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Abstract

In nutrition studies, it is frequently important to obtain long torm accurate estimates offood

intake. A colol photograph of the meal, taken just beforc consumption, is a convenient way

ofrecording the information, plovided that it can be colrectly inter.pr.eted. The objective of

this thesis was to study the possibility ofidentifying food items by color alone. Food plates

which were photoglaphed on 35mm colol slides wele digitized into a Macintosh IIcx com-

puter. After pre-plocessing steps of compression, color.model tr.ansformation, and image

blurling, the algorithms of segmentation and classification wete applied to the image. Ther.e

werc two steps of segmentation. The fiÍst was identification ofthe backgr:ound and the plate

by a thlesholding method based on the analysis of histograms. Then an algor.ithm which

combined region-growing with splitting-and-merging was applied to the remaining ar.ea.

Once an image was segmented into several segments with above method, average hue and

saturation of every segment were calculated and were compared to each element of a pr.e-

viously measured taining set. A segment was assigned as a food item if it matches one ele-

ment in the set. Alternatively, it was assigned as unknown if it did not match any element.

About 30 slides were used as training data, and about i0 slides were used to test the algo-

rithms and programs. The algolithms and programs wele successful. The study shows that

it is possible to identify food items on a color image.
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CI{APIER I INÎRODUCÎION

l.l Introduction

Color has been playing a more and more important role in segmentation and

classification of images. Part ofits significance comes from the fact that, color is

the most obvious information and has a greater amount of detailed information

which generally enables objects to be distinquished more easily. Thus, color seg-

mentation and classification are reasonable procedures to be considered in food

image processing. Segmentation and classifrcation of color images by color dif-

ferences are usually done by using a variety ofcolor models (or spaces) and crite-

ria for threshold selection. The RGB (red, green, blue) model and HSB (hue, sat-

uration, brightness) and HSI (hue, saturation, intensity) models are the most

common ones used for color segmentation and classification. Histograms of ev-

ery component in each space could be helpfi.rl for determining the criteria for

threshold selection.

1.2 Color Food Image Processing

Food image processing has been proposed by Dr. G. P. Sevenhuysen and some

of his colleagues as a method for accurately estimating individuat food intake

over long periods [2],[3]. In determining the relationship of diet and chronic dis-

eases, such as heart, disease and cancer, it is necessary to measure individual

food consumption. The methods most commonly used are the recall interview,

the diet history, and the food record using volume estimates of food. But all these



methods could not avoid the disadvantage ofthe subjectivity involved in quanti-

fying amounts eaten. Therefore, they proposed a photographic method to record

food consumption to minimize errors due to subjective estimation of food quanti-

ty by either investigator or respondent. A photographic record is made by the

subject, who takes a single photograph ofeach plate offood at the time ofeating.

By segmentation and classification of the images by color, shape, texture,

mottling, and size, they would decide which kind offood the observed subject has

taken, and by a certain method ofcalculation ofthe amount ofeach kind offood

eaten, they achieve the goal of individual food consumption calculation.

This thesis concerns only the first step ofthe whole project: segmentation and

classifìcation by color, which is a further step towards the totally automatic pro-

cessing of photographic records. The remaining work will be left for further

study.

L.3 Color Models

A color model (or a color space) is a specification ofa 3-D coordinate system

and a subspace within that system where each color is represented by a single

point.

1.3.r RGB Model

The most commonly used color model both in hardware and in image process-

ing is the RGB (red, green, blue) model Owingto the structure ofthe human eye,

all colors are seen as variable combinations of the three primary colors red,

green, and blue. In the RGB model, each color appears in its primary spectral



components ofred, green, and blue. lt is based on a cartesian coordinate system.

The color subspace ofinterest, is the cube shown in Figure 1.1 tlJ.

For theoretical convenience, it is assumed that all color values have been nor-

malized so that the cube in Figure 1. 1 is the unit cube. For digital image process-

ing, color values could have different maximum values depending on different

systems. For example, for a 24-bit color system (which could have more than a

million colors), each component (R, G, and B) could have a value from 0 to 255

(one byte).

Figure 1.1 RGB Color Cube

Images in the RGB color model consist of three independent image planes,

one for each pnmary color. When fed into an RGB monitor, these three images



combine on the phosphor screen to produce a composite color image. Thus the

use of the RGB model for image processing makes sense when the images them-

selves are naturally expressed in terms ofthree color planes. Most color cameras

used for acquiring digital images utilize the RGB format, which alone makes this

an important model in image processing.

Sometimes the rgb model is used instead of the RGB model Here,

R

(R+G+B)
( 1_1)

G
O:-
" (R+c+.8)

,Bh:-
(R+G+B)

(r-2)

(1-3)

L.9.2 ESI and ESB Models

Another color model frequently used in image processing is the HSI or HSB

model. Here, hue is the color attribute ofa color perception that describes a pure

color (for example pure yellow, orange, orred). It is associated with the dominant

wavelength in a mixture oflight waves. Saturationgives a measure ofthe degree

to which a pure color is diluted by white light, i.e. it refers to relative purity or

the amount ofwhite lightmixed with a hue. I is the intensity. It is decoupled from

the color information in the image. Brighüness is the attribute of a visual sensa-

tion according to which a given visual stimulus appears to be more or less in-

tense. The color components of the HSI model are defined with respect to the col-

or triangle shown in Figure 1.2 [1J.



Whíte

\l/ Green

Intensity

Figure 1.2 (a) HSI Color Tbiangle (b) HSI Color Solid

The two models could be converted from one to the other based on Figure 1.2.

We have the expressions ( 1-4), ( 1-5), ( 1-6) [1], and ( 1-7) for the conversion from

RGB to HSI and HSB models.

ø: "o*-,--å14:9Ì92L-t(R - G)2+ (R - G) (G -Ð)+

?
s = I - (R +c +Ð tmin(R' G,B)l

¡:1rn+G+B)
J

B: max(R, G,B)

(1-4)

(1-5)

(1-6)

(t-7)



The conversion from HSB to RGB depends on the range of hue ( 00- 3600).

For the RG Sector( 00 < FI < 1200 ), we have the expressions (1-8), (1-g), and

(1-10) I1l.

For the GB Sector( 1200 <H < 2400 ), we have the expressions (1-11), (1-12),

and (1-13) tll.

¿:1rr-s3'

':+['.##ä]

g:l-(r+b)

,:lrt-s
J

t I .lcosÉr I
t =tLt. 

"*Gd-Ðl

b:1-(r+g)

r:frt-.r

(1-8)

(1-e)

(1-10)

(1-11)

(r-12)

(1-13)

For the BR Sector( 24Oo <H < 3600), we have the expressions (1-14), (1-15),

and (1-16) [1].

(1-14)



,:+f'.#ä]

r:1-(g+b)

(1-15)

( 1_13)

1.3.3 Other Models

There are some other models in use today oriented either toward hardware

(such as for color monitors and printers) or toward applications where color ma-

nipulation is a goal (such as in the creation ofcolor graphics for animation). The

CMY model (cyan, magenta, yellow) is the model for color printers; and the yIe

model (Y corresponds to luminance, and I and Q are two chromatic components

called inphase, and quadrature, respectively) is the standard for color TV broad-

cast.

Lxa*bx is also a color model often used for color image processing, which was

developed to provide a computationally simple measure of color in agreement

with the formerþ popular Munsell color system. Here L* is correlated with

brightness, a* with redness-greenness, and bx with yellowness-blueness. This

system could also be converted to the RGB system, and vice versa.

Data Format and Convention

An RGB color image is comprised ofthree bitmaps, separated into red, green,

and blue planes. They are produced by "Barneyscan" (a high resolution color dig-

itizer combined with software-see Appendix A) in three separate scan passes

1.4



âcross the source image. In a color plane, a pixel value of 255 is the maximum

brightness of that color primary, and 0 is the minimum.

An HSB image is an image made up of three channels: hue, saturation, and

brightness. When an image is converted from an RGB image to an HSB image,

brightness value ofa pixel is the value ofthe largest of the R, G, or B color compo-

nents.

The RGB or HSB image fìle format,used in this system is non-interleaved raw

format. In a non-interleaved raw frle, data ofühe three component images aïe

saved successively. For an RGB image, for example, there are three parts in a

ftle. The frrstparüis for red component. Values ofred are saved pixelby pixel with

one byte for one pixel. Once the red values ofall pixels have been saved, the gïeen

values ofall pixels start in the same \¡/ay as the red values. Then the blue values

follow A HSB image could be saved in the same way. The only difference is that

hue, saturation, and brightness values are located in three parts respectively,

instead ofred, green, and blue values.



CIIAPTER 2 SYSTEM DESCRIPîION

2.1 Image Digitizing

The purpose ofthis project is to study the possibility of segmentation and clas-

sification of color images of food.

The photographic record ofeach food plate is made on a 35mm color transpar-

ency. In each record, there are usually background (grey), plate (white), arÌð.2-5

food items on the plate. The transparencies are made under natural light, avoid-

ing the influence ofany artificial light on color. "Barneyscan" is a combination

ofa high resolution digitizer for 35 mm transpareneies with software that drives

the scanner and perform some basic image handling functions. It digitizes each

transparency to a 24-bit RGB color image with the resolution of 1520 x 1024 pix-

els and stores it in Macintosh computer, requiring a storage of4.5 megabytes for

each image file. To save stotage space (hard disk and memory) and processing

time, unnecessary background is cuü off, resulting in an image of 800 x 800 with

24 bits per pixel, a file size about 1.9 Megab¡rtes.

The Barneyscan can adjust exposure time automatically when scanning so

that the maximum values of R, G, or B in the image are 255. Since we use a white

plate, which could be a reference for color adjustment, we set the exposure time

for every slide so that the maximum R, G, and B values of the plate could be

around 250. With this method, we avoid over-exposure, which might result in

the loss of some color information. Theoretically, the R, G, B values of the white

plate should be roughly equal. But due to the exposure system, the three values

are slightly different sometimes. In this case, we can adjust the balance ofcolor



for the whole image by "Barneyscan", so that the three values become roughly

equal.

2.2 lmage Compression

Because we are dealing with color information only and doing color segmenta-

tion and classification while neglecting details like texture or motUing, we com-

press the image by calculating the average R, G, B offour (2 x 2) connected pixels

to be the new R, G, B values for one pixel in the new image ( see also 3.2). There-

fore the size ofthe new image is one quarter ofthe original size. The image ready

for processing is a 400 x 400 24--bit color image with the size of480 l{bytes.

2.3 Color Model Transformation

The images we get from the scanner are in RGB form. Values of R, G, and B

are very sensitive to the brightness ofimages, i.e. they are very sensitive to the

exposure time both for making slides and for scanning. Experimental results in-

dicate that the HSB (hue, saturation, and brightness) model is relatively reli-

able. So we transform all RGB images into HSB images in this project ( see also

3.1).

2.4 Blurrlng

When we only consider colors, too many details can make segmentation te-

dious. There are often sharp points in the image due to the high scanning resolu,

l0



tion, noise, and the food itself. These pixels have very different colors than their

neighborhoods. It is not expected to segment them as distinct foods. They are of

no significance for color classification either. So we blur the image with a Gâus-

sian blurring filter before it is segmented (see also 3.3).

2.5 ldenttfÏcation of Background and Plate

The next step is picking up the background and plate based on histogram anal-

ysis, since every image has almost the same background and plate (if we ignored

the influence of different exposure on color). A set ofthresholds in HSB space is

built up to detect the background cluster and the plate cluster according to train-

ing results. Once the background and plate are determined, these two areas are

not to be segmented.

2.6 Segnentation

The segmentation algorithm comes from the idea of combining a region grow-

ing algorithm and a region splitting-and-merging algorithm and is applied in

the remaining areas after removal of background and plate. We mainly use hue

and saturation as the variables to apply the segmentation algorithm with the

help ofbrightness. Thresholds of differences ofhue, saturation, and brightness

of two succeeding pixels are set based on the analysis of training data. Values

ofhue, saturation, and brightness ofeach pixel are compared to the values ofits

neighbors. Ifthe difference ofevery component between the pixel and one ofits

neighbors is smaller than the threshold, the pixel isjoined to the neighbor. Alter-

natively, the pixel wiII serve as the start of a new region, if at least one of three

lt



components shows a difference between the pixel and any neighbor larger than

the threshold. This algorithm tests every pixel and results in an image (except

the parts ofthe background and the plate) which is segmented into several parts

according to their color.vector values.

