j]=(blue[vv*hsize+hh]+blue[{vv+1)*hsize+hh]
+bluefvv*hsize+hh+1]+blue[{(vv+1)*hsize+hh+1])/4.;
X
b4
MoveTo(2,15);
DrawString("™p Compression is done! ™); /#¥%% end of compression #¥%%f
myPoint.h=200; [EEEEE gtart (o save FEEEES

myPoint.v=200;
SFPutFile(myPoint, \psave the file as: ”,(*replyPtr). fName,NIL_DIALOG_HOOK replyPtr2);

if ((*replyPtr2).good) f###%% The User didn’t hit Cancel ##¥%%/
{
if (Create((*replyPtr2). fName, (*replyPir2).vRefNum, '8 BIM’, 'RRRR"}l=noFErr)
ErrorHandler(CANT_CREATE _FILE);

if (FSOpen((*replyPtr2).fName, (*replyPtr2).vRefNum, &newsrcFile)!=noEir)

{

FSClose(newsrcFile);

ErrorHandler{ CANT_OPEN_FILE),
}
if (FSWrite{ newsrcFile, &nlongcount, red)!=noErr)
{

FSClose(newsrcFile);

ErrorHandler{ CANT_WRITE_PICT);
}
if (FSWrite(newsrcFile, &nlongcount, green)!=noErr)
{

FSClose(newsrcFile);

ErrorHandler{ CANT_WRITE_PICT);
b

82

if (FSWrite(newsrcFile, &nlongcount, blue)!=noEir)
{

FSClose(newsrcFite),

ErrorHandler(CANT_WRITE_PICT);

>

if (SetEOQ¥(newsrcFile, npictSize)!=noErr)

{
FSClose(newsrcFile);
ErrorHandler(GET_EOF_ERROR);

b

FSClose(newsrcFile);
¥ /#%%% end of saving *¥%%/

e ’ 4/

void ErrorHandler({ stringNum) /= give the warning message and exit the procedure *f
int stringNum;

{

StringHandle errorStringH;

if ((errorStringH = GetString(stringNum)) == NIL,_ POINTER)
ParamText{ HOPELESSLY_FATAL_ERROR,NIL_STRING, NIL_STRING, NIL_STRING);

else

{
HLock((Handle)errorStringH); _
ParamText(*errorStringH, NIL_STRING, NIL,_STRING, NIL_STRING);
HUnlock((Handle) errorStringH);

}

StopAlert{ ERROR_ALERT_ID, NIL_POINTER);

ExitToShell();
} /* : end of ErrorHandler #f

83

APPENDIX C.2 PROGRAM SEG-SAVE-CLASS.C

* . SEG-SAVE-CLASS.C

* Get an image from a 'PICT’ file and display it

* Read H, S, B data from the noninterleaved raw file

* Segment the image according to the algorithm and the thresholds
* Save the result of the segmentation

* Classify and identify every segment

* By Ling Chen

* 1994

#include <math.h>

#define HEADER_SIZE

#define BASE_RES_ID

#define NIL__POINTER

ftdefine MOVE_TO_FRONT
fidefine REMOVE_ALI,_EVENTS

#define ERROR_ALERT_ID
#define CANT_OPEN_FILE
#define GET_EOF_ERROR
#define HEADER_TOO_SMALL
#define OUT_OF MEMORY
ftdefine CANT_READ_HEADER
#define CANT _READ_PICT
#idefine CANT_WRITE_HEADER
#define CANT_WRITE_PICT
#define CANT_CLOSE_FILE
#define NOTHING_WRONG
fidefine NEWHAND_WRONG_FIRST
#define CANT_CREATE_FILE

#define NIL, PRPORT
#idefine NIL_TOBUFFER
#define NIL. DEVBUF

#idefine NIL_STRING

#define IGNORED_STRING
#define NIL_FILE_FILTER
#define NIL_DIALOG_HOOK
fidefine DONT_SCALE_OUTPUT

512
400
oL
-1L
0

BASE_RES_ID+1
BASE _RES_ID
BASE_RES_ID+1
BASE RES_ID+2
BASE_RES_ID+3
BASE_RES ID+4
BASE RES_ID+5
BASE_RES_ID+6
BASE_RES_ID+7
BASE RES_ID+8
BASE_RES_ID+9
BASE _RES_ID+10
BASE_RES_ID+11

