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Abstract

Ischemic heart disease is the most common cause of mortality worldwide.

This is due to primary left ventricular failure, arrhythmias or congestive heart failure.

Cardiac fibroblasts play an important roie in myocardial healing and are responsible

for accumulation of collagen in the infarct scar as well as viable myocardium,

thereby directly contributing to the onset of systolic and diastolic heart failure.

Cardiotrophin-1 (CT-1), a member of the IL-6 family of cytokines, has been shown

to be elevated in the serum of patients with ischemic heart disease and valwlar heart

disease, and induces cardiomyocyte hypertrophy in vitro.

We investigated expression of CT-l in post-Ml ratheartand the effect of CT-

1 on cultured primary adult rat cardiac fibroblasts with respect to proliferation,

protein synthesis and cell migration. Elevated CT-l expression was observed in the

infarct zone at 24 hours and continued through 2, 4 and g weeks post-Ml, compared

to sham-operated animals. CT-l induced activation of the JaVSTAT, p3g and

p42/44 MAPK, PI3K/Akt and Src pathways in cultured adult cardiac fibroblasts.

CT-l induced cardiac fibroblast protein synthesis as indicated by incorporation of
3H-leucine. 

Protein synthesis was dependent on activation of JaklSTAT,MEKI/2,

PI3K and Src pathways as evidenced by decreased 3H-leucine and 3H-thymidine

incorporation after pretreatment with 4G490, pD9g059, L]Y2g4002 and genistein

respectively' CT-l treatment increased procollagen-l-carboxypropeptide (plCp)

slmthesis, a marker of mature collagen synthesis. CT-l induced proliferation of rat

catdiac fibroblasts as indicated by increased incorporation of 3H-thymidine 
and total

cell number, expression of cyclins A and E, hyperphosphorylation of retinoblastoma
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protein and nuclear accumulation of PCNA. DNA synthesis was dependent on

activation of Jak/STAT,MEK1|2" PI3K and Src pathways as evidenced by decreased

3tt-thymidine incorporation after pretreatment with AG490, PD98059, LY294002

and genistein respectively. CT-1 induced cell migration of rat cardiac fibroblasts in a

dose-dependent manner. This was dependent on the JaVSTAT, PI3K and p42144

MAPK pathways, as well as intact integrin function. Migration was also dependent

on potassium channel function and myosin light chain kinase activity, as evidenced

by decreased migration when co-incubated with 4-AP or TEA or ML-7. CT-l

treatment was associated with myosin light chain (MLC) phosphorylation and

hyperpolarization of the myofibroblast cell membrane. Phosphorylation of MLC was

dependent on intact MLCK and calmodulin function, indicating that CT-l signaling

is associated with a rise in intracellular calcium.

Our results suggest that CT-i, as expressed in post-Ml heart, may play an

important role in infarct scar formation and ongoing remodeling of the scar. CT-l

was able to initiate each of the processes considered important in the formation of

infarct scar including cardiac myofibroblast migration as well as fibroblast

proliferation and collagen. synthesis. Taken together, these results suggest that CT-1

plays an important, heretofore unrecognized role in infarct scar formation and

angiogenesis in this model of experimental MI. Further work is required to

determine factors that induce CT-l expression, its interplay with other mediators of

cardiac infarct wound healing in the setting of acute cardiac ischemia and chronic

post-MI heart failure, and whether it confers a beneficial effect or contributes to

maladaptiv e car diac fibro sis.
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I. IxrnooucrloN ¿,No SI¿,TBMENT oF THE PRou,pm

Myocardial infarction (MI) is a major contributor to mortality and morbidity in

all developed nations [1]. If the initial infarct is large the prognosis of post-Ml

patients is grim; this is due to the relatively rapid development of congestive heart

failure. Despite a concerted effort by many groups, a clear understanding of the

precise mechanisms that contribute to the pathogenesis of post-Ml heart failure

remains elusive. Myocardial healing after infarction is charactenzed by complex

time-dependent alterations of ventricular architecture of the remnant (non-infarcted)

myocardium as well as the infarct zone itself 12-41. The sum of these gross

ventricular changes, including cardiac hypertrophy and altered gross ventricular

geometry, are referred to as ventricular remodeling. A component of this process is

interstitial (or extracellular matrix) remodeling of the remnant heart and wound

healing of the infarct scar [3]. Thus matrix remodeling is manifest as interstitial

fibrosis of the remnant heart and the progressive evolution of the structure of the

infarct scar [5]. In normal heart tissue, matrix protein secretion and deposition is

carried out exclusively by cardiac fibroblasts with relatively low tumover of proteins.

In the post-Ml heart, however, turnover of the extracellular matrix is accelerated

14,6,7), a process that is modulated by interstitial fibroblasts and myofibroblasts,

which are phenotypic derivatives of interstitial fibroblasts [8].

The primary function of adult cardiac myofibroblasts is to synthesize fibrillar

collagens to maintain the integrity of the cardiac matrix. V/hile fibrosis contributes

to the development of heart failure, the mechanisms by which these cells come to

populate the scar are not well understood. In the early period after infarction, the
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scar must become repopulated with cells. This happens via migration and

proliferation of interstitial fibroblasts from the adjacent non-injured myocardium.

Much of the current literature that addresses cardiac fibroblast function deals with the

effects of a limited number of profibrotic factors. Little information to specifically

address fibroblast migration and proliferation is available in the literature. Thus the

mechanisms governing fibroblast and myofibroblast movement to the infarct site is

largely unknown.

Cardiotrophin-1 (CT-1) is a member of the IL-6 superfamily of cytokines, and

is known to induce hypertrophy of cardiac myocytes via induction of sarcomeric

proteins in series [9]. While the hypertrophic effect of CT-l on cardiac myocytes is

fairly well charactenzed [9-13], its expression in the post-Ml heart and its influence

on nonmyocyte behavior remains to be defined. Although other members of the IL-6

family of cytokines have been postulated to play a role in the acute inflammatory

response of post-Ml heart, they are overexpressed in a highly transient manner,

wherein expression rapidly increases and declines to normal levels within days after

infarction li4]. Thus, it would appear that other factors are involved in repopulation

of the infarct scar with myofibroblasts after ML As there is very little information

concerning this phenomena is available in the literature, we have undertaken a study

to address the effects of CT-i on myofibroblasts. Specifically, this thesis addresses

the expression of CT-l in post-Ml rat heart and its effects of CT-l on cardiac

myofibroblast migration, proliferation and protein synthetic function with a view to

furthering our understanding of how the heart is repaired after myocardial infarction.

The general premise to be investigated is that CT-1 influences cardiac myofibroblast
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function, migration and proliferation in a manner which is essentially opposed to

profibrotic hormone effects such as those associated with angiotensin II (angiotensin)

and TGF-81. In other words, we expect that while CT-l exerts a weak influence

over the syrthesis and secretion of collagen by myofibroblasts (relative to known

profibrotic factors), it strongly induces migration and proliferation in these cells.

As such, CT-l may serve as a major stimulus for repopulation of the infarct scar, and

may serve to antagonize the detrimental effects of over-driven angiotensin and TGF-

B1 signaling.

The first aim within the framework of our working hypothesis is to assess

the time-course of CT-l expression in post-Ml heart, including the infarct zone and

the remnant, viable myocardium. We will show that CT-l is rapidly expressed after

permanent coronary artery ligation and stays elevated in the infarct scar out to 8

weeks. 'We also suggest that CT-l expression in the remnant heart is not elevated

until the onset of overt hypertrophy and fibrosis (- 8 wks). Thus we expect that CT-

I expression is very different from either that of other IL-6 family members as well

as that of the established profibrotic factors. The second aim wíthin the working

hypothesis is to determine signaling pathways utilized by CT-l in transducing its

effects on cardiac fibroblasts. V/e will show that the effects of CT-l require

activation of multiple signaling pathways in these cells. The third aim is to assess

whether CT-l augments DNA and protein synthesis as well as myofibroblast

proliferation, and we aim to provide linkage between activation of salient signaling

pathways and cell proliferation. We will also show that the effect of CT-l is much

greater on cell proliferation than on mature collagen slmthesis. Fourth, we will
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examine whether CT-l is a chemokine for cardiac mvofibroblasts cultured. We will

show that CT-l is a chemoattractant for cardiac fibroblasts, and this phenomenon is

dependent on specific intracellular signaling pathways, integrin function and

potassium channel function. We will also show that CT-1 induces hyperpolarization

of the cell membrane, consistent with the requirement for intact potassium channel

function for effective cell migration. In short, our data will show that CT-l may

subserve acute infarct scar healine and maturation throueh activation of cardiac

myofibroblasts. By demonstrating elevated CT-l in the remnant heart in the chronic

state, we suggest that CT-1 contributes to the ongoing wound healing and the

pathogenesis of post-Ml heart failure with particular reference to myocyte

hypertrophy.
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II. RBvrnw oF THE Lrran¡,ruRp

1. Introduction: Epidemiology, clinical correlation, and the molecular

consequences of acute MI. Coronary artery disease (CAD) is the leading cause of

death in the world [1]. The sequelae of CAD include angina pectoris, myocardial

infarction (MI) and congestive heart failure (CHF). Myocardial infarction occurs

when there is an abrupt cessation of coronary blood flow, usual secondary to rupture

of an atherosclerotic plaque with thrombus formation [15]. The mortality associated

with MI has been reduced over the past 15 years with widespread clinical use of

thrombolytic agents, resulting in an increased number of survivors who are subject to

the sequelae of MI such as CHF and anhythmias [16]. Myocardial healing after MI

includes proliferation of fibroblasts and deposition of new extracellular matrix

proteins, not only in the infarct zone, but also in the remnant, viable myocardium [3].

This process is required to maintain the integrity of the ventricular wall, but can lead

to CHF from both systolic and diastolic failure [7]. Congestive heart failure is the

leading hospital discharge diagnosis in the United States, and consumes a significant

amount of health care resources [17]. As such it is the focus of a significant amount

of clinical and basic science research aimed at prevention and altering the course of

the disease.

Upon cessation of coronary blood flow, resident mast cells degranulate and

initiate an inflammatory response. This response is aggravated by trapping of

neutrophils and monocytes within the myocardial capillary network. These cells

secrete cytokines that activate monocytes to begin the process of clearing necrotic

myocytes and other debris [18]. It has been shown that outcomes are improved if
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myocardial blood flow is re-established, even after the infarct has been completed

(the open-artery hlpothesis) [i9]. This may indicate that the leukocyte mediated

inflammatory response is necessary for appropriate wound healing.

