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Background: Fibroblast growth factor-2 (FGF-2) confers acute, pre-

conditioning-like cardioprotection against íschemic injury in a protein kinase C

(PKC)-dependent fashion. ln fact, PKC activation is a central mediator of acute

cardioprotection. Our lab has shown previously that the gap junction protein

connexin-43 (cx43) is a target of pKC, as well as FGF-2-triggered signal

transduction, ín neonatal cardiomyocytes in culture. Cx43, while predominanfly

phosphorylated in normal adult heart, is rapidly dephosphorylated upon the onset

of ischemia, an event that precedes its eventual degradation. Loss or

abnormalities in Cx43 can contribute to ischemia-induced pathologies including

arrhythmias and ventricular dysfunction. lt is thus possible that cardioprotective

treatments exert effects at the level of connexin-43. The overall objective of my

studies was to determine whether FGF-2 treatment will affect Cx43 levels,

distribution and PKC-mediated phosphorylation in the adult non-ischemic and

ischemic heart. I hypothesized that: (1) FGF-2 stimulates Cx43 phosphorylation

at PKC sites, in situ; (2) administration of FGF-2 prior to ischemia prevents the

ischemia-induced cx43 dephosphoryration and re-distribution.

Results: The ex vivo perfused adult rat heart model was used. Cx43

levels, phosphorylation, and distribution were examined by western blotting and

immunofluorescence of tissue sections, (a) after FGF-2 administration but prior

to ischemia, and, (b), after 30 minutes of global ischemia of the FGF-2-treated or

non-treated hearts. ln (a), FGF-2 was found to upregulate Cx43 levels and

stimulate the phosphorylation of Cx43 at the PKC target sites serine (S) 262, and
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5368, at intercalated disks. FGF-2 treatment therefore created a new cardiac

state, characterized by'extra' phosphorylation of Cx43 at PKC target sites. ln (b),

FGF-2 pre-treatment prevented the ischemia-induced Cx43 dephosphorylation

and re-distribution away from intercalated disks, while maintaining elevated

levels of Cx43 phosphorylation at 5262, and 5368, at intercalated disks. Cx43

phosphorylation at PKC sites therefore maintained a 'memory' of the FGF-2 pre-

treatment even after 30 minutes of ischemia.

Gonclusion: The FGF-2-stimulated 'extra' phosphorylation of Cx43 at

PKC target sites 5262 and 5368 may sign-post a protected or pre-conditioned

cardiac phenotype and contribute to the mechanism of FGF-2-induced

card iop rotection agai nst ischem ia-reperfusion i nj u ry.
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REVIEW OF LITERATURE

I. ISCHEMIC HEART DISEASE

l.l. lntroduction

lschemic heart disease is a major cause of mortality and morbidity

worldwide. Myocardial ischemia is an imbalance between the oxygen provided

by the blood supply and the oxygen demand of the working heart. lt is caused by

compromised arterial blood flow and depressed ventricular function, disruption of

aerobic respiration, presence of anaerobic glycolysis, depletion of metabolic

substrates, accumulation of catabolites, and altered electromechanical activÍty,

which is revealed by conductance disturbances and arrhythmias [Carmeliet, E

1984, Jennings, R B, et al. 1991b, Reimer, K A, et al. 1987]

1.2 lrreversible and reversible ischemia

"Reversible ischemia" is defined as a complete recovery of cardiomyoctes

from the damage due to ischemia, which occurs in less than 20 minutes after

reperfusion ilp, J H, et al. 19881. Reversible ischemia leads to mild abnormalities

of the ion channels [Shaw, R M, et al. 1997] and contractile dysfunction or

myocardial stunning [Opie, L H 1996]

Prolonged periods of ischemia (more than 20 min), known as "irreversible

heart injury", cause activation of proteases and phosphatases leading to

dephosphorylation and degradation of proteins including gap junctions,

sarcomeres and intermediate filaments that resulting in cell death and



development of lethal arrhythmías [Ganote, C E, et al. 1987, Huang, X D, et al.

1999, Steenbergen, C, et al. 1985]

1.3 Pathoqenesis of mvocardial ischemic iniurv

1.3,1 Alterations in metabolism of ischemic myocardium

ln the few seconds of abrupt arrest of cardiac flow, there is a change in

the physiological mechanism to produce energy in the cardiomyocytes. lnstead

of producing energy via fatty acid oxidation in the mitochondria, the ischemic

cardiomyocytes changes its production of energy toward anaerobic glycolysis by

using glucose as the main energy Ip, J H, et al. 1988]. This metabolic transition

leads to a decrease ín the levels of ATP by 65% within 15 minutes, and g0%

within 40 minutes [opie, L H 1990a, opie, L H 1990b]. The fall of ATP production

is associated with the reduction of intracellular glycogen production as glucose

supply [Gwilt, M, et al. 1993].

ln severe ischemia, the accumulation of metabolic wastes such as

hydrogen ions, inorganic phosphates, NADH and lactic acid, leading to a

decrease in intracellular pH, inhibition of glycolytic enzymes, and a further

decrease in ATP production. Since ATP is required for the cardiac contractile

process, the decrease in cardiac contractility could be observed with ATP

deficiency. Furthermore, the rapid reduction of intracellular pH is correlated with

decreased binding of Ca2* to the contractile proteins in myocardial cells thereby

reducing the myosin-ATPase activity at low pH. The reduction in ATP and rapid

decrease in the intracellular pH are the cause of cardíac contractile dysfunction



that occurs shortly after the onset of ischemia [opie, L H 1ggg, Taegtmeyer, H

20041.

1.3.2 Alterations in action potential profile in ischemic myocardium

The depletion of ATP and fall of intracellular pH directly affect changes in

the action potential profile [Opie, L H 1996]. During acute ischemia, a shortening

of action potential duration (APD) was observed. The APD shortening is

attributed to an increase in K* outward current and decrease in K* inward current

resulting in the loss of intracellular K* from cardiomyocytes and increase

extracellular K* [Antzelevitch, C, et al. 1991]; [Kleber, A G 1gB4]. Alterations of

intracellular and extracellular K* levels are mediated by: (1) decrease in ATP

levels, which mediate the opening of the K.erp channels thus decreasing APD;

(2) an inhibition of Na/K pump due to reduced local ATP levels. [Dilly, S G, et al.

19881; [Friedrich, M, et al. 1990]; [Winslow, R L, et al. 1999]. Therefore, with the

increased conductance of extracellular K* membrane potential away from the

voltage required for optimal opening of the Na+ channels, resulting in a decrease

in the APD [Blanchard, E M, et al. 1984].

1.3.3 Alterations in ultrastructure of ischemic myocardium

The accumulation of catabolic waste and ATP depletion during ischemia

affects the structural integrity of the cell. Enzyme denaturation, membrane

disruption, and increased intracellular osmolarity, lead to cell swelling [Buja, L M,

etal. 19931, [Jennings, R B, etal. 1991a, Jennings, R B, etal. 1991b]. Membrane

disruption is one of the major characteristics in myocardial ischemic injury [Buja,



L M, et al. 1993, Jennings, R B, et al. 1gg1b, Wang, D, et al. 19g6]. The three

causes of membrane disruption in the ischemic hearts are firstly, the changes in

ionic transport systems, especially K*, Na*, Mg2*, and Ca'*; secondly, elevated

permeabilities of the phospholipid bilayer; and thirdly, physical disruption of the

membrane [Buja, L M, et al. 1993]. This membrane damage is related to ATp

depletion, changes of ion fluxes, and increased intracellular Ca2* concentration

[Barry, W H, et al. 1993, Barry, W H, et al. 1987, Jennings, R B, et al. 19g1b,

Reimer, K A, et al. 19871. Ca2* influx leads to the activation of phospholipases

and proteases. Na+ and water influx contribute to the cell swelling and cause an

impairment of the cell membrane with detachment of gap junction channels at

cell-cell contact areas, leading to irreversible ischemic damage [Buja, L M 1998,

Buja, L M, et al. 19981.



2. GAP JUNCTIONS

2.1 lntroduction

Normal development, growth, and proper functioning of cells in various

tissues and organs rely on intercellular communication. Cells can directly

communicate with each other via unique communication junctions, termed "gap

junctions" (GJs). GJs are specialized plasma membrane intercellular channels,

which connect the cytoplasm from one cell to adjacent cells and provide a low-

resistance pathway for cell-to-cell communication [Goodenough, D A, et al.

19961. GJs are non-ion selective channels that allow the passage of ions and

small metabolites bypassivediffusion [Beblo, DA, etal. 1995, Beyer, E C, etal.

1995, Trexler, E B, etal. 1996, Veenstra, R D, etal. 19951. GJs are responsible

for electrical and metabolic coupling in a variety of cell types, including neurons

[Dermietzel, R, et al. 1989], vascular endothelium cells, smooth muscle cells

[Christ, G J, et al. 1996], lens cells [White, T W, et al. 2000], liver cells [Ren, P, et

al. 19981, and cardiomyocytes [Beyer, E C, et al. 1991]; [Kanter, H L, et al. 1992]

with the exception of mature skeletal cells, spermatocytes and blood cells

[Simon, A M, et al. 1998]. The propagation of action potentials via GJs as well as

passage of small metabolítes less than 1 kDa, such as amino acid, short

peptides, ions and second messengers (ATP, lP3, cAMP) permit the coordinated

and synchronized signal transmission within organs, such as heart, and brain,

that is essential for proper cellular functions in both excitable and non-excitable

cells [Goodenough, D A, et al. 1996];[Valiunas, V, et a\.2002].ln normal cardiac

tissue, the electrical transmission via gap junctions allows the myocyte cells to



act as a syncytium. Alterations in GJ expression and/or distribution have

contributed to lethal arrhythmias [Kanter, H L, et al. 1gg2] [Luke, R A, et al.

19911. GJs abnormalities are believed to cause sudden arrhythmias and death in

transgenic mice with cardiac-restricted inactivation of Cx43 [Gutstein DE

et.al.2001l. Malfunction of GJs are associated with several diseases, including

heart disease, cancer, skin disease, cataracts, hereditary deafness and some

forms of neuropathy [Willecke, K, et a|.2002].

