SPECIFICATION OF TRANSACTION
SYSTEMS PROTOCOLS

by

Sylvanus Agbonifoh Ehikioya

A thesis
presented to the University of Manitoba
in partial fulfilment of the
requirements for the degree of
Doctor of Philosophy
in
Computer Science

Winnipeg, Manitoba, Canada, 1997

©Sylvanus Agbonifoh Ehikioya 1997

. *I National Library Bibliothéque nationale

of Canada du Canada
Acquisitions and Acquisitions et)
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your file Votre référence
Our file Notre référence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distmbuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protege cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent tre imprimeés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-23597-1

Canadia

THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES

b E £ 2 2

COPYRIGHT PERMISSION PAGE

SPECIFICATION OF TRANSACTION SYSTEMS PROTOCOLS
BY

SYLVANUS AGBONIFOH EHIKIOYA

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University
of Manitoba in partial fulfillment of the requirements of the degree

of
DOCTOR OF PHILOSOPHY

Sylvanus Agbonifoh Ehikioya 1997 (¢)

Permission has been graated to the Library of The University of Manitoba to lend or sell
copies of this thesis/practicum, to the National Library of Canada to microfilm this thesis
and to lend or sell copies of the film, and to Dissertations Abstracts International to publish
an abstract of this thesis/practicum.

The author reserves other publication rights, and neither this thesis/practicum nor
extensive extracts from it may be printed or otherwise reproduced without the author's
written permission.

i1

Declaration

I hereby declare that [am the sole author of this thesis.

I authorize the University of Manitoba to lend this thesis to other institutions or in-
dividuals for the purpose of scholarly research.

I further authorize the University of Manitoba to reproduce this thesis by photocopying
or by other means, in total or in part, at the request of other institutions or individuals
for the purpose of scholarly research.

iii
Thesis use Form

The University of Manitoba requires the signatures of all persons using or photocopying
this thesis. Please sign below, and give address and date.

Date Name Signature Address

v

Dedication

To my mother, Madam Oba Lydia Ehikioya, for all her self denials throughout my early
education and to all mothers who suffered for the good of their children.

Abstract

A fundamental requirement in specifying transaction systems is the need for a
clear, concise, unambiguous, and rigorous behavioural and functional description of the
systems’ crucial features like concurrency, nondeterminism, mutual exclusion, synchro-
nization, and deadlock avoidance. To write a specification that exhibits these charac-
teristics requires a formalism that has both expressive power and the functionality for
specifying and reasoning about the structure and behaviour of transaction models. To
ensure that the specifications are consistent and verifiably correct requires expressing
the specifications using mathematical notations and then using the notations’ underlying
formalism to prove correctness properties. Such requirements can only be satisfied within
a formal framework.

However, most of the present transaction systems (models) are not formally spec-
ified or at best use methodologies that are ad hoc or semiformal. Unfortunately, when
insufficient formalism is used to specify transaction systems protocols they are open to
different interpretations thereby violating the preservation of specification interpretations
requirement. Therefore, there is need for a thorough modelling of the systems based on
formal models that are easy to use, verify and validate.-

In this thesis, a Timed CSP based formal framework for transaction management is
given. This framework is more general and not biased towards specific types of transac-
tion. It integrates temporal behaviour of individual transactions with the dependencies
among transactions that can arise e.g., when accessing shareable data objects. Further,
the framework uses an event-based model based on causality and time because the partial
orders together can naturally model concurrent events between transaction. In addition,
the causality and time information are useful in analysing transaction execution for de-
termining correctness and recoverable histories.

In brief, this thesis provides a taxonomy of a transaction’s specification character-
istics against which any specification can be assessed; presents a suite of requirements for
an adequate formalism in which various concurrent activities and interactions of transac-
tions can be naturally expressed; provides record data type extensions to CSP; specifies

transactions correctness criteria and concurrency control protocols; and presents an ab-

vi

stract level specification of an application, the Electronic Shopping Mall, to illustrate the

concepts introduced.

vil

Acknowledgement

I would like express my sincere thanks to the following people and institutions that con-
tributed to the successful completion of this work.

To my supervisor, Dr. Ken Barker, for his constructive comments and guidance as the
thesis evolved and for his considerable patience in reading my specifications and proofs
in a paragon of notations and styles. His immeasurable academic guidance, many invalu-
able discussions with me and suggestions, and patience in listening to and constructively
critiquing my ideas led to the accomplishment of my academic goal. My sincere thanks
to him.

To my examiners, Prof. David Scuse and Dr. James F. Peters III, for making a number
of suggestions for improving the presentation and the focus of this thesis. Your continued

interest and encouragement kept me going at some critical points during my study.

To Dr. Kasi Periyasamy for being a source of inspiration, information, encouragement
and friendship. Thanks for being there for me for all the assistance and emotional sup-
port you provided and for keeping me going at the end. He has provided many invaluable
comments and useful suggestions, and pointed out errors in the specifications when [was

going astray. I do appreciate it.
To Dr Randal Peters and Dr. Peter C.J. Graham (Professors in the Dept.) and Dr.
Sheela Ramanna (Dept. of Business Computing, University of Winnipeg) for their help-

ful comments and assistance with research materials.

To the Government of Canada for financial support in the form of Canadian Common-

wealth Scholarship throughout my study.
To the University of Benin, Benin City, Nigeria for granting me study leave for the period.

To Prof. S. O Fatunla (late), University of Benin, Benin City, Nigeria for his stead-

fast belief in my academic abilities and encouragement.

To Mr. E. E. Oghuman, (President), Bonaventure Limited, Lagos, Nigeria for his moral

viil

and initial financial support during my preparations to come to Canada. My dreams

would have vanished into thin air if not for his support.

To my family, particularly my children (Sylvia, Sylvanus Jr., and Augusta), for their
continuing love, patience and understanding, and for bearing with me during those diffi-

cult times I was unable to satisfy their material needs.

Finally, to my friends Oghre Emmanuel and Chris Oriakhi. [express my love and grati-

tude for their encouragement during my years of study.

Contents

1 INTRODUCTION 1
1.1 Statement of the Problem 4
1.2 Motivation L e e e e e e e e e e e e e 6
1.3 Objectivesof theStudy, 9
1.4 Significance of the Research 9
1.5 Limitations e e e 11
1.6 Problem Domain 11

1.6.1 An Example — The Electronic Shopping Mall 16
1.7 Notations e e e e 20
1.8 Organization of the Thesis 21

2 LITERATURE REVIEW 22

2.1 What is a Formal Method? 22
2.1.1 Formal Specification Language 23
2.1.2 Taxonomy of Formal Specification Language 24

2.2 Current Transaction Specification Techniques 25
2.2.1 Natural Language 26
2.2.2 Pseudocodesol o 26
2.2.3 State-Oriented Techniques 26
2.2.4 Functional Decomposition Techniques 29
2.2.5 ACTA e e e e e e 30
226 Prolog e e 31

23 A Surveyof ExistingTools 31

ix

231 Z . e
2.3.2 VDM . . . e e e e e e e e
233 Temporal Logic
234 PetriNets o L L i i e e e e
2.3.5 Communicating Sequential Processes
2.3.6 Calculus of Communicating Systems
2.4 Traditional Transactions
24.1 Recovery. e e e e
2.4.2 Types of Transaction Concurrency
2.4.3 Approaches to Concurrency Control
2.4.4 Recovery Techniques
2.5 Extended Transactions
2.5.1 ActiveDatabases o000 o000
2.5.2 Nested Transaction
2.5.3 Cooperative Transactions
2.5.4 Federated Databases
2.6 Dependence Relationships

SPECIFYING TRANSACTIONS

3.1 Taxonomy of Transactions Specification Requirements
3.2 Transactions Specification Formalism Requirements
3.3 Considerations for Transaction Specification
3.3.1 Constraints Specificationo 0oL
3.3.2 Proof Requirement
3.3.3 TimeProperty
3.34 Causality oo

3.4 Specification Language Selection

TIMED CSP FUNDAMENTALS
4.1 Elementsof TCSP
4.2 The Language of Timed CSP .

.......................

.......................

.......................

xi

4.3 Nature of CSP Specifications 80
4.4 Semantic Models for Timed CSP 81
4.4.1 Reasoning with Traces 83
4.4.2 Proof Mechanism 84
4.4.3 The Implementationofa Process 89
4.5 Interleaving Semantics L0000 86
4.6 Supporting Record Data Typein CSP 87
4.6.1 Defining Record Data Structure 88
4.6.2 Semantic Definitionso 94
PROTOCOL SPECIFICATIONS 99
5.1 Basic Definitions e 99
52 TheModel oo e 106
5.3 Logical Time Assignment 108
54 Definitions L L. L Lo e e e e e e e 109
54.1 Preamble 0 .. 109
5.4.2 Temporal Operators 114
5.5 Interleaving Lo 119
5.6 Causality e e e e e e e e e e e e e e e e e 120
5.7 Specification of Transaction 124
58 History L L L e e e e e e e e e e e e e e e e 126
5.9 Specification of Correctness 129
5.9.1 Failure Atomicity« « . oot i e 130
59.2 Serial History o 132
5.9.3 Conflict Serializability 134
5.9.4 View Serializability, 136
5.10 Specification of Transaction Models, 139
5.10.1 Single Level Transactions 140
5.10.2 Nested Transactions 140

5.10.3 Distributed Transaction ¢ ¢« « t c i it o . 151

5.10.4 Multidatabaseo L oL
5.11 Specification of Concurrency,
5.11.1 Time Stamp Ordering Protocol
5.11.2 The 2-Phase Locking Protocol
5.12 The Electronic Shopping Mall
5.12.1 Some Applicable Functions

6 CORRECTNESS PROOF
6.1 Proof Methodology
6.2 Safety and Liveness Properties

6.3 Prove Theorems about Specifications

7 CONCLUSION AND FUTURE WORK
7.1 Thesis Summary e e e e e e e

7.2 Future Work e
List of Symbols

References

183
184
186
186

193
195
196

201

211

List of Figures

1.1 Architecture of the Problem Domain 12
1.2 Components of an MDB Model (Adapted from [Bar90] with permission) 13
1.3 Transactionsin MDB Model 14
1.4 Abstract Representation of ESM Transactions 17
2.1 Operations Compatibility Matrix [BR90] 27
3.1 Transactions, Specification, and Formalism Features Relationship 57
3.2 Taxonomy of Transaction Specification Characteristics 59
4.1 The Satisfaction Relation 86

.2 A Sample Record Data Structure, 88
5.1 A Graphical Model of Problem Domain 108
5.2 Synchronization Point of two Transactions 121
5.3 Sample Dependency Relationship Graph 122
5.4 Sample Causal Dependencies 123
5.5 Space-Time View of Execution. 128
5.6 Visibilityof Commit (a) 142
5.7 Visibilityof Commit (b) 143
5.8 Conflict Set of Subtransaction 147
5.9 Root Transaction Construction 149
5.10 Multi-database Transactions 155
5.11 Relationship between transactions andasite 157
5.12 Timestamp Ordering protocol, 159

5.13
5.14
5.13
.16
5.17
5.18
5.19
5.20

[S1]

6.1

6.2

xiv

General Locking Scheme oL, 166
Combined cautious waiting and immediate rescheduling 167
Operations of example transactions. 172
Operations of example Transactions using 2PL. _. 173
A Customer Order Transaction 174
Process Model of Order Processing 175
A Graphical Representation of Purchase Transaction. 176
Dependence Relationship of Sample Transaction. 181
Application needs - Software Solution Relationship 184
Behavioural Equivalence of TOand 2PL. 192

Chapter 1

INTRODUCTION

Users interact with the database through the execution of special application programs
called transactions [AE92] that are composed of a sequence of database steps derived from
a program whose combined execution is known to preserve the database in a consistent
and correct state. Thus, from a user’s viewpoint, a transaction is an independent task or
activity performed by the system. Transactions have a beginning; perform user defined
tasks; and terminate leaving the system in a consistent state. Therefore, a transaction
that updates database objects must preserve their integrity constraints.

Integrity is maintained by allowing only safe transactions to update the database.
A safe transaction is one that does not violate database integrity constraints [SS89].
Motro [Mot89] states that database integrity has two complementary components: valid-
ity, guarantees the exclusion of all false information from the database, and completeness
guarantees all true information is included in the database. This is achieved if a trans-
action moves the database from one consistent state to another. Correctness is partially
supported by the all-or-nothing principle, (often called atomicity). The all-or-nothing
principle states that “each transaction should either execute in its entirety or have no
effects at all” [Ber90]. Thus, transactions in database systems are defined in terms of
consistency, recovery, and permanence. Consistency implies that a committed transac-

tion produces a consistent database state! if the database state before its execution was

lConsistent states generally satisfy some constraints involving relationships between the values of

different data objects in the database.

(L)

Chapter 1. Introduction

consistent; recovery refers to the ability, upon failure, to take the database to some state
considered correct; and permanence is the ability of a transaction to record its effects in
the database. Therefore, a transaction should have the properties of atomicity, consis-
tency, isolation, and durability. These properties are often collectively called the ACID
test [Des90, Gra81, OV91].

The desire to support concurrency means synchronization is necessary to guaran-
tee data/operations dependencies are maintained, thereby ensuring the correctness of
results. These properties are embodied in éransaction protocols. A transaction’s protocol
is a body of rules that defines (or describes) the correct behaviour of the transaction’s
encompassing model. The transaction’s protocols require that transactions perform de-
sired tasks correctly. To achieve consistency, the interleaved execution of concurrent
transactions must be properly synchronized so some form of serializability is guaranteed.

One way to minimize the processing required to maintain integrity during transac-
tion processing is to prove, at compile time, that transactions cannot [if run in isolation
and serially] disobey integrity constraints [Gra94, SS89]. To determine this, a precise and
independent description of the transaction protocols is required. Such a description is
called a specification. The specification is implementation independent and concentrates
on properties rather than mechanisms. That is, it is only what is required of a system
that must be described, not the detail of Aow to do it.

Various terms have been used synonymously to denote a specification (see [Ger83]

and [Dav88]). This thesis defines a specification as:

Definition 1 Specification: A specification is a precise, independent, implementation
independent description of the properties (statement of requirements) of a system, against
which the system can be verified. [

The IEEE Software Engineering Technical Committee [ANSI84] stipulates the system’s
properties that are specifiable. These are: system’s functionality, performance (such as
accuracy and timing performance), constraints (such as restrictions on functions, data-
base integrity, and operating environments), attributes (such as portability, security, and
maintainability), and external interfaces with other software/hardware.

A specification states properties that must be guaranteed of a system to ensure

Chapter 1. Introduction 3

correct behaviour®. The specification is structured as a collection of requirements, each
describing some property that the system must satisfy. In other words, a specification
describes what a system should do rather than the mechanics of the system.

The New Mariam-Webster Dictionary defines a system as “an organized integrated
whole made up of diverse but interrelated and interdependent parts” [TMW89]. Systems
have internal structure and exhibit behaviour. A system’s behaviour is the result of the
behaviour of its parts (which may themselves be systems) and of the interrelationships
among those parts [CHJ86]. Birell et al. [BGHLS87] state that any [concurrent] system’s
behaviour is describable using a sequence of atomic actions’ executions.

A system has three representation forms: functional, structural, and behavioural.

The description of the three distinct views given below adopts Harel’s [Har86] method-

ology.

1. The functional view shows the system as a set of entities performing relevant tasks.
This includes a description of the task performed by each entity and the way the
entity interacts with other entities and the environment. Ideally, the functional view
should complement the behavioural view so each transaction in the behavioural

view is traceable through the system.

2. The structural view shows the composition of the system — the components, the
interfaces, and the flow (data and control) between the components through the
interfaces. The structural view also shows the environment, the interfaces. and

information flow between it and the system.

3. The behavioural view shows how the system will respond to specific inputs: what
state it will adopt and what output it will produce; what boundary conditions exist
for valid input and which states are considered correct and consistent. This includes
a description of the environment that is producing the inputs and consuming the
outputs. It also includes constraints on performance imposed by the environment

and function of the system.

2Correct behaviour is the degree to which a systems satisfies its specified requirements and to which

requirements meet their associated needs.

Chapter 1. Introduction 4

1.1 Statement of the Problem

Several questions remain open vis-a-vis transactions:
I. What mechanisms can achieve the desired transaction correctness properties?
2. Can heterogeneous transaction models be integrated?
3. What environmental circumstances can a transaction complete successfully?
4. When is a nested transaction most appropriate?
5. When a transaction is initiated, when does its execution begin and end?
6. How do we reason about and verify the behaviour of transactions?

These questions can best be answered with a formal framework that captures transaction
interactions. The first step is to formalise the concurrency algorithms using a suitable
specification language. Correctness conditions for the specifications can be formulated in
terms of the properties of the system’s behaviours®.

Some recent work on formal specification of transaction systems has appeared in
the literature (see [AJR95, Chr91, EB93, EBO95, Ken96]). Gray and Reuter [GR93]
state that “no grand unified theory of transactions has yet been developed”. Further,
there is currently no satisfactory or unified formalism for specifying and reasoning about
database transactions [EB93] and most specification methodologies currently applied are
ad hoc.

Currently, transaction model descriptions and their protocols consist of an informal
explanation supported by the use of pseudocode to characterize the operations within a
system. Unfortunately, when insufficient formalism is used to specify transaction systems
protocols they are open to different interpretations. Li and McMillin [LM93, LM94] state
many published (distributed) deadlock detection/resolution algorithms are found to be
incorrect [MM79, Obe82, SN85,CKST89] because they have used informal approaches

31t is natural to express correctness conditions as restrictions on the actions of the system. This

approach is simple but shows explicitly the action that are under the control of different components.

[}

Chapter 1. Introduction

to reason about and verify the correctness of these algorithms. Only rigorous proofs are
sufficient to show the correctness of such algorithms [Kna87] because intuitive operational
arguments are error prone and subject to misinterpretation. Since formal correctness
proof is difficult [Sin89] only a few sophisticated formal methods are available for proving
correctness of algorithms [LM93]. Moreover, writing correct software requirements is a
difficult problem [LS85] for which there are few analytical tools available.

A formal method supports formal reasoning about the specifications of the transac-
tion systems as well as provides the basis for verification of the resulting software product.
Jarvis [Jar92] noted that informal approaches are notoriously unreliable so formal meth-
ods pay dividends. The use of formal methods permits the analysis of complex protocols
since they eliminate ambiguity in specifications.

A formal model for specifying transaction protocols is described here. The formal
specification utilizes CSP to capture static and dynamic properties of transaction proto-
cols. The thesis demonstrates that the following properties of transaction systems can

be captured using this technique:

® correctness

e concurrency

e safety properties

e liveness properties

e timing relationships between transactions (or subtransactions) as a control mecha-
nism

e dependency relationships between transactions.

The CSP specification language presents and proves the correctness of a number of trans-
action processing algorithms, including locking and timestamping, correctness criteria
such as CSR and VSR, and the hierarchical transaction models. Finally, a sample ap-
plication, the Electronic Shopping Mall, is presented to illustrate the technique. The
structural and behavioural capabilities of the system are formalized in terms of asser-

tions and constraints that must be preserved by any implementation of the system.

Chapter 1. Introduction 6

1.2 Motivation

Transaction systems must transparently demonstrate integrity, consistency®, safety and
liveness, and dependability properties. These properties are vital to all transaction mod-
els though the degree of importance placed on each varies between models. The new
complex transaction systems [AE92] must satisfy the dependability requirement. Laprie
defines dependability as “that property of a computing system that allows reliance to be
justifiably placed on the service it delivers” [Lap89]. Dependability is a property that
has other measures such as safety, reliability® and availability. Availability is a measure
of the frequency the system is available to the users when required by the users (i.e., of
being operational — not failed — at a given instant in time). Correctness ensures system
behaviour conforms to the specified requirements. Formal methods address correctness
aspect which is the focus of this research.

There are four approaches to achieving system dependability. These are:

Fault avoidance to prevent fault occurrence or introduction.

e Fault tolerance to provide a service complying with the specification in spite of

faults.
e Fault removal to minimize the presence of faults.

e Fault forecasting to estimate the presence, the creation, and the consequences of

faults.

Formal methods are classified as fault avoidance and removal techniques which can in-
crease dependability by removing errors from the requirements specification and by veri-
fying the specification is correct. Dependability is further enhanced when formal methods
are used with other techniques.

Transaction systems specifications need a clear, concise, unambiguous, and rigorous

behavioural and functional description of crucial features. Concurrency, nondeterminism,

4Sometimes consistency property is relaxed.

5Recovery is a subset of reliability.

-~

Chapter 1. Introduction

mutual exclusion, synchronization, and avoidance of deadlock are key features of trans-
action systems so developing a formal specification and verification techniques for such
systems components is very desirable. Unfortunately, none of the present transaction
systems (models) have been successful in fully defining transactions formally.

Formal specification of network protocols is simpler than transaction systems be-
cause discrete synchronizable points are identifiable. Unfortunately, database transaction
can share data (objects) simultaneously so operation synchronization is more difficult to
specify. Formal method will clarify underlying transaction concepts and lead to simple,
reliable, and correct protocol design. Additional formal methods research is required
in the database transaction domain to fully understand the theoretical underpinnings
and techniques. Furthermore, the notion of serializability that incorporates causality is
required for indepth study.

Formal methods are rarely used in commercial developments [Col90, BSC92]. Wide-
spread commercial acceptance of formal methods requires carefully documented, realistic
case studies. In database applications, in particular, the few case studies [Wal90, Sha90b]
available examine sequential and deterministic systems so they do not examine concur-

rency which is the core of any complex transaction systems.

Benefits of Formal Methods

Using a formal framework for specifying transaction systems protocols offers the following

benefits [NW90, NJH92, Ost91, Pre92, Win90, Flo85].

e It assists in deriving an independent and precise description of the behaviour and

effects of transactions in a given transaction model.

® The formalization process can reveal ambiguities, incompleteness and contradic-
tions in the informal product definition. Thus a formal method provides a means
for specifying a system in a precise language so that consistency, completeness, and

correctness can be assessed in a systematic fashion.

e [t allows for correctness verification of the transactions protocols. Verifying cor-

rectness can be done using rigorous mathematical analysis and logical reasoning,

Chapter 1. Introduction 8

as well as tools where they are available.
e Different transaction models can be evaluated and compared easily.

e A formally verified system can be used with greater reliability. “The use of formal
techniques should be seen as a way of achieving a high degree of confidence that a

system will conform to its specifications.” [Spi88]

e Formal methods influence the automation of the production/development of soft-
ware. Also, a tool for a formal method can lead to automation of the specification

model.

e Formal methods provide abstraction so a precise behavioural specification focused
on a system’s functionalities can be defined. Abstraction is the process of identifying
the key properties being modeled while ignoring unimportant details to manage
complexity and promote correctness, extensibility, maintainability, reusability, and

understandability.

o Formal methods help programmers to reason carefully about the correctness of
implementations of transaction processing systems since many of the proposed al-

gorithms for transactions are complex.
e Additional benefits arising from using formal techniques are:

1. Reduction in system development costs because errors are detected and cor-

rected early.

!\9

Reduction in the time and effort required at the detailed design and cod-
ing stages (e.g., the Customer Information Control System [CICS] project
[HK91]).

3. Identifying when reusing program modules is possible [ST90] from the formal

specification.

Chapter 1. Introduction 9

1.3 Objectives of the Study

The primary focus of this research is to specify database transaction systems protocols
using formal techniques. The structural and behavioural capabilities of the system can
be formalized in terms of assertions and constraints that must be satisfied by any imple-

mentation. In particular, this research:

e identifies the requirements of any formal language suitable for the specification of

transaction systems;

e identifies and emphasizes the importance of using formal methods in the specifica-

tion of transaction systems protocols;

e formally specifies transaction systems protocols using the Timed CSP specification

language; and
e provides proof of correctness for the specifications.

This research adopts the following methodology in specifying transaction systems
protocols. First, the CSP’s process language describes the communication interaction
patterns of the system. Second, first order logic expressions specify the system’s func-
tional properties while the behavioural specifications describe system properties with
traces. Finally, satisfaction relations and rigorous proof mechanisms ensure the processes
described exhibits these properties. An equivalent approach but orthogonal methodol-
ogy to the one adopted in this research uses refinement to investigate whether or not the
process description exhibits these properties, and finally refine the process description

towards implementation. This is outside the scope of this research.

1.4 Significance of the Research

The main significance of this research is the integration and formalization of solutions
to individual transactions requirements within a single uniform transaction specification

framework (— Timed CSP specification language). This framework is more general and

Chapter 1. Introduction 10

not biased towards specific types of transactions. It integrates temporal behaviour of
individual transactions with the dependencies among transactions that can arise when
accessing shareable data. Transaction dependencies are analyzed using the notion of

predicate satisfaction.

Contributions

In summary, the following are the specific contributions of the thesis:

1. Provides a taxonomy of a transaction specification characteristics against which

any specification can be assessed.

2. Identifies the requirements of any formal language that is appropriate for the spec-

ification of transaction systems.
3. Provides record data structure support for CSP.

4. Provides a formal framework for analysing database transaction functionalities and
behaviours and the constraints imposed by the underlying structure of the system to
ensure correctness and enhance system reliability. Specifically, the thesis formally
provide:

@ specification of hierarchical transactions (closed and open models),

@ specification of 2PL and Timestamp Ordering concurrency control protocols,

and

@ specification of correctness criteria (e.g. CSR and VSR).

5. Provides a formal case study analysis of a new application — the Electronic Shop-

ping Mall in the domain of electronic commerce.
6. Demonstrates correctness of schedules.

7. Other contributions are:

Chapter 1. Introduction 11

e demonstrates the use of software engineering discipline in the design, develop-
ment and evaluation of transaction systems for cooperative computing work-

flow architectures or environments.

e provides solutions to problems of electronic commerce transactions correctness

and reliability and identifies new challenges and directions for future research.

e provides methodology to accommodate the new complexities introduced by

asynchronous operations of distributed systems.

1.5 Limitations

This research is limited to the formal specification of database transaction systems proto-
cols using the formal specification language Timed CSP. The language and models of CSP
are employed to specify the transaction protocols at an abstract level and to establish
a proof of correctness. The implementation of the specifications is outside the scope of
this research. Further, no attempt has been made to develop a new formal specification
language (or calculus) but extensions to CSP include a structured data type to support

transaction system specifications.

1.6 Problem Domain

A multidatabase (MDB) environment where each database is autonomous provides the
framework to reason about formal specification. The local databases may be hetero-
geneous. Within the MDB environment various architectures may be supported, see
Figure 1.1. A schematic representation of an MDB model components is shown in Fig-
ure 1.2. The autonomy and heterogeneity of the local databases (LDBs) provides design
autonomy so different LDBs may support different concurrency control protocols, data
models, data manipulation languages, and correctness criteria. Therefore, LDBs inde-

pendently execute transactions in any order.

To support heterogeneity, database drivers (including ODBC® [Mic96]) and other

SODBC (open database connectivity) technology provides seamless access to enterprise data using a

Chapter 1. Introduction

N\ £
[Global Transaction)
Manager/Interface
(| Communication Layer)
— N

- ~ ~ ~

|] A
= N \'::J

Distributed System Client-server

(Stand-alone db) ((Stand-alone db) - - - (_Stand-alone db)

Figure 1.1: Architecture of the Problem Domain

Chapter 1. Introduction 13

|

- MDMS Layer
DBMS:;| - - - |DBMS,

| |

\LDBI T LDB,

Figure 1.2: Components of an MDB Model (Adapted from [Bar90] with permission)

APIs provide access to data since the LDBs’ participation in the MDB requires no modi-
fication of their code or functionality. Also, the MDBMS requires an appropriate network
library to enable global transactions connect to specific databases. An intelligent agent
subsystem (of the MDBS) provides the MDBS with information about the services the
component LDBs can render and the data they may contain. This information is neces-
sary to appropriately direct a query to the LDBs.

A user can submit transactions to the global transaction manager (GTM) to access
one or more local databases in the system. These transactions are called global transac-
tions (GT). Users at each LDB can submit local transactions’ (LT) to their respective
local databases. Both local and global transactions can be submitted simultaneously and
executed concurrently. Figure 1.3 illustrates the computational model.

The two classes of transactions thus require two levels of transaction mechanism

single API.

"Local transactions are accepted directly by the individual autonomous component LDBs.

Chapter 1. Introduction 14

GT GT GT

\ MDMS /
Wi

DBMS;| - - - |DBMS,

y 4

\LDBII T LDB.,

Figure 1.3: Transactions in MDB Model

support: the GTM and the local transaction manager (LTM) for each individual com-
ponent LDB. The GTM receives all the incoming transactions (i.e., GTs), schedules
transactions and assigns them to the participating LDBs for execution and supervises
their (interleaved) execution. Each LDB receives the global subtransactions (GSTs) and
process them with local transactions. The GTM maintains the correctness of the global
transactions. Management of commit and abort operations of a transaction is the respon-
sibility of the recovery manager module of the originating site. See [LR82, Bar90, OV91]
for details of MDBMS’s architecture.

The GTM uses several data structures. The transaction queve (TRANQ) holds in-
coming transactions using a FIFO discipline. The wait queue (WAITQ) holds transaction
ids sent for processing or those awaiting further processing. The status queue (STATQ)
contains status messages from the LDBs (where available) indicating transaction status
such as: (a) aborted, (b) committed, or (c) active.

The component of the GTM that schedules transactions for execution is the trans-

-

Chapter 1. Introduction 15

action scheduler (SCHED). The SCHED (i) selects a transaction from TRANQ and
distributes it to the appropriate participating LDBs and (ii) sends it to the WAITQ until
acknowledgement is received from the LDBs. Transaction operation orderings are seri-
alized and recovery is ensured by the scheduler. Once all subtransactions submitted for
a global transaction have completed, the GT is removed from the WAITQ. The LDBs
often communicate with the GTM to indicate execution status of a transaction.

The SCHED uses the following iterative steps when scheduling transactions.

1. Select a GT, say T;, and decompose it into its constituent subtransactions (GSTs).

e For each GST do
Determine the appropriate LDB and assign the GST to it.
Add the GST’s id to the WAITQ
End{for}

e Then remove T from TRANQ

2. If STATQ = () then get transaction T; from TRANQ else get transaction Tj
corresponding to the message status from the WAITQ. That is,
STATQ = () = T; = head(TRANQ)
STATQ #()= T;:=T; | T; in WAITQ A T; =head(STATQ)
One of the following actions will be taken depending on 7T;’s status.
case of status do
active: schedule head(TRANQ)
abort : if GST = vital then abort(T;)
else schedule next GST of transaction T;
commit: schedule next GST of transaction Tj

end {case of}
3. If T is partially processed transaction then mark the completed GST.

4. If T is completely processed, remove T from WAITQ and STATQ.

The GTM submits operations to LDBs one at a time using a blocking protocol where

each submission is acknowledged before subsequent operations can be submitted.

Chapter 1. Introduction 16

This environment is probably only feasible if a flexible transaction model is em-
ployed that allows for compensating and/or contingency transactions to recover from

potential semantic failures [HPS93]. Possible problems include:

e Concurrent access to a data item (by both local and global transactions).
e Deadlock problems (queue resolutions)

e Temporal components of some transactions need explicit specification so that we

can capture interleaving order of transactions.
e Reliability issues are particularly important and difficult problems in this domain.

Application areas of the above model abourd such as: (1) Shopping malls with
several business concerns each maintaining their own local database (i.e., the electronic
shopping mall paradigm), (2) Travel and associated operations, e.g., booking flight, hotel
reservation, and car rental services, (3) Governmental operations (two or more govern-
ment ministries or organizations interacting), (4) School environment (library system,
accounts system, students records, registration system, etc), and (5) Co-authoring sys-

tems.

1.6.1 An Example — The Electronic Shopping Mall

The Electronic Shopping Mall (ESM) illustrates the pragmatic aspects and clarifies se-
mantic related problems. The intent here is to demonstrate the application of formal
methodology in protocol design and analysis. The application easily scales up to other
designs without loss of analytic power. A diagrammatic representation of the transactions
in the application domain under consideration is shown in Figure 1.4.

ESM is an electronic commerce® application. ESM is an electronic equivalence
of ultra-large department stores (e.g., the West Edmonton Mall in Alberta, Canada)
with a large number of vendors and products. ESM provides a common online access

point (the global transaction interface/manager) where customers can obtain information

8Electronic commerce is the sharing of business information, maintaining business relationships, and

conducting business transactions by means of telecommunications networks [Zwa96).

Chapter 1. Introduction 17

| User transaction.

HEE

»MDB”M’nnager l

\ / N/

Cust Store’s
Stcg;s Bank Bank

Figure 1.4: Abstract Representation of ESM Transactions

about products and place orders. It must aeutomatically process customer’s electronic
orders that requires the services provided by a company’s inventory, billing, accounts,
and logistics operations. Thus, it supports a user’s access to multiple databases. ESM
integrates electronic payment into the buying process and information kiosks [Jac96]°
to build a consumer marketplace. The ESM has added a new dimension to satisfying
vendor/customer needs. The ESM uses a combination of videotext, graphics, and other
multi-media to provide detailed product information for the customer. The ESM dialetic
provides both effective product differentiation and increased ability to market products
for the vendors and an efficient comparison mechanism for the customers (by increasing
the ability of customers to shop and compare prices and products). The focus of this
thesis is only on the specification of the underlying sales transactions aspects of ESM
functionalities.

A request to the ESM typically involves many subactivities that may share re-
sources, demand explicit expression of temporal relationships, or require concurrent and
parallel operation execution. Thus, the application must capture concurrency, share re-

sources, temporal relationships, and the correctness properties necessary in a transaction

9Information kiosk is an interactive display module that guides shoppers towards a store that carries

an item of interest and the inventory

Chapter 1. Introduction 18

system.

If a user wants to buy merchandise, say a bicycle, the user issues a transaction
againsts the global database. The GTM sends the transaction to all the participating
merchandise stores’ databases that sell the product. That is, the GTM decomposes the
user transaction and queries all participating local databases for availability of the item.
Local databases that have the item acknowledge availability status to the GTM while
the local database continues to process LTs at its location and hold the requested item
for the “global” customer. The GTM immediately aborts the transaction if the item is
not available otherwise the GTM requests payment, validates account balance, and com-
pletes payment if account balance is greater than the selling price or immediately aborts
otherwise. If the payment action succeeds, then the local store database transaction
(inventory update) can commit so the GT can commit successfully.

The same global transaction, however, may have to access the customer’s bank
account to check for fund availability. In many cases, that information may be kept
on a different system. This introduces heterogeneity thus resulting in transactions that
may have to be split and executed on different systems or possibly on a remote LDB.
Also, there may be value dependencies whereby the action taken at one LDB depends
on the value of data item in another. For example, in the preceding bicycle example,
the decision to complete the inventory operations depends on the amount of money the
customer has (the customer’s account balance which may reside in a bank’s database).

The GTM may present a variety of information to the user. Such information
may include: a list of all stores selling bicycles, the different models of bicycles, the
price listing, the list of quantity available, the locations of the stores selling bicycles,
stores having sales promotion currently, and so on. The items filtered out from the
user’s view depend on the requirements of the GTM. The user pays for the item if the
product available meets the description in the user’s transaction. A user can pay for an
item using a variety of methods such as direct debit from an account, electronic fund
transfer, telepay, credit card, interbank transfer, cash, or any combination of the above.
The user’s transaction completes after completing payment and the account balance is

updated. Further, the user’s transaction should not prevent other transactions from

Chapter 1. Introduction 19

taking place concurrently both at the participating stores’ local databases, the giobal
database, or actions executing at other locations resulting from the execution of the
user’s transaction.

A summary of additional constraints are: (1) a customer may buy as many quanti-
ties of the same item at once as allowed by the participating stores, (2) a customer cannot
buy items worth more than the customer can afford, (3) all items in the participating
local databases must be sold or available for sale, (4) only authorized persons may add
or remove an item from the store, (5) no item may be sold and available for sale, and (6)
the set of participating local databases should be nonempty.

To the user, the provision of a fast service, correct account balance after pay-
ment, ability to pay using any method, and transparency of the services provided by
the participating local databases constitute good behaviour. In addition, the participat-
ing local databases enforce the user transaction’s integrity constraints, allow operations
concurrent execution on the database simultaneously as the user transaction execution
progresses, terminate global subtransactions after processing, and finally make the service
they provide to the GTM transparent to their respective local users. The coordination
and complexity of all the activities are transparent to all users. Lastly, the GTM can
terminate any activity requested by the user after execution and delegates any activity
to participating local databases for the satisfaction of a user’s transaction.

For discussion purposes, suppose only one store has a bicycle matching the speci-
fications in the transaction. Further, assume that only one bicycle remains in the store.

Unfortunately, several scenarios may prevent a smooth purchase transaction.

1. If a local transaction simultaneously requests the same bicycle a decision must be

made as to how we resolve this situation.

o

Suppose the user in the global transaction decides to pay for the item with the
Interac™ system on a bank account while his/her spouse is at a local branch
processing a withdrawal request at the same time. How do we resolve the concurrent

update problem vis-a-vis the bank?

3. With current technology, suppose the global transaction request was successfully

Chapter 1. Introduction 20

processed and a signal was sent via satelite to update the inventory. If another
user requests the same item while this is yet to complete processing, the system
might incorrectly reports that a bicycle is still available. Thus the timing aspects

of transactions must be further examined.

To exploit the technologies at our disposal, multidatabases must be formally specified to

ensure correct concurrency, reliability, and recovery. Additional considerations include:

e It is possible that more than one local database can satisfy the request of a global

transaction.

e The global transaction will always spin off a subtransaction at a local database.
Thus, we have a collection of subtransactions nested within the global transac-
tion at the top level. This ultimately amounts to nested transaction management
(Gra81, EGLT76]. Allowing concepts like vital and non-vital subtransactions and
supporting both closed and open nesting is likely required.

e The local DBMSs manage the subtransactions spawned at their sites by the global
transaction to ensure correct execution. This immediately suggests two levels where
temporal properties need explicit specification, at the global transaction level and

at the local transaction level.

e Different levels of correctness are possible in this environment, some more restrictive

than others.

[n summary, ESM is characterised by active capabilities (for timely response to events
and changes in the environment), support for long-running transactions (and possible
partial sharing of results), allows compensation to undo effects of undesirable committed

transactions, and support for heterogenous and autonomous environments.

1.7 Notations

Let us make some comments about a few notations that we shall encounter. The syntactic

form

Chapter 1. Introduction 21

function_name : argument_type — output_type

defines the signature of a function: where its name is function_name, argument_type
is the data type of the argument(s), — is read as “produces”, which relates the input
data to the output, and finally output_type is the data type of the output. Where the
function is a relational type, — is replaced by the relational function symbol, +— and
by the partial function symbol, 4+, for partial functions. This convention bears close
resemblance to that used in the Z [Spi88] specification language. Also, seq; denotes a
nonempty sequence, F, denotes a nonempty finite set while P is a powerset. Additional
symbols are defined in context when necessary.

It may help to browse through Appendix A for list of symbols at this point before

proceeding.

1.8 Organization of the Thesis

This chapter introduces the concept of transaction models and formal specification and
demonstrates why a formal methodology is appropriate. Chapter 2 reviews related liter-
ature on transaction models, concurrency control for complex objects, and specification
techniques currently in use. Chapter 3 presents a taxonomy of transaction specification
features and the fundamental issues that should be addressed before specifying transac-
tion systems formally. Chapter 4 briefly describes the notations of timed and untimed
models for CSP. Also, the necessary record data type extension to CSP for supporting
transaction specification are presented. Chapter 5 presents the specifications itselif. [t
focuses on using the formal languages to define existing hierarchical transaction models.
The ones addressed are: nested transactions, multidatabase transactions, and an emerg-
ing application called the Electronic Shopping Mall concept. Chapter 6 provides the
proof of specifications found in Chapter 5 leaving Chapter 7 to make some concluding

comments.

Chapter 2

LITERATURE REVIEW

This chapter is organized into two major parts. First, formal methods and the current
state of the art for specifying transaction systems protocols are described. A survey
of existing formal specification tools is provided to assess their strengths and weakness,
and to determine their suitability for specifying transaction protocols. Secondly, relevant
database material including concurrency and recovery is discussed. These parts are

necessary to understand the link between specification and transaction systems.

2.1 What is a Formal Method?

A formal method is the combination of a precise operational system abstraction and
the ability to argue rigorously about the behaviour of the system. Formal methods are
“mathematically based techniques for describing system properties. Such formal methods
provide framework within which people can specify, develop, and verify systems in a
systematic, rather than ad hoc manner” [Win90]. The sound mathematical basis provides
the means to precisely define notions such as consistency, correctness, and completeness
of specification and the resulting implementation.

Formal methods, therefore, “are essentially formal systems; they provide frame-
works for inspecting the satisfiability of specifications, for proving the correctness of an
implementation of a system, and for proving the properties of a system without the need

to have an executional representation of the system” [NJH92]. In other words, a for-

22

Chapter 2. Literature Review 23

mal method consists of a formal model and the associated mathematical techniques that
provide the user with a framework for specifying and analysing the system [MLTL93].
The basic components of a formal method are: the computational model of development;
a specification language; properties (liveness and safety properties) to be preserved; a
proof system; and guidance in applying these in a coherent manner. Most methods lack
2 proof system and guidance about how development should proceed while others lay
very little emphasis on an underlying model that encompasses each stage of the system
development.