Remaining cells also secrete chemokines that induce migration of interstitial

fibroblasts from the adjacent viable myocardium to the infarct zone. As they migrate

into the infarct zone, these cells activate matrix metalloproteinases (MMPs) that

degrade the matrix 120]. Once taking up residence in the infarct zone, these

fibroblasts proliferate, transform into actin expressing myofibroblasts, and synthesize

new extracellular matrix proteins [21]. These cells persist for many years after

infarction l22l and in the late stages of wound healing, mediate contraction of the

scar, which results in scar thinning and dyskinesis with ventricular systole [23]. Thus

cardiac myofibroblasts constitute a key component of the abnormal cellular

complement attending the chronic phase of wound healing after myocardial

infarction. Consideration of global cardiac remodeling, which includes the

noninfarcted or remnant myocardium, in addition to the specific events that occur

within the site of infarct facilitates an understanding of the pathophysiology of post-

MI heart failure.

2, Chronic phase of wound healÍng after myocardial infarction, cardiac

hypertrophy and failure. The consequences of large myocardial infarction in the

chronic phase are well studied. The overloaded heart adapts with increased muscle

mass (cardiac hypertrophy), usually preceding the occurrence of congestive heart

failure (CHF), a major cause of death in the North American population 124,251.
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Cardiac hypertrophy occurs in compensation for loss of heart tissue due to }dI1261,

and its magnitude is variable depending on the size of infarctionl27,28]. In the event

of large MI, the ventricular chamber may remodel by an increase in volume l29l and

severe hypertrophy which is associated with increased myocyte size and decreased

intrinsic cardiac performance Qal. Using an experimental model of post-Ml heart

failure, the consequences of post-Ml remodeling has been observed [30-39] including

progressive cardiac dysfunction, to which has been assigned arbitrary designations of

prefailure, moderate, and severe failure stages. This model is relatively well

charactenzed and overt cardiac fibrosis in remnant heart and infarct scar from

animals with moderate heart failure has been observed [34].

Chronic cardiac wound healing and the development of fibrosis in congestive

heart failure is a complex process and may involve input from multiple factors

174,34,40,41f. It is becoming clear that myofibroblast behavior may also potentiate

wound healing and eventual cardiac fibrosis. TGF-Br is widely studied as a stimulus

for fibroblast and myofibroblast function in the setting of myocardial infarctionþ2}

TGF-BI is known to stimulate focal adhesion (FA) supermaturation in

myofibroblasts [43] which is associated with reduced tumover and decreased cell

motility 1441. Enhanced focal adhesion turnover is regulated by increased

phosphorylation of focal adhesion kinase (FAK) and c-Src activity 1441.

The myocardial ECM (comprised mainly of fibrillar collagens) is an

organized network intimately associated with cardiac function, serving to direct,

transmit, and distribute myocyte-generated contractile force [45]. It participates in

active restoration of sarcomeric length, via release of stored potential energy in
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matrix proteins 146-491. Collagen types I and III (fibrillar collagens) form struts

between myocytes and among muscle fibres 146,47,50,51]. Other functions of the

matrix include regulation of cell death, gene expression and parenchymal cell

differentiation [48,49]. Nonetheless, elevated fibrillar collagen expression may be

responsible for changing heart function in heart disease based on its adverse

influence on myocardial stiffiress 137,52,53]. The majority of DNA synthesizing

cells in the surviving myocardium and infarct scar of experimental animals are

fibroblasts and myofibroblasts 12I,39,541. Pathological cardiac hypertrophy is

associated with interstitial and perivascular fibrosis in remnant heart or as

replacement fibrosis for necrosed muscle 126,33,551. In the latter, ongoing collagen

remodeling may contribute to decompensated cardiac function in severe heart failure

stage 135,56]. Limited fibrosis in the healing infarct scar may help to preserve

ventricular function, as the new scar tissue selectively resists circumferential

deformation 157]. Thus the scar is a distinctly anisotropic tissue with large collagen

fibers oriented within 30 degrees of the local circumferential axis [57], and elevated

crosslinking of collagens [38,56]. Angiotensin is implicated in the stimulation of

collagen biosynthesis in the heart 134,40,58-60]. Suppression of angiotensin is

associated with prevention of ventricular dilatation, improved exercise capacity,

attenuation of scar remodeling, and survival in patients and experimental animal

models of heart post-Ml heart failure [61-66]. While the stimulatory effect of

angiotensin on collagen synthesis in cultured rat adult cardiac fibroblasts is well

known 167,68), its role as a proliferative agent is questionable [69] and in adult

myofibroblasts, antiproliferative effects have been noted 170 and unpublished
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observations]. The in vitro and in vivo models to be used in these studies are suitable

for the examination of fibroblast function as well as the functional and morphological

characteristics of hypertrophied and failing hearts. Further, the experimental rat

model of myocardial infarction is suited for the examination of responsiveness of

gene expression in the remnant myocardium and infarct scar [33-35,39,65,71-74].

3. Experimental rat model of myocardial infarction.

There are few reliable models of MI suitable for the study of transmural scar

tissue and development of congestive heart failure [75]. The rat model of MI was

developed by Selye et al in Canada [76]. Vascular proliferation and fibrosis of the

infarct zone and resorption of necrotic tissue occurs from the onset of infarction, and

discrete scar formation is apparent at 2l days 146]. Morphometric techniques in rat

heart have revealed that scar shrinkage and transmural thinning occurs over the first

40 days 1771. Clinical investigation has linked infarction size to the severity of

ensuing cardiac hypertrophy and subsequent heart failure 127,29,78]. To verify that

the rat model of chronic infarction is an acceptable approximation of the clinical

condition, comparisons of healed infarct size and occuffence of heart failure have

been carried o:ut164,7I-731. Large (> 30%) infarct size is associated with significant

myocyte hypertrophy 1641, and rats with very large infarcts (> 45%) had overt heart

failure characterised by elevated filling pressures, reduced cardiac output and low

capacity to respond to preload and afterload stress [79]. Thus this is an experimental

model of graded left ventricular dysfunction, whose magnitude is closely related to

the extent of the healed MI [80]. As occurs in human MI patients [81], left
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ventricular distension and dilatation in this animal model is characterised by upward

and righlward movement on the pressure-volume relationship vs. control [72,80].

Decreased blood flow to systemic organs suggests the presence of progressive

cardiac decompensation in these animals and that this sequelae of events mimics the

human condition [73].

As the rat model of congestive heart failure became established, it was

generally believed that the function of the scarred ventricle would depend not only on

size and location of the infarct but also on evolving changes in the neurohumoral

state. A pathogenic role for elevated levels of angiotensin in this model has been

well established [33,3 4,67,64,82-84J.

4. FibroblastMigration

Migration of interstitial fibroblasts from the adjacent viable myocardium

contributes to repopulation of the infarct scar [85]. Although there are differences

between cell types, in general there are 5 physical processes which must occur for

cells to migrate: 1) front vs. rear asymmetry,2) membrane extension, 3) attachment

formation, 4) contractile force generation, and 5) cell rear detachment [86]. This

occurs in response to activation of ligand dependent signaling pathways and

extracellular matrix (ECM) interactions through focal adhesions. Although it is

unclear how a receptor mediated, extracellular ligand initiated migration response

occurs, a great deal of information has accumulated on the role of cell-matrix

interactions. Focal adhesions (FA) are areas of the cell membrane where there is a

concentration of proteins that interact with the ECM [87]. These complexes form the
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adhesive connection between the cell and substratum and assemblv or disassemblv of

focal adhesions are involved in attachment and detachment of the cell during

migration [88]. Focal adhesions serve as anchorpoints for actin stress fibres [89] and

they assist in migration by forming along the leading edge of the cell, remaining

fixed as the cell migrates over them, and then detaching at the rear (FA turnover)[90].

It is this dynamic assembly and disassembly of FAs that plays a critical role in

regulating the speed of migration [87]. The ECM receptors, integrins, are the

hallmark component proteins of focal adhesions, although the complex also contains

syndecan and other structural/adapter proteins and kinases, such as vinculin, talin,

paxillin, p130CAS, PI3-K, src, integrin linked kinase, and focal adhesion kinase

(FAK). FAK is a tyrosine kinase the activity of which is modulated by multiple

tyrosine and serine phosphorylation sites. Tyrosine 397 of FAK becomes

autophosphorylated upon engagement of integrins and regulates formation of a

conglomerate of proteins and kinases including Src, the 85 kDa subunit of PI3K,

PLCy, and the adapter protein GrbT 1911. Tyrosines 5761577, which lie in the

catalyfic domain, are regulated by Src kinases and phosphorylation of these residues

is required for maximal catalfiic activity 192,931. Rho also plays a central role in

control of focal adhesion assembly and disassembly: activated Rho is required for the

assembly of focal adhesions, and inactivation is implicated in the disassembly of

focal adhesions [88]. The calcium sensitive protease calpain also plays a role in

decreasing adhesiveness at the rear of the cell through cleavage of focal adhesion

constituents [9a].
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Two types of force must be generated by the cell for movement to occur:

protrusive force, resulting in the formation of membrane protrusions þseudopodia,

lamellipodia, filopodia) and contractiie force to move the cell body over the

substratum [86,95]. The first likely occurs through actin polymerization and

cytoskeletalrcorgarization independent of myosin, whereas the later is accomplished

by active myosin motors 186,95]. Filopodia are spikes of cell membrane supported

by a tight cylinder of actin whereas lamellipodia arc thin protrusive sheets of cell

membrane supported by a web of actin filaments [95]. Actin stabilizing proteins

such as cortactin, ARP 2/3, WASP and WAVE play an central role in formation and

stabilization of these filaments [96-98].

In smooth muscle, the activity of myosin motors is regulated by the

phosphorylation of regulatory myosin light chains (rMLC), in turn regulated by

myosin light chain kinase (MLCK) l99l and phosphatase [100]. Phosphorylation of

rMLC allows activation of the myosin ATPase by actin, with subsequent cross-

bridge cycling and contractile activity. Although there is new evidence suggesting

that MLCK can be activated by Src kinases [101,102], MLCK is classically activated

by elevated intracellular calcium which binds to calmodulin, in turn binding to and

activating MLCK 1100]. Intracellular calcium is an important second messenger that

regulates alarge number of physiologic functions [103,104]. Its level is controlled

by influx of extracellular calcium and mobilization of intracellular stores, mainly

from the sarcoplasmic and endoplasmic reticulum [105]. In non-excitable cells, such

as fibroblasts, which do not express significant levels of voltage sensitive calcium

channels, an important regulator of calcium entry is membrane potential [106].
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Membrane potential is primarily regulated by potassium channels, which when open

induce hyperpolarization of the cell membrane. This regulates the cytosolic calcium

content by altering the driving force for calcium entry through capacitive or non-

selective cation channels [106-108]. Potassium channels can be regulated by

phosphorylation [109,110], and have been shown to be associated with cytoskeletal

organizing proteins such as cortactin l1i1]. MLCK has also been shown to be

associated with cortactin [101,112]. These interactions likely play a role in actin

based cytoskeletal reorganization leading to membrane protrusion, since cofactin is

known tolocalize with lamellipodia and on endosomal vesicles [1i3] and plays an

important role in cortical actin assembly 196]. This may also be the mechanism that

produces front-rear asymmetry of the cell and guides the cell towards a specific

stimulus.