2.7 Classifïcation

Now comes the last step to reach our goal: classifrcation. The result from seg-

mentation leaves us several areas which cover the whole image. Our algorithm

of classifrcation is suppose to recognize what, they represent, e.g. how many

kinds offood on the plate? And what are they?

The system calculates the average hue and saturation ofeach segment, so that

each segment can have an average vector in HSB color space. This vector is com-

pared to clusters of food items, the knowledge which we acquired from a number

oftraining images. The decision is made when the location ofthe average vector

match one of the clusters. Ifthe vector does not match any cluster, the decision

of "something else" wor¡ld be given.

Figure 2. 1 gives a flow chart of the system.



slide digitizing

cutting off unnecessary background

image compression

transformation from RGB to HSB

Gaussian blurring

identification of background and plate

segmentation of food image

classification of food image

giving the decisions

Figure 2,1 Flow Chart
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CIIAPTER 3 PRE-PROCESSING

3. l Transformation

Original images digitized from 35mm slides by Barneyscan hardware and soft-

ware are in RGB form. Three bytes (24 bits) are used to represent each pixel: one

for red, one for green and one for blue. So R, G, B respectively could have any

value from 0 to 255.

The most important components for segmentation, especially for classifrca-

tion, are hue and saturation, since hue is a color attribute ofa color perception

that describes a pure color and saturation gives a measure ofthe degree to which

a pure color is diluted by white light. The higher the amount ofwhite light mixed

with a hue, the lower the saturation is. So hue combined with saturation could

determine most colors. Brightness is the attribute ofa visual sensation accord-

ing to which a given visual stimulus appears to be more or less intense. In some

particular case, when hue and saturation together are not enough to determine

a color, we need the help of brightness. For example, the plate has the color

white, and itis the brightest objectin an image. But the hue ofpure white is arbi-

fuary. It could be any value with the saturation zero (Figure 1.2). In practice,

plates in images are not, pure white but close to pure white. Their hues are not

reliable, they are sensitive to the light reflecting from surrounding objects. The

values of saturafion are very low (close to zero). In ühis case, hue is useless for

detecting the plate. Further, we can not detect the plate according to values of

saturation only, since other objects (food) might also have very low saturation,

which would result in confusion. Brightness can play a role now. None of the

t4



foods could have brightness as high as the plates. We can combine the values of

saturation and brightness to detect plates.

Experimental results indicated that HSB color model is more effective than

RGB color model in this system. Slides made at different times mayhave slightly

different exposure. When they are digitized to computer, even with adjusted

scanning exposure time, they will still have different RGB values for the same

food. The reason for this is that R, G, B values are sensitive to the power oflight,

since the RGB values ofa color cortesponds directly to the absolute spectral ra-

diant power distribution . Hue and saturation are less sensitive to this variation

of color, since they mainly depend on the relative power distribution. The most

sensitive component, to the variation is brightness, which is not as important as

hue and saturation in segmentation and classifrcation; whereas the three com-

ponents in the RGB model have the same importance.

Table 3.1gives the experimental result which indicates the sensitivity of R,

G, B, and H, S, B to the variation ofcolor caused by different exposures. Here,

all variables take the value from 0 to 255 (hue value is mapped from 00-8600 into

0-255).

Checking the means and variances through Table 3.1, we found that for most

food items the variances ofhue and saturation are smaller than the variances

ofR, G, and B compared with their means, except the saturations ofgreen-apple

and broccoli which are not green at all the areas but yellow somewhere. The vari-

ances of brightness of most, items are much higher than other variances com-

pared to their means.

These results show that hue and saturation have smaller color variation.

Based on these results the HSB color system was chosen, The transformation

from RGB to HSB was implemented by Barneyscan. Figure 3.1 and Figure 8.2

l5



are sample images ofhue, saturation, and brightness components. Figure 3.1

comes from a unblurred image. Figure 3.2 comes from a Gaussian blurred

image.

R G B H S B
tomatol t92 78 54 6 r87 t92
tomato2 t75 72 44 8 195 175

tomatoS L48 51 31 6 208 r48
tomato4 159 68 51 6 178 159

tomatoS 153 52 36 5 196 153

tomato6 209 90 60 I 183 209

tomatoT t82 69 45 6 193 182

mean L74 68 45 6 1.91 t74
varlance 422 163 88 0 83 422

(a) Tbmatoes

R G B H s B

carrotl 151 39 15 6 230 151

cawot2 773 51 18 7 228 t73
carrot3 139 33 11 5 235 139

carrol4 74r 34 10 6 286 147
carrotS 110 34 I 8 235 110

ca¡rot6 t40 35 11 6 236 140

carrotT 749 36 11 5 237 t49
carrotS r37 30 10 5 237 L37

mean L42 36 11 6 234 L42

vanance 269 36 8 I 10 269

(b) Carrots

R G B H S B
orangel 229 123 26 19 226 229

orange2 237 133 26 27 227 237

orange3 228 120 23 19 229 228
orange4 227 118 19 229 227



orangeS 778 93 30 76 2t9 L78

orange6 199 98 26 16 225 199

mean 216 tt4 25 18 225 216
varlance 434 198 o .l 12 434

(c) Oranges

R G B H s B
applel 153 t47 45 47 183 L54

apple2 187 173 54 39 t84 L87

appleS 150 t49 50 43 L76 156

appIe4 130 t26 35 4t 191 732
appleS r37 137 70 42 L43 L41
appIe6 150 151 73 43 148 155

meân 151 147 54 47 170 t54
vanance 323 206 t79 2 342 297

(d) Green Apples

E G B H s B

broccolil 13 20 I 69 142 20

broccoli2 31 4l 18 65 157 42

broccoliS 19 26 9 62 t78 26

broccoli4 1.5 28 6 61 202 23

broccoliS 16 23 I 60 190 24

broccoli6 11 16 3 58 212 16

broccoliT 19 32 I 64 20t 32

broccoliS 18 25 I 65 180 26

broccoli9 T7 26 I 64 179 26

mean T7 25 8 63 182 26

vanance 29 46 L4 I M2 49

(e) Broccoli

R G B H s B
peasl 11 22 6 69 169 22

peas2 t7 31 10 68 L76 31



peas3 I 18 4 67 193 18

peas4 10 27 5 67 t94 2T

peasS o 18 4 65 204 18

peas6 8 16 o 64 217 16

peasT 18 26 8 59 195 27

peasS 10 20 4 64 207 20

peâs9 10 21 5 69 198 21

peas10 I 19 5 66 193 19

meân 11 27 5 65 794 2T

varlance 10 L7 4 8 176 18

(f) Green Peas

R G B H s B
potatol t92 L76 r44 28 72 L92
potat0.2 225 2L0 180 27 51 225
potatoS 234 2L8 178 31 60 234
potato4 236 2t8 L72 31 70 286
potatoS 240 228 L87 35 57 240
potato6 235 2t5 L76 28 65 235
potatoT 170 160 136 33 57 770
potatoS 244 228 179 33 67 244
potatog 220 207 L69 32 60 220
potatol0 2L8 202 767 30 60 218
mean 221 206 168 30 61 22L

vanance 494 438 240 6 38 494

(g) Potatoes

R G B tr s B

cornl 180 116 26 24 2t9 180

corn2 t94 126 27 24 221 t94
cornS 191 t22 27 24 220 191

corn4 t75 r07 22 22 225 175
cornS L40 95 24 26 2t6 140

corn6 164 101 20 23 227 t64



cornT 192 t25 26 24 223 192

corn8 t82 7r4 24 23 223 t82
mean 777 113 24 23 227 L77

vânance 285 113 5 1 11 285

(h) Corns

R G B H s B

beefl 48 29 L9 74 169 48

beef2 32 16 11 16 t70 32

beeÍE| 23 11 20 L78 23

beefá 2t I 5 15 190 2T

beefS 24 10 6 16 188 24

beef6 18 4 16 199 18

beefT 32 16 11 2't t74 32

beefB 25 t2 8 20 180 25

mean 27 13 8 17 181 27

varlance 79 42 2L 6 97 79

(i) Beef

R G B H s B
toastl 224 t71 98 24 t45 224

toast2 175 122 65 2t 163 175

toast3 235 181 108 24 139 235
Loast4 L52 116 61 25 159 152

toastS 158 108 51 22 t77 158

toast6 174 131 70 25 r52 174

toastT 229 t76 103 24 L45 229

mean 192 143 79 23 154 r92
vanance 1087 836 45t 2 146 1087

0) Tbasts

Thble 3.1 Sensitivity of R,G,B,H,S, and B(bright) to ühe Variation of Color



(b) Saturation

(c) Brightness

Figure 3.1 Images of Three Components of A Food Image



(b) Saturation

(c) Brightress

Figure 3,2 Images ofThree Components ofÄ, Blurred Food Image



3.2 Image Compression

An image, after digitizing by Barneyscan and cutting offunnecessary back-

ground, still requires about 1.9 megabytes ofstorage. It would take the computer

(Macintosh cxII) too much time to futfrlt the process of blurring, segmentation

and classifrcation (about 20 minutes). On the other hand, the same image with

less resolution is sufficient for the purpose ofcolor segmentation and classifica-

tion. Therefore, the pre-processing ofimage compression is introduced into the

system.

A simple compression algorithm is applied to the system. Average values of

hue, saturation, and brightness (or red, green, and blue) of4 (2x 2) connected

pixels in the original image are calcu_Iated to form the values ofhue, saturation

and brightness ofone pixel in the new image.

If we have an original image with the horizontal size ofhsize and the vertical

size ofvsize, the compressed image will have the new horizontal size ofnewhsize

and the new vertical size of newvsize. Where:

newhsíze : hsizef2

newvsíze = vsize /2

and

Let hueli x hsize+jl, saturation[i x hsize+j], and brightness[i x hsize+j] repre-

sent the three component values at the position (ij) in the original image, and

let newhue[m x newhsize+k], newsaturationlm x newhsize+k], and newbright-

ness lmx newhsize+k] represent the values at the position (m,k) in the new

image, where i, j, m, and k are integers and



i:2 x nt

j:2xk

Then

and

+ satuf(i +

newhuel,n x newhsize+kl: j{O*t, x hsíze+ jl+hueli x hsize+ j+ 1)

+ huef(i + I) x hsize + jl + huel(i + l) x hsize + j + 1l )

newsatufm x newhsize + kl: ![ro,rt, *

(3-1)

hsize +jl+ satu[i x hsize+j+ll

1) x hsize+Jl+satuf(i+I) x hsiae+j+l]]

(3-2)

hsize+ j)+ brightli x hsiae+ j+ Il

hsize + jl + brightf(i + l) x hsiae + j + 1l]

ne+vbrightþn x nzwhsi¿e + kl: 
){UrtrOrf, 

,

+ bright[(i + 1) x

(3-3)

Theoretically, this method of compression only reduces the high frequency de-

tails which are not important for color segmentation and classification, while

leaving low frequency information unchanged. This process is experimentally

feasible. It would not result in signiflrcant image change for the purpose ofseg-

mentation and classifrcation, but the storage (both in hard disk and in memory)

is reduced from 1.9 Megabytes for the original image to 480 Kbytes for the new

image. The time required for all processing (blurring, segmentation and classifi-

cation) is reduced to less than 4 minutes.



3.3 Image Blurring

Blurring (one of the smoothing filters) is usually used in pr*processing steps

such as noise reduction, removal of small details from an image prior to (large)

object extraction, and bridging of small gaps in lines or curves.

