
Gravitational lens modeling with iterative source

deconvolution and global optimization of lens density

parameters

by

Adam Rogers

A Thesis submitted to the Faculty of Graduate Studies of

The University of Manitoba

in partial fulfillment of the requirements of the degree of

DOCTOR OF PHILOSOPHY

Department of Physics and Astronomy

University of Manitoba

Winnipeg

Copyright c⃝ 2012 Adam Rogers



Abstract

Strong gravitational lensing produces multiple distorted images of a background

source when it is closely aligned with a mass distribution along the line of sight. The

lensed images provide constraints on the parameters of a model of the lens, and the

images themselves can be inverted providing a model of the source. Both of these

aspects of lensing are extremely valuable, as lensing depends on the total matter

distribution, both luminous and dark. Furthermore, lensed sources are commonly lo-

cated at cosmological distances and are magnified by the lensing effect. This provides

a chance to image sources that would be unobservable when viewed with conventional

optics.

The semilinear method expresses the source modeling step as a least-squares prob-

lem for a given set of lens model parameters. The blurring effect due to the point

spread function of the instrument used to observe the lensed images is also taken

into account. In general, regularization is needed to solve the source deconvolution

problem. We use Krylov subspace methods to solve for the pixelated sources. These

optimization techniques, such as the Conjugate Gradient method, provide natural

regularizing effects from simple truncated iteration. Using these routines, we are able

to avoid the explicit construction of the lens and blurring matrices and solve the least

squares source optimization problem iteratively. We explore several regularization

parameter selection methods commonly used in standard image deconvolution prob-

lems, which lead to previously derived expressions for the number of source degrees

of freedom.

The parameters that describe the lens density distribution are found by global
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optimization methods including genetic algorithms and particle swarm optimizers.

In general, global optimizers are useful in non-linear optimization problems such as

lens modeling due to their parameter space mapping capabilities. However, these

optimization methods require many function evaluations and iterative approaches to

the least squares problem are beneficial due to the speed advantage that they offer.

We apply our modeling techniques to a subset of gravitational lens systems from the

Sloan Lens ACS (SLACS) survey, and are able to reliably recover the parameters of

the lens mass distribution with both analytical and regularized pixelated sources.
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Chapter 1

Introduction

In this thesis, a number of tools are developed to study and numerically model

strong gravitational lens systems. Chapter 1 describes the simplest lens model, the

point lens, and applies this model to simulate the deflection of starlight during a solar

eclipse. Several eclipses, both past and future, are simulated. A short history of the

phenomenon from the first eclipse observation to the modern day is given. The theory

necessary to describe more complicated lens models is developed in Chapter 2.

Chapter 3 contains the main contribution to the thesis. We extend the range of

applicability of a versatile lens modeling technique, and test the resulting code on a

number of simulated data sets. This work is novel in that the linear system describing

the lensed source is solved for each lens model without an explicit construction of the

matrices involved in the problem, while maintaining the linear least squares formula-

tion. This allows us to use linear optimization methods on larger gravitational lens

source models with more complicated blurring effects than previously possible in a

linear context. The parameters of analytical lens models are simultaneously found by

means of global optimization procedures. This work represents a signficant contribu-

tion and unique approach to the modeling of strong gravitational lens systems.

In Chapter 4, we consider the inclusion of spatially variant blurring effects. This

functionality has never before been included in the source deconvolution step. This

modification is possible due to our matrix-free method developed in the previous

Chapter, and should be useful in modeling large lensed images. Thus, our work
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provides a useful advance toward including more realistic and complicated blurring

effects than previously considered in the gravitational lens literature. The code is

extensively tested in this chapter, including a test on a simulated large-scale system.

We apply our matrix-free method to real data in Chapter 5. We include a num-

ber of modifications, such as an initial step that avoids unphysical, trivial solutions

automatically. This is a powerful feature that allows our global optimization meth-

ods to determine the optimal region of parameter space more easily than previously

possible. Furthermore, the code is shown to perform well in modeling real data using

analytical lens models and pixelated sources. Our code reliably recovers the optimal

parameters of previously studied lens systems, proving the viability of our method on

real data.

The Appendices provide the background for several topics crucial to the argu-

ments in the thesis, including the weak field limit of general relativity, the details of

the background cosmological model used in our code, the operational details of two

common linear iterative optimization schemes, and the details of the global optimiza-

tion routines used in the body of the text. I have tried to keep these derivations as

transparent as possible.

1.1 The Development of Gravitational Lensing

The first mathematical description of gravity was provided by Sir Isaac Newton

in 1687. Newton’s law of universal gravitation describes the force of gravity F acting

between two objects having mass M and m, separated by a distance between their

centers r. This force is then written

F =
GMm

r2
, (1.1)

where G is a universal constant. By using this simple equation, Newton was able to

predict the orbits of the planets and the dynamical behavior of the solar system with

great success. However, Newton had many interests, including optics. He believed

that light was made up of infinitesimal material bodies, each of which was presumed

to have a tiny mass. It seemed natural for Newton to be the first to ask if it is possible
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for the gravitational force to act on light. If this were the case, it would appear to a

distant observer that a light ray would bend around a massive object.

The first quantitative description of light deflection due to gravitation was carried

out by the German physicist Johann von Soldner in 1804 (Soldner 1804). Soldner

used Newton’s law of universal gravitation, Equation 1.1, and found the amount by

which light should be deflected if the path of the ray just grazed the surface of the

Sun. The deflection angle at the edge of the Sun, denoted as α, was calculated to be

α = 0.88 arcseconds. This calculation would remain a mere curiosity until a century

later.

In 1905 Albert Einstein described the theory of special relativity (Einstein 1905).

This theory forever changed our view of the universe, describing space and time

unified in one four-dimensional entity: spacetime. Using this framework, Einstein

was able to show that the laws of electromagnetism require that the speed of light is

constant for all observers. This has some shocking consequences: time and distance

are no longer constant for all observers. Rather, it is the state of relative motion of

two observers that determines the passage of time and distances measured between

them. Since the speed of light is so central to his theory and to the mechanics of

spacetime, Einstein calculated the effect that the Sun would have on a light ray. In

this first calculation, Einstein used an as-yet incomplete description of spacetime to

model the effect. Though Soldner’s work was unknown to him at this time, Einstein’s

initial calculation agreed with Soldner’s result.

Following his inital successes, Einstein began to work on a more complete descrip-

tion of spacetime, known as general relativity (GR; Einstein (1915)). This theory

was Einstein’s masterwork and was published in 1915. Once again Einstein demol-

ished commonly accepted notions of the universe. In GR, gravity is a consequence of

spacetime “curving” around a massive object.

GR is a remarkable theory because it includes all of the results of special relativity

(found when spacetime is not curved at all) and Newton’s law of gravitation (found

when spacetime is only gently curved, like on the surface of the Earth and far from

the Sun). This means that all of the successes of both Einstein and Newton’s former

works are contained in GR. The theory also makes some predictions that are far from
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our everyday experience, describing the physics of black holes, the expanding universe

and the big bang.

Once his description of spacetime was complete, Einstein returned to the question

of light deflection due to gravity. This time, Einstein used the full theory of GR, taking

into account the spacetime curvature around the Sun, to calculate the deflection angle,

α. Surprisingly, he found that the solution was twice Soldner’s previously calculated

result. This prediction became one of the first tests of GR, and provided a crucial

piece of evidence in favour of Einstein’s theory of gravitation.

The next sections derive details of the simplest lens model, the point mass lens,

and develop the basic properties of the lens effect. We then review the details of the

original 1919 eclipse expedition used to verify GR, and use the point mass lens to

simulate the deflection of star light in the upcoming eclipses of 2012 and 2019. We

conclude this introduction by discussing modern observations of gravitational lens

phenomena over a variety of scales.

1.2 Testing General Relativity

Gravitational lens effects are described by a transformation between coordinate

systems that specify the positions of the source and lensed images. The link between

these coordinate systems is the deflection angle field produced by the lens mass. Our

discussion of lensing theory follows the approach and notation in Schneider, Ehlers

& Falco (1992), Narayan & Bartelmann (1995) and Petters et al. (2001).

Consider a coordinate system centered on the lens, such that the z direction defines

the optic axis and ξ = (ξx, ξy) is a position vector in the plane orthogonal to the z

direction. We refer to the ξ plane as the lens plane, and consider background objects

on the source plane (Refsdal 1964). We denote the distance to the lens plane along

the optic axis as Dd and the distance to the source plane Ds. Since these distances are

large, most of the deflection occurs near the lens itself. Due to the small size of the

lens with respect to the light path, we use a thin lens approximation to describe the

light deflection. This approximation treats the mass of the lens as a two dimensional

distribution on the lens plane. The deflection angle produced by a thin lens is a vector
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field α̂, given as a function of the lens potential in Equation A.66:

α̂ =
2

c2

∫
∇⊥ϕ dz. (1.2)

The gradient in this equation is the two dimensional gradient in the lens plane with

respect to ξ (Schneider 1985):

∇⊥ = ξ̂x
∂

∂ξx
+ ξ̂y

∂

∂ξy
, (1.3)

where we have used ξ̂x and ξ̂y as unit vectors in the x and y directions on the lens

plane, respectively. The Newtonian potential of a point lens with mass M is written

in terms of the lens plane coordinates:

ϕ(ξ, z) = − GM

(ξ2x + ξ2y + z2)
1
2

. (1.4)

Equation 1.2 gives the deflection angle of the point lens

α̂ =
4GM

c2ξ
ξ̂, (1.5)

where ξ̂ is a unit vector in the direction of the lens. Since we observe positions

on the plane of the sky, it is simpler to refer to the lens mass and the positions of

lensed images in terms of the angular Cartesian coordinates θ = (θx, θy), such that

ξ = Ddθ. Angular positions on the source plane are denoted by β = (βx, βy) (Narayan

& Bartelmann 1995).

Consider the geometrical relationship between the image and source positions in

Figure 1.1. It is apparent from the figure that

Dsβ = Dsθ −Ddsα̂, (1.6)

where we have written the distance between the lens and source plane Dds. Equation

1.6 can be simplified by dividing through by the source distance Ds, such that we

define the reduced deflection angle

α =
Dds

Ds

α̂. (1.7)
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Figure 1.1: The Geometry of the Lens Mapping

The geometry of the lens mapping. An observer at O receives light rays (bold red line) emitted

from an object S as the rays pass by a lensing mass. The observer sees an image of S at the image

point, labelled I. The angular diameter distances between source, deflecting mass and the difference

between them are Ds, Dd and Dds respectively.
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The thin lens equation can be written

β = θ −α (θ) . (1.8)

The lens equation is nonlinear since the deflection angle depends on the image coordi-

nates (Schneider, Ehlers & Falco (1992); Petters et al. (2001); Narayan & Bartelmann

(1995)). Due to this nonlinearity, many image locations θ may satisfy Equation 1.8

for a single source position β. This is the explanation for multiple imaging in gravi-

tational lens systems. Note that when describing the deflection angle of the Sun the

distance to the deflector is much smaller than the distance to the background stars,

such that Dd ≪ Ds and α ≈ α̂ by Equation 1.7.

Noting the symmetry of the lens, we consider the scalar deflection angle due to a

point source using angular Cartesian coordinates, such that Equation 1.5 becomes

α(θ) =
4GM

c2Ddθ
. (1.9)

Given the mass of the SunM and the solar radius r = Ddθ, we find that the deflection

angle at the limb of the Sun is α = 1.75′′. When the deflection angle is inserted in the

thin lens equation, we find a quadratic relationship in terms of the image positions

θ2 − βθ − 4GM

c2Dd

= 0, (1.10)

which can then be solved by application of the quadratic formula:

θ± =
1

2

(
β ±

√
β2 +

16GM

c2Dd

)
. (1.11)

This expression gives the resulting deflected position of the star as a function of

undeflected position β. Note that the equation has two solutions, θ+ and θ−. In the

case of lensing by the Sun, one solution (θ−) is near the center of the Sun’s disk and

cannot be observed. Therefore, during an eclipse the position of a background star will

be deflected to a new position θ+. Though the magnitude of the deflection is small,

Einstein knew that if the lensing effect was observed by the amount he calculated it

could be used to validate his theory of GR along with all of its exotic predictions.

However, the measurements are difficult in practice for a variety of reasons.
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In order to observe gravitational lensing of light by the mass of the Sun, it is

necessary to accurately measure the apparent positions of the background stars. This

can be done by observing the sky during a solar eclipse. With the moon occulting the

Sun’s disk at totality, enough sunlight is blocked so that stars are visible and the stars

nearest the Sun are deflected the most severely. The separation between the stars

can then be measured in the sky when the Sun is absent, and the difference is due to

the gravitational lens effect. From Equation 1.5 we can see that the deflection angle

decreases as 1/θ as we move away from the Sun. The maximum deflection possible

is therefore 1.75′′, but smaller deflections are observed in practice since observations

require bright stars be present near the limb of the Sun during totality of the eclipse.

Furthermore, the observations have to be made in the path of totality, so an expedition

would usually have to be mounted and astronomical equipment moved into place at

the site.

The first observer to undertake the challenge of testing GR was the British as-

tronomer Arthur Eddington. Eddington, along with the Astronomer Royal, Frank

Dyson, planned an expedition to sites in Africa (Principe) and Brazil (Sobral), to

observe the 1919 eclipse (Dyson, Eddington & Davidson 1919). The expedition was

beset by difficulties. While there, one of the telescopes malfunctioned due to the

heat, and produced only blurry images (Almassi 2009). Furthermore, the Principe

site was shrouded in cloud cover for hours before totality. The clouds only parted a

half hour before the critical moment, allowing for the team to scramble to produce

reliable observations (Kennefick 2007).

In order to illustrate the difficulty of these observations, we have produced graph-

ics using the MATLAB programming language (http://www.mathworks.com) that

simulates the positions of the stars Eddington observed during the eclipse. We found

the dates and locations of totality of solar eclipses using the NASA Eclipse web-

site (http://eclipse.gsfc.nasa.gov). We then find the undeflected positions β of the

background stars near the Sun at this time and location on Earth using planetarium

software (Starry Night Pro version 6.0). Using these positions in Equation 1.11, we

calculate the resulting positions θ+ as they would appear under the effect of gravita-

tional lensing by the Sun.
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Though the value 1.75 arcseconds is often used casually, it is difficult to com-

prehend how tiny an angle this truly is in practice. To demonstrate this, consider

Figure 1.2. The large upper panel shows the stars’ undeviated position and observed

deflected position under the gravitational lens effect, which appears at first glance

non-existant! However, a closer inspection of the stars (lower panels) show that there

is actually a deflection of each of these stars though their deviations are extremely

small. Nevertheless Eddington’s 1919 expedition managed to find a solar deflection

angle of α = 1.61′′ ± 0.30 at Principe and α = 1.98′′ ± 0.12 at Sobral, versus the GR

value of 1.75′′. These observations favor a large deflection angle as found from GR

rather than half this value, which would have suggested the Newtonian value Soldner

arrived at. Eddington’s observations validated GR and forever burned Einstein’s

name into the public consciousness.

There remains a significant amount of controversy over Eddington’s results. The

plates that were discarded from the initial analysis were obtained with the 13” As-

trographic telescope of the Royal Observatory at Sobral. These plates were said to

show a deflection that was much smaller than Einstein predicted, α = 0.93′′. This

deflection angle is more in line with the Newtonian prediction than the prediction

of GR. If these plates had been included in the original analysis the measurements

would have significantly reduced Eddington’s observed value of the deflection angle.

The problem with these plates is that the telescope focus seems to have changed

significantly between reference image and eclipse observation due to the heat on site

and was therefore discounted. Since Eddington’s observations were a strong piece of

evidence in support of Einstein’s theory this would have been a serious setback for

GR. However, re-analysis of the surviving Sobral plates in 1979 (Harvey 1979) has

shown that when properly referenced using modern means, the Sobral plates give a

result consistent with the other observations, yielding a revised deflection angle of

α = 1.52′′ ± 0.34.
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Eclipse Field − Principe, May 29, 1919

A

B
C

A. HIP20842

α =  1.02"

B. κ2 Tauri

α =  0.74"

C. κ Tauri

α =  0.62"

Figure 1.2: The 1919 Eclipse - Principe, Africa

Top: Configuration of stars during the 1919 eclipse as seen from Principe, Africa. Circles represent

the true positions of background stars, and image positions are represented by a cross. Bottom: The

lower set of figures represent close-up views of the stars indicated in the top panel.

1.3 Historical Development

Since Eddington’s historical expedition, the observation of the gravitational lens

effect has been repeated a number of times. Efforts were made to observe subsequent

eclipses in 1922, 1929, two expeditions in 1936, 1947, 1952 and 1973 (Will 1993).

Subsequent efforts to measure the effect provided similar results with little improve-

ment. The measured values of the deflection angle lie typically between 0.75 to 1.5
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times Einstein’s predicted value. Even the 1973 expedition achieved only a modest

accuracy of 0.95± 0.11 times the predicted value.

Extremely high accuracy is required to experimentally validate GR by the deflec-

tion of starlight during an eclipse using visible light, and the measurement is difficult

to make even with modern instrumentation. In fact, the 1973 eclipse is the last time

the measurement was attempted optically. Astronomers had found a better way to

perform these kinds of observations using the fact that GR predicts gravitational

lensing affects all wavelengths of light equally.

A much more accurate measurement of the lensing effect can be made using ra-

dio telescopes and quasars rather than observations of stars in the visible spectrum.

Quasars are cosmologically distant active galaxies. These galaxies are highly lumi-

nous (≈ 100 times that of the total light of average galaxies like the Milky Way),

which allows them to be seen from cosmological distances. About one in ten quasars

are also radio loud and can be observed in daylight at radio wavelengths; thus a solar

eclipse is not required. These radio loud quasars provide excellent targets for verify-

ing the lensing effect provided that several of them can be observed simultaneously

near the limb of the Sun. In fact, this is exactly what was found with the quasar pair

3C273 and 3C279. Every October, the Sun passes this pair of quasars in the sky,

and the separation between them can be readily measured using radio interferometry

(Will 1993). By making a series of measurements the deflection angle as a function

of distance from the Sun can be determined, and the results have shown that a light

ray passing near the limb of the Sun behaves as GR predicts. These observations

were carried out annually between 1969 and 1975, and the uncertainty in the mea-

surements was gradually reduced from the 20% error found in optical light deflection

measurements to 0.01% using lensed groups of quasars (Fomalont and Sramek 1975).

Over time the technique was improved to µarcsecond - a millionth of an arcsecond -

accuracy (Robertson, Carter and Dillinger 1991). In fact, due to these high-precision

methods, the gravitational lensing of background radio sources by the planet Jupiter

was first carried out in 1991. Though the observations only had a precision of 50%,

this result is impressive because the lensing effect at the limb of Jupiter comprises

an angle of only 17 milliarcseconds, a hundred times smaller than that of the Sun
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(Treuhaft & Lowe 1991).

1.4 Future Eclipses

Using MATLAB and planetarium software, we investigated the first attempt to

measure the gravitational lens effect by Eddington during the 1919 eclipse, shown in

Figure 1.2. It is fortunate that the first such measurement was carried out in 1919, as

the largest stellar deflection seen was α = 1.02′′, whereas successive attempts would

not be as ideal. Our approach was also used to simulate the lensing of starlight

during a number of other eclipses, including the eclipse of 1979 which saw totality

over Winnipeg, Manitoba (see Figure 1.3), and the upcoming eclipse of 2012, which

will be visible from Cairns, Australia (Figure 1.4). Note that the maximum deflection

angles for these eclipses are α = 0.60′′ and α = 0.72′′ respectively, significantly less

than the fortuitous 1919 eclipse. We have also calculated maximum deflection angles

for all solar eclipses for the next 10 years, and found that a large stellar deflection

should be seen during the eclipse of July 2, 2019 which will occur over the Pacific

ocean. Our calculation shows that the nearest star to the Sun during this eclipse

has magnitude 6.5, and should show a displacement of α = 1.30′′, a larger deflection

than was seen during the 1919 eclipse. Since this occurs 100 years after Eddington’s

initial expedition, there may be some interest in performing a similar observation. For

optical deflection measurements, the July 2019 eclipse will provide an ideal situation,

provided that this star is not obscured by the Sun’s corona. This simulation is shown

in Figure 1.5. Our eclipse results are summarized in Table 1.1.
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Table 1 - Undeflected Stellar Information
Eclipse Star R. A. Dec. Mag. α (”)

1919
HIP20842 4h 28.004m 21◦ 37.254’ 5.71 1.02± 0.05
κ2 Tauri 4h 25.406m 22◦ 12.061’ 5.25 0.74± 0.04
κ Tauri 4h 25.359m 22◦ 17.092’ 4.18 0.62± 0.03

1979
HIP111761 22h 38.367m −7◦ 53.854’ 6.21 0.60± 0.03
HIP111577 22h 36.283m −7◦ 39.865’ 7.00 0.45± 0.02
HIP111414 22h 34.344m −9◦ 18.310’ 8.46 0.39± 0.02

2012
HIP74728 15h 16.328m −18◦ 37.749’ 8.15 0.72± 0.04
TYC6174 15h 19.450m −18◦ 17.308’ 7.59 0.34± 0.02
HIP74593 15h 14.467m −18◦ 25.717’ 6.75 0.26± 0.01

2019
HIP32431 6h 46.173m 23◦ 22.288’ 6.50 1.30± 0.07
HIP32367 6h 45.389m 23◦ 38.774’ 7.15 0.70± 0.04
HIP32285 6h 44.411m 22◦ 34.744’ 8.03 0.62± 0.03

Table 1.1: Summary of Eclipse Modeling Results

Stellar positions are found directly from Starry Night Pro+ v6.0, which has a stated accuracy of

0.5′′. Using this value and the angular size of the solar radius we have calculated errors for the

deflection angles obtained from equation 1.11. Deflection angles are calculated at the location and

time of greatest eclipse as stated on the NASA Eclipse website.
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Eclipse Field − Winnipeg, Manitoba, Feb. 26, 1979

A

B

C

A. HIP111761

α =  0.60"

B. HIP111577

α =  0.45"

C. HIP111414

α =  0.39"

Figure 1.3: The 1979 Eclipse - Winnipeg, Canada

Configuration of stars during the 1979 eclipse as seen from Winnipeg, Manitoba, Canada. Note the

small size of the deflection angles compared to the 1919 eclipse.
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Eclipse Field − Cairn, Australia, Nov. 13, 2012

A

B

C

A. HIP74728

α =  0.72"

B. TYC6174−106901

α =  0.34"

C. HIP74593

α =  0.26"

Figure 1.4: The 2012 Eclipse - Cairns, Australia

Configuration of stars during the 2012 eclipse as seen from Cairns, Australia.
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Eclipse Field − South Pacific Ocean, July 2, 2019

A

B

C

A. HIP32431

α =  1.30"

B. HIP32367

α =  0.70"

C. HIP32285

α =  0.62"

Figure 1.5: The 2019 Eclipse - Pacific Ocean

Configuration of stars during the 2019 eclipse as seen from the Pacific Ocean. Note the large

deflection of star “A”.

1.5 Gravitational Lensing Occurs on Many Scales

After the gravitational lens effect of the Sun was measured by Eddington, interest

in the phenomenon grew and other lens configurations were considered. Since the

lens mapping is non-linear, light rays traveling along separate paths around the lens

cause multiple images of a single source to occur. In fact, with the absence of any

significant perturbing mass along the line of sight, the exact alignment of background

and foreground stars with respect to an observer produces an image that would ap-

pear as a full ring (Chwolson (1924); Einstein (1936)), found by setting β = 0 in

Equation 1.11. When the background star is slightly offset from the line of sight, an
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observer would see the images as a pair of partial arcs. While the size scale of individ-

ual stars prohibit direct observation of multiple imaging due to the extremely small

deflection angles involved (Einstein 1936), the lens effect provides magnification that

significantly increases the amount of light reaching an observer. Paczynski (1986)

showed that the apparent intensity of background sources changes in a characteris-

tic way when foreground masses pass in front of background stars. By consistently

monitoring a field of many stars on a regular basis it is possible to detect this change

in flux (Udalski et al. (1992); Alcock et al. (1993); Sackett (1995)), which is known

as microlensing. The microlensing effect has been used to detect the lensing of stars

in the Large Magellanic Cloud and the bulge of the Milky Way by objects within

our galaxy, and searches have also been used to observe planets orbiting distant stars

(The MOA and OGLE Collaborations 2011). Furthermore, these techniques have

been applied to successfully identify the presence of massive compact halo objects

(MACHOs) that populate the halo of the Milky Way. Detecting these objects is dif-

ficult because they emit little to no radiation, such as quiescent compact objects and

dim, low-mass stars. It has been estimated that MACHOs contribute up to 20% of

the dark matter content of our galaxy (Alcock 2000). Highly magnified microlensed

stars have been used to estimate the radius of these stars (Alcock et al. 1997b) and

the first observations of limb darkening on stars other than the Sun have been made

using microlensed sources (Witt 1995).

Despite the difficulty in directly observing gravitational lens effects due to indi-

vidual stars, Zwicky (1937) postulated that far more dramatic examples could be

observed when a background galaxy is lensed by a foreground galaxy or cluster of

galaxies. Zwicky showed that when this is the case, the huge mass of the lens should

provide a large enough gravitational field to significantly bend light and form multiple

images of a single source on a scale that might one day be observed. Since then, strong

gravitational lensing has grown from curiosity into the realm of precision science. The

first galaxy-scale lens system was observed by Walsh, Carswell & Weymann (1979),

when dual images of the radio bright galaxy QSO0957 + 561 were subsequently con-

firmed by spectroscopy to be separate views of the same object. The first full radio

ring, MG1131+0456 (Hewitt et al. 1988), was modeled using an analytical lens that
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provided evidence for the interpretation of the system as a lensed object (Kochanek

et al. 1989). Hundreds of strong lens systems are now known through the work of sur-

veys dedicated to finding new examples of this phenomenon (Kochanek et al. (1998);

Koopmans & Treu (2002); Koopmans et al. (2006)). These systems provide some

of the most visually impressive examples of gravitational lensing, forming complex

image configurations (Bolton et al. 2008) and magnifying the received flux of distant

background galaxies (Zwicky (1937b); Brewer & Lewis (2005); Negrello et al. (2010)).

Gravitational lensing effects are sensitive to the total mass distribution of the lens.

Therefore, the multiplicity and morphology of the images allow strong constraints to

be imposed on mass models of the deflector. By comparing these mass models with

the observed surface brightness of the lens galaxy, the distribution of dark matter

in the deflector can be studied. This fact has tremendous implications because the

nature and composition of dark matter is presently unknown. Strongly lensed images

also offer a wealth of information about the sources that create them. Due to mag-

nification, the lensing effect allows us to study the surface brightness of extremely

distant, faint galaxies on sub-kiloparsec scales (Marshall et al. 2007). Lensed images

of these primordial galaxies allow for spectroscopic studies that can provide informa-

tion about star formation rates and permit the estimation of chemical abundances

in galactic building blocks (Stark et al. 2008). The observation of lensed quasars

provides a view into the cores of these systems, revealing details of the supermas-

sive black holes at their centers (Schneider et al. 2006) as well as the accretion disks

responsible for their massive luminosities (Kochanek 2004). These systems offer a

unique opportunity to study the links between galaxy development and black hole

growth at high redshift (Hopkins et al. 2009). Entire galaxy clusters have been ob-

served acting as lenses (Bonnet, Meiller & Fort 1994), providing a magnified view

of many background objects simultaneously. These cluster lenses can produce giant

arcs, stretched images of background galaxies that are many times longer than wide

(Lynds & Petrosian 1986). Observations of giant arc systems provide evidence of

the presence of dark matter in the cluster cores (Paczynski 1987) and impose strong

constraints on models of the cluster mass distribution.

There is significant overlap between galaxy scale strong lensing and the microlens
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regime. Consider the potential of a galaxy halo which may be divided into a large

scale, smooth potential superimposed with small-scale perturbations of lesser mag-

nitude. The general configuration of images depends on the bulk potential of the

galaxy, while the magnifications of the images are sensitive to the presence of the

perturbations. The change in magnification results in time delays that vary from

what would be expected from a smooth model alone. Time delays have been mea-

sured for lensed quasars (Kochanek et al. (1998); Mao & Schneider (1998); Saha et

al. (2006)) and provide a method of studying the substructure of galactic halos in

detail. The morphology of these dark matter halos has far reaching implications for

our understanding of the involvement of dark matter in the formation of structure in

the universe (Kravtsov 2010).

Far from the centers of galaxies and galaxy clusters, the density of matter is not

sufficient to produce multiple images. However, weak lensing effects manifest as a

systematic distortion in the shapes of background sources (Tyson et al. 1990). Since

galaxies generally posess complex morphologies, the magnitude and direction of this

shear must be measured by observing the correlated distortions of large groups of

sources. Measurements of cosmic shear are then used to reconstruct the mass density

distribution. This effect probes mass distributions when strong lensing is not observed

and cannot provide any constraints on the lensing mass (Kaiser & Squires (1993); van

Waerbeke & Mellier (2003)). Weak lensing has produced some of the most striking

evidence for the existence of dark matter in the universe (Markevitch et al. 2004) and

is now widely used to model the distribution of matter on large scales (Brainerd et

al. (1996); van Waerbeke et al. (2000)).

A common theme among these distinct regimes is the unique tool that lensing

provides to map the distribution of matter on a variety of scales. However, grav-

itational lenses are also valuable due to their inherent connection to cosmological

parameters (Dobke et al. 2009). Observable lens properties depend on the ratios of

angular diameter distances, which are sensitive to cosmological models (Chae (2007);

Oguri et al. (2008); Suyu et al. (2010)). Refsdal (1964) showed that there is a time

delay due to path length and time dilation effects between the strongly lensed images

of a source. A measurement of these time delays for variable sources constrain the
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value of the Hubble constant. The fraction of lensed systems in a sample depends

on the number, size and redshift distribution of lens populations, so lens statistics

can be used to study the growth of structure in the universe (Schneider et al. 2006).

Due to these varied applications, gravitational lensing provides a versatile approach

to study a host of significant subjects in modern astrophysics.

We focus on the strong lensing regime in this work. To describe lensing by indi-

vidual galaxies, a more thorough treatment of the lens formalism is needed, and this

theory is developed in Chapter 2. Chapter 3 outlines the development of algorithms

to model gravitational lens systems and presents our unique approach to lens mod-

eling. Chapter 4 presents a generalization of our modeling algorithm that allows for

the inclusion of spatially variant point spread functions (PSFs), and Chapter 5 details

the application of our modeling code to a subsample of galaxies from the Sloan Lens

ACS (SLACS) group.
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Chapter 2

Gravitational Lens Theory

In section 1.2, we derived the deflection angle of a point mass lens, which is useful

when lensing effects occur on the scale of individual stars. However, we are interested

in studying the strong lensing regime where more general asymmetric lens models are

needed to describe the mass distributions of galaxy scale objects. Consider a three

dimensional matter distribution centered on the lens plane, with density ρ(ξ, z) and

potential ϕ(ξ, z). By the thin lens approximation, it is appropriate to represent the

lens plane as a two dimensional mass sheet. To find the projected two dimensional

surface density distribution, we simply integrate along the z direction. Using the thin

lens approximation, the limits of integration are taken to be from −∞ to ∞:

Σ(ξ) =
∫
ρ(ξ, z)dz. (2.1)

It is useful to perform a similar projection on the corresponding Newtonian po-

tential (Schneider, Ehlers & Falco 1992). Defining the angular gradient operator

∇θ = Dd∇⊥, and making use of Equations 1.7 and 1.2, we have

ψ(θ) =
Dds

DsDd

2

c2

∫
ϕ(Ddθ, z) dz, (2.2)

such that

α(θ) = ∇θψ(θ). (2.3)

A projected Poisson equation can be found using the lens potential. Let us return

to the three dimensional Newtonian potential, ϕ(ξ, z). Poisson’s equation integrated
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over z gives ∫
∇2ϕ(ξ, z)dz = 4πG

∫
ρ(ξ, z)dz = 4πGΣ(ξ), (2.4)

using the definition of Σ(ξ) in Equation 2.1. We write ∇θ in terms of the full 3D

Laplacian operator such that

∇2
θ = D2

d

(
∇2 − ∂2

∂z2

)
. (2.5)

Using this expression with Equations 2.2 and 2.4 gives

∇2
θψ(θ) =

2

c2
DdsDd

Ds

4πGΣ(θ) (2.6)

where ϕ(ξ, z) → 0 as z → ±∞. We define the critical density of the lens (Petters et

al. (2001); Schneider, Ehlers & Falco (1992)) as

Σc =
Ds

DdDds

c2

4πG
, (2.7)

which is an important quantity in lensing theory that we return to in Section 2.1. For

now we use this constant as a normalization term to simplify the projected Poisson

equation (Schneider 1985):

∇2
θψ(θ) = 2κ(θ) (2.8)

where the convergence κ is defined as

κ(θ) =
Σ(θ)

Σc

. (2.9)

The Poisson equation is a linear second order differential equation, and a consequence

of this linearity is that the superposition principle holds for its solutions ψ(θ). This is

expected since we are working in the linearized weak field limit of GR (See Appendix

A), when the lens velocity is small with respect to the speed of light v ≪ c and the

gravitational fields are weak, such that |ϕ| ≪ c2. This implies that lens potentials

can be added together and the total deflection angle field can be easily calculated. To

illustrate this, consider the infinitesimal deflection of a mass element dm = Σ(θ)d2θ

using Equation 1.9. The total deflection angle is simply the sum of the contributions

of each mass element over the entire lens plane:

α(θ) =
1

π

∫
κ(θ)

θ − θ′

|θ − θ′|2
d2θ, (2.10)
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using the definition of κ in Equation 2.9. From Equation 2.10 with the identity

∇ ln |θ| = θ

|θ|2
, (2.11)

we are led to the general form of the lens potential

ψ(θ) =
1

π

∫
κ(θ) ln |θ − θ′|d2θ′ (2.12)

which is a solution of the two-dimensional Poisson equation.

