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ABSTRACT 

Embankments in Arctic regions are typically constructed during winter with no cuts in the ground to 

preserve the permafrost foundation. These embankments are susceptible to deformations in the 

summer immediately following construction as ice within the embankment fill melts and in 

subsequent years as permafrost at the embankment toe thaws. Unmanned aerial vehicle (UAV) 

photogrammetry and terrestrial laser scanning (TLS) were used to monitor deformations of four 

high-fill embankment sections along the newly constructed Inuvik-Tuktoyaktuk Highway (ITH). Two 

UAVs (senseFly albris and DJI Phantom 4 Pro) and one laser scanner (FARO Focus3D X 330) were 

used. One of the high-fill sections was reinforced with wicking woven geotextiles to improve slope 

stability and instrumented to displacements within the embankment. UAV photogrammetry and TLS 

are both relatively new technologies being used to monitor deformations of structures. Significant 

effort was dedicated to learning about the technologies, developing best operating practices, 

calibrating the technologies to quantify their accuracies, and designing the on-site surveys. 

UAV and TLS surveys were conducted during summer in three consecutive years (2017–2019). 

UAV imagery and TLS data were processed using specialized software to generate point clouds of the 

high-fill sections. An RTK system was used to measure positions of checkerboard ground control 

points (GCP) for georeferencing point clouds. The accuracy of UAV and TLS point clouds was 

quantified based on GCP errors. Alignment of point clouds was required because of poor quality GCP 

measurements. Point clouds from each year were compared using multiscale model-to-model cloud 

comparison (M3C2) to determine deformations. A cross-section analysis was also performed for each 

high-fill section. 

High-fill sections along ITH showed deformations including toe subsidence and lateral spreading. 

Some of the high-fill sections showed positive change (e.g. heave, deposition) at the upper-slope and 

negative change (e.g. erosion, settlement) at the lower-slope, while other sections showed the 

opposite behaviour. The behaviours and magnitudes of UAV and TLS deformations were highly 
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sensitive to the point cloud alignment methods. UAV measured deformations underestimated the 

instrumentation displacement data at KM-82 by approximately 30 mm, while TLS measured 

deformations were reasonably close to the instrumentation data after point cloud alignment. 

Due to the novelty of research methods and technologies used, a few mistakes were made during 

data acquisition. These mistakes were discovered while analyzing the field data. The data acquisition 

methods and accuracy of reconstructed point clouds were improved year-to-year; however, 

embankment deformations were too small to be detected by the UAV or TLS and the identification of 

deformation mechanisms was limited. Although the results were not as conclusive as originally 

intended, several lessons were learned that will be valuable for future researchers and practitioners. 

UAV photogrammetry is better suited for monitoring larger areas with greater deformation 

magnitudes and TLS is better suited for monitoring smaller areas with small-scale deformations. 

Generally, UAV photogrammetry is better suited for monitoring deformations of embankments. 

Results obtained by the albris were slightly more accurate than the Phantom, but the high cost of the 

albris is not justified by its overall performance compared to the Phantom.  
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CHAPTER 1:  INTRODUCTION 

1.1 Background 

Embankments in Arctic regions are usually constructed during winter to improve mobility of 

construction equipment on the frozen ground and minimize disturbance of permafrost by reducing 

heat input to the ground. Permafrost is defined as ground that remains at or below 0°C for a minimum 

period of 2 years (Williams, 1986). Construction processes impact the thermal regime of the area and 

if not properly managed can cause permafrost degradation beneath the embankment, which would 

have lasting detrimental effects on the embankment’s stability. The passive design approach is 

commonly taken, where the embankment is designed thick enough for the fill material to provide 

enough insulation to the ground for the permafrost to aggrade into the embankment (Argue et al., 

1981). The fill material is often locally available, frozen soil that can contain high ice contents. Melting 

of this ice during warming reduces the shear strength of the embankment fill (De Guzman et al., 2018) 

and causes instability, which is exhibited through slope movements. This is particularly observable 

during the first spring following construction. 

Another common cause of embankment instability and deformation is thawing of the foundation 

soil at the toes. Soil at the toe thaws during summer due to lack of fill material and insufficient 

insulation. Snow drifts that build up at the toe during winter insulate the thawed ground and can 

prevent it from freezing (Fortier et al., 2011). Then during summer, the foundation soil continues 

thawing and the thawed zone can extend further beneath the embankment (Esch, 1983). As this cyclic 

process continues, large thaw zones can develop at the toes causing subsidence and an outward 

movement of the slope (McGregor et al., 2010). This can lead to longitudinal cracking along the 

embankment road surface and in extreme cases, slope failures. Deformations and slope movements 

are more extreme and critical to detect on high-fill embankments compared to low-fill design 

embankment sections. Low-fill embankments are more susceptible to excessive thaw settlement of 
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the entire section associated with permafrost degradation beneath the embankment. This occurs 

when the insulating effect of the fill material is less than that of the active layer. 

The Inuvik-Tuktoyaktuk Highway (ITH) is a newly constructed highway in Northwest Territories, 

Canada that was opened to the public on November 15, 2017. The highway is located above the Arctic 

Circle in a continuous permafrost zone that is characterized by glacial deposits. Terrain in the ITH 

region is rolling with a complex network of thermokarst lakes and interconnected channels. A peat 

layer of varying thickness at ground surface covers most of the region with soil in the permafrost 

beneath containing excess ice in the form of ice veins, lenses, wedges, and massive ice (Rampton, 

1988). Work from Tarnocai et al. (2004) in the Inuvik-Tuktoyaktuk region indicates the active layer 

ranges from 30 cm to over 150 cm. The highway was passively designed and constructed during 

winter using locally available fill materials with no cuts into the ground in order to preserve the 

permafrost foundation. The complex terrain and difficult ground conditions forced the highway to 

have several high-fill sections, some up to 12 m high. One of the high-fill sections along the highway 

was reinforced with wicking woven geotextiles as part of a larger research project at the University 

of Manitoba (U of M). The geotextile has two functions that can improve slope stability: 1) it provides 

a direct path to transport water out of the embankment fill, especially during the first spring thaw; 

and 2) it structurally reinforces the embankment and provides tensile strength. Instrumentation was 

installed in the reinforced test zone and a non-reinforced control zone to measure horizontal and 

vertical displacements and temperatures within the embankment. Data from the embankment 

instrumentation and an on-site weather station has been collected since 2016. 
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Figure 1.1 Inuvik-Tuktoyaktuk Highway map (Stewart, CBC News, 2017). 

High-fill sections of ITH are susceptible to deformations that can jeopardize the structural stability 

of the embankment and the safety of its users. Monitoring the embankment and assessing its 

performance is crucial to provide confidence that sideslopes are stable and user safety is not of 

concern. Two imaging technologies were used to monitor the embankment and determine surficial 

deformations of high-fill sections along the highway: unmanned aerial vehicle (UAV) 

photogrammetry and terrestrial laser scanning (TLS). These technologies were selected for their 

ability to capture large amounts of accurate topographical data with high spatial resolution over a 

relatively short period of time (Fan et al., 2014). UAV photogrammetry involves the processing of 

aerial images using feature-matching algorithms to produce three-dimensional (3D) digital 

geometries of terrain and objects (Fonstad et al., 2013). This technology can cover large areas and 

has the advantage of being applicable in remote areas with limited access (Eltner et al., 2016). TLS 

captures 3D geometry by projecting a laser beam outward and measuring distances to objects based 

on the reflected laser (FARO Technologies Inc., 2015). TLS is better suited for small-scale sites with 



 

4 

steep slope angles (Westoby et al., 2012). The research section at KM-82 and three other high-fill 

sections along ITH were monitored. TLS was only conducted at KM-82 and UAV monitoring was 

performed at all high-fill sections. 

 

Figure 1.2 Embankment deformations along the Inuvik-Tuktoyaktuk Highway: a) longitudinal 

cracking at shoulder (photo by L. Arenson, 2015); b) slope failure (photo by J. Festa, 

2015); c) slope movement with longitudinal cracking (photo by L. Arenson, 2015). 

Monitoring surficial deformations of high-fill sections along ITH using these technologies 

provided a method to assess the condition of the sections for safety reasons. Furthermore, 

monitoring provides researchers the opportunity to study the performance of high-fill embankment 

sections and better understand the mechanisms controlling deformations of embankments 

constructed during winter and subjected to seasonal freezing and thawing. Understanding these 
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mechanisms and the factors contributing to deformation is important for predicting how 

embankments in Arctic regions will perform in the future. Climate change is having a significant 

impact on the Arctic environment and a proactive approach considering environmental changes 

must be taken to design and maintain infrastructure in the Arctic. 

1.2 Motivation 

There is a limited understanding of how embankments constructed during winter using frozen 

material will perform both short-term following construction and long-term after years of seasonal 

freezing and thawing. The warming climate and degrading permafrost conditions exacerbate these 

embankment’s susceptibility to slope movements and emphasizes the need to better understand 

their behaviour and predict how they will perform in the future. Monitoring these embankments can 

give insights to their deformation behaviour and overall performance; however, traditional methods 

for monitoring embankments using ordinary survey equipment are time-consuming, costly, and do 

not provide a satisfactory amount of data to fully understand embankment deformations. Methods 

for monitoring embankments in the Arctic that utilize advanced imaging technologies such as TLS 

and UAV photogrammetry need to be established in order to predict slope instabilities and improve 

safety, as well as to provide knowledge of the deformation mechanisms. These efforts could help to 

improve the design and construction of embankments built on permafrost. 

1.3 Objectives 

The main objectives for this research are as follows: 

 Determine the surficial deformations of high-fill sections along ITH using two imaging 

technologies: UAV photogrammetry and TLS. 

 Compare the UAV and TLS deformations to instrument displacement data at the KM-82 

research site. 

 Determine the causes and contributing factors to deformations of the high-fill sections. 
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 Assess the functionality of the imaging technologies and develop best practices for using 

UAV photogrammetry and TLS to measure deformations of embankments. This includes 

understanding the factors that control the accuracy of each technology, as well as 

developing methods to quantify and reduce errors during data acquisition and processing. 

 Compare surficial deformations of the reinforced and non-reinforced zones at KM-82 to 

determine if the benefits of reinforcing an embankment in the Arctic with wicking 

geotextiles are still detectable a few years after construction. 

1.4 Hypothesis 

UAV photogrammetry and TLS are two imaging technologies that can be used to produce high-

resolution 3D point clouds of embankments. Surficial deformations determined by comparing UAV 

photogrammetry and TLS derived point clouds in successive years will be detectable and measurable. 

UAV and TLS measured deformations will agree with instrumentation displacement data at the KM-

82 research site. Comparing the functionality and performance of the UAV and TLS systems will allow 

for a recommendation of which technology is better suited for monitoring embankment stability in 

Arctic regions. Overall, this research will provide a technical framework for monitoring the 

deformation and stability of high-fill embankments in permafrost regions using advanced imaging 

technologies. 

1.5 Thesis Organization 

Chapter 1 provides background information and motivation of the research and states the objectives 

and hypothesis. Chapter 2 is a review of literature pertinent to the research. The literature review is 

organized into four sections: monitoring embankment in Arctic regions, UAV photogrammetry, TLS, 

and deformation detection. Chapter 3 outlines the operating procedures and calibration tests for each 

technology. The calibration tests were performed to assess their accuracies and expected errors, 

determine optimal survey parameters, and design the on-site surveys that would be suitable for the 
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conditions on-site. Chapter 4 details the methods used to determine the high-fill sections for 

monitoring; design the on-site surveys for the UAV, TLS, and RTK; acquire and process data for each 

technology; and determine deformations at the high-fill sections. Chapter 5 presents and discusses 

the results of the deformation analysis. The results and discussion are separated into two sections: 

UAV and TLS results at KM-82, and UAV results at all high-fill sections. Chapter 6 summarizes the 

research methodology and results, states the conclusions, and provides recommendations and 

guidelines for monitoring deformations using UAV photogrammetry and TLS. A list of acronyms and 

symbols used throughout the thesis are provided on page xv to assist the reader. 
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CHAPTER 2:  LITERATURE REVIEW 

2.1 Monitoring Embankments in Arctic Regions 

Embankments in Arctic regions are often more susceptible to long-term deformation than southern 

embankments because of the permafrost foundations they are built on. Construction of 

embankments can allow heat to infiltrate the ground if good practices are not followed. Vegetation 

and peat layers at the ground surface should not be stripped away. Water stored in the peat layer 

turns to ice during winter and provides more insulation than other soils due to additional latent heat 

required to melt the ice (De Guzman & Alfaro, 2018). Thus, underlying permafrost is better protected, 

and thawing does not penetrate as deep (Yi et al., 2007). Construction equipment should not cut into 

the ground when placing embankment fill material, as this removes the protective active layer and 

allows heat from sunlight to infiltrate the ground. Embankment construction should only use fill 

sections to preserve the permafrost foundation. After construction, embankments act as a snow fence 

that accumulates snow at the toe, insulating the ground and preventing it from refreezing (Fortier et 

al., 2011). Because frozen soil is stronger and less compressible than unfrozen soil, degrading 

permafrost beneath embankments or at the toes leads to deformations such as embankment 

settlement, toe subsidence, lateral spreading, or longitudinal cracking along the road surface 

(McGregor et al., 2010). 

A large portion of infrastructure in Northern Canada has been constructed on continuous and 

discontinuous permafrost in problematic alluvial soils such as soft clays and peat deposits. Northern 

infrastructure was originally designed to rely on the properties of frozen materials for stability; 

however, due to climate change, the design assumption of stiff, frozen soil is no longer valid in many 

areas. From 1950 to 2010, the average annual temperature in Canada has increased by close to 1.5°C, 

which is approximately double the global average (Warren & Lemmen, 2014). Permafrost is thawing 

throughout the Northern Hemisphere and completely disappearing from discontinuous regions 

(Hinzman et al., 2005). Large areas of permafrost will continue to warm and thaw due to rising mean 
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air temperatures (Bush & Lemmen, 2019), increasing the risk of severe infrastructure instabilities. 

This ever-increasing risk of embankment deformations and instabilities is increasing the demand for 

new technologies and methods to monitor the performance of embankments in Arctic regions. 

Traditional methods for monitoring embankments can be separated into two classifications: 

instrumentation and surveying. Instrumentation covers all instruments installed within, beneath, or 

surrounding an embankment to monitor a certain condition or behaviour. Most instrumentation for 

embankments is targeted at measuring the behaviour of either water, temperature, stress, or 

deformation. Groundwater influences the effective stresses present in the ground, and therefore 

plays an important role in the stability and settlement of embankments. The most common 

instrument used to measure groundwater is the piezometer. A variety of types and models of 

piezometers exist including standpipes, vibrating wires, and pneumatics (Durham Geo-Enterprises 

Inc., 2020). For embankment construction, piezometers can be used to determine initial site 

conditions, ensure safe fill placement, and estimate consolidation progress. In permafrost regions, 

piezometers can help asses the condition of permafrost as it thaws. This is particularly useful in 

discontinuous permafrost zones such as Northern Manitoba where piezometers can detect water 

moving towards the ground surface from melted ground ice lenses (Batenipour et al., 2010). 

Temperature monitoring of embankments is extremely important in Arctic regions. Thermistors 

are the standard instrument used to measure ground temperatures. Thermistors can come as a single 

node to measure discrete points or as strings of nodes for a series of temperature readings.  

Temperature readings allow engineers to interpret the condition of permafrost, which is critical for 

analyzing and predicting the performance of an embankment. Not only is the temperature of the 

foundation of interest but also the temperature within the embankment itself. In Arctic regions, 

embankment fill material insulates the ground and permafrost will aggrade upwards into the 

embankment. Thermistors can be installed within embankment fill material during construction to 
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monitor the growth of permafrost post-construction and its degradation over time due to climate 

warming (De Guzman et al., 2019, submitted). 

Stress is an important condition to monitor during embankment construction because the 

deformation of soil depends on the soil’s stress state and applied stresses. The two main instruments 

used for measuring stresses in soils are pressure cells and stress transducers. They can be installed 

in foundation soil or on structures to measure vertical and lateral stresses. Pressure cells are 

commonly used in embankment construction to measure stress changes as fill material is placed for 

stability and settlement analyses. In Arctic regions, stress instrumentation can be installed at 

different levels in embankment backfill materials to measure frost heave pressures. 

Deformation is ultimately the behaviour that determines the performance of many geotechnical 

structures. The serviceability limit state (SLS) will typically govern the design of embankments in 

Arctic regions. Therefore, instability of these embankments most often refers to an SLS failure such 

as excessive settlement. There are several types of instruments that can be used to monitor the 

deformation behaviours of Arctic embankments discussed previously. These instruments include, 

but are not limited to, slope inclinometers, settlement systems, and ShapeArrays (SAA). Slope 

inclinometers monitor subsurface movement. Common practice is to install them vertically at the 

shoulder, mid-slope, or toe of an embankment to measure deformation of the slope. This application 

allows for the depth and rate of slope movement to be measured, providing early signs of impending 

instabilities. Slope inclinometers can also be installed horizontally along the base of an embankment 

to monitor settlement profiles. Settlement systems are used to monitor settlement of embankments. 

Many types of settlement systems exist including settlement plates, vibrating wire liquid settlement 

systems, and magnetic settlement systems. In Arctic regions, settlement systems can also be used to 

monitor heave in embankments. ShapeArrays are a newer instrument that are becoming more 

popular in geotechnical engineering. A ShapeArray is an array of rigid segments separated by joints 

that measure the displacement of each joint (Measurand, 2019). Similar to slope inclinometers, 
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ShapeArrays can be installed vertically or horizontally to measure deformations of an embankment. 

Their advantage is that they can monitor the development of deformation along its length to a high 

degree of accuracy (e.g. 1.5 mm), as well as measure temperature at each joint (Measurand, 2019). 

Instrumentation is invaluable for monitoring embankments; however, it can be expensive and only 

offers measurements at discrete points. Interpreting instrumentation data also requires extensive 

analysis to understand deformation behaviour. 

Surveying equipment is regularly used to monitor construction and deformation of embankments. 

Fundamentally, surveying is the technique or science of measuring the 3D coordinates of points on 

earth’s surface. During construction of an embankment, surveying techniques are used to stake out 

reference points, identify fill heights, and mark progress. Surveying can also be used post-

construction to monitor the displacement of key features or survey rods. The most common 

surveying equipment are levels (digital or automatic) and rods, total stations, and real-time 

kinematic (RTK) global navigation satellite systems (GNSS). Level and rod is the most rudimentary 

technique and requires two operators. Total stations are electronic, optical instruments that measure 

both vertical and horizontal angles and slope distance from the instrument to a reflector prism. 

Standard total stations require two operators: one for the instrument and one to hold the prism. New 

robotic total stations allow the instrument to be controlled remotely or automatically, eliminating 

the need for a second operator to hold the prism. RTK systems use two GNSS antennas—a static 

reference antenna and a mobile measuring antenna—to quickly measure the point coordinates. RTK 

systems have the advantage of not needing to maintain visual line of sight with the reference 

instrument to measure a point’s coordinates. 

Surveying techniques are highly accurate and can measure point coordinates to near millimetre 

accuracy. Construction monitoring applications have traditionally been performed by trained 

personnel operating survey equipment, but these activities can be time consuming, hazardous, and 

costly (Miller et al., 2008). Furthermore, surveying equipment has a glaring limitation for 
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deformation monitoring: it only measures discrete points. This restricts the analysis of embankment 

deformation and can limit understanding of deformation behaviour. New imaging and sensing 

technologies such as UAV photogrammetry and TLS are revolutionizing the science of deformation 

monitoring and providing engineers with new methods of assessing structural performance. These 

technologies have been used around the world for a wide variety of earth science and engineering 

applications; however, until now, there has been limited applications of UAV photogrammetry and 

TLS for monitoring embankments in Arctic regions. 

2.2 Unmanned Aerial Vehicle (UAV) Photogrammetry 

Photogrammetry is the science of making measurements and creating 3D surface models from 

images. It is particularly useful for processing aerial imagery, providing a wide range of mapping, 

inspection, and monitoring applications. In traditional photogrammetry, images are processed in 

pairs using a stereo restitution instrument that allows the images to be precisely oriented relative to 

each other and a stereoscopic image to appear. The human operator would then mechanically 

manipulate the restitution instrument to change the stereo image and investigate 3D coordinates of 

features for mapping (Vermeer & Ayehu, 2018). The traditional approach requires calibrated 

cameras and the 3D location and orientation of the cameras, or the 3D location of a series of control 

points, to be known (Westoby et al., 2012). This general approach was adapted into computer 

programs, yet the process remained relatively slow and had limitations. 

 Some of the earliest work in aerial photogrammetry were Aimé Laussedat’s experiments using 

kites and balloons to obtain aerial imagery for topographic mapping (Laussedat, 1899). Manned 

airborne photographs were the primary source for aerial photogrammetry until the late 1970s when 

the development of modern UAVs began. Przybilla and Wester-Ebbinghaus (1979) performed a test 

with a radio-controlled, fixed-wing UAV with a length of 3 m and equipped with an optical camera. 

The next year, the same team used a model helicopter equipped with a Rolleiflex camera to aerially 
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document an old streel structure (Wester-Ebbinghaus, 1980). The model helicopter was the first 

successful use of a rotary-wing UAV for photogrammetry. Since then, and particularly over the last 

two decades, UAV photogrammetry has rapidly developed into an effective technology to obtain high-

quality 3D surface models for monitoring earth surface processes and civil infrastructure. This rapid 

development has been driven by advances in the size and quality of sensors and improved battery 

technologies. 

 All modern UAVs require three main components to fly: the UAV, a ground control station (GCS), 

and a data communication link. The three components together make up the unmanned aerial system 

(UAS). The GCS is a stationary or transportable hardware plus software device used to monitor and 

command the UAV. Most UAVs now can be connected to a laptop, tablet, or smartphone GCS for ease 

of transport, setup, and operation. The data communication link connects the UAV to the GCS and 

must be maintained throughout the entire flight. Most UAVs are programmed to land immediately 

when the communication link is lost for a given time period to prevent fly-offs or crashes. Within the 

UAV, there are several other components critical for flying such as the inertial measurement unit 

(IMU), navigation sensor, imaging sensors. These will be discussed in detail in Section 3.1. 

 There are two main classifications of UAVs: fixed-wing and rotary. Fixed-wing UAVs cruise at 

higher speeds and can therefore cover larger areas. They also have longer flight times due to their 

aerodynamic design, making them suitable for large mapping, agricultural, and environmental 

projects (Wade, 2015). Rotary UAVs cruise at lower speeds, have shorter flight times, and have lower 

capacities to resist wind forces (Wade, 2015). For these reasons, they are more suited for monitoring 

smaller areas and obtaining more accurate measurements for surveying and photogrammetry. Most 

modern rotary UAVs have four propellers (i.e. quadcopters); however, some are designed with eight 

propellers (i.e. octocopters). 
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2.2.1 Structure-from-Motion (SfM) Processing 

Aerial photogrammetry has been revolutionized in the past two decades due to advances in 

computing capacities and computer vision (Eltner et al., 2016). This rapid development in computing 

capabilities has led to a new class of photogrammetric processing: structure from motion (SfM). SfM 

operates under the same basic principles as traditional stereoscopic photogrammetry, allowing a 3D 

scene to be reconstructed from a set of overlapping images. The fundamental difference between 

them is that SfM is fully automated, with the scene geometry and camera positions and orientations 

all solved automatically without the need to specify any targets a priori. The approach is best suited 

for sets of images with a high degree of overlap that capture the entire 3D structure of the scene 

viewed from a wide array of positions (Westoby et al., 2012). This is most commonly accomplished 

with a moving camera, hence the name—structure from motion. 

 The SfM workflow is a series of feature-matching and positioning algorithms. Various programs 

and software have slightly different methods and algorithms for processing, but the basic concepts 

and process are commonly used by all. The first step is to identify 2D features in all input images 

using the scale invariant feature transform (SIFT) algorithm (Lowe, 1999; Lowe, 2004). The 

algorithm identifies features based on multiscale image brightness and colour gradients, invariant to 

image scaling. Using gradients, instead of absolute pixel values like the kernel approaches of 

traditional digital photogrammetry, means that an object seen from multiple viewpoints can be 

identified as a common feature due to the colour gradient between the object and its background, 

despite changes in scale or lighting (Fonstad et al., 2013). The kernel-based image correlation 

approaches of traditional photogrammetry were very sensitive to change in scale between images, 

thus more difficult to obtain matches (Fonstad et al., 2013). Once features are identified (i.e. 

keypoints), they are assigned a descriptor that can be matched with the same feature in other images. 

 Following keypoint identification is the bundle adjustment (BA), which estimates the 3D 

positions of keypoints and cameras, as well as the orientation of cameras. Keypoints in multiple 



 

15 

images are matched using specialized algorithms and the scene is reconstructed through iterative 

triangulation of keypoint positions and transformations of camera positions and orientations (i.e. 

camera external parameters) (Westoby et al., 2012). The BA performs a least squares minimization 

to minimize the overall residual error between keypoints. The camera internal parameters (focal 

length and two lens distortion parameters per image) are also included in the BA (i.e. camera self-

calibration). The output of the BA is a sparse 3D point cloud made up of matched keypoints. 

 Another major difference between SfM and traditional digital photogrammetry is the point in the 

workflow at which the reconstruction is georeferenced to a real-world coordinate system. The 

traditional approach requires coordinates of either the cameras or ground control points (GCPs) 

prior to determining the positions of any features within the scene. A GCP is an easily identifiable 

point with known coordinates that can be marked in images. Artificial GCPs such as checkerboard 

targets are most commonly used for aerial photogrammetry applications. Natural, explicitly 

identifiable features over stables areas are an alternative to artificial GCPs in areas where artificial 

GCP placement would be difficult or on projects where relative deformation is preferred and absolute 

coordinates are not necessary (Eltner et al., 2016). SfM photogrammetry does not require any 

coordinate input to reconstruct the scene; the reconstructed point cloud can exist in an arbitrary 

coordinate system if real-world coordinates are not necessary. To georeference when using SfM, 

coordinates of GCPs within the scene are inputted and a 3D Helmert transformation with seven 

parameters (three translations, three rotations, and one scale) transforms the point cloud from an 

arbitrary coordinate system to a real-world coordinate system (Harwin & Lucieer, 2012). This was 

originally done after the BA and was called a 2-stage BA. Development in SfM programming 

demonstrated that when GCP coordinates are included in the BA calculation (i.e. 1-stage), systematic 

positional errors of the keypoints are minimized (Eltner et al., 2016). Similarly, identifying GCP 

locations should be done on the images themselves rather than in the reconstructed point cloud to 

reduce error and improve overall accuracy (Eltner et al., 2016). 
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 The sparse point cloud produced by the BA typically has only a few tens of thousands of points, 

representing the 3D coordinates of the most prominent features with a set of images (James & 

Robson, 2012). Once the BA has established correspondence among multiple cameras, a set of multi-

view stereo (MVS) image-matching algorithms is executed to greatly increase the number of points 

and generate a dense surface model. The clustering views for multi-view stereo (CMVS; Furukawa et 

al., 2010) algorithm is first implemented to decompose overlapping input images into clusters of 

manageable size (Westoby et al., 2012). CMVS uses the camera orientations and surface points to 

automatically select and group images, based on scene visibility, into optimized clusters for 

sequential processing (James & Robson, 2012). The patch-based multi-view stereo (PMVS2; 

Furukawa & Ponce, 2007) algorithm is then implemented to independently reconstruct 3D data from 

these individual clusters. PMVS2 generates large numbers of points by working over a grid of pixels 

in an image, finding the best matches for each grid cell (James and Robson, 2012). The MVS process 

uses redundant information to weaken the influence of occlusion and noise (Shao et al., 2016). Noisy 

data is efficiently filtered out of the point cloud and the number of reconstructed points typically 

increased by two to three orders of magnitude (James & Robson, 2012). The reconstructed dense 

point cloud is the product of the SfM process. Further processing and analysis of the 3D data can be 

performed for a variety of monitoring applications (e.g. deformation detection), which will be 

discussed in Section 2.4. 

2.2.2 UAV-SfM Survey Design and Accuracy 

The quality of the reconstruction is highly dependent on several factors including image resolution 

and scale, image network geometry, surface texture, lighting conditions, and control point 

characteristics (Westoby et al., 2012; Eltner et al., 2016). Higher quality images will logically lead to 

more accurate point clouds with a higher number of points. Image network geometry refers to the 

number of images, image overlap, camera-to-surface distance, and image orientation (e.g. incidence 

angle, convergence). The number of photos varies with the size and complexity of the project, but any 
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specific region that will be reconstructed must be visible in a minimum of three photos (James & 

Robson, 2012). A higher number of images in a given area will increase the number of keypoints 

matched; however, increasing the number of images does not linearly the accuracy of the 

reconstructed point cloud (Eltner et al., 2016). Increasing the number of images also increases 

computation time, so the number of images needs to be chosen appropriately for the project. Higher 

image overlap is recommended to improve keypoint matching and increase the density of the 

reconstructed point cloud (Stumpf et al., 2015; Westoby et al., 2012). Image overlap should be 

consistent across the study area to ensure uniform coverage of the feature of interest (Westoby et al., 

2012). James and Robson (2012) recommend a minimum image overlap of 60%, while Pix4D (2019) 

recommends a front overlap (with respect to flight direction) of at least 75% and a side overlap 

(between flying tracks) of at least 60%. 

 Decreasing the camera-to-surface distance increases the images’ resolution, enhancing the 

density of keypoints and resolution of the point cloud (Westoby et al., 2012). Setting the camera-to-

surface distance too small however reduces the coverage and/or overlap of the image set. Stumpf et 

al. (2015) demonstrated that cm-accurate measurements can be made with distances less than 200 

m. SfM processing is tolerant to different scales and for large study areas, imagery at more than one 

distance is recommended to help reduce systematic distortions over large distances (Fonstad et al., 

2013). On the contrary, too extreme of a difference in scale between images due to different camera-

to-surface distances can cause changes in texture at the surface, making it difficult to identify 

keypoints and ultimately for images to be rejected as useless (James & Robson, 2012). The ground 

sampling distance (GSD) is the distance between pixel centres measured on the ground. It is an 

important measurement that represents the combined effect of the camera quality and camera-to-

surface distance, and strongly influences the quality of the reconstructed point cloud. When 

designing UAV surveys, GSD is often the design parameter and camera-to-surface distance is a 

function of the GSD. 
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 UAV imagery is most often acquired following a parallel-axes image scheme, where the UAV flies 

in a horizontal grid pattern capturing nadir images at uniform spacing. This scheme has proven to be 

effective for aerial photogrammetric reconstruction because of its efficient use of UAV battery and 

uniform coverage (James & Robson, 2014; Westoby, et al., 2012). One drawback of a horizontal grid 

parallel-axes scheme is a systematic doming error in the vertical direction that develops because the 

radial lens distortion cannot be derived accurately during the self-calibration of camera parameters 

during the BA (Fonstad et al., 2013; James & Robson, 2014; Eltner et al., 2016). Reconstructions can 

achieve cm-scale accuracy and still contain large systematic doming of the surface (James & Robson, 

2014). Figure 2.1 provides a visualization of the vertical doming error and the strong influence it can 

have on UAV image-reconstructed point clouds. In a reconstruction 100 m x 100 m, the vertical 

doming error can have a magnitude of approximately +0.75 m in the middle and -1.25 m at the 

extents. Although this is a simulation without real imagery, it demonstrates the significant negative 

impact of the vertical doming error. 
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Figure 2.1 Vertical doming error represented by 3D wireframes and colour-shaded heat maps in 

idealized simulations of: a) a single stereo pair; b) a 10-image strip; and c) a four-strip 

image block (James & Robson, 2014). 

There are two main methods to reduce this doming error. The first method, which will be 

discussed in further detail below, is to include GCPs strategically placed throughout the scene. The 

second method is to include oblique images in the UAV survey. James and Robson (2014) 

demonstrated that collecting only a small number of oblique images (approximately four to ten), in 

addition to nadir images, can reduce doming errors by up to two orders of magnitude (James & 

Robson, 2014). Oblique imagery should not be captured at incidence angles less than 30° to the 

surface because more extreme obliqueness decreases data quality and makes feature matching more 

difficult (Stumpf et al., 2015). When designing any UAV survey, one must consider all factors of the 
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image network geometry (e.g. image overlap, GSD, incidence angle) while being conscious of the flight 

time and UAV battery life. 

 Surface texture and illumination play a key role in identifying features and matching keypoints. 

High-textured surfaces with many distinct features will produce larger amounts of keypoints, while 

low-textured surfaces with few distinct features will cause difficulties obtaining matches (Fonstad et 

al., 2013). Examples of low-textured surfaces that can present difficulties in SfM are snow and water. 

Water can also absorb and scatter light, further reducing textural detail and yielding low point 

densities (Fonstad et al., 2013). Areas of highly variable texture such as vegetation cause difficulties 

obtaining matches because vegetation features appear different depending on the camera’s 

perspective (Fonstad et al., 2013). Vegetation also can move in the wind and appear different from 

different perspectives over time. There must be adequate lighting conditions during image 

acquisition. Images will not capture enough detail if it is too dark, but if it is too bright there may be 

glared surfaces (James & Robson, 2012). James and Robson (2012) report that overcast but bright 

days are most suitable for imaging to avoid strong shadows or glares. Eltner et al. (2016) recommend 

that surveys should last no longer than 30 minutes to avoid large changes in lighting. 

 Another important aspect of UAV photogrammetry is GCPs for georeferencing and scaling of the 

reconstruction. Because SfM processing reconstructs the scene in an arbitrary coordinate system, 

georeferencing shifts the reconstruction to a specified coordinate system, which allows for direct 

measurement of deformation when point clouds are compared temporally. GCP coordinates are 

surveyed with a high-quality GNSS system and inputted during processing. A minimum of three GCPs 

are required to account for model rotation, translation, and scale; but increasing the number of GCPs 

provides a more robust solution that is less sensitive to error at any one point and generally reduces 

georeferencing errors (James & Robson, 2012). There is however a law of diminishing returns and 

continuously increasing the number of GCPs does not correlate to a constant decrease in errors. In 

addition to georeferencing, GCP implementation also helps to reduce the doming error that results 
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in SfM reconstructions from parallel-axis image configurations (Eltner et al., 2016). This is only the 

case in a 1-stage BA where GCPs are included in the adjustment calculation and positional errors at 

the GCPs are minimized (Eltner et al., 2016); 2-stage BAs do not reduce doming errors. Javernick et 

al. (2014) found that the vertical error at check points (i.e. GCPs not included in the BA) was 7x the 

error at control points, demonstrating that some residual systematic vertical error remains even 

when suitable GCPs are included in the BA. This strengthens the case to collect additional oblique 

imagery, which is relatively quick and easy when using rotary UAVs with camera gimbals. 

 Harwin and Lucieer (2012) state that the optimal distance between GCPs for UAV applications is 

1/5 to 1/10 the distance of the object of interest. Tahar (2013) found 8 GCPs to be the most accurate 

for surveying a road construction site. Pix4D (2019), one of the leading SfM photogrammetry 

software companies, recommends using between 8 and 12 GCPs. The GCP network should be widely 

distributed, located at the edge or outside of the study area so that coordinate transformations are 

not being extrapolated outside the volume encompassed by the control points (James & Robson, 

2012). Eltner et al. (2016) also recommend for more GCPs to be placed in areas of high relief. If well-

distributed GCPs is not achievable, relative comparisons between successive point clouds can be 

carried out by aligning the point clouds based on mutual areas known not to have changed (James & 

Robson, 2012). When processing, GCP contribution should be weighted according to their precision 

and outliers should be eliminated to avoid adverse effects to the point cloud accuracy (James et al., 

2017). Another method to georeference UAV image-derived point clouds is to use direct 

georeferencing, where the location and position of the UAV camera are measured in real-time using 

a GNSS and inertial measurement unit (IMU). The GNSS accuracy of current UAVs is not high enough 

to neglect the use of GCPs for most applications, but georeferenced images are still desired because 

it majorly increases the efficiency of processing. New models of UAVs now include on-board RTK-

GNSS units that nearly render GCPs negligible. 
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 Error in a reconstructed 3D point cloud can be assessed with respect to accuracy and precision. 

Accuracy is the closeness of a measurement to a reference. The accuracy of a point cloud can be 

estimated by analyzing control point coordinates in the reconstruction compared to their reference 

coordinates. Precision is the repeatability of a measurement; for example, it indicates how rough a 

planar surface is represented. The most common measurements of error in point clouds are the mean 

error, standard deviation, and root mean squared (RMS) error. Positive and negative deviations can 

compensate for each other when calculating the mean error, which can impede the recognition of 

systematic errors such as symmetric tilting (Eltner et al., 2016). Standard deviation can also hide 

systematic errors in the reconstruction because it only gives confidence intervals around the mean 

error (Pix4D, 2019). If the differences among the measurements is minimal but the mean error of 

those measurements is not close to the reference value, the standard deviation will not accurately 

represent that error. RMS error is the most representative measurement of error in a reconstruction 

because it accounts for both the mean error and the variance (Pix4D, 2019). RMS error is a recognized 

and relatively easily understood proxy for determining error when the reference dataset is a set of 

distributed points rather than a continuous surface (Harwin & Lucieer, 2012). James et al. (2017) 

acknowledge the important of RMS error measurements on control and check points, and 

recommend for the measurements to be augmented by visualisation of spatial error distribution to 

protect against hidden systematic errors. 