The objects in the images, which are expected to be segmented are relatively

large; there are only 2-5 items of food in an image plus the background and the

plate, Tbo many details could notbe benefrcial to the process ofsegmentation and

classification and would take a long time to process. So blurring is implemented

before segmentation. Another reason to choose blurring is that there aïe some

noise points in images. These arise from the food itself (e.g. shadow areas). How-

ever some ofthe noise appears to arise from film grain resolved by the high reso-

lution scanner ( 1520 x 1024 pixels, not adjustable). A smoothing fìIter is impor-

tant to reduce the effect ofthese noisy pixels on segmentation,

There are several types ofblurring fìlters. Frequency domain methods were

not considered, since the FFT and IFFT transformations should be applied for

using these filters. This would make the system more complicated and more

time-consuming. Among spatial blurring fi.lters, the simplest one is the lowpass

spatial frlter, which attenuates or eliminates high-frequency components in the

Fourier domain (e.g. details and noise in the spatial domain) while leaving low

frequencies (basic information of images) untouched.

In the spatial domain, a convolution of the image wiüh the filter function is

carried out. Because of the s¡rmmetry of most functions, building a frlter is build-

ing a mask. A 3x 3 mask (smallest) is built as in Figure 3.3(a).



I

-x25

(a) 3x3 mask (b) 5x5 mask

Figure 3.3 Spaúial Low¡rass Filters of Various Sizes

In order to perform 3 x 3 mask blurring, the central point of the mask is moved

throughout the image pixel by pixel. Once the central point ofthe mâsk covers

a pixel in an image, the values of H, S, B of the nine pixels (the pixel in the center

and its 8 neighbors) are averaged. The average values are used to replace the

old values of H, S, B of this Pixel.

To build the blurring frlter for the system, the 3 x 3 mask and the 5 x 5 mask

(Figure 3.3(b)) have been tested. A 5 x 5 mask can blur the image more strongl¡

but none of them produce satisfactory results for segmentation. Hence we con-

sidered Gaussian blwring as an alternative.

A Gaussian blurring frlter is a mask with a kernel of Gaussian shape. The

kernel for a 2-dimension ofGaussian smoothing operator in (x,y) coordinates is

(where x, y = 0, t,2, ,,.):

1 1 1 1 I

1 t 1 1 1,

1 1 I 1 1

I 1 1 1 1.

1 1 1 1 1

G(x,y):#-r(-n#) (3-4)



G(x,y) is circularly symmetric, so r¡,¡e can build a mask according to it. The

smoothing effect may be controlled through ø . In this system, o is chosen as

2. So the kernel can be expressed as (3-5):

(3-s)

where, the x and y represent the relative coordinates from the center of the

mask. An 11x 11 mask was built. The mask is moved from the left-top corner

to the right-bottom throughout the image pixel by pixel. When the center ofthe

mask is located at a point, all hue, saturation, and brightness values ofevery pix-

el covered by the mask are multiplied by the coefficients and added up. This job

was done by "Barneyscan". Figure 3.4 shows an example of histograms compar-

ing hue, saturation, and brightness ofan unblurred image and a blurred image.

We can see from the histograms that the histogram of the blurred images have

narrower distributions and sharper peaks. Statistical data shows that the

blurred images have much smaller standard deviations. This means that the

blurred images are much smoother in color. It is easier to segment blurred

images. Although the edges ofobjects are also blurred, it is still acceptable for

segmentation purposes. Therefore, Gaussian blurring was adopted.

ct*,y):¡1.*p( 
"+")



(a) Hue of Broccoli

(c) Saturation of Broccoli

(b) Hue of Blurred Broccoli

(d) Saturation ofBlurred Broccoli

k

MeEn:161.55

3td o8ur 56.44

Medi8n:160

P¡flels: g26l

Leuêl:

f,ounl:

Percenl¡le:

(e) Brightness of Broccoli (f) Brightness of Blurred Broccoli



I'lean| 27,22 leuel:
Std 0eu: 12.85 Count:

Medi6n; 27 Percenlile:

P¡Helr:8527

(g) Hue of Com

(k) Brightness of Corn

(h) Hue of Blurred Com

(l) Brightness of Blurred Corn

(i) Saturation of Corn

Meon:189.59 leuel:

Std oeu: 20.19 f,oünl:

Medlan: 195 Percentile:

PlHels:7191

Figure 3.4 Comparison of Histoglams



CITAPTER 4

TRAINING DAÎA AND COLOR VARIATION

4.1 lraining Data

Color segmentation and, especiall¡ classification offood images rely on the

results oftraining experiments. A number ofcolor images offood have been ana-

lysed to get the histograms, means, standard deviations and medians ofhue, sat-

uration, and brightness of different items of foods.

The means ofhistograms ofhue, saturation and brightness (e,g. average hue,

saturation, and brightness) ofeach item offood from sample images form a clus-

ter in HSB space. These clusters can be used for the color classiflrcaüion. And the

variances and medians canbe helpful for settingthe thresholds of segmentation.

\[e have used 30 slides of plates for training. There are 2-5 items in every

slide. For every food item in every slide, we calculate its histograms, means,

standard deviations, and medians ofhue, saturation, and brightness.

Figure 4.1 shows the distribution ofmeans ofhue and saturation. Every point

represents a food item from a plate. There are 20 points for the tomato , 12 for

the carrot, 11 forthe orange, lSforthepeas, 18 for the broccoli, 1L forthe green

apple, 10 for the corn, 22 for t}:'e potato, 18 for the beef, 19 for the toast. Some

points overlap. Figure 4.1 shows that every item forms a clusterin the hue-satu-

ration plane. We set classification rt es later on from this result.



tomato.dat: (1)
carrot.dat (1)
orange.dat: (1)
apple.dal (1)
Peas.dat: (1)
brocc.dat: (1)
corn.dat: (1)
potato.dat (1)
beef.dat (1)
toast.dat: (1)
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4.2 Color Variation

Due to different exposure times both in making a slide and in scanning with

Barneyscan, the same object could appear in slightly different color. some tests

are made to examine these color variations. The tests are made on a standard

color chart, and the colors for testing are typical saturated colors: red, yellow,

green, blue. Table 4.1shows average hue, saturation, and brightness values of

different colors in a single slide with different exposure times when scanning

with Barneyscan. For this slide, the automatic (suitable) exposure time of Bar-

neyscan is 376 (relative time).

exposule time 150 200 300 400 500
red 8 4 4 0 0
yellow 32 32 33 36 42
g?een 77 ll 78 79 80
blue t67 L67 166 166 166

(a) Average Values of Hue

exposure time 150 200 300 400 500
red 257 251 248 247 247
yellow 239 239 2ts6 234 28T
gïeen 2t4 216 27r 207 204
blue 232 240 236 238 239

(b) Average Values of Saturation

exposure time 150 200 300 400 500
red 50 54 71 103 139

yellow Í07 116 t52 2t9 255



green 28 30 4T 64 86

blue L4 15 27 46

(c) Average Values of Brightness

Table 4.1 Values of Color Chart for Different Ex¡rosure fime of Scanning

We could see from Table 4. 1 that hue and saturation values are slightly differ-

ent but do not change much for most colors (except red), and the most sensitive

variable is brightness.

Table 4.2 shows the color variation caused by different exposure when a slide

is made. In Table 4.2, the object is the same thing (color chart). But, one slide is

slightly darker (the automatic exposure time ofBarneyscan is 500), and the oth-

er is slightly brighter (the automatic exposure time ofBarneyscan is 378). The

average values ofhue and saturation are slightly different.

magenta yellow gïeen blue

bright slide 250 33 74 t64
dark slide 253 27 78 158

(a) Average Values of Hue

magenta yellow gTeen blue
bright slide 225 284 220 235

dark slide 232 240 230 248

(b) Average Values of Saturation

Thble4.2 Values of Color Chart From Slides With Different Exposure Time



Table 4.1 and Table 4.2 show a bigger color variation caused by different expo-

sure üime when making a slide than caused by a different exposure time when

scanning from a slide to the computer. Even with the adjustment of scanning ex-

posure time, the variation is still visible.

Because the colors for this test are typical saturated colors and the slides are

made under very good conditions, the variation is not significant. But for other

colors and for slides which are not made under good conditions, especially with

non-pure-white light background, color variation is not negligible.



CIIAPTER 5 SEGMENIHIION

Image Segmentation refers to the decomposition of a scene into its compo-

nents. It is a key step in image analysis. Segmentation by color is the most impor-

tant and the most diffrcult part ofthe project.

5.f Segmentatlon

For image analysis, segmentation is generally the fìrst step and autonomous

segmentation is one of the most difficult tasks in image processing. Segmenta-

tion subdivides an image into its constituent parts or objects, and stops when the

objects ofinterest in an application have been isolated; segmentation subdivides

an image into regions that are uniform and homogeneous with respect to some

characteristic. There is no complete theory of image segmentation although

there are a variety of techniques for segmenting images. Segmentation tech-

niques differ in the way they emphasize one or more properties and in the way

they balance and compromise one desired property against another. The proper-

ties on which segmentation techniques are generally based are the properties

of gray-level value (for monochrome images), texture, or some basic properties

of color vectors in color spaces: RGB, HSB and so on (for color images). The two

concepts ofdiscontinuity and similarity ofthese values or vectors could be used

to segment images. Using the discontinuity, we can partition an image based on

abrupt changes ofthese values or vectors. This approach is mainly used for the

detection of isolated points, lines and edges in an image. Using the similarity,

the region based algorithms such as thresholding, region growing and region



splitting-and-merging are used to segment areas in an image. For region based

techniques, we can describe the principle as follow. Let R represent the entire

image region. We may view segmentation as a process that partitions R into n

subregions: Rr, Rz, ... , Rr, such that t1l

t:n
(a) U Rí: R

¡=0

(å) R¡ ls a connected region, i:1,2,...,n,

(c) À¡ O R¡:Qfor all i and j, i t j,

(¿) P(R): rRUE ror i: t,2,...,n,and

(e) P(R¡ u R) : FALSE for i * j
where P(&) is a logical predicate over the points in set R1 and Ø is the null set.

For monochromic images P(ri) could be lG(rr.)-G(r1) I <threshold,where r¡,r¡

e Ri, G(rr.) is the grey level at the point r¡. For color images, the P(Ri) could be

that most color vectors in Ri are located in a certain area in color space.

In our project, ârea segmentation is the purpose. To apply thresholding ap-

proaches, the histogram of each component should be calculated, then thresh-

olds in each histogram of every variable should be determined. Decisions are

made based on these thresholds to frnd clusters in an image. These are effective

approaches when there are only a couple ofobjects in an image, but cluster seek-

ing becomes an increasingly complex task as the number ofvariables increases

(for color images, there are at least 3 or 2 variables), especially when there are

many objective clusters to be sought.

Region gro\Ming is a procedure that groups pixels or sub-regions into large

regions. The simplest, ofthese approaches is píxel aggregation, which starts with

a set of "seed" points and from these grows regions by appending to each seed

point those neighboring pixels that have similar properties (such as color). A

simple example using this method is shown in Figure 5.1 [ 1]. Figure 5.1(a) is the

(5-1)

(5-2)

(5-3)

(5-4)

(5-5)



original image with gray levels represented in each point. Using two seeds (8,2)

and (3,4) should result in a segmentation consisting of, at most, two regions: R1

associated with seed (3,2) and R2 âssociated with seed (8,4). The property p to

be used to include a pixel in either region is that the absolute difference between

the gray level ofthat pixel and the gray level ofthe seed be less than a threshold

T. Figure 5.1(b) shows the result obtained using T=3, and Figure 5.1(c) shows

the result when T=8. In Figure 5.1(c), since the threshold (T=8) ofthe absolute

difference is higher than the difference ofthe two seed pixels, each region which

grows from a seed includes the other seed and the all pixels. As a result, there

is only one region.

a a b b b

a a b b b

a a b b b

a a b b b

a a b b b

(b) Result With T=3

(c) Result rffith T=8

Figure 5.1 Example of Region Growing Using Known Seed points

0 0 5 6

1 1 5 8 I

0 I 6 I I

2 0 I 6 6

0 1 5 6 5

(a) Original Image

a a à a a

a a à a a

a à a. a a

a a à a a

à a a a a



Using above approaches, choosing seed pixels is important, and it is not easy

to automatically and appropriately choose seed pixels. In this case, region split-

ting-and-merging can be a practical method. The principle ofthese approaches

is to subdivide an image into a set ofarbitrary, disjointed regions and then merge

and lor split the regions in an attempt to satisfy a pre-set criterion condition.

