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ABSTRACT 
Guyed towers are used for communication purposes and are fiequently designed to 

heights of 300 meters (1000 feet). A guyed tower is a non-linear structure in which the 

mat,  typically consisting of multiple truss members is supported laterally at several 

points by inclined guy cables. The guy cables are anchored to a foundation and are pre- 

tensioned. Wind induced vibrations may result in a fatigue failure of a guy anchor 

linkage or a cable, ultimately causing the collapse of an entire tower. In addition, 

excessive deflections or vibrations may interfere with communications and control 

systems resulting in serviceability failure. According to design standards, a basic 

understanding of the dynamic characteristics of guyed towers is important. This study 

develops an easy to use software package, aimed at practicing engineers, to determine 

free-vi bration characteristics (natural fkequencies and mode shapes) of guyed towers. The 

analysis presented herein employs the finite element method to detennine the natural 

fiequencies and mode shapes of guyed towers. The stmctural system is broken down into 

two main components, the tower mast and guy cables. Utilizing an equivalent beam- 

column analysis that takes into consideration different lacing patterns, the mast is 

modelled as a bearn-column with equivalent properties. A three-dimensional cable finite 

element following a catenary or parabolic profile is used to model guy cables. Several 

cornparisons are made to ensure the accuracy of the cable element and the guyed tower 

model. Selected numerical results are presented for natural fiequencies and mode shapes 

of a few representative towers. The influence of cable tension, lacing pattern of the mast 

and configuration of guy cables is also examined. The software package can be extended 

to include forced vibration response through the modal superposition method. 
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Chapter 1 

INTRODUCTION 

1.1 GENERAL 
Guyed towets are almost exclusively used for communication purposes and 

stmchual reliability of guyed communication towers is becorning an important factor in 

the ever-increasing demand for wireless communication technologies. Guyed towers are 

frequently designed to heights of 300 meters (1000 feet) and are used to transmit and 

receive high fiequency signals for various electronic communication systems including 

those associated with electric power distribution. Slender rnasts laterally supported by 

pre-tensioned guy cables are typically adopted for this purpose as they provide an 

econornical solution compared to self-supporting latticed towers. 

A guyed tower is generalIy a non-linear structure in which the mast, typically 

consisting of multiple truss members and of triangular or square cross section (Figure 

L I ) ,  is supported laterally at several points by inclined guy cables. The cables are 

attached to buried concrete anchors and are pretensioned. The non-lineatity is primarily 

associated with structural behaviour of guy cables and that may significantly complicates 

the analysis of the entire structure. Typical guy cables comprise of galvanized bridge 

strand in accordance with ASTM Standard A586. Guy diameters nonnally range 

between 20 and 50 mm (3/4" to 2"). 

Guyed towers used for communication purposes must be designed to meet 

stringent deflection requirements. This is necessary since a minor misaligrnent of 



satellite dishes mounted on the tower may result in Ioss of communication signals, which 

could lead to disruptions or poor quality service to thousands of customers. Wind 

induced vibrations are the primary source for excessive tower deflections. Therefore, the 

dynarnic response of guyed towers is an important aspect in the design of towers for 

communication purposes. in addition, wind induced vibrations occurring over an 

extended period of tirne rnay induce fatigue failures in various elements of a guyed tower. 

A better understanding of the dynarnic behaviour of guyed towers is also important to 

facilitate design against fatigue failure. in seismic zones, guyed towers must be designed 

to withstand earthquake loads. Public utilities or Meral agencies own nearly al1 guyed 

towers built in Canada. 

0 - leg members 

a 

b) Square 

Figure 1.1 : Cross section of a typical mast. 

1.2 LITERATURE REVIEW 
Many researchers have studied static and dynamic behaviour of guyed towers. A 

simple way to analyze a guyed tower is to assume the mast of  the structure to be a 

continuous beam on elastic supports with a set of springs to idealize the taut guy cables 

attached to the tower mast. An obvious improvement to this simple mode1 would be to 

consider the sag in guy cables. 

Cohen and Pemn (1 957a and 1957b) made the earliest contributions to the study 

of guyed towers. Their first paper (1957a) investigated wind loading and presented a set 

of charts that could be used to predict the drag loads produced by wind on various types 



of structures. The second paper (1957b) presented a model that described the behaviour 

of a guyed tower. The mast was treated as a cantilever bearn-column on elastic supports 

and the guy cables were considered to follow a parabolic profile. Rowe (1958) 

investigated the amplification of stresses and displacements in guyed towers when 

changes in geometry are included. Modelling the guys as bars, charts were developed 

that could be used to determine when advanced methods of structural analysis are 

required in the design and what modifications could be made to the analysis to obtain 

reasonable results. 

Hull (1962) expressed the critical moment of inertia corresponding to a cntical 

buckling wind load and conducted a stability analysis of guyed towers. It was suggested 

that increasing the stiffness of guys is the most efficient means of increasing the buckling 

capacity of a tower. It was s h o w  that the buckling capacity could be increased up to the 

limit where it begins to buckle into a number of sine waves. Hull showed that once this 

point has been reached, a fûrther increase of guy stifiess does not increase the buckling 

load of a tower. At this stage, it was found that the only way to M e r  increase the 

bucking capacity of a tower was to increase the moment of inertia of mast. 

GoIdberg and Myers (1 965) investigated the importance of including wind effects 

on guy cables. A method of analysis was presented for guyed towers that considered 

non-linear behaviour and the effect of wind on guy cable stifiess. The study also 

reported that neglecting wind effects on guy cables resulted in discrepancies in the end 

moments, shear, goy tensions and lateral displacements. FolIowing the assumption that 

an inclined guy cable follows a parabolic profile, Odley (1966) presented a solution 

where secondary effects (ice loads, shear deformations, etc.) were included in the guyed 

tower model. The analysis was carrïed out by assuming a value for the deflection of the 

mast at each guy level, which is used to determine the moments and reactions. Using 

these reactions, deflections were determined analytically and compared with the asswned 

deflections. This trial and error procedure was repeated until al1 assumed and computed 

values of deflection fa11 within a predetennined toIerance. 

Williamson and Margolin (1966) showed the importance of including shear 

effects in the analysis of guyed towers. They presented a method for modi%ng the 

conventional moment distribution factors when the axial t h s t  and web flexibility of a 



tower is included. In the analysis, the shaft was replaced by a fictitious solid web that 

had an equivalent shear rigidity of a flexible trussed web. To account for shear 

deformations, modified moment distribution constants were presented. Miklofsky and 

Abegg (1 966) presented a simplified systematic procedure for the design of guyed towers 

by use of interaction diagrams. A tower is first analyzed following the assumption that it 

is a continuous beam on elastic supports while seconâary effécts are included. The tower 

is then re-analyzed inchding amplification stresses fiom axial loads. The interaction 

diagrams provided a designer with a graphical visualization of the design range thereby 

preventing a trial and error procedure. 

Goldberg and Gaunt (1973) presented a method that could be used to determine 

the instability of guyed towers. In their analysis, lateral load increments are applied until 

a tower reaches instability. The criterion used to define buckling in the analysis is the 

occurrence of a large increase in the tower defonnations for a small increase in the 

applied load. A parametric study was also included which showed the influence of 

certain system parameters on the critical load of a tower. They showed that increasing 

the moment of inertia of the shaft was a less effective way of increasing the critical load. 

Based on the assumption that the static profile of a cable followed the shape of a 

parabola, Davenport (1959) presented a dynamic guy rnodulus which was meant to take 

into account the effects of the dynarnic nature of wind loading on a guy and a mast. Dean 

(1961) introduced catenary equations for the static profile of a guy cable. Dean argued 

that due to the availability of computers there is no need to use a parabolic approximation 

in the analysis of a cable. Dean also continued on to present his derivation of a dynarnic 

guy modulus. However, Davenport among others (Dean 1962) found fault that Dean's 

derivation neglected to inctude elastic stretch of a cable. Following up previous work by 

Davenport (1 959) and again assuming a parabolic approximation for the static profile of a 

guy cable, Davenport and Steels (1965) considered the effects of aerodynamic damping 

and transverse vibrations. 

Using catenary equations, O'Brian (1967) presented an iterative numencal 

procedure for the solution of a sagging cable. This iterative procedure presented an 

important step in the development of a better cable element. In one of the first studies to 

consider the extensional charactenstics of a cable, Irvine and Caughey (1974) presented a 



linear theory for the free-vibration of a uniform horizontally suspended cable for ratios of 

sag-to-span of 1:8 or less. They showed that if the sag is mal1 enough for the static 

geometry to be described by a parabola, the theory provided good results. These authon 

also developed expressions for the natwa1 fiequencies of a horizontal cable fixed at both 

ends for in-plane and out-of-plane motions. The expressions were presented as functions 

of the cables axial stiffiess, horizontal tension, self-weight and cable effëctive length. In 

addition to a horizontal cable, consideration was also given to the analysis of inclined 

cables. The effects of inextensible cable assumption were also discussed. 

West et al. (1975) considered elastic effects and used straight bars comected by 

tnctionless pins to denve the fully non-linear equations of motion for fiee vibrations and 

a linearized version of it. The solution resulted in fiequencies and modes associated with 

small oscilIations about the equilibrium configuration. However, the work reported was 

limited to in-plane motions and horizontal cables only. Henghold and Russell (1 976) and 

He:~ghold et al. (1977) made additional improvements to the analysis of an elastic guy 

cable. These authors employed the finite element method to develop a three-node 

geometrically non-linear cable element and considered tluee-dimensional free vibrations 

of an extensible cable hanging under self-weight. Extending an analytical approach, 

h i n e  (1 978) presented solutions for fiee vibrations of an inclined cable hanging under 

sel f-weight . Non-dimensional natural fiequencies of s yrnmetric in-plane modes were 

shown to depend only on one dimensionless system parameter while the remaining 

fiequencies were shown to be independent of any parameters. AnalyticaI expressions 

were presented in a fonn that could be used to reproduce the results obtained by 

Henghold et al. (1977). 

By using an equivalent modulus of elasticity, Fleming (1979) used the finite 

element method to mode1 non-linear behaviow of cables. Ekhande and Madugula (1988) 

Iater adopted this concept of an equivalent modulus of elasticity in their study. Following 

a parabolic profile of an inclined cable, Veletsos and Darbre (1 983) presented a linearized 

approximation of the equations of motion for an inclined cable. Using these equations, 

the dynarnic stifhess of a cable could be derived. This approach produced results similar 

to those of Irvine (1981), but could also accommodate for large inclinations of the cable. 



In many studies, guyed towers have k e n  assumed to oscillate linearly about their 

static equilibnum position. This allowed for the use of a 'Modal Approach (McCaffiey 

1969, McCafEey and Hartmann 1972, and Novak et. al. 1978) for dynarnic analysis. ne 

above studies assumed a mast as an equivalent beam-column and a lumped m a s  

idealization. Saxena (1 988) considered the fiee vibration of cornplex guyed towers. The 

cable element used in the study was based on the formulation of Veletsos and Darbre 

(1983). Stifiess of the mast was evaluated in an approximate manner by considering 

only leg memba.  As a consequence, the lacing pattern of a tower has no influence on 

the response. More recently, Kahia (1993) presented an equivalent beam-column 

analysis. The study introduced equivalent beam-column properties for several square and 

triangular lacing patterns. The coupling between different degrees of freedom was 

addressed by the use of a geometric coupling matrix. 

