
SPECIFICATION OF TRANSACTION
SYSTEMS PROTOCOLS

Sylvanus Agbonifoh Ehikioya

A t hesis
presented to the University of Manitoba

in partial fuKhent of the
requirements for the degree of

Doctor of Philosophy
in

Computer Science

Winnipeg, Manitoba, Canada, 1997

@Sylvanus Agbonifoh Ehikioya 1997

National Library 1+1 ,Canada
Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliogtaphic SeMces services bibliographiques

The author has grsmted a non- L'auteur a accordé une licence non
exclusive licence allowing the exclusive permettant à la
National Lhrary of Canada to Bibliothèque nationale du Canada de
reproduce, loan, distniute or sell reproduire, prêter, distribuer ou
copies of this thesis in microfoq vendre des copies de cette thèse sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L'auteur conseme la propriété du
copyright in this thesis. Neither the droit d'auteur qui protège cette thèse.
thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels
may be printed or othenirise de celle-ci ne doivent être imprimés
reproduced without the author's ou autrement reproduits sans son
permission. autorisation.

FACULN OF GRADUATE STUDIES
++***

COPYRIGET PERMISSION PAGE

A Thesis/Practicum submitteà to the Fncuity of Graduate Studies of The University

of Manitoba in partiai f a m e n t of the reqdrements of the degree

Permission bas b e n grantecl to the Libmry of The Univeisity of Manitoba to lend or sel1
copies of this thesidpracticam, to the Nationai Libm y of Canada to microtilrn this thesis

and to lend or sel1 copies of the film, and to Dissertations Abstracts Interaational to publish
an abstract of this thesWpracticurn.

The author reserves other publication rights, and neither this thes Wpmcticum aor
extensive estracts from it may be priotd or otherwise reproducd without the author's

writtea permission.

Declarat ion

1 hereby declare that 1 am the sole author of this thesis.

1 authorize the University of Manitoba to lend this thesis to other institutions or in-
dividuals for the purpose of scholarly research.

1 further authorize the University of Manitoba to reproduce this thesis by photocopying
or by other means, in total or in part, at the request of other institutions or individuds
for the purpose of schola.rly research.

Thesis use Form

The University of Manitoba requires the signatures of a l l persons using or photocopying
this thesis. Please sign below, and give address and date.

Date Narne Signature Address

Dedicat ion

To my mother, Madam 0ba Lydia Ehikioya, for a l l her self denids throughout my early
education and to al1 mothers who suffered for the good of their children.

Abstract

A fundamental requirement in specieing transaction systems is the need for a

clear, concise, unambiguous, and rigorous behavioural and functional description of the

systems' crucial features Like concurrency, nondeterminism, mutual exclusion, synchse

nization, and deadlock avoidance. To write a specification that exhibits these charac-

teristics requires a formalism that has both expressive power and the functionality for

speciQing and reasoning about the structure and behaviour of transaction modelç. To

ensure t hat the specifications are consistent and verifiably correct requises expressing

the specifications using mat hematicd notations and t hen using the notations' underlying

formalism to prove correctness properties. Such requirements c m only be sat isfied wi t hin

a formal framework.

However, most of the present transaction systems (models) are not fomally spec-

ified or at best use methodologies that are ad hoc or semiformal. Unfortunately, when

insufficient formalism is used to specify transaction systems protocols they are open to

different interpretations t hereby violating the presemt ion of specificat ion interpretat ions

requirement. Therefore, there is need for a thorough modelling of the systems based on

forma1 models that are easy to use, verify and validate:

In this thesis, a Timed CSP based fornial framework for transaction management is

given. This framework is more general and not biased towards specific types of transac-

tion. It integrates temporal behaviour of individual transactions with the dependencies

among transactions that can arise e-g., when accessing shareable data objects. Furt her,

the frarnework uses an event-based model based on causality and time because the partial

orders together can naturally model concurrent events between transaction. In addit ion,

the causality and time information are useful in analysing transaction execution for de-

termining correctness and recoverable histories.

In bricf, t his t hesis provides a taxonomy of a transaction's specificat ion character-

istics against which any specification can be assessed; presents a suite of requirements for

an adequate formalism in which various concurrent activities and interactions of t ransac-

t ions can be naturdly expressed; provides record data type extensions to CS P ; specifies

transactions correctness criteria and concurrency control protocols; and presents an ab-

stract level specification of an application, the Electronic Shopping M d , to iilustrate the

concepts introduced.

vii

Acknowledgement

1 would Like express my sincere thanks to the following people and institutions that con-

tributed to the successfd completion of this work.

To my supervisor, Dr. Ken Barker, for his constructive comments and guidance as the

thesis evolved and for his considerable patience in reading my specifications and proofs

in a paragon of notations and styles. His immeasurable academic guidance, maay invalu-

able discussions with me and suggestions, and patience in listening to and constructively

critiquing my ideas led to the accomplishment of my academic goal. My sincere thanlcs

to him-

To my examiners, Prof. David Scuse and Dr. James F. Peters III, for making a number

of suggestions for improving the presentation and the focus of this thesis. Your continued

interest and encouragement kept me going at sorne critical points during rny study.

To Dr- Kasi Periyasarny for being a source of inspiration, information, encouragement

and friendship. Thanks for being there for me for al1 the assistance and emotional sup-

port you provided and for keeping me going at the end. He has provided many invaluable

comments and useful suggestions, and pointed out errors in the specifications when 1 was

going astray. 1 do appreciate it.

To Dr Randal Peters and Dr. Peter C.J. Graham (Professors in the Dept.) and Dr.

Sheela Ramanna (Dept. of Business Computing, University of Winnipeg) for their help-

ful comments and assistance with research materials.

To the Government of Canada for financial support in the f o m of Canadian Common-

wealth Scholarship throughout my study.

To the University of Benin, Benin City, Nigeria For granting me study leave for the period.

To Prof. S. O Fatunla (late), University of Benin, Benin City, Nigeria for his stead-

fast belief in rny academic abilities and encouragement.

To Mr. E. E. Oghuman, (President), Bonaventure Limited, Lagos, Nigeria br his moral

and initial bancial support during m y preparations to corne to Canada. My dreams

would have vanished into thin air if not for his support.

To my family, particularly my children (Sylvia, Sylvanus Jr., and Augusta), for their

continuing love, patience and understanding, and for bearing with me during those diffi-

CL& times 1 was unable to satisfy their material needs.

Finally, to my friends Oghre Emmanuel and Chris Oriakhi. I express my love and grati-

tude for their encouragement during my years of study.

Contents

1 INTRODUCTION 1

. 1.1 Statement of the ProbIem 3

. 1.2 Motivation 6

. 1.3 ObjectivesoftheStudy 9

. 1.4 Significance of the Research 9

. 1.5 Limitations 11

. 1.6 Problem Domain 11

. 1.6.1 An Example - The Electronic Shopping M d 16

. 1.7 Notations 20

. 1.8 Organization of the Thesis 21

2 LITERATURE REVIEW 22

2.1 What is a Formal Method? 39 ..
. 2.1.1 Formd Specification Language 23

. 2.1.2 Taxonomy of Formal Specification Language 24

. 2 -2 Current Traosact ion S pecificat ion Techniques 25

. 2.2.1 Natural Language 26

. 2.2.3 Pseudocodes 26

. 2.2.3 S tate-Oriented Techniques 26

. 2.2.4 Funct ional Decomposi tion Techniques 29

. 2.2.5 ACTA 30

. 2.2.6 Prolog 31

. 2.3 A Survey of Existing Tools 31

2.3.1 Z . 31

. 2.3.2 VDM 32

2.3.3 Temporal Logic ... 33

. 2.3.4 Petri Nets 33

2.3.5 Communkat ing Sequential Processes 36

2.3.6 Caldus of Communicating Systems 37

2-4 TraditionalTransactions . 40

. 3.4.1 Recovery 43

2.4.2 Types of Transaction Concurrency 44

2.4.3 Approaches to Concurrency Control 45

2.4.4 Recovery Techniques . 49

2-5 Extended Transactions . 50

2.5.1 Active Databases . 51

2.5.2 Nested Transaction . 51

. 2 - 5 3 Cooperative Transactions -53

2.5.4 Federated Databases . 54

2-6 Dependence Relationships . .55

3 SPECIFYING TRANSACTIONS 56

3.1 Taxonomy of Transactions Specification Requirements 56

3.2 Transactions Specification Formalism Requirements 63

. 3.3 Considerations for Transaction Specificat ion 66

. 3.3.1 Constraints Specificat ion 66

. 3.3.2 Proof Requirernent 67

. 3.3.3 Time Property 68

. 3.3.4 CausAty 70

. 3.4 S pecification Language Selection 70

4 TIMED CSP FUNDAMENTALS 72

. 4.1 Elements of TCSP 72

. 4.2 The Language of Timed CSP 74

. 4.3 Nature of CSP Specifications 80

4.4 Semantic Models for Timed CSP . 81

4.4.1 Reasoning with Traces . 83

. 4.4.2 Proof Mechanism 84

4.4.3 TheImplementationofaProcess 85

. 4.5 Interleaving Semantics 86

4.6 SupportingRecordDataTypeinCSP 87

. 4.6.1 Defining Record Data Structure 88

4.6.2 Semantic Definitions . 94

5 PROTOCOL SPECIFICATIONS 99

. 5.1 Basic Definitions 99

. 5.2 The Mode1 106

. 5.3 Logical Time Assigrunent 108

. 5.4 Definitions 109

. 5.4.1 Preamble 109

. 5.4.2 Temporal Operators 114

. 5.5 hterleaving 119

. 5.6 Causality 120

. 5.7 Specification of Transaction 134

. * * 5.8 History .. 126

. 5.9 Specification of Correctness 129

. 5.9.1 Failure Atomicity 130

. 5.9.2 Serial History 132

. 5.9.3 C o d c t Serializabili ty 134

. 5.9.4 View Serializability 136

. 5.10 Specification of Transaction Models 139

. 5.10.1 Single Level Transactions 140

. 5.10.2 Nested Transactions 140

. 5.10.3 Distributed Transaction 151

. 5.10.4 Multidatabase 103

. 5.1 1 Specification of Concurrency 158

. 5.11.1 Time Starnp Ordering Protocol 159

. 5.11.2 The 2-Phase Locking Protocol 165

. 5.12 The Electronic Shopping M d 172

. 5.12.1 Some Applicable Functions 177

6 CORRECTNESS PROOF 183

. 6.1 Proof Methodology 184

. 6.2 Safety and Liveness Properties 186

. 6.3 Prove Theorems about Specifications 186

7 CONCLUSION AND FUTURE WORK 193

. 7.1 Thesis Summary 195

. 7.2 Future Work 196

List of Symbols 201

References 211

List of Figures

1.1 Architecture of the Problem Domain . 12

1.2 Components of an MDB Model (Adapted from (Bar901 with permission) 13

1.3 Transactions in MDB Mode1 . 14

1.4 Abst ract Represent a t ion of ESM Transactions 17

2.1 Operations Compatibility Matrix [BRSOI 27

3.1 Transactions. Specification. and Formalisrn Features Relationship 57

3.2 Taxonomy of Transaction Specification Characteristics 59

. 4.1 The Satisfaction Relation 86

. 4.2 A Sample Record Data Structure 88

. 5.1 A Graphical Mode1 of Problem Domain 108

5.2 Synchronization Point of two Transactions 1%1

. 5.3 Sample Dependency Relationship Graph 122

. 5.4 Sample Causal Dependencies 123

. 5.5 Space-Time View of Execution 128

. 5.6 Visibility of Commit (a) 142

. 5.7 Visibility of Commit (b) 143

. 5.8 Confiict Set of Subtransaction 147

. 5.9 Root Transaction Construction 149

. 5.10 Multi-database Transactions 155

. 5.11 Relationship between transactions and a site 157

. 5.12 Timestamp Ordering protocol 159

5.13 Generd Locking Scheme . 166

5.14 Cornbined cautious waiting and immediate reschedfing 167

5.15 Operations of example transactions . 172

5.16 Operations of example Transactions using 2PL 173
5-17 A Customer Order Transaction . 174

5.18 Process Mode1 of Order Processing . 175

5.19 A Graphical Representation of Purchase Transaction 176

5.20 Dependence Relationship of Sample Transaction LS 1

6.1 Application needs . Software Solution Relationship 184

6.2 Behavioural Equivalence of TO and 2PL 193

Chapter 1

INTRODUCTION

Users interact with the database t hrough the execution of special application programs

called transactions [AE92] that are composed of a sequence of database steps derived from

a program whose combined execution is bown to preserve the database in a consistent

and correct state. Thus, €rom a user's viewpoint , a transaction is an independent task or

activi ty performed by the system. Transactions have a beginning; perform user defined

tasks; and terminate leaving the system in a consistent state. Therefore, a transaction

that updates database objects must preserve their integrity constraints.

Integrity is maintained by allowing only safe transactions to update the database.

A safe transaction is one that does not violate database integrity constraints [SS89].

Motro [Mot891 states t hat database integrity bas two complementary components: ualid-

ity, guarantees the exclusion of all false information from the database, and comple teness

guarantees al1 true information is included in the database. This is achieved if a trans-

action moves the database from one consistent state to another. Correctness is partially

supported by the all-or-nothing principle, (often called a tomicit y). The all-or-not hing

principle states that "each transaction should either execute in its entirety or have no

effects at dln [Bergo]. Thus, transactions in database systems are defined in terms of

consistency, recovery, and permanence. Consistency implies that a committed transac-

tion produces a consistent database state' if the database state before its execution was

'Consistent states generally satisfy some constraints involving relationships between the d u e s of

different data objects in the database.

Chapter 1. introduction 3 -

consistent; recovery refers to the ability, upon failure, to take the database to some state

considered correct; and permanence is the ability of a transaction to record its effects in

the database. Therefore, a transaction should have the properties of atomicity, consis-

tency, isolation, and durability. These properties are often collectively cailed the ACID

test [Desgo, Gra81, OV91].

The desire to support concurrency means synchronization is necessary to guaran-

tee data/operations dependencies are maintained, thereby ensuring the correctness of

results. These propert ies are embodied in transaction pro tocols. A transaction's protocol

is a body of rules that defines (or describes) the correct behaviour of the transaction's

encompassing model. The transaction's protocols require t hat transactions perform de-

sired tasks correctly. To achieve consistency, the interleaved execution of concurrent

transactions must be properly synchronized so some forrn of serializability is guaranteed.

One way to minimize the processing required to maintain integrity during transac-

tion processing is to prove, at compile time, that transactions cannot [if run in isolation

and serially] disobey integrity constraints [Gra94, SS89]. To determine this, a precise and

independent description of the transaction protocols is required. Such a descript ion is

called a specification. The specificat ion is implement at ion independent and concent rat es

on properties rather than mechanisms. That is, it is only what is required of a system

that must be described, not the detail of how to do it.

Various terms have been used synonymously to denote a specification (see [Ger831

and [DavM]). This thesis defines a specification as:

Definition 1 Specification: A specificat ion is a precise, independent, implement at ion
independent description of the properties (statement of requirements) of a system, against
which the system can be verified. I

The IEEE Software Engineering Technical Committee [ANS1841 stipulates the system's

propert ies t hat are specifiable. These are: system's funct ionality, performance (such as

accuracy and timing performance), constrkints (such as restrictions on funct ions, data-

base integrity, and operat ing environments) , at tributes (such as portability, securi ty, and

maintainability), and external interfaces with other software/hardware.

A specification states properties that must be guaranteed of a system to ensure

Chapter 1 . Lntroduction 3

correct behaviour? The specification is structured as a collection of requirements, each

describing some property that the system must satisfy. In other words, a specification

describes what a system should do rather than the mechanics of the system.

The New Mariam-Webster Dictionaq defines a system as "an organized integrated

whole made up of diverse but interrelated and interdependent parts" [TMW89]. Systems

have internal structure and exhibit behaviour. A system's behaviour is the result of the

behaviour of its parts (which may themselves be systems) and of the interrelationships

arnong those parts [CHJ86]. Birell et ai. [BGHL87] state that any [concurrent] system's

behaviour is describable using a sequence of atomic actions' executions.

A system h a . t hree representation forms: functional, structural, and behavioural.

The description of the three distinct views given below adopts Harel's [HarS6] method-

ology.

The functiond view shows the system as a set of entities performing relevant tasks.

This includes a description of the task performed by each entity and the way the

entity interacts with other entities and the environment. Ideally, the functional view

should complement the behavioural view so each transaction in the behavioural

view is traceable through the system.

The structurai view shows the composition of the system - the cornponents, the

interfaces, and the flow (data and control) between the components through the

interfaces. The structural view also shows the environment, the interfaces, and

information flow between it and the system.

The behavioural view shows how the system wilI respond to specific inputs: what

state it will adopt and what output it will produce; what boundary conditions exist

for valid input and which states are considered correct and consistent. This includes

a description of the environment that is producing the inputs and consuming the

output S. It also includes constraints on performance imposed by the environment

and function of the system.

'Correct behaviour is the degree to which a systerns satisfies its specified requirements and to which

requirements meet their associateci needs-

Chapter 1. introduction

1.1 Statement of the Problem

Several questions remah open vis-a-vis transactions:

1. What mechanisms can achieve the desired transaction correctness propert ies?

2. C a heterogeneous transaction models be integrated?

3. What environment al circumst ances can a transaction complete successfully ?

4. When is a nested transaction most appropriate?

5. When a transaction is initiated, when does its execution begin and end?

6. How do we reason about and verify the behaviour of transactions?

These questions can best be answered with a formal frarnework that captures transaction

interactions. The first step is to formalise the concurrency algorithms using a suitable

specification Ianguage. Correctness conditions for the specifications can be formulated in

terms of the properties of the system's behaviours3.

Some recent work on fomal specification of transaction systems has appeared in

the literature (see [AJR95, Chr91, EB93, EB095, Ken961). Gray and Reuter [GR931

state that "no grand unified theory of transactions has yet been developed". Further,

there is currently no satisfactory or unified formalism for specifying and reasoning about

database transactions [EB93] and most specificat ion met hodologies current ly applied are

ad hoc,

Current ly, transaction mode1 descriptions and t heir protocols consist of an inforrnal

explanation supported by the use of pseudocode to chaiacterize the operations within a

system. Unfortunately, when insufficient formalism is used to specify transaction systems

protocols they are open to different interpretations. Li and McMillin [LM93, LM941 state

many published (distributed) deadlock detection/resolution algorit hrns are found to be

incorrect [MM79, Obe82, SN85,CKST89] because they have used inforrnal approaches

31t is natural to express correctness conditions as restrictions on the actions of the system. This

approach is simple but shows explicitly the action that are under the control of different cornponents.

Chapter 1. htroduction -5

to reason about and verify the correctness of these algorithms. Oniy rigorous proofs are

suflicient to show the correctness of such algorithms [Kna87] because intuitive operational

arguments are error prone and sub ject to misinterpretation. Since formal correct ness

proof is difficdt [Sin891 oniy a few sophisticated formal methods are available for proving

correctness of dgorit hms [LM93]. Moreover, wri t ing correct software requirement s is a

difficdt problem [LS85] for which there are few analytical tools available.

A formal method supports formal reasoning about the specifications of the transac-

tion systems as well as provides the basis for verification of the resulting software product.

Jarvis [Jar921 noted that informal approaches are notoriously unreliable so formal meth-

ods pay dividends. The use of formal methods permits the analysis of complex protocols

since they eliminate ambiguity in specifications.

A forma1 mode1 for specifying transaction protocols is described bere. The formal

specification utilizes CSP to capture static and dynarnic properties of transaction proto-

cols. The thesis demonstrates t hat the following propert ies of transaction systems can

be captured using this technique:

correctness

concurrency

a safety properties

liveness propert ies

a timing relationships between transactions (or subtransactions) as a control mecha-

nism

dependency relat ionships between transactions.

The CSP specification language presents and proves the correctness of a number of trans-

action processing dgorithms, including locking and timestamping, correctness criteria

such as CSR and VSR, and the hieratchical transaction models. Finally, a sarnple ap-

plication, the Electronic Shopping Mall, is presented to illustrate the technique. The

structural and behaviourd capabilities of the system are formdized in terms of asser-

tions and constraints that rnust be preserved by any implementation of the system.

Chapter 1. Introduction

1.2 Motivation

Transaction systems must transparently demonstrate integrity, consistency", safety and

liveness, and dependability properties. These properties are vital to all transaction mod-

els though the degree of importance placed on each varies between models. The new

complex transaction systems [Al3921 must s a t i e the dependability requirement. Laprie

defines dependability as "that property of a computing system that allows reliance to be

justifiably placed on the service it deliversn [LapSg]. Dependability is a property that

has other measures such as safety, reliability5 and availabilit- Availability is a measure

of the frequency the system is available to the users when required by the users (Le., of

being operational - not failed - at a given instant in time). Correctness ensures system

behaviour conforms to the specified requirements. Fomal met hods address correct ness

aspect which is the focus of this research.

There are four approaches to achieving system dependability. These are:

O Fault avoidance to prevent fault occurrence or introduction.

O Fault tolerance to provide a service complying with the specification in spite of

faul t s .

O Fault removal to rninimize the presence of faults.

O Fault forecasting to estimate the presence, the creation, and the consequences of

faults.

Formal methods are classified as fault avoidance and removal techniques which can in-

crease dependability by removing errors from the requirements specification and by veri-

fying the specification is correct. Dependability is furt her enhanced when formal met hods

are used with other techniques.

Transaction systems specifications need a clear, concise, unambiguous, and rigorous

behavioural and functional description of crucial features. Concurrency, nondeterminism,

4Somet imes consistency property is relaxed.

Recovery is a subset of reliability.

Chapter 1. introduction 7

mutual exclusion, synchronization, and avoidance of deadlock are key features of trans-

action systems so developing a formal specification and verification techniques for such

systems components is very desirable. Unfortunately, none of the present transaction

systems (models) have been successful in f d y defining transactions formaliy.

Formal specification of network protocols is simpler than transaction systems be-

cause discrete synchronizable points are identifiable. Unfortunately, database transaction

c m share data (objects) simultaneously so operation synchronization is more difficdt to

specify. Formal method will clarify underlying transaction concepts and lead to simple,

reliable, and correct protocol design. Addi tional formal met hods research is required

in the database transaction domain to f d y understand the t heoret ical underpinnings

and techniques. Furthemore, the notion of seridizabili ty t hat incorporates causali ty is

required for indep t h st udy.

Formal met hods are rarely used in commercial developments [Co190, BSC921. Wide-

spread commercial acceptance of formal methods requires carefully documented, redistic

case studies. In database applications, in particular, the few case studies [Wd90. ShagOb]

available examine sequential and deterministic systems so t hey do not examine concur-

rency which is the core of any complex transaction systems.

Benefits of Formal Methods

Using a formal frarnework for specifying transaction systems protocols offers the following

benefits [NWSO, NJH92, Ost91, Pre92, Win90, Flo851.

0 It assists in deriving an independent and precise description of the behaviour and

effects of transactions in a given transaction rnodel.

The formaiization process can reveal ambiguities, incompleteness and contradic-

tions in the informal product definition. Thus a formal method provides a means

for specifying a system in a precise language so that consistency, completeness, and

correctness can be assessed in a systematic fashion.

It allows for correctness verification of the transactions protocols. Verifying cor-

rectness can be done using rigorous mathematical andysis and logical reasoning,

Chapter 1. Introduction

as well as tools where they are available.

Different transaction models can be evduated and compared easily.

A formally verified system can be used with greater reliability. "The use of forrnal

techniques shouid be seen as a way of achieving a high degree of confidence that a

system will conform to its specifications." [Spi881

Formal methods influence the automation of the production/development of soft-

ware. Also, a tool for a forma1 method can Lead to automation of the specification

model.

Forma1 methods provide abstraction so a precise behavioural specification focused

on a system's functionalities can be defined. Abstraction is the process of identifying

the key properties being modeled while ignoring unimportant details to manage

complexity and promote correctness, extensibility, maintainability, reusability, and

unders t andability.

Formal methods help programmers to reason carefdly about the correctness of

implementations of transaction processing systems since many of the proposed al-

gori t hms for transactions are cornplex.

Additional benefits arising from using fomal techniques are:

Reduction in system development costs because errors are detected and cor-

rected early.

Reduction in the time and effort required at the detailed design and cod-

ing stages (e.g., the Customer Information Control System [CICS] project

[HKgl]).

Identifying when reusing program modules is possible [ST90] from the forrnal

specificat ion.

Chap ter 1. Introduction

1.3 Objectives of the Study

The primary focus of this research is to speci& database transaction systems protocoIs

using formal techniques. The structural and behavioural capabilities of the system can

be formalized in terms of assertions and constraints that must be satisfied by any imple-

mentation. In particulas, this research:

identifies the requirements of any forma1 language suitable for the specification of

transaction syst ems;

identifies and emphasizes the importance of using forma1 methods in the specifica-

tion of transaction systems protocols;

f o n n d y specifies transaction systems protocols using the Timed CSP specification

Ianguage; and

provides proof of correctness for the specifications.

This research adopts the following methodology in specifying transaction systems

protocols. First, the CSP's process language describes the communication interaction

patterns of the system. Second, h s t order logic expressions specify the system's func-

tional properties while the behavioural specifications describe system properties with

traces- Findy, satisfaction relations and rigorous proof mechanisms ensure the processes

described exhibits these properties. An equivalent approach but orthogonal methodol-

ogy to the one adopted in this research uses refinement to investigate whether or not the

process descript ion exhibits t hese properties, and finally refine the process descript ion

towards implementation. This is outside the scope of this research.

1.4 Significance of the Research

The main significance of this research is the integration and formalization of solutions

to individual transactions requirements wi thin a single uniform transaction specificat ion

framework (- Timed CSP specification language). This framework is more general and

Chapter 1. introduction 10

not biased t~wards specific types of transactions. It integrates temporal behaviour of

individual transactions with the dependencies among transactions t hat can a i s e when

accessing shareable data. Transaction dependencies ase analyzed using the notion of

predicate satisfaction,

Contributions

In summary, the foilowing are the specific contributions of the thesis:

1. Provides a taxonomy of a transaction specification characteristics against which

any specification can be assessed.

2. Identifies the requirements of any formal language t hat is appropriate for the spec-

ification of transaction systems.

3. Provides record data structure support for CSP.

4. Provides a forma1 framework for analysing dat abase transaction functionali ties and

behaviours and the constraints imposed by the uoderlying structure of the system to

ensure correctness and enhance system reliabiiity. Specifically, the thesis formally

provide:

specification of hierarchical transactions (closed and open models).

specification of 2PL and Timestamp Ordering concurrency cont rol protocols,

and

specification of correctness criteria (e.g. CSR and VSR).

5. Provides a formal case study analysis of a new application - the Electronic Shop-

ping M d in the domain of electronic commerce.

6. Demonstrates correct ness of schedules.

7. Other contributions are:

Chap ter 1. Lntrod udion 11

demonstrates the use of software engineering discipline in the design, develop

ment and evaluation of transaction systems for cooperative cornputing work-

flow architectures or environment S.

provides solutions to problems of elect ronic commerce transactions correct ness

and reliabili ty and identifies new challenges and direct ions for future research.

provides met hodology to accommodat e the new cornplexit ies introduced by

asynchronous operat ions of dist ributed systems.

1.5 Limitations

This research is limited to the formal specification of database transaction systems prote

cols using the formal specification language Timed CSP. The language and models of CSP

are employed to specify the transaction protocols at an abstract level and to establisfi

a proof of correctness. The implementation of the specifications is outside the scope of

this research. Further, no attempt has been made to develop a new formal specification

language (or calculus) but extensions to CSP include a stmctured data type to support

transaction system specificat ions.

1.6 Problem Domain

A multidatabase (MDB) environment where each database is autonomous provides the

framework tu reason about formal specification. The local databases may be hetero-

geneous. Within the MDB environment ~ s i o u s architectures may be supported, see

Figure 1.1. A schematic representation of an MDB mode1 components is shown in Fig-

ure 1.2. The autonomy and heterogeneity of the local databases (LDBs) provides design

autonomy so different LDBs may support different concurrency control protocols, data

models, data manipulation languages, and correctness criteria. Therefore, LDBs inde-

pendently execute transactions in any order.

To support heterogeneity, database drivers (including 0DBC6 [Mic96]) and other

=O DBC (open database connectivity) technology provides seamless access to enterprise data using a

Chapter 1 . introduction

Global Traasact ion
Manager / In t erface

4

* 9

Communkat ion Layer

7
Distributed System

Figure 1.1: Architecture of the Problem Domain

Chapter 1. htroduction

1 USER

1 MDMS Layer 1

Figure 1.2: Components of an MDB Mode1 (Adapted from [Bar901 with permission)

APIS provide access to data since the LDBs' participation in the MDB requires no modi-

fication of their code or functionality. Also, the MDBMS requires an appropriate network

library to enable global transactions connect to specific databases. An intelligent agent

subsystem (of the MDBS) provides the MDBS with information about the services the

component LDBs can render and the data they may contain. This information is neces-

sary to appropriately direct a query to the LDBs.

A user can submit transactions to the global transaction manager (GTM) to access

one or more local databases in the system. These transactions are cailed global transac-

tions (GT) . Users at each LDB can submit local transactions7 (LT) to their respective

locd databases. Both local and global transactions can be submitted simultaneously and

executed concurrent ly. Figure 1.3 illust rates the computat ional model.

The two classes of transactions
- -

single APL

7Local transactions are accepted directly

t hus require two levels of transaction mechanism

by the individual autonomous component LDBs.

Chapter 1. Lntroduction

Figure 1.3: Transactions in MDB Mode1

support: the GTM and the local transaction manager (L T M) for each individual corn-

ponent LDB. The GTM receives al1 the incoming transactions (Le., GTs), schedules

transactions and assigns them to the participating LDBs for execution and supervises

t heir (interleaved) execution. Each LD B receives the global subt ransact ions (GSTs) and

process them with local transactions. The GTM maintains the correctness of the global

transactions. Management of commit and abort operations of a transaction is the respon-

sibility of the recovery manager module of the originating site. See [LR82, Bar90, OVSl]

for details of MDBMS's architecture.

The GTM uses several data structures. The transaction queue (TRANQ) holds in-

coming transactions using a FIFO discipline. The wait queue (WAITQ) holds transaction

ids sent for processing or those awaiting further processing. The status queue (STATQ)

contains status messages from the LDBs (where available) indicating transaction status

such as: (a) aborted, (b) committed, or (c) active.

The component of the GTM that schedules transactions for execution is the trans-

Chapter 1 . Lntroduction 15

action schedder (SCHED). The SCHED (i) selects a transaction fiorn TRANQ and

distributes it to the appropriate participating LDBs and (ii) sends it to the WAITQ until

acknowledgement is received from the LDBs. Transaction operation orderings are seri-

alized and recovery is ensured by the scheduler. Once a.li subtransactions submitted for

a global transaction have completed, the GT is removed from the WAITQ. The LDBs

often communicate with the GTM to indicate execution status of a transaction-

The SCHED uses the following iterative steps when scheduiing transactions.

1. Select a GT, Say Ti, and decompose it into its constituent subtransactions (GSTs).

For each GST do

Determine the appropriate LDB and assign the GST to it.

Add the GST's id to the WAITQ

End(for}

Then remove T from TRANQ

2. If STATQ = () then get transaction Ti from TRANQ else get transaction T,

corresponding to the message status from the WAITQ. That is:

STATQ = () =+ Ti = head(TRANQ)

STATQ # () + Ti = Tj 1 Ti in WAITQ A T, =head(STATQ)

One of the foliowing actions will be taken depending on Ti's status.

case of status d o

active: schedule head(TRANQ)

abort : if GST = vital then abort(Tj)

else schedule next GST of transaction Tj

commit: schedule next GST of transaction Tj

end {case of}

3. If T is partially processed transaction then mark the completed GST.

4. If T is completely processed, remove T from WAITQ and STATQ.

The GTM submits operations to LDBs one at a time using a blocking protocol where

each submission is acknowledged before subsequent operations can be submit ted.

This environment is ~robably o d y feasible if a flexible transaction model is em-

ployed t hat allows for cornpensating and/or contingency transactions to recover from

potential semantic failures [HPS93]. Possible problems include:

a Concurrent access to a data item (by both local and glob-d transactions).

a Deadlock problems (queue resolut ions)

a Temporal components of some transactions need explicit specification so that we

c m capture interleaving order of transactions.

a Reliability issues are particularly important and difficult problems in this domain.

Application areas of the above model abourd such as: (1) Shopping malls with

several birsiness concerns each maintaining t heir own local database (Le., the electronic

shopping mal1 paradigm), (2) Travel and associated operations, e-g., booking flight , hotel

reservation, and car rental services, (3) Governmental operations (two or more govern-

ment ministries or organizations interacting), (4) School environment (library system,

accounts system, students records, registration system, etc), and (5) Co-aut horing sys-

terns.

1.6.1 An Example - The Electronic Shopping Mal1

The Electronic Shopping M d (ESM) illustrates the pragmatic aspects and clarifies se-

rnantic related problems. The intent here is to demonstrate the application of forma1

methodoiogy in protocol design and analysis. The application easily scaIes up to other

designs without loss of analytic power. A diagrammatic representat ion of the transactions

in the application domain under consideration is shown in Figure 1.4.

ESM is an electronic commerces application. ESM is an electronic equivalence

of ultra-large department stores (e.g., the West Edmonton M d in Alberta, Canada)

with a large number of vendors and products. ESM provides a common online access

point (the global transaction interface/ma.nager) where customers can obtain informat ion

8Electronic commerce is the shoring of business information, maintaining business relationships, and

conductkg business transactions by means of telecommunications networks [Zwa96].

Chapter 1- Lntroduction

User transaction

I t I

Store's LE4 Store's
Bank

Figure 1.4: Abstract Representation of ESM Transactions

about products and place orders. It must automatically process customer's electronic

orders that requires the services provided by a company's inventory, billing, accounts,

and logistics operations. Thus, it supports a user's access to multiple databases. ESM

integrates elect ronic payment into the buying process and in formation kiosks [Jac96I9

to build a consumer marketplace. The ESM has added a new dimension to satisfying

vendor/customer needs. The ESM uses a combination of videotext, graphies, and other

multi-media to provide detailed product information for the customer. The ESM dialet ic

provides both effective product differentiation and increased ability to market products

for the vendors and an efficient cornparison mechanism for the customers (by increasing

the ability of customers to shop and compare prices and products). The focus of this

thesis is only on the specification of the underlying sales transactions aspects of ESM

funct ion& ties.

A request to the ESM typicaily involves many subactivities that may share re-

sources, demaod explicit expression of temporal relationships, or require concurrent and

parallel operation execution. Thus, the application must capture concurrency, share re-

sources, temporal relationships, and the correctness propert ies necessary in a transaction

gInformation kiosk is an interactive display module that guides shoppers towards a store that carries

an item of interest and the inventory

Chap ter 1. introduction

system.

If a user wants to buy merchandise, say a bicycle, the user issues a transaction

againsts the global database. The GTM sends the transaction to ail the participating

merchandise stores' databases that sell the product. That is, the GTM decomposes the

user transaction and queries all participating local databases for availability of the item.

Local databases that have the item acknowledge availability status to the GTM while

the local database continues to process LTs at its location and hold the requested item

for the "global" customer. The GTM immediately aborts the transaction if the item is

not available othenvise the GTM requests payment, validates account balance, and com-

pletes payment if account balance is greater than the selling price or immediately aborts

ot herwise. If the payment action succeeds, then the local store database transaction

(inventory update) c m commit so the GT can commit successfully.

The same global transaction, however, rnay have to access the customer's bank

account to check for fund availability. In many cases, that information rnay be kept

on a different system. This introduces heterogeneity t hus resulting in transactions that

rnay have to be split and executed on different systems or possibly on a remote LDB.

Also, there rnay be value dependencies whereby the action taken at one LDB depends

on the value of data item in another. For example, in the preceding bicycle example.

the decision to complete the inventory operations depends on the arnount of rnoney the

customer has (the customer's account balance which rnay reside in a bank's database).

The GTM rnay present a variety of information to the user, Such information

rnay include: a list of al1 stores selling bicycles, the different models of bicycles, the

price listing, the List of quantity available, the locations of the stores selling bicycles,

stores having sales promotion currently, and so on. The items filtered out from the

user's view depend on the requirements of the GTM. The user pays for the item if the

product available m e t s the description in the user's transaction. A user can pay for an

item using a variety of methods such as direct debit from an account, electronic fund

transfer, telepay, credit card, interbank transfer, cash, or any combination of the above.

The user's transaction completes after completing payment and the account balance is

updated. Further, the user's transaction should not prevent other transactions from

Chapter 1 . htroduction 19

taking place concurrently both a t the participating stores' local databases, the global

database, or actions executing at other locations resulting from the execution of the

user's transaction.

A summary of additional constraints are: (1) a customer may buy as many quanti-

ties of the same item at once as allowed by the participating stores? (2) a customer cannot

buy items worth more than the customer can dard, (3) al1 items in the participating

local databases must be sold or available for sale, (4) o d y authorized persons may add

or remove an item from the store, (5) no item may be sold and available for sale, and (6)

the set of participating local databases should be nonempty.

To the user, the provision of a fast service, correct account balance after pay-

ment, ability to pay using any method, and transparency of the services provided by

the participating local databases constitute good behaviour. In addition, the participat-

ing local databases enforce the user transaction's integrity const raints, allow operat ions

concurrent execution on the database simultaneously as the user transaction execution

progresses, terminate global subtransactions after processing, and finally make the service

they provide to the GTM transparent to their respective local users. The coordination

and complexity of all the activities are transparent to aU users. Lastly, the GTM can

terminate any activity requested by the user after execution and delegates any activity

to participating local databases for the satisfaction of a user's transaction.

For discussion purposes, suppose only one store has a bicycle matching the speci-

fications in the transaction. Further, assume that only one bicycle remains in the store.

Unfortunately, several scenarios may prevent a smooth purchase transaction.

If a local transaction simultaneously requests the same bicycle a decision must be

made as to how we resolve this situation.

Suppose the user in the global transaction decides to pay for the item with the

InteracTM system on a bank account while his/her spouse is at a local branch

processing a wit hdrawal request at the same t ime. How do we resolve the concurrent

update problem vis-a-vis the bank?

Wi t h current technology, suppose the global transaction request was successfully

Chap ter 1. lotroduction

processed and a signal was sent via satelite to update the inventory. If another

user requests the same item while this is yet to complete processing, the system

might incorrectly reports that a bicycle is still available. Thus the timing aspects

of transactions must be further examined.

To exploit the technologies at our disposal, multidatabases must be ionnaily specified to

ensure correct concurrency, reliability, and recovery. Additional considerations include:

a It is possible that more than one local database can satisfy the request of a global

transaction.

a The global transaction will always spin off a subtransaction at a local database.

Thus, we have a collection of subtransactions nested within the global transac-

tion at the top level. This ultimately amounts to nested transaction management

[G r a l , EGLT761. Allowing concepts Like vital and non-vital subtransactions and

supporting both closed and open nesting is likely required.

a The local DBMSs manage the subtransactions spawned at their sites by the global

transaction to ensure correct execut ion. This immediately suggests two levels where

temporal properties need explicit specification, a t the global transaction level and

at the local transaction level.

Different levels of correctness are possible in this environment, some more restrictive

than others.

In surnrnary, ESM is characterised by active capabilities (for timely response to events

and changes in the environment), support for long-mnning transactions (and possible

partial s haring of results) , allows compensation to undo effect s of undesirable comrni t ted

transactions, and support for heterogenous and autonomous enviroaments.

1.7 Notations

Let us make some comments about a few notations t hat we shall encounter. The syntactic

form

Chapter 1 . Introduction

function-name : argument-type + output-type

defines the signature of a function: where its narne is function-name, argument-type

is the data type of the argument(s), -+ is read as "produces", which relates the input

data to the output, and finally output-type is the data type of the output. Where the

function is a relational type, + is repiaced by the relational function symbol? H and

by the partial function symbol, *, for partial functions. This convention bears close

resemblance to that used in the Z [Spi881 specification Ianguage. Also, seq, denotes a

nonempty sequence, F, denotes a nonempty finite set while P is a powerset. Additional

symbols are defined in context when necessary.

It may help to browse through Appendix A for List of syrnbols at this point before

proceeding.

1.8 Organization of the Thesis

This chapter introduces the concept of transaction models and formal specification and

demonstrates why a formai methodology is appropriate. Chapter 2 reviews related liter-

ature on transaction models, concurrency control for complex objects, and specification

techniques currentiy in use. Chapter 3 presents a taxonomy of transaction specification

features and the fundamental issues t hat should be addressed before specifying transac-

tion systems formally. Chapter 4 briefly describes the notations of timed and untimed

models for CSP. Also, the necessary record data type extension to CSP for supporting

transaction specification are presented. Chapter 5 presents the specificat ions itself. It

focuses on using the formai Ianguages to d e h e existing hierarchicai transaction models.

The ones addressed are: nested transactions, multidatabase transactions, and an emerg-

ing application called the Electronic Shopping Mal1 concept. Chapter 6 provides the

proof of specifications found in Chapter 5 leaving Chapter 7 to mkke some concluding

comment S.

Chapter 2

LITERATURE REVIEW

This chapter is organized into two major parts. First, forma1 methods and the current

state of the art for specieing transaction systems protocols are described. A survey

of existing forma1 specification tools is provided to assess their strengths and weahess.

and to deterrnine their suitability for specifjring transaction protocols. Secondly, relevant

database material including concurrency and recovery is cliscussed. These parts are

necessary to understand the Link between specification and transaction systems.

