
RBIUcBI SEARCH FRACTAL BI,ocT CoITNc UsINc
FREeUENCy SsNsrrlvn Nounal NBrwonxs

by

L¿rry Marvi¡ Wall

A Thesis presented to the Universiry of Manitoba in

partial ful-fi.llment of tire requirements for the degee of

Masær of Science

in the

Department of Electrical and Computer Engineering.

Wimipeg, Manitoba

May, 1993

O 1993 Larry Wall

I JL I National Library Bibliothèque nationale
IFI or canaoa ou úanaoa

Acquisit¡ons and Acquisitions et
BìbiiographicServices servicesbibliographiques

395 Wellington Skeet 395, rue Wellington
Otlawa ON KlA 0N4 Ottawa ON KIA 0N4
Canada Canada

Out l¡le Not¡e tálè¡eñce

The author has granted a non- L'auteu¡ a accordé une licence non
exclusive licence allowing the exclusive permettant à la
National Library of Canada to Bibliothèque nationale du Canada de
reproduce, loan, distribute or sell reproduire, prêter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thèse sous
paper or elecûonic formats. Ia forme de microfiche/film, de

reproduction sl¡I papier ou suI format
électronique.

The author retains ownership of the L'auteur conserye la propriété du
copynght in this thesis. Neither the droit d'auteur qui protège cette thèse.
thesis nor substantial exfacts from it Ni la thèse ni des extaits substantiels
may be printed or otherwise de celle-ci ne doivent être imprimés
reproduced without the author's ou auffement reproduits sans son
permission. autorisation.

0-612-23542-4

Canadä

REDUCED SE.ARCE FRACTAL BLOCK CODING USING

FREQTTENCY SENSTTM NEt ÌAL NETI{ORKS

BY

T,ARRY }IARVIN WAI.L

A Thesis submitted to the Faculty of G¡aduate Studies of the University of Maniioba in partial
fulfillment of th€ ¡equi¡e-nents for the degree of

MASTER OF SCIENCE

@ 1993

Per¡rission h¡s been Fanied to the IJBRå.RY OF THE UNTVERSrT OF MåNTTOBA to lend or

sell copies of this thsfu, to the NATIONAL LIBRÂRY OF CANADA to micoñIm this thesis and

to lend or sell copi€s of the 6lar, and UNT!¡ERSITY MIG,OFIL\fS to publish an âbstsact of d.tis

thesis.

The autho¡ resenes other publications righis, and neíther the thesis nor exteñsive exbacls Éoll it
may be printed o¡ oiherwise ¡€produ€ed wiihout the auihols per:nission

ABSTRACT

Lossy signal compression bdsed on fractals has attracted a great deal of attenrion

since the introduction of iterated function systems (trss), a compact fractal representation

scheme for complex self-ffine süuctr.ües. IFSs a¡e an example of r more general class of

emerging fractal coding techniques refened ro as collage codittg. These techniques iue all

based on a corollary of contractive transformation theory called the colLage theor¿m. The

problem with collage coding techniques is the high computational complexity of the

encoding procedure which is even NP complete for IFSs. Recently, a less compact but

more manageable collage coding technique called fractal block coding (FBC) has been

introduced for grey scale images. using a divide -and-co nquer encoding strategy, images

can be compressed with FBC in known polynomial time. However, this technique still

requires a o(na) search to encode nxn pixel images. This thesis develops a ¡educed

sea¡ch FBC encoding procedure employing neural nebvorlcs. A neural network paradigm

known as frequency sensitive competitive learning (FSCL) assists the encoder in locating

fractal self-similariry within a sotuce image. For an network of appropriately chosen size

this decreases the time complexity of the encoding procedure to O(n3). For 256x256

images, compression times are improved by a factor of 45 and image quality is reduced by

less than 0.2 dB. The reduced sea¡ch FBC encoding and decoding procedures were

implemented as part of a concatenated image compression scheme with FBC as the inner

code, and arithnetic entropy coding as the ourer code. This addition of arithmetic coding

improves compression ratios by up to 20Va without funher effecting image quality. Using

the concat€nated FBC/a¡ithmetic compression scheme, grey scale images were compressed

at ratios in excess of l8:l wittr pøø,k signal-to-noise rdr¡or (PSNR) of up to 31.0 dB.

-u-

AcxNowI,EDGEMENTS

I rvould like to begin by thanking Dr. W. Kinsner for proposing this topic and

giving me his time and patience throughout the cou¡se of this thesis. I can úrink of no orher

professor who takes such an active interest in every student that sets foot in his classroorn

or devotes more of his own time to maki¡g this university a better place.

I would also like to acknowledge everyone in room 432 engineering, past and

present, including Adi Indrayanto, Geoff stacey, Tom Tessier, warren Grieder, Armein

Langi, and Ken Ferens. Thei¡ technical advice and friendship over the past two years have

been invaluable contributions to this thesis. I would also tike to thank cam Mayor, paul

Chan, and 'Woj' Ng who, through a variety of discussions (often at 3 am), may or may

not have contributed directly to this thesis but did help to preserve my sanity.

Finally, this thesis is dedicated to my Dad. Having a high school science teacher

for a father may not always have been to my liking, but it did instill in me a sense of

scientific curiosity and an appreciation for learning which has no doubt placed me on my

present career path. In this sense, he may have contributed more to this thesis than any

other individual. He's also one hell of great guy.

This work was supported in part by the National Sciences and Engineering

Research Council of Canada and Manitoba Telephone Systems,

.ltl-

TesrB op CoxruNrs

ABSTRACT

Page

ll

u
vü

X

ACKNOWLEDGEMENTS
LIST OF FIGURES
LIST OF ABBREVIATIONS AND ACRONYMS

I INTRODUCTION

II FRACTALS, NATURE, AND SELF.SIMILARITY 7

2. I Wïat a¡e Fractals'l 7

2.2 Fracta.ls in Natu¡e I I
2.3 Fractals and Self-Similarity ló

III MATHEMATICAL FOUNDATIONS: CONTRACTIVE
TRANSFORMATION THEORY 2I

3. I Metrics a¡rd Meric Spaces ZI
3.2 Conractions, Fixed Points, and the Collage Theorem 24

IV ITERATED FUNCTION SYSTEMS 28
4. I Overview of Iæraæd Function Systems 29
4,2 Mathematical Foundations: The Hausdorff Meric 38
4.3 The Random Iteration Algorithm 4l
4.3 Daø Compression with IFSs 45

V GENERALIZED FRACTAL BLOCK CODING 48
5.1 Exhaustive Sea¡ch FBC Encoding Procedu¡e 49
5.2 Frac¡zl Image Transformation 50

5.3 Iærative lmage Reconsrucdon: FBC Decoding 54
5.4 Mathematical Basis for FBC 5ó

Metric Spaces for Grey Scale lmages 56

Conractivity of the Fractal Block Code 57

5.5 Extensions to the Generaliz¡d Encoding Procedu¡e 60
5.6 Summary .. . 63

-lv-

VI REDUCED SEARCH FRACTAL BLOCK CODING WITH
NEURAL NETWORKS 65

6. I Block Classification with Vector Quantization 66
6.2 Neural Network Codebook Design . j()

Competitive Leaming jz
Frequency Sensirive Competitive Leaming 7 5

6.3 Performance of the Reduced Search Coding Procedure 76
ó.4 Summary 78

VII IMPLEMENTATION
7. 1 FBC lmplementation

7.2 Calculation of Compression Ratios for FBC
7.3 Arithmetic Ennopy Coding

Arithmetic Encoding Procedu¡e

Arithmetic Decoding Procedu¡e

7.4 Softwa¡e Organization

7.5 S ummary

VIII EXPERIMENTAL RESULTS
8.1 FBC Image Compression Experiments

Objective Analysis

Subje,ctive Analysis 99
8.2 FBC Versus Transform Coding and Vector Quantization 102
8.3 Summary 106

IX CONCLUSIONS AND RECOMMENDATIONS

REFERENCES

APPENDICES
A C Language Listing for IFS Synthesis Software I 19

B Derivation of Optimal Scaling and Translation Coefficients for FBC l3Z
C Sructu¡e Charts and Functional Description ofFBC lmplementation 136

D C Language Listings for Concatenated FBc/A-rithmetic Irnage Compression

Softwa¡e 147

MAIN I48
CONSTANTS 152

FRACTALS

80
lil
tì4

t{6

87

89

90

92

94
96

96

r09

tl4

t54
164FSCL

TRANSFORMS

ARITHMETIC
175

182

19.1IO

-vt-

Lrsr o¡'Flcunss

2.1 A straight Line segment of length L.
2.2 Polygon approximations for the ci¡cumference of a ci¡cle.
2.3 An approximate rendering of the Koch curve.
2.4 Fi¡st four iterations of the Koch cuwe construction procedure.
2.5 Eastem seaboa¡d of the United States from the Great Lakes to the Gulf of

4.10 T\e random iteration algorír¿lÌt (RIA) for IFS decoding
4. I I The first (a) 100, (b) 1000, (c) l0 000, and (d) 100 000 iterations of the RtA

for Bamsley's fern. . M

Mexico.
2.6 Log Diagram for the total lengrh of the west coast of Britain versus the i¡ve¡se

of the measu¡ement step size. 13
2,7 Mountain ranges (and clouds) exhibit fracral geomery. t 5
2. tt A black-and-white photograph of Lena. 15
2.9 The photograph of Fig. 2.8 rendered in th¡ee dimensions with pixel intensity

plotted as altitude. 16
2. I 0 The Koch curve K as constructed from fou¡ exact copies of itself reduced by a

factor of th¡ee in ail di¡ections. 17
2.1 I The first fou¡ iteratio ns of the multiple reduction copy algorithm (MRCA)

for the construction of a Koch cuwe from a ci¡cle. l g

4.1 Distortions producible using contractive affine transformanoru (CATs).
(a) original image, (b) scaling, (c) rotarion, (d) reflection, and (e) shearing. 30

4.2 Scaling, rot¿tion, reflection, skewing, and translation of an object by a CAT. 30
4,3 The Koch cu¡ve as constructed from fou¡ CATs of itseif. 32
4.4 (a) A Dragon cu¡ve, (b) irs self-affine porrions, and (c) its IFS description;

3 CATs, 16 bytes. 34
4.5 (a) Sierpinski's carpet, (b) its self-affine portions, and (c) its IFS description;

3 CATs, 4zbytes. 35
4.6 (a) Barnsley's fern, (b) its self-affi¡e portions, and (c) its IFS description;

4 CATs, 2l bytes. 36
4.7 (a) A fractal uee, (b) is self-affine porrions, and (c) its IFS description; 5 CATs,

27 bytes. 3j
Ambiguiry of the Euclidia¡r metric, 40
Bamsley's fern as constructed using the MRCA. (a) The starting image and (b) the
reÆonstructed fem after l0 iterations of the MRCA.

4.8
4.9

Page

8

.li

.9
l0

l3

42

43

-vu

5.1

5.2

5.3

5.1

Fractal fansformation of domain blocks into range blocks.
The f¡actal block nansformation in terms of its sequentia.r component tansfonms
spatial conrraction, isometric block ra¡sformadon, and grey level scaling.
Isometnc block tra¡sformations.
Reconstrucrion of the range image from the domaì¡ image via the fractar cocre.

5()

5l
52

55

67

69

i2
71

78

6. 1 The vector qtøntization (Y e) classification scheme.
6.2 A sca)ìng, fanslation, and isomeuic configuration independent vector quanrizer.
6.3 A competitive leaming neu¡al nerwork.
6.4 Competitive leaming neural codebook design algorithm
6.5 lvlisclassi-fication of similar vectors.

'7.1 A concatenated image compression system based on fractal block cod.ing
and arithmetic entropy coding. g0

7.2 Fu¡ctions required for the implementation of reduced sea¡ch FBC encoding
and decoding. Bz

7.4 Arithmetic encoder, Example encoding of the symbol stream ,.e.a.t.EoF". . g8

7.5 A¡ithmetic decoder. Example decoding of the ofthe interval [0.664,0.6664)
into the data sueam "e.a.t.EoF'. ll9

7.6 Reduced search FBC program hierarchy. gz

8.1 The ongna1256x256 eighr bpp image Lena. 95
8.2 Fractal reconstrucrion of Lena compressed by 14.3: I at 0.56 bpp and 29.09 dB

using reduced seuchfractal block coding (FBC). 97
8.3 The fust six iterations of the fract¿l image reconstruction procedure. 9g
8.4 The I I prototypes in the scaling, Eanslation, and isometric configuration

independent VQ codebook as leamed by the frequency sensitive competitive
leaming (FSCL) neural network from the image Izna.

8.5. The uaining image aþlane used to develop the VQ codebook for the reduced
search FBC encoding procedure. 100

8.6 A portion of Lena's shoulder enlarged to fou¡ times its original size. (a) Taken
from the onginal256x256 eight bpp image. (b) Fractal reconstrucrion of Lena's
shoulder at fou¡ times its encoded size. 101

8.7 Fractal reconstruction of the 512x512 version ofLe¡a compressed by 18.5:l at
0.43 bpp and 31.00 dB using reduced search FBC with a reduced domain pool. 103

8.8 Lena compressed by 14.4:l at 0.56 bpp and 30.70 dB using JPEG. 104

8.9 Lena compressed by 14.2:I at0.56 bpp and 29,39 dB using vector quantization
(VQ) based onfrequency sensitive competitive learning (FSCL), 105

100

- vul

C. I S tructure chart for reduced search FBC employing FSCL
C.2 The Leam Codebook function and its subordi¡ates.
C.3 The Classify Range Image function and its subordinates.
C.4 The Fracul Code Image functron and its subo¡dinates.
C.5 The Decode Fractal lmage function ancl irs subordi¡ates.

138

140

t4l
t++

I.ts

-rx-

Llsr op AsnR¡vrarIoNS AND AcnoNyvts

CAT Conrractive Affi¡e Transform
CD ROM Compact Disk Read Only Memory
DCT Discrete Cosi¡e Transform
DWT Discrete Wavelet Tra¡sfo¡m
FBC Fracul Block Codrng

fþs Frames per second

FSCL FrequencySensitiveCompetitiveLearning
HDTV High Definition Television
IFS lterated Function System

ISDN lntegrated Services Digital Nerwork
JPEC Joint Photographics Experts Group

K 2to = 1024

LBG Linde-Buzo-Gray(clusteringalgorithm)
L N tæmpel-Ziv-Welch (lossless compression technique)

M 22o = 1048 576
MHz Mega Herø (million cycles per second)
MRCA Mu.ltiple Reduction Copy Algorithm
MS-DOS Microsoft Disk Operating System
NTSC National Television System Committee
PSNR Peak Signal-to-Noise Ratio
RIA Random færation Algorithm
SNR Signal-to-Noise Ratio

sup Supremum

VQ Vector Quantization

CHAPTER I

INtRonucuoN

The demand for digital images in both non-computing and computing related

applications is cunenrly undergoing exponential growth. Present and future applications

include facsimile, remote sensing, video conferencing, multi-media, and digital television

for use in business, entertainment, education, the graphic arts, medicine, and scientific

research. Unfortunately, digital images contain an exhemely large amount of dara. For

example, a single 320 by 200 pixel color photograph requires 62.5 Kbytes of storage and

is considered small by todays standards. The NTSC broadcast standard for color

television, transmitting at 30 frames per second (fps) with 525 scanlines per image

requires 4 MHz of bandwidth in analog form. A digiul representation of this same signal,

sampled at 14.3 MHz would require in excess of 100 Mbits per second. The new HDTV

standard for North America, when selected, will almost certainiy be digital and will require

at least 400 Mbits per second.

The advent of la¡ger computer memories, as well increased transmission bandwidth

(fiber optics) and mass storage devices (CD ROM), have magnified this problem. By

making digital imaging practical for the fi¡st time, rhese developments have dramatically

increased user demand for digital images and thereby made apparenr the limitations of

current technologies. For example, cuÍent ISDN channels are confined to 64 Kbits/s and

even with a capacity of 650 Mbytes, a single CD ROM is capable of storing only about 6

minutes of moving video.

while it is important to concentrate on improving these technologies, it is equally as

important to reduce the demands placed on them, Data compression provides the only

immediate solution to this problem. By removing unnecessary ot redundant data f¡om an

image, storage and bandwidth recjuirements can be dramatically recluced. Data

compression wiJl not only allow application developers to satisfy cunent user requi¡ements

withi¡ the confines of todays technology, but will also ensu.re that future rechnologies meer

or exceed growirg user demand.

Unfortunately, traditional data compression techniques such as H uffinan [Huffs2]

and Lempel-Ziv-weLch (LTY,/) [welc84] coding can compress digital images by less than

507o. These techniques generally result in low compression ratios because they are exact

or /oss/¿ss. Lossless compression techniques a¡e intended primarily for encoding critical

data such as text and executable files. Data of this natu¡e must be reconstructed exactly

f¡om the compressed format. In contrast, images are signals into which small amounts of

noise can be injected without noticeably comrpting the data. Images can therefore be

compressed using inexact or /ossy compression techniques. Currently, these techniques

can result in compression ratios between l0: I and 30:1 for stül images without innoducing

unacceptable levels of distonion i¡to the reconstruction.

In lossy compression schemes, distortion is measured in one of two ways;

objectively and subjectively. Objective measurements are quantitative measures of

distortion based on some mathematical function such as slgnølto-norse ralio (SNR).

Subjective distortion measures are more difficult to define universally but are equally or

even more important. These measures a¡e based on the subjective opinions of human

observers. Lossy data compression techniques attempt to maximize compression ratios

while minimizing distortion, both objective and subjective.

The¡e a¡e two primary classes of rossy compression rechniquesi ,ector
quanti:ution and transform coding. v ector quantízation techniques segment an image into

blocks called vectors. A table of typical vectors is maintained from which a good match ro

each irnage vector is located. Rather than ransmitting the vecto¡ in its entirety, the vector

quantizer nansm.its or stores only the appropriare øble indices. Reconsmrcdon is achievecl

by a simple table lookup procedure. T¡ansform coding techniques use a mathematical

function to transform an image or portion thereof into an equivalent but more implicir

representarion. Only a subset of significant components in this representation a¡e retained.

An approximate reconstruction of the original image is generated by performing an inverse

Íansformation on this subset. The best known and most effective examples of fansform

coding for images are those based on the discrete cosine transform (DCT) tChSFTTl

although discrete wavelet tansforms (DWTs) [Mall89] are emerging as viable

competitors to these techniques. The discrete cosine Eansform produces a representation of

an image in the frequency domain, similar to rhat of the more familiar discrete Fourier

transþrm (DFT). The individual frequency coefficients in this representation are then

quantized and coded based upon thei¡ relative visual signiñcance.

Although both vector quantization and transform coding have produced very good

results for image compression, the search continues for new techniques capable of

producing higher compression ratios with lower distortion rates, Signal compression using

fractal geometry or simply fractals represents an emerging area of lossy data compression

methods. Fractal compression schemes have attracled a great deal of attention since the

introduction of iterated function systems (lFSs) [Bam88], a remarkably compacr scheme

for representing intricate self-similar structues. With IFSs, complex binary images can be

represented in as few as 10 bytes [Kins91]. These very compact representations have

encouraged a number of resea¡chers to investigate the possibility of applying fractals to

-3

Iossy signal compression.

Cunent fractal compression techniques are based on a corollary of tontractiye

Íransformation theory caúed the collage theorem and a¡e commonly refened to as coLlage

coding. The collage theorem implies that if an image or portion thereof canbecompletely

desc¡ibed in terms of smaller possibly distorted versions of itself, then the original image

can be reconstructed from this description using a simple iterative procedure. The objecnve

of a collage coding must therefore be to represent an image as a function of itself as

accurately and compactly as possible.

In this respect, collage coding differs fundamentally from both vector quantization

and t¡ansform coding. Vector quantization represents an image in terms of prototype

vectors stored i¡ a t¿ble while transform coding represents the image by ransforming it into

some other domain. In contrast, collage coding techniques represent an image in terms of a

mathematical function which transforms the image into itself. It is this function which

consdrute the coded version of the image.

The primary difficulty associated with collage coding techniques is compurarional

complexity. The inverse problem oflocating the IFS code which describes a given image

is an NP complete problem for which an adequate automated solution has not yet been

found [PeJS92]. Despite this, other researchers have applied collage coding to image

compression using less compact representations with promising results. Successful

implementations of these techniques are no longer NP or NP complete but instead operate

in known polynomial time. One such technique has been proposed by Jacquin for grey

scale images lJacq92l and is referred to as fractal bLock coding (FBC). Unforru¡ately, the

generalized form of the FBC encoding procedure is still computationally intensive and

-4-

oonsists of an o(na) sea-rch for nxn images. A number of authors have proposed

methods for reducing FBC encoding times but these approaches have generally been

heuristic in narure.

This thesis develops a reduced sea¡ch FBC encoding procedure using a neural

network paradigm known as frequency sensit^;e competiti,e learning (FSCL)

[AKCM90]. This new procedure avoids the uncenainties of heu¡istic techniques in favor

of systematically reducing the order of the encoding algorithm. The cunent implementarion

performs a hiera¡chical ¡ather than a complete sea¡ch within the image and is based on sub-

image classification using neu¡al networks. For an appropriately ohosen network, the

hierarchical approach reduces the time complexity of the encoding procedure from o(na) to

O1n3.¡.

The reduced sea¡ch FBC encoding and decoding procedu¡es are implemented in the

context of a concatenated image compression scheme employing both FBC and arithrnetic

entopy coding [WiNC87]. This scheme compresses an image using FBC and then

removes any redundancy remaining in the resulting fractal code with arithmetic coding. In

contrast to FBC, arithmetic coding is a lossless compression technique which implies that

the fractal code can be reconst¡ucted exactly from its arithmetically compressed

representation. Using this concatenated FBC/arithmetic compression scheme, compression

rafios can be improved by as much as 20Vo over FBC alone.

This thesis is organized into nine chapters. Chapter 2 provides a very general

introduction to f¡actals, discusses some of their properties, and indicates why fractal

geometry may be applicable ro data compression. Chapter 3 develops the contractive

5-

transformation and collage theorems upon which aI cur¡ent and practical fractal

compression schemes are based. Barnsley's iterated function systems are desc¡ibed in

chapter 4 as the fi¡st example of a representation scheme which satisfies the preconditions

of the cont¡active transformation theo¡em. Even in the absence of an automated encoclin_e

procedure, IFSs are historically significant and highly illustrative of collage coding

techniques. chapter 5 discusses a generalized form of the basic fractal block cocling

procedure developed by Jacquin. The chapter concludes with a review of extensions to rhrs

generalized procedure appearing in previous literature. In chapter 6, the systematic

reduced sea¡ch fractal block coding procedure is developed. This development includes a

discussion of frequency sensitive competitive learning neu¡al networks. chapter 7

describes the implementation of the concatenated fractaVa¡ithmetic coding system for grey

scale images. A complete description of arithmetic coding and motivation for its inclusion

are also provided. Finally in Chapter 8, FBC compression results are presented and

compared against other popular image compression schemes based on vector quantization

and tra¡sform coding. Conclusions and recommendations are presented in Chapter 9.

6-

CÍIAPTER II

FR,rcrals, NATURE, exn SBLT"SlivttLanrry

The formal definition of a fractal is "a ser for which the H ausdot ff-Besicot,itc h

dimension strictly exceeds the topological dimension" IMand83]. Unfortunately, this

definirion is only meaningful to a select group of mathematicians and even then it does not

convey any indication of how or why fractals may be applicable to data compression. A

true understanding of fractals and fractal data compression requires a more intuitive

perspective than that offered by rhe formal definition. Consequently, the besr way to

discuss f¡actals is.by considering a few examples - both classical (fractals which exist only

i¡ the minds of imaginative mathematicians) and nanual (fractals which seem to materíalize

in every corner of the physical world). These examples will yield some instinctive

understanding of fracta.l geometry, and reveal a few of the properties which make fractals

particularly applicable to data compression.

2 , I What are Fractals?

Consider the straight segment line of length L in Fig. 2. L Wirh a reasonably

accu¡ate ruler, the length of this segment is not difficult to measure. One would simply

hold the ruler up to the page, and read off the appropriate resuit. Now consider the ci¡cle

of Fig.2.2c. Knowing what mathematicians have known since the time of Archimedes

(about 260 B,C.) you could measure the diameter of the circle and say that its

circumference is pi (n) times its diameter D. However, if you were not aware of

-1 -

A¡chimedes equation for the ci¡cumfe¡ence of a ci¡cle you might do exactly as A¡chimedes

did. That is, measure or calculate the ci¡cumference using a piecewise lìnear approximarion

of the circle. This can be accomplished by inscribing a polygon inside the ci¡cle and then

calculating the toral length 16 of its perimeter as shown in Fig 2.2a. of course rhe rotal

length determined in this way is only an approximation for the ci¡cumference of the circle

and depends upon the particular polygon chosen. A potygon with more and shorter sides.

as in Fig. 2.2b, results in an approximation which is not only more accurate but. longer.

By increasing the number of sides on the polygon, thus improving the accuracy of this

approximation, you would find that the approximate ci¡cumference of the ci¡cle increases

towards a limit. This limit is ¡ times the diameter - Archimedes equation for the

ci¡cumference of a ci¡cle.

lr------l
Fig 2.1 A suaight line segmenr of length t.

Fig. 2.2. Polygon approúmations of the ci¡cumference of a ci¡cle. Approximaæd with (a)

fou¡ line segments for a total length L6 = zttTD , and (b) six line segments for a

total length of L, = 3p. (c) The limit as the numb€r of line segments is taken

to infinity yields a true circumference of ¡D.

(c)(b)(a)

Now consider the objecr shown in Fig. 2.3. This object is an approximate

representation of what is refened ro as rhe Koch curve arter the Swedish mathematician

von Koch, who first described it. The Koch curve is a non-differentiable function rvhich.

like the circle. does not have any straight line components. For this reason, any

rneasluement of its length would have to be a piecewise linear approximation. Following

the same logic that resulted in the equation for the ci¡cumference of a circle one might

suspect that an equadon for the length of the Koch curve could be found by raking the l.imit

of a piecewise linear approximation as the pieces ate made smaller and smaller. The gross

enor in this supposition becomes apparent when one considers the particular method by

which the Koch curve is constructed.

Fig.2.3. An approximate rendering of the Koch cu¡ve.

One technique for constructing the Koch cuwe is a simple recursive procedure

beginning with a staight line segment as shown in Fig. 2.4a. This line is partitioned into

three equal parts and the central portion replaced by an equilateral riangle (Fig, 2.4b.).