2.1.1 Gapjunction structure

GJs are composed of six protein subunits called connexons. Each

connexon is formed by six connexins, which are arranged in a hexameric

structure, asshown in Figure 1. [Morley, G E, etal. 19g7]. connexonsfromone

cell are connected noncovalently to connexon of adjacent cells via the

extracellular loops (E1 and E2) of the connexins [Dhein, S lggg] to form a

complete gap junction channel. The length of gap junction is 2-3 nm between

neighboring cells and is less than 2.5 nm at its widest point of the central pore.

Each connexin contains four hydrophobic transmembrane domains, two

extracellular domains, and three cytoplasmic domains comprising of the amino

(N)-terminal, carboxy (c)- terminal, and a loop between transmembrane

domains 2 and 3, as shown in Figure 2 [Harris, A L, et al.2001, sosinsky, G E, et

al. 20001 [Goodenough, D A, et al. 1gg6]; [Yancey, s B, et ar. lggg]. The

extracellular domains are responsible for the interaction between connexons of

the adjacent cells [Hennemann, H, et al. 1992]. The intracellular domains, which



include both of N- and C-terminals, are responsíble for the regulation of channel

activity.



Connexon
(Cell 1)

Connexon
(Cell 2)

lntracellular

Figure 1: Structure of a gap junction channel. Gap junctions are formed by

the connexons from neighboring cells. Each connexon is made up of six

connexin proteins. The red arrow indicates the channel pore.

Extracellular

lntracellular



Plasma

Extracellular

Figure 2: Connexin structure. The abbreviatíons are as follows: NT, N-

terminus; CL, cytoplasmic loop; CT, C-terminus; E1 and E2, ertracellular loops 1

and 2;1-4, transmembrane segments 1-4.

membrane

lntracellular



To date, the multi-gene family of connexin (Cx) consísts of 20 isoforms in

mice [Willecke, K, et al. 2002], and 21 isoforms in humans [Sohl, G, et al. 2003].

There are presently two systems for nomenclature of connexins. The most widely

used is based on the predicted molecular mass (in kilodaltons) of the polypeptide

connexin [Beyer, E C, et al. 1987, Beyer, E C, et al. 1990] ie., Cx43 has a

molecular mass of 43 kDa. An alternative system is based on primary amino acid

sequence homology and uses q and B nomenclature, such as olCx (Cx43), BlCx

(Cx32), $zCx (Cx26) [Kumar, N M, et al. 1992].

2.2 Cardiac qap iunctions

2.2.1 Cardiac gap junction proteins

The major connexin isoform in the mammalian heart is Cx43, although

other Cx isoforms

19991;lBlackburn, J

Different cardiac areas are composed of diverse Cx combinations [Kanter, H L, et

al. 1993a, Kanter, H L, et al. 1993b, Kanter, H L, et al. 19921. Cx37 is abundant

in cardiac endothelial cells [Davis, L M, et al. 1994, Davis, L M, et al. 1995].

Cx40 is predominantly expressed in the atrial myocytes, cells of His-Purkinje

system, the sinus (SA) nodes and atrioventricular (AV) nodes. Cx45 is mainly

expressed in cells of the atria, ventricular, the SA nodes and AV nodes [Davis, L

M, et al. 1994, Davis, L M, et al. 19951 . Cx43 is mainly detectable in the working

ventricular myocardium, vascular smooth muscle cells and fibroblasts, with the

exception of the conduction system and the SA and AV nodes [Bastide, B, et al.

1993] [Gourdie, R G, et al. 1993a, Gourdie, R G, et al. 1993b] [Gros, D, et al.

10

are

P, et

expressed in less quantities [Jalife, J, et al.

al. 1995, Severs, N J 1995a, Severs, N J 1995b].



199a1; lVozzi, C, et al. 19991. Cx43 in the heart plays a key role in maintaining

normal cardiac electrical and metabolic coupling and its absence results in

arrhythmic death [Danik, S B, et al.20041. The expression of Cx43 can be altered

by different factors, including FGF-2, which stimulates Cx43 expression in

cardiac fibroblasts [Doble, B W, et al. 1995] and parathyoid hormone and thyroid

hormone, which can regulate transcription of Cx43 gene [Mitchell, J A, et al.

2001, Stock, A, et al. 20001.

With the advancement of molecular and cellular biology approaches,

transgenic animal models have been developed to analyze the functions of

different Cxs. Cx43-null mice die shortly after birth, due to pulmonary outflow

obstruction, and it was impossible to measure the properties of cardiac

conduction in these mice [Reaume, A G, et al. lggs]. Neveftheless, the

heterozygous knockout Cx43 mice (Cx43+/-) were used to study the role of Cx43

for normal cardiac conduction. These Cx43+l- mice appeared essentially normal,

reproduced normally (were fertile), and had no significant differences in

conduction properties when compared to wild-type Cx43 mice [Guerrero, P A, et

al. 1997]; [Morley, G E, etal. 1999, Thomas, SA, etal. 1gg8a, Thomas, SA, et

al. 1998b1. However, the activation of epicardial conduction was slowed in the

ventricle, indicating ventricular conduction interruption [Guerrero, P A, et al.

19971; [Thomas, S A, et al. 1998a]. The effect of density and distribution of gap

junctions on conduction velocity in the Cx43+l- mice were studied using computer

simulation. The results suggest that cell dimension is more important than gap

l1



junction distribution, since -40% reduction in total GJ content has only moderate

impact on the conduction velocity [Jongsma, H J 2000, spach, M s, et al. 2000].

Cardiac tissue-specific Cx43 knockout mice have also been developed.

These mice were born with normal cardiac structure and contractile function, but

they died of spontaneous lethal ventricular arrhythmia at approximately 2 months

of age [Gutstein, D E, et al.2001a, Gutstein, D E, et al. 2001b], suggesting the

Cx43 mutation plays a vital role the development of lethal arrhythmias

[Paznekas, W A, et al. 2003]. Cx43 therefore is an important cellular target in

various cardiac diseases that cause lethal arrhythmias.

2,2.2 Function of cardiac gap junctions

Under normal physiological conditions, cardiac GJs play an essential role

in cardiac function by mediating the propagation of electrical impulses that

ensure the synchronized contraction of the cardiac muscle [Kanter, H L, et al.

1993b1. GJ channels also mediate cellular metabolic coupling to adjacent

myocytes, a process that may be associated with signal transduction of cell

growth, differentiation, and resistance to injury [Doble, B W, et al. 2000]; [Schulz,

R, et al. 20041. Differences in size, abundance and distribution of gap junctions

in different cardíac areas contribute to the properties of electrical conduction

[Jalife, J, etal. 1989]; [Luke, RA, etal. 1991, Peters, N S, etal. 1993] [Davis, L

M, et al. 19941. Moreover, GJ channels composed of different connexin isoforms

have different conductance and gating activities [Davis, L M, et al. 1gg4].

GJs are predominantly located at the specialized regions of intercellular

contact, known as the intercalated disk (lCD) areas of the myocytes. GJs that

I2



exist at the lCD, are related to the functional coupling between adjacent cells

[Saez, J C, et al. 1993, Saez, J C, et al. 1gg7]; [Jongsma, H J 2000]. Each

ventricular cardiomyocyte is connected to approximately nine other myocytes by

gap junctions [Luke, R A, et al. 1989]. Myocytes can be coupled through gap

junctions in end-to-end or side-to-side orientation, which can influence the

conduction of the impulse from the atria to the ventricles [Davis, L M, et al. 1994,

Davis, L M, et al. 19951. Ventricular myocytes are well connected to the adjacent

cells by GJs, leading to a large communication system with other

cardiomyocytes. The velocity of longitudinal conduction along the

cardiomyocytes in the ventricle is three-folds higher than the transverse

conduction [Delmar, M, et al. 1987];[Oosthoek, P W, et al. 1gg3a, Oosthoek, p

W, et al. 1993b1.

ln addition, the extensive connection of the Purkinje fibers by GJs forms a

fast conducting network, suggesting a rapid impulse propagation from Purkinje

fibers to ventricles.

2.2.3 Regulation of connexin 43 and gap junction channels

GJs are dynamic membrane structures with rapid turnover rates of less

than 1.5 hours in cultured cardiac myocytes [Beardslee, M A, et al. lgg8] and

less than 2 hours in heart tissue [Musil, L S, et al. 1gg0b]; [Crow, D S, et al.

19901; [Laird, DW, etal. 1991]; [Lampe, P D 1994];[Beardslee, MA, etal. 1g9B].

Assembly and turnover of GJs is likely to exert control of intercellular

communication. Permeability and conductance of GJs can be regulated by

effects at the cytoplasmic domains of Cx43 [swenson, K l, et al. 1g8g];[Beyer, E
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C, et al. 19891 as well as the types of connexin forming the channels [Veenstra,

R D 1996a, Veenstra, R D 1996b1. GJs can be composed of different types of

connexin that exhibit different ranges of permeability heteromere [Bevans, C G,

et al. 1998, Niessen, H, et al. 20001. Heteromeric GJs show dífferent

conductance properties than the respective homomeric GJs [Koval, M, et al.

19951; [Berthoud, V M, et a|.2000]. Signal transduction via GJ channels can be

regulated by a variety of molecules and physiologic stimuli, including a reduction

in cytosolic pH, changes in intercellular voltage, increases in intracellular CaZ*

concentration, and phosphorylation of connexins [Ramon, F, et al. 1g86];

[Dermietzel, R, et al. 1990, Spray, D C, et al. 1990] [Luque, E A, et al. 1gg4].

Phosphorylation of Cx43 can reduce the conductance and permeability of GJ

channels [Takens-Kwak, B R, et al. 1992a, Takens-Kwak, B R, et al. 1gg2b],

whereas dephosphorylation of Cx43 increases conductance [Saez, J C, et al.

