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Near-infrared spectroscopy as a tool for generating sorption input parameters for pesticide 27	

fate modeling 28	

 29	

ABSTRACT  30	

Sorption parameters (such as Kd values) are among the most sensitive input parameters in 31	

pesticide fate models. This study demonstrates that near-infrared spectroscopy (NIRS), in 32	

combination with batch equilibrium techniques, can be used to estimate Kd values, thereby 33	

increasing throughput of the many samples required to characterize spatial variability of 34	

pesticide sorption within fields. The Pesticide Root Zone Model (v. 3.12.2) was used to compare 35	

scenarios that used NIRS spectral data, pedotransfer functions and batch equilibrium methods as 36	

inputs for the calculation of 2,4-D and atrazine leaching in 591 soil horizons. Based on the 3,564 37	

simulation runs conducted, we concluded that the added benefit of NIRS is most useful when the 38	

pesticides under study have small sorption potentials and short half-lives in soil. 2,4-D and 39	

atrazine sorption by soil was highly correlated to soil organic carbon content (SOC) in the fields 40	

under study. The feasibility of using NIRS to predict pesticide Kd values largely relies on the 41	

sorption of the pesticide being significantly correlated to SOC. In addition, successful regional 42	

approaches to predicting Kd values from NIRS spectral data can also be developed when the 43	

calibration model is derived by combining a set of fields where each has a similar statistical 44	

population characteristic in Kd values.  45	
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INTRODUCTION 50	

Sorption parameters (Kd values) are among the most sensitive input parameters in pesticide fate 51	

models used to calculate pesticide transport to depth (Boesten and Van der Linden 1991, 52	

Villeneuve et al. 1998, Dubus et al. 2003a, Dubus et al. 2003b, Farenhorst et al. 2009). There are 53	

large variations in sorption parameters within and between agricultural fields. For example, for 54	

the herbicide 2,4-D in surface soils, its sorption parameter Kd ranged from 0.56 to 12.5 L/kg 55	

(n=72) along a 360-m long transect in a single field and from 0.6 to 14.5 L/kg (n=41) across 56	

fields spanning a 660,000 km2 area (Gaultier et al. 2006, Gaultier et al. 2008). Because sorption 57	

parameters are seldom quantified in sufficient spatial detail within and between simulation units 58	

(Huber et al. 2000, Gagnon et al. 2014), there have been large uncertainties in risk assessments, 59	

regardless of the pesticide fate model used (Dubus et al. 2003b, Dann et al. 2006, Farenhorst et 60	

al. 2009). 61	

 62	

To reduce uncertainties in large-scale risk assessments, efficient methods are needed that can 63	

rapidly, and inexpensively, estimate sorption parameters for a large number of samples. The 64	

sorption of a pesticide is dependent on soil characteristics (MacKay and Vasudevan 2012) and so 65	

pesticide Kd values are usually assigned to simulation units by applying pedotransfer functions to 66	

soil geographical databases. Weber et al. (2004) established pedotransfer functions to calculate 67	

Kd values for a wide range of non-ionic or ionizable pesticides, with equations based on up to 68	

three soil properties that were the most consistently reported in soil geographical databases: soil 69	

organic carbon content (SOC), soil pH and clay content.  70	

 71	



Near-infrared spectroscopy (NIRS) can be used to estimate one or more soil properties from 72	

spectral data, including SOC, soil pH, clay content, carbonate content, cation exchange capacity, 73	

as well as aluminum and iron concentrations in minerals (Ben-Dor and Banin 1990a, Ben-Dor 74	

and Banin 1990b, Malley et al. 2000, Chang and Laird 2002, Martin et al. 2002, Sorensen and 75	

Dalsgaard 2005, Singh et al. 2012). These soil properties play an important role in the sorption of 76	

pesticide chemical structures (MacKay and Vasudevan 2012) and so NIRS could be used to 77	

rapidly estimate pesticide Kd values from spectral data. For fields and regions, NIRS has been 78	

previously used to estimate the sorption of nonionic (lindane, linuron) (Bengtsson et al. 2007) 79	

and ionizable (atrazine and 2,4-D) (Singh et al. 2010) pesticides in soils. Similarly, mid-infrared 80	

spectroscopy has been successfully used to estimate the sorption of atrazine (Kookana et al. 81	