Formal methods are useful at various abstraction levels because each provides dif-
ferent levels of assurance for the software developed [WKC91]. Thus, formal methods are
used in three ways [Lus94]: for expressing the statements; for verifying that the input,
and output of a step are in agreement; and for transforming the input into some output.

This research uses formal methods in the first two ways.

2.1.1 Formal Specification Language

A formal specification language consists of three parts: the syntaz that describes the set
of allowable alphabets and the grammar of the language; the semantics which makes it
possible to denote the meaning of a specification in the language without ambiguity; and
a set of relations that defines which objects satisfy each specification. Thus [GHWS2]

provides the following definition:

Definition 2 Specification language: A formal specification language is a triple,
(Syn, Sem, Sat) where Syn and Sem are sets, and Sat = Syn x Sem, is a relation between
them. [

Syn is called the language’s syntactic domain, Sem its semantic domain, and Sat its
satisfies relation.

The syntactic domain of a specification language is usually based on the principles
of set theory, predicate logic, relations and functions. The satisfies relation defines the
rules for forming well-formed formulae (wffs). A well-formed formula (wwf) over a set

of syntactical rules, GG, is a finite sequence of symbols that is syntactically correct. That

Chapter 2. Literature Review 24

is, it belongs to the set of all sequences of symbols that can be constructed by using the
grammar of G.

A specification language may be viewed as a set of specification building operations
together with some syntax. In choosing the class of operations there is a trade-off between
the expressive power of the language and the ease of understanding and dealing with op-
erations [ST84] in addition to the levels of abstraction that it supports [Win90]. Making
a language more expressive does indeed facilitate briefer and more elegant specifica-
tions, but can make reasoning more difficult [BH94]. An example from the programming
language environment is APL which is a very powerful language having operators that
concisely perform actions requiring numerous statements in other languages. Thus, an
APL program can be extremely abstract but may be “difficult to explain and understand

which in turn becomes a potential hindrance to producing correct programs” [McC83].

2.1.2 Taxonomy of Formal Specification Language

Several formal specification languages are currently being used in different semantic do-
mains. Wing’s taxonomy will suffice [Win90]. These consist of: (1) Model-Oriented
approach, (2) Property-Oriented approach, (3) Visual languages, (4) Executable codes,
and (5) Tool-supported.

Model-oriented approaches specify explicitly a state space (or an abstract) model
of the system’s behaviour by using mathematical structures such as sets, relations, func-
tions, sequences, and cartesian products. Examples of languages in this class are Z [Spi88]
and VDM [Jon86] for describing sequential systems and CCS [Mil80], CSP [Hoa85], ACP
[Ber88, BB91], Raise [Nie89], and Petri nets [Pet77] for concurrent systems.

In the property-oriented approach, the specification language defines the system’s
behaviour indirectly by defining a set of properties or constraints which the system must
satisfy. These constraints of the system’s behaviour are often stated either axiomatically
using first order predicate logic or algebraically using axiomatic equations. The axioms
specify fundamental properties of a system and provide a basis for deriving additional
properties implied by the axioms. To establish a valid mathematical system, the set of

axioms must be complete and consistent (that is, it must be possible to prove desired

Chapter 2. Literature Review 25

results using the axioms, and it must not be possible to prove true contradictory results).
Examples of formalisms in this category are LOTOS [ISO87], Temporal Logic [RU71],
Larch [GHWS85], ACTA [Chr91], Anna [LH85], and Clear [BG80]. LOTOS, Temporal
Logic, and ACTA are methods for specifying concurrent and distributed systems.

Visual languages are graph theoretic based formalisms. “Visual methods include
any whose language contains graphical elements in their syntactic domains” [Win90]. In
other words, visual specification methods use visual expression where the graphics them-
selves are the syntax of the language. Visual languages use some visual representation to
accomplish what would otherwise have been written in traditional prose. Examples are
Petri nets and the higraph based Statecharts [Har88].

Executable formal methods support specifications that can be executed. Examples
of this category are the programming language Prolog and OBJ [Gog88]. Although a
logic based programming language, Prolog can be used as a specification language in
property-oriented form by defining logical relationships on objects.

Languages that have tool support for at least one of syntax checking, semantics
analysis, theorem proving, animation and graphical user interface are classified as tool-
supported. Most of the above mentioned languages including VDM, Z, and LOTOS are
examples.

The following section provides a brief discussion of some current methods (informal
and formal) used in specifying transaction systems protocols. Some of the formal spec-
ification languages mentioned are assessed for their suitability in specifying transaction

systems protocols.

2.2 Current Transaction Specification Techniques

Current techniques utilize informal methods classified broadly into: natural language,

pseudocode, and state-oriented.

Chapter 2. Literature Review 26

2.2.1 Natural Language

Most requirements specifications are written in natural language and range in length
from a few pages to several thousand pages. The size of the document rarely has any
relationship to the complexity of the problem [Dav88]. Breitbart et al [BST90], Eswaran
and Chamberlin [EC75], and Gracia-Molina and Salem [GS87] use natural language to
state a transaction models’ properties and behaviours. Such specifications tend to be
imprecise, incomplete, and unverifiable; and they are inherently ambiguous because they

are subject to different interpretations.

2.2.2 Pseudocodes

In [BR90, Bar90, Des90, KJ90, KS86, OV91] a transaction model’s properties and be-
haviours are defined using pseudocode based on more pragmatic English-like syntax
rather than on mathematical formalism. The pseudocode expresses synchronization al-
gorithms such as locking, timestamping, serializability and recovery protocols that define
how a transaction model should behave at any point in time given some conditions or
stimuli. Proofs of correctness for these systems rely on intuitive operational arguments
that are potentially ambiguous, error prone, and difficult to formally verify. Thus, sys-
tems developed from such specifications are less than ideal because they lack an under-
lying abstract mathematical model and consequently the precise semantics are not fully

specified.

2.2.3 State-Oriented Techniques

State-oriented methods such as tables and graphs are often used to describe certain prop-
erties of a transaction model. Compatibility tables (also called compatibility matrices)
are often used to define the behaviours of transaction operations over shared objects.
Compatibility tables are useful in specifying system behaviour when different input data
give different actions (states or outcomes) for each of several different modes of operation.
This tool is used extensively [BR90, DK83, Des90, KL83, KS86, OV91] to define the lock

compatibility function and the commutativity of operations required for synchronization.

QY]
~

Chapter 2. Literature Review

The example [BR90] in Figure 2.1 shows the compatibility of the set of operations insert,
delete, and member. Two operations are compatible if their effects are independent of ex-

ecution order. In Figure 2.1, Yes means the operations are commutative while Yes-DP

Operation [Operation Executed

Requested Insert Delete Member
Insert Yes Yes-DP Yes-DP
Delete Yes-DP Yes-DP Yes-DP

Member Yes-DP

Figure 2.1: Operations Compatibility Matrix [BR90]

means they commute only when different input parameters are used.

Another state-oriented technique is demonstrated by digraphs which are used to
model the serializability criterion (See Section 2.4 page 42). Testing the graph for cycles
can unambiguously determine if the transaction’s execution sequence is valid. Another
useful application of digraph is for modelling deadlock via wait-for-graphs (WFG) among
transactions!. The WFG represents wait-for relationships among concurrent transactions
in a system. Like serialization graphs, an acyclic WFG guarantees the system is deadlock
free. Digraphs are used in [BST90, Des90, KS86, OV91] to specify aspects of concurrency
and the transaction model’s correctness criterion. The algorithms for constructing these
digraphs often use natural language or pseudocode in their description.

A state-oriented form of table and graph usage is the finite state machine (FSM)
approach. Behaviour specification using regular expressions and FSM are by no means
a new idea. The transaction’s behaviour is taken as the sequence of actions of the FSM.
This approach was adopted in [AFLMW88]. When using FSM to specify transaction
systems, control data flows coming out of a node may be “and-ed” [Lus94] together

thereby defining concurrent executions of some parts of the transaction. A variant of

1The wait-for-graph is a directed graph containing nodes (representing active transactions) and arcs
(representing wait-for resource relationship between the nodes). See [Des90] pages 595-598 for the WFG's

construction algorithm.

Chapter 2. Literature Review 28

FSM is communicating real-time state machines (CRSM) [Sha93]. A major shortcoming
of CRSMs is that the communicating machines cannot access shared data (see Section
2.3 of [Sha93]) which renders it inappropriate for database applications.

These approaches (tables, graphs, FSM) have limited practical use because they:

e capture only some of the transaction model’s properties and cannot be used to

reason fully about the structure and behaviours of transaction models,
e lack formal semantics and therefore are unverifiable, and
e cannot capture timing properties of complex transactions.
The following additional problems are associated with state-oriented approaches:

e The diagrams are “flat”, so complex transaction systems cannot be adequately

described without providing a hierarchy to highlight the appropriate level of details.
e Conventional state diagrams are sequential and do not cater for concurrency.

e They suffer from exponential state space growth that must be explicitly represented

as the system grows.

Another example of behaviour specification using FSM is Statecharts. They specify the
input and output of a system in a hierarchical manner in terms of operations among sets of
states. Statecharts specify a mealy machine? [HU79] so they specify how a deterministic
system should behave and react to environmental inputs.

Statecharts have recently been integrated with object-model diagrams (a kind of
entity-relationship diagram with higraph encapsulation that describes classes and their
structures) [HG97]. They are one of the (seven) models of an emerging standard for
object-oriented modelling called the Unified Modelling Language (UML). A Statechart
in UML describes the dynamic behaviour of objects instantiated from a single class.

Using Statecharts as a stand-alone technique suffers from discontinuity in its transi-

tion to design. Most of the problems associated with structural analysis methods are still

2A mealy machine is a model in which the output depends on both the state and the input.

Chapter 2. Literature Review 29

present in Statecharts. Mechanisms for synchronizing concurrent access to data (which is
essential in database transactions) are not provided. Thus, inter-object communications
and collaborations cannot be effectively modelled using Statecharts because synchro-
nization during concurrent data access cannot be captured. Further, according to Ostrof
[Ost94] time constraints are not treated in sufficient details in Statecharts. Statecharts
require notations for periodic timing functions and the specification of timing exceptions

without the need to introduce additional states.

2.2.4 Functional Decomposition Techniques

Many functional decomposition techniques, such as Structured Analysis [DeM78], Struc-
tured Design [YC79], and Structured Analysis and Design Technique [Sof78], provide an
organized set of system specifications and a structure of the system. The specifications
include views such as (i) data flow diagrams to decompose the system, its functions and
its data flow, (b) control flow diagrams to represent the system dynamics, (c) a specifica-
tion dictionary listing all inputs, outputs, and control flows, and (d) a table of response
times for all events.

These methods use different diagrams (e.g., DFDs, Structure charts) and different
ideas during development so it is difficult to transform from one to another. Further,
there is no explicit indication of the control flow specifying the execution order of the
various objects. Although dataflows generally carry data, they may also be triggering
signals for functions but this is not explicitly captured. The ability to specify explicitly
the execution order of the operations that would trigger subtransactions is required.

Ostrof [Ost94] argues that although these methods are quite successful in industrial
applications with little or no concurrency, they have the following additional shortcom-
ings: (i) these methods have no formal semantics, (ii) the timing properties are not
particularly well integrated with the rest of the requirements, (iii) there is no support
for formal verification, and (iv) nondeterministic systems behaviour cannot be suitably
modelled.

In summary, using a state-oriented notation in conjunction with algebraic axioms

allows precise specification of interactions between operations and the behaviour of the

Chapter 2. Literature Review 30

individual operations. The axioms can be manipulated in a rigorous manner to provide
for the proof obligation of a specification language.

Apart from the methods discussed above, other approaches for describing transac-
tion systems protocols are: ACTA, First order logic, and Prolog. ACTA is a semi-formal

method while Prolog is a programming language. These approaches are discussed below.

2.2.5 ACTA

ACTA is a unique formal framework for specifying and reasoning about the structure
and behaviour of transaction systems. ACTA is proposed as a mechanism to unify all
transaction models. ACTA does not propose any particular correctness criterion but it
provides components for the description of transaction models. Components are the set
of symbols that are put together to form the sentences or statements of the formalism
(language). These components can be combined into logical statements where correct
behaviour satisfy the statements. Its approach is an axiomatic property-oriented method.
The ACTA framework has explicit notions for some model components that are implicit
(e.g., begin transaction operations) in transactions and it has been used to model both
atomic and complex transaction systems (see [Chr91, CR90, CR91, CR92a, CR92b]).
With dependence analysis between transactions and transactions operations on shared
objects and by associating semantic elements with the effects of transactions operations,
ACTA can capture transaction properties related to visibility, failure atomicity, perma-
nence, and consistency.

However, ACTA is not standardised and it lacks a computational model so it is ad
hoc. ACTA has no proof obligation and guidance for applying these in a coherent manner.
Furthermore, “it is not clear how ACTA would represent the fact that a dependency can

be transient, nor is it clear how proofs could be developed with transient dependencies

involved” [KS94].

Chapter 2. Literature Review 31

2.2.6 Prolog

Another language used to specify transaction protocols in a communication network
[VW87] is Prolog [CM87]. In this sense, Prolog is used in property-oriented style to
state logical relationships between objects thus providing a means for expressing and
handling concurrent interactions. Vuong and Weber [VW87] use Prolog to specify the
communication behaviour of transactions based on communicating FSMs and validate
the specification based on reachability analysis principles for detecting state deadlocks,
nonexecutable interactions, and unspecified receptions. Although Prolog is the most
widely available logic programming language and is useful as a specification language
in communicating systems, its use in database transaction systems is limited because
it lacks the semantic analysis essential for defining correctness and recovery properties
in complex transaction systems. Further, the reachability analysis suffers from state
explosion when the system becomes complex or large which means exponential search

spaces become problematic.

2.3 A Survey of Existing Tools

This section assesses the strengths and weaknesses of the existing formal specification

languages and discusses their applicability to transaction systems.

23.1 Z

Z is a mathematical notation based on set theory, first order predicate logic, sequences,
functions, and relations. In general, Z is non-executable and is typically used for human
readable specifications. It is essentially a two-value logic in which every proposition is
considered either true or false. That is, if A is true then B. However, when A is false
the consequent is unspecified. It is model-oriented but can also be used in the property-
oriented approach when used axiomatically.

The schema language is a graphical extension of Z. Schemas are devices for organiz-

ing the presentation of the mathematical notations of Z specifications. A schema has two

Chapter 2. Literature Review 32

parts: a declaration part [above the dividing line] contains the declaration (definition)
of one or more identifiers, and a predicate part (below the dividing line) contains zero
or more predicates separated by semicolons. The predicates describe a property of the
schema’s declared variables. The schema language is flexible so modularity is relatively
easy to describe and implement [HO93].

In practice, a Z specification consists of a series of paragraphs of formal notations
interleaved with informal prose that explains the content of the formal notations. It uses
pre- and post- conditions implicitly as constraints that must be satisfied and has a proof
assistant (type checker) for consistency checks. It has been found useful in specifying large
commercial systems, for example, the CICS [HK91] project. Z expresses functionality

but not concurrency. Further, Z presently lacks extensions to capture time properties.

2.3.2 VDM

VDM is based on denotational semantics. VDM is similar to Z except it is model-oriented
and pre- and post- conditions are explicitly stated in separate clauses. A precondition
on an operation is a predicate that must hold on each invocation of the operation. If it
does not, the operation’s behaviour is unspecified. A postcondition is a predicate that
holds in the state upon return [Win90].

VDM encourages hierarchical system development by supporting abstraction at the
highest level of description and by providing a powerful and succinct tool for expressing
specifications. However, in its currently published form, VDM is most suitable for spec-
ifying sequential information processing systems. There is no concurrency or real-time
support in standard VDM. Different system views or schemas are not supported. The
degree of modularity is limited to the level at which operations are defined. Furthermore,
VDM has no graphic support [HO93] and lacks convenient facilities for defining and han-
dling errors in a specification to eliminate the difficulty of distinguishing error behaviour
from that of normal behaviour [JDS85]. Although several case studies involving the use
of VDM exist [JS90], these systems are sequential and deterministic.

Summary

Chapter 2. Literature Review 33

e Z and VDM are adequate for handling sequential deterministic systems (i.e., they
can capture many interesting sequential systems properties). However, they are
less attractive for expressing concurrent system behaviour (where properties such

as freedom from deadlock and fairness often need to be shown).

e Synchronization of access to shared variables can be handled in Z and VDM by
building models of histories (mutual exclusion). Mutual exclusion is a simple ver-
sion of concurrency control but in transaction systems it is necessary to describe

the interleaving of concurrent operations/processes.

e Z and VDM lack notions of logical time and relative order.

2.3.3 Temporal Logic

Temporal Logic is a property-oriented approach for specifying concurrent systems. First
order predicate calculus is used to reason about expressions containing time variables. A
sequence of program actions is modelled as the basic unit of specification.

It uses special modal operators to describe the past, present, and future states
(events) of the system’s behaviour. For example, the O (rectangle) symbol means “in all
future states”; © (diamond) means “in some state”; while O means “next state”.

OP means in all future states the predicate P holds while P — <&@ means if P holds
in the current state, Q will eventually hold.

Unfortunately, no standard set of operators are used (the above symbols are the
most common representation). It captures time properties using different types of tem-
poral semantics (such as linear, parallel, branching, continuous, or discrete) and it has
hidden clocks (bounded operators) and explicit clocks. For example 4 — $<5@Q means
if A occurs then eventually within 5 time units B must occur.

Temporal Logic captures concurrency correctness (i.e., “safety properties of the
system and its environment” [Win90]) as well as liveness properties. It uses an unstruc-
tured set of predicates. Specification proofs utilize proof diagrams. A proof diagram is

an abstract view of a state reachability graph representing the sequences of behaviour of

Chapter 2. Literature Review 34

the system. Various forms of Temporal Logic exist, e.g., Metric Temporal Logic (MTL)
and Real-time Temporal Logic (RTTL) [Ost91].

2.3.4 Petri Nets

A Petri net is a graph based formalism developed in the early 1960s as a solution to
some of the limitations of finite state mechanisms. Petri nets are an interesting graphical
technique used to describe the operation of a system as a state transition network. Causal
dependencies and independencies in some set of events are explicitly represented. The
basic net model is of the form condition-events. Petri nets are used for modelling and
analysis of systems. They can specify synchronization and mutual exclusion among
concurrent operations. Petri nets have been used in performance modelling [CL92], for
specifying safety requirements [LS87], and to specify process synchrony during the design
phase of time-critical applications [Dav88]. A formal definition of Petri nets follows.

Definition 3 Petri nets: A Petri net is a 4-tuple, C = (P, T, A, M) where P is a set of
places (representing conditions); T, a set of transitions (representing events); A, a set of
arcs denoting the flow relation (i.e., elements of A are arcs between places and transitions

such that A € {Px T}U{T x P}, PNT = and PUT # 9); and M, a marking (i.e.,
M : P — I'| I €N)is a distribution of tokens® to the places of the Petri net.]

Usually, a Petri net model is represented as a bipartite digraph where the nodes
represent places and transitions. Places are drawn as circles ((Q) while transitions are
drawn as bars (|). For each transition, the directed arcs define its input places (arc from
place to transition) and its output places (arc from transition to place). A Petri net is
executed by defining a marking and then firing transitions. Tokens move from place to
place through the firing of a transition. A transition fires by removing one token from
each of its input places and adding one token to each of its output places. The firing
rule for a transition is enabled when all input places contain at least one token. If two
transitions share input places then they are in conflict and only one of them can fire.

The behaviour of a Petri net is captured by the reachability graph. The reachability
graph of a Petri net N is the edge-labelled graph N = (V, E) whose vertices V are (M)

3A token is represented on a Petri net by a small solid dot (e) in a place.

Chapter 2. Literature Review 35

the reachable markings of N and edges E such that there is an edge labelled ¢ € E from
M to M if M —% M’ for a reachable marking M. Petri nets do not support functionality
and it is impossible to determine the interleaved partial orders of concurrent operations.
In addition the reachability graph for analysing Petri nets suffers from state explosion
when the system is large. The reachability problem is exponential time and space-hard
[Ost91]. A further problem of Petri nets is that numerous dummy states are generated
during transition delays to maintain the feature of instantaneous firings [GF90] and to
maintain logical consistency. In addition, the semantics of Petri nets make it difficult to
distinguish between precedence and causality [TM91].

The general Petri Nets model has often been criticised for the following additional

reasouns.
e inability to deal with fairness and data structures,

e structuring mechanisms such as composition operators are not inherently part of

the theory,
e lack of a calculus to transform a net into a real-time programming language, and

e a place in a Petri Net cannot easily be identified with a place in the corresponding

program code.

Variations of Petri Nets model exists such as Colour Petri Nets, Timed Petri Nets,
Timed Interval Coloured Petri Nets, and Hierarchical Petri Nets. In Colour Petri Nets
(CPN) tokens themselves may have different values (or colours). CPN can distinguish
between different data types (objects, resources, tokens) to further define different execu-
tions based on token types. The expressive power of coloured petri nets depends on the
cardinality of the colour set. Although this is more concise system representation and
able to model data and resources, as long as the number of colours is finite, a coloured
net is equivalent to a much larger ordinary Petri Nets and thus inherits the problems
associated with ordinary Petri Nets. An infinite number of colours provides CPN greater

expressive power. However, an immediate consequence of the universal expressiveness is

Chapter 2. Literature Review 36

that boundedness, safety, liveness, and reachability of markings properties become un-
decidable in the general case. For a detailed discussion of the variations of Petri Nets
model and their attendant problems see [Aal92, CK92|. Petri Nets are still undergoing
standardization* [WD97] and intensive research [PNPM91] aimed at putting Petri Nets
theory on firm mathematical grounds and some experimental and commercial simulators
(tools) are available.

To summarize, although Petri nets are a good modelling tool they do not provide
design details. They cannot model the data managed by transactional systems. Petri nets
generally serve as a model for understanding and system analysis. The transformation

from petri nets to an implementation is a difficult process.

2.3.5 Communicating Sequential Processes

Communicating Sequential Processes (CSP) is a model-oriented approach to specify-
ing concurrent processes but uses property-oriented approach for stating and proving
properties about the model. CSP is concerned purely with the communication patterns
of processes, abstracting away internal state information which may be separated from
communication behaviour. It is based on the model of traces (behaviour of a process or
event sequences) and assumes that processes communicate by sending messages across
channels. It views a process exclusively in terms of its observable behaviour [Hoa85].

Processes synchronize on events. For example, let ¢ be an event, and P and @ be
processes. Then (¢ — P) || (¢ — @) = (¢ — (P || @)) means that the operations P
and Q are parallel operations which are triggered by the event c. It uses handshaking,
via semaphore or condition queues, to synchronize events. It uses primitive simple data
types and cannot adequately capture the functional aspects of a non-deterministic system.
However, CSP provides mechanisms and tools (techniques and languages) for the design
of large systems in a modular and extensible way.

Algebra of Communicating Processes (ACP) [Ber88, BB91] is similar to CSP. They

have the same underlying formal model but different notations. CSP is much more

4The time table for the standardization stages proposes December 1998 for the adoption of the draft
International Standard [PNS96].

Chapter 2. Literature Review 37

matured and standardised than ACP but may prove useful in subsequent research. The

Timed CSP language is used here so a detailed description is provided in Chapter 4.

2.3.6 Calculus of Communicating Systems

Calculus of Communicating Systems (CCS) models a system’s behaviour as a set of
states and associated events. It models concurrency control but not functionality. The
inventor [Mil80] states “... the behaviour of a system is nothing more or less than its
entire capability of communication”. CCS embodies a relatively complex algebra and
a relatively fine grained process concept that makes learning and writing specifications

difficult. However, CCS is not standardised [NPL91] so many variants exist.

CSP and CCS Compared

A brief discussion of the similarities and differences between CSP and CCS is illustrative.
For a detailed discussion refer to Hull and O’Donoghue [HO93], Formal Systems [FS93],
Hoare [Hoa85], and Cohen et al [Coh86].

1. Both methods support communication by message passing. The primitive for com-
munication is handshaking where the action of sending a message by one process
and receiving the message by another process is regarded as a single indivisible
atomic action. Either the sending process must wait until the receiver is ready to

receive or the receiver must delay until the sending process sends.

o

Also common to both methods is the decomposition of a system into a hierarchy
of parallel processes which communicate by message passing. Only the notation
used makes CCS’s form of decomposition different from that of CSP. For example,

P | @ in CCS is similar to the CSP P || @

3. Both methods allow explicit rather than implicit specifications. Both represent the

execution of a process as a sequence of events which may be finite or infinite in

length.

Chapter 2. Literature Review 38

(S]]

. Events consume no time so two processes operating concurrently without inter-

action are described as interleaved events in both. Where processes do interact,
internal communication events force sequencing in both processes. Therefore, sys-

tems whose processes execute in parallel only produce a sequence of events.

Both methods provide selection between subprocesses depending on the last event.

A process can be defined recursively to achieve the effects of event repetition.

Constraints can be imposed on processes by restricting their alphabets (that is, the
events in which they can engage), the order in which the events can take place, and

the conditions under which they can execute.

In summary, Hull and O’Donoghue [HO93] state that the strong family relationship be-

tween CSP and CCS is they share a common explicit specification method which has few

technical differences. They relate to each other also by their ability to express concurrent

applications and by the message passing approach taken. Some of the differences between

the two languages are:

L.

X

CCS provides both a diagrammatic and textual view of the system decomposition.
There is no graphic or diagrammatic support in CSP. The semantic domain of CSP
processes is the set theoretic model while that of CCS is expressible with action
trees [HO93]. Moreover, the semantics of CCS is based on the structural approach
modelling a process in terms of its possible states and transitions. The semantics
of CSP, on the other hand, models a process in terms of the sequences of events it

can undergo and the possible sets of events it can refuse at any time [Smi92].

CSP provides a unique facility for specifying allowable event traces formally and
implicitly. The mathematical notation provides representation and reasoning facil-
ities for traces, abstracts them into lists and their members to set elements. Such a
facility for formally specifying the properties which a system must satisfy does not

exist in CCS.

In CCS there is a special operator 7 that denotes an internal communication event

(i.e., the occurrence of a hidden event or an internal transition). There is no

Chapter 2. Literature Review 39

(V1]

equivalent symbol in CSP. The behaviour of a process in CSP is described in terms
of externally observable events drawn from its alphabets. In CCS, both internal

and externally observable events describe the behaviour of a process.

CSP has no notion of a communication’s dual (complementary communication).
In CSP, it is identical communication that synchronize rather than complementary
ones. In CCS, there is the concept of communication and its dual (for example,

the dual of a is &).

There is a single choice operator, +, in CCS, whereas there are two in CSP: the
deterministic O and nondeterministic M choice operators. In CCS, there is no
special operator for specifying non-determinism but it can be modelled by using
the T operator. The CCS operator can achieve effects close to each of the two CSP
ones because the semantics of CCS is sensitive to 7’s (internal) actions. In CSP,

the equivalent of the process 7 - P is indistinguishable (in any context) from P.

The treatment of concurrency differs in both languages. In CCS, concurrency is
represented by | while in CSP concurrency is defined by || for synchronization and |||
for interleaving. This separation of the concurrency concept into the synchronizable
parallel processes and interleavable processes makes reasoning in CSP much easter.
Therefore, the semantics of the CCS operator is much more complex because it

includes aspects of hiding, non-determinism, interleaving and synchronization.
Other notable differences between CSP and CCS are [FS93, CK92]:

® When CSP process communication events synchronize they are not automat-
ically hidden (becoming 7-events). This means that more than two processes
can synchronize on a single event and that synchronized events can be observed
from the outside. This gives rather more freedom to use CSP as a specification
language and allows the parallel operator to act rather like logical conjunctions

on behaviours.

® Since synchronization does not automatically conceal an event, CSP requires

a hiding operator (\) to do this explicitly. This looks like the CCS restriction

Chapter 2. Literature Review 40

operator and appears in similar places in programs, but it is semantically

different. For example, the CSP process

(sit — run — walk — run — crawl — STOP)\run

= sit — walk — crawl — STOP
Its CCS equivalent is:
(sit . run . walk . run . crawl . nil)\run = sit . nil

The CCS (\) operator stops both the action indicated on the right side of the

operation and all the actions following this action.

e In CCS, the interface between a pair of processes is enabled by a combination
of their ability to synchronize with each other and the use of the restriction
operator (e.g., \a, @) to forbid them from using the same events elsewhere.
In CSP, interfaces are defined either by means of process alphabets or as a
parameter of the parallel operator. It is logically impossible for any process

to engage in any event outside its alphabet.

The choice of CSP over CCS as the formal specification language for transactions mod-
els is because it has ezplicit constructs to capture deterministic and non-deterministic
choices, parallel composition, interleaving, synchronization, and other transaction sys-
tems properties. Each CSP specifiable subsystem can be implemented as anr independent
module because of the bottom-up design approach it supports. In addition, CSP has
resource primitives ACQUIRE and RELFEASE. This is a form of locking. When more
than one resource requires sharing in this form, the possibility of deadlock exists. To
prevent deadlock occurrence, these primitives adopt a form of the two-phase locking pro-
tocol. The complex and abstract nature of CCS notations make it difficult to specify and

reason accurately in the language so it is less attractive.

2.4 Traditional Transactions

Traditional transactions [Gra8l, EGLT76] provide failure atomicity, consistency, isola-

tion, and durability which are collectively referred to as the ACID properties. Chrysan-

Chapter 2. Literature Review 41

this [Chr91] argues that the transaction model adopted in traditional database systems
is inadequate for new complex applications. Therefore, both types are reviewed. For a

detailed discussion of these concepts refer to [BGH87, Pap86, Des90].

Notations

The following notations apply. Let O denotes an operation, O;(z) denotes an operation
O; on a data item z, T denotes a transaction, the index of a transaction, as in T}, denotes
the i** transaction while the index of an operation, as in O;, denotes the i*% operation. An
operation O € {r(z), w(z)} where r(z) is a read operation and w(z) is a write operation
while z is an arbitrary data item. Also, let OT; denotes a set of operations invoked by
a transaction T; and E denotes the transaction termination operation where £ € {a, ¢}
where a and ¢ stands for abort and commit operations, respectively.

Further, let < denotes the happens-before relation® [Lam78]. An operation O;
happens-before operation O;, written O; < Oj;, if O; precedes O; at execution time.
Further, operations which conflict are ordered by <. Two operations conflict when they
both access the same data (at least one of them is a write operation) and the operations
give different results if their relative order is changed. For any two operations O;, O; €
OT) which conflict, then either O; < O; or O; < O; occurs. Therefore, executing
multiple concurrent transactions requires paying particular attention to the ordering of

their operations to guarantee correctness.

Transactions

The execution of a transaction T is a partial order® of events with ordering relations <7,

where <7 denotes the temporal order in which the related events invoked by T occur.

Definition 4 Transaction: A transaction T; is a partial order T; = (3_;, <;) where

1. 2,‘ = OT, U {E;} ’

5% is an irreflexive and transitive binary relation that indicates the execution order of the operations
involved.

61t is a partial order since some of the operations of a transaction may be executed in “parallel”.

Chapter 2. Literature Review 42

2. For every 0;,0; € OT; and i # j, if O; and O; conflict then either O; <; O; or
Oj < O,‘ y and

3. VOr € OT;, O <; E; (]

This states that the execution of T; contains all operations of T; and all operations which
conflict are ordered by the < relation. Finally, property (3) ensures that no operation of

a transaction will execute after the transaction terminates.

Histories

A historyis a record of transaction executions. Usually, in a system, multiple transactions
may execute concurrently. Since conflict can occur between any two operations, the
relative order of the execution becomes significant’. A history includes at least the

ordering relation of all conflicting operations.

Definition 5 History: Given a set of transactions T = {T}, Ts,..., Tn} executed con-
currently, a history is a partial order H = (3, <) where

1. 3 =Uj-; ; where 3°; is the domain of transaction T; € T,

2. <y2 U}, <; where <; is the ordering relation at the database management system
level, and

3. for any two conflicting operations p,q € H, either p <g q or ¢ <y p. [|

All operations of H submitted by the transaction set T obey orderings within each T;

and orders all conflicting operations of all transactions.

Correctness Criterion

A correctness criterion specifies properties that guarantees database integrity. The most
popular criterion is serializability. A concurrent execution of transaction set is serializable
if it is equivalent to some serial execution. Various forms of serializability appear in the
literature. The most common forms are conflict equivalence and view equivalence leading
to conflict and view serializability [BGH87, Pap86], respectively.

An important tool for checking serializability of a history is the serialization graph.

"The result of a concurrent execution of transactions depends on the relative ordering of conflicting

operations.

Chapter 2. Literature Review 43

Definition 6 Serialization graph: A serialization graph (denoted SG(H)) is a digraph
SG(H) = (V,FE) with a vertex v € V for each committed transaction in H and an arc
e € E from T; — T; if and only if an operation of T; precedes and conflicts with an
operation of T; in H. [

A history is serializable if and only if SG(H) is acyclic (see [BGH87] for proof). The
serialization graph is constructed with committed transactions only.

Other types of serializability are view and final-state serializability [BGH87, Pap&6].
These allow more concurrency than conflict serializability and they have different seman-
tics. While a conflict serializable history must be conflict equivalent to a serial history;
a view serializable history ensures each transaction sees the same data as it would in
some serial execution. Similarly, final-state serializability allows concurrent transaction
execution such that the final state of the database is equivalent to the result of some
serial execution of the transactions. Checking any two histories for equivalence uses
the read from and final write relations instead of conflicting operations used for conflict
serializability. The general problem of determining if schedules are state or view seri-
alizable is NP-complete [Cla92, Pap86] so only conflict serializability permits efficient

implementation.

2.4.1 Recovery

Since failure may leave the database in an invalid or erroneous state®, recovery® mech-
anisms are required to bring the database into a consistent state by ensuring that no
intermediate results of aborted transactions remain in the database while the effects
of all committed transactions do. The aim of recovery mechanisms is to allow the re-
sumption of database operations after the occurrence of a failure with minimum loss of
data and at an economical cost. Since recovery and concurrency are interwoven, many
decisions about recovery often influence concurrency and vice versa.

A non-serial history may not always be recoverable. To create a recoverable history,

the relative order of some operations within a history must be defined. A transaction is

8An error in the system occurs when the system assumes a state that is undesirable.

9Recovery is the ability to recover from failures (system, media, or transaction).

Chapter 2. Literature Review 44

recoverable if all other transactions it reads from commit before its commitment. Thus,

Definition 7 Recoverable: A history H is recoverable (RC) if when T; reads z from T;
(where i # j) in H and ¢; € H,¢; < c;i- =
This definition prevents transaction T; from reading a value produced by transaction Tj
and then commits while T; is still active. If T; eventually aborts then T; has modified
the database based on inconsistent values produced by Tj.

When a transaction can only read values that have been produced by committed
transactions, a stronger recoverability condition exists. A transaction that obeys this
condition does not cause other transactions to abort if it aborts. Hence they aveid

cascading aborts (ACA).

Definition 8 Avoids cascading aborts: A history H avoids cascading aborts (ACA) if
whenever T; reads z from T; (where i # j) in H, and ¢; € H, ¢; <g m:i(z). =
ACA property prevents a transaction from reading values produced by active transactions
but the it can reads only values written by itself or committed transactions.

A transaction is strict (ST) if it cannot read or overwrite a data item until the

commitment of the transaction that wrote the previous value. Formally:

Definition 9 Strict: A history is strict (ST) if whenever w;(z) <g Oi(z), (i # j), either
a; <H O;(.‘r) or ¢; <H 0;(:1,‘). a
Therefore, no data item may be read or overwritten until the transactions that wrote it

terminates.
Bernstein et al. [BGH87] have shown that RC O ACA D> ST, FSR O VSR D

CSR D SR, and characterised the interrelationships between recoverable and serializable

classes.

2.4.2 Types of Transaction Concurrency

Two types of transaction concurrency, intra- and inter- transaction concurrency are pos-
sible (and therefore two types of concurrency control) in any transaction system. Intra-
transaction concurrency occurs within a transaction while inter-transaction concurrency

arise between different transactions executing concurrently.

Chapter 2. Literature Review 45

Intra-transaction concurrency can arise in a variety of scenarios such as between
subtransactions alone or between at least one subtransaction and its parent transac-
tion. In intra-transaction concurrency control, while preserving local dependencies, non-
conflicting operations do not require synchronization so maximal concurrency is achiev-
able.

However, non-local conflicts may occur because of references to shared data so
a concurrency control protocol is necessary to resolve the conflicting operations. To
resolve conflicting operations, serialization orders for operations must be defined. I[n
other words, transaction’s subtransactions executed concurrently must be equivalent to
some serial execution. The advantage of intra-transaction concurrency control is that
greater potential concurrency is achievable while providing finer granularity for recovery
in cases of failures with in the transaction.

Inter-transaction concurrency control involves concurrency arising between different
user transactions executing concurrently. This is required in all multi-user systems in
either traditional or complex transaction models. The concurrent execution of different

user transactions must be serializable to guarantee the database’s correctness.

2.4.3 Approaches to Concurrency Control

Concurrency control schemes can be classified as: pessimistic and optimistic. Both ensure
correctness in centralized or distributed environments.

Optimistic strategies permit restricted concurrent transaction execution where re-
sults validation occurs at commit. Thus, validation occurs after allowing (possibly incor-
rect) concurrent transaction executions. The complexity of recovery in cases of failures is
tremendous because this approach allows incorrect executions. Therefore, to safely undo
the effects of partial results requires a sophisticated recovery mechanism. Examples of
the optimistic concurrency control approach are versioning algorithms and optimistic
timestamp ordering.

Pessimistic concurrency control ensures only correct operations sequences execute.
This may reduce concurrency but often simplifies recovery. Examples include two-phase

locking and timestamp ordering protocols [BG89]. These are discussed in details shortly.

Chapter 2. Literature Review 46

Concurrency control also adopts methods based on operation semantics. Examples
of this type of concurrency control are commutativity [Wei88] and recoverability [BR90,
BR91]. Two operations commute if their effects are independent of the order in which
they are executed!®. Recoverability is a weaker definition of conflicts than commutativ-
ity. An operation Q) is recoverable relative to another operation P, if Q returns the same
value whether or not P is executed immediately before Q. Transactions invoking opera-
tions P and QQ commit in their invocation order which defines commit order. When used
with locking based protocols, recoverability like commutativity, avoids cascading aborts
while also avoiding the delay in processing of many non-commutative operations. Recov-
erability assumes a flexible recovery technique for handling the abortion of recoverable

operations.

The Two-Phase Locking Protocol

A lock is a variable associated with a data item that controls access. Thus, a data item
is conceptually a pair (value, lock). Therefore, a reference to a data item z implicitly
manipulates z(v,!/) where v is the current value (i.e., information content of z) and { is
the current lock mode.

Two locks types are used, namely: ezclusive and shared. Exclusive locks (also called
write or update locks) provide access to the data item for only one transaction. Shared
locks can be held by an arbitrary number of transactions for read access. Transactions
that both read and write a data item acquire an exclusive lock.

Serializability is ensured if all locking operations precede the first unlock opera-
tion in the transaction. This is called the two-phase locking protocol (2PL). Thus, the
two-phase locking protocol is characterised by a growing phase followed by a shrinking
phase. The locking and unlocking operations are monotonic increasing and decreasing,
respectively. Once a lock is released, additional acquisition of locks is forbidden.

The 2PL protocol guarantees serializable schedules [Des90, EN94, BGH87]. Thus

if every transaction in a schedule obeys the 2PL protocol the schedule is guaranteed to

10Commutativity must provide the semantics for determining if any two operations can execute

concurrently.

e d

Chapter 2. Literature Review 47

be serializable. The order of transactions in the equivalent serial schedule depends on
the order in which executing transactions lock the items they require.

Although the 2PL protocol gives the best performance for most database appli-
cations [BHG87, BK91, ACL87, CGM91, GR93] and despite guaranteeing serializable
schedules, 2PL has two serious limitations — deadlock and livelock. Deadlock arises
when each of two or more transactions is waiting for the other to release the lock on
an item. Thus, a set of transactions T = {T, T>---, T} are in deadlock over a set of
resources R = {R;,R2---,R,} at time ¢ if and only if Vi : 1 < i < n, process 7; wants
to access resource R; and R; is held by process T;,; at time ¢t and T, is waiting for R,
held by T;. A transaction is in a state of livelock!! if it cannot proceed for an indefinite
period while other transactions in the system continue normally. Unnecessary restarts
and frequent waiting can severely degrade the performance of the system [EN94, LR91,
SRL88|]. Several algorithms have been proposed!? to deal with deadlock.

Variants of the basic 2PL algorithm are the conservative 2PL (C2-PL) and strict
2PL (S2-PL). The C2-PL algorithm must lock all its items before it starts, whereas S2-
PL does not unlock any of its items until after it terminates by committing or aborting.
C2-PL requires a transaction to lock all the items it accesses before the transaction begins
execution. If any of the item is unlockable, the transaction does not lock any item; but
waits until all the items are available for locking. It is a deadlock free protocol that limits
concurrency. In S2-PL, a transaction T does not release any of its locks until after it
commits or aborts. Therefore, no other transaction can read or write an item written
by T unless T has committed, leading to a strict schedule for recovery. S2-PL is not
deadlock free unless used in combination with C2-PL. By combining S2-PL and C2-PL
together yields recoverable and serializable schedules that depend on the lock acquisition

order of the transactions but it further constrains the degree of concurrency.