19931; [Burt, J M, etal. 1988a, Burt, J M, etal. 1988b];[Lau,A F, etal. 1g91].

2.2.4 Phosphorylation of connexin 43

The majority of connexins (Cx31 , Cx32, Cx37, Cx40, Cx43, Cx45, Cx46,

cx50, and cx56) with the exception of cx26 are phosphoproteins.

Phosphorylation of connexins is implicated in regulating all known Cx43

properties [Asamoto, M, et al. 1991], [Saez, J C, et al. 2003].

Cx43 exists mostly in a phosphorylated state in the normal healthy heart.

Phosphorylation affects electrophoretic mobility of Cx43; increasing

phosphorylation events result in decreasing electrophoretic mobility. Cx43

exhibits various electrophorectic mobilities with apparent molecular weights
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rangÍng from 41-45 kDa and even > 45 kDa, when examined by polyacrylamíde

gel electrophoresis (SDS-PAGE). The faster mobility band correspond to non-

phosphorylated or dephosphorylated (DP or Po, 41 kDa) Cx43. Slower mobility

isoforms are partially (43 kDa) or highly (45 kDa) phosphorytated Cx43.

Phosphorylated 43-45 kDa Cx43 species can be changed to Po by phosphatase

treatment, indicating that phosphorylation is the modification being detected by

SDS-PAGE analysis [Crow, D S, et al. 1990]; [Musil, L S, et al. 1gg0a, VanSlyke,

J K, et al. 2000a, VanSlyke, J K, et al. 2000b1;[Saez, J C, et al. 1997];[Hertzberg,

E L, et al. 20001. However, electrophorectic mobility may be insufficient to

discriminate between non-phosphorylated and minimally phosphorylated (5368)

Cx43, migrating at 41 kDa [Solan, J L, et al. 2003].

Cx43 is phosphorylated primarily on multiple serine residues, but can also

be phosphorylated on threonine or tyrosine residues [Laird, D W, et al. 1991].

Cx43 has two serine residues in its amino (N-) terminal and 21 serine residues in

the C-terminal. However, there is currently no report that provides any evidence

for the phosporylation of serine residues on the N-terminal [Shin JL et.a1.2001;

Lampe et.al; 20041. The C-terminal of Cx43 is the primary phosphorylated

domain [Berthoud, V M, et al. 19971; [Lampe, P D, et al. 2004, Solan, J L, et al.

20051. The sites phosphorylated by various kinases are summ arized in Table 1.

Cx43-mediated intercellular communication is regulated by various

kinases, including protein kinase c, A (PKc, PKA), tyrosine kinase (such as src),

and mitogen-activated protein kinase (MAP kinase) [Kwak, B R, et al. 1gg5b];

[Darrow, B J, et al. 1996]; [Doble, B W, et al.2000]; [Polontchouk, L O, et al.
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20021. ln cardiomyocytes, active PKA increases the GJ mediated intracellular

communication [Darrow, B J, et al. 1996]. GJ channel conductance of neonatal

cardiac myocytes is increased by PKC and decreased by PKG [Kwak, B R, et al.

1995a1. lt is important to note that PKC increases electrical coupling but

decreases metabolic coupling between cells [Kwak, B R, et al. 1ggsa, Kwak, B

R, et al. 1995b1. The effects of protein kinases on GJ permeability and

conductance in cardiomyocytes and non-cardiomyocytes are summarized in

Table 2 and 3.
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Table l: Cx43 residues phosphorlated by active protein kinase

Phosphorylated
residues

Iyr 247

Ser 255

Ser 257

Ser 262

Tyr 265

Ser 272

Ser 273

Ser 279

Ser 282

Ser 325

Se1328

Ser 330

Ser 364

Ser 365

Ser 368

Ser 369

Ser 372

Ser 373

Kinases
respons¡ble

TyrK (Src)

MAPK

PKG

Cyclin B/p34'd'2, PKC

Tyrk (Src)

MAPK

MAPK

MAPK

MAPK

CK1

cK1

cK1

PKA

PKA

PKC

PKA

PKC

PKA

References

[Lin, R, et al. 2001]

[Lampe, P D, et al. 1998]; IKanemitsu, M Y, et al. 1998];

[Lau, A F, et al. 1996, Warn-Cramer, B J, et al. 1996]

[Kwak, B R, et al. 1995b]

[Kanemitsu, M Y, et al. 1998]; [Doble, B W, et a|.2004]
[Doble, B W, et al. 2000]

[Lin, R, et al. 2001]

[Warn-Cramer, B J, et al. 1996]

[Warn-Cramer, B J, et al. 1996]

[Lau, A F, et al. 1996, Warn-Cramer, B J, et al. 1996]

[Lau, A F, et al. 1996, Warn-Cramer, B J, et al. 1996]

[Cooper, C D, et a|.20021

[Cooper, C D, et a|.20021

[Cooper, C D, et a|.2002]

[Shah, M M, et al.2O02]; [TenBroek, E M, et al. 2001]

[Lau, A F, et al. 1996, Warn-Cramer, B J, et al. 1996]

[Yogo, K, et al. 2002]

ILampe, P D, et al. 2000]

[Yogo, K, et al. 2002]

[Saez, J C, et al. 1997]

[Yogo, K, et al. 2002]

Abbreviations: Tyr: tyrosine; Ser: Serine; Tyrk: Tyrosine kinase; MAPK: Mitogen
activated protein kinases; Ck1: Casein Kinasel; PKA: Protein kinase A; PKC:
Protein kinase C
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Table 2: Effects of protein kinases and phosphatase on GJ permeability and conductance
in cardiomyocytes

Kinases

PKA

PKC

PKG

PTK

MAPKs

Alkaline PP

oo

GJ permeability to

metabolites

nla

decreased

decreased

decreased

nla

increased

GJ conductance

Abbreviations:

PKA: Protein kinase A; PKC: Protein kinase C; PKG: Protein kinase G; PTK: Protein tyrosine kinases;

PP: Protein phosphatases; MAPKs:Mitogen activated protein kinases

increased

increased

decreased

nla

increased

decreased

Burt JM et.al. 1988 ; De Mello WC et.a|.1996

Kwak BR et.a|.1995; Kwak BR et.a|.1996

Taken-Kwak BR et.a|.1992; Burt JM et.al.1g8B

Doble BW et.a1.2000; Doble BW et.at.1996

Polontchouk L et.a|.2002

Taken-Kwak BR et.al. 1992

References



Table 3:

Effects of protein kinases on GJ permeability and conductance in non-cardiomyocytes

Kinases

PKA

PKC

PTK

MAPKs

cK1

\o

GJ permeability
to metabolites

increased

decreased

decreased

decreased

nla

GJ conductance

nla

decreased

decreased

decreased

decreased

Abbreviations:

PKA: Protein kinase A; PKC: Protein kinase c; pKG: protein kínase G;

PTK: Protein tyrosine kinases; CK1: Casein kinase '1; MAPKs: Mitogen activated protein kinases

TenBroek EM et.a|.2003; Paulson AF et.a1.2000;

Lampe PD et.a1.2001

Lampe PD et.a|.2000;Cruciani V et.a|.2001;

Ruch RJ et.a1.2001

Toyofuku T et.a|.1999; Lin R et.a1.2001;

Conttrell GT et.a1.2003; Postma FR et.al 1gg8

Conttrell GT et.a|.2003; Cameron SJ et.a1.2003

Warn- Cramer BJ et.a|.1998; Kim DY et.al.1gg9

Cooper CD et.a1.2003

References



Phosphorylation of Cx43 bv protein kinase C (PKC)

The involvement of PKC in the phosphorylation of cardiomyocyte Cx43

has been shown by using known PKC activators such as PMA (phorbol 12-

myristate 13-acetate) or FGF-2 [Doble, B W, et al. 2000]; [Doble, B W, et al.

20011; [Doble, B W, et al. 1996]. PMA increases Cx43 phosphorylation with a

subsequent decrease in GJ intercellular dye-coupling.

Cx43 has several potential PKC target sites. Of these, Doble et al. has

demonstrated that 5262 becomes phosphorylated in response to FGF-2, or PMA

stimulation, within the cell environment [Doble, B W, et a|.20041. Additional PKC

specific phosphorylation sites on Cx43 are 5372, and 5368 identified in studies

in vitro [Shah, M M, et al. 20021; [Lampe, P D, et al. 2000]; [Saez, J C, et al.

19971. Both PKC sites can be phosphorylated in response to PMA treatment

[Lampe, P D, et al. 2004} S368 appears to be a major PKC site of

phosphorylation in vivo and can cause the GJ uncoupling after PMA treatment;

expression of a 53684 mutant resulted in resistance to PMA-induced uncoupling

effect [Lampe, P D, et al. 2000]; [Liu, T F, et al. 1999].

Protein kinase C (PKC) belongs to a large family of serine/threonine

kinases that consists of at least 12 members, dívided in three groups: classic,

novel, and atypical. The classic PKC isoforms (o, P1, P2, y) are activated by

phorbol esters, calcium and diacylglycerol (DAG). The novel PKC isoforms

(õ,e,r¡,O) are activated by phorbol esters and DAG but are not dependent on

calcium [Baines CP et.al.,1999]. The atypical PKC isoforms ((,r,À,u) are activated
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by 3'-phosphoinositides but not by calcium, phorbol esters , nor DAG [Baines, C

P, et al. 19991; [Murphy, S, et al. 2005].

Of these isoforms, PKCq and PKCE have been shown to co-localize and

interact directly with Cx43 in cardiomyocytes. Our laboratory has studied Cx43

phosphorylation by PKC over several years. Using dominant-negative forms of

PKCE, Doble et al. demonstrated that PKCE is required for Cx43 phosphorylation

in response to FGF-2 [Doble, B W, et a\.2001, Doble, B W, et al. 2000], and that

5262 phosphorylation is required to reduce the 'hyper' phosphorylated Cx43

(>45 kDa) in response to PMA. This PKC-mediated phosphorylation at 5262 was

also shown to regulate the growth-inhibiting activity of C43 [Doble, B W, et al.