2008) and the nonionic pesticide, diuron (Forouzangohar et al. 2008) in soils. However, no study 82	

has integrated the use of infrared spectroscopy with pesticide fate models and hence the impact 83	

of estimating sorption input parameters by infrared spectroscopy on calculated pesticide 84	

transport is unknown. 85	

 86	

In this study, the base (or reference) scenario for calculating downward vertical pesticide 87	

transport consisted of using Kd values measured in the laboratory by batch equilibrium 88	

experiments. The measured Kd values were used for input in the Pesticide Root Zone Model 89	

version 3.12.2 (PRZM-3) (Carsel et al. 1998) which is an extensively validated model used by 90	

both European and North American governments to assess the risk of water contamination by 91	

pesticides in fields and regions (Dubus et al. 2003a, Gaultier et al. 2008, Cessna et al. 2010, 92	

Water Models). The objective of this study was to compare the base scenario with scenarios that 93	



used NIRS spectra or pedotransfer functions (see Weber et al. 2004) as inputs for estimating Kd 94	

values and leaching estimates using PRZM-3. 95	

 96	

MATERIAL AND METHODS 97	

Soil samples and characteristics. This study utilized 591 soil samples collected from two 98	

irregular undulating to hummocky terrains in the Canadian Prairies. Sites were a 16-ha zero-99	

tilled agricultural area at the Manitoba Zero Tillage Research Association research farm (49° 100	

53’N latitude, 99° 58’W longitude) near Brandon, Manitoba, Canada, and a 20-ha 101	

conventionally-tilled area at the St. Denis National Wildlife Association (52° 12’N latitude, 106° 102	

5’W longitude) near Saskatoon, Saskatchewan, Canada. Both the Manitoba and Saskatchewan 103	

fields were mapped (grid size 5x5 m2) using digital terrain modeling software (Pennock 2003) to 104	

identify seven landform elements in which soil profiles were sampled. Landform elements were 105	

convergent and divergent shoulders, convergent and divergent backslopes, convergent and 106	

divergent footslopes, and depressions, with the general topography and soil profile sampling 107	

locations presented in Figure S1 (Supplementary Information). Soil profiles were sampled to 1 m 108	

depth by horizon in 70 locations at both sites using a truck mounted 5 cm diameter hydraulic 109	

probe. The 307 soil samples collected from Manitoba were from 23 different horizons.  The 284 110	

soil samples collected from Saskatchewan were from 22 different horizons. The ranges in 111	

%SOC, soil pH, %sand, %silt, and %clay at both the Manitoba and Saskatchewan fields are 112	

presented in Table S1 (Supplementary Information). 113	

 114	

Near-Infrared Spectroscopy (NIRS) and batch equilibrium data. Near-Infrared spectra were 115	

recorded for each horizon using a 25 g subsample and the Foss NIRS Systems model 6500 116	



spectrophotometer (Carl Zeiss, Jena, Germany) equipped with a rapid content sampler. Soil was 117	

presented in 5 cm diameter glass petri dishes to collect data over the wavelength range of 1100 to 118	

2500 nm at 2 nm intervals, which resulted in 700 absorbance values for each spectrum. Triplicate 119	

spectra were obtained for each sample by rotating the petri dish 120 degrees between scans. 120	

Subsamples of horizons were also analyzed for soil properties (%SOC, soil pH, %clay, %silt and 121	

%sand) as well as for 2,4-D and atrazine Kd values. Those results have been previously 122	

published (Singh et al. 2014). Kd values were determined by batch equilibrium experiments 123	

using 50 mL Teflon tubes containing 5 g soil and 10 mL of either a 2,4-D or atrazine solution 124	

prepared in 0.01 M CaCl2 at a concentration of 1 mg herbicide/L. Kd value (L/kg) was calculated 125	

using Cs/Ce, where Cs is the amount of chemical sorbed on the soil at equilibrium (g/kg), and Ce 126	

is the amount of chemical remaining in the solution at equilibrium (g/L). Throughout this paper, 127	

the 2,4-D and atrazine Kd values determined in the laboratory by batch-equilibrium experiments 128	

will be referred to as LAB-Kd values.  129	

 130	

Calibration and validation sets. The triplicate spectra for each sample were imported into 131	

Unscrambler® multivariate statistical analysis software version 9.8 (2008, CAMO Process ASA, 132	

www.camo.com/products) and averaged. Soil properties (%SOC, soil pH, %sand, %silt and 133	

%clay) and 2,4-D and atrazine Kd values were also imported. Kd values were predicted using 134	

either NIRS spectra (see section: Use of NIRS to predict sorption) or pedotransfer functions (see 135	

section: Pedotransfer functions). All calibrations used a test set method in which LAB-Kd values 136	

were sorted from low to high values and divided into calibration (two-thirds of the total samples) 137	

and validation (one-third of the total samples) sets by selecting every third sample for the 138	

validation set. As indicated in Table S2 (Supplementary Information), for each site and herbicide 139	



combination, the test set method resulted in approximately the same distribution of LAB-Kd 140	

values in the calibration and validation sets.  141	

 142	

Two different scenarios were tested to predict herbicide Kd values: 1) A site-specific approach in 143	

which the calibration and validation sets were obtained from the same field (either Manitoba or 144	