1.3 SCOPE AND OBJECTIVES 
Field inspections in Manitoba and other provinces have identified a number of 

problems associated with guyed tower members. These problems have included 

excessive vibration of tower members and guy cables and structural failure at the guy 

anchors. Examination of some problematic guy anchors revealed that the anchors had 

failed in a brittle manner. A brittle failure typically indicates a fatigue problem induced 

by cyclic loading conditions. Wind induced vibrations in guy cables may subject guy 

anchor linkages or the guy cable to cyclic loading conditions. Over time these conditions 

can lead to fatigue failure at the anchor or the guy cable, both of which could cause the 

collapse of a tower. In addition, excessive deflections due to wind induced vibrations can 

cause towers to misalign and cause an interference with communication and control 

systems. 

During the early and late winter months fieezing rain is not an uncommon 

occurrence throughout the Prairie Provinces. Freezing rain when combined with wind 

c m  create undesirable effects on guy cables. During storms, rain (driven by wind) can 

fieeze on the guy cables and form what resembles an aerodynamic wing. The wind 

passing around this newly formed wing may then pick up and drop the cable. The 



repeated occurrence of this phenomenon is known as galloping. Galloping can cause 

failure of a guy or guy linkage and may lead to the collapse of a tower. 

The Canadian Standard CSA-S37-M94 states that guyed towers should be 

serviceable and s d e  fiom collapse. The tower should also be of sufficient rigidity such 

that the serviceability limits of twist or tilt are not exceeded. The standard also mentions 

that guyed towers are susceptible to dynamic excitation due to wind turbulence. It is 

recornmended (but not mandatory) that a dynarnic analysis be conducted and that it 

should include al1 significant vibration modes and account for structural and aerodynamic 

damping of mast and guys. The standard aiso briefly describes a method to determine the 

dynarnic response of a tower referred to as the Patch Load Method. Using this method, 

steady and fluctuating components of guyed tower response are calculated separately and 

then combined to obtain peak design response. 

Manitoba Hydro currently owns and manages several guyed towers in the 

province. These towers are used to communicate strearns of data fkom generating stations 

and are also used by telecornmunication companies for various cellular services. In an 

effort to provide practicing engineers with a better understanding of the basic structural 

dynarnic characteristics of a guyed tower, this study presents a user fkiendly computer- 

aided software package for fkee vibration analysis of guyed towers. 

As such, the present study seeks to provide an efficient method for fiee vibration 

analysis of guyed towers. This is accomplished by considering the three main 

components of a guyed tower. Namely, the guy cables, the tower mast and torsion arms. 

As part of the study, a new three-dimensionai cable element is developed. Existing 

methods of analysis are utilized to represent the tower mast as a three-dimensional beam. 

Furthermore, a stiffness and mass rnattix representation is developed for some cornmon 

torsion a m  configurations. By using the finite element method (FEM), the above tower 

components are integrated into a mode1 to represent a guyed tower and a free-vibration 

analysis is cornpleted. The above tasks are completed utilizing a computer algorithm 

developed in this study. Furthermore, an interactive and easy to use graphical user 

interface (GUI) is developed as part of the sofiware package. The graphical interface 

serves as a fiont and back end to the computer algorithm. 



The theory and structural model that constitute the basis of the finite elernent 

analysis are described in Chapter 2. The structural model is based largely on an 

equivalent beam-column model for mast, equivalent tmss element for torsion arms and 

sagging cables following parabolic or catenary profiles. To veriQ the validity of stiffness 

and mass representations of  the mast and cables, several cornparisons are made in 

Chapter 3 with exact analytical and existing numerical solutions. Chapter 4 discusses the 

development , layout, and provides user instructions for the so &are package developed 

in this study. The basic dynamic behaviour of representative multi-level guyed towers is 

exarnined in Chapter 5. A set of conclusions is given in Chapter 6. The finite element 

prograrn developed in this study is broad and expandable, and has been developed as a 

user-fiiendly tooI for practising engineerç. Options are available for cable representation 

(parabolic and catenary) and tower lacing patterns. The software package can be 

expanded to include forced vibration analysis through the modal superposition method. 



Chapter 2 

STRUCTURAL DYNAMICS MODEL 

2.1 GENERAL DESCRIPTION OF STRUCTURAL MODEL 
The selection of a mathematical model to simulate the response of a structure is a 

very important step in any analysis. Assumptions made at this point determine if the 

developed model reasonably represents the actual behavior of the structure under 

consideration. in the present study, the finite element method (FEM) was used to model 

the guy cables and mast of a guyed tower system. The FEM involves dividing a structure 

into a discrete nurnber of elements fkom which an approximate numerical solution is 

obtained. With the ease of programming the FEM on personal computers, this approach 

provides an efficient means for developing an accurate solution for many structural 

anal ysis problems. 

A finite element idealization of a typical guyed tower is shown in Figure 2.1. AS 

can be seen fiom the figure, the model consists of two main components, cable and mast 

elements. The elernents are inter-comected to one another by the nodes, each of which 

may have as many as six degrees of Çeedom @OF). The choice of structural elements 

used to model a system and the number of elements used in an analysis could have a 

significant impact on the accuracy as well as the computational efficiency of the solution. 



Figure 2.1 : Finite element idealization of a typical guyed tower. 

in this study, a three-dimensional beam-column model was used to represent the 

mast of the tower. The beam column model consists of six DOF at each node. The guy 

cables were represented by a three-dimensional cable element with three DOF at each 

node. Star mounts (cross arms) are modeled by equivalent tmss elements, while satellite 

dishes as lumped masses with negligible stiflhess. Once the guyed tower has been 

discretized into elements, the individual mass and stifiess matrices of each element are 

computed. By employing the standard assembly procedure (Harrison, 1973) the mass and 

stiffhess matrices of the entire structure are detemined. The global mass and stifhess 

matrices are then used to determine the fkee vibration fiequencies and modeshapes of the 

structure- 

2.2 GUY CABLE ELEMENT 

Guy cables are commonly used to support freestanding towers that may extend to 

greater heights. These guyed structures are generally elastic in nature, but non-linear in 

their geometnc sense. This non-linear behavior is a result of the non-linear axial force- 



deformation relationship for due to the sag caused by their own self-weight. The non- 

linear behavior of  a guyed tower complicates the analysis of the structure significantly. 

To accurately mode1 a guy cable, a three-dimensional inclined cable element with 

parabolic or catenary profile was used in the present study. The application of an 

equivalent modulus of  elasticity for a guy cable based on straight cord assumption was 

also exarnined. 

EQUIVALENT MODULUS OF ELASTICITY 

A conventional method to account for the non-linearity due to sag of an inclined 

guy cable has been to consider an equivalent straight chord member while the modulus of 

elasticity is modified and represented by an equivalent modulus of elasticity. This 

equivalent modulus of elasticity (E,) considers both the effects of matenal and geometric 

deformations (Fleming 1979). The equivalent modulus of elasticity may be represented 

as 

where E, is the equivalent modulus of elasticity for the cable, E, is the modulus of 

elasticity for the cable, L, is the projected length of a cable on a plane normal to the 

direction gravity, w is the unit weight of the cable, A, is the cross-sectional area of the 

cable and T is the tension in the cable. 

CABLE PROHLE 

Many past studies @avenport :959, Irvine and Caughey 1974, Veletsos and 

Darbre 1983) have used the assumption that the static profile of a sagging cable subjected 

to its own weight and an extemally applied axial tensile force may be represented by a 

parabolic profile. Ln the case of a guy cable being used to support a tower, the high 

pretension force may often cause the sag of the guy cable to be relatively smaI1. Under 

these circumstances, Irvine (1981) argued that the parabola provides a reasonable 

approximation of the static profile of a sagging cable provided that the sag-to-span ratio is 

less than 1:8. 



Figure 2.2: inclined guy cable with parabolic profile. 

With reference to the CO-ordinate system s h o w  in Figure 2.2, the defiection of an 

inclined sagging cable subject to an extemally applied tension was given by (Veletsos 

and Darbre 1983) 

In many existing analyses @avenport 1 959, h i n e  1 98 1, etc.) of guys and guyed 

structures, the profile of a sagging guy cable has been assumeci to follow the shape of a 

parabola. However, this simplifying assumption can intmduce emon in the cable profile 

and subsequently in the natural fkquencies obtained nom an analysis. Such errors can be 

quite small in some cases, such as the case of a tightly stretched cable where the sag is 

small. If however the chord is not horizontal, then symmetry is lost and the parabolic 

approximation can introduce significant errors (Dean 1961). Since the catenary profile 

has been considered to provide the best approximation for a sagging cable, the catenary 

eguation developed by Dean (1961) was adopted in the present study for the static 

equilibrium profile of a guy cable. 



Figure 2.3: inclined guy cable with catenary profile. 

Consider the guy cable shown in Figure 2.3. The profile of the cable may be 

described by (Dean 196 1) 

where H is the horizontal component of the cable tension, q is the distributed self 

weight of the cable and 

The tension at any point on the cable is given by 

CABLE ELEMENT STIFFNESS 

For a cable structure such as a guyed tower, the displacements are not very large 

and the geomehy of the system is well defined prior to an analysis. The dynamic 

behavior is usually low fkequency responses due to wind excitation. For these cable 

structures, it has been common to mode1 the guy cables by using a series of short tniss 

links and non-linear computer codes developed for solid structures (Peyrot and Goulois 

1979). It has been shown that an inclined cable supported at its ends and subjected to its 



own weight and an externally applied tensile force follows a catenary profile (Dean 1961 

and b i n e  1981). The axial stiflhess of the cable varies with a change in sag, which in 

turn varies with the displacement of the cable ends. Hence for cable elements, the sag 

must be considered if an accurate analysis is to be obtained (Fleming 1979). 

Figure 2.4 shows a typical cable element of length L,, cross-sectional area A,, 

and mass density p.  By employing the concepts of conventional finite element method, 

the stifiess matrix of the inclined cable eIement shown in Figure 2.4 c m  be developed. 

Let ir , v ,  and w , be the end displacements of the cable element along the positive x . 
y ,  and z directions respectively so that there are three degrees of fkeedom at each node. 

The displacements u, v and w at an arbitrary point on 

2.4 is interpolated as (Zienkiewicz and Taylor 1989) 
'> 1 * 

the cable eiement shown in Figure 

(2-6) 

where Ni is the shape function at node idefined by 

Figure 2.4: Three-dimensional cable element. 

Cartesian CO-ordinates along the cable element is given by (Zienkiewicz and 

Taylor 1989) 



The relationship between Cartesian and curvilinear CO-ordinate system is given by I J I  
where 

The serain-displacement relationship for an axial member is given by 

(Zienkiewicz and Taylor, 1989) 

&.r = bi )L + (E. ),vL (2.1 O) 

where 

Cu 
(EJ, = Linear strain = 

a 

where [B,] is the linear strain maûix for a cable element and (df  = {u, 

Let us define 

where {& = {u, , v, . w, , u2.  v,, w, 1' and [G] is the gradient mairix defined by 

The strain energy 

O 0 2 0  
3 0  
Zr O T? 
o s 0  0 %  l- 
U of a cable element is eiven below. 

(2.1 1) 

(2.12) 

(2.13) 

14, J and 



where o0 is the initial stress, and To is the pre-tension force 

T,  =ao = O ~ A .  