2.1 Critical Density

The physical interpretation of the critical lens density Σc defined in Equation 2.7

can be understood by considering a lens density distribution with circular symmetry

that has constant density Σ within an area of radius Ddθ. The total mass of such a

lens is M(θ) = πD2
dθ

2Σ, where we now treat θ as a one-dimensional quantity due to

the symmetry of the mass distribution. The reduced deflection angle, Equation 1.7,

using a symmetric lens (Equation 1.9) becomes

α(θ) =
DdDds

Ds

4πGΣ

c2
θ. (2.13)

Note that the coefficient multiplying the surface density is the reciprocal of the critical

density. The lens equation in this case, (Equation 1.8), can be expressed as

β = θ
(
1− Σ

Σc

)
. (2.14)

Placing a point source directly behind this lens at β = 0 implies that a ring-like image

should be formed just as it was for a point mass due to the circular symmetry of the

lens. The ring occurs for non-trivial values of Σ that satisfy

κ =
Σ

Σc

= 1. (2.15)

This condition shows that multiple imaging occurs if the surface mass density along

the line of sight is equal to the critical density.
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2.2 Magnification

Gravitational lensing redistributes light rays emitted by a source and does not

change the total number of rays. Therefore the surface brightness of the source must

be conserved. Consider a resolved source that has an intensity Iν at frequency ν, such

that the surface brightness on the source plane is described by Iν(β). The intensity

in the image plane is then given by

Iν(θ) = Iν(β(θ)). (2.16)

However, the cross sectional area of a bundle of light rays is affected by the deflection.

To illustrate this effect, consider a bundle of light rays with a circular cross section

that passes by a lensing mass distribution. The deflection depends on the distance

of each ray from the lens center, so that neighbouring rays are deflected by different

amounts. Therefore the cross section of the light ray bundle is distorted from the

undeflected case. Since the lensing effect alters the apparent area of a source, it also

changes the corresponding flux such that the surface brightness is conserved.

To determine the degree of magnification, suppose that the source in the absence

of lensing subtends a solid angle Ωβ on the sky, and let the solid angle of the corre-

sponding image be Ωθ (see Figure 2.1). The flux of the source is

Fβ = IνΩβ (2.17)

and the image has flux

Fθ = IνΩθ, (2.18)

so that the magnification is given by the ratio of these two expressions

µ =
Fθ

Fβ

=
Ωθ

Ωβ

. (2.19)

The distortion of area elements is given by the Jacobian A(θ) of the lens equation.

Using the definition of the projected lens potential and defining the partial derivatives

as ψij = ∂2ψ/∂θi∂θj, we write the components of the Jacobian as

Aij = δij − ψij. (2.20)
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Source Plane

Figure 2.1: Illustration of Gravitational Lens Magnification

Detected flux from an extended object in the source plane. The blue solid angle dΩβ represents the

light rays collected by the observer in the absence of lensing. The red solid angle dΩθ shows the

apparent size of the source under the influence of the lensing effect.
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The magnification factor for a general lens surface density distribution is found by

calculating the inverse of the Jacobian determinant

µ(θ) =
1

det(A(θ))
. (2.21)

The flux of an infinitesimal source with an image at θ is changed by a factor of

magnitude |µ|. In general, the magnification factor µ can change sign over the image

plane. Negative magnifications represent areas of reversed parity where the lensed

image is mirrored with respect to the orientation of the source. As we shall see in

Section 3, the conservation of surface brightness is the foundational principle behind

several important methods for modeling strong lens systems.

It is also possible for the Jacobian determinant to vanish at certain points on the

image plane, such that µ→ ∞. In general the set of these critical points lie on closed

curves in the image plane, which are called caustic curves when mapped to the source

plane. Caustic curves define closed boundaries on the source plane enclosing regions

where a source produces a constant number of multiple images. When a source crosses

a caustic from “outside” to “inside”, from low to high image multiplicity, an image

crosses the corresponding position on the critical curve and splits in two. When

sources pass from high to low image multiplicity, two images are seen to merge at a

critical curve in the image plane.

We can obtain a more intuitive understanding of the magnification effect by re-

turning to the definition of the inverse magnification tensor, Equation 2.20. We have

already introduced the lens convergence, κ(θ) in Equation 2.9, such that

κ =
1

2
(ψ11 + ψ22) . (2.22)

Let us also define the following combinations of derivatives (Narayan & Bartelmann

1995):

γ1(θ) =
1
2
(ψ11 − ψ22)

γ2(θ) = ψ12 = ψ21.
(2.23)

The quantities γ1(θ) and γ2(θ) are the components of the shear tensor. These

definitions allow us to express Equation 2.20 as a function of the convergence and
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shear:

A(θ) =

 1− ψ11 −ψ12

−ψ21 1− ψ22

 =

 1− κ− γ1 −γ2
−γ2 1− κ+ γ1

 . (2.24)

Now define γ(θ) =
√
γ21 + γ22 and angle δ(θ). We can then write the inverse magnifi-

cation tensor in a simple form given by

A(θ) = (1− κ)

 1 0

0 1

− γ

 cos(2δ) sin(2δ)

sin(2δ) − cos(2δ)

 . (2.25)

This expression shows the role of the convergence and shear in gravitational lens

imaging. Consider a circularly symmetric source with unit radius. The first term in

Equation 2.25 depends only on the convergence and produces an image that is an

isotropically scaled image of the source. The second term is the shear tensor that

describes a shear with magnitude γ in the direction δ(θ) with respect to the θx axis.

Note that the shear tensor is symmetric, so that the eigenvectors are guaranteed to be

orthogonal. The shear tensor transforms a circular source into an ellipse with major

and minor axes given by the eigenvalues of the shear matrix, along the direction of

the eigenvectors. Taken together, these two effects combine to produce an elliptical

image of a circular source.

This notation is useful for studies of weak lensing, since the convergence and

shear components are both expressed as linear combinations of the potential. Using

the relationship between these three quantities, it has been shown (Kaiser & Squires

1993) that a measurement of the shear field γ can be used to derive the corresponding

surface mass density Σ(θ) = Σcκ.

2.3 Lens Models

Using the theory developed in the previous section, we now explore the properties

of some useful analytical lens models. We begin by returning to the example of the

point mass lens and discuss the properties of the singular isothermal sphere. After we

have established the effects of symmetrical lenses, more realistic elliptical lens models

are introduced.
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2.3.1 Magnification of The Point Mass Lens

The deflection angle for a point mass is given by Equation 1.9, and was used to

determine the deflection of starlight at the limb of the Sun in Section 1.2. We showed

that the lens equation reduces to a quadratic for this lens model (Equation 1.10) with

solutions:

θ± =
1

2

(
β ±

√
β2 + 4θ2E

)
, (2.26)

where we have used the Einstein radius

θE =

√
Dds

DdDs

4GM

c2
, (2.27)

with the image position θ =
√
θ2x + θ2y, and source position β =

√
β2
x + β2

y .

Consider a source directly behind the point mass such that β = 0. When this

is the case, we find one solution to Equation 2.26 given by θ = θE. This radius

defines the Einstein ring in the image plane. Therefore the Einstein radius is also the

critical curve of the point mass lens. The only caustic is a single point in the source

plane directly behind the deflector. When β → ±∞, the lens equation reduces to

θ (θ − β) ≈ 0, resulting in an image at the lens center θ ≈ 0 and an image at the

source position θ ≈ β.

The magnification of the point mass lens can also be found analytically. Consider

the ratio of solid angle elements of the image and source given by Equation 2.19. We

write the solid angle of a circularly symmetric source βdβ and for the image θdθ. The

ratio of these quantities is the magnification,

µ =
θ

β

dθ

dβ
. (2.28)

Using the lens equation for a point mass lens for β and the corresponding derivative,

we find the magnification of the images θ±:

µ± =

(
1− θ4E

θ±

)−1

. (2.29)

From this equation we see that µ → 0 as θ → 0, so the image that approaches the

origin is unobservable since the flux vanishes. As the source moves far from the lens

so that β ≫ θE, we find that θ ≈ β and µ→ 1, such that the source is not magnified

at all (Paczynski 1986).
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2.3.2 The Singular Isothermal Sphere

The singular isothermal sphere (SIS) is a commonly used model in Galactic as-

tronomy (Binney & Tremaine (1988); Shapiro et al. (1999)). A spherically symmetric

gravitational potential is assumed, and the particles of an ideal gas represent the

masses that comprise the galaxy. The hydrostatic equilibrium conditions are given

by
1

ρ

dP

dr
= −GM(r)

r2
(2.30)

dM

dr
= 4πr2ρ, (2.31)

where ρ is the mass density, P the pressure of the gas and M(r) the mass inside

radius r. We assume an equation of state of the gas given by

P =
ρkT

m
, (2.32)

where m is the mass of each particle in the gas, T is the gas temperature and k is

Boltzmann’s constant. For an isothermal gas in equilibrium, the velocity dispersion

σv and the temperature T are constant such that:

mσ2
v = kT. (2.33)

Assuming a solution of the form ρ = Cr−B with B and C constant, the hydrostatic

equilibrium conditions give the SIS density distribution as

ρ(r) =
σ2
v

2πG

1

r2
. (2.34)

It has been observed that galaxies have flat rotation curves in general (Rubin et

al. 1962), which show that the velocities of stars orbiting the center of galaxies are

constant out to large radii. These velocity profiles are recovered by the SIS, which

is an attractive feature of the model. The velocity of a particle on a circular orbit

within the SIS potential is given by

v2r = 2σ2
v . (2.35)

Despite this fact, the continuous SIS is not a physically realizable model since the

mass diverges as r as seen in Equation 2.31 unless truncated at some radius rt.

29



Nevertheless the SIS is a widely used density distribution due to its simplicity and

useful dynamical properties.

The surface density of the SIS is found by projecting the three dimensional mass

density along the line of sight. Once again, we make use of the symmetry of the lens

to write ξ = Ddθ, so that the surface density becomes:

Σ(θ) =
σ2
v

2G

1

Ddθ
. (2.36)

The potential produced by this density distribution is given by

ψ(θ) =
Dds

Ds

4πσ2
v

c2
θ, (2.37)

which results in the reduced deflection angle given by Equation 2.10:

α =
Dds

Ds

4πσ2
v

c2
. (2.38)

Therefore, the lens equation becomes

β = θ

(
1− θE

θ

)
, (2.39)

with the Einstein radius

θE =
Dds

Ds

4πσ2
v

c2
. (2.40)

The lens equation for the SIS (Equation 2.39) can be solved analytically, just as in

the case of the point mass lens. The positions of the images of a lensed source can

be found by solving the polynomial defined by the square of Equation 2.39,

θ2 − 2θEθ + (θ2E − β2) = 0. (2.41)

The image positions can be found for three cases depending on the source position β.

The SIS lens permits two solutions when the source is within the Einstein radius θE,

with one inside and the other outside this radius. The images are colinear with the

source position and the lens center. When the source is outside the Einstein radius,

β > θE, only one image exists.
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The SIS can be “softened” by adding a core radius that replaces the central

singularity with a finite density. This requires an additional parameter s to be added

to the radial coordinate, resulting in deflection angle

α =
Dds

Ds

4πσ2

c2
θ

(s2 + θ2)
1
2

. (2.42)

The effect of adding a finite core size causes a third image to appear with non-zero

magnification at θ = 0. We make use of the SIS as an example when exploring the

effects of spatially variant PSFs in Chapter 4.

2.3.3 Elliptical Lens Models

Spherically symmetric lenses are useful for describing microlensing effects and pro-

vide illustrative examples of image formation by gravitational lenses. An attractive

property of the models presented in Sections 2.3.1 and 2.3.2 is that they are suffi-

ciently simple to permit full analytical solutions of the lens equation. However, in

the case of strong lensing by galaxies, spherically symmetric models are too simple

to describe real lens systems. Galaxies are observed to have a wide range of elliptici-

ties, suggesting that more realistic lens models must include the effects of ellipticity.

The magnitude of the ellipticity and the orientation of the lens add two more de-

grees of freedom to lens models, which permit more complicated image morphologies.

Although we can find analytical expressions for the deflection angle fields of these

elliptical models, they are complex enough that we are forced to abandon a fully

analytical solution to the lens equation itself. Due to the increased complexity of el-

liptical lenses, numerical methods must be used to find solutions of the lens equation.

We discuss this difficulty further in Chapter 3.

Several approaches have been used to include ellipticity to describe realistic lens

models. The simplest elliptical lens is found by including the ellipticity in the potential

of Equation 2.37 directly (Blandford & Kochanek (1987); Schramm (1990)). Using

the angular Cartesian coordinates θ, we write the potential

ψ (θ) =
Dds

Ds

4πσ2
v

c2

(
s2 + (1− ϵ)θ2x + (1 + ϵ)θ2y

) 1
2 , (2.43)
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where we have included the ellipticity ϵ and a finite core size s, which acts to remove

the singularity at the origin, just as in the case of the softened SIS. This pseudo-

singular isothermal elliptical lens potential (PSIEP) lens is useful due to its simplicity.

However, the elliptical potential produces unphysical dumbbell shaped isodensity

contours for large values of ϵ, and so the value of this parameter must be restricted

to a small range, corresponding to approximately 0 < ϵ < 0.3. A set of isopotential

curves is shown for various values of the ellipticity in Figure 2.2.

A more realistic elliptical lens model builds the ellipticity into the projected den-

sity directly (Kassiola & Kovner (1993); Kormann, Schneider and Bartelmann (1994);

Keeton and Kochanek (1998)). An elliptical lens density model does not suffer from

the unphysical dumbell shaped isodensity curves of the PSIEP, and is therefore not

restricted to low ellipticity ϵ. These elliptical density models have been shown to

represent isolated early-type (E and S0) galaxies well (Bolton et al. 2008). For these

reasons, the pseudo-singular isothermal elliptical mass distribution is more versatile

than the PSIEP lens, although this usefulness comes at the cost of analytical simplic-

ity.

We define the quantity Ψ =
√
q2 (s2 + θ2x) + θ2y, where q is the axis ratio defined

by

q =

√
1− ϵ

1 + ϵ
, (2.44)

so that q = 1 (ϵ = 0) corresponds to a spherical mass density, in keeping with the

notation used in Equation 2.43. Using b as the Einstein radius of a SIS (Equation

2.40), the scaled projected density of the elliptical mass distribution is given by

Σ

Σc

=
bq

2Ψ
. (2.45)

This density distribution gives the deflection angle α = (αx, αy):

αx =
bq√
1− q2

tan−1

(
θx
√
1− q2

Ψ+ s

)

αy =
bq√
1− q2

tanh−1

(
θy
√
1− q2

Ψ+ q2s

)
, (2.46)

The potential that gives rise to this deflection angle is quite complicated when ex-

pressed as a function of θx and θy. A simpler form is obtained by writing the lens
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Figure 2.2: Pseudo-Singular Isothermal Elliptical Potential Density Contours

PSIEP lens density contours for a variety of ellipticity values. The lens parameters used to generate

this plot were σv = 200 km s−1, with the lens centered at the origin and position angle 0. The source

and lens planes were set to Ds = 0.7 and Dd = 0.3 with the cosmological parameters as defined in

Appendix B.
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potential in terms of the deflection angle (Keeton and Kochanek 1998), such that

ψ(θ) = θxαx + θyαy − bqs ln
[
(Ψ + s)2 + (1− q2)θ2x

] 1
2 + bqs ln [(1 + q)s]. (2.47)

The magnification produced by this lens has the following form:

det(A) = µ−1 = 1− bq

Ψ
+

b2q2s

Ψ((Ψ + s)2 + (1− q2)θ2x)
. (2.48)

In the limit of a singular spherical mass distribution, q → 1 and s → 0, the above

expressions simplify to those of the SIS. Due to it’s close connection with the SIS,

the elliptical mass density lens model is typically referred to as a singular isothermal

ellipse (SIE) lens in the literature. Note that for a finite core size s > 0, the lens is

softened in analogy with Equation 2.42.

2.3.4 External Shear

The previous analysis considered the path of light rays around an isolated density

distribution. However, the morphologies of lensed images are also affected by matter

concentrations near the line of sight. The effect of these adjacent mass distributions

are taken into account by adding constant convergence and shear terms to the lens

potential (Schneider, Ehlers & Falco 1992). Consider the potential

ψ(θ) =
κc
2

(
θ2x + θ2y

)
− γ1

2

(
θ2x − θ2y

)
− γ2θxθy (2.49)

with γ1 and γ2 the constant components of the shear in the θx and θy directions, and

constant convergence κc. These effects are modeled after the expressions in Equation

2.25, except that the external convergence and shear are taken to be constant, in

contrast to the previous expressions. The deflection angle field is given by

αx(θ) = κcθx − γ1θx − γ2θy

αy(θ) = κcθy + γ1θy − γ2θx. (2.50)

External convergence and shear are useful to model the effects of lensing through

dense environments.
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In general, shear introduces an effective ellipticity in the lens potential and can

produce complicated image morphologies when used with a spherical lens model. A

point source and shear model, called a Chang-Refsdal lens (Chang & Refsdal (1979);

Subramanian & Chitre (1984)), has been used to describe a stellar mass microlens

perturbed by the potential of a background galaxy. It has been shown that an isolated

circularly symmetric lens with an external shear produces images that are comparable

with those found from elliptical lens models (Schneider, Ehlers & Falco 1992).

The extra degrees of freedom provided by external shear are not always necessary

when fitting strong lens systems. For instance, the lens galaxies in the SLACS survey

can be effectively modeled as isolated galaxies using SIE lens models and the inclusion

of external shear was not found to greatly improve the fits (Koopmans et al. (2006);

Bolton et al. (2008)). We fit a sample of the SLACS lens systems using a SIE lens

model without including shear in Chapter 5.
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Chapter 3

The Development of Gravitational

Lens Modeling

Several methods of varying complexity have been developed to model strong grav-

itational lens systems. We begin by discussing analytical lens models that rely on a

set of lens parameters pL. As we have seen, the lens equation is non-linear in general,

and multiple solutions of the lens equation θ exist for each source position β. The

complexity of the deflection angle field α determines the form of the lens equation.

Therefore, the lens equation can be solved analytically for only the simplest cases,

such as the point mass and SIS lenses that have a high degree of symmetry. Most

realistic lenses do not permit a fully analytical treatment of the lens equation. The

solution of the lens equation requires an inversion since we wish to find all images

corresponding to a given source position. The direct (and naive) approach is to use

a non-linear root-finding algorithm to search for solutions to the lens equation. How-

ever, this is difficult in general since there may be many solutions that satisfy the

lens equation and there is no objective way to determine whether all have been found.

The lensing of extended sources introduces another problem as the lens equation must

be inverted at each point within the source. This is a numerically intensive task, so

ray-tracing methods are often used instead.

The ray-tracing procedure in gravitational lens modeling requires the generation

of pixelized grids on the lens and image planes θ. For a given lens model, we can
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use the lens equation to map points from the image plane to positions in the source

plane using the deflection angle field of a given lens model. This procedure avoids

the inversion of the lens equation since we essentially work backward. Rather than

determining the resulting images from the source position β, we cast the points of the

pixelated image grid θ back to the source plane grid. This ray-tracing procedure can

be used to find the lensed images of an analytical source intensity function easily and

quickly using the conservation of surface brightness (Equation 2.16), thus providing

the basic approach of parameterized source modeling (Schramm & Kayser (1987);

Kayser and Schramm (1988)). A surface brightness function Is describes intensity

across the source plane and the lensed image intensities (Ii) are easily found since

Ii(θ) = Is(β(θ)) (3.1)

by the conservation of surface brightness. Analytical models of the source are some-

times used because they ensure smoothness and positivity when used to model the

source intensity distribution. However, the correct parameterization is not always

clear for such models, and the choice of a specific parametric model biases the lens

and source solutions. Authors have attempted to partially overcome this drawback by

using complex but flexible parametric models specified by large parameter sets. The

most extreme example is Tyson et al. (1998), who used an elaborate source model

with more than 200 parameters to fit the gravitational lens CL0024 + 1654. In such

cases, it may be simpler to use pixelized source models, which treat all pixels on the

source independently. Convolution with a point spread function (PSF) that describes

the instrumental blurring of the observations can then be taken into account and a

goodness of fit statistic (χ2) can be calculated to quantify how well the source in-

tensity function and lens parameters pL match the observed data. An optimization

routine can be used to determine the optimal source and lens parameters by mini-

mizing the χ2 statistic. This approach is still widely used today (Bolton et al. (2008);

Marshall et al. (2007); Brewer & Lewis (2011)).

It was also suggested that a variation on the method could be used to determine

the surface brightness of a pixelated source from a set of observed data. Kayser and

Schramm (1988) introduced the Digital Source Reconstruction (DiSoR) method that
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treats the source plane as a pixelated grid. The positions of image pixels are traced

back to the source plane, and each source plane pixel is assigned an intensity based

on the back-traced image pixels that are contained within it. This pixelated source

method can be useful since complicated sources may not be easily described by simple

analytical functions.

The DiSoR method was first used to model the radio ringMG1131+0456 (Hewitt

et al. 1988) by Kochanek et al. (1989). This approach, called the Ring Cycle, coupled

an iterative optimization routine to the DiSoR method to simultaneously determine

the optimal lens parameters. The optimization proceeds in two distinct steps: an

“outer loop” searches for optimal lens parameters, and for each lens parameter set

an “inner loop” is used to find the best fitting intensity distribution of the pixelated

source. Kochanek et al. (1989) also approximated parameter errors and added terms

to the merit function to promote models with the maximal number of multiply imaged

pixels possible. This is an argument for parsimony in the solution as simpler sources

are allowed when multiple imaging is maximized. The basic loop structure of the

Ring Cycle as well as the use of the conservation of surface brightness have been

incorporated into virtually every successive lens optimization scheme.

Despite the apparent success of these early pixelated source methods, they are

limited in their applicability. Equation 3.1 requires all multiply imaged pixels asso-

ciated with a given source pixel to posess the same intensity. However this is never

exactly true due to the fact that real data are noisy. Source pixel intensities must be

found from averaging image intensities over rays that trace to the same pixel. This is

a problem for the algorithm since the image noise cannot be properly accounted for

in the inversion process. Another serious problem with mapping data pixels to deter-

mine source plane intensities is that the data are affected by the PSF of the observing

instrument. This means that nearby image pixels are no longer truly independent

since the blurring effect smears intensity over adjacent source pixels. The Ring Cycle

algorithm does not correct for this PSF blurring, and this tends to bias the recon-

structions. In general, artificial structure in the recovered sources will be found in

order to accomodate for the lack of a description of the PSF. Since all astronomical

observations are affected by blurring to some degree, this presents a major difficulty
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for algorithms based on the Ring Cycle.

The shortcomings of the Ring Cycle algorithm can be avoided by including a

deconvolution step in the source modeling routine. Deconvolution problems are well

known in the image processing literature (Nagy & Palmer (2003); Hansen et al. (2006);

Vogel (1987)), where the goal is to find a deblurred approximation of an image given a

blurred observation that is degraded by noise. Image deconvolution is fundamentally

an ill-posed inverse problem (Hansen 1997) and is subject to instability due to the

noise present in the data (Hansen 2010). Regularization methods are often used to

overcome the amplification of noise in the data (Press et al. 2007). Regularization is an

attempt to stabilize the inverse problem of image deconvolution by modifying the χ2

minimization problem to prefer a smooth deblurred (source) image. Regularization

and the associated numerical methods are discussed at length in Sections 3.1 and

3.1.3.

The first approach to include a deblurring step in lens modeling involved an imple-

mentation of the CLEAN algorithm (Högbom 1974) to compensate for the finite reso-

lution of radio observations. The resulting method, called LensCLEAN (Kochanek &

Narayan (1992); Wucknitz (2004)) was first used to model the radio ring B0218+357

(Patnaik et al. 1993). The CLEAN algorithm models the source intensity as a set of

point sources, called the CLEANed source. The algorithm starts by placing a point

source at a location on the source plane, such that the lensed images of this point

source (found by ray-tracing) are convolved with the PSF and subtracted from the

brightest part of the image. If the remaining residuals are still above the noise level,

another CLEANed source is added, and the process repeated. In this way the source

distribution is built up by the addition of more CLEANed components each itera-

tion. Once the residuals are comparable to the noise level, the CLEANed source is

smoothed by a Gaussian, and the residuals are added back in.

After the CLEAN algorithm was used to model gravitational lens systems, the

maximum entropy method (MEM, Cornwell (1982); Skilling and Bryan (1984);

Narayan & Nityananda (1986)) was adapted for use with the lensing problem. The

resulting algorithm is called LensMEM (Wallington et al. 1996) and was first used

to model the VLA observed ring MG1654 + 134 (Ellithorpe et al. 1996). The most
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commonly used expression in the context of lens modeling is given by

J = −
∑
i

si log(si), (3.2)

where si are image pixel intensities. The MEM is included in the source optimization

step by adding an entropy-based regularization term to the fit statistic,

G = χ2 + λ
∑
i

si log(si), (3.3)

where χ2 is the standard image fit statistic and λ is an undetermined Lagrangian

multiplier. The purpose of this type of regularization is to quantify the complexity

of the source intensity term. This MEM fitness statistic restricts the source intensity

distribution to positive values. The optimization begins with a large value of λ such

that the entropy term dominates early in the run. This tends to pick out solutions that

are very smooth. As λ is decreased, an increasing amount of information is included

from the χ2 term and the relative importance of the entropy term is decreased. The

resulting source at the end of the procedure is as featureless as possible (the highest

entropy source) that simultaneously satisfies the χ2 criteria. This process of slowly

decreasing the regularization constant is necessary to guide the minimization process.

As with any method that uses an undetermined multiplier λ, a third loop must be

used outside of the lens parameter optimization loop to slowly decrease the value

of the regularization constant. The MEM has been included in many successful

optimization schemes including the lensVIEW package (Wayth & Webster 2006).

Both the MEM and CLEAN based algorithms have drawbacks. The behavior of the

CLEAN algorithm is difficult to understand statistically. On the other hand, the

MEM fitness function is not linear in s and requires more complicated non-linear

optimization methods.

The optimization of extended sources via pixelized intensity distributions is sim-

plified using the versatile semilinear method developed by Warren & Dye (2003) and

later expanded upon by a number of authors (Treu & Koopmans (2004); Dye & War-

ren (2005); Suyu et al. (2006)). The semilinear method uses a pixelized source, and

also incorporates the blurring due to the PSF of the instrument used to obtain the
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data. Additive noise in the observed data is also taken into account by this scheme.

The semilinear method describes the source deconvolution routine as a least squares

problem (Koopmans (2005); Press et al. (2007)), which is well understood and can

be solved using straightforward matrix methods or linear optimization.

In the following sections we detail Mirage, a gravitational lens modeling code writ-

ten in MATLAB and C. The present version of Mirage is designed to optimize the

parameters of analytical lens models and pixelized sources, but work is underway to

extend the code to handle non-parametric lens models as well. A modified version

of the semilinear method forms the backbone of our lens modeling program. We use

sophisticated global optimization methods to fit the lens parameters, and the semi-

linear method to determine the corresponding source light profile that best matches

the data. As a final step, we employ the method of Brewer & Lewis (2005) to enforce

the positivity of the source while keeping the nonlinear lens parameters constant.

This affords a method of comparison between distinct lens density models because

the number of degrees of freedom is well-defined and fixed (Brewer & Lewis 2006).

The global optimizers studied in this work consist of a sophisticated genetic algorithm

(GA), called Ferret (Fiege et al. 2004), and an enhanced particle swarm optimizer

(PSO), Locust, which are both components of the Qubist Global Optimization Tool-

box by Fiege (2010). This Chapter discusses a robust method for gravitational lens

reconstructions, highlights the benefits of both types of optimization routines, and

compares their performance.

In Section 3.1 we will review the semilinear method and our new matrix-free

approach to lens modeling. In Section 3.2 we discuss the details of the GA and PSO,

as well as a variety of simulated data tests. Section 3.3 presents our results using

these methods, and our conclusions are summarized in Section 3.4. The following

sections are based on material published in The Astrophysical Journal (Rogers &

Fiege 2011a).
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3.1 The Semilinear Method

The semilinear method provides a way to solve for optimal source intensities by

the direct inversion of a lens matrix, for a given set of lens parameters. However,

the search for optimal lens parameters is nonlinear in general, and requires more so-

phisticated nonlinear optimization methods, such as those discussed in Section 3.2.1.

Fast execution of the matrix inversion part of the problem is crucial, because a lin-

ear system of equations must be solved for each set of lens parameters tested by the

nonlinear optimizer during the search for optimal lens models. Many sets of lens

parameters must be evaluated to search the parameter space thoroughly enough to

determine the globally optimal solution.

Following Warren & Dye (2003), we label the image pixels j = 1..J and treat

the pixels in the source as independent free parameters i = 1..I. Given a set of lens

parameters, the image of each source pixel is formed by ray-tracing assuming unit

brightness si = 1, and convolved with the PSF. This transformation is encoded in a

matrix f=BL. We assume linear blurring described by the blurring matrix B which

accounts for the PSF. The matrix L performs ray-tracing via the lens equation (1.8).

The problem is then reduced to finding a set of source pixel scaling factors si that

minimize the reduced χ2 statistic between the model image and the observed data.

Using the set of source pixel intensities, the lensed image of a source is found easily:

bj =
∑
i

sifij, (3.4)

where fij are the elements of the matrix f . The χ2 statistic between the lensed image

and the data is:

χ2 =
∑
j

(
∑

i sifij − dj)
2

σ2
j

(3.5)

where dj is the observed intensity in each image pixel, and σj is the standard deviation

error associated with pixel j. After differentiating this equation with respect to the

source pixel intensities si, we define F = fij/σj, d̂ = dj/σj and we obtain the relation

F TFs = F T d̂, (3.6)
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from which it follows that the source pixel scalings can be determined by linear

inversion:

s = M−1d̂′ (3.7)

where d̂′=F T d̂ and M=F TF . This inversion determines the optimal set of source

pixel scalings necessary to reproduce the observed data for a given lens model. Further

details of this derivation can be found in Warren & Dye (2003) and Treu & Koopmans

(2004). In the standard semilinear method, the system matrix M is very large,

where the linear size of the matrix scales as the number of source pixels used in the

inversion. The matrix is very sparse when the PSF is narrow, but a greater fraction of

matrix elements are non-zero for increasingly broad PSFs. Mirage uses sparse matrix

methods to minimize memory usage.

Warren & Dye (2003) originally presented the semilinear method as a ray-shooting

algorithm that performs nearest neighbor interpolation. Treu & Koopmans (2004)

modified the lens matrix to accommodate bilinear interpolation of the source. This

consists of using the four source pixels surrounding a back-traced image pixel with

appropriate weighting to assign a brightness value to each image pixel. Mirage cur-

rently implements nearest neighbor, bilinear, and bicubic source plane interpolation.

Higher order interpolation schemes are possible, but they are computationally more

expensive and result in a lens mapping matrix that is less sparse. It is also possible

to use more elaborate schemes to grid the source plane, including the Delaunay tes-

selation scheme used by Vegetti & Koopmans (2009). We restrict the source models

to rectilinear grids in this paper, but plan to explore other such options.

In practice, regularization is necessary to stabilize the matrix inversion due to

the presence of noise in the data (Treu & Koopmans 2004). This regularization term

makes the system matrix M more diagonally dominant and hence better conditioned,

which has the effect of increasing the smoothness of the source light distribution. In

general, we add a regularization matrix to the system matrix, to give

M ′ = M + λHTH , (3.8)

where λ is an adjustable regularization parameter. It is then possible to control the

smoothness of the derived solution by adjusting the regularization parameter, with
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the unregularized case recovered as λ → 0. Zeroth order regularization has H=I,

which suppresses noise in the inversion by preferring sources with less total intensity

(Warren & Dye 2003). It is also possible to introduce more complicated forms of

regularization, typically based on finite difference representations of two-dimensional

derivative operators.

It has been shown that different regularizing terms produce qualitatively similar

results (Treu & Koopmans 2004), and the behavior of a host of linear regulariza-

tion schemes has been studied in great detail by Suyu et al. (2006) in the frame-

work of Bayesian analysis. An important drawback of regularization is that it intro-

duces dependencies between source plane pixels, which makes it difficult to charac-

terize the effective number of degrees of freedom required to compute the reduced χ2

(χ2
r). Therefore, direct comparison of different models is more difficult in regularized

schemes than without regularization. Dye & Warren (2005) use an adaptive mesh

in the source plane to overcome the problem of calculating the number of degrees of

freedom in the problem.

An important advantage of the semilinear method is that errors of the source

intensity parameters can be easily determined from the lensing matrix, as seen from

the relation

Mik =
1

2

∂2(χ2)

∂si∂sk
. (3.9)

This equation expresses the lensing matrix as half of the Hessian matrix of the re-

duced image χ2 statistic. Warren & Dye (2003) use this relationship to find the

covariance matrix C=M−1, thus determining the source plane errors automatically

during application of the semilinear method. When regularization is used, the co-

variance matrix cannot be found in this way, but Warren & Dye (2003) proposed a

Monte Carlo method as an alternative method to estimate errors.

Despite its conceptual elegance, there are significant practical limitations and

drawbacks to the semilinear method. The number of non-zero matrix elements of M

scales linearly with the number of pixels in the source and depends on the source

interpolation method used. Direct inversion quickly becomes impractical for very

large images, or those with large PSFs. This sparsity requirement can be fulfilled by
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representing the PSF by a simpler function, for example a Gaussian, and setting small

values to zero. This thresholding helps to control the potentially poor conditioning

of the blurring matrix. However, realistic PSFs may contain significant low-level

structure, and fitting a simple analytical function to it may not be desirable in such

cases. The semilinear scheme is therefore most practical when the image is small and

the PSF is narrow, as in typical optical data.