111 ivelock situations happen if the waiting scheme for locked item is unfair. Unfairness arises by giving
priority to some transactions over others. The solution to this is to have a fair waiting scheme such as

first-come first-serve (FCFS).
12Interested readers are referred to [Des90, EN94, BHG87, BL93, Cla92, HZ92, GR93] and other

sources for details. Some of the algorithms are: wait-die, wound-wait, time out, no-waiting, and cautious

wazting.

Chapter 2. Literature Review 48

Timestamp Ordering

Timestamp Ordering (TO) achieves concurrency without locking so it eliminates dead-
lock. Timestamp values are assigned to transactions when they are submitted (that is,
the transaction start time). Each transaction is assigned a unique non-decreasing num-
ber. All of a transaction’s operations have the same transaction timestamp. Timestamps
are generated with a counter or the system clock. The timestamps are monotonically
increasing.

A schedule in which the transactions participate is serializable [BGH87] and the
equivalent serial schedule of the transactions corresponds to the order of the transaction
timestamps. The system enforces serializability using the chronological order of the
concurrent transactions’ timestamps. The scheduler immediately schedules any operation
that arrives for execution unless a conflicting operation with a higher timestamp has
executed. A conflict occurs when an older transaction tries to read a value written by a
younger transaction or when an older transaction tries to modify a value already read or
written by a younger transaction. Both attempts signify that the transaction with lower
timestamp was “too late” so it may see stale values [Des90]. Conflicting operations from
distinct transactions get scheduled (or aborted) based on their timestamp values. The
TO protocol checks conflicting operation occurrences that arrive in the wrong order and
rejects those with lower timestamps by aborting them.

The basic TO protocol enforces conflict serializability but does not ensure recover-
able schedules. Therefore, it does not avoid cascading aborts or produce strict schedules.
Another related problem is cyclic restart; so starvation may occur if transactions abort
and restart continuously.

The Strict TO ensures that schedules are both strict and conflict serializable. A
transaction T that issues a read or write operation on z such that the timestamp of T is
greater than the timestamp of z’s last write has its read or write operation delayed until
the transaction, say P, which wrote the value z commits. This protocol is deadlock free

because transaction T waits for P only if T'’s timestamp is greater than P’s timestamp.

Chapter 2. Literature Review 49

2.4.4 Recovery Techniques

There is a need to recover data in the presence of a transaction’s abort. Erroneous states
are resolved using exception handling mechanisms. Failure management by exception
handling may involve one or more of the following alternate courses of action: (1) abandon
the execution of the unit, (2) try the operation again, (3) use an alternative approach,
or (4) repair the cause of the error.

Two methods generally used to recover from failures are: (a) the logging approach
[HR83] which maintains versions of the data by keeping a record of the before-write
value and the associated transaction, or (b) keeping a record of the inverse operations
required to restore the value [Mos85]. The two approaches differs in that logging shows
what changed while inverse operations shows the how of the change. Logging is the
most popular recovery technique. The log is stored in non-volatile memory. When a
failure occurs, the log information becomes available to undo the effects of aborted and
active transactions'? and to redo the committed transactions [Des90]. To implement the
abort operation using logging, the before-write images of all writes of a transaction are
restored except where the data are modified by another transaction, say T%, after it was
last written by the transaction.

Other recovery mechanisms adopt contingency transactions [BHMC90] which ex-
ecute an alternate transaction when the original transaction fails, and compensating
transactions [GS87] which amends partial executions by invoking operations to annul
the committed actions of the failed transaction.

A contingency transaction executes upon failure of the transaction as an alternative
to the failed transaction. A contingency transaction may abort like any other transaction
since it is a transaction in its own right. Contingency transactions accomplish forward
recovery. Compensating transactions achieve backward recovery from failure of a trans-
action. They compensate for the partial execution of the failed transaction’s operations.
Compensation order is the inverse of the commit order of the aborted transactions. In

other words, compensating transactions provide a mechanism to undo the effects of com-

13An active transaction is executing transaction in progress. An active transaction either aborts or

commits.

Chapter 2. Literature Review 50

mitted partial executions thereby defining logical equivalences of rollback.

2.5 Extended Transactions

" “Extended transactions” is a broad class of transactions models that flexibly interpret
the ACID properties in order to deal with transactions in new applications. An extended
transaction consists of a set of operations on data objects that execute atomically in a
predefined order or a set of extended transactions with an explicitly given control related
to the notions of visibility, consistency, recovery, and permanence [Chr91].

Extended transactions exhibit a rich and complex internal structure. Their compo-
nent transactions are not necessarily atomic. The way component transactions combine
to forrmn extended transactions reflects the semantics of the applications. Some of these
models assume or dictate specific recovery or commit protocols. Therefore, their effects
on transaction-specific concurrency and recovery protocols are of particular interest in
this research.

A transaction accesses and manipulates database’s data objects by invoking oper-
ations specific to individual data objects. Depending on the semantics of the operations,
aborting an operation may also force abortion of some other operations thereby leading
to cascading aborts of operations. Thus, specifying concurrency uses the transaction’s
semantics and the data they manipulate since this approach provides a means for dealing
with the application’s functionalities.

Dealing with concurrency in new applications use either ed hoc systems or tradi-
tional concurrency control [Chr91]. Ad hoc systems allow cooperation among users based
on an intuitive model of interactions. These systems lack formal definitions and as such
their correctness cannot be characterised mathematically. Similarly, traditional concur-
rency control based on the concept of serializability are inadequate for long- duration
transactions.

The following discussion provides a summary of some extended transaction models.

The discussion focuses on their concurrency control and recovery properties.

Chapter 2. Literature Review 51

2.5.1 Active Databases

The traditional transaction model has been extended to a flexible execution model with
rule processing. Chakravarthy et al [Cha89] discuss the usefulness of a rule-based active
capability for supporting integrity enforcement, access control, and dynamic coordina-
tion. The use of rules for incorporating active capability provides declarative specification
of events, conditions, and actions for capturing object and application semantics. The
model has the capability to monitor temporal events and initiate a set of actions.

An event algebra [CM91, Mis91] forms part of the model for supporting different
event types specification and constructing complex events. For example, [GJS92] de-
scribes the integration of composite event specification. The event specification use a
set of notations identical in expressive power to a notation based on regular expressions.
The active paradigm has been incorporated into object oriented databases [Anw92, GJ9I,
GJS92] and used to enhance concurrency in multidatabase environments [Bak95]. Korth
and Speegle [KS94], however, argue that event-condition-action rules lack the concept of

correctness thereby making it impossible to detect if an execution is correct.

2.5.2 Nested Transaction

Nested transactions [Mos85, Pu86] are hierarchically structured transactions that support
computations similar to those in procedure calls. Transactions consist of subtransactions
designed to localize failure within such a transaction and to exploit concurrency between
subtransactions. A subtransaction may contain read and write steps and other sub-
transaction invocations thereby changing a transaction from a sequence of steps into a
hierarchy of subtransactions. Therefore, each node is either a subtransaction (non-leaf
transaction), a database access (leaf transaction) such as read or write step, or a combi-
nation of both!*. Thus, a nested transaction model supports two types of transactions:
root transaction and subtransactions. The root of the hierarchy is used to model the

execution of the transaction.

14This view of nested transactions differs from Moss’s [Mo0s85] where internal nodes do not perform

any database access operation.

wn
N

Chapter 2. Literature Review

A nested transaction can handle partial failures and subtransactions can abort
independently without causing the transaction to abort. Subtransactions execute atomi-
cally with respect to their siblings and other non-related (independent) transactions and
failure atomic with respect to their parents. Subtransactions can potentially access any
data object currently accessed by one of its ancestor transactions or any other database’s
data object not currently accessible to any of its descendant subtransactions.

When a subtransaction commits, the objects it modifies become accessible to its
siblings and parent transactions. However, the effects of the updates on data objects
become permanent in the database when its root transaction commits. If a committed
subtransaction’s parent aborts, then the subtransaction aborts too. A non-leaf transac-
tion performs only the begin transaction operation that starts subtransaction’s execution
and updates the partial order of the transaction. When a subtransaction commits, the
parent inherits the subtransaction’s accessed data objects; adding it to those of all its
committed subtransactions. The parent also inherits the read set accumulated by the
subtransaction. A committed non-leaf transaction can abort if its parent changes any
element in its read set. Also, if a non-leaf transaction aborts then all its subtransactions
must also abort.

A degenerate form of the NT model is the distributed transactions [Chr91, GR93].
In a distributed transaction model, a transaction is broken down into subtransactions that
invoke operations on data objects distributed physically in a network. Each subtransac-
tion may be nested. However, there are some subtle differences between the two models;
for example, abortion of a subtransaction causes the abortion of the whole distributed
transaction.

The preceding discourse is often called closed nesting. The characteristic feature
of close nested transactions is the bottom-up to the root commitment approach, the
semantics of which enforces atomicity at the topmost level.

Another type of nested transaction is open nesting. Open nested transactions have
different termination characteristics by relaxing the top-level atomicity of close nested
transactions. An open nested transaction makes its partial results visible outside the

transaction. Therefore, logging may be inappropriate for recovery because effects of

Chapter 2. Literature Review 53

committed transactions are durable. To undo the effects of partial results requires the
use of compensating transactions.

Open nested transactions are appropriate only if it possible to define a suitable
compensating transaction for each top-level transaction. A compensating transaction
may never start unless the corresponding transaction associated with it previously commit
[BOH*92]. Therefore, there is a begin-dependency between a top transaction and its
compensating transaction.

A Saga [GS87, GGKKS90] is an example of open nested transactions. A Saga
[GS87] is a two level nested transaction with traditional transactions as its components.
Each component transaction is associated with an application specific compensating
transaction. It can interleave in any way with other Sagas but it cannot partially exe-
cute. If a Sagas is interrupted, it either attempts to proceed by executing the missing
transaction (forward recovery) or amends partial executions by invoking compensating
transactions (backward recovery).

A variation of Sagas [see GGKKS90] allows the characterization of subtransactions
as vttal or non-vital. The abortion of a vital subtransaction causes the abort of the
transaction. Thus, a vital transaction must execute successfully for its parent transaction
to commit. A parent transaction may commit even if one of its non-vital transactions

aborts.

2.5.3 Cooperative Transactions

A cooperating transaction [KKB88, KS88] is a subtransaction that does a specific task for
another user. In cooperative transactions, partial changes made by one transaction may
be visible to another while they are executing. Therefore, components of cooperative
transaction may not produce consistent results. The effects of a transaction set are
considered consistent if all the steps that express the required computational goals execute
completely and the execution steps interleave correctly.

This model uses predicatewise serializability correctness criterion which permits
non-serializable executions while satisfying the individual postconditions of the transac-

tions. To control the interleaving of concurrent operations requires the specification of

Chapter 2. Literature Review 54

conflict among the operations.
An application that adopts this model is an airline reservation system that involves
subtransactions which require independence between reservations but depend on the

entire transaction completing.

2.5.4 Federated Databases

A federated database system (FDBS) [SL90] is a collection of cooperating database sys-
tems that are autonomous and possibly heterogeneous. Other terms synonymously used
to describe FDBS are multidatabases'®> (MDBS) [LMR90] and heterogeneous databases'®
(HDB) [EC90]. A key characteristic of a federated database system is the cooperation
among independent systems. Components DBSs allow partial and controlled sharing of
their data. A component database system can continue to execute its local operations
without interference from external operations and it determines the order in which to
execute external operations. It treats external operations in the same way as its local
operations. This implies that a component DBMS can abort any operation that does
not meet its local constraints and that its local operations are logically unaffected by
its participation in an FDBS. Also, the component DBMS does not need to inform an
external system of the order in which it executes external operations or vice versa.

Global operations involve data access using the FDBMS and may involve data
managed by multiple component DBSs. Component DBSs must grant permission to
access the data they manage. Local operations are submitted to a component DBS
directly. A component DBS, however, does not need to distinguish between local and
global operations. The classical requirements for consistency, concurrency control, and
transaction management require a redefinition for federated database environment since
a transaction may span several autonomous database systems.

A serious problem in the FDB model is the maintenance of global serializability,

due to the difficulty of detecting conflicts between global and local transactions, since

1SMultiple autonomous databases managed together without a global schema are called mutidatabases.
16Heterogenous database is a collection of heterogenous cooperating databases loosely coupled

together.

Chapter 2. Literature Review 55

each may be running under different concurrency control algorithms. Another problem is
the preservation of autonomy. Local autonomy is the ability of each component database
to control access to its data by other component databases and the ability to access and
manipulate its own data independent of the other participating component databases.
The former is desirable for performance and security while the latter allow local users to
access their own data without external interference thereby allowing possible maximal

concurrency between local operations and external operations.

2.6 Dependence Relationships

Besides begin dependency, other dependency relationships exist between subtransactions

and parent transaction. These are:

e Abort dependency between the subtransaction and its parent. Abort dependency

does not allow a subtransaction to execute if the parent transaction aborts.

e Termination dependency of the parent transaction on its subtransactions requires
that the parent transaction cannot terminate until all of its subtransactions termi-

nate.

e Force-commit-on-abort-dependency requires a transaction, say T2, to commit if
another transaction, say T1, aborts. For example, compensating transactions must

commit on the abortion of the transaction needing compensation.

Other types of dependencies generally found in extended transaction models are described

in Chrysanthis’s seminal work [Chr91].

Chapter 3

SPECIFYING TRANSACTIONS

This chapter begins by providing a taxonomy of any database transaction specification’s
desirable characteristics in Section 3.1. Section 3.2 discusses the requirements of data-
base transaction specification formalism while Section 3.3 highlights some important
issues like constraints specification, proof requirement, time property, and causality that
demands particular considerations when specifying database transaction systems. Fi-
nally, Section 3.4 briefly discusses why CSP is our language of choice for presenting a
sample specification and proofs in a practical example, the Electronic Shopping Mall, to

demonstrate important results (See Chapter 3).

3.1 Taxonomy of Transactions Specification
Requirements

This section presents the desirable properties of transactions specification and a tax-
onomy of these properties in order to explain the need for certain required language
features (outlined in Section 3.2). Figure 3.1 illustrates the relationship between trans-
action features, desirable specification characteristics, the features of any transaction
specifications formalism, and transaction correctness formal specification. The figure
provides the context of the three main entities (features of transactions, desirable spec-

ification characteristics, and features of transaction specification formalism) necessary

56

Chapter 3. Specifying Transactions

Characteristics of Features of
a Specification Transactions

Pe.
090,} s

Features of Formalism for
Specifying Tranasactions

sajqeuy

Formal Specification of
Transaction Correctness

Figure 3.1: Transactions, Specification, and Formalism Features Relationship

n

~

Chapter 3. Specifying Transactions 58

to adequately specify transaction systems and their correctness. The main intent is to
eventually espouse the requirements for any formalism that specifies transaction systems.

In this thesis, the characteristics of a transaction’s specification are classified into
three taxonomic dimensions: correctness, confirmability, and completeness. These dimen-
sions are the minimal' requirements because any deviation impacts system dependability.
The dimensions are interrelated; resolving an issue in one may transcend the other. Each
dimension contributes uniquely to the specification’s overall quality and utility. None of
the dimensions can be ignored and hope to compensate for it in the other. Compromising
any of the dimensions produces a specification that does not meet the system’s desired
needs. By understanding each dimension, writing specifications that exhibit these char-
acteristics significantly increases their quality and dependability. Figure 3.2 illustrates

these dimensions and their constituents.

Completeness Dimension:

The completeness dimension ensures that all essential®? characteristics, functionalities
and behaviours are modelled. Completeness dimension consists of the completeness and
functional characteristics. Completeness is the property whereby a specification contains
all essential characteristics and properties. Thus, the specification contains all signif-
icant requirement, whether relating to functionality, performance, design constraints,
and interfaces. Completeness has two aspects: conceptual and syntactic. Conceptual
completeness implies that the specification contains adequate functions and objects to
describe the scope of the domain the specification describes. Syntactic completeness im-
plies that the specification captures the conceptual objeciz functions in the applicable

specification language. A specification is functional if it describes only what the system

LThe conciseness property can be ignored without any significant effect on the system’s dependability.
2Essential requirements are those considered necessary to meet the system’s operational needs, in-

dependent of any later technology advances or the specific technology used to implement the system.
They may define functions that the system must support (i.e., its behaviour), nonfunctional properties
of the finished system (e.g., responsiveness), or external interfaces or restrictions (e.g., communication
with an external device). Changes in technological advances may later modify the system’s perceived

needs. This is one of the causes of a system’s modification.

Chapter 3. Specifying Transactions 59

Dimensions

4)

R complete R

JAN

. Completeness. -

I

. -Corectness”

AN

‘;fl—: - v. V

PO VT I UL SV S

verifiable

Figure 3.2: Taxonomy of Transaction Specification Characteristics

Chapter 3. Specitying Transactions 60

will do. The functional specification defines the operations and transformations that the
system must carry out. Each functional requirement is specified in detail. In addition,
functional requirements include a description of the set of legal values and ranges that
the system will accept for input, the state changes and actions that the system will take
on both legal and illegal input, and the output the user will see. Functional specification
does not include any design or implementation features but only the system’s desired
functions.

The completeness dimension guarantees provision of all appropriate services, mes-
sages and operations, defines all necessary data attributes, handles and raises all appro-
priate exceptions, and defines what happens for all possible input® to the system. Every
attribute must have a domain of permitted values*. Proper use of the completeness prin-
ciple provides reusability of objects at higher level, increases productivity, and decreases
configuration management. It should be emphasized that completeness as used here does
not connote absolute completeness, which is usually difficult to attain, rather the speci-
fication should contain all functions and modules to provide the services required of the
system. In other words, a specification should contain all essential requirements that
completely describe the structure and behaviour of the transaction model it specifies.

Checking a specification for completeness involves: (1) componential analysis of
the syntactic, semantic, and conceptual elements of the specification, (2) induction (and
invariants), and (3) checking for omissions. [ABL89] provides a pragmatic checklist for

checking a specification’s completeness. These are:
e Are all sources of input identified?
e What is the total input space?
e Are there any timing constraints on the inputs?

Are all types of outputs specified?

e What are all the types of runs?

e What is the input space and output space for each type of run?

3Software responses are defined for all realizable classes of input (including invalid inputs).

4The selected domain must represent attribute values in 2 meaningful manner.

Chapter 3. Specifying Transactions 61

e Is the invocation mechanism for each run type defined?
e Are all environmental constraints defined?

e Are all necessary performance requirements defined?

Correctness Dimension:

The correctness dimension ensures the specification captures accurately the desired sys-
tem properties. The correctness dimension consists of the consistency, correctness, and
unambiguity properties. A specification is consistent if and only if there are no conflicts
between the requirements and it is unambiguous if and only if every property (require-
ment) has only one interpretation. Common examples of contradictions are using different
terms for the same action and two requirements that contradict each other. A specifica-
tion’s correctness is the accuracy to which it describes exactly the tasks and properties
and to which requirements meet their needs. In other words, a specification correctness
measures its consistency with respect to its requirements (needs). Correctness has two
parts: conceptual correctness and syntactic correctness. Conceptual correctness implies
that the specification accurately captures/reflects the concepts of the transaction model.
[t depends on the specifiers’ ability to translate the transaction environment into a se-
mantic language to form a meaningful and accurate representation of transaction models.
The translation from concept into formal form must be correct. Verifying conceptual
correctness is a challenging and difficult exercise but involving domain ezperts® both dur-
ing the specification’s capture and verification helps significantly. Syntactic correctness
implies that the specification adheres to the syntax of the specification language.
Correctness checks ensures there are no logical, syntactic, and semantic, and con-
ceptual mistakes in the specification. Consistency checking checks for conflicts (same con-
ditions but different actions), redundancies, subsumptions, inconsistencies (e.g., A = B
and A = - B), and ambiguities in a specification. Further, consistency checks en-

sure no input states are mapped to more than one output state and a consistent set of

5Domain experts are specialists in a particular application domain of interest. For example, transac-
tion systems management specialists are domain experts when building a distributed database applica-

tion software.

Chapter 3. Specifying Transactions 62

quantitative units are used.
With a complete and consistent formal specification (i.e., a precise definition that
allows recognition of inconsistencies and preserves correctness), every operation / inter-

pretation is verifiably correct or incorrect.

Confirmability Dimension:

The confirmability dimension determines if the specification is correct. It ensures that
the correct models are being built. Confirmability consists of traceability and verifia-
bility characteristics. Traceability is the ability to track every property in the system’s
specification. Every property should be traceable to specific system’s requirements. Re-
quirements may have one of several sources, depending on the nature of the specification
activity. Traceability is both forward and backward. Forward traceability is a mapping
from the essential requirements entities to the resulting design entities. Thus, the re-
quirements are “linked to the system’s operational needs via specific verification from
the detailed requirements to the operational needs” [KS92]. Backward traceability oc-
curs if each reference requirement is uniquely identified so that one can map properties of
the delivered product into requirements of the specification, and vice versa. Traceability
may be attained through: (a) reference to the source of the need or reference to a physical
data structure element or variable, and (b) mapping to another metadata object created
and managed as part of the development. Every attribute is either primary or derived®
so the specification must document the source of the data and where it will be used. A
requirements traceability matrix [KS92] must be provided to ensure completeness and
consistency with the customer’s needs. Automated tools often help to generate much
of the traceability information. Traceability in turn supports verifiability. Verification
is the exercise of determining correctness. A specification must be verifiable to ensure
that the specification itself is correct and that transaction systems built from it behave

correctly. A specification is verifiable if it is possible to show that every property stated

SAn attribute is derived if its value is generated from one or more other attributes in the model
according to a specified formula. An attribute is primary if it is not derived within the scope of the

model.

Chapter 3. Specifying Transactions 63

in it holds in the system. Thus, proving and verifying every property stated in, and
tracing the properties through, the specification are the basic functions of confirmability.
Therefore, confirmability provides mechanisms to check the correctness, consistency, and

completeness of a specification.

Other Properties:

In addition to the above dimensions, a specification should be concise. Conciseness is
the ability to express in an abstract form all essential capabilities and properties in a
precise manner. A specification should be concise, clear, and annotated where necessary
to assist in achieving the correctness dimension characteristics. Blum asks: “After all,
of what value is an unambiguous specification when it is misinterpreted in the context
of a naive theory?” [Blu92]. So a specification should contain clear and understandable

commentary to assist the reader.

To write a specification that has the characteristics discussed above requires a for-
malism that has both expressive power and the functionality to specify and reason about
the structure and behaviour of transaction models. Further, to show that the specifica-
tions are consistent, verifiable, traceable, unambiguous, and correct requires expressing
the specifications using mathematical notations and then use the underlying formalism

to prove these properties.

3.2 Transactions Specification Formalism Require-
ments

A transaction’s behaviour is the state sequences resulting from the transaction’s opera-
tions. An operation is a discrete activity that implements a definable functional abstrac-
tion. Operations may be either simple or composite, concurrent (having one or more
separate threads of control) or nonconcurrent, and possibly parameterized. Therefore,

operations define the behaviour of an object (or system). Thus, the behaviour of a trans-

Chapter 3. Specifying Transactions 64

action depends on how its components behave individually and how the components
communicate with one another.

Before enumerating the desirable features of a specification language suitable for
specifying transactions, it helps to reiterate the characteristics of transactions. Trans-
actions are characterised by such features as interleaving of operations, concurrent exe-
cution (parallel executions of operations and not necessarily joint), mutual exclusion (at
lower level), and synchronization of operations on shared resources to avoid deadlock.
Synchronization of operations on shared resources involves temporal properties. Fur-
thermore, transactions allow some form of nondeterminism and concealment of results,
and the utilization of dependencies and causality relationships to guarantee execution
correctness. These transaction’s characteristics and the properties of transactions’ spec-
ification (see Section 3.1) taken together help to explain the need for certain required
language features.

Therefore, any formalism for specifying transaction system behaviours must pos-

sess the following language features:

1. Have abstraction facilities capable of producing a precise, consistent, and unam-
biguous specifications that abstracts away implementation dependent issues. It
should be rigorous and mathematically based so that its designs are built from

provably correct constructs.

2. Support for proof obligation. The framework should possess a formal specification
and verification method based on a sound mathematical basis to allow formal proofs
of correctness. This proof obligation can be discharged automatically by using the
specification’s language proof assistant or by relying on a rigorous mathematical

proof analysis and logical reasoning.

3. Supports both concurrency and functionality. The formalism must provide primi-
tive constructs to capture concurrency (such as interleaving, parallelism, nondeter-
minism), choice, sequence, and interrupt. In addition, the formalism should provide

functional operators.

Chapter 3. Specifying Transactions 65

4.

7.

Have adequate data modelling facilities. The framework should appropriately cap-
ture the structured data objects used in database computations since these data
objects provide a meaningful representation of the problem being solved. Further,
the framework should provide elegant means of specifying operations on structured
data in addition to capturing communications among the system’s components.
Thus, it should provide adequate mechanisms for defining and manipulating data

objects suitable for database applications.

Semantically rich enough to capture the various semantic elements necessary for
defining the consistency/correctness and reliability criteria of the different complex
transaction models. The language’s syntax and semantics should be clear and easy
to understand. In addition, the formalism should be flexible and open-ended so

that it is applicable to any transaction model.

Supports temporal properties of transaction models and provides facilities to cor-
rectly express time by selecting appropriate models and notations. The knowledge
of events occurrence times provide answers to such questions as whether one event
occurs before, after, or simultaneously with another. Thus, time information is nec-
essary for events ordering that is essential for understanding transaction operations

synchronization.
Additional features which a specification formalism should exhibit are:

e suitable to the particular application domain. That is, it should be suitable
for describing both the problem to be solved and the algorithms used to solve
it in a common underlying framework.

e Have support for modularity and composition of a specification’s modular units
into a model of the whole system. These features enable a meaningful organi-

zation of the information in the specification.

Thus, the framework should be problem-oriented allowing system designers to struc-

ture the specification as closely to the problem as possible which reduces the chance

of errors.

Chapter 3. Specifying Transactions 66

No single formal specification language currently has all the above properties. A com-
bination of features from formalisms for specifying sequential processes and others used

for specifying concurrent ones is the most promising.

3.3 Considerations for Transaction Specification

This section describes the fundamental issues in writing a transaction’s specification.

Their understanding assists us in shaping the way the specifications should be written.

3.3.1 Constraints Specification

A database’s integrity is defined by its adherence to its integrity constraints. Assuming
that the database is consistent and adheres to the integrity constraints then the formal
specification is correct and verifiable if the transaction’s precondition and postcondi-
tion are enforced. The precondition describes the database state which is required for
the transaction to execute correctly. Postcondition describes the database state after a
transaction executes if the preconditions hold.

Birell et al. [BGHL87] argue that any behaviour of a concurrent system is describ-
able using a sequence of atomic action so they propose mutual exclusion to synchronize
shared data access. Thus, two states define the observable effect, namely the state im-
mediately preceding and following the action. Such mutual exclusion completely isolates
the critical sections but is inappropriate for transaction systems because it is too restric-
tive and eliminates concurrency. Furthermore, it is impractical and incorrect to describe
a non-atomic transaction’s observable effects with two states since its effects may span
more states and other processes actions may interleave with its actions. To overcome this
problem, each non-atomic transaction’s execution can be specified as a predicate that de-
fines the allowable action sequences. Therefore, the interleaving of operations from other
transactions or schedules of operations performed concurrently must be equivalent to the
effects of executing the transactions serially [EGLT76].

Predicates that define state are written with first-order predicate logic expressions

combined with process and communication primitives. A first-order predicate logic for-

Chapter 3. Specifying Transactions 67

mula is written in conjunctive normal form and describes the characteristics of the system.
Predicate-based models define the executions allowed by a transaction set by describing
when interleaving is possible. Therefore, the set of data items appearing in the predicates
must be defined. Concurrency is possible by exploiting the predicates associated with
the transactions. However, the predicates must satisfy the well-formedness property (see
Section 2.1.1 page 23). Determining whether a given string is a well-formed formula
with respect to G, a set of syntactic rules, is decidable’ [WF83]. Well-formed formulae
are used to build a proof system to verify the correctness of specifications. A proof is a
sequence A;, Ay -- -, A, of well-formed formula such that for each i, either A; is an axiom
of the system or A; is a direct consequence of some preceding well formed formula by
applying one of the inference rules. New facts are established by deducing or proving

their truth from previously known facts.

3.3.2 Proof Requirement

Every specification determines the set of allowable actions that hold in it. These are the
properties of the specified system expressible in the given syntax and semantics of the
specification language. It is vital to have some effective ways of proving that an action is a
consequence of a specification. A proof system shows the correctness of the specifications.
Guttag and Horning [GH80] and Woodcock [Woo89] argue that proofs help to explain
systems’ behaviours and ensure correctness. Thus, by proving that selected properties
follow from a specification we can show that the specification expresses the system’s
desired needs.

A proof system must be sound and complete but no sound and complete proof
system exist [ST84] so we only ensure soundness. Thus, developing an inference rule
for every operation allows the use of compositional inference rules to deduce facts about
compound specification developed from those components.

Two proof styles [Woo89] are possible: natural deduction deduces one property

from another; and logical reasoning uses an equivalences chain. Both styles employ direct

7A decision problem is decidable if there exist an algorithm that determines after finitely many steps

whether a given string is well-formed.

Chapter 3. Specifying Transactions 68

proof, proof by contradiction, or proof by mathematical induction [Woo87]. Although
behavioural equivalence is a fundamental programming methodology, the transaction
specification systems must guarantee behavioural equivalence to the execution effects of
transaction systems (programs) built from the specifications. Jahanian and Mok [JM86]
argue that formal verification methods prove the consistency of safety requirements from
the system specification. Thus, proving consistency and correctness is only with respect
to a specification. The proofs themselves may be informal or formal, but their logical

basis is formal.

3.3.3 Time Property

A transaction system’s execution is described by the sequence of events that occur. In
time sensitive applications/operations (such as operations on shared objects), it is im-
portant to reason about what events occur and when. The central concept here is timed
execution. Often, timing requirements demand that certain communication signals and
operations must execute at certain absolute times or within certain time limits. So to
characterize dynamic properties and behavioural patterns of transaction systems, the
temporal component of the transaction system'’s specifications is important. Time-based
events are important for active databases and their incorporation into a general formal
framework addressing events is desirable.

Therefore, specifying and verifying transaction system behaviours requires reason-
ing about a sequence of states and their times of occurrence. Time is associated with
each state in the execution such that the sequence of times is monotonic and only finitely
many states are assigned in a given time interval. The timing property is essential to
fully capture and define the synchronization behaviour aspects of concurrent transac-
tion systems. Expressing interleaving order requires specifying the relationships between
events and their times of occurrences. For example, consider the concurrent execution
of transactions T; and Tj. If transaction T; is value dependent on 7 then T; < T;.
This ordering depends on the knowledge that T; uses a data object previously modified
or accessed by 7;. Recall, an operation precedes another at their execution time (see

Section 2.4 page 41). Section 5.6 presents more details on relationship between events

Chapter 3. Specifying Transactions 69

and their occurrence times.

Timing properties are essential in specifying database transaction systems. They
constrain the interactions between different components of the system and between the
system and its environment. Minor changes in the precise timing of interactions may lead
to radically different behaviours. Therefore, time is an essential synchronization mech-
anism for solving certain task coordination problems. However, unlike hard real-time
systems that are characterized by a time-dependent utility function (that is, satisfying
the time deadlines constraints determines the correctness of results), database transac-
tion systems are soft real-time systems® [Son88] because satisfying hard time deadlines is
not the prime consideration but rather the correct synchronization of the transactions.

The time domain in some approaches is discrete and in others is continuous. Dif-
ferent kinds of computation problems are best addressed using different notions of time
so there is no “best” uniform approach [Sch93b|. Thus, the nature of the application
dictates the timing requirements.

Generally, TIMF is a totally ordered set of time points represented as a mapping
to the number line. The type TIMFE is closed under addition and subtraction. One
can identify three models of time: discrete, clocked, and continuous time. The model of
time is discrete if the time line is isomorphic to the integers, and is continuous when the
time line maps to the real number field. Discrete time represents the temporal evolution
of the system as an enumerable sequence of snapshots; each describing the state of the
system at a certain time. Continuous time represents the system evolution by a sequence
of intervals of time, with a description of the system’s state during each interval. In
the continuous case, the behaviour of the system is represented by a mapping from an
interval of nonnegative real numbers representing time intervals to system states. The
intervals can overlap at endpoints only. There are infinitely many points in continuous

time in any interval of non-zero length so reasoning in continuous time is problematic

8Soft real-time transactions have timing constraints but there may still be some justification in com-
pleting the transactions after their deadlines. Unlike hard real-time systems, catastrophic consequences
do not result if soft real-time systems miss their deadlines. In hard real-time systems, a transaction’s
timeliness and criticalness usually determine the usefulness of the results (i.e., the results are available

in time to influence the process being monitored or controlled).

Chapter 3. Specifying Transactions 70

and generally intractable. Clocked time is an approximation of continuous time. A spe-
cial event is assumed to execute regularly but the relative order of events between the
checkpoints remains important. In most transaction systems discrete time representation
suffices because database transaction communication is essentially synchronizable at spe-
cific discrete points where interprocess communication and concurrent access to shareable
data objects occur. Alfaro and Manna [AM95] show that if a temporal formula has the
property of finite variability, its validity in the discrete semantics implies its validity in

the continuous one.

3.3.4 Causality

Another important property that demands explicit representation in a concurrent trans-
action system specification is causal relationship. Causality defines the ability of one ac-
tion to affect the other. Causality may be due to value dependencies [MCFP96] or the ef-
fects of the different types of dependencies (inter-transaction and intra-transaction depen-
dencies). Causal dependencies constrain the synchronization of operations/transactions
in which they exist (see Section 5.6 for details). This concept enhances correctness and
recovery and thus improves system reliability.

Causal relationships are essential in cooperative problem solving environments. An
investigation of causality relationships and time in complex transaction systems as it

affects their dependability is required.

3.4 Specification Language Selection

Existing formal specification languages fall short of the language features outlined in Sec-
tion 3.2. Languages such as Z [Spi88] and VDM [Jon86] are unsuitable because they lack
mechanisms for capturing concurrency, parallelistn, communication, interruptions, and
coordination among subcomponents vital to concurrent transaction systems. Moreover,
they lack the concept of time and thus lack primitives for specifying timing constraints.
Similarly, functional decomposition techniques such as Structured Analysis/Design are

unsuitable for specifying transaction systems because there is no support for formal ver-

Chapter 3. Specifying Transactions 71

ification, nondeterministic system behaviour cannot be suitably modelled, and timing
properties do not integrate well with the rest of the requirements. Hierarchical Coloured
Petri Nets are not well suited to the needs of advanced database transactions specification
because they lack suitable data handling and manipulation mechanisms, and it is often
difficult to distinguish between precedence and causality [TM91] in Petri Nets models in
general.

The process algebra family of specification languages (such as CSP [Hoa85], CCS
[Mil89], and ACP [Ber88, BB91]) have been found [Fid94, EBO95] most suitable for the
specification and design of distributed systems. These languages support concurrency
and their variants have incorporated timing properties as part of their primitive operator
set. However, CSP and CCS have simple form, lack data values [Fid94], and use events as
the basis for creating more complex structured behaviours. Also, data types are treated
informally, typically restricted to simple types such as integers or characters.

The inability of the process algebra languages to provide structured and complex
data types undermine their expressive power and usefulness for advanced database trans-
action applications where data fields are accessed. Clearly, the types of data objects
available in a language have a profound impact on its suitability for a particular appli-
cation since these data object types provide a meaningful representation of the problem
being solved [Was80]. To remedy this situation, the basic CSP specification language is
extended beyond the primitive atomic data types to include structured data types®. The

formalism and and its semantics follow in Section 4.6.

9De Giacomo and Chen [DC96] added the concept of explicit global store that associates a blackboard

with a process to handle data requirements in modelling a dynamic system using a variant of CCS.

Chapter 4

TIMED CSP FUNDAMENTALS

CSP captures communication behaviours effectively but cannot describe functional as-
pects of a system. Therefore, CSP is augmented with record data extensions and logic
expressions to cater for the inadequate functionality. Extending CSP’s expressive power
makes it a suitable formal method for transaction systems description outlined in Sec-
tion 3.2. Critical aspects of a transaction system environment including error handling,
interrupts, concurrency, safety and liveness are capturable.

Initial key theoretical foundations are presented. The goal here is to provide an
understanding of the basic language and its applicability. A brief review of the constructs,
primitives, and operators applicable to transaction protocols are provided (see [DS92a.
Hoa85, HJ96, Sch90, Sch93b] for a complete treatment). Finally, the necessary record

data type extension to CSP are presented.

4.1 Elements of TCSP

Timed CSP models system behaviour that are often distributed, reactive, and subject to
timing constraints. Examples of such systems include communication protocols, transac-
tion processing systems, aircraft control systems, and space and combat missile control
systems. CSP’s specifications are composed of events and processes logically combined
according to a set of grammatical rules. A collection of event names is called an alphabet.

An alphabet is a set of names (or symbols) of events useful for describing a process. An

72

Chapter 4. Timed CSP Fundamentals 73

alphabet is finite and non-empty. A process only engages in events within its alpha-
bets. If P is a process, we write aP to denote its alphabets. These alphabets model the
interface between this process and its environment.

A process is modelled in terms of the possible interactions it can have with its
environment. These interactions are described in terms of events. An event is one of the
following: (i) the execution of an operation by a process, (ii) the sending of a message, or
(iii) the receipt of a message. An event is an instantaneous atomic action. Each event in
the alphabet of a process can either be an elementary event (represented as an atom) or
a composite event (such as a function) whose components consist of other events. Events
can be (a) value returning, {b) self replacing (i.e., modifies at least one data variable)
or (¢) communication signals. Therefore, a transaction’s execution is a chain of events,
starting and ending on an element of the alphabet set.

Processes are abstract programs describing the behaviour of a system in terms of

events.

Definition 10 Process: A process is collection of syntactic objects which represents the
pattern of behaviour of an object. []

A process may represent the system or some components within the system. Processes
are defined using an equational notation. The statement A = B introduces a process A
which behaves as B. The behaviour of a system expressed in terms of events can only

be determined when a program is executed.

Definition 11 Program: A program is an ordered collection of processes.]

Note that it is possible that a set of processes is used to implement a program. An
observation of a program is a record of observable behaviour during an execution.
Timed CSP provides extensions to support timing specification in real-time sys-
tems. Timed semantics are used to analyse timed properties while untimed semantics
describe other aspects of the specification. Since Timed CSP is a superset of CSP, the
refinement relation ensures that untimed specifications remain valid in the timed se-
mantics. Schneider [Sch93a] has shown that it is possible to preserve checks on safety

properties when refining an untimed description to a timed one. Untimed descriptions

Chapter 4. Timed CSP Fundamentals 74

differ from timed ones by the addition of arbitrary delays in the timed version. This
means any proofs that hold for the untimed description also hold for its timed version
(see [Sch93a]).

The syntax of CSP processes includes primitive operators that enable the specifi-
cation of concurrency, non-determinism, and hiding (i.e., encapsulation) elegantly and

separately in transaction systems. Deadlock and recursion are definable.

4.2 The Language of Timed CSP

A semantic model for the language, in which each program is identified with a set of
observations, is required. The different CSP’s semantic models are named according
to the type of observations made; for example, in the timed traces model, observations
are sequences of a timed model. A process is an element of a2 semantic model; a set of
observation which defines a pattern of behaviour.

Davies and Schneider [DS92a, DS9*] outlined the properties of the model of compu-
tation that influence the construction of the semantic models. These properties include:
mazimal progress, mazimal parallelism, finite variability, synchronous communication,
and instantaneous events. Maximal progress ensures a program will execute until it ter-
minates or requires some external synchronization while maximal parallelism guarantees
that each component of a parallel combination has sufficient resources required for their
execution. In a finite time interval, finite variability ensures that a program may un-
dergo only finitely many state changes. Synchronous communication ensures that each
communication event requires the simultaneous participation of every program involved.
Action duration is modelled by considering the beginning and the end of the action as
separate events. This model of computation is consistent with that employed in [Hoa85].

Timed CSP is defined by the following Backus-Naur Form (BNF) grammar rule:

P ::=STOP | SKIP | WAIT ¢t | basic
a— P|P; P| sequential
POP|PNP|la:A— P, | P> P| choice

Py Q|PsP| interrupt

\

~]

Chapter 4. Timed CSP Fundamentals

l4r PP 4lls PP P|P|P| parallel
f(P)| PAA| abstraction
gXeF(X) recursion

This extends Hoare’s syntax. A more detailed description and the various semantical
models of the language may be found in [DS92a, DS92b, DS9**, Sch93a, Sch93b, Sch9=*,
Hoa85]. In the above BNF rule, event a is drawn from the set of all alphabets o and event
set A ranges over the set of subsets of a. In Timed CSP the time ¢ is a non-negative real
number. This thesis assumes time is non-decreasing monotonic. Time is modelled by a
non-negative integer without loss of generality! (by result of [AM95]). Time is global in
that it passes at the same rate in each process. See Section 5.3 page 108 for logical time
assignment rules in transaction environments. Timed CSP’s operators for timeouts and
timed interrupts have time variable associated with them.

For illustrative purposes (for the rest of this section) let P and @ be processes and
t be a time value.