2.2.3 UAV-SfM Strengths, Limitations, and Applications 

The use of UAVs for monitoring and inspection has exploded in the industrial, commercial, and 

academic sectors because of their high-quality sensors, ease of use, and relatively low cost. UAVs can 

be used in all kinds of environments but are especially useful in remote areas with limited site access 

(Eltner et al., 2016). Their ability to capture high quality images from aerial perspectives provides 

great opportunities for both qualitative and quantitative analyses. The simple and automated 

workflow of SfM has made UAV photogrammetry more attractive for nontechnical users and has 
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promoted its widespread use. An advantage of SfM is that images from several cameras (both metric 

and non-metric) can be processed together because camera parameters are calibrated during the BA. 

A key aspect of image-derived point clouds is that they include colour information, whereas scanned 

point clouds often do not. Colour provides valuable information and improves qualitative analysis of 

the scene. It also significantly enhances visualization of point clouds and helps to communicate 

features and processes identified in the scene with non-technical personnel. As technology and 

software continue to develop, images can also be re-processed with newer methods to improve point 

cloud density and quality (Shao et al., 2016).  

 Arguably the most useful application of UAV photogrammetry is monitoring deformation. 

Deformation monitoring with a UAV can be done for projects over a wide range of scales and 

environments, for both man-made structures and natural processes. For projects with scales up to 

approximately 100 m, UAV photogrammetry provides a convenient technique to acquire high-

resolution 3D datasets, which can be used to visualize and quantify volumetric and cross-sectional 

changes (James & Robson, 2012). UAVs have been used extensively for monitoring soil erosion 

processes such as coastal morphology (Harwin & Lucieer, 2012) and fluvial morphology (Javernick 

et al., 2014; Eltner et al., 2015). In fact, many of the deformation detection methods used today were 

developed for fluvial morphology such as sediment displacement estimates (Wheaton et al., 2010). 

Another common natural process monitored by UAVs are mass movements such as landslides and 

rockfalls. Rothmund et al. (2017) generated 3D point clouds, DSMs, and orthomosaics by UAV 

photogrammetry to identify and analyze landslide kinematics and morphologic features such as 

ridges, bulges, and fissures of the Super-Sauze landslide in Southeastern France. Meeks et al. (2017) 

used a UAV and SfM processing in combination with other remote sensing technology to build a 

detailed 3D geometry model of a complex rock instability in British Columbia, Canada. Gόméz-

Gutiérrez et al. (2014) and Immerzeel et al. (2014) demonstrated the usefulness of UAVs to monitor 

glacial deformation in mountainous regions with limited access. 
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UAV photogrammetry is a valuable tool commonly used to monitor deformation of infrastructure 

because of its ability to cover large areas and detect small-scale surficial changes. Cigna et al. (2017) 

used a UAV to monitor small-scale deformation of embankments and earth-retaining structures in 

Northern Ireland. Siebert and Teizer (2014) evaluated the performance of an autonomous UAV 

system for monitoring large-scale excavations and earthworks, concluding that UAV 

photogrammetry can make efficient and accurate measurements with the main limitation being UAV 

battery life. Ridolfi et al. (2017) used UAV photogrammetry to develop 3D models of dams, 

investigating the influence of GCP georeferencing on the accuracy of the models. Buffi et al. (2017) 

also used UAV photogrammetry to inspect dams, validating the image-derived model through 

comparison with other survey technologies (laser scanner, GNSS, and total station). UAV 

photogrammetry can also aid in developing risk management and decision-making systems for 

monitoring the condition of infrastructure (Kovacevic et al., 2016). 

 UAV photogrammetry clearly has a wide and growing range of applications in civil engineering. 

The technology does have some drawbacks though that limit its use. Areas of similar texture and/or 

high reflectivity (e.g. snow, sand, water, etc.) are difficult to match keypoints (Fonstad et al., 2013). 

Conversely, areas of highly variable texture such as vegetation are also difficult to obtain matches 

because it can appear different from various perspectives (Fonstad et al., 2013). The systematic 

doming errors caused by parallel-axis imagery and self-calibrating camera parameters is a major 

limitation. Minimization of doming errors by good GCP distribution and including oblique images 

was discussed in detail above. James and Robson (2012) outline the three main factors that limit the 

accuracy of SfM reconstructions. The first is that the SIFT algorithm can produce poor positional 

precision of features, which leads to errors in the BA and final point clouds. The second is that the 

camera calibration model used is not as refined as those in traditional photogrammetry, which can 

cause issues near image edges where distortion effects are greatest. Thirdly, SfM can add errors 

because different camera models and parameters are calculated for each image, even though images 



 

25 

are typically acquired using one camera with a fixed lens. These limitations of SfM will be reduced 

and the accuracy of reconstructions will improve as algorithms are refined with advancements in the 

field of computer vision. 

2.3 Terrestrial Laser Scanning (TLS) 

TLS is an advanced surveying technique that utilizes electromagnetic radiation to acquire 

information of the surrounding physical environment (Abellan et al., 2014). Electromagnetic 

radiation is emitted from an energy source as a low-divergence light amplified by stimulated emission 

of radiation, ubiquitously referred to as a laser (Heritage and Large, 2009). Another commonly used 

name for laser scanning is LiDAR, an acronym for light distance and ranging. Terrestrial means that 

the laser scanning is ground-based, and most-often comprises of a laser scanner set up on a tripod. 

Laser light is emitted in a single direction with a well-defined wavelength and amplitude. When a 

laser strikes a surface, light is either transmitted through, absorbed by, or reflected off the surface. 

The reflected light can be directed away from the surface at an angle equal to the incidence angle (i.e. 

specular reflection) or scattered in all directions (i.e. diffuse reflection). Most natural surfaces exhibit 

a combination of both types of reflection; more specular deflection for smooth surfaces and more 

diffuse reflection for rough surfaces. The distance of objects from the scanner can be measured based 

on the time it takes for the laser to return to the source (Heritage and Large, 2009). Most modern 

laser scanners emit infrared lasers and can detect extremely small energy reflections from distant 

surfaces. For example, the FARO Focus3D X 330 scanner can detect objects up to 330 m away (FARO 

Technologies Inc., 2015). Laser scanning technologies have revolutionized the modelling and 

characterization of surfaces at resolutions and scales that were previously unattainable. 

Classification of terrestrial laser scanners can be split in two broad classifications based on the 

technique used to measure the reflected laser: pulse ranging (or time-of-flight) measurement or 

phase change measurement. The time-of-flight method allows much longer distances to be measured 
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but at a reduced rate and lower accuracy than the phase change method (Petrie and Toth, 2009). The 

limited range of phase change scanners restricts its use for many applications. Time-of-flight 

scanners still provide relatively good accuracy with greater range and are therefore used more in 

TLS applications for earth surface monitoring (Abellan et al., 2014). Whichever classification a laser 

scanner belongs, it consists of four main components: laser emitting unit, reflector mechanism, 

receiver unit, and data encoder. The laser emitter, reflector, and receiver allow for the scan distance 

data to be measured, and the encoder records the positional data measured. Most modern scanners 

will also include other components such as a GNSS sensor for supplemental position information. 

Cameras are another commonly integrated component of scanners, which allow for full-colour 

photorealistic 3D scans when the images are processed with the scan data. 

2.3.1 TLS Survey Design and Accuracy 

The main parameters that differentiate TLS systems and affect the quality of scan datasets are range 

accuracy, resolution, maximum range, and survey design (Abellan et al., 2014). Range accuracy refers 

to the closeness of a range measurement to the actual distance. It typically spans from mm to cm 

values and depends on the object’s distance from the scanner—a longer distance typically 

corresponds with slightly lower accuracy. Properties of the objects and terrain being scanned also 

influence the accuracy of TLS measurements; specifically, the reflectivity and roughness of the 

scanned surface. Rough surfaces scatter the laser and low-reflectivity surfaces reduce the intensity 

of the reflected beam, both reducing the ability of the scanner to accurately measure the object’s 

distance. 

Spatial resolution determines the level of detail that can be observed in the scan-reconstructed 

point cloud (Pesci et al., 2011). Resolution is a function of the point spacing and spot dimension 

(Abellan et al., 2011). Point spacing can be manually defined by the user. Spot dimension is a measure 

of the laser beam diameter and increased with distance due to beam divergence. The spot dimension 

may even be greater than the point spacing at long distances. The maximum resolution for most TLS 
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systems if not ideal for most earth surface observation applications because it results in unnecessary 

data redundancy (Lichti & Jamtsho, 2006). High resolution scans also produce massive datasets that 

require more computer processing power and time. The maximum range of a laser scanner is 

controlled by the instrument type (e.g. pulse ranging or phase change), laser wavelength, survey 

conditions, and reflectivity of the scanned surface. Advances in TLS technologies have been steadily 

improving the range, resolution, and accuracy of scanners. 

Survey design is a critical stage of the TLS workflow, where the TLS practitioner can have the 

largest influence. Thorough planning of TLS surveys prior to site visits is strongly recommended to 

optimize scan data quality (Lim et al., 2009). Any errors that are incurred while acquiring scan data 

will propagate through the data processing, compounding to have an exaggerated affect on the final 

analysis application. Several factors must be considered while designing a TLS survey such as 

distances and incidence angles to surfaces and targets, number and locations of scans, scan resolution 

and overlap, and number and locations of targets for registration and georeferencing. These 

considerations should be made with the final application (e.g. deformation measurement) in mind to 

ensure an appropriate point density and overall point cloud accuracy. Since accuracy decreases with 

increasing range and incidence angle, these parameters should be reduced to an appropriate level 

while maintaining sufficient coverage and overlap. Abellan et al. (2014) recommends a minimum 

overlap of 30% between scans. Decreasing the scanner-to-surface incidence angle is also helpful for 

reducing the occurrence and size of occlusions. Weather and lighting conditions can also affect scan 

data quality. Rain, fog, and dust all negatively impact scan data and TLS surveys should be planned 

around these conditions if possible. Atmospheric transmission of laser light is best under clear, cool, 

dry conditions and may be severely affected by elevated water vapour levels (Heritage and Large, 

2009). 

Accuracy of TLS datasets is not only influenced by measurement errors in the raw scan data; 

registration errors also contribute significantly (Abellan et al., 2014). Registration uncertainty is one 
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of the main sources of uncertainty in TLS point cloud comparison for change detection (Lague et al., 

2013). Georeferencing a TLS point cloud to a reference coordinate system is typically performed 

during registration. Accurate georeferencing is essential for reducing uncertainty of deformation 

measurements between TLS point clouds. There are two main approaches to georeferencing in TLS: 

direct and indirect. Direct georeferencing uses the known coordinates of the scanner to transform 

every point in the scan, and indirect georeferencing uses GNSS measurements of targets visible in the 

scan. Indirect georeferencing has been proven to be more accurate; however, it requires more time 

in the field to set up the target network and measure coordinates (Mukupa et al., 2017). Natural or 

artificial targets can be used as GCPs, but artificial targets are more commonly used because they can 

be set up in optimal locations and have a precise point for GNSS measurements and marking in the 

scan point cloud. During field work, operators must ensure high-quality scan data collection of GCPs 

by minimizing the scanner-to-target distance and incidence angle to a reasonable operational level. 

Increasing the number of targets is also a solution to improve the reliability of georeferencing 

(Mukupa et al., 2017). Similarly to UAV photogrammetry, accuracy and precision are measured by 

evaluating the location of scan data points to their known coordinates and by quantifying point-to-

point noise of a planar surface, respectively (Lato et al., 2015). 

2.3.2 TLS Strengths and Limitations 

TLS has revolutionized the earth surveying and monitoring fields due to the technology’s accuracy, 

resolution, and convenience. The combination of millimetre level accuracy and high spatial 

resolution has allowed for detailed monitoring and a rapid increase in understanding natural systems 

and structures. Traditional high-accuracy surveying techniques such as tachometric surveying or 

GPS acquire data at an extremely low density and much longer times compared to TLS (Abellan et al., 

2014). TLS allows for the collection of mass point cloud data from a remote perspective in a relatively 

short period of time (Miller et al., 2008). TLS instruments are also fast and simple to set up. Static 
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instrument locations provide potentially more accurate measurements compared to dynamic 

instruments like airborne laser scanning (Abellan et al., 2014). 

TLS has a few limitations that must be considered. One operational limitation is the issue of 

viewing angles and occlusions. Because the accuracy and resolution of TLS measurements decrease 

with increasing scanner-to-surface incidence angles, TLS is not suited for flat terrains or mapping 

applications. TLS is better suited for monitoring vertical surfaces like cliffs or structures (e.g. 

buildings, walls). Multiple scans from different locations are often required to eliminate occlusions 

in the scan dataset. Another technological limitation of a TLS system is that the GNSS sensors within 

are typically not accurate enough to render indirect georeferencing applicable. This means that most 

TLS systems rely on GCPs for georeferencing and require additional equipment such as an RTK 

system or total station to measure GCP positions. This limitation will likely be overcome as the 

accuracy of GNSS sensors increases. A high-level issue of TLS is the willingness of operators to accept 

TLS data as accurate without proper scrutiny. The visually impressive and apparently complete 

appearance of TLS data often leads to unwarranted acceptance of data and distracts operators from 

errors due to automated collection and processing. This tendency to overlook errors is a major issue, 

and assessment of data quality should be performed throughout the TLS workflow; after scanning, 

processing, and registration. The problem of data quality is especially critical when a single (or small 

amount of) viewpoint(s) is employed, as is often the case with TLS (Abellan et al., 2014). 

2.4 Deformation Detection 

Compared to the sensing instruments available for reconstructing 3D point clouds, solutions for 

comparing point clouds are scarce (Lague et al., 2013). The four most common methods are: 1) digital 

surface model of difference, 2) cloud-to-cloud, 3) cloud-to-mesh, and 4) multiscale model-to-model 

cloud comparison. The purpose, operating algorithms, applications, and limitations of these four 
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methods is discussed. Sources of uncertainty in point cloud comparisons and methods to account for 

uncertainty are described below as well. 

A digital surface model (DSM) is the result of gridding a point cloud to produce a raster surface 

dataset. A DSM includes 3D data in a 2.5D format—the Z (vertical) coordinate is a value attributed to 

the XY location in the grid. The Z value is determined by interpolation of the local data points. DSM is 

also referred to as a digital elevation model (DEM) or digital surface model (DTM). A DSM of 

difference (DoD) is the comparison of DSMs by differentiating elevations on a pixel-by-pixel basis. 

The result is a grid of vertical differences representing deformation. DoD is the most common method 

of point cloud comparison in earth sciences for planar scene geometries (Lague et al., 2013). The 

accuracy of DoD comparisons depends on the quality of the DSMs, which are affected by several 

factors. Topographic data is reduced when point cloud data is converted from 3D to a 2.5D DSM 

(Mukupa et al., 2017). The quality of a DSM is an unknown function of the raw point cloud quality, 

sampling strategy, surface composition, topographic complexity, and interpolation methods 

(Wheaton et al., 2010). Data interpolation between points decreases accuracy for rough surfaces, 

limiting the resolution of small-scale details and the ability to detect deformations (Lague et al., 2013; 

Eltner et al., 2016; Mukupa et al., 2017). 

The most common approach to quantifying uncertainty in DoD comparisons is to specify a 

minimum level of detection (LoD). The LoD defines the minimum statistically significant change that 

can be detected. Deformations less than the LoD are considered error or noise and those greater than 

are considered actual change. LoD values are typically calculated for a 95% confidence interval, or 

put another way, set to 2x the standard deviation for a normal distribution (James et al., 2017; Meeks 

et al., 2017). Standard error assessments of GCPs, such as RMS error, can be used to estimate the LoD. 

Most estimates of DoD uncertainties are relatively simplistic and assume uncertainties are spatially 

uniform. In areas with lower errors (e.g. flat surfaces with strong feature identification), the single 

LoD may be larger than the LoD for that specific area and real deformations may be unnecessarily 
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discarded. Alternatively, in areas with higher errors (e.g. steep slopes), the single LoD may not be 

high enough to account for the errors in that area, and errors may be misinterpreted as deformation 

(Wheaton et al., 2010). Another important limitation of DoDs is that they only provide 1D elevation 

differences. This is problematic for 3D models where surficial deformations are unrestricted to the 

vertical direction (Mukupa et al., 2017). In these situations, DoD deformation results can 

overestimate the actual change, particularly in steep terrain where small lateral offsets can produce 

large vertical differences (Abellan et al., 2014; Cook, 2017). 

Cloud-to-cloud (C2C) comparisons are performed directly on the point clouds and do not require 

interpolating or gridding. The technique was developed for rapid change detection on very dense 

clouds rather than accurate distance measurement (Girardeau-Montaut et al., 2005). It is the fastest 

method for 3D point cloud comparisons because it does not require meshing, gridding, or calculation 

of surface normals (Lague et al., 2013). Its simplest version measures the distance between a point 

in the compared cloud to the closest point in the reference cloud. Improvements in C2C distance 

accuracy can be made by performing a least squares fit of the closest point neighbours in the 

reference cloud (Girardeau-Montaut et al., 2005). C2C measurements are highly sensitive to point 

cloud roughness, outliers, and differing point densities (Lague et al., 2013). This can cause 

deformations to be over or underestimated. C2C algorithms also do not return signed displacements 

(i.e. positive or negative), so the measurements are absolute values (Mukupa et al., 2017). 

Cloud-to-mesh (C2M) comparisons involve creating a detailed 3D meshed surface of the reference 

point cloud and calculating the cloud-to-mesh distance along the mesh surface normal (Monserrat & 

Crosetto, 2008). This method generally provides accurate distance measurements, but issues arise in 

areas where the two point clouds do not overlap or where the point cloud contains very few points 

(Lague et al., 2013). All non-overlapping areas must be manually removed in order to obtain accurate 

distance measurements, which is time-consuming and introduces a source of human error to the 

measurements (Stumpf et al., 2015). Issues of interpolation that affect DSM generation are present 
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with C2M as well. Although meshed surfaces are truly 3D and more complex than DSMs, mesh 

construction smooths out small-scale details that may be important for assessing local roughness 

(Lague et al., 2013). Interpolation introduces an additional source of error to the point cloud and 

interpolation artifacts may bias deformation measurements (Stumpf et al., 2015). 

A newer and more advanced method for measuring distances between clouds is multiscale model-

to-model cloud comparison (M3C2; Lague et al., 2013). The method was developed for TLS point 

clouds that capture detailed surface roughness. It is based on three key characteristics: 1) operates 

directly on point clouds without meshing or gridding; 2) computes the local distance along the 

normal surface direction; and 3) estimates a level of detection (LoD) for each distance measurement 

based on local point cloud roughness and registration error. A full explanation of M3C2 is available 

in Lague et al. (2013). Barnhart & Crosby (2013) reported that M3C2 provides a better accounting of 

uncertainty than C2M because it considers surface roughness and registration errors. Stumpf et al. 

(2015) and Gόmez-Gutiérrez et al. (2014) both found lower error measurements with M3C2 

compared to C2C and C2M. Comparisons of M3C2 to C2C and C2M also demonstrated that M3C2 was 

superior in measuring small-scale deformations over time (Lague et al., 2013; Barnhart & Crosby, 

2013). 

A few other techniques exist for monitoring deformation that are not exactly point cloud 

comparisons. One of those is feature tracking, which is simply identifying key features in the point 

cloud and tracking their displacement over time. Lato et al. (2017) used this technique on a TLS 

dataset to monitor a landslide in British Columbia. Although feature tracking has smaller errors than 

C2C for example (Abellan et al., 2014), identifying reliable features to track can be challenging. This 

is especially relevant on projects such as ITH where embankment fill material is visually uniform. 

Another technique to quantify deformation is estimating the volume change between two point 

clouds. Accomplishing this requires both point clouds to be interpolated to meshed surfaces. Volume 

change between the surfaces is then calculated by gridding the compared dataset into domains, 
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measuring the difference vector between the compared surface and the reference surface, and 

integrating each domain across the entire failure surface (Lato et al., 2015). Volume change estimates 

are typically done on large-scale projects such as landslides (Lato et al., 2015; Hsieh et al., 2016), and 

may not be the more appropriate measure for small-scale embankment deformation. One last 

technique is to compare cross-sections (i.e. profiles, slices) of the point cloud. It is a common method 

to analyze terrain evolution and is particularly useful for linear structures such as embankments. 

Cross-sections can be taken at distinct locations to focus on a particular feature or on sets or parallel 

equally spaced tangents to analyze the spatial development of deformation (Hsieh et al., 2016). 

2.5 Summary of Literature Review  

Embankments built on permafrost during winter are susceptible to deformations in the summer 

immediately following construction as ice within the embankment melts and in subsequent years as 

permafrost at the embankment toe thaws. As the climate changes and temperatures in the Arctic rise, 

permafrost will continue to thaw and infrastructure will suffer deformations and instabilities. New 

imaging technologies such as UAV photogrammetry and TLS are needed to more accurately monitor 

linear infrastructure in the Arctic. It will help in understanding deformation behaviour and in 

assessing stability for safety reasons. 

UAV photogrammetry uses a series of feature-matching and positioning algorithms called SfM to 

process aerial imagery captured by UAVs and produce point clouds of the scene. GCPs with positions 

measured by survey equipment, most often an RTK system, are used to georeference the image-

reconstructed point clouds to a coordinate system. The quality of the image set and GCPs strongly 

impacts the accuracy of the point clouds. 

TLS uses a laser scanner mounted on a tripod to measure distances of objects in the surrounding 

environment and reconstruct a 3D point cloud of the scene. Multiple scans from various scanner 

locations are registered together using targets such as spheres and checkerboards. TLS point clouds 



 

34 

are also georeferenced using target positions. Scanner parameters and survey design are both critical 

for producing high-quality TLS point clouds. TLS can generally produce more accurate point clouds 

and measure finer deformations than UAV image-reconstructed point clouds. 

There are several methods that can be used to compare point clouds and determine deformations, 

each with its own set of drawbacks and limitations. M3C2 is a newer point cloud comparison method 

that addresses much of the limitations of past methods and can provide more accurate deformation 

measurements with spatially variable LoD estimates. 
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CHAPTER 3:  TECHNOLOGY OPERATING PROCEDURES AND 

CALIBRATION TESTS 

This section outlines the operating procedures and calibration tests for each technology. The 

calibration tests were performed on each technology to assess their accuracies and expected errors, 

determine optimal survey parameters, and design the on-site surveys that would be suitable for the 

conditions along ITH. 

3.1 UAV Photogrammetry 

3.1.1 UAV Operation Certifications 

Transport Canada is the federal organization responsible for ensuring UAVs in Canada are flown 

legally and safely. UAV pilots must follow the rules in the Canadian Aviation Regulations (CARs) Part 

IX—Remotely Piloted Aircraft Systems (RPAS). RPAS, UAV, and drone are used synonymously. To 

legally fly a UAV in Canada before June 1, 2019, the pilot needed to complete a licensed UAV Ground 

School training program. The author completed their UAV Ground School training in June 2017 with 

M3 Aerial Productions. The training involved an online learning and testing program, as well as an 

in-class portion. The Ground School covered a wide range of topics including UAV operation, safety, 

rules and regulations, flight planning in Canadian airspace with NAV CANADA, meteorology, 

insurance and liability, and UAV mission planning. Under the old regulations (i.e. before June 1, 

2019), a person needed to be granted a Special Flight Operations Certificate (SFOC) in order to fly a 

UAV. The only time an SFOC was not required was if the UAV flight met the ‘exemptions’ criteria. 

These criteria however were limiting, and most UAV operations did not meet the strict criteria. For 

the research team’s situation on ITH, the UAV operation did not meet exemptions and an SFOC was 

required to legally fly the UAV along the highway. 

The SFOC application was lengthy and comprehensive. It required details on the personnel 

involved in the operation (e.g. pilot in command, visual observer) and their respective certifications, 
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information on the UAVs to be used during operations, liability insurance certificates, and highly 

detailed explanations of the UAV operation including a site survey, pre-flight and post-flight 

checklists, security plan, and emergency plan. In 2017, Earl De Guzman was the pilot-in-command 

and the author was the visual observer. In 2018, Earl De Guzman was the pilot-in-command and 

Samuel Kaluzny was the visual observer. The SFOC applications submitted in 2017 and 2018 were 

both granted. 

UAVs exploded in popularity in recent years and Transport Canada was overwhelmed with the 

processing of SFOC applications. This prompted them to release new rules and regulations related to 

UAV operations, which came into affect on June 1, 2019. Transport Canada took a more relaxed and 

streamlined approach with the new regulations, eliminating the need for UAV operators to obtain 

SFOCs. Under the new regulations, UAV operations are categorized into Basic or Advanced 

operations. Basic operations are those that: 1) fly in uncontrolled airspace; 2) fly more than 30 m 

horizontally from bystanders; and 3) never fly over bystanders. UAV operations on ITH fall under the 

Basic operations category. In order to conduct Basic or Advanced RPAS operations, a person must 

pass an online test provided by Transport Canada. The author completed the Basic operations online 

test and was awarded their Small RPAS Pilot certificate on May 28, 2019. The certificate allowed the 

author to conduct UAV flights in Canada as long as the three Basic operations criteria (listed above) 

were met. Additionally, the UAVs were required to be registered with Transport Canada and remain 

in visual line-of-sight (VLOS) with the UAV during all operations. 

3.1.2 UAV Models and Specifications, Operating Procedures, and Image Processing 

Two quadcopter UAVs were used in this research to acquire aerial imagery of the high-fill sections 

along ITH: a senseFly albris and a DJI Phantom 4 Pro. The albris (Figure 3.1) is a top-of-the-line 

inspection UAV. Its 38 Mp main camera is one of the best in its class and allows it to capture high-

quality imagery, which improves feature matching during SfM processing. The albris also has an 

advanced set of sensors that allows it to navigate and stabilize while in its different flight modes. 
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These sensors include inertial measurement units (IMUs) to measure acceleration and orientation, a 

GNSS receiver to determine its global position, barometers to measure its altitude, ultrasonic sensors 

to measure distances to surrounding objects, and navigational cameras (navcams) to help determine 

its speed relative to surfaces (senseFly, 2016). The albris is capable of flying in three flight modes: 1) 

autonomously on user-designed missions following a specified flight path and capturing images at 

specified locations; 2) interactive where the pilot controls movements and sensors are used to 

automatically stabilize and compensate for wind; or 3) manually where the pilot controls movements 

and it does not stabilize itself or compensate for wind. Sophisticated UAV systems like the albris that 

can fly autonomously on missions allow for more efficient and consistent flights that provide more 

reliable results in the form of higher-quality reconstructed point clouds. For its ground control 

station (GCS), the albris uses a laptop with eMotion 3 (senseFly, 2019). eMotion 3 allows the pilot to 

control and monitor the albris during flight, as well as design missions for the albris to complete 

autonomously. The albris uses a set of antennas that is plugged into the GCS laptop as a 

communication link between the UAV and GCS. Table 3.1 outlines some technical specifications of 

the albris and its sensors. 

 

Figure 3.1 senseFly albris UAV. 
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The Phantom 4 Pro (Figure 3.2) is a high-end consumer level UAV. The Phantom is a smart-flying 

photography UAV with a sensor to capture 20 Mp images. It has vision and infrared obstacle sensors 

that make it able to avoid obstacles during flight, as well as a barometer, IMU, and GNSS receiver for 

positioning and navigation. The Phantom has three flight modes: positioning, sport, and attitude. In 

positioning mode, the UAV utilizes GNSS and the vision and infrared sensors to stabilize, compensate 

for wind, and avoid objects during flight. In sport mode, obstacle sensing systems are disabled and 

the UAV’s maximum flight speed and handling are increased to enhance maneuverability. Sport mode 

is not intended to be used to photogrammetry applications. In attitude mode, the UAV does not use 

its GNSS or sensor systems and only uses its barometer for altitude control. The Phantom does not 

have an autonomous flight mode to follow user-designed missions; therefore, it was flown manually 

to acquire imagery during site visits. For its GCS, the Phantom uses DJI GO 4 (an app) on a tablet-like 

monitor connected to a handheld remote controller. The controller also has integrated antennas for 

a communication link between the GCS and UAV. Table 3.1 outlines some technical specifications of 

the Phantom 4 Pro and its sensors. 

 

Figure 3.2 DJI Phantom 4 Pro UAV (DJI, 2018). 
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Table 3.1 UAV specifications. 

Parameter senseFly albris DJI Phantom 4 Pro 

Camera resolution 38 Mp 20 Mp 

Camera field of view 60° 84° 

Weight (with battery and propellers) 1.77 kg 1.388 kg 

Battery 8500 mAh 5870 mAh 

Max flight time (approximate) 22 minutes 30 minutes 

Max airspeed (manual flight) 43 km/h 72 km/h 

Max airspeed (autonomous flight) 29 km/h N/A 

Max wind speed (manual flight) 10 m/s 10 m/s 

Max wind speed (autonomous flight) 8 m/s N/A 

Operating temperature -10 to 40 °C 0 to 40 °C 

 

Pix4Dmapper (Pix4D, 2019) was the software used in this research to process UAV imagery. Pix4D 

processes imagery by executing a series of SfM and MVS feature matching algorithms to generate 3D 

point clouds of the scene captured by the images. The general workflow in Pix4D was as follows. First, 

initial processing of the imported imagery is performed, which included identification of keypoints, 

keypoint matching between images, and orientation of the keypoints to create a sparse point cloud. 

Pix4D uses the SIFT algorithm (Lowe, 1999; Lowe, 2004) to identify features, followed by the 

approximate nearest neighbour and Random Sample Consensus (RANSAC) algorithms to create 

tracks that link specific keypoints in multiple images and remove transient features (e.g. moving 

objects) from the dataset. During initial processing, images can be down-sampled (i.e. reduced in 

size) to increase processing speed. Down-sampling results in fewer keypoints (Harwin & Lucieer, 

2012) and was therefore avoided throughout this research. Pix4D performs iterative automatic aerial 
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triangulations (AAT), bundle block adjustments (BBA), and calibrations of the camera parameters 

until an optimal reconstruction geometry is achieved. 

Once the spare point cloud is generated, GCP coordinate data is imported to Pix4D and GCPs are 

marked in the images. Marking GCPs in the images themselves reduces errors and improves overall 

accuracy compared to marking GCPs in the point cloud (Eltner et al., 2016). The sparse point cloud is 

then reprocessed to include the marked GCP positions in the BA. Including GCPs in the BA is referred 

to as a 1-stage BA and has been shown to reduce systematic doming errors compared to a 2-stage BA 

where the GCP georeferencing only shifts the point cloud and does not affect the point cloud’s 

structure (Eltner et al., 2016). 

After georeferencing with the GCPs, the next step is densification of the point cloud. Pix4D utilizes 

iterations of the clustering view for multi-view stereo (CMVS) and patch-based multi-view stereo 

(PMVS2) algorithms to organize the point cloud into manageable clusters of data and then generate 

additional points using the data within the clusters. The dense point cloud is the product of the SfM-

MVS process. Pix4D has a point cloud editor that allows the user to manually remove points that are 

unwanted or erroneous such as remnants of a moving object. The final point cloud can then be 

exported to other software for deformation measurements or other analysis techniques. Pix4D can 

further process the dense point cloud to generate products such as a meshed surface composed of 

triangles or a digital surface model (DSM). Meshed surfaces and DSMs can be valuable for 

deformation detection, depending on the application. For the purposes of this research, all 

deformation measurements were performed using the dense point clouds and the meshed surfaces 

and DSMs were not generated. 

Pix4D has several parameters that can be modified during each stage of processing. It was 

important early on to establish standard processing parameters that would be applied consistently 

to image sets throughout the research. The processing parameters would be selected to optimize the 

quality of the reconstruction with respect to density of the point cloud. The Pix4D manual (Pix4D, 
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2019) provided guidance and recommendations on certain parameters according to the type of 

imagery and application. For the remaining parameters, a parametric analysis was performed on the 

2017 albris images from KM-82. The images were processed using the different settings and 

parameters available in Pix4D. The processing time and density of the resulting point clouds were 

compared to determine which settings and parameters produced a point cloud with the highest 

density in minimal time. Point cloud density was considered more important than processing time; 

however, if two settings produced equivalent densities, the setting that resulted in lower processing 

times was selected. Table 3.2 outlines the standard Pix4D processing parameters that were used 

throughout this research. There were two processing parameters options: image sets with only nadir 

images or image sets with nadir and oblique images. 
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Table 3.2 Pix4D standard processing parameters. 

STEP 1: INITIAL PROCESSING 

General 

Keypoints Image Scale Full 

Quality Report 
 Generate Orthomosaic Preview in Quality 
Report 

Matching 
Matching Image Pairs 

Aerial Grid Flight: Aerial Grid or Corridor 

Oblique Flight: Free Flight or Terrestrial 

Matching Strategy  Use Geometrically Verified Matching 

Calibration 

Targeted Number of Keypoints Automatic 

Calibration Method Standard  

Internal Parameters 
Optimization 

All 

External Parameters 
Optimization 

All 

Rematch Custom —  Rematch 

Export 
 Camera Internal and Externals, AAT, BBA 

 Undistorted Images 

STEP 2: POINT COUD AND MESH 

Point Cloud 

Image Scale 
1 (Original image size) 

 Multiscale 

Point Density Optimal 

Minimum Number of Matches 3 

Point Cloud Classification  Classify Point Cloud 

Export None. Can be manually exported later. 

3D Textured 
Mesh 

Generation  Generate 3D Textured Mesh 

Settings 
High Resolution 

 Use Color Balancing for Texture 

Export None. Can be manually exported later. 

Advanced 

Matching Window Size 9x9 

Image Groups  All 

Point Cloud Filters 

 Use Processing Area 

 Use Annotations 

 Limit Camera Depth Automatically 

Sample Density Divider 1 
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3.1.3 UAV Calibration I—Target Displacement 

On July 23, 2018 at Dave’s Aggregates gravel pit east of Winnipeg (49.77634° N, -96.600864° E), a 

calibration test was performed using the albris UAV and the RTK system to determine their ability to 

measure displacement of checkerboard targets (Figure 3.3). Checkerboard targets were prepared by 

cutting hardwood sheaths into 60 cm x 60 cm pieces and spray painting them black and bright pink 

or orange. No RTK base station was set up because the RTK rover could connect to the Lewis base 

station network. The survey was set up on and around a sand dune with a total of 14 checkerboard 

targets (Figure 3.4). The material and geometry of the sand dune is similar to the embankment fill 

material and geometry of the high-fill sections along ITH, allowing for comparable feature matching 

and georeferencing between the calibration test and site conditions. 

 

Figure 3.3 Checkerboard target. 
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Figure 3.4 UAV Calibration I—reconstructed point cloud with marked targets and GCPs. 

Two UAV surveys were conducted for the calibration test. Ten of the checkerboard targets were 

not moved between surveys and were used as GCPs for georeferencing; the other four checkerboards 

were used to measure displacements. Two checkerboard targets assessed horizontal displacement 

accuracy, one assessed vertical displacement accuracy, and one assessed the displacement accuracy 

of a target moved down the sand dune slope. The horizontal displacement targets (Phc and Phm) were 

laid on the ground and their positions were measured by two methods—the RTK system and a tape 

measure distance to a reference GCP. The vertical displacement target (Pv) was set up on a tripod. Its 

position was not measured using the RTK system because the top of the tripod was inaccessible with 

the RTK. The displacement of Pv was therefore only measured by hand with a tape measure. It is 
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understood that hand measurements with the tape measure have minor errors associated with them; 

however, care was taken to measure distances correctly to the millimeter and the hand 

measurements were taken as truth for the horizontal and vertical displacements in this calibration 

test. The slope displacement target (Psm) position was only measured using the RTK system due to 

difficulties accurately measuring the target’s distance from a reference GCP with a tape measure. 

UAV flights for the calibration test were designed using eMotion 3 (senseFly, 2019) and the flight 

parameters were the same as those used on-site. This allowed the determined accuracies in the 

calibration test to be representative of expected displacement accuracies on-site. Both UAV surveys 

included two flight schemes: a grid scheme and a point-of-interest (POI) scheme (Figure 3.5). Each 

grid scheme captured 46 nadir images that had a GSD of 1 cm and an overlap of 75% in both 

directions. The POI schemes captured 12 images at 30° radial spacing and a 60° viewing angle to the 

ground surface. 

  

Figure 3.5 UAV Calibration I—representation of UAV images acquired with green spheres 

identifying images’ calibrated positions: a) grid images; b) POI images. 
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The displacement measurements and associated errors for this calibration test are provided in 

Table 3.3. Accuracy of the RTK system was quantified by comparing the computed distances between 

target RTK points and the hand-measured distances for the targets moved horizontally (Phc and Phm). 