(2.18) 

Based on equation 2.10, the elastic stimiess matrix [K,] of the cable element is 

expressed as 

and the geometric stif'bess matrix [K,] is expressed as 

[~<i1<6d>= T~ lIle] T I G I I ~ I  (2.20) 

CABLE ELEMENT MASS 

The lumped-mass representation is the simplest mathematical mode1 for inertia 

forces of structural elements. In this idealization, masses are lumped at the node points 

with respect to the translational and rotational inertia of  an element. The lumped masses 

are detennined on the assumption that the material within the mean locations on either 

side of the specified node behaves like a rigid body while the remainder of the element 

does not participate in such motion. This assumption does not indude the dynarnic 

coupling between element displacements, and the resulting mass matrix is purely 

diagonal (Przemieniecki 1968). The lumped-mass matrix of the cable element shown in 

Figure 2.4 is given by 



where p is the m a s  density, L, is the effective cable length and A, is the cable area. 

However, the solution accuracy based on lumped-mass representation is not as 

good as if a consistent-mass is used (Przemieniecki 1968 and Logan 1992). The lumped- 

mass representation has the advantage that the matrix is diagonal and the numencal 

operations for the solution of the dynamic equilibrium equations are in most instances 

reduced substantially (Bathe 1982). 

Based on variational pnnciples, a mass matrix consistent with the displacement 

interpolation functions can be derived. It cm be shown that the consistent mass matrix of 

a cable element of volume V can be expressed as 

By evaluating the above integral, the consistent-mass matrix of the cable element 

shown in Figure 2.4 is found to be 

The present study considered both lumped-rnass and consistent-mass approaches 

in the modeling. 

2.3 T O W R  MAST ELEMENT 
A proper structural mode1 of the rnast is necessary in order to ensure that accurate 

results are obtained for a guyed tower system. The m a t ,  which consists of multiple truss 

members, can be represented as a bearn-column of equivalent stifhess based on the 

properties and geometry of the mast. 

By using the unit load method to determine the displacements of the centroidal 

axis of a mast for various loads, the equivalent bearncolumn properties were derived by 

Kahla (1993). This approximate method of analysis provides a simple and efficient way 

to analyze guyed towers. Figure 2.5 shows a space tmss and its equivalent beam-colurnn 

rnodel. For the five lacing patterns shown in Figure 2.6, Kahla (1993) determined the 



equivalent bearn-column properties for a mast of triangular cross-section. These 

equivalent properties are shown in Table 2.1. 

In Table 2.1, EA is the equivalent axial stifiess, E l ,  and EI: are the equivalent 

flexural stifniess in the x and the z directions, GA, and G 4  are the equivalent shear 

stifbess in the x and z directions and GJ is the equivalent torsional stiffness. The 

remaining properties are defined in Figure 2.7 where A,, A, and A, are the areas of the 

vertical, diagonal and horizontal tmss members. The space miss shown in Figure 2.7 

represents a typical segment of a triangular lacing pattern as shown in Figure 2.6. 

(a) Space truss (b) Beam-colurnn mode1 

Figure 2.5: Tower segment. 

a) Patteml b) Pattern 2 c) Pattern 3 d) Pattern 4 e) Pattern 5 

Figure 2.6: Tower lacing patterns. 



1 Equivalent Property ( Pattern 1 I Pattern 2 and 3 
- -  - 

3 EA, 

Pattern 4 Pattern 5 

- - -- 

3&Ad sin' @COS@ 

Table 2.1 : Equivalent beam-column properties. 

+a* 

Figure 2.7: Space miss. 

Based on the equivalent beam-column properties presented above, the stiflhess 

and mass representation of the three-dimensional beam-column mode1 c m  be obtained. 

The stiffhess and mass matrices for a slender three-dimensional frarne element (beam- 

colurnn) which considers axial, transverse and bending motion is given by Craig (1981). 



However, this stiffiiess and m a s  representation does not consider shear defoxmation and 

rotatory inertia effects. Stifhess and mass representations for a three-dimensional beam 

element which considers shear effécts is given by Przemieniecki (1968). The stifhess 

and mass matrix representations given by Craig and Przemieniecki are presented in the 

Appendix for completeness. 

AXIAL LOAD AND SELF W I G H T  EFFECTS 

Guyed towers ofien extend to heights of 100 meters or more. As a result, self- 

weight of the tower cm exert a considerable axial load on the lower portions of the tower 

mast. The basic beam stifiess matrix does not include the effects of a compressive axial 

load or the effects of element self weight. An axial load on a beam element can have a 

significant effect on its dynamic behavior (Przemieniecki 1968). The effect of tower self 

weight was taken into consideration by incorporating the geometric and axial load 

stifiess matrices with the basic stiffhess matrix of a beam. Complete geometric and axial 

load stifiess matrices are presented in the Appendix. 

2.4 TORSION ARM MODEL 
The upper leveI guys are often attached to the tower mast by triangular star 

rnounts ofien referred to as torsion arms. These arms are primarily used to reduce 

twisting of a tower in an effort to keep microwave satellite dishes in alignment so as to 

limit any disruptions to communication signals. The typical configuration of a torsion 

a m  is shown in Figure 2.8(a). 

A torsion a m  typically consists of short non-syrnrnetrical slender iattice 

mernbers. Since the mernbers are slender, shear deformations can be safely ignored 

(Timoshenko 1960). A star mount cannot be modelled as a ngid rnember or as a series of 

equivalent bearns which connect a guy cable to the equivalent beam-column representing 

the mast since this would not account for tension of a cable on mast. Instead, the torsion 

ml was modelled as a space tniss. The stiffness matrix was derived by considering the 

degrees of freedom @OF) at the cable end and the point of attachent of the star mount 

with the mast. One end of the mount is connected to the legs of the mast at four points 



(Figure 2.8). Deformations on this plane were assumed to rernain planar due to 

considerably higher stifbess of tower mast in cornparison to that of star mount. 

Subsequently, a star mount was modelled as having three translations and three rotations 

at the point of contact with the beam-colurnn, while the fiee end to which the cabie is 

attached has only three translations. This results in a 9 x 9  stifhess matrix that was 

computed by conducting a series of tmss analyses. These analyses were camied out using 

the software package SAP9oTI'. The mass maeix was fonned by a traditional lumped 

mass technique. The star mount's structural mass and stiffhess matrices are presented in 

Appendix A. 

mast legs 

(a) Typical torsion a m  (b) Torsion arm mode1 

Figure 2.8: Torsion a m .  

The pre-processor developed in this study provides a user with a few standard 

torsion arms to choose and the option of employing one of the two cornrnon cable 

configurations shown in Figure 2.8. Dimensions and sections properties of some 

standard torsion arms are included in the Appendix. 



Figure 2.9: Guy configuration for tower with torsion arms (top view). 

MICROWAVE SATELITE DISHES 

A microwave dish is a small conical dish attached to the mast of a guyed tower 

via a short rigid link as shown in Figure 2.10. It does not provide any structural stiffness 

to a guyed tower. A satellite dish is incorporated into the structural mode1 by considering 

it as a lumped mas .  

Mast 

+-- Microwave 
Dish 

Rigid Link 

Figure 2.10: Microwave satellite dishes. 



2.5 FREE VIBRATION ANALYSIS 
When a displacement is applied to a structural system in a state of static 

equilibrium and then released, it fieely vibrates about the static equilibrium position. 

Such vibrations are dependent upon the mass and stiffness of structure. The purpose of a 

fiee vibration analysis is to determine the natural fiequencies and corresponding 

deflections referred to as modeshapes. 

The natural fkequencies and modeshapes of a structure obtained from a fiee 

vibration analysis can be very useful. The fiequencies are an immediate indication of the 

resonance frequency of the structural system. Knowledge of such frequencies is usefiil in 

designing tower structures for gusty winds and other types of dynamic loading. 

A simple spring-mas-dashpot mode1 can be used to represent basic fiee vibration 

analysis of a structure. Consider the one-degree of freedom system shown in Figure 2.1 1. 

The dynamic equilibrium is expressed by 

n i ~ + & + k r = f ( î )  (2.24) 

where overdot indicates differentiation with respect to time. The equation of motion for 

an elastic system with a finite number of DOF may be expressed in matrix notation as 

M x + C x + K x =  F( t )  (2.25) 

where M , C and K are the global m a s ,  damping and stifmess matrices respectively, x 

is the vector of displacements for each DOF and F ( t )  is a time-dependant load vector 

corresponding to each DOF. 

Figure 2.1 1 : Dynamic equilibrium of a spring-mas-dashpot system. 

In the case of a completely unconstrained ( F(t )  = 0) and undamped (C = [O]) structure 

undergoing Eree oscillations, the equation of motion (2.25) is reduced to 



Mx+Kx=O. 

The general solution of (2.26) can be expresseci as 

x(2) = +ei@' 

where # is a vector of displacement amplitudes and w denote fiequency of motion. 

Substitution of equation (2.27) into (2.26) gives 

K# = w ' ~ # .  (2.28) 

This is an eigenvalue or characteristic value problem. From linear algebra, this equation 

has a non-trivial solution only if 

I K -  M&I# = 0. (2.29) 

Evaluating the deteminant of equation (2.29) leads to a polynomial of order n (where n 

is the nurnber of unconstrained DOF in the system). The roots of this polynomial give 

the fiee vibration (naturai) fiequencies, of, i = 1.. . n. Back substitution of these 

frequencies into equation (2.28) results in n mode shape vectors, ("' . 
The non-trivial solution of equation (2.29) is commonly obtained fkom a 

cornputer-based analysis. A comrnon algorithm used to solve characteristic value 

problems is the Jacobi method. However, when the order of the stifhess and mass 

matrices is large, use of the Jacobi solution procedure can be very inefficient (Bathe 

2982). Since a finite element analysis of a guyed tower system requires a solution to a 

large eigenvalue problem, the Jacobi method was not used in this study. Instead, the 

IMSL library subroutine GVCSP was utilized. The IMSL subroutine cornputes al1 of the 

eigenvalues and eigenvectors of the generalized real symmetric eigenvalue problem 

A r  = ABz , with B symmetric positive definite. The Cholesky factonzation B = RTR , with 

R a triangular matrix, is used to transform the equation AZ = , to 

(R  - T AR - I ~ R Z )  = A(RZ). The eigenvalues and eigenvectors of C = R - T AR - 1 are then 

computed. The generalized eigenvectors of A are given by z = R - 1  X ,  where x is an 

eigenvector of c .  This development is found in Martin and Wilkinson (1968). The 

Cholesky factorization is computed based on iMSL routine LFTDS. The eigenvalues and 

eigenvectors of c are computed based on routine EVCSF. 



Chapter 3 

NATURAL FREQUENCIES OF CABLES 

AND BEAMS 

3.1 COMPARISON OF CABLE FREQUENCIES 
TIGHTLY STRETCHED CABLE 

Certain verifications must be made to ensure the accuracy of structural mode1 

developed in the present study. An obvious case to consider initially is comparison of 

results obtained fkom the cable finite element developed in this study with the classical 

case of a tightly stretched cable (a horizontal cable with sufficient tension to overcome 

self-weight of the cable). For this special case, the in-plane and 'sway' (out-of-plane) 

modes obtained Fiom the finite element analysis are shown to have identical natural 

fiequencies that converged to the following classical result (Henghold et. al. 1977) 

R,,=n&; n = 1 , 2 , 3  ,... (3.1) 

where T = t i m g ~ ,  , and m and t represent the mass per unit length and cable tension 

respectively. 

In addition, the non-dimensional frequency R in (3. I ) is defined as 



where w is natural fiequency of a cable in radsec, g is the acceleration due to gravity, 

and L, is the chord length of the cable. 

In addition to the identical in-plane and 'sway' modes, a bar mode was also 

identified in the analysis. This bar mode was shown to have natural frequencies that 

converged to the analytical result 

HORIZONTAL CABLE 

In the case of a horizontal sagging cable (Figure 3 .  l ) ,  a set of natural frequencies 

that include in-plane symmetric, in-plane anti-syrnrnetric and out-of-plane modes nacre 

identified. The analytical solutions for the natural frequencies of a horizontal sagging 

cable were given by Iwine ( 198 1). 

