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Abstract

A satellite communication module is developed to generate network variables, which

are required to simulate the communication channel between a workstation on the

Earth and the International Space Station (ISS). The main focus is to use this simu-

lator to study the feasibility of transmitting data packet between a location on Earth

and the ISS, an orbiting research laboratory, for different applications including tele-

operation. Thus, a simulation platform is needed to mimic the actual communication

scenario. Therefore, the performance of a remotely–controlled system could be exam-

ined using the developed satellite communication module, before final implementation

in the field, which is time consuming and expensive. The Network Simulator 3 (ns-

3) is employed to develop the satellite communication module. Values of network

parameters, obtained from simulation using the developed module, are quantified

when the ISS rotates around the Earth. To show the proof of concept, the simulator

is tested for a haptic-enabled teleoperated system. At the master site, the simula-

tion program of a 3–degree–of–freedom (DOF) haptic device is used, and its position

and force components are transferred to the slave site on the ISS. A packet data,

containing the information of the master site, is transmitted through a simulated

communication channel. Results validate that, the simulator is capable of transfer-

ring the data packet, as the force/position signal, received at the slave site followed

the characteristics of the signal transmitted from the master station on earth.
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Chapter 1

Introduction

Space technology has advanced drastically and space exploration has become a grow-

ing word. In 1969, The National Aeronautics and Space Administration (NASA)

launched Apollo 11 spaceflight, the fifth manned mission of NASA’s Apollo program,

to land the first humans on the Moon. Their mission was to collect lunar materials

for experimental investigations. Spirit and Opportunity mobile robots also completed

their 3–month missions on Mars in 2004. These vehicles were part of NASAs Mars

Exploration Rover project that continued their search for geological clues to confirm

whether Mars formerly had environments wet enough to be hospitable to life [1, 2].

Presently, International Space Station (ISS), an orbiting research laboratory, is ac-

cepted as the main symbol of a continuous collaboration between different nations.

Canada’s contribution to the station, for instance, is the Mobile Servicing System

(MSS) – a sophisticated robotic suite that assembled the station, and was developed

for the Canadian Space Agency (CSA) by MacDonald Dettwiler Space and Advanced

Robotics (MDA) [3]. The MSS is composed of three main components: the Space Sta-

tion Remote Manipulator System (SSRMS) that is known as Canadarm2, the Mobile

Remote Service Base System (MBS) and the Special Purpose Dexterous Manipula-

1



Chapter 1. Introduction

tor (SPDM) also known as Dextre or Canada hand. In addition to the MSS, there

are several ISS-servicing robotic systems, including the Japanese Experiment Module

Remote Manipulator System (JEMRMS) that was designed and fabricated built by

the Japan Aerospace Exploration Agency (JAXA). The JEMRMS robotic setup was

built to support experiments conducted on the Exposed Facility (EF) of the Japanese

Experiment Module (JEM) [4]. This robot includes a 6–DOF, 10–meter long main

arm, and a 6–DOF, 2–meter long small fine arm (SFA) designed to perform dexterous

tasks [5]. The European Space Agency (ESA) also developed a 7–DOF robotic arm

that is attached to the Russian segment of the ISS [6]. All the remote manipulators

present in the ISS are controlled by the astronauts living there.

1.1 Motivation

Astronauts are living in the ISS for performing various researches, which should be

conducted in space. The experiments are performed in space require human presence.

Moreover, there exist many activities performed in the ISS that require high level of

expertise, including maintenance of electromechanical systems, medical treatments,

and technical troubleshooting etc. If there exist an assistive system such as a robotic

arm which can be controlled from Earth, then the physical presence of human in

ISS would not be required anymore. Analyzing the feasibility of remote controlling a

system from Earth in the ISS is required. Till date not a single open source simula-

tion platform supports satellite communication. Therefore, an extensive research is

required to determine the feasibility of haptic teleoperation.

2



Chapter 1. Introduction

1.2 Statement of the Problem

A robotic arm controlled by a human from long distance is known as long–distance

teleoperation in which the information between the master and slave sites is trans-

ferred through a communication channel. In the proposed platform, the master site

is located on earth and the slave site is suited inside the ISS, as depicted in Fig. 1.1.

In other words, some data such as position, velocity, and/or force are sent by the

master hand–controller (on earth) to the manipulator located at the ISS, and some

are sent back from the ISS to earth. Fig. 1.1 also illustrates how information flows

between master and slave sites in a bilateral fashion. Therefore, a study is required

to determine the feasibility of tele-presence between the Earth and the ISS.

The feasibility of long–distance space telemetry could be done by placing an ac-

tual robotic arm on the ISS, and control the manipulator from earth to verify its

workability over the satellite communication. That option is not feasible, as placing

a robotic arm inside the ISS requires time, infrastructure, and money. Therefore,

the focus of this study is, to develop a simulator that simulates the network scenario

between the Earth and the ISS. The developed simulator will enable us to study the

feasibility of any communication between our planet and the ISS. Thus, the feasibil-

ity of remote operation could be investigated. Moreover, the simulator will also help

universities and educational centres adopt the concept of Space Communication in

an economical manner. The main goal of this work is, to develop the middle block in

Fig. 1.1, i.e., developing a space simulator that is capable of simulating the behaviour

of the communication channel between the Earth and ISS.

3
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COMMUNICATION
CHANNEL

Space simulator
Master controller

Master station
on Earth

MASTER SITE SLAVE SITE

Slave station
in the ISS 

Slave controller

Figure 1.1: In the conceptualized platform, the master site (on earth) sends infor-
mation to the slave site (in the ISS) and the slave station in the ISS sends some
information back to the experienced team on earth.

1.3 Related Work

There have been several attempts to develop techniques, by which activities in ISS

could be conducted remotely from our planet. To name a token, an expert team on

the Earth assisted astronauts on ISS to accomplish a task [7]. Recently, the ESA

conducted two experiments (Haptics–I and Haptics–II) to investigate disability of the

performance of a remotely–controlled robotic arm, and observe how a human oper-

ator feels when they are in a robot’s shoes. Haptics–I was an experiment designed

to investigate the remote control of robots on the ground from the ISS. The experi-

ment was a simple–looking lever that can be moved freely to play simple Pong–style

computer games [8]. In Haptics–II project, the ESA and the Robotics Institute at

the Delft University of Technology performed some peg–in–hole (with 1/6th of a mil-

limetre clearance) experiments, and remotely controlled a wheeled mobile robot from

orbit inside ISS [9]. Haptics–II experiment allowed astronauts to control the rovers

arms and wheels to conduct the tasks by means of force feedback. In Haptics–II, ma-

4
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nipulation of the peg was performed on the Earth that is simpler than manipulation

in the ISS due to micro–gravity environment, where things seem to be weightless. As

the ISS is always in free falling state so objects on the ISS seems to be weightless.

In the term micro–gravity micro represents very small. Therefore, the experiment,

which was done in Haptics–II is an opposite way of the experiment which we aim to

do in this study, i.e., the task is conducted in the ISS instead of earth [8].

A number of other experimental space manipulators have also been developed

and successfully implemented in space. The German Aerospace Center (DLR) devel-

oped the Robot Technology Experiment to verify different teleoperation modes such

as on–board teleoperation, teleoperation from the ground, and sensor–based offline

programming [10]. The DLR developed the Robotics Component Verification on the

ISS robotics experiment [11]. NASA developed Robonaut 1, a dexterous robot to

assist astronauts during Extra Vehicular Activities (EVA) tasks with the ability to

work with existing EVA tools and interfaces in high–fidelity ground–based test facili-

ties [12]. A team from NASA and General Motors also developed a second generation

of this system named the Robonaut 2, a dexterous robot with significant technical

improvements compared to Robonaut 1 [13]. Robonaut 2 is recognized as the first

humanoid robot in space [14]. All the experiments, done by the space agencies, used

their own simulation software which is either closed source or commercial software.

A team from University of Timisoara, proposed a design solutions for a haptic arm

exoskeleton which could be used remotely in space [15].

The Open Source Satellite Simulator (OS3) [16] is a satellite simulator developed

by the Technical University of Dortmund. The simulation platform used in developing

OS3 is OMNet++ in conjunction with the INET framework, an open–source OM-

NeT++ model suite which provides component classes for wired, wireless, and mobile

5
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networks. Developers of the OS3 claimed that it is modular and easy to use; however,

the focus was on developing the satellite mobility, satellite constellations along with

the weather data and channel models. To date, no satellite communication protocol

was incorporated in OS3.

Digital Video Broadcasting (DVB) organization published a book on satel-

lite return link specification which is known as DVB-S2/DVBRCS2. European

Space Agency (ESA) uses DVB-S2/DVBRCS2 for satellite communication, as DVB-

S2/DVBRCS2 is not implemented in publicly available simulators. A group of re-

searcher developed a simulator to implement the DVB-S2/DVBRCS2 in combination

with Network Simulator 3 (ns–3) and named their simulator as Satellite Network

Simulator 3 (sns–3) [17]. The developers are still working on sns–3 and sns–3 is

not publicly available yet. Moreover, the sole purpose of sns–3 is to implement

DVBS2/DVBRCS2 in ns–3 along with satellite mobility. In [17], the investigators

presented an overview of their proposed end–to–end architecture, which was the mo-

tivation of our work to develop an architecture in ns–3 from scratch.

1.4 Development Methodology

The satellite module development is done in several steps depicted in Table 1.1. In

the first step, an extensive survey is performed on the available simulation platforms,

to help the authors, to choose a proper simulation platform to develop the simulator.

Afterwards, a study is conducted to identify the transport protocol used in the satel-

lite communication, followed by investigating communication strategy of the ISS to

earth. Note that, the ISS is a multinational satellite system; therefore, various mod-

ules of ISS, communicates with the earth, use different techniques. Next, a research

on satellite communication link budget is completed to quantify the values of required

6
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Table 1.1: Work-flow of development of the space simulator-from concept to imple-
mentation

Step1: Select a proper simulation platform
- Study existing simulation platforms
- Explore flexibility and extensibility of the studied platforms
- Choose a widely accepted platform in academia

Step2: Select the transport protocol
- Investigate transport protocols used in satellite communication
- Research existing protocols
- Select a transport protocol to incorporate in the simulator

Step3: Explore satellite communication strategy of the ISS
- Investigate communication strategy of the ISS

Step4: Determine the satellite link budget
- Research the satellite link budget equation
- Derive a link budget equation for the proposed application
- Collect the parameters needed to communicate with the ISS

Step5: Implement in ns–3
- Develop the satellite network module in the simulator
- Incorporate delay and link equation in the model
- Simulate two dimensional mobile setup
- Send mock data and analyze

Step6: Implement three dimensional orbital propagation model
- Investigate satellite orbital propagation
- Incorporate satellite trajectory information in the simulator
- Send haptic application data and analyze

parameters for the proposed simulator. In next step, the satellite network device and

the channel are implemented in ns–3. The developed module is tested with existing

TCP variants, followed by implementing a two dimensional satellite communication

scenario. Finally, satellite orbital propagation methodology is studied and incorpo-

rated in the developed simulator. The transparency of data communication between

the master and slave sites is then validated, when the information, obtained from the

simulation of two teleoperated systems, are pushed into the simulator. Validations

are conducted while the ISS is orbiting along it’s actual trajectory, and the delays

7
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and throughput are also analyzed.

1.5 Contributions of the Thesis

This research aims at developing a satellite communication module to reflect realistic

network between the Earth and the ISS, therefore transmit the information between

both locations. Thus, the performance of a teleoperated system could be tested using

the developed module while there is a simulation of real communication channel, and

then be implemented in real field. Therefore, the contributions of this research are:

• Study existing network simulation platforms, and propose a proper platform to

develop the simulator.

• Research transport protocols, and determine the transport protocol used in the

satellite communication.

• Inquire and find the communication strategy between the Earth and the ISS.

• Study link budget calculation in satellite communication, and determine the

link budget used in communicating with the ISS.

• Develop a satellite module in ns–3, to incorporate satellite link budget equation

and study the delay effect on the haptic communication.

• Test developed satellite module while a set of data packets, obtained from the

simulation of a teleoperated platform, being pushed into the communication

channel. Results will validate the possibility of sending and receiving the infor-

mation between the Earth and the ISS.

• Review satellite orbital propagation, and incorporate actual ISS trajectory in

the developed simulator.

8
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It is believed that, the simulator developed in this study, will provide a platform

for future studies as, to the best knowledge of the author, there is no open source

packet level satellite simulator is currently available.

1.6 Organization of the Thesis

The core contents of this thesis are organized in three chapters. A brief description

of those chapters are given below.

• Chapter 2 depicts the simulator development preliminaries such as, selection of

an appropriate simulation platform, discussion on the transport layer protocol,

formulation of the link budget equation, discussion on ns-3 basics and orbital

propagation techniques etc.

• A detailed description of satellite point to point module development is pre-

sented in Chapter 3.

• The results, generated from the simulation program, are discussed in Chapter 4

while sending the application data generated by a haptic application.

• Concluding remarks and several future research directions are outlined in Chap-

ter 5.

9



Chapter 2

Development Preliminaries

Development of a satellite communication module requires extensive research on sev-

eral topics enlisted in Table 1.1. Those core concepts are presented in this chapter.

2.1 Selection of a Proper Simulation Platform

In the field of computer networks, network simulators played an important role. Net-

work simulators provide a set of libraries, for modeling arbitrary computer network

by specifying both the communication channels as well as the behavior of the network

node. For example, before implementing a new routing protocol in the real network,

network simulators are used to investigate the characteristics of the proposed routing

protocol in the simulated world first. With the help of simulator, the routing behavior

can easily be studied for various network topologies as the network topology is simply

a set of simulation parameters. There are two kinds of simulation paradigm exist.

Those paradigms are time driven simulation (TDS) and discrete event–based simula-

tion (DES). In time driven simulation, all the events are triggered in their scheduled

time, while in the discrete event–based simulation paradigm, simulator maintains a

10



Chapter 2. Development Preliminaries

event queue sorted by the scheduled event execution time. The simulator executes

all the events from the queue. If one event is scheduled at 10 s, and another one is

scheduled at 20 s, then in time driven simulation after finishing first event at 11 s, the

simulator will wait another 9 s before executing the second scheduled event. But in

DES, simulator jumps from 11 s to 20 s for executing the second event without waiting

9 s. However, currently available network simulation platforms are developed based

on the discrete event-based simulation paradigm [18]. The discrete-event simulator

has to provide the following structures or properties:

1. A simulator object, which may manage the execution of events, by accessing an

event queue where events are stored.