This step is then repeated for each of the remaining segments in the new figure. Each

iteration of the construction procedure adds more and more deøil to the image but the cuwe

never intersects itself. Repeating this process indefnitely results i¡ the Koch curve.

-9-

rA-_,
rcs J\J \---/\-

r'\-#+
,0, ---r\-^-) q,l^-

.^J^r,"

"r.J Lr.,'/\
./1] { -^rr--(el ¡rJ L¡¿) {^rìJ {ñ^

Fig. 2.4. Fi¡st fou¡ iterations of the Koch curve construction procedure.

Now reconsider the length of the Koch curve assuming that the original line

segment was of length l. The fi¡st iteration of the construction procedure produces a

piecewise continuous cu¡ve made up of four line segments of equal length. Each tine

segment is exactly I the length of the original line so that the new curve is f the length of

the original. The next iteration of the procedure replaces each line segment by another

piecewise continuous crwe of exactly f times its length. The length of the crwe therefore

increases by a factor of $ at each iteration. After N iterations the length of the cu¡ve is'J
given by

(2.t)

Since the Koch curve results from an infinite number of iterations of the construction

procedure, the length of the Koch curve l.6 is given by the limit of Eq. 2.1 as N goes to

infinity or

a =(ffr

l0-

rr = L^ (ffr r? t\

But Eq. 2.I has no limit. As N goes to infinity, so to does the length of rhe cuwe. This

implies that the length of the Koch curve must be infinite or more appropnately undefi¡ed.

Vy'ithout a finite value for the length of the Koch curve, the following problem

arises. Von Koch has described an non-inlersecting curve of infinite length which is

contained within a bounded two dimensional space. Although confined to a frnite a¡ea, the

Koch curve is still just a line and it is of course impossible to talk about the a¡ea of a li¡e.

At the same time, as Eq, 2.2 illustrates, we ca¡ not desc¡ibe the Koch cu¡ve i¡ a strictly one

dimensional sense because its length is undefined. It follows that if we wish to the discuss

the nature of Koch curve,"ve must do so in the context of a space whose dimension is

somewhere in the interval between one and two. However naditional mathematics, which

was drawn primarily from natu¡al observation, only recognized dimensions which a¡e of

integer values. Objects like the Koch curve which seemed to be ofsome form of fractionaL

dimension severely upset traditional mathematicians of the lglh and early 20th centu¡ies

who called them pathological curves, mathematical monsters, and, space-filling curves

[Kins72]. Mandelbrot calls them fractals [Mand83] and in many ways rhey have

¡evolutionized the way we view mathematics and its relation to the world around us.

2.2 Fractals in Nature

In proposing objects like the Koch curve with their fractional dimensions,

'surrealist' mathematicians such as Cantor, Peano, Hilbert, Sierpinski, Julia and

Hausdorff, set out to illust¡aæ that pure mathematics was capable of describing a 'gallery of

il-

monsters' far beyond anything possible in rhe 'real world'. These objects led to rhe

redefinition of many traditional concepts in mathematics, like dimension, which had been

formerly derived from natural observation. Many mathematicians believed that these

expanded deñnitions would eliminar'e rhe limitations previously imposed on traclitional

mathemadcs by its natural origins, It was Mandelbrot who pointed out that ta¡ from being

the exception, i¡ natu¡e fractals appear to be the norm.

In order to illustrate rhe existence of fractal objects in nature Mandelbrot proposed

'the apparently simple question - 'How long is the coast of Britain'Ì' [Mand67l. In an

attempt to answer this question consider the coastline illusuated in Fig. 2.5. This coastjjne

contains a multitude of irregular' bays, inlets, and peninsulas. The only way to resolve

the length of the coastli¡e is to measu¡e it and since it is so 'irregular' the only way of

doing so is once again by a piecewise linear approximation. Even if it were possible to

obtain a very accurate approximation for the length of the cu¡ve in Fig. 2.5, consider what

would happen if we acquired a map of the same coastline but at a larger scale. on a larger

map, previously imperceptible detail would become apparent - a single bay or peninsula

might consist of many subbays or subpeninsulas in tu¡n consEucted from other features

visible only at successively larger scales. In fact, regardless of the scale at which the

coastline is measured, there is always another scale just beyond perception containing a

plethora of detail equal to the present. These details would have to be accounted for and i¡

doing so the approximate measure for the length of the coastline would increase without

bound. Figure 2.6 shows imperical data representing the length of the west coast of Britain

measu¡ed at different scales which substantiates this claim. Here the total tength of the

coastline L is measured in small steps of length s. The total length resulting from this

measurement then is plotted on a Iog scale against the inverse of the steps size. As the

length of the coastline is measu¡ed using smaller and smaller step sizes the total length

-t2-

measured increases without bouncl. consequently a coastline, like the Koch curve, is a

fractal object for which lengrh is an elusive and undefinable notion and there is no sinsle

universal answer to Mandelbrot's question.

Fi9.2.5. Eastem seaboa¡d of the Uniæd States from the Great Lakes to
Mexico.

the Gulf of

Total [ængth
of Coastline

logro@)

-3.0 -2.5 -2.0 _1.5 -1.0

Inverse Measu¡ement Step Size

rogrdå

Fig2.6, Log diagram for the total length of the west coast of Britain I versus rhe i¡verse
of the measu¡ement step size s [Mand67].

3.0

2.5

13-

An equally interesting observation is the fact that each of the pornts in Fig. 2.6 falls

rougtrJy on a staight line. Mandelbrot calls the quantiry

De = I + d (2.3)

whe¡e d is the slope of this line, the froctal dimension of the coastline. The fractal

dimension is a form of the aforementioned Hausdorff-Besicovitch dimension and for the

westem coastline of Britain it is approximately 1.28.

The idea of a coastline as a f¡acral object can be easily extended to objects in higher

dimensional spaces. Like the length of a coastline, the su¡face a¡ea of a rugged landscape

like the mountain range shown in Fig. 2.7 is also ir-rectifiable. A more artificial but

equally interesting fractal object is the photograph in Fig. 2.8. Ar first glance, rhis

photograph may appear to be two dimensional figure with finite a¡ea but if we plot it in a

three dimensional space with brighrness as rhe rhùd dimension rhe resulr (Fig. 2.9) has

many characteristics in cornmon with the mountain range. Whether or not the actual

photograph is uuly a f¡actal is debatable. A dithered photograph like rhe one shown

acfually consists of a finite number of picture elements (pixels) which when enlarged will

appear as round areas of uniform brightness. Nevertheless, the original scene of which the

photograph is a projection is most definitely a fractal and as such the possibility of

modeling digital images as fractal objects has excited many researchers in image

processing.

Coastli¡es, mountain ranges, and photographs are just a few examples of the many

fracøl objects found in the every day world. In fact, nature abounds with fractals.

Snowflakes, the leaves of a fern, the human vascular system, clouds, and even galaxies all

exhibit f¡actal geometry.

t4-

Fig. 2.7 . Mounøin ranges (and clouds) exhibit fracral geomerry.

Fig. 2.8. A black-and-white photograph of Lena.

- 15-

:iL:t¡,€ì.{r r;r!ì

l! r$::.'"¿ì l;:lî !r::É:Ì

i;r}'s,# ìi

Fig.2.9. The photograph of Fig. 2.8 rendered in tkee dimensions with pixel intensiry
plotæd as altinrde.

2.3 Fractals and Self-Similarity

Now let us retum to the Koch curve in order to discuss another important property

of many fractals - self-similarity. A close examination of this curve will reveal that, in

addition to the recursive procedure described in Section 2.1, this structure can be

constructed out of fou¡ smaller but otherwise exact copies of itself as shown in Fig. 2.10.

Together these four copies form what is refened to as a collage of the original image.

Objects like the Koch curve which can be consEucted from collages of themselves a¡e

called, self-similar. Self-similarity, while not a sufficient condition, is a properry common

to many fract¿ls.

-t6-

Fig.2. 10. The Koch cuwe as constructed from fou¡ exact copies of itself reduced bya
factor of th¡ee in all di¡ections [peJS92].

The self-similar nature of the Koch curve leads to an alternate procedure for its

consEuction called the multíple reduction copy algorithm (MRCA). peitgen er a/. refer to

this a muLtiple reduction copy machine (MRCM) analogous to a photocopy machine with

multiple reducing lenses [PeJS92]. This new procedure begins with rhe same straight line

segment on Fig. 2.4a. This line segment is reduced by a factor of ttuee in all di¡ections and

four copies of it are placed in the positions indicated by the dotted boxes of Fig. 2.10

representing the self-similar ponions ofthe Koch curve. The resulting image is identicle ro

that of Fig 2.4b which depicts the fust iteration of the previous generarion aigorithm. This

new image is also reduced and copied and the procedure, if repeated, produces exactly the

same sequence of images illustrated in Fig. 2.4. An infinite number of iterations yields the

Koch cu¡ve.

The MRCA may at frst seem like just another method of generating the Koch curve

but it has a fundamental and rema¡kable difference. Instead of starting with a snaight line

as in Fig 2.4, consider the ci¡cle of Fig 2.i la. If we perform the MRCA with the ci¡cle as

the starting image something unexpected happe ns - the MRCA still converges to the Koch

t7-

cuwe. In fact, no mafter what image we begin with the result will always be a Koch curve.

The final image is not a function of the starting image but rather of the way in which rve

map the original Koch curve into itself. Furthermore, since this mapping was derived Èom

the particular collage associated with the Koch curve, this collage must be unique ro rh¿r

object.

(a)

(c) O@OO oo@o

(b, ooo o\-/
^oo^d'o

ptg
gooo oo cog

,os]a rå á-s
o@oo odaêoo oo(þoo Ooaôo

,.tw)
trut Lr'rt
I't tJ

,*r'1., /-r \ .4'l
-n.jl ?,-nJ ln-;i "ì-n-

(d)

(e)

Fig. 2.11. The frst fou¡ iterations of the multiple reduction copy algorithm (MRCA) for
the construction of a Koch cu¡ve from a ci¡cle.

This is a very important and useful result. The Koch cu¡ve appears to be a very

complex object which, using conventional geometry, might be very difficult to describe.

However, using the MRCA it can be desc¡ibed completely with just a handful of

18 -

parameters derived from its collage. These parameters include the reduction factor. rhe

number of self-similar portions in the collage, and the x and y coord.inates of each ponion.

Most natural f¡actals, however, are not srrictly self-simi1ar. conside¡ the coastline

of Fig 2.5 again. we indicated that zooming in on any portion of the coastline. say a

peninsula, would reveal more and more detail, Subpeninsulas and sub-subpeninsulas

would become visible. These peninsulas would not be exact copies of the original coastlLne

but they would resemble it in many ways. objects like the coastline, while not srrictly self-

similar, a¡e called self-affine. Many objects in naru¡e possess self-affinity. For example,

each branch of a uee can be thought of as a smaller but inexact copy of the entire tree

structure.

The MRCA applies to self-affine as well as setf-simila¡ objects. If an object can be

represented in terms of smaller distorted copies of itself, then it can be reconsEucted from

an arbiEary starting image using the MRCA as long as an appropriate set of functions can

be identified to perform these disto¡tions. Using these functions, the original self-affine

image can be reconstructed by making properly distorted copies of an arbitrary image,

reducing these copies, and positioning them conectly to consuuct a new image. Repeating

this process indefrnitely resuls in the MRCA for self-affrne images. Of course, rhe MRCA

for strictly self-simila¡ images is just a special case of the MRCA for consructing self-

affine images where no distortion of the originj objecr is performed.

The MRCA does not actually require that a self-affine image be represented exacrly

in terms of itself. Bamsley has developed a theorem which predicts the performance of the

of the MRCA for images described only approximately in terms of smaller disto¡ted

ve¡sions of themselves. Barnsley theorem, called the collage theorem [Ba¡n88], implies

l9 -

that if an image can be approximated using smaller distorted versions of itself, then rhe

original image can be reconsüucted approximately using the MRCA. This is a result of

considerable importance since it may be very difficult to locate a ser of functions which

-qenerate an exact collage of the original self-affine sructtrre.

I¡ addition to the collage theorem, Barnsley has developed a set of simple funcrions

which, combined with the MRCA, can compactly represent many intricate self-affine

structures like the Koch curve. This representation scheme, called iterated function

sysrems (iFSs), is the subject of Chapter 4. However, in order to fully understand IFSs

and more importantly the implications and preconditions of the collage theorem, a number

of mathematical principles are required. These principles, while furnishing a precise

mathematical statement of the collage theorem, will also provide more insight into self-

affinity and the workings of the MRCA,

- 20.

CHAPTER III

MnruBltnrlcAL FouNnnuoNs: CoNTRACTTvE

TRnruspoRMATroN TsBoRy

Bamsley's collage theorem, briefly discussed in Chapter 2, is acrually a corol.lary of

a more general theorem in metric topology [Nase82] called contractive transformation

theory. The contractive transformation theorem, describes the behavior of infinite

sequences like those resulting from repeated application of the MRCA. It was this

description that led Barnsley to formulate the collage theorem which provides the

mathematical foundation for a group of data compression techniques known collectively as

coLlage coding. Contractive transformation theory is itself built upon a number of

fundamental principles in metric topology including metric spaces, convergence, and,

contactions. These principles must of course be developed before a complete

understanding of the theorem and its implications is possible.

3, I Metrics and Metric Spaces

Any discussion of contraction mapþing theory must begin with distortion

measures. A distortion measure is a real valued function d(x,y) which measu¡es the

difference ot distance between two vectors x and y in a set X. Mathematically, vectors

are simply elements of a set. A vector also consists of discrete elements but unlike a set,

the elements of a vector are ordered. It is this order which makes vectors useful as

representations of physical objects or phenomena. These objects may be as simple as a

point on the cartesian prane or as comprex as a coror photograph. [n eithe¡ case. a

distortion measure is a function which places a quarìtitative value on the difference betrveen

two objects of the same type.

Two qualify as a distortion measure a function must simply return a singre real

valued result for any pair of vectors in the same set. However, a more interesting set oi

functions are distonion measures known as metrics which also satisfy the following four

axioms:

(Ml) d(x,y) > 0 and d(x,x) = 0 for att x and y in X.
(M2) If d(x,y) = 0 then x =y for alt x and y inX.
(M3) d(x,y) = d(y,x) for all x and y in X.
(M4) d(x,y) < d(x,z) + d(z,y) for all x, y , and z in X.

Together, the metric d and the set X are refened to as the metric space lX,d,). Some

familiæ examples of meFic spaces include

(l) the set of all real numbers R were

d(x,y)=l¡-11, (3. 1)

(2) and the Cartesian plane denoted R2 with the Euctidian metric given by

d2g,y)=^fU;f¡;tr;r7. e.z)

where the notation x¡ and y¡ refers to the ith elements of the vectors x and y respectively.

It should be noted that two different metrics, defined on the same set, fo¡m two

entirely different metric spaces. For example the function

d(x,y)=lx¡yl+txr-y2l

aa

(3.3)

is valid metric on the c resian plane but resurts in a meÍic space which is very dìfferent

fiom (R2,dr). which merric is better'l This question can only be answered in the contexr

of a panicular application. The pilot of an airplane flying in a snaight line from poinr x ro

point y might use the Euclidian mefiic to measure the distance he or she must ravel.

However, tìe metric desc¡ibed by Eq. 3.3 would be fa¡ mo¡e ¡elevant to a taxi cab d¡ive¡ in

Manhattan who must d¡ive from x to y along the perpendicular lattice of roadways which

make up that cities infrastrucrure,

Having chosen an appropriate metric space, it becomes possible to talk about

convergent sequences in that space. Instead of a single vector x in the set x, consider an

infinite sequence of vectors [xr] = {xr,xz,x¡,...} in X. This sequence is said ro be

convergent if there is a point xo in (x,d) with the property that for any real number e>0

there is an integer N such that d(xn,xo)<e for all nàN. The point xo is refened to as the

limit of the sequence {x,, } and is often w¡itten

Lim xn=¡o (3.4)

This simply means is that successive vectors in the sequence {xr} become closer and

closer to some point xo.

A metric space is said to be complete if any Cauchy sequence lxnj în (X,d) is

also a convergent sequence. This means that, if for any e>0, there exists a positive integer

N such that d(xn,x*)<e for any n,m>N, then the sequence (xn) has a limit xo in

(X,d). A Cauchy sequence is simply a sequence for which the distance between

successive pairs of elements becomes arbiuarily small. ln a complete metric space, all such

sequences converge to a defined limit.

-23-

3,2 Contractions, Fixed Points, and the Collage Theorem

with an understanding of metrics and sequences, it now becomes possible to

innoduce conFactions and the contractive t¡ansformation theorem as well as its corolla¡v.

the collage theorem.

A contraction is a function/, defined on a metric space (X,d) which maps X into

itself. Fu¡thermore, to qualify as a contraction there must exists a real number ,t called the

Lipschitz coefficient ot contraction factor, where 0 < ¿ < l, such that

d(f(x)f(y)) < kd(x,y)

for all x and y in X.

(3.5)

The importance of conEactions to fractal coding is described by Banach's fixed

point or contractive transformation theorem. Formatly, this theorem states that for a

contraction /, defined on a complete metric space (X,d), therc is one and only one point

xo in X such that

.f(xo) = xo (3.6)

Moreover, if x is any point in X and {x,} is.a sequence defined by x1 =/(x), x2 =

l(xr), ... xr=f(xn.) =.f '(x), then {xn} is convergent and

lim x, = lim /(x) = ¡".
n-)6 n4æ

(3.7)

More simply put, every conEaction in a complete metric space has associated rvith it a

unique fixed point to which successive iterations of the conraction on an arbiuary starting

-24-

point wili always converge. This frixed point is often called the o.ttractor of the cont¡action.

In addition to a unique atüactor, there exists an estimate which relates the distance

between the nrh iteration of /in the sequence Ixn] and the attractor to the distance

berween the starting point x and the first point in the sequence x¡. This estimate, called the

a priori estimate, is given by

a(x,,xo)< !|a]x,x¡

Letting n equal zero and substituting x, =flx) into Eq. 3.8 yields

{x,xo)s Sø*,{*tt

which is the generalized form of Bamsley's collage rheorem

(3,8)

(3.9)

What is so interesting and relevant about the contraction mapping theorem is that it

describes exactly the type of behavior exhibited by the MRCA. Regardless of initial image

x, the MRCA always converges to the same final image xo. This occu¡s because the

functions which map self-affine objects like the Koch curve into themselves are

conEactions.

The contractive transformation theorem and its corollary, the collage theorem, have

important implìcations in image coding which should be understood outside of the context

of a particular metric space or conuactive function. The contractive Eansformation theorem

implies that if an image x can be described approximately by a conracdve function/(x) of

itself, successive iterations of the conEaction on any initiai image wi-ll resr.rlt in an image xo,

unique toI Furthermore, the collage theorem establishes an upper bound (Eq 3.9) on the

enor between the original image and the attractor xo associated withl This bound relates

25

the enor benveen the original image and the arfractor to the error berween the original image

and its collage, /(x).

Encoding/decod ing schemes based on conÍactive transformation theory and rhe

collage theorem are appropriately ca|Ied collage coding or coding by iterative contrectiye

transfo rmatio ns. The objective of these coding techniques is to locate a contractive

function or set of contractive functions which can be used to generate a collage of a given

image. In the techniques described in this thesis, a basic form for these functions is

assumed. The encoder then locates the specific parameters within this form that minimize

the distance between the original image and the resulting collage. These parameters

represent the fractally encoded description of the image and are either transmitted or stored

for reconstruction at a latter time.

For a successful collage coding technique both an appropriate meEic space and

general form for the contraction must be established. As section 3.1 indicated, it is

important that the metric associated with the selected metric space yield relevant measu¡es

of the distance befween images, In selecting a form for the function one must also ensu¡e

that

(1) with appropriately chosen parameters the resulting functions will
indeed be a contaction,

functions based on this fo¡m wiJl produce adequate collages of the
original image with respect to the chosen distance measure,

the pa¡ameters which govern the behavior of these functions can be

represented more compactly than the origiral image, and

for a particular image, these parameters can be located efficiently and

(2)

(3)

(4)

-26-

systematically.

lf the basic form meets these crite¡ion then the original image, or an approxLmation thereof.

can be decoded by iterating the resulting functions with the appropriate paramerers on any

sørting image as per the MRCA.

Both of the fractal coding techniques presented in the remainder of this rhesis a¡e

examples of collage coding and satisfy at least the fi¡st th¡ee of the above requiremenrs.

Iterated function systems (lFSs) are a remarkably compact fractal coding technique used

'primarily for representing complex self-simila¡ binary images. unfortunately, it may be

uemendously difficult if not impossible to exEact lhe IFS parameters for a particular source

image via an automated procedure. Nevertheless, IFSs a¡e highly illustrative of collage

coding techniques in general and are therefore worth examining before proceeding to

fractal block coàing (FBC) - a less compact but more manageable fractal compression

technique for gray scale images.

-2'7 -

CIIAPTER IV

IrnR,rrso FurucrroN SysrEMS

The first difficulty associated with the development of any data compression

scheme based on collage coding is locating a set of functions which satisfy the

requirements of the conFaction mapping theorem. In conjunction with the coliage theorem,

Barnsley innoduced iterated function systerns (lFSs), a scheme for representing innicate

self-similar structures, An iFS consists of a set of simple contractive functions which

describe an object in terms of smaller distorted versions of itself. This description is

remarkably compact - complex binary images can be represenæd in as few as l0 bytes.

Unfortunately, the inverse problem of locating the IFS code which describes a

given image is an NP complete problem for which an adequate automated solution has yet

to be found. Despite this, the importance of IFSs can not be overemphasized since they

have inspired other collage coding techniques based on more manageable representation

schemes. In addition to thei¡ historical significance, IFSs are exrremely useful for

illusnating general collage coding principles and give some indication of the very high

compression ratios (eg., 10,000:1 [BaSl88]) which may be possible using fractal

compression techniques.

This chapter describes the basic IFS representation scheme and shows how it

satisfies the requirements of the conraction mapping theorem. In addition, an alternative

form of the MRCA called the random iteration algorithm (RIA) is introduced. The RIA,

.28 -

also developed by Bamsley, has a number of advantages over the uaditional MRCA and is

useful for establishing rhe connection between fractals and the affiliated field of cå¿os

IPeJS92j. Finally image compression based on IFSs is discussed briefly with particular

aftention paid to the difficulty of designing an automared encoding procedure.

4.1 Overview of Iterâted Function Systems

Iterated function systems (IFSs) a¡e a scheme for representing complex self-affine

sFuctu¡es. An IFS consists of a set of contractive ffine transformøtiol¡J (cATs) of rhe

form

*ß)=li ållxrl,l¿]
¿)lxzl'l-r) (4.1)

which a¡e used to Eansform a set of points contained within in the ca¡æsian plane. In this

equation, the parameters ø and/represent úanslations along the horizontal and vertical

axes while the marix ['
å,

] is mear operator which can distort an image in four different

ways. These distortions, illustrated in Fig. 4.1., include scaling, rotation, reflection, and

shearing. Figure 4.2 illustrates the combined effect of translation and distortion by a

single CAT on an object Il.

Given a distorted and translated version of some object, the coefficients of the CAT

which generate this distortion and nanslation can be determined by solving a system of

simple linear equations. Three points x, y, and z on the original structrue are selected and

then the three conesponding points ñ 7, and ã on the disto¡ted version a¡e located.

Substituting these points into Eq. 4. I yields

-29-

(L1

.dt
Fig. 4.1. Distortions producible using contractive ffine transformatíons CATs. (a)

originai image, (b) scaiing, (c) rotation, (d) reflection, and (e) shearing

lPeJS92l.

o
d,1

Fig. 4.2. Scaling, rotation, reflection, skewing, and translation of an object 11 by a CAT.

- 30-

E-t
L_l I

(a)

[Æl
L__l

(d)

E]
(b)

GtÐ =li

(1 ,i.)=lø
LC

å lt.r1 1 . ¡ r 1

¿lL.trl*Lrl

b ll.Jrl , I ¿ I

¿lLr:l'lrl

ll al l.rr I
I I- I

ll ¿ l=l¿'l
JL e) lzt I

(4.2)

(4.3)

(4.6)

(4.7)

and

(7t.z2l='" b,ll:'l.l'"]
,**,Lc d)lzz) Lf i

Equations (4.2) through (4.4) caa be rewriften in terms of the following two systems of

linear equations

f x, x'. I

lri yi ,

lz¡ z2 I

and

(4.s)

f.r¡.r2 I'l¡ .1 lizl
l,:,1:l]tí]=Lti

Solving Eqs. 4.5 and 4.6 yields

Ial lÍrl
I ¡ l= rly, I
¡ I ¡- I

L e) Lzt)

lx1 I

r lvilt- |

lzz)

where

lcl
I ¿ l=
L r j

- 31 -

(4.8)

I yz-zz :2-.12 .t')-!r I
-]t it =il :r-)r .rt-;l Jr-.rl

I

L y1z2-y22t .r2zr-.rl:2 .rly2_.r2yl l
(4.9).

and

î = x ty 2-)(tz2-xzy i y tz 2+r2z t-y 7z I (J, l0)

Any self-affine image which can be described in terms of itself under any

combination of the distortions illustrated in Fig. 4.1 can be constructed using IFSs. Each

self-affine portion in the original images has associated with it a unique cAT. For

example, the Koch curve K illustrated in Fig. 4.3 has fou¡ self-affine porrions and is

therefore constructed from an IFS consisting of fou¡ cATs. The cAT coefficients for each

of the self-affine portions of the cu¡ve can be exfacted by selecting three points on the

original image, locating the conesponding points on each self-affine portion, and solving

Eqs.4.7 through 4.10.

Í.' t

,,,,;,*ì;#í,;tn
'rÇ.n ltt

èr,

yY
Fig.4.3. The Koch cu¡ve Kas constructed from fou¡ CATs of itseli w1 rtrough w4.

x
Y

-32-

Usirg the IFS coeffrcients, the original self-affine strucrure can be consrructecl fro.r
an arbirrary staning image using the MRCA. Each c,AT in rhe IFS is in rurn apprrecr to the

\truri.g irnage to ureate a new image consisring of N copies of the ori_sinar. This ne*,

irna-te is rhen transtbrmeci in the same way, ancr this process, if repeatecr inclefinirely *.iÌl

result in a reconstruction of the coded self-affine struuture inclepenclent of rhe starting

iinage.