Figure 3.1 : Horizontal sagging cable. 

The Tables 3.1, 3.2 and 3.3 present a cornparison of natwal fiequencies for in- 

plane symmetric, in-plane anti-symmetric and out-of-plane modes of the cable shown in 

Figure 3.1. For each mode, the first four transverse natural frequencies are presented for 

a cable discretized into eight and sixteen finite elements. Both lurnped and consistent- 

mass idealizations were used in the comparisons. The results presented by Mathur (1985) 

correspond to a cable following a parabolic profile. As can be seen from the tables, eight 

cable eIements produced reasonably accurate results (less than 10% error) for the first two 

natural fiequencies. However, in the case of the third and fourth fiequencies, the error 

was shown to range fiom 10-30%. In contrast, the use of sixteen elements produced 

results, which showed errors less than 8% for the first four natural fiequencies. From the 



results obtained, it was evident that a greater number of elements is required to obtain 

accurate solutions for the higher modes. The guyed tower analysis program developed in 

this study provides a user with an option to specifi the number of finite eiements to be 

used in the cable discretization. 

Both lumped-mass and consistent-mass solutions were shown to converge to the 

analytical solution at a similar rate. For higher frequencies, the consistent-mas results 

were found to converge only slightly faster than lumped-mass based results except in the 

case of in-plane symmetnc mode where the convergence rates were very similar. Based 

on this finding it appeared advantageous to implement the Iumped-mass forrnulatioii in 

the software development to ensure computational efficiency. However. another 

interesting beliavior was also obsewed. From the cases considered in Tables 3.1, 3.2 and 

3.3, it appeared that the two different nlass nlodels converged to the analytical solution 

presented by Irvine (198 1 ) fiom diffèrent directions. The consistent-mass formulation 

overestimated the analytical solution, while the lurnped-mass formulation consistently 

underestimated the solution. A comprehensive literature search did not find any 

discussion on the two different mass models converging via different bounds, however a 

discussion on the rate of convergence for the two rnodels was found. In a study by Tong 

et al. (1971), it was shown that the lumped-mass idealization suffers no loss in the rate of 

convergence for systems with low DOF (Le. a rod). However, for problems governed by 

higher order equations (beam or plate), the consistent-mas approach was shown to yield 

better convergence. Since the guy cable mode1 in this study comprises of  three DOFs, the 

consistent-mass formulation provides better accuracy at a somewhat lower computational 

effkiency. As such, the software developed in this study provides a user with the option 

of choosing between the two different mass models. 



Table 3.1 : In-plane symmetric modes for a horizontal sagging cable. 
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Table 3.2: In-plane anti-symrnetric modes for a horizontal sagging cable. 
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Table 3.3: Out-of-plane modes for a horizontal sagging cable. 

INCLINED CABLE 

In order to validate the cable finite element model for an inclined sagging cable, 

Table 3.4 compares the results obtained fiom the present study with those presented by 

Henghold et al. (1977). The configuration of cable used in the analysis is depicted in 

Figure 2.3, where B is the angle of inclination of the chord line. The non-dimensional 

sag is defined as, D = s / L ,  where s is the maximum vertical displacement of the cable 

equilibrium position fiom the chord line to the length of the cable. Likewise, the chord 

length is also non-dimensionalized such that, c = Lc / 4 - Eight cable elements of equal 

length were used to model the cable. As can be seen fiom the results in Table 3.4, the 

present solution compares favorably with the solutions of Henghold et al. (1977). A 

more complete cornparison for a greater range of non-dimensional sag D to the natural 

frequencies was made by reproducing Figures 2 and 3 from Henghold et al. (1977). The 

non-dimensional fiequency 0 was plotted against the non-dimensional sag D in Figures 

3.4, 3 -5 and 3.6. It can be seen that these figures are almost identical to the Figures 2 and 

3 of Henghold et al. (1977). Furthemore, in a paper by b i n e  (1978), anaiytical 

equations for fkee vibrations of an inclined cable were presented. These equations may be 

used to re-produce much of the data depicted in Figures 2 and 3 fiom Henghold et al. 



(1977). The cable elernent used in this study is much simpler and it compares favorably 

with the fWy non-linear solutions presented by Henghold et al. (1977). Therefore, it cm  

be concluded that present 2-node cable elernent is capable of accurately representing the 

behaviour of inclined cables attached to a tower mast. 

Table 3.4: Chord inclination effects ( ~ E l n r ~ L ,  = 5000, C = 0.95 ). 
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Figure 3 -2: Variation of naturd fiequency with sag ratio for a horizontal cable. 

6=Oe,D=O.137 

Henghold 

3.02 

5.65 

6.05 

8.77 

T 

Present 

3 .O0 

5.6 1 

6.04 

8.8 1 

6=3O0,D=O.155 

Henghold 

2.83 

5.17 

5.67 

8.17 

B=6Oa,D=O.251 

Present 

2.83 

5-19 

5.73 

8.26 

Henghold 

2.24 

3 -65 

4.53 

6.30 

Present 

2.25 

3.6 1 

4-58 

6.33 



IN PLANE MODE 
- - - - -  - * - -  SWAY MODE 
AE/mgL=5000 

Figure 3 -3 : Variation of natural fiequency with sag ratio for a cable inclined at 30". 

IN PLANE MODE 
- - - - -  - - - -  SWAY MODE 

AEhgL=5000 

Figure 3.4: Variation of natural frequency with sag ratio for a cable inclined at 60°. 



A comparison of the equivalent elasticity approach for an inclined cable with the 

catenary based finite element solutions was made to examine the accuracy of equivalent 

elasticity approach. in the equivalent elastic modulus approach, the cable was oRented 

along the chord length. An analysis of a tightly stretched cable showed convergence to 

the analytical solution of a tightly stretched cable (equations 3.2 and 3.3). However, the 

sag of a cable is not explicitly considered in the equivalent elasticity approach. Since the 

sag of the cable is neglected, the in-plane and out-of-plane frequencies are identical. 

Hence, it can be expected that the analysis provides reasonable results for the out-of- 

pIanc frcquencies, but not for the in-plane frequencies. Table 3.5 shows a comparison of 

the catenary based finite element solution with the equivalent elasticity based finite 

clement solution. Eight cable elements of equal lengtti were used to model the cable. 

Table 3.5: Cornparison of catenary and elasticity solutions (8 = 30°, AE/mgLc = 5000 ). 
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As expected, Table 3.5 shows that the equivalent elasticity approach provides 

reasonable results for the out-of-plane fkequencies ( n, and n, ), but not for the in-plane 

frequencies (a2 and n,). As such, the equivalent elasticity approach was not 

irnplemented in this study. 

3.2 COMPARISON OF BEAM FREQUENCIES 
To v e n e  the accuracy of beam finite element model used for tower mast, 

cornparisons were made with the analytical torsionai, flexural and axial vibration modes 
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for an elastic cantilevered bearn. In addition to comparing the natural tiequencies, the 

various mode shapes obtained were also examineci against analytical results. The 

cornparisons were done by considenng a circular cantilever beam, with the following 

material properties. 

Length of the bearn: L = 8 m .  

Modulus of eiasticity: E = 200000 MPa . 

Radius: r = 0.075 rn . 

Density: p = 8 x l o 3  k g l n i 3 .  

TORS IONAL VIBRATIONS 

The analytica1 solution for natural frequencies corresponding to torsional 

vibration modes oFa circular cantilever beam is given by ( I m a n  1996) 

where 

G is the shear modulus, J is the polar moment of inertia and y is a torsion constant 

shown and a circular cross section 

1 Natural Frequency 1 Z r  4 2  1 ut, 1 or, 1 
1 Analytical Solution 1 0.609 ( 1.827 ( 3.044 1 4.262 ( 

8 Elements ( 0.610 1 1.853 1 3.167 1 4.599 1 

1 Element 

4 Elements 

16 Elements 1 0.609 1 1.833 1 3.075 ( 4.346 1 

Table 3.6: Cornparison of torsional vibration fkequencies. 

0.671 
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1.933 

- 
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FLEXURAL VIBRATIONS 

The analytical solution for natural fiequencies corresponding to flexural modes of 

a circular cantilever beam are given by (Chopra 1995) 

Natural Frequency 

Analytical Solution 

1 16 Elements 1 10.30 1 64.56 1 180.77 1 354.27 ( 

@,ri 1 "y? 

10.30 ) 64.53 / 180.77 1 35-I.Z 1 

1 Element 

4 Elements 

8 Elements 

Table 3.7: Cornparison of flexural vibration frequencies. 

AXIAL VIBRATIONS 

10.35 

10.30 

10.30 

Natural fiequencies associated with axial vibration modes are very high and 

generally do not affect the dynamic response of guyed towers. The analytical solution for 

l 

the natural fiequencies corresponding to axial vibration modes of  a circular cantilever 

beam is given by (Clough and Penzien 1975) 

- 

359.36 

355.01 

64-63 

64.56 

183.16 

180.87 



1 Exact Solution 1 98 1.75 1 2945.24 1 4908.74 1 6872.23 

1 Element 

1 8 Elements 1 983.32 1 2987.99 1 5107.44 1 7416.40 

4 Elements 

1 16 Elements 1 982.14 1 2955.90 1 4958.16 ( 7008.14 

1082.53 

Table 3.8: Cornparison of axial vibration frequencies. 

988.07 

From the observed natural frequencies for a circular cantilevered beam (Tables 

3.6 to 3-23), i t  was s h o w  that for higlier modes, additionaI elements were required in the 

analysis to obtain reasonably accurate results. This is sirnilar to the case of a cable 

element. The use of eight elements yielded results within 8% of the analytical solutions, 

while the use of sixteen elements resulted in a maximum discrepancy of 2% for the first 

four modes. It was further identified from the results that the natural frequencies in 

torsional motion occur at much lower frequencies in cornparison to flexural and axial 

motion. In fact, it would not be expected under normal circumstances that axial 

frequencies of a tower would be a concern given the higher frequency values involved. 

Furthemore, it is expected that the use of multiple guys and star mounts (torsion arms) 

would increase the overall stiffhess of a tower mast and thereby increases the natural 

frequencies. 

- 

3.3 EQUIVALENT BEAM-COLUMN REPRESENTATION 

3 1 16.99 

Prismatic elements can be readily modelled as beam elements, which resist 

bending, torsional and axial loads and represented by stiffness and mass matrices. 

However, the development of m a s  and stiffiiess for a lattice structure is not as 

straightforward. One approach is to mode1 a lattice structure as a space h e  using a 

cornputer software package such as SAP90TM. This approach can be very tedious and 

will require a significant computational effort. A simple and efficient way to analyze a 

- 
1 
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lattice tower is possible through the adoption of an approximate method of analysis. As 

previously mentioned, the latticed tower mast may be represented by an equivalent bearn- 

column. As shown in Chapter 2, Kahla (1 993) presented equivalent bearn-column 

properties for latticed tower masts of triangular and square cross-section. The equivalent 

properties presented by Kahla (1993) were adopted in the present study. However, 

Mathur (1985) and Saxena (1988) utilized a similar approach to represent a latticed tower 

mat .  Mathur (1985) presented stiffness and consistent mass matrices based on an 

assumed modeshape. It was s h o w  that the solution for the equilibnum position of a 

tapercd beam was a logarithrnic function and that a cubic polynomial was the exact 

soIrition for a straight beam. 