5. The Cardiac Myofïbroblast

Fibroblasts and myofibroblasts are abundant in the heart [55], and wound

healing/interstitial cardiac fibrosis is mediated by primarily the latter type 139,114-

116]. During wound healing, circulating myofibroblast progenitors and normal

interstitial fibroblasts transform into myofibroblasts that are hypersynthetic, less

migratory and possess contractile properties [8,18,115]. This phenotype is marked

by expression of c¿-smooth muscle actin, vimentin, AT1 receptors, TGF-B receptors,

LIFR/gp-130, ACE, and fibrillar collagens 15,59,60,116-1201. Additional features of

myofibroblasts are a well developed rough endoplasmic reticulum, myofilaments

(stress fibres) with focal densities, collagen secretion granules Uzll and gap
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junctions [115]. A marker of myofibroblasts that may be more specific than cr-

smooth muscle actin expression is expression of the embryonic isoform of myosin,

Smemb U221. This protein has been found to be expressed in infarct scar lI22), and

in hibemating myocardium [123]. Unlike dermal myofibroblasts which disappear

during the transition from granulation tissue to scar LI24], cardiac myofibroblasts can

be found in the infarct scar many years after injury 122). The main stimuli for

fibroblast - myofibroblast transformation is PDGF, SCF and most importantly, TGF-

B [8,115], whereas LIF may antagonize this phenotypic change U251. In cultured

cells, this phenotype is induced by TGF-p1 and in vitro culture seeding at low density

143,126,127]. We have demonstrated the predominance of myofibroblasts in the

infarct scar [39] in post-Ml rats and in adult celis when plated at low initial density

(unpublished observations). Cultured adult myofibroblasts are phenotypically stable

and hypersynthetic U26\

In clinical and experimental models of post-Ml heart, it is generally believed

that the function of the scarred ventricle depends upon the size and location of the

infarct and also on alterations in neurohumoral state. In the context of cardiac

fibrosis, only a small number of growth factors or cytokines have been well

investigated. Among these, perhaps angiotensin II (angiotensin) and TGF-81 been

the most extensively chaructenzed. Suppression of angiotensin is associated with

prevention of ventricular dilatation, improved exercise capacity, attenuation of scar

remodeling, and survival in patients and experimental animal models of heart post-

MI heart failure L33,34,6I,63-66,82-84,I28,I29f. Angiotensin stimulation of

cultured cardiac fibroblasts is marked by increased collagen synthesis 167,68,1301.
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Most of the known effects of angiotensin on cardiac fibroblasts are mediated by the

AT1 receptor [131], whereas the function of the AT2 receptor in the heart is less well-

defined U32| ACE inhibitor therapy is associated with attenuation of left

ventricular remodeling in patients with myocardial infarction 14I,62,133,1341. In

post-Ml ratheart, fibrosis is marked by an increase in local angiotensin via increased

ACE activity and AT1 receptor density 159,60,1351 in fibroblasts and myof,rbroblasts

which appear at the infarct 3 days post-Ml [59]. Myofibroblasts of the borderzone

and infarct scar overexpress signal proteins associated with angiotensin signaling

[35,39].

With respect to myofibroblast function, TGF-B1 mediates cell growth and

differentiation, tissue wound repair, and extracellular matrix production [136-138],

including regulation of f,rbrillar collagens [139] and is expressed in the normal and

hypertrophied myocardium [130,137,140,141]. TGF-B1 ligand signaling from cell-

surface receptors to the nucleus is transduced by Smads and their DNA-binding

partners lI42-I491. TGF-PI receptor type I and II are Ser/Thr kinase class proteins,

and signal through receptor-regulated Smads (R-Smad 2 or 3) by specific recognition

and phosphorylation steps 1144,i50,151]. Evidence for ligand-level crosstalk

between cardiac angiotensin and downstream TGF-PI release exists 1140,144,152-

1571. TGF-Pr is also associated with enhanced collagen s¡mthesis 15,115,1581.

Finally, R-Smads may subserve a nexus for post-receptor crosstalk between

angiotensin and TGF-p, as they serve as a common downstream effectors [33].

While TGF-PI is likely to exert effects on fibroblasts that impair their motility [8,43]

and reduce their overall proliferation 1159 and unpublished observations], and as
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angiotensin's role as a proliferative agent has been recently called into question 169

and unpublished observations], investigation of alternative signaling mediators with

clear-cut proliferative effects is of considerable interest.

Myofibroblast motility and proliferation contribute to net matrix deposition in

the pathogenesis of cardiac fibrosis [56]. Myofibroblasts produce isometric tension

within granulation tissue in vivo and in cultures l8]. Tension is exerted at the level of

focal adhesions (FAs), which connect cells to matrix [43]. TGF-B1 stimulation leads

to FA maturation facilitating tension transmission from the cell to the matrix L431.

Myofibroblast contraction likely mediates infarct scar thinningthat occurs in the late

stages of post-Ml wound healing [23]. Stimulation of focal adhesion kinase (FAK)

facilitates FA tumover, motility þal and cell cycle progression [160]. Mature and

supermature FAs favour enhanced cellular anchoring, which tends to retard

myofibroblast motility and inhibit cell proliferation 1431. It is possible that this

"anchoring" phenomenon is an adaptation for efficient collagen synthesis and scar

contraction.

6. Cell Proliferation

Upon taking up residence in the infarct zone, these fibroblasts proliferate.

The cell cycle is divided into four distinct phases: Gl, S, G2 and M. The two G

(gap) phases are referred to as growth phases, DNA synthesis occurs during S phase

while cell division (mitosis) occurs during M phase 116l-164). Proper progression

through the cycle is assured by "checkpoints." These are points in the cell cycle

where certain conditions have to be met before the cell can proceed into the next
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phase. These transitions ¿ìre govemed by the cyclin dependent kinases (CDKs) and

by inhibitory and activating phosphorylation events [161,165]. The activity of these

enzlirnes is dependent on their molecular partners, cyclins and CDK inhibitors, the

levels of which fluctuate depending on the specific phase of the cell cycle, whereas

the CDKs are more stably expressed [165]. To date over 12 cyclins and 9 CDK

subunits have been described; however, the cyclins are categorized into 5 groups, A

through E 11651. Progression through Gl is mediated by sequential activation of D

type CDKs (cyclinD with CDK4 or CDK6), and cyclinE complexed with CDK2

[166]. CyclinD is upregulated by growth factors, and is expressed in any cell that is

in the cell cycle. A target of the Gl CDKs is Rb, which is increasingly

phosphorylated during mid-late Gl phase, first CyclinD-CDK4 and CDK6, then later

CyclinE-CDK2 as cells enter S phase [161,166]. This is a principle endpoint of

growth factor induced ERK1/2 activation: phosphorylation and activation of

transcription factors, with resultant increased expression of cyclinD and

phosphorylation of Rb which leads to disinhibition of E2F, leading to transcription of

target genes and cell cycle progression U62,1671. CyclinA and cylinB are expressed

in a phasic manner, with low expression throughout the cell cycle except during the

transition ftom G2 to M phase [165]. After entry into S phase, Rb is held in its

hyperphosphorylated inactive state by CyclinA-CDKz, and by CyclinB-

CDKI/CDCZ dunng M phase. The early events in the cell cycle are dependent on

the presence of growth factors, whereas once the cell has entered S phase, the

remainder of the cell cycle can be completed even if growth factors are removed.

This time point has been designated the restriction (R) point [168]. Beyond this point
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the cells can not only complete S phase, but also traverse G2 and M phases in the

absence of growth factor stimuli 116I,163,164,1661.

Cell cycle progression is not only dependent on CDKs, cyclins and CDK

inhibitors. Normal. non-transformed cells have to be adherent to the substratum in

order for effective proliferation to occur [169]. FAK has been shown to

independently induce activation of the cyclinD promoter, resulting in enhanced cell

cycle progression lL70-1731. Additionally, non-adherent cells fail to phosphorylate

Rb and fail to activate cyclinE-CDK2 U731. Therefore ECM receptors play a critical

role in regulating cell cycle progression by facilitating optimal activation of

intracellular signaling pathways and induction of cyclins, in particular, cyclinD [169].

In addition, adhesion may also play a role by suppressing the total levels of the CDK

inhibitors, p2l and p27 lI7al. Cell adhesion exerts its regulatory role primarily in

the Gi restriction point, since the events that are dependent on adhesion also regulate

the Gi-S transition. For a cell to complete M phase and cytokinesis, it must be able

to detach momentarily from the substratum. Therefore focal adhesions must be

disassembled and reassembled, a phenomenon mediated by focal adhesion kinase

(FAK) U7s-r771.

7. Extracellular Matrix Protein Synthesis

Synthesis of new extracellular matrix proteins is a tightly regulated process

involving gene transcription and translation. Initiation of protein synthesis is a

tightly regulated process that culminates in the positioning of a charged ribosome at

an initiation codon [178]. The ribosome does not bind directly to the mRNA 5' cap,
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but is directed there by the concerted action of a large number of eukaryotic

translation initiation factors (eIFs). In this regard, eIF4E and eIF4G are important

components of a trimeric complex eIF4F, and it is known that the levels of eIF4F

fluctuate with varying translational rates. Growing or stimulated cells contain high

levels of eIF4F, whereas starved or quiescent cells contain low levels of eIF4F. The

phosphorylation status of eIF4E also correlates with the degree of translational

activity, since the phosphorylated form has a greater affinity for cap structures U79).

Formation of eIF4F is regulated at least in part by a family of translation repressors,

the eIF4E binding proteins (aE-BPs). Binding of 4E-BP1 to eIF4E prevents

association of eIF4E and eIF4G, thereby preventing formation of the initiation

complex. Regulation of 4E-BP1 is accomplished through phosphorylation:

hypophosphorylated 4E-BPl binds tightly to eIF4E, whereas phosphorylation of 4E-

BPl releases eIF4E and allows formation of the initiation complex U80]. The

primary target of FRAP/mTOR kinase activity is 4E-BPi [180], while the MAPK-

related kinase Mnkl is the most likely candidate kinase in regulation of eIF4E

phosphorylation [181]. Thus integration of the PI3K and MAPK pathways is

implicit at the level of initiation of translation.