STOP and SKIP are two special processes. STOP performs no events at all (dead-
lock). It is a broken program which will never engage in any external communication and
fails to terminate, so it represents the end of a pattern of interaction. SKIP performs no
events but ends the process it is found in or itself immediately and successfully. SK/P
represents a successful end of a pattern of interaction. Successful termination is regarded
as a special event, denoted by the symbol /. The operator WAIT ¢ is a delayed form of

SKIP that terminates successfully after the specified time ¢.

Sequence:

The — operator is an action transition relation. It is of the form: —: state x event —
state. The operator allows us to add communication events to a program. The process

a —> P means that when event a occurs the process P is immediately executed. In

1The thesis uses a discrete time extension of CSP with relative timing. Time is divided into slices
indexed by natural numbers. These time slices represent time intervals of length that corresponds to

”

the time unit used. Thus, time is represented as “a sequence of discrete, quantized instants ¢, ta, ...

[KL91].

Chapter 4. Timed CSP Fundamentals 76

other words, from an initial state, say ¢, the process can perform the event a and move
to state ¢’ where the execution of P starts. This transition statewise is represented as ¢
= ¢

The sequential composition operator (;) transfers control upon termination. Thus,
P; Q represents the sequential composition of P and Q. The program first behaves like
process P until P performs the special event |/ at which time it continues by behaving
like process @. If P does not terminate successfully Q will not start; so the program P; Q
does not terminate successfully. The / event is invisible to the environment but occurs
when P terminates successfully. Sequential composition relies upon the use of SK/P.

Note that state information does not persist across a sequential composition. That is, in

the process P; @ the initial state of @ is independent of the final state of P.

Choice:

There are two choice operators — ezternal and internal choice operators. The external
choice operator (O) offers the environment a choice between the initial events of its
two arguments. For example, POQ represents a deterministic external choice between
processes P and Q. If it is possible to perform the first event of P, but not the first event
of @, then POQ behaves as process P. On the other hand, if it is possible to perform
the first event of (), but not the first event of P, then POQ behaves as process Q. If
both the first event of @ and the first event of P are possible, then the choice between P
and @ is nondeterministic. Another form of external choice is the process a : 4 — P,
called indexed external choice which offers an external choice of initial event a drawn
from a set A, which may be infinite. This is used to model process input from a channel.
Note that external choice and indexed external choice represent a choice offered to the
environment between a number of processes.

Internal choice is specified with the M operator. For example, the program P M Q
represents an internal choice between P and ¢ where the outcome of this choice is non-

deterministic. This operator is used to represent runtime nondeterminism.

Chapter 4. Timed CSP Fundamentals 77

Input and Output:

The expression c’v denotes the output of value v on channel c. The value transmitted
is determined by the sending process. Similarly, the expression c¢?v denotes the input
of value v on channel ¢. The input value is determined by the environment of the
process. An input process is ready for any value while an output process sends just one
value. Thus, ¢?a — P denotes a process that is ready to engage in any event of the
form c.a while cla — P denotes a process which must perforrn the event c.a before
behaving as the process P. For example, if channel ¢ carries values of type A, the process
c?’a : A —> P, accepts any value a of type A on channel ¢, and behaves accordingly.

These processes may be used to represent input and output behaviour on a channnel.

Timeout:

In Timed CSP, the timeout program P 5 Q may behave as P, or offers a choice between P
and @, according to whether the timeout has occurred or not. For example, the process
P & @ will behave as P but if no event of P takes place before time ¢ the process behaves
as Q. Also, if the first event of P attempts to occur at exactly ¢, then the outcome is
nondeterministic. In untimed CSP, the resulting behaviour is nondeterministic choice

because it has no notion of time.

Interrupt:

There are two forms of interrupt — event and timed interrupts. The interrupt program
P V Q behaves as P until the first occurrence of interrupt event ¢ where upon control is
transferred to @) and process P is discarded.

The operator 4 (the lightening sign) passes control from one program to another
after a predetermined time has elapsed. This is called timed interrupt. Without timing
information, the first program may be interrupted at any point. For example, the process
P ¢ Q behaves as P until time ¢ when it behaves as Q. This operator differs from
the timeout operator which aborts a process only if no external activity has occurred.

The timed interrupt operator is very useful in specifying certain real-time transaction

Chapter 4. Timed CSP Fundamentals 78

operations such as banking transactions.

Concurrency:

In general, the parallel composition of two processes P and @ is denoted P || Q. Compo-
nents of a parallel composition may progress separately on internal disjoint events. If both
components can engage in a common timed event, then so can the parallel combination.
The parallel composition operator has many forms. One form is a synchronised parallel
combination of a set of programs parameterised by a corresponding set of interfaces Ap.
For example, given K = ||4, P, each event a € Ap requires the participation of every
subprogram P. Every pair of subprograms in P must cooperate on each event from the
intersection of their interface sets. Events outside A may, however, occur independently.

Another simple form is the binary parallel combination P 4||g @ in which program
P may perform only those events in A, program @ may perform only those events in B,
and the two programs must synchronize on events drawn from the intersection of A and
B.

Furthermore, if A is a set of events common to processes P and @ the partially-
interleaved combination of P and @ is written as PUQ In this combination, processes
P and Q synchronize upon only those events in set A and on termination. Other events
may occur independently, even if they appear in both alphabets (i.e., they interleave
on all other events). This form of parallel subprograms combination represents hybrid
parallel combination.

In all forms of concurrency operators, all communicating events are synchronized;

they can occur only if both the sender and the receiver are willing to cooperate.

Interleaving:

Asynchronous parallel combination (|||) occurs when subprograms evolve concurrently
but without interacting. Generally, the [|| operator is a communication free merge opera-
tor. The process P ||| @ represents the unsynchronised concurrent execution of processes
P and Q. Events of P and @ occur independently and an event can be refused only if

both components independently refuse it. Interleaved processes progress independently.

Chapter 4. Timed CSP Fundamentals 79

They are causally independent (see Section 5.6) and may occur simultaneously. If the
intersection of P’s and @’s alphabets is nonempty then we have partially interleaved

execution of the actions of both P and Q.

Indexes:

The interleaving, parallel composition, and internal and external choice operators can
be indexed. For example, |||;.x P(z) denotes the interleaving of each of the processes
P(z;) for each z; € X where 1 < i < #(X). The indexed deterministic choice operator,
O..x P(z) denotes the choice between P evaluated in an environment with the variable
z bound to each value in the set X. Similarly, the corresponding indexed nondeter-
ministic choice operator and parallel composition is given by M..x P(z) and ||..x P(z),

respectively.

Relabelling:

The relabelled program f(P) has a similar control structure to P, with observable events
renamed according to the function f. Relabelling enables renaming of processes and

events.

Hiding;:

The program P\ A behaves as P, except that events from set A are concealed from the
environment of the program. Hidden events no longer require the cooperation of the

environment so they occur as soon as P is ready to perform them.

Recursion:

Recursion is modelled either by using equations or p operator. The recursive program
¢ X o F(X) behaves as the process F(X) where each instance of variable X represents
a recursive invocation. The process u X e F(X) satisfies the equation P = F(P) where

P = X. These programs have well-defined semantics if the function F is guarded® [Hoa85].

2A function F is guarded if every free occurrence of X in F(X) is preceded by at least one observable

event.

Chapter 4. Timed CSP Fundamentals 80

For example, the recursive equation P = a — P defines a process which may engage in
as many events a as the environment will allow. Recursive process definitions must start
with at least an event prefixed to all occurrences of the process name on the equation’s
right-band side. The following illustrates a recursive process definition of a perpetual

clock [Hoa85: page 28]:
CLOCK = p X : {tick} o (tick — X))
where « CLOCK = {tick}. An equivalent equational definition of the perpetual clock is:

CLOCK = (tick — CLOCK)
Summary:

To model a system, process definitions describing the individual component’s behaviour
within the system are specified using the above Timed CSP operators. The component

processes are composed to specify the entire system’s behaviour.

4.3 Nature of CSP Specifications

Expressing parallelism (including concurrency) between processes is possible in CSP. This
sometimes requires cooperation among the processes. Cooperation in a computation
among processes makes communication® necessary if one process needs an intermediate
result produced by another process. Also, synchronization is necessary because the former
process must be suspended until the result is available. Coordination between processes
is implemented by message exchange between pairs of processes using the synchronized
execution of communication events in both processes. A communication sequence of
process P is the sequence of all communication events in which P has participated.

Message passing achieves both communication* and synchronization®.

3If communication is expensive, the gain in computational speed as a result of concurrency may be

lost in additional communication cost.
4Using a shared memory variable achieves only communication so additional care is required to

synchronize processes that communicate using shared memory.
5 Synchronous message passing implements the synchronization of the processes involved in that the

send operation is completed only after execution of the receive operation resulting in a two-way synchro-

Chapter 4. Timed CSP Fundamentals 81

A CSP’s description of the desired system behaviour is split into a ¢race and a
state part. The trace part consists of a set of trace assertions. The trace assertions
describe the relative order in which the events can occur in the sequences or traces of
communications between system and environment. The state part specifies which values
are communicated over channels and consist of a set of local state variables and a set of
communication assertions.

By specifying the trace and state assertions, one can capture adequately the de-
sired system’s functionalities. Thus, restricting the execution relation to certain events

guarantees correct allowable executions by a transaction set.

4.4 Semantic Models for Timed CSP

The semantic models specify the intended behaviour of a program. FEach program is
associated with a set of behaviour in the semantic model so a predicate on the semantic
set corresponds to a requirement upon the program.

The traces model (the most widely understood and popular version of CSP) asso-
ciates each program with a set of observable event sequences. These sequences are called
traces. A trace defines the set of finite events sequence the process may perform. The
semantics of a process in the traces model is a set containing every trace possible for that

process. For example,
traces(P M Q) = traces(P) U traces(Q).

It is used mainly to demonstrate safety properties where it is necessary to show that
every possible trace of the system is acceptable. The analysis of this set permits us to
determine if the system is safe. Therefore, the traces model is a safety model because
a program within the required traces model will only guarantee not to do something
unexpected. For example, in the traces model of CSP, the following predicate says that

program P never performs a visible action®:

nization between the sender and the receiver.
SThe definition is read as “for all £ which belongs to the set of sequences of P’s trace such that the

predicate ¢r = () holds.

Chapter 4. Timed CSP Fundamentals 82

Vir € traces(P)e tr = ()

Also, in the traces model, the process STOP is associated with the set {()}, containing

only the empty trace. STOP, therefore, meets the above requirement; defined using

satisfiability relation, denoted sat, as follows:
STOP sat tr = ().

The sat relation is a semantic function of processes in the trace model representing the
set of acceptable traces performable by that process. The traces model is sufficient for
untimed safety requirements. The program., in general, does not guarantee freedom from
deadlock. The traces model tells us nothing about liveness.

However, by specifying constraints that ensure event possibility will verify that the
system does not deadlock or livelock. Howles [How94] shows that deadlock freedom is
a feature of untimed description that extends to a timed description using refinement.
Capturing liveness conditions requires readiness or refusal information in the semantic
sets which leads to the failure model. The set of events that are refused by a process is
called refusal set. The process is unwilling to perform any event in the set. For any given
process, the refusal set of the process represents “the pathological events that must be
avoided” [Low94] for the process to execute correctly. The failure model associates each
program’s trace with various events set, X, offered by the environment. The set X is a
refusal set of a program P, denoted refusals(P) = X, if it is possible for P to deadlock
on its first step when placed in this environment?. If failures, denoted (¢r, X), is present
in the semantic set of a program P, then P may perform trace tr and refuse to engage
in any event from X.

A trace may follow an infinite sequence of internal events which is called divergence
so the third behavioural aspect included is the failure-divergence model.

The traces, failure, and failure-divergence semantics models have their correspond-
ing timed semantic versions. For example, a timed trace is a finite sequence of timed

events drawn from Rt x a such that the times are in non-decreasing order. (Rt x a)*

7For example, the simple process a —» P refuses every set that excludes the event a. Note that a

process can refuse only events in its alphabet.

Chapter 4. Timed CSP Fundamentals 83

is the finite sequences of timed visible events. (Recall that this thesis uses integer values
for time so R* is replaced by N;) Similarly, a timed refusal set is a set of timed events
consisting of a finite union of refusal tokens. The information in a trace is simply a record
of events occurring at particular times; all simultaneous events may occur in any order
in a trace. The operational effects have no instant causality between visible events since
simultaneous events may occur in any order.

Both timed and untimed versions may be used in the analysis of the same system
so that the results can be subsequently combined. A proof in the untimed traces model
will hold in any of the timed models [Sch93b]. This research uses both the traces and
failure semantic models where appropriate to capture both safety and liveness properties
of the systems elegantly. Safety and liveness properties represent desirable facets of
a process to accurately describe the intended behaviour. Safety properties that are
specifiable include mutual exclusion and absence of deadlock. Liveness properties include
termination and responsiveness while fairness properties ensure that every process has a

chance of executing.

4.4.1 Reasoning with Traces

Trace projections are useful when reasoning about traces. Since a trace is a sequence, the
usual primitive operators of the sequence data type are freely available in CSP. These are
in for membership, ~ for concatenation of sequences, [for the restriction of a sequence
to some elements, and the functions kead, last, and tail. In the following definitions, let
seq, denotes a nonempty sequence, A and B be sequences, and C be a set.
head(A) is the first element of a nonempty sequence, formally defined as:

A # () = head(A) = A[l]
last(A) is the last element of a nonempty sequence. So,

A # () = last(A) = A[#A4]
tail(A) is the sequence with the first element of a nonempty sequence removed.

A# () = tail(A) = A — head(A)
A in B means that A is a contiguous subsequence of B.

A [C is the restriction of A to elements from the set C.

Chapter 4. Timed CSP Fundamentals 84

The following examples expound these primitives.
Let® = (a,b,d,f,g,!).
Obviously ® is a nonempty sequence so we can write seq, ®. Thus,

® = (a,b,d,f) ~ (g,1),

head(®) = {a),

last(®) = (1),

tail(®) = (b, d, f, g, 1),

(b,d)in & but ~ ({(a,d))in ®, and

®[{a,d,g} =(a,d,g).

Additional operators’ operations are described in context as required throughout.

4.4.2 Proof Mechanism

CSP uses denotational semantics to validate the algebraic laws. The semantic equations
for each model support the construction of a compositional proof system. A compositional
proof system is a set of inference rules relating the properties of each program to the

properties of its syntactic subcomponents. Such rules are of the form:

antecedent

antecedent

[side condition |

conclusion

The antecedents are assertions (or predicate) relations on the components of the program
and the side conditions are optional assertions unrelated to the transitions. Consider the
following example:
Facts
1. Birds can fly.

Chapter 4. Timed CSP Fundamentals 85

2. Birds have feathers.
3. Pigeon is a bird.

From the given facts (axioms) the following logical conclusion is immediate.
Pigeon have feathers and can fly.

A CSP’s proof rule in the traces model representation of the above is:

P sat S(tr)
P sat T(tr)

Pigeon : P sat S(tr) A T(tr)

where P represents Birds, S(¢r) and T(¢r) are the specifications of the requirements can
fly and have feathers, respectively.

A characteristic of the compositional proof system is that any property guaranteed
by some component of the system must be true of the whole system. Similarly, any
constraint imposed by a system’s component is a constraint on the whole system.

To specify how a process behaves requires constraints on the set of traces associated
with that process. These constraints (or behavioural specifications) are expressed as
predicates on traces. To show that a process satisfies a behavioural specification requires

that every trace of the process satisfies the corresponding predicate. In other words,
P sat S(tr) <=V tr | tr € traces(P) @ tr = S(tr)

This means that every possible observation of P’s behaviour is described by S(t¢r).

Thus, the sat relation ties a process to its characteristics set of traces as illustrated in
Figure 4.1. The sat relation enables proof of properties as a chain because if P sat
S(tr) and S(¢r) = T(tr) then P sat T(tr). That is, if a specification S logically implies
another specification T, then every behaviour described by S is also described by T. So

every process which satisfies S must also satisfy T.

4.4.3 The Implementation of a Process

A process is usually implemented as a function F() that takes events as argument. Let

B denote the set of events in which the process P is initially prepared to engage. If

Chapter 4. Timed CSP Fundamentals 86

Processes Traces

sat relation

Figure 4.1: The Satisfaction Relation

is the first event of P, then for each z in B, F(z) defines the future behaviour of the

process P, denoted P'. That is, the implementation of P is given by
(Vz:BeF(z) = P'A (5: trace(P) ® head(s) = z))

For any given process (P) the complete set of possible traces can be predetermined using

a function traces(P) as defined by Hoare [Hoa85].

4.5 Interleaving Semantics

Let ¢t = traces(P) and u = traces(@). Then the arbitrary interleaving of the actions of

process P and process @ is defined as follows:
s interleaves(¢, u)

where s is the interleaved actions. Suppose t = (a,b,c,d,¢,f) and u = ([, m,n, o, p).

One possible interleaving of ¢t and u traces is:
s = (av b’ c, 17 m,n, ds €, OaP,f)

No ordering relation is imposed on s. Unsynchronized concurrency® (parallelism) occurs

when there is no need to synchronize actions associated with independent entities in a

8Recall concurrent processes can function independent of one another or they can be asynchronous

which means that they require occasional synchronization and cooperation.

Chapter 4. Timed CSP Fundamentals 87

system. Thus, if aP Na@ = J, then P || @ is an arbitrary interleaving of actions from
the process P with those from process @. Formally,

traces(P || Q) = traces(P ||| Q) =

{s| 3¢ : traces(P); u : traces(Q) ®s interleaves(¢, u)}

In a concurrent system, concurrent processes can invoke operations on an object
so it is necessary to give meaning to interleaved operation executions. Suppose some
operations of P and @ conflict on a data item O. If flow dependence of P on @Q is
required on their access to O, then their actions’ arbitrary interleaving as defined above
is unacceptable. Some ordering relations must be imposed on the interleaved actions of

both processes. Thus, the interleaving of P and @ is defined as:
s interleaves(t,u)A {Vket|k=t[OAVIc€u|l=u[Oel <k}

This ordering relation permits the proper synchronization of P and ¢ with respect to
their actions on data item O. Interleaving-based semantics captures observable temporal
behaviour of processes.

Any two processes, say P and @ can be composed to run concurrently but requires
caution because a dependency may arise from sharing data objects. If both processes
have events in common, they synchronize their actions when executing such items.

We now turn to the problem of extending TCSP to capture the record structures

required to describe database transaction specifications.

4.6 Supporting Record Data Type in CSP

Arbitrarily complex data objects must be appropriately captured by the specification
technique. The components of a structured data object which may belong to a distinct
type are each smaller than the whole structured data object. It is possible to access or
modify the constituent parts independently in a structured data type.

Recall that, one of the limitations of CSP is its inability to define structured data

elegantly. There are no primitives available to define a record data structure (compound

Chapter 4. Timed CSP Fundamentals 88

field_1 field_2 field 3 |[- - | field_n

Figure 4.2: A Sample Record Data Structure

type®) and hence there are no means to access the attributes of such data.

Definition 12 Structured data: A non-atomic variable (i.e., structured data) has at least
two fields. »

Figure 4.2 is a sample record data structure.

The ability to construct structured data types in CSP proves useful in producing
more natural abstract manipulations in systems specifications. Data objects are defined
by their representation and by the constructor operations used to create them in con-
junction with the definitions of operations that manipulate them. The extensions are
amenable to formal mathematical reasoning because they contain regular and simple
structure. The specification of the data structure provide a vehicle to address some of
CSP’s limitations with the goal of increasing CSP’s expressive power. As the field se-
lectors are fixed at declaration time, the components of a record may be accessed as

efficiently as scalar data objects.

4.6.1 Defining Record Data Structure

The two operations on structured data types are: (1) the construction operation which
generates a new type (the data type being defined) from primitive ones and (2) the
accessing operation. Therefore, we require two operators that permit the definition of
and access to records in CSP. These operators define the structuring principles that

show how the components of the structured data objects may be created, accessed and

9Compound types are built up from elementary data types. A record’s component types are hetero-

geneous. A record represents a single data item in the problem domain. CSP is restricted to simple

atomic data types only.

Chapter 4. Timed CSP Fundamentals 89

modified!?. For notational convenience we shall use @ for data structure declaration'!
(or definition) and the symbol . for data field reference binding!?. The @ and . operators
are the basic vehicles for defining, generating, and manipulating (see Section 4.6.2) record
objects. The . operator enables the application of value transforming function to objects.
In other words, the . operator specifies operation which extracts components from a
record structure. Therefore, it is essential that the distinction between the name of a
variable (its identifier), the area it is stored (its reference or address), and the value stored
must be clearly understood.
For illustrative purposes, consider the Pascal declaration of an employee record.
TYPE
Employee = Record

Name : string[25];

Dependents : integer;

Rate : real

end;
The scope of a field identifier is the record in which that identifier is declared. This means
that the same identifier may not be used to specify two different fields within the same
record, but the same name may be used elsewhere in the specification for some other
purposes. Since the components of a record may be of any data type, in particular they
may be other records, records may be nested. For example, the pascal declaration
TYPE
Staff = Record

10Modification of an arbitrary field is through the side effects of the assignment operation.
11The declaration of a record type specifies the name and the type of the various fields of the record.

Implicit in the declaration of a record is a tree structure since the fields of a record can themselves
be records. [In this thesis, only records whose components are scalar data objects are considered but a

recursive definition is an immediate consequent. Also, variant records [LN93, Mar91] are not considered].
12The binding of a variable to its value involves three bindings [WC93]: (1) the binding of the variable’s

name to its declaration (name-declaration binding), (2) the binding of its declaration to a store location

(declaration-reference binding), and (3) the binding of the storage location to a value (reference-value

binding).

Chapter 4. Timed CSP Fundamentals 90

Name : string[25];

Dependents : integer;

BirthDate : Date;

Rate : real

end;
is a hierarchical record where the field variable type Date is a record consisting of the
fields Day, Month, and Year. The fields within such a nested record may be accessed by
simply affixing a second field identifier to the name of the enclosing record. There is one
record for each employee so Staff[i], for example, refers to record of the ith employee.
The syntax of the structured data objects declaration is given below:

@[data_name] == {field_1, field_2 {, field_3, ..., field_n})&& {type_specifications))

where
1. @ is the data structure constructor operator,
2. data_name is the name of the data structure constructed,

3. { and)) are used to enclose the data fields and the specifications of the data type

of the individual data fields,

4. fleld_i where i > 1 is a data field (i.e., an attribute of the data structure con-
structed),

type_specification is the specification of the data types!3 of the fields, listed in the

Ut

order in which the fields appear in the definition — this must be a 1-1 mapping so
that for each field_i there exists type;, the type of field_i,

6. && is used to associate the types specification with the data fields definitions,

7. n > 2, and items within the { } are optional.

Note that the symbols @, {,)), and && are parts of the constructor syntax. Structured
objects, therefore, are specified as a sequence of attributes and types'. The record with

rank < 1 is defined nowhere in this thesis because an empty record is of no interest and

13The type of an object determines the values it can take and the set of operations used to manipulate

these values. Data objects have a value and a type.

14In a nutshell, a record is a Cartesian product of domains or domain values.

Chapter 4. Timed CSP Fundamentals 91

a record with only one field is a degenerate case of atomic types which are available in
CSP. All fields of a record must be specified at creation time. This restriction makes it
possible to perform static checks on accesses to record fields. Operations involving the @
succeeds if the identifier (its argument) is not atomic type and there is no such identifier
previously declared. Otherwise, it returns the identifier and an error message.

Writing specifications is based on representing a data object by the construction
operation whose evaluation yields the record data object. Exploiting their mathematical
properties is dependent on having a finitely representable specification of the structure
of each data object. Formally, we shall use the following definitions:

FIELD ::= identifier
ATOMIC ::= integer | real | char
TYPE ::= user_defined | ATOMIC
FIELDTYPE == seq TYPFE
DATASET == {id : identifier | id is a variable already declared in the system}
Now we define the structure of a record noting that each attribute must be unique.
FIELDS == seq FIELD
VF:FIELDS o
Vi,j:1.#F e i #j= F[i] # F[j]
Further, let type_of be a (prefix) function that returns the type of its argument. [ts
signature is:

| type_of : FIELD —s TYPE
Similarly, let Val be a function that returns the stored value of an attribute. Its signature
is:

| Val: FIELD — value
For example, the notation Val(s), where s is an attribute, returns the current value of the
attribute s. That is, Val(s) is the message or data value corresponding to the particular
instance of the variable s.

The record type can now be defined as:
RECORD == (FIELDS) & & {FIELDTYPE)) o
#FIELDS = #FIELDTYPE A

Chapter 4. Timed CSP Fundamentals 92

#FIELDS > 2 A
(Vi:1..#FIELDS o
type_of FIELDS[i] = FIELDTYPE][i])
In other words, RECORD is a finite set of identifiers associated with types. Its elements
are associations from the set of identifiers to the type TYPE such that each identifier
can assume an element of the corresponding type. Thus, a record is a partial function
from labels to values so all labels in a given record must be distinct (a constraint in the
definition of FIELDS).

The syntax of the structured data objects declaration is given below:

@ : identifier — RECORD

VY data_name : identifier o

@[data_name] = data_name | data_name = RECORD &
= (3 z; : identifier | z; € DATASET o z; = data_name) A
type_of z; = -~ ATOMIC =
(3F:FIELDS; T : FIELDTYPE o
data_name = (F)&&{(T)))

To demonstrate the application of the @ constructor operator, consider the following.
Let z be a record type with the fields id and value. Let us further assume that id is of
type integer and value is of type TIME. This will be defined as follows:

@D[z] = z = z o {id, value) &&{N, TIMEY)
The above declaration introduces the two variables z.id and r.value which combined
create the variable z of the type record. The order of access to the components of z is
insignificant.

To allow components (data fields of the data structure) to have different types,
components must be referenced using a qualified name instead of an expression'®. Thus,
to reference any field in data_name, the field name is bound to the data_name by using
the . operator. In other words, one can access each field of a record directly by using

a field-designated variable of the form “record-name . field-name”. Effectively, the .

15Components of a record are identified by their label rather than by their “ordered” position as in

lists. Equality of records is componentwise.

Chapter 4. Timed CSP Fundamentals 93

symbol is the dereferencing!® operator. For example, data_name.field_2 refers to the data
value in field_2 of the record type data_name variable. The effect of data_name.field_2
is to access the value stored in the location referenced by the field_2 component of
data_name. Thus, it is convenient to write z.id to denote the id component of r and
r . value to denote the value component of z. Similarly, writing the CSP statement
input?z.id means the input of a value for z’s id component through the channel input.
The binding of a variable to a value occurs as a result of either an input or an assignment
statement. So an assignment operation of 4 to z.id written as z.id := 4, for example,
is actually Val(z.id) = 4 since it is the stored value that is being modified. This can be
read simply as: change the id component of z to have the value 4. Thus, the effect of
input?z.id is the same as the direct assignment of the value read to the id component
of z.

Before formally defining the selector operator some functions are defined. The
function Attrib returns the set of all attributes (i.e., fields) in the structure of a record
data type.

Attrib : RECORD — F| FIELD

Vr: RECORD e

Attrib(r) = {s : ¥ FIELD | (3a: FIELD |a € se® ain r}

The function Nfields returns the number of attributes (or fields) in a record. In other
words, the application of Nfields yields the cardinality of the record structure. Nfields is
formally defined as:

Nfields : RECORD — N,

Vr: RECORD e Nfields(r) = # Attrib(r)
The formal definition of the selector operator follows:

—e—:RECORD x FIELD — FIELD

Vr: RECORD e r.z; = Val(z,) & z; € Attrib(r)

16Dereferencing is the process of finding the value of a variable given the reference. For example, in
the expression r = y + 3, y is dereferenced to find its value and the constant 3 is added to it. The
resulting value is then assigned to variable z whose location is obtained by reference to the name z.

Note that when a language has no assignment operator, names can be directly bound to values.

Chapter 4. Timed CSP Fundamentals 94

Accessing a record’s field is applying the record to that field. The operation produces an
error if the accessed field is undefined. Thus, r.z; extracts the value corresponding to the
label 2, from the record r, provided a field having that label is present. This condition
is enforced statically.

In general, besides record access, there are many operations that can be performed
on a record structure such as renaming a field, overriding the value of a field, adding a
new field, and deleting an existing field. Such operations are omitted from this thesis

(see [GM94] for details).

4.6.2 Semantic Definitions

In defining the semantics of the operators, the denotational technique is employed. The
meanings of abstract programs or parts thereof are expressed in terms of semantic func-
tions which map them into various semantic domains (the members of which are usually
themselves functions). Thus, “meaning” is given simply as functions from state to state.
A denotational semantics specification of the object language consists mainly of a set of
semantic equations which define the semantic functions!?.

We shall define a semantic function N : identifier — RECORD. Informally, we
say that given an identifier, N defines the corresponding record. Also, we shall write N'[z]
to represent the semantic definition of the expression or variable z. That is, the [} in the
semantic function’s argument often enclose expressions (or syntactic objects) in the object
language'® variables. The left side of a semantic definition begins with an application
of the semantic function to an argument representative of the syntactic domain. The
argument is expressed in the same notation as the abstract syntax rules. Often, the
value of any expression depends on its context or the environment that tells what values
the identifiers denotes. For example, A[z], denotes the value of z in the environment p.
Since the context of the environment of the record operators is understood, there is no

need to include the environment information in the semantic definitions.

17Semantic functions map abstract programs (or parts of program) into semantic domains.

18The object language is the language being defined.

Chapter 4. Timed CSP Fundamentals 95

First define the syntactic and semantic domains!® and secondly, define the semantic
functions. The semantic domains describe the underlying values manipulated by the con-
structs of the language while the syntactic domains used to define the abstract syntactic
structure of the language corresponds to the syntactic variables (or categories) defined.
Each distinct field in a record is associated with a domain of values. It is important to
avoid confusion between the language being defined and the notations used to define it
so all syntactic objects within [| are in the defined language and have defined semantics.

For obvious reasons, we will not treat a full language but only those portions which
are relevant to the record data type extension. Thus, the language with record extension,
kCSP, is an extension of TCSP with distinguished constructs for record expressions.

The following syntactic domains and corresponding metavariable are listed.

[€ Ide Identifiers
E € Exp Expressions
D € Type Data types
K € Stmt Statement

The abstract syntax rules are:

K n= I variable
| B[[] abstraction
| ®I]* abstraction and composition
| fa1 record access
| E; F application
| EF application
| I?E input
| I'E output

where [/]* means at least one /. For example, we can construct /, I.

Thus, kxCSP = TCSP U K

19A domain is a complete lattice. A complete lattice D is a partially ordered set in which each subset

z € D has a least upper bound in D denoted T and a greatest lower bound in D denoted L.

Chapter 4. Timed CSP Fundamentals 96

Following the style taken in [Pag81, Sto82, Low93, Low94, Hay84], let Sp be the
set of all identifiers (their associated types will be assumed). Formally,
Sp = P(FIELD)
CSP’s syntax includes a variable, say X, that can be associated with a process. Ide
represents the domain of such a variable. In the current study, X can be a record data
type. For variables to have any meaning, the environment space, Ep, is defined as
Ep = Ide — Sp
The primitive semantic domain for truth values is:
m : Truth = {true, false}?
The following defines the required semantic function
N :Stmt — Ep — Sp
Thus, N associates each construct with its value. The domain operator ‘—’ associates
to the right.

The semantic definitions are given below.

1. N[®[z]] = z = z = (FY&&(T) | F € FIELDS A T € FIELDSTYPE
A DATASET' = DATASET U {z}

!\3

N[®[z x y | y is atomic data]] = N[(D[z])] x y
3. NI®[z,y, 2]l = N[®lz]] s N®[vl] s NB[=]]
4. N[®[z | z is an existing record data type]] = z A error = z € DATASET
5. N[@®[z | z is atomic data]] = z A error
6. Nz.y] = Val(y) | y € Attrib(z)
7. Ninput?z.y] = z.y := value | dom value € type_of y
where value is the data read/captured via the input channel.
8. Ninput'z.y] = value = Val(z.y) | value € type_of y

9. N[z.id] A type_of id € domR obeys all algebraic laws of closure, associativity,

distribution, and existence; e.g

N[z.id + y] = N[y + z.id] < type_of y = type_of id

Notes:

Chapter 4. Timed CSP Fundamentals 97

1. Any variable created with @ can be used within any CSP construct that requires
such variable. For example, if A is a record type then ¢ : A — P, is a valid
process that offers a choice of initial event ¢ drawn from the record type A and

behaves accordingly.

X

The operator @ is CSP-expressible and non-destructive.

3. By merging definitions (4) and (5) above, we have the following:
Ni®[z]] =z A error &
(I z; : identifier | z; € DATASET @ z; =z) V
(= (I z; : identifier | z; € DATASET @ z; = z) A
type_of z = ATOMIC)

4. N[B[z]] = ¢ & Nfields(z) > 2 is an important condition that must be satisfied

by all definitions of the record data type.

5. Consider the following example for Ariom 2 above. Let the variable Person be
a record type comsisting of the fields name, age, weight, and height. Also, let
Qualification an atomic data variable. The data types of the fields are assumed.
Thus,

Person x Qualification

= [name, age, weight, height] x Qualification
= @[Person| x Qualification

= @[Person x Qualification]

6. Note that if A, = B, for all p then by extensionality, A = B. That is, one may be
transformed into the other by a finite sequence of permissible applicable steps. A
simple structural induction suffices to show that all the occurrences of a variable

denote the same value.

Summary

The two operators, @ and . enjoy elegant mathematical properties that make them

compatible with other CSP operators. The @ operator provides recursive type construc-

Chapter 4. Timed CSP Fundamentals 98

tion. Application of the operators succeeds only if they syntactically conform to their
structural specifications. Application of € to type-incompatible argument is considered
constant and the arguments are left intact (non-destructive property). The strong typing
discipline is a considerable asset when writing correct specifications. Finally, the given
denotational semantics is consistent with respect to record’s type structure. The se-
mantic definitions given contain the appropriate projection operations for manipulating
record data type. The extension presented in this section further enriches the expressive
capability of CSP thereby increasing its applicability to the specification of database

transaction systems.

Chapter 5

PROTOCOL SPECIFICATIONS

This research assumes error free multicast communication channels exist between databases!.
Informally, reliable multicast ensures that all or none of the recipients receive any trans-
mitted message. Semantics for multicast include receiving, acknowledgement, and the
delivering of messages. Their specifications is outside the scope of this research.

Some terms that are used in the specifications are defined in the following section.

Any additional concept will be defined within context as required.

5.1 Basic Definitions

A data object (z) is an ordered pair (z,,TS) where z, is the object’s value and 7S is
an arbitrary time structure. For example, if only time of reference is required 7§ is a
value drawn from the domain of TIME (see Chapter 4 page 75). However, if read and
write time is required, 7S could be a structure containing more detail (see Section 5.11.1
page 161). There exists a set Data which is the collection of all data objects. A data
object’s value may be simple or a collection of values. The metafunction VALUE|z, t]

l1Send and receive events enable the interaction of processes via communication channels (in CSP
context) of the communication subsystem of the distributed system. Assumptions about communication
channels are: (1) reliable — every sent message is received exactly only once, (2) FIFO property —
messages are routed via channels in FIFO fashion, and (3) the channel capacity is unbounded. In

multicasting messages are sent to a collection (not necessarily all) of the processes.

99

Chapter 5. Protocol Specifications 100

returns the value of z at time ¢, where z is any data object.

Definition 13 Read set: The set of data read by a transaction T is denoted by RSr.
RSt = {a | a € Data @ a is read by T}]

Definition 14 Write set: The set of data written by a transcation T is denoted by
WSr.
WSt = {a | a € Data e a is written by T} »

The union of Definitions 13 and 14 is the set of data accessed by transaction 7.

Definition 15 Access set: The set of data read or written by a transcation T, denoted

by Acsetr.
Acsett = RSt U WSt .

A transaction can potentially see (read or write) any data object available in the system.

The set of such data objects is called the View set and is denoted by Vwsetr.

Definition 16 View set: The set of objects visible to a transaction T.

Acsett C Vwsetr]
These objects can be partial results from other transactions.

Definition 17 Operation : An operation (on a data item), denoted Op, is a well defined
action that, when applied to any permissible combination of known entities, produces a

new entity. — (adapted from [Ros84]). [

An operation identifies and performs an action on data. An operation could modify
the data or access the data without affecting it. Thus, all operations on data can be
represented by simple reads and writes. That is, Op = {r, w} where r and w are read
and write, respectively. Every operation is failure atomic so the status of every operation
on termination is either success or failure. Operations preserve the domain of data to
which they are applied.

The invocation and execution of an operation is atomic so it can either commit or

abort. Thus, the occurrence of one precludes the occurrence of the other. Formally,

Chapter 5. Protocol Specifications 101

Vopi : Op | commit(opi) = —abort(opi) V
abort(opr) => —commit(opx) [RO]

Operations can be composed by using the composition operator (o) defined formally as:

—0_:0px Op — Op
Vp,q:0Ope
dz € Data e
po q=p(q(z))

Thus, if p and q are operations that operate on z and g acts on z and result is operated
on by p. The composed operations on z is given by: go p = ¢(p(z))

Transaction operations are:

e Begin transaction — initiates the execution of a new transaction. Returns a trans-

action identifier (¢d) used to identify all operations in the transaction.

BeginTransaction — id

e Read or Write — an action which may be low-level such as read or write a data

item or record. The read or write operations are usually atomic.

e Task invocation — requests the services of a procedure which itself is a transaction.
The request results in the execution of the transaction (procedure) often concurrent
with the invoking transaction. An example of a task invocation operation is a
request to transfer money to a bank account which can be implemented as two

pested subtransactions consisting of deposit and withdrawal.

e Precommit — the identified transaction has completed its operations and is ready

to comimit.

e Commit — the transaction has terminated normally and all of its effect are made

permanent. The committed transaction is removed from the system.

Commit(id) — Boolean

Chapter 5. Protocol Specifications 102

e Abort — the transaction has terminated abnormally and all of its effect should be

removed.
Abort(id) — Boolean

o End transaction — indicates the completion of the identified transaction. The

transaction may be committed or aborted.
EndTransaction(id) — (Commit | Abort)

The operations commit, abort, and precommit are transaction terminating operations;
begin and end transaction are transactional service operations; read and write are trans-
action access operations; and finally task invocation is a transaction service request.
Each transaction access operation designates an access to some particular object.
The effect of an access operation is the changes it makes to its operand and the value
it returns [BL93]. Every operation returns a value after execution. So the effect of an
operation refers to the value of a data item set by a Write operation and the result

returned by a Read operation.

Definition 18 Commute: Two operations commute if they return the same values and

leave the data base in the same final state when executed in either order.]

Thus, a pair of operations commute if their execution have the same effect on a database

independent of the relative ordering of the operations’ execution .
Definition 19 State: The state of an object is its value at a point in time.]

In timed specifications, a state is augmented with time parameter, ¢t. Thus, state; denotes
the value of the object at time ¢.

Generally, an instance of a data item often has associated with it some other items
such as currency indicators, that together determines its state. The state of a data
“reflects the dynamic aspects of the data as it changes as the result of an operation”

[TL82).

Chapter 5. Protocol Specifications 103

Content may not change when an operation is performed but the state always does?®.
Not all operations cause a change in the value of the data but they cause a change in
state of the data. Therefore, operations can change the state of a data item by either
changing the content or related control mechanisms like the currency indicators. A write
operation alters both the data value and the state. A read operation does not alter
the content but the state. In other words, operations transform a data state (state;) to
another data state (state;). For example, if state; is the present state of a data item z
and after executing the operation (op) on state; we get a new state state; if and only if
i<j.

To determine an operation’s effect on a data item requires the functions s and r.

The function s returns the final state produced by an operation. [ts signature is:

s : STATE, x Op — STATE,
Vit,k: TIME | t,k € STATE o t < k

The function r gives the return value of an operation. Its signature is:
r: STATE, x Op — VALUE(z,t]

For a read operation, there exists a “transient” state change but the content of the state
is unaffected. When the operation commits, the resulting state is equivalent to the state
before the read operation. State changes are observed through return values. The return
value of a read operation depends on the value set by a previous write operation on the
data object while a write operation is return value independent of another write or read

operation. In summary, s is equivalent in effects to a write operation while r is a read

operation.

Definition 20 Conflict: An operation p; of transaction T; conflicts with another oper-

ation p; of a different transaction Tj, T: # Tj, if they both access the same data and if

2Note that an operation is an event. An event is anything that can be identified with a specific point
in time [KL91]. It causes a transition. A state transition is a change in state [Rum91, Boo94] which is
caused by an event. When an event is processed, the process’s clock is automatically advanced to the

next instant.

Chapter 5. Protocol Specifications 104

there exists a state of the data such that the sequences p;p; and p;p; operating on that

state either return different values or leave the data in different final states. -

In other words, two operations conflict if their effects on the state of an object or their
return values differ depending on their execution order. To formally define conflict using
s and r defined above, let z, be the present state of z.
Conflict : Op <« Op
Vpi,pi: Ope
Conflict(p;, p;) & [s(2o, (pi 0 p;)) # s(zo, (pi 0 Pi)) V
r(zo, (pi © p;)) # (%0, (pj © pi))] [R1]

Note that s(z,,(p; o p:)) is equivalent to s(s(z,, pi), p;) in programming language par-
lance. Consider the following example. Let the initial value of £ = 10. Let p; and p; be

the operations read(z) and write(z = 5) respectively. The following represents the steps

that determine if the two operations conflict.

s : (2,(10), read(10)) = z,(10) = (2:(10), write(z = 5)) = 22(5)
r=10

Now interchange the relative order of both operations and observe both the final value

set and the return value.

s : (2,(10), write(z = 5)) = z1(5) > (21(5), read(5)) = z2(5)

r=3253

Since (r = 5) # (r = 10), then p; and p; conflicts.