It begins with the entire image as the initial segment. Then it successively splits

each of its current segments into quarters ifthe segment is not homogeneous

enough as judged by the criterion. Figure 5.2 [1] can simply describe the split-

ting-and-merging algorithm for a simple monochrome image.

R1

Rsr

i;;

(b)

(d)

(c)

Figure 5.2 ExarnFle of Splitting-and-Merging Algorithm

(a)



(a). The image is split into Rr, Rz, Re, R¿;

(b). Rz, Rs, and Ra are split respectively into R21, R22, R2s, R2a, R31, Rs2, Rss, R3a,

Ra¡,R+2, R¿a, R¿¿. Merge R21, Rzz, Rzs, R+2, R¿a, Rs1, and Rs3 to the background

(Rt), and merge R23, Rs2, and Ra1 to the object;

(c). Rs¿, and Ra3 âre split into Ra¿t, Rs¿2, Re¿a, Ra¿¿, R¿sr, R¿sz, R¿s¡, R¿a¿;

(d). merge Rsa1, Rs42, R41, and Ra32 to the object, and merge Rsa3, Rsaa, R433, and

Rasa to the background.

5.2 Color Segmentatlon--Survey of Related Research

The classical method for the segmentation of color images is to segment the

individual component images separately, e.g. the red componenü image, ühe

green component image, and the blue component image. The resultant segmen-

tations are then combined to produce the complete color segmentation. The seg-

mentation of individual component images is usually combined with histogram

techniques. The most important aspect of this type of meühod lies in the tech-

niques thaü are used to combine the results ofcomponent images. Rosenfeld and

Kak described color segmentation schemes based on simple thresholds ofthe col-

or vector components [4]. R. Weill and Y. Nes also applied RGB and rgb system

to the separation of fuuits and background with the hetp ofintensity histograms

t5l.

There are some expansions ofthis type ofmethod. R. B. Ohlanderl6] used nine

histograms, one for each component, in red, green, and blue(RGB), YIQ, and a

perceptual model space based on hue, saturation, and intensity(HSl). He deter-

mined the most sharply defined feature, as measured by one of the nine parame-

ters, then obtained a cluster ofpoints that were uniform for the given feature,



applying thresholding on limits provided by the minimal bounding of the best

peak. He extracted the region so isolated and eliminated it from further consid-

eration. As a result of this, features that were formerly obscured may become

more distinct. This procedure is applied iteratively until there is no prominent

peak in any histogram. This approach results in regions that are approximately

uniform in all nine components. Another expansion is made in other color spaces

such as HSi [9],t101 or L*a*b* I7l. S. H. Ong and C. C. Hew segmented color

images by iterative thresholding ofhue, saturation and intensity components

and reduced fragmentation by a merging procedure after each thresholding[9].

Baker, Hwang and Aggar-wal [7] translated the RGB to the CIEIAB (L*¿*þ*)

transformation and combined the histograms of L (luminance), C (chroma), H

(hue), and scattergram of the a*b* coordinates. This approach needs the trans-

formation from RGB model to the CIELAB model and the calculation of every

component's histogram. All schemes above are based on the proper combined

thresholds of the component histograms.

Miyake, Saitohn, Yaguchi and Tsukada [8] used an experimental expression

about r (r=MR+G+B)), g (g=Ç(R+G+B)), b (b=Bi(R+G+B)) to determine the re-

gion ofskin color for TV pictures. This kind of method needs a large amounü of

experimentation for single color extraction to get the means and standard vari-

ance of each component.

When there are more than one objects appearing in an image, or ifcolor varia-

tion for the same objects on different images exists, a better approach ofsegmen-

tation might be splitting-and-merging. Tþing to recognize a piece of ham on a

conveyor belt, F. Diaz Pernas and J. Lopez Coronada [ l1J developed an analysis

process for the recognition ofthe obj ects appearing in an image according to color

criteria. Due to color variation existing in each area, a splitting-and-merging



algorithm was used so that the grouping ofnodes is based on their belonging in

one ofthe three regions ofinterest (meat, fat and background), but not on their

color homogeneity.

In our project, there are 2-5 objects involved and the color variation seems

unavoidable. We identify and remove the plate and background according to the

clusters in HSB space; and then apply an algorithm, coming from the combina-

tion of region growing and splitting-and-merging algorithms based on HSB col-

or space to segment the rest ofthe image into several parts:objects.

5.3 Color Segmentation

Theoretically, regions ofa color segmentation should be uniform and homoge-

neous with respect to color characteristics. Interiors ofregions should be simple

and without many small holes. Adjacent regions of segmentation should have

signifrcantly different values with respect to the color characteristics. Bound-

aries ofeach segment should be simple, not ragged, and spatially accurate.

Achieving all these desired properties is difficult because strictly uniform and

homogeneous regions are typically full of small holes and have ragged bound-

aries. Insisting that adjacent regions have large differences in values can cause

regions to merge and boundaries to be lost.

There is no general theory of image segmentation, including color segmenta-

tion. Techniques in use have to differ precisely in the way they emphasize one

or more ofthe desired properties and in the way they balance and trade offone

desired property against another.

The objective of color segmentation in this system is to segment an image by

color into several regions of which each region represents one ofthe food items



in the image, and each item in the image would have one region represented. Be-

cause classification is to follow, a region-based segmentation scheme would be

preferred. The system uses two different schemes in two steps: first, remove out

the background and the plate and then segment the remaining area.

5.3.1 ldentifìcatlon ofBackgrourd and plate

AII images processed in this system have almost the same color background

(grey) and the same color plate (white). This means that there are two clusters

at almost the same positions in color space for every image. One represents the

background and the other represents the plate. This makes it possible to detect

the two clusters in HSB space and remove the corresponding points from the

image. In fact, we can only use saturation and brightness as variables to detect

the plate because of the randomness ofits hue values. We can use hue, safura-

tion, and brightness as variables to detect the background. In Table 5.1 are the

average values ofhue and saturation ofblurred backgrounds. Values ofbright-

ness are from 90-140. In Table 5.2 arc the average values of saturation of

blurred plates. Values of brightness are from 200-255.

SLIDE 1 2 3 4 ¿) 6 7

E 164.88 L68.24 160.81 t42.45 139.57 t44.62 162.7t

s 36.24 48.22 3?.33 27.94 29.33 24.4t 46.07

SLIDE 8 I 10 11 t2 L3 L4

H 180.76 167.10 t90.24 L79.7t 151..18 L60.40 L70.7'.|

s 33.56 23.40 24.O7 25.68 27.55 27.40 31.98

SLIDE 15 16 L7 L8 t9 20

H L56.75 L7L.37 163.44 167.01 164.29 177.49

s 34.63 33.30 44.75 38.01 46.27 L2.97

Tbble 5.1Average Hue and Satu¡ation Values of Blurred Background



SLIDE 1 2 3 4 5 6 ,l

s 6.36 19.43 10.81 8.07 8.89 9.t7 r0.29

SLIDE 8 I 10 11 t2 13 L4

S 8.41 3.95 9.67 7.72 8.33 7.24 6.71

SLIDE 15 16 T7 18 19 20

S 7.53 7.76 10.24 4.74 ð.¿)¿) 6.12

Tbble 5.2 Average Saturation Values of Blurred Plate

In this step, classification and segmentation are completed simultaneously.

From histogram analysis, the following thresholds are established. For back-

grounds:

hue: 100-180

saturation: 0-40

brightness: 90-140

For plates:

saturation: 0-45

brightness: 200-255 (5-7)

Every pixel in the image is checked against these thresholds. The pixels that

satisfy the conditions F-6 arejoined the region'background'. The pixels satisfy-

ing the conditions 5-7 arejoined the region'plate'. Pixels in other areas are re-

tained for the next segmentation procedure.

ó,5.2 Segmentatlon of Food ltems

Color variation offood items in images could be larger than the color variation

of backgrounds and plates. But color differences among different food items

should maintain certain values, e.g. different colored items should have some

(5-6)



color differences whenever we make transparencies. Because ofthe color varia-

tion and more than one object to be segmented, the histogram thresholding

method is not used, since some foods could have overlapping histograms and â

threshold could not be fixed. Instead, an algorithm coming from the combination

of'region growing and region splitting-and-merging approaches is designed to

segment food items.

In this algorithm, every pixel in an image will be compared with its neighbor-

hood with respect to hue, saturation, and brightness. Thresholds ofdifferences

of the three values are set on the basis of the training data by calculating the

variances inside every item and checking the color values jumping between dif-

ferent items for about 30 slides (see also 4. 1). Ifthe differences between the pixel

and any ofthe neighbors are smaller than the thresholds, the pixel will join the

region in which the neig'hbor is located. Ifnone ofthe neighbors have values close

to those ofthe pixel, the pixel will start a new region.

Using the algorithm in a computer progrâm, comparing pixel values starts

from the left-top corner ofthe image and proceeds to the righL-bottom, pixel by

pixel and row by row Every pixel's values are compared with the values of the

lefb neighboring pixels and the above neighboring pixel. If the pixel is close

enough to the left neighborhood with respect to the values ofhue, saturation,

and brightness, itjoins the region which the left neighborhood belongs to. Ifthe
pixel is close enough to the above one with respect to the three values, it joins

the region which the above neighbor belongs to. If the pixet is close to neither

the left one nor the above one, a new region starts from this pixel. Figure 5.2 il-

lustrates a simple example of the algorithm,

In Figure 5.2, the comparing starts at the pixel P1. Region R1 starts at Pl since

there is no pixel which could be compared with it. P2 is compared only to P1, since



Figure 5.2 Illustration ofthe Segrnentation Algorithm

there is no pixel above P2. P2joins to R1 because P1 and P2 are close enough. Then

the same thingis done with Ps, Pa, and the succeeding pixels in the first rowuntil

pixel P6 is reached. Since P6 is notclose to P5, it starts a new region R2. The pixels

to the right, of P6 in the rov¡ join R2 because they all have values below the R2

threshold. In the second row, Ps is compared to P1 and joins Ri. P9 is compared

to Ps and P2 and is also joined R1 too. So do the succeeding pixels until Prt. Prr

is compared to P16 and to P6. Itjoins R2 because it is not close to P1s but is close

P6. The succeeding pixels join R2, since they are close both to the left neighboring

pixels and to the above pixels. The pixels in the following row are compared in

the same way, except that P12 starts region R3 and P14 starts the region Ra.

This simple logic could not segment an image well when the situation shown

in Figure 5.3 happens. We suppose there are four regions in Figure 5.3, R1, R2,



Rs+Ra, and R5+R6. In Figure 5.3, P1 would start a new region RB because it is

close neither to the left neighbor nor to the above neighbor (they are in R1). p2

would start another new region Ra. But in fact, region Rs and Ra are the same

thing. For the same reâson, every pixel on linel would stârt a new region. There-

fore R6 would be segmented into many small vertical regions with one pixel

width.

R1 R2

Ëj R3

P2t , P6, Ps'

R4 R5

Figure 5.8 Check-Back Algorithm

A check-back algorithm is applied to solve this problem. In this algorithm,

every pixel, except those without left neighbors or above neighbors, is compared

with its left neighborhood and its above neighborhood. The pixels that are close

enough in their values are given a similar sign to indicate that they are in the

same region. Ifit is close both to the left neighboring pixel and to the one above,

the sign ofthe left neighboring pixel is compâred to the sign ofthe above neigh-

boring pixel lf the two signs are the same, the pixel will take the same sign,

meaning that the pixel joins the region. This causes no problem. If the two signs



are different, a problem occurs. This means that the two close pixels are in two

different regions. In this case, the sign of the above neighboring pixel is given

to the pixel, and all pixels with the same sign as the left neighboring pixel are

checked out and given the sign ofthe above neighboring pixel.