2004} Phosphorylation of Cx43 via PKCc activation has been implicated in

increased GJ conductance of adult guinea pig cardiomyocytes in response to

treatment with the anti-arrhythmic peptide AAP10 [Weng, S, et al. 2002].
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2.3 Gap iunctions and connexin 43 in cardiac ischemia. arrhvthmias and

hvpertrophv

2.3.1 Gap junction-mediated intercellular comm un ication d uring ischemia

Most cardiac disorders, such as ischemic heart disease, arrhythmias and

heart failure, are associated with alterations of Cx43 expression and distribution

[Lo, C W 2000]; [Jongsma, H J 2000]. lschemia causes Cx43 dephosphorylation,

followed by Cx43 degradation [Beardslee, M A, et al. 2000]; [Huang, X D, et al.

1eeel.

Closure of cardiac GJs during acute myocardial ischemia was first

proposed in 1979 [McCallister, L P, et al. 1979]. Early studies showed a

reduction of GJ diameter pore following 30 minutes of ischemia [Ashraf, M, et al.

19781. lt has also been shown that 30 - 60 min of hypoxia result in the separation

of intercalated discs (lCDs) membrane, and a 40-45% decrease in GJ surface

density lHoyt, R H, et al. 1990]; [Gourdie, R G, et al. 1991]. Morphological

studies have shown that the density of GJ in ventricular myocardium is

diminished in the post ischemic heart or in chronic hypertrophy [Kieval, R S, et al.

19921; [Peters, N S, et al. 1993]. The number of myocytes attached to lCDs is

decreased from 1 1 lo 6-7 cells in the canine infarcted area [Luke, R A, et al.

19911. The re-distribution of Cx43 away from the ICD area to the lateral surfaces

of cardiomyocytes is also observed in the damage tissue [Peters, N S, et al.

19941; [Severs, N J 1995b]. These results have suggested that GJ uncoupling

could be a result of an alteration of GJ channel conformation and distribution.
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A reduction of electrícal propagation during acute myocardial ischemia is

correlated with ATP depletion as well as an elevation of intracellular Ca2* and H*

concentrations and accumulation of cellular metabolites [Kleber, A G 1987];

[Riegger, c B, et al. 1989];[Rodriguez-sinovas, A, et a|.2003];[padiila, F, et ar.

2003]. The decline of electrical myocardial coupling after ischemia has been

proposed to be a result of Cx43 dephosphorylation, leading to the translocation

of Cx43 from the cell membrane to the cytosol [Beardslee, M A, et al. 2000];

[Lerner, D L, et al. 2000].

ln contrast, other studies report that dephosphorylation of Cx43 opens the

channels of GJs leading to increased conductance and permeablilty of GJs, and

is associated with the propagation of ischemia or ischemia-reperfusion injury to

adjacent myocytes [Garcia-Dorado, D, et al. 1gg7]. using a dye-coupling

technique to assess metabolic coupling, it was demonstrated that dye coupling

persists in severely ischemic myocytes and was associated with the propagation

of ischemic injury and a putative death factor via GJs [Cotrina, M L, et al. 1998,

Lin, J H, et al. 19981. Down-regulation of Cx43 levels is a feature of end-stage

heart failure [Peters, N S, et al. 1993].

Arrhythmias and hypertrophy are additional ischemia-related pathologies

linked to changes in cardiac GJs channels. Arrhythmia is defined as a uni-

directional block of cardiac impulse transmission and the slowing of conduction

leading to re-entry of cardiac electrical pathway [Hoffman, B F, et al. 1987], which

is associated with GJs abnormalities. The irregularities of GJs play a significant

role in arrhythmogenesis since resting membrane potential is contributed to by
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ions that pass through the GJs channel. GJs remodeling and the alteration of

Cx43 expression level are important causes of developing arrhythmias during

ischemia [Peters, N S, et al. 1995]. Cardiac specific knockout of Cx43 in mice,

which have normal heart structure and contractile cardiac function at birth,

develop sudden lethal ventricular arrhythmias by 2 months of age [Gutstein, D E,

et al. 2001a1. Correspondingly, the incidence of ventricular arrhythmias is raised

in Cx43 deficient mice during ischemia [Lerner, D L, et al. 2000], suggesting that

abnormalities of Cx43 and GJs contribute to the arrhythmogenesis.

Cardiac hypertrophy is described as a compensatory response to

pressure or volume overload, which is associated with GJs remodeling. Although

Cx43 levels are elevated in the first phase of hypertrophy, a significant reduction

of Cx43 expression, and alterations in density and organization of GJs are noted

in chronically hypertrophied hearts [Saffitz, J E, et al. 1994]; [Emdad, L, et al.

20011.
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3. CARDIOPROTECTION

3.1 lntroduction

Loss of heart muscle due to cell death (by either necrosis and/or

apoptosis) is a common feature of many cardiovascular pathologies, such as

ischemic heart disease, myocardial infarction, ischemia-reperfusion injury,

cardiomyopathy and heart failure. lnterventions that can raise cardiac, and

cardiomyocyte resistance to injury ('cardioprotection') have been the subject of

intense interest over several years since they offer the promise of protecting and

even salvaging the myocardium under adverse conditions. New therapeutic

strategies can furthermore be developed by understanding the signal

transduction and subcellular mechanisms associated with development of an

injury-resistant heart. Detailed reviews on the topic can be found in [Murphy, E

20041; [Kardami E, et.al. 2006]; [Schulz, R, et al. 2001a]; [Cohen, M V, et al.

20001.

Established and powerful experimental procedures for achieving

cardioprotection include ischemic or pharmacological preconditioning. lschemic

preconditioning, ie subjecting the heart to brief periods of ischemia and

reperfusion, protects the heart from cell death and contractile dysfunction

induced by subsequent prolonged ischemia. Other stress stimuli, and various

pharmacological agents (detailed in [Cohen, M V, et al. 2000]) can have similar

effects. More recently, post-conditioning (brief intermittent episodes of ischemia

and reperfusion, at the onset of reperfusion afrer prolonged period of ischemia)

was also shown to protect hearts from ischemia-reperfusion associated injury
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and cell death [Hausenloy, D, et al. 2004]. While multiple signal transduction

pathways have been implicated in generating a protective response, all seem to

converge in the requirement for protein kinase C (PKC) activity, downregulatíon

of GSK-3 activity through its phosphorylation by PKC [Juhaszova, M, et al. 2004]

and the engagement of key mitochondrial entities. Acute cardioprotection is

dependent on post-translational modifications of proteins such as

phosphorylation, thus, proteins becoming phosphorylated downstream of pKC

are of major interest as likely mediators of protection.

Diverse signaling pathways that cause cardioprotection meet at the

mitochondria. Key mitochondria-associated entities, proposed to act as end-

effectors or cardioprotection include the putative ATP-sensitive mitochondrial

potassium channel, mitoKarp [o'Rourke, B 2004];[Gross, G J, et al. 2003], the

mitochondrial permeability transitíon (MPT) pore, and members of the Bcl-2

family of proteins [Murphy, E 2004]. opening of the mito Knrp channel during

ischemic preconditioning is proposed to be protective by causing a non-lethal

transient (low conductance) opening of the mitochondrial permeability transition

(MPT) pore at the inner mitochondrial membrane, and by stimulating reactive

oxygen species (ROS) production [Hausenloy, D, et al. 2004]. Mitochondrial-

dependent ROS can act as a second messenger to activate kinases such as

PKc. Activation of PKC, however, can also occur upstream of, and promote,

mitoKnrp opening [Murphy, 8 2004].ln contrast to the transient, low conductance

MPT opening during preconditioning, the prolonged, high conductance, opening

of the MPT pore occurring during the reperfusion phase, after ischemia,
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depolarízes the matrix, stopping energy production and releasing cytochrome C

to the cytosol, thus inducing cell death [Juhaszovâ, M, et al. 2004: [Murphy, E

20041. A wide variety of agents, acting via distinct upstream mechanisms have

been shown to raise cardiac resistance to injury by limiting the induction/opening

of high conductance MPT [Juhaszovâ, M, et al. 20041. The balance of pro- and

anti-apoptotic members of the Bcl-2 family of proteins are thought to determine

formation of the votage-dependent anion channel (VDAC), that releases

cytochrome C and promotes cell death.

Diverse triggers of cardioprotection require the activity of PKC. Of the

several PKC isoforms identified to-date, the calcium-independent PKCe is widely

accepted to be of major importance in cardioprotection. Upon activation PKCe

translocates to its sites of action; it can form multimolecule-signaling modules

[Vondriska, T M, et al. 20011(thus integrating several signals) and is found at

several subcellular sites, at cell-cell contact areas (intercalated disks), but also

mitochondrial membranes [Baines, c P, et al. 20021; [Baines, c P, et al. 2003].

One of the subcellular targets, and an interacting partner of PKCe, is Connexin -

43 (Cxa3) [Doble, B W, et al. 2000].
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3.2 Cardioprotection and FGF-2

Fibroblast growth factor-2 (FGF-2) is a member of a large family (FGF-1 to

FGF-23) of heparin binding growth factors that share 50-70o/o of structural

sequence homology [Yamashita et.al. 2000]; [Ornitz, D M 2001]; [Ornitz, D M, et

al. 20011. FGF-2 is synthesized and expressed in a variety of tissues, including

astrocytes, neuronal cells, muscle cells, chondrocytes, platelets, keratinocytes,

and macrophages [Abraham, J A, et al. 1986] ;[Gospodarowicz, D, et al. 1986b];

[Gospodarowicz, D, et al. 1986a]; [Basilico, C, et al. 1992]; [Baird, A 1gg4]. ln the

heart, FGF-2 is expressed in multiple cell types, such as myocytes, vascular

cells, and fíbroblasts, at all developmental stages [Cummins, P 1993]; [Kardami,

E, et al. 19951.

FGF-2 is multifunctional. FGF-2 is a mitogen and has effects on

differentiation, adhesion, migration, motility, and apoptosis [szebenyi, G, et al.