2.1 What is a Formal Method?

A formai method is the combination of a precise operationai system abstraction and

the ability to argue rigorously about the behaviour of the system. Formai methods are

"mat hematically based techniques for describing system properties. Such forma. met hods

provide framework within which people can specify, develop, and verify systems in a

systematic, rather than ad hoc mannern [WinSO]. The sound mathematical basis provides

the means to precisely define notions such as consistency, correctness, and completeness

of specificat ion and the result ing implement at ion.

Formal methods, therefore, "are essentially formal systems; they provide frame-

works for inspecting the satisfiability of specifications, for proving the correctness of an

implementation of a system, and for proving the properties of a system without the need

to have an executional representation of the systemn [NJH92]. In other words, a for-

Chapter 2. Literature Review 23

mai method consists of a formal model and the associated mathematicai techniques that

provide the user with a framework for specifying and analysing the system [MLTL93].

The basic cornponents of a formal method are: the computational mode1 of development;

a specification language; properties (Liveness and safety properties) to be preserved; a

proof system; and guidance in applying these in a coherent manner. Most methods lack

a proof system and guidance about how development should proceed while others lay

very Little emphasis on an underlying model that encompasses each stage of the system

development .

Formal methods are useful a t various abstraction levels because each provides dif-

ferent levels of assurance for the software developed [WKC9Z]. Thus, formal met hods are

used in three ways [Lus94]: for expressing the statements; for verifying that the input

and output of a step are in agreement; and for transforming the input into some output.

This research uses forma1 methods in the first two ways.

2.1.1 Formal Specification Language

A formal specification language consists of three parts: the syntax that describes the set

of allowable alphabets and the gramrnar of the language; the semantics which makes it

possible to denote the meaning of a specification in the language wit hout arnbiguity; and

a set of relations that defines which objects satisfy each specification. Thus [GHWSS]

provides the following defmit ion:

Definition 2 Specification language: A formal specification language is a triple,
(Syn, Sem, Sat) where Syn and Sem are sets, and Sat = Syn x Sem, is a relation between
them. rn

Syn is called the language's syntactic domain, Sem its semantic domain, and Sat its

satisfies relation.

The syntactic domain of a specification language is usually based on the principles

of set theory, predicate logic, relations and functions. The satisfies relation defines the

rules for forrning well-formed formulae (WB). A well-formed formula (wwf) over a set

of syntactical rules, G, is a finite sequence of symbols that is syntactically correct. That

Chapter 2. Literat tue Review 24

is, it belongs to the set of all sequences of symbols that can be constructed by using the

grammar of G .

A specification language may be viewed as a set of specification building operations

together with some syntax. In choosing the class of operations there is a trade-off between

the expressive power of the language and the ease of understanding and dealing with o p

erations [ST84] in addition to the levels of abstraction that it supports [Win90]. Making

a language more expressive does indeed facilitate briefer and more elegant specifica-

tions, but can make reasoning more difficult [BH94]. An example from the programming

language environment is APL which is a very powerful language having operators that

concisely perform actions requiring numerous statements in other languages. Thus, an

APL program can be extremely abstract but may be "difficult to explain and understand

which in turn becomes a potential hindrance to producing correct programs" [McCS3].

2.1.2 'Paxonomy of Formal Specificat ion Language

Several formal specification languages are currently being used in different semantic d+

mains. Wing's taxonomy will suffice [Win90]. These consist of: (I) Model-Oriented

approach, (2) Property-Oriented approach, (3) Visual Ianguages, (4) Executable codes.

and (5) Tool-supported.

Model-oriented approaches specify explicitly a state space (or an abstract) mode1

of the system7s behaviour by using mat hematical structures such as sets, relations, func-

tions, sequences, and cartesian products. Examples of languages in this class are Z [Spi881

and VDM [Jon86] for describing sequential systems and CCS [Mi180], CSP [Hoa85], ACP

[Ber88, BBgl], Raise [Nie89], and Petri nets [Pet771 for concurrent systems.

In the property-oriented approach, the specification language defines the system's

behaviour indirectly by defining a set of properties or constraints which the system must

satisfy. These constraints of the systemTs behaviour are often stated either axiomatically

using first order predicate logic or aigebraically using axiornatic equations. The axioms

specify fundamental properties of a system and provide a basis for deriving additional

properties implied by the axioms. Tu establish a valid mathematical system, the set of

axiorns must be complete and consistent (that is, it must be possible to prove desired

Chapter 2. Literat ure Review 25

results using the axioms, and it must not be possible to prove true contradictory results).

Examples of formalisms in this category are LOTOS [ISO8?], Temporal Logic [RUIl],

Larch [GHW85], ACTA [ChrSI], Anna [LH85], and Clear [BG80]. LOTOS, Temporal

Logic, and ACTA are methods for specifying concurrent and distributed systems.

Visual languages are graph theoretic based fonnaiisms. "Visual methods indude

any whose language contains graphical elements in their syntactic domains" [WinSOj. In

other words, visual specification methods use visual expression where the graphics them-

selves are the syntax of the Ianguage. Visual languages use some visual representation to

accomplish what would otherwise have been written in traditional prose. Exarnples are

Petri nets and the higraph based Statechaxts [Har88].

Executable formal methods support specifications that can be executed. Exarnples

of this category are the prograrnming language Prolog and OBJ [GogSS]. Although a

logic based programming Laquage, Prolog can be used as a specification language in

property-oriented form by defining logical relationships on objects-

Languages that have tool support for at least one of syntax checking, semantics

analysis, theorern proving, animation and graphical user interface are classified as tool-

supported. Most of the above mentioned languages including VDM, 2, and LOTOS are

exam ples.

The foilowing section provides a brief discussion of some current methods (informa1

and formal) used in specifying transaction systems protocols. Some of the forma1 spec-

ification languages mentioned are assessed for their suitability in specifying transaction

systems protocols.

2.2 C urrent Transaction S pecificat ion Techniques

Current techniques utilize informa1 met hods classified broadly into: natural language,

pseudocode, and state-oriented.

Chapter 2. Literature Review

2.2.1 Naturd Language

Most requirements specifications are written in natural language and range in length

from a few pages to several thousand pages. The size of the document rarely has any

relationship to the complexity of the problem [Dav88]. Breit bart et al [BSTSO] , Eswaran

and Chamberlin [EC75], and Gracia-Molina and Salem [CS871 use natural language to

state a transaction models' properties and behaviours. Such specifications tend to be

imprecise, incomplete, and unverifiable; and they are inherently ambiguous because they

are subject to different interpretations.

2.2.2 Pseudocodes

In [BR90, Bûr90, Des90, KJ90, KS86, OV91] a transaction model's properties and be-

haviours are d e h e d using pseudocode based on more pragrnatic English-like syntax

rat her t han on mat hematical formalism. The pseudocode expresses synchronizat ion al-

gorithms such as locking, timestamping, serializability and recovery protocols that define

how a transaction model should behave at any point in time given some conditions or

stimuli. Proofs of correctness for these systems rely on intuitive operational arguments

that are potentially ambiguous, error prone, and difficult to formally verify. Thus, sys-

tems developed from such specifications are less than ideal because they lack an under-

lying abst ract mathematical model and consequently the precise semantics are not fully

specified.

2.2.3 State-Oriented Techniques

State-oriented methods such as tables and graphs are often used to describe certain prop-

erties of a transaction model. Compatibility tables (also called compatibility matrices)

are often used to define the behaviours of transaction operations over shared objects.

Compatibility tables are usefd in specifying system behaviour when different input data

give different actions (states or outcornes) for each of several different modes of operation.

This tool is used extensively [BR90, DK83, Des90, KL83, KS86, OV911 to define the lock

compatibility function and the commutativity of operations required for synchronization.

Chap ter 2. Litera t ure Revie w 27

The example [BR901 in Figure 2.1 shows the compatibility of the set of operations insert,

delete, and member. Two operations are compatible if their effects are independent of ex-

ecution order. In Figure 2.1, Yes means the operations are commutative

Figure 2.1: Operations Compatibility Matrix [BRSOI

Operation
Requested

Iitse*

Delete

Member

means they commute only when different input parameters are used.

hnother state-oriented technique is dernonstrated by digraphs which are used to

Operation Executed

mode1 the serializability criterion (S e Section 2.4 page 42). Testing the graph for cycles

Imert

Yes

Yes-DP

Yes-DP

can unambiguously determine if the transaction's execution sequence is valid. Another

useful application of digraph is for modelling deadlock via wait-for-graphs (WFG) among

Delete

Yes-DP

Yes-DP

Yes-DP

t ransact ions1. The WFG represents wait-for relat ionships among concurrent transactions

Member

Yes-DP

Yes-DP

Yes-DP

in a system. Like serializat ion graphs, an acyclic WFG guarantees the system is deadlock

free. Digraphs are used in [BSTSO, Des90, KS86, OV9 11 to specify aspects of concurrency

and the transaction model's correctness criterion. The algorithms for construct ing these

digraphs often use natural language or pseudocode in their description.

A state-oriented form of table and graph usage is the finite state machine (FSM)

approach. Behaviour specification using regular expressions and FSM are by no means

a new idea. The transaction's behaviour is taken as the sequence of actions of the FSM.

This approach was adopted in [AFLMW88]. When using FSM to specify transaction

systems, control data flows coming out of a node may be "and-edn [Lus941 together

thereby defining concurrent executions of some parts of the transaction. A variant of

'The wait-for-graph is a directed graph containing nodes (representing active transactions) and arcs

(representing wait-for resource relationship between the nodes). See [Des901 pages 595-598 for the WFG's

construction algorithm.

Chapter 2. Literature Review 2s

FSM is communicating red-time state machines (CRSM) [Sha93]. A major shortcoming

of CRSMs is that the communicating machines cannot access shared data (see Section

2.3 of [Sha93]) which renders it inappropriate for database applications.

These approaches (tables, graphs, FSM) have iimited practical use because they:

a capture o d y some of the transaction model's properties and c m o t be used to

reason fully about the structure and behaviours of transaction models,

a lack formal semantics and therefore are unverifiable, and

a cannot capture timing properties of complex transactions.

The following addit ional problems are associated wit h state-oriented approaches:

a The diagrams are "flat", so complex transaction systems cannot be adequately

described without providing a hierarchy to highlight the appropriate Level of details.

a Conventional state diagrams are sequential and do not cater for concurrency.

a They sufE'et from exponential state space growth that must be explicitly represented

as the system grows.

Another example of behaviour specification using FSM is Sta techarts. They specify the

input and output of a system in a hierarchical manner in terms of operations among sets of

states. Statecharts specify a mealy machine2 [HU791 so they specify how a deterministic

system should behave and react to environmental inputs-

Statecharts have reccntly been integrated with object-mode1 diagrarns (a kind of

ent i ty-relat ions hip diagram wit h higrap h encapsulat ion t hat descri bes classes and t heir

structures) [HG97]. They are one of the (seven) models of an emerging standard for

object-oriented modeiiing c d e d the Unified ModeUing Language (UML). A Statechart

in UML describes the dynamic behaviour of objects instaatiated from a single class.

Using Statecharts as a stand-alone technique suffers from discontinuity in its transi-

tion to design. Most of the problems associated with structural analysis met hods are still

'A mealy machine is a mode1 in which the output depends on both the state and the input.

Chapter 2- fiterature Review 29

present in Statecharts. Mechanisms for synchronizing concurrent access to data (which is

essent i d in database transactions) are not provided. Thus, inter-ob ject communications

and collaborations cannot be effectively modeiled using Statecharts because synchre

nization during concurrent data access cannot be captured. Further, according to Ostrof

[Ost94] time constraints are not treated in s d c i e n t details in Statecharts. Statecharts

require notations for periodic timing functions and the specification of timing exceptions

wit hout the need to introduce additional states.

2.2.4 Functiond Decomposition Techniques

Many functional decomposition techniques, such as Stmctured Andysis [DeM78], Çtruc-

tured Design [YC79], and Structured Andysis and Design Technique [Sof78], provide an

organized set of system specifications and a structure of the system. The specifications

include views such as (i) data flow diagrams to decompose the system, its functions and

its data flow, (b) control flow diagrams to represent the system dynamics, (c) a specifica-

tion dictionary listing al1 inputs, outputs, and control flows, and (d) a table of response

times for aU events.

These methods use different diagrams (e-g., DFDs, Structure charts) and different

ideas during development so it is difficult to transform from one to another. Further,

there is no explicit indication of the control flow specifying the execution order of the

various objects. Although datafiows generdy carry data, they may also be triggering

signals for functions but this is not explicitly captured. The ability to specify explicitly

the execution order of the operations that would trigger subtransactions is required.

Ostrof [Ost94] argues that although these met hods are quite successful in industrial

applications with little or no concurency, t hey have the following additional shortcom-

ings: (i) these methods have no formal semantics, (ii) the timing properties are not

particularly well integrated with the rest of the requirements, (iii) there is no support

for formal verification, and (iv) nondeterministic systems behaviour camot be suitably

modelled.

In summary, using a state-oriented notation in conjunction with algebraic axioms

allows precise specification of interactions between operations and the behaviour of the

Chapter 2. Literat ure Review 30

individual operations. The axioms can be manipulated in a rigorous manner to provide

for the proof obligation of a specification language.

Apart from the methods discussed above, other approaches for describing transac-

tion systems protocols are: ACTA, First order logic, and Prolog. ACTA is a semi-formal

method while Prolog is a programming language. These approaches are discussed below.

ACTA

ACTA is a unique formal framework for specifying and reasoning about the structure

and behaviour of transaction systems. ACTA is proposed as a mechanism to unify al1

transaction models. ACTA does not propose any particular correctness criterion but it

provides components for the description of transaction models. Components are the set

of symbols that are put together to fonn the sentences or statements of the forrnaIisrn

(language). These components can be combined into logical statements where correct

behaviour satisfy the statements. Its approach is an axiomatic property-oriented method.

The ACTA framework has explicit notions for some model components that are implicit

(e.g., begin transaction operations) in transactions and it has been used to model both

atomic and complex transaction systems (see [ChrSl, CR90, CRgI, CR92a, CR92bI).

With dependence analysis between transactions and transactions operations on shared

ob jects and by associating semantic elements wit h the effects of transactions operat ions,

ACTA can capture transaction properties related to visibility, failure atomicity, perrna-

nence, and consis tency.

However, ACTA is not staodardised and it Iacks a computational model so it is ad

hoc. ACTA has no proof obligation and guidance for applying these in a coherent manner.

Furthemore, "it is not clear how ACTA would represent the fact that a dependency can

be transient, nor is it clear how proofs could be developed with transient dependencies

involved" [KS94].

Chapter 2- Literature Review

Another language used to specify transaction protocols in a communication network

[VW87] is Prolog [CMS?]. In this sense, Prolog is used in property-oriented style to

state logical relationships between objects thus providing a means for expressing and

handling concurrent interactions. Vuong and Weber [VW87] use Prolog to specify the

communication behaviour of transactions based on communicating FSMs and validate

the specification based on reachability analysis principles for detecting state deadlocks,

nonexecutable interactions, and unspecified receptions. Although Prolog is the most

widely available logic prograrnrning language and is useful as a specification language

in communicating systems, its use in database transaction systems is limited because

i t lacks the semantic analysis essential for defining correctness and recovery propert ies

in complex transaction systems. Further, the reachability analysis suffers from state

explosion when the systern becomes complex or large which means exponential search

spaces become problematic.

2.3 A Survey of Existing Tools

This section assesses the strengt hs and weaknesses of the existing formal specificat ion

languages and discusses t heir apphcability to transaction sys tems.

Z is a mathematical notation based on set theory, f i s t order predicate logic, sequences,

functions, and relations. In general, Z is non-executable and is typicalfy used for human

readable specifications. It is essentially a two-value logic in which every proposition is

considered either true or false. That is, if A is true then B. However, when '4 is false

the consequent is unspecified. It is model-oriented but can also be used in the property-

oriented approach when used axiomaticdy.

The schema language is a graphical extension of Z. Schemas are devices for organiz-

ing the presentation of the mathematical notations of Z specifications. A schema has two

Chap ter 2. Li terat ure Revk w 32

parts: a declarat ion part [above the dividing Line] cont ains the declarat ion (de finit ion)

of one or more identifiers, and a predicate part (below the dividing line) contains zero

or more predicates separated by semicolons. The predicates describe a property of the

schema's declated miables. The schema language is flexible so modularity is relatively

easy to describe and implement [H093].

In practice, a Z specification consists of a series of paragraphs of formal notations

interleaved with informal prose that explains the content of the forma1 notations. It uses

pre- and post- conditions implicitly as constraints t hat must be satisfied and has a proof

assistant (type checker) for consistency checks. It has been found useful in specifying large

commercial systems, for example, the CICS [HKSl] project . Z expresses funct ionality

but not concurrency. Furt her, Z presently lacks extensions to capture t ime propert ies.

VDM

VDlM is based on denotational semantics. VDM is similar to Z except it is model-oriented

and pre- and post- conditions are explicitly stated in separate clauses. A precondition

on an operation is a predicate that must hold on each invocation of the operation. If it

does not, the operation's behaviour is unspecified. A postcondition is a predicate that

holds in the state upon return [WinSO].

VD M encourages berarchical system development by support ing abstraction at the

highest level of description and by providing a powerful and succinct tool for expressing

specifications. However, in its currently published fom, VDM is most suitable for spec-

ifying sequential information processing systems. There is no concurrency or red-time

support in standard VDM. Different system views or schemas are not supported. The

degree of modularity is limited to the level at which operations are defined. Furthermore?

VDM has no graphic support [HO931 and lacks convenient facilities for defining and han-

dling errors in a specification to eliminate the difficulty of distinguishing error behaviour

from that of normal behaviour [JDS85]. Although several case studies involving the use

of VDM exist [JS90], these systems are sequential and deterministic.

Summary

Chap ter 2. Litera t ure Review 33

Z and VDM are adequate for handling sequential deterministic systems (Le., they

can capture many interesting sequential systems properties). However, they are

less attractive for expressing concurrent system behaviour (where properties such

as freedom frorn deadlock and fairness often need to be shown).

Synchmnization of access to shared variables can be handled in Z and VDM by

building models of histories (mutual exclusion). Mutual exclusion is a simple ver-

sion of concurrency control but in transaction systems it is necessary to describe

the interleaving of concurrent operations/processes.

Z and VDM lack notions of logical time and relative order.

2.3.3 Temporal Logic

Temporal Logic is a property-oriented approach for speci&ing concurrent systems. First

order predicate calculus is used to reason about expressions containing time variables. A

sequence of program actions is modelled as the basic unit of specification.

It uses special modal operators to describe the past, present, and future states
,. .

(events) of the system's behaviour. For example, the CI (rectangle) symbol means -in al1

future statesn ; O (diamond) means "in some state" ; while O means "next state".

O P means in a l l future states the predicate P holds while P + 0 Q means if P holds

in the curent state, Q will eventually hold.

Unfortunately, no standard set of operators are used (the above symbols are the

most common representation). It captures time properties using different types of tem-

poral semantics (such as Linear, parallel, branching, continuous, or discrete) and it has

hidden clocks (bounded operators) and explicit clocks. For example A + Ocs - Q rneans

if A occurs then eventually within 5 time units B must occur.

Temporal Logic captures concurrency correctness (Le., "safety properties of t iie

system and its environment" [WinSO]) as well as Liveness properties. It uses an unstruc-

tured set of predicates. Specification proofs utilize proof diagrams. A proof diagram is

an abstract view of a state reachability graph representing the sequences of behaviour of

Chap ter 2. Litera t ure Review 34

the system. Vaxious forms of Temporal Logic exist, e-g., Metric Temporal Logic (MTL)

and Real-time Temporal Logic (RTTL) [Ostg 11.

2.3.4 Petri Nets

A Petri net is a graph based formalism developed in the early 1960s as a solution to

some of the limitations of finite state mechanisms. Petri nets are an interesting graphical

technique used to describe the operation of a system as a state transition network. Causal

dependencies and independencies in some set of events are explici t ly represent ed. The

basic net model is of the form condition-events. Petri nets are used for modelling and

analysis of systems. They can speciSr synchronization and mutual exclusion among

concurrent operations. Petri nets have been used in performance modelling [CL92], for

specifying safety requirements [LSS?], and to specify process synchrony during the design

phase of t ime-critical applications [Dav88]. A formal definit ion of Pet ri nets follows.

Definition 3 Petri nets: A Petri net is a 4tuple, C = (P, T, A, M) where P is a set of
places (representing conditions); T, a set of transitions (representing events); A, a set of
arcs denoting the flow relation (i.e., elements of A are arcs between places and transitions
such that A E {P x T) U { T x P) , P n T = 0 and P U T # 0); and M, a marking (Le.?
M : P --t I 1 I E N) is a distribution of tokens3 to the places of the Petri net. rn

Usually, a Petri net model is represented as a bipartite digraph where the nodes

represent places and transitions. Places are drawn as circles (0) while transitions are

drawn as bars (1). For each transition, the directed arcs define its input places (arc from

place to transition) and its output places (arc from transition to place). A Petri net is

executed by defining a marking and then firing transitions. Tokens move from place to

place through the firing of a transition. A transition fires by removing one token from

each of its input places and adding one token to each of its output places. The firing

rule for a transition is enabled when ail input places contain at least one token. If two

transitions share input places then they are in conflict and only one of them can fire.

The behaviour of a Petri net is captured by the reachability graph. The reachability

graph of a Petri net N is the edge-labelled graph N = (V, E) whose vertices V are (Mo)

3.4 token is represented on a Petri net by a small solid dot (O) in a place.

Chapter 2. Literat ure Review 35

the reachable markings of N and edges E such that there is an edge labelled t E E from

M to M' if M A M' for a reachable marlüng M. Petri nets do not support functionality

and it is impossible to determine the interleaved partial orders of concurrent operations.

In addition the reachability graph for onalysing Petri nets suffers from state explosion

when the system is large. The reachability problem is exponential time and space-hard

[Ost91]. A further problem of Petri nets is that numerous durnrny states are generated

during transition delays to maintain the feature of ins t antaneous firings [GF90] and to

maintain logical consistency, In addition, the semantics of Petri nets rnake it difficult to

dis t inguish between precedence and causalit y [TM9 11.

The general Petri Nets model has often been criticised for the folIowing additional

reasons.

O inability to d e d with fairness and data structures,

a structuring mechanisms such as composition operators are not inherently part of

the t heory,

O lack of a calculus to transform a net into a real-time programrning language, and

O a place in a Petri Net cannot easily be identified with a place in the corresponding

program code.

Variations of Petri Nets model exists such as Colour Petri Nets, Timed Petri Nets,

Timed Interval Coloured Petri Nets, and Hierarchical Petri Nets. In Colour Petri Nets

(CPW) tokens themselves may have different values (or colours). CPN c m distinguish

between different data types (ob jects, resources, tokens) to furt her define different execu-

tions based on token types. The expressive power of coloured petri nets depends on the

cardinality of the colour set. Although this is more concise system representation and

able to model data and resources, as long as the number of colours is finite, a coloured

net is equivalent to a much larger ordinary Petri Nets and thus inherits the problems

associated with ordinary Petri Nets. An infinite number of colours provides CPN greater

expressive power. However, an irnmediate consequence of the universal expressiveness is

Chapter 2. fiterature Review 36

that boundedness, safety, liveness, and reachability of markings properties become un-

decidable in the general case. For a detailed discussion of the variations of Petri Nets

model and their attendant problems see [Aal92, CK921. Petri Nets are still undergoing

standa.rdization4 [WD97] and intensive research [PNPM91] aimed at putting Pet ri Nets

theory on firm mathematical grounds and some experimental and commercial simulators

(tools) are available.

To summarize, although Petri nets are a good modelling tool they do not provide

design details. They cannot model the data managed by transactional systems. Petri nets

generally serve as a model for understanding and system analysis. The transformation

from petri nets to an implementation is a difficult process-

2.3.5 Communicating Sequentid Processes

Communicating Sequentid Processes (CSP) is a model-oriented approach to specify-

ing concurrent processes but uses property-oriented approach for stating and proving

properties about the model. CSP is concerned purely with the communication patterns

of processes, abstracting away intemal state information which may be separated from

communication behaviour. It is based on the model of traces (behaviour of a process or

event sequences) and assumes that processes communicate by sending messages across

channels. It views a process exclusively in t e m s of its observable behaviour [HoasSI.

Processes synchronize on events. For exarnple, let c be an event, and P and Q be

processes. Then (c -t P) II (c -+ Q) = (c + (P II Q)) means that the operations P

and Q are pa rde l operations which axe triggered by the event c. It uses handshaking,

via semaphore or condition queues, to synchronize events. It uses primitive simple data

types and cannot adequately capture the functional aspects of a non-deterministic systern.

However, CSP provides mechanisms and tools (techniques and languages) for the design

of large systems in a modular and extensible way.

Algebra of Communicating Processes (ACP) [Ber88, BB91] is similax to CSP. They

have the s a m e underlying formal model but different notations. CSP is much more

4The time table for the standardization stages proposes December 1998 for the adoption of the draft

International Standard [PNS96].

Chap ter 2. Literat ure Review 3'1

matured and standardised than ACP but may prove useful in subsequent research. The

Timed CSP language is used here so a detailed description is provided in Chapter 4.

2.3.6 Calculus of Cornmunicat h g S ystems

Calculus of Communicating Systems (CCS) models a system's behaviour as a set of

st ates and associated events. It models concurrency control but not Funct ionality. The

inventor [Mi1801 states '... the behaviour of a system is nothing more or less than its

entire capability of communicationn. CCS embodies a relatively cornplex algebra and

a relatively fine grained process concept t hat makes learning and writing spccificat ions

difficult. However, CCS is not standardised [NPLSl] so many variants exist.

CSP and CCS Compared

A brief discussion of the similarities and differences between CSP and CCS is illustrative.

For a detailed discussion refer to Hull and O'Donoghue [H093], Fonnd Systems [FS93],

Hoare [Hoa85], and Cohen et al [Coh86].

1. Both methods support communication by message passing. The primitive for com-

munication is handshaking where the action of sending a message by one process

and receiving the message by another process is regarded as a single indivisible

atomic action. Either the sending process must wait until the receiver is ready to

receive or the receiver must delay until the sending process sends.

2. Also common to both methods is the decomposition of a system into a hierarchy

of parallel processes which comrnunicate by message passing. Only the notation

used rnakes CCS's fonn of decomposition different from that of CSP. For exarnple,

P 1 Q in CCS is similar to the CSP P II Q

3. Bot h methods allow explicit rather than implicit specificat ions. Bot h represent the

execution of a process as a sequence of events which may be finite or infinite in

lengt h.

Chapter 2. Literature Review 38

4. Events consume no time so two processes operating concurrently without inter-

action are described as interleaved events in both. Where processes do interact,

internal communication events force sequencing in both processes. Therefore, sys-

tems whose processes execute in parallel only produce a sequence of events.

5. Both methods provide selection between subprocesses depending on the iast event.

-4 process can be defined recursively to achieve the effects of event repetitioa.

6 . Constraints can be imposed on processes by restricting their alphabets (that is, the

events in which they can engage), the order in which the events can take place, and

the conditions under which they can execute.

In surnmary, Huil and 07Donoghue [HO931 state that the strong fa rdy relationship be-

tween CSP and CCS is they share a common explicit specification method which has few

technical differences. They relate to each other also by their ability to express concurrent

applications and by the message passing approach taken. Some of the differences between

the two languages are:

1. CCS provides both a diagrammatic and textud view of the system decomposition.

There is no graphic or diagrammatic support in CSP. The semantic domain of CSP

processes is the set theoretic mode1 while that of CCS is expressible with action

trees [H093]. Moreover, the semantics of CCS is based on the structural approach

modelling a process in terms of its possible states and transitions. The semantics

of CSP, on the other hand, models a process in terms of the sequences of events it

can undergo and the possible sets of events it can refuse at any time [Smi92].

2. CSP provides a unique facility for specifying dowable event traces formally and

implicitly. The mat hematical notation provides representation and reasoning facil-

ities for traces, abstracts them into lists and their members to set elements. Such a

facility for formally specifying the properties which a system must satisfy does not

exist in CCS.

3. In CCS there is a specid operator r that denotes an internal communication event

(i.e., the occurrence of a hidden event or ao internal transition). There is no

Chapter 2. Literature Review 39

equivalent symbol in CSP. The behaviour of a process in CSP is described in terms

of externally observable events drawu from its alphabets. In CCS, both internal

and externdy observable events describe the behaviour of a process.

4. CSP has no notion of a communication's dual (complementary communication).

In CSP, it is identical communication that synchronize rather than complementary

ones. In CCS, there is the concept of communication and its duai (for example,

the dual of a is a).

5 There is a single choice operator, +, in CCS, whereas there are two in CSP: the

deterministic 0 and nondeterministic i l choice operators. In CCS, there is no

special operator for specifjring non-determinisrn but it con be modelied by using

the r operator. The CCS operator can achieve effects close to each of the two CSP

ones because the semantics of CCS is sensitive to r's (internal) actions. In CSP,

the equivalent of the process r P is indistinguishable (in any context) from P.

6. The treatment of concurrency differs in both languages. Ln CCS, concurrency is

represented by 1 while in CSP concurrency is defined by II for synchronization and II 1
for interleaving. This separation of the concurrency concept into the synchronizable

parallel processes and interleavable processes makes reasoning in CSP much easier.

Therefore, the semantics of the CCS operator is much more complex because it

includes aspects of hiding, non-determinism, interleaving and synchronization.

7. Other notable differences between CSP and CCS are [FS93, CK921:

When CSP process communication events synchronize they are not automat-

ically hidden (becoming r-events). This means that more than two processes

can synchronize on a single event and that synchronized events can be observed

from the outside. This gives rather more freedom to use CSP as a specification

language and d o w s the parallel operator to act rather like logical conjunctions

on behaviours.

Since synchronization does not automatically conceal an event , CSP requires

a hiding operator (\) to do this explicitly. This Looks like the CCS restriction

Chap ter 2. Literat ure Review 40

operator and appears in similar places in prograrns, but it is semantically

different. For example, the CSP process

(sit run + wak + run --+ crawl + STOP)\run

+ sit + walk -+ crawl -+ STOP

Its CCS equivalent is:

(sit . ntn . walk . ntn . crawl . nil)\mn 3 sit . ni1

The CCS (\) operator stops both the action indicated on the right side of the

operation and all the actions foliowing this action.

0 In CCS, the interface between a pair of processes is enabled by a combination

of their ability to synchronize with each other and the use of the restriction

operator (e-g., \a,=) to forbid them from using the same events elsewhere.

In CSP, interfaces are defined either by means of process alphabets or as a

parameter of the parallel operator. It is logically impossible for any process

to engage in any event outside its alphabet.

The choice of CSP over CCS as the formal specification language for transactions mod-

els is because it has eqlicit constructs to capture deterministic and non-deterministic

choices, parallel composition, interleaving, synchronization, and other transaction sys-

tems properties. Each CSP specifiable subsystem can be implemented as an independent

module because of the bottom-up design approach it supports. In addition, CSP has

resource primitives ACQUIRE and RELEASE. This is a form of locking. When more

than one resource requires sharing in this f o m , the possibility of deadlock exists. To

prevent deadlock occurrence, these primitives adopt a form of the two-phase locking pro-

tocol. The complex and abstract nature of CCS notations make it difficult to specify and

reason accurately in the language so it is less attractive.

2.4 Traditional Transactions

Tradi tional transactions [Gra81, EGLT761 provide failure atomicity, consistency. isola-

tion, and durability which are collectively referred to as the ACID properties. Chrysan-

Chapter 2. Literature Review 41

t his [ChrSl] argues that the transaction mode1 adopted in traditional database systems

is inadequate for new complex applications. Therefore, both types are reviewed. For a

detailed discussion of these concepts refer to [BGHW, Pap86, Desgo].

Notations

The following notations apply. Let O denotes an operation, O;(z) denotes an operation

O; on a data item z, T denotes a transaction, the index of a transaction, as in Ti, denotes

the i th transaction while the index of an operation, as in O;, denotes the it%peertion. An

operation O E {r(z), w(z)} where r(x) is a read operation and w(z) is a urite operation

while z is an arbitrary data item. Also, let OT; denotes a set of operations invoked by

a transaction Ti and E denotes the transaction termination operation where E E { a o c)

where a and c stands For abort and commit operations, respectively.

Further, let + denotes the happens-before relation5 [Lam78]. An operation O;

happens-before operation 0j7 written Oi 4 O,, if O; precedes O, at execution time.

Further, operations which conflict are ordered by 4. Two operations conflict when they

both access the same data (at least one of them is a write operation) and the operations

give different results if their relative order is changed. For any two operations O;, O, E

OTk which conflict, then either Oi + Oj or Oj 4 O; occurs. Therefore, executing

multiple concurrent transactions requires paying particular attention to the ordering of

t heir operat ions to parantee correctness.

Transactions

The execution of a transaction T is a partial order6 of events with ordering relations 4 r ,

where +T denotes the temporal order in which the related events invoked by T occur.

Definition 4 Transaction: A transaction Ti is a partial order Ti = (Ci, +,-) where

1. xi = OT; U (E i) ,
5+ is an irreflexive and transitive binary relation that indicates the execution order of the operations

involved.

61t is a partial order since some of the operations of a transaction may be executed in "paralleIn.

Chap ter 2. Literat ure Review 42

2- For every O;, Oj E OTi md i # j, if Oi and Oj COI&C~ theo eitber Oi 4; Oj or
Oj 4; O; , and

This states that the execution of Ti contains ail operations of T; and ail operations which

conflict are ordered by the + relation. Finally, property (3) ensures that no operation of

a transaction will execute after the transaction terminates.

Histories

A history is a record of transaction executions. Usually, in a system, multiple transactions

may execute concurrently- Since confiict can occur between any two operations, the

relative order of the execution becomes significant7. A history includes at least the

ordering relation of all conflicting operations.

Definition 5 History: Given a set of transactions T = {Ti, Tz, . . . , T.) executed con-
currently, a history is a partial order H = (C, +) where

1. C = Uj"=Il xj where x, is the domain of transaction Tj E T,

2. +K> UGl + j where +, is the ordering relation at the database management system
level, and

3. for any two conflicting operations p, q E H, either p +H q or q <H p. rn

Al1 operations of H submitted by the transaction set T obey orderings within each Tj

and orders ail conflicting operat ions of al1 transactions.

Correctness Criterion

A correctness criterion specifies properties that guarantees database integrity. The most

popular criterion is seriulizability. A concurrent execution of transaction set is serializable

if it is equivalent to sorne serial execution. Various foms of serializability appear in the

literature. The most cornmon forms are codict equivalence and view equivalence leading

to conflict and uiew serializability [BGH87, Pap86], respectively.

An important tool for checking serializability of a history is the serialization graph.

'The result of a concurrent execution of transactions depends on the relative ordering of conflicting

operat ions.

Chap ter 2- Literat ure Review 43

Definition 6 Serialkation graph: A serialization graph (denoted SG(H)) is a digraph
SG(H) = (V, E) with a vertex v E V for each committed transaction in H and an arc
e E E fiom Ti + Ti if and only if an operation of Ti precedes and conflicts with an
operation of Tj in 8- rn

A history is serializable if and only if SG(H) is acyclic (see [BGH87] for proof). The

serialization graph is constmcted wit h cornmi tted transactions only.

Other types of seriahability are view and &al-state serializability [BGHS?, PapYG].

These d o w more concurrency than codlict serializability and they have different seman-

tics. While a codic t serializable history must be coafiict equivalent to a serid history;

a view serializable history ensures each transaction sees the same data as it would in

some serial execution- Sirnilarly, f ial-state serializability allows concurrent transaction

execution such that the final state of the database is equivalent to the result of some

serial execution of the transactions, Checking any two histories for equidence uses

the read from and final write relations instead of codicting operations used for conflict

serializability. The general problem of determining if schedules are state or view seri-

alizable is NP-complete [Cla92, Pap861 so only conflict serializability permits efficient

implementation.

2.4.1 Recovery

Since failure may leave the database in an invalid or erroneous state*, recovery9 mech-

anisms are required to bring the database into a consistent state by ensuring that no

intermediate results of aborted transactions remain in the database while the effects

of al1 committed transactions do. The aim of recovery rnechanisms is to allow the re-

sumption of database operations after the occurrence of a failure with minimum loss of

data and a t an economical cost. Since recovery and concurrency are interwoven, many

decisions about recovery often influence concurrency and vice versa.

A non-serial history may not always be recoverable. To create a recoverable history,

the relative order of some operations within a history must be dehed- A transaction is
--

8An error in the system occurs when the system assumes a state that is undesirable.

'Recovery is the ability to recover from failures (system, media, or transaction)-

Cltapter 2. Literature Review 44

recoverable if all other transactions it reads from commit before its commitment. Tbus,

Definition 7 Recoverabfe: A history H is recoverable (RC) if when Ti reads x from Tj
(where i # j) in H and c; E H , cj 4 ci. I

This definition prevents transaction Ti fiom reading a value produced by transaction T j

and then commits while Tj is still active. If Tj eventuaily aborts then Ti has modified

the database based on inconsistent values produced by Tj-

When a transaction can o d y read values that have been produced by committed

transactions, a stronger recoverability condition exists. A transaction that obeys this

condition does not cause other transactions to abort if it aborts. Hence they avoid

cascading aborts (A CA).

Definition 8 Avoids cascading aborts: A history H avoids cascading aborts (A CA) if
whenever Ti reads z from T, (where i # j) in H, and cj E H , cj 4~ ri(^). I

AC A property prevents a transaction from reading values produced by active transactions

but the it can reads only values written by itself or committed transactions.

A transaction is strict (ST) if it cannot read or overwrite a data item until the

commitment of the transaction that wrote the previous value. Formally:

Definition 9 Strict: A history is strict (ST) if whenever w ~ (x) +w Oi(x)? (i # j), either
aj i~ Oi(x) or C j 4~ O ~ (X) . I

Therefore, no data item may be read or overwritten until the transactions that wrote it

terminates.

Bernstein et al. [BGHS7] have shown that R C > AC.4 > ST, FSR > VSR 3

CSR 2 SR, and characterised the interrelationships between recoverable and serializable

classes.

2.4.2 Types of Transaction Concurrency

Two types of transaction concurrency, intra- and inter- transaction concurrency are pos-

sible (and therefore two types of concurrency control) in any transaction systern. Intra-

transaction concurrency occurs within a transaction while inter-transaction concurrency

arise between different transactions execut ing concurrent ly.

Chapter 2- Literat ure Review

htra-transaction concurrency can arise in a variety of scenarios such as between

subtransactions alone or between at least one subtransaction and its parent transac-

tion. In intra-transaction concurrency control, while preserving local dependencies, non-

conflict ing operat ions do not require synchronizat ion so maximal concurrency is achiev-

able.

However, non-local confiicts may occur because of references to shared data so

a concurrency control protocol is necessary to resolve the codicting operat ions. To

resolve codicting operations, serialkat ion orders for operations must be defined. in

ot her words, transaction's subtransact ions executed concurrently must be equivalent to

some serial execution. The advantage of intra-transaction concurrency cont rol is that

greater potential concurrency is achievable while providing finer granularity for recovery

in cases of failures with in the transaction.

Inter-transaction concurrency control involves concurrency arising between different

user transactions executing concurrent ly. This is required in all mult i-user systems in

either traditional or complex transaction models. The concurrent execution of different

user transactions must be serializable to guarantee the database's correctness.

2.4.3 Approaches to Concurrency Control

Concurrency control schemes can be classified as: pessimistic and optimistic. Both ensure

correctness in centralized or distributed environrnents.

Optimistic strategies permit restricted concurrent transaction execution where te-

sults validation occurs a t commit. Thus' validation occurs after allowing (possibly incor-

rect) concurrent transaction executions. The complexity of recovery in cases of failures is

tremendous because this approach allows incorrect execut ions. T herefore, to safely undo

the effects of partial results requires a sophisticated recovery mechanism. Examples of

the optimistic concurrency control approach are versioning algorit hms and op t imist ic

t irnest arnp ordering.

Pessimistic concurrency cont rol ensures o d y correct operat ions sequences execut e.

This may reduce concurrency but often simplifies recovery. Examples include two-phase

locking and timestamp ordering protocols [BG89]. These are discussed in details shortly.

Chapter 2. Literature Review 46

Concurrency control also adopts met hods based on opera tion semantics. Exarnples

of this type of concurrency control are commutativity [Wei881 and recoverability [BR907

BR911. Two operations cornmute if their effects are independent of the order in which

they are executedlO. Recoverability is a weaker definition of conflicts than commutativ-

ity. An operation Q is recoverable relative to another operation P, if Q retunis the same

value whether or not P is executed immediately before Q . Transactions invoking opera-

tions P and Q commit in their invocation order which defines commit order. When used

with locking based protocols, recoverability like commutativity, avoids cascading aborts

while also avoiding the delay in processing of many non-commutative operations. Recov-

erability assumes a flexible recovery technique for handling the abortion of recoverable

operations.

The Two-Phase Locking Protocol

A lock is a variable associated with a data item that controls access. Thus, a data item

is conceptually a pair (value, lock). Therefore, a reference to a data item z implicitly

manipulates x (v , 1) where u is the current value (i-e., information content of x) and I is

the current lock mode.

Two locks types are used, namely: exclusive and shared. Exclusive locks (also called

wn'te or update locks) provide access to the data item for only one transaction. Shared

locks can be held by an arbitrary number of transactions for read access. Transactions

that both read and write a data item acquire an exclusive lock.