In Figure 5.3, P1 starts Rs and P2 starts Ra. When Ps is compared to its above

neighboring pixel Pa and the left neighboring pixel P5, it is found that Ps is close

both to Pa and to Ps and that the sign of Pa is different from the sign of p5. p3

takes the sign ofPa, and all pixels which already have a sign are checked. Any

pixel with the sign ofP5 changes its sign to the sign ofPa. Therefore the region

Ra disappears, and all pixels that used to be in region Ra join R5.

Figure 5.4 illustrates the complete algorithm of segmentation, where Hth, Sth,

and Bth are thresholds ofhue, saturation, and brightness respectively.

The first steps are for identifying background and plate using the rules (5-6)

and (5-7). The next steps segment the remaining area by examining the differ-

ence of the values ofhue, saturation, and brightness between a pixel and its up-

per neighbor and left neighbor. Ifthe difference beüween the pixel and its upper

neighbor is smaller than the thresholds, it joins the region to which the upper

neighbor belongs. Ifthis difference is larger than the thresholds, but the differ-

ence between the pixel and its left neighbor is smaller than the thresholds, it
joins the region to which the left neighbor belongs. Ifneither is smaller than the

thresholds, the pixel starts a new region. If both the difference are smaller than

the thresholds, but the regions to which the upper neighbor and the left neighbor

belong, respectively, are different, the check-back algorithm is applied and the

region to which the left neighbor belongs joins the region to which the upper

neighbor belongs. The pixel joins the same region. The procedure starts at the



from i=0 to i<=vsize
f rom j=0 to j<=hsize

from j=1 to i<=hsize

sign[0,j]=0 or
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Figure 5.4 Diagram of Segmentation (continued on pp . 48-49)
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Figure 5,4 Diagram of Segmentation (continued on pp. 49)
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Figure 5.4 Diagram of Segmentation



upper-left corner ofthe image and ends at the bottom-right corner. The exami-

nation is implemented pixel by pixel.

Figure 5.5(b) (an image as the result of segmentation) is the result ofthe seg-

mentation of Figure 5.5(a) (a food image).The segments are background(1),

plate(2), peas(3), potato(4), tomato(5), and bee(6).

More segmentation results are shown in Appendix B. In Figure 5.5(b) and seg-

mentation results in Appendix B, a black pixel indieates that the color change

between that point and its neighbor is large than the threshold. A white pixel

indicates a small change or on change.





CIIAPÎER 6 CII\SSIFIC^ATION

6.1 Classification

Classification and segmentation processes have closely related objectives.

Classiflication, which classifies the object into one ofseveral categories, can lead

to segmentation, and vice-versa. Classifrcation ofpixels in an image is another

form ofcomponent labeling that can result in segmentation ofvarious objects in

the image, which is what we have done for removal of background and plate.

Classification is generally implemented in a feature space. A feaüure can be

anyvariable, with which we identify one object from another, such as gray levels,

shapes, sizes, or colors. A set of P features is extracted from the image. These

features may either be pixel-based or object-based. In the pixel-based case, it
is often impossible to perform a segmentation with a single feature. More than

one feature for each pixel is needed to separate different classes ofobjects from

each other and from the background. In the object-based classification, the ob-

jects could already be separated from the background. We can calculate all the

average values ofpixel-based features over the whole area of the object. These

features could be gray level value, color value (RGB or HSB), or local orientation.

Based on these, the shape of the objects could be described. The object-based

classification is preferable, if possible, since much less data must be handled;

that is only one set ofP features for each object detected.

The set of P features forms a P-dimensional space, which is denoted as the

feature space. Each pixel or object is represented as a feature vector in this

space. Ifthe features represent an object class well, all feature vectors ofühe ob-



jects from this class should lie close to each otherin the feature space. By statisti-

cal calculation, we can build a P-dimensional histogram. A narrow peak in the

histogram represents a cluster. It will be possible to separate the objects into the

given object classes if the clusters for the different object classes are well sepa-

rated from each other, as shown in Figure 6.1(a). With less suitable features, the

clusters overlap each other (Figure 6.1(b)). In this case, an error-free classifica-

tion is not possible [181.

ow
o

(a) Well Separated Object Classes (b) Overlapping Object Classes

Figure 6.l A TWodimensional Feature Space With Four Object Classes [18]

If we perform classification by analyzing the structure of the feature space,

one object is thought ofas a pattern in the feature space. There are two basic ap-

proaches to classification: supervised and nonsupervised. By supervised classifr-

cation, we determine the clusters in the feature space with known objects before

hand and find out the number ofclasses, and their location and extension in the

feature space. With unsupervised classification, no knowledge is presumed

about the objects to be classiflred, even the number ofclasses. The result comes

from the analysis ofthe clusters in the feature space and the separation ofthe



clusters. This method is more objective, butit may result in a less favorable sepa-

ration.

There are learning methods ifthe feature space is updated by each new object

which is classified. Learning methods can compensate any temporal trends in

the object features. Such trends may be due to simple reasons such as changes

in the illumination which could easily occur in an industrial environment be-

cause of changes in daylight, aging or dirtying of illumination systems [181.

There are different classification techniques. As for supervised classifrcation,

which our system belongs to, the simplest classification method is the look-up

method, known as labeling. By this method, we give a number indicating the ob-

ject class to each point in the discrete feature space. This approach is diffrcult

only if the distributions of two classes overlap. When this happens, we could ei-

ther take the class which shows the higher probability at this point or argue that

an error-free classiflrcation is not possible with this feature. The same attribute

is given to all the points in the feature space which do not belong to any object

class. Then the only thing that we have to do is to look up which class a feature

vector belongs to. We regard the feature space as a multi-dimensional look-up

table. This method is the best, with respect to the computing time. However, con-

cerning the memory needed to store the feature space it is not so advantageous.

A three dimensional 64x64x64 feature space already requires 1J4 Megabyte

memory. Consequently, the look-up method is only feasible for low-dimensional

feature spaces.

All other classification methods model the pattern classes in the feature space

to reduce storage requirements. The box method approximates a class by a sur-

rounding box. If this method does not work, we can use the minimum distance

method to determine which class a feature vector belongs to: we compute the dis-



tance ofthe feature vector to all cluster centers and choose the class which has

the minimum distance. The maximum probability method and other methods

could be used when the above methods do not work well [18].

6.2 Color Classification--Sun/ey of Related Research

Color classification is usually combined with color segmentation, and uses the

result of segmentation. In this case, a color space could be a feature space. An

intuitive method for color classifìcation is the detection and analysis of vector

clusters in color space (it could be any space which can represent a color image

appropriately). By the analysis of histograms of every component, the clusters

which represent certain objects could be found. By comparing the properties of

clusters with previous knowledge (from a training procedure), decisions could

be made.

Tbminaga t12lt13lt14l did color classification of natural color images with a

similar method based on uniform color spaces, which partitioned color image

data into a set ofuniform color regions. The ability to classify spatial regions of

the measured image into a small number of uniform regions can also be useful

for several essential problems ofcolor image analysis including color segmenta-

tion. The input image data are mapped from device coordinates (RGB) into an

approximately uniform perceptual color space (Lxa*b*). Colors a¡e classifred by

means of cluster detection in the unifonn color space. The process is composed

oftwo stages ofbasic classifrcation and reclassification. The basic classification

is based on histogram analysis to detect color data, which are extracted for effec-

tive discrimination ofclusters. At the reclassiflrcation stage, the representative

colors extracted by the color classification are reclassifred on a color distance.



There is also a scheme ofcolor classification which is not based on 3-D color

space. J. Parkkinen and T. JaaskelainenllSltl6ltlTl proposed a vector subspace

method of color classification which used the whole color spectrum instead of

three-parameter methods (RGB, HSB, etc.). To use this method, sometimes re-

sulting in improved accuracy, we should calculate the whole color spectrum of

each image and each probable item which could exist in the images.

6.3 Classiflcation--Program and Result

In this system, we apply color classification to an image after it is segmented

into several subregions which could represent some food items. So the classifica-

tion is object-based. It is also supervised, since we have training data (before-

hand knowledge) before the classification is applied to images.

The simplest clustering method is applied for this system. There are ten items

to be identifred. They are tomato, carrot, orange, broccoli, green peas, green ap-

ple, potato, corn, roast beef, and toasted bread. Average values ofhue and satu-

ration are calculated for each item in every image. About ten to twenty samples

were checked before we set the parameters as shown in Table 6.1.

As a frrst parameter we consider the hue. According to their distribution, we

can divide the ten items into six groups. Group 1 includes the tomato and the

carrot. Group 2 includes the orange, the beef, and the toast bread. Group 3 in-

cludes the corn. Group 4 includes the potato. Group 5 includes the green apples.

Group 6 includes the broccoli and the green peas. Items in different groups do

not overlap. But items in the same groups have some areas overlapped. So hue

alone is not sufflrcient to separate all items. Similarly, saturation alone is not suf-

flrcient to separate all items either. However, using both parameters, we can sep-



arate almost âIl of these ten items. In group 1, although they have some common

area in hue, their saturation values are different. In group 2, orange, beef, and

toast also have different distributions ofsaturation values. However in group 6,

broccoli and green peas not only have the same hue area but also have the same

saturation area. By observing their brightnesses and histograms, we found out

that they even have same brightness area and similar histograms. With this re-

sult, we can only conclude that broccoli and green peas could not be separated

only by color. This conclusion is not surprising, since it is even diffrcult to sepa-

rate them by human eye only by color.

Tbmato Carrot 0range Cr-Apple Broccoli
Hue 3-7 6-9 12-18 45-50 62-82

Saturation 2to-225 230-250 225-240 180-195 90-170

G-Peas Potato Corn R-Beef T-Bread
Hue 52-74 29-38 24-2A 11-L? l4-t9

Saturation tt5-240 40-90 2L5-230 140-180 L85-220

Table 6.1 Parameters for Classification of Food

The following are the conditions used in the program for color classification

shown in Table 6.1.

Tomato

Carrot :

3 < hue 37 && 2I0 < saturatíon<225

6 < hue s9 && 230 < saturation < 250

(6_1)

(6-2)

(6_3)

(Ç4)

(6_s)

Orange: 12 < hue = l8 &&. 225 < saturation = 240

G-Apple: 45 < hue < 50 && 180<saturation<195

Broccoli: 62 < hue < 82 &&. 90 < saturation S 170
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G-Peas: 52 < hue < 74 && 115 < saturation < 240 (o-o)

(6-7)

(6_8)

(Çe)

Potato:

Corn :

Beef :

29 < hue = 38 &&. 40 < saturation = 90

24 < hue < 28 && 215 < saturuion < 230

11 < hue < 17 && 140 S saturation < 180

T-Bread: 14 = hue s 19 && 185 3 saturation s 220 (6-10)

Figure 6.2(b) is the result of the segmentation and classification of Figure

6.2(a).

Since there are still some details left after blurring, the result ofsegmentation

contains some small reg'ions. Because very small sizes of food are not expected

to be sewed, these small regions are only the subregions of some large regions,

which represent food items. They are not important for classification. So we ig-

nore them and only calculate the average hue and saturation values oflarge re-

gions. The average values do not change much in the absence ofthose small re-

gions. Therefore, the result of classification is not significantly affected by

ignoring these small parts. A threshold is set to decide ifa region is small enough

to be ignored. Threshold for this system is 200 pixels.

Tbn slides are tested by the segmentation and classiflrcation program. Figure

6.3 shows the rules in the Hue-Saturation plane for classifrcation expressed by

(6-1)-(6-10) and clusters of every object from every slide. They group well ex-

cept broccoli and peas, where 1 is tomato; 2 cawot;3 orange; 4 green apple; 5

broccoli; 6 peas; 7 potato;8 corn; 9 beef; 10 toast.
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CIIAPÎER 7 CONCLUSION AND DISCUSSION

7.1 Conclusion

The objective ofthis project is to study the possibility ofidentifying food items

by color.

The first, question presented to us was which color system is the best. The intu-

itive choice is the RGB system, since it comes directly from the digitization. By

checking more than fiíty color transparencies offood plates, we found out that

the HSB system is more reliable. Using the HSB color system can save process-

ing time too, because most of the classification (except plate and background)

can be implemented without the parameter B.

The second problem addressed was segmentation: the processing time for seg-

mentation is too long and the result of segmentation contains too much detail.