A wide variety of fractal images can be consnucted using IFSs. A sma subset of

these irnages are 'slassical' fractals like the Koch cuwe but more interesting exarnples

inclucle surprisingly realistic lookirg renditions of nahuaì objects such as leaves, ferns, a'ci

trees. Exarnples of borh types of images are shown in Figs. 4.4 through 4.7 arong sicre

thei¡ self-affine construotions and IFS soefficients. Each of these images is 200 by 200

pixels in size and would therefore require almost 5 Kbytes of storage each rhe IFS

storage requirements for these image are significantly less and are incluclecl with the

r:onesponding figure. These values assume that only seven bits are required to aclequately

represent each IFS coefficient. For objects like the fern in Fig. 4.6 which require only four

CATS this represents a compression ratios of 238: l.

-33-

(a)

r
f-

-

(b)

abcd ef
I
2

3

0.00 0.58 -0.s8 0.00
0.00 0.58 -0.58 0.00
0.00 0.58 -0.51.t 0.00

0.05 0.59
0.40 0.79
0.05 0.98

(c)

Fig. 4.4. (a) A Dragon cuwe, (b) its self-affine components, and (c) irs IFS ciescription; 3

CATs, ló bytes.

L

(b)

a b c d e f

t
¿

3
4
5
6
'7

8

0.34 0.00 0.00 0.34
0.34 0.00 0.00 0.34
0.34 0.00 0.00 0.34
0.34 0.00 0.00 0.34
0.34 0.00 0.00 0.34
0.34 0.00 0.00 0.34
0.34 0.00 0.00 0.34
0.34 0.00 0.00 0.34

0.00 0.00
0.00 0.33
0.00 0.67
0.33 0.00
0.33 0.67
0.67 0.00
0.67 0.33
0 61 0.67

(c)

Fig. 4.5. (a) Sierpinski's carpet, (b) its self-afñne components, and (c) its IFS descriprion;
8 CATs, 42 bytes.

35-

(a)

19¡ abcd ef

1

2
3
4

0.85 0.04 - 0.04 0.85
0.20 -0.23 0.23 0.20

- 0.15 0.28 0.26 0.24
0.00 0.00 0.00 0.16

0.08 0. r 8
0.40 0.05
0.48 - 0.08
0.50 0.00

(c)

Fig.4.6. (a) Barnsley's fem, (b) its self-affine componenrs, and (c) ìts IFS descnption: 4

CATs, 2l bytes.

-36 -

(a)

t+) ¡ abcd ef
I
2
3
4
5

0.20 0.04 - 0.04 0.85
0.46 0.41 -0.25 0.36
0.06 - 0.07 0.45 0.1 r

0.04 0.70 -0.47 -0.02
0.63 0.00 0.00 0.s0

0.08
0.25
0.60
0.49
0.86

0. l8
0.57
0. r0
0.51
0.25

(c)

Fig. 4.1 . (a) A fractal tree, (b) its self-affine components, and (c) its IFS descnption; 5

CATs,27 bytes.

-37-

4.2 Mathematical Foundations: The Hausdorff Distance

lterated function systems result in unique amactors when combined with the MRCA

because they satisfy tlìe preconditions of Banach's conÍactive transformation theorem. ln

particular, an IFS is a conraction with respect to the HousdotlT distance defined on the

complete metric space formed by sets of ordered pairs in the Cartesian plane. The

Hausdorff distance is a metric which measures the distance between two sets of points X

and f, each representing a binary digital image. [n order to discuss the disunce between

sets of points we must fi¡st be able to talk about the distance between a point x and a set I
given by

Qx,Yl= min{d2(x,y)I ye r)

where d2 is the familia¡ E¿cLidian metric for orde¡ pairs and is given by

d2g,y) = ^úr;- yj .6- tr
The distance between rwo sets X and Y is in rum given by

4X 'Y) = max{{x,f) I xex)

The Hausdorff distance follows from rhis and is simply

(4. l l)

(4 r2)

(4. t 3)

tÁx ,Y)= maxldx,Y\, QY ,X\\ (.1.l4)

The Hausdorff metric takes into account the ¡elative positions of pixels when

determining the distance between two images. For each pixel in an image X, the

Hausdorff memc locates the nearest (in the Euclidian sense) pixel in the second image f.

The maximum distance measu¡ed between conesponding paìrs of nearest pixels is retained

38

as a measure of the distortion between the image X and the image f. This procedure is

then repeated for every pixel in the the image f resulting in a measure of the distortion

between the image I/ and the image X. The Hausdorff distance is the maximum of these

two measures.

Under the Hausdorff metric. the contraction factor associated with an IFS can be

calculated from the conuaction associated with each CAT [HutcS l]. The conraction factor

for each CAT is the maximum of the scaling factors in each of two di¡ections given by

st = '[û + cz (4, ts)

and

s2=\æ + dl

respectively, so that

(4. r 6)

kj = max(J I ,J2)
(4. l7)

The contraction factor for the entire IFS is simply the maximum contaction factor of the

i¡dividual contraction factors associated with the N CATs in the IFS or

k = max(k¡ l¡=1,2, ,N) (1. t8)

The motivation for selecting a complex metric like the Hausdorff distance is based.

in part, on the psychology of visual perception which dete¡mines whethe¡ or not a

particular metic is in fact meaningful. The two binary images X and I can also be

considered as two /1x¡7? vectors X and Y for which a simpler metric such as the rxnr

dimensional Euclidian metric given by

-39-

d26,Y)= (4. l9)

could be used. However, Fig. 4.8 illust¡ates how this measure is not as visua[y

meaningful as the Hausdorff metric. The distance between Figs. 4.ga and 4.gb ancl rhe

distance berween Figs. 4.8a and 4.8c a¡e identical with respect ro Eq. 4. 19. However, to

both the human visual system and the Hausdorff metric, Fig. 4.ga resembles Fig. 4.llb

more than Fig. 4.8c. The Hausdorff meEic provides distance meastues more in line with

the human visual system because it takes into account the relative position of pixels in the

image,

Fig. 4.8. Ambiguity of the Euclidian metric. Under the euclidian metric the distance
between (a) and (b) is equal to the distance between (a) and (c). Under the
Hausdorff metric the distance berween (a) and (b) is signiñcantly less than the
distance between (a) and (c). The Hausdorff meric reflecrs the way in which a

human being might compare these objects and is therefore a more meaningful
disto¡tion meastue for binary images [Jean90].

Before concluding this section, a rema¡k on notation is in order. In Chapter 3,

images were represented as vectors in a metric space and were therefore denoted by lower

case boldface text (eg. x). Sometimes, as was the case with the Hausdorff metric, it is

(c)(b)(a)

-40-

more convenient to think of rhese ima_ses as sets of points denoted x. In future chapters.

images will be described as vectors which can be further subdivided into smaller

component vecto¡s. To avoid confusion, in the remainde¡ of this thesis images rvill always

be ret'ened to using capita.l letters consistent with the notation adopted in this chaprer. [f rhe

image should be viewed in the context of a set of points then it will be represented by

capital italics (eg. X). conversety, if the image is better represented using vector noration

then it wi.ll be refened to using capital boldface lettering (eg. X).

4.3 The Random Iteration Algorithm

Barnsley's third conribution to fractal data compression, besides the collage

theorem and iterated function systems, is an aiternative form of the MRCA known as the

chaos game or random iteration algorithm (RIA). The primary disadvantage of the

MRCA is that it may take many iteradons to converge to an acceptable representation of the

attractor associated with a particular IFS, As an example consider Barnsley's fern

constucted at a scale of 200x200 using the MRCA. Ar each iteration of the MRCA, the

fi¡st CAT in the IFS reduces the current image by onty 85Vo. if the starting image is a

200x200 pixel box as shown in Fig. 4.9a then even after l0 iterations as shown in Fig.

4.9b, a¡tifacts caused by the particular sra¡ring image are srill visible. I¡ fact, these a¡tifacts

will only disappear at the point where the original square has been mapped into a single

pixel. This occu¡s when

200.0.85M=l G.20)

where M is the number of iterations of the MRCA. Solving Eq. 4.20 yields M=33.

-41 -

(a)

Fig.4,9. Bamsley's fern as consuucted using the MRCA. (a) The starting image and (b)
the reconstructed fem after l0 iærations of the MRCA.

The random iteration algorithm shown in Fig. 4. 10, is a less computarionally

intensive procedure equivalent to the MRCA. The RIA begins with a random point,

usually x = (0,0), then selects a cAT at random from the IFS according ro a discrete

probability densiry funcúon. The probabilities pj reflect the relarive area occupied by each

CAT in the self-afñne representation of the image and are given by

d¡d; - b¡c;
r,r - l--

\1",¿¡-t,rÀ

(4.21)

Once selected, the CAT is applied to the current point to generate a new point which is then

plotted. The procedure is repeated until enough points have been plotted to adequately

represent the attractor of the IFS. In most implementations of the RIA, the points resulting

from the fust 10 iterations of the algorithm are usually not plotted since the initial point is

-42

chosen arbirra¡ily and may not lie within the attractor of the IFS. Howeve¡, because the

IFS is a conuaction the RIA converges very quickly and after l0 ite¡ations the current point

seems always to lie withi¡ the atnactor. An implementation of the RLA with a good samng

point and automadc scaling is described by Kinsner [Kinsgl]. c language source code for

both the RIA and the MRCA is also provided in Appendix A of this thesis.

STEP l: Initia[ze the starting point x = (0,0).

STEP 2: Select a random CAT w, from the IFS W = (w1,w2,...,wy\
according ro the discrete probability density function p¡.

STEP 3: Let x = w¡(x).

STEP 4: Plot the poinr x. Goro STEP 2.

Fig. 4. 10. T'he random iteration algoritån (RIA) for IFS decoding.

The first 100, 1000, l0 000, and 100 000 iterations of the RIA for rhe consrrucrion

of Barnsley's fern are shown in Fig.4.ll. Note rhar although in excess of 10000

iterations of the RLA were needed to adequately reconstruct the fern, each iteration requires

that only one point be plotted. I¡ contrast a single iteration of the MRCA for a 200x200

pixel image would require that 40 000 points be considered. This would amounr ro over a

million points for the 33 iterations of the MRCA required to reconsrruct the fem.

Having illustrated that the RIA requires significantly less computation rhan the

MRCA, it is necessa¡y to indicate how the two algorithms are otherwise equivalent, To do

so we must show that like the MRCA, the RIA will f l out the attractor of the IFS. A

-43

(a) (b)

(c)

Fig.4.11, Thetust(a) 100,(b) 1000,(c) t0000,and(d) l00000irerarionsof theRIA
for the construction of Barnsley's fem. In each case the fust 10 points are not
plotred.

formal proof of this is based on ergodic theory [Bam88] however a simple probabilistic

discussion of this is based on the fact that each cAT is associated wirh a particular self-

-44-

affire portion of the original image. By selecting CATs at ¡andom, each self-affine ponion

will be visited a number of times relarive ro the probability of its associated cAT being

chosen. Peitgen et al. ptovide an intuitive discussion of the operation of the RIA based on

such a probabilistic approach and in facr suggest that this discussion may be more useful

than any formal mathemarical proof based on ergodicity [peJS92].

4.4 Data Compression with IFSs

IFSs can be applied to the compression of binary, grey scale, and color images as

well as other lossy signals but a¡e most naturally discussed in the context of binary images.

An IFS compression system for binary images would begin with an image or portion

thereof and generate a collage of that image using a set of cATs. The encoder must then

manipulate the cAT coefficients so as to minimize the Hausdorff distance between the

original image and is collage. The collage theorem implies that if the collage is close to the

original image in terms of the Hausdorff disønce, the attractor of the IFS generated using

the MRCA or RIA decoding algorithms will be a good representarions of the original

image. Of course the original image can be represented exactly by choosing an IFS which

has one cAT for each pixel in the original image. However since each cAT increases the

storage requirement of the IFS code this will nor result in a particulariy efficient

representation of the original image. Therefore, the IFS encoding algorithm musr not only

generate a collage which adequately covers the original image but must do so using as few

CATs as possibie.

Unfortunately, while it is often easy for an intelligent observer to recognize the self-

affine portions il an image and thus construct an acceptable collage, an adequate automated

solution to this problem has not yet been found. A number of optimization techniques such

45

as simulated annealing [LaAa97] and genztic argoritfuns [Davi9 l] have been attempted but

with only limited success [MoHS90]. The primary disadvanøge of such techniques is rhar

they must perform repeated calculations of the Hausdorff distance. Each time a new set of

cATs is considered as a possible solution to the encoding problem, a new collage must be

generated and the Hausdorff distance calculated to determi¡e the suiøbilìty of thar particular

solution. Although fast algonthms [Shon89] for the caiculation of this menic do exist. this

is still a computationally intensive procedure. In addition to the computarional ¡equi¡ements

of the Hausdorff metric, for many images this meuic is a non-monotonically decreasing

function with many local minima. This non-monotonicity eliminates optimization

techniques based on gradient descent and, may severely impede more global approaches

should the Hausdorff metric become particularly enatic. This is ofæn the case for images

in which the selJ-affine components of the collage overlap.

Other researches have attempted to extract the IFS parameters directly from the

source image without generating a collage. Such attempts include the use of

morphological skeletal transforms [MaSh9O] and wavelet transþrms [FrDu90] from

which the IFS coefficients may be deærmined directly, These methods seem to work well

for some images and not so well for others since the relationship between images in one

domain and the IFS paramters in another has not been clearly established.

In all, no single algorithm has emerged which is capable of solving the IFS

encoding problem quickly and for all images. It remains to be seen whether or not the role

of the intelligent observer in recognizing self-affinity can in fact be automated. Despite

this, since the introduction of IFSs, literally dozens of papers have appeared with titles

such as "Image compression using the fracøI nansform" [Barn90]. More often than not,

these papers describe little more than the MRCA and RIA algorithms for ftactal image

-46-

decoding not encoding. These papers bring to mind a joke amongst information theorisrs

about

"a fellow who developed a data compression algorithm which could reduce
any frle of any size down to a single bit. Unfortunately, he's still rrying to
work a few bugs out of the decompression algorithm."

Nevenheless, IFSs are an efficient way of representing complex self-affine strucru¡es ancl

despite the lack of an adequate automated compression algorithm, a scheme does exist for

manually extracting the IFS parameters f¡om a certain class of images. Even though IFS

encoding is an NP complete problem for which a fast general purpose solution may not

even exist, other researchers have applied the collage theorem and the concept of self-

similarity to image compression using less compact but more manageable representation

schemes. One such technique, known as fractal block coding, îs the subjecr of the

remaining chapters.

-47 -

CHAPTER V

GsNBRalrzsn FRacral Blocr CoorNc

collage coding schemes can be applied to grey scale as well as binary images

although the approach is somewhat less intuitive. Jacquin has proposed a fractal encoding

technique for self-affine grey-scale images called fractal block codíng (FBC)

IJacq89][Jacq90a][Jacq90b][Jacq92]. Lil<e iterated function sysrems, Jacquin's technique

attempts to eliminate redundancy by describing an image as a mathematical function of

itself. In particular a function is chosen which describes the image at one scale in terms of

its self-afñne portions at another.

unlike IFSs, an algorithmic procedure exists for extracting the FBC parameters

from a particular image. This procedure is based on a divide-and-conquer approach in

which both the image and the fractal transformation are segmented into simpler

components. Rather than attempting to locate appropriate values for all of the FBC

parameters at once, the encoder resolves the píuameters associated with each of these

segments independently and in succession. using this approach, an appropriate fractal

representation for a sou¡ce image can be located in polynomial rather than Np or Np

compleæ time.

This chapter outlines the fractal representation scheme for grey scale images

developed by Jacquin. Jacquin's f¡actal transformation and its associated parameters are

described as well as generalized forms of the compression and decompression procedures

refened to as FBC encoding and FBC decoding, respectively. After outlining the FBC

representation scheme in general terms, it is discussed in the context of meuic spaces and

the contractive transformation theorem. This discussion focuses on the particular

constraints (or lack thereof) which must be placed on rhe paramrers of the fractal

nansformation. Finally, a number of extensions to the generalized proceclure, conce¡ned

primarily with improving its computarional efficiency, a¡e described. These extensions.

while mostly heuristic in nature, form the basis of a more systematic approach described in

Chapter 6.

5.1 Exhaustive Search FBC Encoding procedure

The generalized form of Jacquin's encoding algorithm begins by subdividing a

large image into many smaller square vectors or blocks. Rather than coding the image as a

single entity, a method is sought for efficiently represenring each of these blocks

individually. Jacquin's technique represents each image block in terms of a fransformed

version of some larger block in the same image as shown in Fig. 5.1. The blocks being

coded are refened ro as range blocks whtle the larger blocks, from whence the range

blocks are represented, are termed domain blocks. Domain blocks, being larger than

range blocks, represent larger scale features in the image. The set of all possible range

blocks is called the range pool and consists of all non-overlapping rxr blocks in the

image to be coded. The set of all possible domain blocks is likewise refened to as rhe

domain pool and consists of all possible dxd blocks in the image - overlapping or

otherwise. Jacquin's fractal block coding technique is a collage scheme in so far as the

representation of each block in the range pool from some block in the domain pool forms a

collage of the original image.

-49-

rr¡tt
tìttt

__L__L__L__
I <-_I I -'- Fractal

Range Block I ran\storm

\t\ltttllt
Domain Block

Fig. 5.1. Fracral transformation of domain blocks into range blocks [Jacq92l.

The basic FBC coding procedure consists of an exhaustive sea¡ch of the image for

the domain block a¡rd set of fractal transformations which most closely represent each range

block. The suitabiliry of a panicuiar range/domain block pair is determined accord.ing to the

Euclidian metric denoted by d2. For a range block y and a ransformed domain block ñ

each containing nr pixels, d2 is given by

d2(Í,y): (5. 1)

The encoder locates the domain block and fractal transformation parameters which

minimize d2 ror each runge block. compression results by ensuring that the representation

scheme for each range block (in this case the pointer to the domain block and rhe

Íansformation parameærs) is more compact than the explicit description of the block iaelf.

5,2 Fractal Image Transformâtion

Since domain blocks are larger than range blocks some form of uansformation is

s0

required to map domain brocks into range brocks. In fact, the fractar transfo¡mation

depicted in Fig. 5.1 consists of three distinct Íansformarions performed sequentially as

shown in Fig. 5.2. These transfo¡mations are spatial contdction, isometric block

fi'ansJbtnlafion, and grey level scaling and translatìon respectively.

Domain Block

Ë'

.ö.

Fig. 5.2. The fractal block transfo¡m in terms of its sequential component transforms:
spatial contraction, isometric block Eansformation, and grey level scaling and
translation.

spatial contraction serves to reduce a domain block of size dxd to the size rxr

associated with range blocks. If d is an integer multiple of r, this can be accomplished by

simply aking the average of euery (ff adjacent pixels in the domain block.

The isometric block uansform redistributes pixels within a conEact€d domain block

in a deterministic manner. This alters the physical orientarion of the input block without

effecting the individuat pixel intensities. In actuality, a set of isometric transforms a¡e

maintained from which the most appropriate for each domairy'range block pair is chosen.

For square domain and range blocks the following eight tansforms are used:

-51 -

(l) identiry,
(2) reflection about mid-venicai axis,
(3) reflection about mid-horizontal axis,
(4) reflection about Fust diagonal,
t5) reflecrion about second diagonal.

(6) +90o rotation about center,

(7) + l80o rotation about center, and

(8) -900 rotation abour center.

The effect of each of these [ansforms is illustrated in Fig. 5.3. Together, rhe eight

isometric block uansforms form what is called a group. Each transform in a group has an

inverse and successive application of two or more transforms results in a single transform

already in the group. For this reason combinations of multiple isometries need not be

considered.

(t)
identity

(6)
+90 " rotation
about center

(2)
reflection about
mid-verticle axis

tao"(lJ,ion
about center

(3)
reflection about

mid-horizontal axis

(4)
reflection about
frst diagonal

(5)
reflection about
second diagonal

(e)
-90' rotation
about center

Fig. 5.3. Isometric block Eansformations.

52-

Finally, grey [evel scaling and nanslation modify pixel intensity without effectin_s

the blocks physical orientation. This is accompJished by scalìng and nanslanng each block

x as follows:

x=aX+tU (5.2)

where ¿z and ¡ a¡e the scaling and translation coefficients, respectively. The vector u is

such that all components are equal to one; i.e.,

u¡j=I fotallL<ij<r (s.3)

Adding a multiple of u to the original vector has the effect of altering the original blocks

mean intensity,

During the coding procedure, the optimal values of a and t for any given

combi¡ation of conuacted domain blocks and isometric block uansforms must be caLculared

so as to best represent the range block being coded. For a range block y and a spatially

contracted domain block x this is accomplished by minimizing d2G,y) with respecr to d

and t (see Appendix B) for which

o _ ttutt2(x,y) - (x,uXy,u)

llutt2llxll2 - (x,uf

and

(s.4)

(s.5)
. _ Ilxl12þ,u) - (x,yXx,u)'- rh;trlfü:(*;F'

Here the functions ll.ll and (.,.)are the Euclidian norm and inner product and are given by

-53-

(5.6)

and

ff

k,v)=I2,,¡ y,¡
t-L J-L

(5.7)

The Euclidian norm is commonly interpreted as signal energy while the inner product is

often refened to as lhe correlation of two vectors.

From the preceding description, it follows that each range brock is represented by

an individual block code containing the following four parameters:

(1) a pointer to the best domain block,
(2) a pointer to the b€st isometric transform,
(3) a¡ optimal scaling coefficient, and
(4) an optimal ranslation coefñcient.

The set of block codes for all range blocks in the the image is refened to as the fractal code

for that image.

5,3 Iterative Image Reconstruct¡on: FBC Decoding

To reconstruct the original image from its fractal code, an iterative decoding

algorithm is used. This decoding algorithm begins with an arbinary image referred to as

the domain image. A second image called the range image is then generated by

Eansforming the domain image according to the fractal code. Remember that the fractal

code represents each range block in terms of some conracdvely transformed domain block

54-

in the same image. During coding, the range and domain pools are drawn from the same

image. During decoding however, the domain poor is drawn f¡om the domain image whiìe

the range pool constitutes the range image and is generated by nansforming the appropriate

domain blocks from the domain pool as shown in Fig 5.4. This transformation is

performed according to the specific parameters for each range block outlined by the fracral

oode. The algorithm is iterative in that the range image generated in this way, becomes the

new domain image and the nansformation is repeated. Each successive iteration results in a

new range image closer to the source image used during the encoding procedure.

Domain Image Rurge lmage

Fig. 5'4. Reconstruction of the range image from a domain image via the fractal code.

The iterative nature ofthe algorithm is extremely imponant to the fractal aspect of

the coding technique. An important featue associated with scale self similarity is the fact

that ftactal images possess infinite resolution. since the spatial reduction portion of the

fract¿l ransform maps large domai¡ blocks into smaller range blocks, repeated application

of the fractal code will produce images of successively higher resolution (limited of cou¡se

by the resolution of the computer display). In this way a 256x256 pixel image could be

fractal coded and then reconstructed at a resolution of 512x512. similarly, a small porrion

of a fractal image could be magnified without exribiting the blockiness or edge degradation

Domain Block

-55

which results from the magnification of fixed resolution images.

5.4 Mathematicat Basis for FBC

[n order to establish that the iterative reconstruction procedure wi]l in fact converge

to a ¡easonable representation of the original image, we must discuss the conditions unde¡

which fractal block coding satisfies the requiremenrs of the contraction mapping theor¡i.

This discussion must of cou¡se take place in the context of some complete metric space. [n

fact we will define two metric spaces valid for grey scale images and use both in the

ensuing discussion of the fractal block code as a conEactive function.

5,4, t Metric Spaces for Grey Scale Images

Mathematically ' an nxm digital image is simply an erement of the set of a

possible nxm digital images. since a digiøl image can be thought of as a simple two

dimensional anay of pixels, this set can be described as the set of all real nxm matrices

denoted R
ø.

To make R
*

a metric space requires a metric. Two valid metrics for the set R
n",

arc lhe Euclidian metic and the sap metric. Fot two nxm images X and y, the

Euclidian metric is given by

dz(x,Y) + Y ¡¡)2 (5.8)

which is the same as Eq. 5.1 except defined on the entùe image rather than a single rxr

block. Simäarly on R
ø üre sup or Tchebych¿y meric, denoted d- is given by

I I tx,;'
i=l j=1

-56-

d-(x,y) = sup {Eu - y ¡): I<i=n, I<j*n\ (s.9)

Combining the ser R ""' and the metrics d2 and d_ yields rhe metric spaces (R,,',r./.;

rnd ¡ R ""' ,rl-1 which are both complele.

The Euclidian and sup-metrics have very different physical meanings. The

Euclidian metric is a measure of the energy in the signal resulting f¡om the diffe¡ence

between the two images X and Y. In this sense, the Euclidian meûic provides a measure

of distance which reflects (although not exactly) the average of the enors between

conesponding pixels in either image. This means that very large or very small single pixel

enors will not appreciably effect the outcome of the Euclidian metric. In contast, the sup-

meÍic provides an upper bound on the error associated with any single pixel location by

implying that no rwo corresponding pixels in rhe images X and y differ by more than

d-(X,Y). The reason for defining two metric spaces for grey scale images becomes

apparent when we attempt to discuss the contraction factor of the fractal code. Although

the Euclidian metric is visually more meaningfui and therefore used in the encoding

procedure, it is much easier to establish that a complex function is a conEaction in the

(R n* d*) space.

5,4.2 Contractivity of the Fractal Block Code

Jacquin has provided a formal proof which establishes rhat the fracral

tansformations outlined in Section 5.2 a¡e in fact contractive [Jacq89]. The important

results of this proof are discussed here in the context of the sup metric.

The spatial contraction function for square range blocks reduces the domain block

-57 -

by a factor or f; in uoth di¡ections. This is accomprished by taking the mean or eu.,y (f;f
pixels in the domain block. under the sup metric, rhe connaction factor associated rvith

this operation is equal to one.

Since the isometric block t¡ansforms redisÍibute pixels within rxr pixel blocks

without effecting the pixels i¡tensities, they all have a conüacdon facto¡ of one.

The grey level scaling and translation function scales and fanslates pixel values in

the image by the constalt factors a and t or

x=dx+ru

Grey level scaling has the connaction factor

(5.10)

k¡ = lal

while grey level nanslation has a constrnt contraction factor of one.