NIL_POINTER
NIL_POINTER
NIL_POINTER
wp »
NIL_STRING
NIL_POINTER
NIL_POINTER
NIL_POINTER

84

#define HOPELESSLY FATAL_ERROR \PGame over, man!”’

void ToolBoxInit();
void WindowInit();
Rect PrintPICTFile();
void PrintRAWFile(};
void GetPICTName();
void GetRAWName();
void ErrorHandler(};
PicHandle newPICTHand;
PicHandle gThePiciure;
WindowPtr gPictureWindow;
short int globalRef;
int PICTCount;
/>:<3.< Sk s ok sksk kR ek Rk e st sk o vk s o sk sk sk sk kR i s o s s s sl ks s ok ><><><><><><><><><=<==<><><><><>=>=>=>=>=H/
main()
{
SFReply replyl, reply2;
PicHandle PICTHand;
PicHandie newHand;
Rect location;
ToolBoxInit();
WindowInit();
GetPICTName(&replyl);
GetRAWName(&reply2);
if (replyl.good) fx#%% The User didn’t hit Cancel ***%/
{
PrintPICTFile(&replyl);
b
if (reply2.good) /#%%% The User didn’t hit Cancel **#%/
{
PrintRAWFile(&reply2);
MoveTo(500,400);
DrawString{"\ppress button™);
while(!Button());
)
/* *f
ToolBoxInit() /* initiate the ToolBox —*/
{

InitGraf (&thePort);

85

InitFonts();
FlushEvents(everyEvent, REMOVE_ALL _EVENTS };
InitWindows();
InitMenus();
TEInit();
InitDialogs(NIL._POINTER);
InitCursor();
¥ /* end of ToolBoxInit() *f

* mez ¥/

WindowlInit() /*====initiate and open the window ====%/
{
gPictureWindow=GetNewWindow(BASE_RES_ID, NIL._POINTER, (WindowPtr)MOVE_TO_FRONT),
ShowWindow(gPictureWindow);
SetPort(gPictureWindow);

} fE= end of WindowlInit(} #f
L e s ea e e R SRR A RS RS R LR SR SO S eEA S bA R SR E SRR R LSRR e A LR RE bR sad S h b s E ek e bt #f
void GetPICTName(replyPtr) /*.... choose an image name*%/
SFReply *replyPtr;
{

Point myPoint;

SFTypeList typeList;

int numTypes;

myPoint.h=100;

myPoint.v=100;

typeList[0] = 'PICT";

mumTypes = 1;

SFGetFile{ myPoint, IGNORED_STRING,NIL_FILE_FILTER,numTypes,typeL.ist,
NIL_DIALOG_HOOK replyPir);

W i endof GetPICTNAINEovvveiviicsiiinnessiieirssssnsasssrasessonsassens *
L R 4
Rect PrintPICTFile(replyPir) /*:::: get the image from the "PICT’ file and display it ::::%/
SFReply *1eplyPtr;
¢ ,

PicHandle thePict;

short int srcFile;

char pictHeader] HEADER_SIZE],

long pictSize, headerSize;

unsigned char *gl, *52, *s3, *s4;

if FSOpen((*replyPtr).fName, (*replyPir).vRefNum, &srcFile) I=noErr)

{

FSClose(srcFile);

86

ErrorHandler(CANT_OPEN_FILE);

H
if (GetEQOF(srcFile, &pictSize) k=noFErr)
{
FSClose(sicFile),
ErrorHandler(GET_EOF_ERROR};
¥

headerSize=HEADER_SIZE;

if (FSRead(srcFile, &headerSize, pictHeader) I=noErr)
{

FSClose(srcFile),

ErrorHandler{ CANT_READ_HEADER);
}
if ((pictSize ~=HEADER_SIZE)<=0)
{

FSClose(sicFile);

ErrorHandler{ HEADER_TOO_SMALL);
H

if ((thePict=(PicHandle)NewHandle(pictSize))==NIL_POINTER)

{
FSClose(srcFile);
ErrorHandler(OUT_OF_MEMORY);

}
HLock((Handle)thePict);

if (FSRead(srcFile, &pictSize, *thePict)l=noErr)

{

FSClose(srcFile);

ErrorHandler{ CANT_READ_PICT);
¥
FSClose(srcFile);