Serializability is ensured if al1 locking operations precede the first unlock opera-

tion in the transaction. This is caUed the two-phase locking protocol (2PL). Thus, the

two-phase locking protocol is characterised by a growing phase followed by a shrinking

phase. The locking and unlocking operations are monotonie increasing and decreasing,

respectively. Once a lock is released, additional acquisition of locks is forbidden.

The 2P L protocol guarantees seridzable schedules [Desgo, EN94, BGH871. Thus

if every transaction in a schedule obeys the 2PL protocol the schedule is guaranteed to

10Commutativity must provide the semantics for determining if any two operations can execute

concurrently.

Chapter 2. Literature Review 47

be serializable. The order of transactions in the equivalent serial schedule depends on

the order in which executing transactions lock the items they require.

ALthough the 2PL protocol gives the best performance for most database appli-

cations [BHGS?, BK91, ACL87, CGM91, GR931 and despite guasanteeing serializable

schedules, 2PL has two serious Limitations - deadlock and liuelock. Deadlock arises

when each of two or more transactions is waiting for the other to release the lock on

an item. Thus, a set of transactions T = {TL, T2 , Tn) are in deadlock over a set of

resources R = {Ri, R2 - - - , Rn) at time t if and only if V i : 1 5 i 5 n , process Ti wants

to access resource Ri and Ri is held by process T;+L at time t and T. is waiting for Rn

held by Tl. A transaction is in a state of LivelocklL if it cannot proceed for an indefinite

period while ot her transactions in the system continue normally. Unnecessary restarts

and frequent waiting c m severely degrade the performance of the system [EN94? LR9 1

SRL881. Several algorithms have been proposed12 to deal with deadlock.

Variants of the basic 2PL algorithm are the consemative 2PL (C2PL) and strict

2PL (S2-PL). The CZPL algorithm must lock dl its items before it starts, whereas SL-

PL does not d o c k any of its items until after it terminates by committing or aborting.

CL-PL requires a transaction to lock ail the items it accesses before the transaction begins

execution. If any of the item is dockable, the transaction does not lock any item; but

waits until al1 the items are available for locking. It is a deadlock free protocol that Lirnits

concurrency. In S2-PL, a transaction T does not release any of its locks until after it

commits or aborts. Therefore, no other transaction c m read or write an item written

by T unless T has committed, leading to a strict schedule for recovery. S2-PL is not

deadlock free unless used in combination with CS-PL. By combining S2-PL and C2-PL

together yields recoverable and serializable schedules that depend on the lock acquisition

order of the transactions but it further constrains the degree of concurrency.

" Livelock situations happen if the waiting scherne for lockeà item is unfair. Unfairness arises by giving

priority to some transactions over others. The solution to this is to have a fair waiting scherne such as

first-corne first-serve (FCFS) .
"Interestecl readers are referred to [Desgo, EN94, BHG87, BL93, Cla92, HZ92, GR931 and other

sources for details. Some of the algorithms are: wait-die, wound-tuait, time out, no-waiting, and cautious

waiting.

Chapter 2. Literature Review

Timestamp Ordering

Timestamp Ordering (TO) achieves concurrency without locking so it eliminates dead-

lock. Timestamp values are assigned to transactions when they are submitted (that is,

the transaction start time). Each transaction is açsigned a unique non-decreasing num-

ber. Al1 of a transaction's operations have the same transaction timestamp. Timest amps

are generated with a counter or the system clock, The timestamps are monotonically

increasing.

A scheduie in which the transactions participate is serializable [BGHW] and the

equivalent serial schedule of the transactions corresponds to the order of the transaction

t imestamps. The system enforces serializability using the chronological order of the

concurrent t ransactions7 timest amps. The scheduler immediately schedules any operat ion

that arrives for execution unless a conflicting operation with a higher timestamp has

executed. A codict occurs when an older transaction tries tu read a value written by a

younger transaction or when an older transaction tries to modify a value already read or

written by a younger transaction. Both attempts signify that the transaction with lower

t imestamp was "too late* so it may see stale values [DesSO]. Codicting operations from

distinct transactions get scheduled (or aborted) based on t heir timestamp values. The

TO protocol checks conflicting operation occurrences that arrive in the wrong order and

rejects those with lower timestamps by aborting them.

The basic TO protocol enforces conflict serializability but does not ensure recover-

able schedules. Therefore, it does not avoid caçcading aborts or produce strict schedules.

Another related problem is cyclic restart; so starvation may occur if transactions abort

and restart continuously.

The Strict TO ensures that schedules are both strict and conflict serializable. A

transaction T that issues a read or write operation on x such that the timestamp of T is

greater than the timestamp of x7s last write bas its read or wnte operation delayed until

the transaction, Say Pl which wrote the value x commits. This protocol is deadlock free

because transaction T waits for P only if T's timestamp is greater than P's timestamp.

Chap ter 2. Li terat ure Review

2.4.4 Recovery Techniques

There is a need to recover data in the presence of a transaction's abort. Erroneous states

are resolved using exception handling mechanisms. Fadure management by exception

handling may involve one or more of the foilowing alternate courses of action: (1) abandon

the execution of the unit, (2) try the operation again, (3) use an alternative approach,

or (4) repair the cause of the error.

Two methodç generally used to recover from failures are: (a) the logging approach

[HR83] which maintains versions of the data by keeping a record of the before-write

value and the associated transaction, or (b) keeping a record of the inverse operations

required to restore the value [Mos85]. The two approaches differs in that loggbg shows

what changed while inverse operations shows the how of the change. Logging is the

most popdar recovery technique. The log is stored in non-volatile memory. When a

failure occurs, the log information becomes available to undo the effects of aborted and

active trknsactions13 and to redo the committed transactions [DesSO]. To implement the

abort operation using logging, the before-write images of al1 mites of a transaction are

restored except where the data are modified by another transaction, Say Tk, after it was

Iast written by the transaction.

Other recovery mechanisms adopt contingency transactions [BHMCSO] which ex-

ecute an alternate transaction when the original transaction fails, and compensating

transactions [GS87] which arnends partial executions by invoking operations to annul

the committed actions of the failed transaction.

A contingency transaction executes upon failure of the transaction as an alternative

to the failed transaction. A contingency transaction may abort like any ot her transaction

since it is a transaction in its own right. Contingency transactions accomplish fomard

recovery. Compensating transactions achieve backward recovery from failure of a trans-

action. They compensate for the partial execution of the failed transaction's operations.

Compensation order is the inverse of the commit order of the aborted transactions. In

other words, compensating transactions provide a mechanism to undo the effects of com-

1 3 ~ n active transaction is executing transaction in progress. An active transaction either aborts or

commits.

Chapter 2. fiterature Review

mit ted partial executions t hereby defining logical equivalences of rollback.

2.5 Extended Transactions

"Extended transactionsn is a broad class of transactions models t hat flexi bly interpret

the ACID properties in order to deai with transactions in new applications. An extended

transaction consists of a set of operations on data objects that execute atomically in a

predefined order or a set of extended transactions with an explicitly given control related

to the notions of visibility, consistency, recovery, and permanence [Chrgl].

Extended transactions exhibit a rich and compIex interna1 structure. Their compo-

nent transactions are not necessarily atornic. The way component transactions combine

to form extended transactions reflects the semantics of the applications. Some of these

models assume or dictate specific recovery or commit protocols. Therefore, their effects

on transaction-specific concurrency and recovery protocols are of particular interest in

t his research.

A transaction accesses and manipulates database's data objects by invoking oper-

ations specific to individual data objects. Depending on the semantics of the operations.

aborting an operation may also force abortion of some other operations thereby leading

to cascading aborts of operat ions. Thus, specifying concurrency uses the transaction's

semantics and the data they manipulate since this approach provides a rneans for dealing

with the application's functionalities.

Dealing with concurrency in new applications use either ad hoc systems or tradi-

tional concurrency control [Chrgl]. Ad hoc systems allow cooperation arnong users based

on an intuitive mode1 of interactions. These systems Iack forma1 definitions and as such

t heir correctness c m o t be characterised mathernatically. Similady, traditional concur-

rency control based on the concept of serializability are inadequate for long- duration

transactions.

The foilowing discussion provides a summary of some extended transaction models.

The discussion focuses on t heir concurrency cont rol and recovery propert ies.

Chapter 2. fiterature Review

2.5.1 Active Databases

The traditional transaction model has been extended to a flexible execution model with

d e processing. Chakravarthy et al [Ch891 discuss the usefulness of a de-based active

capability for supporting integrity enforcement, access control, and dynamic coordina-

tion. The use of rules for incorporating active capability provides dedarative specification

of events, condit ions, and actions for capturing object and application semantics. The

model has the capability to monitor temporal events and initiate a set of actions.

An event algebra [CM91, Mis911 forms part of the model for supporting difTerent

event types specification and constructing complex events. For example, [GJS92] de-

scribes the integration of composite event specification. The event specification use a

set of notations ident ical in expressive power to a notation based on regular expressions.

The active paradigrn has been incorporated into object oriented databases [Anw92, GJ9 1

G JSE] and used to enhance concurrency in multidatabase environments [B&95]. Kort h

and S peegle [KS94], however, argue t hat event-condi t ion-act ion rules lack the concept of

correctness thereby making it impossible to detect if aa execution is correct.

2.5.2 Nested Transaction

Nested transactions [Mos85, Pu861 are hierarchicdy structured transactions that support

computations similar to those in procedure calls. Transactions consist of subtransactions

designed to localize failure within such a transaction and to exploit concurrency between

subtransactions. A subtransaction may contain read and write steps and other sub-

transaction invocations thereby changing a transaction from a sequence of steps into a

hierarchy of subtransactions. Therefore, each node is either a subtransaction (non-Zea f

transaction), a database access (leaf transaction) such as read or write step, or a combi-

nation of both14. Thus, a nested transaction model supports two types of transactions:

root transaction and subtransactions. The root of the hierarchy is used to model the

execution of the transaction.

14This view of nested transactions difEers from Moss's [Mos85] where interna1 nodes do not perform

any database access operation.

Chapter 2. Literat ure Review

A nested transaction can handle partial failures and subtransactions can abort

independently without causing the transaction to abort. Subtransactions execute atomi-

cdly wit h respect to t heù siblings and other non-related (independent) transactions and

failure atomic with respect to their parents. Subtransactions can potentially access any

data object currently accessed by one of its ancestor transactions or any other database's

data object not m e n t l y accessible to any of its descendant subtransactions.

When a subtransaction commits, the objects it modifies become accessible to its

siblings and parent transactions. However, the effects of the updates on data objects

become permanent in the database when its root transaction commits. If a committed

subt ransact ion's parent aborts, t hen the subtransaction aborts too. A non-leaf t ransac-

tion performs only the begin transaction operat ion t hat starts subtransaction's execution

and updates the partial order of the transaction. When a subtransaction commits, the

parent inherits the subtrânsaction's accessed data objects; adding it to those of al1 its

committed subtransactions. The parent also inherits the read set accurndated by the

subtransaction. A committed non-leaf transaction can abort if its parent changes any

element in its read set. Also, if a non-leaf transaction aborts then al1 its subtransactions

must also abort.

A degenerate forrn of the N T model is the distributed transactions [ChrSI, GR93j.

In a distributed transaction model, a transaction is broken down into subtransactions that

invoke operations on data objects distributed physically in a network. Each subtransac-

tion rnay be nested. However, there are some subtle differences between the two models;

for example, abortion of a subtransaction causes the abortion of the whole distributed

transaction.

The preceding discourse is often called closed nesting. The characteristic feature

of close nested transactions is the bottom-up to the root commitment approach, the

semantics of which enforces atomicity at the topmost level.

Another type of nested transaction is open nesting. Open nested transactions have

different termination characteristics by relaxing the top-level atomicity of close nested

transactions. An open nested transaction makes its partial results visible outside the

transaction. Therefore, logging may be inappropriate for recovery because effects of

Chap ter 2- Litera t ure Review 33

committed transactions are durable. To undo the effects of partial results requires the

use of compensat ing transactions.

Open nested transactions are appropriate only if it possible to define a suitable

compensating transaction for each toplevel transaction. A compensating transaction

may never start unless the corresponding transaction associated with it previously commit

[BOH+92]. Therefore, there is a begin-dependency between a top transaction and its

compensat ing transaction,

A Saga [GS87, GGKKSSO] is an example of open nested transactions. A Saga

[GS87] is a two level nested transaction with traditional transactions as its components.

Each component transaction is associated with an application specific compensating

transaction. It can interleave in any way with other Sagas but it cannot partially e x -

cute. If a Sagas is interrupted, it either attempts to proceed by executing the rnissing

transaction (forward recovery) or amends partial executions by invoking cornpensating

transactions (backward recovery) .
A variation of Sagas [see GGKKSSO] allows the chôracterization of subtransact ions

as vital or non-vital. The abortion of a vital subtransaction causes the abort of the

transaction. Thus, a vital transaction must execute successfully for its parent transaction

to commit- A parent transaction may commit even if one of its non-vital transactions

aborts.

2.5.3 Cooperative 'Ikansactions

A cooperating transaction (KKB88, KS88] is a subtransaction that does a specific task for

another user. In cooperative transactions, partial changes made by one transaction may

be visible to another while they are executing. Therefore, components of cooperat ive

transaction may not produce consistent results. The eEects of a transaction set are

considered consistent if ail the steps that express the required computational goals execute

completely and the execut ion steps interleave correctly.

This mode1 uses p~edicatewise serializabilz'ty correctness criterion which permi ts

non-serializable executions while satisfying the individual postconditions of the transac-

t ions. To control the interleaving of concurrent operations requires the specificat ion of

Chap ter 2. Literat ure Review

conflict among the operations.

An application that adopts this mode1 is an airline reservation system t hat involves

subtransactions which require independence between reservations but depend on the

entire transaction completing.

2.5.4 Federated Databases

A federated database system (FDBS) [SL90] is a collection of cooperating database sys-

tems that are autonomous and possibly heterogeneous. Other t ems synonymously used

to descn be FDBS are multidataba~es'~ (MDBS) [LMRSO] and heterogeneous databased6

(HDB) [EC90]. A key characteristic of a federated database system is the cooperation

among independent systems. Component s D BSs allow partial and cont rolled sharing of

their data- A component database system can continue to execute its local operations

without interference from external operations and it detennines the order in which to

execute external operations. It treats external operations in the same way as its local

operations- This implies that a component DBMS can abort any operation that does

not meet its Iocal constraints and that its local operations are logically unafFected by

its participation in an FDBS. Also, the component DBMS does not need to inform an

external system of the order in which it executes extenid operations or vice versa.

Global operations involve data access using the FDBMS and may involve data

rnanaged by multiple component DBSs. Component DBSs must grant permission to

access the data they manage. Local operations are submitted to a component DBS

directly. A component DBS, however, does not need to distinguish between local and

global operations. The classical requirements for consis tency, concurrency cont rol, and

transaction management require a redefinition for federated database environment since

a transaction may span several autonomous database systems.

A serious problem in the FDB mode1 is the maintenance of global serializability,

due to the difficulty of detecting codicts between global and local transactions, since
--

15Multiple autonomous databases rnanaged together without a global schema are called mutidatabases.
16Heterogenous database is a collection of heterogenous cooperating databases loosely coupled

toge t her.

Chapter 2. Literature Review .5 5

each may be ninning under different concurrency control dgorithms. Another problem is

the preservation of autonomy- Local autonomy is the ability of each component database

to control access to its data by other component databases and the ability to access and

manipulate its own data independent of the other participating component databases.

The former is desirable for performance and security while the latter ailow local users to

access their own data without external interference thereby allowing possible maximal

concurrency between local operat ions and external operat ions.

2.6 Dependence Relat ionships

Besides begin dependency, other dependency relationships exist between subtransactions

and parent transaction. These are:

Abort dependency between the subtransaction and its parent. Abort dependency

does not d o w a subtransaction to execute if the parent transaction aborts.

Termination dependency of the parent transaction on its subt ransact ions requires

that the parent transaction cannot terminate until ail of its subtransactions termi-

nate.

Force-commit-on-abort-dependency requires a transaction, Say T2, to commit if

another transaction, Say Tl, aborts. For example, compensat ing transactions must

commit on the abort ion of the transaction needing compensation.

Other types of dependencies generdy found in extended transaction models are described

in Chrysanthis's seminai work [ChrSl].

Chapter 3

SPECIFYING TRANSACTIONS

This chapter begins by providing a taxonomy of any database transaction specification's

desirable characteristics in Section 3.1. Section 3.2 discusses the requirements of data-

base transaction specification formalism while Section 3.3 highlights some important

issues like constraints specification, proof requirement, time property, and causality that

demands particular considerations when specifying database transaction systems. Fi-

nally, Section 3.4 briefly discusses why CSP is our language of choice for presenting a

sample specification and proofs in a practicd example, the Electronic Shopping M d , to

demonstrate important results (See Chapter 5).

3.1 Taxonomy of Transactions S pecificat ion

Requirement s

This section presents the desirable properties of transactions specification and a tax-

onomy of these properties in order to explain the need for certain required language

feat ures (outlined in Section 3.2). Figure 3.1 illustrates the relat ionship between t rans-

action features, desirable specificat ion characteristics, the features of any transaction

specifications formalism, and transaction correctness formal specification. The figure

provides the context of the three main entities (features of transactions, desirable spec-

ification characteristics, and features of transaction specification formalism) necessary

Chapter 3. Specifyiog Transactions

Charactenstics of Features of
Transacaransacaons

Features of Formaüsm for
SpeciSiag Tranasactions

F o d Specification of f
Transaction Correcaiess

Figure 3.1: Transactions, Specification, and Forrnalism Features Relationship

Chapter 3. Specigng Transactions 55

to adequately specify transaction systems and their correctness. The main intent is to

eventudy espouse the requirements for an y formalism t hat specifies transaction systems.

In this thesis, the characteristics of a transaction's specification are claçsified into

t hree t axonornic dimensions: correctness, confirma bilit y, and comple teness. These dimen-

sions are the minimal1 requirements because any deviation impacts system dependability.

The dimensions are interrelated; resolving an issue in one may transcend the other, Each

dimension contributes uniquely to the specification's overall quality and utility. None of

the dimensions can be ignored and hope to compensate for it in the other. Compromising

any of the dimensions produces a specification that does not meet the system's desired

needs. By understanding each dimension, writ ing specificat ions t hat exhi bit t hese char-

acteristics significant ly increases t heir quality and dependabili ty. Figure 3.2 illustrates

t hese dimensions and t heir constit uents.

Completeness Dimension:

The cornpleteness dimension ensures that ad essential* characteristics, functionalities

and behaviours are modelled. Completeness dimension consists of the completeness and

functional characteristics. Completeness is the property whereby a specification contains

al1 essential characteristics and properties. Thus, the specificat ion contains al1 signif-

icant requirement , whet ber relating to funct ionality, performance, design const raint s,

and interfaces. Completeness has two aspects: conceptual and syntactic. Conceptual

completeness implies that the specification contains adequate functions and objects to

describe the scope of the domain the specification describes. Syntact ic completeness im-

plies t hat the specification captures the conceptual ob jecis,'funct ions in the applicable

specification language. A specification is functional if it describes only what the system
- --

lThe conciseness property can be ignored without any signifiant effect on the system's dependability.
*Essential requirements are those considered necessacy to meet the system's operational needs, in-

dependent of any later technology advances or the specific technology used to implement the system.

They may define functions that the system must support (i.e., its behaviour), nonfunctional properties

of the finished system (e.g., responsiveness), or external interfaces or restrictions (e.g., communication

with an external device). Changes in technoiogicai advances may Later modify the systern's perceived

needs. This is one of the causes of a system's modification.

Chap ter 3. Specifying Transactions

Dimensions cornponent properties

Figure 3.2: Taxonomy of Transaction Specification Characterist ics

Chapter 3. Specifj&zg Transactions 60

will do. The functiond specification defines the operations and transformations that the

system must ca.rry out. Each functional requirement is specified in detail. In addition,

functional requirements include a description of the set of Legd values and ranges that

the system will accept for input, the state changes and actions that the system will take

on both 1ega.l and illegal input, and the output the user wiil see. Functiond specification

does not include any design or implementation features but only the system's desired

funct ions.

The completeness dimension guarantees provision of aII appropriate services, rnes-

sages and operations, defines aII necessary data attributes, handles and raises al1 appre

priate exceptions, and defines what happens for aII possible input3 to the system. Every

attribute must have a domain of permitted values4. Proper use of the completeness prin-

ciple provides reusability of objects at higher Ievel? increases productivity, and decreases

configuration management. It should be emphasized that completeness as used here does

not connote absolute completeness, which is u s u d y difficult to attain, rather the speci-

fication should contain al1 functions and modules to provide the services required of the

system. In other words, a specification should contain ail essent i d requirements t hat

completely describe the structure and behaviour of the transaction mode1 it specifies.

Checking a specification for completeness involves: (1) componential analysis of

the syntactic, semantic, and conceptual elements of the specification, (2) induction (and

invariants), and (3) checking for omissions. [ABL89] provides a pragmatic checklist for

checking a specification's completeness. These are:

0 Are all sources of input identified?

What is the total input space?

a Are there timing constraints on the inputs?

Are al1 types of outputs specified?

a What are al1 the types of runs?

What is the input space and output space for each teype of run?
-

3Software responses are defined for al1 realizable classes of input (including invalid inputs).

"The selected domain must represent attribute values in a meaningful manner.

Chapter 3. Speciwng Transactions

1s the invocation mechanism for each run type defmed?

Are all environmental constraints defined?

a Are al1 necessary performance requirements defined?

Correctness Dimension:

The correctness dimension ensures the specification captures accurately the desired sys-

tem properties. The correctness dimension consists of the consistency, correctness, and

unambiguity properties. A specification is consistent if and only if there are no con£iicts

between the requirements and it is unambiguous if and o d y if every property (require-

ment) has only one interpretation. Common examples of contradictions are using different

terms for the sarne action and two requirements that contradict each other. A specifica-

tion's correctness is the accuracy to which it describes exactly the tasks and properties

and to which requirements meet their needs. Ln other words, a specification correctness

measures its consistency with respect to its requirements (needs). Correctness has two

parts: conceptual correctness and syntactic correctness. Conceptual correctness irnplies

t hat the specification accurately captures/reflects the concepts of the transaction model.

It depends on the specifiers' ability to translate the transaction environment into a se-

mantic language to fonn a rneaningful and accura te representation of transaction models.

The translation from concept into formal f o m must be correct. Verifying conceptual

correct ness is a chalienging and difficult exercise but involving domain experts5 bot h dur-

ing the specification's capture and verification helps significant ly. Syntactic correctness

implies that the specification adheres to the syntax of the specification language.

Correctness checks ensures there are no logical, syntactic, and semantic, and con-

cept ual mistakes in the specification. Consistency checking checks for conflicts (same con-

ditions but different actions), redundancies, subsumptions, inconsistencies (e-g., A =. B

and A + 1 B), and ambiguities in a specification. Further, consistency checks en-

sure no input states are mapped to more than one output state and a consistent set of

'Domain experts are speciaiists in a particular application domain of interest. For example, transac-

tion systems management specialists are domain experts when building a distributeci database applica-

tion software.

Chap ter 3. SpecifYing Transactions

quantitative units are used.

With a cornpiete and consistent formal specification (Le., a precise definition t hat

allows recognition of inconsistencies and preserves correct ness) , every operat ion / inter-

pretation is verifiably correct or incorrect.

Confirmability Dimension:

The confimability dimension determines if the specification is correct. It ensures that

the correct models are being built. Confirmability consists of traceability and v e 4 a -

bility characteristics. Traceabilz'ty is the ability to track every property in the system's

specification. Every property should be traceable to specific system's requirements. Re-

quirements may have one of several sources, depending on the nature of the specification

activity. Traceability is both fortuard and backward. Forward traceability is a mapping

from the essential requirements entities to the resdting design entities. Thus, the te-

quirements are "linked to the system's operational needs via specific verification from

the detailed requirements to the operationai needs" [KSW]. Backward traceability oc-

curs if each reference requirement is uniquely identified so that one can map properties of

the deiivered product into requirements of the specificat ion, and vice versa. Traceability

may be attained through: (a) reference to the source of the need or reference to a physical

data structure element or variable, and (b) mapping to another metadata object created

and managed as part of the development. Every attribute is either primary or derived6

so the specification must document the source of the data and where it will be used. A

requirements traceability matrix [KS92] must be provided to ensure completeness and

consistency with the customer's needs. Automated tools often help to generate much

of the traceability information. Traceability in turn supports verifiability. Verificat ion

is the exercise of detennining correctness. A specification must be verifiable to ensure

t hat the specification itself is correct and that transaction systems built from it behave

correctly. A specification is uerifiable if it is possible to show that every property stated

6An attribute is derived if its value is generated from one or more other attributes in the model

according to a specified formula. An attribute is primary if it is not derived within the scope of the

model.

Chap ter 3. Specifyng Transactions 63

in it holds in the system. Thus, proving and veriwing every property stated in, and

tracing the properties through, the specification are the basic functions of confirmability.

Therefore, confirmability provides mechanisms to check the correctness, consistency, and

completeness of a specification.

Other Properties:

In addition to the above dimensions, a specification should be concise. Conciseness is

the ability to express in an abstract form ail essential capabilities and properties in a

precise manner. A specification should be concise, clear, and annotated where necessary

to assist in achieving the correctness dimension characteristics. Blum asks: "After ali,

of what value is an unambiguous specification when it is misinterpreted in the context

of a naive theory?" [Blu92]. So a specification should contain clear and understandable

commentary to assist the reader.

To write a specification that has the characteristics discussed above requires a for-

malism t hat has bot h expressive power and the functionality to specify and reason about

the structure and behaviour of transaction models. Further, to show that the specifica-

tions are consistent, verifiabIe, traceable, unambiguous, and correct requires expressing

the specifications using mat hematical notations and t hen use the underlying formalism

to prove these properties.

3.2 Transactions Specification Formalism Require-

ments

A transaction's behaviour is the s tate sequences resulting from the transaction's opera-

tions. An operation is a disnete activity that implements a definable functiond abstrac-

tion. Operations may be either simple or composite, concurrent (having one or more

separate threads of control) or nonconcurrent, and possibly parameterized. Therefore,

operations define the behaviour of kn object (or system). Thus, the behaviour of a tram-

Chapter 3. Specifying Transactions 64

action depends on how its components behave individudy and how the components

communicate with one another.

Before enumerat ing the desirable feat ures of a specificat ion language suit able for

specifj6ng transactions, it helps to reiterate the characteristics of transactions. Trans-

actions are characterised by such features as interleaving of operations? concurrent exe-

cution (paralle1 executions of operations and not necessarily joint), mutual exclusion (at

Iower level), and synchronization of operations on shared resources to avoid deadlock.

Synchronization of operations on shared resources involves temporal properties. Fur-

therrnore, transactions d o w some form of nondeterminkm and concealment of results,

and the utilization of dependencies and causality relationships to guarantee execution

correctness. These transaction's characteristics and the propert ies of transactions' spec-

ification (see Section 3.1) taken together help to explain the need for certain required

language features.

Therefore, any formalism for specifying transaction system behaviours must pos-

sess the following language feat ures:

1. Have abstraction facilities capable of producing a precise, consistent, and unam-

biguous specifications t hat abstracts away implementation dependent issues. It

should be rigorous and mathematically based so that its designs are built from

provably correct constructs.

2. Support for proof obligation. The framework should possess a formal specification

and verification method based on a sound mathematical basis to allow formal proofs

of correctness. This proof obligation can be discharged automatically by using the

specificat ion's language proof assistant or by relying on a rigorous mat hemat ical

proof analysis and logical reasoning.

3. Supports both concurrency and functionality. The formalism must provide primi-

t ive constructs to capture concurrency (such as interleaving, parallelism, nondeter-

minism), choice, sequence, and intempt . In addition, the formalism should provide

funct ional operators.

Chap ter 3. Speciwng Transactions

4. Have adequate data modelling facilities. The framework should appropriately c a p

t u e the stmctured data objects used in database computations since these data

objects provide a meaningful representation of the problem being solved. Further,

the framework should provide elegant means of specifying operations on structured

data in addition to capturing communications arnong the system7s components.

Thus, it should provide adequate mechanisms for defining and manipulating data

objects suitable for database applications.

5 . Sernantically rich enough to capture the various semantic elements necessary for

defining the consistency/correctness and reliability criteria of the different complex

transaction models. The language's syntax and semantics should be clear and easy

to understand. La addition, the formalism should be flexible and open-ended so

that it is applicable to any transaction model.

6 . Supports temporal properties of transaction models and provides facilit ies to cor-

rectly express time by selecting appropriate models and notations. The knowledge

of events occurrence times provide answers to such questions as whether one event

occurs before, after, or simultaneously with another. Thus, time information is nec-

essary for events ordering t hat is essent ial for understanding transaction operat ions

synchronizat ion.

7. Additional features which a specification formalism should exhibit are:

a suitable to the particular application domain. That is, it should be suitable

for describing both the problem to be solved and the algorithms used to solve

it in a common underlying framework.

a Have support for modularity and composition of a specification's modular units

into a model of the whole system. These features enable a meaningful organi-

zation of the information in the specification.

Thus, the framework should be problem-oriented allowing sys tem designers to st ruc-

ture the specification as closely to the probIem as possible which reduces the chance

of errors.

Chap ter 3. SpeciS.ing Transactions 66

No single formd specification language currently has al1 the above properties. A corn-

bination of features from fonnalisms for specifying sequentiai processes and others used

for specifying concurrent ones is the most promising.

3.3 Considerations for Transaction Specification

This section describes the fundamental issues in writing a transaction's specificat ion.

Their understanding assists us in shaping the way the specifications should be wntten.

3.3.1 Constraints Specification

A database's integrity is defined by its adherence to its integrity constraints. Assuming

that the database is consistent and adheres to the integrity constraints then the formal

specification is correct and verifiable if the transaction's precondition and postcondi-

tion are enforced- The precondition describes the database state which is required for

the transaction to execute correctly. Postcondition descri bes the database state after a

transaction executes if the preconditions hold.

Birell et al. [BGHL87] argue that any behaviour of a concurrent system is describ-

able using a sequence of atornic action so they propose mutual exclusion to synchronize

shared data access. Thus, two states define the observable effect, namely the state im-

mediately preceding and following the action. Such rnutud exclusion completely isolat es

the criticai sections but is inappropriate for transaction systems because it is too restric-

tive and eliminates concurrency. Furthermore, it is impractical and incorrect to describe

a non-atomic transaction's observable effects with two states since its effects may span

more states and other processes actions may interleave with its actions. To overcome this

problem, each non-atomic transaction's execution can be specified as a predicate t hat de-

fines the allowable action sequences. Therefore, the interleaving of operations from other

transactions or schedules of operations performed concurrently must be equivalent to the

efects of execut ing the transactions serially [EG LT76].

Predicates that define state are written wit h first-order predicate logic expressions

combined with process and communication primitives. A first-order predicate logic for-

Chap ter 3. Specjfyng Transactions 67

mula is written in conjunctive nomal form and describes the characteristics of the system.

Predicatebased models define the executions dowed by a transaction set by describing

when interleaving is possible. Therefore, the set of data items appearing in the predicates

must be defined. Concurrency is possible by exploiting the predicates associated with

the transactions. However, the predicates must sat isfy the weil-formedneçs property (see

Section 2.1.1 page 23). Deterrnining whether a given string is a well-formed formula

with respect to G, a set of syntactic d e s , is decidable7 [WF83]. Well-forrned formulae

are used to build a proof system to verify the correctness of specifications. A proof is a

sequence AL, A2 - - , A,, of well-formed formula such that for each i, either Ai is an axiom

of the system or A; is a direct consequence of some preceding well formed formula by

applying one of the inference d e s . New facts are established by deducing or proving

their truth from previously known facts.

3.3.2 Proof Requirement

Every specification determines the set of allowable actions that hold in it. These are the

properties of the specified system expressible in the given syntax and semantics of the

specification laquage. It is vital to have some effective ways of proving that an action is a

consequence of a specification. A proof system shows the correctness of the specifications.

Guttag and Horning [GH80] and Woodcock [Woo89] argue that proofs help to explain

systems7 behaviours and ensure correctness. Thus, by proving that selected properties

follow from a specification rve can show that the specification expresses the system's

desired needs.

.4 proof system must be sound and complete but no sound and complete proof

system exist [ST84] so we only ensure soundness. Thus, developing an inference rule

for every operation allows the use of compositional inference rules to deduce facts about

compound specificat ion developed from t hose components.

Two proof styles [Woo89] are possible: natural deduction deduces one property

from another; and logical reasoning uses an equivalences chain. Both styles employ direct

'A decision problem is decidable if there exist an algorithm that detemines after finitely many steps

whether a given string is well-formed.

Chapter 3. Specifying Transactions 68

proof, proof by contradiction, or proof by mathematical induction [W O O ~ ~] . Alt hough

behavioural equivalence is a fundamental programrning met hodology, the transaction

specification systems must guarantee behavioural equivalence to the execution effects of

transaction systems (programs) built fiom the specifications. Jahanian and Mok [JM86]

aigue that formal verification methods prove the consistency of safety requirements from

the system specification. Thus, proving consistency and correctness is only with respect

to a specification. The proofs themselves may be informal or formd, but their logical

basis is formal.

3.3.3 Time Property

A transaction system7s execution is described by the sequence of events that occur. In

time sensitive applications/operations (such as operations on shared objects), it is im-

portant to reason about what events occur and when. The central concept here is timed

execution. Often, timing requirements demand t hat certain communication signals and

operations must execute at certain absolute times or within certain time limits. So to

characterize dynamic propert ies and behavioural patterns of transaction systems, the

temporal component of the transaction system7s specifications is important. Time-based

events are important for active databases and their incorporation into a general forma1

frarnework addressing events is desirabIe.

Therefore, specifying and verifying transaction system behaviours requires reason-

ing about a sequence of states and their times of occurrence. Time is associated with

each state in the execution such that the sequence of times is monotonic and only finitely

many states are assigned in a given time i n t e r d . The timing property is essential to

fully capture and define the synchronization behaviour aspects of concurrent t ransac-

tion systems. Expressing interleaving order requires specieing the relationships between

events and their times of occurrences. For example, consider the concurrent execution

of transactions Ti and Tj- If transaction Ti is value dependent on Ti then Tj 4 Ti-

This ordering depends on the knowledge that Ti uses a data object previously modified

or accessed by Tj . R e c d , an operation precedes another at their execution time (see

Section 2.4 page 41). Section 5.6 presents more details on relationship between events

Chap ter 3. Speciij&g Tramactions

and t heir occurrence times.

Timing properties are essential in specieing database transaction systems. They

constrain the interactions between different components of the system and between the

system and its environment. Minor changes in the precise timing of interactions may Iead

to radicdy different behaviours. Therefore, t ime is an essent i d synchronizat ion mech-

anism for solving certain task coordination problems. However, unlike hard real-time

systems t hat are characterized by a time-dependent utility funct ion (t hat is? sat isfying

the time deadlines constraints determines the correctness of results), database transac-

tion systems axe soft real-time systemss [Son881 because satisfying hard time deadlines is

not the prime consideration but rather the correct synchronization of the transactions.

The time domain in some approaches is discrete and in others is continuous. Dif-

ferent kinds of computation problems are best addressed using different notions of time

so there is no "best" uniform approach [Sch93b]. Thus, the nature of the application

dictates the timing requirements.

Generally, TIME is a totally ordered set of time points represented as a rnapping

to the number line. The type T 1 . E is closed under addition and subtraction. One

can identify three models of time: discrete, clocked, and continuous time. The mode1 of

time is discrete if the time line is isomorphic to the integers, and is continuous when the

time Line maps to the real number field. Discrete time represents the temporal evolution

of the system as an enurnerable sequence of snapshots; each describing the state of the

system at a certain t ime. Continuous time represents the system evolut ion by a sequence

of intervals of time, with a description of the system's state during each interval. In

the continuous case, the behaviour of the system is represented by a mapping from an

interval- of nonnegative real numbers representing time intervals to system states. The

intervals can overlap a t endpoints only. There are infinitely many points in continuous

time in any interval of non-zero length so reasoning in continuous time is problematic

%oft real-time transactions have timing constraints but there may still be some justification in com-

pleting the transactions after their deadlines. Unlike hard reaI-time systems, catastrophic consequences

do not result if soft real-time systems miss their deadlines. in hard real-time systems, a transaction's

timeliness and criticalness usually determine the usefulness of the results (i-e., the results are available

in time to infiuence the process being monitored or contro1led)-

Chapter 3. Specifliog Transactions 70

and generally intractable. Clocked time is an approximation of continuous time. A spe-

cial event is assumed to execute regularly but the relative order of events between the

checkpoints remains important. In most transaction systems discrete tirne representat ion

sufiices because database transaction comrnUILication is essentialiy synchronizable at spe-

cific discrete points where interprocess communication and concurrent access to shareabIe

data objects occur. Alfaro and Manna [AlM95] show that if a temporal formula has the

property of finite variability, its validity in the discrete semantics implies its validity in

the continuous one.

3.3.4 Causality

Another important property that demands explicit representation in a concurrent trans-

action system specification is causal relationship. Causality defines the abiiity of one ac-

tion to affect the other. Causality may be due to value dependencies [MCFP96] or the ef-

fects of the diRerent types of dependencies (inter-transaction and intra-transaction depen-

dencies). Causal dependencies const rain the synchronizat ion of operat ions/ t ransact ions

in which they exist (see Section 5.6 for details). This concept enhances correctness and

recovery and t hus improves system reliability.

Causal relationships are essential in cooperative problem solving environments. An

investigation of causality relationships and time in complex transaction systems as it

affects t heir dependability is required.

3.4 Specification Language Select ion

Existing formal specification laquages fd short of the language features outlined in Sec-

tion 3.2. Languages such as Z [Spi881 and VDM [Jon86] are unsuitable because they lack

mechanisms for capturing concurrency, parallelism, communication, interruptions, and

coordination among subcomponents vital to concurrent transaction systems. Moreover,

they Iack the concept of time and thus lack primitives for specifying timing constraints.

Similarly, funct iond decornposition techniques such as S t ruct ured Analysis/Design are

unsuitable for speciSing transaction systems because there is no support for formal ver-

Chap ter 3. Specifying Transactions 71

ification, nondeterministic system behaviour cannot be suit ably modelled, and t irning

properties do not integrate weil with the rest of the requirements. Hierarchical Coloured

Petri Nets are not weU suited to the needs of advanced database transactions specification

because they lack suitable data hand!ing and manipulation mechanisms, and it is often

difficult to distinguish between precedence and causality [TM911 in Petri Nets models in

general.

The process algebra family of specification lknguages (such as CSP [Hoa85], CCS

[Mi189], and ACP [Bers& BB91I) have been found [Fid94, EB0951 most suitable for the

specification and design of distributed systems. These languages support concurrency

and their variants have incorporated timing properties as part of their primitive operator

set. However, CSP and CCS have simple form, lack data values [Fid94], and use events as

the basis for creating more cornplex structured behaviours. Also, data types are treated

informally, typically restricted to simple types such as integers or characters.

The inability of the process dgebra languages to provide structured and cornplex

data types undennine their expressive power and usefulness for advanced database trans-

action applications where data fields are accessed. Clearly, the types of data objects

available in a language have a profound impact on its suitability for a particular appli-

cation since these data object types provide a meaningful representation of the probiem

being solved [WasSO]. To remedy this situation, the basic CSP specification language is

extended beyond the primitive atomic data types to include structured data typess. The

fomalism and and its semantics follow in Section 4.6.

9De Giacomo and Chen [DC96] added the concept of explicit global store that associates a blackboard

with a process to handle data requirements in modelling a dynarnic system using a variant of CCS.

Chapter 4

TIMED CSP FUNDAMENTALS

CSP captures communication behaviours effectively but cannot describe funct iond as-

pects of a system. Therefore, CSP is augmented with record data extensions and logic

expressions to cater for the inadequate functionality. Extending CSP 's expressive power

makes it a suitable formal method for transaction systems description outlined in Sec-

tion 3.2. Critical aspects of a transaction system environment including error handling,

interrupts, concurrency, safety and liveness are capturable.

Initial key theoretical foundations are presented. The goal here is to provide an

understanding of the basic language and its applicability. A brief review of the constructs,

primitives, and operators applicable to transaction protocols are provided (see [DS9%a.

Hoa85, HJ96, Sch90, Sch93bl for a complete treatment). Finally, the necessary record

data type extension to CSP are presented.

4.1 Elements of TCSP

Timed CSP models system behaviour that are often distributed, reactive, and subject to

timing const raints. Examples of such systems include communication protocols, t ransac-

tion processing systems, aircraft control systems, and space and combat missile control

systems. CSP 's specificat ions are composed of events and processes logicdy corn bined

according to a set of grammatical d e s . A collection of event names is called an alphabet.

An alphabet is a set of names (or symbols) of events useful for describing a process. An

Chapter 4. Timed CSP Fundamentals 73

alphabet is finite and non-empty. A process only engages in events within its aipha-

bets. If P is a process, we write CYP to denote its alphabets. These aiphabets mode1 the

interface between this process and its environment.

A process is modelled in terms of the possible interactions it can have with its

environment. These interactions are described in terms of events. An event is one of the

following: (i) the execution of an operation by a process, (ii) the sending of a message, or

(iii) the receipt of a message. An event is an instantaneous atomic action. Each event in

the alphabet of a process can either be an elementâry event (represented as an atom) or

a composite event (such as a function) whose components consist of other events. Events

can be (a) value returning, (b) self replacing (Le., modifies at least one data variable)

or (c) communication signals. Therefore, a transaction's execution is a chain of events,

starting and ending on an element of the alphabet set.