2. A scheduler, which inserts and removes events from that event queue.

3. A particular way of representing simulation time.

4. The events, which has to be simulated.

Identifying an appropriate simulation platform, comprises of consideration of the

acceptability, of that platform in the academia, the flexibility and extensibility of

that platform for new module, performance in terms of memory and processing speed

of that platform etc. Furthermore, the simulation platform is preferred to be open

source.

Available simulation platforms are enlisted in Table 2.1, from which it is easily

deducible that OPNET, QualNet and NetSim are not appropriate for developing

the simulator, as those are commercial software and closed source. From rest of

the open source platforms, Network Simulator 2 (NS2) is obsolete, and J-Sim is not

updated since 2005. In addition, the OMNeT++ is publicly distributed platform

since 1997 [16]. OMNet++ follows the component based architecture [19]. The
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Table 2.1: Available simulation platforms

Simulator

name

Interface
Emulation

Open

Source
Commercial Language

Platform

(OS)
Version

GUI CLI

ns–3 N Y Y Y N C++, Python Windows, Linux, Mac, Free BSD NS 3.26 (Oct 2016)

OMNET++ Y N Y Y N C++ Windows, Linux, Mac OsX V 5.1 (Dec 2016)

OPNET Y N Y N Y C, C++ Windows V 17.5

J-Sim Y Y Partial N Y Java, TCL Windows, Linux V1.3 (Jan 2005)

QualNet Y Y Y Y N C++ Windows, Linux –

NS2 N Y Y Y Y C++, OTCL Windows, Linux, Mac, Free BSD NS2.35 (Obsolete)

NetSim Y N Y Y Y C, C++, Java Windows V9.1 (Sept, 2016)

components are developed using C++, then the developed components are assembled

into larger components, to provide domain-specific functionality. Those domains are

sensor networks, wireless ad–hoc networks, Internet protocols, photonic networks etc.

As mentioned, in Section 1.3, OMNET++ is used to develop Open Source Satellite

Simulator (OS3). But the performance of OMNET++, in terms of memory usage

and scalability is lagging behind ns–3 [20].

On the other hand, Network Simulator 3 (ns–3) is highly modular, widespread

in academia and integrates the architectural concepts from the Georgia Tech Net-

work Simulator (GTNetS) [21], which is known for its good scalability characteristics.

ns–3 is also developed using component based architecture [19], and ns–3 could be

integrated with MatLab/Simulink program [22]. Additionally, ns–3 is developed on

non-commercial General Public License version 2 (GPLv2). Therefore, it is accessible

at no cost. ns–3 also has Direct Code Execution (DCE) framework, which helps to

execute existing implementations of user-space and kernel-space network protocols

within ns–3. That means, ns–3 simulation program can use the real ping application

from the operating system. It can also facilitate users, to use Linux networking stack

in their simulations. The software core of ns–3 is built in C++ and Python [23].

Several design patterns are implemented in ns–3, such as object factory design pat-

tern, template design pattern, component based object model, functor design pattern
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and pointer to implementation (PIMPL) design pattern etc. [23]. ns–3 also supports

object aggregation, which enables user to extend packet structure and design their

own model [23] with less effort. The Internet nodes/computers are made more close

to the real world implementation in ns–3, therefore nodes are capable of supporting

the key interfaces, such as sockets, network devices, multiple interfaces and the use

of IP addresses etc. [23].

In addition to those features, ns–3 can also support time driven simulation. There-

fore, after finishing the rigorous analysis on the available simulation platforms, Net-

work Simulator 3 (ns–3) has chosen for developing the satellite network simulator, as

ns–3 is scalable, robust and flexible for adding modules. Moreover, more than 1000

peer reviewed publications have been published using ns–3.

2.2 Selection of the Transport Protocol

In network communication, the widely accepted reliable transport protocol is the

Transport Control Protocol (TCP). Reliable data transfer is also required for haptic

teleoperation. Thus, a comprehensive survey has done on the existing transport

protocols, and their applicability in satellite communication.

2.2.1 Limitations of TCP in Space Communication

Early TCP implementations were designed for the point to point wired connection and

used a go-back-n model, cumulative positive acknowledgments, and a retransmission

timer expiration for re-sending lost data [24]. The main focus of these early stage

TCP variants were not the minimizing network congestion, as the traffic congestion

was not a serious problem at that time. But with the increase use of Internet various

congestion avoidance algorithms have been developed. However, there are various
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reasons, that impede reliable data transfer in satellite communication. Some of those

reasons are:

High Transmission Error

In satellite communication, transmission error is much higher than the terrestrial

networks. Thus, packet loss is common in satellite communication, which triggers the

congestion control algorithm of TCP. But packet can be lost due to:

• Network congestion

• Corruption

• Link outage

So triggering the congestion control algorithm, in the event of packet loss, reduce the

throughput.

Channel Asymmetry

The channel between the space station and the ground station is not same in terms of

transmission power and bandwidth. That highly asymmetric channel is not available

in the terrestrial network, therefore this asymmetry limits the TCP throughput, as

low bandwidth return link carries the acknowledgements. Moreover, new transmission

rate, in TCP, is dependant on the received acknowledgement.

Large Bandwidth Delay Product

Bandwidth delay product (BDP) is the maximum amount of data, that is present

in the network at any given time, that means maximum amount of unacknowledged
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data in the system. BDP calculated as follows,

BDP = Bandwidth(bits/second) ×RTT (second). (2.1)

Due to large BDP in satellite communication, throughput becomes low.

Intermittent Connectivity and Variable Round Trip Time (RTT)

Intermittent connectivity and variable RTT leads to unstable flow and invokes con-

gestion control and Slow Start algorithm, every now and then, which reduce the

throughput unnecessarily.

2.2.2 Transport Protocol for Satellite Communication

In satellite communication, there exist at least three sources of loss: congestion, cor-

ruption and link outage. Traditional TCP behaves same to those losses by invoking

the congestion control scheme, which limits the throughput in space communication.

The Space Communication Protocol Standards (SCPS) originated in 1992, and pro-

posed a transport protocol for the stressed environment like space. They proposed,

Space Communication Protocol Standards-Transport Protocol (SCPS-TP) to iden-

tify the reason behind packet loss and respond accordingly [25]. SCPS-TP respond

to congestion, corruption and link outage differently. SCPS-TP is different from tra-

ditional TCP, as it does not assume packet loss is caused by congestion, and uses

parameters to figure out source of error per route basis.
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Congestion-Induced Loss

In SCPS-TP, TCP Vegas is used as default congestion control mechanism. As TCP

Vegas does not use receiver’s receive window, as the upper bound of its congestion

window and limits it self from overflowing the network by sending too much data. A

modified Slow Start algorithm is also introduced in TCP Vegas, which is suitable for

the stressed situation like satellite communication.

Corruption-Induced Loss

Corruption could occur during transmission, if that happens, SCPS-TP uses an open-

loop, token bucket rate control mechanism [26]. Instead of invoking congestion control

in response to packet loss due to corruption, SCPS-TP invoke rate control mechanism

and stop overflowing the link capacity. In this token bucket rate control mechanism,

the transmission is done at a specified rate. That specified rate is managed in a glob-

ally accessible routing structure at each end point. Therefore, the available capacity

for a particular link is known by all SCPS-TP connection.

Link Outage Loss

In satellite communication, if a SCPS-TP host receives a link outage signal then it

enter in the persist mode, and sends periodic probe packets to the SCPS-TP host, who

sent the outage signal. In persist mode, it does not repeatedly time-out, retransmit,

or back-off the retransmission timer.

16



Chapter 2. Development Preliminaries

Coping with Asymmetric Channels

To reduce the impact of asymmetric channel, SCPS-TP has to reduce the uses of the

return link or the acknowledging link. Therefore, SCPS-TP uses a different header

compression technique from traditional TCP, to reduce the overhead significantly on

the acknowledgment channel, and achieve higher acknowledgment rates. SCPS-TP

also delayed the acknowledgement sending time, by following an algorithm.

Relieving Bandwidth Constraints

In bandwidth-constrained environment, SCPS-TP uses Header Compression and Se-

lective Negative Acknowledgment (SNACK) to improve performance.

SCPS-TP Header Compression

At the transport layer, SCPS-TP uses a end-to-end loss-tolerant TCP header compres-

sion scheme, which can tolerate connectivity changing and losses. As the compression

scheme is working end-to-end, it can easily tolerate the changing connectivity since

transmitter and receiver remains same so the position of compressor and decompres-

sor remains same. This technique does not add any additional benefit if the satellite

link is single hop.

SCPS-TP SNACK

SCPS-TP SNACK option uses the concept of TCP Selective Acknowledgement

(SACK) option and TCP Negative Acknowledgment (NACK) option [27]. SNACK is

selective negative acknowledgment, but it could specify multiple gaps in the received

sequence in a bit efficient manner. Various TCP extensions for space, including
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SNACK was proposed for increasing the throughput [28].

Implementing SCPS-TP in ns–3, is not the primary focus of this work. Thus,

in the preliminary stage of simulator development, SCPS-TP is not incorporated.

Moreover, ns–3 already incorporated TCP Vegas in its latest release. Therefore,

instead of incorporating SCPS-TP in ns–3, TCP Vegas is used to test the developed

satellite module, as TCP Vegas is used in SCPS-TP for congestion control.

2.3 Explore Satellite Communication Strategy of ISS

The International Space Station (ISS) consists of different modules from different

country. Thus, ISS does not have a single communication strategy, different countries

use their own communication system to send and receive data from Earth. The Rus-

sian modules communicate with the ground in two different ways. It communicates

with the ground directly, with the help of the Lira antenna mounted to Zvezda (Star)

module. Zvezda (Star) is a Russian module, docked with ISS on July 26, 2000 [29].

The Lira antenna also relays data to the ground using Luch data relay satellite sys-

tem [29]. Luch data relay satellite system was temporarily unavailable [29, 30]; but,

Russian Space Agency launched two new Luch satellites Luch-5A and Luch-5B in

2011 and 2012 respectively, to revive the system. The US Orbital Segment (USOS)

communicate with Earth through the United States Tracking and Data Relay Satel-

lite System (TDRSS), in geostationary orbit. ISS uses two different radio bands with

the help of antennas mounted in the Z1 truss structure. Those two radio bands

are, S band (2 − 4) GHz and Ku band (12 − 18) GHz, shown in Fig. 2.2. By us-

ing TDRSS, ISS has almost continuous real-time uninterrupted communications with

NASA’s Mission Control Center (MCC-H) in Houston [29,31].

Ground terminals in the MCC-H, relay signals to and from Tracking and Data
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Table 2.2: List of TDRS

Name Launched Status
First Generation

TDRS-A (TDRS-1) April 04, 1983 Retired Fall 2009
TDRS-B (TDRS-2) – Destroyed in 1986
TDRS-C (TDRS-3) September 29, 1988 –
TDRS-D (TDRS-4) March 13, 1989 Retired 2011
TDRS-E (TDRS-5) August 02, 1991 –
TDRS-F (TDRS-6) January 13, 1993 –
TDRS-G (TDRS-7) July 13, 1995 –

Second Generation
TDRS-H (TDRS-8) June 30, 2000 –
TDRS-I (TDRS-9) March 8, 2002 –

TDRS-J (TDRS-10) December 4, 2002 –
Third Generation

TDRS-K (TDRS-11) January 30, 2013 –
TDRS-L (TDRS-12) January 23, 2014 –
TDRS-M (TDRS-13) will launch 2017 –

Relay Satellites (TDRS). For download and upload voice, video, command, systems

and research cargo data between ISS and MCC-H each TDRS has a Space-to-Ground

Link (SGL) antenna. The MCC-H uses two functionally-identical off-site ground

terminals at the White Sands Complex (WSC), located in Las Cruces, New Mexico for

sending data. These two terminals are known as the White Sands Ground Terminal

(WSGT) and the Second TDRSS Ground Terminal (STGT).

Tracking and data relay satellite system consists of some geostationary satellites

listed in Table 2.2. An S-band antenna attached to the ISS always looking for ex-

changing data with the SGL antenna and a closest TDRS. For transmitting the data,

S-band antenna has to be pointed in the right direction of the nearest TDRS. For that

reason, the S-band antennas in the ISS, are attached to motorized gimbals. There-

fore, the antennas can move and point into the correct position, to transmit the data.

The other nations modules, such as European Columbus laboratory and Japanese
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Figure 2.1: Each circle represents a Tracking and Data Relay Satellite (TDRS). Satel-
lites placed outside the orbit are either non-functional or in testing phase. The inset
shows a typical TDRS.

Figure 2.2: Frequency bands used in International Space Station for communication
with the Earth. S-band is used for transmitting command and other data and Ku-
band is used for transmitting high payload data like video.

Kib modules use the S and Ku band for tranmission. The European Data Relay

System and Japanese system, uses similar technology like TDRSS [31]. In this work,

the communication strategy used by NASA is adopted.

The investigation on ISS communication strategy showed that ISS is communi-

cating with the MCC-H via the United States Tracking and Data Relay Satellite

System (TDRSS) and White Sand Ground Terminal (WSGT). The working strategy

of TDRS system is classified. Till date, NASA launched twelve satellites in the space

as part of the TDRS system. As enlisted in Table 2.2, first generation satellites are

about to expire and the third generation satellites are not operational yet. Thus,
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Figure 2.3: Two dimensional system model, where ground station is placed with a
distance of Earth’s radius and Tracking and Data Relay Satellites (TDRS) are placed
120° apart from each other and 35, 787 km away from ground station.

in the initial phase of the simulator development a two dimensional (2D) simulation

model is developed. The 2D model, shown in Fig. 2.3, consists of five nodes, where

three geosynchronous satellites (TDRS) are positioned 120° apart from each other,

ground station placed with the radius of the Earth (RE) and ISS rotating in a cir-

cular path. In 2D model, all the nodes are placed with the actual distance from

the center of the coordinate system. Moreover, in 2D model three TDRSs are used,

as theoretically three TDRSs could cover 95% of the Earth [32]. Furthermore, the

MCC-H is considered as the ground station, though MCC-H is the control center,

situated in Houston, Texas and data is sent to ISS through WSC in White Sands,

New Mexico. But MCC-H and WSC is connected via NASA’s Integrated Services

Network (NISN), which is classified. Therefore, the assumption is made that, data

from MCC-H to WSC reaches instantly. Thus, the communication with ISS, from

ground station is done in three different ways, based on the ISS position in the space.