(s. t l)

The contraction factor for the fractal block transform representing a single range

block x¡ is given by product of the contraction factors associated with each of the

individual component functions in the enti¡e hansform. since the contraction factors a¡e

one for ali but the grey level scaling function this product is given by

k¡= k^=lal

where ø¡ represents the scaling coefficient associaæd with the ls range block.

(5.12)

Under the sup metric, the conEaction factor for the entùe fractal code is given by

tle supremum of the contraction factors for each range block or

-58-

k = sup(*¡) = sup]¿,]
ii

(5. r 3)

This means that to ensure that the fractal block code is in fact a contraction and will

therefore converge to a fixed image, the absolute value of scaling factor i¿l associated wiù

each range block must be strictly less than one or

lcl < I for all i (5. r4)

However, the constraint placed on the scaling factor a by Eq. 5.14 is actually much too

strong if the complex interaction between overlapping range and domain block is taken i¡to

consideration. This interaction may result in a function which is eventually contractive

even if for cerøi¡ range blocks the absolute value of the scaling coefficient exceeds one.

A function / is said to be eventually contractive if there exists some integer q>0

such that the function/q is a contraction. The eventually contractive function / has

associated with it a the same fixed point as the confactive function /4. so, even if the

fractal code is not in itself contractive, it may be eventually conFactive and the collage

theorem will still hold. As the seiection of domain blocks becomes more uniformly

distributed, the interactions between overlapping range and domain blocks makes it more

likely that the fractal code will in fact converge. In practice, the fractal codes for non-rivial

images such as photographs are all eventually and strongly contractive without any

resrictions placed on d or the domain pool [OiLR91].

Finally, it should be pointed out that if a function is a contraction on one metric

space then it will yield a fixed point in any me$ic space defined on rhe same set since the

metric does not in any way effect the behavior of the function. This result is of practicai

-59-

imporønce si¡ce it is considerably mo¡e difficult to deternine the contraction factor fo¡ the

fractal code under the Euc[dian metic than ùe sup-men:ic.

5.5 Extensions to the Generalized Coding procedure

The main problem with the generalized coding procedure is rhe time requirecl to

compress images. since every range block in the image must be comp ed against every

domain block in each of its eight possibte isometric configurations, the total number of

block comparisons is given by

r =8(n-dY(LJ (5. rs)

This is an o(na) problem. A number of authors including Jacquin himself have innoduced

schemes for improving the speed of the coding algorithm. This section outlines a number

of methods which have been used in the past to reduce compression time while mainøining

acceptable levels of qualiry and compression ratios.

The actual encoding technique proposed by Jacquin Uacq8gl was much more

complicated than the generalized form outlined in sections 5.1 and 5.2. Jacquin realized

that searching the entire image for the ideal domain block for each range block was too time

consuming. Instead he proposed a reduced domain pool. This was accomplished by

dividing large images (256x256) into 128x128 sub images and encoding these

independently, This also had the effect of increasing the compression ratio since a l4 bir

pointer is required to address any pixel in a 128x128 image while 256x256 images for

example, require 16 bit pointers. Unforn:nately, reducing the domain pool decreases image

quality since there are fewer domain blocks from which to constucr the best fractal block

transform.

-60-

To further reduce the sea¡ch time, Jacquin classifiecl each range and domain block

according to its ac signal energy into one of four categories; shade blocks, simple edges,

mixed edges, and midrange blocks [Race86]. Domain blocks were only considered as

possible sources for a range block if they were ctassified into the same category, ln

addition, shade, midrange, and edge blocks were each coded slightly differently. Shacle

blocks, being the simplest were coded with the fewest number of bits, while edge blocks

required the most bits, This led to an overall improvement in compression ratio.

unfortunately, although the fou¡ categories chosen had a basis in image analysis, fou¡ was

not the most appropriate number for an optimal time improvement.

Having severely reduced image quality by reducing the domain pool, Jacquin

decided to divide the image up into domain and range blocks of two different sizes. The

coding procedure would proceed and attempt to code the image with the largest size of

range blocks available. If a panicular range block could not be coded acceptably, rhen ir

was broken down i¡to four smaller blocks each coded individually. unfortunately, it took

just as many bits to code these smaller blocks as is did rhe larger ones so the compression,

ratio which he had sought to improve by limiting the domain pool and classifying the

blocks, was reduced.

In all, Jacquin's attempts to improve quality and compression ¡atio seemed to cancel

each other out aithough a noticeable improvement in speed was realized. Since O(na) is 16

times less for ¿ = 128 than for n = 256 and four 128x128 subimages must be coded, a

speed improvement of a factor of four could at most result for 256x256 images.

Oien, Lepsoy, and Ramstaad [OiLR9 1] have also attempted ro improve

- 6l

compression time by reducing rhe size of the domain pool. Their version of rhe fractal

block coding technique uses only non-overlapping domain brocks in the image. [n a

256x256 image, there are only 256 .non-overlapping l6xr6 domain blocks comparecr ro

57'600 overlapping blocks. In addition to requiring less sea¡ch time, this significantly

improves the compression ratio. Addressing these non-overlapping range blocks requires

only 8 bits rather than the 16 bits required to add¡ess every possible overlapping range

block in a 256x256 image. since reducing the domain pool also significantly reduces

image quality, two extra components were introduced to the grey level ranslation function.

Instead of shifting the block by a multiple of some vector u, th¡ee vectors u1, u2, and u3

were used. As in the generalized form, the vector ur consisted of all ones. The vector u2

was a slope i¡ the I di¡ection or

[u2l¡ = i

while the vector u3 consisted of a slope in thel direction or

(s. r6)

[u¡],; = i. (s.17)

where the notation [u¿]¡ refers to the i'th element of the krh vector. The expanded grey

level translation function resulted in an improvement in image quality at the expense of

compression ratio since two new coefficients, associated with u2 and u3, where required.

However, the bits saved by reducing the domain pool were applied to representing the two

new translation coefficients u2 and u3 so the overall compression ratio remained

unchanged. Ftst and foremost, this improved nanslarion function combined with the large

reduction in the domain pool resulted in a d¡amatic decrease in coding time. In their paper,

Oien, Lepsoy, and Ramstaad do however show a small improvement in image quality over

the original work of Jacquin and their technique is much simpler since only one block size

-62-

is required.

Finally' Beaumont [Beaug1] has proposed an improved distortion measure for

calculating rhe error berween range and domain blocks. Rarher than using the straight

Euclidian meric he first fransforms each block using the Hadama¡d nansform. He rhen

exploits the varying sensitivity of the visual cortex to frequency by establishing enor

thresholds for each of the Hadamard coefficients according to their relarive imporrance ro

the human visual system. This has two effects. Firstly, a domain block can be eliminated

as soon as the enor th¡eshold for a single Hadama¡d coefficient is exceeded which will

speed up the compression scheme. secondly, although in terms of signal-to-noise ratio

(SNR) these images may be of lower quality, in subjective visual tests they will be of

superior quality.

5.6 Summary

This chapter has described the basic fractal block coding technique proposed by

Jacquin. The fractal representation scheme as well as generalized encoding and decoding

procedures were discussed. To ensu¡e that the decoding procedure would in fact converge

to an adequate representation of the original image it was necessary to confine the scaling

coefficient associated with each range block to values strictly less than one. However,

previous experimental results indicate that for non-u-ivial images, the complex interaction

between overlapping range and domai¡ blocks causes the fractal code to become eventually

and strongly conÍactive even when these coefficients a¡e left unconstrained.

It eannot be over emphasized that the success of this technique, as opposed to IFSs,

is based on the fact that a divide-and-conquer encoding procedure can be employed to

-63-

locate the FBC parameters associated with a particular image. This procedure

(l) partitions the image into smaller range blocks and encodes each of
these blocks individually, and

divides the f¡actal transform into th¡ee sub-transformations: spatial
contraction, isomemc block ransformadon, and grey level scaling and
translation. For each range block the paramters associated with these
tansformations are then solved consecutively.

For nxn images the generalized form of the encoding procedure is an O(na)

problem to which a number of heuristic time reducing approaches have been applied.

These approaches focus primarily on reducing sea¡ch time by limiting the size of the

domain pool. unfortunately, a reduced domain pool usually results in reconstructed

images of much lower quality and must be compensated for by introducing additional

quality improving techniques into the encoding procedure. while all of the extensions to

the generalized FBC encoding procedure discussed in this chapter do in fact reduce

compression time, they do not add¡ess the fundamental issue of computationai complexity.

That is, even with these extensions, the encoding procedure remains O(na). A more

systematic approach for improving compression times without adversely effecting image

quality is presented in the next chapter. This approach uses neu¡ai networks to assist the

encoder in its search for appropriate domain/range block pairs and is aimed at actually

decreæing the computational complexiry of the encoding procedure.

(2)

-64-

CHAPTER VI

RBnucBo SBancs FRacru Blocr ConrNc wrrH
NsuRnr, NBtwoRxs

The primary disadvantage of fractal block coding is the time required to sea¡ch the

domain pool for the best domain blocks to represent each range block in the image.

Reducing the domain pool is of course the easiest way to tackle this problem but it results

in image degradation. of all the speed improving techniques proposed thus far, the only

one that does not dramatically decrease image quality is Jacquin's approach of classifying

domain and rangq blocks and comparing only those which are of the same type. However,

Jacquin's choice of classification schemes did not fully exploit this technique, using four

types of block classifiers and assuming that the classification of image blocks was

approximately uniform this could at most improve the speed of the algorithm by a factor of

four. unfortunately, the blocks were not classified in a uniform manner and it took time to

classify them so the resulting speed improvement was actually less than this. Despite these

shortcomings, the general idea of block classification is a promising one if the number of

categories is selected appropriately. unlike Jacquin's classification scheme and other

extension to the generalized FBC encoder, the technique described in this chapter

concentrates on systematically reducing the actual computational complexity of the

encoding procedure using neural networks.

This chapter develops a reduced sea¡ch FBC encoding scheme based on block

classification using vector quantization (VQ and neural networks. The basic Ve

-65-

procedure is desc¡ibed and then extended into a complete image classification scheme

capable of categorizing image blocks independent of scaling, t¡anslation, or physical

o¡ientation (isometries). The frequency sensitive competitiv¿ learning (FSCL) neu¡¡i

network used to develop an appropriate set of image block categories is then innoducecl.

competitive learning neu¡al networks have become the predominant approach to Ve

codebook design and represent very natural implementations of vector quantizers. Finall),.

equations for the computational compleriry for the reduced search procedure are developed.

The ideal neural network size for optimal compression time improvement is then

established from these equations.

6. I Block Classification with Vector Quantization

The idea behind a reduced sea¡ch algorithm employing block classification is a

simple one. Rather than considering each domain block in the image as a possible source

for coding a particular range block, both the range and domain blocks a¡e classiñed into a

number of pre-determined categories. only those domain blocks which a¡e classified into

the same category as a particular range block are considered as a possible sou¡ce for that

range block. If the number of categories into which blocks may be classified is chosen

judiciously, search time may be reduced dramatically.

A wide variety of image classification techniques are available but one of the

simplest is vector quantization (VQ) a form of classification by tabte tookup. A basic

vector quantizer consists of three components as illustated in Fig. 6.1. The codebook is

the most fundamental of these components and is simply a table of proto¿)pe vectors

statistically representative of those vectors found in the actual data to be classified. A

distortion measure such as the Euclidian metric is used to compare the relative enor

-66-

between an input vector x and the individual codebook prototy?es cp. The input vector is

classified by searching the codebook for the prototype vecror which it most closely

¡esembles according to the distortion measure. 'lhe mininuun error d.etector keeps rack of

the error associared with each codebook prororype and dere¡mines which is besr. This

'best' prototype is commonly refened to as the wiflner. The codebook index of rhe

winner, denoted p,,,¡n, is assigned to the input vector as its classification. Two o¡ more

input vectors which a¡e best represented by the same prototype vector are considered to be

of the same class.

Error

d2g,cr)

Pnin

Fig.6.1 The vector qøntization (VQ) classiircation scheme.

A reduced search fractal block coding algorithm employing vector quantization

would contain a codebook of c vectors representing the categories into which domain and

range blocks are to be classified. As indicated in Chapter 5, domain and range blocks a¡e

not compared directly. The fractal block Eansform has three basic components; spatial

contraction, isometric block transformation, and grey level scaling and translation. The

distortion between domain and range blocks is measu¡ed for optimally chosen isometries as

Optimal
Codebook Index

Codebook Index

-6'7 -

well as scaling and translation coefficienrs. During the crassification procedure, the varues

of these coefficients are not of inte¡est. Therefo¡e, vectors are classified indepenclent of
these coefficients and the codebook prototypes reflect this.

To classify an image brock independent of the eight isomenies, rve can simpry

compare the block against the codebook proroty?es in each of its eight possible isomerric

configurations and choose the prototype and isometry which result in the minimum

distortion. To classify a block independent of scaling or translation, any scaling or

hanslation components aJready present in the block must be removed. This is procedure is

refened to as orthonorma.lization. othonormalization is actually a two step procedure

consisting of orthogonalizatio n and normalization. orthogonalization removes any

component of the input vector x in the u di¡ection by letting

x,= x -(x,uÞ

where u is once again the translation vector

î= x'
llx'll

u¡j=l forall I Sí,7 lr (6.2)

This eliminates the effect of grey level Eanslation. Normalization eliminates the effect of

grey level scaling and is accomplished as follows

(6. 1)

(ó.3)

Normalization also leads to a computational simplif,rcation of the vector quantizer.

A known property of the Euclidian merric commonly used in signal processing [Fran69] is

that for the no¡malized input vector Î and the two codebook prototyp€ vectors co, and cn

d2(î,cr) < d2(î,co) <+ fi,co) > (î,co)

68

(6.4)

Therefore, rarher than calculating rhe Euclidean metric for each prororype i¡ the codebook,

the computationally simprer inner product may be used. of cou¡se since ùe ine4ualities of
Eq. 6.4 are reversed, the minimum error derector of Fig.6. l must be repraced by a

m¿tintu¡n corre laÍion detector.

A complete isometric configuration, scaling, and translation independent vector

quantizer is shown in Fig. 6.2. It is simila¡ ro rhe vector quantizer of Fig. 6.1 but with rhe

addition of the orthonormalization and isomeuic block transform stages as pre-processing.

Moreover, the maximum conelation detector which replaces the minimum error detector,

must locate the optimum isometry i-¡ in addition to the winning prototype p-;. This is

accomplished by conelating each orthonormalized input vector î against each codebook

prototype cp, in all eight of its isometric configurarions denoted î¡ and finding the

combination of p and i which maxi¡nizes þi,cp).

Input
Vectot

x
Optimal Codebook

and
Isometry lndeces

Pmin

Correlation

(x ¡,cp)

u
Basis

Vector

Fi$.6.2. A scaling, Fanslation, and isometric configuration independent vector quantizer

-69-

In the full search algorithm, it was necessary to consider all eight isometries to

locate the best isomenic block uansform between domain and range blocks. Similarty,

when classifying image blocks. it is necessary ro compare all eight orientations of rhe input

block against each prototype vecto¡ in the codebook. However, it has alreacly been

indicated that the eight isomeüies described in chapter 5 form a group. This implies thar

repeated appi.ication of any two isometries results in a thbd isomerry also i¡ the group ancl

that each isometry has an inverse. These two properties can be exploited to fu¡ther reduce

the sea¡ch time. Although it is necessary to locate the isomety which best maps each range

and domai¡ block into the codebook, the isometry which best maps the domain block i¡to a

particular range block of the same class can be calculated directly. Suppose that the

contracted domain block x is mapped into a codebook prototype co by an isometry 1.,

and that the range block y is mapped into the same codebook prororype by an isomery /r.

It follows that the function which best maps x into y is the combined isomeuy 1r.,, given

by

Ity=ltly'l'

6,2 Neural Network Codebook Design

(6.s)

. During the discussion of the vector quantizer, it was briefly stated that the Ve

codebook consists of a 'table of prototype vectors statistically representative of those

vectors found in the actual data to be classified'. Up to this point, nothing has been said

regarding how such a table is obtained. Two basic approaches exist for solving this

problem; they include clustering algorithms and neural network. In the past, clustering

algorithms such as the Linde-Buzo-Gray (LBC) [LiBC80] and k-means algorithms

IKaRo90] were used to design appropriate VQ codebooks, however, neu¡al networks have

-70-

recentiy emerged as the approach of choice.

Neural networks are an arternative paradigm for computing which possess the

ability to learn from experience. Neural networks, unlike traditional computers, are

inherently parallel consisting of two fundamentar components; neurons and weighted

connections. The neurons are the processing elements of the neu¡al network and üansform

the neuron inputs into a single ouçut via some simple (usually non-linear) nansfer

function. The weighted connections serve as both the data paths and memory of the neural

network. Each connection has associated with it a particular weight. Neuron activations

a¡e ta¡smiwed along these connections and a¡e modified as a function of the weight values.

The network learns by adapting these weights according ro a learning rule. A set of

Úaining patterns is presented to the network for which it leams the combination of weights

which best satisfy the consEaints of the learning rule. There are many forms of networks

but they are most commonly grouped into two categories: supervised (fraining) and

unsupertised (leaming). supervised network require that a target activation be associaæd

with each training pattern. The nerwork leams the appropriate mapping between each

training pattern and the associated target activations. The best examples of supervised

learning networks are rhose based on the bac k- propagatio n algottthm [McRugg].

unsupervised networks perform what is commonly refened to as regulatory discovery

[RuMc86]. This means rhat they attempt to discover statistical properties of the training

data irrespective of any target values. These types of networks are especially useful for

clustering or categorization applications.

One form of unsupervised leaming network which is particularly appropriate for the

implementation of vector quandzers is the competítíve learning network [HeKp9 I].

Freqrcncy sensítive competitive learning (FSCL) is an extension of this basic form,

-71

6,2.1 Competitive Learning

Figure 6.3 illustrates a simple competitive learning network. This nerwork consisrs

of two distinct layers of neurons: un inpu, layer and an output layer whose activations are

denoted an and o. respectively. The neurons in the oufput layer are fully connected to

each other by a maoix of inhibitory connections. The neurons in the input layer iue fully

connected to the ouçut layer by a matrix ofexcitory connections w. The array of excitory

connections w, joining the input layer to an individual output neuron p must be

normalized to ensu¡e that

(wrnf = t (6.6)

where N is the number of neurons in the input layer and woo denotes the connection from

the qth ¡nou, to the pth output neuon. This can be accomplished via the same procedure

used for normalizing image blocks by letting

wD
¿ llwrll (6.7)

Output
Layer

Excitory
Connections

Input
Layer

Fig. 6.3. A competitive leaming neu¡al network.

N

llwoll= !

A competitive leaming neurar netwo¡k is in fact equivalent to a vector qua¡dzer with

normalized input and prototype vectors. The input activations aq are the individual

elements of an image block x, the ouÞut neurons are the codebook indices p, and the

excitory weights w, connecting the input rayer to each output neu¡on are the codebook

prototypes cr. The only additional component required to implement the isomer¡ic

configuration, scaling, and translation independent vector quanrizer of Fig. 6.2 is rhe

isomeEic block transform,

The competitive learning network operates in one of two different modes;

classification or learning. In the classification mode, an input pattern is applied to the

input neurons. The activations of the input neurons are then propagated through the

excitory connections to the ouçut layer. Each input activation ao is multiplied by the

weighl woo of the connection through which it propagates. The net input ro to a neuron p

is the sum of these weighted activations or

N

ío=\ w*ar=(wp,a)
q=l

(6.8)

The output units are mutually exclusive and must compete for activation via the

inhibitory connections. The neu¡on with the maximum net input is always the winner of

this competition. The activation of a neuron p in the output layer is therefore given by

o^ =ll ir ¡p> iufor all u+p
' l0 otherwise

(6.e)

The inhibitory weights are fixed while the excitory weights are dynamic, The

network determines the set of excitory weights which best represent the statistical

properties of the input data according to the algorithm described in Fig. 6.4. During this

-'73 -

procedtrre, the network is said to be in leaming mode

STEP l: Initialize rhe connecdon weights to the mean of all of the vectors in
the training set plus some small random perturbation.

STEP 2: Present a randomly chosen vector from the training set to the
network.

STEP 3: Update the connections to the winning neuron in proportion to the
leaming rate.

STEP 4: Decrease the learning rate. Goto STEp 2.

Fig. 6.4. Competitive learning neural codebook design algoritirm.

In the learning mode, vectors are chosen at random from the training set and

presented to the network. The input activations a¡e propagated through the network and the

output activations are determined as before. The weights of the network are then updated

according to the following leaming rule

froo = won + A,wro (6.10)

where

Lwoo= r1or(ao -woo) (6. I 1)

and 4 is refened ro æ the leaming rate. The leaming rate is initially large (between 0.1 and

0.7) but decreases with time. Since the the weight chan1e Lwpq is proportional to the

output netllon activation and only one neuon is active at any given time, only the weights

-74

connecting the input layer to the winning neuron are updated. After updating, the weights

must be re-no¡ma[zed as per Eq. 6.7.

one fìnal note concerning implementation of the sca.ring, na¡slation, and orientahon

invariant vector quantizer of Fig. 6.2 is in order . while onhonormalizing the input blocks

will remove any effects caused by scaling or translation, block orientation must still be

accounted for. This is accomplished by presenting each input block to the netwo¡k in all

eight of is isometric configurations during both the classifrcation and learning modes. The

winning neu¡on and associated isomery are selected only after all eight sets of activarions

have been propagated though the network and evaluated. In the learning mode, the

winning neuron must be updated with the input vector in the best of these eight

configurations.

6,2,2 Frequency Sensitive Competitive Learning

one problem with the standa¡d competitive leaming algorithm is that some neu¡ons

may never win the competition. should this occu¡, the neuIons in question will never

come to represent any significant feanues within the image and for all intents and puposes

be wasted. To ensure that no single neu¡on is continuously left out of the competition,

Ahalt et al. have inEoduced a conscience mechanism which they call frequency sensitíve

competitive learning (FSCL) [AKCM9O]. The idea behind a conscience mechanism is

quite simple. Ii du¡ing learning, a neuron wins the competition too often it should begin

feeling 'guilty' and temporarily shut itself off to allow orher neu¡ons ro become acrive

[DeSi88]. In FSCL this is accomplished by dividing the net input ro each neuron by the

number of times$ that the neu¡on has won the competition. This results in the follorving

equation for net input:

-75 -

Actually, FSCL ensures that during leaming the weights associatecl with each neuron will

be updated an approximately equal number of trmes, This is a parncularly imponanr result

since equal prorotype utilization is an assumption which must be made when discussing the

overall performance of the reduced sea¡ch FBC encoding procedure in the next section.

6,3 Performance of the Reduced Search Coding procedure

From the complete description of the reduced sea¡ch FBC encoding procedure it is

now possible to calculate a time complexity for the reduced sea¡ch algorithm. consider an

nxn image with domain and range blocks of size dxd and ¡xr respectively, and a

codebook of size c (a competitive learning neural network wirh c output neurons). Each

domain and range block in the image must first be classified. This classification associates

a class and isometry with the vector in question. Then, all ofthe domairy'range block pairs

belonging to the same class are compared using a combined isometry calculated from the

individual isometries associated with each block. Assuming that the vectors in the input

data a¡e distributed equally amongst the c categories, the time complexiry of the reduced

search algorithm is

T" = B(n - afc +s(,!c (6. r3)

This includes the time required to classify all of the domain and range blocks and still

appears to be O(¿a¡. However, minimizing Eq. ó.13 with respecr ro c yields

N

i, = !2 *rún

t n(n-d \
c = ----¡- \

=
2'{T

^l
n, + rrþip

*tn-ô\,4
c

(6. l2)

ln
2\Z r

-'76 -

(6. r4)

Now substituting Eq. 6. l4 back into Eq. 6. r 3 resurts i¡ the new time complexity

T
^¡n = 4'{T(n - aPi +z,n\xf

which is o(¿3). To further illusrrate the effect which this technique has on search time,

we can divide Eq. 5. 15, the rime complexity for the full search algorithm, by Eq. 6. l5 ro

derive the following equation for the total compression time improvemenr

(ó. r s)

(6. l6)
- Z'{îtn - dPlL

-J- = t = '!1t-!r^in 2(n _ dp + (trf '- r

For 256x256 images with 8x8 range blocks this represents a speed improvement by a

factor of 45.

It must be pointed out that the reduction in compression time described by Eq. 6.16

is achieved at a certain expense since the exhaustive and reduced search coding procedures

are not strictly equivalent. The exhaustive search procedure compares every range block

against every domain block in each of its eight possible isometric configurations. The

exhaustive search procedure is, in this sense, optimal. In contrast, the reduced search

procedure places each range and domain block into one of c caregories. It is possible for a

particular range block and the best domain block, to be placed into diffe¡ent caregories.

This is illustrated two dimensionally in Fig. 6.5. The vecror quantizer divides the set of ali

domain and range blocks into c disjoint subsets. A range block y and a domain block x1

may be very similar but placed i¡to different categories ifthey lie on or near the borders of

these categories. When this happens, a sub-optimal domain block x2 wili be chosen from

the same category as the range block. Although this will result in some image degradarion,

the domain block chosen will usually be a very good match for the range block in question.

-77 -

In fact, coding resurts indicate that this degradation is genera[y nor detecnbre by the human

eye.

Fig. 6.5. Misclassification of similar vectors. The vector quantizer divides the set of all
possible domain and range blocks into disjoint subsets centered on the
prototypes c1 through c6. The range block y and the optimal domain block x1
are placed in the categories c4 and c5 respectively. The sub_optimal domain
block x2 will be chosen as the source for the range block y.

6.4 Summary

This chapter described a reduced sea¡ch FBC encoding procedure based on

domai¡y'range block classification using a frequency sensitive competitive learning neural

network which is equivalent to a vector quantizer. The network classifies image blocks

independent of scaling, translation, and isometric configuration. The basic encoding

procedure requires that every range and domain block in the image be classified by the

neu¡al network and then domain blocks are oniy considered as possible sou¡ces for a

particular range block if they a¡e of the same class.

The FSCL nerwork was chosen because it exhibits equal prototype urilization. This

imphes rhat the vectors in both the domain and range pools will be allocated approximately

equally amongst the c classes determined by the network. Equal prototype utiüzation is a

fundamental assumption made in determining the computational complexiry of the reducecl

search coding procedure. For an ¡xi¿ image with ¡xr range blocks this complexity is

minimized by emptoying a vector quanrize, *th i# +l protorypes or equivalently, a two

layer competitive learning neural network with the same number of ouçut neu¡ons. A

network of this size will reduce compression time by a factor of ,'[T f and reduces the

complexity of the encoding procedure from o(na) to o(¿3). In addition, the systematic

reduced search procedure discussed in this chapter does not preclude the use of heu¡istic

time saving techniques such as those described in chapter 5. For example, the reduced

sea¡ch FBC procedure could be combined with a smaller domain pool and extended grey

level sanslation functions proposed by oien et al.loil-Rg2l to fu¡ther reduce compression

time.