19991. FGF-? has been recognized as a growth and survival factor in normal

cells from different tissues, such as vascular endothelial cells, cardiac myocytes,

vascular smooth muscle cells, fibroblasts, astrocytes, Schwann cells, retinal

pigmented epithelial cells, gonadal cells, ovarian cells, gastric cells and hepatic

cells [Chen, C H, et al. 20041; [Conklin, B S, et al. 20041. FGF-2 is an anti-

apoptotic agent in endothelial and neural cells [Schweigerer, L, et al. 1987]. The

ability of FGF-2 to act as an angiogenic factor to stimulate the growth of new

blood capillaries in tissue that has undergone ischemia has been well established

[Saksela, O, etal. 1987]; [Klagsbrun, M, etal. 1988]; [Folkman, J, etal. 1988].

28



FGF-2 exerts its biological functions by interacting with specific cell

surface tyrosine kinase receptors. FGFRI is the predominant FGF-2 receptor in

the heart [Szebenyi, G, et al. 1999]. FGFRI is activated by FGF-2, inducing

FGFRI dimerization and consequent transphosphorylation, which initiates the

FGF-2-FGFR1 signaling complex, as shown in Figure 3. FGF2- FGFRI results in

activation of several signal transduction pathways including the PKC pathway,

which is involved in cardioprotection. FGF-2 regulation of PKC activation results

in a reduction of cell-cell permeability and may be associated with opening of

Kap channels, all of which contribute to cardioprotection.

FGF-2 exerts substantial beneficial effects in the head, acutely as well as

long term. While the long term benefits of FGF-2 are mediated by its angiogenic

activity, as reviewed recently by Dettilieux et al. [Detillieux, K A, et al. 2004],

acute benefits are derived from direct cytoprotective effects on the myocardium

[Kardami E, et.a|.2006].

FGF-2 exerts cardioprotection in a pre-conditioning as well as post-

conditioning like fashion. Administration of FGF-2 prior to ischemia protects the

heart from tissue injury and contractile dysfunction resulting from ischemia-

reperfusion [Padua, R R, et al. 1998, Padua, R R, et al. 1995]. FGF-2, given to

the heart during reperfusion after 30 minutes of ischemia remains

cardioprotective [Jiang, Z S, et a|.2002, Jiang, Z S, et a\.2004].lnjection of FGF-

2 directly into the ischemic myocardium during irreversible coronary occlusion

confers acute protection from tissue loss and functional decline [Jiang, Z S, et al.
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2002, Jiang, Z S, et al. 20041. Chronic FGF-2 overexpression in transgenic

mouse hearts raises resistance to ischemic injury [Sheikh, F, et al. 2001].

FGF-2 cardioprotection is associated with the activation of several PKC

isoforms, including PKCe and PKCV, requires binding to its tyrosine kinase

receptors and is abolished when PKC is inhibited by chelerythrine [Padua, R R,

et al. 1998]; [Jiang, Z S, et al. 2002]. Chelerythrine also blocks the FGF-2

induced Cx43 phopshorylation [Doble, B W, et al. 2000].
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Figure 3: Signaling pathways involved in FGF-2 and Gx43 phosphorylation

PROTHCTIqN

I

I cell coupling

ffi'* / *lru
'!rywmj

/w/\w ffi'ffi-,rcl _l

NE

UJ



3.3 Gardioprotection and Cx43

It is becoming increasingly evídent that Cx43 is actively involved in the

regulation of cellular and tissue vulnerability to ischemic injury. Work from non-

muscle systems has pointed to Cx43 mostly as a cytoprotective molecule

[Nakase, T, et al. 2003]. ln the heart, Schwanke et al. demonstrated that the

Cx43 (+/-) mice, expressing -50% of the normal Cx43 levels, are incapable of

cardioprotection by ischemic preconditioning and thus proposed that Cx43 is

essential for the development of resistance to injury [Schwanke, U, et al.20021.

ln apparent contrast, another group used the same mouse model and reported

that Cx43-defficiency caused smaller infarcts upon coronary ligation, and

concluded that Cx43 is actually increasing vulnerability to injury [Kanno, S, et al.

20031. However Cx43 can also promote vascular growth [Walker, D L, et al.

20051 ,the decreased infarcts in the Cx43 (+/-) hearts may be an indirect effect of

red uced re-vascularization.

The role of intercellular communication (GJIC) per se in cytoprotection is

not well understood, although there is some evidence that cardioprotection by

ischemic preconditioning requires decreased GJ channel permeability [Miura, T,

et al.20041. GJ have been implicated in the propagation of injurious stimuli and

the spread of contracture in the ischemic heart [Garcia-Dorado, D, et al.2004],

thus the protective effects of volatile anesthetics has been attributed to their

ability to decrease GJ permeability. ln addition to studies implicating the

channel-forming ability of Cx43 as mediating its ability to regulate response to
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injury, there is also evidence that Cx43 can induce cardioprotection in the

absence of intercellular communication [Li, X, et al.2004]

As mentioned, Cx43 is relatively abundant at cardiomyocyte lCDs. There

is now evidence that Cx43 may be also found at other cellular locations as well.

Studies using endothelial cells first reported that oxidative stress upregulated

Cx43 expression, and induced translocation of Cx43 from the plasma membrane

to an intracellular compartment, identified as the mitochondria [Li, X, et al. 20041.

Subsequently, a series of elegant and convincing studies by Heusch and

colleagues [Boengler, K, et al. 2005] demonstrated that (i) Cxa3 can also be

found at the inner mitochondrial membrane of cardiomyocytes, (ii) ischemic

preconditioning is accompanied by translocation of Cx43 to mitochondria [Dhein,

S 20051; [Boengler, K, et al. 2005], and (iii) there is a functional role for

mitochondria-Cx43. Cx43 is needed for diazoxide-induced mitochondrial reactive

oxygen species, (ROS), generation [Heinzel, F R, et al. 2005]. These authors

proposed that since ROS generation is required for ischemic preconditioning, a

defect in ROS production, caused by Cx43 defficiency, could explain lack of

cardioprotection by ischemic preconditioníng in Cx43 (+Ð mice.
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4. RATIONAL FOR PROPOSED STUDIES

Acute cardioprotection by FGF-2 and other triggers is dependent on PKC

activation and PKC-mediated post-translational modification of proteins.

ldentification of downstream targets of PKC activation in the adult heart therefore

will improve understanding of the mechanism of cardioportection. The objective

of the current study was to investigate whether Cx43 is such a target in the adult

heart.

To address these objectives, we examined the following hypotheses:

(1) FGF-2 will stimulate Cx43 phosphorylation at PKC target sites (5262,

5368) in the adult heart

(2) FGF-? administered prior to ischemia will prevent ischemia-induced Cx43

dephosphorylation and redistribution away from lCDs.
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I. MATERIALS

l.l Animal models:

Male Sprague-Dawley rat (200-2509) provided by the Central Animal Care

Facility at the University of Manitoba were used in all experiments. Animals were

used according to guidelines of the Canadian Council of Animal Care, in

agreement with the Local Animal Care Committee of the National Research

Council of Canada.

1.2 Antibodies:

All antibodies have been fully characterized. The following antibodies were

used: (1) Rabbit polyclonal anti-Cx43 antibody, raised against aa 367-382

(#p.AB), has been characterized by [Doble, B W, et al. 2000]. (2) Mouse

monoclonal anti-Cx43 antibody (#m.AB), raised against aa 250-270, was

purchased from Transduction Laboratories (CA) and was characterized by Doble

ef a/. [Doble, B W, et al. 1996]. (3) Mouse monoclonal antibody (#13-800), raised

against amino acid 360-376, and recognizing only dephosphorylated or

recognizing the dephosphorylated or minimally phosphorylated Cx43 [Nagy, J l,

et al. 19971; [Cruciani, V, et al. 1999] was purchased from Zymed Laboratories

(CA). (4) Rabbit polyclonal anti-P262 antibody (#Anti-P262-Cx43), recognizing

the phosphorylated form of 5262 on Cx43, was purchased from Santa Cruz

Biotechnology (CA). (5) Rabbit polyclonal anti-P368 antibody (#Anti-P368-Cx43),

recognizing the phosphorylated isoform of 5368 on Cx43, was purchased from

Chemicon Laboratories (CA). This has been characterzed by Lampe PD et al.

MATERIALS AND METHODS
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[Lampe, P D, et a].2004, Lampe, P D, et al. 20001 (6) Anti rabbit- and (7) anti

mouse- horse radish peroxidase (HRP) secondary antibodies were purchased

from Bio-Rad (CA).

1.3 Ghemicals and solutions:

Krebs-Henseleit (K-H) perfusion solution (118 mM NaCl, 4.7 mMKCl, 1.25

mM CaClz,246.5 mM MgSOq,25 mM NaHCOs, 1.2 mM KHzPO¿, 180.2 mM

glucose) was filtered (1.2 ¡:m, Millipore) before use. The K-H perfused solution

pH 7.4 was constantly gassed using 95%Oz and 5% CO2, ând maintaíned at a

temperature of 37 'C.
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2.

2.1

METHODS

Source of Fibroblast qrowth factor-z GGF-21

Recombinant wild type (the 18 kDa, AUG-initiated isoform) FGF-2 was

produced in Escherichia coli bacteria and purified to homogeneity in our

laboratory according to standard protocols as published previously [Jiang, Z S, et

al.2002l.lt was used within one month of preparation.