Therefore this would cause a problem: how to classify so many small regions, es-

pecially when a small region can not represent a food item. In this case, a blur-

ring filter was chosen to bh¡r the details and smooth the images. The result is

very satisfactory. We can get the results of segmentation with very good qualiüy

after blurring.

Segmentation and classification by color are the major tasks in this project.

After examining thirty transparencies, thresholds ofhue, saturation andbright-

ness differences were set for segmentation, and parameter conditions were set

for classifrcation. The programs developed for color segmentation and classifrca-

tion all worked successfully. They provide a method to segment and classify ob-

jects in an image by color. The result shows that segmenting and classifying food

6l



items in plate images by color is a feasible method. Combined with more features

of images, it could lead to a successful automatic food identifrcation in images.

7.2 Discussion and Recommendation

The goal for this project has been achieved. However, there are still problems

remaining to be studied in further work.

1. Different background light could make the color of images very different.

Therefore, the colors offood items could have big variations, which could make

the classiflrcation difficult, or even impossible. A color adjustment pre-proces-

sing corild reduce the effect ofthis colorvariation on segmentation and classifica-

tion. But this procedure could not eliminate the effect totally. The other method

may by more effective: to desigrr simple, but special photographic equipment to

make transparencies, which have fixed background light for every exposure. Dr.

Sevenhuysen already had special equipment for this purpose. Only a little im-

provement is need to avoid color variation.

2. Some food items have almost the same colors. It is even diffrcult for human

eyes to identify them only by color. In this case, segmentation and classification

only by color is not enough. Other features, such as sizes, shapes, and textures,

should be introduced for the segmentation and classification. For most food

items one more feature added into the segmentation and classification system

could be enough. The only cost is a little speed reduction and a larger memory

requirement, which would not cause a big problem for the purpose of segmenta-

tion and classification.
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APPENDD( A DESCRIPTION OF BARNEYSCAN

Barneyscan for the Macintosh is a color desktop scanning system which will

quickly transform 35mm slides into digital information. We can immediately

display this information âs ân image on a Macintosh II monitor. With software

support supplied by Barneyscan, we can manipulate, adapt, and store the image

information. Then we can readily transfer it to other applications, to merge into

publications, presentation graphics, an image data-base, or in other chosen con-

text.

The process of scanning a slide casts a narrow band oflight through a slide,

then through a colored or neutral gray filter. The portions of spectrum that are

not absorbed by the slide or filter reach a photo-detector consisting ofa stack

of L024 sensors. Each sensor responds to the light that has passed through an

area ofthe slide about a thousandth ofan inch squâre. Every sensor reading is

assigned a numerical value on a scale of G-255; corzesponding to no light re-

ceived and the maximum received, respectively. The slide is then moved over

very slightþ and the next verüical slice of the slide is scanned. This process is

repeated 1520 times, until the entire width ofthe slide has been scanned. As a

result, we get an image with resolution L024 x 1520 which can not be adjusted.

A color scan uses three color filters in succession to measu¡e the red, green and

blue components of the image. The full color image seen on the screen combines

the data from the red, green and blue scan.

Barneyscan image editing software can do most of things which an image pro-

cessing software can generally do. Iü can display an image (either in color or gray

scale) on screen with magniflrcation ratio from 16: 1 to 1:16. It is available to read

gray-level value or color values (RGB) and position information on the image.



It can make color changes to images, including adjustment of brightness, con-

trast, gamma, and color balance. There are some built-in frlters we can use di-

rectly to modify images, including an additive noise filter, smoothing filters,

sharpening frlters, and so on. Different types of image (RGB, HSB, HSI-L is
lightness) can be converted between each other. All these image types contain

more than one channel. Barneyscan can split or merge channels of an image and

do some editing on a single channel. From the tool palette, we can choose an edit-

ing function from the grabber to scroll the image, the zoom tool to zoom in or

zoom out the image, the eraser to erase part ofthe image, the smudge tool to sim-

ulate the effect ofdragging a finger through wet paint, the blur tool to blur a part

ofthe image, the sharpen tool to sharpen part ofan image, the eyedropper to se-

lect the current foreground and background colors from colors in an image, the

pencil to create either freehand or straight lines, the paint brush to paint the

foreground color into ühe image, the airbrrrsh to lay down a diffused spray of

paint on an image, ühe line tool to draw a straight line on an image, the rubber

stamp tool to pick up a sample of a particular paì:t of an image and place an exact

copy or a modifred version of that part on the same image or some other image,

the paint bucket to fill areas with the foreground color, and the blend tool to

create a gradient fill.

The functions used for this project are: capturing the image through scanning,

converting an RGB image to an HSB image, and using a Gaussian blur frlter.

The author developed the other programs for this project [191.

























APPENDIX C.I PROGRAII¡I COMP4.C

/+ + +:¡ * + * rrrl **r¡r¡ + t: + +**x:3* + * x x * x x x* ***,t**t*e..* ***,. **** ** * *:t * * * 13 * r¡ * * * *t! * * *:¡ )a * * * * *:i ** *:3 * *:¡ ** ** *

COMP4.C

* Get R, G, B values of an imâge fiom the non-interleaved raw fìle.
* Compress the image into a quarter of the original size by calculating the average R, G, B values of 4 Qx 2)
x comected pixels.
+ The horizonal size and vefiical size of the image should be the same.
* This is a program for Macintosh ll

By Ling Chen

1994

*** )* ******)* *** * ***** *** *r* * * * ** * *** )¡ * ******** * **:¡ ** ** * * ***** *:3**:*:t * * * * *,t:¡**** X * +** ** * * )*/

#include <math.h>

#include <stdio.h>

#defìne HEADER_SIZE
#define BASE_RES_ID

#define NIL_POINTER
#define MOVE_TO_FRONT
#defi ne REMOVE_ALL_EVENTS

#define ERROR_ALERT_ID
#define CANT_OPEN_FILE
#define GET_EOF_ERROR

#define HEADER_TOO_SMALL
#define OUT_OF_MEMORY
#defi ne CANT_READ_HEADER
#define CANT_READ_PICT
#define CANT_\VRITE_HEADER
#defi ne CANT_WRITE_PICT
#def¡ne CANT_CLOSE_FILE
#define NOTHING-WRONG
#defìne CANT_GET_F_INFO
#defi ne CANT_CREAIE_FILE

#define Nr._PRPORT
#define NIL_IOBUFFER
#define NIL_DEVBUF

#define NIL_STRING
#define IGNORED_STRING
#define NIL-FILE-FILIER

512
400
OL

-lL
0

BASE_RES_ID+I
BASE_RES_ID
BASE_RES_ID+1
BASE_RES_ID+2
BASE_RES_ID+3

BASE_RES_ID+4
BASE_RES_ID+5
BASE_RES_ID+6

BASE_RES_ID+7

BASE_RES_ID+8
BASE_RES_ID+9

BASE_RES_ID+IO
BASE_RES_ID+ll

NIL-POINTER
NIL_POINTER
NIL_POINTER

,\P "
NIL_STRING
NIL_POINTER
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#define NIL DIALOG HOOK
#def ine DONT_SCALE_OUTPUT
#define HOPELESSLY_FATAT _ERROR

NIL-POINTER
NIL_POINTER
'\PGame ovel, rnan!"

void

void
void
void
void

PicHandle

PicHandle
'WindowPtr

short int
int

ToolBoxlnit0;
Windorvlnit0;
GetRAWNalne0
PrintRAWFile0;
Errofiandler0;

newPICTHand;
gThePicture;

gPictureWindow;
globalRef;

PICTCount;

/!j< +** + * + {.* år * ***!+:*'t* t(*t:* *: {::¡t:{: **t:*** *:**,* * r(!.:t )* tr {.t(* * *:*'l** *'k * * *r¡*,k ts +,t't ìt )**.** t¡**t¡ *:*.* + t( *{:rr** *t¡/

main0

{
SFReply reply;

ToolBoxInit0;
rüindowlnit0;

GetRAlVName( &reply );

if ( reply.good ) /* The User didn't hit Cancel when asked for a file name +/

{
PrintRAWFile( &repty);

MoveTo(320,360);
DrawString('þ press button!");

while(lButton0);

)
) /******,¡*,t********:++*{i*)¡****endOfmain0**r.'*t*)¡¡t(r(r'({.,t*r(,1.****+**+**:l:i********rr*/

ToolBoxlnit0
{

/ir- initial the ToolBox 

-*/
Initcraf (&thePort );
InitFonts0;
FlushEvents( everyEvent, REMOVE_ALL_EVENTS );
Initlvindows0;
InitMenus0;
TEInit0;
InitDialogs( NIL_POINTER );
InitCùrsor0;
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> //< end ofToolBoxlnit0

Windowlnit$ /*:::: initial and open the rvindorv::::*/

{
gPicture'üindorv=GetNewWindorv( BASE_RES_ID, NIL_POINTER, (WindorvPrr)MOVE_TO_FRONT );

ShowWindorv( gPicturewindow );
SetPort( gPicturelvindow );

) /*:::::::::::::::::::::::::::::::::::::::::::::::::::::: end of WindowlnitQ :::::: :: :: ::: :::: ::: :::: ::: : :: ::: :::: :: : ::: :: */

GetRAlVName( replyPtr ) /*==== choose an image raw file ====*/
SFReply *replyPtr;

{
Point myPoint;
SFTypelist t'?el-ist;

numTlpes;

myPoint.h=100;

myPoint.v=100;
typel.ist[O] = 'RRRR','
numTypes = 1;

SFGetFile( myPoint,IGNORED_STRING,NIL_FILE_FIUIER,nìrmT)?es,typel.ist,
NIL_DIALOG_HOOK,replyPtr );> t*:=== of CeIRAWNâme0 ================*/

/rr**!{.* *1:* *,fi!.i( +àr* * * +r.:i<:t+:t * **** rr* ** *tàrt<** r¡ ìr+trr 11**r¡ * +** {. *** * * *r.*rrrr*r¡ * + *r¡rr**rr+ * * *** {¡ * ***.:*¡**/

void PrintRAWFile( leplyPtr) /** getthe R, G, B values; compressthe inlage; savethe new image **/
SFReply

{
*replyPtr;

short int temcolor,srcFile,newsrcFile,vrefnum;
long pictSize,n,new,npictsiz€,nlongcount,longcount;

long ij,m, k,cc,vv,hh,hsize,vsize,nlsize,nvsize;
RGBColor cPix;
unsigned ch tem,*red,Égreen,*blue,*s l, *s2;

SFReply treplyPtr2;

OSEn
Point

myEn;
myPoint;

if ( FSOpen( (*replyPF).fName, (+replyPtr).vRefNum, &srcFile ) !=noEn )
{

FSClose( srcFile );
ErrorHandler( CANT_OPEN_FILE);

)
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if ( GetEOF( srcFile, &pictsize ) !=noEn' )
{

FSClose( srcFile );
ElrorHandler'( GET_EOF_ERROR);

)

n=pictSize/3;
hsize=(long) sqrt(n);
ysi2e=(lsng) sqrt(n);

if ( ( rcd=(tnsigned char*)NewPtr(n) )==NIL_POINTER )

{
FSClose( srcFile );
ErrorHandler( OUT_OF_MEMORY);

if ( ( green=(unsigned char+)NewPtr(n) )==NIL_POINTER )
{

FSClose( srcFile );
ErrorHa¡dler( OUT_OF_MEMORY);

)

if ( ( blue=(unsigned char*)NewPtr(n) )==NIL_POINTER )
{

FSClose( srcFile );
ErrorHândler( OUT_OF_MEMORY);

)

longcount=n*sizeof(unsigned char);

if ( FSRead( srcFile, &longcor¡nt, red)!=noEn)

{
FSClose( srcFile );
EnorHandler( CANT_READ_PICT);

)

if ( FSReâd( srcFile, &longcount, green)!=noEn)

{
FSClose( srcFile );
EnorHandler( CANT_READ_PICT);

)

if ( FSRead( srcFile, &longcount, blue)!=noEn)

{
FSClose( srcFile );
EnorHandler( CANT_READ_PICT);

)