Another problem with the semilinear method is that it does not enforce the posi-

tivity of source pixel intensities. Optimal source solutions derived using this algorithm

may contain negative pixel intensities, due to noise in the data, since bounds cannot

be enforced in the matrix inversion step. Moreover, there is no form of linear reg-

ularization that is guaranteed to prevent this behavior. We note, however, that it

is possible to enforce positivity in other lens modeling schemes, such as the MEM,

explored by Wallington et al. (1996).

In summary, semilinear inversion provides a convenient method for modeling

strongly lensed extended sources because it states the gravitational lens modeling

problem using a least-squares approach that is solved by direct matrix inversion. The

inversion step guarantees that the globally optimal solution is found for unbounded

source pixel values. However, the method is computationally expensive for large

images and PSFs. In such cases even building the transformation matrix f , incorpo-

rating both lensing and blurring effects, is an expensive computation and the inversion

step may be time-consuming or impractical due to the poor sparsity and size of the

matrix. We show in Section 3.1.1 that it is possible to derive a ‘matrix-free’ formula-

tion that avoids the explicit construction of the matrix and dramatically improves the

efficiency of solving for the linear parameters by employing local optimization meth-

ods to solve the least squares problem. We also compare results from this technique

with the semilinear inversion method and show that both methods produce solutions

of similar quality. A final refinement step ensures positivity of the source pixels, thus

rectifying a limitation of the standard semilinear method.
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3.1.1 Matrix-free modeling of lensed images

The main goals of Mirage are generality, flexibility and sufficient efficiency to al-

low thorough exploration of lens model parameter space by global optimization tech-

niques, which typically require the evaluation of 104 − 105 lens models. We therefore

require a fast code to solve the linear part of the problem, which is able to function

with arbitrarily complicated PSFs and data of high resolution. Mirage implements

the semilinear method, using direct matrix inversion, but also extends this method by

using faster and less memory intensive local iterative optimization routines that avoid

the need for explicit construction of the lens and blurring operators. The iterative

methods in Mirage are not intended as a replacement for the semilinear method, which

is the preferred approach when it is computationally practical. However, memory re-

quirements and long run times for the global lens parameter search may practically

restrict the semilinear method to source intensity distributions and PSFs that can be

built on a small mesh to limit the matrix size and maintain its sparsity. Our technique

is intended to augment the least-squares approach of the semilinear method by pro-

viding a complement of algorithms capable of modeling large lens images quickly, even

if the PSF is also large. We avoid the direct inversion of large matrices, but maintain

the least-squares formulation, allowing the use of any linear optimization algorithm

suited to the solution of large-scale problems. Since this paper focuses on solving the

full nonlinear lens modeling problem, we largely make use of matrix-free methods for

the remainder of this work except for comparisons with the direct semilinear method.

Given the parameters of a lens model and assuming a source intensity distribution,

matrix multiplication with L results in the unblurred lensed image. This image

can also be found by the conservation of surface brightness, as given by Equation

3.1. By storing the positions of the back-traced image pixels on the source plane,

we perform an interpolation on the source plane directly, which allows us to find

the unblurred lensed image without the need for an explicit representation of the

lens matrix. Similarly, a separate algorithm in Mirage has an effect equivalent to

multiplying by the transpose of the lens matrix, which works by carefully keeping

track of the positions of back-traced image pixels.
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The lens mapping magnifies portions of the image plane by differing amounts

such that square image pixels mapped back to the source plane may no longer remain

square. This effect is especially pronounced when image pixels are traced back to

the source plane near caustic curves. In general, the distortion in shape of the back-

traced image pixels may cause portions of the back-traced pixels to lie within separate

source pixels. To account for this effect, we split each image pixel into Np subpixels,

and trace each of these subpixels to the source plane independently. By interpolating

each of these subpixels on the source mesh, we can then average over their intensities

in the image plane to find a better estimate of the lensed intensity profile. Np can

be any size, but the execution time of the code increases as we include finer subpixel

resolution. This approach improves the accuracy of the transformation from the lens

to source plane. In addition, we find that it improves the smoothness of the χ2

surface, which helps with the global search for optimal lens parameters. Image pixels

that do not map to the source plane are not included in the local optimization and

are assigned no intensity.

To successfully model a realistic blurred observation, we incorporate the blurring

effect of the PSF, which is usually described by the blurring matrix B. This matrix is

of size N2
i ×N2

i where Ni is the number of image pixels which map back to the source

plane. Since the lens matrix L is sparse, avoiding its construction does not directly

increase the speed of the code, but it allows us to sidestep the explicit construction of

the blurring matrix. Since PSFs may describe a significant blurring effect, the prod-

uct of the lens and blurring matrices f may have a large number of non-zero entries,

decreasing the sparsity of the system. To avoid building the blurring matrix, we con-

volve with the PSF in Fourier space, which is computationally inexpensive, even for

large images. Convolution without a blurring matrix is common in the image process-

ing community and was used by Nagy et al. (2002) to solve least-squares problems in

the context of the standard image deconvolution problem. By direct extension, this

‘matrix-free’ lensing method allows us to solve the least-squares problem described

by Warren & Dye (2003) without the need for explicit representation of the matrices

involved using local optimization. This approach not only provides a substantial in-

crease in speed, but also allows for the use of large data sets with complicated PSFs.
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In principle the matrix-free approach can be extended to spatially variant PSFs using

the techniques described by Nagy et al. (2002). See Chapter 4 for details on using

spatially variant PSFs with the semilinear method.

The local linear optimization algorithms considered in this paper require an ini-

tial guess of the solution. We begin with a blank source prior, and each successive

iteration adds increasingly higher spatial frequency detail to this initial guess. Local

optimizers such as the conjugate gradient method for least squares problems (CGLS;

(Björck 1996)) and steepest descent (SD) require one matrix multiplication and one

matrix transpose multiplication per iteration, so that the least squares problem can

be solved without explicit representation of the lens matrix. We show that such a

procedure converges in practice to a source model that is very close to the solution

found through matrix inversion, given a sufficient number of iterations. Moreover,

an explicit regularization term is not required in general since iterative optimization

techniques have been shown to have an automatic regularizing effect on the problem

(Vogel 1987), allowing Equation 3.6 to be minimized directly.

Iterative schemes have been used previously in the strong lensing literature in

application to nonlinear regularization, for example by Wallington et al. (1996) in the

lensMEM method. A similar approach is used in the LENSVIEW code by Wayth

& Webster (2006), which utilizes the MEM discussed by Skilling and Bryan (1984).

The semilinear method is restricted to linear regularization terms of the type detailed

in Suyu et al. (2006). Nonlinear regularization like the MEM can also be used with

Mirage, although these techniques require more complicated nonlinear optimization

schemes to solve for the source intensity distribution.

3.1.2 A Small-scale Test

As a small scale test problem, we generated a 120×120 pixel image of an analytical

source intensity profile. The image pixel size used in this test is 0.03 arcsec. The test

source is defined by a two-armed spiral test function, given by Bonnet (1995):

S(r, ω) =
S0

r2c + r2
exp

[
−2 sin2

(
ω − ω0 − τr2

)]
, (3.10)
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where S0 is the maximum brightness in arbitrary units and core radius rc. The

tightness of the arms about the central bulge is controlled by τ , and ω0 controls the

orientation of the spiral, in standard polar coordinates (r, ω). The lensed image of

this function can be complicated, since the function contains significant structure,

and therefore provides a good test of the level of detail that we are able to recover

using our lens inversion algorithm. A test image is generated using the approach

detailed above, with each image pixel composed of a 10 × 10 grid of subpixels. The

high subpixel resolution mimics the smooth structure of a natural image. We blur

the resulting image by convolving with a Gaussian PSF, with a FWHM of 5 pixels

on a 30× 30 grid, and add Gaussian noise to construct our final test image, as shown

in Figure 3.1. Our simulated data set has a peak signal-to-noise ratio S/N = 8,

where we define the S/N as the maximum image intensity divided by the standard

deviation of the additive Gaussian noise. The lens used to produce this image is the

six-parameter singular isothermal ellipse (SIE; Keeton and Kochanek (1998)) which

has Cartesian deflection angles given by Equation 2.46, restated here for clarity:

αx =
bq√
1− q2

tan−1

(
x
√
1− q2

Ψ+ s

)

αy =
bq√
1− q2

tanh−1

(
y
√
1− q2

Ψ+ q2s

)
, (3.11)

where ψ2 = q2(s2 + x2) + y2 and q =
√
(1− ϵ)/(1 + ϵ), and b is the corresponding

Einstein radius in the limit of a spherical model with q = 1. The parameter b is

related to the velocity dispersion σv by

b = 4π
(
σv
c

)2 Dds

Ds

(3.12)

where Dds and Ds are the angular distances between lens and source and observer

and source respectively, and c is the speed of light. The actual parameters used to

construct Figure 3.1 are as follows: The velocity dispersion is σv = 260 km s−1 re-

sulting in b = 1.35 arcsec, ellipticity ϵ = 0.4, lens center (x, y) = (0, 0.12), orientation

angle θL = π/2. We keep the core size fixed at s = 0. In addition to these six param-

eters, we assume that the redshift of the lens and source are zd = 0.3 and zs = 1.0

respectively. For convenience we measure angular distances with respect to the “flat”
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Friedmann metric with k = 0 (See Appendix B for a discussion of the background

cosmology).
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Figure 3.1: Semilinear Method and Iterative Optimization Comparison

Top row, from left: artificial data, source intensity distribution and Gaussian PSF used to generate

the observation. The source was built on a 50×50 grid, and the lensed image is defined on a 120×120

grid. Middle row, from left: model observation of resulting source intensity reconstruction, source

intensity profile as found by the semilinear method, and the resulting image residuals. Zeroth order

regularization with a regularization constant λ = 2.5 × 10−3 was used to reconstruct the source.

Bottom row, from left: resulting model image, model source and image residuals as determined by

the CGLS algorithm after 40 iterations. Note the similarity between the semilinear and iterative

solutions with respect to the derived source. Although both of these models contain back-traced

noise, the real features of the source are reproduced and clearly visible in the reconstructions.

We model the data using the semilinear method and matrix free methods with

subpixel grids of size 2 × 2. The sub-pixel resolution used for modeling is lower
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than that used to produce the data, which makes the test more realistic. The source

plane is defined on a 40 × 40 grid, with source pixels of size 0.024 arcsec. The

original simulated-data image is shown in the first row of Figure 3.1, the semilinear

reconstruction on the second row, and a reconstruction using the CGLS algorithm

on the third row. CGLS was chosen as the linear optimizer because of its speed

and popularity as a local optimization scheme, but in practice all of the optimizers

included in the Mirage package produce similar results. All of the local optimization

algorithms tested are able to recover the details of the original source function well.

Figure 3.2 shows that the rate of convergence varies between optimization algorithms,

but they all settle down to the minimum reduced image χ2
r values to within 5% by

generation 40. The semilinear method is displayed on this plot simply as a constant χ2
r

because it is a direct method. Note that all of the source reconstructions show noise

back-traced from the image, which is unavoidable using pixel mapping techniques on

data containing noise. All local optimization algorithms converge in approximately 2

s, while the semilinear method required approximately 16 s. This test was conducted

on a 2.4 GHz dual-core Intel machine with 3 GB of memory. Memory usage was

monitored and did not exceed the hardware memory limit at any time.

In general, the lensed model image becomes increasingly well matched to the data

the longer an iterative optimizer runs, but the usefulness of the solutions eventually

starts to degrade as the algorithm begins fitting to the noise in the data. Therefore,

the corresponding noise level in the source reconstruction rises as iterations continue,

which we can quantify for this test problem because we know the true solution in

the absence of noise as shown in Figure 3.3. In effect, the number of iterations of

the local optimizer acts as a regularization parameter (Fleming 1990). Thus, it is

possible to introduce regularization by carefully controlling the number of iterations

during local optimization. In general, implicit regularization is present whenever

these local optimizers are used in the context of deblurring problems, which implies

that suitable stopping criteria must be established to find the optimally regularized

solution (Hansen et al. 2006). It is noteworthy that the semilinear method suffers from

a related problem since the regularization constant is a free parameter, and therefore

the associated ambiguity is equivalent to the problem of choosing a stopping criteria
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Figure 3.2: Convergence Properties of Iterative Optimizers - Image Model

Convergence properties of several local optimization routines. The CGLS and LSQR (Björck 1996)

algorithms exhibit identical behavior, and the performance of the GMRES (Saad & Schultz 1986)

algorithm is similar. The steepest descent algorithm converges more slowly but attains a slightly

lower image χ2 value. The difference between the local optimization routines and the semilinear

method is emphasized on this plot due to the logarithmic scale. The semilinear method result was

obtained using a zeroth order regularization constant λ = 2.5× 10−3, and iterative algorithms were

terminated after 40 iterations.

in iterative methods. Techniques have been developed to deal with this problem using

Bayesian analysis for the semilinear method, as discussed by Brewer & Lewis (2006)

and Suyu et al. (2006). For iterative methods, the issue of a stopping criteria is a

non-trivial problem that has no unique solution for local optimization, although many

methods exist to deal with this problem, such as Generalized Cross Validation (Wahba

et al. 1979) and the L-curve criterion (Engl et al. 2000). We discuss a novel approach

in Section 3.1.5 that uses the L-curve analysis to estimate the optimal regularization
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parameter (stopping condition) in conjunction with global parameter search methods.
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Figure 3.3: Convergence Properties of Iterative Optimizers - Source Model

Convergence properties of the source intensity distribution. This figure plots the relative error

between the source found by a given method as a function of iteration si and the true source intensity

distribution s. All of the iterative optimization algorithms display semi-convergence behavior. The

semilinear method result was obtained using a zeroth-order regularization constant λ = 2.5× 10−3,

and iterative algorithms were terminated after 40 iterations. The relative error of the solution found

by the SD algorithm increases more slowly past convergence than the error for any of the other

iterative schemes shown here.
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3.1.3 Iterative Optimization as Implicit Regularization

To see how iterative schemes produce implicit regularization, consider a system

b=Bx+n, where n describes the noise added to the true image. Suppose that the

blurring matrix B is ill-posed (Hansen 1997), and the “true” solution is the unblurred

image, represented as a vector x. Given the blurring matrix and the noisy data b,

we can formally write an approximate solution to the inverse problem as x=B−1b.

However, this proves to be difficult in practice because of the poor conditioning of

B and the noise contained in the data. The resulting solution is the sum of two

terms, xn =x+B−1n. The second term can dominate the first in this expression,

which results in poor recovery of the true solution, x. To overcome this problem,

regularization schemes seek a solution to the system

xλ = argmin
(
||b−Bx||2 + λ||H (x− x0) ||2

)
(3.13)

where H is the regularization matrix, B is the system matrix and b is a vector of

data to be fit. The regularized solution is xλ, and the default solution is x0, which is

found when λ→ ∞. By requiring the derivative of Equation 3.13 to vanish we derive

the following expression(
BTB + λHTH

)
x = λHTHx0 +BTb (3.14)

provided that the regularization is linear in nature. Note that the first term on the

right depends on the default solution x0, which represents a bias in general. For the

remainder of this report we set the default solution to zero, which is reasonable since

most astronomical images are largely composed of pixels corresponding to blank sky

(Brewer & Lewis 2006).

The solution to this system can also be found by considering the singular value

decomposition (SVD) of a matrix B=UΣV T , where U and V are orthogonal N×N
matrices (Golub and Reinsch 1970). The matrix Σ is diagonal, containing the non-

increasing singular values ν1 ≥ ν2 ≥ ... ≥ νn. The columns ofU are a set of orthogonal

vectors ui, and the orthogonal columns of V are denoted by vi, which leads us to the

expression

x =
N∑
i=1

uT
i b

νi
vi. (3.15)
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The small singular values (large values of i) correspond to the addition of high

frequency noise, and the terms involving the smallest singular values νi tend to dom-

inate the solution. The singular values νi and the expansion coefficients |uT
i b| as a

function of the number of terms are shown in Figure 3.4. These plots are called Pi-

card plots and show that an increased contribution to the noise in the reconstruction

is found as the singular values become smaller than the magnitude of the expansion

coefficients.
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Figure 3.4: Picard Plot for Gaussian Point Spread Functions

Picard plot for Gaussian PSFs with full width at half-maximum of 0.94, 1.64, and 2.35 pixels,

respectively. Top row: The points on the black curve are the singular values νi and the small dots

are the expansion coefficients |uT
i b|. As the PSF becomes increasingly large, the singular values

drop below the expansion coefficients more quickly. Bottom row: The drop-off of the singular values

signifies an increased contribution of high frequency noise in the recovered solutions, shown for each

PSF.
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The goal of a regularization scheme is to limit the amount of noise that contributes

to the solution. In principle, the simplest scheme is to truncate Equation 3.15 for

sufficiently large values of i to limit the amount of high frequency noise in the solution.

Truncation of the SVD expansion can be accomplished by multiplying the terms of

Equation 3.15 by a “filter factor” ϕi (Vogel 1989) defined by

xfilt =
N∑
i=1

ϕi
uT

i b

νi
vi, (3.16)

where ϕi takes the form of a Heaviside function such that ϕi = 1 for singular values

below the cutoff point k, and ϕi = 0 for terms with i > k. In this way, the contribution

of high-frequency noise to the solution can be controlled. However, this regularization

scheme is somewhat artificial because of the sharp cut off in the filter factors. A more

natural scheme was developed by Tikhonov (1963), which introduces a regularization

parameter λ to solve (
BTB + λI

)
x = BTb. (3.17)

The Tikhonov solution for x is expressed as the standard SVD expansion with mod-

ified filter factors

ϕi =
ν2i

ν2i + λ
. (3.18)

The solution of this system corresponds to the solution of Equation 3.13 with the

regularization matrix equal to the identity and the prior solution x0 =0.

When νi ≫ λ, ϕi ≈ 1. For large i, νi ≪ λ such that ϕi ≈ ν2i /λ. Note that the

eigenvalues of the Ns×Ns system matrix BTB are the squares of the singular values,

µi = ν2i . The sum of the Tikhonov filter factors is then

γ =
Ns∑
i=1

µi

µi + λ
. (3.19)

This expression agrees with Equation 21 in Suyu et al. (2006), who show that the sum

γ represents the number of source degrees of freedom in the problem when Tikhonov

regularization is included.

Iterative methods effectively add consecutive terms to the sum in Equation 3.15

with each step of the algorithm, such that the number of iterations itself acts as a
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regularization parameter (Hanke 1995). In order to find the best solution from an

iterative optimizer, it is necessary to stop it near the optimal iteration, before the

contributions due to noise in the solution grow too large. As can be seen in Figure 3.3,

the CGLS algorithm converges significantly faster than the SD method. However, the

noise also rises more quickly past convergence, which makes the CGLS solution more

sensitive to the stopping condition. The SD method is generally considered a slower

and less sophisticated local optimization algorithm than CGLS, but performance

issues are outweighed by SD’s more stable behavior past convergence. Nagy & Palmer

(2003) first noted that optimization schemes based on SD do not require as precise a

stopping criterion as other methods, which makes it easier to find an approximation

to the optimally regularized solution. In the absence of the L-curve criteria, we choose

SD. When using a stopping condition based on the L-curve, CGLS is recommended

due to the algorithms speed in obtaining better solutions.

3.1.4 Monte Carlo Estimate of the Effective Degrees of Free-

dom

The iterative optimizers we have considered in this paper can be expressed in

terms of the SVD expansion, Equation 3.16, with unique expressions for the filter

factors ϕi. As in the case of Tikhonov regularization, we associate the sum of these

filter factors γ with the number of effective degrees of freedom in the problem (Vogel

1987). For the case of the CGLS algorithm, these filter factors are recursive in the

singular values (Hansen 1997). This poses a problem because we use the CGLS

scheme without explicitly building the matrices, and the solution of the singular values

presents difficulty when using large data sets. Furthermore, the recursive scheme can

become unstable (Hansen 1994). To circumvent this problem, we use a Monte Carlo

scheme to estimate the sum of the filter factors. In essence, this scheme introduces a

Gaussian random vector b̂ with zero mean and unit standard deviation that contains

the same number of elements as the data vector b. While iteratively solving for the

solution vector x using the conjugate gradient method, we simultaneously solve a

second system with noise vector b̂ using the same CGLS coefficients (ᾱk and β̄k in
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standard notation) to derive a corresponding vector x̂. Hanke and Hansen (1993) and

Girard (1989) show that b̂T (b̂−Ax̂) provides an estimate of the number of degrees of

freedom in the original system with data vector b. Note, however, that this estimate

approximately doubles the computational overhead of the standard CGLS method.

We perform this calculation during each call to the CGLS algorithm, allowing an

estimate of the reduced χ2 for each set of lens parameters.

3.1.5 L-curve Analysis

The iterative optimization algorithms used in the local optimization step (the

inner loop of our optimization scheme) converge to lower spatial frequencies faster

than higher frequencies, and therefore the high-frequency noise present in the source

reconstructions can be suppressed by controlling the number of iterations of the local

optimizer. In general, we wish to find a balance between the image χ2 and the amount

of source regularization (Press et al. 2007). Since the regularizing effect of iterative

optimizers is implicit, we need a metric to evaluate the amount of regularization intro-

duced at each iteration. For simplicity, we use zeroth-order regularization (Warren

& Dye (2003); Suyu et al. (2006)) in this paper which sums the squares of source

pixel intensities, in order to quantify the regularizing effects of the local optimizers.

By calculating the image χ2 and regularization measure,
∑Ns

i s2i at each iteration of

the local optimizer, we can form an L-curve (Hansen and O’Leary 1993) for each

solution. In the standard image deblurring problem, the point associated with the

“corner” of the L-curve represents the solution that best balances the image fitness

and the amount of regularization introduced in modeling the source. This solution

is found by determining the point on the trade-off curve with maximum curvature.

We parameterize the L-curve by arclength (x(s), y(s)), where x and y represent the

regularization term and image χ2, respectively, and fit a cubic spline curve to x and

y. The derivatives of the cubic spline curves with respect to the arclength can be

calculated analytically, which provide a simple method to calculate the curvature κ.
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The point of maximum curvature is found using the curvature formula:

κ =
|x′y′′ − y′x′′|
(x′2 + y′2)

3
2

. (3.20)

We show a sample of L-curves in Figure 3.5 and corresponding source solutions in

Figure 3.6, including the solution located at the point of maximum curvature. In

general, the solution found by the L-curve analysis agrees with the maximum Bayesian

evidence solution to approximately 10%. The solution corresponding to the point of

maximum curvature of the L-curve is used to evaluate the fitness of each set of lens

parameters.

3.1.6 A Large-scale Test

We form the gravitationally lensed image of a large source to demonstrate the

efficiency of our iterative matrix-free approach. The source is a square image ofM51,

of dimension 512 × 512, shown in Figure 3.7, obtained from the NED online data

archive (Kennicut et al. 2003). The lensed image is generated using an SIE lens

defined on a 640× 640 grid, with Einstein radius b=3 arcsec, ϵ = 0.4, and θL = π/4,

with the lens centered at the origin. To demonstrate the behavior of the code with

a complicated PSF, we used a PSF composed of a radial sinc function multiplied by

an elliptical Moffat PSF (Moffat 1969), which is shown in the figure. The resulting

function provides a non-symmetric PSF that contains significant low-level structure.

Such a large PSF would require a very large non-sparse blurring matrix, whose linear

size must necessarily match the number of image pixels which map to the source, in

this case 3.34× 105 square. After adding Gaussian white noise, the peak S/N of the

blurred observation is S/N = 20. The solution shown in the figure was computed

by the CGLS method and has a reduced image χ2
r = 0.9954 and was found in 35

iterations that took 86.4 seconds using a single 2.4 GHz Intel processor.

The next section discusses the global optimizers, Ferret and Locust, which we

use to solve for the lens model parameters. Both are parallel codes that require

approximately 104 − 105 lens parameter sets to be evaluated for a thorough search,

optimization, and mapping of the parameter space. Assuming 5 × 104 evaluations,
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Figure 3.5: Examples of L-curves for Gravitational Lens Systems

Variety of L-curves for the system shown in Figure 3.1. The curve marked with the square, circle and

triangle is the true solution, with the parameters described in Section 3.1.2. Each successive curve

has the same parameters as the true solution except for the velocity dispersion, which takes the

values 260, 262.5, 265, 267.5 and 270 km s−1, respectively. The location of the optimally regularized

solution balances the residual and solution norms, denoted by the corner of the curve and marked

by a circle. The optimally regularized solution for the true set of lens parameters has reduced

χ2 = 0.998, ||s|| = 658.4, found after 7 CGLS iterations.

the lens parameters could be solved for this large-scale test problem in approximately

six days on an eight-core computer. Such a large-scale problem would be impractical

using a matrix inversion scheme due to the large size of the matrices involved.
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Figure 3.6: Regularization Effects on the Source Intensity Distribution

Sources corresponding to the solutions marked in Figure 3.5. Left: oversmoothed solution (square),

3 CGLS steps, reduced χ2
r = 1.228, ||si|| = 613.2. The middle panel shows the optimally regularized

solution in Figure 3.5 (circle) after 7 CGLS steps, reduced χ2
r = 0.998, ||si|| = 658.4. The panel on

the right shows the solution (triangle) after 18 CGLS steps, reduced χ2
r = 0.965, ||si|| = 740.4.
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3.2 The Full Optimization Problem

Section 3.1 focused mainly on the linear least squares reconstruction of the source,

for a known lens mass distribution. However, the full problem must also determine

the optimal set of lens parameters. The lens parameters are solved as an ‘outer loop’

optimization problem, which calls the semilinear method, or alternatively our itera-

tive approach, as an inner loop optimization for each set of nonlinear lens parameters

evaluated. The inner loop optimizes the lensed source by executing an arbitrary

number of iterative steps (in our examples, 40) of a local optimizer like the CGLS

algorithm. The L-curve for each lens parameter set is built, and the optimally reg-

ularized solution that lies nearest the corner of this curve is found. The χ2 value of

this optimally regularized solution is used to evaluate the fitness of the corresponding

set of lens parameters. During the inner loop optimization, a statistical estimate of

the number of degrees of freedom for the optimally regularized solution is made and

used to determine the reduced image χ2 during the analysis at the end of the run. In

this paper, the outer loop problem is solved by the Ferret GA and Locust PSO from

the Qubist Global Optimization Toolbox (Fiege 2010). However, the Mirage code is

not limited to either of these optimizers and can make use of any external nonlinear

optimization scheme.

Both Ferret and Locust are able to map out “fuzzy” optimal sets defined by an

inequality. In this case, we request a distribution of solutions with χ2 ≤ χ2
min + Nu,

where χ2
min is the lowest image χ2 value found and Nu is an upper limit selected

at the start of the run. The upper limit Nu is chosen to be large enough so as to

include solutions within the 99% confidence interval. The members of the optimal

set, along with the estimates for the number of degrees of freedom, allow us to de-

termine solutions within the 99%, 95% and 68% confidence intervals by the standard

method (Press et al. 2007). Thus, we can easily estimate errors for the nonlinear lens

parameters, since these global optimizers determine the form of the χ2 surface in the

neighborhood of the global minimum.

The source intensities may contain negative values since bounds cannot be imposed

in direct matrix inversion, and are not enforced in our iterative schemes. A final
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Figure 3.7: A Large Scale Test of Mirage

Large scale test of Mirage. Top left: original image of M51 used to generate a large-scale test

problem by forming a lensed image, blurred by the PSF and including additive noise. Top right:

model source obtained with the CGLS algorithm after 40 iterations. The original image was obtained

from NED, originally 700 × 700, cropped to 512 × 512 pixels. The effect of the lens mapping can

be seen as the source plane is not completely covered by the back-traced image. Middle left: lensed

image of M51 as seen through an SIE lens used as artificial data. The image is comprised of 640×640

pixels, over an area of 25.5 arcsec2. Middle right: model image of M51 as produced by the CGLS

algorithm after 40 iterations. Bottom left: PSF used to blur the observation, shown in logarithmic

intensity to highlight the low-level structure. The function is a 65 × 65 pixel PSF. Bottom right:

residuals obtained from comparing original and model images. The residuals are featureless and

have a maximum 10−3 of the original image maximum. The reconstruction has a reduced image

χ2
r = 0.9954.
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source refinement step, discussed in Section 3.2.4, uses the GA and PSO as bounded

optimizers to find the optimal positive definite source distribution, with the lens

parameters held fixed at their previously optimized values.

3.2.1 Global Nonlinear Optimization

The Qubist Global Optimization Toolbox contains five global optimizers in total,

all of which are designed to be interchangeable. Ferret and Locust are the most

powerful and well-tested optimizers in the package, which makes them well-suited

for our problem. Qubist includes more than 50 test problems, some of which are

discussed in its user’s guide (Fiege 2010).

GAs and PSOs differ greatly from local optimization routines such as CGLS and

SD, which require an initial guess and then search iteratively along a determinis-

tic trajectory through the parameter space. Such methods are prone to becoming

trapped in local minima. Moreover, these methods are usually implemented to solve

unbounded optimization problems, which may be less useful than bounded optimiza-

tion when there are physical constraints on the parameters, such as the positivity of

source pixel values in the lens reconstruction problem (see Section 3.1).

GAs and PSOs search the parameter space in parallel, making use of the collective

behavior of numerous interacting “agents” - a population of individuals for a GA or a

swarm of particles in the case of a PSO. These optimizers distribute agents randomly

throughout the parameter space initially, which subsequently interact using heuristic

rules that aim to search the space thoroughly, and encourage the improvement of the

population or swarm as a whole. In both types of algorithm, these heuristic rules are

partly deterministic and partly stochastic. The resulting optimization algorithms are

more powerful and robust than purely deterministic methods and vastly more efficient

than random search. In general, only a single agent must find the high-performance

region in the vicinity of the true global solution for the algorithm to succeed. Once

such a solution is discovered, it is rapidly communicated to all other individuals or

particles, which will accumulate near the global minimum and refine it.
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3.2.2 Genetic Algorithms

GAs are an important class of algorithms for global optimization that work in

analogy to biological evolution. Evolution is biology’s optimization strategy of choice,

in which organisms evolve and continually improve their own designs as they struggle

to survive. GAs are normally discussed using biological terminology, such that each

“individual” is a trial solution, whose parameters are encoded on “genes”. The set of

individuals is a “population”, and individuals search the parameter space in parallel as

they evolve over multiple “generations”. A basic GA requires three genetic operators,

which are mutation, crossover, and selection (Goldberg 1989). The role of mutation is

to apply occasional random perturbations to individuals, which helps them to explore

new regions of the parameter space. Crossover mixes together two parent solutions to

produce offspring that are intermediate between the parent solutions. The role of the

selection operator is to choose which solutions propagate to the next generation, based

on the Darwinian notion of survival of the fittest. Various types of selection operators

are possible, but tournament selection has the advantage that it is insensitive to the

scaling of the fitness function (Goldberg 2002).

Ferret is a parallel, multi-objective GA, which has been under constant develop-

ment since 2002, and is the most sophisticated optimizer in the Qubist package. The

current version is the fourth major version of the code, and earlier versions were used

by Fiege et al. (2004) to model magnetized filamentary molecular clouds, and by Fiege

(2005) to model submillimeter polarization patterns of magnetized molecular cloud

cores. Ferret extends the basic GA paradigm in several important ways, as discussed

below.

Multi-objective optimizers like Ferret emphasize the thorough exploration of pa-

rameter spaces and the ability to map trade-off surfaces between multiple objective

functions, which allows the user to understand the compromises that must be made

between several conflicting objectives. A core feature of a multi-objective GA is

the ability to spread solutions approximately evenly over an extended optimal set of

solutions, which Ferret accomplishes using a niching algorithm similar to the one dis-

cussed by Fonseca and Fleming (1993). Even for single-objective problems, Ferret’s

65



multi-objective machinery is well-suited to explore and map out χ2 intervals in the

neighborhood of the global minimum. We see in Section 3.3 that it is especially useful

for degenerate cases where multiple disconnected islands of solutions exist within the

parameter space.

Ferret’s most novel and powerful feature is its ‘linkage-learning’ algorithm (Gold-

berg 2002), which is designed to reduce a complex, multi-parameter problem to a

natural set of smaller sub-problems, whenever such a reduction is possible. These

simpler sub-problems are discovered experimentally by Ferret during the process of

optimization, and sub-problems evolve almost independently during a run. Ferret

regards two parameters A and B as linked if finite variations of A and B are dis-

covered, which result in worsening of a solution when applied independently, but the

same variations applied together result in improvement. In such cases, it is clear that

A and B should be linked so that they are usually traded together during crossovers,

to preserve gains made by varying the parameters together. A novel extension of

Ferret’s linkage-learning algorithm is its ability to search entire sets of parameters

{Ai} and {Bi} for linkage in parallel, which is assigned probabilistically to the pa-

rameters within these sets. Thus, Ferret treats linkage as a matrix of probabilities

that co-evolves with the population during the search. Parameters that appear linked

at the start of a run may not appear linked at the end, when most solutions may be

nearly optimal. Conversely, new links can also arise as the code explores previously

uncharted regions of parameter space.

The ability to partition a complicated problem into natural sub-problems is crucial

to the successful optimization of large problems. A difficult 100 parameter problem

with many local minima is often unsolvable on its own, but it becomes quite tractable

if it can be partitioned into (say) 10 sub-problems (or building blocks) with 10 pa-

rameters each. A particularly interesting feature of Ferret’s linkage-learning system

is that the linkages discovered are entirely insensitive to scale. Two sub-problems

(building blocks) that are orders of magnitude different in importance are discovered

at the same rate, so that Ferret can solve all of the sub-problems correctly and simul-

taneously, rather than one at a time in order of significance. This ability allows Ferret

to discover the true, globally optimal solution or solution set, even when applied to
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problems with very poorly scaled building blocks.