-79 -

CHAPTER VII

IuplnuB¡trATroN

Both the reduced and exhaustive sea¡ch fractal block coding procedures describecl

in chapters 5 and 6 were implemented in the context of the concatenatetl image

compression system illustrated in Fig.7.l. This system takes gray scale images and

compresses them using either the reduced or exhaustive search FBC encoding procedure.

The resulting fractal code is then further compressed using arithmetic ¿ntropy coding

resulting in an arithmetic code steam. This code stream, representing a doubly encoded

version of the original image, is then either stored or transmitted. The original image is

reconstructed by first decompressing the a¡ithmetic code stream and then applying the

iterative FBC reconstruction procedure to the resulting fractal code. Since the fractal block

code is encapsulated within the a¡ithmetic code stream, FBC is refened ro as the inner

code, while a¡ithmetic coding is called ¡he outer code.

Fig. 7. 1, A concatenated image compression syst€m based on f¡actal bloek eoding and

a¡ithmetic enropy coding.

-80-

In contrast to FBC, a¡ithmetic coding is a /oss/ess data compression technique.

This implies that, using a¡ithmetic coding, rhe FBC paramters can be compressed and rhen

reconstructed exactly. Therefore, the addition of an arithmetic encoder and decoder to the

basic FBC teehnique will improve ihe ove¡alr compression ratio but wirhout incoducing

any further distortion into the reconsÍucted image. This improvement, rvhile modesr, is

still significant and adds relatively linle overhead ro the enti¡e coding procedure.

This chapter describes the implementation of the concatenated FBC/arithmetic image

compression system. The FBC and arithmetic coding subsystems are discussed

independently. A description of the FBC encoding algorithms is provided followed by a

derivation of the compression ratios resulting from FBC in the absence of entropy coding.

Entropy coding is then introduced along with the generalized arithmetic encoding and

decoding procedures. The chapter concludes with a brief description of the complete

FB c/arithmetic software implementation. The c language source code for this

implementation is supplied in Appendix D.

7, 1 FBC Implementation

The reduced search FBC portions of the concatenated coding system can be further

divided in to the fou¡ macro-functions Learn codebook, classify range image,

fracCal code image, and decode frac!.aI image illusEated in Fig. 7,2.

These functions a¡e initiated in the proper sequence from the function main.

The Iearn codebook function generates an appropriate set of Ve protorypes

from a training image using the FSCL learning rule described in section ó.2. Training

blocks a¡e selected at random from the domain pool ofa raining image and propagated

- 8l

Learn
Codebook

Classify
Range
Imag e

Fra c t a.L
C ode

Image
Frac F- a.l

fmåge

Fíg.7.2. Functions required for the implementation of reduced sea¡ch FBC encoding and
decoding.

through the network. These blocks are orthonormalized and then compared against every

prototype in the network in a single isometric configuration before considering the

remaining configurations. This improves the overall efficiency of the funcrion since the

naining block is transfo¡med eight times throughout the enti¡e classification procedure,

rather than eight times per codebook prototype. After the best prototype and isomeu:y have

been established the nerwork weights are updated using the FSCL learning rule (Eqs. 6.13

and 6. l4). The nerwork is rained on a total number of training blocks equal to 500 times

the size of the codebook [McAR9O] . The learning rate 4 decreases linearly over time

from values of 0.2 to 0.01 so that general features are established during the early stages of

leaming while fine tuning is accomplished later on.

Training vectors were selected exclusively from the domain pool for two reasons.

Firstly, the domain pool is much larger than the range pool. To ensure optimal time

performance, it is therefore more important that the domain blocks, rather than the range

blocks, are equally distributed amongst the codebook prototypes. secondly, if the uaining

- 82-

set contains both range and domain blocks then the network might rocate cenain features

which are present only in the range poor or the domain pool, not in both. unde¡ these

ci¡cumstances, the network could assign range brocks to a particuLar category for which no

clomain blocks had been allocated. [t would not be possible to properry represent these

range blocks since the encocler would be unable to locate suitable domain blocks as

so urces.

The ciassify range ímage function uses the codebook generated by the

learn codebook function to classify the individual range blocks in the image. Each

range block is presented to the FSCL network which identifies the appropriate class and

corresponding isometry using the vQ procedure described in sections 6. I and 6,2. These

classifications a¡e ret¿ined for comparison against domain blocks in the fracEar code

image function.

The f ract.aJ- code image function produces the FBC description of the

source image using the reduced sea¡ch encoding procedure described in section ó.1. In

this function, an individual domain block is extracted from the domain pool and classified

by the neural network. This domain block is then considered as a source for all range

blocks assigned to the same class by

(l) determining the appropriate isomeÇ as per Eq. 6.4,
(2) calculating the optimal scaling an translation components (Eqs.5,4 and 5.5),
(3) calculating the Euclidian distance berween the range block and the appropriately

transformed domain block.

If the distance between the domain block and a particular range block is less than the

distance between that range block and any domain block considered thus far, then the

domain block and associated üansfo¡mation p¿uameters are assigned to that range block as

-83-

its fractal representation. This procedure is then repeated for the remaining domain blocks

in the domain pool.

The cìecode fractar imáge function generates an approimate recons*uction

of the original image from the fractal cocìe using the ite¡ative reconst¡uction proceclure

desc¡ibed i¡ Section 5.3. The function begins with an entrely black image (all pixel values

set to zero) and, using the fractal code, Íansforms this image into a second image, This

image is similarly fansformed and the process is repeated for seven to ni¡e more iterations.

The number of iterations has been selected based on results obtained experimentally

Uacq92l.

structure charts describing the complete reduced search FBC procedure are

supplied in Appendix c along with technical descriptions ofeach function, The exhaustive

search procedure is simply a subset of the reduced search procedu¡e which does not include

the Learn codebook or classify range image functions. As a result, the

exhaustive search ÊracLal code j.mage function compares every block in the domain

pool directly against every range block in the image. The decode fracEal image

function remains the same for both the reduced and exhaustive search procedures.

7.2 Calculation of Compression Ratios for FBC

Section 5.2 described the fractal block code as conøining

(1) a pointer to the best domain block,
(2) a poinær to the best isometric transform,
(3) an optimal scaling coefficient, and

(4) an optimaì ranslation coefficient

84-

for each range block in the image. The number of bits åa required to represent each range

block is given by rhe sum of the number of bits required to represent each parameter in rhe

individual fracral block fansform or

bn=bo+b¡+b¡+by (7.t)

For an ¡¿xr¿ image encoded with dxd domain blocks the number of bits b¿ required to

address a unique domain block in the domain pool is given by

bp =l2tos2Ø-d)l (7.2)

The eight isometries were distinguish e.d by b ¡ = 3 bits per range block while the scaling

and translation coefficients were represented with áa = 11 and år = 9 bits, respectively.

This was sufficient for representing fixed point scaling values between r4.0 and integer

translation values between 1255.

The compression ratio achieved by the FBC encoder can be calculated based on the

number of bits required to represent each range block in both its original and coded and

forms. Using rxr range blocks, this ratio is given by

r2h "comqresston rafio = i; (7.3)

where bp is the number of bits per pixel (bpp) in the original image. For a 256x256 eight

bpp image encoded using 8x8 and l6xl6 range and domain blocks respectively, bn=39,

This results in a compression ratio of 13. I : l.

The compression ratio can be selected by choosing appropriately sized range blocks

or by reducing the number of unique blocks in the domain pool thus decreasing áp,

-85-

Alternatively, the number of bits å, and å¡ used to represent the scaling and rranslation

coefficients can be reduced. The values b,q = l l and á¡ = 9 represent the numbe¡ of birs

required to express these paramters exactly. Both the scaling and translation coefficienrs

can be quanrized inro a number oi distinct values represented wirh tewer bits. This

quântization may be linear or more preferably non-linear but in either case rvill inr¡ocluce

some distortion into the reconstructed imase.

The compression ratios given by Eq. 7.3 represent the amount of compression

achieved strictly by the FBC encoder. The overall compression rario will increase by

between 5Vo and 20Vo when arithmetic ennopy coding is added to the system.

7.3 Arithmetic Entropy Coding

Following the FBC encoding procedure, the resulting fractal code may still cont¿in

some statistical redundancy within its parameters. This redundancy can be removed and

the fractal code fu¡ther compressed wing statistical coding techniques [Kinsgl]. These

techniques attempt to generate a minimal entropy rcpresentation of a sou¡ce file based on

the relative probability with which each symbol in that file is likely to occur. [n this

respect, aríthmetíc coding is generally considered to be superior to all other statistical

techniques including Shannon-Fano and, Huffman coding [Huff52]. In addition,

arithmetic coding possess certain fractal cha¡acteristics making it a particularly appropriate

addirion to any fractal based coding scheme.

EnEopy is a thermodynamic principle which can be applied to a data source as a

measure rts inþrmation content [Shan49]. The enfopy of a randomly generated data

stream coniaining multipie incidents of M unique symbols is given by

-86-

M

H=-I piIos2{pi) (7.1)

rvhe¡e each pr is the probability ofoccurrence for the irh unique symbol. Furthermore. ir

is impossible to precisely represent this data sfeam in fewer average bits per symbol rhan

the value indicated by its enfopy.

lt is the objective of lossless data compression techniques, including entropy based

or s¡atistical coding to develop a code which represents some source message in a mi¡imal

number of bits by approaching, as closely as possible, rhe enrropy bound of Eq. 7.4. This

can be accomplished by developing a statistical model of the data to be coded and then

representing each symbol in this data with a number of bits inversely proportional to its

probability of occunence. The optimal number of bits per symbol, Ài, follows directly

from the entropy meastlre of Eq.7 .4.

l¡ = losz (01
)

= -.r, to' I (7,5)

In this way, symbols in the sou¡ce data occurring more frequently are represented by fewer

bits than those which æe statistically less common.

1,3.1 Arithmetic Encoding Procedure

An arithmetic code consist of a fixed point value representing an interval between

0.0 and 1.0. This interval is indicative of, and unique ro, the parricular message being

coded. Figure 7.4 shows an example of the arithmetic encoding procedure for the word

¿¿f followed by an End of File (EOF) cha¡acrer. The encoder begins with rhe open

interval [0.0,1.0) and subdivides it into M subintervals, where M is the number of unique

-87.

symbols in the source stream. Each subintervar represents a unique source symbol, and the

size of the interval is proportional ro rhat symbol's probability of occunence. p¡. For a

given source symbol, the encoder locates the conesponding subinrewal, and then clivicies

this interval into subintervals whose rarios are the same as the original cumulative

probabilities. The encoder finds the appropnare subinterval for each successive symbol.

As this subinterval is located withi¡ rhe previous interval, it represents not only the present

but also the past symbols. This process continues recursively until the enti¡e source sÍeam

has been encoded, at which time the encoder transmits the final interval.

Transmitted
IIìterval

Fig.7.3. A¡ithmetic encoder. Example encoding of the symbol steam "e.a.t.EoF"
IwiNC87] [Kins9 I].

The a¡ithmetic encoding procedure bea¡s some resemblance to the MRCA since, at

each iteration, the enti¡e structüe is divided up into M self-simila¡ components. Since each

subdivision of the original interval [0.0, L0) is construeted out of M reduced copies of

itself, a¡ithmetic coding appears to be fractal in narure IKinsgl]. Although this is a very

::æ-ï [

;#\;;#l

-88

recent observarion, the basic principle of arithmeric coding was fi¡st associated with the

Hau sdorff-Besicovitch or fractal dimension in an obscure paper on information theory

published i¡ 1961[Bill6l]. unforrunately, si¡ce rhe term f¡actal did noteven eústpríorto

197ó. it rvas impossible to make any connection between a¡ithmetic coding and fractals ar

the time.

7,3,2 Arithmetic Decoding Procedure

The a¡ithmetic decoder recovers the source symbols from the received interval using

a procedure similar to that of the encoder, as shown in Fig. 1.4. Like the encoder, the

decoder begins with the open interval [0,0,1.0) subdivided inro the same M subintervals.

The decoder locates the subinterval in which the received intervaì resides, yielding the fust

symbol in the stream. This subinterval is further divided in the same manner to recover

subsequent symbols, The procedwe terminates when the cu¡rent and received intervals are

equivalent. At this point the entire source stream has been decoded.

Received

Interval

0.6664
0.664

Fig.7 .4, A¡ithmetic decode¡. Example decoding of the interval [0.664, 0.6664) into the
data stream "e.a.t.EoF" fwiNCSTl IKins9 1].

0.64

-89-

A complete description of practical algorithms for a¡ithmetic encoding and decoding

is described in [waFK93]. The implementation of arithmetic coding used in this rhesis is

based upon rhat description.

7.3 Software Organization

The complete concatenated FBC/arithmetic compression system was implemented

in the c programming language because c is versat e, efficient, and popular amongst

softwa¡e developers. unfortunately, modern softwa¡e engineering techniques such as

information hiding lPf1e87l a¡e ofren mo¡e difficulr ro enacr in c than in other languages.

c does not enforce 'safe' programming practices and therefore places the onus of software

reliabiiìty entirely on the progammer. For this reason, it is exnemely important to follow a

systematic design philosophy when developing C applications.

The FBC and a¡ithmetic coding procedures outlined in Sections 7.1 and 7.3 were

implemented using a modular design approach [vela91] based on conshucts available in

the programming language ADA. This approach requires that an application be divided i¡to

a number of smaller carefully organized modules. A single module only contains functions

which operate on the same daÞ sructu¡es or perform logicaily related tasks. Each module

is further divided into two segmenrs refened to as interfacing and implementation. The

interfacing segment is always contained within a C header (.h) file and includes only the

declarations of public functions and data sFuctures required for inter-module

communication. The implementation segment contains the executable code for these public

functions as well as any prívate data structures, functions, and variables. The

implementation segment always takes the form of a C source (.c) file. A module which

90-

requires the services of a second module must simply include that modules header file in

its own implementation segment.

The softwa¡e developed for the FBC/arithmetic compression system consists of rhe

seven modules shown in Fig. 7.6. These modules are ananged hierarchically rvith

suborclinate modules appearing beneath thei¡ calling modules, All modules access rhe

moclule coNSTANTS which contains global system constants and data structu¡es. The

module ¡tetN contains only one function which initiates other portions of the FBC coding

procedure and provides a simple user interface to display coding status. The FRACTALS

module implements all of the functions associated with the FBC encoding and decoding

algorithms as well as utility functions to display the resulting fractal codes. The module

FScL contains all of the executable code associated with the frequency sensitive

competitive learning neu¡al network. These include functions to initialize the network,

learn an appropriate ser of image prototypes, and classify image blocks. All of the image

block rransformations are performed by functions located within the TRÀNS FoRMs

module. These include the spatial reduction, range block isometries, grey level scaling and

nanslation, as well as orthonormalization functions. Implementations of both the a¡ithmetic

encoding and decoding procedures a¡e i¡cluded within the module ¡RlrFÐ,fETrc. Finally,

the module Io contains executable code for dynamically allocating memory for complex

data structu¡es such as images and the connection weight matrix of the neural network.

Disk I/O routines for saving and retrieving the data contained within these stuctures are

also provided.

C language listings for all seven modules, representing the entire reduced search

FBC/a¡ithmetic compression system, ¿ue provided in Appendix D. These lisrings consist

of2200 [nes of C source code which was compiled into a 45 Kbyte executable program on

9l

FF,ÀCTALS

Fig'7.6. The reduced search FBC program module hierarchy. All modules ¡eference the
module Conscants.

a SUN SPARCSution 2 using the cc UNIX compiler with the -O optimization seuing.

The FBC image compression experiments described in the next chapter were all conducted

using this program.

7.4 Summary

This chapter described the software implementation of a concatenated image

compression system with FBC as the inner code followed by arithmetic entropy coding as

the outer code. This concatenated scheme will, in general, produce higher compression

ratios than either FBC or arithmetic coding alone. since arithmetic coding is a lossless

-92 -

comp¡ession scheme, the f¡actal code can be compressed and then reconsh:ucted from the

arithmetic code without further effecting image quarity. In addition ro improving

compression rados, arithmetic coding possesses certain fracul characteristics and rherefore

seems panicularly appropnate as an addition to any fractal compression scheme.

The softwa¡e was designed using a modular approach and impremented in c under

uNlX on the SUN sPARCStation 2 platform. Modularity assisted in sofrware resring ând

facilitated incremental development. The system was implemented on the sPARC 2

because of that workstations high performance (28 MIps) and the 'barrier-free'

environment provided by UNIX. [n contrast, the software could be ported to standa¡d

MS-Dos platforms but that operating systems l6 bit framework would limit images to less

than 64 Kbytes (256x256 pixels). The softwa¡e was successfully po¡ted ro an extended

Dos envi¡onment using the freewa¡e c/c++ compiler gcc and Dos extender goJ2

[Delo92]. With the DOS extender, the softwa¡e was executable only on IBM 3g6 and 4g6

type computers running Dos 4.0 or higher, however, image dimensions were limited only

by the size of the computers internal memory. on Dos machines one MEG of internal

RAM a¡d a floaring point processor are highly recommended. Although the experiments in

the following chapter were all conducted on the SPARC 2, the extended DOS

implementation was tested on a 33-MHz 486 DX under Dos 6.0. with this configuration,

compression times were approximately 1.5 times that of the SPARCSution suggesting thar

compression time might acrually be improved on a 50-MHz 486 DX or 66-MHz486DX2.

-93

CHAPTER VIII

ExpsRrN{nNTAL RBsulrs

subjective and objective evaluation of the reduced sea¡ch fractar brock r,ocling

(FBC) procedure was performed using the software implementation outlined in chapter 7.

Experiments were conducted to

(I) deærmi¡e the reconstrucrion quality of FBC encoded images using both
objective and subjective means,

(2) demonsrate the ability of the FSCL neu¡al network to generalize,

(3) invesrigate FBC's ability to reconsrrucr images at larger than their
encoded size without exhibiting edge degradation by the ,stai¡case'

effect, and

(4) compare FBC against two popular image compression techniques
based on nansform coding and vector quantization.

All experiments were performed on rhe same SUN SpARCStation 2 plaform.

The majority of the encoding experiments were conducted with the 256x256 eight

bits per pixel (bpp) test image Lena shown in Fig. 8. 1 (although originally named Lenna

sjööblom with two ¿s [swed72], the incorrect spelling has become as common in image

processing literatu¡e as the pictue itself¡. This image was selected as a suitable test image

for th¡ee reasons. Firstly, Lena can not be compressed appreciably using traditional

lossless compression schemes. For example, rhe LZW algorithm [DuKigl] is capable of

compressing this image by only I.58Vo or 1.02:1. Secondiy, the image is composed of a

-94

diverse collection of visually significant features, portions of the background are very

smooth and contain a¡eas in which intensity changes slowly and uniformly. In conûasr,

the feathers in Lena's hat represent an area of very high complexiry. Subtle teKru¡es occur

in the ¡ibbon sunounding this hat while sharp edges are well represented by the bo¡der of

L¿n¿'s shoulder and throughout the background. The final motivarion tbr selecting lela
as a test image is based simply on its popularity. Lena occurs throughout image

processing literature more than any other photograph and the¡efo¡e makes possible direct

comparison be¡ween the current implementation a¡d the work of others.

Fig. 8. l. The original 256x256 eight bpp image Lena.

-95

8, t FBC Image Compression Experiments

Both the exhaustive and ¡educed search coding procedures were used to code the

original Lena image. Borh implemenrations used gxg range and l6x l6 domain blocks.

For 256x256 images, the enti¡e set of overlapping domain blocks comprised the clomain

pool. For each range block, a total of l6 bits were required to reference the appropúate

domain block from the domain pool. The eight isometries were coded with three bits per

range block. The scaling and translation coefficients ¿ and f were represented with l1 and

9 bits respectively. Before entropy coding, this produced a compression ration of 13. I : I

or 0.6i bpp. For the reduced search procedure, a codebook containing l1 prototypes was

used.

Compression time for the full search procedure was over 13 hours on a SUN

sPARCst¿tion 2. on the same workstation, the reduced search algorithm required

approximately 18 minutes. The result of compression by the reduced search procedure

after eight iterations of the reconstruction procedue is shown in Fig. 8.2. The first six

iterations of this same procedure a¡e shown in Fig. 8.3.

8.1.1 Objective Analysis

Quantitatively, the quality of the decompressed images a¡e measu¡ed according to

the peak signal-to-noise rano (PSNR). For the original image X and its reconsrruction

X' this is given by

-96-

R-educed Search F¡acøl Block Coding

Fig.8.2. Fractal reconstruction of Lena compressed by 14.3:l at 0.56 bpp and 29.09 dB
using reduced search fractal block coding (FBC).

PSNR = 1oro916 {+#l
1É É t,- ";F \=roroslol*iF-l (8.1)

For the 256x256 version of l¿n¿ the exhaustive sea¡ch and reduced search procedures

resulted in reconstructed images with PSNRs of 29.38 dB and 29.22 dB, respectively.

After enEopy coding, the compression ratio achieved for both these procedures was 14.3: I

or 0.56 bpp - an improvemen¡ of 97o. The 0.16 dB loss in quality resulting from the

reduced sea¡ch procedure can be attributed to block misclassification. Range blocks which

23.4'7 dB

Fig. 8.3. The fi¡st six iterations of the fractal image reconstruction procedure. lmages are

displayed at 60Va of thei.r acn¡al size.

.98-

lie on or near the border of a caregory may be placed in an inappropriate category by rhe

vector quantizer. If this is the case, the domain block chosen to rep¡esent the range block

will be from a suboptimal subset of the domain pool. Despite rhis, for the images coded.

the 0. l6 dB loss Ln quality was not derectable by the human eye.

Besides block misclassification, one of the primary concerns with the ¡educed

search FBC encoder is gene ralizatiott. The codebook protorypes used ro code rh,e Lenu

image in the above examples were lea¡ned using the FSCL neural netwo¡k. The image

vectors used to train rhis network were derived from the original Lena image. The

resulting I I codebook prorotypes are shown in Fig. g.4. Because these protot,?es were

derived from Lena, the question arises as to how applicable they are to other images.

Fortunately, due to the smali size of the codebook the neu¡al network was forced to learn

very general features. Specifically, the network identified gradients, simple edges, and

double edges or stripes, as important features in the image. The network was then trained

on a second image airplane shown in Fig. 8.5. The codebook derived form this image

was used in the reduced search FBC procedure to compress Lena, rcsulring in a psNR of

29'19 dB' A reduction in PSNR of this magnitude (0.03 dB) is insignificant in image

processing applications.

8.1.2 Subjective Analysis

subjectively while some blocking anifacts were visible, areas of relatively uniform

intensity and sharp edges were well preserved by FBC. Blocking was most visible in a¡eas

of high complexiry such as the feathers in Lena's hat. one bothersome anomaly was

FBC's apparent inability to code Lena's eyes adequately. This shorrcoming reoccurred on

a number of test images and resulted from a lack of adequate sou¡ce features at larger

scales,

-99-

(2)

#
(6)

Cbþ

'

slwre
(3)

ru
(e) (10) (11)

Fig. 8,4. The 1l prototypes in the scaling, translation, and isometric configuration
independent VQ codebook as learned by the frequency sensitive competitive
leaming (FSCL) neu¡al network from the image Le na.

Fig.8.5. The raining image cirplane used to develop the VQ codebook for the reduced
sea¡ch FBC encoding procedure.

-r00-

To rllust¡ate fractal coding's abiJity to interpolate along edges without exhibiting rhe

'stai¡case effect', Fig. 8.6 shows Lena's shoulcler enlarged by a factor of four in both

dimensions. Figure 8.6a shows an enlargement of the shourder taken directly from ¡he

original Lena image. Figure 8.6b shows rhe fractar coded image reconsfucted at four

times its original size using the iterative reconsnucdon procedure.

Fig. 8.6. A ponion ofLena's shoulder enlarged to fou¡ times its original size. (a) Taken
from the original 256x256 eight bpp image. (b) Fracral ¡econstuction of
Lena's shoulder at four times its encoded size.

The reduced search procedure was also appLied to a 512x512 version of the same

image but this time with 8x8 range and 24x24 d,omun blocks. Domain blocks were chosen

from a reduced domain pool of 24x24 non-overlapping range blocks, Only l0 bits were

(b)(a)

101

required to addÌess a single range brock in this poor resurting in a compression ratio of

15 5:1 o¡ 0.52 bpp before entropy coding. with entropy coding, compression inc¡eased

by l9vc to 18.5:l or 0.43 bpp. The combined reduction in domain poor size and brock

classification scheme reduced compression time to a manageable 7g seconds. This is

comparable to compression times for straight vector quantization techniques. Despite the

reduced domain pool, the PSNR for the reconstructed 5l2x5l2 image (Fig. g.7) rvas

31.00 dB. The improvement in reconstruction quality can be atÍibured to rhree factors.

Fi¡st, the 5l2x5l2 image had larger areas of uniformity and therefore lower ac energy per

unit area making it easier to code. Second, more self-similarity existed between the 24x24

domain and 8x8 range blocks than berween l6x16 domain and gxg range blocks. Thi¡d,

for 24x24 domain blocks and 8x8 range blocks, the ratio $ ir gr.uær than for l6xl6
domain blocks. This tends to improve the overall conEaction factor of the fractal code

[oilRg1]' The reduced search procedure was repeared with 24x24 overlapping domain

blocks on 256x256 images but the net result was a 0,1 dB reduction in image fidelity from

earüer experiments.

8.2 FBC Versus Transform Coding and Vector euantization

As a means of benchmarking FBC, two other commonly employed image

compression schemes were used to compress the Lena image. Figures 8.8 and 8.9 show

Lenø compressed with the proposed JPEG (Joint photographic Experts Group) standa¡d

twallgll and sraight uecto r quantization (VQ) [TrMe90], respectively.

The proposed JPEG standard outlines a number of requirements for the

compression of continuous tone still images. The method which seerns to best satisfy these

requirements, in terms of subjective image quality, is a form of adaptive tansform cod.ing

-r02-

Reduced Search Fractal Block Codi

18.5:l (0.43 bpp) PSNR: 31.00 dB

Fig.8.7. Fractal reconsrruction of the 5l2x5l2 version of Lena compressed by l g.5:l at
0.43 bpp and 31.00 dB using reduced sea¡ch FBC with a reduced domain pool,
lmage is cropped to 420x512 for display purposes.

