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ABSTRACT

Guyed towers are used for communication purposes and are frequently designed to
heights of 300 meters (1000 feet). A guyed tower is a non-linear structure in which the
mast, typically consisting of multiple truss members is supported laterally at several
points by inclined guy cables. The guy cables are anchored to a foundation and are pre-
tensioned. Wind induced vibrations may result in a fatigue failure of a guy anchor
linkage or a cable, ultimately causing the collapse of an entire tower. In addition,
excessive deflections or vibrations may interfere with communications and control
systems resulting in serviceability failure. According to design standards, a basic
understanding of the dynamic characteristics of guyed towers is important. This study
develops an easy to use software package, aimed at practicing engineers, to determine
free-vibration characteristics (natural frequencies and mode shapes) of guyed towers. The
analysis presented herein employs the finite element method to determine the natural
frequencies and mode shapes of guyed towers. The structural system is broken down into
two main components, the tower mast and guy cables. Utilizing an equivalent beam-
column analysis that takes into consideration different lacing patterns, the mast is
modelled as a beam-column with equivalent properties. A three-dimensional cable finite
element following a catenary or parabolic profile is used to model guy cables. Several
comparisons are made to ensure the accuracy of the cable element and the guyed tower
model. Selected numerical results are presented for natural frequencies and mode shapes
of a few representative towers. The influence of cable tension, lacing pattern of the mast
and configuration of guy cables is also examined. The software package can be extended

to include forced vibration response through the modal superposition method.
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Chapter 1

INTRODUCTION

1.1 GENERAL

Guyed towers are almost exclusively used for communication purposes and
structural reliability of guyed communication towers is becoming an important factor in
the ever-increasing demand for wireless communication technologies. Guyed towers are
frequently designed to heights of 300 meters (1000 feet) and are used to transmit and
receive high frequency signals for various electronic communication systems including
those associated with electric power distribution. Slender masts laterally supported by
pre-tensioned guy cables are typically adopted for this purpose as they provide an
economical solution compared to self-supporting latticed towers.

A guyed tower is generally a non-linear structure in which the mast, typically
consisting of multiple truss members and of triangular or square cross section (Figure
1.1), is supported laterally at several points by inclined guy cables. The cables are
attached to buried concrete anchors and are pretensioned. The non-linearity is primarily
associated with structural behaviour of guy cables and that may significantly complicates
the analysis of the entire structure. Typical guy cables comprise of galvanized bridge
strand in accordance with ASTM Standard AS586. Guy diameters nommally range
between 20 and 50 mm (3/4” to 27).

Guyed towers used for communication purposes must be designed to meet

stringent deflection requirements. This is necessary since a minor misalignment of



satellite dishes mounted on the tower may result in loss of communication signals, which
could lead to disruptions or poor quality service to thousands of customers. Wind
induced vibrations are the primary source for excessive tower deflections. Therefore, the
dynamic response of guyed towers is an important aspect in the design of towers for
communication purposes. In addition, wind induced vibrations occurring over an
extended period of time may induce fatigue failures in various elements of a guyed tower.
A better understanding of the dynamic behaviour of guyed towers is also important to
facilitate design against fatigue failure. In seismic zones, guyed towers must be designed
to withstand earthquake loads. Public utilities or federal agencies own nearly all guyed

towers built in Canada.

- leg members
a

N

a) Tnangular b) Square
Figure 1.1: Cross section of a typical mast.

1.2 LITERATURE REVIEW

Many researchers have studied static and dynamic behaviour of guyed towers. A
simple way to analyze a guyed tower is to assume the mast of the structure to be a
continuous beam on elastic supports with a set of springs to idealize the taut guy cables
attached to the tower mast. An obvious improvement to this simple model would be to
consider the sag in guy cables.

Cohen and Perrin (1957a and 1957b) made the earliest contributions to the study
of guyed towers. Their first paper (19572a) investigated wind loading and presented a set
of charts that could be used to predict the drag loads produced by wind on various types



of structures. The second paper (1957b) presented a model that described the behaviour
of a guyed tower. The mast was treated as a cantilever beam-column on elastic supports
and the guy cables were considered to follow a parabolic profile. Rowe (1958)
investigated the amplification of stresses and displacements in guyed towers when
changes in geometry are included. Modelling the guys as bars, charts were developed
that could be used to determine when advanced methods of structural analysis are
required in the design and what modifications could be made to the analysis to obtain
reasonable results.

Hull (1962) expressed the critical moment of inertia corresponding to a critical
buckling wind load and conducted a stability analysis of guyed towers. It was suggested
that increasing the stiffness of guys is the most efficient means of increasing the buckling
capacity of a tower. It was shown that the buckling capacity could be increased up to the
limit where it begins to buckle into a number of sine waves. Hull showed that once this
point has been reached, a further increase of guy stiffness does not increase the buckling
load of a tower. At this stage, it was found that the only way to further increase the
bucking capacity of a tower was to increase the moment of inertia of mast.

Goldberg and Myers (1965) investigated the importance of including wind effects
on guy cables. A method of analysis was presented for guyed towers that considered
non-linear behaviour and the effect of wind on guy cable stiffness. The study also
reported that neglecting wind effects on guy cables resulted in discrepancies in the end
moments, shear, guy tensions and lateral displacements. Following the assumption that
an inclined guy cable follows a parabolic profile, Odley (1966) presented a solution
where secondary effects (ice loads, shear deformations, etc.) were included in the guyed
tower model. The analysis was carried out by assuming a value for the deflection of the
mast at each guy level, which is used to determine the moments and reactions. Using
these reactions, deflections were determined analytically and compared with the assumed
deflections. This trial and error procedure was repeated until all assumed and computed
values of deflection fall within a predetermined tolerance.

Williamson and Margolin (1966) showed the importance of including shear
effects in the analysis of guyed towers. They presented a method for modifying the

conventional moment distribution factors when the axial thrust and web flexibility of a



tower is included. In the analysis, the shaft was replaced by a fictitious solid web that
had an equivalent shear rigidity of a flexible trussed web. To account for shear
deformations, modified moment distribution constants were presented. Miklofsky and
Abegg (1966) presented a simplified systematic procedure for the design of guyed towers
by use of interaction diagrams. A tower is first analyzed following the assumption that it
1s a continuous beam on elastic supports while secondary effects are included. The tower
is then re-analyzed including amplification stresses from axial loads. The interaction
diagrams provided a designer with a graphical visualization of the design range thereby
preventing a trial and error procedure.

Goldberg and Gaunt (1973) presented a method that could be used to determine
the instability of guyed towers. In their analysis, lateral load increments are applied until
a tower reaches instability. The criterion used to define buckling in the analysis is the
occurrence of a large increase in the tower deformations for a small increase in the
applied load. A parametric study was also included which showed the influence of
certain system parameters on the critical load of a tower. They showed that increasing
the moment of inertia of the shaft was a less effective way of increasing the critical load.

Based on the assumption that the static profile of a cable followed the shape of a
parabola, Davenport (1959) presented a dynamic guy modulus which was meant to take
into account the effects of the dynamic nature of wind loading on a guy and a mast. Dean
(1961) introduced catenary equations for the static profile of a guy cable. Dean argued
that due to the availability of computers there is no need to use a parabolic approximation
in the analysis of a cable. Dean also continued on to present his derivation of a dynamic
guy modulus. However, Davenport among others (Dean 1962) found fault that Dean’s
derivation neglected to include elastic stretch of a cable. Following up previous work by
Davenport (1959) and again assuming a parabolic approximation for the static profile of a
guy cable, Davenport and Steels (1965) considered the effects of aerodynamic damping
and transverse vibrations.

Using catenary equations, O’Brian (1967) presented an iterative numerical
procedure for the solution of a sagging cable. This iterative procedure presented an
important step in the development of a better cable element. In one of the first studies to

consider the extensional characteristics of a cable, Irvine and Caughey (1974) presented a



linear theory for the free-vibration of a uniform horizontally suspended cable for ratios of
sag-to-span of 1:8 or less. They showed that if the sag is small enough for the static
geometry to be described by a parabola, the theory provided good results. These authors
also developed expressions for the natural frequencies of a horizontal cable fixed at both
ends for in-plane and out-of-plane motions. The expressions were presented as functions
of the cables axial stiffness, horizontal tension, self-weight and cable effective length. In
addition to a horizontal cable, consideration was also given to the analysis of inclined
cables. The effects of inextensible cable assumption were also discussed.

West et al. (1975) considered elastic effects and used straight bars connected by
frictionless pins to derive the fully non-linear equations of motion for free vibrations and
a linearized version of it. The solution resulted in frequencies and modes associated with
small oscillations about the equilibrium configuration. However, the work reported was
limited to in-plane motions and horizontal cables only. Henghold and Russell (1976) and
Heaghold et al. (1977) made additional improvements to the analysis of an elastic guy
cable. These authors employed the finite element method to develop a three-node
geometrically non-linear cable element and considered three-dimensional free vibrations
of an extensible cable hanging under self-weight. Extending an analytical approach,
Irvine (1978) presented solutions for free vibrations of an inclined cable hanging under
self-weight. Non-dimensional natural frequencies of symmetric in-plane modes were
shown to depend only on one dimensionless system parameter while the remaining
frequencies were shown to be independent of any parameters. Analytical expressions
were presented in a form that could be used to reproduce the results obtained by
Henghold et al. (1977).

By using an equivalent modulus of elasticity, Fleming (1979) used the finite
element method to model non-linear behaviour of cables. Ekhande and Madugula (1988)
later adopted this concept of an equivalent modulus of elasticity in their study. Following
a parabolic profile of an inclined cable, Veletsos and Darbre (1983) presented a linearized
approximation of the equations of motion for an inclined cable. Using these equations,
the dynamic stiffness of a cable could be derived. This approach produced results similar

to those of Irvine (1981), but could also accommodate for large inclinations of the cable.



In many studies, guyed towers have been assumed to oscillate linearly about their
static equilibrium position. This allowed for the use of a “Modal Approach” (McCaffrey
1969, McCaffrey and Hartmann 1972, and Novak et. al. 1978) for dynamic analysis. The
above studies assumed a mast as an equivalent beam-column and a lumped mass
idealization. Saxena (1988) considered the free vibration of complex guyed towers. The
cable element used in the study was based on the formulation of Veletsos and Darbre
(1983). Stiffness of the mast was evaluated in an approximate manner by considering
only leg members. As a consequence, the lacing pattern of a tower has no influence on
the response. More recently, Kahla (1993) presented an equivalent beam-column
analysis. The study introduced equivalent beam-column properties for several square and
triangular lacing patterns. The coupling between different degrees of freedom was

addressed by the use of a geometric coupling matrix.

1.3 SCOPE AND OBJECTIVES

Field inspections in Manitoba and other provinces have identified 2 number of
problems associated with guyed tower members. These problems have included
excessive vibration of tower members and guy cables and structural failure at the guy
anchors. Examination of some problematic guy anchors revealed that the anchors had
failed in a brittle manner. A brittle failure typically indicates a fatigue problem induced
by cyclic loading conditions. Wind induced vibrations in guy cables may subject guy
anchor linkages or the guy cable to cyclic loading conditions. Over time these conditions
can lead to fatigue failure at the anchor or the guy cable, both of which could cause the
collapse of a tower. In addition, excessive deflections due to wind induced vibrations can
cause towers to misalign and cause an interference with communication and control
systems.

During the early and late winter months freezing rain is not an uncommon
occurrence throughout the Prairie Provinces. Freezing rain when combined with wind
can create undesirable effects on guy cables. During storms, rain (driven by wind) can
freeze on the guy cables and form what resembles an aerodynamic wing. The wind

passing around this newly formed wing may then pick up and drop the cable. The



repeated occurrence of this phenomenon is known as galloping. Galloping can cause
failure of a guy or guy linkage and may lead to the collapse of a tower.

The Canadian Standard CSA-S37-M94 states that guyed towers should be
serviceable and safe from collapse. The tower should also be of sufficient rigidity such
that the serviceability limits of twist or tilt are not exceeded. The standard also mentions
that guyed towers are susceptible to dynamic excitation due to wind turbulence. It is
recommended (but not mandatory) that a dynamic analysis be conducted and that it
should include all significant vibration modes and account for structural and aerodynamic
damping of mast and guys. The standard also briefly describes a method to determine the
dynamic response of a tower referred to as the Patch Load Method. Using this method,
steady and fluctuating components of guyed tower response are calculated separately and
then combined to obtain peak design response.