Ground station always send data to TDRS-1. Then TDRS-1 either send data to ISS
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directly or relay data to the TDRS positioned in close proximity of ISS. Therefore,

three scenarios are as follows,

1. ISS is close to TDRS-1, therefore TDRS-1 sends data to ISS directly.

2. ISS in close proximity with TDRS-2, therefore TDRS-1 sends data to TDRS-2

afterwards TDRS-2 sends data to ISS.

3. ISS is close to TDRS-3 thus, TDRS-1 relay data to TDRS-3, then TDRS-3

deliver data to ISS.

As ground station always send data to TDRS-1, and TDRS-1 relay data based on the

position of the ISS, therefore all the connections between nodes are point-to-point.

In this work, other satellites, that orbiting in the space are not considered, therefore

calculating the interference caused by other satellites is not required.

2.4 Determination of the Satellite Link Budget

The satellite link is similar to the terrestrial microwave radio relay link, but it has an

advantage of not requiring as many re-transmitters, as required in the terrestrial link.

The signals are transmitted over a satellite communication link, requires Line-of-Sight

(LoS) communication. The transmitted power attenuates while propagates through

the space and some noises added with the signal. Furthermore, transmitted signal

and received signal amplified with the antenna gains. The received energy-per-bit to

noise-density
(Eb

N0

)
is defined as follows [33]:

Eb

N0

=
PtLlGrGtLpLa

kTsR
, (2.2)
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where
Eb

N0

represents the ratio of received energy-per-bit to noise-density, Pt denotes

the transmitted power, Ll depicts the transmitter-to-antenna line loss, Gt and Gr

represents the antenna gain of transmitter and receiver respectively, Lp depicts the

path loss, La is the atmospheric loss, k represents the Boltzmann constant and Ts

denotes the system noise temperature (K) and R represents the data rate of the

channel in bps.

The link equation can be represented in terms of decibels (dB).

Eb

N0

= Pt dB + Ll dB +Gr dB +Gt dB + Lp dB + La dB − 10log(k) − 10log(Ts) = 10log(R).

(2.3)

The parameters used in Eq. (2.3) is calculated or collected before the simulation

starts except the free space path loss value as it depends on the distance between

source and destination.

2.4.1 Free Space Path Loss

The free space path loss is calculated as follows [33]:

Lp =
( λ

4πD

)2
, (2.4)

where λ is the wavelength of the signal and D is the distance between sender and

receiver. The relationship between frequency and wavelength is characterized as fol-

lows,

λ =
c

f
, (2.5)

where c represents the speed of light and f is the frequency in Hz. Therefore, from
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Eq. (2.4) and Eq. (2.5) the following equation is obtained,

Lp =
( c

4πDf

)2
, (2.6)

Converting Eq. (2.6) to dB gives:

Lp dB = 20log(3 × 108) − 20log(4π) − 20log(D) − 20log(f)

= 147.5523 − 20log(D) − 20log(f).

(2.7)

2.4.2 Atmospheric Attenuation

As the wave propagates through the atmosphere, it attenuates for gases, vapor, rain,

cloud and fog etc. The attenuation can vary based on the rain drop sizes [34]. The

attenuation can also be varied based on the humidity. [35]. Moreover, the atmospheric

attenuation is low on the frequencies lower than 10 GHz [35, 36]. The atmospheric

attenuation is a vast research topic, and it needs complex calculation and real time

weather information, temperature, wind velocity, humidity etc. As the goal of this

work is to determine the feasibility of long–distance space telemetry in ISS. Thus,

atmospheric attenuation due to gases, rain, vapor and fog is considered as a constant

loss irrespective to the frequency, and assumed as La dB = −10 dB.

2.4.3 Noise Temperature

Calculating the noise temperature, is challenging for a dynamic system, where ISS is

moving with 8kms−2 speed. Noise temperature depends on the altitude and elevation

from the ground, as well as the position of the sender and receiver. Calculating all

the components, which contributes to the noise temperature, is a complex task and

not aligned with the primary focus of this work. Therefore, some simplified assump-
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tions have been made. For the simplification, three different noise temperatures are

considered. First noise temperature is the noise from the sky (Tsky), depending on

the elevation, Tsky varies from 2 K to 90 K [36]. As mentioned earlier, to cancel losses

from weather and atmosphere the simulator used the 2−4 GHz frequency band, thus,

Tsky is assumed to be 40 K [37,38]. The other two noise sources are the galactic noise

(TG) and the noise from the Earth (TE. The galactic noise TG is the background

cosmic noise and is assumed to be 2.73 K for all links [37,39,40]. The noise generated

by Earth (TE) is assumed as 60 K, as its value is typically between 10 K and 100

K [39]. The antenna temperature (TA) is calculated as follows,

TA = Tsky + TG + TE. (2.8)

An amplifier has a noise figure (NF), which is typically varies between 2 dB to 3

dB [40]. The noise figure (NF) is a ratio between output system temperature and

input system temperature or room temperature (T0). In the link budget calculation,

3 dB is chosen for noise figure (NF). The noise figure is then converted to a noise

temperature, of an amplifier as follows,

TAmp = T0(NF − 1). (2.9)

The receiver temperature (TRx) is assumed as 293.15 K or (20°) C, and the loss

(LRx) between the receiving antenna and the receiver input is 0.5 dB. The system

noise temperature (TS) is computed as,

TS =
TA
LRx

+ TRx

(
1 − 1

LRx

)
+ TAmp. (2.10)
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2.4.4 Antenna Gain

The antenna gain depends on the diameter d of the antenna and the wave length (λ).

Antenna gain is calculated as [32],

G = η
(πd
λ

)2
, (2.11)

where η denoted the antenna efficiency which considered as 60% or 0.6 and λ is

calculated from Eq. (2.5) as frequency of the signal is 2.3 GHz. Diameter of the

antenna in the ground station varied from 5 m ∼ 20 m and in the satellite varied

from 1 m∼ 2 m.

2.4.5 Total Link Equation

The line loss (Ll dB) in transmitter is −0.5 dB for all frequency ranges [33]. Some

additional losses need to be added in the calculation. Those are implementation loss

of −2 dB and polarisation loss of −3 dB [33, 39]. This two losses are specified as

additional loss Ladd = −5 dB. The total link equation for the simulation is calculated

from Eq. (2.3),

Eb

N0

= Pt dB + Ll dB +Gr dB +Gt dB + Ls dB

+ La dB − 10log(k) − 10log(Ts) + Ladd − 10log(R).

(2.12)

The distance between various nodes D will be calculated during the simulation.

2.4.6 Minimum Detectable Signal

The minimum detectable signal or discernible signal (MDS) is defined as the small-

est RF input signal, which could be observed in presence of background noise [38].
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Therefore, to distinguish RF from the noise, it has to be at least ten times stronger

than the noise floor. Noise floor (NF ) is reckoned as,

NF = 10 log(kTs1000) +NF + 10 logB, (2.13)

where NF denotes the Noise Figure used in Eq. 2.9 as 3 dB, Ts is the system tempera-

ture calculated in Eq. (2.10) and B represents the bandwidth of the signal. The noise

floor is calculated before the simulation start, and it is −73.431 dBm. Therefore, the

received power to noise ratio has to be ten times greater than −73.431 dBm. Thus,

computed MDS is −63.431 dBm. If the received SNR falls below this MDS value,

then the packet would be dropped.

2.4.7 Bandwidth and Packet Error Rate

The frequency band used in practice to communicate with ISS is S-band (2 ∼ 4 GHz)

as mentioned in section 2.3. From the Eq. 2.6, it is deducible that with the increment

of the frequency, path loss increases. But with the higher frequency more bandwidth

is achieved. From the Shanon-Hartley theorem, channel capacity is calculated [41]:

C = B log2(1 + SNR), (2.14)

where C represents the channel capacity in bits per seconds (bps), B denotes the

channel bandwidth in Hertz (Hz) and SNR depicts the Signal-to-Noise ratio. From

Eq.2.14, it is obvious that, doubling the signal bandwidth, doubles the channel capac-

ity, if SNR remains same. But with the increment of the frequency noise increases,

therefore SNR decreases.

In wireless communication, signal modulation is used for encoding digital (bi-
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nary) data onto analogue signals. Data corruption is related with the modulation

techniques. There are different types of modulation techniques are used nowadays

and each of them has advantages and disadvantages. For encoding digital data all

the modulation techniques modify the amplitude, frequency or phase of an analogue

carrier signal. Based on the modulation scheme, Bit Error Rate or BER of a signal

changes. In this work, Binary Phase Shift Keying (BPSK) is chosen as the modula-

tion scheme. In BPSK, it uses two phases of the carrier signal which are separated

by 180°. The BER for BPSK is as follows,

BER =
1

2
erfc

(√Eb

N0

)
. (2.15)

where erfc() is the complementary error function and
Eb

N0

is the energy-per-bit to

noise-power-density-ratio.

In this study, the ratio of
Eb

N0

is computed whenever a receiver receives a packet

in the simulation time, and from the value of
Eb

N0

, the packet error rate is calculated

using the following equation,

Pe = 1 − (1 −BER)L, (2.16)

where Pe denotes the packet error rate (PER). PER is the number of incorrectly

received bits divided by the total number of received bits in a packet and L repre-

sents the number of bits in a packet. Eq. 2.16 is approximated for small bit error

probabilities by

Pe = BER× L. (2.17)

The Pe is computed for each packet, afterwords a uniform random number is gen-

28



Chapter 2. Development Preliminaries

erated, if the generated random number turned out less than Pe then the packet is

dropped in the receiver side. This process is known as a Bernoulli trial (or binomial

trial), in the theory of probability and statistics.

2.5 Implementation in ns–3

Before discussing the developed satellite network device and channel, some core con-

cepts of ns–3 should be described first. ns–3 is a collection of software libraries that

work together. Program can be written in C++ or Python that links with these

libraries. Developing any module in ns–3 requires a clear understanding of these

following concepts.

2.5.1 Key Abstractions

Some key abstraction has to be discuss which are commonly used in networking, but

have a specific meaning in ns–3.

Node

In ns–3, a basic computing device is denoted as node which is represented in C++ by

the class Node. Node is basically a class providing various functionality like adding

network device, install application, protocol stacks etc. Node is the simulated version

of a bare computer without having network devices and Internet protocols etc.

Application

The Application class in ns–3 mimics the real world computer software, that can be

installed in ns–3 Node class, and do user defined tasks in the simulated world of ns–3.
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Channel

The channel is the medium of sending data from one computer to another computer

in the real world. It could be wireless or wired connection. In ns–3, Channel class per-

form the same task of transmitting data between nodes. The Channel class provides

some basic characteristics which could be extended as per specialized class.

Net Device

Net device is the short form of network device. In ns–3, NetDevice is a class which

represents the network device installed in the node/computer. Node class then send

or receive data in the simulation from other nodes via the Channel class. Multiple

network devices can be installed in the node like real world.

Topology Helpers

Topology helpers are classes, which provides functions to create specific simulation

scenarios, without writing detailed instructions to reduce coding complexity. With

the help of those classes, programmer could create complex network topologies with

minimal coding. For example, programmer could create 100 nodes, install particular

NetDevice and Channel then set their values collectively, with the help of topology

helper class. Without helper class, programmer has to tweak each and every nodes

manually. In Appendix A, a code snippet from the developed topology helper is

provided.
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Events and Simulator

The properties of a discrete event simulator is described in subsection 2.1 in page 10.

To achieve those properties, a Simulator class is used in ns–3 to schedule events.

Where Event is another class. After scheduling events in the event queue, program

has to execute them by entering the simulator main loop by calling Simulator::Run.

When the main loop starts running, it sequentially executes all scheduled events in

the event queue from oldest to most recent until there are either no more events left

or Simulator::Stop has been called.

2.5.2 Object Model

As mentioned earlier, ns–3 is a C++ library which consists of traditional C++ objects,

with some extra functionality and features.To provide those extra features, ns–3 used

several design patterns, such as classic object-oriented design (polymorphic interfaces

and implementations), separation of interface and implementation, the non-virtual

public interface design pattern, an object aggregation facility, and reference count-

ing for memory management. ns–3 created three special base classes which can be

extended to obtain special features by user program. Those base classes are:

• Class Object

• Class ObjectBase

• Class SimpleRefCount

By extending these base classes, a user class attains the following properties:

• ns–3 type and attribute system

• an object aggregation system
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• a smart-pointer reference counting system (class Ptr).

Classes that extend class ObjectBase inherit first two properties, but not the third

one. Again, classes which derived from class SimpleRefCount, get only the smart-

pointer based reference counting system. Only Object class provides all three prop-

erties to the child classes.

2.5.3 Type and Attribute System

Object class in ns–3 provides, some features for organizing the system and set or

retrieve values are stored in the objects.

• It provides the ”Metadata” system which links the class name with a lot of

meta-information about that object, including:

– Information about the base class of the subclass,

– Accessible constructors of that subclass,

– The set of values of the subclass which is known as attributes in ns–3,

– Information about those attributes like whether each attribute can be set,

or is read-only,

– Limit the values for each attribute.

TypeId Class

The TypeId class is an extended form of run time type information (RTTI) for ns–

3 Object class. Normally C++ language provides a simple kind of RTTI in order

to support dynamic cast and typeid operators. But in ns–3 classes, that derived

from class Object, inherits a metadata class named TypeId, similar to C++ typeid
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operator. In ns–3, TypeId class records meta-information about the class which is

extended from Object class. Therefore, newly created class can be used in the object

aggregation and with component manager system.

Attribute System

The main purpose of the attribute system is to provide a organized way during a

simulation to access internal members of an object. Therefore, during a simulation

program, programmer can access any particular attribute or internal variable con-

veniently. Thus, programmer can tweak any parameter, and observe the simulation

behavior. Attribute system in ns–3, manipulated with the help of TypeId class and

Config class. Using the TypeId class within the Object class enables programmer to

set, change, control and retrieve a value of an attribute. With the help of the Config

class a particular attribute can be set from anywhere in the code.

2.5.4 Object Aggregation

Object aggregation is an well established design pattern, which is incorporated in ns–

3 as object aggregation system for the use of inheritance and polymorphism to extend

protocol models. For example, specialized versions of TCP, such as RenoTcpAgent

derive from class TcpAgent. In ns–3, Node class do not posses any Internet stack;

therefore, an Internet stack has to be incorporated with the Node class by aggregating

Ipv4L3Protocol object. Following code snippet taken from ns-3 code base, shows

the procedure,
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Ptr<Node> node = CreateObject<Node>();

Ptr<Ipv4L3Protocol> ipv4 = CreateObject<Ipv4L3Protocol> ();

ipv4->SetNode (node);

node->AggregateObject (ipv4);

2.5.5 Smart Pointers

Memory management in a C++ program is very crucial and complex process. It has

to be done correctly and in a proper way, otherwise program may crash. In C++, if a

object is created using new command, then that object has to be deleted by explicitly

calling delete command. Most often, programmers forgot to do that, which leads to

memory fragmentation in heap. In a complex system, like ns–3, memory management

is important, therefore a reference counting design is implemented. Where Ptr class

provides a mechanism of reference counting, which provides automatic object deletion.