Control of the collagen synthesis is a complex process involving many

different signaling pathways and post-translational modification check-points. It is

becoming clear that R-Smads (receptor activated Smads) are activators of

procollagen gene transcription, whereas STATs and MAP kinases have been viewed

as negative regulators (reviewed in [182]). Following translation, there is a great

deal of modification of the collagen gene product. After synthesis of the initial
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protein, prolyl residues are hydroxylated by prolyl-4-hydroxylase (P4H) within the

endoplasmic reticulum [183]. P4H is a multisubunit protein that possesses not only

hydroxylase activity, but also functions as a molecular chaperone (with HSP47) to

aid in procollagen folding and assembly of trimeric fibrillar collagens [184,185], and

is considered a rate limiting step in the synthesis of mature collagen [186]. There are

several cofactors required for optimal P4H activity: ascorbic acid, molecular oxygen,

ferrous iron and 2-oxoglutarate [183]. When one or more of these factors is deficient,

there is retention of procollagen within the endoplasmic reticulum [187]; these

immature proteins then undergo degradation [188] and there is an overall deficiency

of mature collagen. After prolyl hydroxylation, the procollagen protein is expelled

from the cell and undergoes proteolytic cleavage of the carboxy and amino terminal

propeptides by the extracellular metalloproteinases, procollagen C- and N-

proteinases 1189]. The mature collagen molecule is then fuither cross-linked by lysyl

oxidase 11901.

8. Cytokine Expression in Post-MI Heart

Upon cessation of blood flow, there is rapid degranulation of preformed mast

cells in the heart. These cells release histamine and TNF-c¿, which is considered to

be important in initiating the inflammatory cascade [191]. This resulted in an

increase in IL-6 expression in mononuclear cells as well [18] with subsequent

activation of adhesion molecules, leukocyte trapping and neutrophil-induced injury

[191-193]. In addition to its effects on adhesion, IL-6 may also act as a nitric oxide-

dependent cardiac depressant, and may therefore may be associated with stunned
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myocardium [18,191]. Furthermore, IL-6 plays a role in tissue repair, since knock-

out mice demonstrate significantly delayed cutaneous wound healing 11941. There

are several cytokines that are expressed during the various stages of post-Ml wound

healing, including members of the IL-6 family,lL-lP 1141, TGF-P142,1411, EGF and

FGF [195]. In the subacute and chronic phase, these are elevated, at least in part, by

activation of the renin-angiotensin-aldosterone system (RAAS) [196-198]. It is well

known that inhibition of the RAAS results in improved outcomes in animal models

and patients suffering MI and CHF [34,6I,64,66,82-84,128,129,I4I), and this is in

part related to a reduction of cytokine expression. Angiotensin has been shown to

increase TGF- B expression in post-Ml heart, and its antagonism results in decreased

cardiac fibrosis and improved ventricular function 1120,14I,1991. Cardiotrophin-l

has also been shown to be elevated in the myocardium after myocardial infarction

[200], but the relationship of its expression to the RAAS is not clear.

9. Cardiotrophin-l

Cardiotrophin-l (CT-l), a member of the IL-6 family of cytokines, was

isolated in 1995 based in its ability to induce hypertrophy of neonatal cardiac

myocytes in vitro l20ll. The IL-6 family of cytokines includes IL-6, IL-11, LIF,

OSM, CNTF and CT-l 12021. To identify factors that induce cardiac hypertrophy, an

expression cloning system was coupled to an in vitro hypertrophy assay. From this, a

1.4 kb cDNA was identified that produced a 2I4 amino acíd,21.5 kDa protein which

was named Cardiotrophin-l [201]. This protein was found to induce hypertrophy

more potently than other members of the IL-6 family of cytokines or other known
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mediators of cardiomyocyte hypertrophy [201]. The 1.4 kb band was observed in

adult mouse mRNA from heart, skeletal muscle, liver, lung and kidney [201] and in

adult rat heart, lung, liver, kidney, skeletal muscle, stomach and urinary bladder

12031. In humans, a 1.7 kb mRNA encoding CT-l was found in heart, skeletal

muscle, prostate and ovary 1204). CT-l was observed in the early mouse embryonic

heart tube, primarily in myocardial cells, with less expression in the endocardial

cushion or outflow tract tissues. After 812.5, CT-l expression was also observed in

liver, dorsal root ganglia and skeletal tissues [205]. The expression of CT-l in the

spinal cord appears required for survival of developing motoneurons, since CT-l

deficiency (knock-out) causes increased motoneuron cell death in spinal cord and

brainstem of mice during a period between embryonic day 14 and the first postnatal

week 12061. CT-1 also appears to induce astrocyte differentiation from

neuroepithelial cells in a synergistic fashion with BMP-2 12071.

Expression of CT-l has been observed in various disease states. Increased

CT-l mRNA was observed in the ventricles of genetically hypertensive rats

1203,2081and in the ventricles of rats subjected to pressure overload 12091. Elevated

CT-1 and gp130 mRNA and protein were observed in the ventricles from rats with

myocardial infarction, and increased expression persisted into the chronic phase of

wound healing [200]. Elevated CT-l was observed in the ventricles from dogs with

pacing induced heart failure, and the degree of CT-l mRNA expression correlated

with left ventricular mass index l2l0l. Mechanical stretch of cardiomyocytes has

been shown to increase CT-l mRNA expression l2lll, as has norepinephrine

stimulation 12121, isoproterenol stimulation l2l3l and hypoxic stress l2l4).
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Angiotensin II was shown to induce CT-1 expression in cardiac fibroblasts [215], and

cardiac non-myocytes (mainly fibroblasts) were observed to have 3.5 times higher

CT-l mRNA expression than cardiac myocytes [216]. CT-1 expression has been

observed in rats with Chagasic cardiomyopathy (Trypanosoma cruzi infection) [217]

and in mice with acute Coxsackievirus 83 myocarditis [218].

In humans, elevated serum levels of CT-l have been observed in patients with

unstable angina 12191, acute myocardial infarction 12201 and heart failure l22Il. The

level of CT-l expression was correlated with the degree of left ventricular systolic

dysfunction. Elevated CT-l was also observed in patients with aortic stenosis [222]

and mitral regurgitation; the degree of regurgitation correlated with the level of CT-1

in serum 12231. There has been a report of a mutation/polymorphism in the promoter

region and coding region of the human CT-l gene in some patients with idiopathic

dilated cardiomyopathy 12241. The significance of this is unknown, although

elevated CT-l was observed in the serum of patients with dilated cardiomyopathy

and its expression was positively correlated with left ventricular mass index 12251.

Elevated mRNA and protein levels of CT-i were observed in the hearts from patients

with end stage cardiomyopathy undergoing heart transplantation. This increased

expression was accompanied by a decrease in gp130, suggesting that receptor

downregulation plays a role in balancing enhanced CT-1 expression [226].

When administered intravenouslv. CT-l induces a droo in mean arterial

pressure and reflex increase in heart rate without affecting cardiac output, an effect

that is mediated by iNOS 12271. This effect was also seen in spontaneously

hypertensive rats 12281. Male Wistar rats became resistant to repeated injections of



37

CT-l, by induction of endogenous suppressors of IL-6 family clokine signaling,

namely Jak-binding protein (JAB)/Suppressor of Cytokine Signaling-l/STAT

induced STAT Inhibitor-l and CIS3/SOCS-3/SSI-312291. Chronic administration of

CT-1 to mice by intraperitoneal injection lead to increased heart to body weight ratio,

as well as increased liver, spleen and kidney weight, but induced a reduction of

thyrnus weight 12301.

Cardiomyocyte hypertrophy produced by CT-l was observed to be different

than the other hypertrophic stimuli. 'Whereas hypertrophy typically results in

assembly of sarcomeres in parallel, CT-1 induced hypertrophy resulted in sarcomere

assembly in series with subsequent increase in cardiomyocyte cell length L9,20I1.

This hypertrophic response was transduced by a receptor complex composed of the

leukemia inhibitory factor receptor subunit P (LIFRP) and gp130. Upon CT-l

stimulation, both LIFRP and 9¡1130 become tyrosine phosphorylated by Janus

kinases (Jaks), since neither gp130 nor LIFRB contain any inherent kinase activity

19,202,2311. Because Janus kinases are activators of multiple signaling pathways,

there is activation of STATs, the mitogen activated protein kinase pathway, the

phosphoinositol-3-kinase pathway and the Src pathway 1232,2331. Activation of

these pathways results in hlpertrophy and protection from ischemia/reperfusion

injury 12341.

In keeping with its role as a growth factor, CT-l also has cyoprotective

effects. CT-1 prevented apoptosis of serum starved neonatal ventricular myocytes in

a Pl3K-dependent manner 12341and a MAPK dependent manner 1235,2361. NF-rB

also plays acentral role in the cytoprotective effect of CT-l 12371. CT-l was also
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able to protect isolated rat cardiac myocytes from apoptosis when added before

simulated ischemia or when added at reoxygenation 12381. The same effect was

observed in whole ratheart ex vivo 12391. The protective effect of CT-l on human

right atrium was found to be as effective as ischemic preconditioning when cells

were treated for up to 24 hours before ischemia 12401.

CT-l also appears to be cytoprotective in the brain: In a mouse model of

amyotrophic lateral sclerosis, adenoviral administration of CT-l was found to delay

the onset of motor impairment and axonal degeneration l24Il. Prolonged survival

and improved muscle function was also noted in neonatal progtessive motor

neuropathy (pt -) mice treated with adenoviral CT-l 12421. In the Wobbler mouse

motor neuron disease model, subcutaneous administration of CT-l after disease

diagnosis reversed the progressive decline in neurological and muscle function 12431.

To date there is only one paper on the effect of CT-l on cardiac fibroblast

function. Tsuruda et al. showed that canine cardiac fibroblasts express CT-l, gp130

and the LIF receptor. CT-l stimulation of canine cardiac fibroblasts increased

proliferation and incorporation of 3H-proline, an effect that could be inhibited by

coincubation with a gp130 blocking antibody or the endothelin-1 receptor antagonist

8Q123 11181. It was in this setting that we sought to determine the time course of

CT-1 expression in post-Ml ratheart, and its effect on post-Ml wound healing, with

paficular respect to cardiac fibroblast proliferation, migration, and protein (collagen)

synthesis. To that effect we performed coronary artery ligation in rats, and

performed experiments on cultured primary adult rat cardiac fibroblasts to more

closely examine the effects of CT-1 on this cell type.
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IIL M¿,renIALS AND MBuroos

1.0 Myocardial Infarction in Rats

All experimental protocols for animal studies were approved by the Animal

Care Committee of the University of Manitoba, foliowing guidelines set forth by the

Canadian Council on Animal Care. MI was produced in 200-250 gm anesthetized

(0.01-0.05 mdkg buprenorphine subcutaneous premedication, 2-2.5o/o isofluorane

inhalation anesthetic) male Sprague-Dawley rats by ligation of the left coronary

artery as previously described [30]. The mortality rate associated with this procedure

was -40Yo within 48 hours and the resultant scar occupied -40o/o of the left ventricle.