-103-

Fig. 8.8. Lenacompressedby 14.4:l at 0.56 bpp and 30.07 dB using JpEG.

based on the discrete cosine transþrm (DCT). The implementation of JpEG included

within the freeware image processing package xv ÍB¡t.d9ll was used to perform the

JPEG coding experiments. At compression rados comparable to those used in the FBC test

the DCT based JPEG compression technique performed very well. euantitatively, DCT-

JPEG resulted in the highest PSNR (30.07 dB) of the three rechniques resred.

Subjectively, a certain 'blotchiness' was observed in a¡eas of slowly changing contrast

such as the shadows on Lena' s shoulder and cheek, or the image background. In addition

areas of high contast, such as the border of Lena's shoulder, or the top of her hat were

reconstructed less accurately than with FBC. In panicular, a 'ringing' effect was visible

along sharp edges. This ringing manifested itself in rerms of a faint duplicarion of the

edge adjacent proper edges. Despite this, JPEG was superior to FBC when it came

104 -

Fig. 8.9. Lena compressed by 14.2:l at 0.56 bpp and 29.39 dB using vecror
quantization (VQ) based onfrequency sensitive competitive learning (FSCL).

to representing a¡eas of fine detail like the feathers in Lena' s hat, the bridge of her nose,

and her eyes.

Although superior to FBC in terms of PSNR (29.39 dB), subjectively, straight

vector quantization was the worst of the three schemes tested. The implementation used,

was based on the simple vector quantizer illustrated in Fig. 6. l. In this scheme, images

were divided into 4x4 vectors and presented to the vector quantizer. The codebook was

learned using the FSCL neu¡al network algorithm described in Section 6.2. The resulting

image displayed the same 'blotchiness' present in the JPEG image and edges were very

jagged and fuzzy. VQ reproduced complex areas such as the feathers betier than FBC but

105 -

the overall effect was less pleasing.

8.3 Summary

The experimentar results presented in this chapter have demonsrrated thar the

reduced search fractal brock coding procedure employing frequency sensitive learning

¡esults in a considerable time saving over the conesponding exhaustive search procedure,

Fu¡thermore, this saving is achieved without significantly effecting reconstrucdon qualiry.

The effectiveness of concatenated compression schemes was also established by iJlustrating

an improvement of compression ratios by lp to 20Vo.

Although objectively, FBC performed poorer than both of the orher techniques

tested (FBC: 29.22 dB, VQ: 29.39 dB, and JpEG: 30.70 dB), in subjective rests the

reconsEucted image was of higher quality than images resulting from straight vector

quantization. This is consistent with the observations of other researchers [oilRgl] and

stems from FBC's ability to preserve sharp edges. visually, edges are extremely

significant features [scha89] which simple vector quantizers are poor at preserving

[RaGe86]. The discrepancy between objective and subjective assessments of image quaLity

for FBC and vQ also illustrates that PSNR is not an absolute meastue of image quality and

thereby establishes the validiry of subjective observadons.

In some respects, notably the reconstruction of sharp edges, FBC also

ouperformed the DCT based JPEG implementation. Nevertheless, based on an overall

subjective evaluation, DCT-JPEG must be considered superior to the current FBC

implementation. However, it should be pointed out that DCT-JpEG has resuited from the

combined efforts of many resea¡chers over an extended period of time. The limited number

-106-

of researchers curently involved in fractal coding believe that, with comparable efforr.

FBC will achieve reconstruction quality equivalent or even superior to DCT-JpEG

lBeau9 I l.

Even if FBC can only be elevated to the point at which coding qualiry is comparable

to DCT-JPEG, images compressed using DCT coding can not be reconsÍucred ar larger

than their encoded sizes without introducing very visible blocking a¡tifacts and

'straircasing', For applications such as digital television and remote sensing,

reconstruction at higher than coded resolutions may be a very attractive feature. Much to

the chagrin of those owning large and expensive television sets, it has often been observed

that televisions with smaller pictures rub€s (14"-20") yield betær picture quality rhan larger

models (34" and above). This is due in part to the facr rhat the NTSC broadcast sønda¡d is

fixed at 525 scanlines which can become quite noticeable when observed on large picture

tubes. Using fractal encoding schemes, NTSC images could be compressed, transmitted,

and then reconstructed at 1050 scanlines on larger televisions. In applications such as

remote sensing, FBC's ability to interpolate along sharp edges makes it a natu¡al form of

image enhancement. An image or portion thereof could be fractally encoded and then

reconstructed at a larger size, allowing small dehiìs to be examined more closely. For such

applications, the focus of the coding procedure would shift from efficient towards more

accurate representation of the source image.

Before concluding this chapter it should be pointed out that both FBC and reduced

sea¡ch FBC do have certain fundamentål limitations. The success of FBC techniques in

general depends on the encoders ability to locate seif-affinity at different scales in an image

while generating an eventually contractive function. For non-trivial images, Iike the

photograph of Lena, the encoder is able to adequately satisfy these requi¡ements (although

r07

for some features, rike the eyes or feathers in Lena's hat, only marginaly suff¡cient source

features could be rocated). However, the technique may fail completery for trivial images

such as simple compurer generated graphics. These images often conrain objects like

cucles which do not possess self-affinity and are better represented using naditional

Euclidian geomefy. For these images, it may be impossible to either locate adequate

sou¡ce featu¡es or maintain contractivity. of cou¡se, FBC is a compression scheme

intended for digital photographs, not computer graphics for which very compacr

representation schemes already exist.

The reduced sea¡ch FBC algorithm has additional ramifications which may lead to

the failu¡e of the FBC encoding procedure. Although steps were taken to prevent range

block from being assigned to a category for which no domain blocks have been allocated,

there is no guarantee that this will not in fact occu¡. However, this situation was never

encountered for any of the test photogaphs and, once again, it is unlikely to occu¡ for non-

rivial images.

Despite these limitations, applications in digital television, remore sensing, and

other areas, combined with the reduced search FBC coding results presented in this

chapter, wanant the continued investigation of FBC and similar collage coding techniques,

r08 -

CHAPTER,IX

CouclusroNS AND RBco¡vlvrnNDATIoNS

The work desc¡ibed in this thesis was motivated by the need for new and betrer

image compression techniques. signal compression usingfractals represenrs an emerging

area of /ossy data compression methods which have been applied successfully to digital

images. A study of fracrals, rhe collage theorem, andfractal block coding (FBC) has ted

to an implementation of a concatenated rmage compression scheme using FBC, arithmeric

coding, and neural networks.

since the enormous storage and Eansmission requirements of digital images can not

be substantially reduced using traditional /oss/ess data compression methods, /ossy

approaches are used. For still images these may result in compression ratios as high as

30:l but will intoduce some distortion into the reconstructed image. It is the objective of

lossy compression schemes to maximize compression ratios while minimizing this

distortion.

Fractals have been proposed as the basis for good lossy compression techniques.

Fractals appear to be well suited to image compression because many objects in natue

exhibit fractal geometry and fractals often posses self-similarity or self-ffinity at differenr

scales. This similarity is redundancy and can the¡efore be removed resulting in data

compression,

109 -

Existing fractar compression techniques a¡e based on a corolary or controcti,e

transþrmation theory caIIed the collage theorent. The collage rheo¡em implies that if an

image can be described approximately 6y a contractive functíott of itself, then it can be

reconstructed approximately from thar description using an iterative procedure. coding

techniques based on conr¡active Eansfo¡mation theory and the collage theorem are called

collage coding techniques. A collage encoding algorithm attempts ro represent a source

image as a function of itself. This function must be a contraction, produce an adequate and

compact representation of the original image, and have an associated systematic encoding

procedure,

The fundamental difficulty associared with collage coding techniques is the

computationai complexity of the encoding procedures. Iterated function systezs (IFSs),

the first proposed collage coding technique provides very compact representations of

complex self-affine images. unfortunately, locating the approp¡iate IFS coefficients for a

particul image is an NP complete problem. A less compact compression technique

known f¡actal block coding, operares in known polynomial time by employing a divide-

and-conquzr compression stategy. Using this strat€gy, both the the source image and the

fractal t¡ansformation are segmented into more manageable components for which the

appropriaæ fractal parameters can be located systematically. Unfortunately, using even this

systematic approach the generalized form of the FBC encoding procedure is stitl O(na). A

number of heu¡istic approaches have been descúbed for reducing FBC encoding time but

none of these have dealt specifically with the O(na) computational complexity of the

encoding procedure,

A reduced search coding procedure based on subimage classification using neural

networks provides an altemative to heu¡istic time-saving approaches, and reduces the

110 -

computatlonar complexity of the encoding procedufe to o(¿3). In this scheme, domain

ând range blocks are pre-classified independent of scaling, Íanslation, or isometric

configuration using a frequency sensitive competitive learning (FSCL) neural network.

During the encoding procedure, a domain btock is only considered as a possible source for

a range block if they are both of the same type. FSCL was selected as an appropriate

neural network because it ¡esults in equal prototype utilizarion which is critical in rhe

derivation of compression times for rhe reduced search algorithm. For 256x256 images,

encoding time was reduced by a factor of 45 with further image degradation of less than

0.2 dB.

Reduced search FBC was implemented as the inner code of a concatenated

FBC/arithmetic image compression scheme. FBC can compress images by up to 16:l bur

some statistical redundancy may remain in the fract¿l code. Lossless arithmetic enropy

coding can remove this redundancy and thereby fu¡ther increase compression ratios by up

to 20?o. T\e concatenated compression scheme was capable of compressing grey scale

images at ratios in excess of 18:1 with a PSNR of 31.00 dB. The ability of the iterative

reconsruction procedure to interpolate along sharp edges in these images also suggesrs that

FBC may have applications in image enhancement.

This thesis has contribuæd to general and technicai krowledge through

(I) study and underst¿nding of collage coding techniques,

(2) the implementation of exhaustive sea¡ch FBC encoding and decoding
algorithms which can serve as both str¡ting points and benchmarks for
futu¡e FBC developments,

(3) the development and implementation of a reduced search FBC encoding
procedure using neural networks to improve on the computational
complexity of the exhaustive search encoding procedure, and

- 111-

(t)

(2)

(3)

(4) a¡ implementation of FBC within a concatenated FBC/a¡ithmeric image
compression system, rhereby establishing experimentally the
effectiveness of concatenated coding.

Recommendations for funue work ¡elated to this thesis include:

The current implementarion relies heavily on floating point calculations.
These could be replaced by fixed point calculations using inregers to
improve performance on computers without floating point processors
(eg., 386, 486 SX).

The iterative decoding procedure could be replaced by a random
decoding procedure simila¡ to the RIA for IFSs. This procedu¡e would
select fractal block uansforms at random from the fractal code and
apply them one at a time to portions of the same image. This would
decrease the memory requirements of the implementation by almost
507o.

The possibility of combining other time, qualiry, and compression ratio
improving techniques with the systematic reduced sea¡ch procedure
with neu¡al networks should be investigated. Specifically,

the improved Íanslation functions of Oien ¿¡. a/ [OiLR91]
conld be incorporaæd,

distortion measures based on the Hadamard transform could
be implemented to improve the subjective quality of the
reconstructed images IBeaug I], and

the scaling and translation paramters could be quantized to
further improve compression ratios using a non-linear scalar
or vector quantization scheme. The appropriate quantizarion
step sizes would be derived from extensive objective and

subjective expedmentation.

A complete investigation into FBC as an image enhancement technique
should be performed.

Mon¡o and Dudbridge [MoDu92] have recently proposed thei¡ own

(4)

(5)

tt2 -

collage coding procedure for grey scale images which does nor possess
the sea¡ch associated with Jacquin's technique. The autho¡s claim that
their technique is less computationally intensive rhan even rhe /c.r,
discrete cosine tansform [ChSF77] although it does result in images
of lowe¡ quality. Nevertheless they are also optimistic rhat rhis new
fractal technique may achieve performance levels equal to JPEG. It
remains to be seen whether or not this new technique also retains the
advantageous properties associated with FBC such as superior edge
reconstruction.

-113-

RBpBRsNcns

[AKCM9O] S.C. Ahalt, A.K. fuishnamurthy, p.Chen, and D.E. Melton, .'Competitive

learning algorithms for'vector quantization," Neurar N¿rworks, vol. 3. N'.
3, pp.277-290, 1990.

[Bam88] M.F. Barnsley, Fractals Everywhere. New york, Ny: Academic press,

1988, 396 pp.

[Bam90] M.F. Barnsley, "Data compression using the fractal transform,', lmrzge
Processíng 90 - The Key Issues. Conference proceedings, Vol. Ml, pp. l_
10, 1990.

[BaSl88] M.F. Barnsley and A.D. Sloan, "A better way to compress images," gyre,

Vol. 13, pp.2l5-223, January 1988.

[BiX61] P. Billingsley, "On the coding theorem for the noiseless channel," A¿¿.
Math. Starist., Yol.32, No. 2, pp. 594-601, May 1961.

[Beau91] J.M. Beaumont, "Image dau compression using fractal techniques," gririså
TelecomTech. Journal, Vol. 9, No. 4, pp 93-109, 1991.

[Brad92] Jr Bradley, XV version 2.21 . lJniversity of Pennsylvania: pA, 1992.

tChSFTTl W,H. Chen, C.H. Smith, and S.C. Fralick, "A fast compurarional algorithm
for the discrete cosine üansform," IEEE Trans. Commun., Vol. 25, No. 9,
pp. 1004-1009, September 1977.

[Davi91] L. Davis, Handbook of Genetic Algorithms. New York, NY: Von Nost¡and
Rienhold, 1991, 385 pp.

[Delo92] D.G. Delone, jdgpp, Rochester , NH: barnacle.erc.cla¡kson.edu, 1992

[DuKi91] D. Dueck and W. Kinsner, "Experimental srudy of Shannon-Fano, Huffman,
Lempe-Ziv-Welch and other lossless algorithms," Proc. I}th Computer
Networking Conf., (San Jose, CA; Sept.29-30, 1991), pp.23-31, 1991.

[DeSi88] D. DeSieno, "Adding a conscience to competitive learning,,, proc. IEEE
Intern, Conf. Neural Networks, Vol. l, pp. I l7_124, l9gg.

IFran69] L.E. Franks, signal rheory. Englewood cliffs, NJ: p¡entice-Hall, 1969.
,j l6 pp.

[FrDu9O] G.C. Freeland and r.S. Dunani, "lFS fractals and the waveler rransform."
Proc. IEEE Intern. Conf. Acoustics, Speech & Sign. processirtg; ICASSpgT
(Albuquerque, NMI Apr. 3-6, t990), IEEE Cat. No. 90CH2847_2, Vot. 4,
pp.2345-2348, 1990.

[HeKPgll J. Hertz, A. Krogh, and R. Palmer, Introduction to the Theory of Neurat
Compuring. Redwood City, CA: Addison-Wesley , 1991,327 pp.

[Huff52] D.A. Huffman, "A method for consrructing minimum-redundancy codes,"
Proc. IRE, Vol. 40, pp. 1098-l101, September 1952.

[HutcSl] J. Hutchinson, "Fracta.ls and self-similarity" , I ndiana Universiry Journ. of
M at h., Y ol. 30, pp. 7 l3-7 47, I981r

[Jacq89] A.E. Jacquin, "A fractal theory of iterared Markov operators with applications
to digital image coding," P hD . Dissertation, Georgia Tech., 1989.

[Jacq90a] A.E. Jacquin, "A novel fractal block coding technique for digital images,"
Proc. IEEE Intern. Conf. Acoustics, Speech & Sign. processing; ICASSpg7
(Albuquerque, NM; Apr. 3-6, 1990), IEEE Cat. No. 90CH2847-2, yot. 4,
pp.2225-2228, 1990.

Uacq90bl A.E. Jacquin, "Fractal image coding based on a theory of iterated contractive
image Íansformations," 5P1E Vol, 1360 Visual Communications and Image
Processing '90,pp,227- 239, 1990.

llacq92l A.E. Jacquin, "Image coding based on a fractal theory of iterated contracive
image transforma¡ons," IEEE Trans. Image Processing, Vot. l, No. l, pp.

i8-30, January 1992.

t15-

[Jean90] J.S.N. Jean, "A new distance measure for binary images," proc. IEEE
Intern. Cottf . Acoustics, Speech & Sign. processing; lCASSpg0
(Albuquerque, NM; Apr. 3-6, 1990), IEEE Cat. No. 90CH2847_2, Vol. 4.
pp.206t-2064, t990.

IKaRo90] L. Kaufman and P.J. Rousse eu', Finding Groups irt D(lta; An I¡ttroducrion
to Cluster Analysis. New Yo¡k, Ny: John Wiley & Sons, 1990, 342 pp.

IKíns72] W. Kinsner, "Peano, Sierpinski, and Hilbert space-filling cur!,es..'
Unpublished (graphics); Hamilron, ON: Departmenr of Elecrrical
Engineering, McMaster University 1972.

IKins9l] W. Kinsner, "Review of data compression methods, including Shannon-
Fano, Huffman, arithmetic, Storer, Lempel-Ziv-Welch, fractal, neural
network, and wavelet algorithms," Technical Report, DELSI- l, Winnipeg,
MB: Dept. of Electrical and Computer Engineering, University of Manitoba,
January 1991, 157 pp.

[LaAa87] P,J.M. van Laa¡hoven and E.H.L. Autq Simulated Annealing; Theory and
Applicarions. Dord¡echt, Holland: D. Reidel Publishing, 1987, 186 pp.

[LiCB8O] Y. Linde, A. Buzo, and R.M. Gray, "An algorithm for vector quanrizer
design," IEEE Trans. Commun, Vol. 28, pp,84-95, November I980.

tMail8gl S.G. Mallat, "A theory of multiresolutional signal decomposition: The
wavelet represenøtion," I EEE Trans. Pattern Analysis Machine I ntelligence,
Vol. 11, pp.764-693, July 1989.

[Mand67] B.B. Mandeibrot, "How long is the coast of Britain? Sratistical self-similarity
and f¡actional dimension," Science, Vol. 156, pp. 636-638, 5 May 1967,

[Mand83] B.B. Mandelbrot, The Fracta! Geometry of Nature. New York, NY: W.H.
Freeman and Co., 1983,468 pp,

[McAR9O] J.D. McAuliffe, L.E. Atlas, and C. Rivera, "A comparison of the LBG
alogrithm and Kohonen neural network paridigm for image vector
quantization," Proc, IEEE Intern. Conf. Acoustics, Speech & Sign.
processing; ICASS?90 (Albuquerque, NM; Apr. 3-6, 1990); IEEE cat. No.
90CH2847-2, Vol.4, pp. 2293-2296, 1990.

uó-

[McRu88] J.L. Mcclelrand and D.E. Rumerha¡t, Exprorations in paraLrer Distrihut¿d
Processittg A Handbook oJ Modets, programs, and Exercises. cambrid-ee.
MA: MIT press, 1988, 344 pp.

[MoDu92] D M. Munro and F. Dudbridge, "Fractar block coding of images,"
Electronics Leuers,VoL 28, No. I l, pp. 1053_1055 ,21 May 1992.

[MoHS90] B Moghaddam, K.J. Hintz, and c.v. Stewa¡t, "Fractar image compression
and rexture anarysis," sprE vol. !406 Image IJnderstanding in the '90s;
Building Systems that l ork, pp 42-57, 1990.

[NaSe82] A.w. Naylor and G.R. SeII, Linear operator Theory in Engineering ancl
Science. New York, NY: Springer-V erlag, 1992, 624 pp.

[OiLR9l] G.E. Oien, S. Lepsoy, and T.A. Ramstaad, ,,An inner product space
approach to image coding by contractive Eansformations ," proc. IEEE
Intern. Conf. Acoustics, Speech & Sign. processing; ICASSpgI (Toronto,
Ont., May l4-17, l99l), Vol. 4, pp, 2'7'73-2j'76, 1991.

[PeJS92] H. Peitgen, H. Jurgens, and D. Saupe, Fractals for the Classroom. yoI. l,
New York, NY: Springer-Verlag, 1992,450 pp.

[Scha89] R.J. Schalkoff, Digitat Image processing and Computer Vision; An
Introduction to Theory and Implementatlons. New york, Ny: John Wiley &
Sons, 1989, 489 pp.

[Shan49] C.E. Shannon, The Mathematical Theory of Communicatio¿, Urbana, ill:
University of Illinois Press, 1949, I l7 pp.

[shon89] R. shonkwiller, "An image atgorithm for computing Hausdorff distance
efficiently and in linea¡ time," Inþ. proc. Lett., Vol. 30, pp. g7-g9, 19g9.

lSwedT2l "Swedish Accent," Playboy, Vol. 19, No. ll, pp. 134-141, November
1972.

[RaGe86] R. Ramamu¡thi and A.Cersho, "Classified vector quantizarion of images,"
IEEETrans. Commun., Vol.34, pp. I105-1115, November 1986.

III -

[RuMc86] D.E. Rumelha¡t and J.L, Mcclelland, paraüet Distributed processirtg r;
Fot¿ndations. Cambridge, MA: MIT press, 19g6, 547 pp.

[Vela91] S.A. Velastin, .,An approach ro modular programming in C,., Thirtt
International Conf. on SoJ-rware Engineering for Reat Time S¡.stents
(Cirencester, UK; Sept. t6_18, t99l), pp.227_232, t99t.

[waFK93l L. watl, K. Ferens, and w. Kinsner, "Real-time dynamic arithmetic cocring
for low bit rate channels," to appear inwestern canada ConJ'. computers,
Power, and Communication Systems, WESCANEX,gJ (Saskatoon, SK;
May 17-18, 1993).

[Wall9l] C.K. Wallace, "The JPEC Still Image Compression Stand,ard," Comm.
ACM,YoL 34, N0.4, pp.30-44, Aprit 1991.

fWelc84l T.A, Welch, "A technique for high-performance data compression," /EEE
Computer, Vol. 17, pp. 8-19, June 1984.

fWiNCSTl LH. Wiuen, R.M. Neal, J.G. Cleary, ..Arithmetic Coding for Data
Compression," Comm. ACM, Vol, 30, No. 6, pp. 520-540, June 19g7.

l18-

APPENDIX A

C Lnxcuacp Llsrnvc pon IFS Syrurupsrs Soprwnns

- I t9 -

/'==========

Program: Random tterartion (RlA) and tufuttiple Recuction Copy (MRCA)
Algor¡thms for tFS Synthesis.

Programmer: Larry M. Wall
Department of Electrical and Computer Engineering
University of lr.4anitoba
Winnipeg, Canada
larwall@ee.umanitoba.ca

Version: 1 . 1

Last Update; 01 I 1 2192

LIBRARIES:

#include <stdio.h>
#include <stdlib.h>
#include <values.h>
#include <malh.h>
#include <time.h>

t.-.--
C,OltlSTAIfl-S: . I
#define IMG_SZ 256 /' size of fractal image in pixels . I
#define IMG_SCL 1 .0 /- scaling factor of fractal image . I
#define IFS_SZ 6 l' number of data fields in each IFS record , I
#def ine NM_SZ 2 0 /. max¡mum f ilename s¡ze ' I

ildefine SUCCESS 1

#define FAILURE 0

t'---.
FUtllcTl0t'Js:

unsigned char'img_alloc0;
int img_save0;
int if s_load0;

vo¡d if s_alloc0;
void ifs_f reefl;
void calcjrob0;

- 1.20 -

void ¡mg_box0;
void img_10;
vo id img_neg0;
vo id img_f lp0;

void ¡fs_RlA0;
void ifs_¡vlRCA0;

double collagefl;

void ¡mg_box0;
vo¡d img_10;
void img_neg0;
void img_f lp0;
void print_code0;

/----------

GLOBALDEC|ARATIONS: 't
typedef struct {

int t;
f loat 'tmil FS_SZl,

'p;
) ¡fs;

/.==========

MAIN PROGRAM: . t

main0
{

int t;
time_t lt;
struct lm

'slarted,
'finished;

unsigned char'img_1,
.img_2;

if s ifs_1 ;

char choice;

char lFSFileINM_SZ],
lmgFile[NM_SZ];

t2t -

pr¡ntf("\nEnter IFS Filename:,');
scanf("%s,', lFSFile);
puts("Loading tFS Code.,,);
if s_load(tFSFite, &jfs_1);
lmg_1 = img_ailoc0;

printf("\nIr] Random tteration Algorithm\n',);
printf("Im] [/uttipte Redudion Copy Atgorithm\n,,);
printf("\n Se lect Funclion: ");
scanf ("\n%c", &choice);
switch(ch oice)
(

uatùË t.
if s_R tA(img_1 , ¡fs_1) ;

break;
case'm':

ifs_MRCA(img_1 , ifs_1);
break;

default:
exit0;

)

pr¡ntf("\nEnter Destination Filename:,,);
scant("%s", f mgFile);
img_box(img_1);
img_neg(img_1);
img-z = img_alloc0;
img_f lp(img_1 , ¡mg_2);
img_save(lmgFile, img_2);
free(img_1);
f ree(img_2);
ifs_f ree(&ifs_1);

)

/'==========

:Dynamically allocate memory for image array . I

unsigned char'img_alloc0
{

¡nt x;

unsigned char 'ptr;

_ 1)) _

ptr = (unsigned char -) calloc(tMG_SZ.lMG_SZ, sizeof(unsigned char))if (lptr)

{

puts("N4emory Allocation Error." ¡;
exit(0);

i

for(x=0; x< lf¡lG_SZ-ltr/G_SZ; x++)
ptf[x] = 0;

feturn ptf;

: Load IFS code . I

int ifs_load(f¡lename, code)
char f ilenameINM_SZ];
ifs .code;

(

i n t slalus,
reco rd,

field,
data;
FILE 'ln File;
f loat 'p t r;

InFile = lopen(f ilename, "rt");
if (lnFile != NULL)

{

status = fscanÍ(lnFile, "%d\n", &(code->l));
if ((status == 1) &A (code->l != 0))
{

stalus = 0;
ifs_alloc(code);
puts("Allocated");

for (record=o; record<code->l; record++)

{

for (field=0; field<lFS_SZ; field++)
if (Ifeof(lnFìle))

{
status += fscanf(lnFile, "%d", &data);
code->tm [f ie ld][reco rd] = (float) data i

100;
I

fscanf(lnFile, "\n");

-123-

)
jf (status != (code->t - IFS_SZ))

{

pu ts (" F ile Format Error.,');
code->l = 0i

puts("Loaded.");
calc_prob(code);
puts("calculated.");

puts("File Format Ef for.");
code->l = 0;

)

fclose(lnFile);

puìs("File Not Found.");
code->l = 0;

)

return code->l;

)

t'--.-
:Dynamically allocate memory for IFS code , I

void ifs_alloc(code)
ifs 'code;
{

int t;

for(t=0; t<lFS_SZ; t++)
code->tmltl = (f loat ') cailoc(code->t, sizeof (f toat));

code->p = (float -) calloc(code.>1, s¡zeof(float));

)

t.----
: Free memory dynamically allocated for IFS code . I

)
e lse

{

)

)
else

{

)

else
(

void ifs_f ree(code)
ifs -code;

i

int t;

for(t=0; t<lFS_SZ; t++)
free(code->rmlrl);

free(code->p);

)

t'----
:Calculate Probabilites for tFS Code . I
void calc_.]orob(code)
ifs 'code;
(

¡nt t;.
f loal arca,

total;

total = 0.0;

for (t=0; t<code->l; t++)
{

area = fabs((code->rm[0][r] - code->tm[g][t]) - (code->rmt1l[t] .
code->tm[2][r]));

if (area < 0.01)
area = 0.01 ;

total += areai
code->p[t] = total;

)

for (t=0; t<code->l; t++)
code->p[t] /= total;

)

t'----
: Random lteration Algorithm (RlA) for Generating Fractal lmages f rom lFb Code ' /

-125-

void ifs_RlA(image, code)
u nsig ned char image[fvtG_SZ][ilt/c_SZ];
¡fs code;

{

int im g_x,
im g_y ,

t;
unsigned long int it r;
f loat rnd nm,

X,

v,
n ew_x,
new_y,
x_sc | ,

y_scl;

lnt n u m_¡tr;

printf("\nEnter Number of llerations: ,,);
scanf('%6d", &num_itr);

x_scl = y_scl = |MG_SCL;
for (img_x=o; img_xclMG-SZ; img_x++)

for (img-y=O; img3<lMG_SZ; img_y++)
imageIimg_x][im9J] = 0;

x = y = 0.0;
for (itr=0; itr<num_itr; itr++)
{

rnd_nm = (float) random0 / MAXLONG;
t=0;
while (rnd_nm > cods.pltl)

t++;
rìêw-X = code.tm[0]ftl 'x

IMG-SZ;
new-Y = code.tm[2]ltl 'x

IMG_SZ;

+ code.rm[1][r] .