Saskatchewan), and 2) A regional approach in which the calibration sets of Manitoba and 145	

Saskatchewan were combined to predict herbicide Kd values on the validation sets of Manitoba 146	

alone, Saskatchewan alone, or Manitoba and Saskatchewan combined. This resulted in five 147	

calibration/validation scenarios for each herbicide. The site-specific approach refers to a scenario 148	

where a calibration model was developed for a site, and additional samples were collected in the 149	

same soil-landscape to improve on the characterization of the spatial variability of herbicide 150	

sorption in a simulation unit. The regional approach was included in order to explore the 151	

feasibility of developing a generic NIRS model or pedotransfer function where data from 152	

multiple sites are being combined to develop a model that could be used to improve on the 153	

spatial resolution of pesticide sorption within and between simulation units at the same time. 154	

 155	

Use of NIRS to predict sorption. Calibration development was done in Unscrambler® software 156	

using protocols similar to those previously described (Dunn et al. 2002, Malley et al. 2004, Singh 157	

et al. 2010, Singh et al. 2012) except that in this study the test set method allowed for validation 158	

evaluation. The software allowed us to consecutively apply partial least squares regression 159	

(PLS1 method in Unscrambler® software) to optimize the prediction of Kd values from spectral 160	

data for the calibration set, the resulting optimized calibration equation within the software then 161	

generated the prediction of Kd values from spectral data derived from the validation samples. 162	



Trial calibrations consisted of performing mathematical pretreatments (using moving average 163	

method) on the raw spectra by smoothing over 5, 11, 13, 21, or 41 wavelength points, and 164	

transforming the spectra to the first or second derivative using derivative gaps of either 5, 11, 13, 165	

21, or 41 wavelength points (Figure S2, Supplementary Information). Higher coefficients of 166	

determinations (R2), higher ratios of prediction to deviation (RPD), and lower standard error of 167	

predictions (SEP) (Dunn et al. 2002, Malley et al. 2004) were generally achieved with a 168	

mathematical pretreatment that used transformation of the spectra to the first derivative using 13 169	

wavelength points left and right in Unscrambler® software. For the final calibrations, this 170	

mathematical pretreatment was applied to each of the calibration/validation scenarios to estimate 171	

2,4-D and atrazine Kd values in the validation samples. Throughout this paper, the predicted 2,4-172	

D and atrazine Kd values as applied to the soil horizons in the validation sets will be referred to 173	

as NIRS-Kd values. 174	

 175	

Pedotransfer functions. Using the same calibration and validation sets as for the NIRS method, 176	

partial least squares regression (PLS1 method in Unscrambler® software) was applied to two-177	

thirds of calibration samples to establish pedotransfer functions using 2,4-D or atrazine LAB-Kd 178	

values as the dependent (response) variable and soil properties (%SOC, soil pH, %sand, %silt 179	

and/or %clay) as the independent variables. During calibration, independent variables that 180	

contributed ≤ 0.1 to the coefficient of determination were sequentially removed, which 181	

simplified the regression equations but maintained the same approximate prediction power. For 182	

each of the calibration and validation scenarios, the best pedotransfer function was selected 183	

based on the largest R2 and the lowest SEP and bias values in the calibration model. Pedotransfer 184	

functions were subsequently applied to the measured soil properties data of the validation 185	



samples in order to calculate herbicide Kd values for the soil horizons in the validation set. 186	

Throughout this paper, calculated 2,4-D and atrazine Kd values as applied to the soil horizons in 187	

the validation sets will be referred to as SOIL-Kd values. 188	

 189	

PRZM simulations. Each validation sample was set as a simulation unit with a 10 cm depth and 190	

0.1 cm compartments (PRZM simulation layers). The herbicide mass leached (referred as Lm, 191	

kg/ha) below 10 cm depth was set as the output parameter to be tested. Each validation sample in 192	

the ten calibration and validation scenarios had a measured LAB-Kd value, a predicted NIRS-Kd 193	

and a calculated SOIL-Kd value. These LAB-Kd, NIRS-Kd, or SOIL-Kd values were used as 194	

input parameters in PRZM to calculate the herbicide mass leached as LAB-Lm, NIRS-Lm and 195	

SOIL-Lm, respectively. A total of 3,564 PRZM simulations were conducted. AutoPRZM 196	

(McQueen et al. 2007) was used to automate the construction of the PRZM input file, the running 197	

of PRZM, and the extraction of data from the PRZM output file.  198	

 199	

PRZM (Carsel et al. 1998) is a one-dimensional pesticide fate model, currently being used in 200	

regulatory and policy assessments for the large scale risk assessments in North America and 201	