Ferret contains an algorithm that monitors its progress and uses this information

to automatically adapt several of its most important control parameters, including the

mutation scale, size scale of crossover events, and several others. If these parameters

are set poorly by the user, Ferret quickly and dynamically adapts them to improve

the search. This algorithm provides an extra layer of robustness to the code, which

helps Ferret to adapt as different regions of the fitness landscape are discovered.

Ferret, and the other global optimizers of the Qubist toolbox, place considerable

emphasis on visualization. The analysis window displayed at the end of a run contains

various graphics options to tease out interesting features from the optimal set. These

features include two and three-dimensional scatter plots, image plots, contour plots,

and user-defined graphics. It is possible to ‘paint’ interesting regions of the param-

eter space and select different two and three-dimensional projections to explore and

visualize where the painted solutions reside in a high-dimensional parameter space.

Modeling a gravitational lens system is a computationally intensive task that

requires approximately 104 − 105 parameter sets to be evaluated for a single run.

GAs are well suited to parallel computing because each individual in the population

represents a single parameter set, which can be evaluated independently. Ferret is

designed with built-in parallelization to take advantage of multi-CPU computers and

inexpensive clusters. Parallel jobs are managed with a graphical “node manager”

tool, and no changes are required to the implementation of the user’s fitness function.

It is notable that Ferret does not require MATLAB’s parallel computing toolbox, or

use any other third-party parallel computing software. Appendix D discusses some

additional details of the Ferret algorithm.

3.2.3 Particle Swarm Optimizers

Locust is a parallel multi-objective PSO in the Qubist toolbox. PSOs are biolog-

ically inspired global optimizers, which search the parameter space using a swarm of

interacting particles. PSOs are often discussed in terms of the dynamics of flocks of

birds, schools of fish, or swarms of social insects searching for food. The commonality

67



is that intelligent search behavior emerges as a property of the system as a whole,

even if the component parts are modeled as relatively simple automata that interact

with each other through simple rules. Kennedy & Eberhart (2001) provides a good

introduction to the PSO technique.

PSOs are similar to GAs in that they sample many points in the search space

simultaneously, with a swarm of particles moving through the parameter space fol-

lowing simple dynamical equations. Each particle in a simple PSO is simultaneously

attracted to its own “personal best” solution, which is the best solution that the

particle has personally discovered, and the “global best” solution, which is the best

solution that the entire swarm has ever encountered. The law of attraction follows

a simple spring law: F ∝ |∆x|, where |∆x| is the distance between a given particle

and either the personal best solution xp or the global best xg. Assuming that the

force and velocity are approximately constant over a time step, the new velocity and

position of particle i after a time step ∆t are given by

vi(t+∆t) = vi(t) (1−∆t/tdamp) +

[cpξp(xp − xi) + cgξg(xg − xi)]∆t

xi(t+∆t) = xi(t) + vi(t)∆t, (3.21)

where cp and cg play the role of spring constants for the personal and global best

solutions respectively. The equations include a damping term to decrease the velocity

magnitude in approximately time tdamp, which helps the swarm settle down as it zeros

in on the optimal region. Damping also serves to prevent runaway growth in so-called

‘particle explosions’, which can occur as a result of accumulated errors in Equation

3.21. Some randomness is added via the uniform random variables ξp and ξg, which

are typically drawn from the range [0,1]. The stochastic terms play a role similar to

the mutation operator in a GA; they add randomness to the search, which helps the

particles to explore previously unexplored parts of the parameter space. The roles of

the personal and global best solutions are clear. The personal best solution represents

a particle’s memory of the best region of parameter space that it has seen, and the

global best solution represents the entire swarm’s collective memory. In effect, the

global best solution allows indirect communication between particles to encourage
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collective behavior.

Particle swarm optimization is a young and rapidly changing field of research

that still has many open questions, which are discussed in a recent review by Poli et

al. (2007). Equation 3.21 is perhaps the simplest set of swarm equations, but many

alternative implementations are possible, which strive to balance thorough exploration

of the parameter space against the need to exploit high performance regions when

they are found.

Equation 3.21 is equivalent to a simple Euler integration scheme for a dynamical

system of equations that move each particle every time step. However, Locust uses an

exact solution to the swarm equations, which is easily obtained by solving Equation

3.21 analytically, in the limit ∆t → 0. Numerical experiments with Locust, and

alternate schemes that use Euler integration, show that the exact solution results in

a more stable and reliable PSO (Fiege 2010). It is possible that the exact solution

eliminates the build-up of errors in the orbits, which would result from applying

Equation 3.21 directly with a finite ∆t. The exact solution is slightly more costly

to evaluate than the Euler approximation, but this extra computational expense is

insignificant for any realistic problem, where the computational time is normally

dominated by the evaluation of the fitness function.

Determining xp is straightforward because it represents the personal best solution

(often denoted pbest) that any particle has encountered. Thus, each particle simply

keeps track of the position where it encounters the lowest value of the fitness func-

tion F (x), following Ferret’s convention that lower values of F correspond to more

desirable solutions.

The most common particle swarm implementation is the simple PSO discussed

above, where the global best solution xg (gbest) is evaluated over the entire swarm.

This swarm topology can be thought of as a fully connected graph, where each particle

in the swarm communicates with every other particle via the gbest solution. Other

swarm topologies are possible, where the network of communication between swarm

members is less densely connected, so that each particle only communicates with a

few other particles in its neighborhood. In this case, the gbest solution is replaced

by a set of local best, or lbest solutions, such that each lbest solution is assigned to
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a subset of the swarm. This scenario is referred to as a static lbest topology when

the network connecting particles do not change throughout the run. Dynamic lbest

topologies are also possible, where the network co-evolves with the swarm as the run

progresses. Swarms based on sparsely connected networks can be thought of as being

divided into sub-swarms, where each sub-swarm shares a common lbest solution. Such

a topology is better able to avoid local minima because the sub-swarms explore the

space in parallel. On the other hand, the fully connected gbest topology is best for

exploiting a single isolated solution late in a run, because it focuses the efforts of the

entire swarm on the region of parameter space in the vicinity of the gbest solution.

Locust requires some non-standard techniques designed to thoroughly explore pa-

rameter spaces containing sets of solutions that are equally good. Extended solution

sets are also possible when a fuzzy tolerance is specified for a single objective problem,

which often represents the χ2 error tolerance of a data-modeling problem. Locust em-

phasizes the mapping of spatially extended solution sets, and therefore it makes sense

to define particle neighborhoods dynamically, based on their spatial location within

the swarm. The code keeps track of the Euclidean distances between all particles, and

assigns neighborhoods based on the nearest lbest particle. Moreover, Locust imple-

ments a novel algorithm that allows neighborhoods, and hence sub-swarms, to merge

and divide as required to map out the structure of the optimal set. This dynamic

swarm topology is quite different from other topologies discussed in the literature, and

has the benefit that it essentially self-optimizes. A large number of neighborhoods

will generally be preserved to map a spatially extended solution set, but the swarm

topology will correctly collapse to a single neighborhood late in a run if only a single

solution exists, thus reducing the algorithm to a simple gbest approach. In practice,

this technique represents a good balance between exploration of the parameter space

and exploitation of the optimal set; the parallel action of many sub-swarms evade

local minima early in the run for all problems, and many are retained to the end

when the focus is on mapping an extended solution set, but swarms reduce to the

maximally exploiting gbest algorithm late in the run for problems where only a single

best solution exists.

Locust uses the same visualization system as Ferret. It uses a simpler setup
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file than Ferret, but it can read Ferret’s setup files and translate them. Moreover,

the formats for the initialization, fitness, and custom graphics functions are identical.

This makes it easy to swap optimizers for comparison purposes. Appendix D discusses

additional details about Locust.

3.2.4 Source Refinement Routine

We use a two-step process to solve the full inversion problem. In the first step, we

determine the nonlinear lens parameters as described in Section 3.2. In the second

refinement step, we hold the best set of lens parameters constant and allow the global

optimizer to fit the source brightness distribution. We treat each source plane pixel

as a free parameter and judge the fitness of solutions based on the image χ2
r statistic.

This type of pixelized source fitting using a GA was outlined by Brewer & Lewis

(2005). The Qubist global optimization routines are bounded, so positivity conditions

on the source reconstruction are easily enforced in this step. Since the intensity of

each source pixel is independent, this approach does not produce a regularizing effect

and the number of degrees of freedom in the problem is well defined, allowing direct

comparisons of lens models. Therefore, this two-step method allows an estimation of

the errors on both the lens and source intensity parameters.

The bounds used in the refinement step can significantly speed up this optimiza-

tion. Figure 3.8 shows a sequence of solutions with a lower bound of 0 and an upper

bound equal to 1.1 times the maximum pixel intensity in the source. These bounds

ensure that the source is strictly positive but can significantly slow the optimization

due to the large volume of the parameter space that is searched. Both of the global op-

timizers used in this report can include a user-defined solution in the first generation.

Therefore, a more practical optimization strategy is to consider the absolute value of

the optimally regularized solution found by the iterative optimization process, and

define a “window” of acceptable pixel intensity values for each source pixel. In our

tests, a tolerance of ±25% of the pixel intensities is usually sufficient to bracket the

true intensities. Pixels with negative intensities in the optimally regularized solution

should always have a lower bound of 0 to prevent artifacts in the source solution. The
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upper bound of these pixels is taken to be the absolute value of the pixel intensity

plus 15%. Practically, this reduces the volume parameter space to be searched and

generally allows a solution to be found more quickly.

3.3 Demonstrations of the Full Optimization

Problem

In this section, we show results from several illuminating test problems that solve

the full lens reconstruction problem and characterize the behavior, performance, and

limitations of the global optimizers.

3.3.1 Trivial Solutions and the Problem of Dimensionality

Consider a lens model based on a singular isothermal sphere, which provides a

simple analytical model with a circularly symmetric deflection angle given by Equa-

tion 3.12 in the radial direction. This deflection angle is used to form the synthetic

data with velocity dispersion σv = 500 km s−1, centered at the origin (x, y) = (0, 0).

We construct artificial data where the Einstein ring has radius b = 1 arcsec, assum-

ing source redshift zd = 0.2, deflector redshift zs = 1.5. For convenience, we again

measure angular distances with respect to the Friedmann metric with k = 0. The

lensed image is defined on a 120 × 120 rectangular mesh with an image pixel size of

0.015 arcsec. A 3 × 3 subsampling per pixel is used to construct the lensed image.

The source is perfectly aligned with the lens center and forms a full Einstein ring

due to the symmetry of the mass distribution. We have blurred the image using a

Gaussian PSF with an FWHM of 2.35 image pixels defined on a 33 × 33 grid. The

test source is also a Gaussian model on a 50× 50 square mesh from −3 to 3 arcsec in

both directions.

In the following discussion, we hold the x and y coordinates of the lens center

constant, using the actual values from the artificial data, and plot χ2
r as a function of

b in Figure 3.9. As the size of the Einstein radius (velocity dispersion) is varied, the

corresponding χ2
r statistic becomes double peaked, with the true solution between the
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Figure 3.8: Genetic Algorithm Optimized Source Intensity Distribution

The lowest χ2
r solution at 100, 250, 500, 750, 1000, 1250, 5000 generations. Left column: model

image. Middle column: source brightness distribution. Note the presence of reconstructed noise.

Right column: image residuals. At 5000 generations, a model image with χ2
r = 1.05 was found.

Each image is independently scaled to highlight image features.
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peaks. The area to the left of the peaks, the region of low b, contains trivial solutions

that map the source almost straight through the lens, reproducing the image almost

exactly with minimal distortion. In fact, the b = 0 source does not include any

gravitational lens effect at all, thus reducing the problem to a conventional image

deconvolution exercise. Note that this trivial solution results in reduced χ2
r = 0.973,

even though the reconstructed source is physically unrealistic. The χ2 surface varies

smoothly as we approach the ‘true’ value of b with χ2
r = 0.986, and increases with b

beyond this value. When b is large, we again begin to see a decrease in χ2
r, to the

asymptotic value of χ2
r = 1.15, as the structure of the source becomes increasingly

complex to compensate for the distortion introduced by the lens. Typically such

high b solutions give rise to spurious images in which some pixels lie outside the

boundaries of the image plane. In general, these images will be missed by the ray-

tracing operation, and will thus not contribute to the χ2, providing the apparently low

vales of the fit statistic at high b. As the lensing effect grows sufficiently strong, these

spurious images occupy a smaller portion of the image plane, and the χ2 decreases

correspondingly. This is a shortcoming of ray-tracing methods due to the fact that we

are ray-tracing over a finite image plane when the lens parameters are not restricted.

In general, we wish to avoid the very low and very high b solutions, since they do not

correspond to physical solutions of the problem.

With the lens center fixed, the above example is a simple one parameter problem,

which can be easily solved by a global optimization routine designed to map a range of

χ2 values near the global minimum. However, analogous examples may exist in more

complicated systems with more parameters, where the parameter space can become

dominated by trivial solutions. The problem becomes especially difficult when false

solutions, such as the trivial ones in Figure 3.9, occupy a region of space whose

dimensionality is greater than the true solutions. In such cases, GAs and PSOs can

fail when the number of search agents is too small for the problem, since the entire

population or swarm may be drawn into the region of trivial solutions and never

discover the class of true solutions that occupy a region of lower dimensionality. Even

if the high-performance region containing the true solution is discovered, both Ferret

and Locust are designed to spread solutions evenly over the optimal region, which
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Figure 3.9: Image Fitness Landscape of the Singular Isothermal Sphere

Left: fitness as a function of Einstein radius for a symmetric lensed image produced by a background

Gaussian source intensity distribution. The Einstein radius was varied manually with the lens center

fixed at the origin. The dashed line indicates the lower limit used to model the system, and the

dash-dotted line is the upper limit used to restrict the value of the Einstein radius. The region

between these two limits is the region in which the true solution is located. Middle: Einstein radius

limits are shown superimposed on the artificial data. Right: fitness as a function of lens center. The

lens center position was varied over a 64×64 grid and the lens normalization fixed at the true value,

b = 1 arcsec. Trivial solutions populate the corners of the image. The true solution lies at the center

of the image.

contains the trivial solutions if the goal is to map the solution set within ∆χ2 of the

χ2 minimum. Thus, the population or swarm may become diluted by spreading out
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over the trivial region, which has higher dimensionality. The right panel of Figure 3.9

shows the results of keeping the Einstein radius b fixed at its true value and varying

the lens center (x, y). The true solution point, with χ2
r = 0.986, is surrounded by a

ring of poor solutions, which signifies multiply imaged solutions. In this projection,

trivial solutions occupy a two-dimensional plane at large radius and have χ2
r = 0.978.

In order to overcome the complication of trivial solutions, an estimate of the range

of acceptable parameter values is made. By imposing such parameter restrictions the

algorithm is guaranteed to find a non-trivial solution to the optimization problem.

Notably, Ferret also implements a novel algorithm that promotes the speciation of

the population into isolated clusters, which may help to overcome this difficulty.

3.3.2 A Realistic Test

For a more realistic and complicated test, consider the SIE lens model presented

in Section 3.1.2. We use the same parameters to solve a test system, with the source

intensity profile as given by Equation 3.10. We fix the redshift of the deflector and

source as in the previous example, and model the parameters of the lens density

model using both Ferret and Locust. The fitness objective to be minimized is the

standard χ2. The parameters of the best solutions are summarized in Table 3.1. Both

algorithms automatically map the region of parameter space near the minimum by

heavily populating this region of parameter space. The effective number of degrees

of freedom for each model is estimated and saved during the course of the run. By

using these quantities we are able to estimate confidence intervals and the errors of

the lens parameters. The structure of the global χ2 surface is calculated at the end

of the run using the members of the optimal set, saved from each generation (Ferret)

or time step (Locust). Figure 3.10 shows that Ferret more thoroughly explores the

parameter space than the Locust algorithm.

We find that the GA and PSO converge approximately at the same rate. Figure

3.11 compares the performance of the algorithms by plotting the fitness of the best

solution as a function of the number of function evaluations, while Figure 3.10 shows

the distribution of solutions in the parameter space. Figure 3.10 shows that Ferret
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Figure 3.10: Parameter Space Plots of a Test Function

Parameter space plots of the SIE example in Section 3.3.2. The optimal set of solutions determined

by global optimization marked by points shaded according to position within the 99%, 95% and 68%

confidence intervals, represented by light gray, medium gray and black respectively. The location

of the true solution is marked with a white cross. Top row: the Ferret GA optimal set. Bottom

row: the Locust PSO optimal set. Left column: ellipticity ϵ vs. velocity dispersion σv, middle

column: lens centre coordinates y vs. x, and right column: orientation angle θL vs. σv. The PSO

does not explore the structure of the parameter space as thoroughly as the GA. Note the rightmost

column in which the orientation angle degeneracy of the system is detected by the Ferret GA but

no corresponding solution group is present in the Locust PSO optimal set of solutions.

correctly discovers a pair of equally good degenerate solutions symmetric in orien-

tation angle, but Locust picks out only one of these groups, which reflects Ferret’s
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Solution Ferret GA Locust PSO True Lower Upper
χ2
r 1.010 1.012 0.998 - -
σv 260.002 259.892 260.000 250.000 280.000
ϵ 0.401 0.399 0.400 0.200 0.500
x −2.101× 10−4 −2.123× 10−4 0.000 −0.500 0.500
y 0.119 0.120 0.120 −0.500 0.500
θL 4.713 4.713 π/2 0.000 2π

Table 3.1: Comparison of the Ferret GA and Locust PSO on a Test Problem

Optimal lens parameters found by the Qubist optimizers for the example given in the text using the

SIE lens. We restrict the range of the lens parameters to prevent convergence to a trivial solution.

Performance of the GA and PSO routines is similar as can be seen from the reduced image χ2.

greater emphasis on mapping the parameter space. Baran (2009) used these same op-

timizers to estimate the system temperature of the DRAO synthesis array and noted

that Locust found solutions significantly faster on average. We do not find the same

behavior of the PSO in this problem.

3.3.3 Source Refinement

Once we have determined the lens parameters, we hold them constant and begin

the final source refinement step of the optimization, which involves 2500 parameters

for the case shown. The source refinement results in an optimal non-negative source

intensity distribution, as discussed in Section 3.2.4. The image is of size 120 × 120,

while the source plane is defined as a 50 × 50 grid. The solutions at the beginning

of this step appear to be comprised purely of noise, but an approximation to the

true solution becomes increasingly well defined as the run progresses, and the image

residuals gradually become featureless. Figure 3.8 shows an evolutionary sequence of

the lowest χ2
r solution, where the final solution has χ2

r = 1.05. The search is a bounded

linear problem, which is mathematically simpler than the nonlinear search for lens

parameters. However, the large number of parameters complicates the optimization

and the GA converges in a few thousand generations. Source refinement is the most

computationally expensive part of this problem, requiring approximately five days on
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Figure 3.11: Convergence History of the Ferret GA and Locust PSO

Average convergence history of the Ferret GA (solid line) and the Locust PSO (dashed line) as a

function of the number of function evaluations for the test described in Figure 3.10. The convergence

of the GA is more stable, as the PSO tends to converge in a series of steps as the parameter space

is explored. The figure is plotted over 1.0 × 105 function evaluations. We have averaged over four

runs of the PSO and four runs of the GA.

an eight core machine. The most useful aspect of this intensive search is to estimate

errors on the source plane pixels determined by the best fit lens model.

Ferret’s convergence on the source refinement problem is shown in Figure 3.12.

The smooth convergence curve is a hallmark of linear or other easy problems. We

have noted that the source reconstructions begin fitting to noise in the target image

slowly, so it is generally quite easy to find an acceptable termination criteria for the

algorithm. Since each pixel in the source is independently treated by the GA, this
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problem cannot be expressed in terms of the SVD expansion in the same way that

the solutions to a linear optimization step can. However, to quantitatively ensure

that overfitting to noise is prevented, we once again form the L-curve between the

image χ2 and a linear regularization measure
∑
s2i to quantify the amount of noise

in the source. In practice the L-curve analysis in the final analysis step is of limited

use due to the smooth convergence of the algorithm and the slow rise in noise in

the reconstructed sources. Ferret is able to converge to a source near the location of

the true solution for all situations that we have tested. The best solution typically

agrees with the true source to within 15% though we have noticed variation in the

details of the derived sources from run to run, which is expected considering the large

number of parameters involved in the optimization. It is interesting, and perhaps

surprising, that the Locust PSO is unable to solve this problem, despite its linearity.

We conclude that a GA is a more robust and efficient approach than particle swarm

optimization for both of these optimization problems. When the problem is small, a

PSO can often find the solution in a comparative amount of time as a GA.

3.4 Conclusions

The semilinear method provides an elegant way to describe gravitational lens

inversion in terms of a least squares problem, but is limited to relatively small images

and a narrow PSF. This is due to the fact that the semilinear method requires the

inversion of a large matrix whose size increases as the fourth power of the number

of source pixels, and the sparsity of this matrix is reduced as larger PSFs are used.

Solving for lens parameters is a nonlinear optimization problem, which can be solved

by global optimization techniques. We applied and compared the Ferret GA and

Locust PSO to determine the nonlinear parameters of the lens model. The global

optimization of lens parameters requires a lens inversion for each set of lens parameters

tested, and 104 − 105 such evaluations are required for a thorough exploration of the

parameter space and mapping of the optimal region. This reinforces the need for fast

lens inversion techniques that scale well with the size of the image and PSF.

We addressed the need for a fast lens inversion algorithm by developing a matrix-

80



0 200 400 600 800 1000
0

100

200

300

400

500

600

Generation

F
itn

es
s

Convergence Plot

Figure 3.12: Converence History of Ferret in Source Intensity Optimization

Convergence history of the linear parameters during source refinement stage using the Ferret

genetic algorithm.

free approach to solve the least squares lensing problem, based partly on recent devel-

opments in the image deblurring literature, which solves the problem without the need

to explicitly build the lens or blurring operators. This novel approach is intended to

complement the semilinear method when speed is of the essence, or when large images

and broad, highly structured PSFs are used. We note that our approach can be ex-

tended to the case of a spatially variant PSF. Our analysis evaluated the convergence

behavior of a matrix-free method using several local optimization methods. We found

that the CGLS method is fastest to converge, but all linear optimization schemes suf-

fer from over-fitting of noise if the optimization is not stopped at the critical iteration,
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which cannot be predicted a priori. We showed that steepest descent methods are

more robust against over-fitting to noise at the expense of the speed of convergence.

This work extends the applicability of the semilinear method and represents a unique

and significant contribution to strong gravitational lens modeling.

The number of degrees of freedom in the iterative optimization step is estimated

using a Monte Carlo method, allowing us to draw connections to the work of Suyu et

al. (2006) that estimate the number of degrees of freedom using Bayesian statistics.

We derived a formula for the number of degrees of freedom based on the filter factors

of the Tikhonov regularization problem, which agrees with the expression found by

Suyu et al. (2006) using Bayesian analysis.

We developed a novel method that computes the optimally regularized solution for

each set of lens parameters by finding the point of maximum curvature in the trade-

off curve between χ2 and a measure of the amount of regularization in the solution,

which we took to be the sum of the squares of source pixel intensities. The ambiguity

of choosing a regularization parameter or stopping criteria is removed, because we

automatically determine the optimal number of iterations (regularization constant)

using the L-curve. We evaluate the fitness of lens parameter sets using the image χ2

statistic.

The convergence and parameter space mapping properties of the Ferret GA and

the Locust PSO schemes were compared, and we determined that the GA explores the

parameter space more thoroughly than the PSO. The GA obtained a more detailed

optimal set of solutions, highlighting the degeneracy in the position angle of a Singular

Isothermal Elliptical lens model due to the rotational symmetry of the lens. Both

methods converge at a similar rate.

As a final refinement step in the image reconstruction our approach uses the GA

or PSO to directly solve for pixel intensities. This addition has the important benefit

that the non-negativity of the source intensity profile can be enforced. It is notable

that the Ferret GA was able to solve this bounded linear solution refinement prob-

lem, but the Locust PSO failed due to the high dimensionality of the search (∼2500

parameters). This analysis step shows stable convergence, and noise is introduced to

the source very slowly. In practice this routine is relatively insensitive to stopping
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criteria.

This work serves as a foundation for future explorations, which will apply the

techniques discussed here to data, and expand them to include non-parametric lens

models, such as those used by Vegetti & Koopmans (2009) and Saha et al. (2007).

Just as the intensity distribution of the source can be described by a pixelated model,

a similar approach can be used to describe the lens density distribution (Diego et al.

(2005); Liesenborgs et al. (2007); Suyu & Blandford (2006)). In fact, the use of GAs

to optimize pixelated lens density distributions has been previously investigated in

the literature (Liesenborgs et al. (2006); Liesenborgs et al. (2007); Liesenborgs et al.

(2009)). Non-parametric lens density models are extremely valuable, since dark mat-

ter haloes may contain significant substructure (Koopmans 2005) that is not taken

into account by smooth analytical lens models. This added flexibility reduces the

bias that is introduced by assuming a specific analytical form for the lens. Vegetti

& Koopmans (2009) used smooth analytical lenses and added a pixelated perturb-

ing potential to the models to simulate more realistic lenses. In general, the gross

morphology of gravitational lens images are recovered well using smooth analyti-

cal functions to describe the lens density, but more realistic descriptions of the lens

density distributions are expected to produce models with smoother, increasingly fea-

tureless residuals. Systems of lensed quasars have also been modeled using pixelated

mass maps (Saha & Williams (1997); Saha et al. (2006)). The Java code PixeLens

(Read 2003) has been used to model variable lensed quasars and obtain estimates of

the Hubble constant H0.

For the remainder of this thesis we make use of analytical lens mass distributions

with our lensing code due to the intuitive nature of the parameters in these lenses

and the speed of evaluating such lens models. However, pixelated lens models could

be used in conjunction with the semilinear method to model complicated lens density

distributions and reveal the details of cosmologically distant extended sources.
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Chapter 4

Spatially Variant Point Spread

Functions

One of the main computational problems in developing models of gravitational

lens systems using the semilinear method is the deconvolution step to account for the

PSF. In Section 3 we discussed several schemes to include this deconvolution step.

The least squares form of the semilinear method treats the source deconvolution as

a linear problem. In the previous sections, we showed that appropriate subroutines

can be used in place of matrix operations to compute the lensed and blurred images,

and that this approach can be extended to SD and CGLS optimization schemes

while retaining the linear form of the problem. This allows us to avoid the explicit

construction of these large matrices. Though we have only considered galaxy-galaxy

lensing to this point, our code is applicable to strong lensing phenomena on all scales,

including cluster lenses. Our code therefore complements the semilinear method,

which handles small scale problems well. Furthermore, we noted that the matrix-

free approach would lend itself to including the effects of complicated and possibly

spatially varying PSFs.

Image deconvolution problems are usually handled by approximating the PSF as

constant over the entire image. This is true for the basic semilinear scheme as well.

However, the PSFs of a variety of astronomical instruments are position dependent,

such that point sources at various locations in the image will be blurred by different
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amounts. A great deal of consideration has gone into dealing with this issue, and a

particularly elegant method to deal with spatially variant PSFs is based on the work

of Nagy et al. (2002).

The matrix-free method of gravitational lensing can accomodate the spatially vari-

ant nature of the PSF for large-scale modeling applications. In the next section, we

will show how this can be done using an implementation of the Nagy et al. (2002)

approach. Although small scale images such as those of galaxy lenses should not be

affected much by spatially variant effects, these effects may be seen in large scale im-

ages of giant arcs in galaxy clusters. This section develops a technique to incorporate

spatially variant PSFs in our version of the semilinear method. We test our code

using artificial data constructed by distorting a portion of the Hubble Deep Field

using an elliptical potential model, which is representative of a galaxy cluster lens.

Despite the large size of the problem and complicated variation of the PSF over the

sample data, we are able to recover the details of the source distribution accurately.

The following Sections are based on the text of Rogers & Fiege (2011b), originally

published in The Astrophysical Journal.

4.1 Introduction

Spatial dependence of the PSF is not considered in most conventional deconvolu-

tion problems. This simplifies the construction of the blurring matrix B, since only

one PSF is taken into account. However, it is well known that the PSF cannot always

be treated as constant over an image in cases of astronomical interest. For example,

spatially variant PSFs have been studied in the context of adaptive optics (Lauer

(2002); Gilles et al. (2002)) and the PSF of astronomical instruments, such as the

Hubble Advanced Camera for Surveys (ACS), can be extremely position dependent

(Bandara et al. 2009). Several schemes have been designed to deal with this vari-

ability (Boden et al. (1995); Biretta (1994); Adorf (1994); Lauer (2002)). Describing

a spatially variant PSF is much more complicated than for the invariant case, since

each row of the blurring matrix B will be derived from a unique PSF in general. The

position of a pixel in the image determines the amount by which it is blurred.
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We illustrate the effect of spatially dependent PSFs on gravitationally lensed im-

ages in Figure 4.1. Consider the lensing effect produced by a singular isothermal

sphere (SIS), which has three parameters: velocity dispersion σv and lens center

(x, y). The deflection angle due to a SIS lens has a simple analytical form most

conveniently described in standard polar coordinates (r, ω):

α (r) = 4π
(
σv
c

)2 Dds

Ds

, (4.1)

where Dds and Ds are the angular distances between lens and source and observer

and source respectively, and c is the speed of light. We model the blurring in Figure

4.1 with σv = 265 km s−1 and use source redshift zs = 1.5 and lens plane redshift

zl = 0.12. This model was calculated using cosmological parameters H0 = 70 km

s−1 Mpc−1, Ω0 = 0.3 and Λ0 = 0.7 which we adopt for the remainder of this study.

The source is comprised of a set of circular disks in the source plane as shown in

the left-hand panel of Figure 4.1 and the gravitationally lensed image is shown in

the center panel. The lensed image is then blurred by a spatially variant PSF and is

shown in the right panel of Figure 4.1. The distortion used to create this image varies

from a delta function in the lower-left corner (negligible blur) to a Gaussian with

standard deviation σg = 6.0 pixels in the upper right corner. Each PSF is defined

on an arbitrary 33× 33 grid and is normalized to unity sum. The source and image

plane size are 240× 240 pixels.

Unlike constant PSFs, spatially variant PSFs cannot be described by a simple

convolution operation. Fortunately, numerical methods have been devised to handle

them, including sectioning methods (Trussel & Fogel 1992), which deconvolve each

PSF independently and form the source from the sum of the reconstructions. Nagy

& O’Leary (1998) devised a clever method to model the effects of spatially variant

PSFs within the framework of the standard image deconvolution problem. This ap-

proach differs from sectioning methods in that the separate PSFs are used to build

an approximation to the blurred image of a given source, and a single iterative de-

convolution operation is needed to solve for the source intensity distribution. The

method was implemented in Nagy et al. (2002) and represents the spatial dependence

of the PSF as a summation of piecewise blurring matrices, each of which applies over
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Figure 4.1: Example of Spatially Variant Blurring

Example of spatially variant blurring. Left: a set of regular disks with radius 0.268 tile the source

plane. Center: the circular disks are seen under the lensing effect of a Singular Isothermal Sphere

(SIS) lens model. The SIS distorts the background circles into arcs, and the disk at the center of

the SIS becomes a complete ring. Right: the same disk pattern under the effect of the SIS lens,

with a spatially variant PSF blurring the observation. The blur is described by a delta function in

the lower left hand corner to a Gaussian with standard deviation σg = 6.0 pixels in the upper right

corner, introducing a significant blur.

a limited area of the image. In this study, we use the method of Nagy et al. (2002)

to incorporate spatially variant blurring into our gravitational lens modeling code.

We briefly review the method here and discuss the numerical procedure in detail in

Appendix E.
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To include the effects of spatially variant blurs, the image of the unblurred lensed

source is padded to enforce a boundary condition (Hansen et al. 2006). We focus

on the use of reflexive boundary conditions, in which the image is padded by sym-

metric reflections of itself. Reflexive boundary conditions tend to reduce ringing

artifacts if a significant amount of structure is located near the edges of the image.

The image is then divided into a square grid, where the PSF is assumed constant in

each region. These image regions and the PSFs are then padded to match in size.

The two-dimensional fast Fourier transform (FFT) is used to calculate the resultant

blurred image regions independently, resulting in an effective piecewise convolution.

By substituting efficient algorithms for the explicit matrix and matrix-transpose mul-

tiplications in Equation 3.6, the least squares form of the problem is preserved and

the system can be solved efficiently.

In principle spatially variant blurring can be described by a blurring matrix com-

patible with the semilinear method. However, in practice there are several problems

with the matrix approach. First, the size of the blurring matrix is Npix × Npix, so

the matrix quickly becomes large as the image resolution is increased. Second, since

the PSFs vary over regions of the image, it is possible that B may contain a large

number of small but non-zero entries, particularly for large, complicated PSFs that

are not well approximated by Gaussians or other simple analytical functions. This

complicates the optimization because M=F TF must be inverted in the semilinear

scheme. It is generally required thatM is sparse in order to store and invert this large

matrix. The sparsity requirement helps to reduce computation time and reduces the

amplification of noise in the reconstructed source. In practice the semilinear method

requires regularization to control the amount of noise present in the solution of Equa-

tion 3.6. The details and effects of several distinct regularization methods used with

the semilinear method were studied in detail by Suyu et al. (2006).