Manitoba Hydro currently owns and manages several guyed towers in the
province. These towers are used to communicate streams of data from generating stations
and are also used by telecommunication companies for various cellular services. In an
effort to provide practicing engineers with a better understanding of the basic structural
dynamic characteristics of a guyed tower, this study presents a user friendly computer-
aided software package for free vibration analysis of guyed towers.

As such, the present study seeks to provide an efficient method for free vibration
analysis of guyed towers. This is accomplished by considering the three main
components of a guyed tower. Namely, the guy cables, the tower mast and torsion arms.
As part of the study, a new three-dimensional cable element is developed. Existing
methods of analysis are utilized to represent the tower mast as a three-dimensional beam.
Furthermore, a stiffness and mass matrix representation is developed for some common
torsion arm configurations. By using the finite element method (FEM), the above tower
components are integrated into a model to represent a guyed tower and a free-vibration
analysis is completed. The above tasks are completed utilizing a computer algorithm
developed in this study. Furthermore, an interactive and easy to use graphical user
interface (GUI) is developed as part of the software package. The graphical interface

serves as a front and back end to the computer algorithm.



The theory and structural model that constitute the basis of the finite element
analysis are described in Chapter 2. The structural model is based largely on an
equivalent beam-column model for mast, equivalent truss element for torsion arms and
sagging cables following parabolic or catenary profiles. To verify the validity of stiffness
and mass representations of the mast and cables, several comparisons are made in
Chapter 3 with exact analytical and existing numerical solutions. Chapter 4 discusses the
development, layout, and provides user instructions for the software package developed
in this study. The basic dynamic behaviour of representative multi-level guyed towers is
examined in Chapter 5. A set of conclusions is given in Chapter 6. The finite element
program developed in this study is broad and expandable, and has been developed as a
user-friendly tool for practising engineers. Options are available for cable representation
(parabolic and catenary) and tower lacing patterns. The software package can be

expanded to include forced vibration analysis through the modal superposition method.



Chapter 2

STRUCTURAL DYNAMICS MODEL

2.1 GENERAL DESCRIPTION OF STRUCTURAL MODEL

The selection of a mathematical model to simulate the response of a structure is a
very important step in any analysis. Assumptions made at this point determine if the
developed model reasonably represents the actual behavior of the structure under
consideration. In the present study, the finite element method (FEM) was used to model
the guy cables and mast of a guyed tower system. The FEM involves dividing a structure
into a discrete number of elements from which an approximate numerical solution is
obtained. With the ease of programming the FEM on personal computers, this approach
provides an efficient means for developing an accurate solution for many structural
analysis problems.

A finite element idealization of a typical guyed tower is shown in Figure 2.1. As
can be seen from the figure, the model consists of two main components, cable and mast
elements. The elements are inter-connected to one another by the nodes, each of which
may have as many as six degrees of freedom (DOF). The choice of structural elements
used to model a system and the number of elements used in an analysis could have a

significant impact on the accuracy as well as the computational efficiency of the solution.
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Figure 2.1: Finite element idealization of a typical guyed tower.

In this study, a three-dimensional beam-column model was used to represent the
mast of the tower. The beam column model consists of six DOF at each node. The guy
cables were represented by a three-dimensional cable element with three DOF at each
node. Star mounts (cross arms) are modeled by equivalent truss elements, while satellite
dishes as lumped masses with negligible stiffness. Once the guyed tower has been
discretized into elements, the individual mass and stiffness matrices of each element are
computed. By employing the standard assembly procedure (Harrison, 1973) the mass and
stiffness matrices of the entire structure are determined. The global mass and stiffness
matrices are then used to determine the free vibration frequencies and modeshapes of the

structure.

2.2 GUY CABLE ELEMENT

Guy cables are commonly used to support freestanding towers that may extend to
greater heights. These guyed structures are generally elastic in nature, but non-linear in

their geometric sense. This non-linear behavior is a result of the non-linear axial force-
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deformation relationship for due to the sag caused by their own self-weight. The non-
linear behavior of a guyed tower complicates the analysis of the structure significantly.
To accurately model a guy cable, a three-dimensional inclined cable element with
parabolic or catenary profile was used in the present study. The application of an
equivalent modulus of elasticity for a guy cable based on straight cord assumption was

also examined.

EQUIVALENT MODULUS OF ELASTICITY

A conventional method to account for the non-linearity due to sag of an inclined
guy cabie has been to consider an equivalent straight chord member while the modulus of
elasticity is modified and represented by an equivalent modulus of elasticity. This
equivalent modulus of elasticity (£,) considers both the effects of material and geometric
deformations (Fleming 1979). The equivalent modulus of elasticity may be represented

as

E., = e 2.1)
l: [W'LP’ACECJ]
[+ —2 <
127°

where £, is the equivalent modulus of elasticity for the cable, E, is the modulus of

elasticity for the cable, L, is the projected length of a cable on a plane normal to the

P

direction gravity, w is the unit weight of the cable, 4. is the cross-sectional area of the

cable and T is the tension in the cable.

CABLE PROFILE

Many past studies (Davenport 1959, Irvine and Caughey 1974, Veletsos and
Darbre 1983) have used the assumption that the static profile of a sagging cable subjected
to its own weight and an externally applied axial tensile force may be represented by a
parabolic profile. In the case of a guy cable being used to support a tower, the high
pretension force may often cause the sag of the guy cable to be relatively small. Under
these circumstances, Irvine (1981) argued that the parabola provides a reasonable
approximation of the static profile of a sagging cable provided that the sag-to-span ratio is

less than 1:8.
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Figure 2.2: Inclined guy cable with parabolic profile.

With reference to the co-ordinate system shown in Figure 2.2, the deflection of an
inclined sagging cable subject to an externally applied tension was given by (Veletsos
and Darbre 1983)

2 2
LIS B 3
y(x)—2 - [L (L] J 2.2

c

In many existing analyses (Davenport 1959, Irvine 1981, etc.) of guys and guyed
structures, the profile of a sagging guy cable has been assumed to follow the shape of a
parabola. However, this simplifying assumption can introduce errors in the cable profile
and subsequently in the natural frequencies obtained from an analysis. Such errors can be
quite small in some cases, such as the case of a tightly stretched cable where the sag is
small. If however the chord is not horizontal, then symmetry is lost and the parabolic
approximation can introduce significant errors (Dean 1961). Since the catenary profile
has been considered to provide the best approximation for a sagging cable, the catenary
equation developed by Dean (1961) was adopted in the present study for the static

equilibrium profile of a guy cable.
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Figure 2.3: Inclined guy cable with catenary profile.

Consider the guy cable shown in Figure 2.3. The profile of the cable may be
described by (Dean 1961)

y =—f’icosh(fll-x+a,)+a-_, (2.3)

where A is the horizontal component of the cable tension, g is the distributed self

weight of the cable and

a, =sinh™’ —ah __qL; a, =—i{-‘::oshal . (2.4)
2H sinh(ql/2H)| 2H : q

The tension at any point on the cable is given by

T= Hcosh(—;’?.tw-a‘]. (2.5)

CABLE ELEMENT STIFFNESS

For a cable structure such as a guyed tower, the displacements are not very large
and the geometry of the system is well defined prior to an analysis. The dynamic
behavior is usually low frequency responses due to wind excitation. For these cable
structures, it has been common to model the guy cables by using a series of short truss
links and non-linear computer codes developed for solid structures (Peyrot and Goulois

1979). It has been shown that an inclined cable supported at its ends and subjected to its
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own weight and an externally applied tensile force follows a catenary profile (Dean 1961
and Irvine 1981). The axial stiffness of the cable varies with a change in sag, which in
turn varies with the displacement of the cable ends. Hence for cable elements, the sag
must be considered if an accurate analysis is to be obtained (Fleming 1979).

Figure 2.4 shows a typical cable element of length L_, cross-sectional area 4,
and mass density po. By employing the concepts of conventional finite element method,

the stiffness matrix of the inclined cable element shown in Figure 2.4 can be developed.
Let v, v, and w, be the end displacements of the cable element along the positive x,
v, and z directions respectively so that there are three degrees of freedom at each node.
The displacements u, v and w at an arbitrary point on the cable element shown in Figure
2.4 is interpolated as (Zienkiewicz and Taylor 1989)
u= ZZ:N,«,- , v= Z Ny, w= Z Nw; (2.6)
=1 i=1 i=1

where N, is the shape function at node i defined by
Ny =30-¢); M =3(+9). @7

Figure 2.4: Three-dimensional cable element.

Cartesian co-ordinates along the cable element is given by (Zienkiewicz and
Taylor 1989)
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I=Z~i"n )”—‘ZN,'}’.', z=ZNizi' (2-8)

The relationship between Cartesian and curvilinear co-ordinate system is given by |J]

where

ox
I =% 2.9

The strain-displacement relationship for an axial member is given by

(Zienkiewicz and Taylor, 1989)

&y =(€J:)L +(£~\')NL (210)
where
(¢.), = Linear strain= 2% (2.11)
cx

= Non-li in=Ll(&) (&) (&Y

(£.)y; =Non-linear strain = 2{(&_\_) +(8\'] +(&YJ } 2.12)
_du_dudf 1 du_

(’&)L ~dx ~d§ dr 'pi df—[BL}{d} (2.13)
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(6)y =i & vl (2.14)
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The strain energy U of a cable element is given below.
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U =% [ eaitorars [ ieitutonrar
=—;—L{€x},T_E{s,}dV+L{£,};,_ oo dA dx
-Ze [ @B B e+ 2 [ @76l 6l las

1 1
=Sy [KeJid) + S 107 [K o)) (2.17)
where o, is the initial stress, and 7, is the pre-tension force
T, =0, [d4=0,4.

(2.18)

Based on equation 2.10, the elastic stiffness matrix [K;] of the cable element is

expressed as

[Kelomy=£4 [ [8.)7[8. )] d¢ 2.19)
and the geometric stiffness matrix [K] is expressed as

[klew=Ts [ [6]7[61] d¢. (2.20)
CABLE ELEMENT MASS

The lumped-mass representation is the simplest mathematical model for inertia
forces of structural elements. In this idealization, masses are lumped at the node points
with respect to the translational and rotational inertia of an element. The lumped masses
are determined on the assumption that the material within the mean locations on either
side of the specified node behaves like a rigid body while the remainder of the element
does not participate in such motion. This assumption does not include the dynamic
coupling between element displacements, and the resulting mass matrix is purely
diagonal (Przemieniecki 1968). The lumped-mass matrix of the cable element shown in

Figure 2.4 is given by

[1 0 0 0 0 O]
01 000O0
[m]=pAcLe0 o1 0 00 (2-21)
2 |[0ooo100
000010
0 0 000 1]
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where p is the mass density, L, is the effective cable length and 4, is the cable area.

However, the solution accuracy based on lumped-mass representation is not as
good as if a consistent-mass is used (Przemieniecki 1968 and Logan 1992). The lumped-
mass representation has the advantage that the matrix is diagonal and the numerical
operations for the solution of the dynamic equilibrium equations are in most instances
reduced substantially (Bathe 1982).

Based on variational principles, a mass matrix consistent with the displacement
interpolation functions can be derived. It can be shown that the consistent mass matrix of

a cable element of volume V can be expressed as

[n]= [[feINT N]av . (2.22)

By evaluating the above integral, the consistent-mass matrix of the cable element

shown in Figure 2.4 is found to be

(2 0 01 0 O]

020010
{m]=pAcLe 0 0200 l. 2.23)

6 |1 00200

010020

(0 01 0 0 2

The present study considered both lumped-mass and consistent-mass approaches

in the modeling.

2.3 TOWER MAST ELEMENT

A proper structural model of the mast is necessary in order to ensure that accurate
results are obtained for a guyed tower system. The mast, which consists of muitiple truss
members, can be represented as a beam-column of equivalent stiffness based on the
properties and geometry of the mast.

By using the unit load method to determine the displacements of the centroidal
axis of a mast for various loads, the equivalent beam-column properties were derived by
Kahla (1993). This approximate method of analysis provides a simple and efficient way
to analyze guyed towers. Figure 2.5 shows a space truss and its equivalent beam-column

model. For the five lacing pattems shown in Figure 2.6, Kahla (1993) determined the
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equivalent beam-column properties for a mast of triangular cross-section. These
equivalent properties are shown in Table 2.1.