The RMS error between the RTK and hand-measured distances was 4.5 mm. This result demonstrates 

the RTK system can measure checkerboard target positions to a reasonably acceptable accuracy.  

Accuracy of the UAV photogrammetry processing was quantified by two methods. The first 

method compared distances between targets in the Pix4D point cloud to the hand-measured and RTK 

distances. Comparing the hand-measured and Pix4D distances, the RMS errors for Pc, Pm, and Pv were 

6.2 mm horizontally and 3.0 mm vertically. The vertical errors should theoretically be larger because 

RTK and UAV photogrammetry both typically have larger errors in the vertical direction; however, 

the 3.0 mm vertical RMS error was only based on one measurement. It is expected that if more 

vertical target distances were measured, the vertical RMS error would be larger than the horizontal. 

Comparing the RTK and Pix4D distances for Pc, Pm, and Psm determined the RMS errors were 9.4 mm 

horizontally and 17.2 mm along the slope. These were larger than the Hand vs. RTK and Hand vs. 

Pix4D errors because these errors accounted for errors in the RTK measurements and SfM 

processing. However, the RTK vs. Pix4D distance errors only ranged between 0.3% and 1.1% of the 

distance measurement. 

The second method to quantify the UAV photogrammetry accuracy assigned certain targets as 

checkpoints (Pc, Pm, and Psm) and compared the targets’ measured RTK positions to their positions 

computed by SfM processing in Pix4D. This analysis determined checkpoint RMS error values to be 

26.5 mm and 19.9 mm for the first and second UAV surveys, respectively. 
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Table 3.3 UAV Calibration I—target displacement distances and error measurements. 

Technology 
comparison 

Direction 
Reference 

target 
Compared 

target 

Hand 
dist. 

(mm) 

RTK 
dist. 

(mm) 

Pix4D 
dist. 

(mm) 

Error 
(mm) 

Error 
RMS 

(mm) 

Hand 
vs. 

RTK 
Horizontal 

Pr Pc 1000 998  -2 

4.5 Pr Pm1 1000 994  -6 

Pr Pm2 2000 2005  +5 

Hand 
vs. 

Pix4D 

Horizontal 

Pr Pc 1000  1008 +8 

6.2 Pr Pm1 1000  996 -4 

Pr Pm2 2000  1993 -7 

Vertical Pv1 Pv2 300  303 +3 3.0 

RTK 
vs. 

Pix4D 

Horizontal 

Pr Pc  998 1008 +11 

9.4 Pr Pm1  994 996 +2 

Pr Pm2  2005 1993 -12 

Along 
Slope 

Psr Psm1  2690 2708 +18 
17.2 

Psr Psm2  5744 5761 +17 

 

This calibration test showed that fine displacements of artificial targets can be measured using 

UAV photogrammetry. One of the main reasons this test was able to detect such fine displacements 

is because the same GCPs were used for both UAV surveys. When the same GCPs are used, the point 

cloud is georeferenced based on the same coordinate inputs and the errors associated with those GCP 

position measurements are irrelevant. However, when different GCPs are used for two UAV surveys, 

the GCP position errors negatively impact georeferencing and cause differences between the two 

reconstructed point clouds. Therefore, uncertainties of deformation measurements increase when 

comparing point clouds reconstructed from UAV surveys that used different GCPs. 



 

48 

At the time of this calibration test and analysis, the displacement errors determined by UAV 

photogrammetry using the selected flight parameters seemed acceptable for measuring 

deformations of high-fill embankments because the errors were significantly smaller than the 

expected deformations of the high-fill sections. It was not until later, while researching the various 

methods of change detection, that a method was developed to use GCP positional errors in a 

reconstructed point cloud to estimate the accuracy of that point cloud and the reliability of 

deformation measurements between point clouds. This newfound understanding, which will be 

explained in the following section, prompted the development of an experiment with the UAV to 

study the effect of various image and ground control parameters on the accuracy of reconstructed 

point clouds. 

3.1.4 UAV Calibration II—Image and Ground Control Parameters 

The accuracy of UAV image-reconstructed point clouds can be estimated by determining errors at 

checkpoints. Positional errors at checkpoints can be measured by comparing control point 

coordinates in the reconstruction to their known reference coordinates. The errors at checkpoints 

can be analyzed and used as an estimate of the errors associated with other points in the point cloud. 

Using UAVs to monitor deformation will have a tolerance for the uncertainty of measurements; zero 

uncertainty is unachievable. The accuracy of deformation measurements between point clouds is 

directly proportional to the accuracy of the point clouds themselves (Lague et al., 2013), where lower 

accuracy point clouds results in less confident deformation estimates. The level of detection (LoD) is 

a common approach to quantifying uncertainty for deformation measurements between point 

clouds. LoD is the minimum statistically significant change that can be detected. A 95% confidence 

interval is most often used to define the LoD, where deformation measurements less than the LoD 

are considered error or noise (Lague et al., 2013; Wheaton et al., 2010). Deformation must be greater 

than the error at the 95% confidence interval boundary to be deemed as actual change. The LoD is 

highly dependent on the scale of images used to reconstruct the point cloud and can range from 1 cm 
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to 30 cm (Brasington et al., 2003; Cook, 2017; Eltner et al., 2015; Lane et al., 2003). The targeted LoD 

for a project will depend on the scale of the structure, the mechanism causing deformation, and the 

importance of the structure. Understanding the critical factors that influence accuracy of UAV image-

reconstructed point clouds allows for more effective design of UAV surveys to obtain a targeted LoD. 

This experiment investigated the impact that image blocks and ground control parameters have 

on the accuracy of UAV image-reconstructed point clouds by analyzing GCP positional errors in a set 

of point clouds. The four parameters that were investigated were: (1) GSD of the images, (2) number 

of GCPs, (3) RTK observation time at GCPs, and (4) oblique image incidence angle. Point cloud errors 

were used to quantify an LoD for each point cloud to show the impact the four parameters can have 

on deformation monitoring applications. The purpose of this experiment was to improve the image 

and data acquisition methods that would be implemented on-site.  

3.1.4.1 Experiment Methods 

UAV imagery and ground control data were acquired at Dave’s Aggregates gravel pit on June 2, 2019. 

Only the albris was used for this experiment because of its flight planning capabilities. The survey 

area was approximately 80 m x 50 m with a sand surface and two large rock piles approximately 8 m 

high (Figure 3.6). This area was selected for the terrain relief of the rock piles and their geometric 

similarity to the high-fill sections along ITH. The RTK system was used to measure precise 

coordinates of checkerboard GCPs. No RTK base station was set up because the RTK rover could 

connect to the Lewis baste station network. Sixteen (16) GCPs were distributed throughout the 

survey area (Figure 3.6). The position of each GCP was measured thrice, each for a different length of 

observation time: 20 seconds, 1 minute, and 3 minutes. 
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Figure 3.6 UAV Calibration II—plan view of the survey area with GCPs. 

Several UAV flights were conducted to acquire images with various parameters for the chosen 

image blocks. The flights consisted of two image schemes: grid schemes and POI schemes. Grid 

schemes followed a horizontal grid flight path above the entire survey area and captured nadir 

images with 75% overlap (both longitudinal and lateral to the UAVs flight path). Three grid flights 

were conducted at varying GSDs: 10 mm, 8 mm, and 6 mm. These corresponded to UAV flight heights 

of 57 m, 46 m, and 35 m, respectively. POI schemes followed a circular flight path and collected 

oblique imagery oriented towards the centre of the survey area between the rock piles. POI schemes 

were effective because they captured the full survey area from a wide array of perspectives on a 

relatively short flight path. POI flights were conducted from three viewing angles: 45°, 60°, and 75° 
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to the ground surface. Each POI scheme included 12 images, equally spaced at 30° intervals 

surrounding the POI. 

Ground control survey data was processed using Leica Infinity (Leica, 2019) to a format accepted 

by Pix4D. Each RTK measurement at a GCP included the 3D coordinates of the point, along with the 

horizontal, vertical, and 3D uncertainty of the measurement. These uncertainties were analyzed to 

quantify the direct effect of the RTK observation time. 

Pix4D processing followed the standard workflow with the optimal parameters described in 

Section 3.1.2. GCP coordinate data was imported to Pix4D and each GCP was marked in the images. 

Jaud et al. (2016) estimated the accuracy of manually marking images to be 0.3 pixels. This would 

correspond to 3, 2.4, and 1.8 mm for images with GSDs of 10, 8, and 6 mm, respectively. Each GCP 

was marked in a minimum of 8 images to provide a reasonable estimate of the GCP centre, with 

additional markings on images where required. The point cloud was georeferenced by reprocessing 

the Pix4D project to include the marked GCP coordinates in the BA. checkpoint errors in the 

georeferenced sparse point clouds were used to quantify the accuracy of the point clouds. 

In the SfM workflow, georeferencing optimizes the point cloud geometry by reducing the overall 

error between the computed GCP positions and their input coordinates. Errors at points between 

GCPs are most-often higher than errors at the GCPs. This experiment used checkpoints to measure 

errors and quantify the accuracy of the point clouds. A checkpoint provides an unbiased accuracy 

estimation of a point cloud. 

The analysis was organized into ten processing groups that each had a unique combination of 

three parameters: 1) image GSD, 2) RTK observation time, and 3) viewing angle of oblique imagery 

(Table 3.4). The baseline group (i.e. Group 1) had a GSD of 10 mm, an RTK observation time of 20 

seconds, and no oblique imagery. Groups 2–8 varied one of the three parameters and left the other 

two parameters as they were in Group 1. This allowed the effect of each individual parameter to be 

analyzed. Groups 9 and 10 varied multiple parameters to quantify their combined effect. Within each 
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processing group, the point cloud was reprocessed several times, each with a unique number and 

configuration of GCPs. The number of GCPs included in georeferencing varied from 4–14; GCPs not 

included in georeferencing were classified as checkpoints and used to measure errors. The numbers 

of GCPs investigated were 4, 6, 8, 10, 12, and 14. 

Table 3.4 UAV Calibration II—processing group parameters. 

Group ID 
GSD 

(mm) 

RTK observation 
time 
(sec) 

Oblique 
viewing angle 

(°) 

No. of GCPs 
investigated 

1 BASE 10 20 No oblique images. 4, 6, 8, 10, 12, 14 

2 GSD8 8 20 No oblique images. 4, 6, 8, 10, 12, 14 

3 GSD6 6 20 No oblique images. 4, 6, 8, 10, 12, 14 

4 RTK1 10 60 No oblique images. 4, 6, 8, 10, 12, 14 

5 RTK3 10 180 No oblique images. 4, 6, 8, 10, 12, 14 

6 OBL45 10 20 45 4, 6, 8, 10, 12, 14 

7 OBL60 10 20 60 4, 6, 8, 10, 12, 14 

8 OBL75 10 20 75 4, 6, 8, 10, 12, 14 

9 MID 8 60 45 4, 6, 8, 10, 12, 14 

10 MAX 6 180 45 4, 6, 8, 10, 12, 14 

 

Different configurations of GCPs were processed to determine error estimates at checkpoints. 

Within each processing group, each GCP was classified as a checkpoint six times, resulting in 96 data 

points to analyze for a certain number of GCPs. The number of configurations required to reach 96 

checkpoints was highest when 14 GCPs were processed (48 configurations) because only 2 

checkpoints were used each time. When 4 GCPs were processed, only 8 configurations were required 

to reach 96 checkpoints. For 6 GCPs, four of the GCPs were classified as checkpoints seven times 

instead of six. A summary of the GCP configurations is provided in Table 3.5. The GCP configurations 
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were designed to satisfy three criteria. Firstly, all GCPs were classified as checkpoints the same 

number of times to ensure the results were not weighted higher/lower to a GCP that was selected 

more/less. This criterion was satisfied for all numbers of GCPs except for 6 GCPs because the 96 GCP 

data points was not divisible by 6 (the number of checkpoints per configuration). Secondly, the 

configurations needed to cover as much of the survey area as possible. This was done because typical 

GCP networks are distributed widely across the study area (James & Robson, 2012) and a consistent 

GCP coverage area provided comparable results between different numbers of GCPs. Thirdly, 

repetitive use of checkpoint combinations was minimized to reduce the likelihood that certain 

repeated checkpoint combinations influenced the results. A random generator was not used to 

determine GCP configurations because it resulted in GCP grouping that did not cover the entire 

survey area. Figure 3.7 shows examples of configurations for 4, 6, 8, 10, 12, and 14 GCPs. 

Table 3.5 UAV Calibration II—number and configurations of GCPs for each processing group. 

No. of GCPs 
No. times each GCP 

classified as 
checkpoint 

Checkpoints per 
configuration 

No. of 
checkpoint 
data points 

No. of 
configurations 

14 6 2 96 48 

12 6 4 96 24 

10 6 6 96 16 

8 6 8 96 12 

6 6.25 10 100 10 

4 6 12 96 8 
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Figure 3.7 UAV Calibration II—example GCP configurations: a) 14 GCPs; b) 12 GCPs; c) 10 GCPs; 

d) 8 GCPs; e) 6 GCPs; f) 4 GCPs. 

For every configuration in a processing group, a new Pix4D file was created based on the original 

file for that processing group. This ensured that every configuration had identical initial datasets and 
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eliminated the gradual reduction of GCP errors that can occur in files that are continuously 

reprocessed with different GCP networks (Pix4D, 2019). Once a file was reprocessed, errors in the X, 

Y, and Z directions for all checkpoints in the configuration were recorded. This procedure was 

repeated for all configurations and processing groups. The resulting dataset consisting of X, Y, and Z 

errors at checkpoints was analyzed to determine the accuracy of point clouds in the different 

processing groups and quantify the impact of the image block and ground control parameters. 

The LoD for deformation measurements between two point clouds can be calculated as: 

 𝐿𝑜𝐷95% = ±1.96 × √𝑅𝑀𝑆𝐸3𝐷(1)
2 + 𝑅𝑀𝑆𝐸3𝐷(2)

2
 (3.1) 

where RMSE3D(1) and RMSE3D(2) are the 3D RMS errors of the two clouds being compared and ±1.96 

is the normal distribution Z value for the 95% confidence interval. This equation is a simplified 

estimate of LoD based on Wheaton et al. (2010) and Lague et al. (2013). In this study, all UAV flights 

were conducted on the same day; therefore, no point clouds were compared to determine 

deformation. LoD was calculated for each group assuming that a second point cloud with the same 

image block and ground control parameters would have identical errors as those determined in this 

study (i.e. RMSE3D(1) = RMSE3D(2)). Therefore, LoD in this study was calculated as: 

 LoD = 1.96 × √2 × (𝑅𝑀𝑆𝐸3𝐷
2) (3.2) 

3.1.4.2 Experiment Results 

The measured RTK survey uncertainties at GCPs showed that horizontal, vertical, and 3D 

uncertainties decreased as the RTK observation time increased (Table 3.6). The mean uncertainty 

consistently decreased as observation time increased; however, standard deviation only decreased 

at 180 seconds and there was no significant change from 20 to 60 seconds. For all three collection 

times, the mean and standard deviations for vertical uncertainty were higher than horizontal 

uncertainty, as is typical of RTK surveys (Saghravani et al., 2009). The box plot of the RTK 

measurement uncertainty (Figure 3.8) illustrates the benefits of longer observation times. Significant 
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decreases in the mean and variance of RTK uncertainties can be obtained when observation time 

increases. These results can help plan RTK surveys when a specific uncertainty level is targeted. 

Table 3.6 UAV Calibration II—RTK survey uncertainty statistical measures. 

Parameter Horizontal uncertainty Vertical uncertainty 3D uncertainty 

Observation time (sec) 20 60 180 20 60 180 20 60 180 

Maximum (mm) 15 16 10 21 17 12 26 23 16 

Minimum (mm) 9 8 5 12 10 7 15 13 9 

Mean (mm) 12.3 10.5 7.6 16 13.6 9.8 20.2 17.3 12.3 

Standard deviation (mm) 1.9 2.3 1.4 2.5 2.4 1.5 3 3.3 1.9 

Root mean squared (mm) 12.4 10.7 7.7 16.2 13.8 9.9 20.4 17.5 12.4 

 

 

Figure 3.8  UAV Calibration II—box plot of the horizontal, vertical, and 3D RTK measurement 

uncertainties at GCPs for 20, 60, and 180 second RTK observation times. 
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Processed errors at checkpoints were analyzed for each processing group and number of GCPs. 

Results of the statistical analysis are presented primarily using RMS error because it accounts for the 

mean and variance of errors and is the most representative measurement of error point clouds 

(Pix4D, 2019). Figure 3.9 shows the RMS of the processed 3D errors for all processing groups and 

numbers of GCPs. Generally, RMS errors decreased with more GCPs. This result agrees with the 

literature (Harwin & Lucieer, 2012; James & Robson, 2012; Tonkin & Midgley, 2016). There was 

however inconsistent evidence that accuracy continued to improve past 12 GCPs; RMS error 

decreased in some groups and increased in others. For 12 and 14 GCPs, the distance from a 

checkpoint to the closest GCP is approximately equal in most configurations. Larger distances from 

GCPs to checkpoints cause larger errors (Tonkin and Midgley, 2016), but since the GCP to checkpoint 

distances for 12 and 14 GCPs are approximately equal, errors are primarily due to the different 

configurations and combinations of GCPs used in the georeferencing. Accuracy increased or 

decreased in each processing group depending on the GCP coordinates because the GCP coordinates 

changed slightly based on the RTK observation time. 
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Figure 3.9 UAV Calibration II—RMS of the processed 3D errors at checkpoints for all processing 

groups and numbers of GCPs. 

Although RMS error is a representative measure, it only gives an overview of the point cloud 

accuracy and more can be learned by examining box plots of errors. The box plot of the processed 

errors at checkpoints for 12 GCPs (Figure 3.10) showed that RTK observation time at GCPs had the 

largest impact on the mean and variance of errors. RTK observation time had the strongest impact 

on reducing the variance of errors, shown in RTK1, RTK3, MID, and MAX. Additionally, groups that 

used a combination of parameters produced lower means and variances than the individual 

parameters alone (e.g. MID vs. GSD8 or RTK1; MAX vs. GSD6 or RTK3). 
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Figure 3.10 UAV Calibration II—box plot of the processed errors at checkpoints when 12 GCPs were 

used to georeference for each processing group. 

A large discrepancy was observed in Figure 3.9 where GSD6 resulted in larger errors than BASE 

and GSD8. GSD6 images were taken at shorter camera-to-surface distances, which should have 

resulted in a more accurate point cloud and smaller errors. GSD8 showed improvements compared 

to BASE, as expected with closer-range images. Comparing the 3D, vertical, and horizontal RMS errors 

for BASE, GSD8, and GSD6 (Figure 3.11) showed that horizontal errors were similar for all groups. 

Vertical errors for GSD6 were higher than those for BASE and GSD8. If the cause of increased GSD6 

errors was inaccurate marking of GCPs in the images, horizontal errors would have been affected 

because all images were nadir. Since horizontal errors were unaffected (Figure 3.11), it can be 

concluded that the larger vertical errors in GSD6 were due to image processing. It is unclear as to 

what part of processing caused the GSD6 vertical errors. The author’s theory is that because the 

images were closer to the surface and viewed less surface area, there could have been a minor doming 

effect occurring at areas in the point cloud where GCPs were not viewed in images. This could have 
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caused vertical errors such as those observed. Regardless of what caused the larger vertical errors, 

results showed that 20 second RTK observation times are insufficient for close-range (e.g. 6 mm GSD) 

UAV images. Higher quality GCP measurements are required if close-range UAV images are collected, 

as that combination (e.g. MAX group) resulted in reducing point cloud errors (Figure 3.9). 

 

Figure 3.11 UAV Calibration II—RMS of the processed 3D, vertical, and horizontal errors at 

checkpoints for BASE, GSD8, and GSD6. 

RTK observation time proved to be the most effective parameter to reduce errors at checkpoints 

(Figure 3.9). Plotting the 3D, vertical, and horizontal RMS errors for BASE, RTK1, and RTK3 (Figure 

3.12) demonstrated that increasing RTK observation time worked by reducing both vertical and 

horizontal errors. This contributed to a significant error decrease in 3D errors, particularly from 

RTK1 to RTK3. 
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Figure 3.12 UAV Calibration II—RMS of the processed 3D, vertical, and horizontal errors at 

checkpoints for BASE, RTK1, and RTK3. 

Including oblique images in processing reduced vertical errors in the point cloud by 

approximately 15% compared to the same image set without oblique images (Figure 3.13). This 

result agreed with the literature, although the error reduction was not as drastic as others reported 

(James and Robson, 2014). Including oblique images also reduced horizontal errors (Figure 3.13), 

though significantly less than vertical errors. Oblique images at 45° provided the greatest 

improvement in vertical accuracy, likely because more of the scene and GCPs was captured in the 

images at shallower viewing angles. Including 12 oblique images in the image block substantially 

improved the accuracy. Oblique images at 60° contributed to slightly lower point clouds errors than 

75°. Stumpf et al. (2015) showed that oblique imagery should not be captured at incidence angles 

less than 30° to the surface because more extreme obliqueness decreases data quality and makes 

feature matching difficult. Based on this observation and the results presented here, it seems that the 

optimal oblique viewing angle to reduce errors in point clouds is near 45°. 
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Figure 3.13 UAV Calibration II—RMS of the processed errors for BASE, OBL45, OBL60, and OBL75: 

a) vertical direction; b) horizontal plane. 
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To exhibit the accuracy improvements that occurred when parameters were combined, RMS 

errors were plotted for MID against BASE, GSD8, and RTK1 and for MAX against BASE, GSD6, and 

RTK3 (the group of combined parameters against the groups of its individual parameters; Figure 3.14 

and Figure 3.15, respectively). Combining parameters was effective at further reducing errors in 

point clouds. Interestingly, error reductions for MID and MAX were approximately equal to the 

cumulative effect of their corresponding individual parameter groups, excluding GSD6 because of the 

vertical processing errors. MID and MAX were also the only two groups where the vertical RMS errors 

were less than the horizontal RMS errors. Error reductions in the vertical (Z) direction were 

substantial; however, the vertical axis still resulted in the largest errors because horizontal errors 

represent the planar errors composed of the X and Y errors. 

 

Figure 3.14 UAV Calibration II—RMS of the processed 3D errors for MID and its corresponding 

individual parameter groups, plus vertical and horizontal errors for MID. 
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Figure 3.15 UAV Calibration II—RMS of the processed 3D errors for MAX and its corresponding 

individual parameter groups, plus vertical and horizontal errors for MAX. 

The LoD analysis on the point cloud errors was included to demonstrate an application where 

accuracy of reconstructed point clouds is important. Comparing the RMS errors (Figure 3.9) and the 

LoDs (Figure 3.16) shows how important point cloud accuracy can be for deformation monitoring 

applications. Comparing 12 GCPs for BASE and MAX, 3D RMS errors were 32 mm and 17 mm, 

respectively, and LoDs were 90 mm and 47 mm, respectively. A 15 mm RMS error reduction in the 

point cloud GCPs may not seem significant, but it translates to a 42 mm reduction in LoD, which is 

significant if attempting to measure small-scale deformations of highway embankment. 
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Figure 3.16 UAV Calibration II—LoD for deformation measurements of point clouds from all 

processing groups and numbers of GCPs. 

3.1.4.3 Experiment Discussion and Conclusion 

UAVs are becoming increasingly popular for deformation monitoring applications; however, the 

accuracy (or inaccuracy) of results is often overlooked (James et al., 2017). Using checkpoints to 

evaluate errors in the point cloud and analyze output statistics should be an essential part of any UAV 

SfM survey (James & Robson, 2014). This experiment showed that an important parameter to 

consider when conducting UAV surveys with an RTK system is the RTK observation time at GCPs. 

Increasing RTK observation time reduced point cloud errors more than the other investigated 

parameters and worked in combination with the other parameters to further reduce errors. Small 

changes in the accuracy and measured coordinates of GCPs are carried through the entire SfM 

workflow and can result in significant errors in the reconstructed point cloud. Point cloud errors then 

contribute to uncertainty of deformation detection when point clouds are compared, so it is 

understandable how more accurate GCP coordinate inputs can have such a powerful effect. The large 
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effect of RTK observation time at GCPs does not make designing the image block less significant 

though. Increasing RTK observation time provided major accuracy improvements in this experiment 

because the baseline image block was appropriately designed to reconstruct the survey area. If the 

image block was insufficiently designed (i.e. low image overlap, large GSD, less coverage, etc.), the 

SfM reconstructed point cloud would be less accurate and have a lower density. In that case, high 

RTK observation times would not provide as significant benefits. Defining what qualifies as a 

sufficient design for a UAV survey is project dependent. The results of this study demonstrated that 

with an image block appropriate for the scale of a project, increasing RTK observation times can 

significantly reduce errors in the reconstructed point cloud. 

The downside of increasing RTK observation times is the additional time required to survey GCPs. 

In the field, time is often a critical factor in conducting UAV surveys because adverse weather 

conditions can ground flights. Nevertheless, increasing RTK observation times evidently improves 

point cloud accuracy and this study showed that the quality of GCP coordinates is more important 

than the quantity of GCPs. For example, a UAV survey using RTK1 parameters with 14 GCPs would 

require 14 minutes of total GCP observation time and a survey using RTK3 parameters with 6 GCPs 

would require 18 minutes of total GCP observation time. When the time required to set up the GCP 

network is considered, these two surveys require approximately the same time to survey GCPs. RTK3 

with 6 GCPs produces an LoD of only 55 mm, whereas RTK1 with 14 GCPs produces an LoD of 80 mm 

(Figure 3.16). For projects of similar scale using comparable equipment, selecting a lower number of 

GCPs with higher accuracy is the better for the overall accuracy of the point clouds. 

Including a small number of oblique images in the image block was effective for reducing vertical 

errors in the point cloud (Figure 3.13a). It is especially effective when considering the small amount 

of time required to collect the images compared to the time for a full grid survey. The benefits of 

decreasing GSD were not significant in this study (Figure 3.11). The primary purpose of decreasing 

GSD sub-centimeter is to provide a more detailed and dense reconstruction of the small-scale surface 
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variations. By only assessing accuracy based on checkpoint errors, the benefits of detailed point 

clouds reconstructed by images with lower GSDs was not realized. The benefits of lowering GSD 

would become more apparent when the denser reconstructed point clouds are compared to 

determine deformation (Monserrat & Crosetto, 2008). 

The results of this experiment can help researchers and engineers to design UAV surveys for 

monitoring deformations of structures or natural environments. Small-scale projects where small 

deformations are expected would require a lower LoD to confidently measure deformations, and 

vice-versa. The importance of a structure also is a factor in determining the targeted LoD. If an 

engineered structure such as an embankment would have severe consequences if its slope failed, 

monitoring the embankment would require a highly precise LoD to provide accurate deformation 

measurements and time for evacuation if signs of impending failure were detected. A targeted LoD 

can be determined early in the monitoring schedule and can be used to design UAV surveys. This 

study provided recommendations on the critical parameters to consider during the UAV survey 

design. This experiment and analysis led to the following conclusions: 

• Positional errors in reconstructed point clouds decrease with increasing numbers of GCPs. 

However, there appears to be an optimal GCP density after which accuracy does not 

consistently improve with more GCPs. 

• RTK observation time was the most effective parameter to reduce vertical and horizontal 

errors in point clouds. Increasing RTK observation time also worked in combination with 

other parameters to further reduce errors. 

• Image GSD alone did not have a significant effect on point cloud accuracy. Higher-quality 

images captured at a smaller GSD require more accurate GCP input coordinates to achieve 

accuracy improvements. 

• Including additional oblique imagery in the image block reduced vertical errors by 

approximately 15%. Horizontal errors were also slightly reduced. An oblique viewing angle 
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of 45° contributed to lower errors than 60°and 75° because more of the scene and GCPs can 

be seen in the images at shallower viewing angles. 

3.2 TLS 

3.2.1 TLS Model and Specifications, Operating Procedures, and Data Processing 

The FARO Focus3D X 330 Laser Scanner (Figure 3.17) was the TLS model used in this research. The 

Focus3D is a tripod-mounted high-speed laser scanner that can produce detailed 3D models of 

complex environments in minutes. It emits an infrared laser beam that is reflected off a rotating 

mirror towards the area being scanned and calculates distances and orientations of objects to the 

scanner by measuring the phase shift of the infrared beam reflected off the objects (FARO 

Technologies Inc., 2015). The Focus3D has a range of 330 m and can capture data in a 360° horizontal 

range and 300° vertical range, only missing data directly beneath the scanner’s tripod. The scanner 

has a high-quality camera to capture red-green-blue (RGB) imagery of the scene, allowing for full-

colour 3D point clouds to be generated. The Focus3D also has several sensors that provide additional 

information to improve post-processing. This includes a GNSS receiver to correlate individual scans 

together, an electronic compass to associate directional data, and an altimeter for altitude 

measurement. Table 3.7 outlines some technical specifications of the Focus3D and its sensors. 
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Figure 3.17 FARO Focus3D X 330 Laser Scanner. 

Table 3.7 FARO Focus3D X 330 Laser Scanner specifications. 

Parameter FARO Focus3D X 330 

Unit weight 5.2 kg 

Laser classification Class 1 

Wavelength 1550 nm 

Beam diameter at exit 2.25 mm 

Beam divergence 0.19 mrad / 0.011° 

Scan range 0.6 to 330 m 

Measurement error (one sigma @ 25 m) ±2 mm 

Scan speed 122,000 to 976,000 pts/sec 

Horizontal field-of-view 360° 

Vertical field-of-view 300° 

Camera colour resolution 70 Mp 

Max battery life 4.5 hours 

Operating temperature 5 to 40 °C 
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The Focus3D has a variety of scan profiles with predefined settings for certain applications. For 

example, the profiles differentiate between indoor or outdoor, close- or long-range, and low- or high-

quality scans. The settings in each profile can also be modified manually. Outdoor 20m… is a pre-set 

settings profile in the Focus3D scanner that was used throughout this research (Table 3.8). A 

resolution of ¼ results in a total of 44 Mpts in the point cloud and a point-to-point distance of 6.1 mm 

at 10 m from the scanner. The scanner would be set up less than 10 m from the embankment on-site; 

therefore, this resolution is acceptable for the application. The quality setting affects the amount of 

noise in the scan and quality of the data points. Increasing quality from the Outdoor 20m… default of 

4x to 2x resulted in an increase in scan time from 11 minutes to 33 minutes. Because multiple scans 

would be required on each sideslope of a high-fill section, that time increase was deemed infeasible. 

Further discussions with Dr. Matt Lato, Senior Geotechnical Engineer at BGC Engineering and expert 

in remote sensing technologies (personal communication, May 14, 2018), regarding the resolution 

and quality parameters reinforced the selected parameters. He expressed that increasing the 

resolution past ¼ would result in a very high-density point cloud with redundant points that would 

only marginally improve results and cause unnecessary increases in processing time. The full vertical 

and horizontal scan ranges were used to ensure all data surrounding the scanner was measured and 

because modifying the ranges did not affect the scan time due to how the scanner collects data with 

the rotating mirror. Exposure metering mode sets how the integrated colour camera determines the 

exposure for taking photos. Horizon weighted metering is best for scenarios when measuring objects 

at the horizon with bright light coming from above. This suits the conditions on-site where scans 

would be performed during the day with the Arctic summer sunlight almost directly above. The other 

settings specify to use all the scanner’s integrated sensors and to apply the clear contour and clear 

sky filters to remove erroneous scan points at edges of objects and in the sky, respectively. 
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Table 3.8 FARO Focus3D X 330 Laser Scanner settings. 

Setting FARO Focus3D X 330 

Profile name Outdoor 20m… 

Resolution ¼ 

Quality 4x 

Number of points 44 Mpts 

Point-to-point distance @ 10 m 6.1 mm 

Vertical range -60° to 90° 

Horizontal range 0° to 360° 

Exposure metering mode Horizon weighted 

Inclinometer On 

Compass On 

Altimeter On 

GNSS On 

Clear contour filter On 

Clear sky filter On 

Distance range Normal 

 

Data acquired with the Focus3D is processed and managed using FARO’s processing software 

SCENE (FARO Technologies Inc., 2019a). SCENE processes raw scan data to generate scan point 

clouds that can be registered together to form large project point clouds composed of several 

individual scans. The general workflow in SCENE is as follows. Raw scan data is first imported to the 

SCENE project and preprocessing of the raw scans is performed. During preprocessing, SCENE can 

automatically detect and identify objects such as checkerboards and spheres, which are both often 

used to improve registration of scans and for georeferencing. Scans are roughly aligned during 

preprocessing by using the available sensor data (e.g. GNSS, altimeter, etc.). Following preprocessing 
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is the registration of multiple scans together. Most projects require several scans from a variety of 

positions in order to provide good structure and details of the environment (FARO Technologies Inc., 

2019b). Registration is technically the transformation of scans to be closely aligned into one overall 

project coordinate system. SCENE offers several methods of registration; however, the two most 

popular and relevant to this research are target-based registration and cloud-to-cloud registration. 

Target-based registration uses the positions of targets such as checkerboards and spheres to align 

scans together. Cloud-to-cloud registration uses the actual scan point data to align the scans. The 

approaches to how these two registration methods were applied in this research are discussed in 

Section 4.3.3. 

The next step of processing is to georeference the project point cloud. Similar to UAV data 

processing, georeferencing for TLS is done using GCPs with known coordinates. SCENE requires GCP 

coordinate data to be imported as .csv filetype. The project can then be re-registered, this time 

including the GCP coordinate data, to transform the point cloud into the GCP real-world coordinate 

system. Once all scans are properly registered and georeferenced, the project point cloud can be 

exported from SCENE to be used in other software for deformation measurement. 

3.2.2 TLS Calibration I—Sphere Target Displacement Accuracy 

On June 7, 2018 at the quad field on the U of M campus, a calibration test with the Focus3D scanner 

was performed to determine its accuracy measuring the displacement of sphere targets (Figure 3.18). 

The spheres, which were included with the purchase of the Focus3D scanner, are designed to be 

mounted on tripods and set up throughout the survey area to improve registration of scans. Spheres 

are a particularly useful type of artificial target for TLS because they appear identical from any 

orientation. This allows SCENE to analyze the scan points on the sphere’s surface and identify the 

centroid of the sphere, which is used as a common point between scans during registration. 
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Figure 3.18 Sphere target for TLS. 

For the calibration test, six spheres were set up in pairs at distances of approximately 15 m, 20 m, 

and 30 m from the first scanner location. A total of four scans were performed: two with the initial 

sphere setup and two more after the spheres had been displaced. For the two spheres located 15 m 

from the first scanner location, one was displaced horizontally (sphere H15) and the other was 

displaced vertically (sphere V15). Similarly, for the spheres at 30 m, one was displaced horizontally 

(sphere H30) and the other was displaced vertically (sphere V30). For the spheres at 20 m, one 

remained in the same position for all scans to act as a reference point and the other sphere was 

displaced horizontally a large distance. The displacements of each sphere were measured by hand 

using a tape measure. Figure 3.19 shows the calibration test setup. 
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Figure 3.19 TLS Calibration I—reconstructed point cloud with marked sphere targets. 

Scans were performed using the Outdoor 20m… profile. Scan data was imported to SCENE for post-

processing and analysis. The individual scans were registered using target-based registration. 

Initially, only the spheres were used as targets for registration. Once the scans were aligned using the 

spheres, precise points (e.g. box corners) were marked throughout the scans to provide more 

common points and improve registration. Displacements for each of the spheres were measured 

directly in SCENE and compared to the hand-measured displacements. The differences between the 

hand-measured distances and distances between targets in SCENE were considered errors. The 

horizontal and vertical errors for each sphere target were analyzed (Table 3.9) to determine the 

accuracy of the Focus3D scanner to measure deformation. 
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Table 3.9 TLS Calibration I—target displacement errors between hand and scanner 

measurements. 

Target 
Horizontal error 

(mm) 
Vertical error 

(mm) 
3D error 

(mm) 

H15 7.3 -2.4 7.7 

H30 2.3 -1.8 2.9 

V15 -1.5 -1.6 2.2 

V30 -3.8 2.6 4.6 

D20-1 1.0 - 1.0 

D20-2 -2.0 - 2.0 

RMS 3.7 2.1 4.1 

 

The 3D RMS error for the target displacements was less than 5 mm. The largest error occurred at 

sphere H15, where the horizontal error was 7.3 mm. The hand-measured and scanner-measured 

errors were 29 mm and 21.7 mm, respectively. It seems that the horizontal displacement hand-

measurement was overestimated because the H15 horizontal error was significantly larger than the 

other error measurements. If H15 is ignored, the resulting 3D RMS error for the target displacements 

was only 2.8 mm. This error estimate was also accounting for human error in measuring the 

displacements with the tape measure. The true error of the TLS would likely be less than the 

determined errors if a more precise measurement of the true displacement was available. Hand 

measurements do have appropriately small errors though and the determined error values were 

thought to be acceptable for measuring deformation of embankments that were estimated to be at 

least one order of magnitude larger. 
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3.2.3 TLS Calibration II—Checkerboard Target Identification 

Registering several TLS scans together requires a network of targets and control points appropriately 

spaced and viewable from the scanner locations. The Focus3D scanner package came with six sphere 

targets, which are ideal for registering scans; however, six targets were insufficient for scanning the 

high-fill embankment sections. Additionally, the site conditions (e.g. embankment fill material, 

terrain, and vegetation) do not present objects with distinct features that can be easily used as 

targets. Therefore, additional artificial targets were required to register scans on-site. 