Sham operated animals received the same procedure, lacking only the coronary

artery ligature, and were used for comparative purposes. Animals were sacrificed at

specified time points and tissue was isolated from two regions of the left ventricle:

remnant/viable and infarct zonelscar. These specimens were pulverized under liquid

nitrogen, homogenized, and lysed in 2x sodium dodecyl sulfate (SDS) buffer (0.125

M Tris, 2% SDS, 20o/o glycerol) at 4oC for 60 minutes then sonicated for 15 seconds.

Insoluble material was removed by centrifugation and the clear supematant was used

for Western analysis of CT-1 expression.

2.0 Isolation and Characterization of Cardiac (myo)fibroblasts

Fibroblasts were isolated from the hearts of 200-250 g adult male Sprague-

Dawley rats as previously described [33]. Briefly, hearts were subjected to

Langendorff perfusion at 37oC with Joklik's medium containing 0.1o/o collagenase

(V/orthington Biochemical Corporation, Lakewood, NJ) for 20-25 minutes.
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Collagenase was neutralized by addition of an equal volume of DMEMÆl2 medium

containing 10% FBS and liberated cells were collected by centrifugation at 500 x g

for 5 minutes. Cells were resuspended in fresh DMEMÆ12 containing I0% FBS and

plated on 7 5 cm2 culture flasks at 37'C with 5o/o COz for 3 hours. Non adherent cells

(myocytes) were removed by changing the culture media and adherent cells (mainly

fibroblasts) were incubated in DMEMÆ12 containing l0% FBS, 100 UlmL

penicillin, I00 ptglmL streptomycin, and 100 ¡tM ascorbate. Fibroblasts were used

for experiments after the second passage and the purity of these cells was > 95yo,

using routine phenotyping methods as previously described [39]. Figure 2

demonstrates that these cells begin to express c¿-smooth muscle actin by the first

passage, indicating that these cells are myofibroblasts. Cells were rendered quiescent

by incubation in serum-free medium for 24 hours then stimulated with CT-l for

specified times and lysed in RIPA buffer (150 mM NaCl, lo/o Triton X-100, 0.5%

deoxycholate, 0.Io/o SDS, 50 mM Tris) with lx protease inhibitor cocktail (Sigma-

Aldrich, Oakville, Ontario) and 10 mM NaF, lmM Na3VOa and 1 mM EGTA.

3.0 Western Analysis

Protein concentrations of tissue and cell lysates were determined by the BCA

method 12441. Proteins were separated by 8-12% SDS-PAGE and transferred to

PVDF membrane (Roche, lndianapolis, IN) for t hour at 300 mA for small proteins

or for 2 hours at 500 mA for proteins greater than 100 kDa. Membranes were

blocked with5Yo non-fat skim milk in tris-buffered saline containing 0.2o/oTween20

(TBST). Proteins were visualized with ECL Plus (Amersham) after probing with
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primary and secondary antibodies. Band intensity was quantif,red using a CCD

camera imaging densitometer (GS670, Bio-Rad Laboratories (Canada) Ltd.

Mississauga, Ontario).

Immunofluorescence

Cardiac fibroblasts were seeded onto coverslips in 6 well dishes and allowed

to attach overnight in media containing 10% serum. The .cells were rendered

quiescent in serum free media for 24 hours before being stimulated with CT-l for

specified times. The media was removed, cells were rinsed with PBS and fixed with

4o/o paraformaldehyde. Cells were permeabilized with 0.1% Triton X-100 and

incubated with primary antibodies, biotinylated secondary antibodies, and

streptavidin FITC. Nuclei were stained with Hoechst 33342. The cells were

visualized with epifluorescent microscopy with appropriate filters Q.tikon Canada).

5.0 Proliferation Assay

5.1 3H Thymidine Incorporation

DNA synthesis was measured by uptake of 3H-thymidine as previously

described [245] with modification. Briefly, 2.5 x 104 cells (counted with a

hemacytometer) in DMEM/FIZ with 10% FBS were loaded into each well of Z{-well

culture plates, allowed to attach overnight and rendered quiescent in serum-free

DMEM with 100 ¡rM ascorbate for 24 hours. S-phase re-entry in response to CT-l

was measured in two ways: pulse labeling with 3H-th¡rmidine for 30 minutes every 6

hours, or labeling for the last 30 minutes of 6 or 12 hour incubation. DNA in cell
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lysate was precipitated with cold 20o/o tnchloroacetic acid (TCA) and filtered through

GF/A filters (Fisher). Beta emission from the dried filers was measured with

Cytoscint scintillation fluid (ICN Pharmaceuticals, Costa Mesa, CA) and a

scintillation counter (LS6500, Beckman Coulter, Fullerton, CA).

5.2 Cell Counting

To determine absolute cell numbers after stimulation with CT-l. the total

number of cells were counted. Equal numbers of cells were loaded into each well of

24 well plates and incubated with CT-i for 24 hours. The cells were detached with

trypsin, diluted in filtered phosphate buffered saline, and counted with Model ZM

Coulter cell counter (Beckman Coulter, Fullerton, CA).

5.3 Nuclear Accumulation of PCNA

Cardiac fibroblasts were seeded onto cover slips and allowed to attach

overnight. The cells were incubated with serum free media for 24 hours prior to

stimulation with CT-1 for an additional 24 hours. The cells were then fixed with

cold acetone, permeabllized and immunostained for PCNA and counter stained with

Hoechst 33342. Images from 5 high power fields per slide were captured and cells

were counted. Nuclei that were positive for PCNA were counted and expressed as a

ratio to total nuclei.

6.0 Protein Synthesis Assay

Protein synthesis was determined using the methods of Wolf and Neilson

L2461. 2.5 xl}a cells (counted with a hemacytometer) were loaded into each well of

24-weIl plates, allowed to attach overnight, then rendered quiescent in serum free
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DMEMÆl2 for 24 hours. Cells were stimulated with CT-l for an addítional 24

hours in the presence of 2 ptCilml. 3H-leucine with or without inhibitors of signaling

pathways. The culture media was aspirated, cells rinsed twice with phosphate

buffered saline and proteins precipitated by two incubations with I0% TCA at room

temperature. The precipitated protein was solubilized in 300 ¡r.l lysis buffer

containing 0.5 M NaOH and lo/o Triton X-100 at room temperature for 15 minutes.

The lysate was transferred to scintillation vials, and beta emission was determined

with 3 ml Ecolume scintillation fluid (ICN Pharmaceuticals) and a scintillation

counter (LS6500, Beckman Coulter, Fullerton, CA).

Collagen Synthesis

Synthesis of mature type I collagen was determined by measuring the

concentration of the carboxyterminal propeptide of type I collagen (PICP) in

conditioned media from CT-l treated or untreated cardiac fibroblasts. 5 x 104 cells

were loaded into each well of a 6 well plate, allowed to attach ovemight, and serum

starved for 24 hours. Cells were treated with CT-l at specified concentrations for an

additional 24 or 48 hours. P1CP content in 0.1 mL conditioned media was

determined by radioimmunoassay according to the manufacturer's specification

(Diasorin Inc, Stillwater, Mlr{). Radioactivity was quantif,red with a gamma counter

(Gamma 5500, Beckman Coulter, Fullerton, CA) and the concentration of PlCP was

determined by the o/oBlB,o versus log concentration. This method has been shown to

correlate well with 3H-proline incorporation into collagenase sensitive proteins 12471.

7.0
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8.0 Migration Assay

8.1 Boyden Chamber

Migration of rut cardiac fibroblasts was measured using Boyden chamber

(Neuro Probe Inc. Gaithersburg, MD) assay 12481. Chemoattractants were diluted in

DMEMÆlZ and loaded into the lower wells at specified concentrations. The

polycarbonate membrane (5 ¡rm pore) was placed over the wells, and 55 ¡tL cell

suspension in DMEMÆl2 supplemented with 100 ¡rM ascorbate was loaded into

each well (1000 cells/mm2). The chamber was incubated ovemight in 5o/o COz and

100% humidity at 37"C. Cells that had migrated through the membrane and become

adherent to the lower surface were fixed with methanol and stained with DifÊQuick

stain (Dade Behring AG, Düdingen, Switzerland). Cell migration was determined by

counting the number of cells per high power field.

8.2 Wounded Monolayer Model

Cardiac fibroblasts were seeded onto coverslips in 6-well dishes and allowed

to proliferate. Once the cells were near confluency, they were serum deprived for 24

hours. A scrape was made down the middle of the coverslip with the blunt end of a 1

ml syringe and the media was changed again. Cells were further incubated in the

presence or absence of CT-l and inhibitors at specified concentrations for specified

times. The cells were then subjected to immunofluorescence staining as per section

4.0.
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9.0 Estimation of cardiac myofÏbroblast membrane potential

Myofibroblast membrane potential was estimated using voltage sensitive

DiBAC+(3) dye (Molecular Probes, Eugene, OR). DiBAC¿(3) is a potentiometric

bisoxonol dye that partitions into the cell membrane and exhibits increased

fluorescence upon depolanzation and decreased fluorescence upon hyperpolarization

12491. First passage myofibroblasts were plated on glass coverslips, allowed to

attach, then incubated with 1 ¡¿M DiBAC¿(3) in control solution containing: NaCl

(140 mM), KCI (5 mM), HEPES (10 mM), CaClz (2.0 mM), MgCl2 (1.4 mM) and

glucose (10 mM) for 20 minutes. The cells were visualized at 400X on an inverted

microscope (Nikon Canada). DiBAC4(3) was excited at 470 nm wavelength and

emitted light at 525 nm was digitized and stored (Photon Technology International,

Lawrenceville, NJ). Fluorescence intensity was normalized to maximum

fluorescence observed throughout the experiment so that data are expressed as

percent change relative to baseline. According to the manufacturer's specifications,

l%o change in fluorescence intensity is equivalent to 1 mV change in membrane

potential. To ensure fluorescence intensity changes in response to altered membrane

potential were occurring as expected, the cells were superfused with Tyrode's

solution containing I ¡rM DiBACa(3) and 1.5 mM KCI or 15 mM KCl. Under these

control conditions, DiBAC4(3) fluorescence decreased or increased indicating

hyperpolarization or depolarization, respectively. For CT-1 experiments, CT-1 was

diluted in control solution containing 1 ¡¿M DiBAC4(3). After ensuring a stable

fluorescence signal, the cells were superfused with the CT-1 containing solution for 4

minutes, followed by washout. Fluorescence \Mas monitored for a total of 10 minutes.
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10.0 Use of pharmacologic inhibitors

The use of pharmacologic inhibitors of signaling pathways has been widely

practiced in determining signaling by a ligand. Tyrphostin B42 (4G490) was

identified as an inhibitor of Jak2 in 1996 12501, and has been shown to have

beneficial effects on various hematologic malignancies [250,251]. 4G490 was

shown to attenuate angiotensinogen mRNA production in response to CT-l

stimulation [11]. Genistein is a phytoestrogen that possesses tyrosine kinase

inhibiting activity 12521. PD98059 is a highly specific inhibitor of MEK1/2, and

therefore an inhibitor of p42144 MAPK activation. It maintains its selectívity at

concentrations as high as 50 ¡rM 12531. 5B203580 is a highly specific inhibitor of

p38 MAPK with an ICso of 50 to 500 nM, depending on the isoform, and maintains

its selectivity when used at 10 pM 12531. Rapamycin is a highly specific inhibitor of

mTOR and does not inhibit other kinases when used at | ¡t"M 12531. LY294002 is a

specific inhibitor of PI3K, but also inhibits casein kinase 2 with equal efficacy. The

IC5e for LY294002 inhibition of PI3K is 10 pM 12531. These inhibitors are used at

published, accepted concentrations.