In Table 2.1, E4 is the equivalent axial stiffness, £/, and EI_ are the equivalent
flexural stiffness in the x and the z directions, GA, and G4 are the equivalent shear

stiffness in the x and z directions and GJ is the equivalent torsional stiffness. The

remaining properties are defined in Figure 2.7 where 4,, 4, and 4, are the areas of the

vertical, diagonal and horizontal truss members. The space truss shown in Figure 2.7

represents a typical segment of a triangular lacing pattern as shown in Figure 2.6.

YA

(a) Space truss (b) Beam-column model
Figure 2.5: Tower segment.

a) Pattern] b) Pattem 2 c) Patten 3 d) Pattern 4 ¢) Pattern §
Figure 2.6: Tower lacing pattemns.
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Equivalent Property Pattern 1 Pattern 2 and 3
EA 3EA, 3EA,
EI.EI. EAa*[2 EA,a*/[2
2 ¥} s
GA,,GA, 1 2 ,2un 3E4, sin® Gcos 92
3EA sin” Ocosd 3EA,
4 1 1 tanéd 4 1 I
aJ /[—Ea_z( Ay un:0+ A,,sinzﬁcos6+TJ) /[;( Ay unze‘ Ay sin® 0cosa]]
Equivalent Property Pattern 4 Pattern 5
A A, c08’ 8
EA 3E4, 3E(A" + A2, sin’a)
2 Ed° A, A cos’ 6
El_,EI. EA,a*[2 e (A,. + —(,,—:‘m)
GA,,GA. 3EA, sin’ Ocos 8 3EA, sin” #cosé
GJ Ea® A, sin’ Ocos G2 Ea* A sin® fcos /2

Table 2.1: Equivalent beam-column properties.

AJ2
T A2
[ . A,
b Ah X g Ad
i - Ac
1 A 4 A4
—a—

Figure 2.7: Space truss.

Based on the equivalent beam-column properties presented above, the stiffness
and mass representation of the three-dimensional beam-column model can be obtained.
The stiffness and mass matrices for a slender three-dimensional frame element (beam-

column) which considers axial, transverse and bending motion is given by Craig (1981).
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However, this stiffness and mass representation does not consider shear deformation and
rotatory inertia effects. Stiffness and mass representations for a three-dimensional beam
element which considers shear effects is given by Przemieniecki (1968). The stiffness
and mass matrix representations given by Craig and Przemieniecki are presented in the

Appendix for completeness.

AXIAL LOAD AND SELF WEIGHT EFFECTS

Guyed towers often extend to heights of 100 meters or more. As a result, self-
weight of the tower can exert a considerable axial load on the lower portions of the tower
mast. The basic beam stiffness matrix does not include the effects of a compressive axial
load or the effects of element self weight. An axial load on a beam element can have a
significant effect on its dynamic behavior (Przemieniecki 1968). The effect of tower self
weight was taken into consideration by incorporating the geometric and axial load
stiffness matrices with the basic stiffness matrix of a beam. Complete geometric and axial

load stiffness matrices are presented in the Appendix.

2.4 TORSION ARM MODEL

The upper level guys are often attached to the tower mast by triangular star
mounts often referred to as torsion arms. These arms are primarily used to reduce
twisting of a tower in an effort to keep microwave satellite dishes in alignment so as to
limit any disruptions to communication signals. The typical configuration of a torsion
arm is shown in Figure 2.8(a).

A torsion arm typically consists of short non-symmetrical slender Iattice
members. Since the members are slender, shear deformations can be safely ignored
(Timoshenko 1960). A star mount cannot be modelled as a rigid member or as a series of
equivalent beams which connect a guy cable to the equivalent beam-column representing
the mast since this would not account for tension of a cable on mast. Instead, the torsion
arm was modelled as a space truss. The stiffness matrix was derived by considering the
degrees of freedom (DOF) at the cable end and the point of attachment of the star mount

with the mast. One end of the mount is connected to the legs of the mast at four points
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(Figure 2.8). Deformations on this plane were assumed to remain planar due to
considerably higher stiffness of tower mast in comparison to that of star mount.
Subsequently, a star mount was modelled as having three translations and three rotations
at the point of contact with the beam-column, while the free end to which the cable is
attached has only three translations. This results in a 9x9 stiffness matrix that was
computed by conducting a series of truss analyses. These analyses were carried out using
the software package SAP90™. The mass matrix was formed by a traditional lumped
mass technique. The star mount's structural mass and stiffness matrices are presented in

Appendix A.

\

mast legs

(a) Typical torsion arm (b) Torsion arm model

Figure 2.8: Torsion arm.

The pre-processor developed in this study provides a user with a few standard
torsion arms to choose and the option of employing one of the two common cable
configurations shown in Figure 2.8. Dimensions and sections properties of some

standard torsion arms are included in the Appendix.
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Guy Cable

Star Mount /

Star Mount

<«4—— Guy Cable

Figure 2.9: Guy configuration for tower with torsion arms (top view).
MICROWAVE SATELITE DISHES
A microwave dish is a small conical dish attached to the mast of a guyed tower
via a short rigid link as shown in Figure 2.10. It does not provide any structural stiffness

to a guyed tower. A satellite dish is incorporated into the structural model by considering

it as a lumped mass.

«4—— Microwave
Dish

D Rigid Link

Mast ——p

\/\

Figure 2.10: Microwave satellite dishes.

22



2.5 FREE VIBRATION ANALYSIS

When a displacement is applied to a structural system in a state of static
equilibrium and then released, it freely vibrates about the static equilibrium position.
Such vibrations are dependent upon the mass and stiffness of structure. The purpose of a
free vibration analysis is to determine the natural frequencies and corresponding
deflections referred to as modeshapes.

The natural frequencies and modeshapes of a structure obtained from a free
vibration analysis can be very useful. The frequencies are an immediate indication of the
resonance frequency of the structural system. Knowledge of such frequencies is useful in
designing tower structures for gusty winds and other types of dynamic loading.

A simple spring-mass-dashpot model can be used to represent basic free vibration
analysis of a structure. Consider the one-degree of freedom system shown in Figure 2.11.
The dynamic equilibrium is expressed by

mi +cx +kx = f(t) (2.249)
where overdot indicates differentiation with respect to time. The equation of motion for
an elastic system with a finite number of DOF may be expressed in matrix notation as

Mi+Cx+Kx=F() (2.25)
where M ,C and K are the global mass, damping and stiffness matrices respectively, x

is the vector of displacements for each DOF and F(¢) is a time-dependant load vector

corresponding to each DOF.

x(t)

m AQ

Figure 2.11: Dynamic equilibrium of a spring-mass-dashpot system.

In the case of a completely unconstrained ( F(¢) =0) and undamped (C =[0]) structure

undergoing free oscillations, the equation of motion (2.25) is reduced to
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Mi+Kx=0. (2.26)
The general solution of (2.26) can be expressed as

x(1) = ge'* 2.27)
where ¢ is a vector of displacement amplitudes and @ denote frequency of motion.

Substitution of equation (2.27) into (2.26) gives
K¢=arMp. (2.28)
This is an eigenvalue or characteristic value problem. From linear algebra, this equation

has a non-trivial solution only if
K -Ma*lgp=0. (2.29)

Evaluating the determinant of equation (2.29) leads to a polynomial of order n (where n
is the number of unconstrained DOF in the system). The roots of this polynomial give

the free vibration (natural) frequencies, @;, i=1...n. Back substitution of these

frequencies into equation (2.28) results in n mode shape vectors, 4.

The non-trivial solution of equation (2.29) is commonly obtained from a
computer-based analysis. A common algorithm used to solve characteristic value
problems is the Jacobi method. However, when the order of the stiffness and mass
matrices is large, use of the Jacobi solution procedure can be very inefficient (Bathe
1982). Since a finite element analysis of a guyed tower system requires a solution to a
large eigenvalue problem, the Jacobi method was not used in this study. Instead, the
IMSL library subroutine GVCSP was utilized. The IMSL subroutine computes all of the
eigenvalues and eigenvectors of the generalized real symmetric eigenvalue problem

z = ABz , with B symmetric positive definite. The Cholesky factorization B = RTR , with
R a triangular matrix, is used to transform the equation A4z=.Bz, to

(R-T AR-1YRz)=4(Rz). The eigenvalues and eigenvectors of C=R-T 4R-1 are then
computed. The generalized eigenvectors of 4 are given byz=R-1x, where x is an

eigenvector of C. This development is found in Martin and Wilkinson (1968). The
Cholesky factorization is computed based on IMSL routine LFTDS. The eigenvalues and

eigenvectors of C are computed based on routine EVCSF.
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Chapter 3

NATURAL FREQUENCIES OF CABLES
AND BEAMS

3.1 COMPARISON OF CABLE FREQUENCIES
TIGHTLY STRETCHED CABLE

Certain verifications must be made to ensure the accuracy of structural model
developed in the present study. An obvious case to consider initially is comparison of
results obtained from the cable finite element developed in this study with the classical
case of a tightly stretched cable (a horizontal cable with sufficient tension to overcome
self-weight of the cable). For this special case, the in-plane and ‘sway’ (out-of-plane)
modes obtained from the finite element analysis are shown to have identical natural
frequencies that converged to the following classical result (Henghold et. al. 1977)

Q, =nxJT; n=123,... 3.1

where T=1/mgL., and m and : represent the mass per unit length and cable tension

respectively,

In addition, the non-dimensional frequency Q in (3.1) is defined as

Q=,,,/ £ (.2)
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where « is natural frequency of a cable in rad/sec, g is the acceleration due to gravity,
and L. is the chord length of the cable.

In addition to the identical in-plane and ‘sway’ modes, a bar mode was also
identified in the analysis. This bar mode was shown to have natural frequencies that

converged to the analytical result

Q, =nz | AL (3.3)
mgL,
HORIZONTAL CABLE

In the case of a horizontal sagging cable (Figure 3.1), a set of natural frequencies
that include in-plane symmetric, in-plane anti-symmetric and out-of-plane modes were
identified. The analytical solutions for the natural frequencies of a horizontal sagging

cable were given by Irvine (1981).

v v vyVVvYy vy ve vy |? H =4170 kN

g =201.7 N/m
AE.=421x10° N

[ L

[&

Figure 3.1: Honzontal sagging cable.

The Tables 3.1, 3.2 and 3.3 present a comparison of natural frequencies for in-
plane symmetric, in-plane anti-symmetric and out-of-plane modes of the cable shown in
Figure 3.1. For each mode, the first four transverse natural frequencies are presented for
a cable discretized into eight and sixteen finite elements. Both lumped and consistent-
mass idealizations were used in the comparisons. The results presented by Mathur (1985)
correspond to a cable following a parabolic profile. As can be seen from the tables, eight
cable elements produced reasonably accurate results (less than 10% error) for the first two
natural frequencies. However, in the case of the third and fourth frequencies, the error
was shown to range from 10-30%. In contrast, the use of sixteen elements produced

results, which showed errors less than 8% for the first four natural frequencies. From the
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results obtained, it was evident that a greater number of elements is required to obtain
accurate solutions for the higher modes. The guyed tower analysis program developed in
this study provides a user with an option to specify the number of finite elements to be
used in the cable discretization.

Both lumped-mass and consistent-mass solutions were shown to converge to the
analytical solution at a similar rate. For higher frequencies, the consistent-mass results
were found to converge only slightly faster than lumped-mass based results except in the
case of in-plane symmetric mode where the convergence rates were very similar. Based
on this finding it appeared advantageous to implement the lumped-mass formulation in
the software development to ensure computational efficiency. However. another
interesting behavior was also observed. From the cases considered in Tables 3.1, 3.2 and
3.3, it appeared that the two different mass models converged to the analytical solution
presented by Irvine (1981) from different directions. The consistent-mass formulation
overestimated the analytical solution, while the lumped-mass formulation consistently
underestimated the solution. A comprehensive literature search did not find any
discussion on the two different mass models converging via different bounds, however a
discussion on the rate of convergence for the two models was found. In a study by Tong
et al. (1971), it was shown that the lumped-mass idealization suffers no loss in the rate of
convergence for systems with low DOF (i.e. a rod). However, for problems governed by
higher order equations (beam or plate), the consistent-mass approach was shown to yield
better convergence. Since the guy cable model in this study comprises of three DOFs, the
consistent-mass formulation provides better accuracy at a somewhat lower computational
efficiency. As such, the software developed in this study provides a user with the option

of choosing between the two different mass models.
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2 | Lengn Normalized natural frequency (w/7)

[m] Mode Lumped | Consistent Lumped Consistent | Irvine

(8 clements) | (8 clements) (16 clements) (16 clements) (1981)

1 2.27 2.33 2.29 2.30 2.29

2 3.00 3.33 3.13 3.21 3.18

60 306.3 3 4.24 5.77 4.81 5.22 5.03
4 4.99 8.33 6.45 7.55 7.01

1 1.60 1.62 1.61 1.61 1.61

2 2.86 3.20 2.99 3.08 3.04

20 291.6 3 4.24 5.77 4.80 5.20 5.01
4 4.99 8.34 6.46 7.55 7.00

1 1.21 1.23 1.22 1.22 1.22

_ 2 2.84 3.18 2.96 3.05 3.01

6 | 1396 3 3.23 5.76 4.80 5.20 5.00
4 4.99 8.34 6.46 7.55 7.00

| 1.07 1.08 1.08 1.08 1.08

2 921 2 2.83 3.18 2.96 3.04 3.01
- 3 4.23 5.77 4.80 5.20 5.00

4 4.99 8.34 6.46 7.55 7.00

Table 3.1: In-plane symmetric modes for a horizontal sagging cable.