Checkerboards were the best option for artificial targets because they are simple to construct at a 

desired size, have precise centres that can be measured using survey equipment, and can be marked 

automatically in SCENE during post-processing of scan data. Checkerboard targets were constructed 

out of plywood sheathing cut into 60 cm x 60 cm pieces. The checkerboards were spray painted 

pink/orange and black and coated with a chalkboard clearcoat to protect the wood and paint from 

water damage. 

The viewing angle between the scanner and checkerboard target influences the number of scan 

points on the target and therefore the accuracy of the marked checkerboard centrepoint. For 

reference, a 0° viewing angle means the checkerboard face is oriented directly towards the scanner. 

On June 29, 2018, a test was set up at the U of M quad to test: 1) the effect of the checkerboard’s 

standing angle (i.e. angle of the checkerboard to the ground surface) on the scanner’s ability to 

accurately mark the checkerboard centre; and 2) the effect of the viewing angle between the scanner 

and checkerboard on the scanner’s ability to accurately mark the checkerboard centre. The test set 

up (Figure 3.20) included: scans from two scanner locations spaced 15 m apart; three vertical 

checkerboards centred between the scans (7.5 m in the X direction) at distances of 5 m, 7.5 m, and 

10 m from the scans in the Y direction; and five checkerboards  with a range of standing angles placed 

between the scans at 25 m in the Y direction. The six sphere targets were setup surrounding the 

checkerboard targets to register the two scans together and ensure all measurements were done 
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within the area enclosed by the spheres. The test setup was designed based on the dimensions of the 

high-fill embankment sections and estimated distances between scanners and targets on-site. 

  

Figure 3.20 TLS Calibration II: a) test setup; b) standing angle checkerboards. 

The results of TLS Calibration II confirmed that the distances and orientations between scanners 

and targets would be sufficient for identifying and marking the checkerboard targets. The target 

centres were not measured with any survey equipment and therefore the accuracy of the target 

markings was not determined. Based on visual observation of the markings, most were positioned at 

or near the centre of the targets. 

The three viewing angle checkerboards at Y distances of 5 m, 7.5 m, and 10 m from the scanner 

correspond to viewing angles of 56.3°, 45°, and 36.9°, respectively. The target at 10 m produced the 

highest density of scan points on the target. There was a moderate difference in scan point density 

between targets at 10 m and 7.5 m, and there was a more significant reduction in scan point density 

for the target at 5 m. This observation reinforces the general guideline to limit the scanner-to-target 

viewing angle to 45° as a method to reduce inaccuracies of marking the target (Lato, personal 

communication, May 14, 2018). 

As expected for the standing angle checkerboards, the near-vertical targets had the most scan 

points on their surface. This occurred because they have the largest surface area with respect to the 
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orientation of the scanner. The difference in the number of scan points on the checkerboard surfaces 

was larger between the 60° and 45° targets than it was between the 90° and 60° targets. Although 

the change in standing angle is less for 60° to 45°, there is a larger reduction in the target’s viewable 

surface area. A higher scan point density on a checkerboard target surface should theoretically 

correspond to a more accurate identification of the target centre. However, there is some variation 

in the quality of the paint job on the checkerboards (e.g. imperfect lines, paint overlap, paint 

smudging at centre, etc.), which may reduce the accuracy of marking centrepoints when processing 

scan data. For surveying the high-fill sections, checkerboard targets were required on the ground 

surface along the toe and on the embankment shoulders. The ideal standing angle of the 

checkerboard targets along the toe was determined to be approximately 75°. At this standing angle, 

the targets would optimize the viewable surface area for scans completed along the toe and on the 

embankment shoulder. The ideal standing angle of the checkerboard targets on the shoulder was 

vertical. Vertical targets on the shoulder provide an optimal orientation towards scans completed on 

the shoulder and is the best option to maximize target surface area towards scans completed along 

the toe. Checkerboards oriented downwards from the shoulder (i.e. standing angles > 90°) would be 

impractical to set up and were not pursued. 

In order to set up the checkerboards at these standing angles on-site, the targets required some 

sort of stand. Checkerboards leaning against stakes hammered into the ground, like that used in TLS 

Calibration II, would not have worked because wind on-site would blow the targets over. The 

checkerboards required something sturdier. The checkerboard stands needed to be sturdy enough 

to be unaffected by wind, as well as collapsible, easy to assemble, and lightweight for practicality on-

site and while transporting. The most economical option was to build the stands. An easel-like design 

built out of wood was chosen. The stands had an A-frame (three pieces) that the checkerboard would 

rest on and a back leg to adjust the standing angle (Figure 3.21). 
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Figure 3.21 Checkerboard stands with and without a checkerboard. 

I used 2” x 2” lumber cut into 2 ft pieces and held together by bolts and wingnuts for the frame. 

Wingnuts were selected because they could be tightened and loosened by hand. To attach the 

checkerboards to the stands, long screws were fastened through the checkerboards into the A-frame. 

Mini shelf brackets were placed in pre-drilled holes at the checkerboard centres. This allowed the 

RTK rover to sit directly at the checkerboard centre and measure the position so the checkerboard 

could be used as a GCP for georeferencing. Lastly, 1 ft nails were hammered through the back leg into 

the ground to act as an anchor point and stabilize the stand against wind. A total of 12 stands were 

built for the TLS surveys on-site. 

3.2.4 TLS Calibration III—Site-Scale Setup, Target Identification, and Scan Registration 

The third TLS calibration was designed to test the performance of the Focus3D scanner to identify 

targets and register scans for a survey setup similar to one that would be conducted at the ITH KM-

82 research section. The calibration test was conducted on July 24, 2018 at Castle Park, a park on the 

U of M campus located next to a 5 m high dike road embankment (Figure 3.22). Castle Park was an 
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ideal location for the calibration test because it was easily accessible and provided an embankment 

with dimensions like KM-82 and space along the toe to set up the TLS surveys. 

 

Figure 3.22 TLS Calibration III—photo of test site showing embankment and targets. 

Two TLS surveys of the embankment were conducted: one for a 20 m section and another for a 40 

m section. Both surveys were designed to have the full embankment section covered by the scans 

within a 45° viewing angle from the scanner locations. Sphere and checkerboard targets were used. 

Checkerboard targets were set up on the checkerboard stands at maximum viewing angles of 45° to 

the scans. The checkerboard centres were surveyed with the RTK system to be used as GCPs. The 20 

m and 40 m section surveys scanned the embankment from three and five locations, respectively. For 

each survey, the scanner was set up at 15 m spacing parallel to the road and either directly at the 

shoulder or 5 m from the toe. The full survey setup is shown in Figure 3.23. Furthermore, the entire 

calibration test including set up, RTK surveying, scanning, and take down was timed to give an 

estimate for site visits. 
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Figure 3.23 TLS Calibration III—plan view survey setup showing scanner locations (squares) and 

sphere and checkerboard targets: a) 20 m section; b) 40 m section. 

TLS Calibration III proved to be a successful test. All targets were identified and marked in every 

scan for the 20 m survey. However, not all targets were marked in every scan for the 40 m survey 

because some of the scanner-to-target distances were too far. Although this was not ideal, it was 

acceptable because there were enough targets near each scan to accurately register the scans 

together. Overall, both TLS surveys provided dense 3D point clouds of the embankment with 

manageable registration errors. The 40 m section survey design would be used on-site because it 

would cover the full research section at KM-82, including the 20 m reinforced zone and 20 m control 

zone. Additionally, the full test set up took approximately 6 hours. Therefore, a full day was budgeted 

for scanning KM-82 on-site visits because both embankment sideslopes needed to be scanned. 

3.3 RTK Survey System 

3.3.1 RTK Model, Operating System, and Data Processing 

Real-time kinematic (RTK) survey systems use GNSS technology to accurately measure the 3D 

positions of points in the field. RTK systems are more secure and fast than standard GNSS survey 

systems and have the advantages of shorter measurement time, higher positioning accuracy, and 

direct result of exact point coordinates in the field (Xu, 2012). They are considered to be the most 
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time-efficient means of surveying GCPs for UAV photogrammetry applications (Harwin & Lucieer, 

2012). The RTK system used in this research included a pair of Leica GS14 antennas and a Leica CS20 

controller. One GS14 antenna is set up on a tripod and referred to as the base station. The other GS14 

is set up on top of a long rod and carried by the operator to measure the positions of points; it is 

referred to as the rover. The CS20 is a remote controller that allows for data communication with the 

GS14 antennas. It is typically attached to the rover and carried around site with the operator. The 

CS20 provides the operator with full control of the RTK system, allowing them to input the base 

station and rover setup parameters, select the data link format for communication between antennas, 

define satellite tracking settings, record point measurements, and more. 

During RTK operations, the base station is set up on a static point with fixed coordinates and 

transmits its raw observations of satellite coordinates to the rover through the data link. The rover 

uses the base station’s and its own real-time satellite observations to compute its position relative to 

the base station as a vector (Donahue et al., 2013). When surveying a point with the rover, the point’s 

position is measured for a specified measurement time. The positional data over the measurement 

time is analyzed to determine the position of that point. All points will be referenced to the position 

of the base station at the time of the measurement. With every point position measurement, the RTK 

system also provides horizontal, vertical, and 3D uncertainty estimates. The uncertainties are the 

standard deviation of the positional data over the measurement time. 

All measured points must be referenced to a certain coordinate system. The Leica RTK system can 

reference to any coordinate system uploaded. This research used the North American 1983 datum 

(NAD83) Canadian Spatial Reference System (CSRS) coordinate system with the Universal 

Transverse Mercator (UTM) Zone 14N and Zone 8N projections for surveys in Manitoba and 

Northwest Territories, respectively. The accuracy of point measurements with an RTK system can 

vary significantly depending on many factors such as quality of the RTK sensors, number of visible 

satellites, the elevation mask, environmental and atmospheric conditions, operating range between 
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the rover and base antennas, and observation time at the point (Trimble, 2019; Leica Geosystems, 

2016). Leica Geosystems (2016) states the accuracy of the GS14 base station is 3 mm horizontally 

and 3.5 mm vertically after post-processing the observation data. The accuracy of points measured 

by the GS14 rover are stated to be 8 mm horizontally and 15 mm vertically (Leica Geosystems, 2016). 

These accuracies assume normal to favourable conditions. The Leica GS14 antennas are capable of 

tracking satellite signals from all the major satellite networks including GPS, Glonass, BeiDou, and 

Galileo (Leica Geosystems, 2016). 

RTK survey data was processed using Leica’s proprietary processing software Leica Infinity (Leica 

Geosystems, 2019a). The software has a variety of powerful analysis functions, yet its use in this 

research was limited. The primary purpose for using Leica Infinity was to reformat the survey data 

from its raw format recorded by the RTK system to a format accepted by the UAV photogrammetry 

and TLS software. Its second purpose was to shift RTK survey data to using the post-processed 

precise base station coordinates. This process will be elaborated on in Section 4.3.1. 

3.3.2 RTK Calibration Tests 

There were no calibration tests specifically for the RTK system. However, during UAV and TLS 

calibration tests, certain processes and parameters for the RTK surveys were investigated to help 

develop on-site RTK survey procedures. The two most notable tests that helped develop the RTK 

survey procedures were TLS Calibration III and UAV Calibration II. 

3.3.2.1 RTK Survey Methods during TLS Calibration III 

TLS Calibration III was a site-scale test of the TLS and RTK procedures to confirm they provided 

correct results. RTK procedures included setting up the base station, determining precise coordinates 

of the base station, communicating between the base station and rover, completing the RTK survey, 

and processing the data. Accurate GCP data is critical for conducting deformation monitoring with 

UAV or TLS because the 3D models from those technologies use the GCP data for georeferencing and 

models from different epochs must be georeferenced to the same coordinate system for proper 
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comparison. The first and most important step to complete an RTK survey is setting up the base 

station. 

There are three options for setting up the base station: 1) set up over an unknown point; 2) set up 

over a known point; and 3) set up over an arbitrary “known” point. Option 1 is used to establish the 

reference control point for a site. The base station is set up over a unique and easily identifiable point 

(e.g. steel rebar hammered into the ground) as an unknown point and left alone to observe satellite 

signals. The observation data is post-processed to determine the precise coordinates of the unknown 

point. That point then becomes the reference point for that site and all future RTK surveys are set up 

over that point. This is only done once for each site. An RTK rover survey should not be performed 

during this process. Option 2 is used after the site’s reference point has already been established. The 

base station is set up over the reference point and the precise coordinates of the reference point are 

inputted to the base station. An RTK rover survey can be performed and all measured points will be 

relative to the same reference point. 

Option 3 is used if a reference control point has not been established for the site but an RTK survey 

needs to be done immediately. This could occur on-site if an RTK reference point has not been 

established and weather conditions are ideal for a UAV flight. The concept behind this method is to 

set up the base station over an unknown point that will become the reference point but define it as a 

known point. Although the point’s coordinates are initially unknown, arbitrary coordinates can be 

inputted to the base station and the RTK survey is conducted with all points referenced to the 

arbitrary coordinates. The base station observes satellite tracking data during the RTK survey and 

after the survey is completed, the precise point of the base station can be determined using the 

satellite observation data. Using Leica Infinity, the RTK survey data can then be updated to reference 

the precise base station coordinates instead of the arbitrary coordinates inputted at the start. The 

coordinates of all the rover measurements undergo the same transformation and will be referenced 

to the precise base station position. Using Options 1 and 2 in combination is a straight-forward 
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method to conduct RTK surveys. Option 3 is slightly more complicated. It was tested during TLS 

Calibration III to ensure it worked and provided correct results. 

As discussed in Section 3.2.4, TLS Calibration III was successful. The methods used to set up the 

base station, perform the RTK survey, and post-process the data (i.e. Option 3) worked as expected. 

The test provided confidence in the methods that would be used to acquire data on-site. 

3.3.2.2 GCP Network Parameters during UAV Calibration II 

UAV Calibration II tested the effects of image and GCP parameters on the accuracy UAV image-

reconstructed point clouds. The two GCP parameters investigated were the number of GCPs and the 

observation time at GCPs. The details of the calibration test are discussed thoroughly in Section 3.1.4. 

The test clearly demonstrated that longer RTK observation times at GCPs contributed to significantly 

lower uncertainties in the GCP position measurements and subsequently lower errors in the point 

clouds (Figure 3.8 and Figure 3.9). Although this result was expected, the magnitude of the error 

reduction was larger than anticipated. Unfortunately, longer observation times comes at a cost. 

Weather conditions dictate when UAV and TLS operations can be performed on-site, and time is often 

a critical constraint. The observation times at GCPs during site visits would be maximized to reduce 

errors, while considering the weather and time constraints presented at the time. 

With respect to the number of GCPs, accuracy of the point clouds consistently improved as the 

number of GCPs was increased to 12. However, increasing from 12 to 14 GCPs did not provide 

consistent accuracy improvements. Therefore, it was determined that the optimal number of GCPs to 

use on-site was 12. The survey area for the calibration test was based on the UAV survey area 

required at KM-82. For the larger high-fill sections like KM-117, more GCPs may be required to 

provide the level of accuracy measured in UAV Calibration II. 



 

86 

3.4 Summary of Technology Operating Procedures and Calibration Tests 

This research used the senseFly albris and DJI Phantom 4 Pro UAVs to acquire aerial imagery and 

Pix4D for image processing. The FARO Focus3D X 330 laser scanner and FARO SCENE software were 

used to acquire and process scan data. Several tests were performed with each technology to 

determine best operating procedures and design surveys for site. 

First for the UAVs, a parametric analysis of Pix4D processing options was performed to determine 

optimal processing parameters that were used throughout the research. Second, a calibration test 

was performed using the albris UAV and RTK survey system to determine their accuracy of 

measuring displacement of checkerboards targets. The calibration showed that fine displacements 

can be measured with the albris when the same GCPs are used in two surveys. Third, another 

calibration test with the albris was performed to investigate the effects of certain image network and 

GCP parameters on the accuracy of image-reconstructed point clouds. The calibration test led to a 

few conclusions that would be used to design on-site UAV surveys: 1) RTK observation time at GCPs 

was the most effective parameter to reduce errors in point clouds; 2) image GSD alone did not 

significantly affect point cloud accuracy—low GSD images require longer RTK observation times to 

achieve accuracy improvements; and 3) the optimal oblique viewing angle for images was 45°. 

Once the optimal scanner settings were determined, three TLS calibration tests were performed. 

The first measured the displacement of six sphere targets. Compared to hand-measurements, the TLS 

measured displacements with 3D RMS errors less than 3 mm. The second calibration test 

investigated the standing and viewing angles of checkerboard targets to help design on-site TLS 

surveys. The third calibration test simulated the on-site survey design to confirm that the scanner 

could identify targets, register scans together, and produce accurate point clouds.  

The Leica GS14 antennas and CS20 controller were the RTK survey system used to measure GCP 

positions for georeferencing point clouds. During the UAV and TLS calibration tests discussed above, 

the RTK system calibrations were performed and on-site procedures were determined.  
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CHAPTER 4:  DATA ACQUISITION AND PROCESSING 

This section details the methods used to determine the high-fill sections for monitoring; design the 

on-site surveys for the UAV, TLS, and RTK; acquire and process data for each technology; and 

determine deformations at the high-fill sections. 

4.1 Site Selection 

High-fill sections along ITH were selected for monitoring using the plan, elevation, and cross-section 

construction drawings for the highway (Government of Northwest Territories, 2013). Twelve high-

fill sections were originally selected based solely on embankment height, with sections only greater 

than 6 m selected. The twelve sections were then analyzed considering other factors like length, 

alignment, symmetry, proximity to bodies of water, and presence of culverts and/or toe berms. 

Monitoring was restricted to four high-fill sections due to the limited time during site visits (Table 

4.1). The research site at KM 82 was guaranteed to be one of the four high-fill sections because the 

instrumentation displacement data at the site would allow for validation of the UAV and TLS 

deformations by comparison. KM-82 is a 6 m high, 120 m long, straight section with a toe berm on 

the east slope to improve stability of the sideslope. The reinforced zone (KM 82+380 to 82+400) and 

non-reinforced control zone (82+400 to 82+420) are located approximately 10 m north of the 

culvert. 

A high-fill section at KM 117 was selected because it is the thickest section on ITH, standing 12 m 

high. KM-117 is a 200 m long symmetrical section with a toe berm on both sideslopes, oriented north 

with a slight curve to the northwest. A large diameter culvert was constructed in the middle of the 

section to transmit water between two lakes on either side of the highway. The remaining two high-

fill sections were selected to be geometrically similar with KM-82 to allow for a more direct 

comparison of the deformations. These two sections were located at KM 48 and KM 49. These 

sections were also selected because their proximity to each other allowed for only one RTK base 
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station to be set up and used at both sections, saving valuable time on-site. KM-48 is an 8 m high, 120 

m long section with a toe berm on the west slope, oriented northwest with a slight curve to the north. 

KM-49 is an 8 m high, 160 m long, straight section with a toe berm on the west slope. 

Table 4.1 High-fill section locations, geometries, and characteristics. 

Section Latitude (°) Longitude (°) Height (m) Length (m) Alignment 
Toe Berm 

Slope 

KM-48 68.8047 133.5395 8 120 Curved West 

KM-49 68.8121 133.5516 8 160 Straight West 

KM-82 69.018 133.2684 6 120 Straight East 

KM-117 69.2506 132.9001 12 200 Curved Both 

 

4.2 Site Visits and Data Acquisition 

This research included three site visits to acquire data for deformation monitoring of the ITH high-

fill sections. The site visits were completed in August 2017, August 2018, and June 2019. All site visits 

were during summer because the entire embankment was visible without snow and the UAV, TLS, 

and RTK systems do not function in sub-zero temperatures. 

This section summarizes the data acquired during these site visits. The survey designs for the TLS 

scans at KM-82 and UAV flights at all four high-fill sections are discussed. Survey parameters for each 

technology are stated and justifications for the survey designs are provided, with reference to the 

technology calibration tests when applicable. 

4.2.1 UAV Data Acquisition 

In 2017, the research team only had the albris UAV on-site. The Phantom had not been purchased 

yet. During a flight with the albris in 2017, one of the propellers broke and the UAV crashed. 

Fortunately, the albris crash was covered by insurance and the UAV was replaced before the next site 
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visit. The crash made the research team aware of the risks of flying UAVs. The Phantom UAV was 

purchased in response to provide two UAVs on-site in case of another crash. In 2018 and 2019, both 

the albris and Phantom UAVs were used to acquire imagery of the high-fill sections for deformation 

monitoring. A newly formed objective in the research was to compare the deformations results from 

the two UAVs and investigate any differences between using an expensive inspection UAV like the 

albris and a consumer-level UAV like the Phantom. 

UAV missions for the albris and Phantom had certain aspects that were consistent between both, 

such as the number of GCPs at a high-fill section. However, there were major differences between 

their flight designs since the albris could fly autonomously on pre-designed missions and the 

Phantom could not. The albris flights were carefully designed using quantifiable parameters 

including GSD and image overlap. The Phantom flights were manually controlled and images were 

captured to cover approximately the same area with similar image overlap as the albris missions. 

Table 4.2 summarizes the UAV data that was acquired during the three site visits, including the 

UAV model, types of flights (e.g. grid, POI, or manual), numbers of GCPs, and other important flight 

parameters. The following sections will detail the flights from each site visit and provide background 

information for how and why the data was collected. At larger high-fill sections such as KM-117, 

multiple UAV flights were required to complete missions due to battery life of the UAVs. 
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Table 4.2 UAV data acquisition summary. 

Year Section UAV 
Type of 

flight 
No. 

images 
GSD 

(mm) 
No. 

GCPs 

RTK observation 
time at GCPs 

(seconds) 

2017 
KM-82 albris Grid 90 10 - - 

KM-117 albris Grid 140 10 10 30 

2018 

KM-48 
albris Grid 81 10 

10 30 
Phantom Manual 64 - 

KM-49 
albris 

Grid 

POI 

97 

18 
10 

10 30 

Phantom Manual 209 - 

KM-82 
albris 

Grid 

POI 

109 

18 
10 

10 30 

Phantom Manual 52 - 

KM-117 albris Grid 87 10 10 30 

2019 

KM-48 
albris 

Grid 

POI 

124 

24 
8 

13 60 

Phantom Manual 149 - 

KM-49 
albris 

Grid 

POI 

148 

24 
8 

13 60 

Phantom Manual 170 - 

KM-82 
albris 

Grid 

POI 

119 

24 
8 

13 60 

Phantom Manual 220 - 

KM-117 albris 
Grid 

POI 

145 

24 
8 14 60 
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4.2.1.1 2017 UAV Data Acquisition 

The albris was used to acquire aerial imagery of KM-82 and KM-117 in 2017. The albris crashed 

during a flight at KM-117, preventing imagery from KM-48 and KM-49 from being acquired. Only grid 

flights were conducted in 2017 because the benefits of including oblique imagery (e.g. through POI 

flights) for reducing reconstruction errors had not been discovered or investigated yet. The albris 

missions were designed to have an image overlap of 75% in both directions—longitudinal and lateral 

with the UAVs flight path. This satisfied the minimum overlap criteria recommended by James and 

Robson (2012) and Pix4D (2019). The GSD for the flights was 10 mm, corresponding to a flight height 

of approximately 57 m. Other UAV deformation studies (Tonkin & Midgley, 2016; James et al., 2017; 

van der Sluijs et al., 2018) reported that the vertical LoD can be estimated as 3x GSD, based on the 

vertical RMS error of GCPs. Using this approach, the LoD using a GSD of 10 mm was estimated to be 

30 mm. This LoD seemed appropriate for the predicted deformation of the high-fill sections. 

Due to late delivery of the shipment containing checkerboards, the flight at KM-82 was performed 

without GCPs. This lack of GCPs would cause errors in the reconstructed point clouds and challenges 

during deformation measurement between point clouds. Ten checkerboards GCPs were used at KM-

117; however, incorrect set up of the RTK base station caused inaccurate GCP measurements. This 

also led to challenges when comparing the 2017 point clouds. 

4.2.1.2 2018 UAV Data Acquisition 

In 2018, both the albris and Phantom were used to acquire aerial imagery of KM-48, KM-49, and KM-

82. Only the albris was used at KM-117 due to time constraints the day that section was visited. Using 

the albris, grid missions were conducted at all high-sections and POI missions were only conducted 

at KM-49 and KM-82 due to time constraints. Grid missions acquired imagery with an image overlap 

of 75% (both directions) and a GSD of 10 mm. POI missions acquired 18 oblique images oriented to 

the centre of the high-fill section, equally spaced at 20° intervals and at 45° viewing angles to the 

ground surface. 45° was the optimal oblique viewing angle determined in UAV Calibration II. The 
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Phantom was flown manually and aerial imagery was captured at manual locations (Figure 4.1). The 

pilot attempted to capture aerial imagery in tracks parallel to the embankment. 10 checkerboard 

GCPs were used at each high-fill section. Examples of the planned layouts of GCPs are provided in 

Figure 4.2. 

 

Figure 4.1 Aerial images captured by the Phantom at KM-82 in 2018; shown in Pix4D with green 

spheres identifying the images’ calibrated positions. 

  

Figure 4.2 Examples of planned checkerboard GCP layouts for UAV surveys: a) KM-49; b) KM-82. 
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4.2.1.3 2019 UAV Data Acquisition 

Again in 2019, both UAVs were used to acquire aerial imagery of KM-48, KM-49, and KM-82. Only the 

albris was used at KM-117 because the Phantom was not used at that section the previous year. Grid 

and POI missions were completed at all high-fill sections. Grid missions acquired imagery with an 

image overlap of 75% (both directions) and a GSD of 8 mm. POI missions acquired 24 oblique images 

oriented to the centre of each high-fill section, equally spaced at 15° intervals and at 45° viewing 

angles to the ground surface. The Phantom was flown manually and aerial imagery was captured at 

manual locations in tracks parallel to the embankment (Figure 4.3). The pilot attempted to capture 

approximately the same number of images with the Phantom as the albris for each high-fill section. 

More images were taken in 2019 than 2018 to improve accuracy of the reconstructed point cloud 

(Figure 4.1 and Figure 4.3). Either 13 or 14 checkerboard GCPs were used at each high-fill section 

(Table 4.2). 

 

Figure 4.3 Aerial images captured by the Phantom at KM-82 in 2019; shown in Pix4D with green 

spheres identifying the images’ calibrated positions. 
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4.2.2 TLS Data Acquisition 

The Focus3D scanner was used to scan the embankment at KM-82 in 2018 and 2019. Only KM-82 was 

scanned due to limited time on-site and the time-intensive nature of TLS surveys. KM-82 allowed for 

comparison of the deformations measured by TLS, UAV photogrammetry, and embankment internal 

instrumentation. TLS surveys were designed according to two basic principles. Firstly, the maximum 

viewing angle from a scanner to a checkerboard target was 45°. This ensured proper identification 

and marking of targets during post-processing. Secondly, the scanner was set up to cover 100% of 

the embankment section within a 45° viewing angle of five scans—three along the toe and two at the 

shoulder. This ensured a densely reconstructed point cloud across the entire high-fill section. Specific 

distances and angles of the scanner and targets were tested and validated in the TLS calibration tests 

(Section 3.2). 

The TLS surveys conducted at KM-82 are summarized in Table 4.3 and the survey designs are 

shown in Figure 4.4. Five scans were used to survey each sideslope in 2018 and 2019. The 

approximate locations of the scanner were consistent in both years. All checkerboard targets were 

set up on the checkerboard stands (Section 3.2.3) to facilitate RTK measurement. The 2018 scans 

used three sphere targets and nine checkerboards for each slope, with RTK observation times of 30 

seconds at checkerboard centres. None of the targets remained in the same position for scans of both 

sideslopes. Therefore, the two slopes could not be registered together. To correct this in 2019, six 

targets (two spheres and four checkerboards) were set up along the road surface and scanned for 

both sideslopes as shown in the photo taken from the UAV (Figure 4.4). All six spheres were brought 

to site and used for surveys of each sideslope in 2019, in addition to 10 checkerboards. The RTK 

observation time was also increased to 60 seconds at each GCP to reduce positional measurement 

errors. The Outdoor 20m… profile (Table 3.8) on the Focus3D scanner was used for all scans in both 

years. 
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Table 4.3 TLS data acquisition summary. 

Year Slope No. scans 
No. targets RTK observation time 

at GCPs 
(seconds) Spheres Checkerboards 

2018 
East 5 3 9 30 

West 5 3 9 30 

2019 
East 5 6 10 60 

West 5 6 10 60 

 

  

Figure 4.4 TLS survey plans at KM-82 showing scanner locations (squares) and sphere and 

checkerboard targets: a) 2018; b) 2019. Dark blue targets in 2019 remained for scans 

of both slopes. 



 

96 

4.3 Data Processing 

This section describes the methods used to process the data acquired with the RTK, UAV, and TLS. 

The analysis of the data quality and associated errors is presented. 

4.3.1 RTK GCP Processing 

A 1 m steel rod was hammered deep into the permafrost at each high-fill section in 2018. The steel 

rods were the benchmark locations for all RTK surveys at that section. The RTK base station was set 

up directly above the steel rod and left alone to geolocate its position for 5–8 hours (Option 1 in 

Section 3.3.2.1). The raw satellite observation data from each base station were converted from the 

M00 file to a RINEX file using Leica Infinity. The RINEX file, which contained all base station 

observation data, was uploaded to Natural Resources Canada (NRCan) Canadian Spatial Reference 

System Precise Point Positioning (CSRS-PPP). CSRS-PPP is an online application for GNSS data post-

processing that allows users to compute higher-accuracy positions from raw satellite observation 

data (Natural Resources Canada, 2019). The website requires RTK observation data to be in the 

RINEX format. CSRS-PPP outputs a report that includes the precise coordinates of the base station 

setup. This process was done for the benchmark at each high-fill section. For all future RTK surveys, 

the base station was set up directly above the section’s benchmark and the CSRS-PPP coordinates 

were inputted as the reference coordinates. 

UAV Calibration II demonstrated the significant impact of RTK observation times at GCPs on the 

accuracy of UAV image-reconstructed point clouds. The positional uncertainties from GCP surveys 

on-site were analyzed (Table 4.4 and Figure 4.5) to understand the impact of the RTK survey accuracy 

on the total errors developed in the reconstructions. For sections where albris and Phantom flights 

were conducted, the same GCP network and corresponding RTK data was used. 

The RTK uncertainties clearly indicate there was an issue with the 2017 survey at KM-117. 

Vertical uncertainties were approximately 2x horizontal uncertainties throughout all surveys (Table 

4.4). The results also show there was a consistent decrease in RTK uncertainty from 2018 to 2019. 
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This was due to increasing the observation time at each GCP from 30 to 60 seconds. Increasing 

observation time at GCPs caused the mean and deviation of RTK uncertainties to decrease (Figure 

4.5). The only outlier to this observation was the 2019 TLS survey. It is unclear what caused the 

higher uncertainties in that survey compared to other surveys in 2019; however, it could be partly 

caused by human error holding the RTK rover stable at the centre of the checkerboards. It is more 

difficult to stabilize the RTK rover on the checkerboards when they are set up on the stands for TLS 

surveys compared to when they are laying horizontally on the ground for UAV surveys. 

Table 4.4 Horizontal, vertical, and 3D uncertainties for the RTK surveys of GCPs on-site. 

Year Survey 
Horizontal 

RMS uncertainty 
(mm) 

Vertical  
RMS uncertainty 

(mm) 

3D  
RMS uncertainty 

(mm) 

2017 
KM-82 UAV - - - 

KM-117 UAV 13.5 30.0 32.9 

2018 

KM-48 UAV 6.9 13.0 14.6 

KM-49 UAV 6.4 11.4 13.1 

KM-82 UAV 6.0 11.4 12.8 

KM-82 TLS 7.1 11.5 13.5 

KM-117 UAV 6.0 11.7 13.1 

2019 

KM-48 UAV 3.9 8.0 8.8 

KM-49 UAV 4.0 6.8 7.6 

KM-82 UAV 3.3 6.0 6.7 

KM-82 TLS 4.2 10.4 11.2 

KM-117 UAV 3.3 7.2 8.0 
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Figure 4.5 Box plot of the RTK survey 3D uncertainties at GCPs. 

4.3.2 UAV Processing 

UAV imagery and data were processed in Pix4D using the procedure and standard processing 

parameters (Table 3.2) outlined in Section 3.1.2. Prior to uploading image files to Pix4D, albris images 

were converted from their raw image format (DNG) to JPG image files using eMotion 3. Pix4D cannot 

process DNG files and requires images to be JPG files. DJI imagery is saved as JPG files and therefore 

does not need to be converted before uploading to Pix4D. After a Pix4D project is created and images 

uploaded, initial processing was performed to generate a sparse (non-georeferenced) point cloud. 

GCP data was uploaded to the Pix4D project as a CSV file. All GCP data from site was referenced to 

the NAD83 (CSRS) UTM Zone 8N coordinate system. GCPs were then marked in Pix4D a minimum of 

six times to ensure accurate marking of the checkerboard centre. For albris projects with nadir 

images (i.e. from grid missions) and oblique images (i.e. from POI missions), GCPs were carefully 
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marked in both kinds of imagery to ensure the reconstruction was georeferenced based on both 

orientations. Once images were marked, the project was reprocessed to produce a georeferenced 

sparse point cloud. The final processing step in Pix4D was densification of the sparse point cloud 

using the optimal processing parameters (Table 3.2). The final dense point cloud for each UAV survey 

was exported from Pix4D to other software for the deformation analysis. 

4.3.2.1 UAV Image-Reconstructed Point Cloud Accuracy 

For deformation monitoring between successive point clouds, it is important to understand the 

accuracy of each point cloud. The accuracy of the UAV image-reconstructed point clouds at high-fill 

sections was quantified by classifying GCPs as checkpoints and analyzing the checkpoint errors after 

reprocessing. The same process was used in UAV Calibration II to estimate the accuracies of point 

clouds in that test. In Pix4D, checkpoints are not included in the bundle adjustment and therefore the 

point cloud geometry is not influenced by checkpoint positions. For each high-fill section point cloud, 

one of the GCPs was classified as a checkpoint and the Pix4D project was reprocessed. Positional 

errors at the checkpoint were measured by comparing the computed checkpoint coordinates to its 

known reference coordinates. Checkpoint errors were recorded, and the process was repeated for all 

GCPs in that project. The checkpoint errors for each project were analyzed to estimate the overall 

errors in the entire point cloud. 

This approach to estimate point cloud accuracy using checkpoints is performed on the sparse 

point cloud (i.e. before densification). Although the dense point cloud positional errors are not 

directly studied, analyzing checkpoint errors in the sparse point cloud is a valid approach to estimate 

the accuracy of a dense point cloud because the position of a GCP in the point cloud does not change 

as the dense reconstruction algorithms are performed. Therefore, the errors at checkpoints and 

estimated accuracy of the dense point cloud are equivalent to those of the sparse point cloud 

measured with this approach. 
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The accuracy of all UAV image-reconstructed point clouds at the high-fill sections was quantified 

using the checkpoint errors approach. The results of each point cloud were compared (Table 4.5 and 

Figure 4.6) to better understand the variance of errors and gain insights on the factors contributing 

to point cloud accuracy. The full datasets from the checkpoint error analyses are provided in 

Appendix A. 

 

Figure 4.6 Box plot of the SfM-processed 3D errors at checkpoints for UAV surveys on-site. 
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Table 4.5 SfM-processed horizontal, vertical, and 3D errors at checkpoints for UAV surveys on-

site. 

Year Section UAV 
Horizontal 
RMS error 

(mm) 

Vertical  
RMS error 

(mm) 

3D  
RMS error 

(mm) 

2017 
KM-82 albris - - - 

KM-117 albris 18.6 55.1 58.1 

2018 

KM-48 
albris 17.2 26.1 31.3 

Phantom 31.1 13.1 33.7 

KM-49 
albris 16.1 14.0 21.3 

Phantom 32.9 12.3 35.1 

KM-82 
albris 17.1 13.7 21.9 

Phantom 27.8 18.7 33.5 

KM-117 albris 12.6 22.0 25.3 

2019 

KM-48 
albris 6.2 11.7 13.2 

Phantom 26.2 21.3 33.8 

KM-49 
albris 6.6 11.4 13.1 

Phantom 25.7 15.6 30.1 

KM-82 
albris 6.5 13.5 15.0 

Phantom 17.9 13.5 22.4 

KM-117 albris 11.7 28.4 30.7 

 

Analyzing the horizontal and vertical RMS errors (Table 4.5) reveals an interesting observation: 

the vertical and horizontal errors are approximately equivalent in the full dataset of checkpoint 

errors. Vertical RMS errors were larger than the horizontal RMS errors in half of the point clouds, and 

vice-versa. This is unlike the RTK uncertainties where the vertical uncertainties were consistently 
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greater than the horizontal uncertainties. The large vertical RTK uncertainties were expected to 

cause the checkpoint errors to be larger vertically than horizontally, but this was not the case. 