Processes are abstract programs describing the behaviour of a system in terms of

events.

Definition 10 Process: A process is collection of syntactic objects which represents the
pattern of behaviour of an object.

A process may represent the system or some components within the system. Processes

are d e h e d using an equational notation. The statement A = B introduces a process -4

which behaves as B. The behaviour of a system expressed in terms of events can only

be deterrnined when a program is executed.

Definition 11 Program: A program is an ordered collection of processes.

Note that it is possible that a set of processes is used to implement a program. An

observation of a program is a record of observable behaviour during an execution.

Timed CS P provides extensions to support timing specificat ion in real-t ime sys-

tems. Timed semantics are used to analyse timed properties while untimed semantics

describe other aspects of the specification. Since Timed CSP is a superset of CSP, the

refinement relation ensures that untimed specifications remain valid in the timed se-

mantics. Schneider [Sch93a] has shown that it is possible to preserve checks on safety

properties when refining an untimed description to a timed one. Untimed descriptions

Chapter 4. Timed CSP Fundamentais 74

differ Erom timed ones by the addition of arbitrary delays in the timed version. This

means any proofs that hold for the untimed description also hold for its timed version

(see [Sch93a]).

The syntax of CSP processes includes primitive operators that enable the specifi-

cation of concurrency, non-determinism, and hiding (Le., encapsulation) elegantly and

separately in transaction systems. Deadlock and recursion are definable.

4.2 The Language of Timed CSP

A semantic model for the laquage, in which each program is identified with a set of

observations, is required. The different CSP's semantic models are named according

to the type of observations made; for example, in the timed traces model, observations

are sequences of a timed model. A process is an element of a semantic model; a set of

observation which defines a pattern of behaviour.

Davies and Schneider [DS92a, DS9*] outlined the properties of the mode1 of compu-

tation that influence the construction of the semantic models. These properties include:

maximal prugress, maximal parallelism, finite variability, synchronous communication^

and instantaneous events. Maximal progress ensures a program will execute until it ter-

minates or requires some external synchronization while maximal parallelism guarantees

that each component of a paraIlel combination has sufficient resources required for their

execution. In a finite time intervd, finite variability ensures that a program may un-

dergo only fini tely many state changes. Synchronous communication ensures t hat each

communication event requires the simultaneous participation of every program involved.

Action duration is modelled by considering the beginning and the end of the action as

separate events. This mode1 of computation is consistent with that employed in [Hoa85].

Timed CSP is defined by the following Backus-Naur Form (BNF) grammar rule:

basic

sequential

I choice

intei-rupt

P ::= STOP 1 SKIP [WAIT t 1
a - - + P I P ; P I

P 0 P I P n P l a : A t P .

P v Q I P i P I

Chapter 4. Timed CSP Fundamentais

l l A ~ p l p alla p l Plll Pl PIIP A 1 paxdel

f (p l I P\A I abstraction

P X F (X) recursion

This extends Hoare's syntax, A more detailed description and the various semantical

rnodels of the laquage may be found in [DS92a, DS92b, DSSf*, Sch93a, Sch93b, SchS",

Hoa%]. In the above BNF d e , event a is drawn from the set of all alphabets a and event

set A ranges over the set of subsets of a. In Timed CSP the time t is a non-negative real

number. This thesis assumes time is non-decreasing monotonie. Time is rnodelled by a

non-negative integer without loss of generalityl (by result of [AM95]). Time is global in

that it passes at the same rate in each process. See Section 5.3 page 108 for logical time

assignment d e s in transaction environments. Timed CSP 's operators for t imeouts and

timed interrupts have tirne variable associated with them.

For illustrative purposes (for the rest of this section) let P and Q be processes and

t be a time value.

STOP and SKIP are two special processes. STOP performs no events at al1 (dead-

lock). It is a broken program which will never engage in any externa. communication and

fails to tenninate, so it represents the end of a pattern of interaction. SKIP performs no

events but ends the process it is found in or itself immediately and successfully. SICIP

represents a successful end of a pattern of interaction. Successful termination is regarded

as a special event, denoted by the symbol ,/. The operator WAiT t is a delayed form of

SKIP that terminates successfully after the specified time t .

Sequence:

The -+ operator is an action transition relation. It is of the form: +: state x euent +
state. The operator allows us to add communication events to a program. The process

a + P means that when event a occurs the process P is immediately executed. In

lThe thesis uses a discrete time extension of CSP with relative timing. Time is divided into slices

indexed by natural numbers. These t h e slices represent time intervais of lengt h that corresponds to

the time unit used. Thus, time is represented as "a sequence of discrete, quantized instants tr , t2, . .. "

[KL9 11.

Chapter 4. Timed CSP Fundamentah 76

other words, from an initial state, Say t, the process can perform the event a and move

to state t' where the execution of P starts. This transition statewise is represented as t

4, t'.

The sequential composition operator (;) t r a d e r s control upon termination. Thus,

P; Q represents the sequential composition of P and Q. The program first behaves like

process P until P performs the special event \/ at which time it continues by behaving

like process Q. If P does not terminate successfully Q will not s t art; so the program P; Q

does not terminate successfidiyY The J event is invisible to the environment but occurs

when P terminates successfdy. Sequential composition relies upon the use of SKIP.

Note that state information does not persist across a sequential composition. That is, in

the process P; Q the initial state of Q is independent of the final state of P.

Choice:

There are two choice operators - extemal and internal choice operators. The external

choice operator (0) offers the environment a choice between the initial events of its

two arguments. For example, P o Q represents a deteministic external choice between

processes P and Q. If it is possible to perform the first event of P , but not the first event

of Q, then POQ behaves as process P. On the other hand, if it is possible to perform

the first event of Q, but not the first event of P, then P a Q behaves as process Q. If

both the first event of Q and the first event of P are possible, then the choice between P

and Q is nondeterministic. Another form of external choice is the process a : A + Pa

called indexed external choice which offers an external choice of initial event a drawn

from a set A, which may be infinite. This is used to mode1 process input from a channel.

Note that external choice and indexed externd choice represent a choice offered to the

environment between a number of processes.

Internai choice is specified with the fl operator. For example, the program P fl Q

represents an internal choice between P and Q where the outcome of this choice is non-

deteministic. This operator is used to represent runtime nondeterminism.

Chapter 4. Timed CSP Fundamentals

Input and Output:

The expression c!v denotes the output of value u on channel c. The value transmitted

is determined by the sending process. Similady, the expression c?v denotes the input

of value v on channel c. The input value is detennined by the environment of the

process. .4n input process is ready for any value while an output process sends just one

value. Thus, c?a + P denotes a process that is ready to engage in any event of the

form c-a while c!a + P denotes a process which must perforrn the event c.a before

behaving as the process P. For example, if channel c carries values of type A, the process

c?a : A -+ Pa accepts any value a of type A on channel c, and behaves accordingly.

These processes may be used to represent input and output behaviour on a channnei.

Tirneout:

In Timed CSP, the timeout program P D Q may behave as P, or offers a choice between P

and Q, according to whether the timeout has occurred or not. For example, the process

P g Q will behave as P but if no event of P takes place before time t the process behaves

as Q. AIso, if the first event of P attempts to occur at exactly t , then the outcome is

nondetenninistic. Ln untimed CSP, the resulting behaviour is nondeterministic choice

because it has no notion of time.

Interrupt:

There are two forms of interrupt - euent and timed interrupts. The interrupt program

P ? Q behaves as P until the first occurrence of interrupt euent i where upon control is

transferred to Q and process P is discarded.

The operator f (the lightening sign) passes control from one program to another

after a predetermined time has elapsed. This is cdled timed in tenupt . Without timing

information, the first program may be intempted at any point. For exarnple, the process

P i Q behaves as P until time t when it behaves as Q. This operator differs from

the timeout operator which aborts a process only if no extemal activity has occurred.

The timed interrupt operator is very usefûl in specifying certain real-time transaction

Chapter 4. Timed CSP Fundamentals

operat ions such as banking transactions.

Concurrency:

In generd, the pardel composition of two processes P and Q is denoted P II Q. Comp-

nents of a parde l composition may progress separately on internal disjoint events. Lf both

components can engage in a common timed event, then so can the pardel combination.

The p a r d e l composition operator has many forms. One form is a synchronised paralle1

combination of a set of programs parameterised by a corresponding set of interfaces A p .

For example, @ven K = I l A , P, each event a E A p requires the ~a r t i c i~a t ion of every

subprogram P. Every pair of subprograms in P must cooperate on each event from the

intersection of their interface sets. Events outside A may, however, occur independently.

-4nother simple form is the binary pardel combination P rl(s Q in which prograrn

P may perform only those events in A, program Q rnay perform only those events in BI

and the two prograrns must synchronize on events drawn from the intersection of A and

B.

Furthermore, if A is a set of events common to processes P and Q the partially-

interleaved cornbination of P and Q is mi t ten as P II Q. In t his combinat ion, processes
A

P and Q synchronize upon only those events in set A and on termination. Other events

may occur independently, even if they appear in both alphabets (i-e., they interleave

on dl other events). This form of parailel subprograms combination represents hybrid

parallel combinat ion.

In a.ll forms of concurrency operators, al1 communicating events are synchronized;

they can occur only if both the sender and the receiver are willing to cooperate.

Interleaving:

Asynchronous parallel combinat ion (1 1 1) occurs when su bprograms evolve concurrent ly

but without interacting. Generally, the III operator is a communication free merge opera-

tor. The process P II 1 Q represents the unsynchronised concurrent execution of processes

P and Q. Events of P and Q occur independently and an event can be refused only if

both components independently refuse it. Interleaved processes progress independently.

Chapter 4. Timed CSP Fundamentals 79

They are causally independent (see Section 5.6) and may occur simultaneously. If the

intersection of P's and Q's alphabets is nonempty then we have partially interleaved

execution of the actions of both P and Q.

Indexes:

The interleaving, parde l composition, and internai and extenial choice operators can

be indexed. For example, IIIz:x P (x) denotes the interleaving of each of the processes

P(z;) for each xi E X where I 5 i 5 #(X). The indexed deterministic choice operator,

Oz:x P (x) denotes the choice between P evaluated in an environment with the variable

x bound to each value in the set X. Similady, the corresponding indexed nondeter-

rninistic choice operator and parde l composition is given by nZzx P (x) and II,:.y P (x) ,

respectively.

Relabelling:

The relabelled program f (P) has a similar control structure to P, with observable events

renamed according to the function f . Relabeiling enables renaming of processes and

events.

Hiding:

The prograrn P \ A behaves as P, except that events from set A are concealed from the

environment of the prograrn. Hidden events no longer require the cooperation of the

environment so they occur as soon as P is ready to perform them.

Recursion:

Recursion is modeiled either by using equations or p operator. The recursive program

p. X 0 F (X) behaves as the process F (X) where each instance of variable X represents

a recursive invocation. The process p X 0 F (X) satisfies the equation P = F (P) where

P = X. These programs have well-defined semantics if the function F is guarde& [Hoa85].

*A function F is guarded if every free occurrence of X in F(X) is preceded by at least one observable

event.

Chapter 4. Timed CSP Fundamentais 80

For example, the recursive equation P = a + P defines a process which may engage in

as many events a as the environment will allow. Recursive process definitions must start

with at least an event prefked to d l occurrences of the process name on the equation's

right-hand side. The foilowing illustrates a recursive process definition of a perpetual

clock [Hoa85: page 28):

CLOCK = p X : { t i ck) a (t ick + X)

where aCLOCK = { t i ck) . An equivalent equationd definition of the perpetual clock is:

CLOCK = (t ick + CLOCK)

Surnmary:

To mode1 a system, process definitions describing the individual component's behaviour

within the system are specified using the above Timed CSP operators. The component

processes are cornposed to specifi the entire system's behaviour.

4.3 Nature of CSP Specifications

Expressing parailelism (including concurrency) between processes is possible in CSP. This

sometimes requires cooperation among the processes. Cooperation in a computation

among processes rnakes communication3 necessary if one process needs an intermediate

result produced by another process. Also, synchronization is necessary because the former

process must be suspended until the result is available. Coordination between processes

is implemented by message exchange between pain of processes using the synchronized

execution of communication events in both processes. A communication sequence of

process P is the sequence of a l l communication events in which P has participated.

Message passing achieves bot h communicat ion4 and synchronizat ion5.

31f communication is expensive, the gain in computatioaal speed as a result of concurrency may be

Iost in additional communication cost.
4Using a shared memory variable achieves only communication so additional care is required to

synchronize processes that communicate using shared memory.
5Synchronous message passing implements the synchronization of the processes involved in that the

send operation is completed only after execution of the receive operation resulting in a two-way synchro-

Chapter 4- Timed CSP Fundaraentals 81

A CSP's description of the desired system behaviour is split into a trace and a

state part. The trace part consists of a set of trace assertions. The trace assertions

describe the relative order in which the events can occur in the sequences or traces of

communications between system and environment. The state part specifies w hich values

are communicated over channels and consist of a set of local state variables and a set of

communication assert ions.

By specifying the trace and state assertions, one can capture adequately the de-

sired system's functionalities. Thus, restricting the execution relation to certain events

parantees correct dowable execut ions by a transaction set.

4.4 Semantic Models for Timed CSP

The semantic models specify the intended behaviour of a program. Each program is

associated with a set of behaviour in the semantic model so a predicate on the semantic

set corresponds to a requirement upon the program.

The traces model (the most widely understood and popular version of CSP) a s s e

ciates each program with a set of observable event sequences, These sequences are cdled

traces. A trace defmes the set of finite events sequence the process may perform. The

semantics of a process in the traces model is a set containing every trace possible for that

process. For exarnple,

traces(P Q) = traces(P) u traces(Q).

It is used mainly to demonstrate safety properties where it is necessary to show that

every possible trace of the system is acceptable. The andysis of this set permits us to

determine if the system is safe. Therefore, the traces model is a safety mode1 because

a program within the required traces model will only guarantee not to do something

unexpected. For example, in the traces model of CSP, the following predicate says that

program P never performs a visible action6:
--

nization between the sender and the receiver.
6The definition is read as "for al1 tr which belongs to the set of sequences of P's trace such that the

predicate tr = () holds.

Chapter 4. Timed CSP Fundamentals

Also, in the traces model, the process STOP is associated with the set (0)- containing

only the empty trace. STOP: therefore, meets the above requirement; defined using

satisfiabilit y relation, denoted sat, as foLlows:

STOP sat tr = ().

The sat relation is a semantic function of processes in the trace model representing the

set of acceptable traces perfonnable by that process. The traces model is sufficient for

untimed safety requirements. The program. in general, does not guarantee freedom from

deadlock. The traces model tells us nothing about Liveness.

However, by specifying constraints that ensure event possibility wiU verify t hat the

system does not deadlock or livelock. Howles [How94] shows that deadlock freedom is

a feature of untirned description that extends to a timed description using refinement.

Cap t uring Liveness conditions requires readiness or refusai informat ion in the semantic

sets which leads to the faihre model. The set of events that are refused by a process is

called refusal set. The process is unwilling to perform any event in the set. For any given

process, the refusal set of the process represents "the pathological events that must be

avoided" [Low94] for the process to execute correctly. The failure model associates each

program's trace with various events set, X, oEered by the environment. The set X is a

refusal set of a program P , denoted refusals(P) = X, if it is possible for P to deadlock

on its first step when placed in this environment7. If faifures, denoted (tr, X) , is present

in the semantic set of a program P, then P may perform trace tr and refuse to engage

in any event from X.

A trace rnay foUow an infinite sequence of interna1 events which is called divergence

so the thïrd behavioural aspect included is the failure-divergence ,mode[.

The traces, failure, and faiiure-divergence semantics models have t heir correspond-

ing timed semantic versions. For example, a timed trace is a finite sequence of timed

events drawn from R+ x a such that the times are in non-decreasing order. (R+ x a)'

7 ~ o r example, the simple process a --+ P refuses every set that excludes the event a. Note that a

process can refuse only events in its alphabet.

Chapter 4. Timed CSP Fundamentais 83

is the finite sequences of timed visible events. (Recall that this thesis uses integer values

for time so R+ is replaced by Nt) Similarly, a timed refusal set is a set of timed events

consisting of a finite union of refusal tokens. The information in a trace is simply a record

of events occurring at particular times; all simultaneous events may occur in any order

in a trace. The operational effects have no instant causality between visible events since

simultaneous events may occur in a.ny order.

Both timed and untimed versions may be used in the analysis of the same system

so that the results can be subsequently combined. A proof in the untimed traces mode1

will hold in any of the timed models [Sch93b]. This research uses both the traces and

failure semantic models where appropriate to capture both safety and Liveness properties

of the sys tems elegant ly. Safety and liveness propert ies represent desirable facet s of

a process to accurately describe the intended behaviour. Safety properties that are

specifiable include mutual exclusion and absence of deadlock. Liveness properties include

termination and responsiveness while fairness properties ensure that every process has a

chance of executing.

4.4.1 Reasoning with Traces

Trace projections are useful when reasoning about traces. Since a trace is a sequence, the

usual primitive operators of the sequence data type are freely available in CSP. These are

in for membership, A for concatenation of sequences, r for the restriction of a sequence

to some elements, and the functions head, lad, and tail. In the following definitions, let

seq, denotes a nonempty sequence, A and B be sequences, and C be a set.

head(A) is the first element of a nonempty sequence, formdy defined as:

A # () =+ head(A) = A[1]

las t (A) is the last element of a nonempty sequence. SO,

A # () + last(A) = A[#A]

tail(A) is the sequence with the fint element of a nonempty sequence removed.

A # () + taif(A) = A - head(A)

A in B means that A is a contiguous subsequence of B.

A r C is the restriction of A to elements from the set C.

Chapter 4. Timed CSP Fundamentais

The following examples expound these primitives.

Let@ = (a, b, d , f, g , 1).

Obviously Qi is a nonempty sequence so we can write seq, @. Thus,

fas t (@) = (1),

t a W) = (6, d,f , g, 4 ,

(6, d) in O but 1 ((a, d)) in a, and

Addit ional operators' operat ions are described in context as required t hroughout .

CSP uses denotational semantics to validate the algebraic laws. The semantic equations

for each mode1 support the construction of a compositional proof system. A compositional

proof system is a set of inference rules relating the properties of each program to the

properties of its syntactic subcomponents. Such d e s are of the fom:

antecedent

antecedent
[side condition]

CO nclusion

The antecedents are assertions (or predicate) relations on the components of the program

and the side conditions are optional assertions unrelated to the transitions. Consider the

following example:

Facts

1. Birds c m fly.

Chapter 4. Timed CSP Fundamentds

2. Birds have feathers-

3. Pigeon is a bird.

From the given facts (axioms) the following 1ogica.l conclusion is immediate.

Pigeon have feathers and can fly.

A CSP's proof d e in the traces mode1 representation of the above is:

P s a t S(t r)

P s a t T(t r)

Pigeon : P s a t S(t r) A T(tr)

where P represents Birds, S (t r) and T(tr) are the specifications of the requirements can

fly and have feathers, respectively.

A characteristic of the compositional proof system is t hat any property guaranteed

by some component of the system must be t m e of the whole system. Similady, any

constraint imposed by a system's component is a constraint on the whole system.

To specify how a process behaves requires constraints on the set of traces associated

wi t h t hat process. These constraints (or behaviourd specificat ions) are expressed as

predicates on traces. To show that a process satisfies a behavioural specification requires

that every trace of the process satisfies the corresponding predicate. In other words,

P sat S(t r) V tr 1 t r f traces(P) t r S (t r)

This means that every possible observation of P's behaviour is described by S(tr) .

Thus, the s a t relation ties a process to its characteristics set of traces as illustrated in

Figure 4.1. The s a t relation enables proof of properties as a chain because if P sat

S(t r) and S(tr) =+ T(t r) then P sat T(tr). That is, if a specification S logically implies

another specification T, then every behaviour desnibed by S is also described by T. So

every process which satisfies S must also satisfy T.

4.4.3 The Implementation of a Process

A process is usually implemented as a function F () that takes events as argument. Let

B denote the set of events in which the process P is initially prepared to engage. If x

Chapter 4. Timed CSP Fuadaiaentals

Processes Traces

Figure 4.1: The Satisfaction Relation

is the first event of P, then for each z in B, F (z) deFines the futirre behaviour of the

process P, denoted P'. That is, the implementation of P is given by

(Vx : B F (x) =t P'A (s : t race(P) head(s) = z))

For any given process (P) the complete set of possible traces can be predetermined using

a function traces(P1 as defined by Hoare [Hoa85].

4.5 Interleaving Semant ics

Let t = t races (P) and u = t races(Q) . Then the arbitrary interleaving of the actions of

process P and process Q is defmed as follows:

where s is the interleaved actions. Suppose t = (a, b, c , d, e , j) and u = (1, rn, n, O , p) .

One possible interleaving of t and u traces is:

No ordering relation is imposed on S . Unsynchronized concurrencys (parallelism) occurs

when there is no need to synchronize actions associated with independent entities in a

8Recall concurrent processes can function independent of one another or they can be asynchronous

which means that they require occasional synchronization and cooperation.

Chapter 4. Timed CSP Fundamentals 57

system. Thus, if crP fI a Q = 0, then P II Q is an arbitrary interleaving of actions from

the process P with those from process Q. Formally,

traces(P II Q) tmces(P III Q) =

{s 1 3 t : traces(P); u : traces(Q) s interleaves(t, u)}

In a concurrent system, concurrent processes can invoke operations on an object

so it is necessary to give meaning to interleaved operation executions. Suppose some

operations of P and Q conûict on a data item O. If flow dependence of P on Q is

required on their access to O, then their actions' arbitrary interleaving as defined above

is unacceptable. Some ordering relations must be imposed on the interleaved actions of

both processes. Thus, the interleaving of P and Q is d e h e d as:

This ordering relation permits the proper synchronization of P and Q with respect to

their actions on data item 0. hterleaving-based semantics captures observable temporal

behaviour of processes.

Any two processes, Say P and Q can be composed to run concurrently but requires

caution because a dependency may a i se from sharing data objects. If both processes

have events in common, they synchronize their actions when executing such items.

We now turn to the problem of extending TCSP to capture the record structures

required to describe database transaction specifications.

4.6 Supporting Record Data Type in CSP

Arbitrarily complex data objects must be appropriately captured by the specification

technique. The components of a structured data object which may belong to a distinct

type are each smaller than the whole structured data object. It is possible to access or

modify the constituent parts independently in a structured data type.

Recall that, one of the Limitations of CSP is its inability to define structured data

elegantly. There are no primitives available to define a record data structure (compound

Chapter 4. Timed CSP Fundamentals

Figure 4.2: A Sample Record Data Structure

typeg) and hence there are no means to access the attributes of such data.

Definition 12 Structured data: A non-atomic variable (Le., stmctured data) h a at least
two fields.

Figure 4.2 is a sample record data structure.

The ability to constmct structured data types in CSP proves useful in producing

more nat urai abstract manipulations in systems specificat ions. Data ob jects are defined

by their representation and by the constmctor operations used to create them in con-

j unct ion wi t h the definitions of operat ions t hat manipulate t hem. The extensions are

amenable to formal mat hematical reasoning because t hey cont ain regular and simple

structure. The specification of the data structure provide a vehicle to address some of

CSP's limitations with the goal of increasing CSP's expressive power. As the field se-

lectors are fixed at declaration time, the components of a record may be accessed as

efficiently as scalar data objects.

4.6.1 Defining Record Data Structure

The two operations on structured data types are: (1) the construction operation which

generates a new type (the data type being defined) from primitive ones and (2) the

accessing operation. Therefore, we require two operators that permit the definition of

and access to records in CSP. These operators define the structuring principles that

show how the components of the stmctured data objects may be created, accessed and

gCornpound types are built up from elementary data types. A record's component types are hetero-

geneous. A record represents a single data item in the probIem domain. CSP is restricted to simple

atomic data types only.

Chapter 4. Timed CSP Fundamentals 89

modifiedlO. For notational convenience we s h d use @ for data structure declaration"

(or definition) and the symbol . for data field reference binding12. The @ and . operators

are the basic vehicles for defining, generating, and manipulating (see Section 4.62) record

objects. The . operator enables the application of d u e transforming function to objects.

In other words, the . operator specifies operation which extracts components from a

record structure. Therefore, it is essential that the distinction between the name of a

variable (its identifier), the area it is stored (its reference or address), and the value stored

mus t be clearly understood.

For illustrative purposes, consider the Pascal declaration of an employee record.

TYPE

Employee = Record

Name : string[25];

Dependents : integer;

Rate : real

end;

The scope of a field identifier is the record in which that identifier is declared. This means

that the same identifier may not be used to specify two different fields wit hin the same

record, but the same name may be used elsewhere in the specification for some other

purposes. Since the components of a record may be of any data type, in particular they

may be other records, records may be nested. For example, the pascal declaration

TYPE

Staf = Record

'OModification of an arbitrary field is through the side effects of the assignment operation.
"The declaration of a record type specifies the name and the type of the various fields of the record.

Irnplicit in the declaration of a record is a tree structure since the fields of a record can thernselves

be records. pn this thesis, only records whose components are scalar data objects are considered but a

recursive definition is an immediate consequent. A h , variant records [LN93, Mar911 are not considered].
l'The binding of a variable to its value involves three bindings [WC93]: (1) the binding of the variable's

name to its declaration (narne-declaration binding), (2) the binding of its declaration to a store location

(declaration-reference binding), and (3) the binding of the storage location to a value (reference-value

binding) .

Clzapter 4. Timed CSP Fundamentah

Name : string[25];

Dependents : integer;

BirthDate : Date;

Rate : real

end;

is a hiera.rchica.1 record where the field variable type Date is a record consisting of the

fields Day, Month, and Year, The fields within such a nested record may be accessed by

simply &ng a second field identifier to the name of the enclosing record. There is one

record for each employee so Staf[i], for example, refers to record of the ith employee.

The syntax of the structured data objects declaration is given below:

@[data-name] == (veld-1, f ield2 {, field-3, . .. , field-n))}&&((typespecififations))

where

1. @ is the data structure constructor operator,

2. data-name is the name of the data structure constmcted,

3. ((and)) are used to enclose the data fields and the specifications of the data type

of the individual data fields,

4. field-i where i > 1 is a data field (Le., an attribute of the data structure con-

structed),

5 . typespecification is the specification of the data types13 of the fields, listed in the

order in which the fields appear in the dehit ion - this must be a 1-1 mapping so

t hat for each field-i there exists type;, the type of field-i,

6. && is used to associate the types specification with the data fields definitions,

7. n 2 2, and items within the {) are optional.

Note that the symbols a, ((,)), and && are parts of the constructor syntax. Structured

objects, therefore, are specified as a sequence of attributes and types"! The record wit h

rank < 1 is defined nowhere in this thesis because an empty record is of no interest and

13The type of an object determines the values it can take and the set of operations used to manipulate

these values. Data objects have a value and a type.

I4In a nutshell, a record is a Cartesian product of domains or domain vaiues.

Clzapter 4. Timed CSP Fundamentals 91

a record with only one field is a degenerate case of atomic types which are available in

CSP. All fields of a record must be specified at creation time. This restriction makes it

possible to perfonn static checks on accesses to record fields. Operations involving the @

succeeds if the identifier (its argument) is not atomic type and there is no such identifier

previously declared. Otherwise, it returns the identifier and an error message.

Writing specifications is based on representing a data object by the construction

operation whose evaluation yields the record data ob ject . Exploiting t heir mat hemat ical

properties is dependent on having a finitely representable specificat ion of the structure

of each data object. Formally, we shall use the following definitions:

FIELD ::= identifier

-4TOMIC ::= integer 1 real 1 char

TYPE ::= user-defined 1 ATOMIC

FIELDTYPE == seq TYPE

D.4TASET == {id : identifier 1 id is a variable already declared in the system)

Now we define the structure of a record noting that each attribute must be unique.

FIELDS == seq FIELD

V F : FIELDS

V i , j : l..#F a i # j + F[i] # Fb]
Further, let type-of be a (prefix) function that returns the type of its argument. [ts

signature is:

1 typesf : FIELD + TYPE

Similarly, let Val be a function that returns the stored value of an attribute. Its signature

is:

1 Val : FIELD -+ value

For example, the notation Val(s), where s is an attribute, r e t m s the curent value of the

attribute S. That is, Val(s) is the message or data value corresponding to the pârticular

instance of the variable S.

The record type can now be defined as:

RECORD == ((FIELDS))&&((FIELDTYPE))

#FIELDS = # FIELDT YPE A

Chapter 4. Timed CSP Fundamentais

F E D S 2 2 A

(V i : l..#FIELDS a

typcof FIEL DS[i] = FIELD T YPE[i])

In other words, RECORD is a finite set of identifiers associated with types. Its elements

are associations from the set of identifiers to the type TYPE such that each identifier

can assume an element of the corresponding type. Thus, a record is a partial function

from labels to values so ail labels in a given record must be distinct (a constraint in the

definition of FIELDS).

The syntax of the structured data objects declaration is given below:

@ : identifier -+ RECORD

V data-name : identifier

@[dataAname] = dataname 1 data-name = RECORD

1 (3 xi : identifier 1 xi E DATASET xi = data-name) A

type-of x; = -. ATOMIC +
(3 F : FIELDS; T : FIELDTYPE a

data-name = ((F))&&((T)))

To demonstrate the application of the @ constructor operator, consider the foilowing.

Let a: be a record type with the fields id and ualue. Let us further assume that id is of

type integer and value is of type TIME. This will be defined as follow*~:

@[XI = z + x ((id, ualue))&&((N, TIME))

The above declaration introduces the two variables x id and x tr, value which combined

create the variable x of the type record. The order of access to the components of x is

To allow components (data fields of the data structure) to have different types,

components must be referenced using a qualified name instead of an e ~ ~ r e s s i o n ' ~ . Thus,

to reference any field in data-name, the field narne is bound to the data-name by using

the . operator. In other words, one can access each field of a record directly by using

a field-designated wiab le of the form "record-name . field-name". Effectively, the

'5Components of a record are identified by their label rather tban by their "orderedn position as in

lists. Equality of records is cornponentwise.

Chapter 4. Timed CSP Fundamentals 93

symbol is the dereferencing16 operator. For example, data-narne.field2 refers to the data

value in f i e u of the record type data-name variable. The effect of data-name.field2

is to access the value stored in the location referenced by the f ie ld3 component of

data-name. Thus, it is convenient to write x.id to denote the id component of x and

z . value to denote the vaiue comportent of x. Similady, writing the CSP statement

input?x.id means the input of a value for z's id component through the channel ifiput.

The binding of a variable to a value occurs as a result of either an input or an assignment

statement. So an assignment operation of 4 to x. id written as x. id := 4 , for example.

is a c t u d y Val(x . id) = 4 since i t is the stored value that is being modified. This can be

read simply as: change the id component of x to have the value 4. Thus, the effect of

input?x . id is the same as the direct assigmnent of the value read to the id component

of x.

Before formally defining the selector operator some functions are defined. The

function Attrib returns the set of ad attributes (i-e., fields) in the structure of a record

data type.

Attrib : RECORD + F, FIELD

V r : RECORD O

Attrib(r) = { s : F, FIELD 1 (3 a : FIELD

The function Nfields returns the number of attributes (or fields) in a record. In other

words, the application of Nfields yields the cardinality of the record structure. iVfield~ is

formally d e h e d as:

NJields : RECORD + NI

V r : RECORD O fff ields(r) = #Attrib(r)

The formal definition of the selector operator follows:

,. , : RECORD x FIELD --+ FIELD

V r : RECORD r r . xl = Val(q) w x1 E At tnb(r)

16Dereferencing is the process of finding the value of a variable given the reference. For example, in

the expression x = y + 3, y is dereferenced to find its value and the constant 3 is added to it. The

resulting vaiue is then assigaed to variable x whose location is obtained by reference to the name x .

Note that when a language has no assignment operator, names can be directly bound to vaiues.

Chapter 4. Timed CSP Fundamentak 94

Accessing a record's field is applying the record to that field. The operation produces an

error if the accessed field is undefined. Thus, r . zl extracts the value corresponding to the

label XI from the record r, provided a field having that label is present. This condition

is enforced staticdy.

In general, besides record access, there are many operations that can be performed

on a record structure such as renaming a field, overriding the value of a field, adding a

new field, and deleting an existing field. Such operations are omitted from this thesis

(see [GM94] for details).

4.6.2 Semantic Definitions

In defining the semantics of the operators, the denotationd technique is employed. The

meanings of abstract programs or parts thereof are expressed in terms of semantic func-

tions which map them into various sernantic domains (the members of which are usually

themselves functions). Thus, "meaningn is given simply as functions from state to state.

A denotational semantics specification of the object language consists mainly of a set of

semantic equations which defme the semantic functions".

We shall define a sernantic function II/ : identifier --+ RECORD, Informally, we

say that given an identifier, N defines the corresponding record. Also, we shall write N[x]

to represent the semantic definition of the expression or variable x. That is: the [] in the

semantic function's argument often enclose expressions (or syntactic objects) in the object

languageL8 variables. The Left side of a semantic definition begins with an application

of the semantic function to an argument representative of the syntactic domain. The

argument is expressed in the same notation as the abstract syntax rules. Often, the

value of any expression depends on its context or the environment that tells what values

the identifiers denotes. For example, N [x] , denotes the d u e of x in the environment p.

Since the context of the environment of the record operators is understood, there is no

need to include the environment information in the semant ic definitions.

l7Semantic functions map abstract programs (or parts of program) into semantic domains.

l'The object language is the language being defineci.

Chapter 4. Timed CSP Fundamentais 95

First define the syntact ic and semantic dorna.in~'~ and secondly, d e h e the semant ic

functions. The semantic domains describe the underlying values manipulated by the con-

structs of the language while the syntactic domains used to define the abstract syntactic

structure of the language corresponds to the syntact ic variables (or categories) defined.

Each distinct field in a record is associated with a domain of d u e s . It is important to

avoid confusion between the language being d e h e d and the notations used to define it

so al1 syntactic objects within [1 are in the defined language and have defined semantics.

For obvious reasons, we will not treat a fuU language but only those portions which

are relevant to the record data type extension. Thus, the language with record extension.

KCSP, is an extension of TCSP with distinguished constructs for record expressions.

The following syntactic domains and carresponding metavariable are listed.

I E Ide Ident ifiers

E E Exp Expressions

D E Type Data types

1 E Stmt S tatement

The abstract syntax rules are:

variable

abstraction

abstraction and composition

record access

application

application

input

output

where [Il+ means at least one I . For example, we c m constmct I , 1.

Thus, K C S P = TCSP U I<

19A domain is a complete lattice. A complete lattice D is a partially ordered set in which each subset

x E D has a Ieast upper bound in D denoted T and a greatest lower bound in D denoted 1.

Chapter 4. Timed CSP Fundamentais 96

Following the style taken in [Pag81, Sto82, Low93, Low94, Hay841, let SD be the

set of all identifiers (their associated types will be assurned). Fomally,

SD l'(FIELD)

CSP's syntax includes a variable, Say X, that can be associated with a process. Ide

represents the domain of such a variable. In the current study, X can be a record data

type. For variables to have any meaning, the environment space, ED, is defined as

ED ide --+ SD

The primitive semantic domain for truth values is:

n : Tmth = {truc, false}'

The fouowing defines the required semantic function

N : Stmt -+ ED -+ SD

Thus, Af associates each construct with its value. The domain operator '+' associates

to the right.

The semantic definitions are given below.

1. N[@[x]] x + x = ((F))k&((T)) 1 F E FIELDS A T E FiELDSTYPE

A DATASET' = DATASET U {x)

2. N[@[x x y 1 y is atomic data]] N[(@[x])] x y

3- N[@[x, Y, 41 ~ [@ [x l l ; N[@[YII ; N [@ [f II
4. N[@[x 1 x is an existing record data type]] x A error + x E DATASET

5 . N[@[x 1 x is atomic data]] P x A error

6 . N[x. y] Val(y) 1 y E Attrib(x)

7. N[input?x. y] x. y := value 1 dom value E type-of y

where ualue is the data read/captured via the input channel

S. N[input!x. y] 2 ualue = Val(x.y) 1 ualue E type-of y

9. N[x. id] A type-of id E dom R obeys ad algebraic laws of closure, associativity,

distribution, and existence; e.g

N[x.id + y] = NIy + z.id] e type-of y = type-of id

Notes:

Chapter 4. Timed CSP Fundamentals 97

1. Any variable created with can be used within any CSP construct that requires

such variable. For example, if A is a record type then a : A -+ Pa is a valid

process that offers a choice of initial event a drawn from the record type A and

behaves accordingly.

2. The operator @ is CSP-expressibfe and non-destructive.

3. By merging definitions (4) and (5) above, we have the foilowing:

N [@ [x]] = z A emor O

(3 xi : identifier 1 2; E DATASET xi = x) V

(7 (3 zi : identifier 1 zi E DATASET xi = X) A

type-of x = ATOMIC)

4 . N[@[x]] = x w Nfie[ds(x) 2 2 is an important condition that must be satisfied

by al1 definitions of the record data type.

5. Consider the following example for Axiom 2 above. Let the variable Person be

a record type consisting of the fields name, age, weight, and height. Also, let

Qualification an atomic data variable. The data types of the fields are assumed.

Thus,

Person x Qualification

n [name, age, weight, height] x Qualification

@[Person] x Qualifieation

@[Person x Qualification]

6. Note that if A p G B p for all p then by extensionality, A B. That is, one may be

transforrned into the other by a finite sequence of pennissible applicable steps. A

simple structurd induction suftices to show that all the occurrences of a variable

denote the same value.

The two operators, @ and . enjoy elegant mathematical properties that make them

compatible with other CSP operators. The @ operator provides recursive type construc-

Chapter 4. Timed CSP Fundamentals 98

tion. Application of the operators succeeds o d y if they syntacticdy confom to their

structura. specifications- Application of @ to type-incompatible argument is considered

constant and the arguments are Ieft intact (non-destructive property) . The st rong typing

discipline is a considerable asset when writing correct specificat ions. Finaiiy, the given

denotational semantics is consistent with respect to record's type structure. The se-

mantic definitions given contain the appropriate projection operations for manipulating

record data type. The extension presented in this section further enriches the expressive

capability of CSP thereby increasing its applicability to the specification of database

transaction systems.

Chapter 5

PROTOCOL SPECIFICATIONS

This research assumes error free mult icast communkat ion channels exist between dat abases'.

Infonnally, reliable multicast ensures that ail or none of the recipients receive any tram-

mitted message. Semantics for mult icast include receiving, acknowledgement , and the

delivering of messages. Their specifications is outside the scope of this research.

Some terms that are used in the specifications are defined in the following section.

Any additional concept will be defined within context as required.

5.1 Basic Definitions

A data object (x) is an ordered pair (x,: T S) where x, is the object's value and 7S is

an arbitrary time structure. For example, if only time of reference is required TS is a

value drawn from the domain of TIME (see Chapter 4 page 75). However, if read and

write tirne is required, T S could be a structure containing more detail (see Section 5.11.1

page 161). There exists a set Data which is the collection of al1 data objects. A data

object's value may be simple or a collection of values. The metôfunction C'AL UE[z: t]

'Send and receive events enable the interaction of processes via communication channels (in CSP

context) of the communication subsystem of the distributed system. Assumptions about communication

channeb are: (1) reliable - every sent message is received exactly only once, (2) FIFO property -
messages are routed via charnels in FIFO fashion, and (3) the channel capacity is unbounded. In

multicasting messages are sent to a collection (not necessarily all) of the processes.

Chapter 5. Protocol Specifications

returns the value of x at time t , where z is any data object.

Definition 13 Read set: The set of data read by a transaction T is denoted by RST.

RST = { a 1 a E Data a is read by T) I

Definition 14 Wn'te set: The set of data written by a transcation T is denoted by

WST.

WST = { a 1 a E Data a is w i t t e n b y T }

The union of Definitions 13 and 14 is the set of data accessed by transaction T .

Definition 15 Access set: The set of data read or written by a transcation T, denoted

by AcsetT.

A transaction can potentially see (read or write) any data object available in the system.

The set of such data objects is called the View set and is denoted by VwsetT.

Definition 16 View set: The set of objects visible to a transaction T.

Ac.SetT VwsetT

These objects can be partial results from other transactions.

Definition 17 Operation : An operation (on a data item), denoted Op, is a well defined

action that, when applied to any permissible combination of known entities, produces a

new entity. - (adapted from [Ros84]). I

An operation identifies and perforrns an action on data. An operation could modify

the data or access the data without affecting it. Thus, al1 operations on data can be

represented by simple reads and wn'tes. That is, Op = {r, w } where r and w are read

and write, respectively. Every operation is failure atomic so the status of every operation

on termination is either success or failure. Operations preserve the domain of data to

w hich they are applied.

The invocation and execution of an operation is atomic so it can either commit or

abort. Thus, the occurrence of one precludes the occurrence of the other. Formally,

Chap ter 5. Pro tocol Specifications

V opk : Op 1 commit (opc) + yabort (opk) V

aéort(opk) + -cornrnit(opk) [ROI

Operations can be composed by using the composition opeator (O) defined formally as:

Thus, if p and q are operations that operate on z and q acts on z and result is operated

on by p. The composed operations on z is given by: q O p = q (p (z))

Transaction operat ions are:

Begin transaction - initiates the execution of a new transaction. Returns a tram-

action identifier (id) used to identify ail operations in the transaction.

Begin Transaction + id

Read or IYmmte - an action which may be low-level such as read or write a data

item or record. The read or write operations are usually atomic.