11.0 Reagents

Cell culture reagents were purchased from Gibco BRL unless otherwise

specified. Recombinant human CT-l, and mouse monoclonal CT-l antibody were

purchased from R&D Systems, Inc. (Minneapolis, MN). Polyclonal antibodies

against STAT3, STAT3 pYTos and. p5727, STAT1 pYtot, Akt pSa73, Rb pSTes and

pS80zrsit, myosin light chain 2 pTls/Sle and mouse monoclonal phosphotyrosine
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antibody and goat anti-rabbit HRP-linked secondary antibody were purchased from

Cell Signaling (New England Biolabs Ltd., Mississauga, Ontario). Polyclonal Jakl

pYpY'0"''023 and Jak2 pYpY1007/1008 antibodies were from Biosource International

(Camarillo, CA). Rabbit polyclonal gp130 and Jakl antibodies and IalA antisera

were purchased from Upstate (Lake Placid, NY). Antibodies to actin, cyclin A

(8F683), cyclin E2 (C-lg),Erkll}pT'oo, JNK1/2 pTr83/pYr85 and p38 MAPK pY"t

were from Santa Cruz Biotechnology Inc. (Santa Cruz, CA). PCNA antibody was

from DakoCytomation (Carpinteria, CA). a-smooth muscle actin antibody was from

Sigma-Aldrich CanadaLtd (Oakville Ontario). Mouse monoclonal antibody against

procollagen (SPl.D8) was from Developmental Studies Hybridoma Bank (Iowa City,

IA). Biotinylated secondary antibodies and streptavidin FITC were from Amersham-

Pharmacia (Baie d'Urfe QC). P1CP radioimmunoassay kit was from Diasorin Inc.

(Stillwater, MN). Inhibitors of cell signaling pathways were from Calbiochem (San

Diego, CA). fmethyl-3H]-thymidine and L-13,4,5-3HQ.$l-leucine were from Perkin

Elmer Life Sciences, Inc. (Boston, MA). Other laboratory grade reagents were

purchased from Sigma-Aldrich Canada Ltd. (Oakville, Ontario).

12.0 Statistics

Data arc expressed as mean */- standard error and are compared to control

conditions using student's t-test. A p value less than 0.05 is considered significant.
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IV. Rpsulrs

Expression of CT-l in post-Ml heart.

To examine the tissue expression of CT-1 in the setting of myocardial

ischemic injury, we used the rat model of myocardial infarction. Ligation of the left

coronary artery was performed in rats, and oniy those animals which developed an

infarct occupying greater than 40o/o of the left ventricle were used for analysis.

Tissue lysates from the infarct zonelscar, and remnant or viable left ventricle and the

left ventricles of sham operated animals were prepared at 24 and 48 hours, and 2, 4

and 8 weeks after the ligation. These lysates were subjected to SDS-PAGE and

Westem blotting with specific CT-l monoclonal antibodies. Elevated CT-1

expression (relative to sham and viable LV) was observed in tissue lysates from the

infarct zone at the 24 hour time point, and elevated expression was observed up to 8

weeks after MI. At 8 weeks. elevated CT-l was also observed in the viable LV,

consistent with the development of left ventricular hypertrophy, as has previously

been described [30,37] (Figure 1). A graphic representation of relative CT-l

expression is shown in Figure 2. Knowing that CT-l was expressed in the infarct

zone, we sought to determine the effects of CT-l on isolated cardiac fibroblasts, the

sole function of which is to maintain the extracellular matrix.

Phenotypic modulation of rat cardiac fibroblasts when cultured.

During myocardial wound healing, o-smooth muscle actin expressing

myofibroblasts appear in the infarct zone. To determine if cultured cardiac

fibroblasts undergo a phenotypic change to myofibroblasts when cultured, we
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isolated fibroblasts from the hearts of Sprague-Dawley rats and plated them on glass

coverslips. After 1 day in culture, these cells are negative for o-smooth muscle actin,

but stain positively for procollagen, indicating that they are fibroblasts. After the

first passage (5-7 days after isolation), these cells stain positively for c¿-smooth

muscle actin and procollagen, indicating that they are myofibroblastic cells (Figure

3).

Signaling pathways activated by CT-l.

Cytokines of the IL-6 family typically activate the Jak pathway, which can

subsequently activate multiple down-stream signaling pathways 1202,2321. To

screen for the signaling pathways activated by CT-l, cell lysates of cardiac

fibroblasts stimulated with CT-1 were subjected to SDS-PAGE and Western blotting

with phospho-specific antibodies to common intracellular signaling mediators. To

examine phosphorylation of gp130, immunoprecipitation of gpi30 from the cell

lysates was first performed, followed by SDS-PAGE and'Western blotting with anti-

phosphotyrosine antibody. As expected, incubation of cardiac fibroblasts with CT-l

resulted in phosphorylation of gp130, JakI, Jak2 (Figure 4), STAT3, STAT1 and

nuclear accumulation of STAT3 (Figure 5a and Figure 6). Phosphorylation of

STAT5 or STAT6 was not observed (data not shown). Consistent with their

eruymatic activation, we observed phosphorylation of p42144 MAPK, p38 MAPK,

JNK and Src (Figure 5b).



50

Carditrophin-L induces cardiac fÏbroblast proliferation.

To determine if CT-i possesses mitogenic properties for cardiac fibroblasts,

we used incorporation of 3H-lab"led thymidine as a measure of DNA synthesis.

Cardiac fibroblasts were isolated from the ventricles of rats and incubated with CT-1

for specified times and at specified concentrations. Figure 7 demonstrates that upon

removal of serum, cardiac fibroblasts complete S-phase and become quiescent.

Addition of CT-1 results in S-phase re-entry within 6 hours of stimulation (Figure 7).

Elevated incorporation of 3H thymidine was observed with as little as 1 nglml- CT-1,

and peak incorporation was observed at a dose of 10-20 nglmL CT-l. (Figure 8).

CT-l induced cell proliferation was dependent on Jak, PI3-K, MAPK, and Src

kinases (Figure 9). To determine the effect of CT-l on cell cycle regulatory proteins,

we incubated cardiac f,rbroblasts with CT-l and lysed them at specified times. CT-l

treatment resulted in an increase in expression of cyclins and hyperphosphorylation

of the retinoblastoma protein (Figure 10), which relieves its inhibition of E2F and

allows activation of target genes and progression through the cell cycle 1161]. CT-l

stimulation resulted in increased nuclear expression of PCNA, a DNA polymerase

co-factor (Figure 11). To determine if increased DNA synthesis was accompanied by

an increase in cell number, we repeated the experiments in the absence of 3H-

thymidine, detached the cells from the plates and counted the total number of cells.

Increased incorporation of 3H-thyrnidine was accompanied by an increase in total cell

number (Figure 12). These results strongly support the hypothesis that CT-l is a

mitogen for primary adult rat cardiac fibroblasts.
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Cardiotrophin-l induces protein synthesis in cardiac fibroblasts.

To determine the effect of CT-1 on protein synthesis in cardiac fibroblasts we

measured incorporation of 'H-labeled leucine. Stimulation of cultured cardiac

fibroblasts with CT-1 induced a dose-dependent increase in protein synthesis (Figure

13). Since the activity of translational regulatory proteins is modified by

phosphorylation, we used phospho-specific antibodies to determine if CT-1 directly

influenced the activity of these regulatory proteins. Stimulation of cardiac fibroblasts

with CT-1 induced an increase in phosphorylation of Akt at threonine 308 and serine

473, and increased phosphorylation of p70 56 kinase at threonine 389 and serine

 2llthreonine 424, as well as phosphorylation of Mnkl, eIF4E, 4E-BP1 and 56

ribosomal protein (Figure 14).

We then determined the effect of pharmacologic inhibitors on the activation

of this signaling cascade. 4G490, an inhibitor of Iak2 12501, suppressed CT-l

induced phosphorylation of Akt at both sites, p70 56 kinase T38e, Mnkl, eIF4E and

4E-8P1, but did not significantly affeú CT-l induced activation of ERK 1/2, p38

MAPK, mTOR, p70 56 kinase 54211T424, or 56 ribosomal protein. PD98059, an

inhibitor of MEK l/2 12531, had the greatest inhibitory effect on basal and CT-l

induced phosphorylation of ERK 1/2, Mnkl, and eIF4E, but had a lesser effect on

CT-l induced phosphorylation of Akt, mTOR, p70 56 kinase, 4EB-P1 and 56

ribosomal protein. 58203580, an inhibitor of p38 MAPK 12541, suppressed CT-l

induced phosphorylation of Akt, p70 56 kinase and Mnkl, a finding that supports

previous work demonstrating that p38 MAPK can activate Akt 12551, p70 56 kinase

12561 and Mnkl 12571. As expected, LY294002, an inhibitor of PI3K 12531,
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suppressed basal and CT-1 induced phosphorylation of Akt, mTOR, p70 56 kinase,

Mnkl, eIF4E, 4E-BP1 and 56 ribosomal protein. LY294002 also attenuated

activation of ERK ll2 and p38 MAPK suggesting that PI3K participates in CT-l

induced activation of these signaling mediators. Rapamycin, an inhibitor of

FRAP/mTOR [253], decreased basal and CT-i induced phosphorylation of p70 56

kinase and 56 ribosomal protein phosphorylation, and had a lesser effect on 4E-BP1

phosphorylation (Figure I 5).

To determine if the inhibitory effect of these pharmacologic inhibitors

impacted CT-l induced protein synthesis, we again measured CT-l induced 3H-

leucine uptake in the presence of inhibitors of the JaVSTAT, PI3K, p42144 and p38

MAPK and mTOR pathways. CT-l induced protein synthesis could be suppressed

by co-incubation with 4G490, PD98059, 58203580, LY294002 or Rapamycin

(Figure 16). Our interpretation of how these pathways are integrated is shown in

Figure 17. These results demonstrate that CT-l induced protein syrthesis occurs

through activation of tlpical translation regulatory proteins.