This mechanism, deletes object when it goes out of the scope or no longer needed. For

that reason, it is known as Smart Pointers. Reference counted objects are allocated

using Create or CreateObject method. Following code snippet shows CreateObject

method’s use,

Ptr<WifiNetDevice> device = CreateObject<WifiNetDevice> ();

2.5.6 Tracing System

In ns–3, tracing subsystem is one of the core subsystem to understand. As the main

focus of doing simulation is to generate data and analyze those data later on. Tracing

subsystem allows user to get data from the core classes of ns–3 without modifying the
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core code. There are hundreds of classes in ns–3 and those classes contain thousands

of variables. Therefore, printing particular attributes value, without modifying the

core code, is tricky. That tricky part is done with the help of Callback, Attribute

and Config subsystems.

2.5.7 Callback

Callback system is another core subsystem of ns–3. The main goal of the Callback

system in ns–3 is to call a method from anywhere of the system without any specific

inter-module dependency. That means, if a piece of code wants to call a method, it

needs to understand that method’s signature, or at least, where that method definition

is located. For that reason, in programming language, a common paradigm is to call

a method. Therefore, when one method wants to be called by a piece of code, that

method uses callback system. The concept of callback is not straight forward, as one

method wants to be called by a code. Callback is heavily used by Tracing subsystem

as one method wants to be called, when the value of an attribute changes. Without

Callback, that task can not be done.

2.5.8 Satellite Network Device

Before implementing the simulator, an extensive study has been done on the existing

module in ns–3. As ns–3 does not have any satellite module, which can serve the

satellite communication, a new module has to be implemented and incorporated with

the existing modules in ns–3. Implementing the new module is done with maintain-

ing all the standards imposed by ns–3, and providing proper tracing system, declare

attributes properly thus callbacks methods can hook those as per requirements. The

proposed module structure is showed in Fig. 3.1. The module is capable of aggregat-
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ing Mobility class and PropagationLoss class with the SatelliteChannel class,

therefore delay and path loss can be calculated. In the planning phase, the naming

of channel and device was kept short which changed in the implementation phase.

For example, in the Fig.3.1 satellite network device denoted as, SatNetDevice which

renamed in the implementation phase as, SatellitePointToPointNetworkDevice.

2.5.9 Two Dimensional System Model

The developed SatNetDevice is installed in all the nodes in the simulation. Then

those nodes are connected with each other using point-to-point SatChannel. There-

fore, ground station is connected with TDRS-1 only. TDRS-1 is connected with

TDRS-2, TDRS-3 and ISS using different SatNetDevice objects. TDRS-2 and

TDRS-3 connected with ISS separately. After that, we created three different TCP

socket in ISS for three different scenarios described in subsection 2.3 in page 18. In

2D model, ISS is moving following a circular path and send/receive data.

2.6 Implementation of Three Dimensional Orbital Propaga-

tion Model

After simulating the 2D model in ns–3, the orbital propagation model is incorporated

in the simulator. Orbital propagation is the process of predicting a satellites position

accurately in a particular time. To generate that information, it is important to know

all the existing coordinate systems and transformation among them. Though the

fundamental concepts about moving objects under gravitational attraction is known

since the time of Sir Isaac Newton but the practical determination of an object’s

position in orbit is difficult.
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2.6.1 Perturbing Forces and SGP Model

As per Newton’s Law of Universal Gravitation, in case of two point masses, where one

is heavier than other, then the smaller object is following an elliptical orbit around

the heavy object. In the satellite orbit prediction, all the perturbing forces along

with the primary force of gravitational attraction between Earth and satellite has

to be calculated. These additional forces act on satellite and change its trajectory

from ellipse. Perturbing forces are anything that bring aberration to the satellite

orbit. For example, Earth geospherical structure, atmospheric drag, gravitational

attraction from Sun, Moon, other planets and stars are accumulate, as perturbing

forces or perturbation. Moreover, calculation starting point with respect to time,

is also an important consideration in orbital propagation as the Earth is rotating

around the Sun and Sun is also orbiting along with the solar system. Therefore, the

North American Aerospace Defense Command (NORAD) in 1970 developed a model

known as SGP (Simplified General Perturbation) for predicting any orbiting objects

trajectory. The SGP model has improved and has several versions. In this work,

SGP4 model is used to predict satellite trajectory.

2.6.2 TLE and State Vectors

Keeping data in a particular format for the orbiting objects, is known as orbital

element sets. NORAD uses two forms of orbital element set. Those are state vectors

and Keplerian orbital element set, which is also known as NORAD two-line element

set (TLE). A state vector is a collection of states or values which is used with the

state transformation rules to predict satellites position in past or future in terms of

state vectors. Again, TLE is a data format stored in two lines, each line is consists of

80−columns of ASCII text, to store the data regarding orbital elements of an Earth-
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orbiting object for a given point in time. The TLE data representation is used with

the simplified perturbations models (SGP, SGP4 etc.) for generating state vectors.

SGP4 model takes input in the form of TLE and generate state vectors.

2.6.3 Coordinate System

In absence of perturbing forces, two set of values would suffice for predicting satellites

orbit: the position and the velocity. Without velocity satellite cannot rotate around

the Earth. Position and velocity is closely coupled with time and the coordinate

system. In SGP4 model, the time is represented in terms of Julian Day. Before

describing the Julian day it is necessary to know about the solar day and the sidereal

day.

Sidereal Day

Sidereal day is the time that the Earth takes to rotate 360° about its axis.

Solar Day

Solar day is noon to noon time difference from a particular position of the Earth. If

the Earth was rotating in a fixed place with respect to sun then sidereal day and solar

day would be the same thing. But Earth is rotating on its axis, as well as around

the Sun in a elliptical path. Therefore, solar day and sidereal day is not same and

sidereal day is 23 hour 56 minutes but solar day is 24 hours in length.

Julian Day

The Julian day is an integer assigned to a whole solar day starting at noon on January

1, 4713 BC, proleptic Julian calendar which is November 24, 4714 BC, in the proleptic
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Gregorian calendar. That day is considered as the 0th Julian day [42–44]. In that

particular day, three multi-year cycles were started. Those cycles are Indiction, Solar,

and Lunar cycles. With the help of Julian day, any day or time in the history of

mankind can be represented. To illustrate that, the Julian day number for the day

starting at 12 : 00 Universal Time (UT) on January 1, 2000, is 2, 451, 545 [45].

ECI Coordinate System

For calculating state vectors, the Earth-Centered Inertial (ECI) coordinate system is

used, which is a Cartesian coordinate system, centered at the center of the Earth and

in this system, Earth is fixed relative to the stars. That means, Earth is not rotating

or accelerating. The z axis is pointing North through the Earth’s rotational axis, the

x axis pointed towards the direction of the vernal equinox and the y axis completes

the right-handed orthogonal system. Vernal equinox is imaginary connecting line of

the center of the Earth to the center of the Sun at the beginning of the spring when

the Sun crosses the Earth’s equator moving North. The position of Earth has to

be calculated from 0th Julian day to predict the position of a satellite accurately.

Calculating time from 0th Julian day is hectic, therefore a time stamp is defined with

the Earth’s Mean Equator and Equinox position, at 12 : 00 Terrestrial Time on 1st

January, 2000 in the ECI frame. It is also known as J2000 or EME2000. All the

calculation in SGP4 is done with respect to J2000.

As position of an observer or ground station is represented in terms of latitude,

longitude and altitude above the Earth’s surface and satellite’s position is typically

represented using TLE. NORAD SGP4 model takes the standard TLE data set and

time, then it produces the state vectors of the satellite in J2000 ECI coordinate

system.
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Figure 2.4: Longitude and latitude to Earth Centered Inertial (ECI) coordinate sys-
tems conversion.

The position of a observer on the Earth is dependant on the time as Earth is

rotating. Calculating z axis is depicted in the Fig. 2.4, where the Earth is considered

spherical for the ease of illustration. In Fig. 2.4, a side sliced view of the Earth

with North up is shown. Where φ observers latitude, Re is Earth’s equatorial radius.

Thus, the z coordinate of the observer, located on the mean sea level, is computed as

follows,

z = Resinφ. (2.18)

If the observer is located above mean sea level by h, then the Re would be replaced

with Re + h in Eq. 2.18. Now for calculating x and y coordinate of the observer, the

value of R is required from Fig. 2.4 which calculated as follows,

R = Recosφ. (2.19)

Computation of the x and y coordinates requires the consideration of time as Earth

rotates in the x− y plane (i.e., about the z axis). Therefore, unlike the z coordinate
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Table 2.3: The nodes in ns–3 and their representation in 2D and 3D model. As
TDRS-9 replaces TDRS-1 therefore TDRS-1 in 3D model will represent TDRS-9.
This assumption is also applicable to other nodes

Representation in simulation 2D Model 3D Model

n0 Ground station
WSGT located at

latitude 32.5007°N and
longitude 106.6086°W

n1 TDRS-1 TDRS-9
n2 TDRS-2 TDRS-8
n3 TDRS-3 TDRS-10
n4 ISS ISS

the x and y coordinates of a point on the Earth’s surface will vary with time. As

discussed earlier, local sidereal time is related with the rotation of the Earth directly

but time is calculated in terms of Universal Coordinated Time (UTC), which is mean

solar time. For calculating the local sidereal time with respect to UTC, observer’s east

longitude, λE is added to the Greenwich Sidereal Time (GST) also known Greenwich

Mean Sidereal Time (GMST), θg(τ). The GMST θg(0
h) at 0h of any particular

date is obtained from the US Naval Observatory’s Astronomical Almanac [46]. After

obtaining θg(0
h) of any particular day, the position of the observer at any particular

time ∆τ is calculated as follows,

θg(∆τ) = θg(0
h) + ωe∆τ, (2.20)

where ∆τ is the UTC time of interest and ωe = 7.29211510 × 10−5 radians/second is

the Earth’s rotation rate. The above calculation is done considering Earth is spherical,

but in practical Earth is geospherical in shape. Therefore, some more calculations

is done and incorporated in the SGP4 model library developed by Vallado [47]. In

their C++ library, they incorporated all the orbital propagation aspects to predict
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exact satellite location. The library take TLE as input and generate state vectors as

output. Thus, the library is used along with the publicly published TLE by NASA,

to generate actual trajectory of ISS in the simulation. After generating the actual

trajectory data of ISS, TDRS-8, TDRS-9, TDRS-10 using the TLE data from NASA,

those data is incorporated in the 2D model and enhanced the model to 3D. The

representation of nodes, in ns–3 of 2D and 3D model, is depicted in table 2.3. As the

development evolved from 2D to 3D model, TDRS-9 in 3D is represented as TDRS-1.
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Implementation in ns–3

3.1 Satellite Point to Point Module

The ns–3 is developed using C++ programming language. There exist various mod-

ules in ns–3 to construct a simulation program as per user’s requirement. But ns–3

does not have any satellite communication module to use. Therefore, in this work,

a satellite communication module is developed to simulate the haptic communica-

tion scenario over the space. The development of a satellite module is inspired by

the existing point-to-point module in ns–3 and the diagram provided in the pa-

per [17] on Satellite Network Simulator–3, which is not public yet. The developed

satellite-point-to-point module’s architecture is depicted in Fig. 3.1.

The ns–2 did not have any standard structure to follow, therefore researchers

develop their module in their own way in ns–2 and upload it in the ns–2 repository.

Thus, ns–2 becomes unmanageable and ns–3 comes to the scene. The ns–3 follows a

strict organization of the files in a module. The next section, describes the module

creation in ns–3.
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Figure 3.1: Satellite communication module consists of network device and channel.

3.2 Creating a New Module in ns–3

In ns–3, a group of related classes, examples, and tests are combined together to form

a module. Those modules are reusable. Therefore, when a new researcher creates his

own module that module can be used with the existing ns–3 modules. For this work,

a module named satellite-point-to-point, is developed using the following steps:

3.2.1 Module Layout

In ns–3, all the modules are stored in the src directory. Different researchers

develop their module in their own way in ns–2, but in ns–3 they have to follow

a guideline for developing their module. If researcher did not follow the guide-

lines and did not organized his/her code according to guideline, his/her code

would not be merged with the existing ns–3 repository. Therefore, the manageability

of ns–3 is ensured. A typical ns–3 module consists of the following directories and files,
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src/

module-name/

bindings/

doc/

examples/

wscript

helper/

model/

test/

examples-to-run.py

wscript

Note that, it is not necessary to have all the folders present in the exact manner

in a particular module. But it is expected, that researcher would provide proper

examples and test programs, before submitting his/her module to be accepted by the

ns–3 community.

3.2.2 Create the Module Skeleton

In ns–3, there is a python script named create-module.py, which is provided

in the src directory for creating the skeleton of a new module. The developed

satellite-point-to-point module is created with the help of create-module.py

script in the src directory. For creating the module, following command was used,

./create-module.py satellite-point-to-point

That command, creates satellite-point-to-point module in the src directory

with the following structure,
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src/

satellite-point-point/

doc/

satellite-point-point.rst

examples/

satellite-point-point-example.cc

wscript

helper/

satellite-point-point-helper.cc

satellite-point-point-helper.h

model/

satellite-point-point.cc

satellite-point-point.h

test/

satellite-point-point-test-suite.cc

wscript

3.2.3 Merge with the Existing System

After creating the module, the module has to be linked with the existing system. As

ns–3 uses Waf system to compile and run, therefore newly created module has to be

linked with the existing Waf system. Thus, existing Waf system could compile and run

newly created module. The linking is done, by editing the wscript file created in the

satellite-point-to-point directory. In that wscript file, all the required module

has to be defined, therefore Waf system could add the existing required modules
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for newly created module. The developed module depends on the network, mpi,

mobility and propagation modules. Therefore, those dependencies are added in

the wscript file. Thus, after modifying the wscript file, it becomes:

def build(bld):

module = bld.create_ns3_module(’satellite-point-to-point’, [’network’,

’mpi’, ’mobility’, ’propagation’])

module.includes = ’.’

module.source = [

’model/satellite-point-to-point-net-device.cc’,

’model/satellite-point-to-point-channel.cc’,

’model/satellite-point-to-point-remote-channel.cc’,

’model/sppp-header.cc’,

’model/satellite-physical.cc’,

’helper/satellite-point-to-point-helper.cc’,

]

module_test =

bld.create_ns3_module_test_library(’satellite-point-to-point’)

module_test.source = [

’test/satellite-point-to-point-test.cc’,

]

headers = bld(features=’ns3header’)

headers.module = ’satellite-point-to-point’

headers.source = [

’model/satellite-point-to-point-net-device.h’,

’model/satellite-point-to-point-channel.h’,
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’model/satellite-point-to-point-remote-channel.h’,

’model/sppp-header.h’,

’model/satellite-physical.h’,

’helper/satellite-point-to-point-helper.h’,

]

if (bld.env[’ENABLE_EXAMPLES’]):

bld.recurse(’examples’)

bld.ns3_python_bindings()

This wscript file will be called by the Waf system during building ns–3, and the

modules that used in the satellite-point-point module such as network, mpi,

mobility, propagation etc. are also linked with the newly developed module. The

newly developed module is usable from any application in ns–3 by incorporating the

header file satellite-point-to-point-module.h.