The 2017 point cloud errors at KM-117 were significantly larger than any other UAV survey due 

to the high-uncertainty RTK survey at that site. Low-accuracy GCP measurements cause hard 

adjustments in the SfM bundle adjustment to force the point cloud geometry to account for the GCP 

data. When a GCP is assigned as a checkpoint, the bundle adjustment is not forced to compensate for 

its position, leading to large checkpoint errors between its computed position and measured 

(inaccurate) RTK position. From 2018 to 2019, there was a remarkable decrease in errors for the 

albris point clouds (Figure 4.6). This improvement in point cloud accuracy was a combined effect of 

the reduced GSD from 10 mm to 8 mm and the increased RTK observation time from 30 seconds to 

60 seconds. The decrease in errors for the Phantom point clouds was notable; however, much less 

significant than the albris point clouds. 

Comparing albris and Phantom point cloud errors, particularly in 2019, showed a major difference 

in their errors. This is interesting because the albris and Phantom point clouds at each section used 

the same GCP data. The differences in processing that contributed to the error discrepancy were the 

quality of images (38 Mp albris vs. 20 Mp Phantom) and the image network (grid with POI albris vs. 

manual Phantom). It is unclear which factor contributed more to the error discrepancy. An 

interesting experiment would be to fly the albris and Phantom on identical missions and acquire 

images at the same positions, and then compare the errors in the reconstructed point clouds. This 

would eliminate the image network factor and allow the difference image quality to be studied 

directly. Unfortunately, a third-party flight-planning software was not used for the Phantom and this 

comparison could not be made. 

Overall, the techniques implemented in 2019 to improve the accuracy of UAV image-

reconstructed point clouds were successful. If more time was available on-site, more improvements 
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would have been implemented such as even longer RTK observation times at GCPs (e.g. 3 minutes) 

and a further reduced GSD (e.g. 5 mm). 

4.3.3 TLS Processing 

KM-82 was the only high-fill section where TLS was conducted. Separate point clouds were generated 

for the east and west slopes in 2018 because there were no consistent targets for scans of both slopes. 

Scans of both sideslopes were registered together in 2019 to produce one point cloud. TLS data was 

processed in SCENE using the general workflow as described in Section 3.2.1. After the scans were 

preprocessed, targets marked, and GCP data imported, the crucial stage of registration and 

georeferencing began. Unlike the beginning steps of the TLS processing, registration and 

georeferencing in SCENE was not straight-forward and required a few creative workarounds. A 

method was implemented that used cloud-to-cloud (C2C) and target-based (TB) registrations 

consecutively to register scans and produce an optimal point cloud with minimal errors. 

In SCENE, the only method to georeference a point cloud with GCP data is by performing a TB 

registration (FARO Technologies Inc., 2016). During TB registration, point cloud geometry is 

determined by identifying matching targets in different scans and minimizing the overall error 

between matched targets. In SCENE, a target that is matched between two scans is called a 

correspondence. If GCP data is available during a TB registration, correspondences are created 

between GCP positions and marked checkerboard targets. The georeferencing error for a target 

correspondence can be determined as the difference between the imported GCP position and 

computed target position. There can be multiple georeferencing errors for a certain target if there 

are multiple correspondences between the imported GCP position and marked targets in various 

scans. The scan point errors, which are the differences in point cloud positions between scans, can 

also be outputted from a TB registration. To define the scan point errors, two metrics are used: mean 

error and percentage of points with errors less than 4 mm. 
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TB registration was initially used to register scans. This ensured GCP data was used to 

georeference the point cloud to a common coordinate system for deformation measurement. 

However, TB registration was producing point clouds with large errors; target mean errors ranged 

from 12 to 18 mm and scan point mean errors ranged from 10 to 12 mm. These were significantly 

larger than the reported millimetre-scale accuracy of many TLS systems (Abellan et al., 2014; FARO 

Technologies Inc., 2015). This led to the use of C2C registration. 

C2C registrations were producing point clouds with scan point errors of approximately 5 mm—a 

major improvement from TB registration. Three parameters can be modified for a C2C registration 

in SCENE: subsampling point distance, maximum number of iterations, and maximum search 

distance. A simple parametric analysis was performed to study the affect of the three parameters on 

the scan point errors. Minimizing subsampling point distance to 0.01 m reduced errors but increased 

computation time. Increasing the maximum number of iterations also reduced errors and increased 

computation time; however, the error reduction plateaued around 100 iterations. Maximum search 

distance did not significantly affect the results, so the default value was used. Therefore, the optimal 

C2C registration parameters used were as follows: average subsampling point distance of 0.01 m; 

maximum number of iterations of 100; and maximum search distance of 10 m. The objective of the 

C2C registrations was to minimize scan point errors, and target errors were not considered. Table 

4.6 provides summary error statistics of the final C2C registrations of each TLS survey. 

The C2C registrations were not influenced by target positions, and the resulting target errors in 

those registrations were extremely large (e.g. > 40 mm). After the final C2C registration for a cluster 

of scans, the cluster was locked to prevent the point cloud geometry from changing. The locked 

cluster of scans was then registered again, this time using TB registration. The idea was to maintain 

the high scan point accuracy from C2C registration while allowing the point cloud to be 

georeferenced from TB registration. The approach worked and produced a georeferenced point 

cloud; however, target errors after georeferencing were significantly larger than scan point errors. 
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Target errors means and deviations ranged from 20 to 25 mm and 7 to 8 mm. An important 

conclusion can be taken from this observation: the relatively large errors in the TLS point clouds is 

caused by RTK uncertainties and inaccuracy of GCP measurements, not the TLS system or survey 

setup. This finding will be further discussed in Section 5. 

To address the large target errors, target correspondences with the largest errors were deleted. 

The point cloud started with all correspondences from the TB registration and correspondences were 

methodically deleted one-by-one based on error. Each time a correspondence was deleted, the point 

cloud was re-registered and the target errors were recorded. The correspondences were also 

checked each time to ensure that every target had at least one correspondence. This ensured that 

errors did not develop in areas of the point cloud where GCPs were missing. If a target was found to 

have zero correspondences, the process was reversed to a re-registration with all targets 

corresponding and then proceeded forward following a different path of deleting correspondences. 

The individual correspondence errors for each re-registration were analyzed, and the optimal point 

cloud for each TLS survey was determined as the registration with the lowest target correspondence 

RMS error. The TB registration errors for the final point cloud of each TLS survey are provided in 

Table 4.6. These point clouds were then exported from SCENE for the deformation analysis. 

Table 4.6 TLS point cloud registration errors. 

Survey 

Scan point errors Target errors 

Mean 
(mm) 

< 4 mm 
(%) 

Mean 
(mm) 

Std. dev. 
(mm) 

RMS 
(mm) 

2018 East 4.1 50.0 15.7 6.0 16.7 

2018 West 3.0 62.7 13.6 7.1 15.3 

2019 5.2 41.6 16.6 6.5 17.8 
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4.4 Deformation Analysis 

The deformation analysis covers the comparison of UAV and TLS point clouds over the three-year 

monitoring period. All point cloud comparisons and related analyses to determine deformations of 

the high-fill sections were completed in the open-source software CloudCompare (CloudCompare, 

2019). CloudCompare is a 3D point cloud and mesh processing software that includes several 

deformation measurement algorithms. The software is commonly used by researchers in the change 

detection and deformation monitoring fields of science and engineering. The CloudCompare analysis 

is separated into three sections: point cloud registration, point cloud comparison, and cross-section 

analysis. 

4.4.1 Point Cloud Registration 

Registration of the 2017 and 2018 point clouds was required because the 2017 point clouds at both 

high-fill sections had georeferencing issues (see Section 4.2.1.1). At KM-82, the albris flights were 

performed without GCPs. At KM-117, the RTK base station was not properly set up and the rover 

survey of GCPs was inaccurate. For both sections, the 2017 point cloud was aligned to the 2018 point 

cloud because the 2018 point clouds were more accurate. In situations where there are stable areas 

of a point cloud that are not deforming and unstable areas that are (e.g. rockfall monitoring), unstable 

areas can be temporarily removed and the point clouds can be registered based on the stable areas 

(Gruen & Acka, 2005; Meeks et al., 2017). For the high-fill sections along ITH, no areas were certainly 

stable due to possible settlement and slope movements, which added a source of uncertainty to the 

registration process. 

Point clouds were registered using iterative closest point (ICP) in CloudCompare. ICP is a least 

squares matching algorithm that adjusts the transformation (translation and rotation) of the aligned 

point cloud to the reference point cloud, minimizing the total distance between the point clouds in 

each iteration. A few parameters needed to be defined before executing ICP: target RMS difference, 

point cloud overlap, random sampling limit, translation directions, and rotation axes. The default 
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RMS difference is 1x10-5. An RMS difference of 1x10-9 was selected to ensure a fine registration. Point 

cloud overlap was set to 100% because the point clouds were aligned based on identical segments 

(discussed below). Random sampling limit is the number of points used to calculate the RMS 

difference, and the default value is 50,000 points. A random sampling limit of 5,000,000 points was 

selected, corresponding to approximately 20–50% of the aligned point cloud segments. Translation 

in all directions and rotation around all axes was allowed. 

The following procedure was used for registration at the high-fill sections. First, was a rough 

manual registration of the point clouds because ICP requires both point clouds to be roughly aligned. 

Manual registration was performed by translating the 2017 point cloud (no rotation) and aligning 

the culverts. Culverts were selected for alignment because they were thought to be relatively stable 

structures, with distinct and unique features, and located near the middle of the point cloud. 

Following rough registration, the second step was to isolate matching segments of each point cloud 

for the fine registration. Segments were selected to be within the area encompassed by GCPs in the 

two point clouds being aligned. This ensured that doming errors, which developed outside the GCP 

coverage area, did not influence registration. For the KM-82 2017–2018 registration, the selected 

segments (Figure 4.7a) were based only on the 2018 GCP layout because there were no GCPs in 2017. 

At KM-117, GCPs in 2018 were clustered near the middle of the section. Therefore, the KM-117 

segment for registration was based on the 2018 GCP survey (Figure 4.7b). 
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Figure 4.7 Fine registration segment areas for UAV point clouds: a) KM-82; b) KM-117. 

The third step was fine registration of the point cloud segments using ICP. 2018 point cloud 

segments were used as the reference and 2017 point cloud segments were aligned. The fourth and 

final step was to copy the transformation of the 2017 point cloud segment and apply it to the full 

2017 point cloud. This method allowed for the full point clouds to be aligned based on the most 

accurate sections of the point clouds (i.e. the areas within GCP coverage). However, one disadvantage 

of this method is that if there is poor GCP coverage such as at KM-117 in 2018, the point clouds are 

registered only using a small portion of the point cloud. If the 2018 GCPs were spread out and 

encompassed the entire high-fill section, the whole section could have been used for registration. 

Registration of the 2018 and 2019 point clouds was not required initially because base station 

benchmarks were established at each high-fill section and all point clouds (both UAV and TLS) were 

georeferenced using the benchmarks. 
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4.4.2 M3C2 Point Cloud Comparison and Parameter Selection 

Reconstructed point clouds were compared using M3C2 (Lague et al., 2013). The method operates 

directly on point clouds without meshing or gridding, computes deformation along the normal 

surface direction, and estimates an LoD for each distance measurement based on local point cloud 

roughness and registration error. The main parameters required for M3C2 comparisons are core 

point spacing (s), normal scale diameter (D), projection scale diameter (d), and point cloud 

registration error (reg). 

Core points are a sub-sampled version of the reference point cloud to speed up calculations. Using 

the entire reference point cloud for distance calculations would be cumbersome and inefficient. Core 

point spacing defines the distance between points of the sub-sampled reference point cloud. For each 

core point, a normal vector is determined by fitting a plane to the neighbouring points that are within 

a radius of D/2 from the core point. The standard deviation of the distances between the neighbours 

and the best-fit normal plane is recorded and used as a measure of the point cloud roughness (σD). 

The normal plane can be estimated based on the reference cloud, compared cloud, or an average of 

both. The normal of the reference point cloud is generally used because deformation of the compared 

cloud depends on the baseline geometry of the reference cloud. The reference cloud was used for all 

normal vector calculations in this research. 

For each core point, a cylinder with a radius of d/2 and axis through the core point oriented along 

the surface normal is defined. Using the points from each point cloud that intercept the cylinder, the 

average position of each point cloud along the normal direction (i1 and i2) is determined. The local 

distance between the two clouds is calculated as the distance between i1 and i2. The standard 

deviation of the intercepting point positions provides an estimate of local point cloud roughness (σd1 

and σd2). An LoD is calculated for each core point using for following equation: 

 𝐿𝑜𝐷 = ±1.96 (√
𝜎𝑑1

2

𝑛1
+

𝜎𝑑2
2

𝑛2
+ 𝑟𝑒𝑔) (3.3) 
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n1 and n2 are the number of points from each point cloud intercepting the projection cylinder used 

to calculate the local roughness. reg is assumed isotropic and spatially uniform. ±1.96 is the normal 

distribution Z value for the 95% confidence interval, which is most commonly used in earth science 

change detection applications (Wheaton et al., 2010). The LoD equation indirectly accounts for 

reconstruction and georeferencing errors through reg. For example, if there was poor registration 

between scans for TLS or a low number of images for UAV photogrammetry, reg would increase and 

translate to a higher LoD. 

Selecting appropriate parameters was a critical stage of the deformation analysis. Lague et al. 

(2013) provided some guidance on this process. Core point spacing does not impact the magnitude 

of computed distances, only the processing time and visualization of results. Lague et al. (2013) used 

an s of approximately 10x the reference point cloud spacing. A very fine spacing of 10 mm was 

attempted but it resulted in the program crashing. A spacing of 25 mm was selected. D is an important 

parameter to properly define because it affects the normal vector and all distance measurements. D 

should be selected large enough to not be affected by surface roughness because rough surfaces can 

dramatically vary the normal direction for small D values. M3C2 also allows for a range of D values 

to be defined and the D with the most planar surface is used to define the normal direction. A uniform 

D is faster but results in lower accuracy. As a rule of thumb, D should be at least 20x (25x ideally) 

larger than the roughness σD. d should be set so that the subset sizes, n1 and n2, are both greater than 

4 and ideally greater than 30. There should also be a large degree of overlap between core point 

projection scales. Therefore, s and d must be coordinated. 

Trial M3C2 comparison were performed as a parametric study to investigate the effects of 

changing D and d. σD values the high-fill embankments were recorded for varying D values. σD ranged 

from 0.015 to 0.025 m. Based on these values, D should be ideally set to at least 0.375–0.625 m. D 

was selected to range from 0.5 to 1.0 m at increments of 0.1 m (e.g. 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 m). The 

numbers of neighbours surrounding each point were then measured for varying d values. To meet 
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the recommendation of having each point with more than 30 neighbours, the optimal d ranged from 

0.1 to 0.2 m. A d value of 0.2 m to ensure the value was applicable to all high-fill sections. The same 

D, d, and s values were used for M3C2 comparisons at all high-fill sections for consistency. For 

comparison, Barnhart and Crosby (2013) used 0.3 m for D and 0.5 m for d. The parameters selected 

are within the same range. 

Table 4.7 M3C2 parameters. 

Normal scale diameter 
D 

(m) 

Projection scale 
diameter 

d 
(m) 

Core point 
spacing 

s 
(m) 

Point cloud 
registration error 

reg 
(m) 

Most planar of 
[0.5, 0.6, 0.7, 0.8, 0.9, 1.0] 

0.2 0.025 Varies 

 

reg was determined uniquely for each M3C2 comparison (Table 4.8) using the GCP errors of the 

point clouds being compared, UAV (Table 4.5 or Appendix A) or TLS (Table 4.6 or Appendix A). Three 

methods of determining reg were investigated. Method 1 determined the standard deviation of 3D 

GCP errors for each point cloud and calculated the root sum square (RSS) of the standard deviations. 

This method was used by Wheaton et al. (2010) for DoD comparisons. It lacks merit because it only 

considers deviation around the mean error and not the magnitude of the mean error itself. Method 2 

built on the deficiencies of Method 1 and considered RMS errors instead of standard deviations. This 

method determined the RMS of 3D GCP errors for each point cloud and calculated the RSS of the RMS 

errors. Method 3 considered all GCP errors from both point clouds as one dataset and calculated the 

combined RMS of 3D GCP errors. Lague et al. (2013) used an approach similar to Method 3. Method 

1 resulted in the lowest estimates of reg, followed by Method 2, then Method 3. For example, the 

M3C2 comparison of 2018 and 2019 TLS point clouds resulted in reg values of 9 mm, 17 mm, and 24 

mm for Methods 1, 2, and 3, respectively. Method 2 was ultimately used for the M3C2 comparisons 
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in this research because it results in a lower reg and therefore lower LoD than Method 3. Method 2 

also has validity because it was used by the developer of the M3C2 algorithm. 

Table 4.8 Registration errors (reg values) for M3C2 comparisons. 

Section Technology 

reg 
(mm) 

2017-2018 2018-2019 

KM-48 
albris - 23 

Phantom - 34 

KM-49 
albris - 17 

Phantom - 32 

KM-82 

albris 22 18 

Phantom - 28 

TLS - 17 

KM-117 albris 45 29 

 

4.4.3 Cross-Section Analysis 

A cross-section analysis was performed at each high-fill section to provide a clear visual of the 

deformation at embankment sections of interest. Volume change estimates were not performed 

because the volumes of material deforming at the high-fill sections were too small to accurately 

detect. There were also no clear zones of soil loss and gain; opposite to a landslide with clear zones 

of material loss and deposition, where volume change estimates are commonly used. Feature 

tracking was not used because the visually uniform fill material made it challenging to identify 

features. There was also construction work at the sections such as gravel resurfacing and human 

traffic during site visits, which may have displaced features of interest and influenced the feature 

tracking analysis. 
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Cross-sections were extracted only from the albris point clouds because TLS point clouds were 

only at KM-82 and Phantom point clouds were less accurate than the albris point clouds. One cross-

section was analyzed at each high-fill section, except for KM-82 where two cross-sections were 

analyzed. All cross-sections were oriented perpendicular to the highway alignment. The two cross-

sections at KM-82 were selected to align with the SAAs in the reinforced and control zones. This 

allowed the UAV and TLS deformations to be compared with the SAA deformation data. The cross-

section at KM-48 was located approximately 7 m north of the culvert at the thickest part of the 

embankment. The cross-section at KM-49 was located approximately 65 m (roughly 1/3 of the total 

sections length) from the north extent of the high-fill section. This cross-section was selected instead 

of the high-fill section’s midpoint because the 2018 GCPs were clustered in the north of the section 

and cross-sections outside the GCP coverage would be influenced by doming errors. The cross-

section at KM-117 was located approximately 20 m south of the culvert where the embankment was 

approximately 10 m thick. 

Cross-sections were cut from the point clouds using the Cross Section tool in CloudCompare. The 

tool works by defining a box with specified dimensions, location, and orientation, then extracting all 

points from a selected point cloud that are within the box. The box height was defined to cover the 

entire high-fill section. The box length was defined to be slightly outside the embankment toe to 

capture embankment deformations and toe subsidence if present. The box thickness was set to 10 

mm. If there were multiple points within the 10 mm thickness at any point in the cross-section, all 

points were extracted. At each high-fill section, the same box dimensions were used for point clouds 

from all years. Point clouds were extracted as CSV files and further analysis was done in Microsoft 

Excel. A common starting point was selected for each high-fill section and the horizontal distance 

from the starting point was calculated for all points in each cross-section using the following 

equation: 

 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √(𝑋𝑖 − 𝑋𝑜)
2 + (𝑌𝑖 − 𝑌𝑜)

2 (3.4) 
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where Xi and Yi are the X and Y coordinates for any given point and X0 and Y0 are the X and Y 

coordinates for the starting point. Distance vs. elevation was then plotted for each cross-section. 

Deformations were not visible on the original cross-section comparisons because of the extremely 

small-scale deformations relative to the embankments. For example, if a 6 m high embankment 

settled 60 mm vertically, the 1% deformation to height was not visible (Figure 5.20). To address this 

issue and allow deformations to be visualized, vertical differences between the compared cross-

sections were exaggerated 10x. For all cross-section comparisons, the 2018 cross-section remained 

at its measured elevation and the 2017 or 2019 cross-sections were vertically exaggerated. 

There was significant point-to-point elevation variability in the cross-sections (Figure 5.21). 

Three factors contributed to this: 1) roughness of the embankment fill material; 2) imprecise image 

reconstruction of the slope surface; and 3) the 10 mm thick cross-section box extracted multiple 

points at a certain distance with varying elevations. To reduce variability, a series of moving average 

calculations was performed on the elevation data for each cross-section. This resulted in smoother 

cross-section plots that were easier to interpret (Figure 5.22). 

4.5 Summary of Data Acquisition and Processing 

Four high-fill sections along ITH were monitored. KM-48 and KM-49 were surveyed by the albris and 

Phantom in 2018 and 2019. KM-82 was surveyed only by the albris in 2017, then by the albris, 

Phantom, and TLS in 2018 and 2019. KM-117 was only surveyed by the albris in all three years. GCP 

measurements were not accurate in 2017. In 2018, benchmarks were established at each section for 

RTK surveys. The average 3D RMS uncertainties of the RTK surveys decreased from 33 mm in 2017 

to 13 mm in 2018 and 8 mm in 2019. The decrease in RTK measurement uncertainties year-to-year 

occurred primarily because the RTK observation time was increased from 30 seconds to 60 seconds. 

10–14 checkerboard GCPs were used for UAV surveys. The albris and Phantom imagery was 

processed using Pix4D and the accuracy of the reconstructed point clouds was determined using 
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check point errors. The average 3D RMS errors in the UAV point clouds of 2017, 2018, and 2019 were 

58 mm, 29 mm, and 22 mm, respectively. The decrease in UAV point cloud errors year-to-year was 

due to the combined effect of reducing the image GSD from 10 mm to 8 mm and increasing the RTK 

observation time. Additionally, the albris point clouds were notably more accurate than the Phantom 

points clouds, despite both UAVs using identical GCP data. Two factors contributed to this difference: 

image quality (38 Mp albris vs. 20 Mp Phantom) and image network (grid with POI albris vs. manual 

Phantom). Overall, the techniques implemented in 2019 to improve the accuracy of UAV image-

reconstructed point clouds were successful. 

12–14 targets (spheres and checkerboards) were used on each sideslope for TLS surveys at KM-

82. Scans were registered in SCENE using a combination of cloud-to-cloud and target-based 

registrations, and point cloud accuracies were quantified based on checkerboard target errors. Mean 

scan point errors of the 2018 and 2019 TLS point clouds, which are measurements of the point cloud 

geometry accuracies, ranged from 3 mm to 5 mm. Target errors, which quantifies the georeferencing 

accuracy, ranged from 14 mm to 17 mm. These results demonstrate how the GCPs limit the accuracy 

of the georeferenced point clouds. Furthermore, targets set up along the road surface and scanned 

for both sideslopes in 2019 were successful in generating a single point cloud of the entire 

embankment. This was a major improvement to 2018, which produced separate point clouds for the 

east and west slopes. 

Point clouds that were not properly georeferenced were aligned using the ICP registration 

algorithm in CloudCompare. Point clouds were aligned based on segments within GCP coverage to 

eliminate the influence of doming errors. However, registration accuracy was limited due to poor 

GCP coverage in 2018. A parametric analysis was performed to determine the optimal M3C2 

parameters for comparing the high-fill section point clouds. M3C2 comparisons were performed after 

alignment using CloudCompare. Registration error values for M3C2 comparisons ranged 22–45 mm 

and 17–29 mm for the 2017–2018 and 2018–2019 comparisons, respectively. The enhanced 
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registration accuracy of the 2018-2019 comparisons was due to improvements in the data 

acquisition techniques, described above. A cross-section analysis was also performed at each high-

fill section. Cross-sections data was exaggerated and smoothed to provide more visually appealing 

plots that were easier to interpret. 
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CHAPTER 5:  RESULTS AND DISCUSSION 

The results of the deformation analysis and corresponding discussion are separated into two main 

sections. The first compares the TLS and UAV results at KM 82, and the second covers the UAV results 

at all four high-fill sections. 

5.1 UAV and TLS Deformations at KM-82 

This section is separated into five sub-sections. First, UAV and TLS deformations determined by 

M3C2 comparison are presented. Issues that were discovered during the M3C2 comparisons and the 

subsequent solutions implemented are explained. Second, the albris, Phantom, and TLS 

reconstructed point clouds are compared for each year to investigate their accuracy and quality 

relative to each other. Third, the cross-section analysis results are presented, with a comparison to 

the instrumentation deformations. Fourth, performance of the geotextile-reinforced and non-

reinforced zones are compared and discussed, with reference to the M3C2 and cross-section 

analyses. Lastly, UAV photogrammetry and TLS for monitoring embankment deformations are 

compared. 

5.1.1 KM-82 UAV and TLS Deformations using M3C2 

Initial 2018–2019 deformations are shown directly below (Figure 5.1 to Figure 5.3). An unexpected 

vertical difference between the 2018 and 2019 point clouds was evident in all three M3C2 results. 

The magnitude of the vertical difference at the high-fill sections varied from 0.11 m to 0.47 m. 
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Figure 5.1 KM-82 albris UAV 2018–2019 initial M3C2 deformation (scale: ±400 mm). 

 

Figure 5.2 KM-82 Phantom UAV 2018–2019 initial M3C2 deformation (scale: ±400 mm). 
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Figure 5.3 KM-82 TLS 2018–2019 initial M3C2 deformation (scale: ±400 mm). 

Careful analysis of the data and discussion with the research team revealed the cause of the 

vertical difference between the 2018 and 2019 point clouds. The vertical difference was due to a 

mistake made while setting up the base station and measuring its height above the benchmark. In 

2018, the base station height was measured from the base station to the ground surface beside the 

steel rod benchmark. But in 2019, the height was measured from the base station to the top of the 

steel rod. The CSRS-PPP benchmark coordinates that were used as reference points in 2018 and 2019 

were determined based on a base station setup with its height measured to the ground surface. 

Inputting a shorter height in 2019 (i.e. only the base station to the steel rod) caused the base station 

to compute it was at a higher elevation than in 2018. Then when the 2019 RTK surveys were adjusted 

to reference the 2018 CSRS-PPP benchmark coordinates, it shifted the RTK-measured GCP elevations 

to decrease approximately the height of the steel rod. This shift in the RTK survey was transferred to 

the georeferenced point clouds and manifested as an apparent decrease in elevation when the 2018 
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and 2019 point clouds were compared. The magnitude of the vertical difference at a section 

depended on the height of the steel rod above ground surface. 

The solution implemented was to shift the 2019 point cloud vertically to match the elevation of 

the 2018 point cloud at each section. However, it was impossible to know the correct difference to 

shift the point cloud, which presented a challenge. To determine the optimal shift distance, vertical 

M3C2 comparisons were performed on the 2018 and 2019 clouds at each section. The vertical 

comparisons also used segments of the point clouds within GCP coverage to ensure doming errors 

did not influence the results (Figure 4.7a and Figure 5.4). The vertical distances between the point 

clouds were analyzed to determine the optimal vertical shift distance for each section. Table 5.1 

provides analysis results of the KM-82 vertical M3C2 comparisons, as well as the shift distances 

determined for the 2019 point clouds. The selected shift distances were based on the mean, median, 

and peak of the vertical distance distributions. It is interesting that although the albris and Phantom 

point clouds used the same GCPs in 2018 and 2019, the resulting vertical differences between the 

point clouds were different. Different distances were required for the TLS east and west slopes 

because those were separate point clouds in 2018 and the vertical distance distributions were 

notably different. Results from the other three sections are provided later in Table 5.2. 

. 
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Figure 5.4 Fine registration segment area for KM-82 TLS point clouds. 

Table 5.1 KM-82 2018–2019 point cloud vertical comparison results and selected 2019 point 

cloud vertical shifts. 

Technology 

2018–2019 measured vertical difference 
(m) 

Selected 2019 
point cloud shift 

(m) 
Mean Median Peak of distribution 

albris -0.340 -0.341 -0.340 +0.340 

Phantom -0.332 -0.336 -0.340 +0.332 

TLS-east -0.340 -0.346 -0.353 +0.353 

TLS-west -0.322 -0.322 -0.316/-0.337* +0.322 

* vertical difference distribution resembled a bimodal distribution with two peaks. 

After the vertical shift had been applied, M3C2 comparisons between the 2018 and shifted 2019 

point clouds were performed again (Figure 5.5 to Figure 5.7). These comparisons were performed in 

the surface normal directions as M3C2 typically is. The comparisons identified that there was positive 

change (e.g. soil deposition, heave, etc.) on the west slope (facing northwest) and negative change 

(e.g. erosion, settlement, etc.) on the east slope (facing southeast). However, such extreme differences 

between the east and west slopes does not seem realistic. There is no reasonable explanation for the 
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entire west slope to be heaving while the entire east slope is settling. Embankment deformations 

were expected to be more uniform on both slopes than these comparisons detected. Additionally, the 

magnitude of deformations between the albris, Phantom, and TLS comparisons were highly variable.  

Varying the vertical shift magnitude strongly influenced the types and magnitudes of 

deformations detected. This underscores the issue with the vertical shift approach. To fix the base 

station height mistake, raw point cloud data had to be modified in order to determine deformations. 

To put it another way, the data was modified to fit a preconceived understanding of embankment 

deformation behaviour. Nevertheless, the non-uniform (positive and negative) slope deformations 

was measurable regardless of the vertical shift magnitude. 

 

 

Figure 5.5 KM-82 albris UAV 2018–2019 M3C2 deformation after vertical shift (scale: ±100 mm). 
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Figure 5.6 KM-82 Phantom UAV 2018–2019 M3C2 deformation after vertical shift (scale: ±100 

mm). 

 

Figure 5.7 KM-82 TLS 2018–2019 M3C2 deformation after vertical shift (scale: ±100 mm). 
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A more likely cause of the non-uniform deformations would be an issue with georeferencing the 

point clouds. The author’s hypothesis is that during one or some of the RTK surveys of GCPs, the base 

station was not levelled correctly. The base station assumes it was set up level. If it was not, vector 

measurements between the base station and rover would be incorrectly oriented and the resulting 

GCP network would be tilted in the opposite direction of the base station tilt. This tilting of the GCP 

network would then be transferred to the georeferenced point clouds and manifest as non-uniform, 

positive and negative slope deformations. 

The M3C2 deformations after the vertical shift provided evidence that there was tilting of some 

point clouds. In order to fix this and allow for better deformation estimates, the 2019 point cloud was 

registered to the 2018 point cloud. The process was similar to that of registering the 2017 and 2018 

point clouds together (Section 4.4.1). Point cloud segments within GCP coverage (Figure 4.7a and 

Figure 5.4) were used to ensure the registration was not influenced by doming errors. Fine 

registration of the 2018 and 2019 point clouds was performed on the original point clouds (before 

vertical shifting). Registration was limited to translation only in the Z direction to correct the vertical 

difference and allowed to rotate on all three axes because the orientation of the point cloud tilt was 

unknown. Final M3C2 comparisons were performed between the 2018 and registered 2019 point 

clouds (Figure 5.9 to Figure 5.11). No vertical shifting was attempted for the 2017–2018 comparisons 

because no GCPs were used at KM-82 in 2017. Instead, only the registered 2017 and 2018 albris point 

clouds were compared (Figure 5.8). 
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Figure 5.8 KM-82 albris UAV 2017–2018 M3C2 deformation (scale: ±300 mm). 
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Figure 5.9 KM-82 albris UAV 2018–2019 final M3C2 deformation after vertical translation and 

rotation registration (scale: ±100 mm). 
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Figure 5.10 KM-82 Phantom UAV 2018–2019 final M3C2 deformation after vertical translation and 

rotation registration (scale: ±100 mm). 
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Figure 5.11 KM-82 TLS 2018–2019 final M3C2 deformation after vertical translation and rotation 

registration (scale: ±100 mm). 

2017–2018 M3C2 comparisons (Figure 5.8) showed extreme positive change at the edges of the 

reconstruction (> 300 mm). This was not actual deformation of the embankment; rather, it was the 

manifestation of a systematic doming error that occurred in the 2017 point cloud because there were 

no GCPs. The doming error caused the extents of the 2017 point cloud to be computed at a lower 

elevation than reality. When the 2018 point cloud with no doming errors is compared, M3C2 

erroneously computes it as positive change. Figure 5.8 also showed subsidence of approximately 100 

mm at the mid-slope and toe. It is unlikely however that this is true deformation because the SAAs 

within the high-fill section measured significantly less than 100 mm of settlement (close to 0 mm). 

The observed subsidence behaviour is likely only appearing because of the vertical doming error and 

registration process implemented. The area displaying subsidence is near the middle of the 

reconstruction, which was computed at a higher elevation than reality (opposite to the 

reconstruction extents). This caused the appearance of negative change when compared to the 2018 



 

129 

point cloud. There is also an inherent methodological issue with the registration process. Registering 

one point cloud to another point cloud that has major vertical doming errors will inevitably be 

skewed to the doming errors and cause errors in the deformation measurements. In order to 

compare the point clouds, there was no way around this issue; however, it is a notable limitation of 

the method. If there was subsidence of the embankment, it would have been substantially less than 

estimated here and it was undetectable with the data quality available. The fact that there were no 

GCPs in the 2017 UAV survey, which made registration mandatory and caused vertical doming errors, 

makes it difficult to draw any meaningful conclusions from the 2017–2018 deformations at KM-82. 

Comparing the 2018–2019 deformations, the albris and TLS results show agreement (Figure 5.9 

and Figure 5.11). The Phantom results, however, were markedly different (Figure 5.10). Phantom 

results showed positive change of approximately 50 mm along the west slope at the instrumented 

zones. The west half of the Phantom M3C2 comparison showed an area of depression at the road 

surface and major positive change on both slopes. This type of behaviour could have occurred, but 

the measured magnitudes are too large. After driving the highway in 2019, the author can confirm 

that a significant depression of the road surface was not present at that location. It is likely that the 

erroneous Phantom deformations are due to inaccuracies in the 2018 point cloud. Only 52 images 

were used to reconstruct the 2018 Phantom point cloud, compared to 127 images for the 2018 albris 

point cloud (Table 4.2 and Figure 4.1). Furthermore, the albris image quality was higher and the 

grid+POI image network of the albris provided more uniform coverage of the high-fill section. Based 

on these factors, it can be concluded that the albris deformations are more reliable than the Phantom 

deformations for the 2018–2019 KM-82 comparison. 

Both the albris and TLS deformations showed negative change along the road surface, which was 

likely caused by road traffic. They also both showed positive change along the shoulders of the 

embankment. It is likely that this was caused by spreading of the resurfacing gravel that was laid in 

2017. It is natural for built-up gravel surfacing to deform laterally, especially with traffic loading, and 
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this behaviour was captured by the albris and TLS. Positive change at the upper-slope transitions to 

negative change near the mid-slope and lower-slope. This negative change could be the detection of 

settlement or subsidence of the slope; however, it is difficult to conclude the embankment slopes are 

settling because of modifications to the point cloud data (e.g. vertical shift and rotation due to base 

station setup mistakes). 

It is important to consider the deformation uncertainty estimates (i.e. LoD) and significant change 

outputs of the M3C2 comparisons. LoD estimates for the 2018–2019 albris, Phantom, and TLS M3C2 

comparisons (Figure 5.12 and Figure 5.14) range mostly between 33 mm and 40 mm on the 

embankment. LoD estimates are higher along the toes due to vegetation. TLS produced generally 

lower LoDs than the albris UAV. Interestingly, lower LoD estimates for the albris corresponded to the 

areas where POI images were centered. Oblique imagery improved the precision of the 

reconstruction and translated to lower LoD estimates. LoD estimates for the Phantom (Figure 5.13) 

were approximately 20 mm higher than the albris and TLS because of the Phantom’s poor 2018 

reconstruction quality. 
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Figure 5.12 KM-82 albris UAV 2018–2019 M3C2 LoD estimates (scale: 36–45 mm). 
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Figure 5.13 KM-82 Phantom UAV 2018–2019 M3C2 LoD estimates (scale: 56–68 mm). 