Two database operations in a schedule conflict if they return different values or
leave the database in a different state when their order is reversed. It is desirable that
the operations return the same values and leave the database in the same state after
reversing their order.

[n summary, conflict between any two operations can occur only when all the
following conditions are satisfied: (). They access the same data item, (2). At least one

of the operations is a write operation (a state modifying operation), and (3). A change

Chapter 5. Protocol Specifications 105

in the relative execution order of the operations give different data states or returns
different values. That is, two operations conflict if their effect on the state of an object

are dependent on their order of execution. Conditions (/) and (2) are captured by:
RST‘.ﬂ WSTJ #F DV RST]n WSTl- #F DV WST, N M/STJ # O

where T; and 7 are two distinct transactions. Using these (implicitly), [R1] captures
condition (3).

Therefore, for any two conflicting operations, say p; and p;, belonging to transac-
tions T; and Tj, respectively, the corresponding transactions in which they participate

conflict. So two transactions T; and T; conflict if:

Conflict(T;, T;) < (Acset(T;) N Acset(T;) = {B | B # O}) A
(Foi,0;: Op | 0; € T;,0; € Tj;
Jz : Data | z € B e Conflict(o;, 0;))

Definition 21 Active: An operation (event) is active if its execution has been initiated

but has not terminated.]

Similarly, a transaction T is active if and only if it has started but has yet to perform

abort or commit operation. Formally,

V T : Transaction e
Active(T) & trace(T)# () A
~(a in trace(T) | a € {abort, commit})

Definition 22 Conflict set: The conflict set of a transaction 7T, denoted ConflictSr,

contains the operations of active transactions that may conflict with T.]

Two transactions can access the same object, say O;, if the active operations of one
excludes the conflict set of the other. For example, T; can access O, without conflicting

with another transaction T; if the conflict set of 7; excludes active operations of T; on

O..

Chapter 5. Protocol Specifications 106

5.2 The Model

The processes interact with one another in a coordinated fashion using messages to
cooperatively process transactions. Each transaction is assigned a unique identification®
number id. The system uses the transaction id to bind all the transaction’s operations
together as a logical unit to maintain its atomicity.

The problem domain can be represented as a graph, G = (node, link), where the
node represents participating databases and the link represents the interconnections be-
tween the databases. The nodes are partitioned into two equivalence classes, cnode; and
cnode; such that #cnode;, = 1 and #cnode; = n where n is the number of participating
LDBs in the MDB. Thus, cnode, represents the MDB’s interface and cnode; represents
the set of LDBs. So the degree of a node is the number of edges entering into and leaving

from it. The function degree() calculates the degree of a node:
degree(cnode;) = n | n = #LDBs
VYV m € cnode; ® degree(m) =1
To represent this with our formalism requires definition of the basic types:
[NODE, LINK]

Communication between connected nodes is possible. The signature of the function, links

defines the connection between any two connected nodes.
links : LINK - (NODE x NODE)

Since the set of nodes available at any time is finite, communication can only take place

between nodes in the network. Thus,
available_nodes : F NODFE

Similarly, the set of available links (that is, the connection between any two adjacent

nodes) is finite. Communication between nodes is bidirectional along the links. Thus,

3The generation of transactions ids is outside the scope of this research but the research assumes that

a mechanism for generating the ids exist.

Chapter 5. Protocol Specifications 107

the available links are:
available_links - F LINK

It would be useful to be able to project out the first or the second element of an ordered
pair of nodes. So we define first and second respectively to achieve this.
first, second : NODE x NODE —» NODEFE

Vz,y: NODE o
first(z,y) =z A

second(z,y) =y
The function snodes transforms an ordered pair into a set.

snodes : NODE x NODE — F NODE
Vz,y: NODE e
snodes(z,y) = {n : NODE | n € first(z,y) V n € second(z,y)}

The network of participating databases is:

available_nodes = \J{! : links ® snodes(ran l)}
available_links = dom links
Vi :ranlinks @

#(snodes(i)) = 2 A (snodes(i) € available_nodes)

[n the above definition, it is possible to add local databases or delete connections between
any two local databases. Thus, the network can grow or shrink in size. Also, it might be
necessary to determine whether any signal transmitted from one local database can be

received at the MDB’s interface and vice versa. Thus we need a function reachable:

reachable : NODE «— NODF
Vn,ny: NODE; e : LINK o

n, reachable n; = (n;, n2 € snodes(ran links(e,)))

Figure 5.1 shows a basic graphical representation of the problem domain. Communication

along the edges is bidirectional.

Chapter 5. Protocol Specifications 108

Global Interface

7NN
S

L — Local databases

Figure 5.1: A Graphical Model of Problem Domain

5.3 Logical Time Assignment

An assignment of time value to every event in a trace that preserves the consistency

of all possible dependencies among the events in the trace is crucial. The assignment

mechanism must uphold the following:

1. No two events of the same transaction are assigned the same logical time.

o

The logical times at each transaction are monotonically increasing based on their

occurrence order.

3. The logical time of any send event is less than the corresponding receive event’s

logical time.
4. The number of events assigned logical times smaller than ¢ is finite for any time ¢.

Properties (2) and (3) imply that the order of logical times must be consistent with the

ordering relation <.

Chapter 5. Protocol Specifications 109

5.4 Definitions

Some initial definitions are required but others will be added as required since their
understanding requires context. The maximum value any time variable can assume
is an integer constant represented by N. The primitives of sequence data type (see

Section 4.4.1) are applicable.

5.4.1 Preamble

The following are the basic types:

[CHANNELS, EVENTS]
’ N :N 1

BOOLEAN ::= true | false

A collection of events which are acted upon by a process (the definition of a process

follows shortly) is denoted by ALPHABETS, formally

ALPHABFETS ==F EVENTS

[t is important to reason not only about what events can occur in a system but also the
time of their occurrences. Time is necessary for the ordering of events. In this domain

time is discrete and non-negative integer so time is represented by
TIME == N,
Each event occurs at an instance of time so event occurrences are timed events®*.

TIMEDEVENT == TIME x EVENTS

4Events happen in both time and space so we can have sequential events in which two events occur
on the same data item one after the other in time or concurrently in which two events occur at the same

time but on different data items.

Chapter 5. Protocol Specifications 110

The function time returns the time of occurrence of the event performed in a timed event.

time : TIMEDEVENT — TIME

Vs: TIMEDEVENT e
time(s) = (¢ | t: TIME) & (3a: EVENTS o s = (t, a))

The function event returns the event performed in a timed event.

event : TIMEDEVENT — EVENTS
Vs: TIMEDEVENT e
event(s) = (a | a : EVENTS) & (3a: EVENTS; t : TIMFE o
s = (¢, a))

Events are executed by a process® that describes system’s behaviour. Events may be
channel events whereby communication, input or output occurs through a named channel.
Every channel has an associated type. For example, input commands such as input?z
means that z is a variable (z € ALPHABET) of the process under consideration of type
input. With the @ operator introduced, variable (data) elements may have structure,

for example, records. The variables are typed variables.

PROCUNIT ::= nochan{{ TIMEDEVENT))
| chan{CHANNELS x TIMEDEVENT))

The functions message and channel respectively extracts the message and channel name

components of a channel event.

Vs: PROCUNIT |s € chan ANs=c.z ®
channel(c.z) =c A

message(c.z) = event(z)
The set of all messages which a process P can communicate on a channel, say ¢, is defined
by:

ac(P) = {v | message(c.v) € ALPHABETS P}

5 A process starts, performs a finite number of events (also called actions), and then either stops or

terminates successfully.

Chapter 5. Protocol Specifications 111

The effect of an executed communication event (I/O in this case) ch?v and chlexpr by
a pair of processes M and M’ respectively is the instantaneous assignment v := ezpr in
M where v is a local variable of M.

Channel names are removed from timed events with Dropchan.

Dropchan : PROCUNIT — PROCUNIT
Vs : PROCUNIT | s € chan e
Dropchan(s) = s\channel(s)

The function ptime() returns the time of a process’s event occurrence. The signature of
ptime is:
ptime : PROCUNIT — TIME

So a process is defined formally as:

PROCESS == seq PROCUNIT

Vp: PROCESS e
Vi,j:1l..#pei<j=
ptime(p[i]) < ptime(p[j])

A process progresses only upon execution of an event. A process can be in one of three

stages (commit, abort, or active) so
STATUS ::= Abort | Commit | Active

The function GetPstatus reports a process’s status. This permits a (sub)process to

enquire whether its parent or another process has committed or aborted. Its signature

is given as
GetPstatus : Transaction_id — STATUS

A process’s behaviour is recorded in a timed trace which is a finite monotonic sequence

of timed events. Formally,

TIMEDTRACFE == seq; TIMEDEVENT

Chapter 5. Protocol Specifications 112

Vs: TIMEDTRACE e
Vi,j:l..#sei<j=
time(s[t]) < time(s[j])

For example, given the timed trace:
s ={((t,a1),(f2,a2)) = &L < b

Thus, a trace is given by:
trace : PROCESS — TIMEDTRACFE

Each process’s trace uniquely specifies a path leading from the start of the process’s
execution to that particular state. However, only one path leads to an acceptable state.
Note that the trace of process before it engages in its first event (of course an empty
trace) is irrelevant in this study.

The prefiz of a trace is a continguous subsequence of the trace such that the head

of the subsequence and the trace are the same. The prefix operator® is prefix, defined

formally as:

- prefix _ : seq «—>seq
Vs, t: TIMEDTRACE o
sprefixt & (3u: TIMEDTRACE @ s ~ u = t)

An example of a trace’s prefix is:
{a,d,f) prefix (a,d,f,h. k) = true

A trace s is a prefix of itself so trace(P) prefix trace(P). Thus,
(a,d,f,h, k) prefix (a,d,f,h, k) = true

The prefix relation is reflexive, transitive, and antisymmetric.

SThe operator prefix differs from in because in may hold for any continguous subsequence of any

given sequence whereas prefix holds only when the head of both the subsequence and given sequence

is the same.

Chapter 5. Protocol Specifications 113

The set of all possible’ traces of a process is called traces:
traces : PROCESS — P TIMEDTRACFE

Elements of traces are prefixes of a trace, so trace € traces.
The relational operator that establishes an ordering relationship between sequence

elements is:

_<s —: EVENTS <« EVENTS
Va,b: EVENTS o
a<s b (35S :5eqEVENTS; i, : Ny |
i€domSAjFjEdomS AS(iE)=aASG)=bei<y)

This operator is necessary because the mathematical < operator is undefined for the
sequence data type. The relation <g is reflexive, asymmetric, and transitive. Sequence
can be a history, trace or transaction. When the context of the sequence is clear one
can write <g or <7 to refer to the ordering in the sequence H (a history) and T (a
transaction), respectively.

A process executes within an inferval defined by a beginning and end time. An
interval consists of all the enclosed time points. Intervals can be closed and open. An
interval is open when it excludes the two endpoints; that is, their endpoints are not
contained within the interval. The interval is closed when the two endpoints are contained
in the interval. Thus, we can model execution overlaps between any two processes. An

interval is defined as:

INTERVAL == seq TIME

Vt: INTERVAL e #t = #(rant) A head(t) < last(t)

7All possible traces of a process are defined by the powerset of its timed events. This allows for

unforseen occurrences such as a system failure. The record of the timed events up to that point is still

a timed trace.

Chapter 5. Protocol Specifications 114

The following defines open interval.

openint : TIME x TIME — seq TIME
Va,b: TIME | a < b; int : seq TIME o
openint(a,b) = int & (Vi,t; : TIME |
(a< bt AL <bha<bAL<bALF#LbL)e

t, < b = b <ine b2)
Similarly, close interval is defined as follows

closeint : TIME x TIME —> seq TIME
Va,b: TIME; int : seq TIME o
closeint(a, b) = int & (Viy, t2 : TIME |
(a<tyAnti<bAhae<bALLSbOAHLFL)e
< ty=>t <im t2)

The difference between openint and closeint is the inclusion of the end points in closeint.

Partial cases where one end is closed and the other is open are intuitively derivable.

5.4.2 Temporal Operators

Transaction specification requires several temporal operators. This section provides those
definitions and corresponding semantics.

The function times returns a time sequence for the events in a timed trace.

times : TIMEDTRACE — seq TIME

Vs: TIMEDTRACE e
times(s) = (t | t : seq TIMFE) &
(3a: EVENTS; t,: TIME | t, in t @ {(t1,a)) in s)

The function events returns an event sequence in a timed trace.

events : TIMEDTRACE — seq EVENTS

Chapter 5. Protocol Specifications 115

Vs: TIMEDTRACE o
events(s) = (z | ¢ : seq EVENTS) &
(Vi:2..#s ez = event(s{l]) ~ event(s[]) |
Vi,j:2..#s|t#jeti<j= z[i] <. z[j]

The function first returns the first event in a sequence.
first(s) = event(s[1])
Similarly, last returns the last event in a sequence.
last(s) = event(s[#s])
The function begin returns a trace’s first event time. If the trace is empty a time value
of infinity (i.e., 0o) is returned. The function end returns the last event’s time or oo if
the trace is empty. Formally, the above is given by:
Vs: TIMEDTRACE e
begin(s) = (¢t |t: TIME o (s = () = t = o0)
V (t = time(head(s))))
end(s)=(t|t: TIME o (s = () = t = 00)
V (t = time(s[#s])))
[f we constrain the timed trace to be nonempty, the begin and end functions can simply

be defined as begin(s) = time(s[1]) and end(s) = time(s[#s]), respectively.

The following additional relational operators are useful.

1. At
The at operator denotes the occurrence of an event at a particular time point. For
example, b at ¢ means event b occurs at exactly time point ¢.

at: EVENT x TIME <« TIMEDEVENT

Vb: EVENTS; t: TIME o
b at t & time(b) =t A
(3s: TIMEDTRACE e {(t,b)) in s)

Chapter 5. Protocol Specifications 116

2. Before

The before operator returns the part of a trace that describes all events occurrences
prior to the referenced time point. For example, s before ¢ means the sequence of all

events in s that occur at any time less than ¢{. The formal definition follows:

before : TIMEDTRACE x TIME < TIMEDTRACE
Vs: TIMEDTRACE; t: TIMEF @
s beforet & Vi:1l..#s etime(s[i]) < ¢
3. During

The operator during returns the part of a trace that occurs within some time interval

I. The definition of during is:

during : TIMEDTRACFE x INTERVAL « TIMEDTRACE
Vs: TIMEDTRACE;t: INTERVAL @

sduring t < (s |s;inse
(Vi:1..#s e time(s[Z])in ¢)
4. Occur

The operator Occur returns all events occurring at a given time.

_occur—: TIMEDTRACFE x TIME «— TIMEDTRACFE
Vs: TIMEDTRACE: t : TIME o

soccur t < (Is; | s ins e
(Vi:l..#s @time(s[z]) =¢)
5. After

The after operator returns the part of the trace that occurred immediately following the

referenced time point. This operator is defined as follows:

after : TIMEDTRACE x TIME < TIMEDTRACE

Vs: TIMEDTRACE;t : TIME @
safter t & Vi:1l..#s etime(s[i]) >t

Chapter 5. Protocol Specifications 117

For example, s after ¢ means the occurrence of all events in s at any time greater than
t.
The before, after, and during operators are applicable to the time interval semantics.
In this case, the following intervals are naturally associated with:

before = (1, £]

after = {¢t,00)

during = (¢, t&2)
where [or] denotes open and (or) denotes closed ends of the interval.

For example, the at operator can be applied to an interval [as follows:

Sat [=(Ja: EVENTS | ain events(S) e
3t: TIME | tin times(S)e® aat t Atin[)

S at [holds if and only if some elements of S occur at some time during /.
Similarly, we can also specify that an event or events do not occur at a particular
time or a time interval. For example, - (e at t) and —~ (S at /) mean that no a occurred

at time ¢ and no element of the trace S occurred within the interval /, respectively.

6. Overlap

Two intervals overlap when they have some points in common. Formally the overlap

operator is defined as:

—overlap_ : INTERVAL «+— INTERVAL

VI6,I: INTERVAL e
Loverlap L & L # L A(3t: TIME o
tin[ll\tinlz)

The event times of processes that simultaneously use an unshareable resource must not
overlap with respect to the resource’s use times. That is, if P and @ are processes that
use a nonshareable resource, say Res, to adequately model the concurrent utilization of

Res, the following constraint must hold:

Vp : trace(P) | Res; q : trace(Q) [Res | P # Q o — (times(p) overlap times(q))

Chapter 5. Protocol Specifications 118

7. Precedes

Precedes states that one timed event occurs before another. It is defined as

—precedes_ : TIMEDEVENT «— TIMEDEVENT

Vit,t,: TIME; a,b: EVENTS e
(t1, a) precedes (t;,b6) & (s : TIMEDTRACE |
((tl,a)) ins A ((tg, b)} in S) L 21 S tg)

The relational temporal operator precedes is reflexive, asymmetric, and transitive.
8. Duration and Availability

The function eduration returns the duration of an event which is calculated by sub-

tracting the start time from the end time. The signature is:
eduration : EVENTS — TIME

Let p = eduration(z) represents the duration of the event z. If the event z; occurs at

time ¢ then the next event z;,; must occur no earlier than time ¢ + p. Thus,
time(zig1) =t +p
The events transition will be:
(ziy t) — (Zig1,t + p)

Thus, if p is the minimum execution time for all events then each process will spend at

least p time in each state. The advantages of this are:
@ assures that time progresses forward in an infinite trace, and
e a finite number of events are executed in a finite amount of time.

The function available returns true if the first event of its argument can occur and
return false otherwise; e.g., available(P) = true means the first event of process P can

occur in the present environment of P. The signature is:

Chapter 5. Protocol Specifications 119

available : PROCESS — BOOLEAN

A process’s duration is the time difference between its last event and the first. Thus,

the function pduration() returns a process’s duration. Formally,

pduration : PROCESS — TIMFE

Vt: TIME; P: PROCESS e
if trace(P) = () then pduration(P) =t = (¢t = 00)
else pduration(P) =t =
t = time(last(trace(P))) — time(first(trace(P)))

5.5 Interleaving

The function interleaves defines the interleaving of two or more event sequences. In
the timed trace semantics (see Section 4.4, Chapter 4), the chronological order of event
times must be maintained. For example, consider the following two sequences:

z =((1,a),(3,d),(3,9).(5,¢€), (6, c))

y = ((1,k),(2,k),(3,f),(8,1))
Then, interleaves(z,y) = ((1,a),(1,),(2,2),(3,d),(3.f).(3,9),(5,¢),(6, ¢).(8,1))
is one of the possible interleavings. However, the resulting interleaved sequence must
uphold the order of event times. Whenever z; = y;, z; and y; appears in the inter-
leaved sequence as a permutation® of z; and y;. This semantics is different from Hoare’s
[Hoa85] definition which is arbitrary interleaving of the elements of the two sequences (see

Section 4.5) because this definition incorporates time semantics. The formal definition

follows:

interleaves : TIMEDTRACE x TIMEDTRACE — TIMEDTRACFE

8Gpecifically, let p : S— S be a permutation of aset § = {s1,s2,-..,sn}. That is p is a rearrangement
of the elements sy, sa,..., ss. The interleave function is O(m + k) where m + & is the total number of

elements. This linear function is achieved by using merge sort since the two sequences are sorted.

Chapter 5. Protocol Specifications 120

Vz,y,z: TIMEDTRACE e
if z = () then interleaves(z,y) = y
else if y = () then interleaves(z,y) =z
else interleaves(z,y) =z & #z =H#z +#y A
(Vie, t, : TIME | t; € ran times(z) A t, € ran times(y) ®
t: <t,=>(3a,b: EVENTS |
{(.z,a)) inz A ((t,,0)) iny e
({((tz,a))inz A ((ty,0)) imnz A
(tz, a) precedes (t,,b))))

The elements of the interleaving function forms a total partial order and is order pre-
serving. The relation on the elements of a partial order is reflexive, transitive, and

antisymmetric.

5.6 Causality

Concurrency, a key feature of cooperative concurrent process problem solving algorithms,
depends upon fine control over process communication and synchronization. Processes
interact using messages during transactions execution. True concurrency is possible only
when the concurrent processes share no variables. However, when accessing shareable
data objects, concurrent processes can proceed independently until they reference vari-
ables in their common environment as illustrated in Figure 5.2. Such accesses require
synchronization to guarantee correctness of the transactions.

A transaction can be causally dependent or independent of another transaction.
Causality among events is the ability of one event to directly or indirectly (by transitivity)

affect another.

Definition 23 A transaction A is causally dependent on transaction B, denoted as A
£2, B if and only if A reads or uses an object written by B while B is still active or an

event of B triggers the occurrence of an event of A. =

In the above definition, A is called the dependent transaction while B is called the

Chapter 5. Protocol Specifications 121

Transactions T} and T
synchronize at accessing O;.

Figure 5.2: Synchronization Point of two Transactions

depended-on transaction®. This dependence would results in the abortion of the de-

pendent transaction if the depended-on transaction fails. However, the failure of any
causally independent transaction does not affect the progress of other transactions in the
system. The use of an event’s partial ordering as defined by their causal relationships
enables efficient recovery from failures'®. It should also be noted that if A happening at
time A causes B to occur at time g then A must come before u, so causality respects
time.

Formally, causal dependency is defined as:

_ L%, _ . Transaction < Transaction

V A, B : Transaction e

A Be (3 zi : Data | z; € Acsetr, N z; € Acsetrg A
Jp,q:0p|p€OTaANp=1(z:) A
g € OTg A Active(Tg) A ¢ = w(z;) @
time(q) < time(p))) [R2]

That is, the write of object z; by transaction B precedes the read operation on object

r; by transaction A. In other words, A is causally dependent on B if and only if:

3r(z;) € OTa A Jw(ax;) € OTp N Active(Tg) @ w(z;) < r(z;)

9There are three instances of conflict : READ — WRITE, WRITE — WRITE, and WRITE —

READ. Only the last one results in causal dependence.
105 partial ordering of a process’s interactions permits mathematical analysis (induction) to prove

some system’s propetties such as the absence of deadlock.

o

Chapter 5. Protocol Specifications 12

-

Figure 5.3: Sample Dependency Relationship Graph

There is an analogy between read/write operations and receive/send operations. Since
processes interact via message passing, the send and receive message events indicate
the flow of information (and some control/dependency) between the processes. This
induces a causal dependency from the receiver process on the sender process. In this
communication situation, the send message (signal) is treated as a write operation of the
sender process while the receive message is considered as a read operation by the receiver
process thereby defining causal dependencies between the pairs of corresponding send
and receive events.

The causal dependency relation is transitive so:

A3Bae A8 B Y

(3, B;i : Transaction e A 2 B:AB; s B) [R2a]

A graph showing the dependencies in a transaction’s execution history is called a depen-
dency graph. The transactions are the nodes and the edges are labelled by the object
on which the dependency is induced. For example, there is a directed edge from A to B
labelled e if B depends on e generated by A, as illustrated in Figure 5.3. Several causal
relationships are possible such as those shown in Figure 5.4 where the dashed arrows
(———) indicate causal dependencies and the solid arrows indicate a nested transaction
invocation hierarchy.

To enforce correct serialization in such causally dependent situations requires the
isolation of each transaction and that the transactions’ execution follow a predefined
partial order. Therefore, a set of tasks or operations can execute concurrently if they are

causally independent of each other. To illustrate this, Figure 5.4 shows:

e T3 depends on some values produced by T and 75;.

Chapter 5. Protocol Specifications 123

Tor Toa |
\ / "

Ll P

Figure 5.4: Sample Causal Dependencies

e Ty, depends on some produced by 7y;.
e T,; depends on some values produced by Tos.

In the temporal order of events, Ty and T} can run concurrently but are synchronized
in the temporal partial order according to the causal dependency induced at T,3. The
commitment order of the transactions must obey the temporal order of event occurrences
in both transactions to guarantee the correctness of results. Therefore, the transactions
should obey the following commitment order T;, Tp for the correct execution of the
transactions.

Causal dependency constraints dictate the order in which computations of causally
dependent transactions must be executed relative to one another. Therefore, two transac-
tions that are causally dependent obey the causal dependency constraint if each transac-
tion executes events in nondecreasing timestamp order and preserves the cause-and-effect
relations. The cause must always precede the effect thereby defining the sequencing con-
straints. Consider the concurrent execution of two events, A and B, by transactions T;
and T;j respectively. If B reads a variable updated by A, the execution of A must precede
B to uphold causality. So, T; < T; ensures the computation’s correctness. After exe-
cuting the causally dependent events, the two transactions may be independent of each

other so the execution can progress out of timestamp order without violating causality

Chapter 5. Protocol Specifications 124

constraints. Thus, obeying the causal dependency constraint suffices to guarantee correct
execution.

Fujimoto [Fuj90] states that deciding whether A can execute concurrently with B
requires an operational simulator. This implies without actually executing the simula-
tor, determining whether A affects B or not may be impossible or at least infeasible.
However, this conclusion is no longer valid because by analysing the transaction’s speci-
fications statically (see [Gra94] for detail about static analysis and database operations
relationships) one can determine an operation’s effect on another, if any.

Determining causal dependency constraints in general is complex and highly data
dependent. For example, the scenario in which A affects B can be a complex sequence
of events depending on event timestamps. Using the causality concept to determine
acceptable schedules is strictly a conservative approach to concurrency control since the

approach first determines when it is safe to process an event before executing the event.

5.7 Specification of Transaction

A transaction T; is a sequence of read (r;), write (w;), and task invocation (¢;) operations
terminated by a transaction terminating operation, n; | n; € {a;, ¢;} where ¢; is a commit

and a; is an abort operation. A more rigorous definition is given as:

Definition 24 Transaction : A transaction T; is a sequence of transaction operations

such that:

Pt

. the first element is a Begin transaction operation,
2. VOp; € T; @ Op; <ng
3. n; occurs only once in the sequence,

4. all other elements in the sequence can be read (r;), write (w;), or task invocation

(¢;) operation, and

5. a partial order (<r,) orders any conflicting pair of operations. .

[ul}

Chapter 5. Protocol Specifications 12

Formally,

Transaction = T | T = seq; Op =
head(T) = begin A last(T) = n; A
(#Fa=1ANF#Fa=#cA(ainT=>-(cinT)AcinT=—=(ainT))A
(Vp,g:0p | p,q=0Op\niApinTAqinTep<n;A
Conflict(p,q) = p <T qV q <1 P))

A permutation of non-conflicting operations in T gives an instance of a transaction, say
T; that has equivalent effects as T. This definition is essentially an operational view of
a transaction!!.

A task is a granule of computation treated by the system as a unit of work to be
scheduled and executed. Tasks are selected one by one to have their operations (methods)
scheduled. The dependencies between the tasks in T are specified by their precedence
constraints; they are given by a partial order relation <7 defined over T. Thus, T; <1 T
if the execution of T; cannot begin until the task T; starts or terminates.

The events begin, commit, and abort are special events in the alphabets of every
transaction and they are always present in the alphabet set of every transaction. In a
multi-user transaction system, a transaction set, T'Set, is defined as:

TSet = {Ty, T, T3,..., Tn} where n > 1. Thus, TSet = L’J T;

The components of a transaction can be partitioned into two mtitztia.lly exclusive
classes called the vital set and non-vital sets. The set of vital components, denoted Viset,
consists of those subtransactions or tasks that are critical to the correctness (and com-
pletion) of the transaction. Similarly, the set of non-vital components of a transaction,

is denoted Nwvset. Either set may be empty but if both are at the same time, the case is

1 Although a transaction is defined as a sequence, it is important to note that this definition only
constrains the user-visible behaviour of an implementation. Thus, any acceptable configuration of the

transaction’s events simply has to present the same behaviour to the users.

Chapter 5. Protocol Specifications 126

of no interest. Thus, for any transaction i the following definition holds:

Transaction; = Vtset; U Nvset; |
Vtset; N Nvset; = T A
(Vtset; = @ = Nvset; # DV
Nutset; = O = Visetl; # Q)

Let Cmset denotes the set of committed transactions, called Commit set. Let compensate
denotes the function that calls a compensating transaction to annul the effects of the
committed transaction for which it is defined. The semantics of the function compensate

notes the compensation order required for the committed transactions whose effects need

annulling.

5.8 History

A history (H) of the concurrent execution of a transaction set Tset is a sequence of
the operations or events from Tsef. The operations ordering in H contains at least all
orderings in Tset. That is, the sequence is a partial order of events that is consistent
with the partial order <7 of the events associated with each transaction T in Tsef. A

history for a transaction set Tset = {Ty, T, T5--- T, } is:

HISTORY 15t =seqS = (VT : Transaction | T € Tset o
(Vi,j:N|i,j < #Tset,
Vp,q: Op |p,q€Ura.nT,-o
(P,ginSAp<r1, 9= p<sq)A
(Vpe€Tiqe T | T:# T; o
Conflict(p,q) = p <s q V q <s p)))

The order of elements in H is based on the order of respective elements in each T; in

the set of currently executed transactions 7Tset and the order enforced by the actual

execution.

Chapter 5. Protocol Specifications 127

Let Tset be a set of transactions and H; be a sequence of the transactions’ concur-

rent execution. For an illustration, let

Tset = { Ty, Tz, T3}

Ty = wi(z), wi(y), 1

T2 = r2(z), wa(z), w2(y), c2

T3 = ws(z), ws(y), e

Hy = (w(z), ra(z), we(z), wa(z), we(y), wi(y), e1, c2, ws(y), €3)

The relational operator €, establishes the membership relationship between a his-
tory and a transaction. A transaction is in history if all its operations are in the history.

Formally,

— €y —: Transaction «—» HISTORY
¥ T : Transaction; H : HISTORY e
Te,He(Vp:Op|peTepin H)

All operations of T are included in a history because only committed transactions exist
under the prefix commit closed property. To illustrate the application of the above
definition, consider the following example: T €, H, because the operations w;(z), w1(y),
and c¢; which belong to T are elements of the history H,. Similarly, operations of T,
and T3 are in H, so Tz €, H, and T3 €, H, hold.

The occurrences of events in a history are related by <,,.

—<y4 —: EVENTS <« EVENTS

Va,b: EVENTS e

(3H : HISTORY |ain HAbin H=>
a <, b & time(a) < time(b)) [R3]

For example, r;(z) <, wi(y) in H; because the occurrence of rz(z) precedes wi(y).
To make explicit the schedule instance in which the <,, relationship is considered, the

schedule is indicated as the subscript in the < relation. For example, the above would

be written as r(z) <, w (y)

Chapter 5. Protocol Specifications 128

d a hbi €l J mk nf ocg

Figure 5.5: Space-Time View of Execution

A history is complete if it contains only completed transactions otherwise it is in-
complete. An incomplete history does not represent a consistency preserving execution.
For determination of correctness, however, only a complete history projected over com-
mitted transactions is useful. A projection!? of a history H on a set of transactions T'set
is a history that contains only operations of transactions from Tset. A committed pro-
jection of a history H contains only operations of committed transactions. Committed

projection, denoted ProjectCMT, is formally defined as:

ProjectCMT : HISTORY x Op — HISTORY
VH :HISTORY;p:0Op|p=commit Apin He
ProjectCMT (H,p) = (3 H' : HISTORY e #H' < #H A
(3 T : Transaction | T €, H;
j:Ni|j€domHAH[j]=p @ TE, H A
(Vi:l..j @ H[i] = commit A commit e T = T €, H'))) [R4]

Since transaction execution sequences implies timing, a history is a timed trace.
Each execution defines a unique sequence of events as indicated in the space-time diagram

shown in Figure 5.5. In the diagram, each horizontal line is a transaction, each dot on a

12The projection of a history over some events k is the restriction of the history to the events, written
as trace(T; | k) where T; is the transaction whose history is to be projected and k is the set of events

of interest. Thus, a projection is obtained by deleting all other events other than the specified event(s).

Chapter 5. Protocol Specifications 129

line is an event of that transaction, and an arrow indicates interaction between transac-
tions. This indicates a causal dependency. Since events of a concurrent execution may be
reordered if consistent with the causal order among the transactions and with the partial
order of each transaction’s execution, their permutation gives rise to an equivalent though
different sequence. Tel [Tel94] establishes the equivalence of executions under reordering
of non-conflicting events. For example, H; = (h,d,a,?,l,e,b,5,m,n.k,.f.e,0,g) is a
sequence different from that shown in Figure 5.5. The executions H; and H; have the
same collection of events and causal order. By results established in [Tel94], H3 and H,
are equivalent executions.

To keep track of events and enforce the desired correctness rule, a dependency (e.g.,
abort or commit dependency) relationship is established whenever an invoked operation
that conflicts with an active operation is allowed to execute. Therefore, the system must

maintain!® data structures to record these dependencies.

Definition 25 Dependency set: The dependency set of a transaction T, denoted DependSr,
contains those transactions that developed inter-transaction dependencies with 7' during

their concurrent execution. ™

A transaction’s dependency set includes all other transactions upon which it depends.
The dependency relationships are used to determine the serialization order of the trans-
actions. The dependency set of a transaction is relative to a history. Generally, inter-
transaction dependencies are established during the concurrent execution of a transaction
set. Such dependencies could result from the behaviour of transactions over shared data,

the structural nature of the transactions, or a combination of both.

5.9 Specification of Correctness

The transaction models for the new application domains requires some correctness crite-

ria to derive an appropriate concurrency control algorithm. A correctness criterion is a

130ne way to avoid doing this is by forcing the invoking transaction to either abort or wait until the

conflicting active operation terminates.

Chapter 5. Protocol Specifications 130

standard for judging transaction histories correctness in order to achieve a certain degree
of concurrency transparency in the system. In other words, a correctness criterion is a
specification of the properties which guarantees database integrity. Thus, the correct-
ness criterion employed by a transaction system determines the acceptable transaction
histories. The two most common correctness criteria based on the serializability concept,
Conflict Serializability (CSR) and View Serializability (VSR), are formally specified in
this section.

To adequately model transactions’ concurrency we need to guarantee both temporal
and functional correctness by using mechanisms that ensure timing constraints always
hold or that the transaction aborts. The temporal constraints are used to synchronize
concurrent accesses to data object by multiple transactions and provide an acceptable
degree of functional correctness whenever the system must abort the transaction.

Before addressing correctness formally, the following definitions are necessary.

5.9.1 Failure Atomicity

Failure atomicity is the all or nothing execution property of transactions. A transaction
is failure atomic if and only if all operations invoked by the transaction either commit or
abort. Formally, failure atomicity is defined as:
dop; : Op | op: € Transaction; e
commit(op;) in trace(Transaction;) =>
(Vop; : Op | op; € Transaction; e
commit(op;) in trace(Transaction;)) V
abort(op;) in trace(Transaction;) =

(Vop;j : Op | op; € Transaction; e
abort(op;) in trace(Transaction;)) [R3]

When a transaction obeys the atomicity principle, the presence of a commit operation
it invoked in its trace means all operations of the transaction commits. Similarly, the
presence of an abort operation invoked by the transaction in its trace means that all the
transaction’s operations abort. Thus, the semantics of a transaction’s commit and abort

is based on failure atomicity.

Chapter 5. Protocol Specifications 131

Lemma 1 Every atomic transaction is failure atomic.

Proof:
Given that T is a transaction and atomic. T is failure atomic if and only if T satisfies
specification [R5]. By [RO] and [R4] the invocation and execution of every operation is

atomic. So, if

dp:0p|p € T e commit(p) =
Vqg:0p|q€ T e commit(q) = [R5] holds.

Similarly, the same reasoning holds for an abort operation.

However, if

3p,q:0p| p,q € T ® commit(p) A abort(q) =
contradiction of specification [R0]

So specification [R5] does not hold.

So T is failure atomic. O

In summary, for any transaction T,
commit(T) = trace(T) # () N —~abort(T) in trace(T) A ~Active(T)
abort(T) = ~commit(T) in trace(T) N ~Active(T) [R6]

Conflict serializability ensures there are no cycles in the serialization graph of the trans-
actions in the schedule. Thus, a binary relation that defines any schedule’s serialization
order is of the form T; ~» T;, where T; # T;. Formally,

_~+ _: Transaction «— Transaction

V T;, T; : Transaction e
Ti~T; T #T; A
3p,q:0p|peTingeET;e
Conflict(p, q) N\ time(p) < time(q) A
(Vpigi: Op|lpi#pNgG#FqApi€TiNg ET; 0
Conflict(p:, ¢;) = time(p;) < time(g;))) [RT7]

Chapter 5. Protocol Specifications 132

The transitive closure!4, denoted ~+*, is given as:

T; ~= TJ = T; ~ TJ \"
(3 Tk : Transaction @ T; ~ T A T ~= Tj)

A schedule, H, consisting of a transaction set is conflict order preserving if and only if:

VT;, T; : Transaction | T;, T; €, H ®
T,' ~*]}

5.9.2 Serial History

The definition of conflict serializability requires a specification of serial history and the
equivalence!® of two histories. A history H is sertal if for every two transactions T; and
T; that appear in H, either all operations of T; appears before all operations of T; or vice
versa. In a serial history there is no interleaving of the transactions’ operations involved.

A set of correct transactions executed serially always produces correct results and
transforms the database from one correct state to another on successful completion. Thus,
most correctness criteria often use serial equivalence as a criterion!® for the derivation
of concurrency control protocols!?. So, the concept of serial history is fundamental in

defining most correctness criteria. Formally, a serial history is:

Serial : HISTORY — BOOLEAN
VH : HISTORY,
V T:, T; : Transaction | T;, T; €, H o
Serial(H) = true & (Ip,q:Op | pe T: ANqe T, e
pP<yq=>(Vr,s:0p|reT;iANse T;er<,s)) [RS]

The following universal axiom holds for all serial histories.

Axiom 1: A set of correct transactions serially executed preserves database correctness

l4permissible schedules of a transaction set concurrent execution forbids cyclic transitive closures of

the form T; ~* Tj, where T; = Tj.
15In general, two histories are equivalent if they have the same effects. The effects of a history are the

values written by the write operations of unaborted transactions.
16The use of serial equivalence as a criterion for correct concurrent exccution prevents the occurrence

of lost updates and inconsistent retrievals.

17These protocols attempt to serialize transactions in their access to data items.

Chapter 5. Protocol Specifications 133

on successful completion.
Proof: Vacuous a

Serial equivalence requires all of a transaction’s accesses to a particular data item
be serialized with respect to accesses by other transactions. All pairs of conflicting
operations of two transactions should be executed in the same order and could be said
to have the same effect.

Two different transactions have the same effect as one another if the read operations
return the same values and the data items have the same values at the end. The effects
of transactions concurrent execution depend only on the conflicting operations relative
ordering because the computational effects of executing conflicting operations depends

on their relative order.

Conflict Equivalence

Two histories are conflict equivalent if they are defined over the same set of transactions

and the ordering of identical conflicting operations of unaborted transactions is the same.

Definition 26 Conflict equivalence: Two histories H and H' are equivalent if:
l. Hr =H;y =%, T; and

2. for any conflicting operations O; € T; and O; € T; where a;,a; &€ H, if O; <y O;
then O; <y Oj a

A formal definition of conflict equivalence, CFE', follows.

CE : HISTORY « HISTORY
VH,H : HISTORY e
CE(H,H') < H # H A (¥ Tx : Transaction o T, €, H =
Ty €, H' A —(abort(Ty)in H) A —(abort(Ty)in H') A
VT Tj €, H| T: # T; @ Ti ~= Tj A
(Vp,q:0p|p € T:Aqée T; A Conflict(p,q) ®
P<yq9=>p<, 9)) [RI]

Since the aim of any system that supports transactions is to maximise concurrency
[CDK94], transactions must synchronize their operations to avoid interference between

conflicting operations. One method uses the synchronization protocol called conflict

Chapter 5. Protocol Specifications 134

sertalizability [BGH87]. Therefore, the goal of concurrency control protocols is to avoid
interference/conflicts between operations in different transactions on the same data item

and thereby avoid errors.

5.9.3 Conflict Serializability

Serial execution negates the benefits of concurrent execution but arbitrary interleaving of
transactions during execution can lead to interference problems. Therefore, it is necessary
to control the interleaving of transactions’ operations to generate the same effects as a

serial execution.

Definition 27 A history is conflict serializable if and only if it is conflict equivalent to
a serial history.]

Using the preceding definitions ([R8] and [R9]), conflict serializability, CSR, is formally
defined as:
CSR : HISTORY — BOOLEAN

VH: HISTORY e
CSR(H) = true & (3 H' : HISTORY | Serz'al(H') e CE(H.H")) [R10]

By taking the committed projection of the transactions’ schedule, the consistency of
conflicting operations ordering in the schedule can be checked. The schedule is serializable
if the ordering is consistent and equivalent to a serial schedule. Thus, given a sequence of
transaction executions, if T; conflicts with T; and T; ~» T; then T; will not occur after
T; in the sequence. That is, a sequence of transactions of the form T; ~» T; ~ Ty ~
T;~+ ---~+ T, where T; # T, are the only acceptable schedules. Note that due to the
upward inheritance of locks in the closed nested transactions model, it is impossible for

T; =T,.

Theorem 1 Each conflict serializable execution of a transaction set has the same effect

as some serial execution of the transactions in the set. So serializable executions are

correct.