3.3 Classes in the New Module

The newly developed satellite-point-to-point module is the preliminary

model for satellite communication. This model mimics a very simple point

to point wireless link SatellitePointToPointChannel, connecting exactly two

SatellietPointToPointNetDevice devices, via SatellitePhysical layer class. In

this module, data is encapsulated in the Point-to-Point Protocol (PPP RFC 1661),

and assumed to be established and authenticated all the times. In the developed mod-

ule, structure of SPPP-Header is analogous to PPP-Header class in point-to-point

module.
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3.3.1 SatellietPointToPointNetDevice Class

The SatellitePointToPointNetDevice provides following Attributes:

• ReceiverGain: The double value of the receiver antenna gain.

• TransmitterGain: The double value of the transmitter antenna gain.

• TransmitPowerDbm:The double value for the transmit power of the transmit

antenna.

• Address: The ns3::Mac48Address of the device (if desired).

• DataRate: The data rate of the device (ns3::DataRate).

• TxQueue: The transmit queue used by the satellite network device

(ns3::Queue).

• Rx: A trace source for received packets.

• Drop: A trace source to notify the dropped packets.

The SatellitePointToPointNetDevice mimics a real world transmitter section

which puts bits in a wireless channel. The DataRate attribute specifies the data

generation rate in terms of number of bits per second that the device will simulate

sending over the satellite channel. Actually, no bits are sent, but an event is scheduled

in later time, based on the number of bits in each packet and the specified DataRate.

In the developed model, receiver can receive data in any data rate. Therefore, there

is no receiver data rate attribute in present in the model. By setting the transmitter

data rate, both devices connected via a given SatellitePointToPointChannel create a

symmetric channel. Moreover, user can also create a asymmetric channel by setting
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the DataRate in both network devices. In SatellitePointToPointNetDevice, there

is a random variable instantiated from the UniformRandomVariable class.

3.3.2 SatellietPointToPointChannel Class

The satellite point to point net devices are connected via SatellitePhysical class

and an SatellitePointToPointChannel as depicted in the Fig. 3.1. This satellite

channel, models an wireless medium transmitting data bits at the data rate speci-

fied by the source network device. The SatellitePointToPointChannel calculates

the delay between source and receiver by calculating their distances from their po-

sition in the Cartesian coordinate system which is obtained from their Mobility

model. Then the delay is calculated by dividing the distance with the light speed.

Therefore, satellite-point-to-point module is depended on mobility module.

After adding the delay, SatellitePointToPointChannel deliver the data packet to

the SatellitePhysical class of the receiver side with the received power calculated

using the Eq. (2.12).

3.3.3 SatellitePhysicalClass

SatellitePhysical class, at the receiver side, deliver the packet with the received

power. The SatellitePointToPointNetDevice then decide whether it will discard

the packet or not, based on the packet error rate calculated by the Eq. (2.16) depicted

in Chapter 2 and a uniform random variable generated by UniformRandomVariable

class. If the generated number is higher than the packet error rate, then the packet

is dropped.
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3.3.4 Use of SatellitePointToPoint Module

There is a SatellitePointToPointHelper class, which is used to create and configure

the satellite net devices and channel. In ns–3, all the helper class works in a same way.

In this work, SatellitePointToPointHelper class takes either a NodeContainer ob-

ject containing two Node objects or two Node objrcts as parameter to install satellite

communication module between those objects. Those node objects, actually repre-

sents two bare computer without having any communication module installed. Then

helper class, creates two network devices in those two nodes and then connect them

using satellite point to point channel. The Install() method of helper class is given

in Appendix A to show how installing network module in ns–3 is done. After

completing the installation, the helper class returns a NetDeviceContainer object

containing those newly created net devices along with a satellite channel connecting

them. The following code snippet shows, how helper class simplify programmers life.

The Install() method from helper class do all the work to connect two nodes. Using

the helper class programmer can also set device attribute collectively. Data rate of

the created device is initialized in the following code as well.

NodeContainer satNodes;

nodes.Create (2);

SatellitePointToPointHelper satHelper;

satHelper.SetDeviceAttribute ("DataRate", StringValue ("256Kbps"));

NetDeviceContainer devices;

devices = satHelper.Install (satNodes);
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3.4 Incorporating Satellite Orbital Position

In ns–3, the mobility modules source code placed in src/mobility directory. A Mo-

bilityModel object track the position of a Node object with respect to Cartesian co-

ordinate system. To be noted that, MobilityModel object has to be aggregated with

the Node object and could be retrieved by GetObject<MobilityModel> () method.

in ns–3, different motion behavior is implemented, but those only use Cartesian co-

ordinate systems, more specifically MobilityModel only support 3D vectors (x, y, z).

3.4.1 Implementing the 2D Model

In the preliminary stage of the development, the model described in Subsection 2.5.9

is implemented in the 2D simulated plane, where the value of z axis kept 0. The nodes

are placed in 2D plane with the actual distance from each other. For example, Ground

Station placed at a distance of Earth radius from the center of the coordinate system.

All the TDRSs, placed 120° apart from each other and ISS changed its position per

second basis. The 2D model was the part of the incremental development phase. The

2D simulation, validated that placing a TDRS at 35, 786 Km apart from Ground

Station generates the real delay in the simulation.

3.4.2 Implementing the 3D Model

As mentioned in Subsection 2.6.2, satellite orbits are represented either in TLE or

in state vectors. State vectors contains satellite’s Cartesian coordinate and some

other information. Implementing a new mobility module which will support the

state vectors in ns–3 is not the primary focus of this work. Therefore, the Cartesian

coordinate values from the state vectors are extracted and used to simulate the 3D

orbital propagation. As mentioned in Section 2.6, the satellite orbital prediction is
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done by the library, developed by Vallado [47]. The generation of the state vectors

for TDRS-8, TDRS-9, TDRS-10 and ISS is done in one single program depicted in

Appendix B. The position predicted continuously 92 minutes and stored in separate

files.

Those files then used in the simulation to set Node objects mobility in Cartesian

coordinate. Therefore, actual position of all the satellites are used in the developed

simulator. The position changes of the satellites are scheduled in each second.

3.5 Transmitting Data Over the Satellite Channel

The data generated by a haptic application is stored in a comma separated file (csv).

Therefore, the double data is stored in string format. Thus, while retrieving data

from file using std::string returns each variables in different length. Moreover,

sending data over the TCP socket has a problem, which is TCP treats data as a byte

stream. It does not care about the data it self but only care about the byte sequence.

Therefore, sending and retrieving data using TCP is a bit tricky for this work, as

data has to be sent as per the sample size. Again the data should be retrieved from

the receiving end in a proper order. Therefore, in this work, data is presented using

the well-known C++ custom data type union. Using the union, data is stored in a

double array and sent through the socket as a byte array, and in the receiving end,

received as a byte stream but interpret as a double array. The following code snippet

shows the union declaration in the developed simulator,

union{

double d[120];

uint8_t byteStream[sizeof(double)*120];

}data;
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The conversion between std::string to a std::vector<> is depicted in Ap-

pendix C.
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Simulation Results

The application that generates the data used in haptic teleoperation is discussed in

this chapter. The generated data is encapsulated in TCP packets and then sent over

the satellite-point-to-point module while ISS is orbiting around the Earth. The

three scenarios depicted in Section 2.3 is employed while sending data to ISS from

Earth. Afterwards, the behavior of the congestion window, throughput and Round

Trip Time (RTT) is analyzed.

4.1 Employing the Simulator Between Master-Slave Sites

The developed simulator was employed in a virtual platform in order to investigate

how the platform operated when a series of packet data is transferred between Earth

and the ISS. The platform was a Haptic Tele-operated System (HTS). In this case

study, the information of position/orientation and /or force at the master site on

Earth was sent to the slave site on the ISS. The data generated in the HTS system

was used in the ns-3 simulation and sent from ground station to the ISS encapsulated

in TCP packets.
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The HTS is a master–slave setup comprising a haptic hand–controller that is lo-

cated at the master site on Earth and a robotic manipulator installed on the ISS.

Accurate control of both master hand–controller and slave robot is essential, and

hence the kinematic and dynamic modelling of the teleoperated system is very im-

portant. In this case study, the information of a 3 degree–of–freedom (DOF) haptic

apparatus was sent to the slave site on the ISS. The position vector at the slave end-

effector is shown by (Ps = (xs, ys, zs), and (Pm = xm, ym, zm) represents the position

of the master end–effector. Ps is the scaled version of the master haptic end–effector

(Pm), and the scaling factor is determined based on different parameters such as the

workspace required at the slave site and the accuracy needed to accomplish the given

task. Therefore, the first requirement to have the robot running at the ISS, is to sent

the packet data from Earth.

Figure 4.1: Positional and force components generated at the master site. The
data packet contains 3 positional components (xm, ym, zm) and 3 force components
(Fx, Fy, Fz).
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The position components of the haptic device, illustrated in Fig. 4.1, is calculated

in real–time using,


xm = [l2 cos(θ2) + l3 cos(θ2 + θ3)] cos(θ1),

ym = [l2 cos(θ2) + l3 cos(θ2 + θ3)] sin(θ1),

zm = l2 sin(θ2) + l3 sin(θ2 + θ3),

(4.1)

where θ1, θ2, θ3 represent the angular displacements of the first three joints of the hap-

tic apparatus. l1, l2 and l3 denote the lengths of the links. We used the simulation of a

Geomatic TouchTM haptic device with l1 = 132 mm, l2 = 132 mm and l3 = 132 mm.

Figure 4.2: Positional components (xm, ym, zm) at the master haptic hand–controller
along XR, YR and ZR.

In addition to the position data of the haptic end–effector, a set of force was also

produced based on the location of hand–controller in its reference coordinate system,

i.e., (XR, yR, ZR) in Fig. 4.1. The force vector was generated based on the concept of

the forbidden–region virtual fixtures [48] according to the following equation:
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f(x) = kxxm, if xm > 0

f(y) = kyym, if ym > 0.

f(z) = kzzm, if zm > 0

(4.2)

According to Eq. (4.2), when any positional component has a negative value, no

force is generated along the corresponding axis. The simulated Geometric TouchTM

haptic hand–controller has a maximum exert able force and torque of 1.8 lbf and 7.9

N, respectively. Using Eqs. (4.1) and (4.2), the packet data, sent to the slave site on

the ISS, contains the information of position and force of the haptic on Earth.

Figure 4.3: Force components at the master haptic hand–controller, (Fx, Fy, Fz).

On application front, using the HTS, a robotic arm in the ISS could remotely be

controlled by the expert team, located on Earth, by moving the haptic hand–controller

a given task. In conventional technique, an operator normally uses visual information

to conduct the task; however, using haptics, when kinematic and/or dynamic as well

as visual and audio information of one site (master or slave) is transferred to the

other site, a sense of telepresence is provided to the operator to help them perceive

the remote environment on the ISS [49] (as presented in Eq. 4.2). The addition of
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haptic feedback has been shown to be more valuable than visual feedback [50–53].

4.2 Experimental Procedure

In this experiment, the data packet is sent from the ground station using the satellite

net device and received in the ISS. For testing the HTS platform, the three actuators of

the haptic device were given a trigonometric angular displacement to follow. Figs. 4.2

and 4.3 illustrate the positional (xm, ym, zm) and force (Fx, Fy, Fz) components of

the haptic end–effector over 1-hour of experiment. The sample is taken at the rate

of 320 Hz therefore 320 rows generated per second. Each row contains six variables:

three positional and three force components. Thus, the size of TCP data packet is

considered as 1000 bytes therefore 20 rows of data is accommodate in one packet

as six double takes 48 bytes of storage in the memory. The receiving side would

receive the same data as TCP is used as transport protocol, but the delay would be

added to the input signal. Therefore, the main findings of that work is analyzing the

changes occur in RTT and congestion window in different position of the ISS around

the Earth.

4.3 TCP Variants

As mentioned in Chapter 2, SCPS-TP uses TCP Vegas for congestion controlling with

some modification. Therefore, in this work TCP Vegas is used as the transport control

protocol to send data to ISS generated by HTS program. Another variant of TCP

known TCP HighSpeed which is also used nowadays in the large delay network or

Long Fat Networks (LFN) [54]. The simulator also tested against the User Datagram

Protocol (UDP) to observe the throughput of the system.
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Table 4.1: Simulation parameters used in sending HTS data from Earth to the ISS

Name Symbol Value
Transmit power Pt 30 dBm

Frequency f 2.3 GHz
Data rate R 256Kbps

Wave length λ 0.0767m
Ground station antenna gain G[Diameter=18m] 51.19 dB

TDRS antenna gain G[Diameter=4.9m] 39.89 dB
ISS antenna gain G[Diameter=2m] 32.109 dB

Antenna efficiency η 60%
Boltzman constant k −228.6dBHzk−1

Additional losses ladd −5 dB
Line loss ll −0.5 dB

Noise figure NF 3 dB
Noise floor NF −73.431 dBm

Minimum detectable signal MDS −62.5 dBm
Room temperature T0 290 K

Amplifier noise temperature TAmp 288.626 K
Receiver temperature TRx 293.15 K
Sky noise temperature Tsky 40 K

Galactic noise temperature TG 2.73 K
Earth noise temperature TE 60 K

Antenna temperature TA 102..7 K
System noise temperature TS 412.037 K
Atmospheric attenuation La 10 dB

4.4 Simulation Setup

The data generated in the HTS platform at 320 Hz rate and each sample consists of

six parameters stored as double data type. Therefore, each sample gives 48 bytes

of data. In the simulation, 20 rows of data or 960 bytes, put in a TCP packet of

length 1000 bytes and transmit to the receiver side or in this case ISS. The maximum

delay in all cases is 1 s and data bandwidth is 256 Kbps, therefore Bandwidth Delay

Product (BDP) becomes 32 Kbps. Thus, TCP can send 32 packets without getting

acknowledgement. After sending packets, it will wait for the acknowledgement. The
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parameters used in the link budget equation in the simulation is given in Table 4.1.