Task invocation - requests the services of a procedure which itself is a transaction.

The request results in the execution of the transaction (procedure) often concurrent

with the invoking transaction. An example of a task invocation operation is a

request to transfer money to a bank account which can be implemented as two

nested subtransactions consisting of deposit and wit hdrawal.

Precommit - the identified transaction has completed its operations and is ready

to commit.

Commit - the transaction has terminated normally and al1 of its effect are made

permanent. The committed transaction is removed from the system.

Commit(id) + Boolean

Chapter 5. Protocol Specificatiom 102

Abort - the transaction has terminated abnormally and all of its effect should be

removed.

Abort (i d) + Boolean

End transaction - indicates the completion of the identified transaction. The

transaction may be committed or aborted.

EndTransaction(id) + (Commit 1 Abort)

The operations commit, abort, and precornmit are transaction terminating operat ions;

begin and end transaction are transact ional service operations; read and write are tram-

action access operations; and h a i i y task invocation is a transaction service request.

Each transaction access operation designates an access to some part icular object .
The eflect of an access operation is the changes it makes to its operand and the value

it returns [BL93]. Every operation returns a value after execution. So the effect of an

operation refers to the value of a data item set by a Wn'te operation and the result

returned by a Read operation.

Definition 18 Commute: Two operations commute if they return the same values and

leave the data base in the same final state when executed in either order.

Thus, a pair of operations commute if their execution have the same effect on a database

independent of the relative ordering of the operations' execution .

Definition 19 State: The state of an object is its value at a point in time.

In timed specifications, a state is augmented with time parameter, t . Thus, datet denotes

the value of the object at time t .

Generally, an instance of a data item often has associated with it some other items

such as currency indicators, that together determines its state. The state of a data

"reflects the dynamic aspects of the data as i t changes as the result of an operation"

[T L82].

there exists a state of the data such that the sequences pipj and pjpi operating on that

state either return different values or leave the data in different ha1 states- I

In other words, two operations confiict if their effects on the state of an object or their

return d u e s differ depending on their execution order. To fomally define conflict using

s and r defined above, let z, be the present state of x .

Note that s (z o , (pj o pi)) is equivalent to s (s (x 0 , p i) , p j) in progr-ming lmguage par-

lance. Consider the following example. Let the initial value of x = 10- Let pi and pj be

the operations read(x) and wri te(z = 5) respectively- The foilowing represents the steps

that determine if the two operations conflict.

Now interchange the relative order of both operations and observe both the final value

set and the return value.

Since (r = 5) # (r = IO), then pi and pj confiicts.

Two database operations in a schedule codict if they return different values or

leave the database in a different state when their order is reversed. It is desirable that

the operations return the sarne values and leave the database in the same state after

reversing their order.

In summary, conflict between any two operations can occur only when all the

following conditions are satisfied: (1). They access the sarne data item, (2). At least one

of the operations is a write operation (a state modifying operation), and (3). A change

Chapter 5. Pro toc01 Specifications 105

in the relative execution order of the operations give different data states or returns

different values. That is, two operations cordict if their effect on the state of an object

are dependent on their order of execution. Conditions (1) and (2) are captured by:

where Ti and Tj are two distinct transactions. Using these (implicitty), [Rl] captures

condition (3).

Therefore, for any two conflicting operations, Say pi and pj, belonging to transac-

tions Ti and Ti, respectively, the corresponding transactions in which t hey participate

conflict. So ~ W O transactions Ti and Tj COI&C~ if:

Conflict(Ti, T,) * (Acset(Ti) n Acset(Tj) = { B 1 B # 0)) A

(3 O;, oj : Op [O; E Ti, oj E Tj;

3 x : Data 1 x E B Conpict(o;, o j))

Definition 21 Active: An operation (event) is active if its execution has been initiated

but has not terminated.

Similarly, a transaction T is active if and only if it has started but has yet to perform

abort or commit operation. Formally,

V T : Transaction

Active (T) trace (T) # () A

-.(a in trace(T) 1 a E (abort, commit))

Definition 22 ConfEÊct set: The conflict set of a transaction T, denoted ConfEictST,

contains the operations of active transactions that may conflict with T. I

Two transactions can access the same object, Say O,, if the active operations of one

excludes the conflict set of the other. For example, Tj can access O, without conflicting

with another transaction Ti if the confiict set of Tj excludes active operations of Ti on

oz -

Chap ter 5. Protocol Specifications

5.2 The Mode1

The processes interact with one another in a coordinated fashion using messages to

cooperativeiy process transactions. Each transaction is assigned a unique identification3

number id. The system uses the transaction id to bind all the transaction's operations

together as a logical unit to maintain its atomicity.

The problem domain can be represented as a graph, G = (node, i ink), where the

node represents participating databases and the IÊnk represents the interconnections be-

tween the databases. The nodes are partitioned into two equivalence classes, model and

cnode* such that #cnodel = 1 and #cnode2 = n where n is the number of participating

LDBs in the MDB. Thus, model represents the MDB's interface and cnode;! represents

the set of LDBs. So the degree of a node is the number of edges entering into and leaving

from it. The function degree() calculates the degree of a node:

To represent this with our formaiism requires definition of the basic types:

Communication between connected nodes is possible. The signature of the function, links

defines the connect ion between any two connected nodes.

iinks : LINK -o (NODE x NODE)

Since the set of nodes available at any time is finite, communication can only take place

between nodes in the network. Thus,

auailable-nodes : IF NODE

Similarly, the set of amilable links (that is, the connection between any two adjacent

nodes) is finite. Communication between nodes is bidirectional along the links. Thus,

3The generation of transactions a& is outside the scope of this research but the research assumes that

a mechanism for generating the i& exist.

Chap ter 5. Pro toc01 Specifications

the available links are:

auailable-links : F LINK

It would be useful to be able to project out the first or the second element of an ordered

pair of nodes. So we define first and second respectively to achieve this.

first,second : NODE x NODE -+ NODE

V z , y : NODEm

jb . s t (z , y) = x A

second (x, y) = y

The function snodes transforms an ordered pair into a set.

snodes : NODE x NODE + F NODE

V z , y : NODE

snodes(x, y) = { n : NODE 1 n E f ; ~ ' s t (x , y) V n E second(x, y))

The network of participating databases is:

auailable-nodes = U(1 : links a snodes(ran 1))

availa ble-links = dom links

V i : ran links

#(snodes(i)) = 2 A (snodes(i) f auailable-nodes)

In the above definition, it is possible to add local databases or delete connections between

any two local databases. Thus, the network can grow or shrink in size. Also, it rnight be

necessary to determine whether any signal transmitted from one local database can be

received at the MDB's interface and vice versa. Thus we need a function reachable:

,reachable- : NODE t-, NODE

V nl, n2 : NODE; el : LINK a

nl reachable n2 + (n i , n* E snodes(ran l inb(e i)))

Figure 5.1 shows a basic graphical representation of the problem domain. Communication

dong the edges is bidirectional.

Chap ter 5. Pro toc01 Specifications

Figure 5.1: A Graphicai Mode1 of Problem Domain

5.3 Logical Time Assignment

An assignment of time value to every event in a trace that preserves the consistency

of al1 possible dependencies among the events in the trace is crucial. The assignment

mechanism must uphold the following:

1. No two events of the same transaction are assigned the same logicai time.

2. The logical times at each transaction are monotonically increasing based on their

occurrence order.

3. The logical time of aoy send event is less than the corresponding receive event's

logical time.

4. The number of events assigned logical times smaller than t is finite for any time t .

Properties (2) and (3) imply that the order of logical times must be consistent with the

ordering relation <.

Ch ap ter 5. Pro tocol Specifica tions

5.4 Definit ions

Some initiai definitions are required but others will be added as required since their

understanding requires context. The maximum value any time variable c m assume

is an integer constant represented by N . The primitives of sequence data type (see

Section 4.4.1) are applicable.

5.4.1 Preamble

The following are the basic types:

[CHA NNELS, E VENTS]

BOOLEAN ::= tme [false

A collection of events which are acted upon by a process (the defhition of a process

foilows shortly) is denoted by ALPHABETS, fonnally

ALPHABETS == F EVENTS

It is important to reason not only about what events c m occur in a system but also the

time of their occurrences. Time is necessary for the ordering of events. In t his dornain

time is discrete and non-negative integer so time is represented by

Each event occurs at an instance of time so event occurrences are timed events4.

TIMEDEVENT == TIME x EVENTS

4Events happen in both tirne and space so we can have sequential events in which two events occur

on the sarne data item one after the other in time or concurrently in which two events occur at the same

time but on different data items.

Chapter 5. Protocol Specifications 110

The function time returns the time of occurrence of the event performed in a timed event.

time : TIMEDEVENT + TIME

V s : TIMEDE VENT a

time(s) = (t 1 t : TIME) (3 a : EVENTS a s = (t , a))

The function euent returns the event perfonned in a timed event.

event : TIMEDEVENT + EVE,IVTS

V s : TIMEDEVENT a

event(s) = (a 1 a : EVENTS) (3 a : EVENTS; t : TIME a

s = (t , 4)

Events are executed by a process5 that describes system's behaviour. Events may be

channe1 events whereby communication, input or output occurs through a named channel.

Every channel has an associated type. For example, input commands such as input?x

means that z is a variable (x f ALPHABET) of the process under consideration of type

input. With the 8 operator introduced, variable (data) elements may have structure,

for example, records. The variables are typed variables.

PROCUNIT ::= nochan ((TIMEDEVENT))

1 chan ((CHA NNELS x TIMEDE VENT))

The functions message and channel respectively extracts the message and channel oâme

components of a channel event.

V s : PROCUNIT 1 s E chan h s = c.z a

channel(c.z) = c A

message(c.z) = event(z)

The set of ail messages which a process P can communicate on a channel, say c, is defined

b y:

crc(P) = { v 1 message(c.v) E ALPHABETS P)

5~ proces starts, perforrns a finite nurnber of events (also called actions), and then either stops o r

terminates successfully.

Chap ter 5. Pro toc01 Specifications 111

The effect of an executed communication event (I/O in this case) ch?v and ch!expr by

a pair of processes M and M' respectively is the instantaneous assignrnent v := e z p r in

M where u is a local variable of M-

Channel names are removed from timed events with Dropchan.

Dropchan : PROCUNIT + PROCUNIT

V s : PROCUNIT 1 s E chan a

Dropchan(s) = s\channel(s)

The function ptime() returns the time of a process's event occurrence. The signature of

ptime is:

1 ptime : PROCUNIT + TIME

So a process is defined forrnally as:

PROCESS == seq PROCUNIT

Vp : PROCESS a

V i , j : 1 - . # p a i < j +

ptime(p[i]) < ptime(pb])

A process progresses ody upon execution of an event. A process can be in one of three

stages (commit, abort, or active) so

STATUS ::= Abort / Commit 1 Active

The function GetPstatus reports a process's status. This pennits a (sub)process to

enquire whether its parent or another process has committed or aborted. Its signature

is given as

1 GetPstatvs : Transaction-id -t STATUS

A process's behaviour is recorded in a timed trace which is a finite monotonic sequence

of tirned events. Fonnally,

TIMEDTRA CE == seq, TIMEDE VENT

Cizapter 5. Protocol Specifications

V s : TIMEDTRACE

V i , j : l - - # s a i < j = = +

t ime(s[i]) < t ime (sb])

For example, given the timed trace:

s = ((f i , a l) , (t 2 , 4) =$ tl 5 t2
Thus, a trace is given by:

1 trace : PROCESS + TIMEDTRACE

Each process's trace uniquely specifies a path Ieading from the start of the process's

execution to that particular state. However, only one path leads to an acceptable state.

Note that the trace of process before it engages in its f ist event (of course an empty

trace) is irrelevant in this study.

The prefix of a trace is a continguous subsequence of the trace such that the head

of the subsequence and the trace are the same. The prefix operator6 is prefix, defined

fomally as:

- prefix - : seq H seq

Vs, t : TIMEDTRACE a

s prefbc t w (3 u : TIMEDTRACE s u = t)

An example of a trace's prefix is:

(a , d , f) prefix (a , d , f , h , k) = t n e

A trace s is a prefix of itself so trace(P) pre* trace(P). Thus,

The p r e h relation is reflexive, transitive, and antisymmetric.

' ~ h e operator prefix daers from in because in may hold for any continguous subsequence of any

given sequence whereas pre* holds only when the head of both the subsequence and given sequence

is the same.

Chapter 5. Protocol Specifications

The set of ail possibleï traces of a process is c d e d traces

1 troces : PROCESS + P TIMEDTRACE

Elements of traces are prefixes of a trace, so trace E traces.

The relationai operator t hat establishes an ordering relat ionship between sequence

elements is:

- <s - : EVENTS t, EVENTS

V a , b : EVElVTS

a <s b G (3 S : seq EVENTS; i, j : NI 1
i ~ d o m S A j E d o m S A S (i) = a A S (j) = 6 i < j)

This operator is necessary because the mathematical < operator is undefined for the

sequence data type. The relation CS is reflexive, asymmet ric, and transit ive. Sequence

can be a history, trace or transaction. When the context of the sequence is clear one

can write < H or < T to refer to the ordering in the sequence H (a history) and T (a

transaction), respectively.

A process executes within an intemal defined by a beginning and end time. An

interval consists of all the enclosed time points. Intervals can be closed and open. An

i n t e r d is open when it excludes the two endpoints; that is, their endpoints are not

contained within the interval. The interval is closed when the two endpoints are contained

in the interval. Thus, we can mode1 execution overlaps between any two processes. An

interval is d e h e d as:

INTERVAL == seq TIME

V t : INTERVAL a # t = #(ran t) A head(t) < last(t)

7 ~ 1 1 possible traces of a process are defined by the powerset of its timed events. This allows for

unforseen occurrences such a s a system failure. The record of the timed events up to that point is still

a timed trace.

Chapter 5. Pro toc01 Specifica tions

The following d e h e s open interval.

openint : TIME x TIME t, seq TIME

Va,b : TIME 1 a < b; int : seq TIME

openint(a, 6) = int * (V t l , t2 : TIME [

(a < t l A t l < b A a < t 2 A t 2 < b A t l # t 2) *

tl L t2 +- tl c i n t t2)

Similady, close interval is defined as foilows

closeint : TIME x TIME -t, seq TIME

V a, b : TIME; int : seq TIME

closeint (a , b) = int o (V t i , t2 : TlME 1
(a s t l A t l < b A a < t 2 A t 2 < b A t L # t 2) m

tl L t2 =+ tl c i n t t2)

The difference between openint and closeint is the inclusion of the end points in closeint.

Partial cases where one end is closed and the other is open are intuitively derivable.

5.4.2 Temporal Operators

Transaction specificat ion requires severai temporal operators. This section provides t hose

definitions and corresponding semantics.

The function times returns a time sequence for the events in a timed trace.

times : TIMEDTRACE + seq TIME

V s : TIMEDTRACE

times(s) = (t 1 t : seq TIME)

(3 a : EVENTS; tl : T I M . . / tl in t ((t l , a)) in s)

The function events returns an event sequence in a timed trace.

events : TIMEDTRACE + seq EVENTS

Chapter 5. Protocol Specifications

V s : TIMEDTRACE

euents(s) = (z 1 z : seq EVENTS) *
(V i : 2 . . #s x = euent (s [l]) - euent (s [i]) (

V i , j : 2 . . # s 1 i#j.i< j * z [i] < , x b]

The function first returns the &st event in a sequence-

Similarly, last returns the Lat event in a sequence.

The function begin returns a trace's first event tirne. If the trace is empty a time value

of infinity (Le., oo) is returned. The function end returns the last event's time or ca if

the trace is empty. Fonnally, the above is given by:

V s : TIMED TRACE

begin(s) (t 1 t : TIME (s = () + t = oo)

v (t = t ime(head(s))))

If we constrain the timed trace to be nonempty, the begin and end functions can simply

be defined as begin(s) t i m e (s [l]) and e n d (s) t ime(s [#s]) , respectively.

The following additional relational operators are useful.

The at operator denotes the occurrence of an event a t a particulat time point. For

exarnple, b at t means event b occurs at exactiy time point t .

-at- : EVENT x TIME t-, TIMEDE VENT

V b : EVENTS; t : TIME

b at t ~4 tzme(6) = t A

(3 s : TIMEDTRACE ((t , b)) in s)

Chapter 5. Protocol Specifications 116

2. Before

The before operator returns the part of a trace that describes ail events occurrences

prior to the referenced time point. For example, s before t means the sequence of ali

events in s that occur at any time less than t . The formal definition follows:

-6efore- : TIMEDTRA CE x TIME t, TIMEDTRACE

V s : TIMEDTRACE; t : TIME

s before t w V i : 1 . . #s time(s[i]) < t

The operator during returns the part of a trace that occurs within some time interval

1. The definition of during is:

-during- : TIMEDTRACE x INTERVA L H TIMEDTRACE

V s : TIMELITRACE; t : INTERVAL

s during t e (3 sl 1 s1 in s

(Vi : 1 . .#s i 0 time(sl[i]) in t)

4. Occur

The operator Occur returns al1 events occurring at a given time.

,occur, : TIMEDTRACE x TIME t, TIhfEDTRACE

V s : TIMED TRA CE; t : TIME 0

s occur t (3 s 1 1 sl in s

(V i : 1 . . #si t ime(sl[i]) = t)

5. After

The after operator returns the part of the trace that occurred immediately following the

referenced time point. This operator is dehed as follows:

-after- : TIMEDTRACE x TIME - TIMEDTRACE

V s : TIMED TRA CE; t : TIME

s after t e V i : l . . #s time(s[i]) > t

Chap ter 5. Protocol Specifications 117

For example, s after t means the occurrence of all events in s at any time greater than

t -
The before, after, and dur ing operators are applicable to the time i n t e d semantics.

In this case, the following intervals are na tu rdy associated with:

before = (1, t]

after = [t , m)

during = (t l , t2)

where [or] denotes open and (or) denotes closed ends of the interval.

For exarnple, the at operator can be applied to an interval i as follows:

S at I (3 a : EVENTS 1 a in events(S) a

3 t : TIME 1 t in t imes(S) a a at t A t in 1)

S at I holds if and o d y if some elements of S occur at some time during I .

Similady, we can also specify that an event or events do not occur at a particular

time or a time interval- For example, 1 (a at t) and - (S at 1) mean that no a occurred

at time t and no element of the trace S occurred within the interval i? respectively.

6. Overlap

Two intervals overlap when they have some points in common. Forrnally the overlap

operator is defined as:

-ouerlap- : INTERVAL t, INTERVAL

V Il, I2 : INTERVAL

Il overlap I2 H Il # i2 A (3 t : TIME a

t in Il A t in 12)

The event times of processes that simultaneously use an unshareable resource must not

overlap with respect to the resource's use times. That is, if P and Q are processes that

use a nonshareable resource, Say Res, to adequately mode1 the concurrent ut ilizat ion of

Res, the following constraint must hold:

V p : trace(P) 1 Res; q : trace(Q) 1 Res 1 P # Q 1 (t imes(p) overlap t imes(q))

Chap ter 5. Pro t ocof Specifica tions

7. Precedes

Precedes states that one timed event occurs before another. It is dehed as

-precedes- : TiMEDE VENT o TIMEDE VENT

V tl, t2 : TIME; a , 6 : EVENTS a

(tl, a) precedes (h , 6) w (3 s : TIMEDTRACE 1
((h, a) } in s A ((&Y 6)) in s) tl I t2)

The relational temporal operator precedes is reflexive, asymmetric, and transitive.

S. Duration and Availability

The function eduration returns the duration of an event which is calculated by sub-

tracting the start time from the end time. The signature is:

1 eduration : EVENTS - TIME

Let p = eduration(z) represents the duration of the event x. If the event xi occurs at

time t then the next event xi+i must occur no earlier than time t + p. Thus!

The events transit ion will be:

Thus, if p is the minimum execution time for ail events then each process will spend at

least p time in each state. The advantages of this are:

assures that time progresses forward in an infinite trace, and

a finite number of events are executed in a finite amount of time.

The hinction available retunis true if the first event of its argument can occur and

return false otherwise; e.g., auazla6le(P) = true means the first event of process P can

occur in the present environment of P. The signature is:

Chap ter 5. Pro tocol Specifications

1 available : PROCESS -t BOOLEAN

A process's duration is the time difference between its l u t event and the first. Thus,

the funct ion pdura tion () ret urns a process7s duration. Formâlly,

pduration : PROCESS + Tl'h4E

V t : TIME; P : PROCESS a

if trace(P) = () then pduration(P) = t + (t = oo)

else pduration(P) = t +
t = t ime(last(trace(P))) - t ime(f irs t (trace(P)))

5.5 Int erleaving

The function interleaves defines the interleaving of two or more event sequences. In

the timed trace semantics (see Section 4.4, Chapter 4): the chronological order of event

is one of the possible interleavings. However, the resulting interleaved sequence must

uphold the order of eveni; times. Whenever xi = yj, xi and yj appears in the inter-

leaved sequence as a permutation8 of xi and yj- This semantics is different from Hoare's

[Hoa851 definition which is arbitrary interleaving of the elements of the two sequences (see

Section 4.5) because this definition incorporates time semantics. The formal definit ion

follows:

interleaues : TIMED TRA CE x TIMED TRACE TIMED TRACE

%pecificalIy, let p : S+S be a permutation of a set S (si, s2, . . . , s,). That is p is a rearrangement

of the elernents si, SZ, . . . , Sn. The interleave function is O(m + k) where m + k is the total number of

elements. This linear function is achieved by using merge sort since the two sequences are sorted.

Chap t er 5. Pro toc01 Specifica tions

V r , y ,z : TIMEDTRACE

if z = () then interleaues(r, y) = y

else if y = () then interleaves(z, y) = z

else interleaves(x, y) = z # r = #x + #y A

(V t,, t, : TIME 1 t, E ran times(x) A t, E ran times(y)

t, 5 ty + (3 a, b : EVENTS 1
((t d)) in 2 A ((t,,b)) in y

(((&, a)) in z A ((t,, b)) in z A

(tz, 4 preced- (t,, b))))

The elements of the interleaving h c t i o n forms a total partial order and is order pre-

serving. The relation on the elements of a partial order is reflexive, transitive: and

ant isymmetric.

5.6 Causality

Concurrency, a key feature of cooperative concurrent process problem solving algorit hms,

depends upon fine control over process communication and synchronization. Processes

interact using messages during transactions execution. Tme concurrency is possible only

when the concurrent processes shaxe no variables. However, when accessing shaseable

data objects, concurrent processes can proceed independently until they reference vari-

ables in their common environment as iIIustrated in Figure 5.2. Such accesses require

synchronization to guarantee correctness of the transactions.

A transaction can be causally dependent or independent of another transaction.

Causality among events is the ability of one event to directly or indirectly (by transitivity)

affect another.

Definition 23 A transaction A is causally dependent on transaction B, denoted as A

3 B if and o d y if A reads or uses an object written by B while B is still active or an

event of B triggers the occurrence of an event of A. I

In the above definition, A is called the dependent transaction while B is cdled the

Chapter 5. Protocol Specifications

Transactions Tl and T2
synchronize at accessing O,.

Figure 3.2: S ynchronization Point of two Transactions

depended-on transactiong. This dependence would results in the abortion of the de-

pendent transaction if the depended-on transaction fails. However, the failure of any

causally independent transaction does not affect the progress of other transactions in the

system. The use of an event's partial ordering as defined by their causal relationships

enables efficient recovery frorn failureslO. It should also be noted that if A happening at

time X causes B to occur at time p then X must corne before p, so causality respects

time.

Formally, causal dependency is defined as:

CD - + , : Transaction t, Transaction

V A , B : Transaction
CD -4 + B @ ((3 xi : Data 1 xi E AcsetTA A xi E &setTB A

3 p, q : Op 1 P E OTA A p = r (x i) A

q E OTe A Actiz.e(Te) A q = w (x i)

t ime(q) < t i m e (p)))

That is, the write of object xi by transaction B precedes the read operation on object

xi by transaction A. In other words, A is causally dependent on B if and only if:

gThere are three instances of conact : REA D -+ WRITE, WRITE --, WRITE, and WRlTE -+
READ. Only the last one results in causal dependence.

1°A partial ordering of a process's interactions perrnits mathematical analysis (induction) to prove

some system's properties such as the absence of deadlock.

Chapter 5. Protocol Specifica tions

Figure 5.3: Sample Dependency Relationship Graph

There is an analogy between read/write operations and receive/send operations. Since

processes interact via message passing, the send and receive message events indicate

the flow of information (and some control/dependency) between the processes. This

induces a causal dependency from the receiver process on the sender process. In this

communication situation, the send message (signal) is treated as a write operation of the

sender process while the receive message is considered as a read operation by the receiver

process thereby defining causal dependencies between the pairs of corresponding send

and receive events-

The causal dependency relation is transitive so:

A % B ~ A % B v
(g l B i : Transaction . A cPt Bi A Bi 3 B)

A graph showing the dependencies in a transaction's execution history is cdled a depen-

dency graph. The transactions are the nodes and the edges are labelled by the object

on which the dependency is induced. For example, there is a directed edge from A to B

labelled e if B depends on e generated by A, as illustrated in Figure 5.3. Several causal

relationships are possible such as those shown in Figure 5.4 where the dashed arrows

(--+) indicate causal dependencies and the solid arrows indicate a nested transaction

invocation hierarchy.

To enforce correct serialkation in such causaily dependent situations requires the

isolation of each transaction and that the transactions' execution follow a predefined

partial order. Therefore, a set of tasks or operations can execute concurrently if they are

causaily independent of each other. To illustrate this, Figure 5.4 shows:

TZ3 depends on some values produced by Tl and T X .

Chap ter 5. Pro toc01 Specifica tiens

Figure 5.4: Sample Causal Dependencies

TO2 depends on some produced by Toi.

a T22 depends on some values produced by TO3.

In the temporal order of events, To and Tl can nui concurrently but are synchronized

in the temporal partial order according to the causal dependency induced at T23- The

cornmitment order of the transactions must obey the temporal order of event occurrences

in both transactions to guarantee the correctness of results. Therefore, the transactions

should obey the following commitment order Tl , To for the correct execution of the

transactions.

Causal dependency constraints dictate the order in which computations of causally

dependent transactions must be executed relative to one anot her. Therefore, two t ransac-

tions that are causally dependent obey the causal dependency constraint if each transac-

tion executes events in nondecreasing timestamp order and preserves the cause-and-effect

relations. The cause must always precede the effect thereby defining the sequencing con-

straints. Consider the concurrent execution of two events, A and B, by transactions 7';

and Tj respectively. If B reads a variable updated by A, the execution of A must precede

B to uphold causality. So, Ti < Tj ensures the computation's correctness. After exe-

cuting the causally dependent events, the two transactions may be independent of each

other so the execution can progress out of timestarnp order without violating causality

Chapter 5. Protocol Specifications 124

constraints. Thus, obeying the causal dependency const raint suftices to guarantee correct

execution.

Fujimoto [FujSO] states that deciding whether A can execute concurrently with B

requires an operational simulator- This implies without a c t u d y executing the simula-

tor, determining whether A affects B or not may be impossible or at least infeasible.

However, this conclusion is no longer vaiid because by analysing the transaction's speci-

fications statically (see [Gra94] for detail about static andysis and database operations

relationships) one can determine an operation7s effect on another, if any.

Determining causal dependency constraints in generd is complex and highly data

dependent. For example, the scenario in which A affects B can be a complex sequence

of events depending on event timestamps. Using the causality concept to detemine

acceptable schedules is strictly a conservative approach to concurrency control since the

approach first detennines when it is safe to process an event before executing the event.

5.7 Specification of Transaction

A transaction Ti is a sequence of read (r i) , write (wi), and task invocation (t;) operations

terminated by a transaction terminating operation, ni 1 ni E { a ; , c i) where c; is a commit

and a; is an abort operation. A more rigorous definition is given as:

Definition 24 Transaction : A transaction Ti is a sequence of transaction operations

such that:

1. the first element is a Begin transaction operation,

2. V Op; E Tj Opi c ni

3. ni occurs only once in the sequence,

4. al1 other elements in the sequence can be read (r i) , write (w ;) , or task invocation

(t ;) operation, and

5. a partial order (<T.) orders any conflicting pair of operations.

Chapter 5. Pro toc01 Specifications

Transaction T 1 T = seq, Op =+

head(T) = b e g i n ~ last(T) = n; A

(#a = 1 A #a = #c A (a in T + -. (c in 2') A c in T + 7 (a in T))

(Vp,q: O p 1 p , q = O p \ n i A p i n T A q i n T . p < n ; A

Conflict(~,q) * p <T q V q <T P))

A permutation of non-codicting operations in T gives an instance of a transaction, Say

Ti that has equivalent effects as T. This definition is essentidy an operational view of

a transaction" .

A task is a granule of computation treated by the system as a unit of work to be

scheduied and executed. Tasks axe selected one by one to have their operations (rnethods)

scheduled. The dependencies between the tasks in T are specified by their precedence

constraints; t hey are given by a partial order relation < T defined over T . Thus, Ti < 1. T,

if the execution of Ti cannot begin until the task Ti starts or terminates.

The events begin, commit, and abort axe special events in the alphabets of every

transaction and they are always present in the alphabet set of every transaction. In a

multi-user transaction system, a transaction set, TSet , is defined as:
n

TSet = { T l , Tz, T3,. .-, T,,) where n 2 1. Thus, TSet = U Ti
i= 1

The components of a transaction can be partitioned into two mutually exclusive

classes called the vital set and non-vital sets. The set of vital components, denoted Vtset,

consists of those subtransactions or tasks that are critical to the correctness (and com-

pletion) of the transaction. Similady, the set of non-vital components of a transaction,

is denoted Nvset. Either set may be empty but if both are at the same time, the case is

"Although a transaction is defined as a sequence, it is important to note that this definition only

constrains the user-visible behaviour of an implementation. Thus, any acceptable configuration of the

transaction's events simply has to present the same behaviour to the users.

Chap ter 5. Pro tocol Specüica tions

of no interest. Thus, for any transaction i the foiiowing definition holds:

Transaction; Vtseti U .&seti 1
Vtset; n Nuset; = 0 A

(Vtset; = 0 + Nvseti # 0 V

Nutset; = (S5 + Vtset; # 0)

Let Cmset denotes the set of committed trônsactions, c d e d Commit set. Let compensate

denotes the function that cals a compensating transaction to annul the effects of the

committed transaction for which it is defined. The semantics of the function compensate

notes the compensation order required for the commit ted transactions whose effects need

annulling.

5.8 History

A history (H) of the concurrent execution of a transaction set Tset is a sequence of

the operations or events from Tset. The operations ordering in H contains at least ail

orderings in Tset. That is, the sequence is a partial order of events that is consistent

with the partial order <T of the events associated with each transaction T in Tset. A

history for a transaction set Tset = { T l , T2, T3 - - - T,} is:

HISTORYT~,~ seq S + (V T : Transaction [T E Tset a

The order of elements in H is based on the order of respective elements in each Ti in

the set of currently executed transactions Tset and the order enforced by the actual

execut ion.

Chap ter 5. Pro tocol Specifications 1-27

Let Tset be a set of transactions and Hl be a sequence of the transactions' concur-

rent execution. For an illustration, let

The relational operator E, establishes the membership relationship between a his-

tory and a transaction. A transaction is in history if ail its operations are in the his tor-

For mal1 y,

- E, A : Transaction o H I S T O R Y

V T : Transaction; H : HISTORY

T ~ , H o (v p : O p [p ~ T e p i n H)

Al1 operations of T are included in a history because only committed transactions exist

under the prefix commit closed property. To illustrate the application of the above

definition, consider the following example: Tl E, Hl because the operations wl (x) , wl (y),

and cl which belong to Tl are elements of the history H l . Similarly, operations of T2

and T3 are in H l , so T2 E~ HL and Ta E, Hl hold.

The occurrences of events in a history are related by <,.

- c, - : E VENTS t, EVENTS
Va, b : EVENTS

(3H:HISTORY I a i n H A b i n H *
a <, b w t ime(a) 5 t ime(6))

For example, r2(x) <, w l (y) in HL because the occurrence of r 2 (x) precedes w l (y) .

To make explicit the schedule instance in which the <, relationship is considered, the

schedule is indicated as the subscript in the < relation. For example, the above would

be written as ~ (x) wI (y)

Chapter 5. Protocol Specjfications

H Z ; = = - = = =
d a h b i e 1 j m k n f o c g

Figure 5.5: Space-Time View of Execution

A history is complete if it contains only completed transactions otherwise it is in-

complete. An incomplete history does not represent a consistency preserving execution.

For determination of correctness, however, only a complete history projected over corn-

mitted transactions is useful. A projection'z of a history H on a set of transactions Tset

is a history that contains only operations of transactions from Tset. A committed pro-

jection of a history H contains only operations of committed transactions. Committed

projection, denoted Project CMT, is formally defined as:

ProjectCMT : HISTORY x Op + HISTORY

V H : H 1 S T O R Y ; p : Op 1 p=commit A p i n Hm
ProjectCMT(H,p) = (3 H f : HiSTORY # H f 5 # H A

(3 T : Transaction 1 T EH H ;
j : N I I j ~ d o m H h H L j] = p T € , H f

(V i : l . . j H[i] = commit /r commit E T + T E, H '))) [R4]

Since transaction execution sequences implies timing, a history is a timed trace.

Each execution defines a unique sequence of events as indicated in the space-time diagram

shown in Figure 5.5. In the diagram, each horizontal line is a transaction, each dot on a

'=The projection of a history over some events k is the restriction of the history to the events, written

as trace(T, 1 k) where T, is the transaction whose history is to be projected and k is the set of events

of interest. Thus, a projection is obtained by deleting ail other events other than the specified event(s).

Chapter 5. Protocol Specifications 129

line is an event of that transaction, and an m o w indicates interaction between transac-

tions. This indicates a causal dependency. Since events of a concurrent execution rnay be

reordered if consistent with the causal order among the transactions and with the partial

order of each transaction's execution, their permutation gives rise to an equivalent t hough

different sequence. Tel [Te1941 estabiishes the equivalence of executions under reordering

of non-confticting events. For example, H3 = (h , d, a , i, l, e , b , j , m , n7 k , f, e? O , g) is a

sequence different frorn that shown in Figure 5.5- The executions H3 and & have the

same collection of events and causal order. By results established in [Te194]. Hi and Li2

are equivalent execut ions.

To keep track of events and enforce the desired correctness d e , a dependency (e-g.,

abort or commit dependency) relationship is estab lished whenever an invoked operat ion

that confiicts with an active operation is dowed to execute. Therefore, the system must

maintain13 data structures to record t hese dependencies.

Definition 25 Dependency set: The dependency set of a transaction T , denoted DependSr,

contains those transactions t hat developed inter-transaction dependencies wit h T during

t heir concurrent execution.

A transaction's dependency set includes dl other transactions upon which it depends.

The dependency relationships are used to determine the serialization order of the trans-

actions. The dependency set of a transaction is relative to a history. Generdly, inter-

transaction dependencies are established during the concurrent execution of a transaction

set. Such dependencies could result frorn the behaviour of transactions over shared data,

the structural nature of the transactions, or a combination of both.

5.9 Specification of Correctness

The transaction models for the new application domains requires some correctness cri te-

ria to derive an appropriate concurrency control algorithm. A correctness criterion is a

I30ne way to avoid doing this is by forcing the invoking transaction to either abort or wait until the

conflicting active operation terminates.

Chapter 5. Protocol Specificatio~s 130

standard for judging transaction histories correctness in order to achieve a certain degree

of concurrency transparency in the system. In other words, a correctness criterion is a

specification of the properties which guarantees database integrity. Thus, the correct-

ness criterion employed by a transaction system determines the acceptabIe transaction

histories. The two most cornmon correctness criteria based on the serializability concept,

Conpict Serializability (CSR) and View SeRalizability (VSR), are formally specified in

this section,

To adequately mode1 transactions' concurrency we need to guârantee both temporal

and functional correctness by using mechanisms that ensure timing constraints always

hold or that the transaction aborts. The temporal constraints are used to synchronize

concurrent accesses to data object by multiple transactions and provide an acceptable

degree of fimctiond correctness whenever the system must abort the transaction.

Before addressing correctness formaLly, the following definitions are necessary.

5.9.1 Failure Atomicity

Failure atornicity is the al1 or nothiag execution property of transactions. A transaction

is failure atornic if and only if al1 operations invoked by the transaction either commit or

abort. Forrnally, failure atornicity is defined as:

3 op; : Op 1 opi E Transaction;

commit(op;) in trace (Transaction;) =+
(V 0% : Op 1 opj f Transaction;

commit(opj) in trace(Transaction;)) V

abort (op;) in trace(Transaction;) +
(V opj : Op 1 opj E Transaction; O

abort(opj) in trace (Transaction;)) PSI

When a transaction obeys the atomicity principle, the presence of a commit operation

it invoked in its trace means d l operations of the transaction commits. Similady, the

presence of an abort operation invoked by the transaction in its trace means that dl the

transaction's operations abort. Thus, the semantics of a transaction's commit and abort

is based on failure atomicity.

Chap ter 5. Protocol Specifications

Lemma 1 Every atomic transaction is failure atomic.

Proof:

Given that T is a transaction and atomic- T is failure atomic if and only if T satisfies

specification [R5]. By [ROI and [R4] the invocation and execution of every operation is

atomic. So, if

3 p : Op 1 p E T commit(p) +
V q : Op 1 q E T commit(q) + [R5] holds.

Similarly, the same reasoning holds for an abort operation.

However, if

3 p , q : Op 1 p , q E T commit(p) A abort(q) 3

contradiction of specification [ROI

So specification [R5] does not hold.

So T is failure atomic.

In summary, for any transaction T ,

Conflict serializability ensures t here are no cycles in the serializat ion graph of the trans-

actions in the schedule. Thus, a binary relation that defines any schedule's serialization

order is of the form Ti -+ T j , where 2'; # Tj- Formally,

,- - : Transaction t, Transaction

Chap ter 5. Pro toc01 Specifica tions

The transitive c l o s ~ r e ~ ~ , denoted zr', is given as:

Ti -a Tj + Ti -U Ti v
(3 Tk : Transaction Ti -A Tk A Tk -+- T j)

A schedule, H l consisting of a transaction set is conflict order preserving if and ody if:

V Ti? T, : Transaction 1 Ti, Tj E, H

Ti -* Ti

5.9.2 Serial History

The definition of confiict seridizability requires a specification of serial history and the

equivalenceL5 of two histories. A history H is senal if for every two transactions Ti and

T, that appear in H l either al1 operations of Ti appears before al1 operations of T, or vice

versa. Ln a serial history there is no interleaving of the transactions' operations involved.

A set of correct transactions executed ser idy always produces correct results and

transforrns the database from one correct state to another on successful completion. Thus,

most correctness criteria often use serial equivûlence as a criterion16 for the derintion

of concurrency control protocols'ï. Sol the concept of serial history is fundamental in

defining most correctness criteria. Fomally, a serial history is:

Serial : HISTORY --+ BOOLEAN
V H : HISTORY,
V Ti, Tj : Transaction 1 Ti , T, EH H O

S e R a l (H) = t r u e ~ (3 p , q : O p I p ~ T ; A g € T j a
p < , q ~ (V r , s : 0 p I r E T i A s E T , 0 r < ~ s)) [R8]

The following universal axiom holds for al1 serial histories.

Axiom 1 : A set of correct transactions serially executed preserves database correct ness

14Permissible schedules of a transaction set concurrent execution forbids cyclic transitive closures of

the form T, Tj , where Ti = 2"'.
151n general, two histories are equivalent if they have the sarne effects. The effects of a history are the

values written by the write operations of unaborted transactions.
16The use of serial equivalence as a criterion for correct concurrent exccution prevents the occurrence

of lost updates and inconsistent retrievals.

"These protocols attempt to seriafize transactions in their access to data items.

Chap ter 5. Pro toc01 Specifications

on successful complet ion.

Proof: Vacuous

Serial equivalence requires ail of a tra ssaction's accesses to a

O

particular data item

be serialized with respect to accesses by other transactions. Al1 pairs of conficting

operations of two transactions should be executed in the same order and could be said

to have the same effect,

Two different transactions have the same effect as one another if the read operations

return the same values and the data items have the same values at the end. The effects

of transactions concurrent execution depend only on the confiicting operat ions relative

ordering because the computational effect s of executing conflicting operat ions de pends

on their relative order.

Conflict Equivdence

Two histories are conjlict equiualent if t hey are defined over the same set of transactions

and the ordering of ident ical conflicting operat ions of unaborted transactions is the same.

Definition 26 Confict equivalence: Two histories H and H' are equivalent if:

2. for any conflicting operations Oi E Ti and Oj E Tj where ai, aj # H1 if Oi < H 0,
then Oi +,f 0, rn

A formal definition of conflict equivalence, C E , follows.

CE : HISTORY * HISTORY

V H , H' : HISTORY a

C E (H , H 1) * H # H' A (V T k : Transaction a Tk E, H =$

Tk E, H' /î -.(abort(Tk) in H) A -(obort(Tk) in H') A

(V T i , Tj EH H 1 Ti # Tj Ti wu Tj A

(V p , q : Op 1 p E Ti A q E T, A Conflict(p,q)

P cH q + P 51 9))) ~ 9 1

Since the aim of any system that supports transactions is to maximise concurrency

[CDK94], transactions must synchronize their operations to avoid interference between

conflicting operations. One method uses the synchronization protocol called conflict

Chapter 5. Protocol Specifications 134

sen'alizabiiity [BGK87]. Therefore, the goal of concurrency control protocols is to avoid

interference/codicts between operations in different transactions on the same data item

and t hereby avoid errors.