DrawPicture(thePict, &(*#(thePict)).picFrame);
HUnlock{(Handle)thePict);
DisposeHandle((Handle)thePict);

return;
¥ Prrmnnnnannnnnnnnnnnnennin end of PriedPICTFEile() s nnnannnnnnnny/
/*® *f
void GetRAWName(replyPtr) /*—— choose an image HSB raw file #/
SFReply *replyPtr;
{

Point myPoint;

SFTypeList typeList;

int numTypes;

87

myPoint.h=100;
myPoint.v=100;
typeList[0] = "HHHH’;
numTypes = I;
SFGetFile(myPoint,IGNORED_STRING,NIL_FILE_FILTER ,numTypes,typeList,
NIL_DIALOG_HOOK replyPtr);
¥ /* endof GetRAWName() =f

void PrintRAWFile(replyPir) /** get the H, S, B values; segment the image; save the result; classify **/
SFReply *replyPtr;
{
short int srcFile, newsrcFile, *charact, vrefnum,
long pictSize,longcount,nn,m,k,i,j,n, averh, avers, averb, *sign, reg;
long hsize,vsize, Hthreshold, Sthreshold, Bthreshold, totalh, totals, totalb;
RGRBColor cPix;
unsigned char *hue, *satu, *bright, *seg, *s1, *s2, max,tem,above;
SFReply *replyPtr2;
Point myPoint;

if (FSOpen((*replyPtr).fName, (*replyPtr).vRefNum, &srcFile) l=noErr)

{

ESClose(srcFile);

ErrorHandler(CANT_OPEN_FILE);
H
if (GetEOF(srcFile, &pictSize) l=noFrr)
{

FSClose(srcFile),

ErrorHandler(GET_EOF_ERROR);
} n=pictSize/3;

hsize=sqrt(n);
vsize=sqrt{n);

if ((hue=(unsigned char*)NewPir(n))==NIL._POINTER)

{
FSClose(srcFile);
ErrorHandler{ OUT_OF_MEMORY);
)
if ((satu=(unsigned char*)NewPtr(n) }==NIL._POINTER)
{
FSClose(srcFile);
ErrorHandler(OUT_OF_MEMORY);
¥

88

if ((bright=(unsigned char*)NewPtr(n))==NIL_POINTER)
{
FSClose(srcFile);
ErrorHandler(OUT_OF_MEMORYY);
b
m=n*sizeof{short int);
if ({ charact=(short int*}NewPtr(m) }==NIL_POINTER)

{
FSClose(srcFile);

ErrorHandler(OUT_OF_MEMORY);
b
m=2*hstze*sizeof(long);
if ((sign=(long*)NewPtr(m))==NIL_POINTER)

{
FSClose(srcFile);
ErrorHandler(OUT_OF_MEMORY);

¥
longcount=n*sizeof(unsigned char};

if (FSRead(srcFile, &longcount, hue)!=noFrr)

{
FSClose(srcFile);
. ErrorHandler{ CANT_READ_PICT),
H
if (FSRead(srcFile, &longcount, satu)!=noErr)
{
FSClose(srcFile);
ErrorHandler(CANT_READ_PICT);
b
if (FSRead(srcFile, &longcount, bright)l=noErr)
{
ESClose(srcFile);
ErrorHandler{ CANT_READ_PICTY);
H
FSClose(srcFile);
for (i=0; i<2*hsize; i++) /#%% start to pick up the background and the plate *¥%/

sign[i]=0;

for (i=0; i<vsize; i++)

for (j=0; j<hsize; j++)

if ((hue[i*hsize+j]>100) && (hue[i*hsize+j]<230) &&(satu[i*hsize+j]<50)
& & (bright[i*hsize+j]>90) && (bright[i*hsize+jl<140))

89

charact[i*hsize+j]=0;

sign[0]++;
)
else
{
if ((satu[i*hsize+j]<35) && (bright[i*hsize+j]>200))
{
charact[i*hsize+j]=1;
sign[1]++;
b
else
{
charact[i*hsize+j]=2;
b
b
H
} 1#%%% end of pick up ¥/
max=2; 1¥%%% gtart to segment %%/

Hthreshold=10;
Sthreshold=15;
Bthreshold=20;
for (j=1; j<hsize; j++)
{
if ((charact[j]!=0) && (charact{j]!=1))
{
if((abs(hue[j]-hue[j-1]} < Hthreshold) && (abs(satu[j]-satu[j—1]) < Sthreshold) &&
(abs(bright[j]-bright[j-1]) < Bthreshold) && (charact[j-1]!=0) && (charact[j-1]!=1))
charact]jj=charact[j-1];

else

{ _
charact[j]=max;
max++;