The simulation parameters are not varied as the main focus of this work is to develop

a platform which generate the actual ISS trajectory and obtain the time delay from

Earth to ISS.

For UDP, the sender program in the simulation generates data at the rate of 128

Kbps, therefore UDP would not overflow the network as the maximum data rate of

the channel is 256 Kbps.

4.5 Results

The HTS data is sent over the three path scenario depicted in chapter 2 using TCP

Vegas, TCP HighSpeed and UDP. The results are discussed in path wise basis. There-

fore, the performance of two TCP variants would be easier to distinguish.

4.5.1 Analysis of Results for Path 1

As discussed in Chapter 2, path 1 is denoted the simulation setup when ISS is com-

municated with the ground station via only TDRS-1. From the Fig. 4.4, it becomes

obvious that TCP HighSpeed tries to increase the congestion more faster than TCP

Vegas. In Fig. 4.5, the RTT of two TCP variation is plotted where the mean ± SD for

RTT in TCP Vegas is 670± 24.2599 ms and in TCP HighSpeed is 652± 19.8848 ms.

Fig. ?? shows the RTT histograms for both TCP variants in path 1. In the through-

put measurement, TCP HighSpeed provided higher throughput than the TCP Vegas.

Throughput of these two variants are depicted in Table 4.3. From Table 4.3, it is ob-

served that, UDP provides the maximum throughput of 100.36 Kbps which is obvious,

as there is no retransmission of packets occurred.

The Round Trip Time (RTT) for path 1 is minimum 542 ms and maximum 743
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(a) Changes in congestion window for TCP Vegas

(b) Changes in congestion window for TCP HighSpeed

Figure 4.4: Changes in congestion window in path 1 which is ground station to
TDRS-1 to ISS.
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ms for both TCP variants. But the mean ± SD for TCP Vegas is larger than TCP

HighSpeed which is given in Table 4.2.

4.5.2 Analysis of Results for Path 2

Path 2 is the time when ISS is more close to TDRS-2 than TDRS-1, therefore TDRS-

1 relays data to TDRS-2 and TDRS-2 deliver the packet to ISS. Therefore, delay

increases when ISS is communicated via TDRS-2. Fig. 4.7 shows the saw tooth

behavior of the TCP congestion window in both of the TCP variants. In terms of

RTT, TCP HighSpeed give lower value than TCP Vegas which is 702.2514±25.9822.

The RTT variates in TCP Vegas from 634 ms to 988 ms which is visible in Fig.4.8.

The distribution of the RTT is also visible in Fig. 4.9.

4.5.3 Analysis of Results for Path 3

In path 3, ISS receives data from TDRS-3. Therefore, the delay changes between

Earth and ISS which is shown in Table 4.2. The maximum RTT is observed in the

path 3 which is 1107 ms and the throughput in path 3 drops drastically to 5.47488

Kbps for Tcp HighSpeed. The mean RTT for TCP Vegas is 767.5596 ms and for

TCP HighSpeed is 751.4011 ms. The RTT histogram for TCP Vegas also depicts

the variations in RTT in Fig. 4.12. The behavior of the congestion window seems

regular, which means TCP variants works with the developed platform without any

aberration.

4.6 Observations

After observing the changes in congestion window, RTT and throughput values in all

three different communication settings based on the position of ISS, an observation
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(a) Change of RTT for TCP Vegas

(b) Change of RTT for TCP HighSpeed

Figure 4.5: Change of RTT in path 1 which is ground station to TDRS-1 to ISS.
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(a) RTT histogram for TCP Vegas

(b) RTT histogram for TCP HighSpeed

Figure 4.6: RTT histogram in path 1 which is ground station to TDRS-1 to ISS.
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(a) Changes in congestion window for TCP Vegas

(b) Changes in congestion window for TCP HighSpeed

Figure 4.7: Changes in congestion window in path 2 which is ground station to
TDRS-1 to TDRS-2 and then ISS.
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(a) Change of RTT for TCP Vegas

(b) Change of RTT for TCP HighSpeed

Figure 4.8: Change of RTT in path 2 which is ground station to TDRS-1 to TDRS-2
and then ISS.
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(a) RTT histogram for TCP Vegas

(b) RTT histogram for TCP HighSpeed

Figure 4.9: RTT histogram in path 2 which is ground station to TDRS-1 to TDRS-2
and then ISS.
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(a) Changes in congestion window for TCP Vegas

(b) Changes in congestion window for TCP HighSpeed

Figure 4.10: Changes in congestion window in path 3 which is ground station to
TDRS-1 to TDRS-3 and then ISS.
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(a) Change of RTT for TCP Vegas

(b) Change of RTT for TCP HighSpeed

Figure 4.11: Change of RTT in path 3 which is ground station to TDRS-1 to TDRS-3
and then ISS.
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(a) RTT histogram for TCP Vegas.

(b) RTT histogram for TCP HighSpeed

Figure 4.12: RTT histogram in path 3 which is ground station to TDRS-1 to TDRS-3
and then ISS.
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Table 4.2: Changes in round trip time

Path TCP Variant Minimum Maximum SD Mean

Path 1
TCP Vegas 542 743 24.2599 670.6091

TCP High Speed 542 743 19.8848 652.9981

Path 2
TCP Vegas 634 988 34.6565 718.5422

TCP High Speed 639 988 25.9822 702.2514

Path 3
TCP Vegas 684 1107 33.1397 767.5596

TCP High Speed 696 1107 27.581 751.4011

Table 4.3: Throughput for three different paths employing different transport proto-
cols.

Path TCP Variant Throughput

Path 1
TCP Vegas 7.84645 Kbps

TCP High Speed 7.98732 Kbps
UDP 100.36 Kbps

Path 2
TCP Vegas 16.8964 Kbps

TCP High Speed 16.86 Kbps
UDP 119.962 Kbps

Path 3
TCP Vegas 5.48374 Kbps

TCP High Speed 5.47488 Kbps
UDP 103.304 Kbps

can be made that, the RTT between Earth and ISS is vary from 542 ms to 1107 ms

which gives lowest mean ± SD 652.9981 ± 19.8848 ms and highest mean ± SD is

767.5596± 33.1397 ms. Therefore, the maximum delay between Earth and ISS is 1 s.

Thus, a haptic teleoperation which can tolerate up to 1 s delay can be implemented

if there is no error occurred.

Again, it is easily deducible from Table 4.2 and Table 4.3 that, TCP HighSpeed

performs better in terms of mean RTT. But the throughput of TCP highspeed slightly

falls behind TCP Vegas when number of hop increases.
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In this simulation, unmodified TCP Vegas is adopted. Therefore, the result gives

the lower bound in terms of throughput, as SCPS-TP uses some more modification

along with TCP Vegas, described in Chapter 2.
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Conclusion and Future Work

5.1 Concluding Remarks

In this work, by developing a satellite communication module in ns-3, the communica-

tion channel between the Earth and the International Space Station (ISS) is simulated,

to determine the feasibility of the haptic communication over the space. Towards the

development of the network simulator, the transport protocols for space have been

investigated, followed by calculating the link budgets of the satellite channel, develop-

ing a new module in ns-3, and incorporating actual trajectory of the ISS. As the ISS

is following it’s actual orbits around the Earth, and ground station is placed in the

exact location on the Cartesian coordinate system as per it’s longitude and latitude,

the delay measurement is fairly accurate, compared to the actual time delay. The

satellite communication module has been implemented from scratch, and the delay

effect and packet loss on the HTS were examined. The results have showed that,

UDP provides maximum throughput and TCP HighSpeed offers the minimum RTT.

Moreover, with the increment of the hops, TCP HighSpeed lagged slightly behind the

TCP Vegas.
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5.2 Future Research Directions

The developed module provides a base, for the future study of satellite communication

in ns–3. Some of the possible future work would be as follows,

• Implementing the SCPS-TP in ns-3 and testing against the developed satellite

module.

• Investigating the atmospheric attenuation in more details, therefore the Ku

band could be used as the transmission frequency. The Ku band is more sus-

ceptible to atmospheric gas, clouds, fogs and humidity [36], therefore an exact

atmospheric attenuation should be calculated before implementing Ku band in

satellite communication.

• Incorporating the live weather data fetching feature using C++ Application

Programming Interface (API) provided by Worldwide Weather website. The

weather data would be fetched based on the position of the ISS above the

Earth. Live weather data then used in the atmospheric attenuation calculation.

• Implementing a SatelliteMobility model in ns-3 which would support state

vectors. As discussed in Chapter 3, ns-3 only support Cartesian coordinate sys-

tem, therefore the other elements of state vectors mentioned in Subsection 2.6.2

remains unused.

• Incorporating the multi-hop TCP. Satellite channels are error prone, and ISS

is communicating with Earth using Tracking and Data Relay Satellite System

(TDRSS), where each node or hop is situated thousands of kilometers away from

each other. In this work, the haptic communication has been done with an end

to end TCP connection. The data packet and the acknowledgement of that
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packet travels hop-to-hop basis, therefore if the packet is lost in between any

hop the transmitter has to retransmit the packet after time out occurred. Thus,

the throughput of the system reduces. If the custody based communication or

the multi-hop TCP is introduced in the future work, then the throughput of

the system possibly increases. The multi-hop TCP means when ground station

transmit data to TDRS-1, TDRS-1 will take the full responsibility for delivering

that packet to the next hop and send acknowledge to the ground station back.

For that reason, it is known as multi-hop TCP or custody based communication.

• Including the interference model in the channel. In this work, the satellite point-

to-point communication model has been implemented and it has been assumed,

that there is no other interfering channels. Therefore, in future work, the chan-

nel should be extended, to take into account interference in the communication

channel.

76



Bibliography

[1] J. Nelson, “Mars exploration rover,” 2014.

[2] J. Nelson, “Mars exploration rover -opportunity,” 2014.

[3] “Case study: Mda - canadian space arm,” 2002.

[4] N. Sato and S. Doi, “Jem remote manipulator system(jemrms) human-in-the-loop

test,” in International Symposium on Space Technology and Science, 22 nd, Morioka,

Japan, pp. 1195–1199, 2000.

[5] P. Laryssa, E. Lindsay, O. Layi, O. Marius, K. Nara, L. Aris, and T. Ed, “International

space station robotics: a comparative study of era, jemrms and mss,” in Proc. 7th ESA

Workshop Advanced Space Technologies Robotics Automation, 2002.

[6] F. Didot, M. Oort, J. Kouwen, and P. Verzijden, “The era system: Control architecture

and performance results,” in Proc. 6th International Symposium on Artificial Intelli-

gence, Robotics and Automation in Space (i-SAIRAS), Montral, Canada, Citeseer,

2001.

[7] A. Flores-Abad, O. Ma, K. Pham, and S. Ulrich, “A review of space robotics technolo-

gies for on-orbit servicing,” Progress in Aerospace Sciences, vol. 68, pp. 1–26, 2014.

[8] M. Bualat, W. Carey, T. Fong, K. Nergaard, C. Provencher, A. Schiele, P. Schoonejans,

and E. Smith, “Preparing for crew-control of surface robots from orbit,” in IAA Space

Exploration Conference, 2014.

77



Bibliography

[9] E. Ackerman, “Astronaut aboard the iss controls a robot on earth using haptic feed-

back,” IEEE Spectrum, 2015.

[10] G. Hirzinger, B. Brunner, J. Dietrich, and J. Heindl, “Rotex-the first remotely con-

trolled robot in space,” in Robotics and Automation, 1994. Proceedings., 1994 IEEE

International Conference on, pp. 2604–2611, IEEE, 1994.

[11] G. Hirzinger, K. Landzettel, D. Reintsema, C. Preusche, A. Albu-Schaeffer, B. Rebele,

and M. Turk, “Rokviss-robotics component verification on iss,” in Proc. 8th Int. Symp.

Artif. Intell. Robot. Autom. Space (iSAIRAS)(Munich 2005) p. Session2B, 2005.

[12] W. Bluethmann, R. Ambrose, M. Diftler, S. Askew, E. Huber, M. Goza, F. Rehnmark,

C. Lovchik, and D. Magruder, “Robonaut: A robot designed to work with humans in

space,” Autonomous robots, vol. 14, no. 2, pp. 179–197, 2003.

[13] M. A. Diftler, J. Mehling, M. E. Abdallah, N. A. Radford, L. B. Bridgwater, A. M.

Sanders, R. S. Askew, D. M. Linn, J. D. Yamokoski, F. Permenter, et al., “Robonaut

2-the first humanoid robot in space,” in Robotics and Automation (ICRA), 2011 IEEE

International Conference on, pp. 2178–2183, IEEE, 2011.

[14] M. Diftler, T. Ahlstrom, R. Ambrose, N. Radford, C. Joyce, N. De La Pena, A. Par-

sons, and A. Noblitt, “Robonaut 2initial activities on-board the iss,” in Aerospace

Conference, 2012 IEEE, pp. 1–12, IEEE, 2012.
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Install() Method in Helper Class

In this method helper object take two arguments and use ObjectFactory class in-

stances to create particular object of that class. It also assign Mac address and queue

object in those net device instances.