Serial execut ion negates the benefits of concurrent execution but arbitrary interleaving of

transactions during execution can lead to interference problems. Therefore, it is necessary

to control the interleaving of transactions' operations to generate the same effects as a

serial execution.

Definition 27 A history is conflict seriaiizable if and only if it is confiict equivalent to
a serial history. rn

Using the preceding definitions ([RE!] and [W]), confict serializability, CSR, is forrndly

defined as:

CSR : HETORY + BOOLEAN
V H : HISTORY

C S R (H) = true @ (3 H' : HISTORY 1 s e r i a l (H f) a C E (H : H f)) [Rlo]

By taking the cornrnitted projection of the transactions' schedde, the consistency of

conflicting operations ordering in the schedule can be checked. The schedule is serializable

if the ordering is consistent and equivalent to a serial schedule. Thus, given a sequence of

transaction executions, if Ti conflicts with Ti and Ti -u Ti then Ti will not occur after

T, in the sequence. That is, a sequence of transactions of the f o m Ti S* Tj u Tk u

Tl c ~ , - - - Tn where Ti # T, are the only acceptable schedules. Note that due to the

upward inheritance of locks in the closed nested transactions model, it is impossible for

Ti = T,,.

Theorem 1 Each conftict serializable execution of a transaction set has the sarne effect

as some serial execution of the transactions in the set. So serializable executions are

correct.

Chapter 5. Protocol Specifications

Proof:

Let Tset = { T t , T2, - - , T,} be a transaction set consisting of n transactions. The

concurrent execution of transactions in Tset is the history given by:

H1STORYTse, = seql S / r m S E Ti A Ti E Tset

Also, let

(by definition [R?]) So Ti - Ti

Ti -+ Tj = Ti; Tj

Thus, al l codicting operations of Ti must precede those of Tj-

Suppose Ti --*' T, [Ti = T,. This means that

Ti u Tk -+ Tl -* -t Tj Ti Ti u' Tj

This violates transitive closure property of - and thus not conflict order preserving.

So only consistent conflict order preseMng schedules are admitted.

Since Ti zr Tj Ti + Tj = Ti; Tj then each conflict serializable esecution

has the same effect as some serial execution. [11
%y (i) and [R9], (a) conflicting operations in any two equivalence schedules are

similarly ordered and (b) both schedules contain the same operations. [ii]
Also, by [RIO] CSR execution is conEct equivalent to a seriai execution. So be-

CSR execution Serial execution [iiz]

From Axiom 1 we know that: (a) each transaction executes completely before the next,

(also inferred from [il above) and (b) each tramaction is correct. So for (a)

V T i ; Tj : Transaction 1 Ti; Tj E Tset

i # j + v p , q : O p I p € T i ~ q e T j .

p ; q + time(p) < time(q) A

q ; p + time(q) < time(p)

Chapter 5. Protocol Specificatioas 136

So the sequential history is correct. Thus, the history is a permutation of the transactions

in the history. To elucidate this firrther, let % be the initial correct database state

and Tl; T2; - - - - , Tn be the sequential execution order of the n transactions in Tset.

So Tl executes against the initial state a to generate the state SI. Using the state

transformation function (s) (see page 103), a(T l) + sr. Since all transactions are

correct and T l nins atomicdy, sl is consistent and correct. Thus,

where si-1 is the resdting state after the execution Tl ; Tz; - - ; Ti-l

Since serial execution is consistency preserving, the database maintains a consistent

and correct state sn on successful completion of transaction Tn- So

Serial execution + database correctness preserving

Combining [il - [iiz] with the preceding,

CSR execution r Serial execution

+ database correctness preserving

+ CSR execution = dat abase correct ness preserving.

CSR is equivalent to any serial history that is a topological sort of the serialization orders.

Since the serialization orders can have more than one topological sort, so a serializable

history may be equivalent to more than one history.

5.9.4 View Serializability

View serializability uses the basic idea that each transaction sees the same data in a

history as in an equivalent serial history. So, the functions ReadsFrom for the "reads

frorn" concept, and FinalW for the "final write" of a data concept are required.

Reads From

ReadsFrom : Transaction t, Transaction

V Ti , Tj : Transaction 1 (3 H : HISTORY Ti E, H A Tj EH H A Ti # Tj =+

Chap ter 5. Pro tocol Specifica tions

The above definition states that the write operation on x by T, must precede the read

operation by Ti, Ti reads x from Tj oniy if Tj has committed or is still active, and no

unaborted transactions have modified z between when Ti reads x and its update by Tj .

For example, T2 reads x from Tl in Hl . So, the relation ReadsFrom(Tz, T l) & holds.

Thus, Ti - T2.
Final Write

The final dte of a data item z in a history H is the operation w i (x) E H such that a; is

not in H and for any Wj (2) E H where i # j either w j (z) 4 w i (z) or aj E H . Forrnally,

Final W : HISTOR Y x Data + Transaction

V H : UISTORY,z : Data

3 Ti : Transaction 1 Ti E, H
FinalW(H, X) = Ti w ; (x) E Ti A i (a b o r t (T i) in H) A

(3 Tj : Transaction 1 Tj E, H A Ti # A w j (z) E Tj

w~(x) <H w ~ (z) V abort(T,) in H)) [RE]

As an illustration of FinalW, consider Hl (see page 127). The final write of y in Hl is

the write operation of transaction T3- So Final W (H l , y) is by transaction T3.

View Equivalence

Recall that in a view serializable history each transaction sees the sarne data as it would

have in some serial execution so the two histories are view equivaient.

Definition 28 Two histories Hm and H,, are view equivalent if

1. they are defined over the same set of transactions and have the same operations,

2. for any unaborted Ti and Tj in Hm and H, and for any X , if Ti reads z from Tj in
Hm then Ti reads x from Tj in H, , and

Chapter 5. Protocol Specifications 138

3. for each 2, if w;(x) is the final write of x in Hm then it is also the hal write in
H n -

The forma1 detinition of view equivalence (VE) using [Rll] and [RE] is:

VE : HISTORY t, HISTORY

V H , H' : HISTORY a

V E (H , H ') w # H = #H' A (V Tk : Transaction a T. E~ H + Tk eH H I

(V T i , T, : Transaction 1 Ti # T, A - (abor t (T;)) A

- (abort(Tj)) A Ti EH H A T j E~ H

ReadsFîom(Ti, Tj)rr + ReadsFrom(Ti, Tj)B') A

(V x : Data 1 x in H + x in H'

Final W(H, x) =+ ~ i n a f w(H', z)))) [Ri31

The fouowing formdy defines View Serializabiiity (V S R) using [R4], [RE!], and [R13]:

V S R : HISTORY -+ BOOLEAN

V H : HISTORY

V S R (H) = t m e e (Vq5 : Op 1 $ = commit A $ in H ;

H' : HISTORY 1 H' = ProjectCMT(H1 11)

(3 H" : HISTORY 1 V Ti : Transaction a

Ti EH H' * Ti EH H ") .

Ser ia l (HM) V E (H ' , H "))

.S, is used to determine the cornmitted projection prefixes of transactions. Therefore. a

history is view seriafirable if for any comrnitted projection prefix of H it is view equivalent

to some serial history18.

To illustrate how VSR defined above works, consider any committed prefix Hl' of

Hl (see page 127 for H l) .

1. Lf Hl' includes c3 then HL# = Hl.

So, Hl' is view equivalent to the serial execution T L ; T2; T3.

18Two histories can be tested for state equivalences in O(n) time where n is the length of the histories

[Cla92]. This may suggest that VSR is efficient. However, if H has m transactions, then there are m!

possible serial histories. Further, if each history is of length n the tirne will be of 0(m!n2) . So VSR is

NP-complete.

Chap ter 5- Protocol Specifications

2. However, if Hlt inciudes c2 but not c3 then

But &t is not view equivalent to either TL; T2 or T2; TL because

T2 reads z from TL (so Tl - T2) and

a the final write of y in K1t is the write operation by Tl which is different in

either Tl; T2 or T2; Tl serial history.

That is, FinalW(Hlt, y) # (FinalW(H, y) 1 Serial(H)).

Thus, the prefix commit-closed property does not hold. Hence Hl is not view serializable.

5.10 Specificat ion of Transaction Models

A transaction model is characterized by:

a the structure of the individual transactions allowed in the model, its transaction

structure, (e-g., simple, flat, nested) and

a the structure of objects on which the transactions can operate, its object structure

(e.g., simple or complex).

The combination of the objects and transaction structures determines the richness of

the transaction. Running a transaction against an (complex) object may actually spawn

additional transactions on component objects. This forces an implicit nesting of the

transaction itself.

Definition 29 Spawn: is the creation of a child transaction (process) t by an executing

transaction T that ruis concurrently with the transaction. T is the parent while t is the

child transaction. I

Chapter 5. Protocol Specificatioos 140

SPAWN establishes a parent-child relationship at time of execution. These family rela-

tionships are discussed in Section 5- 10.2.

Identifjring transaction relationships and exploiting them is key to deriving correct

and reliable schedules for real-life applications. The structure of transactions delineates

the models of transactions discussed below. The objects structure could be simple or

cornplex.

5.10.1 Single Level Transactions

Single level transactions often adopt a synchronous and sequentid execution pattern

whereby one transaction is executed after the preceding transaction has completed. The

transactions are assumed correct. The main goal is to achieve a serialized transaction

execution while maintaining data consistency.

The flat transaction model is a degenerate case of the nested transaction model.

Emphasis is on closed nested transaction model (and open nested model where necessary

to illustrate the relaxation of some model properties).

5.10.2 Nested Transactions

Intemal nodes of a nested transactionlg can be subtransactions, database access opera-

tions, or a combination of both. So an operation that is part of transaction may itself

be implemented as a transaction. Thus, a parent transaction c m sequentially or con-

currently execute any number of subtransactions and can perform access operations and

other computations while its subtransactions are active. Although the execution of a

parent's subtransact ions c m be concurrent, t heir execution should preserve the partial

order defined within the transaction. Also, they should be equivalent to a sequential

execution.

lgRecalI, there are two nesting types distinguished by the nature of accessibility to their modified data

by other transactions. These are closed nesting which delays its commit and hides results, and open

nesting which imrnediately commits on completion of its operations and make its results visible to al1

other transactions.

Chap ter 5. Protocol Specifications 141

The localization of transaction failures means that when a subtransaction aborts,

the parent receives the abort event information and then decides what to do next. For

example, the parent may (1) trigger the execution of a contingency transaction that

implements the same efEects as the failed transaction, (2) execute a compensating trans-

action to recover from the failure, or (3) choose to abort completely. The children cannot

successfdy commit until th& parent have. When a child aborts, it releases ai1 the data

objects in its access set (Le., newly acquired locks) excluding those it inherited from its

descendants.

The following functions are d e h e d to simplify our specifications. The basic tree

terminologies and definitions (see [Sch94] pages 403 - 407, 483 - 490 and [LMWF94]

page 470) are used (in this thesis) in their usual way to refer to relationships between

transactions.

a chiid(T) yields the children (subtransactions) of transaction T.

Parent(T) returns the parent of transaction T.

Ancestors(T) retunis the set of ancestors of T.

a Descendants(T) returns the set of al1 descendants of T .

Every node in the hierarchy is both an ancestor and a descendant of itself. The

funct ions A ncestorsP and DescendantsP ret urn t heir proper ancestors and descen-

dants sets respectively.

Siblings(Ti, Tj) retums true if Ti and Tj have the same irnmediate parent and false

ot herwise.

A forma1 definition of the function Siblings would be:

Siblings(a, 6) = true a # 6 A

Parent(a) = Parent(6)

Additional functions are defined within context as needed.

Two commit types exist in the nested transaction model. These are: (1) interna2

and (2) extemal commit. A subtransaction cornmits internat if its root transaction is

Chap ter 5. Pro tocol Specifica tîons

Root

Figure 5.6: Visibility of Commit (a)

active when it commits. If a root transaction commits, it is called external commit.

In Figure 5.6, the shaded and unshaded nodes represent comrnitted transactions and

active transactions, respectively. Subt ransact ions A, B, and C internally commit. If the

root transaction commits, the whole transaction commits externally.

Recall, each node is eit her a subtransaction, database access operat ion (read/write) ,

or a combination of both. When a subtransaction is spawned, the subtransaction and

its parent may execute concurrently. Events in the system can trigger the execution of

other independent but associated transactions in the systemzO. For example, in a sales

transaction the user transaction should really not wai t for ledger posting operat ions or

inventory report generation before commit t ing successfully if all ot her required operat ions

are correctly executed (or satisfied) . Thus, t hese events are begin-dependent on certain

states of the system.

The hierarchical nature of nested transactions makes visibility issues cornplex.

Nested transactions concurrency control protocols must enforce interna1 commits and

make them visible when appropriate. The following d e s determine commit's visibility:

0 Externd commit visibility:

External commit is visible to every operation so every other transaction (opera-

tion) in the system sees any committed toplevel transaction's operation. External

20However, these transactions develop some form of dependencies with the triggering transaction,

Chap ter 5. Protocol Specifica tions

Root

Figure 5.7: VisibiLity of Commit (b)

commit's visibility, denoted visibleto, is forrnaily defined as:

,uisibleto- : Transaction w Transaction

V Ti, Tk : Transaction

Ti visibleto Tk e Ti # Tk A

AncestorsP(T i) = 0 A AncestorsP(T k) = 0) A

commit(T;) j V p : OP 1 (p E Ti V

(3 T, : Transaction 1 T, E DescendantsP(T i) p E T j))

Actiue(Tk) + VwsetT; = { p) U Vwsetrk) [RI41

0 Internal commit visibility:

Internal commit of an operation A is visible to operation B if and only if:

1. A and B are from the same top-level transaction, and

2. either (a) there is an ancestor of B which is a sibling of some internally com-

mitted ancestor of A or (b) B is the parent of A.

Part (a) of constraint (2) captures the case when A and B are siblings.

The formal definition of a transaction's cornmitted operations oisibdity to mot her

within a nested transaction, denoted b, is given by:

-b -: O p x Op --+ BOOLEAN
V p , q : Op 1 (3 Ti, Tj , Tc : Transaction 1 Ti # Tj A Ti # Tk A T, # T . A

Chapter 5. Protocol Specifications

Ti, T, E DescendantsP(Tk) AncestotsP(Tk) = 0 A

p E Ti A q E Tj A commit(Ti) A Acti~e(Tj))

p b q = tme o Siblings(Ti, Tj) V Tj = Parent(Ti) V

(3 Tl, Tm : Transaction /
Tl # Tm A commit(T,) A Tl E AncestorsP(T,) A

Tm € (Ancestor~P(Ti) - AncestorsP(Tj))
Siblings(Tl : Tm) V Siblings(T, , Tj))

Thus,

p b q = true + Vwset = VwsetTJ U {p)

The internal commit visibility (b) is an asymmetric function but it is transitive.

A more appropriate term for subtransactions commit is pre-commit. When a sub-

transaction pre-comrnits, it does not mean the committment of its operations or al1 other

operations inherited from its descendants, if any. A subtransaction's commit operation

releases its access set to its parent. The parent assumes responsibility for committing

all the subtransaction's operations and the subt ransaction's previously inherited opera-

tions, if any. Thus, the semantics of a subtransaction's commit event indicates only the

completion of al1 its tasks but the effects of the subtransaction's operations are reflected

in the database when the root transaction to which it belongs commits.

So when a subtransaction commits, the parent inherits its access set and its effects

are made visible to its parent transaction and siblings. Thus,

V c : Transaction 1 (3 T : Transaction A c E child(T))

commit(c) j AcsetTt = AcsetT U Acset, A

V n , p , q : O p I q ~ T A ~ E C A

(3 d : Transaction 1 n E d A Siblings(d, c))

P ~ ~ A P W ~

So the notion of visibility is defined with respect of one transaction to another since only

a visible transaction can affect the behaviour of the active transaction that sees the mod-

ifications made. A transaction can affect another transaction through the transaction's

invocations of operations down the transaction hierarchy, inheritance of access set of its

Chapter 5. Protocol Specifica tions 145

descendants, or the commit actions of the transaction and ail of its ancestors up to the

least common ancestors [LMWF94].

Figures 5.6 and 5.7 illustrate commit visibility. In Figure 5.6, the objects modified

by the committed subtransactions A, B, and C are invisz'ble to subtransaction D but

visible to E and F . However, in Figure 5.7, al1 the ob jects modified by the subtransactions

A, B, C, E, and F are visible to subtransaction D since subtransaction F is a sibling of

G which is an ancestor of D.

The semantics of nested transactions requires the effects of a commit ted subtrans-

action be visible within its root transaction and invisible to other root transactions (see

specification [Rl5]). So two dis tinguishable levels of serializat ion exis t ; toplevel trans-

actions serialization wit h respect to each ot her and subtransactions serializat ion wit hin

a top-level transaction.

When operations from different transactions, Say T; and T,, concurrent ly access an

object their serializedexecution is equivalent to T; t T, or T, t Ti . The serialization

order chosen must be strîctly consistent whenever the two transactions are accessing al1

ot her objects. Thus, consistent serialization ordering of any two conûicting transactions

is required to parantee correct ness.

When a root transaction aborts, al1 the effects of its previously committed sub-

transactions are annulled while al1 its active subtransact ions are aborted. Thus,

V T : Transaction 1 child(T) # 0 a

abon!(T) + (V c : Transaction 1 c E child(T) a

commit (c) 3 Compensate (c) A

Actiue(c) + abort(c))

So al1 provisionaily committed descendants of an aborted (sub)transaction are aborted.

If a vital child aborts the parent must abortZ1. So fomially

3 c : Transaction 1 (3 T : Transaction a c E descendant(T) A c E Vsetr) a

abort(c) =+ abort(T)

21The abort of a vital child (even if it has provisionally committed) can corne about due to the abortion

of the (sub) transaction for which it is a chiid

Chap ter 5. Protocol Speci-fica tions 146

Also, orphanZZ transactions are not dowed to commit. The no orphan commit rule

for closed nested transactions states that every child transaction tenninates if its parent

t errninates. Formally,

V Ti, Tp : Transaction 1 Parent(Ti) = Tp

(commit(T p) V abort(Tp)) A Active(Ti) + abort(Ti)

That is, any active child aborts whenever the parent aborts or commits. The parent does

not commit before its child terminates. In Figure 5.8, Tj must abort if it is still active

whenever its parent, Tp, tenninates before it does.

This strict rule, however, can be relaxed in some applications where some operations

rnay continue to run beyond the termination (commit, in this case) of the parent. For

exarnple, a transaction may triggers the execution of another transaction (e-g., the pro-

duction of a sales report might be initiated while the purchase transaction that initiates

i t completes successfully). This case can be implemented as an independent transaction

with a commit/begin dependency established.

Another property of nested transactions is that it localizes failures by ailowing a

subtransaction to abort independently wit bout causing the whole transaction to abort .

Further, if Tc is a child of T such that p and q are two conflicting operations. if Tc

invokes p and Actiue(p) then T cannot invoke q until p commits. That is, formally

V Tc, T : Transaction 1 Tc = child(T);

z : Data 1 x E AcsetT n AcsetTc a

V P , ~ : Op 1 p E Tc A q E T A Conflict(p,q)

p < T q * commit(p) <T q

In other words, if a child's operation on an object is active, the parent cannot invoke a

conflicting operation on that object; the parent must wait until the child commits.

The codic t set of a nested subtransaction excludes all the operations performed by

i ts ancestors. It includes only active operations of i ts descendants (and ot her independent

active transaction's operations with some cornmon data items in their access sets). The

22An orphan transaction is an active subtransaction whose parent has terrninated.

Chap ter 5. Pro toc01 Specifications

Figure 5.8: Cod ic t Set of Subtransaction

conflict set of Tp (see Figure 5.8) is given by:

ConfictSTp = (U A c s ~ ~ ~ ~ 1 Ti E Descendants(T p) A Active(T i))
i = l

U {T , : Transaction 1 Tj 4 Ancestors(T p) A T, 4 DescendantsP(Tp)

A short hand forrn is to exclude the complement of the above expression from the conflict

set. This gives:

ConjTictST = { T i : Transaction 1 Ti 6 Ancestor(T)

Active(T i) A AcsetT n &setTl # 0)

Thus, a subtransaction can access any data object currently accessed by one of its an-

cestors without causing any conflicts. Also, a subtransaction can see the changes made

by the parent to those data objects.

If a transaction is causally dependent on its parent, the subtransaction cannot

commit unless its parent does. Such a subtransaction commits if and only if the parent

transaction cornrnits.

V Ti, Tj : Transaction 1 Ti E child(Tj) A Ti 3 T j

commit (Ti) ¢+ commit (T j)

Chap ter 5. Pro toc01 Specifica tions 148

Recall too that a nested transaction T cannot commit unless al1 its vital children commit.

Formally,

A11 the changes made in the database by T7s committed descendants âre made durable

in the database only when the root transaction commits.

In general, a nested transaction T cannot commit unless d l its children commit or

abort . Formally,

V T : Transaction 1 c h d d (T) # 0 a

commit (T) V c : Transaction 1 c E childl T) a

commit (c) V abort (c)

The set of objects accessible to T and its subtransactions are given by:

The view set of a subtransaction is the most recent state of objects in the database.

Summary

The properties of closed nested transaction are summarized below:

a A set of committed nested transactions is serializable due to the semantics of atomic

objects. That is, the eifects of al1 root transactions in the set are committed in a

serializable fashion in the database.

Operations are committed only by root transactions because of

- the semantics of a subtransaction commit, and

- the no orphan commit principle.

a If a root transaction aborts, all operations perforrned by and its descendants

abort because

Chap ter 5. Protocol Specifications

Figure 5.9: Root Transaction Construction

- no orphan commit principle,

- failure atomicity property of the root transaction, and

- quasi-failure atomicity property of sub transactions.

It is possible to transform a given transaction into an explicit nested transaction,

Lemma 2 Given a transaction T = seq, OP 1 OP E {Op , T i } where Ti is a ta&

invocation operation, construct a transaction To such that the children of To are the

elements of T (Le., child(To) = { Tc 1 Tc in T)) . Then

1 . To is a properly formed transaction.

Proof

See Figure 5.9 for an illustration of a root transaction's construction. Since a parent

can concurrently nui any number of subtransactions Tl and T2 can execute concurrently

synchronizing only on accesses to common data ob jects while maint aining the consistency

of the partial order. So,

T = III" Tc A (Vk, j E dom OP C*nj?ict(Tj, T k) + T, < T Tk V Tj < T Tk) .

Chap ter 5. Pro tocol Specifications

Therefore, T is a nested transaction if

3 To : Transaction 1 AncestorsP(To) = 0 A

child(To) = { T i 1 Ti in T)

commit (T) w commit (To) A

commit (To) +- (V c : Transaction 1 c E DescendantsP(To) a

commit(c) V abort(c) A (c E Vsetr + 1 abort(c))) O

In the open nested transaction environment a subtransact ion can access partial

results of their ancestors, partial results of cornmitted siblings, as weLl as any committed

independent transaction's outputu. The effects of committed subtransact ions are visible

to the parents and other transactions in the system. Thus, at commit point? the child

releases al1 the data items in its access set. Fonnally,

n

commit (c) + WS, U { U LocalDbi) A Acset, = {) A
i= 1

n

V Ti : Transaction 1 Ti E {U LocalD6;) a
i= 1

Since ot her (sub) transactions can view partial results, cascading aborts rnay occur when

the commit ted subtransaction's parent abortsZ4. Recall, when a transaction fails, it may

try an alternative plan, the contingency transaction, made for it or it may decide to abort.

If there are committed components of the transaction, they are al1 rolled back on abort

of the root transaction. Rollback action may use compensating transaction or restore

changed d u e s using their before images. A contingency transaction does not execute

if its associated original transaction comrnits. Thus, the begin operation of the contin-

gency transaction is causally dependent on the abort operation of the original transaction

(depended-on transaction). The abort of a contingency transaction is independent of its

'3~ecall , in open nesting once a subtransaction cornmits, its results are recorded in the database.

Thus, the results become visible to other transactions.

'4The effects of the committed subtransaction must be annulled from the database.

Chapter 5. Protocol Specifications 151

original transaction's abort. Also, a contingency transaction have the same view set as

the original transaction. Forrnally,

V Ti : Transaction a abort(T i) +
(3 Cp : Transaction 1 Cp E conTp(T i)

begin(Cp) A Vwsetcp = VwsetTz)

where the function con Tp(T i) yields the set of contingency transactions of Ti. Also, the

following definition always hold.

In other words, the following relation holds for contingency transactions.

Similady, compensating transactions may never start unless the corresponding t ransac-

tion associated with it previously commits, so

V Ti : Transaction a

3 C p : Transaction 1 Cp E comp(Ti) begin(Cp) commit(Ti)

where the function comp(T i) yields the set of compensating transactions of Ti . Thus,

begin(Cp) 3 commit(T;) and

abort(T i) + begin(Cp) 1 Cp E cornp(T i) .

always hold.

5.10.3 Distributed Transaction

In the distributed transaction model, a transaction is decomposed into a set of compe

nents that are executed at different nodes in the network. Thus, decomposing a transac-

tion into subtransactions that can execute at different sites, access different parts of the

database, or provide information independent of other operations but Iogically required

for the transaction's correct cornpletion enhances intra-transaction concurrency.

Chap ter 5. Protocol Specjfications 152

Distributed transactions exhibit a correctness behaviour cailed setunse failure atom-

icity in that an element of the set commits if and only if every element cornmits. Dis-

tributed transactions are characterized by:

0 Intolerance of any subtransaction failure. Abortion of a subtransaction causes the

transaction to abort.

O Subtrmsactions are failure atomic.

O Subtransactions can commit only if the distributed transaction to which t hey belong

commits.

Thus, if T = { T l , T z - - - T,) is a user's global transaction, theu T's definition that

captures the above characteristics is:

T = I I [: . l Ti A

commit (T) w V Ti 1 Ti E cMd(T) commit(T i) A

abort (T) 9 3 Ti : Transaction 1 Ti E chifd(T) V Ti E DescendantsP(T)

abort(Ti) + abort(Parent(Ti))

A variant of distributed transaction that is more flexible than the previous definition exist.

In this variant, the transaction aborts only when any of its vital component aborts. This

mode1 has more practical utility. It is formally defined as:

where Ti and Tk are component transactions, Thus, the transaction has a commit depen-

dency on al1 its active vital component transactions. This notion of commit dependency

applies recursively to nested transactions. Therefore, the parent or main transaction

aborts if any of the vital component transactions aborts. So,

commit(T) H V Ti 1 Ti E chifd(T) A Ti E VtsetT commit (T i)

abort(T) 3 Ti : Transaction 1 Ti E VtsetT A

Ti E child(T) V Ti E DescendantsP(T)

~ 6 0 r t (T i) + abort (Parent (T i))

Cbap ter 5. Pro toc01 Specifica tions 153

Recall, when a global transaction aborts, all active cornponent transactions are aborted

and ali committed components are compensated. Thus,

For any two transactions Ti and Tk, let their common data objects accessed be:

A = Acset (T i) n Acset (Tk) . Lf A # 0 then Ti and Tk can only engage in synchronizable

concurrent execu tions. Forrnally,

V Ti, Tc : Transaction Ti II Tc * (A = 0 + Ti III Tk) V (A # 0 +Ti II Tk)
A

In other words, the concurrent execution of Ti and Tk is captured by:

Suppose T23 is a vital component of To in Figure 5.4 and if Tl aborts, T23 must abort

because of the causal dependency relationship between TI and T23. Therefore, To cannot

commit because of the cascading effects of the causal dependence relation between Tl

and T23 via T21. Generally,

abort (T i) in trace (T i) H 1 (commit (T i) in trace (Ti))

5.10.4 Multidatabase

Assumpt ions

The MDBMS may contain intelligent agents that rnaintain a knowledge base of the

available services a t the sites.

Each transaction (local or global) can execute fdly, either aborting or comrnitting

at termination of its operations.

Heterogeneity of data models and concurrency control protocols of the different

LDBs is possible.

Global transaction are decomposable into sub transactions.

Chap ter 5. Protocol Specifications 154

-4 transaction can be composed of read and write operations as well as other trans-

actions- Thus, global subtransaction can be nested.

Two or more subtransactions of a global transaction can execute at a single site.

Data objects c m be fragmented and distributed across multiple LDBs. Thus,

replication of data is prohibited.

Assumes a reliable system of hardware and software components.

Reliable communication between the GTM and the LDBs. Multicast communica-

tion method from the GTM to the LDBs.

Value dependencies are possible so the action of a global subtransact ion at one site

can affect the behaviour of another executing at a different site.

Communication between LDBs is passes through the MDBMS's communication layer.

The following are possible scenarios.

0 Case 1

- One subtransaction of a GT per LDB.

- The subtransactions are not nested.

0 Case 2

- Multiple subtransactions of a GT can execute on a single LDB.
- The subtransactions are not nested.

0 Case 3

- Multiple subtransactions of a GT c m execute on a single LDB.

- Nested subt ransact ions are permissi ble.

An example of case 3 above can manifest in the electronic shopping m d case study. In

the purchase example, the process that accepts payment from a customer may have to

access Visa and/or Mastercard account LDB as well as other financial information that

the customer may provide. A possible SQLlike statement2' for the purchase transaction

25This is not "puren SQL statement. The semantics of the CONSTRAINT part of the statement

simply Iist additional constraints that must be satisdied before the statement can successfully complete.

Chap ter 5. Pro toc01 Specifica tions

Figure 5.10: Mult i-database Transactions

might be of the form:

SELECT bicycle FROM products

WHERE colour = green AND mode1 = 1996 AND price 5 $60.00

CONSTRAINT 1. paymentmethod = Visa AND Mastercard

2. Visa-amount < $32.00

3. delivery-time 5 5 days.

It is noteworthy that the MDB is a collection of LDBs located at different sites i where

i 2 2. Thus,

M D B = U L D B ; and Vwset,,, = U V w s e t ,,,%

à= 1 i= 1

The Acset of a global transaction GT consisting of GTi subtransactions is given by

Acset,, = U Acset,?
i= 1

If multiple subtransactions of a GT can be executed at a site, the subtransactions must

be serialized at that site with respect to the GT and other independent transactions at

that site. Indirect co&cts may occur among global transactions because of the existence

of local transactions. Findy, aU the subtransactions of the GT are serialized according

Chap ter 5. Protocol Specifications 156

the defmed partid order of the subtransactions. In other words, deteiPiining correctness

of MDB transactions follows two basic steps, namely: (i) . serialize the execution of the

subtransactions with other independent transactions a t each LBD site, and (i i) . serialize

the global transactions.

Notes

Multidatabase correctness protocol is c d e d quasi-serializabili ty (QSR) [DE891 or

multidatabase serialïzability [B090, Bargo]. These correctness criteria are equiva-

lent. A set of local and global transactions is quasi-serializability (QSR) if :

1. Ail executions at a site are codict serializable with respect to that site and

2. iUl the global transactions are codict serializable with respect to one another.

That is, the execution of the set of transactions at each site is serializable and the

transactions have the same seriakation orders a t al1 the sites.

AU transactions executing at SITE; belong to that site, so if Ti executes at SITE;:

then Ti E SITE;.

Let G represent the set of al1 global transactions, Each global transaction in G is

subscripted to uniquely identify it, so G; is a gIobd transaction in the set G. Thus,

Ci € G-

Usudly, a transaction is either local or a subtransaction of a particular G;. If GST,

is a subtransaction of G; we can mite GST, E Gi.

Similarly, let Li be the set of transactions executing at SITE;. Thus, Li includes

global subtransactions executing at that site and the local transactions initiated by

local users at SITE;.

Li = { T : Transaction 1

Ch ap ter 5. Pro toc01 Specifications

Figure 5.1 1: Relationship between transactions and a site

Therefore, SITEk 's schedule is a sequence of local and global transactions operat ions

executing at site k. The serialization order at SITEi is defmed as:

V i , : N; T : Transaction 1 T E Li
3 H : HISTORY 1 T E, H commit(T) in H + -(T -' T) [RI61

The above descriptions are sketched in Figure 5.11.

a Define the serialization order (Gso) between any two global transactions as follows:

, Gso , : Transaction t, Transaction

V Tm, T, : Transaction 1 Tm, Tn f G

Tm GSO Tn w Tm # Tn A Tm Tn

0 Global seridization order consistency must be maintained whenever subtransac-

tions from different global transactions invoke conflicting operations on a common

Chap ter 5. Pro toc01 SpecXcations 15s

data object. Thus, G s o must have the transitive closure property. Transitive

closure, Gso', is defined as:

Tm Gso" T, + Tm Gso T,, v

(3 T, : Transaction 1 To E G Tm Gso T, A To Gso' T,)

To guaraatee the consistency of the global transactions seriaiization orders, if Ti

precedes Ti at some site, Ti must precede Tj at al1 other sites and in the global

commit ~ r d e r ~ ~ . Ti precedes Tj at SITE; if a task of T, invokes some codict ing

operations after the site has received the commit message from T;.

Note that if an operation of G; precedes Gj at some site, say SITEk, and the

operatioas conflict then for aU other sites every conflicting operation of G; must

precede Gj to maintain consistent ordering of the global transactions. FormalIy,

3 SITE; 1 SITE; E LDBs
G; GSO Gj at SITE; +

V SITE, 1 n = 1 - - - #SITES G; Gso' G,

0 The serialization of global transactions is given by:

V T : Transactions 1 T E G
3 H : KISTORY 1 T E, H commit(T) in H +

i(T Gso' T) A specification [RI71

Therefore, a set of local and global transactions is quasi-serializability (QSR) if and only

if specifications [RI61 and [RIS] hold.

5.11 Specification of Concurrency

This section presents the forma1 specification of the basic timestamp ordering (TO) and

the 2PL locking concurrency control protocols. The main objective here is to demon-

strate the application and usefulneçs of the @ and . extensions to CSP. The specifications

'6This holds for conflicting sets that must provide identical local serialization orders. See definition of

-. It requires that al1 subtransactions appear in the same order in the equivalent serial schedule at al1

sites, This constraint is necessary because indirect conflicts may occur among the GSTs at a site due

to their conflicts with local transactions.

Chap ter 5. Pro toc01 SpecSca tions

Algorithm 1: Timestamp Ordering

Begin BASICTO;
CASE of operation:

WriteItem(T,x) operation:
IF readTS(x) > ts(T) or writeTS(x) > ts(T)

THEN abort and roiiback T
ELSE writeItem(T,x); writeTS(x) := ts(T)

ReadItem(T,x) operation:
IF writeTS(x) > ts(T)

THEN abort and roiiback T
ELSE begin

readItem (x) ;
readTS(x) := max(ts(T) , current readTS(x))

end{begin)
end{ELSE)

end{CASE)
end(BASICT0)

Figure 5.12: Timestamp Ordering protocol

also illustrate the benefits of using a formai methodologq- by enabling the cornparison (or

possible derivat ion of equivalence) between schedules the pro tocols admit . These pro-

tocoIs were chosen because they are understandably the most popular synchronization

protocols and often found in most experimental and commercial transaction systern im-

plementations.

5.11.1 Time Stamp Ordering Protocol

The basic TO algorithm is first represented in pseudocode to expound its structure. The

pseudocode is then transformed to an equivalent CSP specifications.

Figure 5.12 represents the general Timestamp protocol in pseudocode notation.

Each operation is bound to a specific transaction so writeItem(T, z) means the write of

data item x operation performed by transaction T. Recail, conflict ing operat ions from

distinct transactions get scheduled (or aborted) based on t heir timestamp values, The

TO protocol checks conficting operation occurrences that arrive in the wrong order and

rejects those with lower timestamps by aborting them.

The following definitions are necessary to specify the protocol.

Chap ter 5. Protocol Specifications

Timestamp:

Each transaction is associated with a unique time value indicating when the transaction

was subrnitted to the system. The timestamps are ordered based on the transactions'

submission order. Hence, if transaction Tl starts before transaction T2, then ts(TL) <

ts(T2) - The older transaction has the smder timestamp value.

Let the function now() retuni the next available system time, and time, represents

transaction T's timestamp.

The function submit() assigns a timestamp value to the transaction in its argument.

subrnit : Transaction + Transaction

V t : Transaction submit(t) = tirnet tirnet = now()

The function t s () returns the timestamp of a transaction.

t s : Transaction + TIME

V t : Transaction a t s (t) = timeL

The function sameT checks the operations and timestarnps of any two transactions to

see if the transactions are the same. Its definition is:

sameT : Transaction x Transaction -+ BOOLEAN

V T i , Tj : Transaction a

sameT(Ti , T j) = true w t s (T ;) = t ~ (T j) A

V p , q : O p . p E T i * p E T j A P < ~ , ~ * P < ~ ,

Therefore, the d e h i t ion

V t l , t2 : Transaction a

tl # tz H same T (t l , t z) = true

provides a global constraints for differentiating transactions t hat may have different

timestarnps but the same operations. This situation mises when a transaction cannot

progress and is resubmitted for processing.

Al1 operations of a transaction are assigned the sarne timestamp as the transaction.

The following axioms define timestamp's increasing monotonicity property.

1. V Ti, Tj , Tk : Transaction

(a). subrnit(T i) < submit(Tj) =+ t s (T i) < ts(T j)

Chapter 5. Protocol Specifications

2. For any given scheduler, no two transactions have the same timestamp. Forrnally,

V Ti : T t s (T i) = tirneTt + (3 T j : T ts(Tj) = timeT, + t imeTs)

Data item:

A data item X is a 4tuple, X = (i d , val, tsr, t s w) where id is a unique identifier of the

data item, val E dom TYPE2' is the value (the information content) of the data item,

tsr E T I M E is the timestamp value of X7s last read operation, and t sw E T I M E is the

timestamp value of X's last write operation. The data record is defined using the @

operator as:

@[DATA] == ((id, val, tsr, twr))&&((ID: TYPE, T I M E , TIildE))

Note that id is a unique system managed immutable identifier for the data item.

The following functions are useful for rnanipulating the components of a variable

of data type DATA:

The function readTS returns a value tsread E T I M E that is the stored value of the tsr

component of the data item x .

read T S : DATA + TiME

V x : DATA 0

readTS(x) = tsread : T I M E 1 tsread = Val(x.tsr)

Similarly, the function write T S returns a value tswrite E T I M E that is the value of the

tsw componeat of x. Forrnally? wn'te TS is defined as:

wnte TS : D A TA + T I M E

V x : DATA.

wr i t eTS (z) = tswrite : T I M E 1 tswrite = Val(x. t sw)

The function readItem(T, x) perform a read of data item x by transaction T .

readItem : Transaction x DATA + TYPE

V z : DATA; t : Transaction

readltem(t , x) = valc : TYPE 1 valc = Val(x. val)

Clearly, readltem returns the val component of x . Similarly, an operation of transaction

27TYPE is user defined depending on the application.
.

Chapter 5. Protocol Specifications

T to write an item z is given by:

uritef tern : Transaction x DATA -+ D A T A

V x : DATA; t : Transaction a

writeItem(t , x) = x 1 3 ualc' : TYPE

x.ual := ualc' /\ z.tsw := t s (t)

where ualc' is the new value of ualue component of x attained during computation. The

function writeItem modifies the val component of the data item x.

The function m a d i m e () returns the larger of two timestamp values. The definition of

m a d i m e () foilows.

maxtime : T I M E x T I M E T I M E

V x , y : T I M E

maz t ime (z , y) = x H (x 2 y) V

maxt ime(z , y) = y w (x < y)

The CSP representation of the timestarnp ordering protoc01 foilows.

An operation is either a write or a read operation, so

operation ::= readItem [writeItem

Let c and d be channelsz8. The sets of permissible events through channels c and d.

respectively are:

a c (T) = {readTS, t s , writeTS} and

a d (T) = {readltem, writeltern)

The permissible events of BASICTO are:

a (B A S I C T 0) = a c (T) U a d (T) U {f)

The process RVAL UES(T, x) reads the timestarnp of T and the last read and write

timestamps of the data item x that T wishes to access. It is specified as:

R V A L U E S (T , z) = c?readTS(x) c ? t s (T) -+ c?wri teTS(x) + S K I P

28Recall, a channel is used for either 1/0 or communication operations.

Chap ter 5. Pro tocol Specifica tions

Let s be the trace of process RVAL UES(T , x) on completion. That is,

s = trace(RVALUES(T, z))

The process Q(T) removes al1 actions of transaction T from the database and resubmits

T after some time delay for re-execution from the beginaing with a new t i r n e ~ t a m ~ ~ ~ .

Forrndy,

Q(T) = DELETE(T) ; PA CJSE(k 1 k E NI); submit(T) --+ BASICTO

where DELETE(T) undoes dl actions of T using its tramaction logs30 and the pr*

cess PA USE() pauses the progress of a transaction's operations for the specified time.

PAUSE() is specified using the CSP primitive processes STOP and S I W , as:

V x : TIME

PAUSE(z) STOP Df SKIP

The basic timestamp protocol is h d y given by:

BASICTO = d?operation -+ (WRITES READS)

where

WRITES = (RVALUES(T, x) ; WRITEX(T , 2)) +operation = wn'teltem $ S I W

W R I T E X (T , x) = (i f (readTS(x) > t s (T)) V (writeTS(z) > ts(T))

then WRITESIsS Q(T)

else (writeItem(T, x) + BASICTO))

READS = (RK4LUES(T, x) ;

(i f (writeTS(x) > t s (T))

then (READSIs f Q (T))

else (readItem(T, x) t x. tsr := rnaxtime(ts(T) , readTS(x))

+ BASICTO))

operation = readltern $ Sh'lP

29This is a dynamic form of timestarnping.
30For update operations, the original values of the data are written first into the transaction logs to

support transaction recovery in case of failure. Undo operations are performed on the transaction Iogs

to restore the database state to a consistent state.