FSClose( srcFile );
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rhsize=hsizel2;
nv size=v sizelZi
nerv=n/4;

npictSize=nerv*3;
nlongcount=new*sizeof(unsigned char');

for'( i=0; i<nvsize; i++) /a+*+* start to conpress +++*'¡l

(
for ( j=0; j<nhsize; j++)

{
vv=2*i;
hh=2*j;

redIi*n¡size+j]=(redIvv*hsize+hh]+red[(vv+l)*hsize+hh]+redIvv*hsize+hh+1]
+red[(vv+l )*hsize+hh+l])/4.;

greenIi*nlìsize+j]=(green[vv*hsize+hh]+green[(vv+ I )*hsize+hh]
+green[vv*hsize+hh+ l]+green[(vv+l)*hsize+hh+ I ])/4.;

blue[i*nhsize+j]=(blue[vv*hsize+hh]+blue[(vv+ I )xhsizp+hh]
+blue[vv*hsize+hh+l ]+blue[(vv+ 1)*hsize+hh+ I ])/4.;

)
)

MoveTo(2,15);
Drawstring('þ Compression is done! "); /*x*x end of compression ***+/

myPoint.h=200; /****t( stÐt to save xi'x**/
myPoint.v=200;

SFPutFile( myPoint,'þsave the file as: ",(*replyPr).fName,NIL_DIALOG_HOOK,replyPtr2 );

if ((*replyPtr2).good ) /¡!**+¡* 'Ihe User didn't hit Cancel **.,t**./

{
if (Create((*replyPtr2).fName, (*replyPtø.vRefNum, '8BIM', 'RRRR') !=noEn)

EnorHandler( CANT_CREATE_FILE);

if( FSOpen( (+replyPtr2).fName, (*replyPtr2).vRefNum, &newsrcFile )l=noEn )

{
FSClose( nelsrcFile );
ErrorHandler( CANT_OPEN_FILE);

)

if ( Fsrvrite( newsrcFile, &nlongcount, red)!=noErr)

{
FSClose( newsrcFile );
EnorHandler( CANT_WRITE_PICT);

)

if ( FSWite( newsrcFile, &nlongcount, green)!=noEn)

{
FSClose( newsrcFile );
ErrorHandler( CANT_ÌVRITE_PICT);

)
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if ( FSVy'rite( newsrcFile, &nlongcount, blue)!:noEtr)

{
FSClose( nervsrcFile );
ElrorHandler( CANT_WRITE_PICT);

)

if ( SetEOF( newsrcFile, npictsize)!=noErr)

{
FSClose( newsrcFile );
EüorHandler( GET_EOF_ERROR);

)

FSClose( newsrcFile );
) /*+** end of saving ****/

) /*** * **r¡'¡* * + +rr'.: *{: ** 
'¡ 

* t**+ t*:¡ * * + *:i + end Of PrintRA}VFi leO **'i'¡* )* * t( i¡{.* * r!.)* t( t( * ì*{.x* *.t/

void E[orHandler( stringNunì ) /*-give the warning message and exit the procedure-*/
int stringNum;

{

StringHandle enorStringH;

if ( (enorSt¡ingH = Getstring( sringNum )) == NIL-POIN'IER )
ParamText( HOPELESSLY_FATAI ERROR, NIL_STRING, NIL_STRING, NIL_STRING);

else

{
HLock((Handle)enorstringH);
ParamText( *erorstringH, NIL-STRING, NIL-STRING, NIL-STRING );
HUnlock((Handle) enorstringH );

)

StopAlert( ERROR_ALERT_ID, NIL_POINTER );

ExitToShell0;
ofEnorHandler

/***t, END ***+/

83



APPENDIX C.2 PROGRAM SEG-SAVE-CLASS.C

l*+**+*+***r!*+*"1:3 +:¡ * + i¡* + t¡ + + +* r¡:*ìr* tr +:l + + t¡:¡ + *+ * *,!;1. * *:k * * * ** * x x + + * + +:3:¡ *:l + + + +'i:¡ + + +'i'i* *:l * * xx * *

SEG-SAVE-CLASS.C

* Get an inage from a 'PICT' file and display it
* Read H, S, B data from the noninterleaved raw file
x Segment the imâge according to the algodthn and the thresholds
* Saye the result ofthe segmentation
* Classify and identify every segment

* By Ling Chen
* t994
* * x + + x,irr:i< **:t:¡*** +*+t: r.: {: **r¡ {: r.: r¡* r.( {: {: *r¡ * *** * **,¡*:* t1r¡,* )*,* * x*:¡*** *:¡ * **:i*++ {: * r¡ *,¡*** * ****t¡ tr t( t( {. i( )* t( /

#include <mâth.h>

#define HEADER_SIZE

#define BASE_RES_ID

#define NIr ._POINTER

#define MOVE_TO_FRONT

#defi ne REMOVE_ALI,_EVENTS

#def ine ERROR_ALERT_ID

#define CANT_OPEN_FILE
#define GET_EOF_ERROR

#defi ne HEADER-TOO_SMALL
#define OUT_OF_MEMORY

#define CANT_READ_HEADER

#defïne CANT_READ_PICT

#defi ne CANT_WRITE_HEADER

#def ine CANT_WRITE_PICT

#define CANT_CLOSE_FILE

#define NOTHING_WRONG

#define NEWHAND_WRONG_FIRST

#defi ne CANT-CREAIE_FILE

#define NIL_PRPORT

#define NIL_IOBUFFER

#define NIL_DEVBUF

#define NIL_STRING

#define IGNORED_STRING

#defi ne NIL_FILE_FIUIER
#define NIL_DIALOG_HOOK

#define DONT_SCALE_OUTPUT

512

400

OL

-lL
0

BASE_RES_ID+I

BASE_RES_ID

BASE_RES_ID+l

BASE_RES_ID+2

BASE_RES_ID+3

BASE_RES ID+4
BASE_RES_lD+5

BASE_RES_ID+6

BASE_RES_ID+7

BASE_RES_ID+8

BASE_RES_ID+9

BASE_RES_ID+10

BASE_RES_ID+ll

NIL-POINTER
NIL_POINTER

NIL_POINTER

,\P',

NIL_STRING

NIL_POINTER

NIL_POINTER

NIL_POINTER
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#def ine HOPELESSLY_FATAT _ERROR

void ToolBoxlnito;
void WindorvlnitQ;

Rect PrintPICTFile0;

void PrintRAWFile0;

void GetPICTNameO;

void GetRAVr'Name0;

void EnolHandler0;

PicHandle nervPICTHand;

PicHandle gThePictùrc;

WindowPtr gPictùreMndow;

short int globalRef;

int PICTCount;

'\Pcanìe over, nlân!"

/,1*:t'1,1.*,**+*+*{.{<x**,¡)t*'t*¡*,tt *tr**xd(:** * *:* ***L**! ** ** *** * * *** * * )F + * * *:*)s * *rr* * t: * * * * * t: ** * * *** +8*/

main0

{
SFReply

PicHandle

PicHandle

Rect

ToolBoxInit0;

Windowlnit0;

GetPICTName( &replyl );
GetRAlVName( &reply2);

if ( replyLgood )
(

)
if ( reply2.good )

{

replyl, reply2;

PICTHand;

newHand;

location;

/**¿¡+¡ The User didn,t hit Cancel r¡***/

PrintPICTFile( &reply I );

/**** The usel didn,t hit cancel r¡**,r./

PrintRAWFile( &reply2);
MoveTo(500,400);

DrawString('\pless button");

while(!Button0);

)
/**+**rr*******rr***'s+'¡*****+**:¡**:*endofmain0*rrirrf**t***rs*:¡:r*:i:i***{.rr**rr**/

ToolBoxlnit0 /*- initiâte the ToolBox 

-*/{
Initcraf (&thePort );



lnirFonrs0;

FlushEvenrs( ever yEvent, REMOVE_ALL_EVENTS );
InitlVindows0;

InitMenus0;

TEIniO;
InitDialogs( NIL_POINTER );
lnitCursor0;

end of ToolBoxlnit0 

-+l

Windowlnit0 /*==== initiate and open the window ====*/
{
gPictureWindorv=GetNewrüindow( BASE_RES_ID, NIL_POINTER, (lvindowPr)MOVE_TO_FRONT );
ShowWindol( gPicnìrer indow );
SetPort( gPictìrrewindow );

> 14 ========== ¿nd 6f windowlnitO -====================='kl

....................................-*/

void GetPICTName( replyPtr ) /*.... choose an image name ....*/

SFReply *replyPtr;

{
Point myPoint;

SFlypelist typelist;
int numTypes;

myPoint.h=100;

myPoint.v= 100;

tvpelistl0] = 'PICT';
numþPes = l;
SFGetFile( myPoint,IGNORED_STRING,NIL_FILE_FIL|IER,nìrmTypes,typel-ist,

NIL_DIALOG_HOOK,replyPtr );

Rect PrintPICTFile( replyPh) /*:::: get lhe image from the 'PICT' file and display it ::::*/
SFReply *replyPtr;

{
PicHandle

short int srcFile;

char pictHeaderl HEADER_SIZE ];
long pictSize, headerSize;

unsigned char +sl, *s2, *s3, *s4;

if ( FSOpen( (+replyPtr).fName, (*replyPtr).vRefNum, &srcFile ) !=noEn )
{

FSClose( srcFile );

thePict;
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EtlorHandler( CANT_OPEN_FILE );

)

if ( GetEOF( srcFile, &pictSize ) !=noElr )
{

FSClose( srcFile );
ErrorHandler( GET_EOF_ERROR);

)

headerSi ze=HEADER_SIZE;

if( FSRead( srcFile, &headersize, pictHeader ) !=noEn )
{

FSClose( srcFile );
ErrorHandler( CANT_READ_HEADER);

)

if ( ( pictSize:HEADER_SIZE )<=0)

t 
,rclose( srcFile );
EnorHandler( HEADER_TOO_SMALL);

)

if ( ( lhePict=(PicHandle)NevHandte( pictsize) )==NIL_POINTER )

{
FSClose( srcFile );
EÛorHandler( OUT_OF_MEMORY);

)

HLock((Handle)thePict);

if ( FSRead( srcFile, &pictsize, *thePict )t=noErr)
{

FSClose( srcFile );
ErrorHandler( CANT_READ_PICT);

)

FSClose( srcFile );

DrawPicture( thePict, &(**(thePict )).picFrame );
Hunlock((Handle)thePict);
DisposeHandle((Handle)thePicÐ;

retum;

I l*::::::::::::::::::::::;::::::::::::::::::::::::::: end of PrintPICTFileQ :::::::::::::::::::::::::::::::::::::::/

void GetRAWName( replyPû ) /'r- choose an image HSB taw file 

-*/SFReply *replyPlr;

{
Point myPoint;

SFry?elist typel.isu
int mlmTypes;



myPoint.h=100;

ntyPoint.v= 100;

typelist[0] = 'HHHH';
n[mTypes = l;
SFGetFile( myPoint,lGNORED_STRING,NIL FILE_FILTER,numTypes,typeList,

NIL_DIALOG_HOOK,replyPtr );

\ t* enCnfce!