European Union. The PRZM manual is available on-line and explains the model in great detail 202	

(http://www.epa.gov/athens/publications/reports/Suarez600R05111PRZM3.pdf). The 203	

fundamental concept of PRMZ is that equations are used to calculate water distribution between 204	

soil layers and to distribute a pesticide between the solid, water and gas phases while undergoing 205	

transformation. Kd value is a sensitive parameter in the model as it is inversely related to the 206	

amount of the pesticide moving with leachate (Farenhorst et al. 2009). Simulations were 207	

performed using a 24-h time step for temperature and precipitation data.  Temperature and 208	



precipitation data were obtained from a meteorological station at the Brandon airport that is 209	

located about 14 km from the Manitoba site. The same weather data were used for both 210	

Manitoba and Saskatchewan sites to allow for a more direct comparison in PRZM simulation 211	

outputs between sites.  212	

 213	

Field capacity and wilting point are key variables describing vertical water flow and 214	

evapotranspiration in the model. Field capacities and wilting points were calculated for each 215	

horizon by applying measured %SOC, %sand, %clay, and bulk density to equations based on the 216	

work of Rawls et al. (1982) and provided in the PRZM manual (Carsel et al. 1998). Potential 217	

evapotranspiration was calculated using the method of Hargreaves and Samani (1985) using 218	

REF-ET© given by Allen (2001). Soil profile drainage was set as well-drained for all horizons. 219	

All simulations were started with soils at field capacity, but a warm-up time of one year was used 220	

to provide for more realistic moisture conditions at the time of application of the herbicides in 221	

year one. Preliminary PRZM simulations indicated that a longer warm-up time of up to five 222	

years had no significant influence on modeling results. The herbicide application rates were 445 223	

g/ha for 2,4-D and 1,073 g/ha for atrazine, which approximate the recommended rates. We 224	

assumed that the herbicides were applied at the beginning of a growing season (May 3rd), and the 225	

end of the simulation was set at November 31st, which is the average date when there is 226	

permanent snow cover in the Prairie region where the field sites are located (Potter 1965). 227	

Degradation was calculated in the model assuming first-order kinetics and using half-lives of 66 228	

days for atrazine and 14 days for 2,4-D as obtained from the Pesticide Properties DataBase 229	

(University of Hertfordshire 2013). 230	

 231	



Statistical evaluations of the success of the prediction methods used. For each validation set, 232	

coefficient of determination (R2) was calculated between LAB-Kd vs. NIRS-Kd, and LAB-Kd vs. 233	

SOIL-Kd, and LAB-Lm vs. NIRS-Lm, and LAB-Lm vs. SOIL-Lm. Linear regression plots were 234	

also developed with NIRS-Kd, SOIL-Kd, NIRS-Lm or SOIL-Lm as independent variables and 235	

LAB-Kd or LAB-Lm as dependent variables to determine regression equations along with the 236	

root mean square error of prediction (RMSE). For each herbicide, calibration/validation 237	

scenarios with larger R2 and smaller RMSE values were deemed the more successful approaches 238	

to estimating 2,4-D and atrazine Kd values for use in PRZM. For some samples in the validation 239	

sets, a few predictions resulted in negative NIRS-Kd, and/or SOIL-Kd values. These soil horizons 240	

were removed prior to the statistical evaluations. 241	

 242	

RESULTS AND DISCUSSION 243	

 244	

NIRS and pedotransfer functions predictions. The RPDs of NIRS validations ranged from 245	

2.15 to 3.17 in the site-specific approach (Table 1). Dunn et al. (2002) suggests three categories 246	

for RPD in soil analysis: poor, < 1.6; acceptable, 1.6-2.0; and excellent, > 2.0. In the regional 247	

approach, NIRS validations also had RPD > 2 in all cases, except for atrazine in the 248	

Saskatchewan validation data (RPD = 1.26) (Table 1). Atrazine and 2,4-D LAB-Kd values were 249	

significantly positively associated with SOC in both Manitoba and Saskatchewan with 250	

correlation coefficients (R) ranging from 0.89 to 0.94 (Singh et al. 2014). NIRS predictions for 251	

SOC often yield RPD values > 2.0 (Malley et al. 2000, Chang and Laird 2002) and the feasibility 252	

of using NIRS to predict herbicide sorption largely relies on the sorption of the herbicide being 253	

highly significantly correlated to SOC. SOC and pH were represented in all pedotransfer 254	



functions, both in the site-specific and in the regional approach (Table 2). Atrazine and 2,4-D 255	

LAB-Kd values were significantly negatively associated with soil pH in both Manitoba and 256	