For a typical tapered or straight lattice segment with a square cross-section and 

supported by four continuous legs as sliown in Figure 3.5. Matliur (1985) presented and 

equivalent beam-colurnn representation. 

(a) Typical tapered segment (b) Plan-view at section x-x 

Figure 3.5 : Latticed tower segment 

The moment of inertia, I ( x ) ,  about the segments longitudinal axis X ,  at section x-x was 

given by 

~ ( x )  = ~ ~ a f  

where a, =.,(i-PX) 



Hence, for a straight latticed tower segment, = a, = a,, therefore ,8 = 0 and I ( X )  = ~ , a ' .  

Similarly, Kahla (1993) s h o w  that the equivalent flexural stiflhess ( E r  ) for a latticed 

mast with square cross-section is 

EI = EA,, ai 

for tower lacing patterns 1 to 4 and 

for k i n g  pattern 5. As can be seen from the above equations, the flexurat stiffness 

presented by Mathur (1985) is identical to that presented by Kahla (1993) for lacing 

patterns 1 to 4. However, it can be seen that a slight variation in flesural stiffness esists 

between the two approximations for pattern 5.  To compare the two approxirnate 

methods. consider the latticed tower sliown in Figure 3.6 

Lacing pattern = 5 
Number of elements = 4 
A = 0.0062 m2 
a = 6.706 m 
b = 7.620 m 
m =4Sl kg/m 
E = 0.2048 X 1 O8 N/m2 

Figure 3.6: Latticed tower mast. 

Table 3.9 shows the results of a fiee vibration analysis for the tower mast s h o w  

above in Figure 3.6. The table compares the analyticai results with those obtained by 

Mathur (1985) and the present study. As can be seen from the results, the present study 

gives results that are consistent with the analytical solution and Mathur (1985). 





Chapter 4 

SOFTWARE DEVELOPMENT 

Software developed in this study consists of an interactive Windowsnf 

95/98/2000 program for the free vibration analysis of a guyed tower. This chapter 

discusses the development of software package and provides use instructions. The 

software consists of two main components, a graphical user interface (GUI) and a finite 

element engine (FEE). The two components are discussed in detail with the aid of flow 

charts describing the software structure, interaction and algorithm. 

4.1 GRAPHICAL USER INTERFACE (CUI) 
The GUI acts as the fkont and back end to the finite element engine (FEE), 

respectively referred to as the pre and post-processors. The flow chart shown as Figure 

4.1 describes the interaction between pre and post-processor (GUI) and the FEE. The 

GUI of the software package was developed utilizing the programming language 

Microsoft@ Visual Basic@, which is an object-oriented prograrnrning Ianguage. An 

obj ect-onented programming language is similar to traditional prograrnming Ianguages in 

the sense that they both utiIize a similar programrning syntax, but has the fùrther 

capability to facilitate the detailed development of graphical and menu driven software. 



( Post-Processor l 

Figure 4.1 : General program interaction. 

However, unlike a traditional sequential programming language, object-onented 

prograrnming languages do not execute code at the beginning and sequentially work 

through the code line by line. Conversely, object-oriented programs are event driven. In 

this regard, programming code is assigned to different objects embedded within the 

interactive graphical program and the associated code does not execute until the specific 

event occurs for the object. In the Microsoft03 Windowsm environment, an object 

traditionally consists of  any item that exists in a Windowsm application. A command 

button, text box and menu bar are just a few exarnples of  many possible objects. 

Furthemore, an event is an action that takes place on or within an object- Typical 

examples of an event are a single or double-click of the mouse on an object. Consider the 

following example, a comrnand button (object) may have two different sets of code 

attached to it via two different events. In this example, code A and B are respectively 

assigned to the single and double-click event. Thus, when the user uses the mouse to 

click the comrnand button (object) once, the single-click event has occurred and the 

software executes the associated code A. In a similar manner, if the command button had 

been double-clicked, code B would have been executed. In this regard, event driven 



programming languages are driven by events occming on or within objects. Thus, a user 

determines which segments of the code are executed based on the objects and events that 

are chosen. 

4.2 Pm-PROCESSOR AND POST-PROCESSOR 
In the past, the analysis of guyed towers has involved creating long and 

complicated data files that contain much of structural and modelling data. In an effort to 

move away fiom this tedious and often time consuming task, the interactive graphical 

pre-processor developed in this study collects al1 data required for a representative 

analysis and completes al1 of the data file preparation. Once the necessary data has been 

collected, the pre-processor creates the necessary data files to be used by the FEE for the 

analysis of a guyed tower. The pre-processor collects the data specific to the analysis 

from a user in a fnendly and non-tedious interactive manner. As the necessary data is 

collected fiom a user, the pre-processor completes several checks in an effort to ensure 

that no inconsistencies exist in the data. Where inconsistencies are identified, a user is 

promptly alerted with a w d n g  message outlining the nature of inconsistencies. The 

data files are then used by the FEE to comptete the numerical analysis of the tower 

model. 

Once the numencal analysis has been completed, a user has the option of utilizing 

the post-processor tools to view the results of the analysis. Sirnilar to the pre-processor? 

the post-processor is an interactive graphical tool that may be used to view the results of 

the fiee vibration analysis in a grttphical or non-graphical manner. Utilizing the data file 

created by the FEE which contains al1 the natural frequencies and modeshapes of the 

tower, the post processor provides the user with a variety of options to portray the data. 

These options include a file viewer that enables a user to view the natural fiequencies and 

modeshapes of the analysis. In addition, the software has a graphical animation tool that 

provides a user with the option of viewing the animated modeshapes of the guyed tower 

system. 



4.3 FINITE ELEMENT ENGINE (FEE) 
The FEE created for this study was developed utilizing the Microsofi@ Fortran 

Power Station Developer Studio. This powerful application allows the development of 

software utilizing Fortran prograrnming language. The Developer Studio cornes with a 

complete set of built-in IMSL math libraries that may be linked to the software being 

developed. The FEE consists of two main components, the model generator (eqvbeam) 

and numencal algorithm (gtap). A flow chart describing the layout and interaction 

between the two FEE components is shown in Figure 4.2. Utilizing the parameters 

collected by the pre-processor fiom a data file, the mode1 generator cornputes a beam- 

colurnn of equivalent sti&ess utilizing the scheme outlined in Chapter 2 to represent the 

mast of a guyed tower. Once the equivalent beam-column has been determined, the 

model generator uses the model parameters previously collected to create a sing Ie data 

file that contains al1 the modelling data for a guyed tower. 

At this point the numerical algorithm utilizes the model data to create a finite 

element model and subsequently conduct a fiee vibration analysis of the guyed tower 

model. The structural mass and stifhess matrices presented earlier in this study are used 

to numerically represent the tower mast and attached guy cables, Using the concept of 

destination vectors, the individual mass and stiffness matrices for each element are 

assembled into a global m a s  and stiffiiess matrix. Having assembled the global matrices, 

the final task of the FEE is to solve the generalized fkee vibration problem as previously 

discussed in Chapter 2. The eigenvalue problem is solved using the DGVCSP subroutine 

included with the built-in MSL libraries. As the analysis is conduced, the natural 

fiequencies and mode shapes are stored in a new data file which is Iater used by the post- 

processor to display mode shapes. 



/ Read / 
tower data / fi: / 
Corn pute 
equivalen t 

beam colurnn 

Write guyed 
tower data /-/ 

Model Generator i 
(eqvbeam) 

Read guyed 
tower data 

1 Finite element & 1 
Free vibrations 

Read guyed 
tower data /-/ 

Numerical Algorithm i 
(gtap) 

Figure 4.2: FEE program interaction. 

4.4 SOFTWARE INSTALATION 

INSTALATION REQUIREMENTS 

In order to use the GTAP software, the following is a list of the minimum system 

requirements: 

A compatible PC equipped with the Windowsm 95/98/2000 operating system. 



4 MB of fiee hard disk space. 

WindowsTM compatible hardware. 

A 3 !4 inch floppy disk drive. 

IMSL software user Iicense. 

INSTALLING GTAP 

1. Lnsert the GTAP Insfallation Disk I into the floppy disk drive that will be used to 

install the software package. 

2. Select the Run ... icon fiom the Windows Start button. 

3. If you are installing the software fiom Drive A, issue the following command; a:setup 

and click the OK button. If you are installing the software £iom a disk drive other that 

Drive A, substitute the comrnand arsetup with the appropnate dnve letter (for 

exarnple, b:setup) . 
4. At this point, the GTAP Instaflation Wizard should begin and appear on the screen. 

The ~nstailatzon Wizard provides you with detailed step b y step instructions 

throughout the software installation process. It is strongly recommended that the 

GTAP software be installed in the default directory c:ü'rogram Files\GTAP. 

4.5 SOFTWARE INSTRUCTIONS AND MODEL 

DEVELOPMENT 
1. Ensure that the GTAP software has been successfÙlly installed ont0 the PC. 

2. Select the Programs icon from the Start menu. A list of software programs should 

appear. From this list, select the GTAP icon. If you wish to make a shortcut to the 

GTAP prograrn, or relocate the software on the Start menu, consult the online Hel' 
located in the program list on the Start menu. 

3. Once the GTAP software completed Ioading, the initial welcome screen wilI appear. 

Once you have read the welcome screen, press the Continue button to carry forward. 

At this point, the main GTAP window as shown in Figure 4.3 should appear. From 

the main GTAP window and utilizing the options fiom the main menu, the user may 

access the various program features such as the File area, the Define options (pre- 



processor), conduct a fiee vibration Analysis, view the analysis Resuits @ost- 

processor) or consult the online Help. 

Figure 4.3 : Main GTAP window. 

The following steps outline how to create a representative guyed tower model 

utilizing the GTAP software. 

1. From the Define menu located in the main GTAP window, select the item Project. 

The Project Information window as shown in Figure 4.4 should appear. Within this 

window, the user should enter the descriptive data that are used to identie the model. 

Once the three text boxes have been completed, select the OK button to carry forward. 

2. Utilizing the mouse or keyboard, select the Tower Base item fiom the Define menu. 

The Tower Base window as shown in Figure 4.5 should now appear. From this 

window, the user shall speciQ the base restraint conditions to be used at the base of 

the guyed tower model. Utilizing the mouse or keyboard, select the radio button that 



best represents the restraining conditions at the base of the guyed tower (pinned or 

fixed). Once the appropnate base condition has been selected, press the OK button to 

continue. 

Figure 4.4: Project Information window. 

Figure 4.5: Tower Base window. 

3. Following the steps above, select the Tower Information item from the Define menu. 

Once the item has been selected, the window as s h o w  in Figure 4.6 should appear. 

From this window, the user shall define several of the guyed tower parameters 

pertaining to the mast. Pnor to proceeding any furthet in the development of a guyed 

tower rnodel, the user should have a good idea of the configuration of the model. The 

first text box that should be completed is Tower Sections. in this text box, a user 



should enter the integer value which denotes how many different tower sections are to 

be included in the entire tower. Generally, each different lacing pattern requires its 

own tower section. Next the user should enter how many tower elements are to be 

included in the model. Once the above two text boxes have been completed, the user 

should enter representative material properties for the tower mat.  The final 

information that is requested nom this window is your preference of units to be used 

in the analysis. Once the window has been completed, select the Continue button to 

carry fonvard. Provided that no inconsistencies were identified with the entered data, 

the window disappears and the main GTAP window shall once again appear. 

Figure 4.6: Tower Information window. 