Chapter 5. Protocol Specifications 135

Proof:
Let Tset = {T,T;,--~,T.} be a transaction set consisting of n transactions. The

concurrent execution of transactions in Tset is the history given by:

HISTORY , _, =seq; S [ranS € T; A T; € Tset
Also, let

dpe Ti,qe T; | T:, T; €, HISTORY . ,, ®

Tset

conflict(p,q) = p <, ¢

So T; ~ T; (by definition [R7})
=Ti—T; =T T;
Thus, all conflicting operations of T; must precede those of Tj.
Suppose T; ~~ T; | T; = T;. This means that
Ti~Te~Ti~ -~ Tj~ T T~ T;
This violates transitive closure property of ~+ and thus not conflict order preserving.
So only consistent conflict order preserving schedules are admitted.
Since T; ~ T; = T; — T; = Ti; T; then each conflict serializable execution
has the same effect as some serial execution. (4]
By (i) and [R9], (a) conflicting operations in any two equivalence schedules are
similarly ordered and (b) both schedules contain the same operations. {7
Also, by [R10] CSR execution is conflict equivalent to a serial execution. So be-

haviourally,
CSR execution = Serial execution)

From Axiom 1 we know that: (a) each transaction executes completely before the next,

(also inferred from [i] above) and (b) each transaction is correct. So for (a)

V T;; T; : Transaction | T;; T; € Tset @
i#j=>Vp,q:0p|peETiNqgETje
p; q = time(p) < time(q) A
q; p=> time(q) < time(p)

Chapter 5. Protocol Specifications 136

So the sequential history is correct. Thus, the history is a permutation of the transactions
in the history. To elucidate this further, let sy be the initial correct database state
and T,; T»; ---; T, be the sequential execution order of the n transactions in Tset.
So T, executes against the initial state so to generate the state s,. Using the state
transformation function (s) (see page 103), so(Ti) — si. Since all transactions are

correct and T) runs atomically, s, is consistent and correct. Thus,
Vi:N|[i>1es_,(T)

where s;_; is the resulting state after the execution Ty; T; ---; Ti—;
Since serial execution is consistency preserving, the database maintains a consistent

and correct state s, on successful completion of transaction T,. So
Serial execution = database correctness preserving

Combining [7] - [#3] with the preceding,
CSR execution = Serial execution
= database correctness preserving

= CSR execution = database correctness preserving. a

CSR is equivalent to any serial history that is a topological sort of the serialization orders.
Since the serialization orders can have more than one topological sort, so a serializable

history may be equivalent to more than one history.

5.9.4 View Serializability

View serializability uses the basic idea that each transaction sees the same data in a
history as in an equivalent serial history. So, the functions ReadsFrom for the “reads

from” concept, and FinalW for the “final write” of a data concept are required.

Reads From

ReadsFrom : Transaction «— Transaction
V T;, T; : Transaction | (3H : HISTORY e T; €, HAT; €, HAT; # T; =

Chapter 5. Protocol Specifications 137

(ReadsFrom(T;, T;)g < —(abort(T;) in H) A
(3p,q:0p|p=r(z)ApeETiNng=w(z)ANqgET;e
q <z P Ap <, abort(T;) A (Vm : Op; Ty, : Transaction |
m=wz) AmMETonANTn €, Heo
g <y mAm<,p= abort(Tr) <, p)))) [R11]

The above definition states that the write operation on z by 7T; must precede the read
operation by T;, T; reads z from T; only if T; has committed or is still active, and no
unaborted transactions have modified r between when T; reads z and its update by Tj.
For example, T, reads z from T, in H;. So, the relation ReadsFrom(T,, T\)q, holds.

Thus, T, ~ Ts.

Final Write

The final write of a data item z in a history H is the operation w;(z) € H such that q; is
not in A and for any w;(r) € H where i # j either wj(z) < wi(z) or a; € H. Formally,
FinalW : HISTORY x Data — Transaction
VH: HISTORY ,z : Data o
A T; : Transaction | T; €, H o
FinalW(H,z) = T; & wi(z) € T: AN ~(abort(T;)in H) A
(3T : Transaction | T; €, HANT: # T; Awi{z) € T,
wj(z) <, wi(z) V abort(T;) in H)) [R12]

As an illustration of FinalW, consider H; (see page 127). The final write of y in H, is

the write operation of transaction T3. So FinalW(H,,y) is by transaction T;.

View Equivalence

Recall that in a view serializable history each transaction sees the same data as it would

have in some serial execution so the two histories are view equivalent.
Definition 28 Two histories H,, and H, are view equivalent if
1. they are defined over the same set of transactions and have the same operations,

2. for any unaborted T; and T} in H,, and H, and for any z, if T; reads z from Tj in
H,, then T; reads z from Tj in H, , and

Chapter 5. Protocol Specifications 138

3. for each z, if w;(z) is the final write of z in H,, then it is also the final write in
H,. .

The formal definition of view equivalence (VF) using [R11] and [R12] is:

VE : HISTORY <> HISTORY
VH,H : HISTORY o
VE(H,H') < #H = #H A (VY Tk : Transactione Ty €, H = T €, H A
(VT;, T; : Transaction | T; # T; A —~(abort(T;:)) A
~(abort(T;))AT:i €, HAT; €, He
ReadsFrom(T;, T;)g = ReadsFrom(T;, T;)gye) A
(Vz:Data|zinH=zinH e
FinalW (H,z) = FinalW(H', z)))) [R13]

The following formally defines View Serializability (VSR) using [R4], [R8], and [R13]:

VSR : HISTORY — BOOLFEAN
V H : HISTORY e
VSR(H) = true & (V¢ : Op | ¥ = commit A ¥ in H;
H' : HISTORY | H' = ProjectCMT(H,¢) o
(3H" : HISTORY |V T; : Transaction e
T:€, H =>T.c,H")e
Serial(H') A VE(H ,H"))

1 is used to determine the committed projection prefixes of transactions. Therefore, a
history is view serializable if for any committed projection prefix of H it is view equivalent
to some serial history!8.

To illustrate how VSR defined above works, consider any committed prefix H,: of

H, (see page 127 for H,).

1. If H;: includes ¢3 then H,» = H,.

So, H,: is view equivalent to the serial execution T;; T5; T5.

18Two histories can be tested for state equivalences in O(n) time where n is the length of the histories
[Cla92]. This may suggest that VSR is efficient. However, if H has m transactions, then there are m!
possible serial histories. Further, if each history is of length n the time will be of O(m!n2?). So VSR is
NP-complete.

Chapter 5. Protocol Specifications 139
2. However, if Hy: includes c; but not c3 then

Hy = (wl(z)$ Tg(I), w2(£)7 w'l(y)7 wl(y)9 Ct, C2)
But H;s is not view equivalent to either T}; T, or T2; T) because

e T, reads z from T (so T) ~ T:) and

e the final write of y in H): is the write operation by T which is different in
either Ty; T, or T,; T, serial history.
That is, FinalW (Hy., y) # (FinalW(H,y) | Serial(H)).

Thus, the prefix commit-closed property does not hold. Hence H; is not view serializable.

5.10 Specification of Transaction Models

A transaction model is characterized by:

e the structure of the individual transactions allowed in the model, its transaction

structure, (e.g., simple, flat, nested) and

e the structure of objects on which the transactions can operate, its object structure

(e.g., simple or complex).

The combination of the objects and transaction structures determines the richness of
the transaction. Running a transaction against an (complex) object may actually spawn
additional transactions on component objects. This forces an implicit nesting of the

transaction itself.

Definition 29 Spawn: is the creation of a child transaction (process) ¢ by an executing
transaction T that runs concurrently with the transaction. T is the parent while ¢ is the

child transaction. a

SPAWN(T,t) = 3t | t € child(T) o Active(t) A Active(T)

Chapter 5. Protocol Specifications 140

SPAWN establishes a parent-child relationship at time of execution. These family rela-
tionships are discussed in Section 5.10.2.

Identifying transaction relationships and exploiting them is key to deriving correct
and reliable schedules for real-life applications. The structure of transactions delineates
the models of transactions discussed below. The objects structure could be simple or

complex.

5.10.1 Single Level Transactions

Single level transactions often adopt a synchronous and sequential execution pattern
whereby one transaction is executed after the preceding transaction has completed. The
transactions are assumed correct. The main goal is to achieve a serialized transaction
execution while maintaining data consistency.

The flat transaction model is a degenerate case of the nested transaction model.
Emphasis is on ciosed nested transaction model (and open nested model where necessary

to illustrate the relaxation of some model properties).

5.10.2 Nested Transactions

Internal nodes of a nested transaction!® can be subtransactions, database access opera-
tions, or a combination of both. So an operation that is part of transaction may itself
be implemented as a transaction. Thus, a parent transaction can sequentially or con-
currently execute any number of subtransactions and can perform access operations and
other computations while its subtransactions are active. Although the execution of a
parent’s subtransactions can be concurrent, their execution should preserve the partial
order defined within the transaction. Also, they should be equivalent to a sequential

execution.

19Recall, there are two nesting types distinguished by the nature of accessibility to their modified data
by other transactions. These are closed nesting which delays its commit and hides results, and open
nesting which immediately commits on completion of its operations and make its results visible to all

other transactions.

Chapter 5. Protocol Specifications 141

The localization of transaction failures means that when a subtransaction aborts,
the parent receives the abort event information and then decides what to do next. For
example, the parent may (1) trigger the execution of a contingency transaction that
implements the same effects as the failed transaction, (2) execute a compensating trans-
action to recover from the failure, or (3) choose to abort completely. The children cannot
successfully commit until their parent have. When a child aborts, it releases all the data

objects in its access set (i.e., newly acquired locks) excluding those it inherited from its

descendants.

The following functions are defined to simplify our specifications. The basic tree
terminologies and definitions (see [Sch94] pages 403 - 407, 483 - 490 and [LMWF94]
page 470) are used (in this thesis) in their usual way to refer to relationships between

transactions.

o child(T) yields the children (subtransactions) of transaction 7.
o Parent(T) returns the parent of transaction T.
e Ancestors(T) returns the set of ancestors of T.

e Descendants(T) returns the set of all descendants of T.

Every node in the hierarchy is both an ancestor and a descendant of itself. The
functions AncestorsP and DescendantsP return their proper ancestors and descen-

dants sets respectively.

e Siblings(T;, T;) returns true if T; and T; have the same immediate parent and false

otherwise.
A formal definition of the function Siblings would be:

Siblings(a,b) = true & a # b A
Parent(a) = Parent(b)

Additional functions are defined within context as needed.
Two commit types exist in the nested transaction model. These are: (1) internal

and (2) ezternal commit. A subtransaction commits internal if its root transaction is

Chapter 5. Protocol Specifications 142

Root

Figure 5.6: Visibility of Commit (a)

active when it commits. If a root transaction commits, it is called external commit.

In Figure 5.6, the shaded and unshaded nodes represent committed transactions and
active transactions, respectively. Subtransactions 4, B, and C internally commit. If the
root transaction commits, the whole transaction commmits externally.

Recall, each node is either a subtransaction, database access operation (read/write),
or a combination of both. When a subtransaction is spawned, the subtransaction and
its parent may execute concurrently. Events in the system can trigger the execution of
other independent but associated transactions in the system?°. For example, in a sales
transaction the user transaction should really not wait for ledger posting operations or
inventory report generation before committing successfully if all other required operations
are correctly executed (or satisfied). Thus, these events are begin-dependent on certain
states of the system.

The hierarchical nature of nested transactions makes visibility issues complex.
Nested transactions concurrency control protocols must enforce internal commits and

make them visible when appropriate. The following rules determine commit’s visibility:

e External commit visibility:
External commit is visible to every operation so every other transaction (opera-

tion) in the system sees any committed top-level transaction’s operation. External

20However, these transactions develop some form of dependencies with the triggering transaction.

Chapter 5. Protocol Specifications 143

Root

Figure 5.7: Visibility of Commit (b)

commit’s visibility, denoted visibleto, is formally defined as:

vistbleto : Transaction «— Transaction
V T;, Tr : Transaction @
T; visibleto T, & T; # Tr A
AncestorsP(T;) = O A AncestorsP(T;) = QD) A
commit(T;) =>Vp:0P | (pe T:V
(3 T; : Transaction | T; € DescendantsP(T:) @p € T;)) @
Active(Ti) = Vwsetr; = {p} U Vuwsetr,) [R14]

e Internal commit visibility:
Internal commit of an operation A is visible to operation B if and only if:
1. A and B are from the same top-level transaction, and

2. either (a) there is an ancestor of B which is a sibling of some internally com-

mitted ancestor of A or (b) B is the parent of A.
Part (a) of constraint (2) captures the case when A and B are siblings.

The formal definition of a transaction’s committed operations visibility to another

within a nested transaction, denoted », is given by:

—_» _:0p x Op — BOOLEAN
Vp,q:0p| (3T, T, Tk : Transaction | T; # T; AN Ti # T AN T; # Tk A

Chapter 5. Protocol Specifications 144

T;, T; € DescendantsP(T:) A AncestorsP(Ty) =30 A
pE€TiNge T; A commit(T;) N\ Active(T;)) ®
p » q = true & Siblings(T;, T;) V T; = Parent(T;) V
(3 Ti, T,n : Transaction |
Ti # Tm A commit(Tm) A T € AncestorsP(T;) A
Tm € (AncestorsP(T;) — AncestorsP(T;)) @
Siblings(T;, Ty,) V Siblings(T, T;)) [R15]

Thus,
p » q = true = Vwset;s = Vwsetr, U {p}
J

The internal commit visibility (») is an asymmetric function but it is transitive.

A more appropriate term for subtransactions commit is pre-commsit. When a sub-
transaction pre-commits, it does not mean the committment of its operations or all other
operations inherited from its descendants, if any. A subtransaction’s commit operation
releases its access set to its parent. The parent assumes responsibility for committing
all the subtransaction’s operations and the subtransaction’s previously inherited opera-
tions, if any. Thus, the semantics of a subtransaction’s commit event indicates only the
completion of all its tasks but the effects of the subtransaction’s operations are reflected
in the database when the root transaction to which it belongs commits.

So when a subtransaction commits, the parent inherits its access set and its effects

are made visible to its parent transaction and siblings. Thus,

V ¢ : Transaction | (3 T : Transaction A ¢ € child(T))
commit(c) => Acsettr = Acsett U Acset. N\
Vn,p,q:0Op|lge TApEcA
(3d : Transaction | n € d A Siblings(d,c)) @
p» qgApben

So the notion of visibility is defined with respect of one transaction to another since only
a visible transaction can affect the behaviour of the active transaction that sees the mod-
ifications made. A transaction can affect another transaction through the transaction’s

invocations of operations down the transaction hierarchy, inheritance of access set of its

Chapter 5. Protocol Specifications 145

descendants, or the commit actions of the transaction and all of its ancestors up to the
least common ancestors [LMWF94].

Figures 5.6 and 5.7 illustrate commit visibility. In Figure 5.6, the objects modified
by the committed subtransactions A4, B, and C are inuisible to subtransaction D but
visible to E and F. However, in Figure 5.7, all the objects modified by the subtransactions
A, B, C, E, and F are visible to subtransaction D since subtransaction F is a sibling of
G which is an ancestor of D.

The semantics of nested transactions requires the effects of a committed subtrans-
action be visible within its root transaction and invisible to other root transactions (see
specification [R15]). So two distinguishable levels of serialization exist; top-level trans-
actions serialization with respect to each other and subtransactions serialization within
a top-level transaction.

When operations from different transactions, say T; and Tj, concurrently access an
object their serialized execution is equivalent to T; — T; or T; — T;. The serialization
order chosen must be strictly consistent whenever the two transactions are accessing all
other objects. Thus, consistent serialization ordering of any two conflicting transactions
is required to guarantee correctness.

When a root transaction aborts, all the effects of its previously committed sub-

transactions are annulled while all its active subtransactions are aborted. Thus,

¥ T : Transaction | child(T) # D e
abort(T) = (V¢ : Transaction | c € child(T) e
commit(c) = Compensate(c) A

Active(c) = abort(c))

So all provisionally committed descendants of an aborted (sub)transaction are aborted.

If a vital child aborts the parent must abort?!. So formally

d ¢ : Transaction | (3 T : Transaction @ ¢ € descendant(T) A ¢ € Vsetr) e
abort(c) = abort(T)

21The abort of a vital child (even if it has provisionally committed) can come about due to the abortion

of the (sub)transaction for which it is a child

Chapter 5. Protocol Specifications 146

Also, orphan?? transactions are not allowed to commit. The no orphan commit rule
for closed nested transactions states that every child transaction terminates if its parent

terminates. Formally,

VY Ti, T, : Transaction | Parent(T;) =T, ®
(commit(T,) V abort(T,)) A Active(T;) = abort(T;)

That is, any active child aborts whenever the parent aborts or commits. The parent does
not commit before its child terminates. In Figure 5.8, T; must abort if it is still active
whenever its parent, T,, terminates before it does.

This strict rule, however, can be relaxed in some applications where some operations
may continue to run beyond the termination (commit, in this case) of the parent. For
example, a transaction may triggers the execution of another transaction (e.g., the pro-
duction of a sales report might be initiated while the purchase transaction that initiates
it completes successfully). This case can be implemented as an independent transaction
with a commit/begin dependency established.

Another property of nested transactions is that it localizes failures by allowing a
subtransaction to abort independently without causing the whole transaction to abort.
Further, if T, is a child of T such that p and ¢ are two conflicting operations, if T,

invokes p and Active(p) then T cannot invoke ¢ until p commits. That is, formally

VT., T : Transaction | T. = child(T);
z : Data | z € Acsett N Acsetr, ®
Vp,q:0p|p€T.ANq€TA Conflict(p,q) e
p <t q < commit(p) <r q

In other words, if a child’s operation on an object is active, the parent cannot invoke a
conflicting operation on that object; the parent must wait until the child commits.

The conflict set of a nested subtransaction excludes all the operations performed by
its ancestors. It includes only active operations of its descendants (and other independent

active transaction’s operations with some common data items in their access sets). The

22An orphan transaction is an active subtransaction whose parent has terminated.

Chapter 5. Protocol Specifications 147

/TP\ O
OT; oT;

Figure 5.8: Conflict Set of Subtransaction
conflict set of T, (see Figure 5.8) is given by:

ConflictSt, = (UAcsetT' | T;: € Descendants(T,) A Active(T;))

i=1

U {7} : Transaction | T; ¢ Ancestors(T,) A T; ¢ DescendantsP(T,) ®
Active(T;) N Acsett, N Acsett, # O}

A short hand form is to exclude the complement of the above expression from the conflict

set. This gives:

ConflictSt = {T; : Transaction | T; ¢ Ancestor(T) @
Active(T;) N Acsett N Acsetr, # O}

Thus, a subtransaction can access any data object currently accessed by one of its an-
cestors without causing any conflicts. Also, a subtransaction can see the changes made
by the parent to those data objects.

[f a transaction is causally dependent on its parent, the subtransaction cannot
commit unless its parent does. Such a subtransaction commits if and only if the parent

transaction commits.

Y T;, T; : Transaction | T; € child(T;) A T; LR T, ®

commit(T;) & commit(T;)

Chapter 5. Protocol Specifications 148

Recall too that a nested transaction T cannot commit unless all its vital children commit.
Formally,

Ve:child(T) | ¢ € Visetr @ commit(T) = | Jcommit(c;)

i=1
All the changes made in the database by T’s committed descendants are made durable
in the database only when the root transaction commits.

In general, a nested transaction T cannot commit unless all its children commit or

abort. Formally,

¥V T : Transaction | child(T) # D e
commit(T) = V ¢ : Transaction | ¢ € child(T) e
commit(c) V abort(c)

The set of objects accessible to T and its subtransactions are given by:

V T € (Vtsett U Nusetr) @ Vwsetr = U Local_Db;

i=1

V¢ : child(T) @ Vwset. = Acsetr U{|] Local_Db;}

i=1
The view set of a subtransaction is the most recent state of objects in the database.
Summary
The properties of closed nested transaction are summarized below:

e A set of committed nested transactions is serializable due to the semantics of atomic
objects. That is, the effects of all root transactions in the set are committed in a

serializable fashion in the database.
e Operations are committed only by root transactions because of

— the semantics of a subtransaction commit, and

— the no orphan commit principle.

e If a root transaction f aborts, all operations performed by f and its descendants

abort because

Chapter 5. Protocol Specifications 149

Figure 5.9: Root Transaction Construction

— no orphan commit principle,
— failure atomicity property of the root transaction, and

— quasi-failure atomicity property of subtransactions.

It is possible to transform a given transaction into an explicit nested transaction.

Lemma 2 Given a transaction T = seq; OP | OP € {Op, T:} where T; is a task
invocation operation, construct a transaction 7o such that the children of T, are the

elements of T (i.e., child(To) = {T.| T.in T}). Then
1. To is a properly formed transaction.

2. T()E T.

Proof

See Figure 5.9 for an illustration of a root transaction’s construction. Since a parent
can concurrently run any number of subtransactions T} and T can execute concurrently
synchronizing only on accesses to common data objects while maintaining the consistency

of the partial order. So,

T = ||#9P T. A (Vk,j € dom OP e Conflict(T;, Te) = T; <r Ti V T; <1 T%).

Chapter 5. Protocol Specifications 150

Therefore, T is a nested transaction if

3 To : Transaction | AncestorsP(Tp) =D A
child(T)) ={T: | T:in T} ®
commit(T) & commit(To) A
commit(To) = (V ¢ : Transaction | ¢ € DescendantsP(T,) @
commit(c) V abort(c) A (¢ € Vsetr = — abort(c))) a

In the open nested transaction environment a subtransaction can access partial
results of their ancestors, partial results of committed siblings, as well as any committed
independent transaction’s output?3. The effects of committed subtransactions are visible
to the parents and other transactions in the system. Thus, at commit point, the child

releases all the data items in its access set. Formally,

Ve:chidd(T)e
commit(c) = WS. U {|JLocal_Db;} A Acset. ={} A

i=1

V T: : Transaction | T; € {| J Local_Db;} e

=1

szext’Ti = Vwsetr, U WS,

Since other (sub)transactions can view partial results, cascading aborts may occur when
the committed subtransaction’s parent aborts?*. Recall, when a transaction fails, it may
try an alternative plan, the contingency transaction, made for it or it may decide to abort.
If there are committed components of the transaction, they are all rolled back on abort
of the root transaction. Rollback action may use compensating transaction or restore
changed values using their before images. A contingency transaction does not execute
if its associated original transaction commits. Thus, the begin operation of the contin-
gency transaction is causally dependent on the abort operation of the original transaction

(depended-on transaction). The abort of a contingency transaction is independent of its

23Recall, in open nesting once a subtransaction commits, its results are recorded in the database.
Thus, the results become visible to other transactions.

24The effects of the committed subtransaction must be annulled from the database.

Chapter 5. Protocol Specifications 151

original transaction’s abort. Also, a contingency transaction have the same view set as

the original transaction. Formally,

V T; : Transaction e abort(T;) =
(3 Cp : Transaction | Cp € conTp(T;) @
begin(Cp) A Vuwsetc, = Vwsetr,)

where the function conTp(T;) yields the set of contingency transactions of T;. Also, the

following definition always hold.
commit(T;) = — begin(Cp) | Cp € conTp(T;).

In other words, the following relation holds for contingency transactions.
begin(Cp) <2 abort(T)

Similarly, compensating transactions may never start unless the corresponding transac-

tion associated with it previously commits, so

V T; : Transaction e

3 Cp : Transaction | Cp € comp(T;) @ begin(Cp) <& commit(T;)
where the function comp(T;) yields the set of compensating transactions of T;. Thus,
. cD ;
begin(Cp) — commit(T;) and
abort(T;) = — begin(Cp) | Cp € comp(T;).

always hold.

5.10.3 Distributed Transaction

In the distributed transaction model, a transaction is decomposed into a set of compo-
nents that are executed at different nodes in the network. Thus, decomposing a transac-
tion into subtransactions that can execute at different sites, access different parts of the
database, or provide information independent of other operations but logically required

for the transaction’s correct completion enhances intra-transaction concurrency.

Chapter 5. Protocol Specifications 152

Distributed transactions exhibit a correctness behaviour called setwise failure atom-
icity in that an element of the set commits if and only if every element commits. Dis-

tributed transactions are characterized by:

e Intolerance of any subtransaction failure. Abortion of a subtransaction causes the

transaction to abort.
e Subtransactions are failure atomic.

e Subtransactions can commit only if the distributed transaction to which they belong

commits.

Thus, if T = {T1,T,--- T.} is a user’s global transaction, then T’s definition that
captures the above characteristics is:
T = 7= Ti A
commit(T) &V T;| T; € child(T) @ commit(T;) A
abort(T) < 3 T; : Transaction | T; € child(T) vV T; € DescendantsP(T) ®
abort(T;) = abort(Parent(T;))

A variant of distributed transaction that is more flexible than the previous definition exist.
In this variant, the transaction aborts only when any of its vital component aborts. This

model has more practical utility. It is formally defined as:

T =|[lizs Ti A

3 Tr € Visett o abort(Ti) = abort(T)

where T; and T are component transactions. Thus, the transaction has a commit depen-
dency on all its active vital component transactions. This notion of commit dependency
applies recursively to nested transactions. Therefore, the parent or main transaction
aborts if any of the vital component transactions aborts. So,

commit(T) & VT; | T; € child(T) A T;: € Visetr @ commit(T;)

abort(T) < 3 T; : Transaction | T; € Visetr A
T: € child(T) vV T; € DescendantsP(T) @
abort(T;) = abort(Parent(T;))

Chapter 5. Protocol Specifications 153

Recall, when a global transaction aborts, all active component transactions are aborted

and all committed components are compensated. Thus,

abort(T) = V¥ T; € (Visetr U Nusetr) o |||, abort(T;) A
(V T, € Cmset | T € Child(T) o compensate(Tx))

For any two transactions T; and T%, let their common data objects accessed be:
A = Acset(T;) N Acset(T,). If A # O then T; and T can only engage in synchronizable

concurrent executions. Formally,
VY T:, T : Transaction e T: || Tx = (A=0 = T: ||| Tk) V(A # @ =T; ll Ty)
In other words, the concurrent execution of 7; and T} is captured by:
T:|| Te > T:|l| T $A=0% T:|| T

Suppose T,z is a vital component of Ty in Figure 5.4 and if T aborts, T23 must abort
because of the causal dependency relationship between T} and T33. Therefore, Ty cannot
commit because of the cascading effects of the causal dependence relation between T}

and T,3 via T3;. Generally,

abort(T;) in trace(T;) & — (commit(T;) in trace(T;))

5.10.4 Multidatabase

Assumptions

1. The MDBMS may contain intelligent agents that maintain a knowledge base of the

available services at the sites.

X

Each transaction (local or global) can execute fully, either aborting or committing

at termination of its operations.

3. Heterogeneity of data models and concurrency control protocols of the different

LDBs is possible.

4. Global transaction are decomposable into subtransactions.

Chapter 5. Protocol Specifications 154

5. A transaction can be composed of read and write operations as well as other trans-

actions. Thus, global subtransaction can be nested.
6. Two or more subtransactions of a global transaction can execute at a single site.

7. Data objects can be fragmented and distributed across multiple LDBs. Thus,
replication of data is prohibited.

8. Assumes a reliable system of hardware and software components.

9. Reliable communication between the GTM and the LDBs. Multicast communica-

tion method from the GTM to the LDBs.

10. Value dependencies are possible so the action of a global subtransaction at one site

can affect the behaviour of another executing at a different site.

Communication between LDBs is passes through the MDBMS’s communication layer.

The following are possible scenarios.

e Casel
— One subtransaction of a GT per LDB.

— The subtransactions are not nested.

e Case 2

— Multiple subtransactions of a GT can execute on a single LDB.

— The subtransactions are not nested.
e Case 3

— Multiple subtransactions of a GT can execute on a single LDB.

— Nested subtransactions are permissible.

An example of case 3 above can manifest in the electronic shopping mall case study. In
the purchase example, the process that accepts payment from a customer may have to
access Visa and/or Mastercard account LDB as well as other financial information that

the customer may provide. A possible SQL-like statement?® for the purchase transaction

25This is not “pure” SQL statement. The semantics of the CONSTRAINT part of the statement

simply list additional constraints that must be satisfied before the statement can successfully complete.

Chapter 5. Protocol Specifications 155

LDB, LDB. LDBs; <. LDB,

Figure 5.10: Multi-database Transactions

might be of the form:
SELECT bicycle FROM products
WHERE colour = green AND model = 1996 AND price < $60.00
CONSTRAINT 1. payment_method = Visa AND Mastercard
2. Visa.amount < $32.00

3. delivery_time < 5 days.

It is noteworthy that the MDB is a collection of LDBs located at different sites ¢ where
it > 2. Thus,

MDB = ULDB; and Vuwset, , = | J Vwset,
: =1 '

=1

The Acset of a global transaction GT counsisting of GT; subtransactions is given by

Acset . = UAcsetGTi

1=1
If multiple subtransactions of a GT can be executed at a site, the subtransactions must
be serialized at that site with respect to the GT and other independent transactions at

that site. Indirect conflicts may occur among global transactions because of the existence

of local transactions. Finally, all the subtransactions of the GT are serialized according

Chapter 5. Protocol Specifications 156

the defined partial order of the subtransactions. In other words, determining correctness
of MDB transactions follows two basic steps, namely: (7). serialize the execution of the
subtransactions with other independent transactions at each LBD site, and (). serialize

the global transactions.

Notes

e Multidatabase correctness protocol is called quasi-serializability (QSR) [DE89] or
multidatabase serializability [BO90, Bar90]. These correctness criteria are equiva-
lent. A set of local and global transactions is quasi-serializebility (QSR) if :

1. All executions at a site are conflict serializable with respect to that site and
2. All the global transactions are conflict serializable with respect to one another.

That is, the execution of the set of transactions at each site is serializable and the

transactions have the same serialization orders at all the sites.

e All transactions executing at SITE; belong to that site, so if T; executes at SITE;,
then T; € SITE;.

e Let G represent the set of all global transactions. Each global transaction in G is

subscripted to uniquely identify it, so G; is a global transaction in the set G. Thus,
G; € G.

e Usually, a transaction is either local or a subtransaction of a particular G;. If GST;

is a subtransaction of G; we can write GST}; € G;.

e Similarly, let L; be the set of transactions executing at SITE;. Thus, L; includes
global subtransactions executing at that site and the local transactions initiated by

local users at SITE;.

L; = {T : Transaction |

T e (UGST.J | GST;; € SITE; Vv ULT,‘ | LT; € SITE;)}

Chapter 5. Protocol Specifications 157

GST;

GST:
5T & GST; € G;

GST;

GST;,

(GST;.
- & GST; € G

GST;

Local transaction of site k&

Li

Figure 5.11: Relationship between transactions and a site

Therefore, SITE;’s schedule is a sequence of local and global transactions operations
executing at site k. The serialization order at SITFE; is defined as:
Vi,:N; T : Transaction | T € L; o
dH : HISTORY | T €, H @ commit(T)in H = —~(T ~»~ T) [R16]

The above descriptions are sketched in Figure 5.11.

e Define the serialization order (Gso) between any two global transactions as follows:

—Gso _: Transaction <> Transaction
¥ Tm, Tn : Transaction | T,,, T, € G o
ITmGso T, & Tn #To ATy~ T,

e Global serialization order consistency must be maintained whenever subtransac-

tions from different global transactions invoke confiicting operations on a common

Chapter 5. Protocol Specifications 158

data object. Thus, Gso must have the transitive closure property. Transitive

closure, Gso”, is defined as:

ITm Gso" T, = T,,Gso T, V
(3T, : Transaction | T, €« Go T, Gso T, A T, Gso™ T,)

To guarantee the consistency of the global transactions serialization orders, if T;
precedes T; at some site, T; must precede T; at all other sites and in the global

26

commit order*®. T; precedes T; at SITE; if a task of T; invokes some conflicting

operations after the site has received the commit message from 7.

Note that if an operation of G; precedes G; at some site, say SITE}, and the
operations conflict then for all other sites every conflicting operation of G; must

precede (; to maintain consistent ordering of the global transactions. Formally,

3SITE; | SITE; € LDBs e
G:; Gso Gj at SITE; =
VSITE, | n=1---#SITES e G; Gso™ G [R17]

e The serialization of global transactions is given by:

V T : Transactions | T € G o
dH : HISTORY | T €, H o commit(T)in H =
—~(T Gso™ T) A specification [R17] [R18]

Therefore, a set of local and global transactions is quasi-serializability (QSR) if and only

if specifications [R16] and [R18] hold.

5.11 Specification of Concurrency

This section presents the formal specification of the basic timestamp ordering (TO) and
the 2PL locking concurrency control protocols. The main objective here is to demon-

strate the application and usefulness of the @ and . extensions to CSP. The specifications

26This holds for conflicting sets that must provide identical local serialization orders. See definition of
~». [t requires that all subtransactions appear in the same order in the equivalent serial schedule at all
sites. This constraint is necessary because indirect conflicts may occur among the GSTs at a site due

to their conflicts with local transactions.

Chapter 5. Protocol Specifications 159

Algorithm 1: Timestamp Ordering
Begin BASICTO;
CASE of operation:
Writeltem(T,x) operation:
IF readTS(x) > ts(T) or writeTS(x) > ts(T)
THEN abort and rollback T
ELSE writeltem(T,x); writeTS(x) := ts(T)
ReadlItem(T,x) operation:
IF writeTS(x) > ts(T)
THEN abort and rollback T
ELSE begin
readItem(x);
readTS(x) := max(ts(T), current readTS(x}))
end{begin}
end{ELSE}
end{CASE}
end {BASICTO}

Figure 5.12: Timestamp Ordering protocol

also illustrate the benefits of using a formal methodology by enabling the comparison (or
possible derivation of equivalence) between schedules the protocols admit. These pro-
tocols were chosen because they are understandably the most popular synchronization
protocols and often found in most experimental and commercial transaction system im-

plementations.

5.11.1 Time Stamp Ordering Protocol

The basic TO algorithm is first represented in pseudocode to expound its structure. The
pseudocode is then transformed to an equivalent CSP specifications.

Figure 5.12 represents the general Timestamp protocol in pseudocode notation.
Each operation is bound to a specific transaction so writeltem(T,z) means the write of
data item z operation performed by transaction T. Recall, conflicting operations from
distinct transactions get scheduled (or aborted) based on their timestamp values. The
TO protocol checks conflicting operation occurrences that arrive in the wrong order and

rejects those with lower timestamps by aborting them.

The following definitions are necessary to specify the protocol.

Chapter 5. Protocol Specifications 160

Timestamp:
Each transaction is associated with a unique time value indicating when the transaction
was submitted to the system. The timestamps are ordered based on the transactions’
submission order. Hence, if transaction T) starts before transaction 75, then ts(7)) <
ts(T;). The older transaction has the smaller timestamp value.
Let the function now() return the next available system time, and time.. represents
transaction T’s timestamp.
The function submit() assigns a timestamp value to the transaction in its argument.
submit : Transaction — Transaction
V t : Transaction e submit(t) = time; = time, = now()
The function ¢s() returns the timestamp of a transaction.
ts : Transaction — TIME
V t : Transaction e ts(t) = time,
The function sameT checks the operations and timestamps of any two transactions to

see if the transactions are the same. Its definition is:

sameT : Transaction x Transaction — BOOLEAN
VY T;, T; : Transaction e
sameT (T;, T;) = true & ts(T;) =ts(T;) A
Vp,q:OpepecTi=pcT; A P<r, ¢4=P<r 4

Therefore, the definition
V &4, ty : Transaction e
th # t, & sameT (4, t2) = true
provides a global constraints for differentiating transactions that may have different
timestamps but the same operations. This situation arises when a transaction cannot
progress and is resubmitted for processing.
All operations of a transaction are assigned the same timestamp as the transaction.

The following axioms define timestamp’s increasing monotonicity property.

1. VT;, T}, Tk : Transaction e
(a). submit(T;) < submit(T;) = ts(T;) < ts(Tj)

Chapter 5. Protocol Specifications 161

(b). ts(T:) < &s(T5) A ts(T)) < ts(T} = ts(Ti) < ts(T)

2. For any given scheduler, no two transactions have the same timestamp. Formally,

VT:: Tets(T;)=timer, =~ (3T;: T @ ts(T;) = time-r] = timer,)

Data item:

A data item X is a 4-tuple, X = (id, val, tsr, tsw) where id is a unique identifier of the
data item, val € dom TYPE? is the value (the information content) of the data item,
tsr € TIME is the timestamp value of X’s last read operation, and ftsw € TIME is the
timestamp value of X’s last write operation. The data record is defined using the @@
operator as:

D[DATA] == (id, val, tsr, twrH&& (ID, TYPE, TIME , TIME))
Note that id is a unique system managed immutable identifier for the data item.
The following functions are useful for manipulating the components of a variable
of data type DATA:
The function readTS returns a value tsread € TIME that is the stored value of the tsr
component of the data item z.
readTS : DATA — TIME
Vz:DATA e
readTS(z) = tsread : TIME | tsread = Val(z.tsr)
Similarly, the function writeTS returns a value tswrite € TIMFE that is the value of the
tsw component of z. Formally, writeTS is defined as:
writeTS : DATA — TIMFE
Vz:DATA e
writeTS(z) = tswrite : TIME | tswrite = Val(z.tsw)
The function readltem (T, z) perform a read of data item z by transaction T.
readltem : Transaction X DATA — TYPE
Vz: DATA; t : Transaction e
readltem(t,z) = valc : TYPE | valc = Val(z.val)

Clearly, readltem returns the val component of . Similarly, an operation of transaction

27 TYPE is user defined depending on the application. -

Chapter 5. Protocol Specifications 162

T to write an item z is given by:
writeltem : Transaction x DATA — DATA
Vz : DATA; t : Transaction e
writeltem(t,z) = z | Jvalc’ : TYPE o
roval := vald’ A z.tsw := ts(t)
where valc’ is the new value of value component of z attained during computation. The
function writeltem modifies the val component of the data item z.

The function maztime() returns the larger of two timestamp values. The definition of

mazxtime() follows.
maztime : TIME x TIME — TIMFE
Vr,y: TIME o
maztime(z,y) =z S (z > y) V

maztime(z,y) =y & (z < y)
The CSP representation of the timestamp ordering protocol follows.

An operation is either a write or a read operation, so
operation ::= readltem | writeltem

Let ¢ and d be channels?®. The sets of permissible events through channels ¢ and d.

respectively are:
ac(T) = {readTS, ts,writeTS} and
ad(T) = {readltem, writeltem}

The permissible events of BASICTO are:
a(BASICTO) = ac(T) U ad(T) U {4}

The process RVALUES(T,z) reads the timestamp of T and the last read and write

timestamps of the data item z that T wishes to access. It is specified as:

RVALUES(T,z) = c?readTS(z) —> c?ts(T) —> c?writeTS(z) — SKIP

28Recall, a channel is used for either I/O or communication operations.

Chapter 5. Protocol Specifications 163

Let s be the trace of process RVALUES(T, z) on completion. That is,
s = trace(RVALUES(T, z))

The process Q(T') removes all actions of transaction T from the database and resubmits
T after some time delay for re-execution from the beginning with a new timestamp?®®.

Formally,
Q(T)= DELETE(T); PAUSE(k | k € Ny); submit(T) — BASICTO

where DELETE(T) undoes all actions of T using its transaction logs®® and the pro-
cess PAUSE() pauses the progress of a transaction’s operations for the specified time.
PAUSE() is specified using the CSP primitive processes STOP and SKIP, as:
Vz:TIME e
PAUSE(z) = STOP & SKIP
The basic timestamp protocol is finally given by:

BASICTO = d?operation — (WRITES O READS)

where

WRITES = (RVALUES(T,z); WRITEX(T,z)) < operation = writeltem 3} SKIP

WRITEX (T,z) = (if (readTS(z) > ts(T)) V (writeTS(z) > ts(T))
then WRITES/s5 Q(T)
else (writeltem(T,z) — BASICTO))

READS = (RVALUES(T,<z);
(if (writeTS(z) > ts(T))
then (READS[s; Q(T))
else (readltem(T,z) —> z.tsr := maztime(ts(T), readTS(z))
— BASICTO))
4 operation = readltem } SKIP

29This is a dynamic form of timestamping.
30For update operations, the original values of the data are written first into the transaction logs to

support transaction recovery in case of failure. Undo operations are performed on the transaction logs

to restore the database state to a consistent state.

Chapter 5. Protocol Specifications 164

The process @Q(T) rolls back T after the occurrence of the catastrophic event interrupt
and resubmits it with a higher timestamp. In other words, Q(T') rolls back T to the
previous state in the execution sequence.

Suppose aT; represents a set of some operations on object set o by transaction T;
and a T represents some operations on objects o by transaction T;. Further, suppose B =
aT; N aT; # d. The concurrent execution of both transactions using the timestamping
protocol is given by:

TO = T; |lT_,~
Using the BASICTO process defined previously, the process TO can be executed safely
without violating the correctness of the database. The trace(TO) satisfies the ordering
relation Tj,,) < Tj(o,) for all 7,5,k € N and for all o € B and ¢ # j whenever ts(T;) <
ts(T;). Formally,

trace(TO) sat [(Vi,j,kEN;0€ B|i#je
Jts(T) € TIME o ts(T;) < ts(Tj)
= trace(T; [ox) < trace(Tj [ox)) A
interleaves(trace(T;), trace(T;))] [R19]

Recall, timestamp values are assigned according to the transactions’ start time order.
So each transaction’s timestamp is a unique non-decreasing number thereby creating a
serial order among concurrent transactions.