+ code.rm [3][t] '
y + code.tm[4][t]

y + code.tm[5][t]

X = neW_X;

Y = newJ;
if (irr>10)
(

img_x = x + 0.5/' IMG_SZ' |MG_SCL'/;
img3 = y + 0.5/. |MG_SZ . tMG SCL'/;
if ((img_x>0) && (img_x<tMG_SZ) && (img_y>O) &&

(ims_y<lMG_SZ))
im ag e[img_y][im9_x] = 255;

)

)

-126-

l

: tulultipl,e Reduction copy Algorithm (RlA) for Generating Fractal lmages from IFScoé .t

void ifs_MRCA(image, code)
u nsig n ed char imageI lr4G_SZIIlMc_SZ];jfs code;

{

unsigned char -¡mg_temp;

int num_itr,
count;

printf("\nEnler Number of lterations: ,');
scanf ("%6d", &num_itr);

img_temp = img_atloc0;
img_box(image);
for(count=0; count<(num_¡tr/2); count++)
(

collage(image, img_temp, code);
collage(img_temp, image, code);

)

f ree(img_temp);

)

t'--..
: Create collage image from IFS code

double collage(s_image, c_¡mage, code)
unsigned char s_image[lMG_SZIIlMG_SZ] ;

unsigned char c_imagellMG_SZIilMG_SZI;
ifs code;
(

int t,
im g_x,
img-y,
co l_x,
col_y;

-127-

double error;

error = 0.0;

for (col_x=O; col_x<ll\/G_Sz; col_x++)
for (cot_y=0; col_y<tltilG_SZ; cot_y++)

c_im ag elcol_y]lco l_x] = 0;

for (t=0; t<code.l; t++)
for (img_x=0; img_xctMG-SZ; img_x++)

for (img-y=o; img-y<lMG-SZ; img-y++)

if (s_im ag eIimg_y][img_x] l= 0)

{

col_x = code.tm[0][t] . img_x + code.tm[1][t] .

img_y + code.rm[4][t]'lMG_SZ;
col_y = code.rm[2][t] . img_x + code.tm{31[t] .

img_y + code.rmISjlt]'t¡vlc_SZ;
if ((col_x>=0) && (cot_x<tMG_SZ) &&

(col_y>=0) && (co l_y< llvlc_SZ))

{

¡f (c_imagelcol_yl[cot_x] == 0)
c_imagelcot_yl Icot_x]

s_imagelimg_yllimg_xl ;

else
êrror += OVRLAP:

error += ((lMG_SZ'lMG_SZ)>>Z);
)

return er[or;

)

/'----

l
else

: Save f ractal image to disk

inl img_save(filename, image)
char f¡len am€[N M_SZI;
unsigned char imageilMG_SZIllMG_SZI ;

{

int status;
FILE -OutFile;

OutFile = fopen(f¡lename,"*b");
if (OutFile l= NULL)
{

-r28-

¡f (fwrite(¡mage, sizeof(unsigned char), t¡,4G_SZ. tMG_SZ, OutFile))
status = SUCCESS;

e lse

{

puts("File wfite Error.',);
slatus = FAILURE;

)

fclos e(OutFile);

puts('cannot cfeate File.'):
Stalus = FAILURE;

)

felurn stalus;

)

/'========== ______________, I

void pr¡nt_code(code)
ifs code;

{

int c;

for (c=0; cccode.l; c++)
printf("%f %l ô/ot o/"Í yof Vot o/"^n", code.tm[0][c], code.tm[1][c],

code.tm[2][c], code.rm[3][c], code.tm[4][c], code.tm[5][c], code.p[c]);

printf("\n");
)

t'----

: Generate a box as the starting image for the MRCA. ' I

void img_box(image)
unsigned char imagellMG_SZIflMG_SZl;
{

int x,
v;

for(x=0; xclMG_SZ; x++)

{

imageIx][0] = 2ss;

)

e lse

{

-t29-

image[0][x] = 255;
image[x]ilñ/G_SZ.1] = 259
imageltvlG_Sz.1 j[x] = 25s;

]

t'..-.
: Place an L ¡n the top left corner of the ¡mage for diplaying se¡f.affine portions, . /

void img_L(image)
u nsig ned char image!MG_SZIItMG_SZ];
{

¡nt x,
Yi

for(x=0; x<(ltulG_sZ'o.1); x++)

{

image[(int)(lMG_Sz.0.95)-x]t(jnr)(tMc_SZ.o.os)l = 2ss;
image[(int)(lMG_SZ'0.s5)l[(int)(tMG_Sz.0.0s)+x] = 25s;

)

)

/'----

: Flip the image about the hor¡zontal axis.

void img_flp(s_jmage, c_image)
unsigned char s_image[lMG_SZ][lMG_SZ];
unsigned char c_¡magellMG_SZIltMG_SZI;
{

int x,
v;

for(x=g; xclMG_SZ; x++)
for(y=9; y<lMG_SZ; y++)

c-image[x][y] = s-imageflÀ/G-sz-1-xlIy];
I

t'.---
: Produce the negative of an image.

void img_neg(¡mage)
unsigned char ¡magellMG_SZIItMG_SZI;
{

-130-

¡nt x,
yl

for(x=0; xclMG_SZ; x++)

for(Y=g; Y<lMG-SZ; Y++)

if(imase[x][y] == 0)
image[x][y] = 25s;

e lse
image{xl[y] = 0;

)

t'==========

-131 -

APPENDIX B

DnRBvnrroN oF Opttnrll, ScauNc axn TnnNsLATroN
CoppprcmNrs pon FBC

Equations 5.4 and 5.5 for the optimal FBC scaling and translarion coefficients

result from the formal definitions of norms and inner products, and thei¡ relationship ro

metrics.

Vector Spaces

similar to metrics, norms and inner products a¡e defined in terms normed vector

and inner product spaces. while a metric space was defined as a simple set and a

corresponding metric, normed vector and inner product spaces are formed from yeclor

spaces. A vector space consists of a nonempty set 7 and two special operators. These

operators, called vector addition and, scaler multiplication, a¡e denoted v + w and ¿y

respectively. vector addition and scala¡ muitiplication must be defined in such a way as to

satisfy the following axioms:

t32 -

(Al) If u and v a¡e in tz, rhen u + v is in /.
(A2) u +v = v +u forall u and v in /,
(43) u +(v + w) =(u + v)+w forall u, v, and w in !¡.
(41) The¡e exists a unique element 0 in t/ such that v + 0 = v.
f A5) For each eletnent v in / there exists an element -v such rhat r. + -v = 0.
(S I) If v is in V, then av is in /. for all ¡eal ¿.

(S2) a(v + w)=av + aw fo¡ all v and w in V.andrea|a.
(S3) (a+ b)v =av + bv forall v in V,andrealaandb.
(S4) a(bv) = (ab)v for all v in tz, and real ¿ and å.
(S5) lv = v for all v in iz.

Norms and Inner Products

A norm is a real valued function ll.ll defi¡ed on a vector space 7 which satisfies the

following axioms:

(N1) llvll) 0 for all v in 7.
(N2) ll v + w ll < llvll + llwll for all v and win /.
(N3) llavll = lal llvll for all v in /, a¡d real ø.
(N4) llvll = 0 if and oniy if v = 0.

A normed linear space is simply a vector space lz upon which a norm ll.ll is defined and is

denoted (lz,ll.ll). Associated with any normed vector space is a conesponding meÍic

given by

d(v,w)=ll v-wll (B.l)

Similarly, an inner product space is defined to be a vector space V together with an

inner product defined on V. The inner product" denoted(v,w), is areal valued function of

two vectors v and w which satisfies the following axioms:

- 133-

(Pl) (u + v, w) = (u.w)+ (v,w)for all u, v and w in V.
(P2) (av,w) = (v,w)for all v and w in 7.
(P3) (v,w) = þJ for all v and w in /.
(P4) (v,v) >0forv*0.

once again, of particular interest is the fact that an inner product generates a norm

Specificaliy

lrvll= frÐ (8.2)

It follows from Eq. B.2 that if an inner product generates a norm then an inne¡

product space must also be a normed vector space. Likewise, Eq. B.l intimates that a

normed vector space must also be a metric space. It is important to realize however that the

converse of either of these st¿tements is not necessari-ly Fue. There exist many examples of

metrics which hau" no associated norms as well as norms for which there are no

conesponding inner products.

calculation of optimal Grey Level scaling and rranslation coefficients

During the FBC encoding procedure we a¡e interested in locating the scaling and

translation coefficients ø and t respectively, which minimize the Euclidian distance

between the contracted domain block x and the range block y given by d2@x+^r,y).

Using Eq. B.l and 8.2 in conjun*ion with the axioms Nl through N4 and pl through p4,

d2 can be rewritten as

d2(a x+t u,y) = tlytt2 + a2tlxtt2+ t2tlull2-2(a(x,y) + rþ,u) - ø(x,u)) (8.3)

This equation can be minimized by taking partial derivatives with respect to ¿ and ¡ which

yields the system of two linear equations

t34 -

àJz
= zolxl2 - 2(x,y) + 2r (x,u) = o

ancl

Y=r,tlutl2-2(y,u) + zzl(x,u)=O (8.5)
dt

Equations 8.4 and 8.5 can be rew¡itten in terms of rhe following system of linear

equations

I rrxrr, (x,u)l¡o
l=1.g,v)]

l(x,u) ttutt2lt;l=L(r';ij (8'6)

Solving this system of equations yields

I a 1 -f rrxrrz (*'u)f'
I (*,v)l

L t) l(x,u) ltu¡21 L{r,u)J

= r I ttutt' {*'u) ll(*,Y)l-
il,,ilrililP{x,uP L {*,u) ¡¡-¡¡, jlrr'iÍJ (B 7)

from which Eqs. 5.4 and 5.5 follow directly

- llull{x,y)-(x.uþ,g)
A= -----------)--- J------)--:----

llull2llxll2 - (x,uf

and

. _ llxll2(y.u) - (x,y[x,u)
llull2ttxll2 -(x,uP

(B.+)

(8.8)

(8.9)

The same resurrs can be derived using the projection theorem INaSeg2] which

would lead directly to Eq. 8.6. However this would requre the int¡ocluction of an number

of additional topics in merric topology such as orthonotmaL and spannin.q sets.

APPENDIX C

SrRucruRn CuaRrs nrun FuNcuoNAL DsscRlpttoru
op FB C lrvrpr,sN4rNTATroN

C.l Data Structures

Image (img) - A two climensional anay of pixels which represents an image. Images to
be coded as well as decoded images are stored in data struchlres of this type.

vector (blk) - This data strucrure describes a range block. It has th¡ee basic fields
pixels, norm, and projection. Pixels is a two dimensional anay which contains
the actual picture elements of the range block. Norm contains the no¡m of the
range block and projection is the projection of the block along the u axis or (,u).

Codebook (cbk) - A codebook is a table of vectors which represent the prototypes of
the VQ codebook.

classes (ndx) - This data st¡uctu¡e contains the classes and isometries associated with
each range block in the range image. The structure has fou¡ fields, c/ass,
isometry, norm, and a projectíon. The cl¿ss is the index to the Ve prototype
which most closely resembles the range vector. The isometry field represents that
isometry which best maps the range vector into the prototype class. The norm and.

projection are as described for the vector data structu¡e. These are calculated and

saved to reduce computation in during fractal coding of the image where they would
otherwise have to be recalculated repeatedly.

Fractal Code (fcd) - This sFucrure contains the fractal code for an image. It contains
five fields which represent the parameters of the fractal block transform for each

range block in the image. The fust two fields ue the x pointer and y pointer to the
sou¡ce domain block . The remaining fields a¡e the isometry, scale, and tanslate
parameters of the fractal transform.

t37 -

C.2 Structure Charts and Functional Description

^ fr¡ctll ùoJe

^ue" {

n:iv/t '*'' t/ I codetnok
tanee vecto¡ \-
,,ò."oi", \\\,ho"or "od"

Fig. C.1. Structu¡e chaf for reduced search FBC employing FSCL.

Initialize Codebook.
Module: FSCL.

Alias: cbk_ini c.

Inputs: raining image (type image),
codebook (type codebook).

Outpus: initialized codebook.

Description: This module initi¡lizes the prototype vectors in the Ve codebook based on the

raining image. Each prototype is inirialized ro the mean of all of the possible
vectors in the uaining image plus some small random penurbation.

t¡¡ee \ \: \o rmase\
;i;1*"1",x{:'ï'"i*

Learn Codebook.
Module: FSCL.

Alias: cbk_learn

Inputs: rraining image (rype image)
randomly initialized codebook (rype codebook)

Ourputs: updated codebook.

Descnption: This function generates a codebook which is statisrically represenhrive of rhe
vectors in the training image using the frequency sensitive competitive
learning algorithm. A structure of this function and its subordi¡ates is shown
ir Fig C.2. Each of the resulting codebook vectors is orthogonal to rhe vecror
u and normalized. Each rraining vector is presented to the network in each of
its eight possible isometric configurations and the best prototype as well as

configuration is chosen. The best prototype and configuration are then used
to update the codebook as per the FSCL learning rule.

Search Codebook (Learning)
Module: FScL.
Alias: cbk_search_1 earn.

Inputs: image vector (type vector),
codebook (type codebook),
frequency.

Ouputs: winner,

isometry.

Description: This function searches the codebook for the best prototype for the image
vector based on the leaming phase of the FSCL algorithm. The image vector
to be classified must be compa¡ed against every prototype in each of its eight
possible isomeric configurations. Since the FSCL learning algorirhm
attempts to ensure that each prototype is chosen an equal number of times, a

table of frequencies is maintained for each codebook prototype. The
frequency table records the number of times rhat each prototype has been

chosen as the winner. This value is divided by the correlation measu¡e for
each prototype and the winner is chosen according to this weighted value.
The index of the winning protot)?e as well as the best isometry are retumed,

139

_ wrnnet
\

^ rsome¡ry
\

lmage vectotJ
Y-./

rmâre I ^ tm¡se veütol
rmaee I'ó
'rectot I /

q
codebook {

l,- codebool

fr.qu"n"yl

ulage vectot p
I

a
I i.omeo'y

codebook verLoþ
J conel"tio.

' y'
^ur","",,

Fig.C,Z. The Lea¡n Codebook function and its subordinates

Update Codebook.
(Physicaily contained within Leårn Codebook)

lnputs: winner,
isometry,

image vector (type vector),
codebook (type vector),
frequency.

Outputs: updated codebook,

updated frequency table.

Description: This function updates the components of the winning prototype in the
codebook according to the FSCL learning ¡ule. The training vector and

r40 -

isometry,are passed to the function. The training vecror is then transformed
by applying the appropriate isomery to it and the winning prototype in rhe

codebook is then updated using this t¡anstbrmed vecror.

Classify Range Image,
Module: FSCL

Alias: ndx_img.

Inputs: image to be coded (type image)
codebook (type codebook)

Outputs: range vector classes and isometries (type classes)

Description: This function divides the image to be coded into range vectors. Each of these

vectors is then presented to the vector quantizer and then classified. The class

and optimal isometry are then recorded and retumed. A structu¡e chart of this
function is illustrared in Fig. C.3

^
lmage veclor'\\

image eecþ, .¡
rma8e ó
vector I

\ codebook
\\

isometry -

isornetryy' \ lmâge vectol

ia^n"
""",o,

/' F t''
I

conelatioÞ t codebook vecto¡

Fig. C.3. The Classify Range Image function and its subordinates.

t4l

Search Codebook (Classify)
Module: FScL.

Alias; cbk_search_range,
cbk_search_domain .

I-nputs: image vector (type vector),
codebook (rype codebook),

Outputs: winner,

isometry.

Description: This function classifies an image vector according tho the best matching
prototype in the codebook. Because the codebook has been appropriately
learned a frequency count is not used here. The function retums the an index
to the best prototype indicating the image vector class and the isometry which
best maps the image vector into that prototype.

Calculate Correlation
Module: FSCl,.

Alias: calc_corr.

Inputs: image vector (type vector),
codebook vector (type vector).

Outpus: conelation.

Description: This function receives an image vector and a codebook vector and calculates
the inner product or correlation between them.

-r42-

Fractal Code Image.
Module: FF.AcrÀL.

Alias: f cC_:ng.

Inputs: image to be coded (type image),
codebook(type codebook),
range vector classes and isomefies (type classes).

Ourputs: complete fractal code for the image (rype fractal code).

Descriprion: This function generates the fractal code for a source image. It requires an

image, a codebook, and the range classes and isometries for the image to be

coded. A structure of the Fractal Code Image function and its
subordinates are illusEated in Fig. C.4. The function extracrs and reduces
each domain block in the image. This reduced domain block is then
orthonormalized and classified using the vector quantizer and its class as well
as b€st isomeu-y a¡e determi¡ed. The reduced domain block is then compared
against all of the range blocks in the image which a¡e of the same class. This
is done by calculating the isometry which best maps the domain block i¡to the

range block, calculating the optimal scaling and Eanslation coefficients, and

then determining the enor. If for a particular range block the error is less than

that associated with any other domain bock, then the scaling, translation and

isometry parameters as well as x and y pointers to the domain block are

recorded.

Extract and Reduce Domain Block
Module: FR.AcrA-r-r .

Alias: blk_rdc .

lnputs: image to be coded (type image),
vector pointer.

Outputs: reduced domai¡ vector (t)?e vector)

Description: This function extracts domain vector from a image at the x and y positions

indicated by the vector pointer. This domain vector is then reduced to the

same size as range blocks and retumed.

t43 -

rm age/.o
^ rlomain'vector

\ ^ dom3ln lsomct¡1.r
\l]nsevectot

aomain\ , \ qlange rsometn

u'"ror\\
\icarin::":tt]"""

coaeuoor \ .13iïl\iî.ì:,'*'n''""

domarn vectof I iro.",ry

codebook vecto¡f,)
t1
ó

l
,É dotuin u"",o,

vector Pornlet a

doman vectot Ot domârn I
vecroy//

conelâtior

Fig. C.4. The Fractal Code Image function and its subordinates.

Calculate Fractal Coefficients
(Physically contained within Fractal Code Image.)

Inputs: reduced domain vector (type vector),
range vector (type vector),
domain isometry,
range isometry,

Outputs: combined isometry,
scaling coeffrcient,
translation coefficient,
error.

Description: This function calculates and retums the ideal fractal coeff,rcients for mapping
the domain vector into the range vector. The remai¡ing enor resulting from
these ideal coefficients is also computed and retu¡ned.

144 -

Decode Fractal Image.
Module: FRACTÀLS.

Alias: f cd_img.

Inputs: fractal code for image (type fractal code)
Output: irnage reconstructecl from rhe fracøl code (type image)

Descnption: This function, shown in Fig. C.5, reconstrucrs the original image from its
fractal code using the iterative reconsÍuction algonthm. The function begins
with an arbitrary image and then maps it into a new image according to the
parameters of the fractal code. This image then becomes the source image and

the procedure is repeated iteratively.

tmagerD çca[ine
coefhcienr

vector pointe¡y' \:ranslation
coef f¡cien

Ì.- domai¡ vector..\domain vector/,

t\
domiaì\
vector

iror"rry\

Fig. C.5. The Decode Fractal Image function and its subordinates.

r45

Orthogonalize Vector
Module: TRÀ_¡IS FOtuVS.

Alias: blk_orch.

Inputs: image vector (type vector).
Outputs: orthoganalized vector (type vector)

Description: This function removes the component i¡ the u di¡ection from a vector.

Normalize Vector
Module: TRANSFoRMS.

Alias: blk_nrm.

Inputs: image vector (type vector)
Outputs: normalized image vector (type vector)

Description: This function normalizes an image vector.

Isometries
Module: TR.ANSFORMS.

Alias: isomecries .

Inputs: isomery,
image vector (type vector)

Outpus: isomerically Eansformed image vector (type vector)

Description: This function performs one of eight isometric transformations on an image
block. The particular Eansform is selected according to the isometry index.
The actual transformations are handled by eight subordinate functions

(l) idnr - identity,
(2) flp_x - flips the vector about the x axis,
(2) flp_y - fiips the vector about the x axis,
(3) fLp_d1 - flips the vector about the first diagonal,
(4) flp_d2 - flips the vecror abour rhe second diagonal,
(5) rot_90 - rotates the vector 90o about the center,
(6) roE_l80 - rotates the vector l8@ about the center,
(7) ro|L_270 - rorares the vector 2300 C90o) about the center.

-t46-

APPENDIX D

C L¡r¡icuncr LlsrtNcs FoR CoNcarpNlren
FBC/AnrrHMETrc Itrace CoprpRpsslo¡t SoprwaRe

MODULE: !f.ArN

/'==========

Program: Block Oriented Fractaf Data Compression of Digital
lmages.

Programmer: Larry lr/. Wall
Department of Electrical and Computer Engineering
University of Man¡toba
Winnipeg, Canada
(larwall@ee.umanitoba.ca)

Version: 2.1

Last Update: 16102t93

Comments: V2.0 impliments a reduced range search by employing
vector quantization. A number of new data slruclures are
¡ntroduced to improve modular¡ty. lt also stores the
fraclal code in a format appropriate for additional
compression later with arilhmetic coding.

/'----

LIBRARIES: . t
#include <stdlib.h>
#include <time.h>
#include <stdio.h>

#include "fbc_co nstan ls. h "
#include "fbc_fractals.h"
#include "fbc_fscl.h"
#include "fbc_arithmetic.h"
#include "f bc_io. h"

/.==========

MAIN PROGFAM:

main0
{

unsigned char 'img_1 , l' soufce image . I
'im g_2,
'img-f ; /. decoded fractal ¡mage ' t

fraclal 'fcd_1 ; /' fractal code . I

-148-

!fODL|LE: \'f.Ani

vecto f -cbk_1
;jndex -ndx_f
;

t im e_l lt;
struct tm

'started,
'finished;

img_1 = img_alloc0:
fcd_1 = fcd_allocO;
cbk-1 = cbk_alloc0;
ndx_1 = ndx_allocO;

/' VQ codebook
/' VO coded image

puts("Loading lmage Data.");
img_load("len1.img", img_'1);

puts("lnit¡al¡zing VQ codebook.,');
cbk_¡nit(img_1 , cbk_1);

puts("Learning VQ Codebook.");
It = time(NULL);
started = localtime(<);
printf (asctime(started));
cbk_learn(img_1 , cbk_1);
It = t¡me(NULL);
linished = localtime(<);
printf(asctime(finished));

puls("Saving VQ Codebook.");
cbk_save("len11.cbk", cbk_1);

puts("Loading VQ Codebook.");
cbk_load("len1 1 .cbk", cbk_1);

puts("Generating Picture of the Codebook.");
img_f = img_alloc0;
cbk_img(cbk_1 , ims_f);

puts("Saving Displayed Codebook.");
img_save("len11CBK.img", img_f);
f ree(Ìmg_f);

puts("Quantizing lmage.");
It = time(NULL);
started = localtime(<);
printf(asctime(started));
ndx_img(img_1 , cbk_1 , ndx_1);

-149-

ìvfODLÌ-E: ñL\tr-,,*

It = time(NULL);
finished = locattime(<);
printf(asct¡me(finished));

puts("Reduced Fractal Coding lmage.,');
It = time(NULL)i
started = localtime(<);
printf (asctime(started));
img_code_r(img_1 , cbk_1 , ndx_1, fcd_1);
f ree(img_1)i
It = time(NULL);
f inished = localtime(<);
printf(asctime(finished));

/ . puls("Exhaustive Fractal Coding Image.");
ll = time(NULL);
started = localtime(<);
printf (asctime(started));
img_code_e(ìmg_1 , fcd_1);
tree(img_1);
It = ¡¡¡t1 NULL);
f inished = localtime(&tt);
printf (asctimê(finished));'/
puts("Saving Fractal Coded lmage.");
fcd_save("len11.fcd", fcd_1);

puts("Loading Fractal coded lmage.,,);
fcd_load("len1 1 .fcd", fcd_'l);

puts("Packing Fractal Codê.");
fcd_pack(fcd_1);

puts("Arithmetic Compressing Fractat Coded lmage.");
ac_compress("len11.ac", fcd_1);

puts("Arithmetic Decompressing Fractal Coded lmage.,,);
ac_decompress("len11.ac", fcd_1);

puts("Unpacking Fractal Code.");
fcd_unpack(fcd_1);

puts("Decoding Fractal lmage.");
It = time(NULL);
started = localtime(<);
printf (asclime(srarted));
img_f = img_alloc0;

l\lODuLE: \L\L\i

fcd_img(f cd_1 , ¡mg_f);
It = time(NULL);
finished = localtime(&tt);
printf (asctime(finished));
puts("Saving Decoded Fractal lmage.,,);
img_save("len1 1,img", img_f);

f ree(img_f);
free(fcd 1);

)

/' ========== :_ _ __ _ _ _ _ _ _ _. /

- r51-

MODLILE: CONST.{YTs

CO.JSTANIS:

#define IMG_SZ 256 l. stze of image in pixels
#define BLK_SZ 8 /- size of range block in pixels
#define BLK_MX 7 t' BLK_SZ - 1

#define BLK_NM 32 /' number of blocks per image d¡mension
#define DMN_SZ 16 l- size of domain btock in pixets
#define SCL_SZ 2 /'scale factor between range and domain blocks
#define STP_SZ 1 /. step size between domain blocks
#define FRC_IT 10 /' number of ¡tteralions of decoding algorithm
#define CBK_SZ 11 /. size of the fsct codebook

static unsigned char t_t[8][8] = { /' Array wh¡ch indicates the result of
0, 1, 2, 3, 4, 5, 6, 7, /. multiple applications of block
1, 0, 6, 7, 5, 4, 2, 3, /' transformatìons
2, 6, 0, 5, 7, 3, 1, 4,
3, 5, 7, 0, 6, 1, 4,2.
4, 7, 5, 6, 0, 2, 3, 1,

5,3, 4,2, 1, 6,7,0,
6, 2, 1, 4,3, 7, 0, 5,
7, 4,3, 1,2, 0, 5, 6
l;

WPE DECI.ARATIONS:

typedef struct {
int x,

v,
translate,
scale,
lransfofm;

) fractal;

lypedef struct (

froat pxlslBLK_szlIBLK_sz],
s1,
s2;

)vector;

lypedef struct (

int ptr;
unsigned char

lransform;

- 152.