Chap ter 5. Pro tocol Specjfications 164

The process Q(T) roils back T after the occurrence of the cataçtrophic event in tempt

and resubmits it with a higher timestamp. In other words, Q (T) rolls back T to the

previous state in the execution sequence-

Suppose a Ti represents a set of some operations on object set O by transaction Ti

and a Tj represents some operations on objects O by transaction Tj- Further, suppose B =

a Ti n a Tj # 0. The concurrent execution of both transactions using the timestamping

protocol is given by:

TO = ~ i l l Tj
B

Using the BASICTO process defined previously, the process TO can be executed safely

without violating the correctness of the database. The trace(TO) satisfies the ordering

relation Ti(.,) 5 T,(,) for al1 i , j , k E N and for al1 O E B and i # j whenever ts(T i) <

t~ (Tj) - F o ~ a i l y ,

t m c e (T 0) sat [(Vi, j , k E N; o E B 1 i # j e

3 ts(T) E TIME ts(T i) < ts(Tj)

+ trace(Ti r ok) 5 tmce(T, 1 o r)) A

interleaves(trace (T i) , trace (Ti))] IR191

Recall, timestamp values are assigned according to the transactions' start time order.

So each transaction's t imestamp is a unique non-decreasing number t hereby creat ing a

serial order among concurrent transactions.

A schedule in which the transactions participate is confiict seriaiizable as seen from

the specification trace(TO). The system enforces serializability t hat is the chronological

order of the timestamps of the concurrent transactions. This protocol does not cause

deadlock since T waits for P only if ts(T) > t s (P) . However, it does not produce recov-

erable schedulesJ1 and starvation may occur if a transaction gets aborted continuously.

31Algorithrns based on timestamping for producing recoverable schedules, called strict tinzestamp

ordering do exist (see [EN941 for details) but are not considered in t his thesis.

Chapter 5. Protocol Specifications

5.11.2 The %Phase Locking Protocol

Recall, a lock is a variable associated with a data item used for controlling concurrent

access to the data item. So a reference to a data item d implicitly manipulates d (u , 1)

where v is the current value and l is the current lock mode.

üsing fonnal notation, data amenable to lock manipulation is defined below- First

the basic types of locksJ2 are given as:

LOCKTYPES ::= X 1 S [unlock

A data item is represented in the @ notation as:

@[DATA] = ((val, lock))&&((TYPE, LOCKTYPES))

The following rules govern lock acquisition and release in the general locking protocol.

A transaction cannot request a lock on a data item for which it already holds a

lock.

A transaction cannot unlock a data item if it does not hold a lock for it.

A transaction must acquire a lock on data item before it perforrns any read or write

operat ions.

A transaction must release al1 locks after it completes al1 read or write operations.

Any access (Le., read or write) request for a data item can only be granted if it is

compatible with the data item's current lock mode (i-e., S or X, respectively).

If the request is incompatible, the requesting transaction must wait until the re-

quested lock mode becomes available.

The release of a shared lock on a data item by a transaction may not result

in unlocking the data item because multiple transactions can concurrently hold a

321n this thesis, only the basic lock modes are considered. The intent here is to demonstrate the

application of forma1 methodology in protocol design and analysis. The application easily scales up to

more locking modes without loss of analytic power-

Cizap ter 5. Pro tocof Specifica tions

Algorithm 2: General Locking Scheme

loop: WHILE more locks required DO
get lock request(1ock)
IF lock = X THEN

IF (current lock = X) or (current lock = S)
THEN refuse request and wait until ready

ELSE grant request and branch loop
IF lock = S THEN

IF current lock = S THEN
g a n t request
share-count = share-count + 1
branch loop

IF current lock = X THEN
refuse request
wait until ready

ELSE grant request
share-count = share-count + 1
branch loop

IF lock = unlock THEN
EF current lock = X THEN

release lock
resume one of the processes waiting, if any
branch loop

IF current lock = S THEN
share-count = share-count - I
IF share-count = O THEN

release Lock
resume one of the processes waiting, if any
branch loop

ELSE branch loop
end{WHILE)

Figure 5.13: General Lockng Scheme

shared lock on the data. The shared data item is unlocked when the lock count is

zero.

Figure 5.13 represents the general locking protocol.

Two locks always conflict if they are on the same data item33, they are issued by

distinct transactions, and at least one of the locks is a write lock. When a lock request

cannot be granted, the lock manager uses a fairJ4 algorithm to avoid livelock. A blocked

request must wait for all previously blocked lock requests to be granted.

To guarantee serializability, the locking and unlocking operations in every tram-

33A data item granule is the unit of data t o be locked - either course granularity (large object units

e.g., file) or fine granularity (small units of an object e.g-, records of file or even tuples of a record).
34A fair scheduling algorithm is one that gives a fair chance to the satisfaction of every request. This

is often achieved by using a queue and places new requests a t the tail of the queue.

Chapter 5. Protocol Specifications

Algorithm 3: Lock ConJEict Resolution

IF Transaction T lock request blocked THEN
IF wait-queue is empty THEN

add T to wait-queue
ELSE IF there is a transaction S awaiting same lock THEN

abort T
resubmit T later after some time delay

ELSE add T to wait-queue
end{ELSE IF)
end{IF)

end{IF)

Figure 5- 14: Combined caut ious wai ting and immediate rescheduling

action obeys the simple posi t ional principle t hat al1 locking operations precede the first

unlock operation in the transaction. Thus, no further Iocking can occur subsequent to

the first unlock operation. This positional principle is cailed the two-phase locking (2PL)

protocol.

This thesis presents an integrated approach for dealing with situations when lock

requests are refused. The approach combines cautious waitind5, to prevent long chains of

blocked transactions, wit h immediate rescheduling whenever t hey can proceed irrespect ive

of their position in the queue. Thus, no deadlock can occur since a transaction can only

wait for a transaction in progress to release its locks. Starvation is minirnized too.

Further, by not processing the waiting list sequentially, increases in CPU throughput is

achieved by reducing overhead. Figure 5.14 shows the algorithm t hat handles blocked

reques t .

Before giving a forma1 definition of the %PL protocol, the following functions are

necessary. The function incrernent increases the value of its argument by 1 while the

function decrement decreases the value of its arguement by 1.

increment, decrement : N --+ N

351n a cautious waiting scheme the length of a blocking c h a h is restrkted with the aim of reducing

the time a transaction has to wait for compatible lock modes while ensuring the prevention of possible

deadlock.

Cliap ter 5. Pro tocol Specifications 168

To hôndle the refusal of lock request operation (which results in no lock acquisition) a

data structure t hat holds wait ing transactions is required.

WAITQ == seq(Transaction x seq DATA)

Thus, WAITQ is a sequence of transactions waiting to get locks. Transactions are added

to the tail of the Est. The process SUSPEND defbes the suspension of a transaction

using WAITQ.

SUSPEND(Ti) = if WAITQ = () then WAITQ' = WAITQ - Ti

else if z : DATA E Ti A (3 Tj in WAITQ z : DATA E T j)

then CA NCELL(Ti)

else WAITQ' = WAITQ Ti

CANCELL(Ti) 4 DELETE(Ti); RELEASELOCKS(Ti);

PAUSE(t); SUBMIT(Ti)

where the process DELETE (T i) undoes all actions of Ti based on Ti execut ion logs and

SUBMIT(Ti) puts the transaction in the ready queue (for processing from its begin-

ning), the scheduler thereby selects the next transaction for scheduling. The details of

DELETE(Ti) and SUBMIT (Ti) processes are omitted in this thesis (because they are

implementation issues). However, their omission does not affect the completeness of the

specifications nor our ability to understand them.

The formal definition of the 2-PL protocol follows:

T WOPHASE G R 0 WPHASE; SHRINKPHASE

SIUP G R 0 WPHASE = (ACQCIIRELOCI'S 1 II OPERATIONS) ~ u n ~ o c ~ ~

SHRIMPHASE = RELEASELOCKS III OPERATIONS [WO]
Both of these phases are monotonie. The number of locks increases in the GROWPHASE

and decreases in the SHRINKPHASE. The processes for the two-phase protocol must be

bound to a transaction. In that way, we are able to analyse the acquisition and release

of Iocks on the data items it manipulates.

To define the subprocesses, let C denotes the allowable operation set and B repre-

sents the set of lock modes. So,

Chapter 5. Protocol Specifications

B = { X , S , unlock), and

BI = B\{unlock)

ACQUIRELOCKS = (k : B p km

(test?jlag + if (jlag = false) then ShYP

else (reqvest?k --, c?DATA.lock +
if (k = X) then

((refuse(k) + (SUSPEND(Ti) III -4CQURELOCICS))

#((Val(DATA.fock) = X) V (Val(DATA.1ock) = S)) +
(DATA.lock = X t ACQUIRELOCKS))

else (if (k = S) then (

(DATA.lock = S -t increment(#S)

+ ACQUIRELOCICS)

+(Val(DATA.fock) = S) 1)

((refuse(k) + (SUSPEND(Ti) III ACQUIRELOCKS))

+(Val(DATA.lock) = X) #-
(DATA.lock = S --+ increment(#S)

+ ACQUIRELOCICS))))

The event test!flag is an output event of the transaction manager that evaluates to true

when the transaction T needs to access or update a data item not previously accessed

or updated. The acquisition of locks stops on the occurrence of the first unlock event.

The process OPERATIONS is defined as:

OPERATIONS = (y : C p y i

(y + OPERATIONS 1 y + S m))

The definition of the RELEASELOCKS process foliows:

RELEASELOCKS = (request? k --+
if (k = unlock) then

(if (Val(DATA.lock) = X) then

(DATA.lock = unlock +

Chap ter 5. Pro tocol Specifications

(RESUME(DATA) (1 (RELEASELOCKS))

else (decrement(#S)

+ if (S-count = O) then

(DATAJock = unlock -+
(RESUME(DATA) (1 RELEASELOCKS))))

else RELEASELOCKS)

k + SKIP)

The process RESUME resurnes one of the traasactions waiting in WAITQ queue whose

data item awaiting lock acquisition is enabled by the unlock event (operation). Formally,

it is d e h e d as:

RESUME : DATA PROCESS

V z : D'4TA

RESCrME(z) = if WAlTQ = () then SKIP

else if (3 Tj in WAITQ x E T j)

then (Rem WAITQ(T,) + ACQUIRELOCI\S(T j))

else Sh'IP

where Rem WAI TQ(T j) is a function that removes a waiting transaction from the CVAI TQ

list and compacts the list after the operation.

To guarantee correct behaviour of the above processes requires the imposition of

additional constraints on the traces. Let

p = traces(ACQUIRELOCICS),

q = traces(OPERATIONS),

r = traces(RELEASEL0CICS) and

O = {data-item-O)

The trace of G R 0 WPHASE must satisfy the fullowing:

trace(GR0WPHASE) = interleaves(p, q) A ('di E N p 1 0; 5 q 1 O;)

Similarly, the trace of SHRINICPHASE must satisfy:

trace(SHR1NKPHASE) = interleaves(q, r) A (V i E N q 1 0; 5 r 1 O;)

where the subscript on O serves as an index to the data items.

Cbapter 5. Protocol Specifications

The trace of the actions of OPERATIONS is given by:

traces(OPERAT10NS) = y' 1 (V p E C, rn E BI rn 5 p in y')

Finally, the trace of the actions of ACQUIRELOCKS is given by:

A (v ~ E N , X ~ E B . X ~ ~ D I D = U X)
TI

where T is the set of transactions, i = 1.. . n, n the cardinality of T, and the , represents

Kleene's star [HU79].

The trace of the RELEASELOCKS process is given by:

Thus, a parallel combination of the T WOPHASE processes up to n times where n is the

number of transactions executing at a particular time is possible without failure. The

%PL protocol ensures that the schedules involving transactions using this rule is always

serializable. The order in which executing transactions acquire locks determine the order

of transactions in the equivalent serial schedule.

Consider the following bank setting. A customer is trançfering some money from

one account, Say Sauings, to another, Say Checkiing. The customer's transfer operation

is a single transaction that can be modelled as two nested subtransactions. Lets cal1

this transaction Tc,, . Suppose there is a timed triggered custom bank transaction.

called T,,,, that sums al1 account balances at the end of a day's operations. Tb=,, runs

at time = 24.00 hours, Figure 5.15 shows a possible sequence of operations of these

transactions (only Tc,, operations are shown for Th,).

If Tbank and Tc,, coincidentally nui at the sarne time, the cornputations will gen-

erate inconsistent data unless their access to the accounts is controlled. In tbis example,

the access control mechanism is the 2PL. Applying specification [R20], two possible ar-

rangements of the transactions' operations are feasible; either dl lock operations (on

common data items) by Tc,, precede ail those of Th=, or vice versa. Figure 5.16 shows

one of the two possible scenarios. Notice that the extended possession of locks beyond

Chapter 5. Pro tocol Specifications

Savings = Savings - amount II Read Savings

Transaction Tc,,

Read Savings

Wri te Savings II sum = sum + Savings

Transaction T,,

h i t ialize surn

Read Checking II Read CheciEing

Checking = Checkng + amount II sum = sum + Checking

Write Checking II Write sum

Figure 5.15: Operations of example transactions.

the point of last useJ6 forces a seriakation order of the transactions involved thereby

producing correct results.

To capture S2-PL, the SHRINKPHASE process is aitered to reflect the way locks

are released. Thus,

SHRINKPHASE OPERATIONS; RELEASELOCICS

Similady, combining both C2-PL and SZPL so that schedules are both recoverable and

serializable, the following definit ions now applies.

TWOPHASE GR0 WPHASE; SHRINKPHASE

SHRINKPHASE OPERATIONS; RELEASELOCA'S

srcrp G R 0 WPHASE = (ACQUIRELOCKS

Al1 other definitions hold.

5.12 The Electronic Shopping Mall

The Electronic Shopping Mall mode1 is characterised by active capabilities (for timely re-

sponse to events and changes in the environment), support for long-running transactions

and possible partial sharing of results, d o w s compensation to undo effects of undesirable

36This is necessary to preserve consistency and avoid reading inconsistent data.

Chapter 5. Protocol Specifications

Transaction T,,i,,

Lock(Sauings) := X

Tt 1 Read Savings

Savings = Sawings - amount

Wri te Savings

Lock(Checking) := X

Uniock(Sauings)

Read Checking

Checkïng = Checking + amount

Write Checka'ng

Unlock(Checking)

Transaction Th,

Lock(sum) := X

Initialize sum

Lock(Sauings) := S

Read Sauings

sum = sum + Savings

Lock(Checking) := S

Read C7tecking

sum = sum + Checking

Write sum

Unlock(Savings)

Unlock (Ch ecking)

Unlock(sum)

Figure 5.16: Operations of exarnple Transactions using 2P L.

committed transactions, and supports for heterogenous and autonomous environments.

The partial sharing of results necessitates the distinction between vital transactions and

non-vital transactions (as previously discussed in Section 5.7 page 1%).

When the GTM broadcasts an initial query for a product more than one LDB may

respond to the query. The choice of which LDB eventually processes the query uses a

selection mechanism that may depend on the following criteria:

first to affirmatively respond to the request,

proximity to client and product shipping cost,

Chap ter 5. Protocol Speciiications

Order Data

Payment

Shipping YEGj

Figure 5.17: A Customer Order Transaction

a least cost of product requested,

0 leaçt cost based on the cost analysis of response time and total resources utilization,

least load of the local databases that responded, and

a other network related issues

The determination of the optimal method for selecting an LDB to continue processing

is not the focus of this research. Rather the researcher assumes t hat the systern always

selects an LDB optimally.

To illustrate the basic ideas discussed, a simple order entry system is used where

customer requests are accepted and processed. An order may require services located

at different sites and/or databases. For example, an order transaction may necessitates

accessing the inventory database, accounts receivable and payable, bank or credit infor-

mation, and logistics data as illustrated in Figure 5.17. Therefore, an order transaction

can be decomposed into a set of processes that interact to service the transaction.

The relevant objects and functions (services) are abstracted in Figure 5.18. The

objects are the customer, product, invoice, inventory, and accounts while the relevant

Chap ter 5. Pro tocof Specifications

send
Invoice

Figure 5.18: Process Mode1 of Order Processing

services are orders, ship, update, generate, and send. The author relies on the reader's

intuition about these components functionalities thus focusing on the transaction for-

malism in this thesis. The complete system may contain subsystems, each containing

numerous processes which interact with one another. Processes can c d upon ottier pro-

cesses to fulfill a request for action and/or information. Process interaction is triggered

from some extemal event such as a user request, or a request from another process.

A diagrammatic representation of the transactions in the application domain under

consideration is shown in Figure 5.19.

Algorithm 1 The sequences of operations

1. MDB decornposes the transaction's GT. First the LDBs are queried for the availability of the
item.

If found then report back to the MDB while the local store local database continues to do
its inventory processing. A hold is placed on the item in inventory at the moment.

If not found then report back to the MDB and abort immediately.

2. The MDB now request payrnent.

Acquire the account.

Validate account balance.

Initiate transfer to the store's bank account.

3. Stores's bank reports successful transfer to the MDB's transaction.

Then the store local database transaction (inventory update) can now commit successfully.

4. The GT commits successfully.

Chap ter 5. Pro toc01 Specifications

Local
Traasactions Local

rransactions \ Local
Transacrionr

Figure 5.19: A Graphical Representation of Purchase Transaction.

There is a time dimension in the update of the inventory database (which may or may not

be located in the store's local database site) thus the global inventory could potentially

be held up. The execution of the global transaction allows local transactions at the banks

(in this exarnple, the customer's and the store's banks that could possibly be different)

and at the participating stores. The shareable data object a t the store is the inventory

database. Similarly, the shareable objects at the bank are account-number and balance.

The banks may enforce strict correctness to avoid the probiems of duplicate withdrawal.

In pseudocode, the above transaction could be represented as follows:

Algorithm 2 Pseudocode Representation of Purchase Transaction

Purchase-Tkansaction;
begin

BROADCAST purchase requirements;
TRIGGER inventory search;
MA ICE payment

end;

where the operat ions of the procedures TRIGGER and MAKE are given as:

Chapter 5. Protocol Specifications

TRIGGER inventory search;
begin

check the store's database;
validate inventory quantity;
update inventory baiance;
produce reports;
terminate

end;

.MA KE payment ;
begin

enter and vaiidate customer information and PIN;
select account ;
enter amount;
vaiidate balance;
update account;
produce receipt

end;

In very high level abstract program design pseudocode specification, the whole transac-

tion could be represented as:

AIgorithm 3 Program Design Pseudocode Specification

Purchase-Transaction
begin

BROA DCAST-tmnsaction;
INVENTORY-transactions :

Check and validate,
Update inventory,
Produce reports;

MAKE-payment :
Validate account,
-4ccept payment ,
Produce bill

end;

Exarnining the above pseudocode representations reveals the following: (1) t here is no

indication of the operations interleaving order, (2) no indication of concurrent (or parallel)

activities thus obüviating the potential benefits of concurrent operations, and (3) it is

impossible to deduce causal dependency relationships between the subprocesses.

5.12.1 Some Applicable hinct ions

The following are some useful functions that will become handy in the formal specification

of the example problem. Only their signatures are given leaving out their details. This

Chapter 5. Protocol Specifications 178

does not affect the understanding of their application. The function validBa1 checks if

t here is enough money in an account. It returns true if the current balance is greater t han

the amount to be spent from the account and it returns false otherwise. Its signature is

given by:

1 ualidBal : Account x R -t BOOLEAN

The function decrementDb reduces the quantity in stock of an item by the amount spec-

ified, given by:

1 derrementD6 : Db x item x N --t N

Similarly, the function debitAcct reduces the current account balance by the amount

specified, given by:

1 debitAcet : Account x R --t R

The function creditAcct increases the current account balance by the arnount specified.

Its signature is:

1 creditAcct : Account x R -t R

Further, the function isinDb checks a given data base for a particular item. It returns

t.me if the item is found and it returns false otherwise. Its signature is:

1 isinDb : Db x item t BOOLEAN

The specification of the sample purchase transactions in CSP follows. ABORT and

COMMIT are transaction specific operations and are used here in their pure database

transaction semantics. The set of events executable by the process PURCHASE is given

by :

ctPURCHASE = crBROADCAST U CYINVENTORY

where a lNVENTORY = {prodhfo, inuentoryDb, bicycle) u
ct U P D A T E J N V U crPAYMENT

a U P D A T E J N V = (inventoryD6, bicycle, produceReports)

Chap ter 5. Pro tocol Specificatioos 179

a PA YMENT = (custInfo, selectAcct , PIN, acctBal, amount)

The communication events okay and fail are transmitted through the communication

channel e, represented as:

ae(PURCHASE) = {okay, fail)

The process PURCHASE is defhed as:

PURCHASE = BROADCAST; INVENTORY; COMMIT [R3 la]

where

INVENTORY = (c?prodInfo + acquire(inventoryD6)

+ bicycle = isinDb (inventoryDb, prodInjo)

+ (PAYMENT [I UPDATE-INV)\{e) 4: bicycle 9.4BORT

-+ SICIP) [R'2 1 b]

The communication dong channel e used to synchronize PA YMENT and UPDATEJNV

is hidden to prevent them from further being conçtrained by the environment.

W D A T E - I N V = ((inuentoryDb(q6icycle) = decrementDb(inventoryD6, pbicycle)

-+ produceReports --+ e?x

+ i f (x # "okay") then ABORT

else (release(inuentoryD6) + SKIP)) [R2 1 cl

PAYMENT = (c?custhfo --+ selectrlcct + c?PIN

+ acquire(acctBal) -+ c?arnount

-+ w = vulidBal(account, amount)

+ (e !x -+ (ACCEPT II BILL) + w + (e ! x -+ ABORT))

+ SKIP) [RP ld]

where x = okay when w evaluates to true and x = fcsil otherwise.

aA CCEPT = {acctBal, amount) and a BILL = {produceInvoice, creditAcct)

A CCEPT = (acctBal = debitAcct (account , amount)

Chap ter 5. Pro toc01 Specifica tions

+ release(account)

+ SKIP)

BILL = (produceinuoice

--+ creditAcct (t a s , amount)

+ SKIP)

The release(inventoryD6) event can be perforrned only after ualidBal(account, amount)

event of the PAYMENT process evaluates to true. That is, CIPDATEJNV process

is commit dependent on the PAYMENT process37. The trace specification defines the

required interleaving order. Figure 5.20 represents the above CSP specification. The

shaded node (e) represents parde l operations while - - -+ shows commit dependency.

When the ACCEPT process commits, it initiates a trigger to resume the suspended

inventory update process for a successful commit operation.

The communication event okay on channel e synchronizes operations dependency

relationships between PAYMENT and UPDATE-INV processes. The W D A T E J V V

process is temporarily suspended until the PAYMENT process is ready to perform the

synchronization event (e!x) at which point W D A T E J N V resumes to accept the input

communication event (e ? x) and then progresses. Note that when two concurrent pr*

cesses communicate with each other by output and input on a single channel, they can

not deadlock [Hoa85].

Recd , the trace of a process is the history of the process up to that tirne. The

trace concept, therefore, is central to recording, understanding and describing the be-

haviour of processes. The concept of compositionality of traces plays a fundamental role

in reasoning about processes. Consider the following:

trace(ACCEPT) = (debitAcct, release(account))

trace (BILL) = (produceInvoice, creditAccts)

trace (UPDA TE_IIVV) = (decrementD6, produce Reports,

37This is the commit dependency of UPDATEJNV process on PA YMENT. Also, UPDA T E J N V is

causally dependent on PAYMENT via the synchronization variable x .

Chapter 5. Protocof Specifications

bicycle

ACCEPT A' \ ,..,

may continue

Figure 5.20: Dependence Relationship of Sample Transaction.

release(inventoryD6))

Further, for notational convenience, let

m = traces(BILL)

r = traces(ACCEPT)

k = traces(U P D A T E J N V)

A = (release(inventoryD6))

si = traces(UPDATEJNV r A)

The traces of PA YMENT is given by:

trace(PA YMENT) = ((custin fo, selectAcct , P l . ,

acquire(account), amount, validBa[))

A (in t e r l eaves (m, r) V ABORT)

Sirnilarly, the foilowing abbreviation shall apply:

t = traces (PA YMENT)

The traces of the process INVENTORY is given as:

trace(INVENTORY) = ((prodlnfo, acquire(inuentoryDb), ualidQty))

Chap ter 5. Pro toc01 Specifications

A ((interleaves(t , A-)

A (V tl E t , SI E kr 1 s = k r A tl 5 SI))

v ABORT)

The final specification of the transaction PURCHASE is given as:

PURCHASE = (Vq 1 q E tmces(BROA1)CAST);

t 1 t E tmces(INbrENTORY)

traces(PLIRCHASl3) = q A t ; COMMIT) [R23]

Summary

An abstract event-based mode1 that incorporates both causality and timing information

was presented. The framework uses time as mathematical objects for descriptive and

analysis purposes. Thus, tirne is a fhst class object. The framework models transactions

as mat hemat ical relations over dat abase s t ates. Transactions' execut ion correct ness rely

on the preservation of the predicates instead of only the notion of serializability.

The expressive power of the framework is demonstrated by using the forrnalism to

define (a) some of the existing hierarchical transaction models, (b) transaction correct ness

and concurrency control protocoIs, and (c) electronic commerce application.

Chapter 6

CORRECTNESS PROOF

Any transaction system's development ultimate goal is to deliver a transaction software

product (SP) that m e t s an application's requirements (AR). Figure 6.1 shows the es-

sential abstract transformations. The transformation AR * SP is difficult and error

prone because it involves both conceptual and formal domains; application requirements

and the software t hat m e t s these needs, respectively. So the application's requirements

are abstracted into a formal specification (FS) from which SP is derivable. Thus, AR

FS and FS SP. The formal domain of FS is subject to mathematical and logical

analysis so correctness can be established while the conceptual dornain of A R lach a for-

mal model's precision and mathematical elegance. SP is derivable from FS via detailed

transformations of the fom:

FS is AR'S initial specification proven correct that forms the basis with respect to which

SP's correctness must be preserved.

The steps leading to SP must be proven correct and produce correctness-preserving

transformations in a logically correct, consistent, and well-ordered sequence. This en-

sures that unacceptable behaviours are not introduced and unarnbiguously establishes

the specificat ion's correct ness. The transformations forrn the basis for the logical deduc-

t ions and the implementations t hat result in behaviours which satisfy the application's

requirements. This in turn supports confirmability and verifiability. Since the creat ion of

Software I> Pmduct

Figure 6.1 : Application needs - Software Solut ion Relat ionship

FS is the focus of this thesis, it is necessary that the conceptual translation into formal

form (Le., FS) is correct. So we must prove that the specifications given in Chapter 5

are correct in order to ensure t hat transaction software generated from them are correct.

This takes seriously the obligation to produce reliable programs to a known specification.

This chapter presents the correctness proof of the specifications given in the pre-

ceding chapter. Rigorous arguments following from the specificat ions provides the logicd

ba i s for the proofs. First Section 6.1 presents the methodology taken.

6.1 Proof Methodology

Most proofs in CSP use bottom-up approach where each component is proven correct

separately and more complex systems are compositionally developed by using the prov-

ably correct components. Thus, a proof of a compound process's property is derivable

from a proof of correctness of its parts.

Recall, the decomposition of the complex systern into i ts subcomponents requires

conformance to the production of correctness-preserving transformations in a logically

correct, consistent, and weil-defined sequence with clearly defined interrelationships. Ad-

herence to this principle provides for the validity of the interactions between subcompo-

nents via well-defined interfaces. Thus, the canonical t ransforrnat ions ensure the exclu-

sion of unacceptable behaviours in the interactions between subcomponents when com-

posed and no information or functionality is lost as a result of the decomposition. The

Chap ter 6. Correctoess Proofs 186

and functional correctness using mechanisms that ensure adherence to and preservation of

timing constraints. The transaction aborts if it violates either the temporal or functional

correctness. The temporal constraints are used in synchronizing concurrent access to a

data object by multiple transactions t hereby providing an acceptable degree of functional

correctness.

To guarantee correctness, appropriate synchronization mechanisms must be pro-

vided. In addition, the processes that capture transaction behaviours must also satisfy

both safety and Liveness properties.

6.2 Safety and Liveness Properties

A trace of a process P satisfies safety property if and only if:

1. trace(P) # () and

2. trace (P) is prefix-closed.

A trace of P is prefix-closed if there exists ,û and ,û' such that ,3 in trace(P) and ,Bf is

a finite prefix of ,û then Pf in trace(P). Prefix-closure is reasonable because if a trace is

safe so is any of its prefix. Note that

trace(P) = () + #(events(trace(P)) = O no events occur.

Safety property violation occurs in a trace when some particular events in the trace

should not have been admitted (during the trace's extension via the process's progress).

A trace property P is a liveness property if every finite sequence over the elernents

of P has some extension in trace(P). Informally, no matter what has happened up to

some point, eventually something good will occur. General liveness properties can also

be captured by restricting the event sequences a process can undergo.

6.3 Prove Theorems about Specifications

Theorem 2 All processes are prefix closed.

Ch ap ter 6. Correctn ess Proofs

Proof

Basic idea: Prove by induction on the length of a h i t e execution generating the given

trace. Given a process P and its trace(P), if Actiire(P) then P's trace is extendable by

at least an event e 1 e E a(P) . Thus,

Further, if

3 ,û : TIMEDTRACE 1 ,O in trace(P)

(3 ,û' : TIMEDTRACE 1 prefix 0 #,O' < # P) ,O' E traces(P))

+ ,O' in trace(P)

So elements of al1 possible traces of P, traces(P), are prefixes of trace(P). O

Recall, an important property of a history is the prefix-closed requirernent. Thus, given

any history, al1 pre-histories of the history are also histories. This is because any pre-

history of an object (or transaction set) is the history of that object (transaction set) at

some earlier stage in its evolution and hence represents a possible history of the object's

class.

Theorem 3 Causality respects time.

Proof

Basic idea: Time is monotonically increasing. Thus

Vti, t, : TIME

ti < tj o (3 S : seq, TIME; i, j : TIME 1
i ~ d o m S A j ~ d o m S A

S (i) = ti A S (j) = t, i c j)

By definition of 3 (see [R2]), if A happening at tirne A causes B's occurrence at time

p then X must precede p in the mapping of the times to a number line. Thus,

Chap ter 6. Corredness Proofi

Thus, in any history H that contains the transactions having A and B respectively,

So by definition [R3], p < A. Similarly, by application of [R2a] % + p < A. So the

cause event's time always precede the effect's time. Therefore, causality respects time.

O

Theorem 4 If every transaction in a schedule follows the 2PL rde , the schedule is

guaranteed to be serializable.

Proof

Recall, by specification [R20],

2PL G R 0 WPHASE; SHRINKPHASE

Since the acquisition of locks is monotonically increasing in the G R 0 WPHASE stage

all lock acquisition rnust precede the first unlock because of the semantics of {unlock)

operation.

SIUP G R 0 WPHASE = (ACQUIRELOCKS II 1 OPERATIONS) {uniock)

But to guarantee serializability, the locking and unlocking operations in every transaction

must obey the simple rule that al1 locking operations precede the first unlock operation.

Suppose

V P : PROCESS 0

3 p , q : O p [p , q E a (P) A p = lock A q = unlock A

p in traces(p) A q in traces(p) 0

t ime(q) < t i m e (p) =+ violation of 2PL rule

But specification [RSO] will not permit such operations. So [R20] adrnits only consistent

operations that guarantees serializability. O

Corollary

The locking mechanism, by enforcing 2PL d e s , also enforces serializability.

Chapter 6. Corredness Proofs

Proof

Given a process P that obeys the 2PL rule. Thus,

V s : TIMEDTRACE 1 s E traces(P) a

V p : O p I p = l o c k a p i n s +

1 (3 q : Op 1 q = unlock time(q) < time(p))

If process P executes concurrently with a similarly defined process Q, t heir execution is

serialized according to their lock acquisition order on a cornmon data object. That is,

V P, Q : PROCESS a

3 x : Data 1 (3 p, q : Op p E a(P) A q E a (&) A Conflict(p(x), q (z)) l

time(p(x)) < time(q(x)) + time(lock,(x)) < time(lockp(x))

In this case, P -+ Q. But P -+ Q P; Q in effects so the schedule containing P and

Q is equivalent to a serial execution (P;Q) of P and Q. Thus, the schedule is serializable

O

Theorern 5 Every schedule produced by the process PURCHASE adrnits a consistent

enumerat ion (or schedule) ,

Proof

Basic idea: Any history produced by PURCHASE is serializable.

Note that PURCHASE is modelled as a nested transaction (see specifications [R21a - dl)

Following from specification [R23]

PURCHASE sat traces(BR0ADCAST) A traces(INVENT0RY)

By assumption BROADCAST is deadlock free so we need only prove that

traces(1NVENTORY)

admits consistent enurneration. Thus, we prove that INVENTORY process (1) is dead-

lock free, and (2) preserves the database's correctness after execution.

To prove the absence of deadlock in the above specification, reduces to demonstrat-

ing that

Chap ter 6. Correctness Proofs

V s E traces(PURCHASE) 0

trace(PURCHASE/s) # STOP

which formdy represents the problem.

We know that given a process P,

traces(P) STOP = STOP + Deadlock (see [Hoa851)

Thus,

trace(PWRCHASE/s) = s (t 1 t in trace(PWRCHASl3) A

t = trace(PURCHASE) after time(iast (s))

But STOP 4 aPURCHASE +
STOP 6 traces(PURCHASl3)

Therefore traces(P WRCHASE) # STOP

But by [R21b] and [R22] the process INVENTORY only admits consistent events enu-

meration consistent with the part i d ordering of the process's events. Therefore, every

schedule produced by the process PURCHASE adrnits only a consistent scheduie. O

Theorern 6 Schedules admitted by both TO and 2PL protocols are behaviourdy equiv-

alent .

Proof

Let Tset = { Ti, Tz, - - , Tn} be a transaction set consisting of n transactions. The

concurrent execution of transactions in Tset is the history given by:

HISTORY,,,, = seq, S 1 ran S E Ti h Ti E Tset

By [RI91 any schedule generated using the TO protocol enforces serialization order that

corresponds to the order of the concurrent transactions' timestarnps. So, using [RI91 let

HISTORYTse, = X where X is a sequence of Tset's transaction operations

Similarly, applying [20] let

HISTORYTse, = Y where Y is a sequence of Tset's transaction operations

Chapter 6. Correctness Proofs 191

By Theorem 4, the 2PL produces serializable schedules. But X and Y contain the same

operations since

Thus, TO and 2PL accepts the same transactions. Also, in both X and Y the following

holds:

So, X Y = conflict serializable (by [RI91 and [R20])

Since both protocols generate serializable schedules, reordering nonconflicting events

in the schedde produces a new schedule consisting of the same events as the previous.

Thus, t hey have equivaient computational effects. [Aside: Only the relative ordering of

codicting operations detennines the outcome of a transaction set's concurrent execu-

tion.]

So TO and 3PL protocols are behaviourdy equivaient. O

Thus, given any system either the 2PL or TO can be applied; selecting the TO

protocols for applications most suitable to it and the 3PL for others. The 2PL is better

when transaction operations are predominantly updates whereas TO is better for read

only transactions. Figure 6.2 illustrates the behavioural equivalence of the two protocols.

The 2PL detennines serialization orders dynamically (according to the order in

which data items are accessed) while TO statically determines serialization orders (when

a transaction starts). The power of Theorem 6 is that given a set of transactions t hat

can execute concurrently

a 2PL guarantees that the execution is equivalent to some serial execution of those

transactions.

0 TO guarantees that the execution is equivalent to a specific serial execution of

t hose transactions corresponding to the order of their timestamps.

Ghap ter 6. Correctness Proofs

Tset c ~ f l ç t serializable
histories

concurrency controi protocoi

Figure 6.2: Behavioural Equivalence of TO and 2PL.

Theorem 7 The specified protocols only admit mutually consistent schedules.

Proof

Basic idea: Show that there are no cycles in schedules accepted by both TO and ZPL.

Frorn Theorem 6 we know that both TO and 2PL produce serializable schedules and t hus

are equivalent in effects. Using definition [R4] and its transitive closure, any schedule

admitted by both protocols is of the form Ti ?* T, - Tk - TI -+ . - - 5* T, where

Ti # Tn-
.'. both TO and ZPL produce mutually consistent schedules.

Theorem 8 Al1 serializable executions are correct.

Proof

DBMS may execute transactions in any order as long as the eflect is the same as that of

some serial order.

By Theorem 1 (see page 134) each serializable execution has the same effect as some

serid execution. Thus, proof of Theorem 1 directly appiies. O

Chapter 7

CONCLUSION AND FUTURE

WORK

Formal methods for developing transaction systems software are becoming increasingly

necessary. To handle the cornplexit ies inherent in transaction systems requires combining

these methods with sound development methodology which supports modularity and

reusability

This t hesis models transactions as mat hemat ical relations over database states-

Transactions' executions correctness rely on the preservation of the predicates instead of

only the notion of serializability. By representing transactions as mathematical relations

on database states having nested transactions with concurrently executing subtransac-

tions and a schedule as a composition of the relations enables the capture of the full

semant ic scope of long-duration transaction systems. Partial ordering relation on the

subtransact ion's set represents the runt ime dependencies between the subt ransact ions.

The execution is correct if every subtransaction can access a database state that satisfies

its pre-condition and if the result of ail the subtransactions satisfies the post-condition of

the transaction. This notion of correctness can produce a multi-level correctness cri terion

by extension to both the ancestors and descendants of a given transaction.

Recall, one important requirement of transaction specificat ion language is the abil-

ity to capture concurrency which requires the specification language to mode1 the simul-

taneous occurrence of multiple events in a transaction. -41~0, one important requirement

Chap ter 7. Future Work 194

of transactions is the generat ion of schedules t hat sat idy the transactions event 's timing

and causality constraints while rnaintaining consistency and correctness. By using an

event-based model that incorporates both causality and timing information in specifying

transactions ensures (i) timing constraints and causal dependencies of the executions,

and (ii) transactions correct ness t hrough concurrency cont rol protocols by cont rolliag

any interleaving. Uncontrolled interleaving of transaction execution may vioiate the

database consistency and thus its correctness because different conflict ing transactions

may simultaneously access the same data item.

Although the objective of a specification is often to capture the behaviour of some

system over t ime, most specifications do not explicitly capture time informat ion. How-

ever, it is desirable to explicitly provide mechanisms that facilitates the analysis of a

transaction system's evolving behaviour as it executes over time. Recall, the execution

of a transaction gives rise to sequences of timed actions, states, etc. Although such time

sequences are usually not captured explicitly in the program text, it is frequently useful

to have t hem available as mat hematical objects for descriptive and analysis purposes. By

using set comprehension to extract those time points a t which events occur and placing

appropriate constraints on those sets specifying transaction safety and liveness proper-

ties is feasible. The timed-event specification (the sequences of states and events which a

transaction can undergo over t ime) facilitates the specificat ion of liveness propert ies such

as fairness, termination, and the guaranteed occurrence of events (by using the temporal

operators dehed) . An abstract model of transaction models based on causality and

timed execution is presented. This is used to speci@ history invariants which restrict the

set of acceptable histories derivable from transactions event occurrences1.

The model of CSP language applied in this thesis uses time as a first class entity

to permit the specification of timing constraints within the language. This provides high

level constmcts for specifying timing constraints which helps to separate the specifica-

tion of timing constraints from the means used to ensure their satisfaction and assigns

'Recall, the order of appearance of an operation in the schedules differentiates one schedule from

another. This order is based on the process's interactions. Any two schedules are equivalent if the order

of the causally dependent events in one is the same as the other.

Chapter 7. Future Work

fur t her s tud y.

Transaction's response time unpredictability may mise due to the requirement of

maintainhg transaction atomicity over participants in different sites and from the man-

agement of distributed data2. The response time of a transaction rnay be influenced by

the location of its required data, which may not be known until its actual execution time.

In addit ion, the underlying network's performance affects the transactions performance

in overail- An investigation of mechanisms to accurately predict transaction response

times is required so that the results presented in this thesis can be adapted to red-time

applications.

While the transaction concept is by no means new and have hacl considerable appli-

cation outside the acadernia, a complete forma1 specification of the different models and

their semantics and theory is necessary to integrate them and prove their correctness. By

doing so will d so enable the development of semi-automatic tools to assist in developing

more dependable applications based on these models. Extension of the specifications to

include ot her models Like workflow, interactions, and red-time modeis is vital.

Another possible extension is to incorporate object-orientation features into the

TCSP specification language. This will enable a specifier to specify transaction models

using the object-oriented paradigm and verify that a particular specification is realizable

using a method similar to that of Object-Z so a history is contained within a class. To

have an ob ject-orientat ion features requires a definit ion of full forma1 semant ics mapping

constructs in the language to some semantic domain. This enables the development of a

proof system for the language and the possibility of creating semi-automatic tools to aid

in the software development process.

Another area that requires further investigation is the derivation of a new correct-

ness criterion that incorporates transaction's semantics and serializability. By exploiting

intra-transaction concurrency (based on the transaction's semantics) as many subtrans-

actions of the same parent transaction as possible can concurrently execute thereby re-

ducing the transaction wait times for consistent data states. Reducing transaction wait

2 ~ h e creation of a transaction at one site is independent of the creation of transactions at other sites.