A schedule in which the transactions participate is conflict serializable as seen from
the specification trace(TO). The system enforces serializability that is the chronological
order of the timestamps of the concurrent transactions. This protocol does not cause
deadlock since T waits for P only if ts(T') > ts(P). However, it does not produce recov-

erable schedules®' and starvation may occur if a transaction gets aborted continuously.

31 Algorithms based on timestamping for producing recoverable schedules, called strict timestamp

ordering do exist (see [EN94] for details) but are not considered in this thesis.

Chapter 5. Protocol Specifications 165

5.11.2 The 2-Phase Locking Protocol

Recall, a lock is a variable associated with a data item used for controlling concurrent
access to the data item. So a reference to a data item d implicitly manipulates d(v, ()
where v is the current value and [is the current lock mode.

Using formal notation, data amenable to lock manipulation is defined below. First

the basic types of locks®? are given as:
LOCKTYPES ::= X | S| unlock

A data item is represented in the @ notation as:
®[DATA] = (val, lock)&&{ TYPE, LOCKTYPES))

The following rules govern lock acquisition and release in the general locking protocol.

1. A transaction cannot request a lock on a data item for which it already holds a

lock.

E\D

A transaction cannot unlock a data item if it does not hold a lock for it.

3. A transaction must acquire a lock on data item before it performs any read or write

operations.
4. A transaction must release all locks after it completes all read or write operations.

5. Any access (i.e., read or write) request for a data item can only be granted if it is

compatible with the data item’s current lock mode (i.e., § or X, respectively).

6. If the request is incompatible, the requesting transaction must wait until the re-

quested lock mode becomes available.

7. The release of a shared lock on a data item by a transaction may not result

in unlocking the data item because multiple transactions can concurrently hold a

32In this thesis, only the basic lock modes are considered. The intent here is to demonstrate the
application of formal methodology in protocol design and analysis. The application easily scales up to

more locking modes without loss of analytic power.

Chapter 5. Protocol Specifications 166

Algorithm 2: General Locking Scheme

loop: WHILE more locks required DO
get lock request(lock)
IF lock = X THEN
[F (current lock = X) or (current lock = §)
THEN refuse request and wait until ready
ELSE grant request and branch loop
IF lock = § THEN
IF current lock = § THEN
grant request
share-count = share-count + 1
branch loop
IF current lock = X THEN
refuse request
wait until ready
ELSE grant request
share-count = share-count + 1
branch loop
IF lock = unlock THEN
IF current lock = X THEN
release lock
resume one of the processes waiting, if any
branch loop
[F current lock = $§ THEN
share-count = share-count - 1
IF share-count = 0 THEN
release lock
resume one of the processes waiting, if any
branch loop
ELSE branch loop
end{WHILE}

Figure 5.13: General Locking Scheme

shared lock on the data. The shared data item is unlocked when the lock count is

zZero.

Figure 5.13 represents the general locking protocol.

Two locks always conflict if they are on the same data item®3, they are issued by
distinct transactions, and at least one of the locks is a write lock. When a lock request
cannot be granted, the lock manager uses a fair®* algorithm to avoid livelock. A blocked
request must wait for all previously blocked lock requests to be granted.

To guarantee serializability, the locking and unlocking operations in every trans-

33A data item granule is the unit of data to be locked — either coarse granularity (large object units

e.g., file) or fine granularity (small units of an object e.g., records of file or even tuples of a record).
34A fair scheduling algorithm is one that gives a fair chance to the satisfaction of every request. This

is often achieved by using a queue and places new requests at the tail of the queue.

Chapter 5. Protocol Specifications 167

Algorithm 3: Lock Conflict Resolution

IF Transaction T lock request blocked THEN
IF wait-queue is empty THEN
add T to wait-queue
ELSE IF there is a transaction S awaiting same lock THEN
abort T
resubmit T later after some time delay
ELSE add T to wait-queue
end{ELSE IF }
end{[F }
0 end {IF}

1O UV W N~

= O Q0 ~

Figure 5.14: Combined cautious waiting and immediate rescheduling

action obeys the simple positional principle that all locking operations precede the first
unlock operation in the transaction. Thus, no further locking can occur subsequent to
the first unlock operation. This positional principle is called the two-phase locking (2PL)
protocol.

This thesis presents an integrated approach for dealing with situations when lock
requests are refused. The approach combines cautious waiting®, to prevent long chains of
blocked transactions, with immediate rescheduling whenever they can proceed irrespective
of their position in the queue. Thus, no deadlock can occur since a transaction can only
wait for a transaction in progress to release its locks. Starvation is minimized too.
Further, by not processing the waiting list sequentially, increases in CPU throughput is
achieved by reducing overhead. Figure 5.14 shows the algorithm that handles blocked
request.

Before giving a formal definition of the 2-PL protocol, the following functions are
necessary. The function increment increases the value of its argument by 1 while the

function decrement decreases the value of its arguement by 1.

increment, decrement : N — N

Vi:Neincrement(i) =i+ 1 A decrement(i) =17 —1

35In a cautious waiting scheme the length of a blocking chain is restricted with the aim of reducing
the time a transaction has to wait for compatible lock modes while ensuring the prevention of possible

deadlock.

Chapter 5. Protocol Specifications 168

To handle the refusal of lock request operation (which results in no lock acquisition) a

data structure that holds waiting transactions is required.
WAITQ == seq(Transaction x seq DATA)

Thus, WAITQ is a sequence of transactions waiting to get locks. Transactions are added
to the tail of the list. The process SUSPEND defines the suspension of a transaction
using WAITQ.

SUSPEND(T;) =if WAITQ = () then WAITQ' = WAITQ ~ T;
elseif £ : DATA€ T; A(3T; in WAITQ e z : DATA € T;)
then CANCELL(T;)
else WAITQ' = WAITQ ~ T;

CANCELL(T;) = DELETE(T;); RELEASELOCKS(T;);
PAUSE(t); SUBMIT(T;)

where the process DELETFE(T;) undoes all actions of T; based on T; execution logs and
SUBMIT(T;) puts the transaction in the ready queue (for processing from its begin-
ning), the scheduler thereby selects the next transaction for scheduling. The details of
DELETE(T;) and SUBMIT(T;) processes are omitted in this thesis (because they are
implementation issues). However, their omission does not affect the completeness of the

specifications nor our ability to understand them.

The formal definition of the 2-PL protocol follows:

TWOPHASE = GROWPHASE; SHRINKPHASE

GROWPHASE = (ACQUIRELOCKS ||| OPERATIONS) {ugock}SI\"[P

SHRINKPHASE = RELEASELOCKS ||| OPERATIONS [R20]
Both of these phases are monotonic. The number of locks increases in the GROWPHASE
and decreases in the SHRINKPHASE. The processes for the two-phase protocol must be
bound to a transaction. In that way, we are able to analyse the acquisition and release
of locks on the data items it manipulates.

To define the subprocesses, let C denotes the allowable operation set and B repre-

sents the set of lock modes. So,

Chapter 5. Protocol Specifications 169

B = {X, S, unlock}, and
B, = B\{unlock}

ACQUIRELOCKS = (k:Bpuke
(test?flag — if (flag = false) then SKIP
else (request?k — c? DATA.lock —>
if (k = X) then
((refuse(k) — (SUSPEND(T;) ||| ACQUIRELOCKS))
< ((Val(DATA.lock) = X) V (Val(DATA.lock) = S)) *
(DATA.lock = X — ACQUIRELOCKS))
else (if (k = S) then (
(DATA.lock = S — increment(#S)
—» ACQUIRELOCKS)
4 (Val(DATA.lock) = S) %
({refuse(k) — (SUSPEND(T;) ||| ACQUIRELOCKS))
& (Val(DATA.lock) = X) $
(DATA.lock = S —> increment(#S)
— ACQUIRELOCKS))))

The event test!flag is an output event of the transaction manager that evaluates to true
when the transaction 7T needs to access or update a data item not previously accessed
or updated. The acquisition of locks stops on the occurrence of the first unlock event.

The process OPERATIONS is defined as:

OPERATIONS = (y:Cpuye
(y — OPERATIONS | y — SKIP))

The definition of the RELEASELOCKS process follows:

RELEASELOCKS = (request’k —»
if (kK = unlock) then
(if (Val(DATA.lock) = X) then
(DATA.lock = unlock —

Chapter 5. Protocol Specifications 170

(RESUME(DATA) ||| RELEASELOCKS))
else (decrement(#S)
— if (S.count = 0) then
(DATA.lock = unlock —
(RESUME(DATA) ||| RELEASELOCKS))))
else RELEASELOCKS)

| £ — SKIP)

The process RESUME resumes one of the transactions waiting in WAITQ queue whose
data item awaiting lock acquisition is enabled by the unlock event (operation). Formally,

it is defined as:

RESUME : DATA — PROCESS
Vz: DATA o
RESUME(z) =if WAITQ = () then SKIP
elseif (3 T;in WAITQ e z € Tj)
then (RemWAITQ(T;) — ACQUIRELOCKS(T;))
else SKIP

where Rem WAITQ(T}) is a function that removes a waiting transaction from the WAITQ
list and compacts the list after the operation.
To guarantee correct behaviour of the above processes requires the imposition of
additional constraints on the traces. Let
p = traces(ACQUIRELOCKS),
q = traces(OPERATIONS),
r = traces(RELEASELOCKS) and
O = {data_item_o}
The trace of GROWPHASFE must satisfy the following;:
trace(GROWPHASFE) = interleaves(p,q) A (VieNep [O; < q [O))
Similarly, the trace of SHRINKPHASE must satisfy:
trace(SHRINKPHASFE) = interleaves(q,r) A(Vi€ENeqg [O; <r [O;)

where the subscript on O serves as an index to the data items.

Chapter 5. Protocol Specifications 171

The trace of the actions of OPERATIONS is given by:
traces(OPERATIONS) =y~ | (Vpe C,m € Biem < pin y~)
Finally, the trace of the actions of ACQUIRELOCKS is given by:
traces(ACQUIRELOCKS) =t~ | (t=X V §)
A(ViEN,X;EBoX;¢D|D=LnJX)
where T is the set of transactions, ¢ = 1...n, n the cardinality of T, and the .?epresents

Kleene’s star [HU79].
The trace of the RELEASELOCKS process is given by:

traces(RELEASELOCKS) = (r: traces(RELEASELOCKS),
e : traces(ACQUIRELOCKS) e
(Vi:N,o: DATAe e [O; < r | O))

Thus, a parallel combination of the TWOPHASE processes up to n times where n is the
number of transactions executing at a particular time is possible without failure. The
2-PL protocol ensures that the schedules involving transactions using this rule is always
serializable. The order in which executing transactions acquire locks determine the order
of transactions in the equivalent serial schedule.

Consider the following bank setting. A customer is transfering some money from
one account, say Savings, to another, say Checking. The customer’s transfer operation
is a single transaction that can be modelled as two nested subtransactions. Lets call
this transaction T,,,. Suppose there is a timed triggered custom bank transaction,

called T

vani s that sums all account balances at the end of a day’s operations. T, , runs

at tzme = 24.00 hours. Figure 5.15 shows a possible sequence of operations of these
transactions (only T, , operations are shown for T,).

If T, , and T, ,, coincidentally run at the same time, the computations will gen-

erate inconsistent data unless their access to the accounts is controlled. In this example,
the access control mechanism is the 2PL. Applying specification [R20], two possible ar-
rangements of the transactions’ operations are feasible; either all lock operations (on

common data items) by T,,., precede all those of T, , or vice versa. Figure 5.16 shows

one of the two possible scenarios. Notice that the extended possession of locks beyond

Chapter 5. Protocol Specifications 172

Transaction T,,,, Transaction T, ,
Read Savings Initialize sum

Savings = Savings — amount Read Savings

Write Savings sum = sum + Savings
Read Checking Read Checking
Checking = Checking + amount sum = sum + Checking
Write Checking Write sum

Figure 5.15: Operations of example transactions.

the point of last use3® forces a serialization order of the transactions involved thereby
producing correct results.

To capture S2-PL, the SHRINKPHASFE process is altered to reflect the way locks
are released. Thus,

SHRINKPHASE = OPERATIONS; RELEASELOCKS
Similarly, combining both C2-PL and S2-PL so that schedules are both recoverable and
serializable, the following definitions now applies.

TWOPHASE = GROWPHASE; SHRINKPHASE

SHRINKPHASE = OPERATIONS; RELEASELOCKS

GROWPHASE = (ACQUIRFELOCKS {unvlock}SK[P

All other definitions hold.

5.12 The Electronic Shopping Mall

The Electronic Shopping Mall model is characterised by active capabilities (for timely re-
sponse to events and changes in the environment), support for long-running transactions

and possible partial sharing of results, allows compensation to undo effects of undesirable

36This is necessary to preserve consistency and avoid reading inconsistent data.

Chapter 5. Protocol Specifications

Transaction T,

Transaction T, ,

Ttl

Lock(Savings) := X

Read Savings

Savings = Savings — amount
Write Savings

Lock(Checking) := X
Unlock(Savings)

Read Checking

Checking = Checking + amount
Write Checking

Unlock(Checking)

Lock(sum) = X

Initialize sum

Lock(Savings) := S
Read Savings

sum = sum + Savings

Lock(Checking) := S
Read Checking

sum = sum + Checking
Write sum
Unlock(Savings)
Unlock(Checking)
Unlock(sum)

Figure 5.16: Operations of example Transactions using 2PL.

173

committed transactions, and supports for heterogenous and autonomous environments.

The partial sharing of results necessitates the distinction between vital transactions and

non-vital transactions (as previously discussed in Section 5.7 page 125).

When the GTM broadcasts an initial query for a product more than one LDB may

respond to the query. The choice of which LDB eventually processes the query uses a

selection mechanism that may depend on the following criteria:

@ first to affirmatively respond to the request,

@ proximity to client and product shipping cost,

Chapter 5. Protocol Specifications 174

[nventory
: Report
Order Data
§ Product A/c Rec. Debit
: customer
: / Card or / Credit
Payment Bank vendor
Customer Report Repore
Shipping
\ Shipping
Report

Figure 5.17: A Customer Order Transaction

e least cost of product requested,

e least cost based on the cost analysis of response time and total resources utilization,
e least load of the local databases that responded, and

e other network related issues

The determination of the optimal method for selecting an LDB to continue processing
is not the focus of this research. Rather the researcher assumes that the system always
selects an LDB optimally.

To illustrate the basic ideas discussed, a simple order entry system is used where
customer requests are accepted and processed. An order may require services located
at different sites and/or databases. For example, an order transaction may necessitates
accessing the inventory database, accounts receivable and payable, bank or credit infor-
mation, and logistics data as illustrated in Figure 5.17. Therefore, an order transaction
can be decomposed into a set of processes that interact to service the transaction.

The relevant objects and functions (services) are abstracted in Figure 5.18. The

objects are the customer, product, invoice, inventory, and accounts while the relevant

Chapter 5. Protocol Specifications 175

send .
Customer I Invoice I
‘6

A/C

ship
Japio

I generate

[

C
I Product I S update Inventory

Figure 5.18: Process Model of Order Processing

services are orders, ship, update, generate, and send. The author relies on the reader’s
intuition about these components functionalities thus focusing on the transaction for-
malism in this thesis. The complete system may contain subsystems, each containing
numerous processes which interact with one another. Processes can call upon other pro-
cesses to fulfill a request for action and/or information. Process interaction is triggered
from some external event such as a user request, or a request from another process.

A diagrammatic representation of the transactions in the application domain under

consideration is shown in Figure 5.19.

Algorithm 1 The sequences of operations

1. MDB decomposes the transaction’s GT. First the LDBs are queried for the availability of the
itemn.

e If found then report back to the MDB while the local store local database continues to do
its inventory processing. A hold is placed on the item in inventory at the moment.

e If not found then report back to the MDB and abort immediately.
2. The MDB now request payment.

e Acquire the account.
e Validate account balance.

e Initiate transfer to the store’s bank account.
3. Stores’s bank reports successful transfer to the MDB’s transaction.
e Then the store local database transaction (inventory update) can now commit successfully.

4. The GT commits successfully.

Chapter 5. Protocol Specifications 176

C.V[DB Manag@

Glgbal
Transhctions

Global

Transactighs Global

ransactions

Local
Transactions

Local

Local Transactions

‘Transactions

Store’s Bank

@re’s Databa}; Bank

Figure 5.19: A Graphical Representation of Purchase Transaction.

There is a time dimension in the update of the inventory database (which may or may not
be located in the store’s local database site) thus the global inventory could potentially
be held up. The execution of the global transaction allows local transactions at the banks
(in this example, the customer’s and the store’s banks that could possibly be different)
and at the participating stores. The shareable data object at the store is the inventory
database. Similarly, the shareable objects at the bank are account-number and balance.
The banks may enforce strict correctness to avoid the probiems of duplicate withdrawal.

In pseudocode, the above transaction could be represented as follows:

Algorithm 2 Pseudocode Representation of Purchase Transaction

Purchase-Transaction;

begin
BROADCAST purchase requirements;
TRIGGER inventory search;
MAKE payment

end;

where the operations of the procedures TRIGGER and MAKE are given as:

Chapter 5. Protocol Specifications 177

TRIGGER inventory search;
begin
check the store’s database;
validate inventory quantity;
update inventory balance;
produce reports;
terminate
end;

MAKE payment;
begin
enter and validate customer information and PIN;
select account;
enter amount;
validate balance;
update account;
produce receipt
end;

In very high level abstract program design pseudocode specification, the whole transac-

tion could be represented as:

Algorithm 3 Program Design Pseudocode Spectfication

Purchase-Transaction
begin
BROADCAST-transaction;
INVENTORY-transactions :
Check and validate,
Update inventory,
Produce reports;
MAKE-payment :
Validate account,
Accept payment,
Produce bill
end;

Examining the above pseudocode representations reveals the following: (1) there is no
indication of the operations interleaving order, (2) no indication of concurrent (or parallel)
activities thus obliviating the potential benefits of concurrent operations, and (3) it is

impossible to deduce causal dependency relationships between the subprocesses.

5.12.1 Some Applicable Functions

The following are some useful functions that will become handy in the formal specification

of the example problem. Only their signatures are given leaving out their details. This

Chapter 5. Protocol Specifications 178

does not affect the understanding of their application. The function velidBal checks if
there is enough money in an account. It returns true if the current balance is greater than
the amount to be spent from the account and it returns false otherwise. Its signature is

given by:
validBal : Account x R —» BOOLEAN

The function decrementDb reduces the quantity in stock of an item by the amount spec-

ified, given by:
decrementDb : Db x item x N — N

Similarly, the function debitAcct reduces the current account balance by the amount

specified, given by:
debitAcct : Account x R — R

The function creditAcct increases the current account balance by the amount specified.

Its signature is:
creditAcct : Account xR — R

Further, the function #sinDb checks a given data base for a particular item. It returns

true if the item is found and it returns false otherwise. Its signature is:
isznDb : Db x item — BOOLFAN

The specification of the sample purchase transactions in CSP follows. ABORT and
COMMIT are transaction specific operations and are used here in their pure database
transaction semantics. The set of events executable by the process PURCHASE is given
by:

aPURCHASE = aBROADCAST) aINVENTORY
where aINVENTORY = {prodInfo, inventoryDb, bicycle} \J

aUPDATE_INV J aPAYMENT
aUPDATE_INV = {inventoryDb, bicycle, produceReports}

Chapter 5. Protocol Specifications 179

aPAYMENT = {custInfo, selectAcct, PIN , acctBal,amount}
The communication events okay and fai are transmitted through the communication
channel e, represented as:
ae(PURCHASE) = {okay, fail}
The process PURCHASE is defined as:
PURCHASE = BROADCAST; INVENTORY; COMMIT [R21a)]

where

INVENTORY = (c?prodInfo — acquire(inventoryDb)
— bicycle = isinDb(inventoryDb, prodinfo)
— (PAYMENT || UPDATE_INV)\{e} & bicycle > ABORT
— SKIP) [R21b]

The communication along channel e used to synchronize PAYMENT and UPDATE_INV

is hidden to prevent them from further being constrained by the environment.

UPDATE_INV = ((inventoryDb(qbicycle) = decrementDb(inventoryDb, pbicycle)
— produceReports — €7z
— if (z # “okay™) then ABORT
else (release(inventoryDb) — SKIP)) [R21c]

PAYMENT = (c?custInfo —» selectAcct — c? PIN
— acquire(acctBal) — c?amount
— w = validBal(account, amount)
—> (elz — (ACCEPT || BILLY < w } (e!lr — ABORT))
— SKIP) [R21d]

where z = okay when w evaluates to true and z = fail otherwise.

aACCEPT = {acctBal,amount} and aBILL = {producelnvoice, creditAcct}

ACCEPT = (acctBal = debitAcct(account, amount)

Chapter 5. Protocol Specifications 180

— release(account)

— SKIP) [R21e]

BILL

(producelnvoice
— creditAcct(taz, amount)

— SKIP) [R21f]

The release(inventoryDb) event can be performed only after validBal(account, amount)
event of the PAYMENT process evaluates to true. That is, UPDATE_INV process
is commit dependent on the PAYMENT process3”. The trace specification defines the
required interleaving order. Figure 5.20 represents the above CSP specification. The
shaded node (®) represents parallel operations while ——— shows commit dependency.
When the ACCEPT process commits, it initiates a trigger to resume the suspended
inventory update process for a successful commit operation.

The communication event okay on channel e synchronizes operations dependency
relationships between PAYMENT and UPDATE_INV processes. The UPDATE_INV
process is temporarily suspended until the PAYMENT process is ready to perform the
synchronization event (e!z) at which point UPDATE_INV resumes to accept the input
communication event (e?z) and then progresses. Note that when two concurrent pro-
cesses communicate with each other by output and input on a single channel, they can
not deadlock [Hoa83].

Recall, the trace of a process is the history of the process up to that time. The
trace concept, therefore, is central to recording, understanding and describing the be-
haviour of processes. The concept of compositionality of traces plays a fundamental role
in reasoning about processes. Consider the following:

trace(ACCEPT) = (debitAcct, release(account))
trace(BILL) = (producelnvoice, creditAccts)
trace(UPDATE_INV) = (decrementDb, produceRReports,

37This is the commit dependency of UPDATE_INV process on PAYMENT. Also, UPDATE_INV is
causally dependent on PAYMENT via the synchronization variable z.

Chapter 5. Protocol Specifications

bicycle

UPDATE-INV PAYMENT

ACCEPT /. BILL

] committed (O may continue to run

Figure 5.20: Dependence Relationship of Sample Transaction.

release(inventoryDb))
Further, for notational convenience, let
m = traces(BILL)
r = traces(ACCEPT)
k = traces(UPDATE_INV)
A = {release(inventoryDb)}
s1 = traces(UPDATE_INV | A)
The traces of PAYMENT is given by:
trace(PAYMENT) = ({custinfo, selectAcct, PIN
acquire(account), amount, validBal))
A (interleaves(m,r) V ABORT)
Similarly, the following abbreviation shall apply:
t = traces(PAYMENT)
The traces of the process INVENTORY is given as:

trace(INVENTORY) = ((prodInfo,acquire(inventoryDb), validQty))

181

Chapter 5. Protocol Specifications 182

A ((interleaves(¢, k)
AVthet,siek|si=k[Aet <sp))
vV ABORT) [R22]
The final specification of the transaction PURCHASE is given as:
PURCHASE = (Vq | q € traces(BROADCAST);
t |t € traces(INVENTORY) o
traces(PURCHASE) = q A t; COMMIT) [R23]

Summary

An abstract event-based model that incorporates both causality and timing information
was presented. The framework uses time as mathematical objects for descriptive and
analysis purposes. Thus, time is a first class object. The framework models transactions
as mathematical relations over database states. Transactions’ execution correctness rely
on the preservation of the predicates instead of only the notion of serializability.

The expressive power of the framework is demonstrated by using the formalism to
define (a) some of the existing hierarchical transaction models, (b) transaction correctness

and concurrency control protocols, and (c) electronic commerce application.

Chapter 6

CORRECTNESS PROOF

Any transaction system'’s development ultimate goal is to deliver a transaction software
product (SP) that meets an application’s requirements (AR). Figure 6.1 shows the es-
sential abstract transformations. The transformation AR == SP is difficult and error
prone because it involves both conceptual and formal domains; application requirements
and the software that meets these needs, respectively. So the application’s requirements
are abstracted into a formal specification (FS) from which SP is derivable. Thus, AR
=> FS and FS = SP. The formal domain of FS is subject to mathematical and logical
analysis so correctness can be established while the conceptual domain of AR lacks a for-
mal model’s precision and mathematical elegance. SP is derivable from FS via detailed

transformations of the form:

FS — FS, — FS; — -.- =— SP

F'S is AR’s initial specification proven correct that forms the basis with respect to which
SP’s correctness must be preserved.

The steps leading to SP must be proven correct and produce correctness-preserving
transformations in a logically correct, consistent, and well-ordered sequence. This en-
sures that unacceptable behaviours are not introduced and unambiguously establishes
the specification’s correctness. The transformations form the basis for the logical deduc-
tions and the implementations that result in behaviours which satisfy the application’s

requirements. This in turn supports confirmability and verifiability. Since the creation of

183

Chapter 6. Correctness Proofs 184

Software
Product

Application
Requirements

Figure 6.1: Application needs - Software Solution Relationship

FS is the focus of this thesis, it is necessary that the conceptual translation into formal
form (i.e., FS) is correct. So we must prove that the specifications given in Chapter 5
are correct in order to ensure that transaction software generated from them are correct.
This takes seriously the obligation to produce reliable programs to a known specification.

This chapter presents the correctness proof of the specifications given in the pre-
ceding chapter. Rigorous arguments following from the specifications provides the logical

basis for the proofs. First Section 6.1 presents the methodology taken.

6.1 Proof Methodology

Most proofs in CSP use bottom-up approach where each component is proven correct
separately and more complex systems are compositionally developed by using the prov-
ably correct components. Thus, a proof of a compound process’s property is derivable
from a proof of correctness of its parts.

Recall, the decomposition of the complex system into its subcomponents requires
conformance to the production of correctness-preserving transformations in a logically
correct, consistent, and well-defined sequence with clearly defined interrelationships. Ad-
herence to this principle provides for the validity of the interactions between subcompo-
nents via well-defined interfaces. Thus, the canonical transformations ensure the exclu-
sion of unacceptable behaviours in the interactions between subcomponents when com-

posed and no information or functionality is lost as a result of the decomposition. The

Chapter 6. Correctness Proofs 186

and functional correctness using mechanisms that ensure adherence to and preservation of
timing constraints. The transaction aborts if it violates either the temporal or functional
correctness. The temporal constraints are used in synchronizing concurrent access to a
data object by multiple transactions thereby providing an acceptable degree of functional
correctness.

To guarantee correctness, appropriate synchronization mechanisms must be pro-
vided. In addition, the processes that capture transaction behaviours must also satisfy

both safety and liveness properties.

6.2 Safety and Liveness Properties

A trace of a process P satisfies safety property if and only if:
1. trace(P) # () and
2. trace(P) is prefix-closed.

A trace of P is prefix-closed if there exists 8 and 3’ such that 3 in trace(P) and 3’ is
a finite prefix of 8 then 3’ in trace(P). Prefix-closure is reasonable because if a trace is

safe so is any of its prefix. Note that
trace(P) = () = #(events(trace(P)) = 0 = no events occur.

Safety property violation occurs in a trace when some particular events in the trace
should not have been admitted (during the trace’s extension via the process’s progress).

A trace property P is a liveness property if every finite sequence over the elements
of P has some extension in trace(P). Informally, no matter what has happened up to
some point, eventually something good will occur. General liveness properties can also

be captured by restricting the event sequences a process can undergo.

6.3 Prove Theorems about Specifications

Theorem 2 All processes are prefix closed.

Chapter 6. Correctness Proofs 187

Proof
Basic idea: Prove by induction on the length of a finite execution generating the given
trace. Given a process P and its trace(P), if Active(P) then P’s trace is extendable by

at least an event e | ¢ € a(P). Thus,
trace(P)' = trace(P) ™ (e)
Further, if

38 : TIMEDTRACE | B in trace(P) e
(38’ : TIMEDTRACE | B’ prefix 8 A #0' < #8) = (' € traces(P))
= (' in trace(P)

So elements of all possible traces of P, traces(P), are prefixes of trace(P). =)

Recall, an important property of a history is the prefix-closed requirement. Thus, given
any history, all pre-histories of the history are also histories. This is because any pre-
history of an object (or transaction set) is the history of that object (transaction set) at
some earlier stage in its evolution and hence represents a possible history of the object’s

class.

Theorem 3 Causality respects time.

Proof

Basic idea: Time is monotonically increasing. Thus

Vit ti: TIME e
t; <t (35 :seqy TIME; t,j : TIME |
i€domS Aj€E€domS A
SE)=tA8G)=tei<j)

By definition of <2 (see [R2]), if A happening at time A causes B’s occurrence at time

i then A must precede p in the mapping of the times to a number line. Thus,

(0, B) B (M A) = p< A

Chapter 6. Correctness Proofs 188

Thus, in any history H that contains the transactions having A and B respectively,
A<, B

So by definition [R3], p < A. Similarly, by application of [R2a] €23 = 4 < A. So the
cause event’s time always precede the effect’s time. Therefore, causality respects time.

0

Theorem 4 If every transaction in a schedule follows the 2PL rule, the schedule is

guaranteed to be serializable.

Proof
Recall, by specification [R20],

2PL = GROWPHASE; SHRINKPHASFE

Since the acquisition of locks is monotonically increasing in the GROWPHASE stage
because of the semantics of {unYock} all lock acquisition must precede the first unlock

operation.
GROWPHASE = (ACQUIRELOCKS ||| OPERATIONS) {uZock} SKIP

But to guarantee serializability, the locking and unlocking operations in every transaction
must obey the simple rule that all locking operations precede the first unlock operation.

Suppose

VY P : PROCESS o
3p,q:0p | p,g€a(P) N p=lock N q = unlock A
p in traces(p) A q in traces(p) o

time(q) < time(p) = violation of 2PL rule

But specification [R20] will not permit such operations. So [R20] admits only consistent

operations that guarantees serializability. m]

Corollary
The locking mechanism, by enforcing 2PL rules, also enforces serializability.

Chapter 6. Correctness Proofs 189

Proof
Given a process P that obeys the 2PL rule. Thus,

Vs : TIMEDTRACE | s € traces(P) o
Vp:Op|p=lockepins=
-~ (3q: Op| q = unlock e time(q) < time(p))

If process P executes concurrently with a similarly defined process @, their execution is

serialized according to their lock acquisition order on a common data object. That is,

VP,Q: PROCESS e
3z :Data|(3p,q:Opep € a(P) A q€ a(Q) A Conflict(p(z), q(z)) ®
time(p(z)) < time(q(z)) = time(lock,(z)) < time(lock,(z))

In this case, P ~ Q. But P~ Q = P; @ in effects so the schedule containing P and

@ is equivalent to a serial execution (P;Q) of P and Q. Thus, the schedule is serializable
O

Theorem 5 Every schedule produced by the process PURCHASE admits a consistent

enumeration (or schedule).

Proof
Basic idea: Any history produced by PURCHASE is serializable.
Note that PURCHASE is modelled as a nested transaction (see specifications [R21a - d])

Following from specification [R23]

PURCHASE sat traces{ BROADCAST) A traces(INVENTORY)

By assumption BROADCAST is deadlock free so we need only prove that
traces(INVENTORY)
admits consistent enumeration. Thus, we prove that INVENTORY process (1) is dead-
lock free, and (2) preserves the database’s correctness after execution.
To prove the absence of deadlock in the above specification, reduces to demonstrat-

ing that

Chapter 6. Correctness Proofs 190

Vs € traces(PURCHASE) o
trace(PURCHASE [s) # STOP

which formally represents the problem.
We know that given a process P,

traces(P) ~ STOP = STOP = Deadlock (see [Hoa85])
Thus,

trace(PURCHASE /s) = s ~ (t| t in trace(PURCHASE) A

t = trace(PURCHASEFE) after time(last(s))
But STOP ¢ aPURCHASE =
STOP ¢ traces(PURCHASE)

Therefore traces(PURCHASE) # STOP
But by [R21b] and [R22] the process INVENTORY only admits consistent events enu-
meration consistent with the partial ordering of the process’s events. Therefore, every

schedule produced by the process PURCHASE admits only a consistent schedule. a

Theorem 6 Schedules admitted by both TO and 2PL protocols are behaviourally equiv-
alent.

Proof
Let Tset = {Ty,T>,---, To} be a transaction set consisting of n transactions. The

concurrent execution of transactions in Tset is the history given by:

HISTORY.

Tset

=seq, S|ranS € T; A T; € Tset

By [R19] any schedule generated using the TO protocol enforces serialization order that

corresponds to the order of the concurrent transactions’ timestamps. So, using [R19] let
HISTORY ., =X where X isa sequence of T'set’s transaction operations
Similarly, applying [20] let

HISTORY,,,, =Y where Y is a sequence of Tset’s transaction operations

Chapter 6. Correctness Proofs 191

By Theorem 4, the 2PL produces serializable schedules. But X and Y contain the same

operations since

H#X =#Y =#S5 A
Vp:0p|p€T:ANT: € Tsete
pinS = pinXApinY

Thus, TO and 2PL accepts the same transactions. Also, in both X and Y the following
holds:

T~ Ty~ (3Ti~o Tj~ o~ T3 | Ti = Tj)

So, X = Y = conflict serializable (by [R19] and [R20])

Since both protocols generate serializable schedules, reordering nonconflicting events
in the schedule produces a new schedule consisting of the same events as the previous.
Thus, they have equivalent computational effects. [Aside: Only the relative ordering of
conflicting operations determines the outcome of a transaction set’s concurrent execu-
tion.]

So TO and 2PL protocols are behaviourally equivalent. a

Thus, given any system either the 2PL or TO can be applied; selecting the TO
protocols for applications most suitable to it and the 2PL for others. The 2PL is better
when transaction operations are predominantly updates whereas TO is better for read
only transactions. Figure 6.2 illustrates the behavioural equivalence of the two protocols.

The 2PL determines serialization orders dynamically (according to the order in
which data items are accessed) while TO statically determines serialization orders (when
a transaction starts). The power of Theorem 6 is that given a set of transactions that

can execute concurrently

e 2PL guarantees that the execution is equivalent to some serial execution of those

transactions.

e TO guarantees that the execution is equivalent to a specific serial execution of

those transactions corresponding to the order of their timestamps.

Chapter 6. Correctness Proofs 192

Tset — ;_',jj,"" ﬁ«i)srégi_tl;gsserializable

WL— concurrency control protocol

Figure 6.2: Behavioural Equivalence of TO and 2PL.
Theorem 7 The specified protocols only admit mutually consistent schedules.

Proof

Basic idea: Show that there are no cycles in schedules accepted by both TO and 2PL.
From Theorem 6 we know that both TO and 2PL produce serializable schedules and thus
are equivalent in effects. Using definition [R4] and its transitive closure, any schedule
admitted by both protocols is of the form T; ~ T; ~ Ty ~ T; ~+ --- ~+ T, where
T; # Ta.

. both TO and 2PL produce mutually consistent schedules. O

Theorem 8 All serializable executions are correct.

Proof

DBMS may execute transactions in any order as long as the effect is the same as that of
some serial order.

By Theorem 1 (see page 134) each serializable execution has the same effect as some

serial execution. Thus, proof of Theorem 1 directly applies. O

Chapter 7

CONCLUSION AND FUTURE
WORK

Formal methods for developing transaction systems software are becoming increasingly
necessary. To handle the complexities inherent in transaction systems requires combining
these methods with sound development methodology which supports modularity and
reusability

This thesis models transactions as mathematical relations over database states.
Transactions’ executions correctness rely on the preservation of the predicates instead of
only the notion of serializability. By representing transactions as mathematical relations
on database states having nested transactions with concurrently executing subtransac-
tions and a schedule as a composition of the relations enables the capture of the full
semantic scope of long-duration transaction systems. Partial ordering relation on the
subtransaction’s set represents the runtime dependencies between the subtransactions.
The execution is correct if every subtransaction can access a database state that satisfies
its pre-condition and if the result of all the subtransactions satisfies the post-condition of
the transaction. This notion of correctness can produce a multi-level correctness criterion
by extension to both the ancestors and descendants of a given transaction.

Recall, one important requirement of transaction specification language is the abil-
ity to capture concurrency which requires the specification language to model the simul-

taneous occurrence of multiple events in a transaction. Also, one important requirement

193

Chapter 7. Future Work 194

of transactions is the generation of schedules that satisfy the transactions event’s timing
and causality constraints while maintaining consistency and correctness. By using an
event-based model that incorporates both causality and timing information in specifying
transactions ensures (i) timing constraints and causal dependencies of the executions,
and (ii) transactions correctness through concurrency control protocols by controlling
any interleaving. Uncontrolled interleaving of transaction execution may violate the
database consistency and thus its correctness because different conflicting transactions
may simultaneously access the same data item.

Although the objective of a specification is often to capture the behaviour of some
system over time, most specifications do not explicitly capture time information. How-
ever, it is desirable to explicitly provide mechanisms that facilitates the analysis of a
transaction system’s evolving behaviour as it executes over time. Recall, the execution
of a transaction gives rise to sequences of timed actions, states, etc. Although such time
sequences are usually not captured explicitly in the program text, it is frequently useful
to have them available as mathematical objects for descriptive and analysis purposes. By
using set comprehension to extract those time points at which events occur and placing
appropriate constraints on those sets specifying transaction safety and liveness proper-
ties is feasible. The timed-event specification (the sequences of states and events which a
transaction can undergo over time) facilitates the specification of liveness properties such
as fairness, termination, and the guaranteed occurrence of events (by using the temporal
operators defined). An abstract model of transaction models based on causality and
timed execution is presented. This is used to specify history invariants which restrict the
set of acceptable histories derivable from transactions event occurrences!.

The model of CSP language applied in this thesis uses time as a first class entity
to permit the specification of timing constraints within the language. This provides high
level constructs for specifying timing constraints which helps to separate the specifica-

tion of timing constraints from the means used to ensure their satisfaction and assigns

IRecall, the order of appearance of an operation in the schedules differentiates one schedule from
another. This order is based on the process’s interactions. Any two schedules are equivalent if the order

of the causally dependent events in one is the same as the other.

Chapter 7. Future Work 197

further study.

Transaction’s response time unpredictability may arise due to the requirement of
maintaining transaction atomicity over participants in different sites and from the man-
agement of distributed data?. The response time of a transaction may be influenced by
the location of its required data, which may not be known until its actual execution time.
In addition, the underlying network’s performance affects the transactions performance
in overall. An investigation of mechanisms to accurately predict transaction response
times is required so that the results presented in this thesis can be adapted to real-time
applications.

While the transaction concept is by no means new and have had considerable appli-
cation outside the academia, a complete formal specification of the different models and
their semantics and theory is necessary to integrate them and prove their correctness. By
doing so will also enable the development of semi-automatic tools to assist in developing
more dependable applications based on these models. Extension of the specifications to
include other models like workflow, interactions, and real-time models is vital.

Another possible extension is to incorporate object-orientation features into the
TCSP specification language. This will enable a specifier to specify transaction models
using the object-oriented paradigm and verify that a particular specification is realizable
using a method similar to that of Object-Z so a history is contained within a class. To
have an object-orientation features requires a definition of full formal semantics mapping
constructs in the language to some semantic domain. This enables the development of a
proof system for the language and the possibility of creating semi-automatic tools to aid
in the software development process.

Another area that requires further investigation is the derivation of a new correct-
ness criterion that incorporates transaction’s semantics and serializability. By exploiting
intra-transaction concurrency (based on the transaction’s semantics) as many subtrans-
actions of the same parent transaction as possible can concurrently execute thereby re-

ducing the transaction wait times for consistent data states. Reducing transaction wait

2The creation of a transaction at one site is independent of the creation of transactions at other sites.

Recall, each created transaction is assigned a unique transaction identifier (id) and a start time time .

Chapter 7. Future Work 199

behaviour (e.g., value and temporal dependencies) will provide a good initial framework
of reference. Without considerations for such dependencies between subtransactions of
each global transaction, past correctness criteria provide weak consistency guarantees.
Data manipulation in an MDB environment must take into consideration interdepen-
dency of data and control their access to ensure the preservation of interrelated data’s
mutual consistency. Specifying dependencies among MDB transactions must succinctly
capture the dependency conditions, the data consistency requirements or constraints
(state and temporal properties of the data), and consistency restoration mechanisms in
case a violation is encountered.

Further, the specifications can be refined into lower level specifications that are
eventually executable. Although, specifications are not necessarily executable, refining
the specifications into executable forms further reduces the amount of coding that the
programmers will do and also aids in the development of automated tools for proving
and verifying the correctness of the specifications. Also, there is a need for a testbed
environment to permit the implementation of the specifications to empirically determine
their correctness and consistency.