4. From the main menu select the item Tower Sections and a window as shown in Figure 

4.7 should appear. For each different tower section, the user will be prompted to 

complete the Tom shown in Figure 4.7. Online help is available to show various 

lacing patterns and the locations of the lacing dimensions on a tower. Once the form 

has been completed use the N a  and Bock buttons to navigate through the various 

Tower Section foms. When the final form has been completed, the Tower Sections 

window will close. 



Figure 4.7: Tower Sections window. 

The final steps involved in the development of a mode1 for the mast of a guyed tower 

is to define the properties of the individual elements of the tower. From the Elenlents 

window shown in Figure 4.8, the user needs to specifi the length and corresponding 

Tower Section for each tower element. Furthemore, the user also has the option of 

restraining the element by removing the check marks fiom the restraint boxes. Once 

the form has been completed the user may navigate through the forms for each 

element utilizing the Next and Buck buttons until a form has been completed for each 

element. 



Figure 4.8: Elements window. 

6 .  Next, the guy and torque arms data is entered. From the Define menu, choose the 

Guy + Guy Rings option. The Guy Cables window as shown in Figure 4.9 should 

now appear. In this window enter the number of guys, guy rings and the matenal 

properties of the guy cables. The concept of guy rings is discussed in the detailed 

exarnple contained in Appendix B. Once al1 the fields in the Guy Cables window 

have been completed, press the Continue button. At this point the Guy Cnbles 

window closes and the Guy Rings windows as shown in Figure 4.10 appears. in this 

window, the user needs to enter the CO-ordinates for each anchor location along the 

guy ring. Each guy ring contains three anchors as the software assumes that the 

cables are evenly spaced at 120". Using the N a t  and Back buttons, the user may 

navigate through the various windows until a11 the CO-ordinate locations have been 

accounted for. 



Figure 4.9: Guy + Guy Rings window. 

Figure 4.10: Guy Rings window. 

7. The final step in development of the model it to complete the Guy Cable window 

accessible fiom the Define menu. Once that item has been selected, the Guy Cable 

window as show in Figure 4.11 appears. Utilizing the &op down boxes, select which 

ring, anchor and node on the mast where the guy cable is connected. Furthemore, 

enter the area and pre-tension force of the guy cable. Use the Next and Back buttons 

to navigate through the various windows for al1 the cables. 

Once the Guy Cable form is completed, the guyed tower model has been completed. 

As such, the pre-processor (Define menu) is no longer required. However, the user may 

recall any of the Define items to change any of the model parameters entered thus far. 



Figure 4.1 1 : Guy Cable window. 

Once al1 of the pre-processor items fiom the Define menu have been successfÙlly 

completed, the Anolysis menu will become available and fiee vibration analysis may be 

conducted for the guyed tower model. To begin the analysis, select Begin fiom the 

Analysis menu. This process may take up to a few minutes to complete depending on the 

size of the problem and processor speed of the computer. 

During the analysis phase, the finite element engine generates a structural model 

of the guyed tower based on the data entered into the pre-processor. Once the analysis is 

complete, the results are stored in several data files and the Resirlts menu (post-processor) 

now becomes available. By selecting the Post-Processor item from the Resulrs menu the 

Posz-Prucessor window as shown in Figure 4.12 will appear. From this window the user 

has the option of either viewing the natural Frequencies in text format fiom a data file or 

viewing the natural fiequencies and associated Modeshapes of the guyed tower model. If 

the user chooses to view the anirnated modeshapes, an animation window as shown in 

Figure 4.13 will appear. Depending on the frequency chosen by the user, either an in- 

plane or out-of-plane view of the tower will be shown. Using various controls the user 

can begin and change the speed of the animation. By using the drop down box fiom the 

main Post-Processor window the user may view the modeshapes for any of the natural 

fiequencies. 



Figure 4.12: Post Processor window. 

Figure 4.13: Post Processor - Animated Modeshapes. 



Chapter 5 

FREE VIBRATION CHARACTERISTICS 

OF GUYED TOWERS 

5.1 WTMJ TOWER 

The WTMJ tower is a 300 meter television tower located in Milwaukee, 

Wisconsin. This symmetric tower is supported by five levels of guys each having three 

guy cables equally spaced (120") from one another. Each guy cable is attached directly to 

the mast of the tower. McCafiey (1969) presented details of the tower geometric and 

structural properties. For completeness, the guyed tower properties have been included in 

the Appendix. 

NATURAL FREQUENCIES 

Pnor to conducting free vibration analysis of the entire tower, a dynamic analysis 

of individual guy cables at each guy level was completed. This analysis was completed 

in an attempt to determine if and how the analysis of individual puy cables may be 

utilized in an effort to help predict the response of guy cabtes when attached to the mast 

of a tower. The guy cables were each modelleà by sixteen cable elements. The fiee 

vibration results are presented for two different cable elements, the catenary cable 



element presented in Chapter 2 and a parabolic cable element based on the analytical 

formulation presented by Veletsos and Darbe (1 983). 

Guy Level 

1 
Bottom Level 

- - 

5 
Top Level 

Mode 

Table 5.1 : Natural frequencies of WTMJ guy cables. 

Frequency (radsec 
Catenarv 1 Parabol!c 

1 Out-of-Plane 
2 In-Plane 
3 In-Plane 5.64 
4 Out-of-Plane 5.64 
I Out-of-Plane 1.94 
2 In-Plane 3.12 
3 In-Plane 3.79 
4 Out-of-Plane 3.50 

The first four natural frequencies of guy cables at each of the five guy levels are 

presented in Table 5.1. As can be seen from the results, the cables that attach to the top 

of the mast (guy level 5) have the lowest natural frequencies. This is due to the fact that 

the cables considered have a relatively similar pre-tensioning and stifiess (cross- 

sectional area and elasticity), but lengths that Vary significantly. Hence, as the ratio of 

AE/L decreases for a cable, so does its natural frequency (for constant tension). Another 

behavior, which was noted from the analysis, is that the second in-plane frequency (the 

first anti-symmetrical frequency) and the second out-of-plane fiequency are almost 

identical. From b i n e  (1981), the out-of-plane frequency of a cable was shown to be, 

2.05 
2.59 
4.0 1 
4.0 1 
2.0 1 
2.3 1 
4.10 
4.10 
1.41 
1.82 
2.89 
2.90 

1 Out-of-Plane 
2 In-Plane 
3 In-Plane 
4 Out-of-Plane 
1 Out-of-Plane 
2 In-Plane 
3 In-Plane 
4 Out-of-Plane 
1 Out-of-Plane 
2 In-Plane 
3 In-Plane 
4 Out-of-Plane 

2.05 
2.62 
4.18 
4.18 
2 -03 
2.3 1 
3.95 
3.95 
1 -44 
1.81 
2.82 
2.83 



where n =i,2,3, ... 

Similarly, Irvine (198 1) showed that the anti-symrnetric in-plane modes becomes, 

where rr = 1,2,3.... Hence. it can be seen from equations 5.1 and 5.2 that the second and 

fourth out-o f-plane frequencies will correspond with thc first and second anti-symmetric 

in-plane modes. 

The results of an analysis of the WTMJ tower mast k e d  at its base with no guy 

cable interaction are presented in Table 5.2. The analyses were conducted using the 

prograrn developed during this study and the results were cornpared with the commercial 

software package SM90Thf. The mast of WTMJ tower was represented by 45 three- 

dimensional bearn elements. The software developed in this study lias the ability to 

evaluate torsional vibration modes. However, as no torsional properties were available 

for the WTMJ tower, torsional vibration fiequencies were not presented. As c m  be seen 

from Table 5.2, the results obtained £kom the present study and SAP90Th' agree very 

closely when effect of self-weight was neglected (Appendix A). When the analysis was 

completed including the effects of self-weight, the results reflect the expected reduction 

in the first few natural frequencies (Przemieniecki 1968). 

Natural Frequency (rad/sec) 
Present Study 1 1 Present Study 

Table 5.2: Natural fiequencies of tower mast (fixed base) without guy cables. 

Excited Mode 

2-Bending 
X-Bending 
2-Bending 
X-Bending 
2-Bending 
X-Bending Y 

Self-Weight 
Neglected 

0.423 8 
0.4238 
2.4886 
2.4886 
3.6864 
3 -6864 

SAP90n1 

0.4234 
0.4234 
2.4366 
2 -4366 
3.5879 
3 S879 

Self-Weight 
Included 
0.2562 
0.2562 
2 -3 894 
2.3894 
3.5620 
3.5620 



Free vibration respome of WTMJ tower was examined by including the 

interaction between guy cables and tower mast. A cornparison of natural frequencies 

corresponding to a model that included the out-of-plane stifkess of the guy cables is 

presented in Table 5.3. The first two columns display the results ùbtained by Saxena 

(1988) using a parabolic profile and sixteen cable elements for each guy cable. Saxena 

used the analytical formulation presented by Veletsos and Darbe (1983) to derive the 

dynamic stiffness of a cable element. The analytical results (first column) follow the 

assuniptions stated above for guy cables, \vhile the mast of the tower was aiso modelled 

following an analytical approach. The third column in Table 5.3 presents the results 

obtained from this study using the program GTAP (Guyed Tower Analysis Progam). 

For this case, the parabolic finite element developed in chapter 2 was used to model the 

cables. The guy cables were each modelled by eight cable elcments witli Iumped mass 

idealization. The last two columns in Table 5.3 were also obtained using the GTAP 

software using catenary profile for cables, and Iumped and consistent mass idealizations 

respectively. In the fina1 column of Table 5.3. the vibration modes are identified as 

either an in-plane (1) or out-of-plane (0) for cable excitations, or as a bending vibration 

mode of the tower mast. The number following the type of excitation indicates the guy 

IeveI. 



- -- 

Natural Freaue 
Analytical 
Parabola 
Lumped 

1.37 
1 -44 
1.47 
1-82 
1.95 
1.95 
2 .O3 
2.05 
2 .OS 
2.07 
2.14 
2.3 1 

- 

2.45 

Saxena 
Parabo la 
Lumped 

1.39 
1.44 
1.47 
1.73 
1.93 
1.94 
2.03 
2.03 
2.04 
2.05 
2.12 
2.30 

- 
2.43 

GTAP 
Parabola 
Lumped 

1.36 
1.43 
1 -46 
1-76 
1.95 
1.95 
2 .O4 
2.04 
2.05 
2.05 
2.15 
3-34 
2.36 
2.46 

:ncy (radka 
GTAP 

Catenary 
Lumped 

1-32 
1.39 
1.42 
1.74 
1.94 
1.94 
1.99 
2.00 
2.02 
2.02 
2.12 
2.3 1 
2.36 
2.44 

GTAP 
Catenary 

Consistent 
1.34 
1-41 
1-44 
1.76 
1.96 
1.96 
2.02 
2-03 
2.04 
3.05 
3.15 
3.34 
2.37 
2.47 

Excited 
Mode 

1 - 5  
0 - 5  
0 - 5  
1 - 5 
0 - 2  
0 - 2  
0 - 3 
O - 3 
0 - 4  
0 - 4  
1 - 4  
1 - 3  

Bending 
1 - 3  

Table 5.3: WTMJ natural frequencies (out-O f-plane sti ffness included). 

As can be seen fiorn the results presented in Table 5.3, there was little discrepancy 

between various solutions corresponding to the different methods of analysis. The 

natural frequencies obtained from the different analysis methods were al1 within 4% of 

one another. Since the cable element used by Saxena and the parabotic element used in 

the GTAP prograrn were developed using the same theory, the results for these 

approximations were almost identical. 