Length Normalized natural frequency ((u/ ;r)

A ml | Mode | Lumped [ Consistent | Lumped Consistent | Irvine
(8 elements) (8 elements) (16 clements) (16 elements) (1981)

1 1.94 2.04 1.98 2.00 2.00

2 3.59 4 .40 3.89 4.09 4.00

60 506.3 3 4.70 7.15 5.65 6.34 6.00
4 - - 7.19 8.80 8.00

1 1.94 2.05 1.98 2.01 2.00

2 3.60 441 3.89 4.10 4.00

20 | 2916 —3 4.70 716 5.65 6.34 6.00
4 - - 7.20 8.81 8.00

I 1.95 2.05 1.99 2.01 2.00

2 3.60 4.41 3.90 4.10 4.00

6| 196 —3 4.70 716 5.66 6.35 5.00

4 - - 7.20 8.82 8.00

1 1.95 2.05 1.99 2.01 2.00

2 92.1 2 3.60 441 3.90 4.10 4.00

. 3 4.70 7.16 5.66 6.35 6.00

4 - - 7.20 8.82 8.00

Table 3.2: In-plane anti-symmetric modes for a horizontal sagging cable.

where 4*

_(mgi/H)1
HLE /EC AC
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Length Normalized natural frequency (w/7)
%2 (m] | Mode | Lumped | Consistent [ Lumped | Consistent | Irvine
(8 clements) (8 elements) (16 clements) (16 clements) (1981)
1 0.99 1.00 1.00 1.00 1.00
2 1.95 2.05 1.98 2.01 2.00
60 | 5063 3 283 3.17 2.05 3.03 3.00
4 3.60 4.40 3.89 4.10 4.00
1 0.99 1.00 1.00 1.00 1.00
2 1.95 2.05 1.99 2.01 2.00
20| 2916 — 2.83 3.17 2.95 3.04 3.00
4 3.60 441 3.90 4.10 4.00
1 0.99 1.01 1.00 1.00 1.00
3 2 1.95 2.05 1.99 201 2.00
6 | 1396 3 283 317 2.95 3.04 3.00
4 3.60 241 3.90 4.10 3.00
] 0.99 1.01 1.00 1.00 1.00
N 2 1.95 2.05 1.99 201 2.00
< 3 2.83 317 2.96 3.04 3.00
4 3.60 341 3.90 110 4.00

Table 3.3: Out-of-plane modes for a horizontal sagging cable.

INCLINED CABLE

In order to validate the cable finite element model for an inclined sagging cable,
Table 3.4 compares the results obtained from the present study with those presented by
Henghold et al. (1977). The configuration of cable used in the analysis is depicted in
Figure 2.3, where & is the angle of inclination of the chord line. The non-dimensional

sag is defined as, D=s/L, where s is the maximum vertical displacement of the cable

equilibrium position from the chord line to the length of the cable. Likewise, the chord

length is also non-dimensionalized such that, C=L_/L,. Eight cable elements of equal

length were used to model the cable. As can be seen from the results in Table 3.4, the
present solution compares favorably with the solutions of Henghold et al. (1977). A
more complete comparison for a greater range of non-dimensional sag D to the natural
frequencies was made by reproducing Figures 2 and 3 from Henghold et al. (1977). The
non-dimensional frequency 2 was plotted against the non-dimensional sag D in Figures
3.4,3.5 and 3.6. It can be seen that these figures are almost identical to the Figures 2 and
3 of Henghold et al. (1977). Furthermore, in a paper by Irvine (1978), analytical
equations for free vibrations of an inclined cable were presented. These equations may be

used to re-produce much of the data depicted in Figures 2 and 3 from Henghold et al.
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(1977). The cable element used in this study is much simpler and it compares favorably
with the fully non-linear solutions presented by Henghold et al. (1977). Therefore, it can
be concluded that present 2-node cable element is capable of accurately representing the

behaviour of inclined cables attached to a tower mast.

d=0",D=0.137 | #=30"°,D=0.155 | 8=60",D =0.251

Henghold | Present | Henghold | Present | Henghold | Present
Q, 3.02 3.00 2.83 2.83 2.24 2.25
Q, 5.65 5.61 5.17 5.19 3.65 3.61
Q, 6.05 6.04 5.67 5.72 4.53 4.58
Q, 8.77 8.81 8.17 8.26 6.30 6.32

Table 3.4: Chord inclination effects ( AE/mgL, = 5000, C =0.95).
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Figure 3.2: Variation of natural frequency with sag ratio for a horizontal cable.
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Figure 3.3: Vanation of natural frequency with sag ratio for a cable inclined at 30°.
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Figure 3.4: Vanation of natural frequency with sag ratio for a cable inclined at 60°.
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A comparison of the equivalent elasticity approach for an inclined cable with the
catenary based finite element solutions was made to examine the accuracy of equivalent
elasticity approach. In the equivalent elastic modulus approach, the cable was oriented
along the chord length. An analysis of a tightly stretched cable showed convergence to
the analytical solution of a tightly stretched cable (equations 3.2 and 3.3). However, the
sag of a cable is not explicitly considered in the equivalent elasticity approach. Since the
sag of the cable is neglected, the in-plane and out-of-plane frequencies are identical.
Hence, it can be expected that the analysis provides reasonable results for the out-of-
plane frequencies, but not for the in-plane frequencies. Table 3.5 shows a comparison of
the catenary based finite element solution with the equivalent elasticity based finite

clement solution. Eight cable elements of equal length were used to model the cable.

D 0.050 0.075 0.125
Catenary | Equivalent | Catenary | Equivalent | Catenary | Equivalent

Q 4.99 4.67 4.05 3.78 3.12 291

Q, 10.06 4.67 8.05 3.78 5.13 293

Q 10.18 9.51 8.25 7.71 6.31 593

Q, 14.61 9.51 12.06 7.71 9.18 593

Table 3.5: Comparison of catenary and elasticity solutions (& =30, AE/mgL_ = 5000).

As expected, Table 3.5 shows that the equivalent elasticity approach provides

reasonable results for the out-of-plane frequencies (Q, and Q;), but not for the in-plane
frequencies (Q, and Q,). As such, the equivalent elasticity approach was not

implemented in this study.

3.2 COMPARISON OF BEAM FREQUENCIES

To venify the accuracy of beam finite element model used for tower mast,

comparisons were made with the analytical torsional, flexural and axial vibration modes
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for an elastic cantilevered beam. In addition to comparing the natural frequencies, the
various mode shapes obtained were also examined against analytical results. The
comparisons were done by considering a circular cantilever beam, with the following
material properties.

Length of the beam: L=8m.

Modulus of elasticity: £ = 200000 MPa .

Radius: r=0075m.

Density: p=8x10° kg/m’.

TORSIONAL VIBRATIONS

The analytical solution for natural frequencies corresponding to torsional

vibration modes of a circular cantilever beam is given by (Inman 1996)

An=re o (3.4)
2L

where c= fﬂ (3.5)
pJ

G is the shear modulus, J is the polar moment of inertia and y is a torsion constant

shown and a circular cross section

zrt
7= 7 (3.6)
Natural Frequency @, @Dy @3 Wy
Analytical Solution | 0.609 | 1.827 | 3.044 | 4.262
1 Element 0.671 - - -

4 Elements 0.613 | 1.933 | 3.511 | 5.078

8 Elements 0.610 | 1.853 | 3.167 | 4.599

16 Elements 0.609 | 1.833 | 3.075 | 4.346

Table 3.6: Comparison of torsional vibration frequencies.
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FLEXURAL VIBRATIONS
The analytical solution for natural frequencies corresponding to flexural modes of

a circular cantilever beam are given by (Chopra 1995)

> [ EI
@4 =(8,L) — n=123,... 3.7
where
F.L=1.875,4.694,7.854,10.998 . (3.8)
Natural Frequency @ r) @Dy Wy Wy
Analytical Solution | 10.30 | 64.55 | 180.77 | 354.21
1 Element 10.35 - - -
4 Elements 10.30 | 64.63 | 182.16 | 359.36
8 Elements 10.30 | 64.56 | 180.87 | 355.01
16 Elements 10.30 | 64.56 | 180.77 | 354.27
Table 3.7: Comparison of flexural vibration frequencies.
AXIAL VIBRATIONS

Natural frequencies associated with axial vibration modes are very high and
generally do not affect the dynamic response of guyed towers. The analytical solution for
the natural frequencies corresponding to axial vibration modes of a circular cantilever

beam is given by (Clough and Penzien 1975)

2n-1 EA
an= 2 %g ﬁLl' "=11293s“' (3'9)
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Natural Frequency @y, @, Dy D4

Exact Solution 981.75 | 2945.24 | 4908.74 | 6872.23

1 Element 1082.53 - - -

4 Elements 988.07 | 3116.99 | 5662.13 | 8187.93
8 Elements 983.32 | 2987.99 | 5107.44 | 7416.40
16 Elements 982.14 | 295590 | 4958.16 | 7008.14

Table 3.8: Comparison of axial vibration frequencies.

From the observed natural frequencies for a circular cantilevered beam (Tables
3.6 to 3.8), it was shown that for higher modes, additional elements were required in the
analysis to obtain reasonably accurate results. This is similar to the case of a cable
element. The use of eight elements yielded results within 8% of the analytical solutions,
while the use of sixteen elements resulted in a maximum discrepancy of 2% for the first
four modes. It was further identified from the results that the natural frequencies in
torsional motion occur at much lower frequencies in comparison to flexural and axial
motion. In fact, it would not be expected under normal circumstances that axial
frequencies of a tower would be a concern given the higher frequency values involved.
Furthermore, it is expected that the use of multiple guys and star mounts (torsion arms)
would increase the overall stiffness of a tower mast and thereby increases the natural

frequencies.
3.3 EQUIVALENT BEAM-COLUMN REPRESENTATION

Prismatic elements can be readily modelled as beam elements, which resist
bending, torsional and axial loads and represented by stiffness and mass matrices.
However, the development of mass and stiffness for a lattice structure is not as
straightforward. One approach is to model a lattice structure as a space frame using a
computer software package such as SAP90™. This approach can be very tedious and

will require a significant computational effort. A simple and efficient way to analyze a
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lattice tower is possible through the adoption of an approximate method of analysis. As
previously mentioned, the latticed tower mast may be represented by an equivalent beam-
column. As shown in Chapter 2, Kahla (1993) presented equivalent beam-column
properties for latticed tower masts of triangular and square cross-section. The equivalent
properties presented by Kahla (1993) were adopted in the present study. However,
Mathur (1985) and Saxena (1988) utilized a similar approach to represent a latticed tower
mast. Mathur (1985) presented stiffness and consistent mass matrices based on an
assumed modeshape. [t was shown that the solution for the equilibrium position of a
tapered beam was a logarithmic function and that a cubic polynomial was the exact
solution for a straight beam.

For a typical tapered or straight lattice segment with a square cross-section and
supported by four continuous legs as shown in Figure 3.5. Mathur (19835) presented and

equivalent beam-column representation.