Our previous work (Rogers & Fiege (2011a); Chapter 3), compared the semilinear

method with several iterative methods to solve the least-squares problem (Equation

3.6). Iterative schemes have the advantage that time is saved by avoiding the explicit

construction of the lens and blurring matrices. This is done using direct interpolation

on the source plane under the effect of the lens equation (1.8).
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Rogers & Fiege (2011a) used the Qubist Optimization Toolbox (Fiege 2010) to

map the χ2 surface over the space of the nonlinear lens parameters using the Ferret

Genetic Algorithm (GA) and Locust Particle Swarm Optimizer (PSO). Since this

mapping requires a large number of function evaluations (≈ 105) over the course of a

run, speed is of the essence when choosing an inner loop optimization to determine

the source plane parameters.

Using the techniques introduced by Nagy et al. (2002) as a foundation, we have

added the capability to include spatially variant PSFs to our gravitational lens mod-

eling code using piecewise constant PSFs. This new capability is the subject of the

current exploration.

4.2 A Small-Scale Test

In this section, we provide an example of modeling an extended source under

the effects of a spatially variant PSF. We generate the lensed image of an analytical

function that describes a spiral source intensity distribution, given by Equation 3.10.

This artificial “galaxy”, originally described by Bonnet (1995), serves as a convenient

test pattern. To draw comparisons between our results for spatially invariant PSFs

(Rogers & Fiege 2011a), we will again make use of a SIE lens with deflection angle

components given by Equation 2.46. The parameters used in this test are velocity

dispersion σv = 265 km s−1 with zd = 0.3 and zs = 1.05 giving an equivalent Einstein

ring of b = 1.32 arcsec, ellipticity ϵ = 0.35, lens center (x, y) = (0.11, 0), core size

s, and orientation angle θL = π/4 measured counterclockwise from the right of the

image. We set s = 0, resulting in a singular mass distribution.

We used the lens equation (1.8) to form the lensed image of the source (Equation

3.10) using the SIE deflection angle formulae. We generated a 20×20 grid of spatially

variant Gaussian PSFs where each PSF is defined by a 33× 33 pixel mesh and has a

FWHM ranging from 2.35 to 4.8 pixels, shown in Figure 4.2. This grid of PSFs was

used to blur the gravitationally lensed image and additive Gaussian white noise with

standard deviation σg = 1.05 was added after the blurring operation, resulting in the
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artificial data shown in Figure 4.3. We define the peak signal-to-noise ratio (PSNR)

PSNR =
Imax

σg
, (4.2)

giving PSNR = 105.83. To illustrate the effect of varying the number of PSFs,

we model the data using smaller grids of 3 × 3, 5 × 5, 7 × 7, 10 × 10, and 20 × 20

PSFs. As shown in Figure 4.4, the best reconstruction with the lowest reduced χ2 is

obtained using a grid of 20×20 PSFs, which is the same number used to generate the

data. This source and corresponding model image after 20 iterations are also shown

in Figure 4.3. The 3× 3 and 5× 5 image residuals show significant structure, which

is not present in the finer approximations. The residuals using a grid of 20×20 PSFs

appear featureless. This demonstrates the improvement in image reconstruction as

we include successively more information characterizing the blur. Note that we have

used Gaussian white noise in this example for the purpose of testing the algorithm,

though our method is not limited to this situation. In general, the specific details of

the image noise is included in the solution of the semilinear least squares problem.
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Figure 4.2: Grid of PSFs Used In Spatially Variant Blurring Example

Grid of PSFs used in Figure 4.3. The PSFs vary from a Gaussian of FWHM of 2.35 pixels in the

lower-left corner producing a modest blur to a Gaussian with FWHM 4.75 pixels in the upper right

corner.
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Figure 4.3: Small Scale Test with a Spatially Variant PSF

Top left: artificial data on a 120 × 120 grid. Bottom left: artificial source on a 50 × 50 grid. Top

right: model observation. Bottom right: model source. The results after 20 iterations are shown.

Note the presence of reconstructed noise in the source. The model has a reduced χ2 = 0.998.
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Figure 4.4: Image Residuals for A Variety of Tests

Image residuals for a 3× 3, 5× 5, 7× 7, 10× 10, and 20× 20 PSF grids after 20 CGLS iterations.

For a small number of PSFs there is a significant amount of residual structure, but these artifacts

are reduced as the grid of PSFs is enlarged. The reduced χ2 is shown as a function of the number

of PSFs (Npsf ) used in the inversion.
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Figure 4.5 shows the relative error between the model source and the true solution

as a function of iteration. For all PSF grid sizes, we find that the solutions display

semi-convergence behavior such that the relative error between the model solution

and the true solution improves until a minimum is reached and then begins to in-

crease. This is due to the properties of the local optimizer used to determine the

optimal source, and arises in the deconvolution step due to noise in the observed

image. Regularization methods are generally used to control the increase of noise in

the reconstructed source found by the semilinear method (Suyu et al. 2006). Several

optimization methods have been applied to problems with spatially variant blur in-

cluding Landweber iteration (Nocedal & Wright (1999); Fish et al. (1996); Trussel

& Hunt (1978)), Richardson-Lucy deconvolution (Faisal et al. 1995), and Lanczos-

Tikhonov hybrid methods (Chung et al. 2008) in the context of the standard image

deconvolution problem. Following Rogers & Fiege (2011a), we focus on the iterartive

CGLS and SD methods. Figure 4.6 shows the convergence history of the SD algo-

rithm. As in the invariant PSF case discussed in Rogers & Fiege (2011a), the SD

solution converges more slowly than CGLS and therefore it is less sensitive to the

stopping criteria. When using an iterative method for local optimization, the number

of iterations itself acts as a regularization parameter. The optimal stopping iteration

of these local optimizers is at the minimum of the relative error curve for a given

set of lens parameters and PSF tiling. This critical iteration represents a balance

between the reduced image χ2 and the amount of regularization used (Press et al.

2007). Established methods exist to determine this critical iteration, including the L-

Curve criterion (Hansen and O’Leary 1993) and Generalized Cross Validation (Golub

et al. 1979). In previous work (Rogers & Fiege 2011a) we made use of the L-Curve

criterion but Generalized Cross Validation is also implemented in our software. These

selection methods are explored further in Chapter 5.

We find that the execution time of the problem including a spatially variant PSF

increases approximately linearly with the number of separate PSFs used in the inver-

sion as shown in Figure 4.7. This suggests that significant gains could be made in the

efficiency of the routine by parallelizing the implementation, since each image region

is independent. By splitting up the problem over several processors, the runtime for
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Figure 4.5: Source Convergence History with the CGLS Algorithm

Left: source convergence history using the CGLS algorithm. Right: corresponding Image conver-

gence history. Note that the source displays semi-convergent behavior. The disagreement between

model and actual source reaches a minimum before increasing. The critical iteration changes as the

PSF grid is enlarged.

very large PSF grids can become feasible.
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Figure 4.6: Source Convergence History with the Steepest Descent Algorithm

Left: source convergence history using the SD algorithm. Right: corresponding Image convergence

history. The semi-convergent behavior of the source is less extreme than for the CGLS algorithm,

shown in the left panel of Figure 4.5.

4.3 A Large-Scale Test

To demonstrate the code in operation on a large scale problem, we simulate the

lensing effect of the mass distribution of a galaxy cluster on a portion of the Hubble

deep field using an elliptical potential. This test is intended as a demonstration of
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Figure 4.7: Timing Results for a grid of N PSFs

Timing results for the CGLS algorithm using Npsf as the number of PSFs to approximate the

blurring effect. The plot illustrates the runtime for 4 × 4 to 20 × 20 square PSF grids in seconds.

Each CGLS run was terminated at 20 iterations.

the feasibility and efficiency of our method on a problem that would be difficult using

the semilinear method while including a spatially dependent PSF. Problems of this

size are realistic for a number of practical modeling situations. For example, Alard

(2009) has modeled the lensed system SL2SJ021408-053532, which produces a set of

large arcs. This system has a lens that is comprised of a small group of six galaxies.

Due to the large size of the lensed arcs, the scope of the source modeling prohibited

the direct application of the semilinear method.

We form the lensed image of a portion of the Hubble deep field (Williams et al.

1996) by applying the elliptical potential of Blandford & Kochanek (1987) which was
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used by Link & Pierce (1998) to simulate the lens effect of the dark matter distribution

of galaxy clusters. This lens is closely related to the PSIEP lens developed in Section

2.3.3, with a potential function given by

ψ(θ) =
b2(1−q)

2q

[
s2 + (1 + ϵc)θ

2
x + 2ϵsθxθy + (1− ϵc)θ

2
y

]q
, (4.3)

which results in deflection angle α(θ) = ∇θψ(θ). The elliptical potential depends

on seven parameters: b is the equivalent Einstein radius in the limit of vanishing

core radius s, ellipticity ϵ, and power law index q, where 0 ≤ q ≤ 0.5. The position

angle of the lens ϕ determines the functions ϵc = ϵ cosϕ and ϵs = ϵ sinϕ. We use the

Einstein radius b = 9, power law index q = 0.25, ϕ = π/4, position (θx, θy) = (0, 0)

and s = 0.5. The lens and source redshifts are zd = 0.12 and zs = 1.5, respectively.

We used an array of 25 PSFs arranged on a 5 × 5 grid to blur the image. This set

of PSFs has been used to test image restoration schemes for Hubble Space Telescope

(HST) images and represents the spatially variant nature of the aberrations affecting

the HST before it was repaired (Katsaggelos et al. (1994); Nagy & O’Leary (1998)).

The size of each PSF is 60×60 pixels, and the source and image plane used to generate

our lensed image are 800×800 pixel2. Gaussian white noise was added with standard

deviation σg = 1.37, giving the image PSNR = 138.4.

The image after 100 iterations is shown in Figure 4.8, and a reduced χ2 = 0.995

was found. The system was solved using the CGLS algorithm with all 25 PSFs using

the lens parameters defined above. The model took approximately 7 minutes to solve

using a single 2.4 GHz CPU core. An approximation to the nonlinear lens parameters

could be found using global optimization methods if one of the following strategies

were employed: (1) a low-resolution approximation to the data could be used early

during the lens parameter optimization, with successive refinement occurring later

during the run; (2) a global optimizer could be used to roughly approximate the lens

parameters, shifting to a faster local optimization scheme once solutions are localized

to a small region of parameter space; or (3) global optimization could be used for the

entire problem making use of large-scale parallelization.
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4.4 Conclusions

We have developed a novel and unique method to include the effects of a spatially

variant PSF in gravitational lens modeling. Including these effects in the standard

semilinear method would be difficult due to the complicated blurring matrix required.

These complications can be overcome easily by incorporating the method of Nagy et

al. (2002) with the matrix-free method. Our approach can accommodate large lensing

problems like the case studied by Alard (2009), which limits the applicability of the

direct semilinear approach. Techniques to include the effects of spatially variant PSFs

are important, as the response varies over the detector area for many astronomical

instruments. Our algorithm allows this effect to be included in lensing problems, thus

improving the quality of reconstructions when the variability of the PSF is significant.

The CGLS and SD algorithms allow a regularized inversion to be found quickly by

truncated iteration.
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Figure 4.8: A Large Scale Spatially Variant PSF Test

Top row: observation and model image. Middle row: actual and model source. The image and

source plane are both 800 × 800 pixels. These results are shown for 100 iterations. Bottom row:

image residuals and an example of one of the 25 large PSFs used to generate the observations. Both

of these images are plotted in logarithmic intensity to emphasize low level structure. Runtime for

this large-scale test is approximately 7 minutes.
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Chapter 5

Application to Data - The SLACS

Lenses

In this chapter, we apply our method to model a subset of gravitational lenses

from the Sloan Lens ACS Survey (SLACS). This survey was undertaken with the

ACS instrument aboard the Hubble Space Telescope (HST). The lenses have been

previously modeled by other studies (Koopmans et al. (2006); Bolton et al. (2008)),

and therefore provide a useful set of systems to test the ability of our code to recover

the lens parameters and source morphologies.

Several approaches exist to model gravitational lens systems. In this study, we

apply global optimization methods to find the optimal set of lens parameters using

a genetic algorithm. We treat the full optimization procedure as a two-step process:

an analytical description of the source plane intensity distribution is used to find

an initial approximation to the optimal lens parameters. The second stage of the

optimization uses a pixelated source plane with the semilinear method to determine

an optimal source. Regularization is handled by means of an iterative method and

the Generalized Cross Validation function that is commonly used in standard image

deconvolution problems. This approach simultaneously estimates the optimal regu-

larization parameter and the number of degrees of freedom in the source. Using these

techniques, we are able to justify an empirical estimation of the number of source

degrees of freedom found in previous work. We test our approach by applying our
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code to a subset of the lens systems included in the SLACS survey.

5.1 Introduction

Methods for modeling gravitational lens systems are divided into a broad di-

chotomy between schemes that require a parameterized analytical model for the

source intensity distribution, and schemes that assume only a pixelated source with

no underlying model. Methods that parameterize the source intensity distribution are

often quite easy to implement, but assume a priori knowledge of the source structure.

Schemes that make use of a pixelated source are generally more complex, but offer

greater flexibility since no parametric form is assumed for the source. This paper

makes use of both parameterized and pixelated source models, exploiting the benefits

provided by each.

Lens inversion schemes based on analytical source models assume an intensity

distribution Is(β) in the source plane β. A model of the lens density is then used to

calculate a ray-tracing from the image plane θ to the source plane using the thin lens

equation (1.8). Since gravitational lensing conserves surface brightness (Kayser and

Schramm 1988), the lensed image intensity is easily found by Equation 3.1,

Ii(θ) = Is(β(θ)) (5.1)

for an assumed parametric source intensity function Is. The resulting lensed im-

age Ii(θ) is then convolved with a point spread function (PSF) and compared with

the data. The χ2 statistic is minimized over the combined set of lens and source

parameters using non-linear methods for parameter search and global optimization.

Sérsic profiles (Sérsic 1968) are widely used for galaxy scale sources, as defined by

the equation

Is(r) = I0 exp{−k(n)[(r/r0)−n − 1]}, (5.2)

which assumes intensity I0 at the scale length r0 and shape index n. The shape

index controls the curvature of the profile, where most galaxies have profiles with

0.5 < n < 10. The de Vaucouleurs (1948) profile is recovered for n = 4, and the
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exponential disk is found by setting n = 1. The scaling factor k(n) is used to normalize

the distribution such that half the total luminosity is within r0.

Due to their flexibility and simple physical interpretation, Sérsic functions are

commonly used to model lensed sources (Bolton et al. (2008); Marshall et al. (2007);

Brewer & Lewis (2011)). However, more complicated analytical source functions have

also been used to approximate the varied and complex morphologies of galaxies and

can include hundreds of parameters in extreme cases (Tyson et al. 1998). In general,

analytical models are used because they are typically fast to evaluate and provide an

intuitive understanding of the resulting source.

As useful as analytical models are, they may not be flexible enough to describe

complex sources and may bias the lens parameters during χ2 minimization to compen-

sate for the artificial constraints imposed by their assumed analytical form. Pixelated

source models were introduced to move past this limitation. This approach represents

the source plane intensity as a set of basis functions, each having an adjustable pa-

rameter that represents the surface brightness of the source plane at a given pixel.

The semilinear method treats each pixel as a basis function and minimizes the mis-

match between model and data by manipulating the brightness of each source pixel sj

independently (Warren & Dye (2003); Treu & Koopmans (2004); Suyu et al. (2006)).

The semilinear method divides the lens modeling problem into a a non-linear

“outer loop” problem that solves for lens parameters, and an “inner loop” problem

that solves for the pixelated source, assuming a fixed set of lens parameters. An im-

portant benefit of this approach is that the inner loop problem is linear and therefore

does not require complicated nonlinear optimization routines. The blurring and lens-

ing effects are expressed by the matrix f = BL. Here, the lensing matrix L encodes

the ray tracing operation from the image plane to the source plane, and blurring ma-

trix B describes the effect of the PSF on the resulting lensed image. By minimizing

the χ2 statistic with respect to the source plane intensities sj, the least-squares form

of the problem is exposed:

F TFs = F T d̂, (5.3)

where F is the lens matrix divided by the errors in the data, Fij = fij/σi, and
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s is a “flattened” image vector containing the intensities of the source plane pixels

(Warren & Dye (2003); Koopmans (2005)). The vector d̂i = di/σi is the data vector d

normalized by the noise σi. This type of problem has been well studied in the context

of the standard image deconvolution problem (Golub et al. (1979); Hansen (1994);

Nagy et al. (2002); Vogel (2002)), which seeks to remove the distortion introduced by

a blurring function (PSF).

In general, the solution of Equation 5.3 requires regularization to stabilize the

inversion of the system matrix F TF (Koopmans 2005). The modified matrix is then

given by

M = F TF + λHTH , (5.4)

where H is a regularization matrix and λ a multiplier that controls the amount of

regularization added to the problem. The simplest case, zeroth order regularization,

assumes that H = I. This scheme regularizes the problem by seeking the solution s

that has minimal intensity over the source plane. Higher order regularization schemes

are also commonly used, such as curvature regularization that uses the second order

derivatives of s to smooth the solution by minimizing the curvature over the source

plane. Regularization schemes seek to impose physicality constraints on the source

intensity to select a smoothly varying and physically realistic solution from the many

alternatives that exist to solve the ill-posed system. Linear regularization schemes

were studied in depth by Suyu et al. (2006).

Following our previous work (Rogers & Fiege (2011a); Chapter 3), we use the

Qubist Optimization Toolbox (Fiege 2010) to find the nonlinear lens parameters var-

ied in the outer loop of the lens inversion problem. The Qubist Toolbox contains

several non-linear global optimization routines including Ferret, an advanced GA,

and Locust, a PSO. In the inner loop, we solve the least squares problem of the

semilinear method using Krylov subspace methods (Björck 1996). Krylov subspace

methods are well known in the image deblurring community and have been studied in

the context of deconvolution problems at length (Hansen (1994), Nagy et al. (2002)).

This class of optimization routines include the CGLS and the SD methods. Krylov

methods are attractive because they naturally regularize ill-posed problems and are
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efficient at solving large scale problems. We previously studied the performance of

the GA and PSO methods on test problems using simulated lens data (Rogers &

Fiege (2011a); Chapter 3). In that work we found that the GA explored the param-

eter space more thoroughly than the PSO, although the PSO was slightly faster to

converge.

In this work, we will explore parameter selection methods to determine an ap-

propriate value for the regularization constant in the semilinear method, and use the

Ferret GA with our lens code to model data from the SLACS survey. We use a

two stage approach to the lens modeling problem: we begin the optimization with

analytical sources to estimate the approximate position of the globally optimal lens

parameters, and switch to a pixelated source for further model refinement once the

global optimizer has converged.

5.2 Gravitational Lens Source Deconvolution

The semilinear method with regularization describes gravitational lens modeling

in the context of a least squares problem, where we seek a vector s that minimizes

g = ||Fs− d̂||2 + λ||Hs||2. (5.5)

The first term in this sum is the χ2 between the model and observed images, while

the second term quantifies the strength of the regularization.

The most direct method to solve the least squares problem is to decompose F

using the singular value decomposion (SVD; Golub and Reinsch (1970)),

F = UΣV T (5.6)

where Σ is a diagonal matrix composed of a set of non-zero, non-increasing elements

ν1 ≥ ν2 ≥, ...,≥ νN . These diagonal elements are the singular values of F , defined

as the eigenvalues of F TF and FF T , both of which have identical characteristic

polynomials. The U and V matrices are orthogonal, and have columns denoted as

ui and vi, the left and right singular value basis vectors. These vectors are the set of
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eigenvectors of the square matrices FF T and F TF , respectively. In general F can

be expressed in terms of the basis vectors and represented as a sum:

F =
N∑
i=1

uiv
T
i

νi
. (5.7)

It is straightforward to write the solution to the system defined by Equation 5.5

from the matrix inverse s = F−1d̂ in the absence of regularization, when H = 0 in

Equation 5.5. Using the results of the SVD analysis, the solution is

s = V Σ−1UT d̂ =
∑
i

uT
i d

νi
vi. (5.8)

In this equation, we have written the SVD in terms of sums over the orthogonal

columns of U and V , and the entries of Σ−1, which is trivial to compute since it is

diagonal. This expansion allows us to express s as an expansion over the orthogonal

basis vi.

The matrix F will have small singular values such that νi → 0 if the problem

is ill-posed. These vanishingly small singular values cause the corresponding terms

in Equation 5.8 to become large. The solution s may then become corrupted by the

noise contained in the data vector d̂. This amplification of noise due to small singular

values is the reason why regularization is required in Equation 5.5.

The simplest regularization scheme simply truncates the terms that arise from

small singular values from the sum in Equation 5.8. Since the singular values form

a non-increasing set, this corresponds to discarding all terms i ≥ k, where k is the

truncation threshold. Early termination of the sum removes the high frequency com-

ponents of the basis vectors vi. This is known as the truncated singular value decom-

position, or TSVD:

sϕ =
∑
i

ϕi
uT

i d

νi
vi, (5.9)

where ϕi are a set of constants called the filter factors that are equal to 1 for terms

i ≤ k and 0 for all terms higher than this threshold. However, terminating the

summation abruptly may discard too much high frequency information. A more

general choice is to gradually decrease the contribution of small singular value terms
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to the sum. This approach is called Tikhonov regularization, which amounts to a

modification of the filter factors (Tikhonov 1963):

ϕi =
ν2i

ν2i + λ
(5.10)

where λ is the regularization constant. Note that ϕi ≈ 1 when ν2i ≫ λ, which occurs

for small i. When νi is smaller than the regularization constant (large i), the filter

factors damp the corresponding terms of Equation 5.8 as ϕi ≈ ν2i /λ. Thus, λ must

be assigned a value between the maximum and minimum singular values ν1 and νN .

This regularization scheme corresponds to setting the matrix H = I in Equation 5.5

(Twomey (1963); Tikhonov (1963)). Regularization modifies the system that we are

attempting to solve so that the inverse of Equation 5.6 becomes

F−1
ϕ = V ΦΣ−1UT , (5.11)

where Φ is the diagonal matrix of filter factors.

Note that neither of these schemes specifies how much regularization should be

included for a given problem. The strength of the regularizing effect in Tikhonov

regularization is controlled by the value of the regularization constant λ and by the

truncation index k in the TSVD scheme. The regularization constant is a “hyper-

parameter” which must be selected a priori. Fortunately, several methods exist to

estimate the optimal regularization parameter for a given problem (Hansen 2010).

5.2.1 Regularization Parameter Selection Methods

A widely used technique to select a regularization parameter is the L-curve cri-

terion (Hansen 1992), which we used in Rogers & Fiege (2011a). The L-curve is

a plot of the residual versus the regularization term that appears in Equation 5.5,

and is named for the characteristic shape of the resulting curve. The L-curve is pa-

rameterized by the regularization constant λ and the position on the plot with the

largest curvature represents a balance between the image χ2 and regularization term

(Press et al. 2007). The position on the L-curve with the largest curvature provides

an estimate of the optimal regularization parameter.
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Another well-known regularization selection method is Generalized Cross Valida-

tion (GCV; (Golub et al. 1979)). This is a statistical method that aims to minimize

the mean square error, ||Fsϕ − d||, where sϕ is the optimally regularized solution.

We now define the GCV function:

G(λ) =
||Fsϕ − d||2

trace(IN − FF−1
ϕ )2

, (5.12)

where N is the number of source pixels involved in the inversion and IN is the N×N
identity matrix. This equation is based on statistical arguments that consider a

solution to be properly regularized when it can predict elements of the data vector

that have been omitted (Hansen 1997). The trace term in the denominator can be

dramatically simplified given the definition of F−1
ϕ in terms of the SVD (Equation

5.11). The denominator of the GCV function becomes:

trace(IN − FV ΦΣ−1UT ) = trace(IN −UΦUT ) (5.13)

using the SVD expansion of F (Equation 5.6). With the orthogonality of U the trace

term simplifies dramatically. We are left with trace(IN −Φ) such that

trace(IN − FF−1
ϕ ) = N −

∑
i

ϕi. (5.14)

This sum represents the number of degrees of freedom in the problem. Putting these

arguments together, the GCV function becomes

G(λ) =
||Fsϕ − d||2

(N −∑
i ϕi)2

. (5.15)

Wahba et al. (1979) showed that when the errors in the data vector are unbiased white

noise with covariance matrix C = σ2IN , and satisfy the discrete Picard condition

(Kress (1989); Engl et al. (1996)), the minimum of the GCV function corresponds to

a regularization parameter that is a good estimator of the optimal λ and approaches

this value asymptotically as N → ∞. The convergence results between the true

solution of a test problem and the GCV-regularized solution have been also been

thoroughly explored when these conditions are not satisfied (Vogel (2002); Lukas

(1993)).

108



The denominator of the GCV function has special significance for gravitational

lens modeling. Lens modeling schemes that pixelate the source plane have been

criticized for relying on regularization since smoothing causes the number of degrees

of freedom in the source to become undetermined (Kochanek et al. 2004). Suyu

et al. (2006) give an estimate for the number of effective degrees of freedom based

on Bayesian arguments. In that work the authors construct a variety of possible

expressions for the number of degrees of freedom (NDF), and chose NDF = N − γ

with N the number of image pixels, and

γ =
Ns∑
i=1

ν2i
ν2i + λ

. (5.16)

Their analysis was based on empirical tests that showed that this expression produced

a reduced χ2 nearest to 1 for a set of test problems (See Table 1, Suyu et al. (2006)).

In fact, γ is simply the sum of the filter factors from Tikhonov regularization. The

GCV function gives a statistical argument for choosing this value based on the nature

of an optimally regularized source inversion.

Iterative methods complicate the calculation of the GCV function since we do not

know the filter factors a priori, nor do we have the decomposition of F , which can

be expensive due to the sparsity and size of the matrix. In this case, we estimate

the denominator by a Monte Carlo method (Girard 1989). This allows two advan-

tages: we approximate the number of source degrees of freedom while simultaneously

finding an approximation to the optimal regularization parameter. Using an iterative

method, we find these quantities simultaneously while solving for the source intensity

distribution. This is accomplished by running iterations on both d̂ and d̃ simulta-

neously, where the vector d̃ is composed of random elements drawn from a normal

distribution with mean 0 and standard deviation σ0.

We form the product d̃
T
r̃, where r̃ = d̃ − F s̃. This quantity approximates the

denominator of the GCV function and therefore the number of degrees of freedom in

the iterative problem (Girard (1989); Hansen (1997)). This calculation requires twice

the work during the iterative process and therefore effectively doubles the execution

time of the code to solve for the source intensity function. However, since we generally

require only a small number of iterations to solve a gravitational lens system, this
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extra work is acceptable due to the amount of information the calculation provides.

By using this Monte Carlo estimate, we find the number of effective degrees of freedom

at each iteration of the optimization process and therefore also the denominator of

the GCV function, allowing an evaluation of Equation 5.15 at each iteration. Once

we have evaluated an arbitrary number of iterations, we find the minimum of the

GCV function and therefore we can select the critical number of iterations necessary

to produce an optimally regularized source. The residual at this iteration is used to

evaluate the χ2 of the lens model.

Rogers & Fiege (2011a) explored the L-curve method for the selection of regular-

ization parameters in gravitational lens modeling, arguing that the L-curve provides

a useful parameter selection method that yields results which are easy to interpret.

However, using this selection criterion can be difficult due to the curvature calcula-

tion, which requires spline fitting of the points on the L-curve and the curvature of

the resulting smoothed curve. This calculation is non-trivial and results can be some-

what sensitive to the details of the fitting procedure. The GCV function requires

more involved statistical arguments but provides a more robust selection method,

since the function is calculated at each iteration simultaneously with the linear opti-

mization. We find that the GCV and L-curve methods provide similar measures of

the regularization parameter in practice, indicating that both can be used effectively

to determine the optimal termination condition for the iterative solver. However, we

prefer the GCV method for the reasons outlined above and focus on the GCV method

in this study.

5.3 The SLACS Survey

The Sloan Lens ACS Survey (SLACS; www.slacs.org) was conducted using the

Hubble Space Telescope ACS instrument (Bolton et al. 2006). The survey has de-

tected 70 early type galaxies with definite lensed sources in the redshift range z = 0.06

to z = 0.33. The candidate systems were chosen by spectral analysis of galaxies in

the luminous red galaxy (LRG; Deng et al. (2007b)) and main samples (Deng et al.

2007a) of the Sloan Digital Sky Survey (SDSS; www.sdss.org). Potential gravitational
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lens candidates were discovered when two distinct galaxy redshifts were seen within

a single SDSS spectrum. We use reduced SLACS data from Bandara et al. (2009),

who modeled the surface brightness of the E/S0 lens galaxies using the sum of two

components, a Sérsic bulge (Equation 5.2) and an exponential disk. The PSF model

from the ACS library was used in the surface brightness subtraction (Bandara et al.

2009), making use of the GIM2D code (Simard et al 2002). All of the data are F814W

I-band images. See Bandara et al. (2009) for more details on the reduction procedure.

5.4 Results

Bolton et al. (2008) modeled the SLACS gravitational lens systems using analytical

Sérsic and Gaussian source models to describe the intensity distribution in the source

plane. A subset of 15 of these systems were further investigated using the semilinear

method (Koopmans et al. 2006). We focus on six of the SLACS lens systems in

this paper, and plan to model more of them in the future. Since they have been

well studied using several established methods, the SLACS galaxies provide a useful

consistency check for verifying the results of our lens modeling code.

The SLACS systems are modeled using a normalized singular isothermal elliptical

mass density (SIE). We define a distance ψ =
√
qx2 + y2/q, such that the deflection

angle α = (αx, αy) is given by

αx =
b

qf
tan−1

(
qfx

ψ

)
(5.17)

αy =
b

qf
tanh−1

(
qfy

ψ

)
, (5.18)

with qf =
√
1/q − q, and Einstein radius b. In the limit q → 1, the model corresponds

to a singular isothermal sphere with Einstein radius

b = 4π
σ2
v

c2
Dds

Ds

, (5.19)

where σv is the velocity dispersion, c the speed of light, Dds the distance between the

deflector and the source, and Ds the distance between the observer and the source.
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These distances depend on the corresponding redshifts zd and zs and determine an-

gular diameter distances that depend on the cosmological model used. We assume

a standard cosmology with Hubble constant H0 = 70 km s−1 Mpc−1, matter den-

sity Ω0 = 0.3 and cosmological constant Λ0 = 0.7. Following Bolton et al. (2008),

we adopt the intermediate-axis normalization of the SIE (Kormann, Schneider and

Bartelmann 1994). This normalization fixes the mass within given isodensity contours

for constant b, and is implemented in the deflection angles above.

Koopmans et al. (2006) showed that the SIE is a useful model of early type isolated

galaxies because the lens density ellipticity and orientation were found to align well

with the surface brightness of the lens galaxies, indicating that light closely traces

mass for these galaxies. No significant external shear was found to improve the fits.

We therefore follow Koopmans et al. (2006) and adopt the SIE as a good lens model

to represent isolated early type E/S0 galaxies.

We cropped out the residuals left over from the surface brightness subtraction of

the lens in the F814W SLACS data, and cropped the field of view to the region of

interest. We subtracted the surface brightness of the satellite companion in the SDSS

J0956+5100 system using two Sérsic profiles, but performed no rebinning or other

manipulation of the data in any way. Our lens models use the same ACS PSF that

was used for the lens galaxy subtraction. Although it is known that the ACS PSF

is position dependent (Bandara et al. 2009), we simplify our treatment by assuming

a constant PSF over the region of interest to facilitate comparison with previously

published results, though we have developed methods to include spatially variant

PSFs in the gravitational lens problem (Rogers & Fiege (2011b); Chapter 4). We

output the sigma image from the GALFIT code (Peng et al. 2010) that corresponds

with the region of interest to estimate the errors on the image plane. We emphasize

that the main focus of this work is to study the regularizing properties of the CGLS

method on the derived solutions with the GCV scheme to select the optimal level of

regularization.

Our analysis initially solves for the parameters of an analytical source model,

which we use as an approximate solution to a more refined model that uses a pixelated

source. We start by treating the source plane intensity distribution as a sum of
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Sérsic profiles, using the same number of analytical source components to model each

system as in Bolton et al. (2008). The SIE lens is used to find the lensed image

of the source plane, which is convolved with the appropriate ACS PSF. We search

for the global minimum of χ2, using the Ferret GA (Fiege 2010) to fit both the lens

and source parameters. Once we find an approximation to the global minimum, we

select a volume of lens parameter space in the neighbourhood around the best fit

lens model. Noting that Ferret is used predominantly as a bounded optimizer, this

neighbourhood becomes the search volume in the next step of our method, which

replaces our analytical source model with a pixelated source. The optimization of a

pixelated model requires a new Ferret run, which begins with the search volume found

in the previous step populated initially by random lens models. Normally, we expect

the lowest χ2 model to reside within this volume; however, we configure the optimizer

using ‘soft’ boundaries, which allows the GA to move outside of the predefined search

volume if the initial approximation is bounded too tightly. This option allows Ferret

to expand the search space if a large fraction of the GA population occupies positions

close to the boundaries of the parameter space. In general, the lens parameters of our

pixelated sources were found to reside within these search volumes and agree well with

the analytical approximations. We compute our best refined model by optimizing the

lens and source plane parameters using a pixelated source and regularizing iteration

selected by the GCV function.