Table 5.4 presents a cornparison of the natural fiequencies obtained for the WTMJ 

Tower when the out-of-plane stif'fhess of the guy cables was excluded. Again, the results 

obtained fiom parabolic cable mode1 agree closely with the results fkom Saxena (1988). 

The present results show an in-plane cable excitation at guy level five (1.76 parabola and 

1.74 and 1.76 catenary) which is missing from the results presented by McCaffiey (1  969). 

The corresponding solution given by Saxena appeared to show what seems to be an out- 

of-plane mode near this fiequency (1.73 Table 5.3). Furthemore, the present analysis 

identi fied a bending frequency of the mast near 2.37 radlsec. 



McCafEey McCafEey 
Parabola Catenary 

Naiural Freauencv (rad/sec) 
GTAP 

Catenary 
Consistent 

Saxena 
Parabola 
Lumped 

1.39 
- 

2.12 
2.30 

- 
2.43 

Excited 
Mode 

1 - 5  
1 - 5 
1 - 4  
1 - 4  

Bending 
1 - 3  

GTAP 
Parabola 
Lumped 

1.40 
1.76 
2.15 
2.34 
2.37 
2.46 

Table 5 -4: WTMJ natural frequencies (out-O f-plane sti ffhess neglectcd). 

GTAP 
Catenary 
Lumped 

1.37 
1.74 
2.12 
2.3 1 
2.37 
3-45 

Esamination of natural fiequencies of individual guy cables (Table 5.1) and 

cornparison with the results obtained for WTMJ tower (Tabte 5 3 ,  indicates that the 

interaction between guy cables and tower mast have virtually no influence on the out-of- 

plane frequencies of the guys. Hence, the out-of-plane frequencies of cables attached to a 

tower rnay be estimated by a simple free vibration analysis of individual guy cables. 

However, as c m  be seen Liom the results, in-plane fiequencies of individual cables cannot 

be used to estimate the in-plane frequencies of cables attached to a tower mast. For 

example, the first in-plane frequency of 1.40 radsec (Table 5.4) does not agree closely 

with the lowest in-plane frequency obtained fiom the analysis of individuaI cable. 

However, the second in-plane fiequency (1.76, Table 5.4) does seem to coincide with the 

lowest in-plane frequency (1.82, Table 5.1) determined from the analysis of that cable. 

Based on the results, it was concluded that the cable elements have negligible coupling to 

the mast for out-of-plane frequencies. This however was not the case for in-plane 

fiequencies. As in-plane frequencies appear in the tower which were independent from 

the in-plane frequencies obtained from the lone guy cable analyses, strong coupling exist 

between the tower and the in-plane DOF of cables. 

MODE SHAPES 

The first twelve in-plane and bending modeshapes of the WTMJ tower are shown 

in Figure 5.1 (a to 0. As expected, the longer cables (upper levels) are excited at 

fiequencies which are lower in magnitude when compareci with the shorter (lower level) 



guy cables. Exarnining the modeshapes, it was observeci that vibrations correspondhg to 

2.47 and 2.88 rad/sec (f & i) show relativeiy large motions at the uppermost portions of 

the mast in comparison to the remainder of the mast. This is in part due to the fact that 

the upper extremities of the m a t  have more fkeedom, as they are not laterally restrained 

by the guy cables like the lower portions of the mast. Furthemore, examination of tower 

properties revealed that the uppermost 25 meters of the tower mast correspond to an 

antenna of approximately i/zoOo of the stiffness of the lower portions of mast. 





Figure 5.1 : WTMJ tower modeshapes. 

5.2 PARAMETRIC STUDY 

TOWER MAST LACINC PATTERNS 

For the following pararnetric studies, two similar towers were considered, Tower 

A and Tower B. Both towers stand 145 m in height and have identical geometry and 

matenal properties with the exception that Towers B has three p y  levels as opposed to 

Tower A which only has one level of guy cables. The material properties of Towers A 

and B are shown in Table 5.5, while the geometry of the towers is shown in Figures 5.2 

and 5.3. 

1 Material Property 1 TowerA 1 Tower B 1 
Mast Elasticity 

Cable Elasticity 

Table 5.5: Material properties of Towers A and B 

Steel Density (for cables and mast) 

Cable Tension 

2.OE+011 Pa 

1.6SE+O11 Pa 

2.OE+0 1 1 Pa 

1.65E+011 Pa 

8 100 kg/m3 

40,000 N 

8 100 kg/m3 

40,000 N 



Utilizing the software developed in this study, fÎee vibration response of Towers 

A and B was determined. The guyed tower analysis was completed using eight cable 

elements for each guy cable and five different lacing patterns shown in Figure 2.6. 

Table 5.6 presents the natural eequencies of Tower A for the five different Iacing 

pattern configurations and the associated excitation mode. As Tower A features only one 

guy level, the excitation mode is Jrfined as either an in-plane (1) or out-of-plane (0) for 

cable excitations. As can be seen fiom Table 5.6, the natural frequencies of the guyed 

tower system were generally consistent for the five different lacing patterns. 

Examination of the out-of-plane frequencies indicates tliat the maximum discrepancy 

behveen the five different lacing patterns was less than 0.5%. This behavior is consistent 

with that identified fiom the WTMJ tower which sliowed that the tower niast lias virtually 

no influence on the out-of-plane vibrations of guy cables. However, two of the in-plane 

frequencies (the first and seventh) showed some variation in natural frequency for 

different lacing patterns. The maximum difference in natural frequency for these in-plane 

modes was in the order of about 10-124, while the remaining in-plane frequencies 

showed virtually no change in natural frequency for the various lacing patterns. This 

behavior was also consistent with that from the WTMJ tower analysis tliat showed that 

only some in-plane frequencies show strong interaction between the tower mast and guy 

cables. 



Figure 5.2: Geometry of Tower A. 



Figure 5.3: Geometry of Tower B. 



I 
- - 

Natural Frequencies (radsec) 

Table 5.6: Natural frequencies of Tower A for various Iacing patterns. 

Pattem 1 

- - 

Pattern 1 Pattern 2 

Pattem 2 

:ural Frequc 

Pattem 3  

~cies (radse[) 

Pattem 4 Pattem 5 

Pattern 3 

Excited 
Mode 
0- 1 
O- 1 
1-2 
0- 1 
0 -2  
1-2 

0 - 3  
1- 1 
1-2 
1-3 
1-3 
1- 1 

Table 5.7: Natural fiequencies of Tower B for various lacing patterns. 

Pattern4 

A cornparison of Figures 5.2 and 5.3 indicates that Tower B is essentially 

identical to Tower A with the exception that Tower B contains two additional levels of 

guy cables. Table 5.7 presents the £kt few natural frequencies for Tower B for the five 

different tower mast lacing patterns. A cornparison of the natural fiequencies for Towers 

A and B indicates that the variation of lacing pattern has virtually no influence on the 

observed natural fiequencies of the guyed tower. Based on the previous observations, it 

was not expected that the tower mast would have any significant influence on the out-of- 

Pattem 5 Excited 
Mode 



plane fiequencies. However, the tower mast also appeared to have no significant 

influence on any of the in-plane frequencies observed. The additional two guy levels on 

Tower B provide restraint of the tower mast at four points, while Tower A was only 

restrained at two points (top guy level and tower base). As such, it appears that the 

additional guy cables act to restrict the coupling of tower mast with the in pIane DOFs. 

To further illustrate this point, Figures 5.4 and 5.5 show some selected mode shapes of 

Towers A and B respectiveiy. 

a) 1.87 r;td/sec b) 5.90 radkec 

Figure 5.4: Selected modeshapes of Tower A (iacing pattern 1). 



Figure 5.5: Selected modeshapes of Tower B (Iacing pattern 1). 

As can be seen fiom Figures 5.4 and 5.5, larger motions of the tower mast are 

noted for Tower A. The additional guy levels in Tower B act to increase the apparent 

stiffness of the tower mast that results in smaIler overall deflections of the mast. 

GUY CABLE TENSION 

As it has been shown that a tower mast generally has little influence on the overall 

dynamic behavior of a guyed tower system, the influence of variations in guy cable 

tension on guyed tower systems is exarnined next. Consider Tower A subject to unifonn 

sustained wind as shown in Figure 5.6. In this situation, the windward guy experiences 

an increased tensile force due to the applied wind load on the tower, while the cables on 

the leeward side experience a somewhat lower tension. For simplicity, it has been 

assumed that a guy cable perpendicular to the wind direction experiences no change in 

cable tension. The material and geometric properties for Tower A are as previously 

described, with the exception that the guy cable tensions were subject to fixed variation. 



L Perpendicular 

Wind m 
Windward 

Leeward 

Figure 5.6: Tower A subjected to sustained uniform wind loading. 

An analysis of Tower A was cornpleted using the software developed in this study 

and considering variations in guy cable tensions in order to simulate the wind loading 

conditions previously described. The natural fiequencies of Tower A, for a IO%, 30% 

and 50% variation in guy cable tension (Le. windward guy tension increases. leeward guy 

tension decreases by an equal amount, and tension of guys perpendicular to wind remains 

at 40,000 N) have been shown in Table 5.8. For each corresponding hequency, the 

excited cable mode has been identified as either in-plane (I) or out-of-plane (0) as before. 

The guy cable is fùrther identified as windward, leeward or perpendicular in Table 5.8. 

For cornparison, an analysis of Tower A with no variation in cable tension (first column) 

has also been incfuded in Table 5 -8. Lacing pattern 5 was used for the mast of tower. 



mcy (ra 
30% - - 
1.71 
1-80 
2.5 1 

- 
1-87 
2.20 
2.55 

- 
- 
- 
- 

2.26 
2.97 

- 
3.82 
4.56 
5-19 

- 
3 -82 
4.56 
5-19 

'sec) 
50% - - 
1.67 
1.80 
2.66 

- 
1.58 
2.2 1 
2.74 

- 
- 
- 
- 

2.27 
3.14 

- 
3.23 
4.56 
5.52 

- 
3 -23 
4.56 
5 -5 8 - 

Excited 
Mode 

w 

1 
1 
1 
1 

O 
O 
O 
O 
1 
I 
1 
1 
O 
1 
1 
1 
1 
L 
O 
O 
O 
O 

Excited Cable 

- 
Leeward 

Perpendicular 
Windward 

- 
Leeward 

Perpendicular 
Windward 

- 
Leeward 

Perpendicular 
W i ndw ard 

Perpendicular 
Leeward 

- 
Leeward 

Perpendicular 
Windward 

- 
Leeward 

Perpendicular 
Windward 

Table 5.8: Natural frequencies of Tower A for variations in cable tension. 

The observed natural frequencies of the tower showed a consistent trend. Natural 

frequency of leeward guy was observed to decrease as a fùnction of decreasing cable 

tension. The opposite was üue for the windward guys, where the natural frequencies 

increase with increasing cable tension. These observations were consistent with the 

theory and results presented in Chapters 2 and 3, which showed that for a cable of 

identical material and geometric properties, the nahiral fiequency is a fûnction of cable 

tension. The natural fiequency of the perpendicular guy (no change in cable tension) 

generally remained sarne as that of a tower not subjected to any change in guy tension. 

However, a minor variation in the natural fiequency (O to 2%) was noted for the 

perpendicular cable. While difficult to confimi, it is anticipated that these minor 

frequency fluctuations were related to the structural interaction of three guy cables and 

tower mast. For higher cable tension variations (30% and 50%), new in-plane and out-of- 



plane frequencies emerged. These frequencies naturally arise as a result of the large 

difference in cable tension between the guy cables at the same level. 