2.2. Whole heart oerfusion usino Lanoendorff oreoaration

Male adult Sprague-Dawley rats (200-250 g) were anesthetized, using

Ketamine and Xylazine, and sacrificed by decapitation. Heafts were rapidly

removed, washed in cold buffer, and the atria, extraneous fat and connective

tissue were trimmed off. A short cannula was inserted in the aorta and hearts

perfused with oxygenated K-H solution at a constant pressure of 80 mmHg under

non-recirculating conditions. FGF-2 (10 pg) was dissolved in 12 ml of K-H

solution and infused at the position of entry to the heart via retrograde perfusion

by a peristaltic pump. FGF-2 was used at a concentration inducing a

cardioprotective effect against ischemia-reperfusion-induced contractile

dysfunction and tissue damage, as documented by our laboratory in several

previous publications [Padua, R R, et al. 1995];[Padua, R R, et al. 1998];IJiang,Z

S, et al. 20021 [Jiang, Z S, et al.2004].
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2.3 Experimental desiqn

2.3.1 FGF-2 treatment.

Two groups of perfused hearts (n=6/group) were used in the first set of

experiments. Both groups were subjected to a stabilization period, consisting of

20 min perfusion with K-H. Hearts from group 1 were continued to be perfused

by K-H alone, while the hearts from group 2 were perfused with FGF-2 in K-H, for

20 min. Hearts were then processed for extraction and immunofluorescence

(Figure4).

2.3.2 FGF-2 pretreatment followed by ischemia.

The second series of experiments followed exactly the same experimental

design as in the first series of experiments. Hearts from both groups (n=7/group)

were then subjected to 30 min of global ischemia. Hearts were then processed

for extraction and immunofluorescence (Figure 4).
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Figure 4: Scheme of experimental protocol

2.3.1 FGF-2 treatment.

20 min
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(K-H) | perfusion
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(K-H) l.'. þerfusion.
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K.H Global ischemia

30 min
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2.4 Gardiac tissue extraction

lmmediately after perfusion, hearts were frozen in liquid nítrogen and

stored at -80'C. All subsequent procedures were done at 4'C. Ventricular tissue

(50 mg) was powdered using a mortar and pestle with liquid nitrogen then

transferred to a 15 ml tube containing 500 ¡rl (approximate 10 volumes/weíght)

cold rNM buffer (10 mM Tris-HCl pH 7.4,100 mM Nacl, 300 mM sucrose, 2 mM

Mgcl2, 1% thiodiglycol, 60 mM B-glycerophosphate, and 1OmM NaF) with o.2s%

NP40. Protein lnhibitor Cocktail (PlC; Sigma # P8340), and phosphatase

lnhibitor Cocktails 1 and 2 (PPIC1; Sigma #P2850; PPIC2; Sigma#pb726) at

dilutions of 1:100 were added to all buffers. Following homogenization with a

glass homogenizer, the homogenate was filtered using Nitex in a Swinnex filter to

remove large insoluble material. An equal volume of 2X SDS buffer (20o/o

glycerol, 100mM Tris-HCl pH 6.8, 2% SDS, 60 mM B-glycerophosphate, 5mM

EDTA, SmM EGTA, 2mM Naov, 1mM NaF) with inhibitors was added and the

samples sonicated at 40 Hz for 3x5 seconds. The extract was boiled for 5

minutes and centrifuged at 21000 g for 15 min at 4'C. The supernatant was

collected and stored at -80 'C for further analysis. The pellet was discarded.

Protein concentration was determined using the BCA assay.
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2.5 SDS-PAGE qel electrophoresis, western blottinq

Total cardiac extracts were analyzed on 10 % polyacrylamide gels at 30

¡lg/¡tl of protein per lane with molecular weight markers from BioRad (broad

range: 6.5- 200 kDa) and lnvitrogen benchmark (6.0-181.8 kDa). Following

electrophoresis, protein was transferred to PVDF (Polyvinylidene difluoride)

membrane (Roche) and stained with Ponceau Red for 5 min to confirm effective

transfer and also to evaluate equivalent loading.

For immunodetection, all steps were done at room temperature unless

indicated (Table 3). To block non-specific protein binding sites, the membrane

was incubated for t hour in 3o/o or 5o/o BSA (98% Albumin, bovine serum; Sigma)

or 10 % skim milk in Tris buffered saline with TWEEN-2O (TBST), as shown in

table 3. Following blocking, the membrane was rinsed briefly with TBST. Primary

and secondary antibodies were used as indicate in table 4, 5. Finally, the

membrane was rinsed twice and washed for 15 min, followed by 3x5 min of

washing in TBST. Antigen-antibody complexes were detected by enhanced

chemiluminescence (ECL. plus; Amersham Biosciences) and exposure to Kodak

X-omat LS film.
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Table 4: Primarv antibodies used in western blottino

Antibodies

# p.AB

# m.AB

# 13-800

# AntiP262-Cx43

Blockinq solution

# Anti-P368-Cx43

10% milk

10% milk

10% milk

Primarv Ab Gonc.

3% BSA

1:15000 in'l% milk

5% BSA

1:1000 in 1% milk

Primary
Antibodies

Table 5: Secondary antibodies used in western blottino

1:1000 in 1% milk

1:2000 in 1%BSA

# o.AB

lncubation condition

1:1000 in 5%BSA

# m.AB

t hour/ room
temoerature

# 13-800

# Antt-P262-Cx43

Secondary
Antibodies

I hour/ room
temperature

Goat anti-rabbit HRP

# Anti-P368-Cx43

t hour/ room
temperature

Goat anti-mouse
HRP

t hour/ room

Goat anti-mouse
HRP

temoe

overniqhU 4oC

Goat anti-rabbit HRP

rature

Secondarv Ab Gonc.

Goat anti-rabbit HRP

1:10000 in 1%milk

1:10000 in 1% milk

1:10000 in 1% milk

1:10000 in 1%BSA

lncubation condition

1:10000 in 1%BSA

t hour/ room
temoerature
t hour/ room
temperature
t hour/ room
temperature
t hour/ room
temoerature
t hour/ room
temperature
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2.6 Densitometric analvsis

Band densíty was determíned using the Bio-Rad Model GS-g00

densitometer with Molecular Analyst software (Bio -Rad).

2.7 Gardiac tissue sectioninq and immunofluorescent labelino

The middle and apex portion of cardiac tissues obtained after Langendorff

perfusion with or without FGF-2, were immediately frozen in OCT in a dry ice

/ethanol bath and stored at -80'C. Transverse cryosections of 7 pm thickness

were consistently obtained using a Microm HM550 cryostat. Sections on slides

were fixed in freshly made cold 1%o paraformaldehyde in PBS for 15 minutes

immediately after sectioning, and washed extensively with PBS. Sections were

placed in a humid chamber and incubated overnight with primary antibodies

diluted in 1% BSA /PBS. Primary antibodies were used as shown in Table 5.

Cardiac sections stained with primary antibodies were then washed gently 4x5

min with PBS and incubated for t hour at room temperature with biotinylated

anti-rabbit lgG (Amersham Biosciences) at 1:20 dilution in 1% BSA/PBS followed

by Strepavidin fluorescein (Amersham Biosciences) at 1:20 dilution. Sections

stained with mouse primary antibodies were incubated with Texas Red

conjugated-anti-mouse lgG (Jackson Laboratories) at 1:100 in 1% BSA/PBS.

Nuclei were labeled with 2.5 mM Hoechst dye 33342 (Calbiochem) for 1 min and

rinsed thoroughly. Cover slips were mounted using lgG Prolong antifade medium

(Molecular Probes) and slides were stored at 4oC until observation.
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Table 6: Antibodies used in immunofluoresecent labelinq

Primary
Antibodies

# p.AB

# m.AB

#13-800

#Anti-P262-Cx43

Detects

#Anti-P368-Cx43

TotalCx43

Abbreviations:
(p):Rabbit polyclonal
(m): mouse monoclonal
DP-Cx43: Dephosphorylated Cx43
P-262: Phosphorylation of serine 262
P-368: Phosphorylation of serine 368

TotalCx43

DP-Cx43

Primarv Ab Conc.

P262-Cx43

P368-Cx43l

1:2000

1 :100

1:200

1:200

1:500
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2.8 Epifl uorescence Microscopv

Cardiac sections were examined by epifluorescence microscopy (Zeiss

Axiovert 3.0). lmages were obtained using three filters (FITC: green, Texas Red:

red and DAPI: blue) for reflected immunofluorescence. A series of images was

obtained at 1 pm intervals of tissues depth with the aid of a mechanized stage

and the AxioVision Program. To reduce inconsistency between measurements,

standardized parameters for imaging, objective and exposure time were kept

constant between sections.

2.9 Statistical analvsis

All statistical data is presented as means + SEM. using the Graph Pad

lnstat 3.0 statistical software program and Microsoft Excel. Differences between

groups were compared using the student's t-test (unpaired) and ANOVA. P< 0.05

and P< 0.01 were considered significant.
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1. The effect of FGF-2 on Cx43 in the perfused. non-ischemic heart.

1.1FGF-2 and Gx43 abundance, phosphorylation status and distribution.

To determine whether FGF-2 could affect Cx43 in adult cardiomyocytes in

the context of the whole isolated heart we administered this protein by perfusion,

at 10 ug/heart, in K-H buffer, over a period of 20 minutes, following procedures

established in our laboratory [Padua, R R, et al. 1995]. Control hearts were

simply perfused with K-H, over the same time period. Hearts were then

processed for cryosectioning and extraction/ western blotting.

Cx43 distribution in the different groups was observed using

immunofluorescence with several different antibodies recognizing either total

Cx43 (m.AB, p.AB), or DP-Cx43 (#13-800). As shown in Fig.5, staining with p.AB

localized Cx43 to the intercalated discs (lCDs) producing the expect punctate

pattern, in both untreated (Fig.5A) and FGF-2-treated (Fig. 58) hearts. Staining

of the FGF-2-treated hearts however appeared more intense compared to non-

tretated hearts. As expected, #13-800 antibodies (DP-Cx43) did not stain lCDs in

either the FGF-2-treated or control group (data not shown).

Western blot analysis of heart lysates is shown in Fig.6. Both FGF-2-

treated and non-treated hearts contained p-Cx43 mígrating at 44-45 kDa. The

intensity of anti-Cx43 bands was however stronger in the FGF-2{reated group.

Statistical analysis indicated a statistically significant increase by nearly 50% in

Cx43 accumulated in the FGF-2, compared to the control, group. There was no

detectable DP-Cx43 at 41 kDa.