In addition to the regularizing effect of truncated iteration, we have found that

enforcing non-negativity in the source solutions dramatically improves the quality

of the reconstruction and tends to further smooth remaining structure in the image

residuals. As a final step, we have modeled the set of best-fit lens models with the

modified residual norm steepest descent algorithm (MRNSD; Kaufman (1993); Nagy

& Strakoš (2000); Bardsley (2006)). This algorithm is a bounded SD optimization

routine that seeks sources with sj ≥ 0. It is well known that the MRNSD method

can be difficult to use with the standard regularization parameter selection meth-

ods since the L-curve and GCV functions are not guaranteed to be smooth when

non-negativity is enforced (Favati et al. 2010). However, we plan to explore the regu-

larizing properties of several iterative non-negative reconstruction schemes in a future
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Lens Model Parameters
SDSS System zd zs σv (km s−1) q b (”) Reduced χ2

J0037-0942 0.1955 0.6322 286 0.825 1.55 0.95
J0216-0813 0.3317 0.5235 351 0.783 1.18 0.96
J0737+3216 0.3223 0.5812 292 0.630 1.00 1.06
J0912+0029 0.3240 0.1642 341 0.561 1.59 0.98
J0956+5100 0.2405 0.4700 318 0.620 1.33 1.05
J1402+6321 0.2046 0.4814 292 0.843 1.34 0.96

Table 5.1: SLACS Lens Modeling Results

Lens model parameters for a subset of the SLACS systems found by the Ferret GA with source

reconstruction by the CGLS routine.

study.

Combining analytical and pixelated sources greatly improves the efficiency of the

search, since analytical models can be evaluated very quickly. Searching using pix-

elated sources is a more intensive process, and time can be saved by adopting the

semilinear method only once we have a good approximation to the lens parameters

corresponding to the minimum χ2. Rogers & Fiege (2011a) noted that a set of trivial

pixelated solutions exist when global optimization methods are used to model lensed

systems. These trivial solutions are found when the effect of the lens is reduced, re-

sulting in sources that closely resemble the data. The two-stage optimization process

is useful since the initial analytical sources are generally not as flexible as pixelated

sources, and thus provide a natural method for avoiding exploration of the trivial re-

gions of the parameter space. The analytical stage of the algorithm terminates once

the GA has converged and we no longer see improvement in the population. Typically,

convergence requires only 50− 100 generations using a population of 300 individuals

for the analytical portion of the optimization, and approximately 100 iterations for

the second semilinear optimization stage.

The final velocity dispersion σv, axis ratio q, and Einstein radius b of our models

are shown in Table 5.1. The reduced data, model image, recovered non-negative

source and residuals are shown in Figures 5.1 and 5.2. Our results agree with the

SLACS lens models for each system to within 3% in velocity dispersion σv. Both the
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pixelated and analytical source plane intensity distributions agree with one another

in all cases. Our lens modeling results agree with the parameters in Bolton et al.

(2008) very well. The reduced χ2 statistic for all systems is very close to unity.

We find the largest discrepancy in the ellipticity of SDSS J0737 + 3216. The

Einstein radius (velocity dispersion) of the system is similar to the results from both

Bolton et al. (2008) and the F814W data analyzed by Marshall et al. (2007). However,

the ellipticity of the lens recovered by the GA is significantly lower than the models

found by the previous studies by ≈ 5%. We found this lower ellipticity from both the

initial analytical source fit and by pixelated source modeling. The SDSS J0912+0029

data is heavily contaminated with noise, although it is adequately fit by our GCV

regularized solution, and our analytical and pixelated sources agree. Of all of the

systems, SDSS J0956 + 5100 and SDSS J0737 + 3216 show the most structure in the

residuals, although the magnitude of these residuals are small (< 1%) compared to

the intensities of the image pixels. In fact, the largest systematic effects present in

most of the residual images in Figures 5.1 and 5.2 are produced from the subtraction

of the intensity profile of the lens galaxy.

We have used the GCV approach with both CGLS and SD, and find similar results

for both of these algorithms. The SD routine takes longer than the CGLS method

to converge, although it is in general more a more stable approach to regularization

and has been suggested as a superior routine for image deblurring problems due to

its reduced sensitivity to stopping criterion (Nagy & Palmer 2003). The convergence

properties of the CGLS and SD routines were discussed at length in Chapter 3.

The bounded non-negative MRNSD routine helps to reduce structure in both the

reconstructed sources and the image residuals. The best fit MRNSD solutions are

found by comparing the solution at each iteration to the optimally regularized CGLS

solution. This comparison minimizes

z =
||xCGLS − xMRNSD

i ||
||xCGLS||

(5.20)

where xCGLS is the optimally regularized CGLS solution and xMRNSD
i the non-negative

solution at the ith iteration of the MRNSD algorithm. The reduced χ2 values of the

optimally regularized CGLS solution and the selected MRNSD solution were found to
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Figure 5.1: A Variety of SLACS Lens Models, I

A selection of SLACS gravitational lenses. The sources are non-negative and found using the MRNSD

algorithm as the final polishing step. The columns show the data d, image model, source model s and

residual r respectively. The model parameters are given in Table 5.1. Top row: SDSS J0037-0942,

second row: SDSS J0216-0813, bottom row: SDSS J0737+3216.

vary by less than 1% for a given system, though the MRNSD residuals are smoother

than the residuals of the CGLS models. This is due to the reconstruction of back-

traced noise present in the CGLS solutions. The filter factors of the CGLS method

are found by a recursion relation that depends on all of the singular values (Hansen

2010). Even though CGLS tends to suppress high frequency noise at the beginning of

the optimization process, the high frequency components are not completely damped
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Figure 5.2: A Variety of SLACS Lens Models, II

Top row: SDSS J0912+0029, second row: SDSS J0956+5100, bottom row: SDSS 1402+6321

out at any given iteration and build up over the course of a run. Hence, even the

optimally regularized solution still contains some high-frequency components that

correspond to back-traced noise. The MRNSD algorithm seems to be more robust to

the propagation of high-frequency noise in the recovered non-negative solutions, thus

producing images that are naturally smoother than the corresponding CGLS sources.

Regularization by truncated iteration in the context of Krylov optimization is the

simplest of many regularization methods that can be used. Truncated iteration regu-

larization produces solutions (figures 5.1 and 5.2) which are less smooth than higher
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order regularization schemes, such as the second order (curvature) regularization used

in Koopmans et al. (2006). It has been suggested that the LSQR algorithm (Björck

1996) can generally accomodate more complicated regularization schemes. We previ-

ously tested LSQR in the context of gravitational lens modeling using simulated data

with the L-curve method (Rogers & Fiege (2011a); Chapter 3), and plan to further

investigate this scheme in future work.

Overall we are encouraged by our results since we were able to recover the SLACS

lens parameters and general source morphologies. The results could be improved

slightly by including a final local optimization step to ‘polish’ the results returned

from the GA. We did not detect any parameter space degeneracies except for the

expected position angle degeneracy of the elliptical lens model.

We illustrate the behavior of GCV and the L-curve criteria in Figure 5.3. This

figure shows the logarithm of the GCV curve on the left as a function of iteration k.

The right-hand panel shows the spline-smoothed L-curve for the same problem, using

the sum of pixel intensities
∑

i s
2
i to quantify regularized solutions on a log-log scale.

Logarithmic scaling emphasizes the structure of these curves. Note the difference in

the scales of the L-curve. In our experience the GCV function used with the CGLS

algorithm always shows a well-defined minimum. However, significant smoothing is

needed to find the corner of the the L-curve, which may affect the accuracy of its

determination. Using SDSS J0216 − 0813 as an example, the optimally regularized

L-curve and GCV solutions are marked with a triangle and circle respectively. In this

case, both of these regularization parameter selection methods produce similar results.

However, we often observe that the L-curve can show false curvature maxima when

the iterative optimizers make rapid progress early in the run, leading to dramatically

over-regularized solutions. The GCV function avoids this problem.

Combined with the statistical arguments used to derive the GCV function and its

more robust behavior, we conclude that GCV is a more useful parameter selection

method for solving the least-squares source deconvolution problem for gravitational

lens systems. We have tested both of these selection methods against the Bayesian

regularization method developed by Suyu et al. (2006) with the semilinear method

and zeroth order regularization. In most cases the GCV function selects a regularized
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solution that is closer to the optimal Bayesian solution than solutions selected by

the L-curve method. The iterative approaches tend to find smoother solutions than

zeroth order regularization. This is not surprising since the filter factors of the CGLS

and SD approaches differ from the standard Tikhonov approach.

We have marked two additional points on the left-hand panel on the GCV curve

in Figure 5.3. These points signify over-regularized and under-regularized solutions.

The sources corresponding to the solution of the SDSS J0216−0813 system are shown

in Figure 5.4 using both CGLS and MRNSD algorithms. The critically regularized

solutions balance the image χ2 and regularization terms. As shown in this figure,

the over-regularized solutions are over-smoothed, and the under-regularized solutions

include too many high frequency components. The corresponding MRNSD solutions

were found by terminating iteration when Equation 5.20 is minimized.

5.5 Conclusions

We have used iterative methods to model a subset of the SLACS lenses using

Generalized Cross Validation to select the optimal regularizing iteration. By making

use of the GCV function we addressed the problem of the number of effective de-

grees of freedom in the source and explained an empirical choice in Suyu et al. (2006)

based on a parameter choice method that is commonly used in standard image de-

convolution problems. The GCV function sheds light on the concept of optimally

regularized sources and provides an efficient method to select regularization param-

eters for iterative methods. A non-negative bounded iterative algorithm is found to

significantly improve the quality of the reconstructed sources. This approach provides

non-negative solutions through linear optimization, which is significantly simpler to

implement than other constrained optimization techniques such as the maximum en-

tropy method (Skilling and Bryan (1984); Wayth & Webster (2006)) that require the

use of more complicated non-linear optimization schemes.

The lens parameters recovered by the Ferret GA are similar to previously pub-

lished results found by Bolton et al. (2008) and we find consistency between analytical

approximations to the source plane intensity based on a sum of Sérsic profiles. We
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plan to model the rest of the SLACS lenses in the future and explore other local

optimization methods to solve the least squares problem with more complicated reg-

ularization schemes.
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Figure 5.3: GCV and the L-curve as a function of iteration

Left: GCV as a function of iteration k for regularizing the SDSS J0216-0813 lens system. Right:

Spline-smoothed L-curve of residuals vs. sum of source intensities. Note the difference in vertical

and horizontal axes of the L-curve plot. In general, we find that the GCV function always has a well-

defined minimum, while the L-curve is more sensitive to fluctuations in the behavior of the iterative

optimization methods. The maximum curvature L-curve solution is marked on both figures with a

triangle, and the minimum of the GCV function with an open circle (right). The three points on

the left-hand panel represent over-regularized, critically-regularized and under-regularized solutions,

respectively.
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Figure 5.4: An Example of Regularization Effects on a SLACS Lens

Three solutions marked in the left-hand panel of Figure 5.3. These solutions correspond to over-

regularized (left), critically-regularized (middle) and under-regularized solutions (right) as selected

by the GCV function. Note the emphasis on back-traced noise in the under-regularized CGLS solu-

tion and the excessive smoothing of the over-regularized solution. Non-negative MRNSD solutions

are shown on the second row. The title of the plots represent the number of iterations and methods

used to obtain the solutions.
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Chapter 6

Conclusions

The semilinear method provides the foundation for our studies on gravitational

lensing. We have shown that the least squares problem can be efficiently solved using

Krylov subspace methods such as the CGLS method, and by gradient descent using

the SD method. These iterative approaches are advantageous since they allow us

to avoid explicitly building the lens and blurring matrices, which can be large and

potentially ill-posed depending on the PSF. Iterative methods allow us to substitute

an algorithmic description of the matrix multiplication and transpose multiplication

processes in the source optimization step rather than the full matrices. Thus, we

are able to solve large scale problems quickly, allowing us to make efficient use of

global optimization routines. These optimization algorithms require many function

evaluations, so execution time of the code is paramount.

By making use of regularization selection methods commonly used in the standard

image deconvolution problem, we made a connection between the number of spatial

frequencies present in the SVD expansion and the number of source degrees of freedom

in the source reconstruction step. This expansion shows that the sum of the filter

factors represent the number of source degrees of freedom. We made use of both

the L-curve criteria and the GCV function to select regularization parameters. The

dependence of the GCV function on source degrees of freedom justifies the sum of the

filter factors and the role of this sum in selecting an optimally regularized solution.

We used a Monte Carlo approach to estimate the sum of the filter factors using CGLS
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and SD. Our previous work showed that SD is more stable than CGLS when applied

to the standard image deconvolution problem, and is less sensitive to the stopping

criteria in general.

Our lens density models are optimized by global optimization methods, including

GAs and PSOs. The GA approach is generally more thorough at exploring the

parameter space of test problems, and performed consistently and reliably on real

data. The PSO provides a faster search in general, but is more limited in its ability

to discover parameter degeneracies in the lens models.

Using the framework of the semilinear method, we were able to include spatially

variant PSFs in our lensing code. Such spatially variable PSFs can also be built

into the standard semilinear approach, but would require large complicated blurring

matrices, causing instability in the lens inversion. However, such spatially variant

PSFs are practical in our method, due to the efficiency of our matrix-free approach

and the use of FFTs in the PSF convolution step. This spatially variant blurring

effect was used on a large scale blurring problem, in which we simulated a heavily

blurred cluster lens using a portion of the Hubble deep field and a grid of PSFs used

in modeling the spatially dependent blurring of the HST (Nagy et al. 2002).

Finally, we applied our modeling code to a sample of SLACS lenses. We used

a two step process in the optimization of the lens parameters using the Ferret GA.

The first step of this approach used analytical functions to approximate the source

intensity, and the second step switches to more general pixelated sources. We set the

GA to search a volume of parameter space around the best lens approximation found

in the first step. In general we find good agreement with previously published results,

demonstrating the utility of our modeling code.

The concepts developed in this work are significant due to the matrix-free formu-

lation of the semilinear method, which can be used on large problems since explicit

construction of the lens and blurring matrices is not necessary. As mentioned in

Chapter 4, this approach allows us to use linear optimization methods on large prob-

lems that prohibit the use of the standard semilinear method (Alard 2009). Our

exploration of parameter selection methods simplify the determination of the number

of degrees of freedom in the problem while determining the optimal amount of reg-
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ularization to include. This is an important modification since the evaluation of the

matrix inverse and its eigenvalues can be a time consuming calculation.

We have discovered that imposing non-negativity on the source reconstructions

can provide a significant improvement in the solutions. There are a variety of iterative

methods that enforce positivity and provide the semi-convergence behavior necessary

for regularization by truncated iteration (Kaufman (1993); Nagy & Strakoš (2000);

Bardsley (2006)). These linear non-negative optimization schemes are valuable ap-

proaches since they provide a simpler method for including non-negative solutions

than the MEM, which requires more complicated non-linear optimization methods.

In Chapter 3 we noted that gravitational lens systems have been modeled occa-

sionally in the literature using pixelated mass models in which the lens density is

pixelated. These complicated numerical models can be combined with our pixelated

source deconvolution routine, while including a global optimizer to find the optimal

pixelated lens density distribution. The analysis of the regularizing properties of

bounded local optimizers and the application of pixelated lens mass distributions will

form the basis of future work.

In conclusion, the unique approach to lens modeling developed in this work sim-

plifies and expands on the semilinear method. Linear iterative optimization methods

allow the modeling of large scale systems and global optimization routines provide

reliable approaches for exploring the parameter space of lens density models. When

used together, these numerical techniques provide a powerful framework for modeling

gravitational lens systems.
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Appendix A

The Weak Field Limit of General

Relativity and the Gravitational

Lens Deflection Angle

The gravitational lensing effect on cosmological scales relies on the weak field

limit of GR (Schneider 1985). This is due to the fact that the distances involved

are on cosmological scales. In this section, we derive the weak field metric from

first principles by considering a perturbation about the Minkowski metric of special

relativity (Misner et al. 1973). The derivation in this section is a synthesis of the

approaches presented in d’Inverno (1992) and Hobson et al. (2006).

In GR, the line element is written as

ds2 = gabdx
adxb. (A.1)

We begin by considering a metric with elements gab that is only slightly perturbed

from the Minkowski metric in the standard coordinates (t, x, y, z):

gab = ηab + hab, (A.2)

where hab is a small perturbation about the Minkowski metric of flat spacetime given
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by

η =



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 . (A.3)

We adopt the boundary condition that space-time is asymptotically flat, such that if

r =
√
x2 + y2 + z2 denotes the radial distance, then

lim
r→∞

hab = 0. (A.4)

Note that

(ηab + hab)
(
ηcb − hcb

)
= δca (A.5)

to lowest order in hab, where we identify

gab = ηab − hab (A.6)

to first order in hab (Misner et al. 1973). Since the weak field perturbation is small,

we can effectively raise and lower tensor indices of small quantities fab using the

Minkowski metric ηab:

fa
c = ηbcf

ab. (A.7)

In general, the Christoffel symbols of the second kind are given by

Γa
bc =

1

2
gad (gdc,b + gdb,c − gbc,d) , (A.8)

where a comma followed by an index in the subscript denotes differentiation with

respect to the corresponding coordinate; for example

∂2f

∂xi∂xj
= ∂i∂jf = f,ij. (A.9)

The Riemann curvature tensor is defined in terms of the Christoffel symbols as

Rabcd = Γa
bd,c − Γa

bc,d + Γa
kcΓ

k
bd − Γa

kdΓ
k
bc. (A.10)

Both of these important tensors can be simplified in the weak field limit. The

Christoffel symbols can be rewritten (d’Inverno 1992)

Γa
bc =

1

2

(
hac,b + hab,c − ηakhbc,k

)
(A.11)
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and the linearized Riemann tensor becomes

Rabcd =
1

2
(had,bc + hbc,ad − hac,bd − hbd,ac) . (A.12)

The trace of the Riemann tensor is the Ricci tensor Rab = ηcdRcdab:

Rab =
1

2

(
hca,bc + hcb,ac − ⊓⊔hab − h,ab

)
(A.13)

where h = ηcdhcd = hcc is the trace of hab in the last term, and ⊓⊔ is the d’Alembertian

operator

⊓⊔ = ηab∂a∂b =
∂2

∂t2
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2
. (A.14)

Finally, the corresponding Ricci scalar R is the trace of the Ricci tensor:

R = ηcdRcd = hcd,cd − ⊓⊔h. (A.15)

The Einstein tensor is is related to the elements of the energy-momentum tensor Tab,

Gab = Rab −
1

2
gabR = κTab (A.16)

where the constant κ = 8πG/c4. The linearized Einstein equations become

Gab =
1

2

(
hca,bc + hcb,ac − ⊓⊔hab − h,ab − ηabh

cd
,cd + ηab⊓⊔h

)
. (A.17)

This equation in its current form is quite formidable, but fortunately can be simplified.

Let us define a new quantity

ψab = hab −
1

2
ηabh. (A.18)

This can be rewritten such that hab is expressed as a function of ψab:

hab = ψab −
1

2
ηabψ (A.19)

which also implies h = −ψ. We can then substitute Equation A.19 into the expression

for the linearized Einstein tensor (Equation A.17) to express it as a function of ψab:

Gab =
1

2

(
ψc
a,bc + ψc

b,ac − ηabψ
cd
,cd − ⊓⊔ψab

)
. (A.20)

While still quite daunting, the linearized field equations can be further simplified

using a gauge transformation (d’Inverno 1992).
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A.1 The Einstein Gauge

Consider a coordinate transformation from the standard Minkowski coordinates

to a new coordinate system x̄u = Λu
bx

b by a global Lorentz transformation. We find

the metric in this new coordinate system by using the transformation property of

covariant tensors,

ḡab = Λx
aΛ

y
bgxy. (A.21)

With Equation A.2, we have

ḡab = Λx
aΛ

y
b (ηxy + hxy) = η̄ab + h̄ab. (A.22)

Note that the components of the weak field perturbation transform just like the

metric itself would, except that the components hab are only a perturbation of the

Minkowski spacetime. This implies a freedom in the representation of the metric such

that a coordinate transformation of the form used in Equation A.21 can be used to

transform the weak field metric leaving the weak field condition |hab| ≪ 1 unchanged.

Let us transform coordinates by adding a small displacement da(xb), such that

the elements da are functions of position and |da,b| ≪ 1:

xa → x̄a = xa + da(xb). (A.23)

Then we have

Λa
b =

∂x̄a

∂xb
= δab + da,b (A.24)

The metric transformation expression Equation A.21 to first order gives:

ḡab = ηab + hab − da,b − db,a. (A.25)

This coordinate change redefines the weak field perturbation

hab → h̄ab = hab − da,b − db,a. (A.26)

The new hab is still small since the elements of the vector d, da, and its derivatives were

chosen to be small initially. This introduces additional freedom into the equations
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because we can choose the vector elements da. By analogy with gauge transformations

of the electromagnetic 4-potential ϕ with scalar field χ,

ϕa → ϕa + ∂aχ. (A.27)

By analogy, we see that Equation A.26 corresponds to a gauge transformation. In

fact, it can be shown that the linearized curvature tensor (Equation A.12) and its

contractions (Equations A.13 and A.15) are invariant with respect to such gauge

transformations. Then, just as in electromagnetism, the gauge can be fixed by im-

posing further conditions on the metric. We work in the Einstein gauge, also known

as the de Donder, Hilbert or Fock gauge:

ψa
b,a = hab,a −

1

2
h,b = 0. (A.28)

Under the coordinate transformation of the type in Equation A.23, we can show that

Equation A.28 transforms as

ψa
b,a → ψ̄a

b,a = ψa
b,a − ⊓⊔vb. (A.29)

Therefore, we can transform the equation into the Einstein gauge by choosing da to

satisfy the wave equation ⊓⊔da = ψb
a,b. The Einstein gauge actually describes an entire

family of infinitesimal transformations by adding small vectors ξa to da that obey

the homogenous wave equation ⊓⊔ξa = 0. Dropping the barred notation, the Einstein

tensor in this gauge has a very simple form:

Gab =
1

2
⊓⊔ψab = −κTab. (A.30)

To solve the Einstein equations, the form of the energy-momentum tensor must

be specified. As in most astrophysical applications, we describe the gravitating body

as a perfect fluid, with matter density ρ, co-moving 4-velocity ui and pressure p:

T ab = (ρ+ p)uaub − pgab. (A.31)

To simplify this expression, we assume the stationary source limit, such that the

matter of the source moves slowly with respect to the coordinates xa, so that ui =
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dxi/dt ≪ 1 and terms on the order of |u|2 are neglected. Furthermore let us assume

vanishing pressure within the body so that p ≈ 0. Then in relativistic units G = c = 1

the elements of the energy-momentum tensor are:

T 00 ≈ ρ (A.32)

T 0i ≈ ρui (A.33)

T ij ≈ 0. (A.34)

We use the slow-motion approximation, such that derivatives with respect to the

time-like coordinate x0 are small, of order ϵ, times the spatial derivatives:

ϵ
∂f

∂xa
=

∂f

∂x0
. (A.35)

Then to first order, the timelike component a = b = 0 of the linearized Einstein

equations, Equation A.30, with the energy-momentum tensor, Equation A.32 is given

by

∇2ψ00 = 16πρ (A.36)

Comparing this with Poisson’s equation

∇2ϕ = 4πρ, (A.37)

we identify the Newtonian potential ϕ,

ψ00 = 4ϕ. (A.38)

Note the trace of ψab is ψ = ψ00 since the diagonal components ψ11, ψ22 and ψ33

vanish. Therefore, by Equation A.19 we have

h00 = h11 = h22 = h33 = 2ϕ. (A.39)

In general, the Newtonian potential can be expressed in terms of the density ρ. Since

we are working in the stationary source limit we can safely neglect retarded time

effects, so the solution to Equation A.36 can then be written as:

ϕ(x) = −
∫ ρ(y)

|x− y|
d3y, (A.40)
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where ρ enters from the energy-momentum tensor.

The mixed components with a = 0 and b = i > 0 depend on Equation A.33. The

resulting form of Equation A.19 is

∇2ψ0i = 4πρui. (A.41)

We define the spatial vector A with the components ψ0i, and the vector u with

components ui. Then we can rewrite Equation A.41 in the form

∇2A = 4πρu. (A.42)

The solution to this equation is written component-wise as:

Ai(x) = −4
∫ ρ(y)ui(y)

|x− y|
d3y. (A.43)

Then Equation A.19 gives

h0i = Ai, (A.44)

where we define the gravitational spatial vector potential Ai.

We can now write the metric of a weakly curved spacetime. The line element of

the weak field metric with all factors of c replaced is given by Equation A.1

ds2 =

(
1 +

2ϕ

c2

)
c2dt2 − 2

(
A · dσ
c

)
cdt−

(
1− 2ϕ

c2

)
dσ2, (A.45)

with dσ2 = |dσ|2 = dx2 + dy2 + dz2. In general, the geodesics of this spacetime

allow us to calculate the trajectories of test particles in the field of a non-relativistic

source in the weak field limit. The metric does not require any assumptions about

the nature or speed of the test particles. Therefore, setting ds = 0 allows us to find

the null geodesics that define the paths of light rays.

The line element in Equation A.45 is more general than we need for the purpose

of strong gravitational lens modeling. Static sources are defined as objects with

constituent particles whose velocities can be completely neglected. When this is

the case, all of the components of the perfect fluid energy momentum tensor vanish

except for the timelike component, given by Equation A.32. This means that the

vector potential also vanishes such that the metric is further simplified:

ds2 =

(
1 +

2ϕ

c2

)
c2dt2 −

(
1− 2ϕ

c2

)
dσ2 (A.46)

132



This is often referred to as the line element in the Newtonian limit (Hobson et al.

2006). A variety of interesting phenomena can be described using this metric, in-

cluding gravitational waves (Hulse & Taylor 1974), perihelion precession (Einstein

1916), time delay (Shapiro 1964), and gravitational lensing (Einstein 1936). With

an expression for the weak field limit in hand, we can define the effective index of

refraction of a gravitational field and from that result the deflection angle field due

to massive objects.

A.2 Index of Refraction of a Gravitational Field

With the line element in the Newtonian limit, it is simple to derive the effect of

weak gravitational fields on the paths of light rays. These paths through space-time

are described as null geodesics, paths along which the line element (proper time)

vanishes: (
1 + 2

ϕ

c2

)
c2dt2 −

(
1− 2

ϕ

c2

)
dσ2 = 0. (A.47)

Defining v = dσ/dt, we find

v = c

(
1 + 2 ϕ

c2

1− 2 ϕ
c2

)− 1
2

, (A.48)

which we compare with the standard definition of the index of refraction n from

classical optics which is determined by the relation v = c/n. We then have the

expression

n =

(
1− 2 ϕ

c2

1 + 2 ϕ
c2

) 1
2

(A.49)

where the Newtonian potential ϕ is small. We expand this expression to first order

in ϕ/c2 to give our final expression for the index of refraction:

n = 1− 2
ϕ

c2
. (A.50)

Unlike the index of refraction of most materials, the gravitational index of refraction

has no wavelength dependence. Note that ϕ ≤ 0 so that n ≥ 1 always, which shows

that light travels slower when traveling through a gravitational field than in free space.
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A.3 Deflection Angle from the Weak Field Metric

In general, we can use the geodesic formula with the weak field metric to derive the

gravitational lens deflection angle. However, a more illustrative derivation makes use

of Fermat’s principle in analogy with classical optics, using the gravitational index of

refraction derived above (Schneider, Ehlers & Falco 1992). We note that for a static

source, the gravitational index of refraction is a function of the spatial coordinates

only, and in the weak field limit ϕ is small. Due to the large distances between the

source, lens and observer, we approximate the path of a light ray as the piecewise path

shown in Figure A.1. This approximation is applicable to all observable gravitational

lens phenomena (Narayan & Bartelmann 1995).

Let us define a unit vector e that is tangent to the path of a light ray emitted

from a source object S and received by an observer O. The lens is located at the

origin on the lens plane, and the z axis is denoted by the unit vector ẑ. Define the

unit tangent vector to the undeflected ray eS at the position of the source and eO the

tangent to the deflected light path at the observer. The deflection angle α̂ is then

given by

α̂ = eS − eO. (A.51)

This deflection angle vector approximates the amount of bending that the lens causes

to the true path of the light ray (Petters et al. 2001). In general we seek an analytical

description of α̂ in the weak field limit. More details can be found in Petters et

al. (2001) and Schneider, Ehlers & Falco (1992), the primary sources used in this

derivation.

Let us consider the index of refraction of a weak gravitational field as defined in

Equation A.50. As in classical optics, we define the optical path length as the physical

path length multiplied by the index of refraction of the medium. Fermat’s principle

requires that this path is an extremum such that

δ
∫ B

A
n(x)dl = 0, (A.52)

where n(x) is the index of refraction as a function of position, and dl is a length

element along the path. Let us write the path x as a curve parameterized by a

134



α̂

α̂

eS
eO

O

S

ẑ

Figure A.1: Thin lens geometry

Thin lens geometry used to derive the deflection angle α̂. The diagram is not to scale and the effect

is greatly exaggerated to clearly denote the relevant quantities.
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quantity λ such that

dl =
∣∣∣∣ xdλ

∣∣∣∣ dλ. (A.53)

Equation A.52 then reduces to the parameterized integral

δ
∫ λB

λA

n(x(λ))

∣∣∣∣∣dxdλ
∣∣∣∣∣ dλ = 0, (A.54)

from which we identify the Lagrangian

L(ẋ,x, λ) = n(x) |ẋ| , (A.55)

where we denote x=x(λ) and ẋ = dx/dλ, which is tangent to the path of the light

ray.

We can then use the Euler-Lagrange equations

d

dλ

∂L

∂ẋ
− ∂L

∂x
= 0 (A.56)

to find the extremum of Equation A.52, from which we determine

∂L

∂ẋ
=
nẋ

|ẋ|
(A.57)

and
∂L

∂x
= ∇n |ẋ| . (A.58)

Putting Equations A.57 and A.58 together, we find

d

dλ

(
n
ẋ

|ẋ|

)
− |ẋ|∇n = 0, (A.59)

where we have used the definition of the gradient ∂n
∂x = ∇n. Let us now define the

unit tangent vector e = ẋ/ |ẋ|, which we use to simplify Equation A.59:

ė =
1

n
ẋ [∇n− e (e · ∇n)] . (A.60)

The second portion of the bracketed term is the gradient parallel to the path of the

light ray. Therefore, we identify the perpendicular component of the gradient

∇⊥n = ∇n− e (e · ∇n) , (A.61)
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from which it follows that

ė =
1

n
∇⊥n = ∇⊥ ln (n). (A.62)

We can Taylor expand the logarithm using Equation A.50 and the limit ϕ/c2 ≪ 1,

obtaining the expression

ė ≈ − 2

c2
|ẋ|∇⊥ϕ. (A.63)

We integrate both sides of this expression from the source to the observer along the

light ray, obtaining

eO − eS = − 2

c2

∫ λO

λS

∇⊥ϕ |ẋ| dλ. (A.64)

With the help of Equation A.51, this expression reduces to an equation for the de-

flection angle field in the weak field limit:

α̂ = eS − eO =
2

c2

∫ O

S
∇⊥ϕ dl. (A.65)

A more useful expression is obtained by recognizing that the lens is thin, which allows

us to rewrite the path integral in Equation A.65 in terms of an integral along the line

of sight z perpendicular to the lens plane (Petters et al. 2001):

α̂ =
2

c2

∫ ∞

−∞
∇⊥ϕ dz. (A.66)
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Appendix B

Cosmology and Angular Diameter

Distance

A thorough description of the background cosmology is required to model grav-

itational lens systems. Since the observed light rays from a source are emitted at

a redshift zs and the deflector is at redshift zd, we must scale the deflection an-

gle using the distances between these objects. To do this, we will make use of the

Friedmann-Robertson-Walker (FRW) metric (Friedmann (1922); Robertson (1935);

Walker (1937)) to describe the background cosmology. This metric allows us to derive

a relationship between distance and the observable angular diameters of objects in

curved spacetime on cosmological scales. The primary sources for these derivations

are the discussions in Hobson et al. (2006), d’Inverno (1992) and Coles & Lucchin

(2002).

The FRW metric is based on the cosmological principle that states the universe

is globally homogeneous. If an observer’s position were changed in a homogenous

universe, on large scales their view of the cosmos would remain unchanged. In addi-

tion, the cosmological principle implies that spacetime at the largest scales should be

isotropic, such that no privileged directions exist. These assumptions are supported

by observations of the cosmic microwave background (CMB; Odenwald, Newmark

and Smoot (1998); Spergel et al. (2003)), which provides evidence that homogeneity

and isotropy are valid assumptions to include in cosmological models.
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B.1 The Robertson-Walker Line Element

In order to include the cosmological principle in a quantitative model of the

background metric, we divide spacetime into a series of space-like sheets in which

t = constant on each sheet. In relativistic units with G = c = 1, we write the line

element of such a foliated spacetime as

ds2 = dt2 − habdx
adxb, (B.1)

where hab = hab(t,x) such that a, b run from 1 to 3.

In fact, this metric can be further simplified by considering a simple physical

argument. Suppose that we form a large triangle using three points at time t. At

later times, the three points will describe a larger triangle. The cosmological principle

requires that there are no unique points or directions in the spatial hypersurfaces,

which implies that the two triangles must be geometrically similar. The factor by

which the size of the triangle grows must also be independent of position or direction.

Therefore, time can enter the metric only through a real-valued scale factor b(t) so

that the ratio of distances between points is the same at all times. Isotropy and

homogeneity require the curvature of the space-like hypersurfaces to be constant in

order for the triangles to remain geometrically similar for all times. Therefore, we

introduce the scale factor into the spatial part of the metric such that

hab = b(t)2h′ab(x
a). (B.2)

With the metric in the form given by Equation B.2, it is possible to write the

Riemann tensor describing the curvature of the spatial part of the line element in the

form

Rabcd = K (gacgbd − gadgbc) , (B.3)

where K is a scalar curvature constant. The corresponding Ricci tensor is given by

Rbd = 2Kgbd (B.4)

assuming spherical symmetry. These constraints determine the components of the
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spatial metric elements

dσ2 = habdx
adxb

dσ2 = dr2

1−Kr2
+ r2dθ2 + r2 sin2 θdϕ2

(B.5)

where we have adopted the standard spherical coordinates (r, θ, ϕ). There is a further

simplification that can be made to the line element to remove the arbitrary magnitude

of the curvature constant. We define k = +1, 0,−1 so that K = |K|k and rescale the

radial coordinate

r =
r̄

|K| 12
. (B.6)

The full line element is then written, dropping the barred notation, as

ds2 = dt2 − a(t)2
(

dr2

1− kr2
+ r2dθ2 + r2 sin (θ)dϕ2

)
, (B.7)

where the scale factor is defined such that

a(t) =
b(t)

|K| 12
(B.8)

and

a(t) = b(t) (B.9)

for K = 0. The significance of the curvature constant k is discussed below in terms

of the solutions to Friedmann’s equations.