— a,—]
o OT

e
.y .01

,_
»
—

(a) Typical tapered segment (b) Plan-view at section x-x

Figure 3.5: Latticed tower segment

The moment of inertia, /(x), about the segments longitudinal axis x, at section x-x was
given by

I(x)= A,a? (3.10)
where a, =aq,(1- fx)

and p=2"2

a
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Hence, for a straight latticed tower segment, a =a, =a,, therefore #=0 and /(x)=4,a’.
Similarly, Kahla (1993) shown that the equivalent flexural stiffness ( £/ ) for a latticed
mast with square cross-section is

El = EA,a® 3.11)

for tower lacing patterns 1 to 4 and

3
A A, cos ¢93 (3.12)
2(4, +24,sin>0)

El= Eaz[/i,, +
for lacing pattern 5. As can be seen from the above equations, the flexural stiffness
presented by Mathur (1985) is identical to that presented by Kahla (1993) for lacing
patterns | to 4. However, it can be seen that a slight variation in flexural stiffness exists
between the two approximations for pattern 5. To compare the two approximate

methods, consider the latticed tower shown in Figure 3.6

—a—|

Lacing pattern = 5
Number of elements = 4

T
b
1 A=00062m?

a=6.706 m
b=7.620m
m =421 kg/m

E = 0.2048 X 10® N/m?

Y

Figure 3.6: Latticed tower mast.

Table 3.9 shows the results of a free vibration analysis for the tower mast shown
above in Figure 3.6. The table compares the analytical results with those obtained by
Mathur (1985) and the present study. As can be seen from the results, the present study

gives results that are consistent with the analytical solution and Mathur (1985).
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Natural Frequency (rad/sec)

Mode | Analytical Results | Mathur (1985) | Present Study
1 0.440 0.440 0.440
2 2.757 2.760 2.760
3 7.715 7.779 7.774
4 15.085 15.340 15.304

Table 3.9: Comparison of flexural vibration frequencies.
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Chapter 4

SOFTWARE DEVELOPMENT

Software developed in this study consists of an interactive Windows™
95/98/2000 program for the free vibration analysis of a guyed tower. This chapter
discusses the development of software package and provides use instructions. The
software consists of two main components, a graphical user interface (GUI) and a finite
element engine (FEE). The two components are discussed in detail with the aid of flow

charts describing the software structure, interaction and algorithm.

4.1 GRAPHICAL USER INTERFACE (GUI)

The GUI acts as the front and back end to the finite element engine (FEE),
respectively referred to as the pre and post-processors. The flow chart shown as Figure
4.1 describes the interaction between pre and post-processor (GUI) and the FEE. The
GUI of the software package was developed utilizing the programming language
Microsoft® Visual Basic®, which is an object-oriented programming language. An
object-oriented programming language is similar to traditional programming languages in
the sense that they both utilize a similar programming syntax, but has the further
capability to facilitate the detailed development of graphical and menu driven software.
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Pre-Processor

!

FEE

L

Post-Processor

Figure 4.1: General program interaction.

However, unlike a traditional sequential programming language, object-oriented
programming languages do not execute code at the beginning and sequentially work
through the code line by line. Conversely, object-oriented programs are event driven. In
this regard, programming code is assigned to different objects embedded within the
interactive graphical program and the associated code does not execute until the specific
event occurs for the object. In the Microsoft® Windows™ environment, an object
traditionally consists of any item that exists in a Windows™ application. A command
button, text box and menu bar are just a few examples of many possible objects.
Furthermore, an event is an action that takes place on or within an object. Typical
examples of an event are a single or double-click of the mouse on an object. Consider the
following example, a command button (object) may have two different sets of code
attached to it via two different events. In this example, code A and B are respectively
assigned to the single and double-click event. Thus, when the user uses the mouse to
click the command button (object) once, the single-click event has occurred and the
software executes the associated code A. In a similar manner, if the command button had

been double-clicked, code B would have been executed. In this regard, event driven
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programming languages are driven by events occurring on or within objects. Thus, a user
determines which segments of the code are executed based on the objects and events that

are chosen.

4.2 PRE-PROCESSOR AND POST-PROCESSOR

In the past, the analysis of guyed towers has involved creating long and
complicated data files that contain much of structural and modelling data. In an effort to
move away from this tedious and often time consuming task, the interactive graphical
pre-processor developed in this study collects all data required for a representative
analysis and completes all of the data file preparation. Once the necessary data has been
collected, the pre-processor creates the necessary data files to be used by the FEE for the
analysis of a guyed tower. The pre-processor collects the data specific to the analysis
from a user in a friendly and non-tedious interactive manner. As the necessary data is
collected from a user, the pre-processor completes several checks in an effort to ensure
that no inconsistencies exist in the data. Where inconsistencies are identified, a user is
promptly alerted with a warning message outlining the nature of inconsistencies. The
data files are then used by the FEE to complete the numerical analysis of the tower
model.

Once the numerical analysis has been completed, a user has the option of utilizing
the post-processor tools to view the results of the analysis. Similar to the pre-processor,
the post-processor is an interactive graphical tool that may be used to view the resuits of
the free vibration analysis in a graphical or non-graphical manner. Utilizing the data file
created by the FEE which contains all the natural frequencies and modeshapes of the
tower, the post processor provides the user with a variety of options to portray the data.
These options include a file viewer that enables a user to view the natural frequencies and
modeshapes of the analysis. In addition, the software has a graphical animation tool that
provides a user with the option of viewing the animated modeshapes of the guyed tower

system.
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4.3 FINITE ELEMENT ENGINE (FEE)

The FEE created for this study was developed utilizing the Microsoft® Fortran
Power Station Developer Studio. This powerful application allows the development of
software utilizing Fortran programming language. The Developer Studio comes with a
complete set of built-in IMSL math libraries that may be linked to the software being
developed. The FEE consists of two main components, the model generator (eqvbeam)
and numerical algorithm (grap). A flow chart describing the layout and interaction
between the two FEE components is shown in Figure 4.2. Utilizing the parameters
collected by the pre-processor from a data file, the model generator computes a beam-
column of equivalent stiffness utilizing the scheme outlined in Chapter 2 to represent the
mast of a guyed tower. Once the equivalent beam-column has been determined, the
model generator uses the model parameters previously collected to create a single data
file that contains all the modelling data for a guyed tower.

At this point the numerical algorithm utilizes the model data to create a finite
element model and subsequently conduct a free vibration analysis of the guyed tower
model. The structural mass and stiffness matrices presented earlier in this study are used
to numerically represent the tower mast and attached guy cables. Using the concept of
destination vectors, the individual mass and stiffness matrices for each element are
assembled into a global mass and stiffness matrix. Having assembled the global matrices,
the final task of the FEE is to solve the generalized free vibration problem as previously
discussed in Chapter 2. The eigenvalue problem is solved using the DGV CSP subroutine
included with the built-in IMSL libraries. As the analysis is conduced, the natural
frequencies and mode shapes are stored in a new data file which is later used by the post-

processor to display mode shapes.
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Figure 4.2: FEE program interaction.

44 SOFTWARE INSTALATION

INSTALATION REQUIREMENTS
In order to use the GTAP software, the following is a list of the minimum system
requirements:

e A compatible PC equipped with the Windows™ 95/98/2000 operating system.
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e 4 MB of free hard disk space.
e Windows™ compatible hardware.
e A 3% inch floppy disk drive.

e IMSL software user license.

INSTALLING GTAP

L.

N

Insert the GTAP Installation Disk I into the floppy disk drive that will be used to
install the software package.

Select the Run... icon from the Windows Starz button.

If you are installing the software from Drive A, issue the following command; a:setup
and click the OK button. If you are installing the software from a disk drive other that
Drive A, substitute the command a:setup with the appropriate drive letter (for
example, b:setup).

At this point, the GTAP Installation Wizard should begin and appear on the screen.
The [Installation Wizard provides you with detailed step by step instructions
throughout the software installation process. It is strongly recommended that the

GTAP software be installed in the default directory c:\Program Files\GTAP.

4.5 SOFTWARE INSTRUCTIONS AND MODEL
DEVELOPMENT

I.
2.

Ensure that the GTAP software has been successfully installed onto the PC.

Select the Programs icon from the Start menu. A list of sofiware programs should
appear. From this list, select the GTAP icon. If you wish to make a shortcut to the
GTAP program, or relocate the software on the Start menu, consult the online Help

located in the program list on the Start menu.

. Once the GTAP software completed loading, the initial welcome screen will appear.

Once you have read the welcome screen, press the Continue button to carry forward.
At this point, the main GTAP window as shown in Figure 4.3 should appear. From
the main GTAP window and utilizing the options from the main menu, the user may

access the various program features such as the File area, the Define options (pre-



processor), conduct a free vibration Analysis, view the analysis Resuwlts (post-

processor) or consult the online Help.

Figure 4.3: Main GTAP window.

The following steps outline how to create a representative guyed tower model

utilizing the GTAP software.

1. From the Define menu located in the main GTAP window, select the item Project.
The Project Information window as shown in Figure 4.4 should appear. Within this
window, the user should enter the descriptive data that are used to identify the model.

Once the three text boxes have been completed, select the OK button to carry forward.

!\)

Utilizing the mouse or keyboard, select the Tower Base item from the Define menu.
The Tower Base window as shown in Figure 4.5 should now appear. From this
window, the user shall specify the base restraint conditions to be used at the base of

the guyed tower model. Utilizing the mouse or keyboard, select the radio button that
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best represents the restraining conditions at the base of the guyed tower (pinned or
fixed). Once the appropriate base condition has been selected, press the OK button to

continue.

Figure 4.4: Project Information window.

Figure 4.5: Tower Base window.

3. Following the steps above, select the Tower Information item from the Define menu.
Once the item has been selected, the window as shown in Figure 4.6 should appear.
From this window, the user shall define several of the guyed tower parameters
pertaining to the mast. Prior to proceeding any further in the development of a guyed
tower model, the user should have a good idea of the configuration of the model. The

first text box that should be completed is Tower Sections. In this text box, a user
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should enter the integer value which denotes how many different tower sections are to
be included in the entire tower. Generally, each different lacing pattern requires its
own tower section. Next the user should enter how many tower elements are to be
included in the model. Once the above two text boxes have been completed, the user
should enter representative material properties for the tower mast. The final
information that is requested from this window is your preference of units to be used
in the analysis. Once the window has been completed, select the Continue button to
carry forward. Provided that no inconsistencies were identified with the entered data,

the window disappears and the main GTAP window shall once again appear.

Figure 4.6: Tower Information window.

4. From the main menu select the item Tower Sections and a window as shown in Figure
4.7 should appear. For each different tower section, the user will be prompted to
complete the form shown in Figure 4.7. Online help is available to show various
lacing patterns and the locations of the lacing dimensions on a tower. Once the form
has been completed use the Next and Back buttons to navigate through the various
Tower Section forms. When the final form has been completed, the Tower Sections

window will close.
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Figure 4.7: Tower Sections window.

The final steps involved in the development of a model for the mast of a guyed tower
is to define the properties of the individual elements of the tower. From the Elements
window shown in Figure 4.8, the user needs to specify the length and corresponding
Tower Section for each tower element. Furthermore, the user also has the option of
restraining the element by removing the check marks from the restraint boxes. Once
the form has been completed the user may navigate through the forms for each
element utilizing the Next and Back buttons until a form has been completed for each

element.
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m [ lements

Figure 4.8: Elements window.

6. Next, the guy and torque arms data is entered. From the Define menu, choose the
Guy + Guy Rings option. The Guy Cables window as shown in Figure 4.9 should
now appear. In this window enter the number of guys, guy rings and the material
properties of the guy cables. The concept of guy rings is discussed in the detailed
example contained in Appendix B. Once all the fields in the Guy Cables window
have been completed, press the Continue button. At this point the Guy Cables
window closes and the Guy Rings windows as shown in Figure 4.10 appears. In this
window, the user needs to enter the co-ordinates for each anchor location along the
guy ring. Each guy ring contains three anchors as the software assumes that the
cables are evenly spaced at 120°. Using the Next and Back buttons, the user may
navigate through the various windows until all the co-ordinate locations have been

accounted for.
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Figure 4.10: Guy Rings window.

7. The final step in development of the model it to complete the Guy Cable window
accessible from the Define menu. Once that item has been selected, the Guy Cable
window as show in Figure 4.11 appears. Utilizing the drop down boxes, select which
ring, anchor and node on the mast where the guy cable is connected. Furthermore,
enter the area and pre-tension force of the guy cable. Use the Next and Back buttons

to navigate through the various windows for all the cables.