Saskatchewan with correlation coefficients ranging from -0.30 to -0.63 (Singh et al. 2014). Other 257	

researchers have reported that 2,4-D and atrazine sorption increases with increasing SOC and 258	

decreasing soil pH (Novak et al. 1997, Rodriguez-Rubio et al. 2006, Hiller et al. 2008, 259	

Villaverde et al. 2008, Prado et al. 2014). 260	

 261	

2,4-D LAB-Kd ranged from 0.03 to 6.78 L/kg in Manitoba and from 0.01 to 3.88 L/kg in 262	

Saskatchewan (Table S2, Supplementary Information) and the medians of the 2,4-D LAB-Kd 263	

data at the two sites were not significantly different (Mann-Whitney test, P = 0.92). For 2,4-D, 264	

the mean Koc value (sorption coefficient normalized by soil organic carbon content) was 56 L/kg 265	

for Manitoba and 170 L/kg for Saskatchewan, where NIRS (57 L/kg for Manitoba and 181 L/kg 266	

for Saskatchewan) and the pedotransfer functions (57 L/kg for Manitoba and 146 L/kg for 267	

Saskatchewan) also produced a similar mean Koc. These Koc values were in agreement with the 268	

literature 2,4-D Koc range of 31-275 L/kg (University of Hertfordshire 2013). The soil horizons 269	

in the validation sets showed strong agreement between measured and predicted 2,4-D Kd values 270	

(Figure 1), ranging from R2 = 0.83 to 0.90 in the site-specific approach (Table 3) and from R2 = 271	

0.82 to 0.90 regional approach (Table S3, Supplementary Information). For 2,4-D, agreement 272	

between LAB-Lm and either NIRS-Lm or SOIL-Lm ranged from R2 = 0.57 to 0.78 in the site-273	

specific approach (Table 3) and from R2 = 0.52 to 0.78 in the regional approach (Table S3, 274	

Supplementary Information). Agreement were always weaker for Lm than Kd because, like other 275	

pesticide fate models (Dubus et al. 2003a), PRZM is very sensitive to Kd values, so small 276	



differences between measured and predicted Kd values lead to proportionally larger differences 277	

in the herbicide mass leached (Farenhorst et al. 2009). 278	

 279	

Atrazine LAB-Kd values ranged from 0.08 to 8.71 L/kg in Saskatchewan but from 1.01 to 35.14 280	

L/kg in Manitoba (Table S2, Supplementary Information). For atrazine, the mean Koc value was 281	

333 L/kg for Manitoba and 267 L/kg for Saskatchewan, where NIRS (339 L/kg for Manitoba and 282	

270 L/kg for Saskatchewan) and the pedotransfer functions (344 L/kg for Manitoba and 262 L/kg 283	

for Saskatchewan) also produced a similar mean Koc. The atrazine Koc reported in the literature 284	

ranges from 89 to 513 L/kg (University of Hertfordshire 2013). Under the pH conditions studied, 285	

atrazine is primarily in non-ionic form, thus promoting hydrophobic interactions with organic 286	

matter. As discussed in Singh et al. (2014), SOC increased significantly from A-horizons in 287	

Manitoba > A-horizons in Saskatchewan > all other horizons. In Manitoba, Ap and Ah horizons 288	

in depressions showed particularly large SOC and atrazine LAB-Kd values (> 20 L/kg) (Singh et 289	

al. 2014). The medians of the atrazine LAB-Kd data at the two sites were significantly (Mann-290	

Whitney test, P = <0.001) different and the regional approach for atrazine was not successful, 291	

with correlations between LAB-Lm and either NIRS-Lm or SOIL-Lm being R2 ≤ 0.25, regardless 292	

of the validation scenario used.  293	

 294	

For the site-specific analyses, the soil horizons in the validation sets showed strong (R2 ≥ 0.79) 295	

agreement between measured and predicted atrazine Kd values for both Manitoba and 296	

Saskatchewan (Table 3, Figure 2). For atrazine, the agreement between LAB-Lm and either 297	

NIRS-Lm or SOIL-Lm were stronger for Saskatchewan than Manitoba (Table 3) because of the 298	

relatively large SEP and bias observed for the models predicting atrazine Kd values in Manitoba 299	



(Tables 1 and 2). In addition, for herbicides that have relatively long half-lives such as atrazine, 300	

variations in sorption input parameters, in particular, can lead to differences in the predicted 301	

herbicide mass leached when Kd values are large. For example, for a hypothetical soil horizon, 302	

reducing the Kd value by 10% increased the mass of atrazine leached by a factor of 2.2 when 303	

atrazine’s Kd value was set to 3.75 L kg-1 (the median atrazine LAB-Kd in Manitoba, Table S2, 304	