B.2 The Friedmann Equations

Now that we have defined the elements of the metric, we use Einstein’s equations

to derive a pair of equations that determine the evolution of the universe (Friedmann

1922). Consider Einstein’s equations with a cosmological constant term added:

Gab − Λgab = κTab, (B.10)

where Λ is the cosmological constant. Equation B.10 is the general form of Einstein’s

field equations. In early treatments the cosmological constant was simply set to 0, but

as cosmological models were explored it was found that this term significantly affects
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the evolution of the resulting solutions. The cosmological constant was first used by

Einstein in order to produce a static universe, and acts in general as a repulsive term

to counteract the effects of gravity on large scales (Einstein 1917). Hubble’s law is

an empirical relationship between the proper distance d and recessional velocity of

galaxies v, such that

v = H0d (B.11)

for small z, where H0 is Hubble’s constant. In view of Hubble’s observations (Hub-

ble 1936), Einstein realized that a static universe was impossible, and regarded the

cosmological constant as his “greatest blunder”. However, recent observations of su-

pernovae suggest that a cosmological constant term must be present to explain the

apparent acceleration of the universe (Riess et al 1998).

In order to solve the field equations with the FRWmetric, we specify a momentum-

energy tensor that describes the distribution of matter-energy in the universe. To

describe this mass distribution we make use of Weyl’s postulate, which states that

matter in the universe follows time-like geodesics that diverge from a finite time in the

past and possibly intersect at a time in the finite future. While the relative velocities

between individual particles may be large, the particles themselves are essentially

stationary relative to a comoving coordinate system that expands with the universe.

To approximate the matter distribution, we consider galaxies interacting in analogy

with particles in a perfect fluid. By Weyl’s postulate we work in a comoving spherical

polar coordinate system, with the velocity of each particle dominated by the expansion

such that the comoving velocity components of the fluid particles are [ua] = (1, 0, 0, 0)

(d’Inverno 1992). Putting these arguments together, the Einstein field equations can

be reduced to the cosmological field equations:

ȧ(t)2 =
8π

3
ρa(t)2 +

Λ

3
a(t)2 − k, (B.12)

ä(t) = −4π

3
(ρ+ 3p) a(t) +

Λ

3
a(t). (B.13)

The first of these equations is found from the G00 component of the field equations.

The remaining spatial field equations give rise to degenerate expressions that are
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equal to the second equation above. These relationships are known as the Friedmann

equations. Given values for the cosmological constant, matter density and curvature,

these equations determine the behavior of the scale factor a as a function of cosmic

time.

In general the Friedmann equations permit several types of solution. When Λ = 0,

setting the curvature k = 1 produces a closed universe, which contains a physical

singularity at points in the finite past and future. The k = 0 solution represents

a flat universe with an ever decreasing expansion velocity. Solutions with k = −1

describe open universes that continue to expand forever. It is worth noting that all

of these solutions have singularities at finite points in the past, though the cases with

k ̸= 1 do not contain corresponding singularities in the future. The presence of a non-

vanishing cosmological constant introduces additional effects that alter the expansion

of the universe by introducing a repulsive force that changes the overall behavior of

the solution as a function of cosmic time.

The Friedmann equations can be written in a normalized form that depends on

measurable quantities. Define the current scale of the universe a(t0) = a0 and write

R =
a(t)

a0
(B.14)

and the derivative of this quantity with respect to time,

Ṙ =
ȧ(t)

a0
, (B.15)

then R(t0) = 1 and Ṙ(t0) = H0. The Friedmann equations become:

Ṙ2 =
8π

3
ρR2 +

Λ

3
R2 − k

a20
(B.16)

R̈ = −4π

3
(ρ+ 3p)R +

Λ

3
R. (B.17)

It is useful to restate the Friedmann equations in terms of energy density. To

derive the equation of motion of the cosmological fluid, we eliminate R̈ in Equation

B.17. This gives the following relation:

ρ̇ = −3 (ρ+ p)
Ṙ

R
(B.18)
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in terms of the normalized scale factor R. This equation is known as the continuity

equation, which is a consequence of the conservation of energy.

So far we have not explored the nature of the fluid density except to say that

it behaves as a perfect fluid. In fact, there are several kinds of energy density that

influence the evolution of the universe. The total density ρ contains contributions

from matter, ρm, radiation ρr, and the energy of the vacuum itself, which we identify

with the cosmological constant.

We derive the properties of matter and radiation by thermodynamic arguments.

We adopt the equation of state p = γ
3
ρ where radiation has γ = 1 and matter γ = 0.

We rewrite Equation B.18 in terms of the density ρ:

d

dt

[
ρR3+γ

]
= 0. (B.19)

We then integrate this equation from t to t0, the current time. For the matter density,

this gives

ρm(t) =
ρ0m
R3

, (B.20)

The radiation density is then given by

ρr(t) =
ρr0
R4

. (B.21)

The cosmological constant can be treated as a perfect fluid component with constant

density and equation of state p = −ρ, corresponding to γ = −3. Equation B.19

ensures that this choice of γ does not introduce time dependence to the vacuum

energy density and allows the cosmological constant to act like a fluid with negative

pressure in the Friedmann equations. We define the energy density of the vacuum

ρΛ = ρ0Λ =
Λ

8π
, (B.22)

where the factor of 8π is introduced to simplify Equation B.12, and allows us to treat

the cosmological constant term on equal footing with the other contributions to the

total density such that ρ = ρm + ρr + ρΛ.

Now let us consider the density necessary to produce a flat universe. Setting k = 0

in Equation B.16, we can solve for the corresponding critical density at t0,

ρc =
3H2

0

8π
, (B.23)
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where H0 is the value of the Hubble constant at the current epoch t0. This critical

density causes the gravitational attraction of matter and the expansion of spacetime to

be exactly balanced, producing a flat universe. Therefore, this quantity makes a useful

scaling factor that allows us to define the fractional density of matter Ωm = ρm/ρc,

radiation, Ωr = ρr/ρc and the cosmological constant energy density ΩΛ = ρΛ/ρc.

Define the curvature density at t0,

Ω0k = − k

a20H
2
0

. (B.24)

In terms of the critical density, Equation B.16 becomes

Ṙ2 = H2
0

[
Ω0m

R3
+

Ω0r

R4
+ Ω0Λ +

Ω0k

R2

]
R2. (B.25)

To simplify this notation, define

Υ(R) =

√
Ω0m

R3
+

Ω0r

R4
+ Ω0Λ +

Ω0k

R2
(B.26)

so that the Friedmann equation takes on an even more compact form

Ṙ = H0RΥ(R). (B.27)

The utility of this formulation is that the densities and Hubble constant H0 are

observable in the present day universe at time t0. In fact, the currently accepted

values of these parameters have been estimated using several methods, including

observations of the CMB (Spergel et al. (2003); Jarosik et al. (2011)), high redshift

supernovae (Riess et al (1998); Perlmutter et al. (1999)), and large scale lensing

observations (Refregier et al. (2004); Contaldi et al. (2003); Grillo et al. (2008)). The

cosmological parameters are now known to an accuracy of a few percent (Coles &

Lucchin 2002), and the standard cosmological model uses Ω0m ≈ 0.3, Ω0r ≈ 10−5 and

Ω0Λ ≈ 0.7 with H0 = 70 km s−1. The radiation density is negligible at t0 but played

an important role at early times in the evolution of the universe. We adopt these

values for the cosmological parameters needed in our lens models.

Evaluating Equation B.25 at t = t0, we find that

Ω0m + Ω0r + Ω0Λ + Ω0k = 1. (B.28)

Since the measured cosmological parameters have Ω0m + Ω0r + Ω0Λ ≈ 1, this implies

Ω0k ≈ 0 and by Equation B.24, the universe must be geometrically flat with k ≈ 0.
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B.3 Angular Diameter Distances

The most relevant method for determining cosmological distances with the FRW

metric in the context of gravitational lens modeling are angular diameter distances

(Peacock 1998). In the Euclidean case, the standard angular diameter distance for-

mula holds for small angles:

d = DΘ, (B.29)

where D is the distance at which an object of diameter d will appear to subtend an

angle Θ. In the curved spacetime of GR, we define this relationship to be true so that

angles and distances are related in the usual way. To find the corresponding distance

relationship using the FRW metric, consider two light rays that travel along radial

null geodesics from a source of diameter d at redshift z separated by an angle Θ.

Suppose that the rays are emitted at time tE and observed at t0. From the angular

part of the FRW metric, we have

d = a(tE)rΘ. (B.30)

By equating Equations B.29 and B.30, we find the distance in terms of the scale factor

and the radial coordinate,

D = a(tE)r. (B.31)

Equation B.14 can be used to simplify this result. The normalized scale factor is

related to the redshift of the object at the time of emission tE. To determine the

form of this relationship, consider the cosmological redshift effect. In general, the

emission of radiation with frequency νE from an object at redshift z will be observed

to have frequency

ν0 =
νE

1 + z
. (B.32)

This redshift occurs due to the expansion of the universe linearly stretching the wave-

length of the emitted light. Thus we can relate the emitted and observed wavelengths

ν0
νE

=
λE
λ0
, (B.33)
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and due to the linear dependence of wavelength on scale factor (Hobson et al. 2006)

R(tE) =
a(tE)

a0
=

1

1 + z
. (B.34)

Rewriting Equation B.31 gives

D =
a0

1 + z
r (B.35)

for a source at redshift z and observer at the origin. We now need to find an expression

for the radial distance r along the path of the rays. Since each of the geodesics is

radial, we set ds = 0 and eliminate the angular portion of the line element in Equation

B.7. From the line element we find:∫ t0

tE

dt

a(t)
=
∫ r

0

dr′

(1− kr′2)
1
2

. (B.36)

The right hand side of this expression can be solved for three cases that depend on

the curvature constant k:

∫ t0

tE

dt

a(t)
=


sin−1(r), k = 1

r, k = 0

sinh−1(r), k = −1.

(B.37)

Note that the left hand side of Equation B.36 depends on the specific form of

the scale factor a(t). In order to find the radial distance r along a null geodesic in

terms of observable quantities, it is necessary to calculate this integral for a given

curvature. To do this, we return to the definition of the normalized scale factor given

by Equation B.14. Using this relationship we rewrite the left hand side of Equation

B.36 in the form ∫ t0

tE

dt

a(t)
=

1

a0

∫ R(t0)

R(tE)

dR

R(t)

1

Ṙ
. (B.38)

We then use the Friedmann equation given by Equation B.27 to write

f(r) =
1

H0a0

∫ R(t0)

R(tE)

dR

R2Υ(R)
, (B.39)

where we have defined f(r) using Equation B.38. This relationship between scale

factor and redshift given in Equation B.34 can be used to convert this integral to an

integration over the redshift interval z, using the integration element

dz = −dR
R2

. (B.40)
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Then we have

f(r) =
1

H0a0

∫ z

0

dz

Υ(z)
, (B.41)

where

Υ(z) =
[
Ω0m(1 + z)3 + Ω0r(1 + z)4 + Ω0Λ + Ω0k(1 + z)2

] 1
2 . (B.42)

The angular diameter distance, Equation B.31, can then be evaluated using the re-

lationship in Equation B.41. In general we write the result in terms of arbitrary

redshifts z1 < z2. For k = 0 and reinserting factors of c and G, we have

D =
1

1 + z2

c

H0

∫ z2

z1

dz

Υ(z)
(B.43)

by the result of Equation B.37. We can simplify the results for k = ±1 by rewriting

a0 in terms of the total matter density. From Equation B.24 we have

a0 =
c

H0

√
(∓Ω0k)

(B.44)

taking into account the sign difference between k and Ω0k. For the k = 1 case we

have

D =
1

1 + z2

c

H0

√
−Ω0k

sin

(√
−Ω0k

∫ z2

z1

dz

Υ(z)

)
(B.45)

and the k = −1 case gives

D =
1

1 + z2

c

H0

√
Ω0k

sinh

(√
Ω0k

∫ z2

z1

dz

Υ(z)

)
. (B.46)

In general, these integrals must be solved numerically.

Gravitational lens modeling requires three angular diameter distances: the dis-

tance Ds between the observer at redshift zo = 0 and the lensed source at zs, the

distance Dd between observer and the lens at zd, and the distance between lens and

source Dds. We calculate these distances using the standard cosmological parameters

in Equation B.43, where we have assumed a flat geometry (k = 0).
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Appendix C

Conjugate Gradient Optimization

Methods

Modeling the deconvolved source intensity distributions of strong gravitational

lenses requires the inversion of large linear systems. In principle, these systems can

be solved by direct inversion or factorized expansion such as SVD. However, in prac-

tice these direct approaches can be computationally intensive for large matrices. A

more efficient approach to matrix inversion treats the inversion process as a mini-

mization problem. This allows us to make use of fast linear iterative optimization

routines. Furthermore, the matrices to be inverted may be ill-posed and require ex-

plicit regularization. This appendix discusses regularization methods that incorporate

regularization automatically as convergence occurs. We focus our discussion on two

of the most efficient optimization algorithms for large ill-posed problems that require

regularization, the steepest descent (SD) and the conjugate gradient (CG) methods.

We consider the SD and CG methods in the context of symmetric positive definite

matrices, but we show that these approaches can be extended to general linear systems

without the need for these strict symmetry requirements by stating the inversion

in the context of least-squares fitting. We follow the derivations of these routines

closely from the treatments in Shewchuk (1994) and Björck (1996). Gravitational

lens inversion using the semilinear method requires linear optimization, so we focus

on these approaches. However, in general the methods discussed here can be extended
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to include non-linear functions as well.

C.1 Steepest Descent Method

Consider an N × N symmetric, positive definite matrix A such that xTAx > 0

for an x ∈ RN . We seek a solution to the linear system

Ax = b. (C.1)

However, it may not be practical to invert A directly when A is large or poorly

conditioned. In such cases, solutions can still be found by treating Equation C.1 as a

minimization problem, which can be solved by efficient iterative methods. Consider

the N dimensional quadratic function defined by

f(x) =
1

2
xTAx− bTx+ c, (C.2)

where c is an arbitrary constant that we set to zero without loss of generality. The

minimum of this function, xf is the solution to the system in Equation C.1 such that

Axf = b. The N dimensional gradient of this function with respect to the coordinate

vector x can be written

∇f(x) = Ax− b. (C.3)

Consider an iterative algorithm where we start at some point x0 and take m

successive steps using local information to choose the next step direction and distance

at each iteration. We visit the set of points xi, i ∈ [0,m], with the goal to end up as

close as possible to the minimum such that xm ≈ xf on the final iteration. In general

the gradient at step i points in the direction of steepest increase of f(xi). Therefore,

the direction in which the function decreases the most rapidly is the direction opposite

to the gradient.

We define the error vector of the ith step as

ei = xi − xf , (C.4)

which indicates how far we are from the true solution xf . Furthermore, let us define

the residual vector

ri = b−Axi, (C.5)
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where the residual vector is related to the error vector by ri = −Aei. From the

definition of the residual, we have

ri = −∇f(xi), (C.6)

which shows that the residual therefore provides the direction of steepest descent.

The step we take from the ith position xi must lie along the line defined by the

gradient direction. However, we need to find the size of the step to take to find the

next location xi+1, which must satisfy

xi+1 = xi + αiri. (C.7)

We choose the value of αi that minimizes f(xi) along this line, which is found at the

position
df(xi+1)

dαi

= ∇f(xi+1)
T dxi+1

dαi

= 0 (C.8)

using the chain rule. Combining this result with eq. C.7, we see that ∇f(xi+1)
Tri =

0. Therefore αi should be chosen such that the gradient ∇f(xi+1) and the residual

ri are orthogonal. We find the value of αi analytically:

∇f(xi+1)
Tri = rT

i+1ri = (b−Axi+1)
Tri = 0. (C.9)

Using Equation C.7, we rearrange this expression to solve for the stepsize αi in terms

of the residual vector ri:

αi =
rT
i ri

rT
i Ari

. (C.10)

Equations C.5, C.7 and C.10 define the SD algorithm as an iterative procedure. We

find the residual at the current step i from Equation C.5, calculate αi using Equation

C.10, and update the position xi+1 from Equation C.7. In general, two matrix-vector

multiplications are needed per iteration for the SD method. However we can save one

of these multiplication operations by finding the i+ 1 residual with the step size:

ri+1 = ri − αiAri. (C.11)
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C.2 Conjugate Gradient Method

There is no constraint on the search directions in the SD method since the direction

of steepest descent is determined by the gradient of f(xi) from Equation C.6. In

practice, the SD method will repeat steps in directions that it has already searched

through. The idea behind the Conjugate Gradient (CG) method (Hestenes and Stiefel

1952) is to avoid searching in directions that have already been explored. If we define

a set of directions d0, d1, ... dN−1 such that these directions are conjugate to one

another, then we will only need to take one step along each d to end up at the solution

xf .

Suppose that the conjugate vectors d satisfy the A-orthogonality condition

dT
i Adj = 0 (C.12)

for i ̸= j. We find the new position at step i+ 1 using

xi+1 = xi + αidi, (C.13)

which leads to the expression for the residual,

ri+1 = ri − αiAdi. (C.14)

To find the expression for the step size αi, consider the derivative of f(xi+1) with

respect to the step size, analogous to the step size calculation in the SD method. We

find
df(xi+1)

dαi

= ∇f(xi+1)
T dxi+1

dαi

= −rT
i+1di = 0. (C.15)

We use Equation C.14 to solve for the step size, such that

αi =
dT
i ri

dT
i Adi

, (C.16)

which is analogous to Equation C.10 for the SD method and represents the step size

along each conjugate direction at iteration i. To recover the SD method, we simply

replace di with ri so that we once again search along residual directions rather than

conjugate directions.
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Let us briefly return to the error vector defined in Equation C.4, which is related

to the residual ri = −Aei. When we move along the conjugate directions di, the

residual is given by Equation C.14 and therefore the error vector has the form

ei+1 = ei + αidi. (C.17)

This expression can be written as a sum in terms of the first error vector e0,

ei+1 = e0 +
i∑

j=0

αjdj (C.18)

with α0 = 0. Suppose that we consider a set of N conjugate steps along the set of di

directions. The error is reduced after each step, as xi gets closer to the solution xf .

We want the error vector eN to vanish after N steps. Using Equation C.18, we write

the initial error vector as

e0 = −
N−1∑
j=0

αjdj. (C.19)

Inserting this expression back into Equation C.18 gives

ei = −
N−1∑
j=i

αjdj, (C.20)

which means that each error vector must be A-orthogonal to all of the previous error

vectors. At each iteration, we proceed along a unique search direction, removing an

A-orthogonal term of the sum in Equation C.19 and eventually reducing the error to

0 after N steps. This has significant implications for the set of residuals found when

stepping along these search directions as well. Consider multiplying Equation C.20

by dT
kA with i > k:

dT
kAei = −

N−1∑
j=i

αjd
T
kAdj = 0 (C.21)

by the A-orthogonality of the search directions, which implies

dT
k ri = 0 (C.22)

for i > k since ri = −Aei by Equation C.21.

To find the set of conjugate search directions di, we consider a conjugation pro-

cess similar to the Gram-Schmidt orthogonalization procedure on the set of residual
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(gradient) vectors. For i = 0 we take d0 = r0, reducing the first move to a SD step.

Subsequent mutually conjugate steps are chosen such that

di = ri +
i−1∑
k=0

βikdk (C.23)

with the projection coefficient βik. We note that the conjugate search directions are

built from linear combinations of the previous residual vectors and search directions.

If we consider the inner product between C.23 and a previous residual rj with i > j,

we find that

dT
i rj = rT

i rj +
i−1∑
k=0

βikd
T
k rj, (C.24)

which implies that the residuals must also form an orthogonal set along the search

directions by Equation C.22 so that

rT
i rj = 0. (C.25)

When j = i in Equation C.24, we are left with the useful relation

dT
i ri = rT

i ri. (C.26)

To find the projection factor βij, we take the inner product of Equation C.23 with

Adj such that

dT
i Adj = rT

i Adj +
i−1∑
k=0

βikd
T
kAdj. (C.27)

By the conjugacy of the search directions all terms in the sum except for the k = j

term vanish. For i > j, this simplifies to

0 = rT
i Adj + βijd

T
j Adj. (C.28)

Solving for βij, we find

βij = −rT
i Adj

dT
j Adj

. (C.29)

This expression can be further simplified using the iterative form of the residual.

Consider the inner product of ri and Equation C.14:

rT
i rj+1 = rT

i rj − αjr
T
i Adj. (C.30)
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For j = i− 1 this expression simplifies due to Equation C.25:

rT
i Adi−1 = − 1

αi−1

rT
i ri. (C.31)

Note that this is the numerator of the projection coefficient. For all other values of

j ̸= i, we have

rT
i Adj = 0 (C.32)

due to the orthogonality of the residuals. Substituting Equation C.31 into Equation

C.29 gives

βi,i−1 =
1

αi−1

rT
i ri

dT
i−1Adi−1

(C.33)

and βij = 0 for i > j + 1. This choice of projection coefficient ensures that the

conjugacy condition dT
i Adi−1 = 0 is always satisfied.

The conjugate gradient method makes an efficient iterative routine since the ma-

jority of these coefficients vanish. Using the residual and search directions to find the

next step in a conjugate direction, we can carry out the Gram-Schmidt conjugation

process without the need to store the entire set of search directions d. With the

definition of the step size α, Equation C.16, we are left with

βi =
rT
i ri

rT
i−1ri−1

, (C.34)

where βi = βi,i−1.

The iterative CG method is stated by the following steps.

1.) To initialize the algorithm we pick an arbitrary starting point, x0. Using

this solution we find the residual vector r0 and take this as the first search direction

(making the first step a SD step):

d0 = r0 = b−Ax0. (C.35)

For i ≥ 0, we iterate the following steps.

2.) Find the step size in the current search direction di,

αi =
rT
i ri

dT
i Adi

. (C.36)
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3.) Take a step αi along the current search direction to update the current position

xi+1 = xi + αidi. (C.37)

4.) Use the step size and search direction to update the residual vector

ri+1 = ri − αiAdi. (C.38)

5.) Find the new search direction di+1 by Gram-Schmidt conjugation on the

residual and the previous d vectors to find the new conjugate search direction:

βi+1 =
rT
i+1ri+1

rT
i ri

(C.39)

di+1 = ri+1 + βi+1di. (C.40)

6.) Return to the second step and iterate the procedure, which is complete after

N iterations, where N is the dimension of A.

C.3 A Two-Dimensional Example

As a simple example, consider the N = 2 dimensional system defined by Ax = b

that has

A =

 4 1

1 2

 (C.41)

and

b =

 3

−1

 (C.42)

with solution

xf =

 1

−1

 . (C.43)

To begin, we choose an initial starting position at

x0 =

 3

−3

 . (C.44)
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The system expressed as a quadratic function is shown in the contours of Figure C.1

which has a minimum at xf . The path of the SD algorithm is shown in red, which

repeats steps in previous search directions as it closes in on the minimum. However,

the CG routine follows the blue path, which is more direct. For simple linear examples

like this one, the CG method can find the solution in exactly N steps.

0 0.5 1 1.5 2 2.5 3 3.5 4
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

x

y

An example of CG and SD paths

Figure C.1: An illustration of the SD and CGLS methods

Level curves of the quadratic function to be minimized are shown along with the SD path in red

and the CG path in blue. For simple problems the CG path converges in N steps as illustrated.
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C.4 Conjugate Gradient Method for Least

Squares Problems

In developing the CG routine, we assumed that the matrix A is symmetric and

positive definite. In fact, the method can be extended to systems in which these

assumptions do not hold. Consider the least squares problem, where we seek the

solution that minimizes

min ||Ax− b||2. (C.45)

Requiring that the derivative of this equation with respect to x vanish, we find the

normal equations:

ATAx = ATb. (C.46)

The conjugate gradient method for least squares problems (CGLS) is simply the CG

method applied to the normal equations. The matrix ATA is guaranteed to satisfy

the positive definite and symmetry requirements of the CG method. In general, A

does not even need to be square, as we are always guaranteed that ATA will be.

In this case, the system may have many solutions and CGLS is not guaranteed to

converge in exactly N iterations the way that CG did for a simple system.

The CGLS method is frequently used on ill-posed problems (Hansen 2010), where

the determinant of A is very small. This is often the case in image processing applica-

tions where CGLS and associated methods are widely employed. To reduce numerical

error in the calculations, the full matrix ATA does not need to be explicitly formed

and matrix-vector multiplications are carried out in sequence instead. For example,

rather than finding ATAx, we find AT (Ax). This allows us to sidestep explicitly

formingATA which is often less sparse thanA and reduces numerical error in general.

Another convenient property of the CGLS algorithm is that it can be used even

without an explicit representation of the matrix A since only matrix-vector multipli-

cations are needed. If it is possible to describe the effect of A on an arbitrary vector

with a subroutine, this can be used in place of an explicit multiplication resulting in a

fast implementation if A is large and non-sparse. This technique has significance for

image processing and gravitational lensing applications, which we exploit in Chapter
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3 to build a gravitational lens inversion algorithm that is very efficient for large im-

ages. In addition to these convenient properties, CGLS has an advantage over other

optimization schemes in solving ill-posed problems due to its convergence properties.

The convergence behavior of the CGLS and SD methods are explored in the context

of gravitational lensing problems in Chapter 3.

The CG and CGLS methods belong to a class of optimization methods called

Krylov subspace methods (Björck 1996). In CG, each iteration of the optimization

process searches along a new direction di, and the residuals ri are combinations of

the previous residual and search direction. Therefore each iteration explores a new

subspace Di, which is spanned by the set of the previous search directions:

Di = span
(
d0,Ad0,A

2d0, ...A
i−1d0

)
. (C.47)

The Krylov subspace Di is formed by the repeated multiplication of A to the initial

search direction d0. An illustration of the Krylov subspace is shown in Figure C.2.

This subspace approach has a number of useful properties. First, the structure of the

Krylov subspace simplifies the Gram-Schmidt process since it guarantees that each

new residual is orthogonal to the previous search directions. Second, it provides a

regularizing effect when solving the least squares problem using CGLS, which can be

seen from the following argument. Let us assume an initial position x0 = 0. Since

the first search direction in CGLS is a SD step we can write d0 = ATb. The kth

iteration produces a solution xk which has an expansion in the basis of the Krylov

subspace Dk:

xk = c1A
Tb+ c2(A

TA)ATb+ ...+ ck(A
TA)k−1ATb (C.48)

where the c factors are constant expansion coefficients. Now consider the SVD intro-

duced in Chapter 3,

A = UΣV T . (C.49)

Using the orthogonality of U and V , we have the relationship ATA = V Σ2V T . Now

we can rewrite the expansion in Equation C.48 in the form

xk = V (c1Σ
2 + c2Σ

4 + ...+ ckΣ
2k)Σ−1UTb. (C.50)
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We can rewrite this expression as a filtered SVD expansion by defining the matrix Φ,

which has diagonal components ϕ1, ϕ2, ... ϕn. These filter factors are polynomials that

depend on the expansion coefficients c1...ck and the singular values. It has been shown

that filter factors corresponding to early iterations damp the high frequency SVD

components (Nagy & Palmer 2003) and therefore truncating the expansion process

before completion naturally introduces regularization into the problem.
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1
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2

d
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D
1

Figure C.2: A representation of the Krylov subspace

A representation of the Krylov subspace, adapted from (Shewchuk 1994). The residual vectors r

are orthogonal to one another. The (i+ 1)th search direction di+1 is constructed from the (i+ 1)th

residual and ith search direction di.
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Appendix D

Global Optimization Methods

Local optimization methods like SD and CG work well on optimizing simple linear

functions and can be extended to include the optimization of non-linear functions.

These local methods require functions that are smooth and differentiable (Björck

(1996); Hansen (1997)). However, local optimization procedures display problem-

atic behavior when applied to multi-modal functions that exhibit multiple extrema.

Consider the following test function (Charbonneau 1995):

f(x, y) = − [16x(1− x)y(1− y) sin (nπx) sin (nπy)]2 . (D.1)

This function is plotted in Figure D.1 using n = 9 over x = 0..1 and y = 0..1, with 81

minima over the coordinate range. The global minimum f = −1 is located at x = 0.5,

y = 0.5. By inspection, it is clear that an optimizer searching the fitness landscape

using only local information may become trapped by a local minimum and fail to find

the global solution. In general, this point is only a local minima, unless an initial

position very near to the central minimum is chosen. Since we generally do not know

the structure of the underlying function f (as in χ2 fitting), this fine tuning of the

starting point is not practical on a realistic problem. Smoothness and differentiability

of the test function are also necessary for local optimizers using gradient-based search

methods. There are a large number of multi-modal functions that are used in the

literature that are known to be pathological to local iterative optimization schemes

(Ackley (1987); Bäck (1996); Mühlenbein et al. (1991)). More complicated functions
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have also been used to test optimization routines, such as the Michalewicz function

(Figure D.2; Michalewicz (1992)):

f(x) = −
m∑
i

sin(xi) sin
(
ixi
π

)2n

(D.2)

where we have plotted the function in 2D (m = 2) with n = 10. The Langermann

function in 2D goes beyond these tests in that symmetry is removed, further compli-

cating the optimization (Figure D.3; Bersini et al. (1996)):

f(x) =
m∑
i

ci exp

(
−(x− aj)

2

π
− (y − bj)

2

π

)
cos(π(x− aj)

2 + π(y − bj)
2) (D.3)

with m = 5, a = [3, 5, 2, 1, 7], b = [5, 2, 1, 4, 9] and c = [1, 2, 5, 2, 3]. These func-

tions are a challenge to local optimization routines because they have asymmetrically

distributed local minima, and are difficult to optimize because of the extremely flat

regions which can confound gradient-based methods. In fact, a large number of test

functions have been developed to test the behaviour of optimization routines under

given conditions and are widely used in the literature to benchmark optimization

schemes (De Jong (1975); Mishra (2006); Zitzler et al. (2000)).

Fortunately, global optimization procedures exist that can find entire families of

solutions that occupy the global minima of such problems. The Qubist optimization

package, which is used in this thesis, has been thoroughly tested using many of the

problems mentioned above (Fiege 2010). In this appendix we will discuss two of

the global optimization schemes included in the Qubist toolbox: genetic algorithms

(GAs) and particle swarm optimizers (PSOs). The results of the Ferret GA applied

to the test problems (Equations D.1, D.2 and D.3) are shown in Figure D.4.

D.1 Genetic Algorithm Background

GAs (Holland 1975) are optimization methods based on the principles of biolog-

ical evolution. Over time, evolution operates by driving individual solutions in a

population toward forms that are better adapted to the environment, improving the

survivability of the individual. These adaptations allow individuals a greater chance
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Figure D.1: Test function for global optimization

An example test function with many local extrema. The function is defined in Equation D.1.
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Figure D.2: Michalewicz test function

Michalewicz function. The function is defined in Equation D.2 and is a difficult test problem due

to the flat areas, and deep channels. While the location of these channels may be easy to find, the

exact position of the local minimum is difficult to find using most local optimization methods.
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Figure D.3: Langermann test function

Langermann function. The function is defined in Equation D.3. The minima of this function are

difficult to find due to the deceptive gradients in the flat areas. Furthermore, there is no symmetry

in the function further complicating the optimization process.
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Figure D.4: Parameter space mapping of test problems

The three test functions (Equations D.1, D.2 and D.3) optimized by Ferret. Contours of the functions

are shown overtop of the distribution of optimal solutions (black dots). Tolerance was set to highlight

the structure of the functions. Results shown were discovered after 150 generations.
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to propagate their genes throughout the population by producing more offspring. A

variety of methods exist to implement analogues of these biological processes. To be-

gin, we will describe a basic GA and the most common choices used in their operation.

We will then discuss the specific implementation used in the Ferret GA, included in

the Qubist suite of optimizers.

In the basic GA scheme (Goldberg 1989), each individual is represented by a set

of N parameters in the optimization problem that defines the dimensionality of the

search space. GAs operate on an encoded representation of an individual called a

genotype. These genotypes represent the genetic material that comprises and deter-

mines the properties of each individual. In general, there are a variety of ways to

define the genotype. The simple GA (Holland 1975) uses a binary representation.

However, many other kinds of encodings have been used including base 10 (Charbon-

neau 1995) and real-valued (Fiege et al. (2004); Fiege (2010)) which is the scheme

used by the Ferret GA.

The corresponding phenotype is defined by the set of observable properties of

the decoded genotype. The phenotype of each solution includes quantities such as

parameter values, the underlying model and the function of interest evaluated with the

corresponding parameters. Each individual is also assigned a corresponding fitness

measure that determines its likelihood of survival. The set of all such individuals

defines the population (Holland (1975); De Jong (1975); Goldberg (1989)).

To illustrate the operation of a simple GA, let us consider finding the minimum

of the test function given by Equation D.1. The GA operates on an abstract repre-

sentation of the information required to evaluate the fitness function. This genotype

is decoded by the GA to generate the coordinate position (x, y) for each individ-

ual. Together, the coordinate position and the fitness value f(x, y) represent the

phenotype.