Once the Guy Cable form is completed, the guyed tower model has been completed.
As such, the pre-processor (Define menu) is no longer required. However, the user may

recall any of the Define items to change any of the model parameters entered thus far.
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wm Guy Cable

Figure 4.11: Guy Cable window.

Once all of the pre-processor items from the Define menu have been successfully
completed, the Analysis menu will become available and free vibration analysis may be
conducted for the guyed tower model. To begin the analysis, select Begin from the
Analysis menu. This process may take up to a few minutes to complete depending on the
size of the problem and processor speed of the computer.

During the analysis phase, the finite element engine generates a structural model
of the guyed tower based on the data entered into the pre-processor. Once the analysis is
complete, the results are stored in several data files and the Results menu (post-processor)
now becomes available. By selecting the Post-Processor item from the Results menu the
Post-Processor window as shown in Figure 4.12 will appear. From this window the user
has the option of either viewing the natural Frequencies in text format from a data file or
viewing the natural frequencies and associated Modeshapes of the guyed tower model. If
the user chooses to view the animated modeshapes, an animation window as shown in
Figure 4.13 will appear. Depending on the frequency chosen by the user, either an in-
plane or out-of-plane view of the tower will be shown. Using various controls the user
can begin and change the speed of the animation. By using the drop down box from the
main Post-Processor window the user may view the modeshapes for any of the natural

frequencies.
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Figure 4.13: Post Processor — Animated Modeshapes.
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Chapter 5

FREE VIBRATION CHARACTERISTICS
OF GUYED TOWERS

5.1 WTMJ TOWER

The WTMJ tower is a 300 meter television tower located in Milwaukee,
Wisconsin. This symmetric tower is supported by five levels of guys each having three
guy cables equally spaced (120°) from one another. Each guy cable is attached directly to
the mast of the tower. McCaffrey (1969) presented details of the tower geometric and
structural properties. For completeness, the guyed tower properties have been included in

the Appendix.

NATURAL FREQUENCIES

Prior to conducting free vibration analysis of the entire tower, a dynamic analysis
of individual guy cables at each guy level was completed. This analysis was completed
in an attempt to determine if and how the analysis of individual guy cables may be
utilized in an effort to help predict the response of guy cables when attached to the mast
of a tower. The guy cables were each modelled by sixteen cable elements. The free

vibration results are presented for two different cable elements, the catenary cable
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element presented in Chapter 2 and a parabolic cable element based on the analytical

formulation presented by Veletsos and Darbe (1983).

. Frequency (rad/sec)

Guy Level Excited Mode Catenary | Parabolic
1 Out-of-Plane 2.89 2.87
1 2 In-Plane 3.24 3.22
Bottom Level 3 In-Plane 5.90 5.64
4 Out-of-Plane 5.90 5.64
1 Out-of-Plane 1.96 1.94
5 2 In-Plane 3.18 3.12
- 3 In-Plane 3.99 3.79
4 Qut-of-Plane 3.99 3.80
1 Out-of-Plane 2.05 2.05
3 2 In-Plane 2.62 2.59
3 In-Plane 4.18 4.01
4 Qut-of-Plane 4.18 4.01
1 Out-of-Plane 2.02 2.01
4 2 In-Plane 2.31 2.31
3 In-Plane 3.95 4.10
4 Out-of-Plane 3.95 4.10
1 Out-of-Plane 1.44 1.41
5 2 In-Plane 1.81 1.82
Top Level 3 In-Plane 2.82 2.89
4 Out-of-Plane 2.83 2.90

Table 5.1: Natural frequencies of WTMJ guy cables.

The first four natural frequencies of guy cables at each of the five guy levels are
presented in Table 5.1. As can be seen from the results, the cables that attach to the top
of the mast (guy level 5) have the lowest natural frequencies. This is due to the fact that
the cables considered have a relatively similar pre-tensioning and stiffness (cross-
sectional area and elasticity), but lengths that vary significantly. Hence, as the ratio of

AE/L decreases for a cable, so does its natural frequency (for constant tension). Another

behavior, which was noted from the analysis, is that the second in-plane frequency (the
first anti-symmetrical frequency) and the second out-of-planc frequency are almost

identical. From Irvine (1981), the out-of-plane frequency of a cable was shown to be,
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o, =ﬂ[ﬁ)w 5.1)

where n=1,2,3,...

Similarly, Irvine (1981) showed that the anti-symmetric in-plane modes becomes,

1/2
v, =22 2] (5.2)
[ \m
where n=1,2,3.... Hence, it can be seen from equations 5.1 and 5.2 that the second and

fourth out-of-plane frequencies will correspond with the first and second anti-symmetric

in-plane modes.

The results of an analysis of the WTMJ tower mast fixed at its base with no guy
cable interaction are presented in Table 5.2. The analyses were conducted using the
program developed during this study and the results were compared with the commercial
software package SAP90™. The mast of WTMJ tower was represented by 45 three-
dimensional beam elements. The software developed in this study has the ability to
evaluate torsional vibration modes. However, as no torsional properties were available
for the WTMJ tower, torsional vibration frequencies were not presented. As can be seen
from Table 5.2, the results obtained from the present study and SAP90™ agree very
closely when effect of self-weight was neglected (Appendix A). When the analysis was
completed including the effects of self-weight, the results reflect the expected reduction

in the first few natural frequencies (Przemieniecki 1968).

Natural Frequency (rad/sec)
Present Study Present Study
Excited Mode Self-Weight SAP9O™ Self-Weight
Neglected Included
Z-Bending 0.4238 0.4234 0.2562
X-Bending 0.4238 0.4234 0.2562
Z-Bending 2.4886 2.4366 2.3894
X-Bending 2.4886 2.4366 2.3894
Z-Bending 3.6864 3.5879 3.5620
X-Bending 3.6864 3.5879 3.5620

Table 5.2: Natural frequencies of tower mast (fixed base) without guy cables.
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Free vibration response of WTMJ tower was examined by including the
interaction between guy cables and tower mast. A comparison of natural frequencies
corresponding to a model that included the out-of-plane stiffness of the guy cables is
presented in Table 5.3. The first two columns display the results obtained by Saxena
(1988) using a parabolic profile and sixteen cable elements for each guy cable. Saxena
used the analytical formulation presented by Veletsos and Darbe (1983) to derive the
dynamic stiffness of a cable element. The analytical results (first column) follow the
assumptions stated above for guy cables, while the mast of the tower was also modelled
following an analytical approach. The third column in Table 5.3 presents the results
obtained from this study using the program GTAP (Guyed Tower Analysis Program).
For this case, the parabolic finite element developed in chapter 2 was used to model the
cables. The guy cables were each modelled by eight cable eclements with lumped mass
idealization. The last two columns in Table 5.3 were also obtained using the GTAP
software using catenary profile for cables, and lumped and consistent mass idealizations
respectively. In the final column of Table 3.3, the vibration modes are identified as
either an in-plane (I) or out-of-plane (O) for cable excitations, or as a bending vibration
mode of the tower mast. The number following the type of excitation indicates the guy

level.
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Natural Frequency (rad/sec)

Analytical Saxena GTAP GTAP GTAP Excited
Parabola Parabola Parabola | Catenary Catenary Mode
Lumped Lumped Lumped Lumped Consistent

1.37 1.39 1.36 1.32 1.34 I-5
1.44 1.44 1.43 1.39 1.41 O-5
1.47 1.47 1.46 1.42 1.44 O0-5
1.82 1.73 1.76 1.74 1.76 [-5
1.95 1.93 1.95 1.94 1.96 0-2
1.95 1.94 1.95 1.94 1.96 0-2
2.03 2.03 2.04 1.99 2.02 0-3
2.05 2.03 2.04 2.00 2.03 0-3
2.05 2.04 2.05 2.02 2.04 0-4
2.07 2.05 2.05 2.02 2.05 0-4
2.14 2.12 2.15 2.12 2.15 [-4
2.31 2.30 2.34 2.31 2.34 [-4
- - 2.36 2.36 2.37 Bending
2.45 2.43 2.46 2.44 2.47 [-3

Table 5.3: WTMIJ natural frequencies (out-of-plane stiffness included).

As can be seen from the results presented in Table 5.3, there was little discrepancy
between various solutions corresponding to the different methods of analysis. The
natural frequencies obtained from the different analysis methods were all within 4% of
one another. Since the cable element used by Saxena and the parabolic element used in
the GTAP program were developed using the same theory, the results for these
approximations were almost identical.

Table 5.4 presents a comparison of the natural frequencies obtained for the WTMJ
Tower when the out-of-plane stiffness of the guy cables was excluded. Again, the results
obtained from parabolic cable model agree closely with the results from Saxena (1988).
The present results show an in-plane cable excitation at guy level five (1.76 parabola and
1.74 and 1.76 catenary) which is missing from the results presented by McCaffrey (1969).
The corresponding solution given by Saxena appeared to show what seems to be an out-

of-plane mode near this frequency (1.73 Table 5.3). Furthermore, the present analysis

identified a bending frequency of the mast near 2.37 rad/sec.
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Natural Frequency (rad/sec)

McCaffrey | McCaffrey | Saxena GTAP GTAP GTAP Excited
Parabola Catenary | Parabola | Parabola | Catenary | Catenary Mode
Lumped | Lumped Lumped | Consistent
1.39 1.44 1.39 1.40 1.37 1.34 I-5
- - - 1.76 1.74 1.76 [-5
2.14 2.17 2.12 2.15 2.12 2.19 [-4
2.46 2.46 2.30 2.34 2.31 2.34 [-4
- - - 2.37 2.37 2.38 Bending
2.81 2.78 2.43 246 2.45 2.47 [-3

Table 5.4: WTMI natural frequencies (out-of-plane stiffness neglected).

Examination of natural frequencies of individual guy cables (Table 5.1) and
comparison with the results obtained for WTMJ tower (Table 5.3), indicates that the
interaction between guy cables and tower mast have virtually no influence on the out-of-
plane frequencies of the guys. Hence, the out-of-plane frequencies of cables attached to a
tower may be estimated by a simple free vibration analysis of individual guy cables.
However, as can be seen from the results, in-plane frequencies of individual cables cannot
be used to estimate the in-plane frequencies of cables attached to a tower mast. For
example, the first in-plane frequency of 1.40 rad/sec (Table 5.4) does not agree closely
with the lowest in-plane frequency obtained from the analysis of individual cable.
However, the second in-plane frequency (1.76, Table 5.4) does seem to coincide with the
lowest in-plane frequency (1.82, Table 5.1) determined from the analysis of that cable.
Based on the results, it was concluded that the cable elements have negligible coupling to
the mast for out-of-plane frequencies. This however was not the case for in-plane
frequencies. As in-plane frequencies appear in the tower which were independent from
the in-plane frequencies obtained from the lone guy cable analyses, strong coupling exist

between the tower and the in-plane DOF of cables.

MODE SHAPES
The first twelve in-plane and bending modeshapes of the WTMJ tower are shown

in Figure 5.1 (a to /). As expected, the longer cables (upper levels) are excited at

frequencies which are lower in magnitude when compared with the shorter (lower level)
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guy cables. Examining the modeshapes, it was observed that vibrations corresponding to
2.47 and 2.88 rad/sec (f & i) show relatively large motions at the uppermost portions of
the mast in comparison to the remainder of the mast. This is in part due to the fact that
the upper extremities of the mast have more freedom, as they are not laterally restrained
by the guy cables like the lower portions of the mast. Furthermore, examination of tower
properties revealed that the uppermost 25 meters of the tower mast correspond to an

antenna of approximately 1/2000 of the stiffness of the lower portions of mast.

A\ £\
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a) 1.34 rad/sec b) 1.76 rad/sec
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Figure 5.1: WTMJ tower modeshapes.

5.2 PARAMETRIC STUDY

TOWER MAST LACING PATTERNS

For the following parametric studies, two similar towers were considered, Tower
A and Tower B. Both towers stand 145 m in height and have identical geometry and
material properties with the exception that Towers B has three guy levels as opposed to
Tower A which only has one level of guy cables. The material properties of Towers A

and B are shown in Table 5.5, while the geometry of the towers is shown in Figures 5.2

and 5.3.

Material Property Tower A Tower B
Mast Elasticity 2.0E+011 Pa 2.0E+011 Pa
Cable Elasticity 1.65E+011 Pa | 1.65E+011 Pa
Steel Density (for cables and mast) | 8100 kg/m’ 8100 kg/m’
Cable Tension 40,000 N 40,000 N
Cable Area 0.4E-003 m’ 0.4E-003 m*

Table 5.5: Matenial properties of Towers A and B
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Utilizing the software developed in this study, free vibration response of Towers
A and B was determined. The guyed tower analysis was completed using eight cable
elements for each guy cable and five different lacing patterns shown in Figure 2.6.