Recall, each created transaction is assigneci a unique transaction identifier (id) and a start time Limeld.

Chapter 7. Future Work 199

behaviour (e-g., value and temporal dependencies) will provide a good initial framework

of reference. Without considerations for such dependencies between subtransactions of

each global transaction, past correctness criteria provide weak consistency parantees.

Data manipulation in an MDB environment must take into considerat ion interdepen-

dency of data and control their access to ensure the presenration of interrelated data's

mutual consistency. Specifying dependencies among MDB transactions rnust succinctly

capture the dependency conditions, the data consistency requirements or const raints

(state and temporal properties of the data), and consistency restoration mechanisms in

case a violation is encountered.

Further, the specifications c m be refined into lower level specifications that are

event ually execut able. Alt hough, specificat ions are not necessarily execut able, refining

the specifications into executable forms further reduces the amount of coding that the

programmers will do and also aids in the development of automated tools for proving

and verifying the correctness of the specifications. Also, there is a need for a testbed

environment to permit the implementation of the specifications to empirically determine

their correctness and consistency.

Similar to the above, it will be worthwhile to develop a simulator for the speci-

fications (t hat directly implements the specifications). This means we can execute the

specifications to get statistics about the behaviour of the modelled system. It is possible

to set breakpoints and display simulation results as the execution of the system pro-

gresses. Since most implementation languages provide mechanisms for making system

calls to primitive constructs t hat dlow the creation and termination (and ot her concur-

rency aspects) of concurrent processes the implementation stage will be relat ively st raight

forward. Examples of low level system c d are fork and join for specifying concurrency

(available in most UNIX implementations4). When a fork instruction is executed by

a process, a new process (child) is created; this child process can load another program

code t hat executes concurrently wit h its parent (the ~ r e a t o r) ~ . To synchronize wi t h

completion of a child process, the parent process can execute a join operation thereby

4Microsoft's Windows NT operating system provides similar primitives.

'The fork instruction is synonymous to the SPAWN function defined in Chapter 5, Definition 28.

Chapter 7. Future Work 20 1

to capture the different aspects of the system in a unified framework that can be verified

and implemented in the test bed.

« THE END »

Appen dix. List of Sym bols 203

Svmbols Meanine:

LHS == RHS

fn : atype -+ otype

1 fn : atype + otype

z : T

Definition of LffS as syntacticdy equivalent to RHS. A
definit ion is cList inguished from an equali ty (' =') syntact i-
cally by the use of the symbol '=='. A definition defines the
left side to be equivalent to the right side, while an equality
is a predicate that is either true or false.

Op is defined by T .
is really a shorthand notation for definition. Note that

and == can be used interchangeably.

A function declaration where the domain constructor is
read as "produces". The function narne is fn while its input
and output are atype and otype respectively.

A h c t i o n declarat ion where only its signature is specified-

A declaration, x : T, introduces a new variable x of type
T. This should be distinguished from from the membership
test, z E T, which is a predicate that is either true or
false. T must be a nonempty set, consequently if z has
been declared to be of type T, x : T, then x E T must be
true.

x : T ; p : O p ; - - - ; a : Data
List of declarations.

[NODE, EVENTS] Introduces free types named W D E and EVENTS. They
are distinct new types whose structure is unconstrained by
this introduction.

A.2 Logic

The folloiving are logic definitions. Let a, p, q, x, and y be expression terms, D be a

declaration, and P and Q be predicates.

Appendix. List of Sym bols 204

-

Symbols Meaning

true, false Boolean logicai constants.

1 P Not P - Negation.

P A Q P and Q - Conjunction.

P V Q P or Q - Disjunction.

P implies Q or if P then Q - Implication.
This is equivalent to == (1 P) V Q

P is logicalIy equivalent to Q - Equivalence
== (P * Q) A (Q * P)

3 x : T e P There exists an z of type T such that P holds
- Existent i d quantification.

V x : T m P For a l l x of type T such that P holds
- Universal quantification.

The scope of the variable z is the quantified predicate P.
This scope extends as far to the right as possible so paren-
theses are used to delimit the scope. Furthermore, al1
quantifiers specify the type of the bound variable thereby
defining the the values over which the quantification ranges
explicit ly.

3 , x : Tm P There exists a unique r of type T such that P holds
- Unique existence.
- 3 x : T e p / \ - (3 y : T m z # y h P)
Note that y is a variable not the same as z and must not
occur in P

3 D I P . Q H ~ D ~ P A Q
There exists a type D that satisfies the constraint (or pred-
icate) P such that the predicate Q holds.

P = q Equality between terrns

Appendix. List of Sym bols 205

Symbols Meaning

P # Q

V x : T;p: Op; - O - ; a :

3 s : T ; p : Op; - - - ; a :

- - (P = 9)

Data a P
For a,lI z of type T, p of type Op, - . ., and
such tbat the predicate P holds.

Data a P
Definition similar to V

a of type Data

A.3 Numbers

Syrnbols Meaning

The set of integers - this includes positive, zero, and neg-
ative integers.

The set of natural numbers - this is the set on non-negative
int egers.
-- -- (n : Z I n 2 0)

The set of strictly positive natural numbers
== N \ {O)

The set of integers between m and n inluding both rn and
n .

R+ The set of positive real nurnbers.

Appendix. List of Symbols

A.4 Sets

Let Sets, S, T, and X be sets, P a predicate, D a declaration, and t a term.

Symbols Meaaing

t € S t is a member of S - Set membership

{) o r * The empty set

S c T W (V X : S O Z E T A S # T
Strict set inclusion.

{x : T 1 P) The set containing exactly those x of type T that satisfies
the predicate P.

{ D I P o t) The set of values of the terrn t for the variable declared in
D t hat ranges over al1 values for which P holds.

The set of all subsets of S - Powerset

The set of al1 nonempty subsets of S
== P s \ {a}

The set of finite subsets of S
== { T : P S 1 T isfinite)

The set of finite subsets of S
== F S \ (0)

Set interscet ion
== { x : X ~ X E S A X E T }

Set union
== { x : X ~ 2 € S V z € T }

Set difference
== { x : X I X E S A X $ ~ T)

Appendix. List of Symbols

Symbols Meaning

n Sets

U Sets

Intersection of a set of sets.
== {z : X 1 (VS: Sets x E S))

Union of a set of sets.
== { x : X I (3 S : Sets.+ ES))

The number of distinct members of a finite set.
- The cardinality.

A.5 Relations, Funct ions, and Sequences

Let C, X and Y be sets; x : X; y : Y; p and q be functions; a; and 6; be terms; and A

and B are sequences.

Symbols Meaning

dom R

ran R

~ (4

The set of relations between X and Y.
-- -- Q(X x Y)

The relation relating x to y
-- -- Z * Y

The domain of a relation

The range of a relation

The function p appiied to variable x. p(x) is defined if
and only if x E domp. Its value is the unique value in
range associated with the value x in its domain. That is, a
function is a set of pairs with each member of its domain
associated with a unique rnember of its range. Thus,

PW = Y - (x, Y) E P)
Functional composition.
-- -- q ; P

Appen dix. List of Sym bols 208

Syrnbols Meaning

seq X

The set of total functions from X to Y
-- -- {rel: X tt Y 1 (Vx : dom rel O (3, y : Y O x reI y)))

The set of total functions from X to Y
-- -- {rel: X -H Y 1 (dom rel = X

The set of finite sequences whose elements are drawn from
X
-- -- {A:N1*X I (3 n : N m d o r n A = l ... n))

#x The length of sequence X.

The empty sequence,
== {)

The set of non-empty sequences.
== {s : seqX I s # ()

fast (A)

The first element of a nonempty sequence.
A # () + head(A) = A[1]

The Last element of a nonempty sequence.
A # () =+ las t (A) = A[#A]

tail(A) The sequence with the first element of a nonempty sequence
removed.
A # () + ta i l (A) = A - head(A)

The restriction of the range of sequence A to elements from
the set C.

Appendix. List of Symbols 209

Symbols Meaning

1 A i n B A is a continguous subsequence of B.

A prefix B A is a continguous subsequence of B such that the head of
A and B are the same.
~4 3 B 0 : seqB A Bo = B

Note: The operator prefbc differs from in because in may
hold for any continguous subsequence of any given sequence
whereas prefix holds only when the head of both the subse-
quence and given sequence is the same.

A.6 TCSP symbols

The details of these operators and symbols are discussed in Chapter 4.

Svmbols Meanine:

o!P

STOP

SIUP

WAIT

Events P can engage in - the alphabets of P

Deadlock

Successfd terminat ion

Delayed terminat ion

+ Prefixing. It is also used as an event transition relation.

WAIT t ; P

Sequential composition

Delay for t units of time and then execute P

O external choice

1 Interna. choice

A p p e n d k List of Symbols 210

n

II

111

\

c? a

c! a

c ? a : A + Pa

/Lx 8 P

trace (P)

P + 5001 9 Q

P G Q

P Y Q

p :Q

sat

03

Nondeterministic choice

Parde l execution; must be synchronized on every event.

Interleaving; no synchronization is required.

Hiding

Input the variable a via channel c

Output the value of a via chaiinel c

Prefix choice

Recursion

== seqx 1 x : EVENTSmz fctP

If bool is true then execute P otherwise execute Q- Note
that bool must be a logical expression that evaluates to ei-
ther t m e or false. This is another form of the farniliar if-
t hm-else construct .

Timeout program

Event interrupt

Timed interrupt

Satisfy relation

Record data type constructor

Record data type's member element accessing operator.

References

[Ad921 van der Aalst i 4 /.M.P. "Tirned Coloured Petri Nets and their Application to Lo-
gisticsn , Ph- D Thesis, Eindhoven University of Technology, 1992-

[ABL89] Ackerman -4- F., Buchwald L. S., and Lewshi F. H., "Software Inspections: An
Effective Verification Proces", Sofiware, Vol. 6, No.3, May 1989, pp 31-36.

[ACL87] Agrawal R., Carey J. M., and Livny M., "Concurrency Control Performance
Modelling: Alternatives Implications", ACM Tmnsactions on Database Systenzs.
#12, 1987, pp 609-654.

[AE92] Agrawal DI and EI Abbadi A. "Transaction Management in Database Systems" .
In A.K Elmagarmid (ed), Database Tmnsaction Models for Advanced Applica-
tions. Morgan- Kaufmann, 1992.

[AFLMW88] Aspenes J., Fekete A., Lynch N., Merritt M., and Weihl W. "A Theory OF
Timestam p based Concurrency Control for Nested Transactions". Pmeedings of
the 14th VLDB Conference, Los Angeles, California, 1988.

AIfaro L. and Manna Z. "Verification in Continuous Time by Discrete Reason-
ing". In Alagar V.S. and Nivat M. (Eds), Algebmic Methodology and Software
Technology. Proceedings of 4t h International ConFerence, AMAST' 95, -Mont real,
Canada, July 1995, LNCS 936, Springer 1995.

Ammann P., Jajodia S., and Ray I., "Using Formal Methods to Reason about
Semantics- based Decomposition of Transactionsn, In Proceedings of the Interna-
tional Conference on Very Large Databases, Zurich, Switzerland, September 1995,
pp 218-227.

ANS1 / IEEE STD-830-1984, IEEE Guide to Sofiware Requirements Speci'ca-
tions. IEEE Software Engineering Technical Cornmittee, IEEE Standard for Re-
quirements Specification, STD-830-1984.

Anwar E. Supporting Complez Events and Rules in an O O D B I W A Seamless
Apprrmch. Master's Thesis, Database Systems R and D Center, Department of
Computer and Information Sciences, University of Florida, Gainesville, Florida
326 11, Novem ber 1992.

Baker, W'rlliam Douglas. Trgger Management in Active Multidatabase Systems.
Master's Thesis, Department of Cornputer Science, University of Manitoba, Win-
nipeg, Canada, 1995.

Referen ces 212

Barker K.E. Transactions Management on Multidatabnse Systems. Ph.D. Thesis,
Department of Computer Science, The University of Mberta, Edmonton, Alberta,
Canada, Fali 1990.

Bergst r a J .A-, "Proces Aigebra for Synchronous communication and Observa-
tion", Technical Report No, P8815, Programming Research Group, University of
Amsterdam, 1988.

Bernstein P.A. "Transaction Processing Monitors" . Cornm. ACM, Vo1.33,
November 1990, pp 75-86.

Baeten J.C.M. and Bergstra J.A., "Real Time Process Algebra". Fomzal Aspects
of Computing, Vol. 3, No. 2, 1991, pp 142 - 148.

BurstalI R.M., and Goguen J.A-, T h e Semantics of Clear. -4 Specification Lan-
guagen . In P m . 1979 Copenhagen Winter School A bstract Software Specification,
Lecture Notes in Computer Science 86, Springer-Verlag, 1980.

Bernstein P.A. and Goodman N., "Concurrency Cont rol in Distributed Database
Systems" . ACM Computing Surveys, Vol. l3(2), April 1989, pp 230-269.

Bernstein P.A., Goodman N., and Hadzilacos V. Concurrency Control and Re-
covery in Database Systems- Addison Weçley, Reading -Massachusetts, 1987.

Bireli A.D., Guttag J.V., Horning J.J., and Levin R. "Synchronization Primitives
for a Multi-processor: A forma1 Specification". SRC Research Report No.20, Au-
gust 1987.

Bowen J-P and Hinchey M-G, "Seven More Myths of Forma1 Methods". Proceed-
ings of FME'94 Symposium, Industrial Benefl of Formal Methods, Barcelona,
Spain, 24-28 October 1994, Lecture Notes in Computer Science, Springer-Verlag,
1994.

Buchmann A., Hornick M., Markatos E., and Chronaki C. "Specification of a
Transaction Mechanism for Distributed Active Object System". In Proceedings
of the OOPSLA/ECOOP 90 Workshop on Tmnsactions and Objects, Ottawa,
Canada, October 1990, pp 1-9.

Barghouti N. S. and Kaiser G. E., "Concurrency Control in Avanced Database
Applicationsn, ACM Computing Surveys, Vol. 23, 1991, pp 269-31'7.

Bernstein A. J. and Lewis P- M., Concurrency in Progmrnming and Database
Systems, Jones and Bartlett Pu blishers, London, 1993.

Blum B. I., Software Engineering: A Holistic View. Oxford University Press,
Oxford, 1992.

Barker K. E. and Ozsu M. T., "Concurrent Transaction Execution in Mul-
tidatabase Systemsn, Pmeedings o j COMPSACY9O, Chicago, Illinois, October
1990, pp 282-288.

Referen ces 214

Claybrook B- G.: OLTP : Online Tmnsaction Pmessing Systems, New York :
John Wiey, 1992.

Clocksin W.F and M e k h CS. Progmmming in Prolog, (Third Edition). Springer-
Verlag, 1987.

Chakravart hy S. and Mishra D. "An event Specification Language (Snoop)
for Active Databases and its detectionn . Technicai Report No. UF-CIS-TR-9 1-
23, University of Florida, Department of Computer and Information Sciences,
Gainesviiie, Florida 3261 1, September 1991.

Coleman D. "The Technology Trander of Forma1 Methods: What's Going
Wrong?". P m . 12th ICSE Workshop on Industrial Use of Formai Methods. Nice,
France, March 1990

Chrysanthis P.K. and Ramamritham K. "ACTA: A Framework for Specifying and
Reasoning about Transaction Structure and Behaviourn . A CM SIGMOD Record,
Vol. 19, No. 2, June 1990.

Chrysant his P.K. and Ramamrit ham K. "A Formalism for Extended Transaction
Models" . Pmceedings of the 17th VLDB Conference, Barcelona, Spain, 1991.

Chrysanthis P-K. and Ramamritham K. "ACTA: The SAGA Continues". in
A.K Elmagarmid (ed), Database Transaction Models for Advance Applications.
Morgan-Kaufmann, 1992.

Chrysanthis P-K. and Ramamritham K. "In Search of Acceptability Criteria:
Database Consistency Requirements and Transaction Correct ness P roperties" .
Pm-proceedings of the International Workshop on Dist ributed O bject Manage-
ment, Edmonton, Canada, August 1992.

Davis A. M. "A Comparison of Techniques for the Specification of ExternaI Sys-
tem Behaviour". Comm. ACM Vol. 31, No.9, September 1988.

De Giacomo G.D. and Chen X.J-, "Reasonng about Nondeterministic and Con-
current Actions: A Process Algebra Approach." In Proceedings of National Con-
ference on Artificial Intelligence (AAAI-96), 1996.

Du W. and EImagarmid A., "Quasi-Serializability: -4 Correctness Criterion for
Global Concurrency Control in InterBasen, In Proceedings of the 15th Interna-
tional Conference on Very Large Data Bases (VLDB), Amsterdam, August 1989,
pp 347-355.

DeMarco T., Structured Analysis and System Specification. Englewood Cliffs, N J ,
Yourdon Press / Prentice Hall, 1978.

Desai B.C. A n Introduction to Datakse Systems. West Publishing Company, St.
Paul, Minnesota, 1990.

Dasgupta P. and Keàem Z.M. "A Non-two-phase Locking Protocol for Concur-
rency Control in General Databases". P m . of the 9th VLDB Conference, FIo-
rence, Italy, 1983.

Referen ces 215

[EG LT76]

Davies J. and Schneider S.A- "Real-Time CSP: Processes and Properties"

Davies J. and Schneider S.A. "A Brief History of Timed CSP". Technical -Mono-
graph PRG-96, Oxford University, 1992-

Davies J. and Schneider S.A. "Using CSP to Verify a Timed Protocoi Over a Fair
Medium*. In Proceedings of CONCUR 92, LNCS 630. Springer-Verlag, 1992.

Eswaran K.P. and Chamberlin D.D. "Functiond Specification of a Subsystern for
Database Integrityn . Pmeedings of VLDB, Framingham, Massachusetts, U S.A.,
Vol. 1. No- 1, Sept. 1975.

Elmagarmid A.K. and Calton P. "Guest Editors' Introduction to the Special issue
on Heterogeneous Databases". ACM Computing Sunteys, Vol. 22, No.3, Sept-
1990, pp 183 - 236.

Ehikioya S.A. and Barker K.E., "A cal1 for the Forma1 Specification of Trans-
action Systerns Protocols: A Survey". In Perrizo W. and Goli V.N.R. (Editors),
Praceedings O/ the First Annual Mid-Continent In formation Systems Con ference
(MISC-93), May 3-4, 1993. Fargo, North Dakota, USA. Pages 258 - 268.

Ehikioya S.A., Barker K.E., and Onibere E.A., "Specifying Correctness in the
Automation of Banking Operations". In Adagunodo E.R., Kehinde L.O., Aliinde
A.D., and Adigun M.O. (Eds.) Computer-Based Automation in Developing Coun-
tries (Auto-DC '95). Lagos, Nigeria. COAN Conference Series, Vol. 6, May 1993,
pp 103 - 115.

Eswaran K., Gray J., Lorie R., and Traiger 1. "The Notion of Consistency and
Predicate Locks in a Database System". Comm. ACM, Vol. 19, No.11, Novernber
1976, pp 624-633.

Elrnasri R. and Navathe S.B. Fundamentals of Database Systems (2nd Ed.). The
Benjamin / Cummings Publishing Company Inc., 1994.

Fairley R.E. Software Engineering Concepts. McGraw-Hi11 Inc., 1985.

Fidge C. "A Comparative Introduction to CSP, CCS, and LOTOS", Technical Re-
port No. 93-24, Software Verification Research Center, Depart ment of Corn pu ter
Science, The University of Queensland, Australia, April 1994.

Floyd C., "On the Relevance of Formal Methods to Software Development". In
Ehrig H., Floyd C., Nivat M., and Thatcher J. (Eds), Fonnal Methods and Soft-
ware Deuelopment, Vol. 2: Colloquium on Software Engineering, Proceedings of
the International Joint Conference on Theory and Pmctice of Software Develop-
ment (TAPSOFT). Berlin, Springer-Verlag, March 1985.

Forma1 Systems (Europe) Limited. Failure Divergence Refinement (FDR): User
Manual and Tutorial (Version 1.3). August 1993.

Fujimoto R. M., "Parallel Discrete Event Simulation", Cornm. ACM, Vo1.30,
N0.10, Oct. 1990, pp 30-53.

Referen ces 216

Georgakopoulos D., "Multidatabase Recoverabiiity and Recovery7, In Pmceed-
ing of 1st International Workshop on Interopembility in Multidatabase Systems,
Kyoto, Japan, 1991, pp 34û-355.

Gerhart S.L. "Program Specification". In Ralston A- and Reilly E.D. (Jr)
(Edited) , Encyclopedia of Computer Science and Engineering (2nd. Edition). Van
Nostrand Reinhold Company, 1983, pp 1243-1246.

Garbrieiian A. and Franklin M. K. "Multi-level Specification and Verification
of Real-Time Software". 1990 IEEE 12th International Conference on Software
Engineering, 1990 pp 52-62.

Garcia-Molina H., Gawlick D., Klein J., Kleissner K., and Salem K. "Coordinating
Multi-Transaction Activities". Tech. Report CS-TR-247-90, Dept. of Computer
Science, Princeton University, February 1990.

Gut tag J.V and Horning J.J. "Formal Specifications as a Tool". In P m , 7th -4CM
Symposium on Principles of Progmmming Languages. Las Vegas, 1980, pp 251 -
261.

Gut tag J.V., Horning J.J., and Wing JM. "Some R e m a r k on Putting Formal
Specifications to Productive Use". Science of Computer Progmmming. North-
Holland, Vol. 2, No. 1, October 1982.

Gut tag J.V., Horning J.J., and Wing J.M. "Larch in Five Easy Pieces". Tech.
Report 5, DEC Systems Research Center, July 1985.

Gehani N.H. and Jagadish H.V. "Ode as an Active Database: Constraints and
Triggers". In Pmeedings 17th International Conference on VLDB. Bacelona,
Spain, September 1991, pp 327-336.

Gehani N.H., Jagadish H.V, and Shmueli O. "Event Specification in an Object-
Oriented Database". In Pmeedings hternational Con ference on Management of
Data. San Diego, CA, U.S.A,.June 1992, pp 81-90.

Gunter C.A. and Mitchell J.C (Eds.), Theoretical Aspects of Object-OMented Pro-
gmmming: Types, Semantics, and Language Design. T h e MIT Press, 1994.

Goguen J.A. "OBJ as a theorem prover with Applications to Hardware Veri-
fication". Tech. Report SRI-CSL-88-4Rg2, Stanford Research Inst., Menlo Park,
California, August 1988.

Gray J. and Reuter A., Tmnsaction Pmessing: Concept and Techniques. Morgan
Kaufmann, San Mateo, CA, 1993.

Gray J. "The Transaction Concept: Virtues and Limitations". In Pmeedings of
The 7th International Conference on VLDB. 1981.

Graham P.C.J. Applications of Static Analysis to Concurrency Control and Re-
covery in Objecthse Systems. Ph.D Thesis, Department of Computer Science,
University of Manitoba, Winnipeg, Canada, 1994.

Referen ces 217

Gracia-MoIina H. and Salem K. "Sagas". In Proceedings of the ACM SIGMOD
International Conference on Management of Data. May 1987.

Harel D. "On Visual Forrnalism*. C0m.m. ACM Vo1.31 (5) , 1988, pp. 514530.

Harel D- and Gery E. "Executable Object Modeiing with Statecharts" , Computer,
IEEE, July 1997, pp. 31-42.

Hayes C.T., "A Theory of Data Type Representation Independence", In Kahn G.,
MacQueen D.B., and Plotkin G . (Eds.) Semantics of Data Types International
Symposium Pruceedings, Sophia-Antipolis, France, J une 1984. Lecture Notes in
Computer Science, Vol 173, Springer-VerIag, New York, NY, pp. 157-175-

Hinchey M. G . and Jarvis S. A., Concurrent Systems: Formal Development in
CSP. McGraw-Hill Book Company, 1995.

Huston 1. and King S. "CICS Project Report: Experiences and Results from
t h e use of Z in IBM.". En Prehn S. and Toetenel W.J (Eds): VDM '91, F o m a l
Sofiware Development Methals. Springer-Verlag, LNCS 551, P P 588-603, 1991.

Hull M.E.C and OYDonoghue P.G. "Family Relationships Between Requirements
and Design Specification Methodsn. The Computer Journal, Vol. 36, No-2, 1993.

Hoare C.A.R. Communicating Sequential Processes. Prentice Hall International,
1985.

Howles F- Distributed Arbitmtion in the IEEE Futurebus Protocol. M.Sc Thesis,
Oxford University Computing Lab. Programming Research Group, UK, 1994.

Haghjoo M-S, Papazoglou M.P., and Schmidt H.W. "A Semantic-bas& Nested
Transaction Mode1 for Intelligent and Cooperat ive in format ion Systems" . In Pro-
ceedings of International Conference on Intelligent and Cooperatioe Information
Systems, Huhns M., Papazoglou M.P., and Schlageter G. (Edited), IEEE Com-
puter Society Press, Los Alamitos, CA, USA, May 12- 14, 1993, pp 321-331-

Haeder T. and Rueter A. "Principles of Transaction-Oriented Database Recov-
eryn. ACM Computing Surueys, Vo1.15, No.4, Dec. 1983, pp 287-317.

Hopcroft J. and Ullman J. Intmduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading, MA 1979.

Hsu M. and Zhang B., "Performance Evaluation of Cautious Waiting", ACM
Tmnsactions on Database Systems, #l7, 1992, pp 477-512.

Internationaf Standards Organization. "Information Systerns Processing: Open
Systems Interconnection - LOTOS". Tech. Report, 1987.

Jacobs M. A., A Visual Query Language for a Fedemtion of Databases, Master's
Thesis, Department of Computer Science, University of Manitoba, Winnipeg,
Canada, 1996-

Jarvis Steve. Using CSP to Verify a Reliable Network Protocol. M S c Thesis,
Programming Research Group, University of Oxford, U.K, Sept. 30, 1992.

Referen ces

[JDS85] Jackson M.1, Denvir B.T. and Shaw ROC. "Experience of Introducing the VDM
into an Industrial Organizationn - In Ehrig HI, Floyd CI, Nivat M-, and Thatcher
J. (Eds), Formal Methods and Sofiware Deuelopment, Vol. 2: Colloquium on
Soflutare Engineering, Pmeedings of the International Joint Conference on The-
o r - and Pmctice of Sojlware Deuelopment (TA PSOFT). Berlin, S pringer-Verlag,
March 1985.

Jahanian F. and Mok A.K. "Safety Andysis of Timing Properties in Real-Time
Systems" . IEEE Tmns- on Software Engineering SE-12 (91, Sept - 1986.

Jones C.B. Systematic Software Development Using VDM. Prentice H a l Interna-
tional, 1986.

Jones C-B and Shaw R.C. (Eds.) Case Studies in Systernatic Software Deuelop-
ment. Prentice Hall, 1990.

Kenney J. J ., Executable Fonnal Models of Distributed Tmnsaction Systems Based
on Event Prvcessing, Ph-D Thesis, Stanford University, U.S.A., June 1996.

Kogan B. and Jajodia S. "Concurrency Control in MuItilevel-Secure Databases
based on Replicated Architecturen. ACM SIGMOD Record, Vol. 19 (21, June
1990.

Korth H.F., Kim W., and Bancilhon F. "On Long-duration CAD Transactions",
Infornation Sciences, Vol. 46, No.1-2, Oct-Nov. 1988, pp 73-1 07.

Kiessling W. and Landherr G . "A Quantitative Comparison of Lock Protocols
for Centralized Databases". Proc. of the 9th VLDB Conference, Florence, Italy,
1983.

Kenny K.B. and Lin K., "Building Flexible Real-Time Systems Using the Flex
Language", Cornputer Vol. 24, No.5, May 1991, pp 70-78

Knapp E. "Deadlock Detection in Distributed Databases". ACM Cornputing Sur-
veys, Vol. 19, Dec. 1987.

Kort h H.F. and Si1 berschatz A. Database System Concepts. McGraw-Hi11 inc-,
1986.

Korth H.F. and Speegle G. "Formal Models of Correctness without Serializabil-
ityn - In Proceedings of the ACM SIGMOD international Conference on Manage-
ment of Data, Chicago Illinois, June 1988, pp 379-386.

Keller M. and Shumate K., Sofiware Specification and Design: A Discipline Ap-
pnmch for Real-The Systems- John Wiley and Sons Inc., 1992.

Korth H.F. and Speegle G . "Formal Aspects of Concurrency Control in Long-
Duration Transaction Systems Using the NT/PV Modeln. ACM Tmns. on Data-
base Systems, Vol. 19, No.3, Sept. 1994, pp 492-535.

Lamport L., "rime, Clocks, and the Ordering of Events in a Distributed System" ,
Comm. of the ACM, Vol. 21, No.?, 1978, pp 558-565.

References 219

Laprie J-C. "Dependability: A Un-Xying Concept for Reliable Computing and
Fault Tolerance" . In Anderson T. (Ed.) , Dependability of Resilient Cornputers,
Chapter 1. Blackwell Scientific Publications, Oxford, 1989, pp 1-28.

Luckham D.C. and von Benke F.W. "An overview of Anna, A Specification Lan-
guage for Adan. IEEE Software, Vol. 2, No. 2, March 1985.

Li Pei-yu and M c M i n Bruce, "Formal Mode1 and Specification of Deadlock".
Tech- Report CSG53-31, Dept. of Comp. Science, University of -Missouri-Roua,
Roua, Missouri, August 1993.

Li Pei-yu and McMillin Bruce- "Formal Verification of Distributed Deadlock De-
tection Algorithm Using a Time Dependent Proof Techniquen- Tech. Report CSC-
94-06, Dept. of Computer Science, University of Missouri-Rolla, Rolla, Missouri,
1994.

Litwin W., Mark L., and Roussopoulos N. "Interoperability of Multiple A u -
tonomous Databases". ACM Computing Surveys, Vol- 22, No.3, Sept. 1990, pp
183 - 236.

Lynch N., Merritt M., Weihl W., and Fekete A. Atomic Tmnsactions. Morgan
Kaufmann Pub. Inc., San Mateo, CA., 1994.

Leeçtma S. and Nyhoff L., Turbo Pascal: Programming and Problem Soluing,
(Second Edition) , Macmillan P u blishing Company, 1993.

Lowe G., Probabilities and Prorities in Tirned CSP. Ph.D Thesis, University of
Odord, Hilary Term, 1993.

Lowe G., "Formal Development of Aircraft Control Software: A Case Study in
the Specification, Design and ImpIementation of a Red-Time System", Technical
Report PRG-TR-15-94, Oxford University Computing Laboratory, 1994.

Lo M. and Ravishanhr C.V., "A Concurrency Control Protocol for Nested Trans-
actionsn, Technical Report #: CSE-TR-96-91, Computer Science and Engineering
Division, Dept. of Electrical Engineering and Corn puter Science, The University
of Michigan, Ann Arbor, Michigan 48109-2122, 1991-

Landers T. and Rosenberg R. L., "An Overview of ~Multibase*, in Schneider H.
3. (Ed.), Distributed Data Bases, New York, North Holland, 1982, pp 153-188.

Leveson N.G and Stolzy J.L. "Analyzing Safety and Fault Tolerance Using Time
Petri Netsn. In Ehrig H., Floyd C., Nivat M., and Thatcher J. (Eds), Formal
Methods and Soj2ware Development, Vol. 2: Colloquium on Software Engineer-
ing, Proceedings of the International Joint Conference on Theory and Practice of
Software Deuelopment (TA PSOFT). Berlin, S pringer-VerIag, March 1985.

Leveson N.G and Stolzy J-L. "Safety Andysis Using Petri-netsn. IEEE Trnns. on
Sofiware Engineering, No.13, PP: 386-397, 1987.

Lustman Francois. "Specifying Transaction Based Information Systems with Reg-
ular Expressionsn. IEEE Tmns. on Soflware Engineering, Vo1.20 No.3, March
1994.

Referen ces

Marateck S.L, PASCAL, John Wiiey and Sons, Inc., 1991

McCracken D.D. "Procedure-O riented Languages: S urvey" . In Encyclopedia of
Computer Science and Engineering (2nd Edition), Ralston A. and Reily E.D.
(Jr) (Edited). Van Nostrand Reinhoid Company, 1983-

Morpain C., Car t M., Ferrie J-, and Pons J., "Maintaining Database Consis-
tency in Presence of Value Dependencies in Multidatabase Systemsn, In SIGMOD
RECORD, Vol. 25, NO.^., June 1996, Proceedings of the 1996 ACM SIG-MOD In-
ternational Conference on Management of Data, Montreal, Quebec, Canada, June
4 6 , 1996.

Microsoft Corporation, ODBC 3.0 : Programmer 's Re ference, 1996-

Milner R. A Calculus of Communicating Systems- Lecture Notes in Computer
Science 92, Springer-Verlag, 1980.

Mishra D. Snoop: An event Speci'cation Language Active Databases. d mas ter's
Thesis, Database Systems R and D Center, Department of Computer and Infor-
mation Sciences, University of Florida, Gainesviile, Florida 32611, August 1991.

McMillin B., Lutfiyya H,, Tsai G., and Liu J I "Parallel Algorithm Fundamen-
tals and Analysisn. Tech. Report No. CSC-93-17, Dept. of Computer Science,
University of Missouri-Rolla, 1993.

Menasce D.A. and Muntz R.R. "Locking and Deadlock Detection in Distributed
Databases". IEFE Trans. Software Engineering, Vol. SE5, May 1979.

Moss J.E.B. Nested Tmnsactions: An approach to Reliable Distributed Compzst-
ing. Ph-D Thesis, Massachusetts Institute of Technology, Cambridge, MA, April
1981.

Moss J.E.B. Nested Tmnsactions: An approach to Reliable Distn'buted Comput-
ing. The Massachusetts Institute of Technology Press, Cambridge, MA, 1985.

Motrol Amihai. "Ictegrity = Validity + Completeness". ACM Transaction on
Database Systems, Vo1.14 No.3, Sept. 1989, pp 480-502.

Nielsen M., et al. "The Raise Language, Met hodology, and Toolsn . Formal Aspects
of Computing, Vol. 1, 1989.

Nico Plat, Jan van Katwijk, and Hans Toetenel. "Application and Benefits of For-
mal Methods in Software Developmentn . Software Engineering Journal, Septem-
ber 1992.

National Pysical Laboratory. "Formal Description Techniques and Security Stan-
dard Conformance Testing". NPL Report DITC 175/91, March 1991.

Neel Madhav and Walter Mann. "A Methodology for Formal Specification and
Implernentation of Ada Packagesn. In P m . of 14th Annual International Com-
puter SoJtware and Applications Conference. IEEE Computer Society Press, 1990.

Referen ces 22 1

[Pet 771

[P NM9 11

Obermarck RI "Distributed Deadlock Detection Algorithm" . ACM Transaction
on Database Systems, Vol, 7, June 1982.

Ostroff J.S. Fonnal Methais for the Specification and Design of Real- Time Sa fety
Critical Systems. (Draft 2.0 for IEEE Press book to be called "Tutorial on Speci-
fication of Timen), May 1994. Also appeared in Journal of Systems and Software,
April 1992.

Ostroff J.S. Suruey of Forma1 Methcxis for the Specification and Design of Reai-
time Systems. (Dr& 1.0 for IEEE Press book to be called "Tutorial on Specifi-
cation of Timen), May 1991.

Ozsu M- T. and Valduriez P-, "Distributed Data Management: Unsolved Prob-
lems and New Issues", In Casavant T. and Singhal h4. (Eds.) Readings in Dis-
tributed Computing Systems, IEEE/CS Press, 1994, pp 5 12-544-

Ozsu M.T. and Valduriez P. Principles of Distributed Database Systems. Prenctice
Hall, 1991.

Pagan F.G., Fomal Specification of Prugmmming Languages: A Panommic
Primer. Englewood Cliffs, N.J.: Prentice-Hall. 1981.

Papadimitriou C.H. The Theorg of Database C o n c u m n c y Control. Compiiter
Science Press, 1986.

Peterson J-L- "Petri netsn. Cornputing Surveys, Vol. 9, No. 3 September 1977.

International Workshop on Petri Nets and Performance Models. Petri Nets
and Performance Models. Proceedings of the Fourth International Workshop on
PNPM 91, Melbourne, Australia, Dec. 2 - 5, 1991. IEEE Cornputer Society, l99l.

ISO/IEC JTCl/SC7/WGii, "Petri Nets Standardn, 1996. (AvaiIable at:
http://wzow.daimi.aau.dk/PetriNets/standard/) .

Pressman R.S. Software Engineering: A Pmctitioner's Applwrch (Third Edition).
McGraw-Hill Inc., 1992-

P u C. Replication and Nested Transactions in the Eden Distribution System. Ph.D
Thesis, University of Washington, 1986.

Rosenberg J . M. Dictionary of Computers, Data Pmcessing and Telecomrnunica-
tions. John Wiley and Sons, 1984.

Rescher N. and Urquhart A. Temporal Logic. Springer-Verlag, Library of Exact
Philosophy, 1971.

Rumbaugh J. et al., Object-Oriented Modelling and Design. Prentice Hall, 1991.

Stachowitz R.A. and Chang C. Venfication and Validation of Expert Systems:
Tutorial Pmgmrn SP2. A A A I , 1988-

Schneider S.A. "Rigorous S pecification of Real-Time Systems'' .

Referen ces 223

Sannella D. and Tarlecki A. "Algebraic S p d c a t i o n and Formal Methods for
Program Development: What Are The Real Problems" . EA TCS Bulletin No.41.
1990-

Stoy J., "Some Mathematical Aspects of Functional Programming." In Darling-
ton J., Henderson P., and Turner D A (Eds.) Functional Pmgmmrning and Its
Applications. Cambridge University Press, 1982, pp 217 - 252.

Tel Gerard. Introduction to Distributed Algon'thms. Cambridge University Press,
1994-

Tsichrïtzis D. C. and Lochovsky F. Il- Data Muàels. Prentice-Hall, Inc., 1982.

Tsai Sumei and McMillin Bruce. "Formal Methods of Real-Time Systemsn. Tech,
Report No. CSC-91-17, Dept. of Computer Science, University of Missouri a t
Rolla, Rolla, Missouri, August 6, 1991.

The New Mariam- Webster Dictionary. Mariam-Webster Lnc. Publishers, Spring-
field, Massachusetts, 1989.

Verhofstad J. "Recovery Techniques for Database Systems3. ACM Computing
Surveys, Vol. 10, No.2, June 1978, pp 167-196.

Voung S.T. and Weber J.F. "Protocol Specification and Validation Using Prolog'.
In Proeeedings of Intelligence Integmtion. CIPS Edmonton, Canada, November
16-19, 1987, pp 167-175.

Walshe Ann. "NDB: The Forma1 Specification and Rigorous Design of a Single-
user Database System" . Chapter 2 in [JS90].

Wasserman A L , "Introduction to Data Types". Ln Wasserman A.I. (Ed), Tuto-
na1 Piogmmrning Language Design: CompSac 80. IEEE Computer Soeiety 4th
International Cornputer Sofiware and Applications Conference, IEEE Computer
Society Press, New York 1980, pp 184 - 188.

Wilson L.B. and Clark R.G., Compmtiue Pmgrnmming Languuges, (Second Edi-
tion) , Addison-Wesley, 1993.

ISO/IEC JTCl/SC?/WGll, "High-level Petri Nets Standard: Working Draft
Version 2.1n, Pmject 7.19.3 - Petri Nets, February 18, 1997. (Available at:
http://www.itr.unisa.edu.ou/tsec/sections/standanI.html).

Weihl W. "Commutativity-Based Control for Abstract Data Types". IEEE Tmns.
on Cornputers, Vol. 37, No.12, Dec. 1988, pp 1488-1505.

Wotschke D. and Fischer P.C. 'Well-Formed Formulan. In Ralston A. and Reilly
E.D. (Jr) (Edited) , Encyclopedia of Cornputer Science and Engineering (2nd.
Edition). Van Nostrand Reinhold Company, 1983, pp 1568.

Wing J .M. "A Specifier's Introduction to Forma1 Met hodsn . Computer Vol. 23,
No. 9, September 1990.

Referen ces 224

[WKC91] Wallace D.R., Kuhn D.R., and Cherniavsky J.C. Report of the N E T Workshop
of Standards for the Assumnce of Eigh Integrit y Softwam: NIST Special Publi-
cation 500-190. Computer Systems Laboratory, National Institute of Standards
and Technology, Gaithersburg, MD 20899, USA, August 199 1.

[W0087] Wood D. Theory of Computation. John Wiley and Sons, 1987.

[Wo089] Woodcock J.C.P. "Calculating Properties of Z Specifications". ACM Software
Engineeeng Notes, Vol. 14(5), July 1989, Page 43-54.

[YC79] Yourdon E. and Constantine L., Structured Design. Englewood Cliffs, NJ , Prentice
Hall, 1979.

[Yh/185] Yonezawa A. and Matsumoto Y. "Object Oriented Concurrent Programming and
Industrial Software Production". In Ehrig H., Floyd C., Nivat M., and Thatcher
J. (Eds), Formal Methoàs and Soflware Deuelopment, Vol. 2: Colloquium on
Software Engineering, Proceedings of the International Joint Conference on The-
ory and Pmctice of Software Deuelopment (TAPSOFT). Berlin, Springer-Verlag,
~March 1985.

[Zwa96] Zwass V., "Electronic Commerce: Structures and Issues", International Journal
of Electronic Commerce, Vol. 1, No. 1, Fa11 1996, pp 3-23.