H
sign[charact[j]]++;

for (i=1; i<vsize; i++)

{

90

if ((charact{i*hsize]!=0) && (charact[i*hsize]l=1))

{
if((abs(hue[i*hsize]-hue[(i-1)*hsize]) < Hthreshold)
& & (abs(satu[i*hsize]-satuf (i~ Y*hsize]) < Sthreshold)
&& (abs(bright[i*hsize]-bright[(i—1)*hsize]) < Bthreshold)
&& (charact](i-1)*hsize]!=0) && (charact{(i—-1)*hsize]!=1))
charact[i®*hsize]=charact[(i—1)*hsize];
else
{
charactfi*hsize]=max;
max++;
b
sign{charact[i*hsize][++;
b
for (j=1; j<hsize; j++)
{

if ({charact[i*hsize+j]!=0) && (charact[i*hsize+j]l=1))
{

if { (abs(hue[i*hsize+j]-huei*hsize+i-1]) <Hthreshold)
& & (abs(satu[i*hsize+jl-satufi*hsize+j—1]) < Sthreshold)
& & (abs(bright[i*hsize+j]-bright{i*hsize+j~1]) < Bthreshold)
& & (charact[i*hsize+j-1]1=0) && (charact[i*hsize+j-1]1=1))

if ((abs(hue[i*hsize+j]-hue[(i-1)*hsize+j]) <Hthreshold)
& & (abs(satu[i*hsize+jl-satu[(i—1)*hsize+]j]) < Sthreshold)
&& (abs(bright{i*hsize+j]-bright[(i—1)*hsize+]j]) < Bthreshold)
& & (charact[(i-1)*hsize+j]!=0) && (charact[(i—1)*hsize-+j]!=1))

{
if { charact[i*hsize+j—1)==charact[(i—1)*hsize+j])
{
charact[i*hsize+j]=charact[i*hsize+j-1];
sign[charact{i*hsize+j]]++;
¥
else
{
tem=charact[i*hsize+j-1];
above=charact[{i—[)*hsize+jl;
charact[i*hsize+j]=above;
sign[above]++;
if((tem!=0) && (tem!=1))
{

sign{tem]=0;

91

for (m=0; m<i; m++)

{
for (k=0; k<hsize; k++)
{

if (charact{m*hsize+k]==tem)

{
charact[m*hsize+k]}=above;
sign{above]++;

}
for (k=0; k<j; k++)
{

if (charact{i*hsize+k]==tem)

{

charact[i*hsize+k]=above;
sign[above]++;

charact[i*hsize+jl=charact[i*hsize+j-11;
sign[charact[i*hsize+j}]++;

else

{
if { (abs(hue[i*hsize+j]-hue[(i—1)*hsize+j]) <Hthreshold)

& & (abs{satu[i*hsize+jl-satu[(i—1Y*hsize-+j]) < Sthreshold)
& & (abs(bright[i*hsize+jl-bright[(i—~1)*hsize+j]) < Bthreshold)

&& (charact](i—1)*hsize+j]!=0)
&& (charact[(i~1)y*hsize+j]l=1})
charactfi*hsize+j]=charact[(i—1)*hsize+j];

else

{
charact[i*hsize+j]=max;
max++;

}

signfcharact[i*hsize+j]j++;

92

JrEEEgRgERs otart to draw the edge Fdkpsol ok kior Rk f

if ((seg=(unsigned char*)NewPtr{n))==NIL_POINTER)
ErrorHandler{ OUT_OF_MEMORY);

for (i=0; i<n; i++)
seg[i]=255;

for (i=0; i<vsize; i++)

{
seg[i*hsize]=0;
seg{(i+1)*hsize-1]=0;

for (j=0; j<hsize; j++)

{
seg(jl=0;
seg[(vsize—1)*hsize+j]=0;

MoveTo(250, 0);
LineTo(450, 0);
LineTo(450, 200);
LineTo(250, 200),;
LineTo(250, 0);

cPix.red=0;
cPix.green=0;
cPix.blue=65035;

for (i=0; i<vsize; i++)
{
for (j=0; j<hsize; j++)
{
nn=i*hsize+j;
if { (charact{nn]!=charact[nn-1]} Il (charact[nn]!= charact[(i~1)*hsize-+j]))