Supplementary Information), but by a factor of only 1.2 for a Kd of 1.11 L kg-1 (the median 305	

atrazine LAB-Kd in Saskatchewan, Table S2, Supplementary Information).  306	

 307	

Integration of NIRS into pesticide fate modelling as part of large-scale assessments. Soil 308	

properties vary in fields or catchments because of intrinsic (e.g., irregularities in parent material 309	

deposition) and extrinsic (e.g., tillage) factors (Lindstrom et al. 1992, Goderya 1998, Phillips 310	

2001, Park and Vlek 2002, Li et al. 2007). Sorption processes respond to the heterogeneity of 311	

soil properties that exists in fields or catchments, as shown in studies for pesticides 2,4-D, 312	

atrazine, bentazone, glyphosate, imazethapyr, isoproturon, mecoprop, metamitron, napropamide 313	

and trifluralin (Elabd and Jury 1986, Novak et al. 1997, Oliveira et al. 1999, Coquet and Barriuso 314	

2002, Rodrıguez-Cruz et al. 2006, Farenhorst et al. 2008, Singh et al. 2014). The strength of the 315	

current study is that it demonstrates that NIRS spectra can be used as a tool to rapidly measure 316	

large numbers of samples for sorption parameters, and that such data can be integrated into 317	

pesticide fate models. Relative to LAB-Kd values, the NIRS spectra and pedotransfer function 318	

approaches were equally successful in characterizing the spatial variability of herbicide sorption 319	

in soil-landscapes, and hence in predicting the mass of 2,4-D or atrazine in the soil horizons of 320	

the validation data sets. An added benefit to NIRS is the non-destruction of samples and the 321	

rapid nature of the analysis, leading to more rapid throughput of the many samples needed to 322	



characterize spatial variability of herbicide sorption in field or catchments. Also, NIRS spectra 323	

can be used to predict the values of a range of soil properties in soil-landscapes, including SOC 324	

and soil pH (Malley et al. 2000, Martin et al. 2002, Singh et al. 2012).  325	

 326	

Governments use pesticide fate models to evaluate the impact of agriculture on water resources, 327	

and to augment national water monitoring programs in the regulatory practices of pesticide 328	

environmental exposure assessments (Dubus et al. 2003a, Gagnon et al. 2014). There are several 329	

ways by which NIRS can be integrated with these large-scale assessments. Regional approaches 330	

to predicting Kd values from NIRS spectral data can be developed providing that the calibration 331	

model is derived from a combined set of fields that each have similar statistical population 332	

characteristics in Kd values. In its simplest form, NIRS can be used as a screening tool in which 333	

Kd values in soil horizons are predicted from NIRS spectral data and used as input parameters in 334	

pesticide fate models to calculate the herbicide mass leached in soil profiles. Regression 335	

equations (examples in Tables 3 and S3, Supplementary Information) can be applied prior to the 336	

pesticide fate simulations to adjust the predicted NIRS-Kd values to approximate LAB-Kd values, 337	

or applied after the pesticide fate simulations to calculate the approximate herbicide mass 338	

leached that would have been predicted when using LAB-Kd values as input parameters. 339	

 340	

In stochastic risk assessments, probability density functions (PDFs) help account for spatial 341	

variations in sorption input parameters (Berg et al. 2008, Heuvelink et al. 2010). This allows for 342	

a deterministic pesticide fate model to be run repeatedly within a simulation unit, each time using 343	

a different sorption input parameter derived from a statistical distribution that is represented by 344	

the PDF. Model users typically assume a normal, log-normal, or uniform distribution to describe 345	



variability in sorption parameters at the large scale (Nofziger et al. 1994, Dubus and Brown 346	

2002, Warren-Hicks et al. 2002). However, because PDFs are typically developed using Kd data 347	

obtained from a small number of soil profiles (Berg et al. 2008, Heuvelink et al. 2010), the 348	

construction of PDFs is strongly influenced by subjective decisions made by the model user 349	

(Dubus et al. 2002). For example, although presented with the same Kd data from 18 soils, 350	

different modelers chose to use different statistical distributions (log-normal, normal, or 351	

triangular)(Beulke et al. 2006), and this user-subjective decision towards sorption input 352	

parameters can have a more significant impact on the model predictions than the type of 353	

pesticide fate model used (Boesten 2000). Through the use of NIRS spectra, numerous Kd values 354	

can be estimated in the simulation area of interest, which should lead to better decisions about 355	

the type of distribution assigned to the sorption input data as well as which minimum and 356	

maximum Kd values to use in truncating PDFs (Beulke et al. 2006). Improvements to sorption 357	

input data will reduce uncertainties in risk assessments of pesticide transport in fields and regions 358	