Table 5.6 presents the natural frequencies of Tower A for the five different lacing
pattern configurations and the associated excitation mode. As Tower A features only one
guy level, the excitation mode is defined as either an in-plane (I) or out-of-plane (O) for
cable excitations. As can be seen from Table 5.6, the natural frequencies of the guyed
tower system were generally consistent for the five different lacing patterns.
Examination of the out-of-plane frequencies indicates that the maximum discrepancy
between the five different lacing patterns was less than 0.5%. This behavior is consistent
with that identified from the WTMJ tower which showed that the tower mast has virtually
no influence on the out-of-plane vibrations of guy cables. However, two of the in-plane
frequencies (the first and seventh) showed some variation in natural frequency for
different lacing patterns. The maximum difference in natural frequency for these in-plane
modes was in the order of about 10-12%, while the remaining in-plane frequencies
showed virtually no change in natural frequency for the various lacing patterns. This
behavior was also consistent with that from the WTMJ tower analysis that showed that
only some in-plane frequencies show strong interaction between the tower mast and guy

cables.
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Figure 5.2: Geometry of Tower A.
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Figure 5.3: Geometry of Tower B.




Natural Frequencies (rad/sec)
Pattern 1 Pattern 2 | Patterm 3 | Patterm 4 | Pattern 5 Excited
Mode
1.87 1.87 1.96 1.84 1.77 I
2.22 2.22 2.23 2.22 2.22 O
2.36 2.36 2.38 2.36 2.35 I
2.89 2.89 2.89 2.89 2.89 I
4.55 4.55 4.55 4.55 4.55 I
4.56 4.56 4.56 4.56 4.56 0
5.90 5.90 6.23 5.78 5.56 |

Table 5.6: Natural frequencies of Tower A for various lacing patterns.

Natural Frequencies (rad/sec)
Excited
Pattern 1 Pattern 2 | Pattem 3 | Pattern4 | Pattern 5
Mode
2.18 2.18 2.18 2.18 2.17 O-1
2.21 2.21 2.21 2.21 2.21 O-1
2.26 2.26 2.26 2.25 225 [-2
2.26 2.26 2.26 2.25 2.25 O-1
2.31 2.31 2.31 2.31 2.31 0-2
2.39 2.39 2.40 2.40 2.38 I-2
2.58 2.58 2.58 2.58 2.58 0O-3
2.83 2.83 2.83 2.83 2.83 I-1
3.14 3.14 3.14 3.14 3.14 I-2
3.21 3.21 3.22 3.22 3.20 [-3
4.02 4.02 4.02 4.02 4.03 [-3
4.51 4.51 4.51 4.51 451 I-1

Table 5.7: Natural frequencies of Tower B for various lacing patterns.

A comparison of Figures 5.2 and 5.3 indicates that Tower B is essentially
identical to Tower A with the exception that Tower B contains two additional levels of
guy cables. Table 5.7 presents the first few natural frequencies for Tower B for the five
different tower mast lacing patterns. A comparison of the natural frequencies for Towers
A and B indicates that the variation of lacing pattern has virtually no influence on the
observed natural frequencies of the guyed tower. Based on the previous observations, it

was not expected that the tower mast would have any significant influence on the out-of-
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plane frequencies. However, the tower mast also appeared to have no significant
influence on any of the in-plane frequenctes observed. The additional two guy levels on
Tower B provide restraint of the tower mast at four points, while Tower A was only
restrained at two points (top guy level and tower base). As such, it appears that the
additional guy cables act to restrict the coupling of tower mast with the in plane DOFs.
To further illustrate this point, Figures 5.4 and 5.5 show some selected mode shapes of

Towers A and B respectively.

7777 7777
a) 1.87 rad/sec b) 5.90 rad/sec

Figure 5.4: Selected modeshapes of Tower A (lacing pattern 1).



/7777 7777
a) 2.26 rad/sec b) 4.51 rad/sec

Figure 5.5: Selected modeshapes of Tower B (lacing pattern 1).

As can be seen from Figures 5.4 and 5.5, larger motions of the tower mast are
noted for Tower A. The additional guy levels in Tower B act to increase the apparent

stiffness of the tower mast that results in smaller overall deflections of the mast.

GUY CABLE TENSION

As it has been shown that a tower mast generally has little influence on the overall
dynamic behavior of a guyed tower system, the influence of variations in guy cable
tension on guyed tower systems is examined next. Consider Tower A subject to uniform
sustained wind as shown in Figure 5.6. In this situation, the windward guy experiences
an increased tensile force due to the applied wind load on the tower, while the cables on
the leeward side experience a somewhat lower tension. For simplicity, it has been
assumed that a guy cable perpendicular to the wind direction experiences no change in
cable tension. The material and geometric properties for Tower A are as previously

described, with the exception that the guy cable tensions were subject to fixed variation.
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Perpendicular
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<>
Figure 5.6: Tower A subjected to sustained uniform wind loading.

An analysis of Tower A was completed using the software developed in this study
and considering variations in guy cable tensions in order to simulate the wind loading
conditions previously described. The natural frequencies of Tower A, for a 10%, 30%
and 50% variation in guy cable tension (i.e. windward guy tension increases, leeward guy
tension decreases by an equal amount, and tension of guys perpendicular to wind remains
at 40,000 N) have been shown in Table 5.8. For each corresponding frequency, the
excited cable mode has been identified as either in-plane (I) or out-of-plane (O) as before.
The guy cable is further identified as windward, leeward or perpendicular in Table 5.8.
For comparison, an analysis of Tower A with no variation in cable tension (first column)

has also been included in Table 5.8. Lacing pattern 5 was used for the mast of tower.
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Natural Frequency (rad/sec) Excited .
0% | 10% | 30% | 50% ]| Mode | Exciied Cable
1.77 - - - I -

- 1.76 1.71 1.67 I Leeward

- 1.78 1.80 1.80 I Perpendicular

- 2.39 2.51 2.66 [ Windward
2.22 - - - 0 -

- 212 1.87 1.58 O Leeward

- 2.22 2.20 2.21 0] Perpendicular

- 2.36 2.55 2.74 O Windward
2.35 - - - [ -

- 2.28 - - I Leeward

- 2.36 - - [ Perpendicular

- 2.90 - - I Windward

- - 2.20 2.27 O Perpendicular

- - 297 3.14 [ Leeward
4.55 - - - I -

- 4.33 3.82 3.23 I Leeward

- 4.55 4.56 4.56 I Perpendicular

- 4.78 5.19 5.52 I Windward
4.56 - - - O -

- 4.33 3.82 3.23 O Leeward

- 4.56 4.56 4.56 O Perpendicular

- 4.78 5.19 5.58 O Windward

Table 5.8: Natural frequencies of Tower A for variations in cable tension.

The observed natural frequencies of the tower showed a consistent trend. Natural
frequency of leeward guy was observed to decrease as a function of decreasing cable
tension. The opposite was true for the windward guys, where the natural frequencies
increase with increasing cable tension. These observations were consistent with the
theory and results presented in Chapters 2 and 3, which showed that for a cable of
identical material and geometric properties, the natural frequency is a function of cable
tension. The natural frequency of the perpendicular guy (no change in cable tension)
generally remained same as that of a tower not subjected to any change in guy tension.
However, a minor variation in the natural frequency (0 to 2%) was noted for the
perpendicular cable. While difficult to confirm, it is anticipated that these minor
frequency fluctuations were related to the structural interaction of three guy cables and

tower mast. For higher cable tension variations (30% and 50%), new in-plane and out-of-
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plane frequencies emerged. These frequencies naturally arise as a result of the large

difference in cable tension between the guy cables at the same level.
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Chapter 6

CONCLUSIONS

A finite element based methodology was successfully applied to determine natural
frequencies and mode shapes of guyed towers. The guyed tower model consists of three
main components, the guy cables, tower mast and torsion arms. By applying the finite
element method to a three-dimensional cable element following a catenary or parabolic
profile, element stiffness and mass matrices were derived. Using a three-dimensional
beam-column element that accounts for five different lacing patterns, stiffness and mass
matrices for the tower mast were computed. The global mass and stiffness matrices were
used in an eigen analysis to determine the natural frequencies and modeshapes of the
guyed tower system. With the ease of programming the finite element method on a
personal computer, an interactive software package was developed to complete a free
vibration analysis of guyed towers. The software included a user friendly graphical user
interface. The graphical user interface provides several options in terms of tower
geometry and properties and also displays the tower modeshapes.

To verify the validity of the numerical model developed in this study, several
comparisons were made with existing solutions for a single cable, a cantilever beam and
guyed towers. The comparisons showed good agreement with existing solutions and
confirmed the validity of the structural model. From the numerical studies, several
conclusions were drawn.

The natural frequencies of a single guy cable were found to be a function of the

cable pre-tension force and stiffness. For a given cable stiffness, the natural frequency
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was shown to increase with increasing cable tension. Furthermore, for constant cable
tension, the cable frequency was observed to decrease with increasing cable length. A
comparison between lumped and consistent mass idealizations showed that the rate of
convergence was only slightly faster for the consistent mass representation. Even though
the cable element derived in this study was much simpler, it compared favourably with an
existing fully non-linear solution. It was also shown that the equivalent elasticity
approach based on a straight chord produced reasonable results for out-of-plane cable
frequencies only.

Several analyses were completed which examined the behaviour of the individual
guy cables, tower mast and complete guyed tower systems. Based on a comparison of
natural frequencies of individual guy cables and those attached to a tower, it was found
that interaction between the tower mast and guy cables has virtually no influence on the
out-of-plane frequencies of guy cables. However, the in-plane frequencies showed strong
influence due to coupling of the guy cables and the tower mast.

Guyed towers are generally very tall. As a result, the self-weight of tower
imposes a considerable axial load on the lower portion of tower mast. It was found that
the tower self-weight affects the first few natural frequencies of a tower mast. As such,
self-weight effects were considered in the analysis.

Parametric studies were completed to examine the influence of tower lacing
pattern, guy cable tension and guy configuration on the dynamic behaviour of a guyed
tower. These parametric studies showed that tower lacing patterns generally had little
effect (up to 10% variation) on the natural frequencies of a guyed tower system.
Furthermore, the effect of lacing patterns on the in-plane natural frequencies was found to
decrease as the number of guy levels increased. Natural frequencies of a guyed tower
were found to change significantly when variations in guy tensions were included in the
analysis. For example, 30-50% variations in leeward and windward guys of tower
resulted in new in plane vibration modes. Windward cables experienced increase in
natural frequencies whereas leeward cable frequencies were decreased.

While a free vibration analysis is a good starting point to understand dynamic

behaviour of guyed towers, there are instances where a forced vibration analysis is



required. As such, the present software was developed such that it could be extended to

consider forced vibration problems by means of the modal superposition method.
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Nomenclature

E,, - Equivalent modulus of elasticity.

E. - Cable modulus of elasticity.
w - Cable unit weight.

A. - Cable cross-sectional area.
L, - Projected length of cable.

T - Cable tension.

L. - Cable chord length.

d - Cable sag.

H - Horizontal component of cable tension.

g - Distributed self-weight of cable.

! - Horizontal component of cable length.

L. - Effective cable length.

E - Modulus of elasticity for mast.

EA - Equivalent axial stiffness of tower mast.

EI - Equivalent flexural stiffness of tower mast.

GA - Equivalent shear stiffness of tower mast.

GJ - Equivalent torsional stiffness of tower mast.

o - Natural frequency (rad/sec).

Q - non-dimensionalized natural frequency.
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Appendix

THREE-DIMENSIONAL CABLE ELEMENT

The local cable coordinate system was defined by considering the x, axis in the
plane of the cable along its length. The cable plane represents the plane that passes
through the end points of the cable and tower base. Figure A.l shows the cable plane.
The y, axis is also orientated in this plane and is perpendicular to the x, axis. The
axis is perpendicular to the plane of the cable. Figure A.l identifies the local and global

axes of the cable.
The cable element considered for this study is shown in Figure 2.2. From

equation 2.19 the elastic stiffness matrix [K.] for the threc-dimensional cable (truss)

element is

E4| 1 =1
[KE]=T[_1 IJ (A.1)

where £ is the modified modulus of elasticity of the cable, A4 is the cross-sectional area
of the cable element, L is the length of the element and 7, is the pre-tension force
T

applied to the guy cable with a nodal degree of freedom vector {d} = {u, u,}

Similarly, using equation 2.20 the stress stiffness matrix [K;] for the cable

element under tension 7; may be expanded as



1 0 0 -1 0 O]

0 1 0 0 -1 0

7lo o 1 0 o -1
K== A2
[xc] Ll-1 0 0 1 0 O (A-2)

0 -1 0 0 1 O

0 0 -1 0 0 1]

with a nodal degree of freedom vector {5} ={u; v, w, w, va w37 .