 

Figure 5.14 KM-82 TLS 2018–2019 M3C2 LoD estimates (scale: 33–45 mm). 
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The significant change estimates for the 2018–2019 albris, Phantom, and TLS M3C2 comparisons 

(Figure 5.15 to Figure 5.17) show that almost the entire high-fill section can not be considered actual 

change. Red areas represent significant change where deformation is greater than the LoD. The M3C2 

measured deformations (Figure 5.9 to Figure 5.11) are less than the corresponding spatially variable 

LoD estimates (Figure 5.12 to Figure 5.14). If surface roughness was ignored and only registration 

error (reg) was considered for calculating LoD (Equation 3.3), the LoD for the 2018–2019 albris, 

Phantom, and TLS comparisons would be 35 mm, 55 mm, and 33 mm, respectively. Comparing these 

values to the computed LoDs demonstrates the large influence of reg. Surface roughness of the 

embankment only contributed a maximum of 5 mm to the LoD. reg values were large because of high 

GCP position uncertainties from the RTK surveys. 

 

Figure 5.15 KM-82 albris UAV 2018–2019 M3C2 significant change estimates. 
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Figure 5.16 KM-82 Phantom UAV 2018–2019 M3C2 significant change estimates. 

 

Figure 5.17 KM-82 TLS 2018–2019 M3C2 significant change estimates. 
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One last observation from the KM-82 results that is worth mentioning is the negative change 

‘channel’ that was detected in the 2018–2019 comparison on the east upper-slope parallel to the 

culvert. The channel was detected by the albris and Phantom, and is one of the only deformations on 

the embankment that was considered significant change. The deformation comparisons measured 

the channel to be approximately 100 mm deep, which is significant considering the rest of the 

embankment was deforming less than 30 mm. Although it is unclear what exactly caused the 

deformation, it seems unlikely that it is merely coincidence that the deformation occurred in line with 

the culvert. Heat flowing through the culvert in summer could be influencing the thermal conditions 

within the embankment and manifesting as deformations at the embankment surface. It could also 

be that deformations parallel to the culvert are occurring across the entire embankment and the 

detected channel was only detected because it was the greatest deformation. This can not be 

confirmed from the existing data, though. More accurate UAV monitoring in future years could 

confirm if the channel deformation is growing and provide better insights to its cause. 

The quality of data acquired on-site led to several challenges during processing and ultimately, 

low confidence in the final deformation results. Imagery and data directly from the UAV and TLS were 

good. It was the GCP data acquired with the RTK system that caused the issues and inaccuracies. 

Modifications of the point cloud data and high LoDs, both of which were due to low RTK accuracy, 

restrict meaningful conclusions being drawn from the deformation results. General deformation 

behaviour of the embankment can still be derived, but precise magnitudes and confidence in the 

results are unattainable. If RTK surveys are to be used to acquire GCP positions for UAV or TLS 

deformation monitoring, RTK observation times need to be sufficiently high (3–5 minutes minimum) 

in order to reduce measurement uncertainty. Otherwise, another surveying technique should be used 

to acquire GCP positions, such as a total station. A total station was not used in this research because 

the limitations of measuring GCPs with an RTK system were not realized early in the research. 
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5.1.2 KM-82 Point Cloud Accuracy: UAV vs. TLS 

KM-82 point clouds of the same year from each technology were compared to assess their accuracy 

relative to each other. M3C2 was used to perform the comparisons with the same parameters as the 

deformation comparisons (Table 4.7). TLS data was acquired one day prior to UAV flights in both 

years. Therefore, there was no actual deformation between any of the reconstructed point clouds. 

Any deformation detected is a result of the data processing, georeferencing, and registration methods 

used. The 2018 and 2019 comparisons are shown in Figure 5.18 and Figure 5.19, respectively. The 

2018 TLS east and west point clouds were compared to UAV point clouds separately in order to 

visualize both distance distributions next to the M3C2 scales. All comparisons were performed on 

the original georeferenced point clouds without any registering, shifting, or rotating. 

  



 

137 

   

   

 

Figure 5.18 KM-82 2018 point cloud comparisons (scale: ±50 mm): a) TLS-east vs. albris; b) TLS-

west vs. albris; c) TLS-east vs. Phantom; d) TLS-west vs. Phantom; e) albris vs. Phantom. 
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The 2018 albris vs. Phantom comparison (Figure 5.18e) showed minor distances (< 10 mm) 

throughout most of the point clouds except in three areas with relatively larger distances (25–50 

mm). Two of the areas, located along the west lower-slope and on the road surface in the west half, 

correspond to areas with large deformation in the Phantom comparisons (Figure 5.10). As discussed 

in Section 5.1.1, the large distances at these two areas are associated with poor reconstruction quality 

of the 2018 Phantom point cloud due to a low number of images. The area at the east extent with 

large distances is likely due to poor image coverage in both the albris and Phantom reconstructions. 

For the TLS vs. UAV comparisons, it is important to consider the high accuracy of the TLS point 

cloud geometry with scan point mean errors ≤ 5 mm in 2018 and 2019. Georeferencing the TLS point 

clouds using GCPs with high positional uncertainty was the largest factor contributing to point cloud 

inaccuracies and may have caused tilting of the point clouds. In both TLS-east vs. UAV comparisons 

(Figure 5.18a and c), the deviation of point cloud distances was relatively small; however, the 

distance distribution was shifted approximately -15 mm. It appears that there was some sort of 

georeferencing issue that caused the TLS-east point cloud to be at a lower elevation. The TLS-west 

vs. albris comparison (Figure 5.18b) resulted in small distances between the point clouds with a 

mean of approximately zero and most distances within ±10 mm. The TLS-west vs. Phantom 

comparison (Figure 5.18d) produced relatively large point cloud distances at the lower-slope and 

along the road surface. Both of these areas are consistent with areas of large errors in the albris vs. 

Phantom comparison (Figure 5.18e); therefore, it is likely that the errors in the TLS-west vs. Phantom 

comparison are due to inaccuracies in the 2018 Phantom point cloud.  
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Figure 5.19 KM-82 2019 point cloud comparisons (scale: ±50 mm): a) TLS vs. albris; b) TLS vs. 

Phantom; c) albris vs. Phantom. 

There was no evidence of tilting in the 2019 point clouds, demonstrated by the relatively uniform 

distances on both sideslopes in each of the three point cloud comparisons. This is starkly different 

than the 2018 point clouds. The most remarkable difference between the three 2019 point clouds 

was the elevation of the albris point cloud. Figure 5.19a showed negative change from the TLS point 

cloud to the albris point cloud and Figure 5.19c showed positive change from the albris point to the 

Phantom point cloud; both of which had magnitudes of ±15–20 mm. A vertical comparison of the 

point clouds was performed, and it confirmed that the computed distances were due to the albris 
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point cloud being at a lower elevation than the Phantom and TLS point clouds. Interestingly, the same 

GCPs were used to georeference the albris and Phantom point clouds. The exact cause of the elevation 

difference is unclear. The elevation difference must have occurred during the SfM processing and 

been caused by the different image networks of the albris and Phantom. Other than the elevation 

differences, distances in the albris comparisons were minor. The only area with large errors were the 

east extent where there was poor image coverage in both UAV reconstructions. 

It was apparent that elevations of the 2019 TLS and Phantom point clouds aligned because the 

mean of the distance distribution is near zero (Figure 5.19b). The comparison identified differences 

of positive change on the road surface and negative change on the slopes. These differences are likely 

caused by SfM reconstruction errors of the UAV point cloud because the TLS point cloud had 

extremely low scan point errors. Nonetheless, distances of the 2019 TLS vs. Phantom comparison 

were relatively small with respect to the other comparisons. 

5.1.3 Cross-Section Analysis Results and Instrumentation Comparison 

Original cross-section comparisons for the reinforced and control (i.e. non-reinforced) zones at KM-

82 (Figure 5.20) were not useful because the deformations were extremely small relative to the 

embankment height. To allow deformations to be visualized, elevation data of the 2017 and 2019 

cross-sections was exaggerated 10x (Figure 5.21). The exaggerated deformations showed significant 

point-to-point elevation variability in the cross-sections. To reduce variability, elevation data was 

smoothed using a moving average calculation (Figure 5.22). Cross-sections of the vertical shifted 

2019 point cloud were included along with the registered 2019 point cloud cross-sections (Figure 

5.22) to examine the effects of rotation registration. Tilting was evident in the 2018 TLS point clouds 

(Figure 5.18), but it difficult to know for certain if tilting occurred in the original albris point clouds. 

Tilting in the albris point cloud was certainly not as extreme as the TLS point clouds. It is impossible 

to know which 2019 albris point cloud (rotation registered or vertical shifted) is truly more accurate. 
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The detected settlement behaviour on the east slope is a realistic and possible behaviour for an 

embankment on permafrost. The settlement could be caused by permafrost thawing and subsequent 

subsidence at the embankment toe. The positive change detected on the west slope would not be 

caused by heave or deposition of soil. The most logical explanation for the positive change on the 

west slope is lateral spreading of the embankment. This behaviour can also be caused by permafrost 

thawing at the toe if the shear strength of thawed soil is too low to resist deforming under the lateral 

stresses beneath the embankment. Large deformations detected at the toe are due to vegetation 

growth, which is highly variable year-to-year. 

Cross-sections of the embankment surface in the reinforced and control zones were extracted 

from above the vertical and horizontal SAAs. This allowed for comparison to instrumentation data. 

SAAs measured less than 15 mm of vertical and lateral deformations in 2018–2019. Vertical 

displacements from the horizontal SAAs are expected to be less than surface settlements because the 

SAAs are buried under fill material at mid-height of the embankment. The Phantom detected positive 

change on the slope, which is opposite to the SAA measurements. The albris underestimated the SAA 

data by approximately 30 mm, detecting slightly positive but near-zero deformations. The TLS 

measured deformations were reasonably close to the instrumentation data after point cloud 

alignment. 

The settlement and lateral spreading behaviours discussed above mechanistically make sense; 

however, the deformation magnitudes do not agree with instrumentation data. Instrumentation is 

more reliable than the UAV and TLS deformations in this case because of the modifications that were 

made to the point cloud data. The embankment could in reality be undergoing small deformations (< 

15 mm), and the UAV and TLS detected deformations could simply be caused by point cloud 

inaccuracies and modifications. Furthermore, M3C2 comparisons concluded that most of the 

embankment deformation was insignificant (i.e. less than the LoD; Figure 5.15 to Figure 5.17). Much 
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of the deformations identified in the cross-section comparisons could merely be the product of 

inaccurate reconstructions. 

2017–2018 cross-section comparisons (Figure 5.23) were included to demonstrate the significant 

impact of the doming error in 2017. Without exaggeration, 2017–2018 deformations are comparable 

to 2018–2019 deformations that were exaggerated 10x. The exaggerated cross-sections clearly show 

the major doming error in the 2017 albris point cloud that occurred because there were no GCPs. 

 

 

Figure 5.20 KM-82 2018–2019 original cross-sections: a) reinforced zone; b) control zone. 
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Figure 5.21 KM-82 2018–2019 cross-sections with 10x vertical exaggeration: a) reinforced zone; 

b) control zone. 
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Figure 5.22 KM-82 2018–2019 final cross-sections with 10x vertical exaggeration and smoothing: 

a) reinforced zone; b) control zone. 
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Figure 5.23 KM-82 2017–2018 cross-sections—original and 10x vertical exaggeration with 

smoothing: a) reinforced zone; b) control zone. 

5.1.4 Comparison of UAV Photogrammetry and TLS for Deformation Monitoring 

UAV photogrammetry and TLS are two of the most promising and rapidly growing technologies in 

the fields of remote sensing and structural monitoring. Both have a wide-ranging profile of 

applications, with many overlapping; yet, there are strengths and weaknesses of each technology that 

make them more suitable for certain applications. This section discusses the attributes of UAV 

photogrammetry and TLS and how they affect monitoring deformation, in this case of embankments. 

The discussion includes both quantitative (e.g. accuracy, errors) and qualitative (e.g. ease of 

operations) attributes that were discovered through this research. 

Accuracy of the UAV or TLS reconstructed point clouds is an important factor to consider for 

deformation monitoring applications. Accuracy and errors are antonymous to a limited degree; low 
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point cloud errors are equivalent to high accuracy. In this research, TLS produced errors that were 

on the same scale but marginally better than the UAV (Table 4.8). The method and parameters used 

to measure GCP positions with the RTK system caused large point clouds errors and was a limitation 

for both UAV and TLS. TLS point cloud geometry was highly accurate, demonstrated by low scan point 

errors (< 5 mm) between the individual scans in a TLS survey (Table 4.6). However, georeferencing 

TLS point clouds with GCPs increased the target errors, and therefore point cloud errors, to be nearly 

equivalent (~20 mm) to UAV point cloud errors (Table 4.5). The scan point errors provide a 

reasonable estimate of the upper limit accuracy of the TLS point clouds. Alternatively, there is no 

equivalent upper limit estimate for UAV image-reconstructed point clouds. That is because of how 

SfM processing includes GCPs in the bundle adjustment. TLS is capable of producing high-accuracy 

point clouds without GCPs, whereas UAV photogrammetry requires GCPs to correct the 

reconstruction geometry (i.e. minimize vertical doming errors) and produce accurate point clouds. 

There are newer UAVs with on-board RTK sensors that reduce the need for GCPs; however, they are 

much more expensive and not popular in the drone industry yet. It is also unclear that RTK-UAVs will 

eliminate the need of GCPs. At least for the foreseeable future, GCPs will remain a crucial aspect of 

UAV photogrammetry. 

RTK accuracy limiting the detection of deformation in this research does not mean that RTK 

systems are not an appropriate technique or tool for measuring GCPs for UAV or TLS monitoring 

applications. A more precise conclusion is that RTK systems require longer observation times at GCPs 

to provide high accuracy measurements for georeferencing point clouds and detecting small-scale 

deformations (e.g. < 30 mm). GCP accuracy required for georeferencing a point cloud will be 

dependent on the scale of deformation being measured. Small-scale projects where small 

deformations are expected would require a lower LoD, and therefore higher GCP accuracy, to 

confidently measure deformations, and vice-versa. It would have been valuable in this research to 

investigate the errors in UAV and TLS point clouds if GCP positions were measured with different 
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surveying equipment such as a total station. Total stations can measure GCP positions to the sub-

millimetre accuracy (Leica Geosystems, 2019b) and it would have been interesting to study the affect 

this would have on point cloud accuracy. Comparing the accuracy of point clouds with GCPs 

measured by RTK and total station could provide valuable insights for engineers conducting UAV or 

TLS monitoring of structures. 

In this research, TLS surveys took approximately 2x more time than UAV surveys. The main reason 

for this was the excessive amount of time it took to set up the TLS target network. Artificial targets 

(e.g. checkerboards, spheres) were required because the remote environment did not provide any 

natural features that could be used to help register scans. The checkerboards and their stands 

required a substantial amount of time to set up and lay out around the high-fill section. Setting up the 

targets on-site also required careful planning and close attention to ensure target distances and 

viewing angles were appropriate and scan-to-target sightlines were clear. Specific to embankments, 

separate target setups and scans are required on the east and west slopes, thereby essentially 

doubling the effort and time required to conduct TLS. In other environments with more unique, static 

features, such as a building or mountainous area, natural features in the environment can be used as 

targets. This can allow for less artificial targets (e.g. spheres, checkerboards) and improve scan 

registration accuracy. The calibration tests performed on the U of M campus in this research were a 

crucial aspect of the TLS survey design process. Overall, TLS required more preparation and planning 

with respect to survey setup than UAV. UAV photogrammetry simply requires a certain number of 

CGPs to be laid surrounding and throughout the survey area. Less time and effort are required to 

determine the optimal GCP layout for a UAV survey than required to design a TLS survey. 

It should be noted that TLS surveys that took 2x as much time as UAV surveys only covered a 40 

m long section at KM-82. This demonstrates one of the UAV’s main advantages: it can quickly and 

efficiently survey large areas. If TLS was used to survey a full high-fill section such as KM-117, it 

would have required significantly more time to set up and conduct the scans. Not only can UAVs cover 



 

148 

much larger areas, they can access unique aerial perspectives and capture data from a wide array of 

viewing angles. One area that TLS outperforms UAV is the conditions under which its operable. UAVs 

are more sensitive to weather conditions, particularly wind. In this research, flights were often 

restricted because of wind or rain during site visits. TLS can not be used in rain or freezing 

temperatures (neither can UAVs), but wind is generally not an issue. Although it may seem trivial, 

weather conditions on-site at the time of monitoring is an important factor that must be considered 

when conducting UAV or TLS monitoring, or when deciding which technology to use. 

To conclude, UAV and TLS can both produce detailed reconstructions but rely heavily on accurate 

GCPs for georeferencing point clouds, which is critical for measuring deformation between point 

clouds. Unfortunately, the RTK system and GCP accuracies of the on-site surveys limited the detection 

of deformations and prevented the technologies being used to their full potential. Given the strong 

influence of GCP measurements on point cloud accuracies, care must be taken to properly lay out the 

GCP network and set up the RTK system. Based on the inconclusive results of this research, TLS is 

better suited for monitoring smaller areas and measuring small-scale deformations. UAV 

photogrammetry is better suited for monitoring larger areas with deformation magnitudes greater 

than TLS. UAV photogrammetry is especially useful for remote areas with poor access, where TLS 

would be challenging. Additionally, weather and strong winds are important considerations that can 

severely slow progress and cause site visit extensions if UAV flights can not be performed. TLS is less 

affected by wind. 

5.2 UAV Deformations at High-Fill Sections 

This section includes an analysis of the UAV deformations at KM-48, KM-49, and KM-117. 

Examination of the KM-82 deformations was provided in the last section. The general deformation 

behaviours identified at the four high-fill sections are discussed, as well as a comparison of the albris 

and Phantom UAVs for monitoring deformation of embankments. 
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The vertical difference between 2018 and 2019 point clouds was evident at all high-fill sections. 

This vertical difference was caused by inconsistent measurement of the RTK base station height 

above the benchmark in 2018 and 2019. The magnitude of the vertical difference varied between 

sections and was dependent on the steel rod benchmark’s height above ground surface. Vertical 

distances between the 2018 and 2019 point clouds at each high-fill section were analyzed to 

determine the distance to vertically shift the 2019 point clouds (Table 5.2). The deformation results 

after the vertical shift and subsequent M3C2 comparisons showed that point cloud tilting was 

evident, again caused by georeferencing issues with the RTK data. Therefore, registration (vertical 

translation and rotation) of the 2018 and 2019 point clouds was executed to align them. Point clouds 

were registered based on segments of the point clouds that were within the area encompassed by 

GCPs (Figure 4.7 and Figure 5.24) to negate doming error influence. However, these segments were 

only minor portions of the full point clouds because of the poor GCP coverage in 2018. The negative 

impact this had on the deformation results is discussed below. 

Results for KM-48, KM-49, and KM-117 include M3C2 comparisons of the point clouds that were 

aligned by: a) vertical shifting, and b) vertical translation and rotation registration. Both comparisons 

are included because the results of the two were notably different than each other. Comparing the 

vertical shift and registration point cloud comparisons allows for a more thorough discussion of the 

detected deformations and gives insights to the limitations of each alignment method. Cross-sections 

were extracted from the point clouds after vertical shifting or registration for comparison. The cross-

sections selected at each site were within the GCP coverage area to eliminate the influence of doming 

errors. Cross-section comparisons were exaggerated 10x and cleaned for better visualization and 

interpretation of deformations. 
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Figure 5.24 Fine registration segment areas for UAV point clouds: a) KM-48; b) KM-49. 
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Table 5.2 2018–2019 point cloud vertical comparison results and selected 2019 point cloud 

vertical shifts. 

Section Technology 

2018–2019 measured vertical difference 
(m) 

Selected 2019 
point cloud shift 

(m) 
Mean Median Peak of distribution 

KM-48 
albris -0.113 -0.113 -0.113 +0.113 

Phantom -0.139 -0.135 -0.133 +0.133 

KM-49 
albris -0.151 -0.148 -0.145 +0.145 

Phantom -0.138 -0.136 -0.133 +0.133 

KM-82 

albris -0.340 -0.341 -0.340 +0.340 

Phantom -0.332 -0.336 -0.340 +0.332 

TLS-east -0.340 -0.346 -0.353 +0.353 

TLS-west -0.322 -0.322 -0.316/-0.337* +0.322 

KM-117 albris -0.474 -0.472 -0.484 +0.472 

* vertical difference distribution resembled a bimodal distribution with two peaks. 

5.2.1 KM-48 

All M3C2 comparisons (albris and Phantom, shifted and registered) showed similar deformation 

behaviours at KM-48. On the east slope, negative change was consistently detected, which was likely 

settlement of the slope caused by weakening and movement at the toe. The west slope exhibited 

positive change at the upper-slope and negative change at the lower-slope. The negative change at 

the lower-slope could be settlement, similar to the east slope behaviour. The positive change at the 

west upper-slope could be a lateral spreading or slumping behaviour of the upper-slope under traffic 

loading as the toe berm restricts movement of the mid-slope. 

Although the deformation behaviours were consistent between comparisons, the magnitudes of 

deformation varied. The albris generally detected larger deformations than the Phantom. It is unclear 
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what caused this. It could be that the higher quality albris images produced a more accurate point 

cloud with more surface details, which causes larger deformations to be detected. There were also 

differences between the comparisons of the registered and vertical shifted point clouds. It appears 

that the vertical shifted point clouds were better aligned than their registered counterparts. This is 

based on the deformations detected at the embankment toes. Deformation at the east and west toes 

should be relatively uniform. The vertical shifted point cloud comparisons showed this, but the 

registered point cloud comparisons did not. The latter showed positive change along the east toe 

(50–100 mm) and negative change (-50–0 mm) along the west toe. This non-uniformity occurred 

during the registration process likely because the registration segment (Figure 5.24) covered a larger 

portion of the east slope. The registration algorithm was influenced more by the east slope, thereby 

overcompensating for the east slope points and causing the registered point cloud to be tilted. 

The LoD estimates (Figure 5.27) suggest that the albris point cloud is more accurate than the 

Phantom point cloud. This was primarily due to larger registration errors at GCPs in the Phantom 

reconstruction (Table 4.8). The M3C2 significant change estimates (Figure 5.28) were shown for the 

vertical shifted point cloud comparisons because it was deemed they were more accurate than the 

registered point cloud comparisons. Significant change estimates showed that the majority of 

detected deformations are less than the LoD. The only deformations computed as significant are 

changes at the road surface and vegetation growth near the extents. The entire sideslopes, which are 

the focus of this research, were deemed insignificant change by the M3C2 comparison. The cross-

section comparison (Figure 5.29) showed minor differences between the shifted and registered 2019 

point clouds. The LoD limitation and influence of the registration method (e.g. vertical shift or 

rotation registration), as well as other factors that affected interpretation of the results, will be 

further discussed in Section 5.2.4. 
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Figure 5.25 KM-48 UAV M3C2 deformation after vertical shift (scale: ±100 mm): a) albris; b) 

Phantom. 
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Figure 5.26 KM-48 UAV M3C2 deformation after vertical translation and rotation registration 

(scale: ±100 mm): a) albris; b) Phantom. 
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Figure 5.27 KM-48 UAV M3C2 LoD estimates: a) albris (scale: 46–56 mm); b) Phantom (scale: 67–

80 mm). 
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Figure 5.28 KM-48 UAV M3C2 significant change estimates for the vertical shift comparison: 

a) albris; b) Phantom. 

 

Figure 5.29 KM-48 cross-sections with 10x vertical exaggeration and smoothing. 

5.2.2 KM-49 

The albris and Phantom point cloud comparisons at KM-49 produced notably similar results; despite 

the fact the point clouds were shifted vertically by different distances. Conversely, the vertical shifted 
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and registered point cloud comparisons produced dramatically different deformation results. With 

exception of the northwest area along the road surface and west slope, none of the deformations 

detected were consistent between the vertical shifted and registered point cloud comparisons. The 

vertical shifted point cloud comparison detected negative change ranging from 50 to 100 mm near 

the middle of the reconstruction along the road surface and down the east slope. This deformation is 

quite different than the rest of the comparison and is most likely inaccurate, at least to the extreme 

magnitude detected. The registered point cloud comparison showed approximately zero 

deformation in the middle of the reconstruction along the road surface and extreme positive change 

(< 80 mm) along the slopes and toes in the entire south half. This extreme difference between the 

vertical shifted and registered comparisons highlights the major influence that the registration 

process can have on the deformation results. The two registration methods produced deformation 

results that were not only drastically different in magnitudes but opposite directions of change. 

My interpretation of the deformation results is that the negative change in the middle of the 

vertical shifted comparisons (Figure 5.30) was caused by a vertical doming error in the 2018 point 

cloud. Doming errors can cause the middle of reconstructions to be generated at higher elevations 

than reality if GCPs are not properly located. In the 2018 UAV surveys, GCPs were clustered in the 

north half away from the detected negative change (Figure 5.24). When the 2019 point cloud was 

compared to the domed 2018 point cloud, it appeared as negative change in the middle. The extreme 

positive change at the south extents of the registered point cloud comparisons were caused by 

inaccurate alignment of the 2019 point cloud during registration. Due to GCP coverage in 2018, the 

point clouds were registered using only a small portion of the point clouds (Figure 5.24). Any rotation 

of the point cloud segment is extrapolated outwards and the rotation effects are stronger further 

away from the segment. Rotation must have occurred during registration and since the registration 

segment was located in the north half of the point clouds, the south extents experienced major 
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elevation increases. When the registered point clouds were compared, the rotation resulted in the 

detection of erroneous positive change greater than 100 mm (Figure 5.31). 

The north segment of the comparisons within the 2018 GCP coverage is the only semi-reliable 

deformations at KM-49. semi is emphasized because even though there was no doming influence, the 

measured deformations are still subject to the alignment process of vertical shifting or rotation 

registration. The cross-sections extracted from the north segment (Figure 5.34) show negative 

change at the road surface, which was likely displacement of the gravel surfacing due to traffic. At 

this cross-section, the east slope deformed minorly and the west slope appears to be spreading 

laterally outwards. Although this is a possible deformation behaviour of an embankment on 

permafrost, the detected lateral spreading is likely not accurate because of the point cloud alignment 

and accuracy issues discussed above. 

LoD estimates for KM-48 (Figure 5.32) replicated the results from KM-49, showing that LoD 

estimates of the albris comparisons were approximately half the magnitude of the Phantom 

comparisons. This would typically translate to a much higher level of confidence in the deformation 

measurements; however, because of poor point cloud errors and alignment, the albris does not 

produce results any more meaningful than the Phantom. Significant change estimates of the vertical 

shift comparisons at KM-49 (Figure 5.33) confirm this finding. Similar to KM-48, most of the 

embankment slopes deformations were less than the computed LoD. The only areas of the point cloud 

comparisons that were deemed significant change were located: a) in the middle of the 

reconstructions where doming errors occurred in 2018; and b) surrounding the embankment at the 

toes where vegetation growth occurred. 
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Figure 5.30 KM-49 UAV M3C2 deformation after vertical shift (scale: ±100 mm): a) albris; 

b) Phantom. 
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Figure 5.31 KM-49 UAV M3C2 deformation after vertical translation and rotation registration 

(scale: ±100 mm): a) albris; b) Phantom. 
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Figure 5.32 KM-49 UAV M3C2 LoD estimates: a) albris (scale: 34–42 mm); b) Phantom (scale: 63–

75 mm). 

 



 

162 

  

Figure 5.33 KM-49 UAV M3C2 significant change estimates for the vertical shift comparison: 

a) albris; b) Phantom. 

 

Figure 5.34 KM-49 cross-sections with 10x vertical exaggeration and smoothing. 
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5.2.3 KM-117 

2017–2018 deformations at KM-117 (Figure 5.35) were larger than 2018–2019 deformations 

(Figure 5.36). Note the deformation scale of ±200 mm in 2017–2018 compared to ±100 mm in 2018–

2019. The large deformations in 2017–2018 were most likely not actual deformation, but instead a 

product of poor reconstruction quality of the 2018 point cloud Two factors contributed to the poor 

quality: 1) poor GCP measurement quality and therefore large registration error (Table 4.8); and 2) 

no oblique images in the image set. The 2017–2018 cross-section comparison (Figure 5.40a) 

emphasized the deformation behaviours detected by M3C2. Positive change along the road surface 

was due to gravel resurfacing that occurred after the UAV flights in summer 2017. Other spots of 

extreme positive change throughout the comparison, particularly on the east slope, was due to 

vegetation growth (Figure 5.37a). 

Generally in 2017–2018, there appears to be negative change occurring at the upper-slopes that 

is reduced to near-zero deformation at the toe berms (Figure 5.35 and Figure 5.40a). However, this 

behaviour is opposite to that detected at the other high-fill sections. KM-48, KM-49, and KM-82 all 

detected positive change at the upper-slope. The deformation behaviour at KM-117 could be different 

because of its large scale (12 m high). Although, if the negative change at the upper-slope was actual 

deformation, the movement of fill material would have to manifest as positive change at the lower-

slope because: a) the embankment fill material is not consolidating; and b) the permafrost foundation 

beneath the embankment is not settling. Because positive change at the lower-slope was not 

detected, the negative change is likely only an erroneous artefact of the registration process. For this 

comparison, the 2017 point cloud was registered towards the 2018 point cloud because the 2018 

point cloud was thought to be more accurate. The gravel resurfacing occurred after the 2017 UAV 

flights; therefore, it was only in the 2018 point cloud. The resurfacing influenced the registration 

algorithm and caused the 2017 point cloud to be shifted slightly upwards for the road surfaces to 

align. Then when the point clouds were compared, negative change was detected at the upper-slope 
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due to the upwards shift. 2017–2018 LoD estimates (Figure 5.38a) were larger than the 2018–2019 

LoD estimates (Figure 5.38b) due to high uncertainties in the RTK survey of GCPs in 2017. The only 

areas that were deemed significant change in the 2017–2018 comparison were the resurfaced road 

and spots of vegetation growth (Figure 5.39a). 

2018–2019 deformation measurements at KM-117 were very similar for the vertical shifted and 

registered point cloud comparisons (Figure 5.36). The positive change of up to 100 mm at the north 

and south extents was not actual deformation, but instead it was the manifestation of a doming error 

that occurred outside the 2018 GCP coverage. The extreme negative change (> 100 mm) at the east 

upper-slope adjacent to the shoulder is evidence of the vegetation clearing that occurred (Figure 

5.37b). Near-zero deformation was detected throughout most of the area encompassed by GCPs. 

Perhaps the most interesting deformation detected was the negative change ‘channels’ running 

parallel to the culvert on both slopes. The same channel deformation behaviour occurred at KM-82. 

It is unclear what caused these 100 mm deep channels to form. One possibility is that warm air 

passing through the culverts in summer is influencing the thermal conditions within the 

embankment. Temperature variations could change the thermal conditions and causing fill material 

around the culvert to expand or contract with temperature changes. These movements within the 

embankment could manifest as deformations at the embankment slope surfaces such as the channels. 

This concept is currently being researched using numerical modelling within the author’s research 

group. More accurate and precise UAV monitoring is required to confirm the channel behaviour and 

obtain better estimates of the deformation magnitude. 

Significant change estimates of the 2018–2019 vertical shifted point cloud comparison (Figure 

5.39b) showed that only a few areas on the embankment had deformations large enough to be 

considered significant: 1) the negative change channels; 2) the vegetation clearing area; 3) along the 

embankment shoulders where regrading occurred; and 4) a rock and gravel deposit on the west 
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upper-slope, which was likely dumped during shoulder regrading. Generally, the embankment slope 

deformations were determined to be insignificant by M3C2. 

  

Figure 5.35 KM-117 albris UAV 2017–2018 M3C2 deformation after registration (scale: ±200 mm). 
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Figure 5.36 KM-117 albris UAV 2018–2019 M3C2 deformation (scale: ±100 mm): a) vertical shift; 

b) vertical translation and rotation registration. 

  

Figure 5.37 KM-117 point cloud segments showing vegetation: a) 2018 pre-clearing; 

b) 2019 post-clearing. 
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Figure 5.38 KM-117 albris UAV M3C2 LoD estimates: a) 2017–2018 (scale: 89–100 mm); b) 2018–

2019 (scale: 58–70 mm). 
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Figure 5.39 KM-117 albris UAV M3C2 significant change estimates: a) 2017–2018; b) 2018–2019 

vertical shifted. 
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Figure 5.40 KM-117 cross-sections with 10x vertical exaggeration and smoothing: a) 2017–2018; 

b) 2018–2019. 

5.2.4 Deformation Behaviours of High-Fill Sections 

Deformations detected at the four high-fill sections were inconsistent in their general behaviours. 

For examples, deformations at KM-117 were markedly different in the two monitoring years. Or at 

KM-48, positive change was detected on the west slope and negative change on the east slope. 

Likewise, KM-49 had major differences between deformations on its east and west slopes. 

Deformation magnitudes were relatively consistent in the 2018–2019 comparisons at the four high-

fill sections; however, differences in the deformation behaviours between sections heavily outweigh 

the similarities. 

There were also differences in the results of the albris and Phantom UAVs. KM-82 Phantom results 

showed larger deformation magnitudes and distinct inaccuracies throughout the reconstructions. 
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The inaccuracies occurred in the Phantom comparisons because there were fewer and lower quality 

images processed. albris and Phantom results were remarkably similar at both KM-48 and KM-49. 

The only difference was that the albris deformations were slightly larger than the Phantom 

deformations; opposite to the results at KM-82. LoD estimates of the albris comparisons ranged from 

20 to 30 mm lower than the Phantom comparisons. This was mainly because of the higher quality 

albris camera capturing more detailed imagery. In this case though, the lower LoD of the albris 

comparisons did not provide any benefits because: a) inaccurate point cloud alignment methods 

prevented actual deformations from being measured; and b) the actual deformations of the 

embankment (measured by instrumentation) were still less than the lower LoD. The true benefits of 

using a high-quality senseFly albris instead of a consumer-level DJI Phantom 4 Pro could therefore 

not be properly assessed. 

Four mistakes during data acquisition caused errors in the image-reconstructed point clouds and 

ultimately led to the inconsistent deformation behaviours. The first mistake was inconsistently 

measuring the RTK base station height above the steel rod benchmarks (discussed in detail in Section 

5.1.1). This caused a vertical difference between the 2018 and 2019 point clouds, which required 

modification of point cloud data in order to align the point clouds for comparison. It was impossible 

to know the exact distance the point cloud should have been shifted. It was therefore a matter of 

approximating the vertical shift distance, which is an imperfect method and was likely not done to a 

high degree of accuracy. Furthermore, the fact that the albris and Phantom point clouds required 

different vertical shift distances questions the method’s accuracy.  

The second mistake was improperly setting up the RTK base station on a tilt (i.e. not level; 

discussed in detail in Section 5.1.1). The tilt in the base station was transferred to the reconstructed 

point clouds when they were georeferenced using the RTK-measured GCPs and caused non-uniform 

deformations on the embankment slopes. This non-uniform deformation was most-prevalent in the 

TLS comparisons at KM-82, yet the possibility of tilting in the UAV point clouds introduced an entirely 



 

171 

new source of error. Rotation registration of the point clouds was used to correct the tilting. However, 

the registration method had inherent limitations, and it was difficult to asses which point cloud was 

more accurate (e.g. pre- or post-registration). 

The third mistake was poor layout of GCPs in 2018. The GCP network should ideally be equally 

spaced surrounding the entire high-fill section; as was the case in 2019. Regrettably in 2018, the GCPs 

were clustered near the centre of the high-fill section. This caused doming errors to develop in the 

2018 point clouds and prevented accurate deformation measurements in areas outside the GCP 

coverage. Of the 2018 GCP networks, KM-82 was definitely the most widely distributed around the 

embankment. This resulted in the KM-82 2018–2019 comparisons having similar deformation 

behaviours on both slopes and no areas with extreme deformations caused by doming errors. This 

demonstrates the importance of having a widely distributed GCP network. Additionally, better GCP 

distributions would have allowed larger point cloud segments to be used to align point clouds using 

the vertical shift and registration methods, which would have improved the quality and accuracy of 

the vertical shifts and registrations. 

The fourth and final mistake made during data acquisition was insufficient RTK observation times 

at GCPs. Shorter observation times resulted in high positional uncertainties at GCPs, causing point 

clouds to be ‘pulled’ in disagreeing directions due to slight errors in the GCP positions. The results of 

this were large point cloud errors and general inaccuracies in point cloud geometry, which were 

compounded during point cloud comparisons. The LoD and significant change estimates at the four 

high-fill sections emphasize the strong influence of the RTK measurements. Almost the entire 

embankment at the high-fill sections was not considered significant change. This essentially means 

that deformations at the high-fills sections can not be classified as actual deformations. RTK 

observation times were increased year-to-year but not enough to reduce GCP positional 

uncertainties to a level appropriate for the small-scale deformation measurements. Nevertheless, 
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despite the inconclusive significant change results, the author attempted to derive meaning from the 

deformation measurements. 

The combination of the four mistakes made the alignment of point clouds difficult. The behaviour 

and magnitude of deformations were highly sensitive to the vertical shift magnitude and rotation 

registration process. Modifying point cloud data to address the data acquisition mistakes introduced 

sources of error that make the deformation results unreliable. The objective of the UAV monitoring 

was to validate UAV deformations at KM-82 with the SAA displacement data to give confidence in 

deformation measurements at the other high-fill sections. However, because of the issues discussed 

above, UAV deformations at KM-82 were not comparable to SAA data and could not be validated. 