(Dubus et al. 2003b). 359	

 360	

CONCLUSION 361	

Pesticide Kd values are highly variable in soil-landscapes and this spatial variability is difficult to 362	

delineate especially when risk assessments are to be conducted for large agricultural regions. In 363	

combination with batch equilibrium techniques, NIRS is a quick, economical and efficient tool to 364	

optimize estimates of spatially variable pesticide Kd values in agricultural fields. The results 365	

showed that NIRS can be easily integrated with pesticide fate models to estimate input Kd values 366	

for herbicides 2,4-D and atrazine and calculate the approximate herbicide mass leached. NIRS 367	

calibrations were most successful for 2,4-D, which has a smaller Kd values and smaller half-life 368	



than atrazine. Regional scale calibrations were also successfully developed for 2,4-D because the 369	

Kd data sets from the fields in Manitoba and Saskatchewan had similar statistical distributions. 370	

To reduce uncertainties in large-scale risk assessments of pesticide transport in fields and 371	

regions, NIRS will be an appropriate tool for improving on sorption input data.  372	

 373	
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Table 1. Accuracy of prediction for 2,4-D and atrazine NIRS-Kd values at Manitoba and Saskatchewan sites using a site-specific and 
regional approach to calibration. 
Herbicide and Site n* R2 SEP Bias RPD 

Si
te

-S
pe

ci
fic

 
A

pp
ro

ac
h 

2,4-D constituent  
Manitoba validation 103 0.90 0.47 -1.00 x 10-2 3.17 
Saskatchewan validation 95 0.86 0.33 3.00 x 10-2 2.66 
Atrazine constituent  
Manitoba validation 103 0.87 2.86 -1.80 x 10-1 2.72 
Saskatchewan validation 95 0.79 0.94 -1.00 x 10-2 2.15 

       

R
eg

io
na

l 
A

pp
ro

ac
h 

2,4-D constituent  
Manitoba validation 103 0.87 0.55 -4.00 x 10-2 2.77 
Saskatchewan validation 95 0.84 0.36 4.00 x 10-2 2.44 
Manitoba + Saskatchewan validation 198 0.86 0.47 4.19 x 10-5 2.70 
Atrazine constituent      
Manitoba validation 103 0.90 2.73 -1.20 x 10-1 2.86 
Saskatchewan validation 95 0.79 1.61 1.10 x 10-1 1.26 
Manitoba + Saskatchewan validation 198 0.87 2.35 -3.08 x 10-3 2.79 

*n = number of samples in the validations data set, R2 = coefficient of determination, SEP standard error of prediction, Bias = mean difference 
between predicted and measured values, RPD = ratio of prediction to deviation. Reported R2

, SEP, Bias and RPD parameters are based on the 

evaluation of the validation data set (one-third of the total samples). 
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 617	
 618	
Table 2. Calibration models developed using a site-specific and regional approach to calculate SOIL-Kd values for soil horizons in the 
validation sets at Manitoba and Saskatchewan sites. 
Herbicide and Site Calibration Model R2* SEP Bias 

Si
te

-S
pe

ci
fic

 
A

pp
ro

ac
h 

2,4-D constituent 
Manitoba calibration SOIL-Kd = 0.54 + 1.05*(SOC%) - 0.15*(pH) 0.90 0.48 2.00 x 10-2 
Saskatchewan calibration SOIL-Kd = -0.54 + 0.89*(SOC%) + 0.08*(pH) 0.87 0.32 3.50 x 10-3 
Atrazine constituent 
Manitoba calibration SOIL-Kd = 4.32 + 5.21*(SOC%) - 0.78*(pH) 0.82 3.35 4.30 x 10-1 
Saskatchewan calibration SOIL-Kd = 0.04 + 1.90*(SOC%) + 0.03*(pH) 0.80 0.92 6.77 x 10-4 

R
eg

io
na

l 
A

pp
ro

ac
h 

2,4-D constituent     
Manitoba calibration SOIL-Kd = -1.69 + 0.98*(SOC%) + 0.16*(pH) 0.89 0.50 1.10 x 10-1 
Saskatchewan calibration same as above 0.81 0.38 -1.10 x 10-1 
Manitoba + Saskatchewan calibration same as above 0.87 0.47 3.00 x 10-3 
Atrazine constituent     
Manitoba calibration SOIL-Kd = 7.77 + 4.25*(SOC%) - 0.92*(pH) 0.79 3.90 2.80 x 10-1 
Saskatchewan calibration same as above 0.60 2.25 1.80 x 10-1 