Though many GAs are discussed as maximization routines in the literature, we

will follow the convention of Ferret and consider minimization problems. This is a

more natural approach for astrophysical model fitting in which the fitness is defined

by the χ2 statistic to quantify the goodness-of-fit of a model to data. A brief overview

of the operation of a simple GA applied to function minimization is given below.
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To initialize a simple GA, an initial population of individuals with random geno-

types is generated. A simple GA uses binary encoding, so a set of genotypes are

selected by generating a random binary number for each gene (Holland 1975). The

fitness of each individual phenotype is then evaluated. Individuals are selected for

inclusion in the next generation, and crossover and mutation operators are probabilis-

tically applied to the group of selected individual genotypes. The crossover operator

combines two selected “parent” genotypes to produce new “offspring” with the com-

bined characteristics of each parent. The mutation operator acts on individuals and

introduces random perturbations to the genotypes of each selected solution. When

these operations are complete, the fitness values of the newly produced solutions are

evaluated. After many iterations of this procedure, the population is comprised of

solutions with better (in our case, lower) average fitness value than we began with.

Over time, natural selection favours more fit solutions to the problem and the popu-

lation moves toward the minima in the search space. Note that this scheme does not

require any single initial solution to be chosen a priori as a starting point, in contrast

to local optimization methods like SD and CG (Björck 1996).

D.2 Selection

Selection acts as a method of passing information from one generation to the next.

The selection procedure promotes the propagation of individuals with superior (low)

fitness values throughout the population. This represents the survivability of well

adapted organisms. There are a number of methods by which to accomplish this

selection, but the simplest types are roulette wheel and tournament selection.

The roulette wheel approach assigns a probability of selection to each individual

based on fitness (Baker 1987). The selection probability is found by normalizing each

individual solution:

pi =
1− fi∑Np

i (1− fi)
(D.4)

where fi is the fitness of the i
th solution and Np the population size such that

∑Np

i pi =

1. The cumulative sum of these probabilities is then calculated. A random number
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ξ is generated between 0 and 1, and a solution is selected by choosing the minimum

i such that pi > ξ. This procedure is analogous to the spin of a roulette wheel with

a proportion pi of the wheel assigned to each individual. As such, the highest fitness

solutions have the highest likelihood of surviving to the next generation, participating

in crossover operations or being acted on by the mutation operator (Mitchell 1996).

Roulette wheel selection is sensitive to the scaling of the fitness function. When

the problem is poorly scaled such that min(fi)<<mean(fi), roulette wheel selection

strongly favors the most fit individuals in the population, which places the GA at

risk of premature convergence to a local minimum. In general, it is better to scale

fitness values such that the selection pressure is more gentle, so that some individuals

of moderate fitness are able to propagate alongside the most fit members of the

population. The algorithm tends to exploit the solutions that it has already found

rather than thoroughly explore the fitness space. As such, the global minimum may

be missed. Similarly, a problem that is poorly scaled such that min(fi)≈mean(fi)

results in the opposite problem of insufficient selection pressure, so that the GA may

not converge to the correct solution. The search is unfocused and there is not enough

exploitation of the discovered solutions to converge on a minimum. Both of these

cases are problematic; thus an inherent drawback of roulette wheel selection is that

fitness values must be carefully scaled which requires a priori knowledge of the fitness

landscape.

Furthermore, when a GA first begins there is a large difference between the best

and worst fitness individuals in the population. In general this fitness range F will

shrink over time as the population converges toward the global minimum. Success

requires good fitness scaling at each generation, which may be difficult to enforce.

Therefore it is beneficial to remove the effect of the fitness range F altogether from

the selection routine. Rather than basing the selection process on fitness, it is often

useful to define the rank of a solution. The simplest method of ranking simply orders

the solutions from best to worst fitness. Individuals are then selected based on their

rank position rather than fitness. This is a useful scheme that overcomes the scaling

problems of the fitness range F and helps to reduce the likelihood that an individual

will dominate and generate the population and generate an excessive number of off-
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spring (Bäck & Hoffmeister 1991). In general, roulette wheel fitness based on rank

behaves more robustly than proportional fitness (Whitley 1989).

A better selection scheme that is widely used is tournament selection (Mitchell

(1996); Goldberg & Deb (1991)). The most basic tournament selection operates by

randomly picking k individuals at a time to compete in a tournament. The winner

of the tournament is the solution with the best fitness from the k individuals chosen.

This process is repeated to select more individuals, and typically individuals can be

selected for more than one tournament. A tournament of one individual (k = 1),

amounts to random selection.

Many variations of the tournament selection operator exist. For example, rather

than simply choosing the best rank solution, winners of the tournament may be

found by a finite probability ps. Contestants in a tournament can be picked for more

than one tournament or may be chosen without replacement (Sokolov & Whitley

2005). The size of the sample k can also be adjusted, increasing the selection pressure

as k grows, although it has been suggested that tournaments with k > 2 increase

the selection pressure too high and can lead to a loss of diversity in the population

(Goldberg 1989). The tournament scheme is generally considered a better selection

method since it is insensitive to the fitness range F . The winners of these tournaments

are acted upon by the crossover and mutation operators with probability pc and pm

respectively, and passed to the next generation.

D.3 Crossover

For each individual selected, there is a finite probability pc that the crossover

operation occurs. In the simple GA, this probability is a fixed strategy parameter

set by the user before the optimization begins. Selected individuals that do not

experience crossover or mutation are simply passed along to the next generation. For

those individuals that have been selected for crossover, a second selection is made to

find a “mate”.

The simplest crossover procedure used in a simple GA is a one point crossover

(Bäck et al. 1997). A single point on both individuals’ genotypes are selected, and
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the genes beyond this point are swapped between individuals producing two new

offspring. More complicated schemes can be constructed in which multiple point

crossovers occur where discrete portions of the genome are interchanged between

individuals.

To illustrate the one point crossover operation, let us consider two random binary

genotypes A and B. Then we generate a random position to cut the genotypes

(suppose this is between positions 5 and 6, for example). The crossover procedure

generates the two offspring C and D, shown below.

A : 0 1 1 0 1 0 1 1
B : 1 0 1 1 0 1 1 1
C : 0 1 1 0 1 1 1 1
D : 1 0 1 1 0 0 1 1

An interesting alternative called uniform crossover uses a fixed mixing ratio be-

tween the two parent individuals (Syswerda 1989). In this scenario, rather than

simply exchanging segments of the genome between two solutions, the contribution

to the offspring from each parent is a probabilistic process. In general each genome

can be split at any number of randomly chosen cross over points with the chance of

each segment contributing to any given offspring (Spears & De Jong 1991).

D.4 Mutation

The probability that a selected solution undergoes mutation is given by a user de-

fined probability pm. When an individual is mutated, a random gene in the genotype

is changed from its initial value (Goldberg 1989). To determine which gene is affected

by a single point mutation, each gene is assigned a probability of being mutated as

gi = 1/Ng where Ng is the number of genes in the genome, such that
∑Ng

i gi = 1. The

cumulative sum is formed for each of the genes and a random number is generated

that selects position in the genotype. This is the simplest kind of mutation, known as

a one point mutation operator, however more complicated mutation operations exist

which can affect more than one gene at a time. The simple GA represents genotypes
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in a binary encoding such that a finite number of states exist, so that the solutions

are guaranteed to remain bounded in the case that genes encode numerical parame-

ters. In real-valued GAs, it must be ensured that mutated solutions remain within

the bounds of the search space.

The one point mutation operator is illustrated graphically below. Suppose that

genotype A is mutated to produce genotype B, and that we have randomly selected

the 3rd gene to mutate:

A : 1 0 1 1 0 1 1 0
↓

B : 1 0 0 1 0 1 1 0

These three basic operations define the simple GA. Information is processed using

the crossover and mutation operators and filtered into subsequent generations by

the selection process. The crossover operation directs the population toward the

most successful individuals over time. Mutation keeps individuals from becoming too

similar to one another and drives the population to explore new areas of the parameter

space. It is the interplay of these two effects that results in the effectiveness of the

GA as an optimization routine.

D.5 Beyond the basic GA

In order for natural selection to work, a population must posess a spectrum of

fitness values. This variation must be maintained through generations to avoid be-

coming trapped in local minima. This premature convergence is due to the rapid

loss of diversity during the evolutionary process and therefore encouraging diversity

is important during the iterative procedure. Diversity can be lost when the selection

pressure is too high, causing the genotype of a single very fit individual to dominate

the population before the search space has been thoroughly explored.

Suppose that we wish to optimize a degenerate multi-modal function, such that

there are m minima that have equally good fitness values f . In general, we would like

to find all of the degenerate minima to map the solution space (Chen et al. 1999).
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However in the standard GA scheme, the population will converge to a single point at

the position of one of the minima. Even with mutation present, after a sufficient time

the population converges toward a single arbitrary member of the population. The

genes of this individual would spread through the population and the effectiveness

of crossovers would no longer introduce novelty to the population since many of the

members would share similar characteristics. This effect is called genetic drift and is

the GA analogue of inbreeding. It is difficult for a GA to recover once diversity is

eliminated from the population. In fact, this is the reason that GAs avoid constructing

the next generation from only the best fit individuals.

Niching is one method designed to combat genetic drift in a population (Fonseca

and Fleming 1993). Niching estimates the number of neighbors that each solution

has, and selection preference is given to individuals with fewer neighbors to promote

diversity in the population. Such isolated solutions represent separate individual

ecological niches which are populated by separate species. Niching is usually discussed

in the context of multi-objective GAs (Fonseca and Fleming (1993); Horn et al.

(1993)), but it is also extremely valuable for mapping the parameter space of single

objective problems. In general, niching can be done in parameter space or in objective

space in the case of a multi-objective problem. In single-objective problems such as

our lens modeling code, niching can only be done in parameter space.

To define an ecological niche, we define a niche radius σshare that defines a distance

in the parameters or fitness such that a niche count ϕi can be defined on the number

of close neighbors that each solution has:

ϕi =
∑
j:j ̸=i

(
1−min

{
1,

di,j
σshare

})p

, (D.5)

where p > 0 defines the niche shape, and di,j defines a distance between solutions i

and j. The distance di,j between solutions can be defined in terms of the genotype

or phenotype (Deb (1989); Deb & Goldberg (1989)). In terms of the genotype, the

Hamming distance is used, which defines the ‘distance’ between binary strings as

the number of positions at which the corresponding symbols are different (Hamming

1950). The phenotype distance is simply defined in terms of Euclidean distance

between sets of model parameters.
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Usually, a GA population for a single-objective problem will contain a single in-

dividual at each generation with the lowest fi, unless the fitness landscape is char-

acterized by degenerate global minima in the form of a flat-bottomed valley. In the

usual case of a single non-degenerate minimum (or isolated islands with the same

minimum value at a finite number of well-separated points) it is often useful to be

able to map the fitness landscape in the vicinity of the global minimum, for example

in the context of mapping confidence intervals. To facilitate the mapping of distinct

minima, we define a tolerance range τ . Solutions that have fitness values that are

equal within this tolerance f ± τ are considered tied during the tournament selection

process. When a tie occurs, the niche count provides a method of determining the

winner of the tournament. This is a valuable technique that favors isolated solutions

and tends to promote the exploration of distinct ecological niches.

A common problem with the simple GA is that the best fitness solution can be

lost through crossover or mutation when determining the next generation. Elitism is

used in order to prevent this from occuring. The elites are a user defined fraction of

the population with the best fitness (lowest fi). These elite solutions are passed to

the next generation unchanged to ensure that forward progress on the optimization

problem is always made and that the best fit individuals of the next generation will

be at least as good as the last. Elitism helps to accelerate the optimization behavior

of GAs in general. Used in concert with niching, elitism allows the GA to make

forward progress on optimization, yet still maintain diversity of the population. The

elite fraction should be kept small (≤ 10%) in order to promote diversity in the

population.

D.6 The Ferret GA

The previous sections describe the basic operation of a basic and simple GA. The

GA used in our work, Ferret (Fiege (2010); Fiege et al. (2004)), goes beyond this

basic scheme in a variety of ways.

Ferret is a bounded real-valued multi-objective GA that searches anN dimensional

volume in parameter space, determined by the parameter limits set by the user before
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the start of a run. The boundaries can be set as cyclic, indicating periodicity in a

given parameter. The boundaries can also be set as soft, such that the search volume

can be expanded if a significant fraction of the population has moved to a boundary.

This feature is used in the gravitational lens modeling problem when making use of

real data in Section 5.

Ferret uses real-valued genotype encoding, which is convenient for fitting real-

valued physical parameters to astrophysical data. Binary encodings (Holland 1975)

and base 10 encoding (Charbonneau 1995) are both limited for finite precision oper-

ations. Since we are operating on physical quantities real-valued genotypes are the

most useful for our applications (Wright 1991).

Operations on real-valued genotypes lend themselves to geometric interpretations

that are not obvious in the context of binary or base-10 encoded GAs. The crossover

operation for a real-valued genotype amounts to choosing a point on the line connect-

ing two parent solutions. Mutations in Ferret act on a given parameter in a genotype

by adding a Gaussian perturbation in a random direction, with a distance determined

by a user defined mutation strength parameter. Unlike the simple GA, Ferret evalu-

ates the fitness of the population in multiple steps, after each crossover and mutation

operation. This is done to ensure monotonicity in the fitness of the population.

Niching is easily understood in the context of real-valued GAs as well. The niche

radius σshare has an obvious geometrical interpretation, and the distinction between

phenotype and genotype distance in Equation D.5 is unambiguous. In essence, we

define a niche as an N dimensional hypersphere around a given solution. The solu-

tions within this sphere determine the niche count for a given individual, with closer

neighbors receiving greater weight. The interpretation of the distance factor in Equa-

tion D.5 is defined geometrically as the Euclidean distance or by a Holder metric.

Due to the implementation of niching techniques, the Ferret GA is well-suited to ef-

fectively explore high dimensional parameter spaces and map confidence intervals in

our data-modeling application.

The selection operation in Ferret is a binary tournament procedure. Ferret uses a

prioritized selection scheme to select individuals. The criteria for selecting solutions

are fitness and niche count. In the case of a tie in the fitness criteria, including ties
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due to fuzzy tournament selection, Ferret selects an individual based on the next

priority. The niche count is a valuable property since solutions with fewer neighbors

represent solutions in a less explored parameter space niche.

Elitism is also used within the Ferret GA. This is an important feature since we

desire the best solutions to live on and propagate their genes to subsequent genera-

tions. The elites are defined as a user-defined fraction of the population that survive

unchanged. Crossover and mutations are allowed to operate on the set of elites but

Ferret will always pass along a copy of the elites to the next generation to ensure that

the best solutions in the population live on unchanged.

Ferret also uses linkage learning to divide large problems into smaller linked groups

called building blocks (BBs; Goldberg (2002)). Linkage learning is a method by which

to split up complex problems into smaller, more managable ones. These BBs can

evolve independently from each other, and the linkages can dynamically change dur-

ing the course of a run. The process of detecting BBs can be extremely useful to

the optimization of complicated functions but require more fitness evaluations each

generation. To discover these linkages, Ferret applies variations to sets of genes in-

dividually and monitors the changes to the resulting fitness. When genes are linked,

the effect of applying these variations to the genes individually tends to worsen the

fitness. However, when variations applied to both genes simultaneously tend to im-

prove the fitness, the genes should be considered linked, and kept together during

crossovers. Ferret searches for these linkages in parallel and dynamically adjusts the

linkage matrix as the run proceeds and the optimal region is discovered. In general

a smaller number of linkages is considered to represent an easier problem. When op-

timizing analytical gravitational lens models we typically find a single linkage group.

All lens density parameters typically become linked early in a run.

Ferret includes many other features that help to map parameter spaces and adjust

the user-defined control parameters in the algorithm. Further details of these features

are documented in the Qubist user guide (Fiege 2010). Ferret is well suited to find

entire classes of solutions to single objective problems and is well suited to searching

for the non-linear mass density parameters of gravitational lens models. Further

details of the Ferret algorithm are explored in Chapter 3.
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D.7 Particle Swarm Optimization

Particle Swarm Optimizers (PSOs) are a relatively new class of global optimizers

(Kennedy & Eberhart 2001). PSOs are very simple global optimization schemes based

on the group behavior of organisms such as insects, fish or birds. The social relation-

ship between individuals allows the population, called the swarm in the language of

PSOs, to converge on global extrema in optimization problems.

A swarm is initialized by randomly generating Ns positions within a bounded

region of parameter space. Each of these points is the position of a constituent

particle of the swarm. A corresponding randomly generated velocity is also assigned

to each particle, which are scaled such that most particles are placed on initial orbits

within the search space that do not collide with boundaries. Generally the aim is to

use velocities that allow a large number of particles to explore the space but not so

high that all the particles approach the boundaries of the search space.

The fitness function is evaluated for the current position i of each particle and

a global best (lowest fitness) position xg is determined from all of the positions the

entire swarm has found throughout its history. The personal best position that each

particle has individually encountered is also found. Each particle is attracted to both

the current personal and global best solutions by a spring force via Hooke’s law. The

positions and velocities of the particles are updated by considering their motion in a

potential composed of the sum of two separate harmonic oscillator potentials

Ui =
1

2
cpξp|(xp − xi)|2 +

1

2
cgξg|(xg − xi)|2, (D.6)

where xi is the current position, cp and cg are the personal and global spring constants

and xp, xg the current personal and global best position vectors. The values ξp

and ξg are randomly generated numbers between 0 and 1 in order to introduce a

stochastic element to the search. These random quantities help the PSO explore

the parameter space more thoroughly and act in analogy to the mutation operator

in a GA, which encourages the explorative aspect of the optimization and aids in

mapping the parameter space. After an update step, new personal and global best

solutions are found and the process is iterated. As the trajectories of individuals in

176



the swarm evolve over time, the swarm tends toward the global minima. The position

and velocity of the ith particle in the swarm is updated after a time ∆t:

vi(t+∆t) = vi(t) (1−∆t/tdamp) +

[cpξp(xp − xi) + cgξg(xg − xi)]∆t

xi(t+∆t) = xi(t) + vi(t)∆t, (D.7)

where a damping term tdamp has been included in the velocity update step. This

damping term follows the formulation in the Qubist user’s guide, but is not standard

in the PSO literature, as most references write the first term in Equation D.7 as cdvi

where cd is a damping coefficient. Equation D.7 is a discrete time equation, and in

general there is a finite error associated with each update step. In the standard PSO,

these errors can compound and cause a “particle explosion” in which the swarm may

violently oscillate on nearly radial orbits, casting particles out to infinity if bounds

are not stringently enforced (Clerc & Kennedy (2002); Shi & Eberhart (1998)). The

damping term helps to overcome this effect by causing the swarm to settle down over

time.

As in the operation of a GA, the optimization properties of the PSO scheme are

a result of the interplay between separate simple effects that combine to produce

powerful and interesting effects. The optimization process of a PSO is a result of the

emergent social behavior of the swarm. The global best solution allows information

to be communicated throughout the swarm, so the best solution found by the swarm

is shared among the constituent particles (Clerc 2006). The advantage to this kind of

global optimization is that very few user defined parameters are needed to initialize

the algorithm. Similar to GAs, PSOs do not require a pre-selected unique starting

point to begin the optimization procedure in contrast to the finely tuned specific

starting point required by local iterative optimizers when optimizing complicated

functions.

Locust overcomes the difficulties in the standard PSO scheme by solving for the

swarm dynamics analytically, equivalent to solving Equation D.7 in the limit where

∆t→ 0 (Fiege 2010). This helps to reduce error in the update steps, and suppresses

the pathological behavior introduced by the finite precision in solving Equation D.7.
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This scheme is computationally expensive compared to the single Euler integration

scheme of Equation D.7; however, the extra cost is insignificant for problems such as

ours (and most realistic astrophysical applications), where run times are completely

dominated by the evaluation of the fitness function. Locust goes beyond the standard

PSO by using a dynamic lbest approach in place of a single global best. This splits the

swarm into local groups each with a best solution that takes the place of the global

best in Equation D.7. These neighborhoods merge dynamically as the run proceeds

by a binary tournament similar to that used in the GA. If one of the global solutions

is significantly greater than another, the neighborhoods will merge. Similarly, groups

can be split off of the swarm if there are multiple solutions within each neighborhood

that are equally good. This dynamic lbest topology increases the explorative proper-

ties of the swarm and allows the swarm to settle when in the vicinity of an optimal

position. This helps to balance the exploitation and exploration aspects of the swarm.

Locust is described in further detail in Chapter 3. The performance of GAs and PSOs

in the context of gravitational lens modeling is also compared in Chapter 3.

D.8 Configuration of Global Optimizers

This Section provides a few additional details about the Ferret and Locust opti-

mizers used in this thesis and how their strategy parameters were set. The material

in this section draws largely from the Qubist User’s Guide (Fiege 2010), and was

included as an appendix to Rogers & Fiege (2011a).

D.8.1 Ferret Genetic Algorithm Setup

Most GAs encode model parameters on binary strings (Holland 1975; Goldberg

1989), with mutations and crossovers defined as operators that work directly on these

strings. For example, a mutation would typically flip a single bit, while a simple

crossover would cut two binary strings at the same position and exchange the parts

of the string to the right of the cut, effectively mixing together two individuals in

the population. If these strings represent real valued parameters of a model, it is
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necessary to decode the binary representation into real numbers prior to evaluation.

Ferret is specialized to work directly with genotypes specified by a list of real-valued

parameters, thus side-stepping the conversion from binary strings to real numbers.

An individual in Ferret is therefore represented by a point in an N -dimensional real

vector space, where N is the number of parameters or “genes”, which allows more

elaborate mutation and crossover operators than can be defined on a simple binary

string.

Ferret contains many options, which are controlled by “strategy parameters” that

are encoded in a MATLAB structure called par. The strategy parameters are defined

by a setup file, which is read at the start of a run. Ferret contains a default setup file,

which fills in any strategy parameters not specified by the user. These default values

are often adequate and the software is not usually very sensitive to the exact choice

of strategy parameters. This robustness is achieved in part by an adaptive algorithm

that automatically controls several of the most important control parameters, affective

mutations and crossovers.

A Ferret run evolves par.general.NPop populations, where the size of each popu-

lation is set by par.general.popSize. Ferret uses a single population by default, and

it is recommended to set the population size in the range of 100−500. Generally, this

choice is guided by the computational expense of evaluating the fitness function, the

complexity of the problem, and the user’s experience solving it. Larger populations

tend to explore the parameter space more thoroughly than smaller populations, but

at greater cost. When par.general.NPop > 1, the populations interact weakly with

each other by exchanging individuals with probability par.immigration.PImmigrate

≈ 0.01 each generation. This is beneficial for some very difficult problems because

multiple populations explore the parameter space almost independently, thus increas-

ing the probability of finding the global solution. Ferret often performs better on

degenerate problems when the total number of individuals is divided into several

populations rather than placing them all into a single population. However, we used

a single population with par.general.popSize=200.

Ferret’s mutation operator is defined as a perturbation in an N -dimensional real

vector space, where the magnitude of the perturbation is drawn from an initially
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Gaussian distribution, whose standard deviation is determined by a strategy param-

eter par.mutation.scale=0.25 by default. The distribution of mutation scales is

under adaptive control, and evolves during each run, as Ferret preferentially selects

values that result in improved fitness. Ferret’s default mutation rate is given by

par.mutation.PMutate=0.05.

The role of crossover in a GA is to mix together two different solutions to pro-

duce offspring that are intermediate between the parents. Ferret contains two differ-

ent crossover operators, which mix genes in fundamentally different ways. Ferret’s

“X-type” crossover operator is a geometry-based operator that can be shown to be

analogous to the bit string operator found in traditional binary encoded GAs. X-

type crossover is essentially an averaging operation, which draws a line between the

parameter space coordinates of two individuals and selects a point between the indi-

viduals on that line. The fractional distance traveled along this line is drawn from

a distribution, which was initialized to a Gaussian random distribution of standard

deviation par.XOver.strength=0.25 at the beginning of the run. The distribution

of crossover strengths is under adaptive control and co-evolves with the population

to prefer crossover strengths that tend to result in improved fitness. Note that it is

possible to occasionally overshoot during a crossover by drawing a crossover strength

greater than one. Surprisingly, this turns out to be beneficial on many problems

because it helps to expand the population into long, slender valleys by occasionally

overshooting the end points of the distribution. X-type crossover is Ferret’s primary

search mechanism, so we normally set par.XOver.PXOver=1 to set the crossover prob-

ability to 100%.

Ferret’s “building block crossover” operator is at the heart of its linkage-learning

system and has no analogy in traditional GAs. This type of crossover exchanges a

building block, or a group of parameters previously identified as linked, in their en-

tirely from one individual to another. Building block crossover efficiently propagates

building blocks responsible for high-quality solutions throughout the population and

mixes them with other high-performing building blocks comprised of other param-

eters. We normally set par.XOverBB.PXOver=1, which indicates a 100% chance of

mixing building blocks.
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Ferret makes a duplicate copy of all populations prior to mutation and crossover,

effectively doubling the number of individuals. Ferret’s selection operator is applied

after the mutation and crossover operators, using a binary tournament scheme in

which individuals are drawn randomly from the populations modified by mutation and

crossover to compete against individuals drawn from the unmodified duplicate popu-

lations. Individuals that win a tournament are allowed to propagate to the next gen-

eration and the losers are destroyed. The probability of competition is normally 100%,

but it is possible to reduce the selection pressure by setting par.selection.pressure

< 1. This delays convergence, thereby allowing more time for exploration, by causing

Ferret to ignore fitness values during tournament selection with probability equal to

1-par.selection.pressure.

Sometimes a second round of competition is required when individuals tie

in a tournament. This occurs commonly in multi-objective problems, when

par.selection.pressure < 1, or when a fuzzy tolerance has been defined

for a single-objective problem. For example, we map out some region of

the parameter space within ∆χ2 (dchi2) of the minimum value by setting

par.selection.FAbsTol=dchi2 to tell Ferret to ignore differences in fitness less than

this amount. In this case, Ferret employs a niching strategy similar to that discussed

by Fonseca and Fleming (1993), which prefers solutions with fewer near neighbors

over solutions with a greater number of neighbors. The logic behind this preference

is simple: solutions in a less populated region of parameter space are more unique,

and therefore more valuable to the exploration of the space.

D.8.2 Locust Particle Swarm Optimizer Setup

Locust is a relatively simple code to configure, compared to the myriad of options

allowed by Ferret.

The most important strategy parameter controlling a PSO is the number of par-

ticles in the swarm, given by par.swarm.N. In general, larger swarms tend to explore

the parameter space more thoroughly, but may require more time to do so. Very

small swarms are problematic because they may sample the space poorly and miss
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the global solution. There is no established rule for choosing the swarm size. One

typically starts with about 100 particles and decreases the number of particles if

experience shows that this decreases the run time without causing problems with

reliability. Very difficult problems may require more than 100 particles, and we used

par.swarm.N=200.

par.swarm.cg and par.swarm.cp are, respectively, the global best and personal

best constants used in Equation (3.21). Both of these parameters should be of order

unity, but setting cg slightly less than cp is usually helpful because this places more

emphasis on exploration of the parameter space because the particles are influenced

less by the global best solution. Increasing cg relative to cp places more emphasis

on the exploitation of the global solution or solutions, at the expense of exploration,

because all particles will be drawn to the optimal region more rapidly. We used the

default values: par.swarm.cg=0.5 and par.swarm.cp=1.

par.swarm.dt is the time step between updates to the swarm positions and ve-

locities. Therefore, the time step dt affects the rate of sampling of the parameter

space as particles move around on their orbits, but has no effect on the accuracy of

the orbits because Locust uses an exact solution to the simple harmonic oscillator

orbit equations approximated by the finite difference equation given by (3.21). We

used the default value par.swarm.dt=1.

PSOs require damping to cause the particle swarm to settle down to a converged

solution. Locust is designed such that par.swarm.TDamp=1 corresponds to a critically

damped harmonic oscillator. Generally, underdamped oscillations are required so that

multiple orbits explore the parameter space before the swarm converges. We used the

default value for the damping time par.swarm.TDamp=10.
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Appendix E

Numerical Methods for Spatially

Variant PSFs

To describe blurring by a spatially variant PSF we first present an efficient method

using two-dimensional FFTs. We then show how to treat the problem in terms of

blurring matrices and flattened image vectors. See Nagy & O’Leary (1998) for more

details on the approach and Nagy et al. (2002) for a MATLAB implementation.

Consider an N ×N grid of independent PSFs P ij and split the unknown blurred

image Y into regions Y ij, each of size k × k:

Y =

Y 11 Y 12 · · · Y 1N

Y 21 Y 22 · · · Y 2N

...
...

. . .
...

Y N1 Y N2 · · · Y NN

(E.1)

Each of these blocks will be affected by an independent PSF. Suppose that the

size of each PSF is (r+ 1)× (r+ 1) with r even, and let the unblurred N ×N image

be represented by X.

Let us define a set of “mask” matrices wij. In the case of piecewise constant PSFs,

these masks are the same size as the unblurred image and are comprised of 0 entries

everywhere except for the k × k block at position (i, j), where the entries of wij are

set to 1.
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To find the components of a given region we convolve X with the corresponding

PSF Pij, followed by an element-wise multiplication by the mask wij. The non-zero

elements of this product give Y ij. Proceeding in this way we build up the blurred

image block by block:

Y ij =
N∑
i=1

N∑
j=1

wij ◦ (P ij ∗X) , (E.2)

where the symbol “◦” represents element-wise multiplication and symbol “∗” is the

convolution operation. Note that each term in the sum is determined by the convolu-

tion of the entire image X with the appropriate PSF before the mask is applied. This

is crucial to ensure that “seams” will not be visible between regions in the blurred

image Y .

In general, it is possible to speed up this routine by calculating Y ij directly.

Consider splitting the unblurred image into regionsXk
ij where the superscript denotes

the size of the block, in this case k × k. In order to avoid artifacts and keep the

correct intensity near the edges of this block after convolution, we include a number

of neighboring rows and columns on each side of Xk
ij. The width of this border

is set by the size of the PSF, r/2, with regions on the image boundary padded to

enforce the boundary conditions discussed in Section 5.1. These extended regions are

then denoted X
(r+k)
ij . The PSFs are padded to match the extended regions in size,

resulting in P
(r+k)
ij . The blurred extended region is found by the convolution

Y
(r+k)
ij =

(
P

(r+k)
ij ∗X(r+k)

ij

)
. (E.3)

The central k×k block of this product is clipped out and placed in the (i, j) position

of Y . The process is repeated until the entire blurred image is filled in. Time is saved

working with extended regions and padded PSFs since we only need to calculate the

convolution over the (r+k)× (r+k) block for each PSF rather than the entire image

as in Equation E.2, and the construction of masks is not needed. The convolutions

can be carried out efficiently with two-dimensional FFTs.

The basic procedure can also be described by an analogous matrix-vector oper-

ation. To express the sum in Equation E.2 in terms of matrix multiplication, we

define the unblurred flattened image as a vector x, and the flattened blurred image
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as y. We build a set of N2 blurring matrices to describe the effect of each PSF on

x, which we denote as Bij. The mask matrices wij are used to construct analogous

weighting matrices Dij. These matrices are of size Npix × Npix, where Npix is the

number of pixels in the image, identical to the size of the blurring matrices Bij. The

total blurring matrix B is then written as a weighted sum of blurring matrices B11,

B12,...,BNN .

B =
N∑
i=1

N∑
j=1

DijBij. (E.4)

The blurred image is then found by a matrix multiplication y=Bx. The weighting

matrices Dij have the mth diagonal entry equal to 1 provided that image pixel m is

in region (i, j), and all other elements 0. The weighting matrices satisfy
∑N

i=1

∑N
j=1

Dij =I where I is the Npix ×Npix identity. We adopt the use of piecewise constant

PSFs but in general it is possible to include higher order interpolation schemes be-

tween PSFs using the weighting matrices. The case of linear interpolation in solving

systems with spatially variant blur has been studied by Nagy & O’Leary (1998), but

its inclusion complicates the procedure and did not provide a significant improvement

to the quality of the solution and increased computation times (Nagy et al. 2002).
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Bäck, T., Fogel, D. B. & Michalewicz, Z. 1997, Handbook of Evolutionary Computa-

tion, (New York, NY: Taylor & Francis Group)
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Poli, R., Kennedy, J., & Blackwell, T. 2007, Swarm Intell., 1, 33

Press, W.H., Teukolsky, S.A., Vetterling, W.T., & Flannery, B.P. 2007, Numerical

Recipes: The Art of Scientific Computing (3rd ed.; New York:Cambridge Univ.

Press)

195



Price, K. V., Storn, R. M. & Lampinen, J. A. 2005, Differential Evolution: A Practical

Approach (Berlin: Springer)

Read, J. 2003, http://www.qgd.uzh.ch/programs/pixelens/

Refregier, A., Massey, R., Rhodes, J., et al. 2004, AJ, 127, 6, 3102

Refsdal, S. 1964, MNRAS, 128, 295

Riess, A. G., Filipenko, A. K., Challis, P. et al. 1998, AJ, 116, 3, 1009

Robertson, H. P. 1935, ApJ, 82, 284

Robertson, D.S., Carter, W.E. & Dillinger, W.H. 1991, Nature, 349, 768

Rogers, A. & Fiege, J.D. 2011, ApJ, 727, 2, 80

Rogers, A. & Fiege, J. D., 2011, ApJ, 743, 1, 68

Rubin, V., et al. 1962, AJ, 67, 8

Saad, Y., & Schultz, M.H.1986, SIAM J. Sci. Stat. Comput., 7, 856

Sackett, P. D. 1995, www.mso.anu.edu/ psackett/NVWS/microPLANET.html

Saha, P., & Williams, L. R. 1997, MNRAS, 292,148
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