Chapter 6 

CONCLUSIONS 
A finite elernent based methodology was successfully applied to determine natural 

frequencies and mode shapes of guyed towers. The guyed tower model consists of three 

main components, the guy cables, tower mast and torsion m s .  By applying the finite 

element method to a three-dimensional cable element following a catenary or parabolic 

profile, element stiffhess and mass matices were derived. Using a three-dimensional 

bearn-column element that accounts for five different lacing patterns, stiffiiess and mass 

matrices for the tower mast were computed. The global mass and stiffhess matrices were 

used in an eigen analysis to determine the natural fiequencies and modeshapes of the 

guyed tower system. With the ease of programming the finite element method on a 

persona1 cornputer, an interactive software package was developed to complete a fiee 

vibration analysis of guyed towers. The software included a user friendly graphical user 

interface. The graphical user interface provides several options in terrns of tower 

geornetry and properties and also displays the tower modeshapes. 

To verify the validity of the numerical model developed in this study, several 

cornparisons were made with existing solutions for a single cable, a cantilever bearn and 

guyed towers. The cornparisons showed good agreement with existing solutions and 

confinned the validity of the structural model. From the numerical studies, several 

conclusions were drawn. 

The natural fieqoencies of a single guy cable were found to be a function of the 

cable pre-tension force and stiffhess. For a given cable stiffhess, the natural frequency 



was shown to increase with increasing cable tension. Furthemore, for constant cable 

tension, the cable fiequency was observed to decrease with increasing cable length. A 

comparison between lumped and consistent m a s  idealizations showed that the rate of 

convergence was only slightly faster for the consistent mass representation. Even though 

the cable element derived in this study was much simpler, it compared favourably with an 

existing fully non-linear solution. It was also shown that the equivalent elasticity 

approach based on a straight chord produced reasonable results for out-of-plane cable 

frequencies only. 

Several analyses were completed which examined the behaviour of the individual 

guy cables, tower mast and complete guyed tower systems. Based on a comparison of 

natural frequencies of individual guy cables and those attached to a tower, it was found 

that interaction between the tower mast and guy cables has virtually no influence on the 

out-of-plane fiequencies of guy cables. However, the in-plane frequencies showed strong 

influence due to coupling of the guy cables and the tower mast. 

Guyed towers are generally very tall. As a result, the self-weight of tower 

imposes a considerable axial load on the lower portion of tower mast. it was found that 

the tower self-weight affects the first few natural fiequencies of a tower rnast. As such, 

self-weight effects were considered in the analysis. 

Parametric studies were completed to examine the influence of tower lacing 

pattern, guy cable tension and guy configuration on the dynarnic behaviour of a guyed 

tower. These parametric studies showed that tower lacing patterns generally had little 

effect (up to 10% variation) on the natural fiequencies of a guyed tower system. 

Furthemore, the effect of lacing patterns on the in-plane natural fiequencies was found to 

decrease as the number of guy levels increased. Natural fiequencies of a guyed tower 

were found to change significantly when variations in guy tensions were included in the 

analysis. For example, 30-50% variations in leeward and windward guys of tower 

resulted in new in plane vibration modes. Windward cables experienced increase in 

natural frequencies whereas leeward cable fiequencies were decreased. 

While a fiee vibration analysis is a good starting point to understand dynamic 

behaviour of guyed towers, there are instances where a forced vibration analysis is 



required. As such, the present software was developed such that it could be extended to 

consider forced vibration problems by means of the modal superposition method. 
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Nomenclature 

E, - Equivalent modulus of elasticity. 

E, - Cable modulus of elasticity. 

IV - Cable unit weight. 

A, - Cable cross-sectional area. 

L ,  - Projected length of cable. 

T - Cable tension. 

L, - Cable chord length. 

d - Cable sag. 

H - Horizontal cornponent of cable tension. 

q - Distributed self-weight of cable. 

1 - Horizontal component of cable length. 

L, - Effective cable length. 

E - Modulus of elasticity for m a t .  

E/I - Equivalent axial stifhess of tower mast. 

El - Equivalent flexural stiffness of tower mast. 

GA - Equivalent shear stifhess of  tower mast. 

GJ - Equivalent torsional stifmess of tower mast. 

O - Natural fiequency (radhec). 

fi - non-dimensionalized natural fiequency. 



Appendix 

THREE-DIMENSIONAL CABLE ELEMENT 

The local cable coordinate system was defined by considering the X~ avis in the 

plane of the cable along its length. The cable plane represents the plane that passes 

through the end points of the cable and tower base. Figure A.1 shows the cable plane. 

The J?, axis is also orientated in this plane and is perpendicular to the X, mis. The Z, 

mis is perpendicular to the plane of the cable. Figure A. 1 identifies the local and global 

axes of the cable. 

The cable element considered for this 

equation 2.19 the elastic stiffhess rnatrix [K,] 

element is 
- - 

study is shown in Figure 2.2. From 

for the three-dimensional cable (tmss) 

where E is the modified modulus of elasticity of the cable, A is the cross-sectional area 

of the cable element, L is the length of the element and T, is the pre-tension force 

applied to the guy cable with a nodal degree of fieedom vector { d )  = {il, u2;' . 

Similarly, using equation 2.20 the stress stiffhess matrix [K,] for the cable 

element under tension T,  may be expanded as 



T wirh a nodal degree of freedom vector (4 = ( r d ,  V, $5 idL V ,  - 1 . 

The total st ifiess matrix of the cable element shown in Figure 2.2 was obtained 

by adding the elastic stifhess and stress stiffness matrices given above. 

Figure A. 1 shows the three points used to define the cable plane. The equation of 

the plane ( n ) may be expressed as, 

n=(q-p)x(r-p). (A-3) 

From the equation of the plane, the unit vector perpendicular to this plane may be 

determined using linear algebra. By definition, this unit vector is one of  the vectors to be 

used in the transformation. A second unit vector may be determined along the length of 

the cable. The final vector may be obtained by evaluating the cross product of the above 

nvo unit vectors. Hence, the unit vectors take the form of, 

d ,  = c,n, + c,.n,. + c,n, 

n,. = C,J, + c,,n,. .. . + c,,n, (A.4) 

From the above, the transformation matrix fiom the local to the global coordinate 

system is, 

and 

where [K,] is the stifhess matrix with respect to the global coordinate systern. 



Mast 

Figure A. 1 : Plane of a cable- 

THREE-DIMENSIONAL BEAM ELEMENT 

The local mass and stiflhess matrices for a three-dimensional beam element were 

obtained by considenng the axial, bending and torsional deformations of  an element. 

This results in a beam element with six DOF (degrees of freedom) at each node (three 

translations and three rotations). 

The local fiame of reference and the displacement coordinates for a uniform 

three-dimensional beam element are shown below in Figure A.2. The stiffhess and mass 

matrices for this beam element were obtained from the axial, bending, and torsion 

elernents discussed by Craig (1981). The .r -axis was taken along the centroidal mis of 

the cross-section and the v and z axes are principle axes in the cross-section. /,. and /, 

are the moments of inertia along the y and z axes respectively and 1, is the polar 

moment of inertia about the x -axis. 



Figure A.2: Notation for a three-dimensional beam etement. 

For the beam element shown in Figure A.2, stiffhess rnatrix is given by Craig 

where E is the Young's modulus of elasticity, GJ i 

[ K I  = 

s the torsional stifhess, 

- 
L O  O O  0 O F 0  O  O  O O 

11EI. - O O  O  - O  6 E I .  0 - -1IEr. 6EJ. 
t? L2 L' 0 0 -  

l?EI, 
L: 

- -SEI,  -1 2 Er, -6 EI ,  
r' 0 - L' O  O  O 7 0 -  L: O 

y 0 0 0  O O F 0  O 
- 4*' O  O  

6E1, :Er, 
L O  - 

L2 
O  - 

L O  
- -6EI. 4ff- 0 O O O - " -  
L 2 L 

O  L O  O  O  O  
12 Er- - O  -6Er. 

L' 
O  0 -  

L2 
IiEf, - 

,s 0 - L~ 

L is the 

y O  O  
4 EI, - 

L O 
J E / .  
L - 

length of the beam element and A is the cross-sectional area of the beam dement. 

Craig (1981) also presented the consistent symmetric mass matnx for the beam 

element in Figure A.2 



where m is the mass per unit length o f  the element. 

For the beam element shown in Figure A.2, Przemieniecki (1968) presented the 

representative stiffhess matnx which included the effects o f  shear de formations as: 

12E/ where a> = - . 
GA, L' 

Przemieniecki ( 1  968) also presented the consistent symmetnc mass matrix which 

included shear deformations for the beam element in Figure A.2 as: 



[M] = mi. 

The geometric sti f i e s  

Przemieniecki (1 968) as 

'P - 
3.4 O O 

L+L 
105 15.4 O 

[= +II: - 
105 15A . 

(A. 10) 

:s matrix due to an axial load on the member was given by 

(A. 1 1) 

r with a nodal degree o f  freedom vector { r i , ,  4, u2 .  0,) - 

The geometric stifhess matrix due to the self weight o f  a bearn element can be 

expressed as 

(A- 12) 

where 4, is the self weight per unit length of the member. 



TORSION ARMS 

The local mass and stifmess matrices for a torsion arm were obtained by 

individually considenng a unit displacement on each of the nine DOF at the extremities 

of the torsion a m .  These calculations were conducted by modelling some standard 

torsion arms using the PC based software package SAP90n1. 

The stiffhess for three different torsion m s  was determined using the technique 

descnbed in Chapter 2. The three torsion arms were identified by their lengths, namely a 

three meter outrigger, an eight foot outrigger and a twelve foot outrigger. Details of the 

dimensions, section members and the structural stiffhess is presented in the ensuing 

sections. 

THREE METER OUTRIGGER 

The dimensions and members sizes are shown for the three meter outrigger in 

Figure A.3. Al1 dimensions in that figure are in millimeters except for the member sizes 

which are in imperial units. The resulting stiffness matrix is 

(A. 13) 



Figure A.3: Three meter outngger. 

EIGHT FOOT OUTRIGGER 

The stiffhess matrix corresponding to the eight foot outrigger  show^ in Figure A.4 

is presented below. Al1 units in Figure A.4 are imperial. 

(A. 14) 



Figure A.4: Eight foot outrigger. 

TWELVE FOOT OUTRIGGER 

The twelve foot torsion arm has identical dimensions and member sizes with that 

shown in Figure A.4 with the exception that the 8'-0 section length is replaced by an 

identical member 12'-0 in length. The resulting stifhess matnx is 

(A. 15) 



Bottorn Guy 

Table A. 1 : Guy Properties - WTMJ Tower 

J 

Level 

1 

7 - 
3 

4 

5 

E ( x o6 psi) 

24 

24 

24 

24 

24 

1 Segment 

Nurnber 

1 

7 - 

A (in2) 

-93 8 

1.13 

1.13 

1.13 

Ii (A) 

139.4 

269.4 

409.4 

549-4 

1 (A) 

559 

559 

559 

573-8 

Segement 

Weight (Ibs/A) 

449 

3.94 

q (lbs/fi) 

3.28 

3 -97 

3.97 

3.97 

Axial Load 

(Cat Model) 

( W  

828793 

Cable Tension 

at Base (Ibs) 

28800 

18500 

25850 

33100 

13.8 

EI ( x io6 

1bs-in') 

3.985 

Segment 

Length (Ibs/R) 

30 

93650 578.9 

3 -695 416 

Axial Load 

(Par Model) 

( W  

77341 7 

829.4 

30 760937 1 816313 





Table A.2: Tower Mast Properties - WTMJ Tower 