 Manitoba + Saskatchewan calibration same as above 0.76 3.21 2.30 x 10-1 
*R2 = coefficient of determination, SEP standard error of prediction, Bias = mean difference between predicted and measured values. Reported R2, 
SEP, and Bias parameters are based on the evaluation of the calibration data set (two-thirds of the total samples). 
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Table 3. Regression equations showing the relation between predicted Kd values (NIRS-Kd or SOIL-Kd) and measured Kd values 
(LAB-Kd), and, for the calculated mass of herbicide leached, using the predicted Kd (NIRS-Lm or SOIL-Lm) and measured Kd (LAB-
Lm) values as input parameters in the Pesticide Root Zone Model. 
Herbicide and Site Prediction Method n* Linear Regression Equation RMSE R2 
2,4-D constituent 
Manitoba Near-infrared spectroscopy 90 LAB-Kd = -4.04 x 10-2 + 1.06 x NIRS-Kd 3.86 x 10-1 0.85 
Manitoba Near-infrared spectroscopy 90 LAB-Lm = 7.66 x 10-3 + 0.89 x NIRS-Lm 6.37 x 10-4 0.78 
Saskatchewan Near-infrared spectroscopy 94 LAB-Kd = 9.79 x 10-3 + 0.98 x NIRS-Kd 1.33 x 10-1 0.83 
Saskatchewan Near-infrared spectroscopy 94 LAB-Lm = 1.31 x 10-2 + 0.80 x NIRS-Lm 8.07 x 10-4 0.57 
Manitoba Pedotransfer function 90 LAB-Kd = -7.74 x 10-2 + 1.03 x SOIL-Kd 2.59 x 10-1 0.90 
Manitoba Pedotransfer function 90 LAB-Lm = 1.18 x 10-2 + 0.79 x SOIL-Lm 7.37 x 10-4 0.74 
Saskatchewan Pedotransfer function 94 LAB-Kd = 6.68 x 10-2 + 0.95 x SOIL-Kd 1.21 x 10-1 0.85 
Saskatchewan Pedotransfer function 94 LAB-Lm = 7.94 x 10-3 + 0.83 x SOIL-Lm 6.48 x 10-4 0.65 
Atrazine constituent 
Manitoba Near-infrared spectroscopy 98 LAB-Kd = 2.68 x 10-1 + 0.99 x NIRS-Kd 1.26 x 101 0.81 
Manitoba Near-infrared spectroscopy 98 LAB-Lm = 1.70 x 10-2 + 0.15 x NIRS-Lm 3.28 x 10-3 0.27 
Saskatchewan Near-infrared spectroscopy 93 LAB-Kd = 2.98 x 10-2 + 0.98 x NIRS-Kd 8.99 x 10-1 0.79 
Saskatchewan Near-infrared spectroscopy 93 LAB-Lm = 6.27 x 10-2 + 0.76 x NIRS-Lm 2.03 x 10-2 0.63 
Manitoba Pedotransfer function 98 LAB-Kd = -5.02 x 10-1 + 1.03 x SOIL-Kd 1.22 x 101 0.81 
Manitoba Pedotransfer function 98 LAB-Lm = 2.28 x 10-2 + 0.21 x SOIL-Lm 3.47 x 10-3 0.23 
Saskatchewan Pedotransfer function 93 LAB-Kd = -1.18 x 10-1 + 1.04 x SOIL-Kd 8.59 x 10-1 0.80 
Saskatchewan Pedotransfer function 93 LAB-Lm = 7.12 x 10-2 + 0.85 x SOIL-Lm 2.29 x 10-2 0.59 
*n = number of samples in the validations data set, RMSE = root mean square error of regression, and R2 = coefficient of determination. All 
regression equations are significant at p<0.001. Utilizing a site-specific approach to calibration, the reported RMSE and R2 parameters are based 
on the evaluation of the validation data set (one-third of the total samples). 
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Manitoba, NIRS approach
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Manitoba, Pedotransfer function approach
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Saskatchewan, NIRS approach
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Saskatchewan, Pedotransfer function approach
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 631	
Figure 1. Showing the relation between predicted Kd values (NIRS-Kd or SOIL-Kd) and 632	
measured Kd values (LAB-Kd) at Manitoba and Saskatchewan soil-landscapes for the herbicide 633	
2,4-D. 634	
 635	
 636	
 637	
 638	
 639	
 640	



Manitoba, NIRS approach
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Manitoba, Pedotransfer function approach
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Saskatchewan, NIRS approach
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Saskatchewan, Pedotransfer fucntion approach
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Figure 2. Showing the relation between predicted Kd values (NIRS-Kd or SOIL-Kd) and 643	
measured Kd values (LAB-Kd) at Manitoba and Saskatchewan soil-landscapes for the herbicide 644	
atrazine. 645	
	646	
 647	
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