There was no other method available to validate UAV deformations at the other high-fill sections. The 

author provided their best interpretation of the results while considering the various sources of error 

and high degree of uncertainty. 

I intended to use the UAV deformations to investigate the geotechnical causes and factors 

contributing to deformation of embankments on permafrost. Unfortunately, issues that occurred on-

site during data acquisition limited the accuracy of the results and prevented confident examination 

of embankment deformations. Given that the UAV and TLS deformation results were found to be 

inconsistent and inconclusive, much work needs to be done in improving the performance of this 

emerging technology. 

5.3 Summary of Results and Discussion 

High-fill sections along ITH showed deformations including toe subsidence and lateral spreading. 

Some of the high-fill sections showed positive change at the upper-slope and negative change at the 

lower-slope, while other sections showed the opposite behaviour. Deformations on the east and west 

slopes at each high-fill section were non-uniform and inconsistent. The inaccuracy of GCP positions 

measured by the RTK survey system limited the accuracy of reconstructed point clouds and 
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restricted small-scale deformations from being measured. Furthermore, the behaviours and 

magnitudes of UAV and TLS deformations were highly sensitive to the point cloud alignment 

methods. UAV and TLS measured deformations were not comparable to instrumentation 

displacement data at KM-82. No significant differences were detected between deformations of the 

geotextile reinforced and non-reinforced zones. Failing to validate the UAV deformations with the 

instrumentation data at KM-82 decreased the reliability of deformations detected at the other high-

fill sections. The causes of detected deformations were conjectured, but inaccuracies of the point 

clouds and alignment methods limited the identification of deformation mechanisms. 

If monitoring small-scale deformations by UAV photogrammetry or TLS, an RTK system is not the 

best method for measuring GCP positions. With RTK systems, measurement uncertainties of GCP 

positions are often too high, especially in the vertical direction, and cause inaccuracies when 

georeferencing point clouds. When deciding to use UAV photogrammetry or TLS for deformation 

monitoring, two critical factors must be considered: expected deformation magnitude and survey 

area size. Generally, UAV photogrammetry is better suited for monitoring deformations of 

embankments, unless small deformations are expected and the survey area is appropriately sized for 

TLS. Deformation results obtained by the albris were slightly more accurate but comparable to the 

Phantom results. The Phantom could have produced equivalent results if imagery was captured from 

shorter distances to counteract the lower-quality camera. Overall, the author’s opinion is that the 

performance of the albris does not justify its high cost compared to the Phantom.  
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CHAPTER 6:  CONCLUSION 

This last chapter summarizes the research work that was completed; states conclusions, which were 

derived from the research objectives and based on the calibration tests and deformation monitoring; 

and provides recommendations for practitioners using UAV photogrammetry or TLS to monitor 

deformations. Lastly, a guideline that provides step-by-step instructions for using UAV 

photogrammetry to monitor deformations is included. 

6.1 Summary 

The Inuvik-Tuktoytaktuk Highway (ITH) in Northwest Territories, Canada was built during winter 

on ice-rich continuous permafrost with no cuts in the ground to preserve the permafrost foundation. 

Several high-fill sections were required along the highway to meet vertical geometry specifications. 

Embankments built on permafrost during winter are susceptible to deformations in the summer 

immediately following construction as ice within the embankment melts and in subsequent years as 

permafrost at the embankment toe thaws.  One high-fill section at KM-82 on ITH was reinforced with 

wicking woven geotextiles to improve slope stability by providing a direct path to transport water 

out of the embankment fill and tensile resistance on the slopes. Instrumentation was installed in the 

reinforced test zone and a non-reinforced control zone to measure horizontal and vertical 

displacements and temperatures within the embankment. 

Unmanned aerial vehicle (UAV) photogrammetry and terrestrial laser scanning (TLS) were used 

to survey the high-fill sections in three subsequent years and determine deformations. The senseFly 

albris and DJI Phantom 4 Pro UAVs were used to acquire aerial imagery and Pix4D processed the 

imagery to reconstruct point clouds. The FARO Focus3D X 330 laser scanner and FARO SCENE 

software were used to acquire and process scan data to generate point clouds. The Leica GS14 

antennas and CS20 controller were the RTK survey system used to measure ground control point 

(GCP) positions for georeferencing UAV and TLS point clouds. UAV photogrammetry and TLS are 
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both relatively new technologies being for monitoring the deformation of structures. Significant time 

was dedicated to learning about the technologies, developing best operating practices, calibrating the 

technologies to quantify their accuracies, and designing the on-site surveys. 

The research section at KM-82 and three other high-fill sections along ITH were monitored. KM-

48 and KM-49 were both 8 m high embankments. KM-117 was the thickest embankment section on 

ITH, standing 12 m high. TLS was only conducted at KM-82 and UAV monitoring was performed at 

all high-fill sections. Improvements to the data acquisition methods were implemented each year to 

reduce errors. Accuracies of the UAV and TLS point clouds were quantified based on GCP errors. 

Some of the point clouds were not properly georeferenced and required alignment prior to 

deformation measurement. Point clouds were aligned in CloudCompare using two methods: vertical 

shifting and registration by the iterative closest point (ICP) algorithm. After alignment, point clouds 

from each year were compared using the multiscale model-to-model cloud comparison (M3C2) 

algorithm in CloudCompare to determine deformations. An analysis of embankment cross-sections 

extracted from the point clouds was also performed for each high-fill section. 

Due to the novelty of research methods and technologies used, a few mistakes were made on-site 

during data acquisition, primarily when using the RTK survey system to measure GCP positions. 

Georeferencing point clouds with the inaccurate GCP positions caused errors in the UAV and TLS 

reconstructed point clouds. Although the results were not as conclusive as originally intended, 

several lessons were learned that will be valuable for future researchers and practitioners using UAV 

photogrammetry and TLS to monitor deformations. Through this research, techniques were 

developed to: calibrate UAV photogrammetry and TLS instruments to measure deformation; 

investigate factors that influence point cloud accuracy and design surveys based on the findings; 

estimate positional errors within UAV and TLS derived point clouds; align point clouds that are 

improperly georeferenced using two methods; critique measured deformations by considering the 

influence of reconstruction and alignment errors; and interpret deformations through the lens of 
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permafrost degradation dynamics. As far as the author is aware, this is the first time that UAV 

photogrammetry and TLS have been used together to measure deformations of an embankment in 

the Arctic. One critical finding of the research was the importance of accurate and well-distributed 

GCPs. Sophisticated sensors and advanced imaging technologies can produce extremely detailed 

reconstructions; however, as this research showed, the ability of the technologies to accurately 

measure deformations depends strongly on the accuracy of the GCP network and georeferencing 

process. Although GCPs may seem supplementary to the UAV or TLS data acquisition, the importance 

of accurate GCPs cannot be understated and appropriate time should be taken to set up a well-

distributed GCP network and measure high-quality GCP positions with precise survey equipment. 

6.2 Conclusions 

The following conclusions are derived from the research objectives and based on the technology 

calibration tests and deformation monitoring results at the high-fill sections: 

 UAV photogrammetry and TLS are powerful imaging technologies that can reconstruct 

high-quality 3D point clouds for monitoring deformation of structures. However, the 

accuracy of GCPs used to georeference point clouds must be appropriately low to maintain 

the high accuracy of the UAV and TLS derived point clouds. In this research, the inaccuracy 

of GCP positions measured by the RTK survey system limited the accuracy of reconstructed 

point clouds and restricted the measurement of small-scale deformations. 

 High-fill sections along ITH showed deformations including toe subsidence and lateral 

spreading. However, these deformations could not be validated because of unreliable 

georeferencing accuracies and alignment methods. 

 The behaviours and magnitudes of UAV and TLS deformations were highly sensitive to the 

point cloud alignment methods. Some of the high-fill sections showed positive change at the 

upper-slope and negative change at the lower-slope, and other sections showed the 
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opposite behaviour. Deformations on the east and west slopes at each high-fill section were 

non-uniform. Furthermore, deformations of the albris and Phantom showed high 

variability. 

 UAV measured deformations underestimated the instrumentation displacement data at 

KM-82 by approximately 30 mm, while TLS measured deformations were reasonably close 

to the instrumentation data after point cloud alignment. No significant differences were 

detected between deformations of the geotextile reinforced and non-reinforced zones. 

 Deformation channels parallel to culverts were detected at KM-82 and KM-117 by both the 

albris and Phantom UAVs. The channels were approximately 100 mm deep and located at 

the upper-slope at KM-82 and down the entire sideslopes at KM-117. It is unclear what 

caused the deformation channels to form; yet, it is hypothesized that the culverts are a 

contributing factor. Heat flowing through the culvert in summer could influence the thermal 

conditions of the fill material surrounding the culvert and manifest as deformations at the 

embankment surface. Further research and more UAV monitoring is required to confirm the 

channel behaviour and determine the underlying deformation mechanism. 

 Mistakes made during the data acquisition of GCP positions using the RTK survey system 

prevented proper comparison of point clouds and caused the deformation results to be 

inconsistent and inconclusive. Given the strong influence of GCP measurements on point 

cloud accuracies, care must be taken to properly lay out the GCP network and set up the RTK 

system. 

 Causes and factors contributing to deformations of the high-fill sections were not 

determined. General deformation behaviours were conjectured, but inaccuracies of the 

point clouds and alignment methods limited the identification of deformation mechanisms. 

 Uncertainty of deformation measurements can be quantified using a spatially variable level 

of detection (LoD) based on point cloud registration errors and surface roughness. UAV and 
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TLS point cloud registration errors can be estimated by analyzing GCP errors in the point 

clouds. 

 Improvements to the data acquisition methods each year significantly improved the 

accuracy of reconstructed point clouds and decreased the LoD of deformation 

measurements. These improvements included: a) RTK survey system—installing 

permanent benchmarks at each section and increasing the observation time at GCPs; b) 

UAV—including oblique images (at optimal viewing angle of 45°), decreasing image GSD, 

and increasing the number of GCPs; and c) TLS—increasing the total number of targets and 

including targets along the road surface that are scanned for both sideslopes to generate a 

single point cloud. 

 UAV photogrammetry and TLS can both be used to monitor deformations of structures. Two 

critical factors that must be considered when deciding which technology to use for 

deformation monitoring are the expected deformation magnitude and the survey area size. 

In this research, TLS point clouds achieved mean scan point errors ≤ 5 mm; yet, target errors 

increased to approximately 15 mm when georeferenced with GCPs. Based on this 

observation and reported TLS accuracies in literature, TLS is better suited for monitoring 

smaller-scale sites and measuring small-scale deformations. UAV photogrammetry is better 

suited for monitoring larger areas with deformation magnitudes greater than TLS. UAV 

photogrammetry is especially useful for remote areas with poor access, where TLS would 

be challenging. TLS is also less affected by wind and adverse weather conditions. Generally, 

UAV photogrammetry is better suited for monitoring deformations of embankments, unless 

small deformations are expected and the survey area is appropriately sized for TLS.  

 The senseFly albris and DJI Phantom 4 Pro can both capture imagery to reconstruct high-

accuracy point clouds for deformation monitoring. Results obtained by the albris were 

slightly more accurate but comparable to the Phantom results. The Phantom could produce 
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equivalent results if imagery is captured from shorter distances to counteract the lower-

quality camera. The Phantom has advantages over the albris including it is easier to control, 

has longer battery life, and is substantially less expensive. In the author’s opinion, the 

performance of the albris does not justify its high cost compared to the Phantom. 

 An RTK system is not the best method for measuring GCP positions if small-scale 

deformations (e.g. < 50 mm) are being monitored by UAV photogrammetry or TLS. Although 

RTK systems are simple to use and can acquire data relatively quickly, measurement 

uncertainties of GCP positions are often too high, especially in the vertical direction, and 

cause inaccuracies when georeferencing point clouds. RTK measurement uncertainties can 

be reduced by increasing the observation time at GCPs; however, major time increases are 

often infeasible when conducting UAV surveys due to uncertainty and time restrictions 

associated with unpredictable weather conditions. 

6.3 Recommendations 

Based on the results and conclusions of this research, the following are recommended for monitoring 

deformations using UAV photogrammetry or TLS: 

 The Government of Northwest Territories Department of Infrastructure (GNWT-DOI) 

should use UAV photogrammetry to monitor deformations of critical sections along ITH. 

UAV photogrammetry should be used over TLS for the following reasons: a) it can cover 

larger areas in less time; b) setting up surveys is faster and less labour intensive; c) good-

quality results with sufficient accuracy can be obtained with a UAV that costs substantially 

less than a TLS system. Note that anyone flying a UAV in Canada requires a pilot license and 

must abide to Transport Canada regulations. It is known that GNWT-DOI is already using 

UAVs to monitor some of their infrastructure. This thesis may provide valuable information 

that could help them to improve their data acquisition and processing methods. The 
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deformations results showed that close-range and accurate imagery is required to detect 

small-scale deformations of the embankment in order to predict larger instabilities before 

they occur. 

 When monitoring deformations of embankments constructed during winter in permafrost 

regions, monitoring should begin immediately following construction. The largest 

embankment deformations occur in the summer after construction as ice in the fill material 

melts. It is important to obtain a baseline model of the embankment prior to thawing and 

deformation. It is also recommended to conduct multiple surveys during the first year to 

capture the progression of deformations. An example of this would be to survey once at the 

start of spring immediately after snowmelt, once or twice during summer, and once in the 

fall. This would provide good monitoring over the embankment’s critical deformation 

period in the first year. 

 Deformation monitoring with UAV photogrammetry or TLS should be coupled with another 

means of measuring deformation, such as survey equipment or instrumentation, to validate 

results. 

 UAV or TLS data acquisition and processing methods should produce results with a 

deformation LoD appropriate for the expected magnitude of deformations on-site. Practice 

UAV flights or TLS scans of the planned on-site survey and data processing should be 

performed to estimate the deformation LoD prior to fieldwork. If the determined point 

cloud errors and LoD are too large, data acquisition methods should be adjusted until an 

appropriate LoD is reached. Adjusting data acquisition methods could include modifying the 

TLS scan or UAV flight parameters, increasing the GCP observation time if using an RTK 

system, or improving the survey setup by using more GCPs or targets. Although this 

approach may consume time at the beginning of the project, confidence in the data 

acquisition methods and expected errors will be invaluable later in the project. Accurate 
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LoD estimates appropriate for the expected deformations are essential for the practitioner’s 

ability to draw meaningful conclusions from the measured deformations. 

 Survey benchmarks should be established on-site to reference all UAV or TLS surveys to a 

consistent coordinate system. If the project is on permafrost, steel rods hammered deep into 

the ground are a suitable benchmark. Benchmark coordinates can be determined with an 

RTK base station set up on the benchmark. 

 A total station should be used to measure GCP positions if small-scale deformations (e.g. < 

50 mm) are being monitored with UAV photogrammetry or TLS. Total stations can measure 

points with sub-millimetre accuracy in significantly less time than it takes RTK systems to 

measure points with 5–10 mm accuracy. One limiting characteristic of total stations is that 

sightlines are required from the benchmark to GCPs. 

 For small-scale deformation monitoring applications, if an RTK system is to be used for 

measuring GCP positions, the observation time at each GCP should be 5–7 minutes 

(minimum 3 minutes) in order to reduce GCP positional errors to acceptable levels. 

 A few permanent GCPs should be installed at each site being monitored by UAV 

photogrammetry. An example of a permanent GCP would be a steel rod hammered into the 

ground with a tip designed for checkerboard GCPs to be attached for the duration of UAV 

surveys. Direct comparison of permanent GCP positions in the point clouds from each UAV 

survey would allow for the recognition and correction of any systematic errors that develop 

(e.g. vertical errors in point clouds). 

 The GCP network for UAV monitoring must encompass the entire section being monitored 

in order to reduce doming errors. Deformation measurements outside GCP coverage are 

unreliable. 

 A combination of cloud-to-cloud and target-based registration methods are recommended 

for processing TLS scan data. Cloud-to-cloud registration should be used to align scans and 
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generate the point cloud geometry. Target-based registrations should then be used to 

georeference the point cloud with the GCP targets. Combining the two registration methods 

will maintain the millimetre-level accuracy of the point cloud geometry and the 

georeferencing accuracy will be dependent on the quality of GCP positional data. 

6.4 Guideline for using UAV Photogrammetry to Monitor Deformations 

The calibration tests and embankment deformation monitoring in this research work allowed for the 

development of an operational guideline for using UAV photogrammetry to monitor deformations. A 

guideline was not created for TLS because less effort was dedicated to developing the TLS methods 

and work remains to improve them. The author is confident that the procedures and techniques 

developed for monitoring with UAV photogrammetry are refined and practical. 

The guideline for using UAV photogrammetry to monitor deformations is Appendix B. It was 

developed for the application of monitoring deformation of embankments, but it can be applied to a 

variety of other structures or landforms. The guideline not only outlines recommended methods but 

also the missteps to avoid, which are often overlooked. There is some repetition in the guideline 

because it is meant to be a stand-alone document that does not require reference to sections in this 

thesis. The guideline is recommended for any practitioners using UAV photogrammetry to monitor 

deformations, including researchers, surveyors, construction contractors, and government agencies. 
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Appendix A 

Ground Control Point (GCP) Uncertainty and Error Data 

 

 

 

  



 

A2 

RTK Survey Uncertainty Data 

2017 KM-117 RTK Uncertainty Measurements 

Point Easting Northing Elevation Horz. Err. (mm) Vert. Err. (mm) 3D Err. (mm) 

2017 583052.15 7683668.48 21.376 25 50 56 

2016 583044.95 7683591.1 19.8871 30 60 68 

2012 582948.64 7683810.19 31.532 7 15 17 

2011 583026.24 7683822.95 27.4353 6 15 16 

2010 583070.45 7683773.02 16.7121 6 14 15 

2009 583021.15 7683693.79 26.7519 6 17 18 

2007 583002.56 7683743.36 27.9327 6 17 18 

2006 582968.79 7683724.79 20.6732 6 20 21 

2005 582978.78 7683660.32 22.2637 6 24 25 

2003 582987.66 7683597.53 25.7263 7 24 25 

Max 

 

30 60 68 

Min 6 14 15 

Mean 10 26 28 

Std. Dev. 9 16 18 

RMS 13 30 33 

 
2018 KM-48 RTK Uncertainty Measurements 

Point Easting Northing Elevation Horz. Err. (mm) Vert. Err. (mm) 3D Err. (mm) 

601 558899.88 7633293.15 60.202 5 9 10 

602 558889.54 7633278.67 56.253 7 13 15 

603 558897.00 7633271.70 57.182 7 12 14 

604 558894.71 7633264.44 56.491 7 13 15 

605 558907.24 7633268.60 59.568 6 11 13 

606 558952.38 7633280.78 57.806 6 10 12 

607 558948.01 7633289.64 58.316 7 14 16 

608 558947.32 7633295.03 57.580 8 15 17 

609 558939.87 7633306.10 58.695 7 14 16 

610 558931.64 7633330.17 60.517 7 13 14 

611 558910.14 7633305.15 64.168 9 18 20 

612 558932.47 7633275.75 63.867 6 12 13 

Max 

 

9 18 20 

Min 5 9 10 

Mean 7 13 14 

Std. Dev. 1 2 3 

RMS 7 13 15 

 
  



 

A3 

2018 KM-49 RTK Uncertainty Measurements 

Point Easting Northing Elevation Horz. Err. (mm) Vert. Err. (mm) 3D Err. (mm) 

700 558406.75 7634227.54 45.606 6 11 13 

701 558384.68 7634141.39 46.826 5 9 11 

702 558376.67 7634130.57 44.634 6 11 13 

703 558382.04 7634124.65 45.444 9 17 19 

704 558377.57 7634119.65 44.542 6 10 12 

705 558390.05 7634108.24 47.157 6 10 11 

706 558439.76 7634108.76 47.830 7 12 14 

707 558429.77 7634132.41 46.930 7 13 14 

708 558423.20 7634142.43 47.156 6 10 11 

709 558418.81 7634152.51 46.742 6 11 13 

710 558417.01 7634155.77 46.541 6 11 13 

711 558396.34 7634153.25 50.452 6 10 12 

712 558417.18 7634115.30 52.692 6 11 12 

Max 

 

9 17 19 

Min 5 9 11 

Mean 6 11 13 

Std. Dev. 1 2 2 

RMS 6 11 13 

 
2018 KM-82 UAV RTK Uncertainty Measurements 

Point Easting Northing Elevation Horz. Err. (mm) Vert. Err. (mm) 3D Err. (mm) 

1401 569229.42 7657368.42 17.042 6 11 12 

1402 569206.22 7657365.39 14.959 6 12 14 

1403 569183.47 7657350.48 14.817 7 13 14 

1404 569168.92 7657341.49 14.592 5 10 11 

1406 569174.71 7657284.71 12.741 6 12 14 

1407 569182.97 7657294.70 13.728 6 11 12 

1409 569214.92 7657309.98 13.820 6 11 13 

1410 569224.32 7657327.22 15.430 6 12 14 

1411 569240.83 7657362.27 20.357 6 11 13 

1412 569163.44 7657306.86 18.413 6 11 12 

Max 

 

7 13 14 

Min 5 10 11 

Mean 6 11 13 

Std. Dev. 0 1 1 

RMS 6 11 13 

 
  



 

A4 

2018 KM-82 TLS RTK Uncertainty Measurements 

Point Easting Northing Elevation Horz. Err. (mm) Vert. Err. (mm) 3D Err. (mm) 

14016 569207.96 7657321.43 18.728 5 9 10 

14015 569228.68 7657332.44 19.390 5 9 10 

14014 569223.57 7657319.92 18.703 5 9 11 

14013 569206.57 7657306.59 16.817 4 7 8 

14012 569196.65 7657309.39 18.125 6 10 12 

14011 569190.57 7657323.19 21.967 5 8 10 

14010 569208.75 7657333.13 22.354 6 9 11 

14009 569225.65 7657341.94 22.906 4 7 9 

14008 569193.89 7657351.13 18.307 19 27 33 

14007 569208.76 7657369.52 18.398 8 14 16 

14006 569197.12 7657367.03 18.172 8 13 15 

14005 569183.62 7657359.75 18.142 6 10 11 

14004 569175.87 7657349.49 18.036 6 10 12 

14003 569187.00 7657334.42 21.989 4 7 9 

14002 569203.76 7657342.71 22.195 5 9 10 

14001 569220.18 7657351.71 22.637 5 8 9 

Max 

 

19 27 33 

Min 4 7 8 

Mean 6 10 12 

Std. Dev. 3 5 6 

RMS 7 11 14 

 
2018 KM-117 RTK Uncertainty Measurements 

Point Easting Northing Elevation Horz. Err. (mm) Vert. Err. (mm) 3D Err. (mm) 

2001 582985.27 7683742.84 19.475 6 12 14 

2002 583023.17 7683697.02 23.078 5 10 11 

2003 583004.20 7683747.41 24.191 6 12 13 

2004 582974.55 7683723.58 16.405 6 11 12 

2005 582984.55 7683717.71 15.893 8 15 17 

2006 582976.50 7683701.56 16.249 6 13 14 

2007 582993.89 7683683.79 18.602 5 10 11 

2008 583055.52 7683712.76 14.283 6 11 13 

2009 583058.39 7683739.50 12.873 6 11 12 

2010 583053.58 7683743.16 13.239 6 11 12 

2011 583048.75 7683764.56 15.046 6 12 14 

2012 583038.25 7683784.83 17.171 6 11 13 

Max 

 

8 15 17 

Min 5 10 11 

Mean 6 12 13 

Std. Dev. 1 1 2 

RMS 6 12 13 



 

A5 

2019 KM-48 RTK Uncertainty Measurements 

Point Easting Northing Elevation Horz. Err. (mm) Vert. Err. (mm) 3D Err. (mm) 

601 558931.26 7633278.54 63.704 4 9 9 

602 558911.50 7633307.66 64.509 4 8 9 

603 558891.29 7633326.82 62.131 4 9 10 

604 558890.75 7633292.67 57.631 4 9 10 

605 558891.68 7633267.03 55.861 4 9 10 

606 558910.24 7633248.90 60.188 4 8 9 

607 558933.46 7633224.15 62.928 4 8 9 

608 558935.71 7633241.98 64.629 4 8 9 

609 558964.32 7633235.55 62.927 4 7 8 

610 558956.89 7633263.51 60.315 4 7 8 

611 558954.28 7633296.55 57.247 3 7 7 

612 558942.63 7633317.89 59.057 4 7 8 

613 558928.61 7633346.25 61.534 3 7 7 

Max 

 

4 9 10 

Min 3 7 7 

Mean 4 8 9 

Std. Dev. 0 1 1 

RMS 4 8 9 

 
2019 KM-49 RTK Uncertainty Measurements 

Point Easting Northing Elevation Horz. Err. (mm) Vert. Err. (mm) 3D Err. (mm) 

701 558411.10 7634099.82 53.253 4 7 7 

702 558397.61 7634148.65 50.442 4 7 7 

703 558420.77 7634162.50 46.723 4 7 8 

704 558433.12 7634137.67 46.939 4 7 8 

705 558443.31 7634114.49 47.235 4 7 8 

706 558454.68 7634077.29 50.425 4 6 7 

707 558459.22 7634041.15 54.444 4 7 8 

708 558437.40 7634051.45 57.287 4 6 7 

709 558419.15 7634019.81 54.831 4 7 8 

710 558402.48 7634053.97 50.114 4 6 7 

711 558384.21 7634079.70 44.983 4 7 8 

712 558378.20 7634120.35 44.403 4 7 9 

713 558374.10 7634149.91 45.478 4 7 8 

Max 

 

4 7 9 

Min 4 6 7 

Mean 4 7 8 

Std. Dev. 0 0 0 

RMS 4 7 8 

 
 



 

A6 

2019 KM-82 UAV RTK Uncertainty Measurements 

Point Easting Northing Elevation Horz. Err. (mm) Vert. Err. (mm) 3D Err. (mm) 

1401 569243.67 7657338.88 17.646 3 6 7 

1402 569223.34 7657320.84 14.744 3 6 6 

1403 569192.93 7657322.33 18.268 3 5 6 

1404 569204.01 7657297.81 12.769 3 6 6 

1405 569175.16 7657284.80 12.449 3 5 6 

1406 569147.67 7657276.85 15.439 3 5 6 

1407 569146.22 7657296.83 18.501 3 6 6 

1408 569133.55 7657312.58 16.145 4 7 8 

1409 569155.40 7657333.16 13.901 4 6 7 

1410 569181.83 7657348.38 14.368 3 6 7 

1411 569207.35 7657362.19 14.471 4 7 8 

1412 569232.94 7657369.47 17.299 4 7 8 

1413 569227.89 7657353.96 19.231 3 6 7 

Max 

 

4 7 8 

Min 3 5 6 

Mean 3 6 7 

Std. Dev. 0 1 1 

RMS 3 6 7 

 
  



 

A7 

2019 KM-82 TLS RTK Uncertainty Measurements 

Point Easting Northing Elevation Horz. Err. (mm) Vert. Err. (mm) 3D Err. (mm) 

1401 569223.64 7657351.33 19.472 4 8 9 

1402 569228.36 7657341.82 19.63 4 8 9 

1403 569190.37 7657321.10 18.575 4 8 9 

1404 569184.68 7657331.43 18.622 4 8 9 

1405 569181.82 7657338.87 15.962 4 9 10 

1406 569179.65 7657345.18 14.567 4 9 10 

1407 569180.64 7657360.77 14.851 4 10 11 

1408 569197.08 7657372.06 14.955 4 11 11 

1409 569208.66 7657366.80 15.064 4 12 13 

1410 569218.05 7657359.12 16.174 4 11 11 

1411 569229.69 7657336.45 17.514 4 12 13 

1412 569230.89 7657323.70 15.917 5 14 15 

1413 569222.90 7657313.01 14.868 4 12 13 

1414 569211.72 7657301.74 13.419 4 13 13 

1415 569199.80 7657303.62 13.914 3 9 9 

1416 569195.88 7657309.85 14.992 4 9 10 

Max 

 

5 14 15 

Min 3 8 9 

Mean 4 10 11 

Std. Dev. 0 2 2 

RMS 4 10 11 

 
  



 

A8 

2019 KM-117 RTK Uncertainty Measurements 

Point Easting Northing Elevation Horz. Err. (mm) Vert. Err. (mm) 3D Err. (mm) 

2001 582990.23 7683825.51 29.678 3 6 7 

2002 583004.49 7683747.33 23.684 3 6 7 

2003 583036.42 7683809.21 18.660 4 8 9 

2004 583055.48 7683780.28 13.442 3 7 7 

2005 583059.20 7683742.35 11.573 3 7 8 

2006 583052.30 7683696.18 15.527 4 8 9 

2007 583043.91 7683642.32 17.822 3 7 8 

2008 583022.58 7683704.82 22.730 4 8 8 

2009 583010.54 7683630.26 22.371 3 7 8 

2010 582992.31 7683646.48 18.433 3 7 8 

2011 582978.27 7683687.58 15.735 4 8 9 

2012 582975.47 7683722.81 15.771 3 7 8 

2013 582974.22 7683750.57 18.233 3 8 8 

2014 582972.24 7683786.93 22.910 3 7 8 

Max 

 

4 8 9 

Min 3 6 7 

Mean 3 7 8 

Std. Dev. 0 1 1 

RMS 3 7 8 

 
 
  



 

A9 

UAV Photogrammetry GCP (Checkpoint) Error Data 

2017 KM-117 albris UAV GCP Checkpoint Errors 

Check Point X Err. (m) Y Err. (m) Z Err. (m) Horz. Err. (m) 3D Err. (m) 

2003 -0.0019 0.0096 0.1375 0.0098 0.1378 

2005 0.0230 0.0121 0.0204 0.0260 0.0330 

2006 0.0171 0.0108 -0.0702 0.0202 0.0731 

2007 -0.0086 0.0033 -0.0004 0.0092 0.0092 

2009 -0.0090 -0.0256 -0.0277 0.0271 0.0388 

2010 -0.0236 -0.0004 -0.0386 0.0236 0.0452 

2011 0.0053 -0.0036 0.0524 0.0064 0.0528 

2012 -0.0039 0.0217 -0.0045 0.0220 0.0225 

2016 0.0131 0.0112 -0.0324 0.0172 0.0367 

2017 0.0063 0.0054 -0.0053 0.0083 0.0098 

Mean 0.0018 0.0045 0.0031 0.0170 0.0459 

Std. Dev. 0.0140 0.0127 0.0580 0.0079 0.0376 

RMS 0.0134 0.0129 0.0551 0.0186 0.0581 

 
  



 

A10 

2018 KM-48 albris UAV GCP Checkpoint Errors 

Check Point X Err. (m) Y Err. (m) Z Err. (m) Horz. Err. (m) 3D Err. (m) 

601 0.0006 0.0049 0.0235 0.0049 0.0240 

602 0.0154 -0.0001 -0.0452 0.0154 0.0478 

604 -0.0032 -0.0101 -0.0139 0.0106 0.0175 

605 0.0050 -0.0048 0.0118 0.0069 0.0137 

606 0.0138 0.0031 -0.0244 0.0141 0.0282 

608 -0.0100 -0.0188 -0.0191 0.0213 0.0286 

609 -0.0200 0.0281 -0.0150 0.0345 0.0376 

610 0.0215 -0.0048 -0.0062 0.0220 0.0229 

611 -0.0084 0.0040 0.0483 0.0093 0.0492 

612 -0.0112 0.0005 0.0184 0.0112 0.0215 

Mean 0.0004 0.0002 -0.0022 0.0150 0.0291 

Std. Dev. 0.0134 0.0122 0.0274 0.0088 0.0121 

RMS 0.0127 0.0116 0.0261 0.0172 0.0313 

 
2018 KM-48 Phantom UAV GCP Checkpoint Errors 

Check Point X Err. (m) Y Err. (m) Z Err. (m) Horz. Err. (m) 3D Err. (m) 

601 -0.0154 -0.0204 0.0116 0.0256 0.0281 

602 -0.0152 -0.0145 0.0013 0.0210 0.0210 

604 -0.0218 0.0246 0.0148 0.0329 0.0360 

605 -0.0052 0.0167 0.0000 0.0175 0.0175 

606 0.0308 0.0262 0.0038 0.0404 0.0406 

608 0.0092 -0.0142 0.0113 0.0169 0.0203 

609 -0.0005 0.0143 0.0009 0.0143 0.0143 

610 0.0362 -0.0493 -0.0075 0.0612 0.0616 

611 -0.0136 -0.0250 -0.0167 0.0285 0.0330 

612 0.0134 0.0180 -0.0299 0.0224 0.0374 

Mean 0.0018 -0.0024 -0.0010 0.0281 0.0310 

Std. Dev. 0.0201 0.0257 0.0138 0.0141 0.0141 

RMS 0.0192 0.0245 0.0131 0.0311 0.0337 

 
  



 

A11 

2018 KM-49 albris UAV GCP Checkpoint Errors 

Check Point X Err. (m) Y Err. (m) Z Err. (m) Horz. Err. (m) 3D Err. (m) 

701 0.0052 -0.0174 -0.0057 0.0182 0.0190 

702 -0.0091 0.0119 -0.0012 0.0150 0.0150 

704 0.0118 -0.0017 -0.0159 0.0119 0.0199 

705 -0.0086 -0.0083 0.0003 0.0120 0.0120 

706 -0.0115 0.0115 -0.0097 0.0163 0.0189 

707 -0.0082 -0.0043 -0.0268 0.0093 0.0284 

708 -0.0126 0.0012 0.0038 0.0127 0.0132 

710 0.0304 0.0070 -0.0027 0.0312 0.0313 

711 -0.0108 0.0066 0.0168 0.0127 0.0210 

712 0.0102 0.0009 0.0235 0.0102 0.0256 

Mean -0.0003 0.0007 -0.0018 0.0149 0.0204 

Std. Dev. 0.0142 0.0092 0.0146 0.0063 0.0064 

RMS 0.0135 0.0087 0.0140 0.0161 0.0213 

 
2018 KM-49 Phantom UAV GCP Checkpoint Errors 

Check Point X Err. (m) Y Err. (m) Z Err. (m) Horz. Err. (m) 3D Err. (m) 

701 -0.0081 -0.0329 -0.0092 0.0339 0.0351 

702 -0.0184 0.0009 0.0064 0.0184 0.0195 

704 0.0025 -0.0019 0.0127 0.0031 0.0131 

705 -0.0366 0.0016 -0.0123 0.0366 0.0386 

706 -0.0112 0.0521 -0.0085 0.0533 0.0540 

707 0.0011 -0.0057 -0.0010 0.0058 0.0059 

708 0.0105 0.0000 0.0258 0.0105 0.0279 

710 0.0646 -0.0103 0.0108 0.0654 0.0663 

711 -0.0121 -0.0041 -0.0070 0.0128 0.0146 

712 0.0065 0.0222 -0.0130 0.0231 0.0265 

Mean -0.0001 0.0022 0.0005 0.0263 0.0301 

Std. Dev. 0.0266 0.0221 0.0130 0.0208 0.0189 

RMS 0.0252 0.0211 0.0123 0.0329 0.0351 

 
  



 

A12 

2018 KM-82 albris UAV GCP Checkpoint Errors 

Check Point X Err. (m) Y Err. (m) Z Err. (m) Horz. Err. (m) 3D Err. (m) 

1401 -0.0021 0.0078 0.0053 0.0081 0.0097 

1402 0.0017 -0.0183 0.0172 0.0184 0.0252 

1403 0.0150 0.0100 -0.0063 0.0180 0.0191 

1404 -0.0054 0.0039 -0.0167 0.0067 0.0180 

1406 -0.0070 -0.0189 -0.0216 0.0202 0.0295 

1407 0.0072 -0.0145 0.0024 0.0162 0.0164 

1409 -0.0070 0.0012 -0.0148 0.0071 0.0164 

1410 -0.0281 0.0043 0.0163 0.0284 0.0328 

1411 0.0134 0.0126 -0.0069 0.0184 0.0196 

1412 0.0128 0.0116 0.0149 0.0173 0.0228 

Mean 0.0001 0.0000 -0.0010 0.0159 0.0209 

Std. Dev. 0.0131 0.0124 0.0144 0.0068 0.0068 

RMS 0.0124 0.0118 0.0137 0.0171 0.0219 

 
2018 KM-82 Phantom UAV GCP Checkpoint Errors 

Check Point X Err. (m) Y Err. (m) Z Err. (m) Horz. Err. (m) 3D Err. (m) 