RESULTS
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1.2FGF-? and Gx43 phosphorylation at PKG sites

Previously, our laboratory has shown that neonatal myocytes respond to

FGF-2 by increasing Cx43 phosphorylation at the PKC site 5262 [Doble BW

et.al.2004l. We now asked whether adult cardiomyocytes in the perfused heart

model would respond in a similar manner. Thus we probed sections from FGF-2-

treated or control hearts with antibodies specific for P-S262-Cx43, or for P-S368-

Cx43. Both 5262 and 5368 are PKC target sites. Results are shown in Fig.7 and

Fig.9. Control hearts had weak staining for either P-S262- (Fig.7A), or P-S368-

Cx43 (Fig.9A). ln contrast, FGF-treated hearts displayed strong staining for both

of these antibodies, indicating that FGF-2 stimulated the phosphorylation of Cx43

at3262 (Fig.78) and 5368 (Fig.9B).

Comparable results were obtained by western blotting. Staining of the

control group was at background levels under the conditions of this experiment

whíle the FGF-2{reated group clearly displayed anti-P-S262-Cx43

immunoreactive band(s) (Fig.8). The immunoreactive band(s) migrated at 45 kDa

(by comparison to molecular weight markers), as we reported previously for

neonatal myocytes [Doble, B w, et al. 20041. As was the case for 5262, FGF-2

upregulated relative levels of P-S368-Cx43 significantly (Fig.10). ln this case the

immunoreactive Cx43 band(s) migrated slightly slower than 41 kDa, but clearly

below the 45 kDa mark.
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FIGURE 5: Total Cx43 localization in control and FGF-2 treated non-
ischemic hearts. Localization of Cx43 in cardiac sections from control (A) and
FGF-2 treated (B) hearts, using p.AB recognizing total Cx43 (green). Sections
have been counter-stained with Hoechst 33342, to visualize nuclei (blue). Arrows
point to lCDs.
Bar = 50 um.

48



A "v
B

{_ 45 kDa

^25o
:!=

=20
c¡oY15
(Ð
lfx()10
(E+,
Ês

* 41 kDa

Western blot of extracts from control or FGF-2 treated hearts were stained
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FIGURE 6: Effect of FGF-2 on Cx43 levels

Gontrol FGF.2
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FIGURE 7: FGF-2 increases Cx43 phosphorvlation at 5262 in control and
FGF-2 treated non-ischemic hearts. Localization of P-S262-Cx43 in cardiac
sections from control (A) and FGF-2 treated hearts, using a polyclonal
antibody recognizing P-S262-Cx43 (green). Sections have been counter-
stained with Hoechst 33342, to visualize nuclei (blue). Arrows point to lCDs.
Bar = 50pm.
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FIGURE 9: FGF-2 stimulates Cx43 phosphorvlation at 5368 in
control and FGF-2 treated hearts. Localization of P-S368-Cx43 in cardiac
sections from control (A) and FGF-2 treated hearts (B), using a polyclonal
antibody to P-S368-Cx43. Sections have been counter-staining with Hoechst
33342, to visualize nuclei (blue). Arrows point to lCDs. Bar = 50¡rm.
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2.1 Effect of ischemia (+/-FGF-2) on Gx43

phosphorylation.

effect of

Hearts pre-treated with K-H, or FGF-2, as in the previous section, were

subjected to 30 min. of global normothermic ischemia. These groups will be

referred to as I (-), or I (+), respectively. A third group was not subjected to

ischemia (non-l), but was perfused with K-H for the duration of the experiment.

Cx43 distribution, phosphorylation and abundance were examined subsequen¡y,

using the same antibodies as in the previous section. Results are shown in

Figures 11-20.

As shown in Fig.11 and 12, cx43, visualized either by p.AB or by m.AB.

was distributed at lCDs in the non-l group (Fig.11A, Fig 12A). ln contrast, the

ischemic I (-) group presented Cx43 distribution not only at lCDs but also at

lateral surfaces of cardiomyocytes (Fig.11c, Fig12B). The I (+) group on the

other hand had Cx43 distribution restricted at lCDs (Fig.11E, Fig12C), in a

manner similar to non-l hearts. FGF-2 treatment therefore prevented the

ischemia-induced Cx43 redistribution at lCDs.

We also probed for DP-Cx43, with #13-800 antibodies. As expected, no

staining was detected forthe non-l group (Fig.11B). ln contrast, the l(-) group

displayed strong staining at lCDs as well as lateral surfaces (Fig 11D). Staining

with this antibody was absent from the I (+) group (Fig.11F). FGF-2 therefore

prevented the ischemia-induced cx43 dephosphorylation at lcDs.

onG or untreated hearts.

levels distribution and
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Western blotting was used to detect and quantitate total Cx43 as well as

relative levels of P- and DP-Cx43 in the various groups. As shown in Fig.13, total

levels of Cx43, assessed by either p.AB or m.AB were similar in all group (non-|,

I (-), and I (+)). The p.AB detected mainly 44-45 kDa P-Cx43 in the non-l group ,

and mainly the 41-42 kDa DP-, or minimally phosphorylated, -Cx43 in the l(-)

group. The I (+) group had mainly 44-4s kDa p-cx43, as shown in Fig 14A.

Similar results were also confirmed by m.AB (Fig1  B). We also used specific

DP-Cx43 antibody, #13-800. As we expected, only the I (-) group was clearly

detected by the anti-DP-Cx43 (Fig 14C). Taken together, these data indicated

that Cx43 in the ischemic-FGF-2-treated group was phosphorylated (Fig 15). lt

also confirmed that FGF-2 prevented the ischemia-induced Cx43

dephosphorylation.

2.2 Effect of ischem¡a (+/-FGF-2) on Gx43 phosphorylation at PKC sites

We examined the eflect of ischemia, in the presence or absence of FGF-2

pre-treatment, on Cx43 phosphorylation at 5262, 5368. Results are presented in

Figures 16 and 17, respectively. lmmunofluorescence of tissue sections showed

that while I (-) hearts stained faintly for P-S262- (Fig.16A) or p-S368-Cx43

(Fig.17A), hearts in the l(+) group displayed strong staining forthese antibodies

at lcDs, as shown in Figures 168 :P-s262 and Figure 178 :p-s36g-cx43.

Western blots showed essentially similar results. Hearts in the I (-) group

had minimal levels of P-S262- or P-S368-Cx43 (Figs 16C and 17C, respectively).

On the other hand, hearts from the I (+) group had strong immunoreactivity for P-

5262- or P-S368-Cx43 (Figs 16C and 17C respectively). P-S262-Cx43 migrated
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at approximately 45 kDa, whíle P-S368-Cx43 migrated at approxÍmately 41 kDa.

The increased phosphorylation of Cx43 at PKC sites in response to FGF-2 is

therefore maintained in the ischemic heart.
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FIGURE l2: FGF-2 prevents ischemia-induced Cx43 redistribution away
from lCDs. lmmunofluorescence staining fortotal Cx43 using m.AB. (A), Non-
ischemic, non-treated hearts, (B), ischemic, non-treated hearts, (C), ischemic FGF-2-
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The overall objective of my studies was to investigate whether FGF-2

treatment will affect Cx43 level, distribution ,and PKC-mediated phosphorylation,

in the adult non-ischemic and ischemic ex vivo heart.

1. FGF-? affects Cx43 levels, phosphorylation and distribution in the

normal heart.

FGF-2, a known cardioprotective agent, elicits acute, preconditioning-like

resistance to ischemic injury in a PKC-dependent fashion [padua, R R, et al.

19951; [Padua, R R, et al. 1998]. Because acute cardioprotection is dependent on

post{ranslational modifications of proteins such as phosphorylation, identification

of proteins that become phosphorylated in response to FGF-2 treatment of the

adult heart is an important step towards understanding the mechanism of

cardioprotection. We chose to investigate if Cx43 is such a target of FGF-2-

triggered, and PKC-dependent signaling, in a well-established experimental

setting that was used previously to demonstrate FGF-2-induced cardioprotection

from ischemia and reperfusion injury [Jiang, Z S, et al. 2002, Jiang, Z S, et al.

2004, Padua, R R, et al. 1998, Padua, R R, et al. 1ggbl. Cx4j was analyzed

immediately after FGF-2 administration to the adult heart, to determine if

changes could be detected in Cx43 prior to any subsequent stress stimulus.

one of our novel findings was that a 20 min exposure to FGF-2

significantly increased the total level of accumulated Cx43. lncreased Cx43

levels were seen by both western blotting of heart lysates and by immunostaining

of cardiac sections; in the latter case, more intense anti-Cx43 staining was

Discussion
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assoc¡ated with lCDs índícating that the extra Cx43 was capable of assembly and

targeting at sites of intercellular contact. Similar results were reported in

simulated preconditioning of cultured rat neonatal cardiac myofibroblasts

[sundset, R, et al. 20041, and by FGF-2 treatment of cultured cardiac

myofibroblasts [Doble, B w, et al. 1gg5]. on the other hand, our findings appear

to contradict studies where ischemic preconditioning induced by 2 cycles of 5 min

ischemia (by coronary ligation during open-chest surgery in a rabbit model) and

10 min reperfusion is reported to decrease Cx43 at lCDs [Daleau, P, et al. 2OO1].

One could argue that this reflects a difference between FGF-2-induced and

ischemic preconditioning- induced cardiac effects. We do not think this is likely,

since pilot studies in our lab indicated that ischemic preconditioning exerted

similar effects on Cx43 as FGF-2 treatment. Differences between our findings

and those of Daleau et al. [Daleau, P, et al. 2001] may reflect differences in the

species used (rat versus rabbit); in the method used to produce ischemia (global

versus regional); in antibodies used; and in the time interval between treatment

and Cx43 analysis (zero in our case, but at least 30 minutes in theirs). ln the

case of antibody-based recognition, changed immunoreaction could reflect

changes in exposure of specific Cx43 epitopes rather than changes in the

amount of protein. We think this is unlikely in our system since similar results

were obtained using antibodies recognizing epitopes within different Cx43

domains.