To examine slrnthesis of mature collagen, we utilized a radioimmunoassay to

measure the expression of procollagen-1-carboxypropeptide (P1CP) in conditioned

media from cardiac fibroblasts stimulated with CT-l. This method has been shown

to correlate well with incorporation of 3H-proline into collagenase sensitive proteins

12471, but is much easier to perform. CT-l stimulation of cardiac fibroblasts

increased expression of PiCP in the culture media, indicating an overall increase in

mature collagen synthesis. Since CT-1 also induces cardiac fibroblast proliferation,

we normalized P1CP expression to the number of cells present at the end of the
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experiment. Although equal numbers of cells were loaded at the beginning of the

experiment, the proliferative effect of CT-l was much greater than its collagen

synthetic effect resulting in an apparent decrease in overall mature collagen synthesis

(Figure 18). This has observation has important implications with reference to the

effect of CT-l on cardiac fibrosis in vivo, and suggests that CT-l does not contribute

to the overt cardiac fibrosis that follows MI, and may in fact dampen the effects other

putative profibrotic agents.

Cardiotrophin-l induces cardiac fibroblast migration.

The infarct zone is repopulated by interstitial fibroblasts that infiltrate the scar

after MI. To determine if CT-l possesses chemoattractive properties, we used a

Boyden chamber. Stimulation of cardiac fibroblasts with a CT-l gradient induced

cardiac fibroblast migration in a dose dependent manner (Figure 19). Similar results

were obtained when using the Costar Transwell@ system (data not shown). To

determine how the chemotactic response is transduced, we used specific inhibitors of

intracellular signaling pathways. CT-1 chemotaxis is dependent on intracellular

signaling pathways (Figure 20) and integrin function (Figure 21). Stimulation of

migrating cardiac fibroblasts with CT-l resulted in localization of the actin

stabilizing protein, cortactin, at the leading edge of lamellipodia. This effect could

be blunted by co-incubation with 4G490 (Figure 22). CT-l induced migration is

dependent on functioning potassium channels and myosin light chain kinase (Figure

23). CT-l induced a pronounced hlperpolarizatíon of the cell, as indicated by

decreased fluorescence of the voltage sensitive dye DiBACa(3) (Figure 24). Since
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activation of myosin motors is required for effective cell migration, and CT-l

induced migration could be inhibited by co-incubation with a myosin light chain

kinase inhibitor, we sought to determine the effect of CT-l on the phosphorylation

status of myosin light chain. Myosin light chain regulates the ATPase activity of

myosin heavy chain, and thus overall contractile activity. As seen in Figure 25a, CT-

1 induced phosphorylation of myosin light chain at threonine l8/serine 19. Myosin

light chain phosphorylation could be prevented by co-incubation with llr.4L-7 or'W7

but not 4G490 or PPz (Figure 25b). This suggests that CT-l induced

phosphorylation of myosin light chain in cardiac myofibroblasts occurs through

activation of calmodulin and not through activation of Src kinases. This also

suggests that CT-l induced cell membrane hyperpolanzation is attended by an

increase in intracellular calcium.
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Non-stimulated cells CT-l, 10 nglml, 5 minutes

Figure 6. CT-l induces nuclear accumulation of STAT3. Cells were
stimulated with CT-l for 5 minutes and immunostained with anti-STAT3
antibody. Nuclei were identified by staining with Hoechst33342 (lower
panels). Representative images are shown from 3 separate experiments.
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Figure 7 z CT-l induces cardiac fibroblast DNA synthesis. DNA synthesis
was measured by incorporation of 3H-thymidine. Cardiac fibroblasts were
incubated in serum-free media from time zero, then pulse labeled with
3H-thymidine for 30 minutes. AT.24 hours, cells were stimulated with
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Figure l2z CT-l increases total cell number. Equal numbers of cardiac
fibroblasts were loaded into 24 well plates, rendered quiescent by incubation
in serum free media for 24 hours, then stimulated with CT-1 at indicated
concentrations for 24 hours. The cells were trypsinized, diluted in filtered
phosphate buffered saline and counted with a Coulter counter. *p < 0.05 vs
non-stimulated control.
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Figure 14. CT-l increases phosphorylation of protein synthesis
regulatory proteins. Quiescent cardiac myofibroblasts were treated with
CT-1 (10 ng/mL) for indicated times. Protein lysates were prepared using
RIPA buffer containing phosphatase and protease inhibitors, and subjected to
'Western blot analysis. Membranes were probed with phospho-specific
antibodies. To verify equal protein loading, the membranes were stripped and
probed for actin. Representative blots from 3 separate experiments are shown.
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Figure 15. Incubation with inhibitors of signaling pathways depresses

protein synthesis. Protein synthesis was measured by incorporation of 3H-leucine.

Quiescent cardiac fibroblasts were stimulated with CT-1 with or without inhibitors
for 24 hours. Results are displayed as mean t SEM. Samples from 3 separate

experiments were analyzed in triplicate. *p < 0.05 vs control. #p < 0.05 vs CT-l
l0 nglmI,.
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Figure 16. Incubation with inhibitors of signaling pathways depresses
phosphorylation of translational regulatory proteins. Quiescent cardiac
fibroblasts were stimulated with CT-1 with or without inhibitors for 15 minutes.
Membranes were probed with phospho-specific antibodies. To verify equal
protein loading, the membranes were stripped and probed for actin.
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Figure 18: Effect of CT-l on mature collagen synthesis. Collagen synthesis

was determined by radioimmunoassay for procollagen- 1 carboxy-propeptide
(P1CP) in conditioned media from quiescent cardiac fibroblasts stimulated with
specified concentrations of CT-l for 24 hours. Conditioned media from 3

separate experiments was analyzed in triplicate. Results are displayed as

mean + SEM. Panel A shows the P1CP content of media collected from CT-l
stimulated cells. Panel B shows the PlCP concentration corrected for the
number of cells at the end of the experiment. *p < 0.05 vs non-stimulated
control.
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Figure 19: CT-l is a chemoattractant for rat cardiac fibroblasts. The
ability of CT-l to induce cell migration was analyzed with a Boyden chamber.

Indicated concentrations of CT-1 in serum free media were loaded into the
lower wells and cardiac fibroblasts (1000 cells/mm2) were loaded into the
upper wells. Results displayed represent the number of cells that migrated
through the membrane separating the cells and media containing CT-l.
xp < 0.05 vs non-stimulated control.
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Figure 20: CT-l induced chemotaxis is dependent on signaling pathways.
The ability of CT-1 to induce cell migration was analyzedwith a Boyden
chamber. Indicated concentrations of CT-1 and inhibitors in serum free media
were loaded into the lower wells and cardiac f,rbroblasts and inhibitors (1000
cells/mm2) were loaded into the upper wells. Cells that had migrated through
the membrane were stained and counted. *p < 0.05 vs non-stimulated control.
# p < 0.05 vs CT-1.
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Figure 2l: CT-l induced chemotaxis is dependent on integrins. The role
of extracellular matrix interactions utilized in CT-1 induced chemotaxis were
examined using a Boyden chamber and integrin inhibitors. Indicated
concentrations of CT-l and inhibitors in serum free media were loaded into
the lower wells and cardiac fibroblasts and inhibitors (1000 cells/mm2) were
loaded into the upper wells. Cells that had migrated through the membrane
were stained and counted. *p < 0.05 vs non-stimulated control. # p < 0.05

vs CT-l.
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Figure 222 Cardiotrophin-l induces accumulation of cortactin at the
leading edge of migrating cells. Localization of the actin stabilizing protein,
cortactin, was examined using the "wounded monolayer" model. Cells were
immunostained for cortactin 4 hours after the creation of the wound. Green:
cortactin. Red: Actin (rhodamine phalloidin). Blue: Nuclei.
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Figure 23: CT-l induced migration is dependent on ion channel and
myosin light chain kinase function. Cells that had migrated through the

membrane were stained and counted. *p < 0.05 vs non-stimulated control.
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Figure 24. Cardiotrophin-l induces hyperpolarization of cardiac
fibroblasts. Membrane potential was estimated in quiescent cardiac
fibroblasts with the use of DiBac*(3) voltage sensitive dye. The change in
fluorescence relative to baseline was recorded, where ITo change - 1 mV.
Results displayed are representative of 3 separate experiments.
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Figure 25: CT-l induces phosphorylation of myosin light chain. Panel A:

Quiescent cardiac fibroblasts were stimulated with CT-l (10 nglml) for
specified times. Panel B: Quiescent cardiac fibroblasts were treated for 30

minutes and lysates were analyzed for myosin light chain phosphorylation.
The blots were stripped and reprobed for actin to verify equal protein
loading. Representative blots from three separate experiments are shown.
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V. DrscussroN

1. Cardiotrophin-l expression in post-Ml heart.

In this study we have examined the expression of CT-1 in the post-Ml heart,

and have observed elevated expression in the infarct zone at all time points examined.

Additionally, we have observed elevated expression in the viable myocardium in the

chronic phase of wound healing (8 weeks). The remainder of the experiments

performed, coupled with previous published work, allows us to speculate that CT-l is

beneficial during the early period of post-Ml wound healing, but in the long term

may contribute to ventricular dilation and deterioration of ventricular function. It is

known that CT-l is cardioprotective from ischemia-reperfusion injury, even when

added at the point of reoxygenation 1236,238,2391. Therefore early expression of

CT-1 in the ischemic myocardium may represent an adaptive, protective

phenomenon that is beneficial in reducing myocyte loss and inducing hypertrophy of

remaining myocytes so that overall ventricular function is maintained. However, it is

suggested that CT-l expression in the late phase of wound healing and the onset of

heart failure may contribute to ventricular dilation by inducing hypertrophy of

myocytes where sarcomeres are arranged in series (eccentric hypertrophy), rather

than in parallel as is seen in concentric cardiac hypertrophy [9], although this

hypothesis remains to be proven.

In addition to possibly protecting myocytes, the observation that CT-l

induces migration and proliferation of myofibroblasts suggests that localized

expression in the infarct zone may act to stimulate migration of cardiac fibroblasts

and other cells from the surrounding viable myocardium into the infarct zone,
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thereby initiating repopulation of the scar with cells. It is known that bone maffow

mesenchyrnal stem cells migrate to the scar after myocardial infarction [258]. 
'We

speculate that the expression of CT-1 in the infarct zorre may provide a critical

migratory stimulus for these cells (preliminary data not shown), and may even induce

(with other mediators) their differentiation to a myofibroblastic phenotype. The bulk

of evidence gathered in the past 5 years which is aimed at muscle cell regrowth in the

healed infarct scar indicates that a cellular scar confers improved ventricular

performance compared to a "hypocellular" or native infarct scar, regardless of the

cell type placed in the scar 1259-262]. Infarct scar-specific CT-1 expression may act

to induce a more cellular phenotype through induction of cell proliferation and may

antagonize the effects of angiotensin and TGF-p, both of which are expressed in the

scar and act to induce cell quiescence [69,159,263 and unpublished observations].