NetDeviceContainer

SatellitePointToPointHelper::Install(Ptr<Node> a, Ptr<Node> b) {

NetDeviceContainer container;

Ptr<SatellitePointToPointNetDevice> devA =

m_deviceFactory.Create<SatellitePointToPointNetDevice> ();

devA->SetAddress(Mac48Address::Allocate());

a->AddDevice(devA);

Ptr<Queue> queueA = m_queueFactory.Create<Queue> ();

devA->SetQueue(queueA);

Ptr<SatellitePointToPointNetDevice> devB =

m_deviceFactory.Create<SatellitePointToPointNetDevice> ();

devB->SetAddress(Mac48Address::Allocate());

b->AddDevice(devB);

Ptr<Queue> queueB = m_queueFactory.Create<Queue> ();
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devB->SetQueue(queueB);

// If MPI is enabled, we need to see if both nodes have the same

system id

// (rank), and the rank is the same as this instance. If both are

true,

//use a normal p2p channel, otherwise use a remote channel

bool useNormalChannel = true;

Ptr<SatellitePointToPointChannel> channel = 0;

if (MpiInterface::IsEnabled()) {

uint32_t n1SystemId = a->GetSystemId();

uint32_t n2SystemId = b->GetSystemId();

uint32_t currSystemId = MpiInterface::GetSystemId();

if (n1SystemId != currSystemId || n2SystemId != currSystemId) {

useNormalChannel = false;

}

}

if (useNormalChannel) {

channel = m_channelFactory.Create<SatellitePointToPointChannel>

();

} else {

channel =

m_remoteChannelFactory.Create<SatellitePointToPointRemoteChannel>

();

Ptr<MpiReceiver> mpiRecA = CreateObject<MpiReceiver> ();

Ptr<MpiReceiver> mpiRecB = CreateObject<MpiReceiver> ();

mpiRecA->SetReceiveCallback(MakeCallback(\&SatellitePointToPointNetDevice::Receive,

devA));
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mpiRecB->SetReceiveCallback(MakeCallback(\&SatellitePointToPointNetDevice::Receive,

devB));

devA->AggregateObject(mpiRecA);

devB->AggregateObject(mpiRecB);

}

AddPropagationLoss("ns3::FriisPropagationLossModel", "Frequency",

DoubleValue(2.3e9));

SetPropagationDelay("ns3::ConstantSpeedPropagationDelayModel");

channel->SetPropagationDelayModel(m_propagationDelay.Create<PropagationDelayModel>());

channel->SetPropagationLossModel(m_propagationLoss.Create<FriisPropagationLossModel>());

Ptr<SatellitePhysical> phyA =

m_physicalFactory.Create<SatellitePhysical>();

phyA->SetChannel(channel);

phyA->SetNetDevice(devA);

devA->SetPhysical(phyA);

Ptr<SatellitePhysical> phyB =

m_physicalFactory.Create<SatellitePhysical>();

phyB->SetChannel(channel);

phyB->SetNetDevice(devB);

devB->SetPhysical(phyB);

devA->Attach(channel);

devB->Attach(channel);

container.Add(devA);

container.Add(devB);

return container;

}
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Program to Generate State Vectors from TLE

In the following code snippet, the generation of state vectors for all the satellites are

given. The position is calculated in every second and stored in a csv file for later use.

double siteLat, siteLon, siteAlt, siteLatRad, siteLonRad;

//ENTER SITE DETAILS HERE : I put white sands location in decimal

which is

//White Sands Ground Terminal (WSGT) 32.5007N 106.6086W

siteLat = 32.512027777777774; //+North (Austin ->30.25N)

siteLon = -105.3886388888888; //+East (Austin ->-97.75)

siteAlt = 0.15; //km

siteLatRad = siteLat * pi / 180.0;

siteLonRad = siteLon * pi / 180.0;

double latlongh[3]; //lat, long in rad, h in km above ellipsoid

double tdrs8_latlongh[3]; //lat, long in rad, h in km above ellipsoid

double tdrs9_latlongh[3]; //lat, long in rad, h in km above ellipsoid

double tdrs10_latlongh[3]; //lat, long in rad, h in km above ellipsoid
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//</editor-fold>

/**

* TDRS 8

1 26388U 00034A 17013.59608280 -.00000247 00000-0 00000+0 0 9997

2 26388 7.2325 57.1835 0009991 212.2588 147.6815 1.00274321 60663

TDRS 9

1 27389U 02011A 17013.90048035 -.00000116 00000-0 00000-0 0 9993

2 27389 4.9338 81.0900 0022850 231.3684 113.2557 1.00271631 55937

TDRS 10

1 27566U 02055A 17013.33419306 .00000063 00000-0 00000-0 0 9998

2 27566 4.7666 59.1125 0013477 216.3876 143.4830 1.00266459 51726

*

* @param argc

* @param argv

* @return

*/

//ENTER TWO-LINE ELEMENT HERE

//<editor-fold defaultstate="collapsed" desc="TLE">

//ISS TLE-last2 digit of year and day of the year in julean format..

16 from 2016 and 344 is the juLean day

char longstr1[] = "1 25544U 98067A 17070.76826441 .00004009 00000-0

67626-4 0 9997";

char longstr2[] = "2 25544 51.6426 163.9162 0006947 279.4609 222.8623

15.54188847 46609";
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char tdrs8_longstr1[] = "1 26388U 00034A 17069.44246042 -.00000254

00000-0 00000+0 0 9994";

char tdrs8_longstr2[] = "2 26388 7.3273 56.6785 0007650 242.5635

117.4975 1.00276825 61229";

char tdrs9_longstr1[] = "1 27389U 02011A 17070.11211106 -.00000127

00000-0 00000+0 0 9991";

char tdrs9_longstr2[] = "2 27389 5.0482 80.3244 0022530 243.4506

233.4023 1.00271188 56496";

char tdrs10_longstr1[] = "1 27566U 02055A 17069.18155452 .00000051

00000-0 00000+0 0 9997";

char tdrs10_longstr2[] = "2 27566 4.8634 58.8470 0012012 233.6093

126.5185 1.00271761 52276";

//</editor-fold>

//<editor-fold defaultstate="collapsed" desc="R and V vector">

double ro[3]; // R -position vector for ISS

double vo[3]; // V- velocity vector for ISS

double tdrs8_ro[3]; // R -position vector for tdrs8

double tdrs8_vo[3]; // V- velocity vector for tdrs8

double tdrs9_ro[3]; // R -position vector for tdrs9

double tdrs9_vo[3]; // V- velocity vector for tdrs9
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double tdrs10_ro[3]; // R -position vector for tdrs10

double tdrs10_vo[3]; // V- velocity vector for tdrs10

double ground_ro[3]; // R -position vector

double prevground_ro[3]; // R -position vector

double ground_vo[3]; // V- velocity vector

double recef[3]; //R- vector for ISS in Earth Centered Earth Fixed

frame or TEME frame

double prevrecef[3]; //R- vector for ISS in Earth Centered Earth Fixed

frame or TEME frame

double vecef[3]; //V- vector for ISS in Earth Centered Earth Fixed

frame or TEME frame

double tdrs8_recef[3]; //R- vector for TDRS8 in Earth Centered Earth

Fixed frame or TEME frame

double prevtdrs8_recef[3]; //R- vector for TDRS8 in Earth Centered

Earth Fixed frame or TEME frame

double tdrs8_vecef[3]; //V- vector for TDRS8 in Earth Centered Earth

Fixed frame or TEME frame

double tdrs9_recef[3]; //R- vector for TDRS9 in Earth Centered Earth

Fixed frame or TEME frame

double prevtdrs9_recef[3]; //R- vector for TDRS9 in Earth Centered

Earth Fixed frame or TEME frame

double tdrs9_vecef[3]; //V- vector for TDRS9 in Earth Centered Earth

Fixed frame or TEME frame
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double tdrs10_recef[3]; //R- vector for TDRS10 in Earth Centered Earth

Fixed frame or TEME frame

double prevtdrs10_recef[3]; //R- vector for TDRS10 in Earth Centered

Earth Fixed frame or TEME frame

double tdrs10_vecef[3]; //V- vector for TDRS10 in Earth Centered Earth

Fixed frame or TEME frame

/*

* razel Range, azimuth, and elevation matrix

* razelrates Range rate, azimuth rate, and elevation rate matrix

*/

double razel[3]; // Range, Azimuth and Elevation Vector for ISS

double razelrates[3]; // Range, Azimuth and Elevation Changing rate

Vector for ISS

double tdrs8_razel[3]; // Range, Azimuth and Elevation Vector for tdrs8

double tdrs8_razelrates[3]; // Range, Azimuth and Elevation Changing

rate Vector for tdrs8

double tdrs9_razel[3]; // Range, Azimuth and Elevation Vector for tdrs9

double tdrs9_razelrates[3]; // Range, Azimuth and Elevation Changing

rate Vector for tdrs9

double tdrs10_razel[3]; // Range, Azimuth and Elevation Vector for

tdrs10
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double tdrs10_razelrates[3]; // Range, Azimuth and Elevation Changing

rate Vector for tdrs10

//</editor-fold>

//<editor-fold defaultstate="collapsed" desc="Variables used in sgp4

model">

char typerun, typeinput, opsmode;

gravconsttype whichconst; // wgs72 or wgs84 World Geodatic System

constants

double sec, secC, juleanDate, juleandateCurrent, tsince, startmfe,

stopmfe, deltamin;

double tumin, mu, radiusearthkm, xke, j2, j3, j4, j3oj2;

double tdrs8_juleanDate, tdrs9_juleanDate, tdrs10_juleanDate;

//</editor-fold>

//<editor-fold defaultstate="collapsed" desc="TIME related variable

initialization">

//time variables from scenario epoch time

int year, mon, day, hr, min;

//current time variables

int yearC, monC, dayC, hrC, minC;
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typedef char str3[4];

str3 monstr[13];

strcpy(monstr[1], "Jan");

strcpy(monstr[2], "Feb");

strcpy(monstr[3], "Mar");

strcpy(monstr[4], "Apr");

strcpy(monstr[5], "May");

strcpy(monstr[6], "Jun");

strcpy(monstr[7], "Jul");

strcpy(monstr[8], "Aug");

strcpy(monstr[9], "Sep");

strcpy(monstr[10], "Oct");

strcpy(monstr[11], "Nov");

strcpy(monstr[12], "Dec");

//</editor-fold>

//<editor-fold defaultstate="collapsed" desc="Structure Declaration

for satellites">

elsetrec satrec; // ISS related values or structure that holds various

data related to ISS

elsetrec tdrs8_satrec; // TDRS8 related values or structure that holds

various data related to TDRS8

elsetrec tdrs9_satrec; // TDRS9 related values or structure that holds

various data related to TDRS9

elsetrec tdrs10_satrec; // TDRS10 related values or structure that
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holds various data related to TDRS10

//</editor-fold>

float elevation;

float azimuth; //-180 to 0 to 180

//SET REAL TIME CLOCK (Set values manually using custom excel function

until I find a way to do it automatically)

// set_time(1440763200);

//SET VARIABLES

opsmode = ’i’;

typerun = ’c’;

typeinput = ’e’;

whichconst = wgs72;

// initialize wgs constant based on the which constant value, we are

sending reference variables to initialize

getgravconst(whichconst, tumin, mu, radiusearthkm, xke, j2, j3, j4,

j3oj2);

//<editor-fold defaultstate="collapsed" desc="SET VARIABLES">

//INITIALIZE SATELLITE TRACKING

//printf("Initializing ISS orbit from TLE...\n");
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twoline2rv(longstr1, longstr2, typerun, typeinput, opsmode,

whichconst, startmfe, stopmfe, deltamin, satrec);

//printf("twoline2rv function complete for ISS...\n");

//printf("Initializing TDRS8 orbit from it’s TLE...\n");

twoline2rv(tdrs8_longstr1, tdrs8_longstr2, typerun, typeinput,

opsmode, whichconst, startmfe, stopmfe, deltamin, tdrs8_satrec);

//printf("twoline2rv for TDRS8 function complete...\n");

//printf("Initializing TDRS9 orbit from it’s TLE...\n");

twoline2rv(tdrs9_longstr1, tdrs9_longstr2, typerun, typeinput,

opsmode, whichconst, startmfe, stopmfe, deltamin, tdrs9_satrec);

//printf("twoline2rv for TDRS9 function complete...\n");

//printf("Initializing TDRS10 orbit from it’s TLE...\n");

twoline2rv(tdrs10_longstr1, tdrs10_longstr2, typerun, typeinput,

opsmode, whichconst, startmfe, stopmfe, deltamin, tdrs10_satrec);

//printf("twoline2rv for TDRS10 function complete...\n");

//Initialize State Vectors Ro and Vo

//Call propogator to get initial state vector value

sgp4(whichconst, satrec, 0.0, ro, vo);

//printf("SGP4 at t = 0 to get initial state vector complete...\n");

//Call propogator to get initial state vector value

sgp4(whichconst, tdrs8_satrec, 0.0, tdrs8_ro, tdrs8_vo);
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//printf("SGP4 at t = 0 to get initial state vector complete...\n");

//Call propogator to get initial state vector value

sgp4(whichconst, tdrs9_satrec, 0.0, tdrs9_ro, tdrs9_vo);

//printf("SGP4 at t = 0 to get initial state vector complete...\n");

//Call propogator to get initial state vector value

sgp4(whichconst, tdrs10_satrec, 0.0, tdrs10_ro, tdrs10_vo);

//printf("SGP4 at t = 0 to get initial state vector complete...\n");

juleanDate = satrec.jdsatepoch;

tdrs8_juleanDate = tdrs8_satrec.jdsatepoch;

tdrs9_juleanDate = tdrs9_satrec.jdsatepoch;

tdrs10_juleanDate = tdrs10_satrec.jdsatepoch;

int i = 0;

std::time_t end = std::time(NULL) + (95 * 60.0);

while (std::time(NULL) <= end) {

//RUN SGP4 AND COORDINATE TRANSFORMATION COMPUTATIONS

juleandateCurrent = getJulianFromUnix(time(NULL));

tsince = (juleandateCurrent - juleanDate) * 24.0 * 60.0;

sgp4(whichconst, satrec, tsince, ro, vo);

teme2ecef(ro, vo, juleandateCurrent, recef, vecef);
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ijk2ll(recef, latlongh);

rv2azel(ro, vo, siteLatRad, siteLonRad, siteAlt, juleandateCurrent,

razel, razelrates);

site(siteLatRad, siteLonRad, siteAlt, ground_ro, ground_vo);

//CHECK FOR ERRORS

if (satrec.error > 0) {

printf("# *** error: t:= %f *** code = %3d\n", satrec.t,

satrec.error);

} else {

azimuth = razel[1]*180 / pi; // Azimuth * (180/pi)

elevation = razel[2]*180 / pi; // Elevation * (180/pi)

if (i == 0) {

for (int j = 0; j < 3; j++) {

prevrecef[j] = recef[j];

prevground_ro[j] = ground_ro[j];

}

myfile << i << " " << recef[0] << " " << recef[1] << " "

<< recef[2] << " " << vecef[0] << " " << vecef[1] <<
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" "

<< vecef[2] << " " << latlongh[0] * 180 / pi << " "