The total stiffness matrix of the cable element shown in Figure 2.2 was obtained
by adding the elastic stiffness and stress stiffness matrices given above.

Figure A.1 shows the three points used to define the cable plane. The equation of
the plane (n) may be expressed as,

n=(q-p)x(r-p). (A3)

From the equation of the plane, the unit vector perpendicular to this plane may be
determined using linear algebra. By definition, this unit vector is one of the vectors to be
used in the transformation. A second unit vector may be determined along the length of
the cable. The final vector may be obtained by evaluating the cross product of the above

two unit vectors. Hence, the unit vectors take the form of,

J‘ =C.d, + C_,_‘.d',. +C_d.
d, =Cyd,+Cphd, +C,.d. (A4)

d.=C.d +C.d, +C_d..

From the above, the transformation matrix from the local to the global coordinate

system is,
[Ce Cp Co 0 0 0]
Co Cop Co 0 0 0
C. C., C_. 0 0 0
L (A-5)
o 0o o cC, C, C.
(0 0 0 C. C, C.
and ks]=[TV [kl7] (A.6)

where [k] is the stiffness matrix with respect to the global coordinate system.
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Figure A.1: Plane of a cable.

THREE-DIMENSIONAL BEAM ELEMENT

The local mass and stiffness matrices for a three-dimensional beam element were
obtained by considering the axial, bending and torsional deformations of an element.
This results in a beam element with six DOF (degrees of freedom) at each node (three
translations and three rotations).

The local frame of reference and the displacement coordinates for a uniform
three-dimensional beam element are shown below in Figure A.2. The stiffness and mass
matrices for this beam element were obtained from the axial, bending, and torsion
elements discussed by Craig (1981). The x-axis was taken along the centroidal axis of

the cross-section and the y and - axes are principle axes in the cross-section. /, and /.
are the moments of inertia along the y and - axes respectively and /, is the polar

moment of inertia about the x -axis.
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Centroidal axis

Figure A.2: Notation for a three-dimensional beam element.

For the beam element shown in Figure A.2, stiffness matrix is given by Craig

(1981) as

(28 0 0 o0 0o o £ o 0o 0 o 0]
12F7. 6E/. -12E1. [
i (E)l ° 2/ N £ IOEI ° ) Ed

12E1, -6El, -12£71, -6EI,
S+ 0 = 0 0 0 = 0 == o0
2 o0 o0 o0 o0 0 =% o o
1EL, 6El, 2EL,
= 0 0 0 = 0o = o0
$E1 -6 Ef. 2E1.
_— = 0 =
[K]: L 0 L 0 0 L (A.7)
£ 9 0 0 o0 o
sym III;J'I_ 0 0 0 -f,r:'/_
£ 12E7 6E] ¢
—=- 0 = 90
L r
o0 0
$El,
- 0
AL
L L J

where £ is the Young’s modulus of elasticity, GJis the torsional stiffness, L is the

length of the beam element and 4 is the cross-sectional area of the beam element.

Craig (1981) also presented the consistent symmetric mass matrix for the beam

element in Figure A.2
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(140 0 O 0

156 0 0

156 0

1407,

A
[,t/]:ﬁ
420

sym

0 o
0 22
-22L 0
o o
42 o

70 0
0 54

0 0

0 0

0 0
0 13L

140 0O
156

where m is the mass per unit length of the element.

0 0
0 -13L
13, 0
0 0
“32 o
0 -3
0 0
0 -22L
2L 0
0 0
42 o
4% |

(A.8)

For the beam element shown in Figure A.2, Przemieniecki (1968) presented the

representative stiffness matrix which included the effects of shear deformations as:

[E.
B0 0
1261,
2r0,) 0
12E1,
L2(+o.)
[x]=
where ¢ = 1251, .
AL

5

0

svm.

0
6El,
ci+o,)

=Ed
L

0

:~|§300oo

0
-12E7,

Lla-o,)

L1+, )
0
0
0

1261,
Ll(l»‘D:)

0
0
-6EI,
L(te®.)

]
(2-0.)&r,

0
SEI,
L(+o,)

0
0

0
(2-0, )er,

¥

-,

Przemieniecki (1968) also presented the consistent symmetric mass matrix which

included shear deformations for the beam element in Figure A.2 as:
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10 0 0 0 o £ 0 0 0 0
I or 7. 9 6/.
# Sal 0 0 0 vy 0 707 sart 0 0 0
13, 81, uL__h o _ 5% el
B o e o) 0 0 5 "5 0 126 T TeiL
1, 4
L 0 0 0 = 0
2 2 6! : d
£y 20 ol A ~Yio " Tox
105 * 154 0 0 5 57 0 140 304
Loy 2 B3e L
st 5a 0 330~ Tour 0 0 0
pooo o0
o1,
+—‘
35 sar 0 0 0
, LB, 8 STV
sym. st e 0 I tm
1y
£ 0
105 154
(A.10)

The geometric stiffness matrix due to an axial load on the member was given by

Przemieniecki (1968) as

(k.. -7 (A1)

R sk
Lo 3l 2l
ksk sl sk

-
W

with a nodal degree of freedom vector {u,, 4,, u,, 6} .

The geometric stiffness matrix due to the self weight of a beam element can be

expressed as

1
s
[=}

3 L =
S 10 5
L o= =L
[K ] = 30 o 30 (A.12)
swl= Go . 3 . 4
sym. = 0
L

10

where ¢, is the self weight per unit length of the member.
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TORSION ARMS

The local mass and stiffness matrices for a torsion arm were obtained by
individually considering a unit displacement on each of the nine DOF at the extremities
of the torsion arm. These calculations were conducted by modelling some standard
torsion arms using the PC based software package SAP90™!.

The stiffness for three different torsion arms was determined using the technique
described in Chapter 2. The three torsion arms were identified by their lengths, namely a
three meter outrigger, an eight foot outrigger and a twelve foot outrigger. Details of the
dimensions, section members and the structural stiffness is presented in the ensuing

sections.

THREE METER OUTRIGGER

The dimensions and members sizes are shown for the three meter outrigger in
Figure A.3. All dimensions in that figure are in millimeters except for the member sizes
which are in impenal units. The resulting stiffness matrix is

[ 285 126 0.167 -285 -126 -0.167 -0249 0494 0494 |
126 0913 -0.284 —-126 -0913 0284 0424 —0849 -0.849

0.167 -0284 0370 -0.167 0284 -0370 -0.551 1.10  1.10

-285 -126 -0.167 285 126 0167 0249 -0494 -0.494

10°x[ —1.26 -0913 0284 126 0913 -0284 -0424 0849 0.849 (A.13)
-0.167 0284 -0370 0.167 -0284 0370 0551 —-1.10 -—1.10
-0.249 0424 -0.551 0249 -0424 0551 0833 —1.64 —1.64

0494 -0849 1.10 -0.494 0849 -1.11 -1.64 328  3.28
| 0494 -0849 1.10 -0494 0849 -1.10 -164 328 328 |




JL3><3’<%\4 2x2x X,

&
-"— 1%"‘%"%&
5 JL4x4x7,
%

1500

Figure A.3: Three meter outrigger.

EIGHT FOOT OUTRIGGER

The stiffness matrix corresponding to the eight foot outrigger shown in Figure A.4

is presented below. All units in Figure A.4 are imperial.

I- 3.27 1.16 0345 -327 -1.16 -0345 -0471 0.839 1.64 |
1.16 0917 -0.131 -1.16 -0918 0.131 0.178 -0.318 -0.627
0.345 -0.131 0.167 -0345 0.131 -0.167 -0.227 0402 0.787
-327 -1.16 -0345 3.27 1.16 0345 0471 -0.839 -l.64
10°x| -1.16 -0971 0.131 1.16 0918 -0.131 -0.178 0318 0.627 (A.14)
-0.345 0.131 -0.167 0.345 -0.131 0.167 0227 -0.402 -0.787
-0.471 0.178 -0.227 0471 -0.179 0.227 0.315 -0.548 -1.08
0.839 0318 0402 -0.839 0318 -0402 -0.548 0978 1.92
1.64 -0627 0787 -1.64 0627 -0.787 -1.08 1.92 3.76 |
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Figure A.4: Eight foot outrigger.

TWELVE FOOT OUTRIGGER

The twelve foot torsion arm has identical dimensions and member sizes with that
shown in Figure A.4 with the exception that the 8’-0 section length is replaced by an
identical member 12°-0 in length. The resulting stiffness matrix is

[ 2.97 0.866 0.125 -297 -0.866 -0.125 -0.171 -0458 0.891 ]
0.866 0466 -0.071 -0.866 -0.466 0.071 0.096 -0.258 -0.509
0.125 -0.071 0061 -0.125 0071 -0.061 -0.082 0.218 0.428
-297 -0.866 -0.125 297 0.866  0.125 0.171 0458 -0.891
10° x| -0.866 -0.466 0.071 0866 0466 -0.071 -0.096 0.258 0.509 (A.15)
-0.125 0071 -0.061 0.125 -0071 0.061 0.082 -0.218 -0428
-0.171 0.096 -0.082 0.171 -0.096 0.082 0.114 -0.298 -0.584
0458 -0.258 0.218 -0458 0.258 -0.218 -0.298 0.797 1.56

it 0891 -0.509 0428 -0.891 0509 -0428 -0.584 1.56 3.06 |
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WTMJ TOWER PROPERTIES

Level | E (x10° psi) | 4 (in®) | 1 (ft) h (ft) | q (Ibs/ft) Cable Tension
at Base (lbs)
1 24 938 559 139.4 3.28 28800
2 24 1.13 559 269.4 3.97 18500
3 24 1.13 559 409.4 3.97 25850
4 24 1.13 573.8 549.4 3.97 33100
5 24 3.94 578.9 829.4 13.8 93650
" Bottom Guy
Table A.1: Guy Properties - WTMJ Tower
Segment Segement Segment Axial Load | Axial Load EI (x10°
Number | Weight (Ibs/ft) | Length (Ibs/ft) | (Par Model) | (Cat Model) Ibs-in%)
(Ibs) (Ibs)
| 449 30 773417 828793 3.985
2 416 30 760937 816313 3.695
3 354 30 750317 805693 3.149
4 349 30 739847 795223 3.149
5 344 30 708647 761000 3.149
6 344 30 698327 750680 3.149
7 320 30 688727 741080 2.892
8 325 30 678977 731330 2.892
9 354 30 668357 720710 3.149
10 385 30 632717 680685 3.149
11 354 30 622097 670065 2.892
12 342 30 611837 659805 2.892
13 355 30 601187 649155 3.149




14 374 30 544217 586560 3.146
15 374 30 532997 575340 3.146
16 355 30 522347 564690 3.149
17 336 30 512267 554610 2.892
18 319 30 502697 545040 2.646
19 309 30 424577 460114 2411
20 280 30 416177 451714 2411
21 281 30 407747 443284 2.411
22 307 30 398537 434074 2411
23 366 30 387557 423094 3.149
24 429 30 374687 410224 3.695
25 501 30 359657 395194 4.286
26 566 30 342677 378214 4.92
27 651 30 323147 358684 5.598
28 720 30 71747 71747 6.319
29 363 15 63102 63102 2.767
30 267 30 55092 55092 2.079
31 219 30 48522 48522 1.58
32 171 30 43392 43392 1.071
33 138 30 39252 39252 .723
34 205 16 35972 35972 723
35 483 16 28244 28244 723
36 684 11 20720 20720 .003
37 583 8 16056 16056 .002
38 491 8 12128 12128 .002
39 406 8 8880 8880 .001
40 330 8 6240 6240 .001
41 261 8 4152 4152 .001
42 201 8 2544 2544 .001
43 148 8 1360 1360 .001
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103

536

536

.001

45

67

.001

Table A.2: Tower Mast Properties — WTMJ Tower
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