Indeed, a conìmon theme in explanation of the beneficial effects of popular ACE

inhibiting agents (angiotensin-suppressing drugs) is that while angiotensin is

suppressed, other systems are derepressed i.e., ACE inhibition prevents the

destruction of bradykinin 12641. Thus the upregulation of a parallel system is

invoked and yields a net benefit to the post-Ml heart. We suggest that this

mechanism may be an additional beneficial effect of angiotensin antagonism insofar

as the CT-l stimulus is allowed to act unopposed. In addition to opposing the action

of these mediators, CT-l expression may antagonize TNF-c¿ induced myocyte

ap opto si s L26 5,26 61, thereby pres erving overall ventricular p erformance.

Although the heart is the major source of circulating CT-l in humans 12671,

the cellular source of CT-1 in the post-Ml heart is not clear. While induction of CT-l
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mRNA has been shown in cardiac fibroblasts [215] and myocytes 121I,212,2141 in

vitro in response to a variety of stimuli, it is not clear which cell type is primarily

responsible for in vivo myocardial CT-l expression. It is possible that inflammatory

cells contribute to CT-1 expression, particularly early on in the course of post-MI

wound healing. Irrespective of the celiular source, activation of the gp130 signaling

cascade is required for an appropriate myocardial response to injury that allows

survival of the animal 12681. It was suggested that cardiac myocyte hypertrophy

produced by angiotensin is mediated through CT-l 12691, however, recent studies in

humans do not support an upstream connection to angiotensin [220]. Conversely

norepinephrine, which is locally and systemically activated after MI l2l0l, is known

to elevate CT-l expression in cardiac myocytes in vitro and in vivo via a cAMP

response element in the 5' flanking region of the CT-l gene l2I2l. This finding

suggests the involvement of B-adrenergic stimulation in post-Ml CT-1 expression.

The infarct scar has been shown to be a vascular structure and myocardial

wound healing after infarction invokes a significant upregulation of angiogenesis in

the infarct zone 1231. It is suggested that CT-l induced STAT3 activation as

observed in the post-Ml heart may act to initiate angiogenesis as STAT3 activation is

known to induce VEGF-dependent endothelial tubule formation and vasculogenesis

in vivo l27Il.

In this study we have examined the effects of CT-1 on cardiac myofibroblasts

to investigate the possible involvement of this IL-6 family member cytokine in

remodelling post-Ml heart. We are able to confirm that CT-l activates JAK 1 and 2

(but not JAK3 or Tyk2), leading to the phosphorylation of STAT3 and STAT1 which
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then translocate to the nucleus of myofibroblasts. Others have shown that upon

gp130 activation, rapid negative regulation of JAKs occurs via induction of

suppressor of cytokine signaling 3 (SOCS3) in heart 12721, and thus a balance

between positive and negative regulatory loops is attained. V/hile CT-l exerts

cardioprotective effects [9,268], myocardial expression of CT-1 is increased in heart

failure models 1200,2101, and in plasma 12731 and cardiac tissues of patients with

heart failure 12261. It is becoming clear that CT-l expression generally precedes the

development of pathological hypertrophy [208]. As mentioned previously, this may

in fact be a beneficial event and required for an appropriate myocardial response to

injury by activating the gp130 signaling cascade and inhibiting myocyte apoptosis

1268).

2. Signifïcance of the mitogenic effect of Cardiotrophin-l.

Accumulating evidence suggests that a cellular scar is better than a

hypocellular scar. The "cellular cardiomyoplasty" literature has shown that

irregardless of the cell type that is placed in the scar, ventricular performance is

improved, even though these cells may not contribute to slmchronous ventricular

contraction 12591. Expression of CT-l in the infarct zone is likely beneficial given

the potent induction of cell proliferation and migration. In so doing, CT-l acts to

induce proliferation of and migration of fibroblasts from adjacent viable myocardium

thereby repopulating and maintaining the cellularity of the scar. Additionally, CT-l

may act to maintain a proliferative, migratory phenotype and oppose the actions of

angiotensin and TGF-B which act to induce a quiescent, contractile, hypersynthetic
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myofibroblast phenotype [8,43,69]. LIF, another member of the IL-6 family of

cytokines which induces a similar signaling pattem as CT-l, has been shown to

reduce collagen expression and antagonized the switch to a myofibroblast phenotype

ll25). Although we did not specifically address the effect of CT-l on cardiac

fibroblast phenotype, it is likely that CT-l has a similar effect, which again supports

the notion that CT-1 has beneficial effects on cardiac fibroblast function in the post-

MI heart.

The transcription factor STAT3 has been shown to induce VEGF dependent

myotube formation when overexpressed [271]. Although this may represent another

effect of CT-1 signaling in post MI heart, namely angiogensis, to date there is no

information regarding the effect of CT-l on endothelial cell or smooth muscle cell

proliferation.

3. Role of Cardiotrophin-l in cardiac fibroblast protein synthesis.

Our results show that CT-l induces protein synthesis in cardiac fibroblasts

through typical signaling pathways. Our interpretation of how these pathways may

be integrated is shown in Figure Il. Proteins that could be induced by CT-l

stimulation include extracellular matrix proteins (collagens, fibronectin, tenascin, etc),

proteins involved in regulation of cell cycle (cyclins, proliferating nuclear antigen,

etc) and proteins required for cell adhesion and migration (primarily integrins)

1164,169,2741. Our results have shown that the collagen synthetic stimulus of CT-l

is modest without cell number normalization and actually is associated with a

reduction of collagen secretion if the normalized data are considered (Figure 18).
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These findings indicate that CT-l may not possess a significant profibrotic stimulus

insofar as there is not a significant induction of fibrillar collagen synthesis. While

this finding appears to be contradictory to other published data [118] the differences

may be due to one of the following extenuating experimental parameters: i) the

current dataset is presented in both raw and normalized forms, and it is the former

subset that agrees with other published data, which also is not normalized to cell

number; ii) we measured collagen synthesis by procollagen-l-carboxy propeptide

(PICP) expression in culture media, as opposed to simple incorporation of 3H-

proline; iii) the current data were sourced from samples of culture medium as

opposed to cell lysates. It is well known that collagen synthesis is a discoordinate

process in cardiac myofibroblasts and therefore changes in collagen type I mRNA

abundance may not accurately reflect changes in protein secretion 12751, and most

importantly, collagen secretion is mediated through a complex series of steps

involving extensive post-secondary modification of procollagen monomers, self-

winding of the triple helices, and finally cleavage of both N- and C-terminal

polypeptides. In cases whereby myofibroblasts are unstimulated or there is a

deficiency of cofactors, a high proportion of collagen monomers are cycled within

the cell, degraded shortly after synthesis and therefore never reach the point of

secretion [188]. Thus the determination of secreted collagen is the preferred method

for ascertaining net collagen synthesis in cardiac myofibroblasts, and we feel that the

advantages conferred by use of the P1CP method outweigh those that may be

realized, by addressing collagen type I mRNA expression or incorporation of 3H-

proline alone. On balance, we suggest that the proteins that are generated in response
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to the CT-l stimulus are involved in induction of cell functions (such as proliferation

or migration) other than synthesis of secreted ECM proteins.

4. SignifÏcance of Cardiotrophin-l induced cardiac fTbroblast cell migration.

The observation that CT-l induces cardiac fibroblast migration coupled with

infarct scar-specific expression of CT-1 suggests that it contributes to repopulation of

the scar as mentioned previously. Although CT-l does appear to have a chemotatic

effect on porcine coronary artery vascular smooth muscle cells (data not shown),

there is conflicting evidence for the role of IL-6 family cytokines on angiogensis.

Whereas LIF may act to reduce angiogenesis in vitro 12761, OSM induces

angiogenesis in vivo and in vitro and is chemoattractant for human microvascular

endothelial celIsl277l. Clearly the individual effect of CT-l on angiogenesis needs

to be determined.

Induction of cell migration by CT-l requires cytoskeletal reorganization,

increased focal adhesion dynamics and increased contractile activity. We have

shown that CT-l induces myosin light chain phosphorylation, which leads to

increased actin-mysoin cross-bridge cycling and contractile activity. The observation

thatmigration was dependent on intact potassium channel function, coupled with the

observation that CT-l induces myofibroblast cell membrane hyperpolarization,

indicates that the mechanism of CT-l induced migration is similar to that observed

with other non-excitable cells 1106-108,2781. Hyperpolarization of the cell

membrane would increase the driving force for calcium entry through non-selective
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cation channels. Although our studies have not specifically addressed calcium flux,

there is functional evidence that these cells express these channels 12791.

CT-l induced hyperpolarization of the cell membrane, through activation of a

potassium channel, is integral to cell functions such as migration, as indicated by our

data. Although we haven't specifically demonstrated an increase in intracellular

calcium content, it is implied through the observation of increased calmodulin-

dependent myosin light chain phosphorylation (Figure 25). Cell membrane

hyperpolarizatíon can increase intracellular calcium through an increase in the

driving force for calcium flux through capacitive cation channels. This increased

intracellular calcium content acts to activate contractile machinery through activation

of myosin light chain kinase. This effect is required for cell function such as

migration and contraction and for vesicular transport and secretion of proteins from

the cell 11051.

vr. CoNcr,usIoNS AND FUTURE DIRECTIoNS.

In conclusion, we have shown that cardiotrophin-l is expressed in the infarct

zone after permanent coronary artery ligation, and that it induces migration,

proliferation and protein synthesis in cardiac fibroblasts. Taken together, these

findings suggest that CT-l plays a role and is beneficial in post-Ml wound healing.

To confirm this, gain of function and loss of function experiments need to be done.

'We plan to do an experiment involving administration of recombinant CT-l to rats

after coronary artery ligation, looking for changes in mortality, infarct size,

ventricular performance, cellularity and collagen deposition. A CT-l knock-out
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mouse exists [206] which would be an ideal tool for studying loss of function

experiments again looking at the same endpoints. The knock-out model could also

be used to determine the role of CT-l in the accumulation of mesenchyrnal stem cells

in the infarct zone. The hyperpolanzing effect of CT-l on cell membrane is an

intriguing observation that requires further investigation. As myofibroblasts are not

only hypersynthetic, but also contractile cells that mediate contraction of the scar

(scar thinning), the effect of CT-l on cell shortening needs to be examined and

compared with known mediators of myofibroblast function. It is likely that CT-l

acts to inhibit cell contraction (which is likely stimulated by mediators such as

angiotensin and TGF-B).
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