Similar to the above, it will be worthwhile to develop a simulator for the speci-
fications (that directly implements the specifications). This means we can execute the
specifications to get statistics about the behaviour of the modelled system. It is possible
to set breakpoints and display simulation results as the execution of the system pro-
gresses. Since most implementation languages provide mechanisms for making system
calls to primitive constructs that allow the creation and termination (and other concur-
rency aspects) of concurrent processes the implementation stage will be relatively straight
forward. Examples of low level system call are fork and join for specifying concurrency
(available in most UNIX implementations*). When a fork instruction is executed by
a process, a new process (child) is created; this child process can load another program
code that executes concurrently with its parent (the creator)®. To synchronize with

completion of a child process, the parent process can execute a join operation thereby

*Microsoft’s Windows NT operating system provides similar primitives.

5The fork instruction is synonymous to the SPAWN function defined in Chapter 5, Definition 28.

Chapter 7. Future Work 201

to capture the different aspects of the system in a unified framework that can be verified

and implemented in the testbed.

< THE END >

Appendix. List of Symbols 203

| Symbols Meaning

LHS == RHS Definition of LHS as syntactically equivalent to RHS. A
definition is distinguished from an equality (‘=’) syntacti-
cally by the use of the symbol ‘==". A definition defines the
left side to be equivalent to the right side, while an equality
is a predicate that is either true or false.

Op=T Op is defined by T.
= is really a shorthand notation for definition. Note that =
and == can be used interchangeably.

fn : atype — otype A function declaration where the domain constructor — is

read as “produces”. The function name is fn while its input
and output are atype and otype respectively.

| fn: atype — otype A function declaration where only its signature is specified.

z:T A declaration, z : T, introduces a new variable z of type
T. This should be distinguished from from the membership
test, £ € T, which is a predicate that is either true or
false. T must be a nonempty set, consequently if z has
been declared to be of type T, z : T, then z € T must be
true.

z:T;p:0p; ---; a: Data
List of declarations.

p,q,---,r:0p ==p:0p;q:0p; ---;7:0p

[NODE, EVENTS] Introduces free types named NODE and EVENTS. They
are distinct new types whose structure is unconstrained by
this introduction.

A.2 Logic

The following are logic definitions. Let a,p, ¢,z, and y be expression terms, D be

declaration, and P and @ be predicates.

Appendix. List of Symbols 204

| Symbols Meaning
true, false Boolean logical constants.
- P Not P — Negation.
PAQ P and @ — Conjunction.
Pv @ P or) — Disjunction.
P=Q P implies @ or if P then @ — Implication.
This is equivalent to == (-~ P)V @
P& Q@ P is logically equivalent to @ — Equivalence

== (P=>Q)A(Q=P)

dz:TeP There exists an z of type T such that P holds
— Existential quantification.

Vz:TeP For all z of type T such that P holds
— Universal quantification.

The scope of the variable z is the quantified predicate P.
This scope extends as far to the right as possible so paren-
theses are used to delimit the scope. Furthermore, all
quantifiers specify the type of the bound variable thereby
defining the the values over which the quantification ranges
explicitly.

J,z:TeP There exists a unique z of type T such that P holds
— Unique existence.
oJdz: TePA-~(3y:Tez#yAP)
Note that y is a variable not the same as r and must not
occur in P

AD|PeQ sIDePAQ

There exists a type D that satisfies the constraint (or pred-
icate) P such that the predicate @ holds.

VD|PeQ@ &SVDeP=Q

Equality between terms

s~]
i
<

Appendix. List of Symbols 205

{ Symbols Meaning L
P#4q & - (p=4q)
Vz:T;p:0p; ---;a:Datae P

For all z of type T, p of type Op,..., and a of type Data
such that the predicate P holds.

dz:T;p:0p; ---;a:Datae P
Definition similar to V

A.3 Numbers

[Symbols Meaning

V4 The set of integers — this includes positive, zero, and neg-
ative integers.

N The set of natural numbers — this is the set on non-negative
integers.
== {n:2|n>0}

N, The set of strictly positive natural numbers

== N\ {0}

m---n The set of integers between m and n inluding both m and
n.

Rt The set of positive real numbers.

Appendix. List of Symbols 206

A.4 Sets

Let Sets,S, T, and X be sets, P a predicate, D a declaration, and ¢ a term.

| Symbols Meaning

tesS t is a memberof § — Set membership

t& S & (tef)

{}or@ The empty set

ScT &S WVr:SezeTAS#T
Strict set inclusion.

{z:T| P} The set containing exactly those z of type T that satisfies
the predicate P.

{D|Pet} The set of values of the term ¢ for the variable declared in
D that ranges over all values for which P holds.

PS The set of all subsets of S — Powerset

P, S The set of all nonempty subsets of S
== PS\ {T}

FS The set of finite subsets of S
== {T:PS| T is finite }

F,S The set of finite subsets of S
== FS\ {2}

sSnT Set interscetion

== {z:X|z€SAzeT}

SuT Set union
== {z:X|z€eSVvzeT}

S\T Set difference
== {z: X |z€SAz&T}

Appendix. List of Symbols 207

| Symbols Meaning |
N Sets Intersection of a set of sets.
== {z:X|(VS:Setsez €S)}
U Sets Union of a set of sets.
== {z:X|(3S:Setsez € 8S)}
#S The number of distinct members of a finite set.
— The cardinality.

A.5 Relations, Functions, and Sequences

Let C,X and Y be sets; z : X; y: Y; p and ¢ be functions; a; and b; be terms; and A

and B are sequences.

[Symbols Meaning |

Xe—Y The set of relations between X and Y.
== P(X xY)

(z, y) The relation relating z to y
== >y

dom R The domain of a relation

ran R The range of a relation

p(z) The function p applied to variable z. p(z) is defined if
and only if z € domp. Its value is the unique value in
range associated with the value z in its domain. That is, a
function is a set of pairs with each member of its domain
associated with a unique member of its range. Thus,
p(z) =y & (z,y) € p)

pogq Functional composition.
== 4, Pp

Appendix. List of Symbols 208

| Symbols Meaning |
XY The set of total functions from X to Y
== {rel: X« Y |(Vz:domrele (3, y: Y e zrel y))}
X—Y The set of total functions from X to Y
== {rel: X +— Y |(domrel= X
seq X The set of finite sequences whose elements are drawn from
X
== {A:N;+> X |[(In:NedomA=1...n)}
(a1, az,---,an) = {l—a,2— a,---,n > a,}
#X The length of sequence X.
() The empty sequence.
== {}
seq; X The set of non-empty sequences.
== {s:seqX|s#()
(alv a27"'7an) B (bls b?x"'abm)
Concatenation.
= (alva2a"'aan7blvb21"°ybm)
head(A) The first element of a nonempty sequence.
A # () = head(A) = A[1]
last(A) The last element of a nonempty sequence.
A # () = last(A) = A[#A]
tail(A) The sequence with the first element of a nonempty sequence
removed.
A # ()= tail(A) = A — head(A)
Al C The restriction of the range of sequence A to elements from
the set C.

Appendix. List of Symbols

(Symbols Meaning
Ain B A is a continguous subsequence of B.
A prefix B A is a continguous subsequence of B such that the head of

A and B are the same.

< 3dB,:seqBe A~ B, =B

Note: The operator prefix differs from in because in may
hold for any continguous subsequence of any given sequence
whereas prefix holds only when the head of both the subse-
quence and given sequence is the same.

A.6 TCSP symbols

The details of these operators and symbols are discussed in Chapter 4.

[Symbols Meaning
aP Events P can engage in — the alphabets of P
STOP Deadlock
SKIP Successful termination
WAIT Delayed termination
— Prefixing. It is also used as an event transition relation.
; Sequential composition
WAIT t; P Delay for ¢t units of time and then execute P
m] external choice
| Internal choice

Appendix. List of Symbols

Symbols Meaning
M Nondeterministic choice
I Parallel execution; must be synchronized on every event.
il Interleaving; no synchronization is required.
\ Hiding
c?a Input the variable a via channel ¢
cla Output the value of a via channel ¢

c?la: A — P,
pXeP

trace(P)

P &bool Q@

Prefix choice

Recursion

== seqz | z: EVENTS ¢ z € aP

[f bool is true then execute P otherwise execute (). Note
that bool must be a logical expression that evaluates to ei-
ther true or false. This is another form of the familiar if-
then-else construct.

Timeout program

Event interrupt

Timed interrupt

Satisfy relation

Record data type constructor

Record data type’s member element accessing operator.

References

[Aal92]

[ABLS9]

[ACLS7]

[AE92]

[AFLMWSS]

[AM95]

[AJRI5]

[ANSI84]

[Anw92]

[Bak95]

van der Aalst W.M.P. “Timed Coloured Petri Nets and their Application to Lo-
gistics”, Ph.D Thesis, Eindhoven University of Technology, 1992.

Ackerman A. F., Buchwald L. S., and Lewshi F. H., “Software Inspections: An
Effective Verification Process™, Software, Vol. 6, No.3, May 1989, pp 31-36.

Agrawal R., Carey J. M., and Livny M., “Concurrency Control Performance
Modelling: Alternatives Implications”, ACM Transactions on Database Systems,
#12, 1987, pp 609-654.

Agrawal D. and El Abbadi A. “Transaction Management in Database Systems”.
In A.K Elmagarmid (ed), Database Transaction Models for Advanced Applica-
tions. Morgan- Kaufmann, 1992.

Aspenes J., Fekete A., Lynch N., Merritt M., and Weihi W. “A Theory of
Timestamp-based Concurrency Control for Nested Transactions”. Proceedings of
the 14th VLDB Conference, Los Angeles, California, 1988.

Alfaro L. and Manna Z. “Verification in Continuous Time by Discrete Reason-
ing”. In Alagar V.S. and Nivat M. (Eds), Algebraic Methodology and Software
Technology. Proceedings of 4th International Conference, AMAST’ 95, Montreal,
Canada, July 1995, LNCS 936, Springer 1995.

Ammann P., Jajodia S., and Ray I., “Using Formal Methods to Reason about
Semantics-based Decomposition of Transactions”, In Proceedings of the Interna-
tional Conference on Very Large Databases, Zurich, Switzerland, September 1995,
pp 218-227.

ANSI / IEEE STD-830-1984, IEEE Guide to Software Requirements Specifica-
tions. IEEE Software Engineering Technical Committee, IEEE Standard for Re-
quirements Specification, STD-830-1984.

Anwar E. Supporting Complez Events and Rules in an OODBMS: A Seamless
Approach. Master’s Thesis, Database Systems R and D Center, Department of
Computer and Information Sciences, University of Florida, Gainesville, Florida
32611, November 1992.

Baker, William Douglas. Trigger Management in Active Multidatabase Systems.
Master’s Thesis, Department of Computer Science, University of Manitoba, Win-
nipeg, Canada, 1995.

211

References

[Bar90]

[Ber88]

[Ber90]

[BB91]

[BG80]

[BG89]

[BGHS7]

[BGHLS7]

[BH94]

[BHMC90]

[BK91]

[BL93]

[Blu92]

[BO90)

o
p—t
(3]

Barker K.E. Transactions Management on Multidatabase Systems. Ph.D. Thesis,
Department of Computer Science, The University of Alberta, Edmonton, Alberta,
Canada, Fall 1990.

Bergstra J.A., “Process Algebra for Synchronous Communication and Observa-
tion”, Technical Report No. P8815, Programming Research Group, University of
Amsterdam, 1988.

Bernestein P.A. “Transaction Processing Monitors™. Comm. ACM, Vol.33,
November 1990, pp 75-86.

Baeten J.C.M. and Bergstra J.A., “Real Time Process Algebra”, Formal Aspects
of Computing, Vol. 3, No. 2, 1991, pp 142 - 148.

Burstall R.M., and Goguen J.A., “The Semantics of Clear. A Specification Lan-
guage”. In Proc. 1979 Copenhagen Winter School Abstract Software Specification,
Lecture Notes in Computer Science 86, Springer-Verlag, 1980.

Bernstein P.A. and Goodman N., “Concurrency Control in Distributed Database
Systems”. ACM Computing Surveys, Vol. 13(2), April 1989, pp 230-269.

Bernstein P.A., Goodman N., and Hadzilacos V. Concurrency Control and Re-
covery in Database Systems. Addison Wesley, Reading Massachusetts, 1987.

Birell A.D., Guttag J.V., Horning J.J., and Levin R. “Synchronization Primitives
for a Multi-processor: A formal Specification”. SRC Research Report No.20, Au-
gust 1987.

Bowen J.P and Hinchey M.G, “Seven More Myths of Formal Methods™. Proceed-
ings of FME'94 Symposium, Industrial Benefit of Formal Methods, Barcelona,
Spain, 24-28 October 1994, Lecture Notes in Computer Science, Springer-Verlag,
1994.

Buchmann A., Hornick M., Markatos E., and Chronaki C. “Specification of a
Transaction Mechanism for Distributed Active Object System”. In Proceedings
of the OOPSLA/ECOQOP 90 Workshop on Transactions and Objects, Ottawa,
Canada, October 1990, pp 1-9.

Barghouti N. S. and Kaiser G. E., “Concurrency Control in Avanced Database
Applications”, ACM Computing Surveys, Vol. 23, 1991, pp 269-317.

Bernstein A. J. and Lewis P. M., Concurrency in Programming and Database
Systems, Jones and Bartlett Publishers, London, 1993.

Blum B. l., Software Engineering: A Holistic View. Oxford University Press,
Oxford, 1992.

Barker K. E. and Ozsu M. T., “Concurrent Transaction Execution in Mul-
tidatabase Systems”, Proceedings of COMPSAC’90, Chicago, Illinois, October
1990, pp 282-288.

References

[Cla92]

[CM87]

[CM91]

[Col90]

[CR90]

[CR91]

[CR92a]

[CR92b]

[Dav88]

[DC96]

[DES9)

[DeM78]

[Des90]

[DK83]

214

Claybrook B. G., OLTP : Online Transaction Processing Systems, New York :
John Wiley, 1992.

Clocksin W.F and Mellish C.S. Programming in Prolog, (Third Edition). Springer-
Verlag, 1987.

Chakravarthy S. and Mishra D. “An event Specification Language (Snoop)
for Active Databases and its detection”. Technical Report No. UF-CIS-TR-91-
23, University of Florida, Department of Computer and Information Sciences,
Gainesville, Florida 32611, September 1991.

Coleman D. “The Technology Transfer of Formal Methods: What’s Going
Wrong?”. Proc. 12th ICSE Workshop on Industrial Use of Formal Methods. Nice,
France, March 1990

Chrysanthis P.K. and Ramamritham K. “ACTA: A Framework for Specifying and
Reasoning about Transaction Structure and Behaviour”. ACM SIGMOD Record,
Vol. 19, No. 2, June 1990.

Chrysanthis P.K. and Ramamritham K. “A Formalism for Extended Transaction
Models”. Proceedings of the 17th VLDB Conference, Barcelona, Spain, 1991.

Chrysanthis P.K. and Ramamritham K. “ACTA: The SAGA Continues™. [n
A.K Elmagarmid (ed), Database Transaction Models for Advance Applications.
Morgan-Kaufmann, 1992.

Chrysanthis P.K. and Ramamritham K. “In Search of Acceptability Criteria:
Database Consistency Requirements and Transaction Correctness Properties”.
Pre-proceedings of the International Workshop on Distributed Object Manage-
ment, Edmonton, Canada, August 1992.

Davis A. M. “A Comparison of Techniques for the Specification of External Sys-
tem Behaviour”. Comm. ACM Vol. 31, No.9, September 1988.

De Giacomo G.D. and Chen X.J., “Reasonng about Nondeterministic and Con-
current Actions: A Process Algebra Approach.” In Proceedings of National Con-
ference on Artificial Intelligence (AAAI-96), 1996.

Du W. and Elmagarmid A., “Quasi-Serializability: A Correctness Criterion for
Global Concurrency Control in InterBase”, In Proceedings of the 15th Interna-
tional Conference on Very Large Data Bases (VLDB), Amsterdam, August 1989,
pp 347-355.

DeMarco T., Structured Analysis and System Specification. Englewood Cliffs, NJ,
Yourdon Press / Prentice Hall, 1978.

Desai B.C. An Introduction to Database Systems. West Publishing Company, St.
Paul, Minnesota, 1990.

Dasgupta P. and Kedem Z.M. “A Non-two-phase Locking Protocol for Concur-
rency Control in General Databases”. Proc. of the 9th VLDB Conference, Flo-
rence, [taly, 1983.

References

[DS9*]
[DS92a]

[DS92b)

[ECT5]

[EC90]

[EB93]

[EBO95]

[EGLT76]

[EN94]

[Fai85]
[Fid94]

[Flo85]

[FS93]

[Fujoo]

o
—
(V1]

Davies J. and Schneider S.A. “Real-Time CSP: Processes and Properties™

Davies J. and Schneider S.A. “A Brief History of Timed CSP”. Technical Mono-
graph PRG-96, Oxford University, 1992.

Davies J. and Schneider S.A. “Using CSP to Verify a Timed Protocol Over a Fair
Medium™. In Proceedings of CONCUR 92, LNCS 630. Springer-Verlag, 1992.

Eswaran K.P. and Chamberlin D.D. “Functional Specification of a Subsystem for
Database Integrity”. Proceedings of VLDB, Framingham, Massachusetts, U.S.A.,
Vol. 1. No. 1, Sept. 1975.

Elmagarmid A.K. and Calton P. “Guest Editors’ Introduction to the Special Issue
on Heterogeneous Databases”. ACM Computing Surveys, Vol. 22, No.3, Sept.
1990, pp 183 - 236.

Ehikioya S.A. and Barker K.E., “A call for the Formal Specification of Trans-
action Systems Protocols: A Survey”. In Perrizo W. and Goli V.N.R. (Editors),
Proceedings of the First Annual Mid-Continent Information Systems Conference
(MISC-93), May 3-4, 1993. Fargo, North Dakota, USA. Pages 258 - 268.

Ehikioya S.A., Barker K.E., and Onibere E.A., “Specifying Correctness in the
Automation of Banking Operations”. In Adagunodo E.R., Kehinde L.O., Akinde
A.D., and Adigun M.O. (Eds.) Computer-Based Automation in Developing Coun-
tries (Auto-DC ’95). Lagos, Nigeria. COAN Conference Series, Vol. 6, May 1995,
pp 103 - 115.

Eswaran K., Gray J., Lorie R., and Traiger [. “The Notion of Consistency and
Predicate Locks in a Database System”. Comm. ACM, Vol. 19, No.11, November
1976, pp 624-633.

Elmasri R. and Navathe S.B. Fundamentals of Database Systems (2nd Ed.). The
Benjamin / Cummings Publishing Company Inc., 1994.

Fairley R.E. Software Engineering Concepts. McGraw-Hill Inc., 1985.

Fidge C. “A Comparative Introduction to CSP, CCS, and LOTOS”, Technical Re-
port No. 93-24, Software Verification Research Center, Department of Computer
Science, The University of Queensland, Australia, April 1994.

Floyd C., “On the Relevance of Formal Methods to Software Development”. In
Ehrig H., Floyd C., Nivat M., and Thatcher J. (Eds), Formal Methods and Soft-
ware Development, Vol. 2: Colloquium on Software Engineering, Proceedings of
the International Joint Conference on Theory and Practice of Software Develop-
ment (TAPSOFT). Berlin, Springer-Verlag, March 1985.

Formal Systems (Europe) Limited. Failure Divergence Refinement (FDR): User
Manual and Tutorial (Version 1.3). August 1993.

Fujimoto R. M., “Parallel Discrete Event Simulation”, Comm. ACM, Vol.30,
No.10, Oct. 1990, pp 30-53.

References

[Geo91]

[Ger83]

[GF90]

[GGKKS90]

[GHS0]

[GHWS2]

(GHWSS]

[GJ91]

[GJS92]

[GM94]

[Gog88]

[GR93]

[Gra81]

[Gra94]

216

Georgakopoulos D., “Multidatabase Recoverability and Recovery”, In Proceed-
ing of Ist International Workshop on Interoperability in Multidatabase Systems,
Kyoto, Japan, 1991, pp 348-355.

Gerhart S.L. “Program Specification”. In Ralston A. and Reilly E.D. (Jr)
(Edited), Encyclopedia of Computer Science and Engineering (2nd. Edition). Van
Nostrand Reinhold Company, 1983, pp 1243-1246.

Garbrielian A. and Franklin M. K. “Multi-level Specification and Verification
of Real-Time Software”. 1990 IEEE 12th International Conference on Software
Engineering. 1990 pp 52-62.

Garcia-Molina H., Gawlick D., Klein J., Kleissner K., and Salem K. “Coordinating
Multi-Transaction Activities”. Tech. Report CS-TR-247-90, Dept. of Computer
Science, Princeton University, February 1990.

Guttag J.V and Horning J.J. “Formal Specifications as a Tool”. In Proc. 7th ACM
Symposium on Principles of Programming Languages. Las Vegas, 1980, pp 251 -
261.

Guttag J.V., Horning J.J., and Wing J.M. “Some Remarks on Putting Formal
Specifications to Productive Use”. Science of Computer Programming. North-
Holland, Vol. 2, No. 1, October 1982.

Guttag J.V., Horning J.J., and Wing J.M. “Larch in Five Easy Pieces”. Tech.
Report 5, DEC Systems Research Center, July 1985.

Gehani N.H. and Jagadish H.V. “Ode as an Active Database: Constraints and
Triggers”. In Proceedings [7th International Conference on VLDB. Bacelona,
Spain, September 1991, pp 327-336.

Gehani N.H., Jagadish H.V, and Shmueli O. “Event Specification in an Object-
Oriented Database”. In Proceedings International Conference on Management of
Data. San Diego, CA, U.S.A,.June 1992, pp 81-90.

Gunter C.A. and Mitchell J.C (Eds.), Theoretical Aspects of Object-Oriented Pro-
gramming: Types, Semantics, and Language Design. The MIT Press, 1994.

Goguen J.A. “OBJ as a theorem prover with Applications to Hardware Veri-
fication”. Tech. Report SRI-CSL-88-4R2, Stanford Research Inst., Menlo Park,
California, August 1988.

Gray J. and Reuter A., Transaction Processing: Concept and Techniques. Morgan
Kaufmann, San Mateo, CA, 1993.

Gray J. “The Transaction Concept: Virtues and Limitations”. In Proceedings of
The 7th International Conference on VLDB. 1981.

Graham P.C.J. Applications of Static Analysis to Concurrency Control and Re-
covery in Objectbase Systems. Ph.D Thesis, Department of Computer Science,
University of Manitoba, Winnipeg, Canada, 1994.

References

[GS87]

[Har88]
[HG97]

[Hay84]

[HJ95]

[HK91]

[HO93]

[Hoa85]

[How94]

[HPS93]

[HRS3]

[HU79]

[HZ92]

[1SO87]

[Jac96]

[Jar92]

217

Gracia-Molina H. and Salem K. “Sagas”. In Proceedings of the ACM SIGMOD
International Conference on Management of Data. May 1987.

Harel D. “On Visual Formalism™. Comm. ACM Vol.31 (5), 1988, pp. 514-530.

Harel D. and Gery E. “Executable Object Modeling with Statecharts”, Computer,
[EEE, July 1997, pp. 31-42.

Hayes C.T., “A Theory of Data Type Representation Independence”, In Kahn G.,
MacQueen D.B., and Plotkin G. (Eds.) Semantics of Data Types International
Symposium Proceedings, Sophia-Antipolis, France, June 1984. Lecture Notes in
Computer Science, Vol 173, Springer-Verlag, New York, NY, pp. 157-175.

Hinchey M. G. and Jarvis S. A., Concurrent Systems: Formal Development in
CSP. McGraw-Hill Book Company, 1995.

Huston I. and King S. “CICS Project Report: Experiences and Results from
the use of Z in IBM”. In Prehn S. and Toetenel W.J (Eds): VDM ’91, Formal
Software Development Methods. Springer-Verlag, LNCS 551, PP 588-603, 1991.

Hull M.E.C and O’Donoghue P.G. “Family Relationships Between Requirements
and Design Specification Methods”. The Computer Journal, Vol. 36, No.2, 1993.

Hoare C.A.R. Communicating Sequential Processes. Prentice Hall International,
1985.

Howles F. Distributed Arbitration in the IEEFE Futurebus Protocol. M.Sc Thesis,
Oxford University Computing Lab. Programming Research Group, UK, 1994.

Haghjoo M.S, Papazoglou M.P., and Schmidt H.W. “A Semantic-based Nested
Transaction Model for Intelligent and Cooperative Information Systems”. [n Pro-
ceedings of International Conference on Intelligent and Cooperative Information
Systems, Huhns M., Papazoglou M.P., and Schlageter G. (Edited), IEEE Com-
puter Society Press, Los Alamitos, CA, USA, May 12- 14, 1993, pp 321-331.

Haeder T. and Rueter A. “Principles of Transaction-Oriented Database Recov-
ery”. ACM Computing Surveys, Vol.15, No.4, Dec. 1983, pp 287-317.

Hopcroft J. and Ullman J. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading, MA 1979.

Hsu M. and Zhang B., “Performance Evaluation of Cautious Waiting”, ACM
Transactions on Database Systems, #17, 1992, pp 477-512.

International Standards Organization. “Information Systems Processing: Open
Systems Interconnection - LOTOS”. Tech. Report, 1987.

Jacobs M. A., A Visual Query Language for a Federation of Databases, Master’s
Thesis, Department of Computer Science, University of Manitoba, Winnipeg,
Canada, 1996.

Jarvis Steve. Using CSP to Verify a Reliable Network Protocol. M.Sc Thesis,
Programming Research Group, University of Oxford, U.K, Sept. 30, 1992.

References

[JDS85]

[IMS6]

[Jon86]

[JS90]

[Ken96]

[KJ90]

[KKBSS]

[KL83]

[KL91]

[Kna87]

[KS86]

[KS88]

(KS92]

[KS94]

[Lam78]

218

Jackson M.I, Denvir B.T. and Shaw R.C. “Experience of Introducing the VDM
into an Industrial Organization”. In Ehrig H., Floyd C., Nivat M., and Thatcher
J. (Eds), Formal Methods and Software Development, Vol. 2: Colloquium on
Software Engineering, Proceedings of the International Joint Conference on The-
ory and Practice of Software Development (TAPSOFT). Berlin, Springer-Verlag,
March 1985.

Jahanian F. and Mok A.K. “Safety Analysis of Timing Properties in Real-Time
Systems”. IEEE Trans. on Software Engineering SE-12 (9), Sept.1986.

Jones C.B. Systematic Software Development Using VDM. Prentice Hall Interna-
tional, 1986.

Jones C.B and Shaw R.C. (Eds.) Case Studies in Systematic Software Develop-
ment. Prentice Hall, 1990.

Kenney J. J., Ezecutable Formal Models of Distributed Transaction Systems Based
on Event Processing, Ph.D Thesis, Stanford University, U.S.A., June 1996.

Kogan B. and Jajodia S. “Concurrency Control in Multilevel-Secure Databases
based on Replicated Architecture”. ACM SIGMOD Record, Vol. 19 (2}, June
1990.

Korth H.F., Kim W. and Bancilhon F. “On Long-duration CAD Transactions™.
Information Sciences, Vol. 46, No.1-2, Oct-Nov. 1988, pp 73-107.

Kiessling W. and Landherr G. “A Quantitative Comparison of Lock Protocols
for Centralized Databases™. Proc. of the 9th VLDB Conference, Florence, Italy,
1983.

Kenny K.B. and Lin K., “Building Flexible Real-Time Systems Using the Flex
Language”, Computer Vol. 24, No.5, May 1991, pp 70-78

Knapp E. “Deadlock Detection in Distributed Databases”. ACM Computing Sur-
veys, Vol. 19, Dec. 1987.

Korth H.F. and Silberschatz A. Database System Concepts. McGraw-Hill Inc.,
1986.

Korth H.F. and Speegle G. “Formal Models of Correctness without Serializabil-
ity”. In Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data, Chicago Illinois, June 1988, pp 379-386.

Keller M. and Shumate K., Software Specification and Design: A Discipline Ap-
proach for Real-Time Systems. John Wiley and Sons Inc., 1992.

Korth H.F. and Speegle G. “Formal Aspects of Concurrency Control in Long-
Duration Transaction Systems Using the NT/PV Model”. ACM Trans. on Data-
base Systems, Vol. 19, No.3, Sept. 1994, pp 492-535.

Lamport L., “Time, Clocks, and the Ordering of Events in a Distributed System”,
Comm. of the ACM, Vol. 21, No.7, 1978, pp 558-565.

References

[Lap89]

[LH85]

[LM93]

[LM94]

[LMR90]

[LMWF94]

[LN93]

[Low93]

[Low94]

[LR91]

[LR82]

[LS85]

[LS87]

[Lus94]

219

Laprie J.C. “Dependability: A Unifying Concept for Reliable Computing and
Fault Tolerance”. In Anderson T. (Ed.), Dependability of Restlient Computers,
Chapter 1. Blackwell Scientific Publications, Oxford, 1989, pp 1-28.

Luckham D.C. and von Henke F.W. “An overview of Anna, A Specification Lan-
guage for Ada”. IEEF Software, Vol. 2, No. 2, March 1985.

Li Pei-yu and McMillin Bruce. “Formal Model and Specification of Deadlock™.
Tech. Report CSC-93-31, Dept. of Comp. Science, University of Missouri-Rolla,
Rolla, Missouri, August 1993.

Li Pei-yu and McMillin Bruce. “Formal Verification of Distributed Deadlock De-
tection Algorithm Using a Time Dependent Proof Technique”. Tech. Report CSC-
94-06, Dept. of Computer Science, University of Missouri-Rolla, Rolla, Missouri,
1994.

Litwin W., Mark L., and Roussopoulos N. “Interoperability of Muitiple Au-
tonomous Databases”. ACM Computing Surveys, Vol. 22, No.3, Sept. 1990, pp
183 - 236.

Lynch N., Merritt M., Weihl W., and Fekete A. Atomic Transactions. Morgan
Kaufmann Pub. Inc., San Mateo, CA., 1994.

Leestma S. and Nyhoff L., Turbo Pascal: Programming and Problem Soluving,
(Second Edition), Macmillan Publishing Company, 1993.

Lowe G., Probabilities and Prorities in Timed CSP. Ph.D Thesis, University of
Oxford, Hilary Term, 1993.

Lowe G., “Formal Development of Aircraft Control Software: A Case Study in
the Specification, Design and Implementation of a Real-Time System”, Technical
Report PRG-TR~15-94, Oxford University Computing Laboratory, 1994.

Lo M. and Ravishankar C.V., “A Concurrency Control Protocol for Nested Trans-
actions”, Technical Report #: CSE-TR-96-91, Computer Science and Engineering
Division, Dept. of Electrical Engineering and Computer Science, The University
of Michigan, Ann Arbor, Michigan 48109-2122, 1991.

Landers T. and Rosenberg R. L., “An Overview of Multibase”, In Schneider H.
J. (Ed.), Distributed Data Bases, New York, North Holland, 1982, pp 153-188.

Leveson N.G and Stolzy J.L. “Analyzing Safety and Fault Tolerance Using Time
Petri Nets”. In Ehrig H., Floyd C., Nivat M., and Thatcher J. (Eds), Formal
Methods and Software Development, Vol. 2: Colloguium on Software Engineer-
ing, Proceedings of the International Joint Conference on Theory and Practice of
Software Development (TAPSOFT). Berlin, Springer-Verlag, March 1985.

Leveson N.G and Stolzy J.L. “Safety Analysis Using Petri-nets”. IEEFE Trans. on
Software Engineering, No.13, PP: 386-397, 1987.

Lustman Francois. “Specifying Transaction Based Information Systems with Reg-
ular Expressions”. IEEE Trans. on Software Engineering, Vol.20 No.3, March
1994.

References

[Mar91]
[McC83]

[MCFP96)

[Mic96]
[Mil80]

[Mis91]

[MLTL93]

[MM79]

[Mos81]

[Mos85]

[Mot89]

[Nie89]

[NJH92]

[NPL91]

[NW90]

Marateck S.L., PASCAL, John Wiley and Sons, Inc., 1991

McCracken D.D. “Procedure-Oriented Languages: Survey”. In Encyclopedia of
Computer Science and Engineering (2nd Edition), Ralston A. and Reily E.D.
(Jr) (Edited). Van Nostrand Reinhold Company, 1983.

Morpain C., Cart M., Ferrie J., and Pons J., “Maintaining Database Consis-
tency in Presence of Value Dependencies in Multidatabase Systems”, [n SIGMOD
RECORD, Vol. 25, No.2., June 1996, Proceedings of the 1996 ACM SIGMOD In-
ternational Conference on Management of Data, Montreal, Quebec, Canada, June
4-6, 1996.

Microsoft Corporation, ODBC 3.0 : Programmer’s Reference, 1996.

Milner R. A Calculus of Communicating Systems. Lecture Notes in Computer
Science 92, Springer-Verlag, 1980.

Mishra D. Snoop: An event Specification Language Active Databases. Master’s
Thesis, Database Systems R and D Center, Department of Computer and Infor-
mation Sciences, University of Florida, Gainesville, Florida 32611, August 1991.

McMillin B., Lutfiyya H., Tsai G., and Liu J. “Parallel Algorithm Fundamen-
tals and Analysis”. Tech. Report No. CSC-93-17, Dept. of Computer Science,
University of Missouri-Rolla, 1993.

Menasce D.A. and Muntz R.R. “Locking and Deadlock Detection in Distributed
Databases”. IEEE Trans. Software Engineering, Vol. SE-5, May 1979.

Moss J.E.B. Nested Transactions: An approach to Reliable Distributed Comput-
ing. Ph.D Thesis, Massachusetts Institute of Technology, Cambridge, MA, April
1981.

Moss J.E.B. Nested Transactions: An approach to Reliable Distributed Comput-
ing. The Massachusetts Institute of Technology Press, Cambridge, M A, 1985.

Motrol Amihai. “Integrity = Validity + Completeness”. ACM Transaction on
Database Systems, Vol.14 No.3, Sept. 1989, pp 480-502.

Nielsen M., et al. “The Raise Language, Methodology, and Tools”. Formal Aspects
of Computing, Vol. 1, 1989.

Nico Plat, Jan van Katwijk, and Hans Toetenel. “Application and Benefits of For-
mal Methods in Software Development”. Software Engineering Journal, Septem-
ber 1992.

National Pysical Laboratory. “Formal Description Techniques and Security Stan-
dard Conformance Testing”. NPL Report DITC 175/91, March 1991.

Neel Madhav and Walter Mann. “A Methodology for Formal Specification and
Implementation of Ada Packages”. In Proc. of 14th Annual International Com-
puter Software and Applications Conference. IEEE Computer Society Press, 1990.

References

[Obe82]

[Ost94]

[Ost91]

[OV94]

[OVo1]

[Pag81]

[Pap86]

[Pet7T7]

[PNMB91]

[PNS96]

[Pre92]

[Pu86]

[Ros84]

[RU71)

[Rum91]
[SC88]

[Sch9*]

Obermarck R. “Distributed Deadlock Detection Algorithm™. ACM Transaction
on Database Systems, Vol. 7, June 1982.

Ostroff J.S. Formal Methods for the Specification and Design of Real-Time Safety
Critical Systems. (Draft 2.0 for IEEE Press book to be called “Tutorial on Speci-
fication of Time”), May 1994. Also appeared in Journal of Systems and Software,
April 1992.

Ostroff J.S. Survey of Formal Methods for the Specification and Design of Real-
time Systems. (Draft 1.0 for JEEE Press book to be called “Tutorial on Specifi-
cation of Time”), May 1991.

Ozsu M. T. and Valduriez P., “Distributed Data Management: Unsolved Prob-
lems and New Issues”, In Casavant T. and Singhal M. (Eds.) Readings in Dis-
tributed Computing Systems, IEEE/CS Press, 1994, pp 512-544.

Ozsu M.T. and Valduriez P. Principles of Distributed Database Systems. Prenctice
Hall, 1991.

Pagan F.G., Formal Specification of Programming Languages: A Panoramic
Primer. Englewood Cliffs, N.J.: Prentice-Hall. 1981.

Papadimitriou C.H. The Theory of Database Concurrency Control. Computer
Science Press, 1986.

Peterson J.L. “Petri nets”. Computing Surveys, Vol. 9, No. 3 September 1977.

International Workshop on Petri Nets and Performance Models. Petri Vets
and Performance Models. Proceedings of the Fourth International Workshop on
PNPM 91, Melbourne, Australia, Dec. 2 - 5, 1991. [EEE Computer Society, 1991.

ISO/IEC JTC1/SC7/WGI11, “Petri Nets Standard”, 1996. (Available at:
http://www.daimi.aau.dk/PetriNets/standard/).

Pressman R.S. Software Engineering: A Practitioner’s Approach (Third Edition).
McGraw-Hill Inc., 1992.

Pu C. Replication and Nested Transactions in the Eden Distribution System. Ph.D
Thesis, University of Washington, 1986.

Rosenberg J. M. Dictionary of Computers, Data Processing and Telecommunica-
tions. John Wiley and Sons, 1984.

Rescher N. and Urquhart A. Temporal Logic. Springer-Verlag, Library of Exact
Philosophy, 1971.

Rumbaugh J. et al., Object-Oriented Modelling and Design. Prentice Hall, 1991.

Stachowitz R.A. and Chang C. Verification and Validation of Ezrpert Systems:
Tutorial Programn SP2. AAAI, 1988.

Schneider S.A. “Rigorous Specification of Real-Time Systems”.

References

[ST90]

[Sto82]

[Tel94]

[TL82]
[TM91]

[TMW89]

[Ver78]

[VW87]

[Wal90]

[Was80]

[WC93]

[WD97]

[Wei88]

[WF83]

[Win90]

223

Sannella D. and Tarlecki A. “Algebraic Specification and Formal Methods for
Program Development: What Are The Real Problems”. EATCS Bulletin No.41,
1990.

Stoy J., “Some Mathematical Aspects of Functional Programming.” In Darling-
ton J., Henderson P., and Turner D.A (Eds.) Functional Programming and Its
Applications. Cambridge University Press, 1982, pp 217 - 252.

Tel Gerard. Introduction to Distributed Algorithms. Cambridge University Press,
1994.

Tsichritzis D. C. and Lochovsky F. H. Data Models. Prentice-Hall, Inc., 1982.

Tsai Sumei and McMillin Bruce. “Formal Methods of Real-Time Systems”. Tech.
Report No. CSC-91-17, Dept. of Computer Science, University of Missouri at
Rolla, Rolla, Missouri, August 6, 1991.

The New Mariam-Webster Dictionary. Mariam-Webster [nc. Publishers, Spring-
field, Massachusetts, 1989.

Verhofstad J. “Recovery Techniques for Database Systems”. ACM Computing
Surveys, Vol. 10, No.2, June 1978, pp 167-196.

Voung S.T. and Weber J.F. “Protocol Specification and Validation Using Prolog™.
In Proceedings of Intelligence Integration. CIPS Edmonton, Canada, November
16-19, 1987, pp 167-175.

Walshe Ann. “NDB: The Formal Specification and Rigorous Design of a Single-
user Database System”. Chapter 2 in [JS90].

Wasserman A.L, “Introduction to Data Types”. In Wasserman A.l. (Ed), Tuto-
rial Programming Language Design: CompSac 80. I[IEEE Computer Society 4th
International Computer Software and Applications Conference, IEEE Computer
Society Press, New York 1980, pp 184 - 188.

Wilson L.B. and Clark R.G., Comparative Programming Languages, (Second Edi-
tion), Addison-Wesley, 1993.

ISO/IEC JTC1/SC7/WGL11, “High-level Petri Nets Standard: Working Draft
Version 2.1, Project 7.19.3 — Petri Nets, February 18, 1997. (Available at:
http://www.itr. unisa.edu.au/tsec/sections/standard.html).

Weihl W. “Commutativity-Based Control for Abstract Data Types”. IEEE Trans.
on Computers, Vol. 37, No.12, Dec. 1988, pp 1488-1505.

Wotschke D. and Fischer P.C. “Well-Formed Formula”. In Ralston A. and Reilly
E.D. (Jr) (Edited), Encyclopedia of Computer Science and Engineering (2nd.
Edition). Van Nostrand Reinhold Company, 1983, pp 1568.

Wing J.M. “A Specifier’s Introduction to Formal Methods”. Computer Vol. 23,
No. 9, September 1990.

References

[WKC91]

[Wo087]
[Woo89]

[YCT9]

[YMS85]

[Zwa96]

224

Wallace D.R., Kuhn D.R., and Cherniavsky J.C. Report of the NIST Workshop
of Standards for the Assurance of High Integrity Software: NIST Special Publi-
cation 500-190. Computer Systems Laboratory, National Institute of Standards
and Technology, Gaithersburg, MD 20899, USA, August 1991.

Wood D. Theory of Computation. John Wiley and Sons, 1987.

Woodcock J.C.P. “Calculating Properties of Z Specifications”. ACM Software
Engineering Notes, Vol. 14(5), July 1989, Page 43-54.

Yourdon E. and Constantine L., Structured Design. Englewood Cliffs, NJ, Prentice
Hall, 1979.

Yonezawa A. and Matsumoto Y. “Object Oriented Concurrent Programming and
Industrial Software Production”. In Ehrig H., Floyd C., Nivat M., and Thatcher
J. (Eds), Formal Methods and Software Development, Vol. 2: Colloquium on
Software Engineering, Proceedings of the International Joint Conference on The-
ory and Practice of Software Development (TAPSOFT). Berlin, Springer-Verlag,
March 1985.

Zwass V., “Electronic Commerce: Structures and Issues”, International Journal
of Electronic Commerce, Vol. 1, No. 1, Fall 1996, pp 3-23.