{

seg{nn]=0;

93

SetCPixel(j+250, i, &cPix);

frEwmsrss ond of the drawing *xsssssss/

DisposePtr{ (Ptr) seg);

myPoint.h=10; /#¥¥* gtart of saving ***¥/
myPoint.v=210;

SFPutFile(myPoint,\psave the file as: ”,(*replyPtr).fName,NIL._DIALOG_HOOK jreplyPtr2)

if ((*repiyPtr2).good)

{
if (Create((*1eplyPu2).iName, (*replyPir2).vRefNum, '8BIM’, "WWWW "}l=noErr)
ErrorHandler(CANT_CREATE_FILE);
if (FSOpen((*replyPtr2).fName, (*replyPtr2).vRefNum, &newsrcFile)l=noErr)
{
FSClose(newsrcFile),
ErrorHandler{ CANT_OPEN_FILE);
}
if (FSWrite(newsrcFile, &longcount, seg)!=noFErr)
{
FSClose(newsrcFile);
ErrorHandler(CANT_WRITE_PICT);
b
if (SetEOF(newsrcFile,longcount)!=noEir)
{
FSClose(newsrcFile);
ErrorHandler{ GET _EOF_ERRORY),
b
FSClose(newsrcFile);
} /#%%% end of saving *¥#%/
tem=0; friosinsk gtart classification *#xsssris]

for (i=0; i<vsize; i-++)

{

for (j=0; j<hsize; j++)

{
reg=0;
totalh=0;
totals=0;

94

1#%%% The User didn’t hit Cancel ®#¥%%/

?

totalb=0;
nn=charact{i*hsize+j];

if (sign{nn]>100)

{

for { m=i; m<vsize; ni++)
{
for { k=0; k<hsize; k++)
{
if (charact[m*hsize+k}==nn)

{

totalh+=hue[m=hsize+k];
totals+=satu[m*hsize+k];
reg++;

MoveTo(5,220+15*tem);

averh=totath/reg;
avers=totals/reg;

if ((averh>=3) && (averh<=7) && (avers>=210) && (avers<=225))
DrawString("“p Tomato!™),
else
{
if ((averh>=6) && (averh<=9) && (avers>=230) && (avers<=250))
DrawString("p Carrot!™);
else
{
if ((averh>=12) && (averh<=18) && (avers>=225) && (avers<=240))
DrawString(""p Orange!™);
else
{
if ((averh>=45) && (averh<=50) && (avers>=180) && (avers<=195))
DrawString("p Broccolil™);
else
{
if ((averh>=52) && (averh<=74) && (avers>=115) && (avers<=240))
DrawString("“p Green Peas!"};
else

{

95

if ((averh>=29) && (averh<=38) && (avers>=40) && (avers<=290))
DrawString{"p Potato!™);
else
{
if { (averh>=24) && (averh<=28) && (avers>=215)
&& (avers<=230))
DrawString{"p Corn!");
else
{
if ((averh>=11) && (averh<=17) && (avers>=140)
&& (avers<=180))
DrawString("N\p Beef!”);

else
{
if { (averh>=14) && (averh<=19} && (avers>=185)
&& (avers<=220))
DrawString(’p Toast Bread!”);

else
{
DrawString("p Something Else!”);
b
b
i
H
¥
b
¥
b4
¥
tem-++;
sign[nn]=0;
b
h
}
DisposePtr((Pir) hue };

DisposePtr((Ptr) satu);
DisposePtr((Ptr) bright);

JEEeksksckokioR R R RcoRRREORE and OfGetRAWNﬂH]e() 7 HROR R AR A R HRE R

96

void ErrorHandler(stringNum) /#%%%% give the warning message and exit the procedure *#%%%/
int stringNum;
{

StringHandle errorStringH;

if ((errorStringH = GetString(stringNum)) == NIL. POINTER)
ParamText(HOPELESSLY FATAL ERROR, NIL_STRING, NIL_STRING,
NIL_STRING);

else

HLock((Handle)errorStringH);
ParamText(*errorStringH, NIL_STRING, NIL_STRING, NIL_STRING);
HUnlock{{Handle} errorStringH);

StopAlert{ ERROR_ALERT_ID, NIL,_POINTER };
ExitToShell();

} /><><><><><><=<><>< s sk s skokaiok skokok ok *end ofErrorHandler ><><><><><xxxxxxxxx*xxxxxxxxxxx/

97