1401 -0.0224 0.0139 -0.0076 0.0264 0.0274 

1402 -0.0213 0.0050 0.0070 0.0219 0.0230 

1403 0.0150 0.0285 0.0173 0.0322 0.0366 

1404 0.0002 0.0353 0.0117 0.0353 0.0372 

1406 0.0065 -0.0119 -0.0206 0.0136 0.0247 

1407 0.0111 -0.0268 0.0265 0.0290 0.0393 

1409 -0.0003 -0.0202 -0.0157 0.0202 0.0256 

1410 -0.0169 -0.0223 0.0188 0.0280 0.0337 

1412 0.0269 0.0356 -0.0290 0.0446 0.0532 

1413 0.0051 0.0047 -0.0201 0.0069 0.0213 

Mean 0.0004 0.0042 -0.0012 0.0258 0.0322 

Std. Dev. 0.0163 0.0239 0.0197 0.0108 0.0098 

RMS 0.0154 0.0231 0.0187 0.0278 0.0335 

 
  



 

A13 

2018 KM-117 albris UAV GCP Checkpoint Errors 

Check Point X Err. (m) Y Err. (m) Z Err. (m) Horz. Err. (m) 3D Err. (m) 

2001 0.0065 0.0017 0.0102 0.0067 0.0122 

2002 -0.0024 0.0071 0.0126 0.0075 0.0147 

2003 0.0041 0.0044 0.0127 0.0060 0.0141 

2004 0.0123 -0.0004 -0.0374 0.0123 0.0394 

2006 0.0085 0.0023 -0.0296 0.0088 0.0309 

2007 -0.0100 -0.0177 0.0212 0.0203 0.0294 

2008 -0.0083 -0.0151 -0.0155 0.0172 0.0232 

2009 -0.0169 0.0029 -0.0126 0.0171 0.0213 

2011 0.0021 0.0054 -0.0086 0.0058 0.0104 

2012 -0.0030 0.0132 0.0346 0.0135 0.0372 

Mean -0.0007 0.0004 -0.0012 0.0115 0.0233 

Std. Dev. 0.0091 0.0096 0.0231 0.0053 0.0105 

RMS 0.0087 0.0091 0.0220 0.0126 0.0253 

 
  



 

A14 

2019 KM-48 albris UAV GCP Checkpoint Errors 

Check Point X Err. (m) Y Err. (m) Z Err. (m) Horz. Err. (m) 3D Err. (m) 

601 -0.0044 0.0048 0.0063 0.0065 0.0091 

602 0.0021 -0.0044 0.0160 0.0049 0.0167 

603 0.0027 0.0077 0.0080 0.0082 0.0114 

604 0.0014 0.0090 -0.0033 0.0091 0.0097 

605 0.0041 -0.0053 -0.0139 0.0067 0.0154 

606 0.0023 -0.0044 -0.0166 0.0050 0.0173 

607 0.0014 0.0005 -0.0079 0.0015 0.0080 

608 -0.0016 0.0020 0.0149 0.0026 0.0151 

609 0.0052 -0.0095 -0.0061 0.0108 0.0124 

610 0.0005 0.0050 0.0104 0.0050 0.0116 

611 -0.0015 -0.0019 -0.0167 0.0024 0.0169 

612 -0.0018 -0.0040 0.0012 0.0044 0.0045 

613 -0.0058 -0.0022 -0.0151 0.0062 0.0163 

Mean 0.0004 -0.0002 -0.0018 0.0056 0.0127 

Std. Dev. 0.0032 0.0056 0.0120 0.0027 0.0040 

RMS 0.0031 0.0054 0.0117 0.0062 0.0132 

 
2019 KM-48 Phantom UAV GCP Checkpoint Errors 

Check Point X Err. (m) Y Err. (m) Z Err. (m) Horz. Err. (m) 3D Err. (m) 

601 0.0152 0.0115 -0.0168 0.0191 0.0254 

602 -0.0172 -0.0064 -0.0073 0.0184 0.0198 

603 -0.0311 -0.0311 0.0138 0.0440 0.0461 

604 -0.0151 -0.0185 0.0100 0.0239 0.0259 

605 -0.0019 0.0045 0.0285 0.0049 0.0289 

606 -0.0133 -0.0014 -0.0102 0.0134 0.0168 

607 -0.0134 0.0029 -0.0031 0.0137 0.0141 

608 -0.0177 0.0011 -0.0114 0.0177 0.0211 

609 0.0111 0.0281 -0.0235 0.0302 0.0383 

610 0.0235 0.0088 0.0096 0.0251 0.0269 

611 0.0417 -0.0005 0.0066 0.0417 0.0422 

612 0.0366 0.0041 0.0085 0.0368 0.0378 

613 0.0126 -0.0150 -0.0588 0.0196 0.0620 

Mean 0.0024 -0.0009 -0.0042 0.0237 0.0312 

Std. Dev. 0.0228 0.0148 0.0217 0.0116 0.0136 

RMS 0.0220 0.0142 0.0213 0.0262 0.0338 

 
  



 

A15 

2019 KM-49 albris UAV GCP Checkpoint Errors 

Check Point X Err. (m) Y Err. (m) Z Err. (m) Horz. Err. (m) 3D Err. (m) 

701 -0.0017 0.0047 0.0106 0.0050 0.0117 

702 -0.0037 -0.0046 0.0123 0.0059 0.0136 

703 0.0025 0.0047 -0.0050 0.0053 0.0073 

704 -0.0071 0.0005 -0.0013 0.0071 0.0072 

705 -0.0023 -0.0012 0.0041 0.0026 0.0049 

706 -0.0048 -0.0032 -0.0178 0.0058 0.0187 

707 -0.0039 -0.0044 -0.0181 0.0059 0.0190 

708 0.0047 0.0037 0.0128 0.0060 0.0141 

709 0.0004 -0.0125 0.0180 0.0125 0.0219 

710 0.0018 -0.0004 -0.0081 0.0018 0.0083 

711 0.0091 0.0040 -0.0028 0.0099 0.0103 

712 0.0044 0.0000 -0.0076 0.0044 0.0088 

713 0.0049 0.0029 -0.0107 0.0057 0.0121 

Mean 0.0003 -0.0004 -0.0010 0.0060 0.0122 

Std. Dev. 0.0047 0.0049 0.0118 0.0028 0.0052 

RMS 0.0045 0.0047 0.0114 0.0066 0.0131 

 
2019 KM-49 Phantom UAV GCP Checkpoint Errors 

Check Point X Err. (m) Y Err. (m) Z Err. (m) Horz. Err. (m) 3D Err. (m) 

701 -0.0089 0.0057 -0.0148 0.0106 0.0182 

702 -0.0037 -0.0082 -0.0120 0.0090 0.0150 

703 0.0473 -0.0196 -0.0223 0.0512 0.0558 

704 0.0173 -0.0014 0.0067 0.0174 0.0186 

705 0.0170 0.0041 0.0256 0.0175 0.0310 

706 0.0161 -0.0019 0.0042 0.0162 0.0167 

707 0.0211 0.0315 -0.0043 0.0379 0.0382 

708 0.0101 0.0122 -0.0175 0.0158 0.0236 

709 -0.0282 -0.0042 -0.0282 0.0285 0.0401 

710 -0.0317 0.0037 0.0080 0.0319 0.0329 

711 -0.0154 0.0018 0.0165 0.0155 0.0226 

712 -0.0214 -0.0157 0.0109 0.0265 0.0287 

713 -0.0165 -0.0121 -0.0044 0.0205 0.0209 

Mean 0.0002 -0.0003 -0.0024 0.0230 0.0279 

Std. Dev. 0.0233 0.0131 0.0161 0.0119 0.0117 

RMS 0.0223 0.0126 0.0156 0.0257 0.0301 
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2019 KM-82 albris UAV GCP Checkpoint Errors 

Check Point X Err. (m) Y Err. (m) Z Err. (m) Horz. Err. (m) 3D Err. (m) 

1401 0.0065 0.0065 0.0038 0.0092 0.0099 

1402 -0.0030 -0.0018 -0.0106 0.0035 0.0112 

1403 -0.0019 -0.0011 0.0119 0.0022 0.0121 

1404 0.0005 0.0073 -0.0054 0.0073 0.0091 

1405 -0.0048 0.0052 -0.0097 0.0071 0.0120 

1406 -0.0043 0.0006 0.0126 0.0043 0.0133 

1407 -0.0019 0.0047 0.0232 0.0051 0.0237 

1408 -0.0025 -0.0094 -0.0247 0.0097 0.0265 

1409 0.0008 -0.0094 -0.0169 0.0094 0.0194 

1410 0.0083 0.0005 0.0123 0.0083 0.0148 

1411 0.0029 -0.0048 0.0111 0.0056 0.0124 

1412 -0.0021 -0.0021 -0.0100 0.0030 0.0104 

1413 0.0002 -0.0015 -0.0016 0.0015 0.0022 

Mean -0.0001 -0.0004 -0.0003 0.0059 0.0136 

Std. Dev. 0.0040 0.0054 0.0140 0.0029 0.0064 

RMS 0.0038 0.0052 0.0135 0.0065 0.0150 

 
2019 KM-82 Phantom UAV GCP Checkpoint Errors 

Check Point X Err. (m) Y Err. (m) Z Err. (m) Horz. Err. (m) 3D Err. (m) 

1401 0.0227 0.0085 -0.0040 0.0242 0.0246 

1402 0.0086 -0.0033 -0.0277 0.0092 0.0292 

1403 -0.0100 0.0015 -0.0153 0.0101 0.0183 

1404 0.0219 0.0109 0.0111 0.0245 0.0269 

1405 0.0093 0.0044 0.0167 0.0103 0.0196 

1406 -0.0087 0.0120 -0.0103 0.0148 0.0180 

1407 -0.0206 0.0259 0.0102 0.0331 0.0346 

1408 0.0008 0.0004 -0.0048 0.0009 0.0049 

1409 -0.0030 -0.0263 0.0045 0.0265 0.0269 

1410 -0.0071 -0.0185 0.0243 0.0198 0.0314 

1411 -0.0024 -0.0143 0.0075 0.0145 0.0163 

1412 0.0041 0.0004 -0.0008 0.0041 0.0042 

1413 -0.0019 0.0061 -0.0067 0.0064 0.0093 

Mean 0.0011 0.0006 0.0004 0.0153 0.0203 

Std. Dev. 0.0123 0.0139 0.0140 0.0097 0.0098 

RMS 0.0119 0.0133 0.0135 0.0179 0.0224 
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2019 KM-117 albris UAV GCP Checkpoint Errors 

Check Point X Err. (m) Y Err. (m) Z Err. (m) Horz. Err. (m) 3D Err. (m) 

2001 -0.0061 0.0161 0.0575 0.0172 0.0600 

2002 0.0082 -0.0011 0.0161 0.0083 0.0181 

2003 -0.0076 -0.0002 -0.0098 0.0076 0.0124 

2004 -0.0053 -0.0071 -0.0329 0.0089 0.0341 

2005 -0.0183 0.0002 -0.0004 0.0183 0.0183 

2006 -0.0109 0.0011 -0.0042 0.0110 0.0117 

2007 -0.0055 -0.0062 0.0201 0.0083 0.0217 

2008 -0.0064 0.0048 0.0300 0.0080 0.0310 

2009 -0.0047 -0.0045 0.0187 0.0065 0.0198 

2010 0.0045 -0.0159 -0.0624 0.0165 0.0646 

2011 0.0173 -0.0008 -0.0229 0.0173 0.0287 

2012 0.0062 0.0062 -0.0065 0.0088 0.0109 

2013 0.0049 -0.0010 -0.0147 0.0050 0.0155 

2014 0.0102 0.0026 -0.0145 0.0105 0.0179 

Mean -0.0010 -0.0004 -0.0019 0.0109 0.0261 

Std. Dev. 0.0096 0.0073 0.0294 0.0045 0.0169 

RMS 0.0093 0.0070 0.0284 0.0117 0.0307 
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TLS GCP Target Error Data 

2018 and 2019 KM-82 TLS GCP Target Errors 

Survey 2018-west 2018-east 2019 

3D Errors 

26.98 29.73 31.59 

26.56 21.46 31.24 

17.13 19.91 27.88 

16.38 17.47 25.19 

15.29 15.07 19.15 

14.86 12.62 18.38 

13.60 12.12 17.54 

10.28 11.43 17.49 

9.57 11.31 17.22 

9.20 11.10 17.18 

7.30 10.21 16.89 

6.23 

  

16.82 

3.93 16.64 

  

16.01 

15.37 

14.77 

13.87 

12.74 

11.88 

11.79 

11.61 

9.63 

8.73 

8.43 

7.56 

Max 27.0 29.7 31.6 

Min 3.9 10.2 7.6 

Mean 13.6 15.7 16.6 

Std. Dev. 7.1 6.0 6.5 

RMS 15.3 16.7 17.8 

 
 



 

B1 

Appendix B 

Guideline for using UAV Photogrammetry to Monitor Deformations 
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Guideline for using UAV Photogrammetry to Monitor Deformations 

 

This guideline outlines the methods and techniques that should be applied when using an unmanned 

aerial vehicle (UAV) with structure-from-motion (SfM) photogrammetric processing to monitor 

deformations of structures or landforms. The guideline covers all aspects of UAV monitoring, from 

the pre-site planning stage to the fieldwork, post-processing of data. The guideline not only outlines 

recommended methods but also the missteps to avoid, which are often overlooked. The guideline is 

recommended for any practitioners using UAV photogrammetry to monitor deformations, including 

researchers, surveyors, construction contractors, and government agencies. 

 

1. BACKGROUND 

UAV-SfM is a powerful technology that can generate accurate reconstructions while being easy to use 

and relatively inexpensive. Deformation monitoring with a UAV can be done for projects over a wide 

range of scales and environments, for both man-made structures and natural landforms. UAV 

monitoring is especially useful in remote areas with limited site access. 

1.1 UAV Models 

There are two main classifications of UAVs: fixed-wing and rotary. Fixed-wing UAVs cruise at higher 

speeds and can therefore cover larger areas. They also have longer flight times due to their 

aerodynamic design, making them suitable for large mapping, agricultural, and environmental 

projects. Rotary UAVs cruise at lower speeds, have shorter flight times, and have lower capacities to 

resist wind forces. For these reasons, they are more suited for monitoring smaller areas and 

obtaining more accurate measurements for surveying and construction monitoring. Many modern 

UAVs are capable of flying autonomously on user-designed missions. Autonomous flights allow for 

more efficient and consistent flights that provide more reliable results in the form of higher-quality 

reconstructions. It is more challenging to obtain comparable results with UAVs that can only be flown 
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manually. However, manual flight UAVs can still produce sufficiently accurate reconstructions and 

detect deformations if imagery is intelligently acquired. 

1.2 SfM Processing 

SfM is a series of feature-matching and positioning algorithms that process imagery to generate 

point clouds of the scene viewed in the imagery. The simple and automated workflow of SfM has 

made UAV photogrammetry more attractive for nontechnical users and has promoted its widespread 

use. SfM processing requires a set overlapping images to accurately reconstruct a scene. SfM-

reconstructed point clouds are not generated in a real-world coordinate system and require control 

points to georeference point clouds to a certain coordinate system. Point clouds can be georeferenced 

using positional geotag data of the images obtained by the UAV; however, the accuracy of this method 

is not fully understood yet. Currently, the most common and proven method for georeferencing point 

clouds is to use ground control points (GCPs). A GCP is an easily identifiable point with known 

coordinates that can be marked in images. Artificial GCPs such as checkerboard targets are commonly 

used in UAV photogrammetry. 

1.3 Deformation Measurement 

Deformation is determined by comparing two 3D point clouds. The difference between the point 

clouds is the deformation that occurred. Compared to the sensing instruments available for 

reconstructing 3D point clouds, solutions for comparing point clouds are scarce. The most common 

methods for determining deformation between point clouds are presented in Section 4. An important 

concept in deformation monitoring is the minimum level of detection (LoD), also called the 

confidence interval. The LoD defines the minimum statistically significant change that can be 

detected and is typically calculated for a 95% confidence interval. Put simply, LoD is a numerical 

method of separating deformations large enough to be considered as actual change from 

deformations that could merely be due to point cloud errors. Standard error assessments of GCPs, 

such as RMS error, can be used to estimate the LoD.  
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2. PRE-SITE PLANNING 

2.1 UAV Certifications 

• All UAV operators must obtain the proper certifications 

• UAV rules and regulations vary widely between countries and it is crucial to be abide 

diligently. 

• Certifications may include: pilot license, registration of UAV, radio communication 

certificate, approval/permission to operate in an area, and others. 

2.1.1 UAV Operations in Canada 

• UAV pilots must follow the rules in the Canadian Aviation Regulations (CARs) Part IX—

Remotely Piloted Aircraft Systems (RPAS). 

• UAV operations are categorized into Basic or Advanced operations. Basic operations are 

those that: 1) fly in uncontrolled airspace; 2) fly more than 30 m horizontally from 

bystanders; and 3) never fly over bystanders. If any of these criteria are not satisfied, it is 

considered an Advanced operation. 

• A person must pass either the Basic or Advanced online pilot test provided by Transport 

Canada. Pilot tests cover a wide range of topics including safety, rules and regulations, flight 

planning in Canadian airspace with NAV CANADA, meteorology, insurance and liability, and 

UAV mission planning. 

• All UAVs must be registered with Transport Canada. 

2.2 UAV-SfM Survey Design 

2.2.1 UAV Flight and Image Acquisition 

• A good UAV survey design will consider all the parameters below and strike a balance 

between them. 



 

B5 

• Designing UAV flights is more suited for autonomous flying UAVs, where the flight 

parameters can be defined. Flight parameters can only be estimated during flight of manual 

controlled UAVs. 

• Further considerations when designing UAV surveys: 

◦ UAV battery life, time available in the field, required accuracy of the point clouds, 

and required LoD for deformations. 

Image Quality 

• UAVs with better cameras (i.e. higher resolution) capture more detailed images that 

improve feature identification and matching during SfM processing. 

• When purchasing a UAV, consider the camera resolution. 

Image Network 

• Flying a UAV in a horizontal grid pattern capturing nadir (straight down) images at uniform 

spacing is recommended. This image network is an efficient use of UAV battery and provides 

uniform coverage. 

• Drawback: A systematic vertical doming error can develop due to the self-calibration of 

camera parameters during SfM processing. The doming error causes the centre of the 

reconstruction to be stretched upwards and the edges to be pulled downwards. 

• Two techniques to reduce doming errors: 1) a good well-distributed GCP network 

(discussed in detail below); 2) include additional oblique imagery. 

• A small number of additional oblique images can significantly reduce doming errors. 10–20 

oblique images that together view the full scene is recommended. The optimal viewing angle 

for oblique images 45° to the ground surface. 

Image Overlap 

• Higher image overlap improves the accuracy and density of the reconstructed point cloud. 
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• Image overlap should be consistent across the study area to ensure uniform coverage. 

Minimum image overlap: 75% in both directions (parallel and perpendicular to the UAV 

flight direction). 

Ground Sampling Distance (GSD) 

• GSD is the distance between pixel centres measured on the ground. 

• GSD represents the combined effect of the camera quality (most-likely set at this point based 

on the UAV model) and camera-to-surface distance. Higher UAV flight altitude results in a 

lower GSD, and vice-versa. 

• A lower GSD increases the level of detail in imagery and improves reconstruction accuracy 

and density. 

• Lowering GSD, however, increases the required number of images and therefore increases 

the time and number of flights. 

• When designing UAV surveys, GSD is often the design parameter and camera-to-surface 

distance is a function of the GSD. 

Number of Images 

• Generally, a higher number of images increases the density and accuracy of the 

reconstructed point cloud. 

• Increasing the number of images also increases computation time, so the number of images 

needs to be chosen appropriately for the project. 

• Typically, the survey area, image overlap, and GSD are defined first and the number of 

images is determined accordingly. 

Surface Characteristics 

• Surface characteristics plays a key role in identifying features during SfM processing. 
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• Surveying snow and water will produce poor results because these surfaces have few 

distinct features and can absorb and scatter light. 

• Vegetation causes poor reconstructions because vegetation can move (from the wind) 

during flights and can appear different depending on the camera’s perspective. 

Lighting Conditions 

• Bright, sunny days are not ideal because strong shadows and glares can occur. 

• Overcast but bright days are optimal. 

• UAV surveys should not last longer than 30 minutes to avoid distinct changes in light 

conditions. 

2.2.2 GCP Network 

• It is important to perform site reconnaissance, understand the site conditions, and plan the 

GCP network in advance. 

GCP Principles 

• A minimum of three GCPs is required to georeference a point cloud. 

• GCPs should be equally spaced throughout survey area. 

• GCPs should encompass the entire survey area, being located around the perimeter and 

scattered throughout. 

• GCPs should be placed at varying elevations throughout the survey area, with more in areas 

of high relief. 

Number of GCPs 

• Increasing the number of GCPs provides a more robust solution that is less sensitive to error 

at any one point. 

• The number of GCPs will depend on the quality of GCP measurements, survey area size, and 

required LoD for the deformation measurements. 



 

B8 

• It is better to have too many GCPs than not enough. If additional GCPs are not providing 

accuracy improvements, extra GCPs can be used as checkpoints to provide error estimates 

of the reconstructed point cloud. 

• The optimal distance between GCPs is 1/5 to 1/10 the distance of the object of interest. 

• As a general guideline, a minimum of 8–12 GCPs is recommended. 

2.2.3 Trial UAV Surveys 

• Trial UAV surveys with the GCP network at site-scale should be performed prior to 

fieldwork to estimate the expected LoD. 

• Data acquisition and processing methods should produce results with a LoD appropriate for 

the expected deformations on-site. 

• If the determined LoD is too large, data acquisition methods should be adjusted until an 

appropriate LoD is reached. 

• Possible adjustments: modifying the UAV flight parameters, increasing the number of GCPs, 

or increasing the GCP observation time if using an RTK system. 

• Accurate LoD estimates appropriate for the expected deformations are essential for the 

practitioner’s ability to draw meaningful conclusions from the measured deformations. 

2.3 Preparing for Fieldwork 

• Prepare and pack an operation travel kit that includes: 

◦ Equipment for the UAV system – batteries, propellers, controllers, etc. 

◦ Safety equipment – radios, flashlights, fire extinguisher, etc. 

◦ Personal protective equipment – safety vests, sunglasses, hard hats, sunscreen, etc. 

• Assess weather forecasts to determine if UAV flights will be possible. Weather forecasting 

should begin a week in advance and continue until the operation day. 

• Ensure all batteries for the UAV and other equipment are charged and packed. 
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3. FIELDWORK 

3.1 Establish Survey Benchmark 

• A survey benchmark should be established on-site at the start of fieldwork. 

• Benchmarks must be stable features that can be marked, measured, and accessible. If a 

suitable feature does not exist, install one by hammering a rod deep into the ground. 

• If absolute coordinates are required (i.e. georeferencing to a real-world coordinate system), 

use an RTK survey system to measure the benchmark’s position. The RTK base station 

should be set up above the benchmark and allowed to locate for a minimum of 6 hours. 

◦ Connect the RTK base station to an external battery because batteries in the base 

station may not last the full 6 hours. 

• If absolute coordinates are not required, the benchmark coordinates are not necessary. As 

long as each survey is referenced to the same benchmark, relative deformations can be 

determined. 

◦ For simplicity, the benchmark coordinates can be defined as (0, 0, 0) or (100, 100, 

100), or any (X, Y, Z) coordinates that suit the site conditions. 

3.2 Prepare Site for UAV Flights 

• If in an area near people or vehicles, set up safety signs notifying others of the UAV flights 

being conducted. 

• In crowded areas, this could include setting up a boundary that others cannot enter. 

3.3 Set Up and Measure GCP Network 

• Lay out the GCP network as planned. 

◦ Keep in mind the GCP Principles: equally spaced, surrounding and scattered 

throughout the survey area, and varying elevations. 
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• Measure the GCP positions using accurate survey equipment. The best equipment for 

measuring GCP positions are an RTK survey system and a total station. 

◦ RTK systems are simple to set up, measure data points, and are effective on sites that 

cover a large area or have poor sightlines. However, point measurement 

uncertainties with RTK systems can be large, especially in the vertical direction, and 

cause inaccuracies when georeferencing point clouds. The measurement 

uncertainties are not an issue for large-scale deformation monitoring, but issues can 

arise when small-scale deformations (e.g. < 50 mm) are being monitored. RTK 

measurement uncertainties can be reduced by increasing the observation time at 

GCPs; however, major time increases are often infeasible when conducting UAV 

surveys due to uncertainty and time restrictions associated with unpredictable 

weather conditions. 

∙ If an RTK system is to be used for small-scale deformation monitoring, the 

observation time at each GCP should be 5–7 minutes in order to reduce GCP 

positional errors to acceptable levels. 

◦ Total stations are more suitable for measuring GCP positions on smaller sites where 

small-scale deformations (e.g. < 50 mm) are being monitored. Total stations can 

measure points with sub-millimetre accuracy in significantly less time than it takes 

RTK systems to measure points with 5–10 mm accuracy. One limiting characteristic 

of total stations is that sightlines are required from the benchmark to GCPs. 

3.4 Perform Pre-Flight Checklist 

• Confirm weather conditions are suitable for the UAV. 

◦ Most UAVs cannot operate below 0°C or in rain. 

◦ UAVs are sensitive to strong winds. As a general guideline, wind speed at ground 

level should be less than 10 m/s. 
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• Ensure all UAV system components are not damaged and working properly. 

◦ This includes but is not limited to: the camera, positioning sensors, propellers, 

batteries, GPS/GNSS system. 

• Confirm the data link between the UAV and ground control station (e.g. controller) is 

established and strong. 

• Ensure two-way radios or other communication devices are working properly between the 

pilot and any personnel involved in the operation (e.g. visual observers). 

• Ensure the survey area is clear of all persons and the landing/takeoff area is clear of any 

objects. 

3.5 Conduct UAV Flights 

• It is highly recommended to have a visual observer for operations to assist with monitoring 

the UAV. The visual observer should be located away from the pilot (opposite side of survey 

area) and maintain communication through radios or cellphones. 

• The UAV must remain within visual line-of-sight (VLOS) during an operation. 

• Maintain awareness of the survey area. If people or vehicles enter the survey area, the UAV 

will need to avoid them, and the operation may need to be paused until the survey area is 

clear. 

• Closely monitor the UAV battery during flights. It is recommended to bring the UAV to the 

landing point to change batteries at a minimum of 30% battery. 

• Closely monitor the weather conditions during flights. Wind speeds are often faster at 

higher altitudes. If the UAV windspeed tolerance is exceeded, land the UAV and wait until 

wind speeds are reduced to complete the operation. 

3.6 Perform Post-Flight Checklist 

• General broadcast to the UAV team that the operation is complete. 
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• Inspect the UAV for any visual damage to the body, propellers, camera, etc. 

• Collect the GCPs and take down any site safety signs or notices. 

3.7 Acquire Control Measurements for Validating UAV Deformations 

• Deformation monitoring with UAV should be coupled with another means of measuring 

deformation, such as instrumentation or survey equipment, to validate results. 

• Any instrumentation that measures ground or structural movements are appropriate. 

Instrumentation examples: ShapeArrays, settlement systems, slope inclinometers.  

• Using survey equipment to measure positions and displacement of features allows for 

validation by comparing the feature positions in reconstructed point clouds. 

Survey equipment examples: total station, RTK system. 

◦ Features must be easily identifiable and stable to be located and compared in point 

clouds. If these types of features don’t exist on the site, consider installing 

checkpoints that can be used for this purpose. 

 

4. POST-PROCESSING 

4.1 SfM Processing – Point Cloud Reconstruction 

4.1.1 SfM Software 

• Many software programs are available for SfM processing of images. The primary function 

of all software is to generate point clouds by processing images. 

• Two broad classification: commercial (cost money) or open-source (free). 

◦ Commercial software will be more user-friendly and often include additional 

features such as generating meshes, surface models, and point cloud analysis. 

∙ Examples: Pix4D, Agisoft Photoscan, Autodesk ReCap. 

◦ Open-source SfM software will get the job done but with limited features. 
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∙ Examples: ARC3D, Bundler & PMVS2, CMP SfM, VisualSFM 

4.1.2 SfM Processing Recommendations 

• Include GCPs in the bundle adjustment (i.e. 1-stage georeferencing) to minimize systematic 

positional errors in the reconstructed point cloud.  

◦ Only including GCPs to georeference after the point cloud has been generated (i.e. 2-

stage georeferencing) causes larger errors. 

• Identify GCP locations on the images themselves rather than in the reconstructed point 

cloud to reduce errors and improve overall accuracy. 

• Do not down-sample images (reduced in size) for processing. Down-sampling images 

results in fewer features identified. 

• If the software is having difficulty matching images and generating an accurate point cloud, 

manually identify and mark common features between images. Manually marking features 

can improve the bundle adjustment and point cloud reconstruction. 

• Every SfM software will have different parameters and options for processing. Experiment 

with the parameters to determine the optimal settings that will produce the most accurate 

and dense point clouds. 

4.1.3 Point Cloud Accuracy Assessment 

• Visually inspect point clouds to identify any glaring errors in structure. A common error to 

look out for is single surfaces that are reconstructed as multiple surfaces. This error 

identifies that not all images are registered correctly. 

• Error in a reconstructed point cloud can be assessed with respect to accuracy and precision. 

◦ Accuracy is the closeness of a measurement to a reference. 

◦ Precision is the repeatability of a measurement. 
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• The accuracy of a point cloud can be estimated by comparing a control point’s computed 

coordinates in the reconstruction to its reference coordinates. Checkpoints should be used 

for this because checkpoints are not included in the SfM processing and provide an unbiased 

estimate of point cloud errors.  

◦ If a UAV survey does not have enough GCPs measured to assign checkpoints, assign 

one GCP as a checkpoint and reprocess the point cloud to determine error estimates 

at the checkpoint. Work through the set of GCPs, marking GCPs as checkpoints and 

determining its errors one-by-one. The checkpoint error dataset can then be 

analyzed to estimate the overall errors in the entire point cloud. 

• The precision in a point cloud can be measured by measuring the roughness of points along 

a planar surface (e.g. concrete surface). The variance or deviation of points normal to the 

planar surface can be analyzed to estimate the precision of points within the point cloud. 

• Root mean squared (RMS) is the best measurement of error because it accounts for the 

mean error and variance. 

◦ Mean error: estimate of accuracy. 

∙ Issue: positive and negative deviations can compensate for each other. 

◦ Standard deviation of errors: estimate of precision.  

∙ Issue: only provides confidence intervals around the mean error. 

• Error measurements should be augmented by visualisation of the spatial error distribution 

to protect against systematic errors. 

4.2 Point Cloud Alignment 

• Point cloud alignment is the process of registering point clouds together. It is not necessary 

if georeferencing is accurate. 
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• Point cloud alignment is required if issues occurred while measure GCPs and georeferencing 

was not accurately performed.  

• Alignment can be performed in point cloud processing software. One of the best software 

for point cloud alignment (and many other cloud comparison techniques) is CloudCompare. 

◦ CloudCompare is an open-source, free software developed for processing and 

analyzing 3D point clouds and meshes. The software is commonly used by 

researchers in the change detection and deformation monitoring fields of science 

and engineering. 

4.2.1 Point Cloud Alignment Techniques 

Manual Alignment 

• Manual translation and/or rotation of one point cloud to align with another. 

• Good technique to start with for a rough point cloud alignment. 

• Challenging to accurately align, particularly when rotation of a point cloud is involved. 

Common Point Alignment 

• Common points are selected in both point clouds and the point clouds are aligned based on 

the point positions. A minimum of three points is required for alignment. 

• The method is more accurate with a higher number of common points and when common 

points are spread across the full point clouds. If possible, select static points that have not 

been displaced between the two point clouds. 

• Method can be time-consuming finding distinct features in both point clouds and accurately 

marking them. 

• Because only a small number of points are selected, the alignment accuracy is strongly 

influenced by the accuracy of those points. 

• Generally, this method is used for rough alignments. 
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Iterative Closest Point (ICP) Algorithm 

• ICP is a least squares matching algorithm that transforms (translation and rotation) one 

point cloud (called the source or aligned point cloud) to a reference point cloud. The 

combined distance between the two point clouds is minimized in each iteration until an 

optimal alignment is achieved. 

• ICP allows for fine registration of point clouds. Point clouds must be roughly aligned before 

executing ICP. 

• ICP can be performed in CloudCompare. 

• If the point clouds being aligned have stable areas where no deformation occurred, align 

using ICP based on those areas. This is often the case in rockfall monitoring applications. 

◦ One method to accomplish this is to copy the point clouds and delete all parts except 

the stable areas. Align the stables areas using ICP, then apply the ICP transformation 

matrix to the full point clouds. 

• If there are no areas in the point clouds that are certainly stable, the ICP algorithm can be 

executed on the full point clouds. Performing ICP on larger areas generally reduces influence 

of smaller areas that have deformed and provides a relatively accurate alignment. 

◦ However, aligning point clouds based on unstable areas that have deformed is 

inherently flawed. Effort should be made to remove areas that have certainly 

deformed in order to maximize alignment of stable areas and improve the overall 

alignment accuracy. 

4.3 Deformation Measurement 

• Deformation is determined by comparing two point clouds and measuring distances 

between them. 

• Many programs are designed for comparing point clouds to determine deformations. 
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◦ CloudCompare is free, powerful, and has many functions and tools for point cloud 

comparisons. Additionally, much of the research and development in cloud 

comparison methods is performed in CloudCompare. 

• There are several methods and techniques that can be used to measure deformation 

between point clouds. The four most common are discussed here, and other techniques are 

mentioned below. 

4.3.1 Deformation Measurement Methods 

DoD – Digital Surface Model (DSM) of Difference 

• A DSM is a raster surface dataset produced by gridding a point cloud. A DSM includes 3D 

data in a 2.5D format – the Z (vertical) coordinate is a value attributed to the XY location in 

the grid. The Z value is determined by interpolation of the local data points. 

• A DoD is the comparison of two DSMs by differentiating elevations on a pixel-by-pixel basis. 

• DoD is useful for detecting 1D deformation of planar geometries, such as consolidation 

settlement of infrastructure. 

• Interpolating point cloud data to produce a DSM reduces surface details and limits the 

ability of DoD to detect small-scale deformations. 

• DoD comparisons are not suitable for many projects because deformation is often not 

limited to one direction. 

C2C – Cloud-to-Cloud 

• C2C comparisons are performed directly on the point clouds and do not require 

interpolating or gridding. It is the simplest and fastest method for point cloud comparisons. 

• Its most basic version measures the distance between a point in the compared cloud to the 

closest point in the reference cloud. Improvements in C2C distance accuracy can be made 

by performing a least squares fit of the closest point neighbours in the reference cloud. 
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• C2C is highly sensitive to point cloud roughness, outliers, and differing point densities, 

which can cause deformations to be inaccurate. 

C2M – Cloud-to-Mesh 

• C2M comparisons involve creating a detailed 3D meshed surface of the reference point 

cloud and calculating the cloud-to-mesh distance along the mesh surface normal. 

• This method generally provides accurate distance measurements, but issues arise in areas 

where the two point clouds do not overlap or where the point cloud contains very few 

points. 

• Mesh interpolation issues: 

◦ Mesh construction smooths out small-scale details. 

◦ Interpolation introduces an additional source of error to the comparison. 

◦ Interpolation artifacts may bias deformation measurements. 

• C2M is best suited for situations where an accurate baseline 3D model exists (e.g. from a 

laser scanner) and UAV point clouds can be compared to the baseline mesh surface. 

M3C2 – Multiscale Model-to-Model Cloud Comparison 

• M3C2 is a newer and more sophisticated method for measuring deformations between 

point clouds that has proved to be effective and accurate. 

• M3C2 operates directly on point clouds without meshing or gridding, computes 

deformation along the local normal surface direction, and estimates an LoD for each 

distance measurement. 

• M3C2 provides significant change estimates, that is categorizes deformations greater than 

LoD as significant. This feature allows the user to focus on the significant deformations. 

• Drawback: M3C2 has more parameters to define than other methods. It can take time to 

determine appropriate parameter values. 
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Other Deformation Measurement Methods 

• Calculating volume changes. 

• Tracking displacement of discrete features. 

• Comparing cross-sections. 

4.3.2 Deformation Measurement Recommendations 

• For all deformation measurement methods, a parametric analysis should be performed to 

investigate the effect that the method’s parameters have on the results. 

◦ DoD: Investigate the effects of the grid size on the accuracy of results and processing 

time to determine optimal grid size. 

◦ M3C2: Lague et al. (2013) provides guidance on selecting parameters. 

• Validate the deformation results of one method by using a different method. 

◦ Example: If using M3C2 to measure deformations, perform C2C or C2M comparisons 

to confirm the M3C2 results are reasonable. 

• UAV deformations should be compared to on-site instrumentation or survey data to validate 

the results. 

 

5. CONCLUSION 

UAV photogrammetry with SfM processing is a powerful technology that can rapidly produce 

accurate point clouds for deformation monitoring. The methods and techniques presented in this 

guideline were developed over a three-year period of using UAVs to monitor small-scale 

deformations of embankments in the Canadian Arctic. The author hopes this guideline helps 

practitioners to successfully conduct UAV flights and accurately measure deformations of structures 

and landforms. 

 