The mechanism by which FGF-2 treatment stimulated Cx43 accumulation

is not known, but since it occurred within 20 minutes, it is unlikely to involve
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effects on gene expressÍon. Rather, FGF-? may have influenced Cx43 turnover,

possibly by preventing Cx43 degradation. Cx43 turnover in heart is quite fast

(1.3-1.5 hour) [Beardslee, M A, et al. 1998], exerted by both the proteasomal and

lysosomal pathways [Laird, D W 2005]. When both proteosomal and lysosomal

pathways are inhibited in the isolated perfused hearts, there is an increase in

cx43 content seen by immunolabelling [Laing, J G, et al. 1ggzj. lt would

therefore be important to examine if FGF-2 can inactivate the degradation

pathways of Cx43.

Another important and novel finding was that FGF-2 stimulated Cx43

phosphorylation at 5262, and 5368. Both of these serines are putative PKC

target sites, and both become phosphorylated in response to PKC activation

[Doble, B w, et al. 1996] [Doble, B w, et al. 2000] [Richards, T s, et al. 2004]. lt

follows that Cx43 phosphorylation at 5262 and 5368 is a marker of PKC

activation, and confirms our previous results that FGF-2 admínistration to the

perfused heart activates PKC [Padua, R R, et al. 1998]. lt is also important to

note that Cx43 phosphorylation at 5262, 5368 was detected at ICD sites,

suggesting a possible consequence to gap junction-mediated coupling. Based on

previous studies showing that phosphorylation at 5368 is responsible for the

PKC-induced closure of gap junctíons [Lampe, PD, et.a1.2000, Lampe, pD,

et.al.2004l, the FGF-2-induced phosphorylation at 5368 is likely to decrease

coupling between cardiomyocytes. The effect of 5262 phosphorylation on gap

junction coupling may be more subtle. Doble et al. have shown that preventing

phosphorylation at 5262 results in gap junction channels with enhanced dye-
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coupling, and that phosphorylation at that site reduces, but does not eliminate,

coupling [Doble, B W, et al. 2004]. Decreased channel coupling in response to

Cx43 phosphorylation may contribute to cardioprotection against subsequent

ischemia (and reperfusion) injury by preventing the spread of injurious

metabolites.

cx43 phosphorylated at s262 was found to represent 'hyper'

phosphorylated Cx43 since it migrated at or above 45 kDa. Our data indicated

that phosphorylation at s262 occurs on Cx43 that has already been

phosphorylated at several other amino acid sites in the adult heart. These

results are in agreement with previous studies in neonatal myocyte cultures

[Doble BW et.a1.2004]. ln contrast to P-s262-cx43, cx43 that was

phosphorylated at 5368 migrated only slightly slower than 41 kDa, indicating that

it represents minímally phosphorylated Cx43, in agreement with previous studies

by Solan ef a/. [Solan, J L, et al. 2003]. The lack of common Cx43 bands reacting

with both types of phosphospecific antibodies is intriguing, and puts forward the

possibility that phosphorylation of Cx43 at these two PKC sites is mutually

exclusive or they may exist in different subcellular pools of Cx43. The two types

of phosphospecific antibodies used here produced broadly similar patterns of

staining at lCDs, arguing against the latter possibility. Nevertheless, this merits

further investigation, by conducting simultaneous staining for Cx43

phosphorylated at 5262 or 5368. lt would also be interesting to determine if

different PKC isoforms target different sites on Cx43. PKC has many isoforms,

showing distinct patterns of subcellular localization [Mackay, K, et al. 2001]. Both
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PKCo and PKCe have been linked to cardioprotection; they interact with, co-

distribute and phosphorylate cx43 [Doble, B w, et al. 2000];[Lampe, p D, et al.

2000]; these particular PKC isoforms therefore are prime candidates for targeting

PKC sites on Cx43 in response to cardioprotective stimuli.

Overall, we have found that treatment with FGF-2 has created a novel

cardiac state, characterized by increased phosphorylation at the PKC target sites

5262 and 5368. This state is distinct from that of the normal heart, and correlates

with the FGF-2-induced, preconditioning like cardioprotection.

2. FGF-2 pre-treatment prevents the ischemia induced changes in Gx43.

To examine if FGF-2 pre-treatment could prevent the ischemia-induced

changes in Cx43, treated and non-treated hearts were analyzed after 30 minutes

of global ischemia. Two major Cx43-related events have been described upon

global ischemia (20-30 min) of the perfused, non-preconditioned, heart: Cx43

becomes progressively dephosphorylated, and it redistributes away from

intercalated disks, to lateral cardiomyocyte surfaces [Beardslee, M A, et al.

20001;[Schulz, R, et al. 2003];[Matsushita, S, et al. 2000]. These changes

correlate, and have been proposed to cause, electrical uncoupling that occurs in

the heart over approximately the same time period [Beardslee, M A, et al. 2000].

Similar changes in Cx43 were also seen in the non-FGF-2-treated hearts when

subjected to 30 minutes of global ischemia in our experimental model. Pre-

treatment with FGF-2 completely prevented both types of changes: Cx43 did not

become dephosphorylated; and it did not redistribute to myocyte lateral surfaces.

Prevention of ischemia-induced Cx43 changes is very likely to be part of the
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mechanism of FGF-2-induced cardioprotection. Our findings are similar to those

obtained in other models of cardioprotection (ischemic preconditioning), followed

by ischemia, and include studies in isolated rat hearts [Miura, T, et al. 20041,

rabbit hearts in vívo [Daleau, P, et al. 20011, and pig heart in vivo [Schulz, R, et

al.2001b1.

The increase in total Cx43 levels elicited by FGF-2 pretreatment was no

longer evident after 30 minutes of global ischemia: total Cx43 levels were similar

between untreated and FGF-2-treated ischemic hearts, and at the same level as

that of non-FGF-2-treated, non-ischemic, normal hearts. ln other words, while

FGF-2-treated hearts went into global ischemia with elevated total Cx43 levels,

this 'Cx43 surplus' was lost during ischemia suggesting that any effect FGF-2

might have had on Cx43 accumulation/turnover prior to ischemia was no longer

active under ischemic conditions.

Our most important as well as intriguing finding was that FGF-2-pretreated

hearts had elevated levels of Cx43 phosphorylated at PKC target sites 5262 and

5368 even after 30 minutes of global ischemia, indicating that the FGF-2-induced

Cx43 phosphorylation at PKC sites observed prior to ischemia was preserved

during ischemia. Our lab has demonstrated that Cx43 dephosphorylation durÍng

ischemia requires the activities of serine/threonine protein phosphatases of the

PP1 and PP2B groups [Jeyaramao, M, et al. 2003], which become activated

when ATP levels decrease. lt is possible that FGF-2triggered signals may

inactivate these phosphatases either directly, or indirectly, by preserving cellular

ATP levels [Padua, R R, et al. 1995]. lnactivation of phosphatases would be
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expected to prevent the dephosphorylation of PKC target sites such as 5262 and

5368, but also sites targeted by other kinases. We cannot exclude the possibility

that the FGF-2 stimulus, which activates PKC and phosphorylates Cx43 was

ongoing during the ischemic period, phosphorylating Cx43 at 5262 and 5368

during ischemia. After all, FGF-2 administered by perfusion prior to ischemia is

absorbed and retained by the heart, distributes around cardiomyocytes, can be

detected after ischemia and reperfusion [Padua, R R, et al. 1gg5], and would

thus be expected to signal in a sustained fashion. lrrespectively however of how

Cx43 phosphorylation at 5262 and 5368 remained elevated, our data show that

Cx43, through its phosphorylation at PKC sites, retains a molecular'memory' of

FGF-2 pre-treatment (and PKC activation) after 30 minutes of global ischemia.

FGF-2-pretreated hearts, therefore, would be expected, after 30 minutes of

ischemia, to face reperfusion and the associated exacerbation of ischemic injury

'armed' with hyperphopshorylated Cx43. Our lab has previously demonstrated

that rat hearts subjected to 30 minutes of global ischemia under constant

pressure (as used here), show a 50% recovery in mechanical functional

parameters after 60 minutes of reperfusion, and that FGF-2 pretreatment results

in significant functional improvement (about 80% recovery), as well as reduced

myocardial damage [Padua, R R, et al. 1995] [Padua, R R, et al. 19g8]. Thus we

suggest that sustained Cx43 phosphorylation at PKC sites may play an important

role in preserving the heart from ischemia-reperfusion, possibly by preventing

spread of contracture between cardiomyocytes.
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ln conclusion

We have shown for the first tíme that FGF-2 pretreatment of the perfused heart

creates a new cardiac'state' characterized by Cx43 phosphorylation at specific

PKC sites and that this state is sustained even after relatively prolonged

ischemia. We suggest that Cx43 phosphorylation at PKC sites 5262 and 5368

marks an injury-resistant heart, and that it may contribute to FGF-2-triggered

cardioprotection

Future directions:

We have discovered a correlation between FGF-2 cardioprotection and

phosphorylation of Cx43 at specific PKC sites. lt would be important to

determine whether other cardioprotective manipulations, ischemic

preconditioning, or even post-conditioning, are also characterized by these

changes in Cx43 phosphorylation.

It is well known that cardioprotection by ischemic or pharmacological

preconditioning require the activation of PKC and involvement of mitochondria

[Chen, W, et al. 1996]; [Liu, Y, et al. 1994]; lPing, P, et al. 1997]; [Jiang, Z S, et

al. 20021. Furthermore there is evidence that Cx43 is localized at mitochondria,

and that it translocates to mitochondria during preconditioning [Schwanke, U, et

al. 20021; [Boengler, K, et al. 2005]. However, there is no information about the

phosphorylation status of mitochondrial Cx43 (mito-Cx43) at PKC sites in the

injury-resistant heart. lt would therefore be important to examine the mito-Cx43
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phosphorylation status of 5262 and 5368 in the normal or protected heart, and to

determine whether Cx43 phsophorylation affects mitochondrial function.
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