/+ * * * t!* t: r.: ** * +**** **:Ì'&:t* * xx x + ***x r: * ** * * **** * * *** * ** *:a * ****** 1r'k*:** *:¡*x * * **x * **+ * + * * *** +*/

void P¡intRAWFile( replyPtr) /** get the H, S, B values; segment the inage; save the result; classify *+/

SFReply treplyPtr;

{
short int srcFile, newsrcFile, *charact, vrefrium;

long pictsize,longcoünt,nn,m,k,ij,n,averh,avers,averb,*sign,reg;

long hsize,vsize, Htheshold, Sthreshold, Bthleshold, totalh, totals, totatb;

RGBColor cPix;

unsignedchù *hue, *satu, +bright, *seg, *sl, *s2, max,tem,above;

SFReply sreplyPtr2;

Point myPoint;

if ( FSOpen( (*replyPtr).fName, (+replyPtr).vRefNùm, &srcFile ) !=noEn )
{

FSClose( srcFile );
EnorHandler( CANT_OPEN_FILE);

)

if ( GetEOF( srcFile, &pictsize ) !=noEn )
{

FSClose( srcFile );
EnorHadler( GET_EOF_ERROR);

) n=pictSizer3;

hsize=sqrt(n);

vsize=sqrt(n);

if( ( hue=(unsigned char*)NewPü(n) )==NIL_POINTER )
{

FSClose( srcFile );
EÍorHandle( OUT_OF_MEMORY);

)

if ( ( satu=(unsigned char*)NervPtr(n) )==NÌL_POINTER )

{
FSClose( srcFile );
ErrorHandler( OUT_OF_MEMORY);

)
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if ( ( bright=(unsigned char *)NervPtr(n) )==NIL_POINTER )

{
FSClose( srcFile );
ErrorHandler( OUT_OF_MEMORY);

)
m=n*sizeof(short int);

if ( ( chr¡ract=(short intx)NewPtr(m) )==NIL_POINTER )
{

FSClose( srcFile );
EnorHandler( OUT_OF_MEMORY);

)
m=2*hsize*sizeof(long);

if ( ( sign=(long*)NewPtr(n) )==NII ._POINTER )

{
FSClose( srcFile );
ErrorHandler( OUT_OF_MEMORY);

)
longcount=n*sizeof(unsigned char);

if ( FSRead( srcFile, &longcount, hue)!=noErr)

{
FSClose( srcFile );
ErorHandler( CANT_READ_PICT);

)
if ( FSRead( srcFile, &longcount, satu)!=noEn)

{
FSClose( srcFile );
ErrorHardler( CANT_READ_PICT);

)
if ( FSRead( srcFile, &longcount, bright)!=noEn)

{
FSClose( srcFile )¡
EnorHandle( CANT_READ_PICT);

)
FSClose( srcFile );

for (i=0; i<2*hsize; i++) /*** start to pick ùp the background and the plate **+/

signlil=0;

for (i=0; i<vsize; i++)

{
for (=0 ¡.¡rir"' **,
{

if ( (hue[i*hsize+j]>100) && (hueIixhsize+j]<230) &&(satuIi*hsize+j]<50)
&& (bright[i*hsize+j]>90) && (bright[i*hsize+j]<.140 ) )
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chalaclIi*hsize+j]=0;

sign[0]++;

if ( (satu[i*hsize+j]<35) && (bright[i*hsize+j]>200) )

{
charactIi*hsize+j]= 1 ;

signlll++;

charactIi*hsize+j]=2;

)
\l l**** end ofPick uP ****/

max=Zi /*+** start to segment ****/
Hthreshold=10;

Sthreshold=15;

B threshold=2o;

for 1i=l; ¡.¡.¡r"t ,**,
{

if ( (charact[]!=0) && (charact[t]!=l) )

{
if( (abs(hue[j]-hue[Èl]) < Hrhreshold) && (abs(satuül-satu[Fl ]) < Srhreshold) &&
(abs(brightül-bdght[Fl]) < Bthreshotd) && (charactU-l I !=0) && (charactþll!=l) )

charactLil =charactlj- I l '

else

{
charact[i]=¡a¿¡;

max++;

)

signlcharact[i]l++;

)

)

for (i=l; icvsize; i++)

{

)

else

{

)

else

{

)



if( (châractli*hsizel!=0) && (charâctli*hsizel != l) )
{

if( ( abs(hueIi*hsize]-hue[(i- 1)* hsize]) < Hthreshold )
&& (abs(sahr[i,thsize]-saru[(i-l)*hsizej) < Sthreshold)

&& (ab(brightIi*hsize]-bright[(i-l)*hsize]) < Bthreshold)

&& (charact[(i- I )*hsize] !=0) && (chaLact[(i- I ) 
*hsize] != l) )

charactIishsize]=châ.1 act[(i-l )*hsize];

charactIi*hsize]=max;

mâx++;

)
signIcharactIithsize] l++;

)

for (j= l;¡q¡t¡r.ii**,
(

if( (charact[i*hsize+j] !=0) && (charact[i*hsize+j]!= I ) )

{

if ( (abs(hueIi*hsize+j]-hueIi+hsize+j-l]) <Hthreshold )
&& (abs(saru Ii*hsize+j]-satu [i*hsize+j- I ]) < Srhreshold)

&& (abs(brightIi*hsize+j]-brightIi*hsize+j-l ]) < Bthreshold)

&& (charactli*hsize+Fll l=0) && (chùact[i*hsize+j-l] !=l) )

{

if ( (abs(hue[i*hsize+j]-hue[(i-l)*hsize+j]) <Htbreshold )
&& (abs(satu[i*hsize+j]-satu[(i-1 )*hsiz.e+j]) < Stbreshold)

&& (ab(bright[i*hsize+j]-búght[(i- l)*hsize+j]) < Bthreshold)

&& (charactl(i-l)'¡hsize+j] !=0) && (charact[(i- I )*hsize+j] != I ) )
{

if ( charact[i*hsize+F l]==charact[(i-1)+hsize+j] )

{
charactIi*hsize+j]=charact[i*hsize+j-l ] ;

signtcharactli*hsize+jll+-È;

)
else

{
tem=cha¡actIi*hsize+F1 ] ;

above=charact[(i-l)*hsize+i];
cha.ractIi*hsize+j]=above;

sign[above]++;

if( (tem!=0) && (ten!=l) )
{

sign[tem]=Q;

else

(
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for (m=0; m<i; m++)

{

for (k=0; k<hsize; k++)

{

if (cha actIrn*hsize+k]==¡s¡¡

{
chal actIm*hsize+k]=above;

sign[above]++;

)

)

)

for (k=0; kcj; k++)

{

if ( charact[i*hsize+k]==¡g¡ ¡
{

charact[i*bsize+k]=above;

sign[above]++;

)

)

chùactli*hsize+jl=châractli+hsize+Fl I ;

signlcharactli*hsize+jll++;

if ( ( abs(hue[i*hsize+j]-hue[(i-1)*hsize+j]) <Htheshold )
&& (abs(satuli*hsize+jl-saru [(i-l )*hsize+j]) < Stbreshold)

&& (abs(brightli+hsize+jl-bright[(i- I )*hsize+j] ) < Btllfeshold)

&& (charact[(i- I )*hsize+j] !=0)

&& (charact[(i- I )*hsize+j] != I ) )
charactIi*hsjze+j]=charact[(i- I )*hsize+j] ;

charactIi*hsize+j]=max;

max++;

)
signlchar actli*hsize+jll++;

)

else

{

)

else

{

else

{



)
y*.t*'4****** end Of the SegnìentatiOn **:3*rr**'3:*:¡+**/

/t¡*t¡xr¡r¡'¡*x* staÍ to draw the edge ****+*rr+*****r./

if ( ( seg=(unsigned char*)NewPtr(n) )==NIL_POINTER )
ErrorHandler( OUT_OF_MEMORY);

for (i=0; icn; i++)
seglil=255'

for ( i=0; i<vsize; i++)

{
segIi*hsize]=0;

seg[(i+l )*hsize-1]=0;
)

for 1¡=0, ¡.¡.tr", ,**,
{

seg[]-0;
seg[(vsize-1 )*hsize+j]=0;

)

MoveTo(25O, 0);

LineTo(45O, 0);

LineTo(450, 200);

LineTo(250, 200);

LineTo(250, 0);

cPix.red=0;

cPix.green=O;

cPix.blue=65055;

for (i=0; i<vsize; i++)

{
for (¡=0; ¡.¡ti"t, r**,
{

nn=i*hsize+j;

if ( (charactln¡l !=charact[rur-l]) ll (charact[nn]!= chatact[(i-t;*tlr;r"* t, ,
{

seg[nn]=0'
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SerCPixel( j+250, i, &cPix);

)

) l*'l:r***** end ofthe dtawing *+*+****x/

DisposePtr( (Ptl.) seg );

myPoint.h=10; /x*** start ofsaving **++/

nyPoinr.v=210;
SFPutFile( nyPoint,'þsave the file as: ",(*replyPlr).fNanle,NIL_DIALOG_HOOK,replyPt12 );

if ((*replyPtr2).good ) /**** The User didn't hit Cancel *{'*¡*/

{
if (Create((*replyPtr2).fName, (*replyPtr2).vRefNum, '8BIM', 'WW\ryW')l:noErr)

ErrorHardler( CANT_CREATE_FILE);

if ( FSOpen( (*replyPtr2).fName, (*replyPtr2).vRefNum, &neu,srcFile )!=noEff )

{
FSClose( newsrcFile );
ErrorHandler( CANT_OPEN_FILE);

)

if ( FSWrite( newsrcFile, &longcount, seg)!=noErr)
(

FSClose( newsrcFile );
EnorHandler( CANT_WRITE_PICT);

)

if ( SetEOF( newsrcFile,longcount)!=noEü)

{
FSClose( newsrcFile );
ErorHandler( GET_EOF_ERROR);

)

FSClose( nervsrcFile );

> l**** end ofsaving **x*/

tem=O; /*******StaftClASSifiCatiOn**x+***rrt/
for (i=0; i<vsize; i++)

{
for (i=0 jdlsize' j++)

{
reg=0'

rotalh=0;

totals=0;
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totalb=0;

nn=charactIi*hsize+j];

if( sign[nn]>100 )

{

for ( m=i; nì<vsize; n++ )

{
for'( k=0; kchsize; k++)

{

if (charactIm*hsize+k]==¡¡1 ¡

{
totalh+=hueIm*hsize+kl ;

totâls+=satu [m*hsize+k] ;

reg++;

)

)

)

MoveTo(5,220+ I 5*tem);

averh=totalh/reg;

avers=totalVreg;

if ( (averh>=3) && (averh<=7) && (avers>=210) && (avers<=225))

Drawshing('\ Tomato ! ");
else

{

if ( (avetÞ=6) && (averh<=9) && (avers>=230) && (avers<=250) )
DrawSring('þ Ca.rlotl ");

else

{

if ( (ave¡Þ=12) && (averh<=I8) && (averc>=225) &&. (avers<=2.10) )
Drawsring('þ Orange!');

else

{

if ( (averÞ=45) && (averh<=5O) && (avers>=180) && (avers<= 195) )
DrawString('þ Broccoli!');

else

{

if ( (averÞ=52) && (averh<=74) && (avers>= I 15) && (avers<=240) )
DrawString('þ Green Peas!");

else

{
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if( (aveLh>=29) && (averh<=38) && (avers>=4O) && (âveLs<=290) )

DrawString('þ Polato! ");
else

{
if( (aveLh>=24) && (averh<=28) && (avers>:2t5)

&& (avers<=230) )
DIarvStIing('þ Com!");

else

{
if( (aveth>=11) && (averh<=17) && (avers>=140)

&& (avers<=I80) )
DrawString('þ Beef!");

else

(

if ( (averh>=14) && (averh<=19) && (avers>=185)

&& (avers<=220) )
DrawString('\ Toast Bread!");

DrarvString('þ Something Else!");

)

)

tem++;

signlnnl=0;

)
DisposePtr( (Ptr) hue );

DisposePtr( (Ptr) satu );
DisposePrr( (Ptr) bright );

/'r,*i(r.*:r**************** end of GetRAwName0 ++****+*****:3************+***/

else

{

)
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void ErrorHandler( str¡ngNùm ) /*xx*x give the rvarning message and exit the procedùre '!'i***/
int stringNum;

{
StringHandle enorStringH;

if ( (errorStdngH = Getstring( stringNum )) == NIL_POINTER )

PalamText( HOPELESSLY_FATAI ERROR, NIL_STRING, NII _STRING,
NIL_STRING);

else

{
HLock((Handle)errorstringH);

ParamText( +enorSringH, NIL_STRING, NIL_STRING, NIL_STRING );

HUnlock((Handle) errorStringH );

)

StopAlert( ERROR_ALERT_ID, NIL_POINTER );
ExitToShell0;

) /+'.'k**+***i¡:i'¡'rt(**:i(*x*:*****x** end OfEflOlHAIdleÌ ***:ti**)*t t,i,{<t(*{r)*+t(t(t *t r¿,*t(trx/

/***+ END **+*/