<< latlongh[1] * 180 / pi << " " << latlongh[2] << "

"

<< razel[0] << " " << razel[1] * 180 / pi << " "

<< razel[2] * 180 / pi << "\n";

issFile << i << "," << recef[0] << "," << recef[1] << ","

<< recef[2] << "," << vecef[0] << "," << vecef[1] <<

","

<< vecef[2] << "," << latlongh[0] * 180 / pi << ","

<< latlongh[1] * 180 / pi << "," << latlongh[2] <<

","

<< razel[0] << "," << razel[1] * 180 / pi << ","

<< razel[2] * 180 / pi << "\n";

issWithJd << satrec.t << "," << recef[0] << "," << recef[1]

<< ","

<< recef[2] << "," << vecef[0] << "," << vecef[1] <<

","

<< vecef[2] << "," << latlongh[0] * 180 / pi << ","

<< latlongh[1] * 180 / pi << "," << latlongh[2] <<

","

<< razel[0] << "," << razel[1] * 180 / pi << ","

<< razel[2] * 180 / pi << "\n";

geoLoc << i << " " << ground_ro[0] << " " << ground_ro[1] <<

" " << ground_ro[2] << "\n";
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} else {

if (isChanged(recef, prevrecef)) {

myfile << i << " " << recef[0] << " " << recef[1] << " "

<< recef[2] << " " << vecef[0] << " " << vecef[1]

<< " "

<< vecef[2] << " " << latlongh[0] * 180 / pi << "

"

<< latlongh[1] * 180 / pi << " " << latlongh[2]

<< " "

<< razel[0] << " " << razel[1] * 180 / pi << " "

<< razel[2] * 180 / pi << "\n";

issFile << i << "," << recef[0] << "," << recef[1] << ","

<< recef[2] << "," << vecef[0] << "," << vecef[1] <<

","

<< vecef[2] << "," << latlongh[0] * 180 / pi << ","

<< latlongh[1] * 180 / pi << "," << latlongh[2] <<

","

<< razel[0] << "," << razel[1] * 180 / pi << ","

<< razel[2] * 180 / pi << "\n";

issWithJd << satrec.t << "," << recef[0] << "," << recef[1]

<< ","

<< recef[2] << "," << vecef[0] << "," << vecef[1] <<

","

<< vecef[2] << "," << latlongh[0] * 180 / pi << ","

<< latlongh[1] * 180 / pi << "," << latlongh[2] <<

","

<< razel[0] << "," << razel[1] * 180 / pi << ","
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<< razel[2] * 180 / pi << "\n";

for (int j = 0; j < 3; j++) {

prevrecef[j] = recef[j];

prevground_ro[j] = ground_ro[j];

}

} else {

printf("ISS loc not changed \n");

}

if (isChanged(ground_ro, prevground_ro)) {

geoLoc << i << " " << ground_ro[0] << " " <<

ground_ro[1] << " " << ground_ro[2] << "\n";

}

}

}

//tdrs-8 SGP4 AND COORDINATE TRANSFORMATION COMPUTATIONS

tsince = (juleandateCurrent - tdrs8_juleanDate) * 24.0 * 60.0;

sgp4(whichconst, tdrs8_satrec, tsince, tdrs8_ro, tdrs8_vo);

teme2ecef(tdrs8_ro, tdrs8_vo, juleandateCurrent, tdrs8_recef,

tdrs8_vecef);

ijk2ll(tdrs8_recef, tdrs8_latlongh);

rv2azel(tdrs8_ro, tdrs8_vo, siteLatRad, siteLonRad, siteAlt,

juleandateCurrent, tdrs8_razel, tdrs8_razelrates);

//CHECK FOR ERRORS
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if (satrec.error > 0) {

printf("# *** error: t:= %f *** code = %3d\n", tdrs8_satrec.t,

tdrs8_satrec.error);

} else {

if (i == 0) {

for (int j = 0; j < 3; j++) {

prevtdrs8_recef[j] = tdrs8_recef[j];

}

tdrs8 << i << " " << tdrs8_recef[0] << " " << tdrs8_recef[1]

<< " "

<< tdrs8_recef[2] << " " << tdrs8_vecef[0] << " " <<

tdrs8_vecef[1] << " "

<< tdrs8_vecef[2] << " " << tdrs8_latlongh[0] * 180

/ pi << " "

<< tdrs8_latlongh[1] * 180 / pi << " " <<

tdrs8_latlongh[2] << " "

<< tdrs8_razel[0] << " " << tdrs8_razel[1] * 180 /

pi << " "

<< tdrs8_razel[2] * 180 / pi << "\n";

tdrs8C << i << " " << tdrs8_recef[0] << " " <<

tdrs8_recef[1] << " "

<< tdrs8_recef[2] << " " << tdrs8_vecef[0] << " " <<

tdrs8_vecef[1] << " "

<< tdrs8_vecef[2] << " " << tdrs8_latlongh[0] * 180

/ pi << " "
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<< tdrs8_latlongh[1] * 180 / pi << " " <<

tdrs8_latlongh[2] << " "

<< tdrs8_razel[0] << " " << tdrs8_razel[1] * 180 /

pi << " "

<< tdrs8_razel[2] * 180 / pi << "\n";

} else {

if (isChanged(tdrs8_recef, prevtdrs8_recef)) {

tdrs8 << i << " " << tdrs8_recef[0] << " " <<

tdrs8_recef[1] << " "

<< tdrs8_recef[2] << " " << tdrs8_vecef[0] << " "

<< tdrs8_vecef[1] << " "

<< tdrs8_vecef[2] << " " << tdrs8_latlongh[0] *

180 / pi << " "

<< tdrs8_latlongh[1] * 180 / pi << " " <<

tdrs8_latlongh[2] << " "

<< tdrs8_razel[0] << " " << tdrs8_razel[1] * 180

/ pi << " "

<< tdrs8_razel[2] * 180 / pi << "\n";

tdrs8C << i << " " << tdrs8_recef[0] << " " <<

tdrs8_recef[1] << " "

<< tdrs8_recef[2] << " " << tdrs8_vecef[0] << " "

<< tdrs8_vecef[1] << " "

<< tdrs8_vecef[2] << " " << tdrs8_latlongh[0] *

180 / pi << " "

<< tdrs8_latlongh[1] * 180 / pi << " " <<
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tdrs8_latlongh[2] << " "

<< tdrs8_razel[0] << " " << tdrs8_razel[1] * 180

/ pi << " "

<< tdrs8_razel[2] * 180 / pi << "\n";

for (int j = 0; j < 3; j++) {

prevtdrs8_recef[j] = tdrs8_recef[j];

}

} else {

printf("tdrs8 loc not changed \n");

}

}

}

//tdrs-9 SGP4 AND COORDINATE TRANSFORMATION COMPUTATIONS

tsince = (juleandateCurrent - tdrs9_juleanDate) * 24.0 * 60.0;

sgp4(whichconst, tdrs9_satrec, tsince, tdrs9_ro, tdrs9_vo);

teme2ecef(tdrs9_ro, tdrs9_vo, juleandateCurrent, tdrs9_recef,

tdrs9_vecef);

ijk2ll(tdrs9_recef, tdrs9_latlongh);

rv2azel(tdrs9_ro, tdrs9_vo, siteLatRad, siteLonRad, siteAlt,

juleandateCurrent, tdrs9_razel, tdrs9_razelrates);

//CHECK FOR ERRORS

if (satrec.error > 0) {
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printf("# *** error: t:= %f *** code = %3d\n", tdrs9_satrec.t,

tdrs9_satrec.error);

} else {

if (i == 0) {

for (int j = 0; j < 3; j++) {

prevtdrs9_recef[j] = tdrs9_recef[j];

}

tdrs9 << i << " " << tdrs9_recef[0] << " " << tdrs9_recef[1]

<< " "

<< tdrs9_recef[2] << " " << tdrs9_vecef[0] << " " <<

tdrs9_vecef[1] << " "

<< tdrs9_vecef[2] << " " << tdrs9_latlongh[0] * 180

/ pi << " "

<< tdrs9_latlongh[1] * 180 / pi << " " <<

tdrs9_latlongh[2] << " "

<< tdrs9_razel[0] << " " << tdrs9_razel[1] * 180 /

pi << " "

<< tdrs9_razel[2] * 180 / pi << "\n";

tdrs9C << i << " " << tdrs9_recef[0] << " " <<

tdrs9_recef[1] << " "

<< tdrs9_recef[2] << " " << tdrs9_vecef[0] << " " <<

tdrs9_vecef[1] << " "

<< tdrs9_vecef[2] << " " << tdrs9_latlongh[0] * 180

/ pi << " "

<< tdrs9_latlongh[1] * 180 / pi << " " <<
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tdrs9_latlongh[2] << " "

<< tdrs9_razel[0] << " " << tdrs9_razel[1] * 180 /

pi << " "

<< tdrs9_razel[2] * 180 / pi << "\n";

} else {

if (isChanged(tdrs9_recef, prevtdrs9_recef)) {

tdrs9 << i << " " << tdrs9_recef[0] << " " <<

tdrs9_recef[1] << " "

<< tdrs9_recef[2] << " " << tdrs9_vecef[0] << " "

<< tdrs9_vecef[1] << " "

<< tdrs9_vecef[2] << " " << tdrs9_latlongh[0] *

180 / pi << " "

<< tdrs9_latlongh[1] * 180 / pi << " " <<

tdrs9_latlongh[2] << " "

<< tdrs9_razel[0] << " " << tdrs9_razel[1] * 180

/ pi << " "

<< tdrs9_razel[2] * 180 / pi << "\n";

tdrs9C << i << " " << tdrs9_recef[0] << " " <<

tdrs9_recef[1] << " "

<< tdrs9_recef[2] << " " << tdrs9_vecef[0] << " "

<< tdrs9_vecef[1] << " "

<< tdrs9_vecef[2] << " " << tdrs9_latlongh[0] *

180 / pi << " "

<< tdrs9_latlongh[1] * 180 / pi << " " <<

tdrs9_latlongh[2] << " "
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<< tdrs9_razel[0] << " " << tdrs9_razel[1] * 180

/ pi << " "

<< tdrs9_razel[2] * 180 / pi << "\n";

for (int j = 0; j < 3; j++) {

prevtdrs9_recef[j] = tdrs9_recef[j];

}

} else {

printf("tdrs8 loc not changed \n");

}

}

}

//tdrs-10 SGP4 AND COORDINATE TRANSFORMATION COMPUTATIONS

tsince = (juleandateCurrent - tdrs10_juleanDate) * 24.0 * 60.0;

sgp4(whichconst, tdrs10_satrec, tsince, tdrs10_ro, tdrs10_vo);

teme2ecef(tdrs10_ro, tdrs10_vo, juleandateCurrent, tdrs10_recef,

tdrs10_vecef);

ijk2ll(tdrs10_recef, tdrs10_latlongh);

rv2azel(tdrs10_ro, tdrs10_vo, siteLatRad, siteLonRad, siteAlt,

juleandateCurrent, tdrs10_razel, tdrs10_razelrates);
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//CHECK FOR ERRORS

if (satrec.error > 0) {

printf("# *** error: t:= %f *** code = %3d\n", tdrs10_satrec.t,

tdrs10_satrec.error);

} else {

if (i == 0) {

for (int j = 0; j < 3; j++) {

prevtdrs10_recef[j] = tdrs10_recef[j];

}

tdrs10 << i << " " << tdrs10_recef[0] << " " <<

tdrs10_recef[1] << " "

<< tdrs10_recef[2] << " " << tdrs10_vecef[0] << " "

<< tdrs10_vecef[1] << " "

<< tdrs10_vecef[2] << " " << tdrs10_latlongh[0] *

180 / pi << " "

<< tdrs10_latlongh[1] * 180 / pi << " " <<

tdrs10_latlongh[2] << " "

<< tdrs10_razel[0] << " " << tdrs10_razel[1] * 180 /

pi << " "

<< tdrs10_razel[2] * 180 / pi << "\n";

tdrs10C << i << " " << tdrs10_recef[0] << " " <<

tdrs10_recef[1] << " "

<< tdrs10_recef[2] << " " << tdrs10_vecef[0] << " "

<< tdrs10_vecef[1] << " "
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<< tdrs10_vecef[2] << " " << tdrs10_latlongh[0] *

180 / pi << " "

<< tdrs10_latlongh[1] * 180 / pi << " " <<

tdrs10_latlongh[2] << " "

<< tdrs10_razel[0] << " " << tdrs10_razel[1] * 180 /

pi << " "

<< tdrs10_razel[2] * 180 / pi << "\n";

} else {

if (isChanged(tdrs10_recef, prevtdrs10_recef)) {

tdrs10 << i << " " << tdrs10_recef[0] << " " <<

tdrs10_recef[1] << " "

<< tdrs10_recef[2] << " " << tdrs10_vecef[0] << "

" << tdrs10_vecef[1] << " "

<< tdrs10_vecef[2] << " " << tdrs10_latlongh[0] *

180 / pi << " "

<< tdrs10_latlongh[1] * 180 / pi << " " <<

tdrs10_latlongh[2] << " "

<< tdrs10_razel[0] << " " << tdrs10_razel[1] *

180 / pi << " "

<< tdrs10_razel[2] * 180 / pi << "\n";

tdrs10C << i << " " << tdrs10_recef[0] << " " <<

tdrs10_recef[1] << " "

<< tdrs10_recef[2] << " " << tdrs10_vecef[0] << "

" << tdrs10_vecef[1] << " "

<< tdrs10_vecef[2] << " " << tdrs10_latlongh[0] *
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180 / pi << " "

<< tdrs10_latlongh[1] * 180 / pi << " " <<

tdrs10_latlongh[2] << " "

<< tdrs10_razel[0] << " " << tdrs10_razel[1] *

180 / pi << " "

<< tdrs10_razel[2] * 180 / pi << "\n";

for (int j = 0; j < 3; j++) {

prevtdrs10_recef[j] = tdrs10_recef[j];

}

} else {

printf("tdrs8 loc not changed \n");

}

}

}

i++;

sleep(1);

} //indefinite loop
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std::string to std::vector<> Conversion

The following code is used to convert a comma separated double values stored in a

std::string to std::vector<>.

std::string str = "1.2,2.3,3.5,4.2,5.3,6.2";

std::vector<double> vect;

std::stringstream ss(str);

double i;

double arr[6];

int j = 0;

while (ss >> i) {

vect.push_back(i);

arr[j++] = i;

if (ss.peek() == ’,’) {

ss.ignore();

}

}
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