MODTLE: CONST.NTS

f loat s 1 ,

Þ¿
'

)¡ndexi

-153-

MODLILE: FRACT,\TS

Header:

exlern void
extern void
extern void
extern void
extern vo¡d

exlern vo¡d

Source:

img_code_r0;
img_code_e0;
fcd_img0;
fcd_disp0;
fcd_pack0;
fcd_unpack0;

Module:

Program;

Programmer:

Version:

Last Update

Commenls:

FRACTA].S

Block Oriented Fractal Data Compression of Digital
lmages.

Larry M. Wall
Department of Electrical and Computer Engineer¡ng
Un¡versily of Manitoba
Winnipeg, Canada
(larwall@ee.umanitoba.ca)

2.2

12t0 2t93

This module contains the code necessary to encode and
decode a Íractal representation of an image using the
reduced seaÍch encoding procedure.

t'-.--
LIBFAFIES: . I
#include <stdlib.h>
#include <math.h>
#include <values.h>

#include "f bc_constants.h"
#include "f bc_io.h"
#include "fbc_transforms.h"

#include "fbc_fractals.h"

-154-

MODLTLE: FRACTALS

/'----

PUBLIC FUNCTIONS:

void img_code_r0;
void img_code_e0;
vo id f cd_img0;
vo¡d fcd_disp0;
void fcd_pack0;

/.-------___

: Generate fractal code for source image using the reduced search fraclal coding
procedure.

void img_code_r(image, cbook, vq_code, fr_code)
u nsig ned char imageüMG_SZIillr/G_SZl;
vector cbookICBK_SZ];
index vq_code[BLK_NM][BLK_NM] ;

fractal f r_codeIBLK_NM][B LK_N M];
{

f Ioat lo w_e r r[B LK_ N M][B LK_N M];

int img_x,
img-y,
b lk_ x,
blk_y,
b_x,
b_y,
X,
yi

in t type;

f loat scale,
lranslats,
shift;

f loat rd,
B,
D=BLK_SZ'BLK-SZ;

f loat error;

int c_tran s fo rm;
unsigned char

t_transform,

r55-

lvfODL'l-E: FRACT.AIS

transfo rm;

vector r_b lock,
s_b lo c k,
t_blockl

for (blk_x=0; blk_x<BLK_Nñi; btk_x++)

for (blk_y=0; blk_ycBLK_Ntv,t; btk_y++)
low_err[blk_x][btk_y] = tr/AXFLOAT;

for (img-x=o; img_x<(ltulG_SZ - D¡/N_SZ); img_x+=STP_SZ)
for (img_y=0; img_y<(lMG_SZ - Dtt/lN_SZ); img_y+=STp_SZ)

{
blk_rdc(img_x, img_y, image, &r_block);

for(x=0; x<BLK_SZ; x++)
for(y=0; y<BLK_SZ; y++)

s_block.pxlslxl[y] = r_block. px ts[x][y];
s-block.s 1 = r_block.s1 ;

s_block.s2 = r_block.s2;

blk_orth(&r_block);
blk_orth(&s_btock);
type = cbk_search_domain (r_block, cbook, &c_transform);

t_transform = (unsigned char) c_transform;

for (blk_x=0; blk_x<BLK_NM; blk_x++)
for (blk_y=O; blk_ycBLK_NM; blk_y++)
{

if(vq_codelblk_xllblk_yl. ptr == type)
(

transform =
t_tIt_transform][vq_codeIblk_x][blk_y j.transform] ;

blk_isom(s_block.pxls, t_block.pxls,
transform);

b_x = blk_x'BLK_SZ;
b-v = blkJ'BLK-sz;
rd = 0.0;
for (x=0; x<BLK_SZ; x++)

for (y=g; y<BLK_SZ; y++)

rd += (float) image[b_x +
xlIb_y + y] - t_block.pxls[x]lyl;

scate = (int) rd;
shift = vQ_code [blk_x][blk_y].s 1/D;
error = vg_code[blk_x][blk_y].s2 + scale. scale ' s_block.s2 + shift'sh¡ft'D + 2'(scale t shitt . s_block.s1 - scale'rd

-156-

lvlODuLE: FRACT.{IS

- sh¡ft ' vq_code [blk_x][btk_y]. s 1);

(fabs(scale) < 1024))

transfo rm;

scale;

(int) sh¡ft:

if ((low_e rrIb lk_x][b tk_y] >= error) &&

{

low_errIblk_x][btk_y] = s¡¡6¡.
fr_codeIblk_x][btk_y],x = i¡¡g_¡;
fr_code[blk_x][btk_y].y = img_y;
fr_code[blk_x][blk_y].transform =

fr_code [blk_x][btk*yj, scale =

fr_codeIblk_x][blk_y].translate =

)

l

t'---.
:Generate fractal code for source image using the exhauslive search Íractal

coding procedure. , I

void img_code_e(image, fr_code)
unsigned char imagelMG_SZlilMG_SZI;
fractal f r_codeIB LK_NM][BLK_N M];
{

float low_errlBLK_NMlIBLK_NM];

f loat t t ,

ri

int ¡mg_x,
img_y,
b lk_x,
b lk-Y,
b-x,
b_y,
X,

v;

f loat scale,
translate,
sh ifr;

-t57-

MODWE: FRACT,ATS

f loat rd,
B,
D=BLK_SZ'BLK_SZ;

float error;

u nsigned char
transform;

vector r_b lo c k,
s_b lock,
t_block;

for (blk_x=0; blk_x<BLK_NM; blk_x++)
for (blkJ=0; blk_ycBLK_NM; blk_y++)

low_errIblk_x][btk_y] = MAXFLOAT;

for (img_x=o; img_x<(ltVtG_SZ - DMN_SZ); img_x+=STp_SZ)
for (img_y=o; img_y<(lMG_SZ . DMN_SZ); ¡mg_y+=STp_Sz)
{

. blk_rdc(img_x, imgj, image, &r_btock);

fo(x=0; x<BLK_SZ; x++)
for(y=g; y<BLK_SZ; y++)

s-block.pxlslxl[y] = r_block.pxls[x][y];
s_block.s'1 = r_block.s1;
s_block.s2 = r_block.s2;

btk_orth(&r_block);
blk_orth(&s_btock);

fot (blk-x=0; blk-x<BLK_NM; blk_x++)
for (blkJ=o; blk¡r<BLK_NM; blk_y++)

I
b-x = blk-x'BLK-SZ;
bJ = blk_y'BLK_sz;
r = 0.0i
rr = 0,0;
for (x=0; x<BLK_SZ; x++)

for (y=9; y<BLK_SZ; y++)

{

r += (float) imagelb_x + x][b_y +

vl;
rr += (float) image[b_x + x][b_y

+ yl ' image[b_x + x][bj + y];

)

-158-

MODtTI-E: FRACTAIS

lransform);

lransform=0; transf orm<g; transform++)

blk_iso m (s_block.pxls, t_btock.pxts,

rd = 0.0i
for (x=0; x<BLK_SZ; x++)

for (Y=0; Y<BLK-SZ; Y++)

rd += (float) image{b_x +

scale = (int) rd;
shif t = r/D;
efiot -- I + scale . scale's block.s2 +

xlIb_y + yj t_b lock. pxls Ix]lyl;

shift . shift ' D + 2 - (scale ' sh¡ft ' s_block.s1 - scale t rd - sh¡tt . r);if ((low_e rr[b lk_x][blk_y] >= error) &&
(fabs(scale) < 1024))

{
low_errIblk_x][blk_y] = s¡¡e¡;
f r_code [blk_x][b lk_y].x = ¡mg_x;
f r_code [blk_x][b lk_y].y = img_y;
f r_codeIblk_x][blk_y].transform =

fr_code[blk_x][blk_y],scale =

f r_codelblk_xlIblk_y].translate =

)

)

)

t'----
: Reconst¡.uct image from fractal code via iterative algorithm. ' I

void fcd_img(fr_code, image)
fractal f r_codelBLK_NMllB Ll(_N Ml;
unsigned char imagefl MG_SZ]IMG_SZ];
{

u ns¡g n ed char 'img_t;

#define TEMP(j,k) (ims_tU-lMG_SZ+kl)

vector s_block,
t_block;

fo r(

{

transform;

scale;

(¡n t) s h ift;

-159-

MODLTI-E: FRACT.{IS

float lvl;

int i,
blk_x,
b lk_y,
x,
v,
im g_x

,

¡mg_y;

img_t = img_alloc0;

for (x=0; x<BLK_SZ; x++)
for (y=0; y<BLK-SZ; y++)

TÉtúP(x,Y) = a;

for (i=Q; i<FRC_IT; i++)

{

lor (blk_x=0; blk_xcBLK_NM; blk_x++)
for (blk-y=0; blk-y<BLK_NM; blk_y++)

{

blk_rdc(f r_codef blk_xllbtk_yl.x,
f r_code [blk_x][blk_y],y, img_t, &s_btock);

blk_orth(&s_block);
blk_isom(s_block.pxls, t_block.pxls,

f r_codeIblk_x][blk_yj.transf orm) ;

for (x=0; x<BLK_SZ; x++)
for (y=0; y<BLK_SZ; y++)

{

lvl = (float) (t_block. pxts [x][y] .
fr_codeIblk_x][blk_yj.scale) + fr_codeIbtk_x][blk_y].translate;

if (lvl < 0.0)
lvl = 0.0i

if (lvl > 255.0)
tvt = 255.0;

imagel(blk_x . BLK_SZ)+ x][(blk_y '
BLK_SZ) +yl = (unsigned char) lvl;

)

)
for (img*x=O; img_x<lMG_SZ; img_x++)

for (img_y=0; img_yclMG_SZ; img¡r++)

)
tEM P(img_x,img_y) = imagelimg_xllimg_y];

tree(¡mg_t);

)

-160-

lvf ODt[-E: FRACT.ALS

: Dispaly fractai code on screen.

void fcd_disp(code)
f ractal codeIBLK_Nlr/][BLK_NM] ;

{

inl blk_x,
b lk-Y ;

for (blk_y=0; blk_ycBLK_NM; blk_y++)
for (blk_x=0; blk_x<BLK_NM; blk_x++)

printf("%sd %5d %5d %5d %Sd %5d %Sd\n',, btk_x, btk_y,
codeIblk_x] [blk_y].x,

code[blk_x][blk_y].y, codef blk_xllblk_yl.rranstare,
codeIblk_x][blk_y].scale,

(int) cod e [b lk_x][blk_y].t ra nsfo rm);
)

t'--".
: Format fractal code for arllhmetic compression.

void fcd_pack(code)
fracral codelBLK_N Ml[B LK_NM];
{

int b lk_x,
b lk_y,
m ax,
min;

max = -5000;
min = 5000;

for(blk_y=0; blk_y<BLK_NM; blk_y++)
for(blk_x=0; blk_xcBLK_NM; blk_x++)
(

if(code[blk_x][blk_y].scale > max)
max = codelblk_x]lblkJ].scale;

if(code[blk_x][blkJI.scale < min)
min = codeIblk_xjIblk_y].scale:

)
for(blk_y=0; blk_ycBLK_NM; blk_y++)

for(blk_x=0; blk_x<BLK_NM; blk_x++)

{

code[blk_x][blk_y],x /= STP_SZ;

-161 -

lfoDLILE: FRACT.ALS

code[blk_x]fblk_yj.y /= STP_SZi
codelblk_xlIblk_y].scate += 1024;

i

printf("Range: %d\n',, max - min);

for(blk_y=Q; blk_y< B LK_N I'il; blk_y++)
for(blk_x=o; blk_x<(BLK_Ntt/-1); btk_x++)

cod e [b lk_x][b lk_y]. t ra n s tat e = codeIbtk_x+ 1][btk_y].rranstare- code[blk_x][blk_y].translate + 256;

for(blk-y=o; blk_y<BLK_NM-1; blk_y++)
codef BLK_N tu|. 1 lIbtk_y].translate = codeIBLK_NM-

1lIblk_y+1].translate codelBLK_NM-11[btk_y].rranstate + 256;

)

t'----
: Recover fractal code arter arithmetic decompression.

void fcd_unpack(code)
fraclal codelBLK_N Ml[B LK_NM];
{

int b lk_x,
b lk-Y ,

max,
m¡n;

for(blk_y=0; blk_y<BLK_NM; blk_y++)
for(blk_x=O; blk_x<BLK_NM; blk_x++)

{

codelblk_xllblk_yl.x'= STP_SZ;
codelblk-xllblk_yl.y .= STP_SZ;
codelblk_xllblk_yl.scale -= 1024i

for(blk_y=(BLK_NM-1); blk_y>0; blk_y--)
codeIBLK_NM.1][blk_y-1].translate = codelBLK_NM-

1l[blk_y].translate code[BLK_NM-1][blk_y-1].transtate + 2S6;

for(blk_y=0; blk_y<BLK_NM; blk_y++)
for(blk_x=(BLK_NM- 1); blk_x>0; blk_x--)

codeIblk_x- 1][blk_y].t ra n slate = cod slbtk_xlIbtk_y],r ra ns tate
- codeIblk_x-1][blk_y].translate + 256;

)

-t62-

MODLILE: FRACTAIS

ivfODUI-E: FSCL

Header:

extern void cbk_init0;
extern void cbk-learn0;
extern ¡nl cbk_search_range 0;
extern int cbk_search_do m ain 0;
extern void ndx_img 0;
extern void cbk_img 0;

Source:

/'==========

Module: FSCL

Program: Block Or¡ented Fractal Data Compression of Digital
lmages.

Programmer: Larry M. Wall
Department of Electrical and Computer Engineering
University of Maniloba
Winnipeg, Canada
(larwall@ee. umanitoba.ca)

Version: 2.0

Last Update: 07 l0 6192

Comments: This module contains all of the funct¡ons for associated
wilh the frequency sensit¡ve competetive learning neural
network. Functions are included lo intititalize the
network, learn an appropriate set of weights, and
classify domain and range blocks.

/.----

LIBRARIES:

#include <stdl¡b.h>
#include <math.h>
#include <values.h>

#include "fbc_constanls. h "

#include "f bc_transf orms.h"

-t64-

\IODLII-E: FSCL

#include "f bc f scl.h"

/'.-------

PUBLIC FUNCTIONS:

vo ¡d cbk_in it 0 ;

void cbk_learn 0 i

inl cbk_search_ran g e 0 ;

int cbk_sea rch_domain 0;
void ndx_img0;
void cbk_img0;

PRIVATE FUNCTIONS:

slat¡c int cbk_search_learn0;
static float calc_error0;

/'==========

: lnitializes each elemsnt in the codebook to the average of all of lhe blocks in the
image plus some random pertibat¡on. ' I

void cbk_init(image, cbook)

u nsig ned char image!MG_SZIflMG_SZI;
vector cbooklCBK_SZl;
I

vector avg;
f loat rnd n m;

inl b lk_x,
b lk_y ,

X,

v,
node;

avg.s1 = avg.s2 = 0,0;
for (x=0; x<BLK_SZ; x++)

for (y=g; y<BLK_SZ; y++)
avg,PXlslxl[Y] = 0.0;

-165-

lvlODL'Ì-E: FSCL

for (blk_¡=Q; btk_x<tMG_SZ; btk_x+=BLK_SZ)

for (blk_y=O; btk_y<tf\itc_Sz; btk_y+=BLK_SZ)
for (x=0; x<BLK_SZ; x++)

for (y=9; y<BLK-SZ| y++)

avg.pxlsIx][y] += (ftoat) (imagelblk_x +
xl[blk_y + y]);

for (x=0; x<BLK-SZ; x++)

fot (Y=9; Y<BLK-SZ; Y++)

{

avg.s 1 += avg.Pxls[x][Y];
avg.s2 += avg.pxts[x][y] avg.pxtsIx][y];

)

blk_orth(&avg);

for (node=O; node<CBK_SZ; node++)

{

cbook[nodej.s1 = cbooklnode].s2 = 0.0;
for (x=0; x<BLK_SZ; x++)

for (y=0; y<BLK_SZ; y++)
(

rnd_nm = (((float) random0 / MAXTNT)- 0.S) . 0.2
+ avg.pxlslxj[y];

cbookInodej. pxlstx][yl = rnd_nm;
cbooklnode].s1 += rnd_nm;
cbooklnode].s2 += rnd_nm ' rnd_nm;

)

blk_orth(&cbookInode]);
)

)

t'----

: Generate the codebook using the Frequency Sensitive Competitive Learning
(FSCL) algorithm. . t

void cbk_learn(image, cbook)

unsigned char imageilMG_SZI[|MG_SZ];
vector cbooklCBK_SZl;
{

MODLTLE: FSCL

vector s_block,
t_btock;

f loat freq ue ncy{CB K_SZl,

i_gn = 0.2,
f_gn = 0.01,
c_g n,

w_chg,
scale;

int rn d_x,
fnd_y,
X,

v,
node,

transform;

long int

lime,
mx_time=CBK_SZ.1450;

for (node=o; node<CBK_SZ; node++)

frequencylnodel = 1.0;

for (time=o; time<mx_time; time++)

{

c_gn = ((i_gn - f_gn) . (1.0 - (float) time / mx_time) + f_gn);
rnd_x = (int) random0 % (¡MG_SZ - DMN_SZ);
rnd_y = (int) randomfl % (lMc_SZ - DMN_SZ);

blk_rdc(rnd_x, rnd_y, image, &s_block);
blk_orth(&s_block);
node = cbk_search_learn(s_block, cbook, frequency, &scale,

&lransform);
blk_isom(s_block.pxls, t_block.pxls, transform);
cbooklnodel.s1 = cbooklnode].s2 = 0.0;
fo(x=0; x<BLK_SZ; x++)

fo(Y=g; Y<BLK-SZ; Y++)

{

t_block.pxlsIx][y]'= scale;
w_chg = c_gn - (t_block.pxls[x][y] -

cbookInode].pxls[x][y]);
cbookInode].pxlsIx][y] += w_chg;

-161 -

MODULE: FSCL

cbooklnodel.sl += cbookInode].pxtsIx][y];
cbookInode],s2 += cbookInode].pxtsIx][y]

cboo k In o d e j . px ls f xl Iy] ;

)

blk_norm(&cbookInode]);

frequencyInode] += 1,0;

)

for (node=0; node<CBK_SZ; node++)

{

blk_orth(&cbookInode]);
printf("%Ân", frequencyInode]);

)

)

t'---.

:Search the codebook for the besl match to the inpul vector taking into
consideration írequency of occurance as per the FSCL learning algorithm. . /

stalic ¡nt cbk_search_learn(s_block, cbook, frequency, scale, transform)
vector s_block;
vector cbooklCBK_SZl;
lloat f requency[CBK_SZ];
float'scale;
¡nt .lransform;

{

¡nt x,
v,
node,

t_transform,
best_node = 0;

float error,
lo w_e r r,
t_scale;

low_err = MAXFLOAT;

for (node=o; node<CBK_SZ; node++)

-168-

ÌvfoDLILE: FSCL

{

error = calc_error(s_block, cbooklnode], &t_scale, &t transform).
f req u e ncyInod e];

if (error <= low err)

{

low_err = error;
besl_node = node;
'scale = t_scale;
-transform = t_transform;

)

)

return best_node;
I

t'----

: Search lhe codebook for the best match to the input range vector.

¡nt cbk_search_range(s_block, cbook, transform)
vector s_block;
vector cbookICBK_SZ];
int 'transform;
{

inl x,
v,
node,

t_transform,
best_node = 0;

f loat e rro r,
low_e rr,
l-scale;

low_err = ivIAXFLOAT;

for (node=0; node<CBK_SZ; node++)

{

error = calc_error(cbook[node], s-block, &t_scale, &t_transform);
if (error <= low_err)

{

low_e rr = errof;
best_node = node;
'transform = t transfoÍm;

-t69-

MODLLE: FSCL

l

return best_node;
),

t'----

: Search the codebook for the best match to the input domain vector. . I

int cbk_search_domain(s_block, cbook, transform)

vector s_block;
vector cbookICBK_SZ];
¡nt -transform;

{

int x,
v,
node,

t_transform,
best_node = 0;

f Ioat efiot,
low_err,
t_scale,
t_translate;

low_err = MAXFLOAT;

for (node=O; node<CBK_SZ; node++)
{

error = calc_error(s_block, cbooklnode], &t_scale, &t_transform);
if (error <= low_err)

{

low_er¡ = error;
best_node = node;
'transform = t_transform;

)

)

return best nodg;

\'fODLrI-E: FSCL

t"---
:Generates lhe coded version of the ¡mage. ' I

void ndx_ìmg(image, cbook, vq_code)
u nsig n ed char imagellMG_SZlflMG_SZI;
vector cbookICBK_SZ];
index vq_code {B LK_N Ml[B LK_N li/];

{

vector s_block;

int blk_x,
b lk-Y

'
X,

v,
t_tra nsfo rm;

for (blk-y=0; blk-ycBLK-NM; blk_y++)
for (blk-x=o; blk-x<BLK-NM; blk-x++)

{

s_b¡ock.s1 = s_block.s2 = 0.0;
for (x=0; x<BLK_SZ; x++)

for (y=0; y<BLK_SZ; y++)

{

s_block.pxlslxllyl = (float) imageI blk_x '
BLK_SZ + xl[blk_y - BLK_SZ + y];

s_block.s 1 += s_block. pxlsIx][y];
s_block.s2 += s_block.pxls [x][y] .

s_block.pxlsIx][y];
)

vq-codeIblk-x][blk-y], s 1 = s-block.sl;
vq_code Iblk_x][blk_y]. s2 = s_block.s2;

blk_orlh(&s_block);

vq_code[blk_x][blk_yJ.ptr = cbk_search_range(s_block, cbook,
&t_transform);

vq_codelblk_x]lblk_yl.transform = (unsigned char)

t_transfo rm;

)

ì

- t7t -

lfODL:l-E: FSCL

:calculate the ditference between rwo vectors independent of amplitude scaling
and orientation. Return the optimum scale, and transform values. , t

stat¡c float calc_error(a_block, b_block, scale, transform)
vector a_block;
vector b_block;
float'scale;
int 'transform;
(

vector t_block;

¡nt x,
v,
t_transform;

f loat ab,
error,
low_err,
t_scale;

low-err= MAXFLOAT;

for (t_transtorm=0; t_transform<A; t_transform++)

{

blk_isom(a_block.pxls, t_block.pxls, t_t¡'ansform);

ab = 0.0;
for (x=0; x<BLK_SZ; x++)

for (y=g; y<BLK_SZ; y++)

ab += (t_btock.pxts[xl[y] ' b_btock. pxts[x][y]);

if(ab < 0.0)

{

l_scale = -'1 ,0;
ab = tabs(ab);

)

else
l_scale= 1,0;

êrror = 2.0 /'b-block.s2'/ - (2.0 ' ab) /.+ a-block.s2'l;
if(error <= low-err)

- 172.

tvfoDtilE: FscL

low_err = error;
'scale = t_scale;
-transform = t_tran sform

)

return Iow_err;

I

:Display the codebook in image format,

void cbk_img(cbook, image)
vector cbooklCBK_SZl;
unsigned char imagefl MG_SZl[lMG_SZ];
{

int x,
v,
blk_x,
b lk-Y,
p x l_x,
pxl-y,
count;

f loat max,
min,
scale,
trans;

for(x=0; x<lMG_SZ; x++)

for(y=9; y<lMG_SZ; y++)

image[x][yl = 2s5;

for(count=o; count<CBK_SZ; count++)
(

blk_x=count/4;
blkj = ¿su¡1 7o 4'
for(pxl_x=0; pxl_xcBLK_SZ; pxl_x++)

for(pxl_y=0; pxl_ycBLK_SZ; pxl_y++
for(x=Q; x<7; x++)

-173-

iTfODLLE: FSCL

xl[blk_y'64 + pxl_y'7 + y]
127 + 1281;

)

)

for(y=0; y<7t y++)

imagelblk_x'72 + pxl_x'7 +
(unsigned char) (cbooklcount].pxts[pxl_x][pxl_y]

-t74-

MODL'l-Er TRANSFORvfS

Header:

extern vo id blk_rdc0;
exlern vo¡d blk_orth0;
extern vo¡d blk_norm0;
exlern void blk. isom0;

Source:

/'==========

Module: TFANSFORIVS

Program: Block Oriented Fractal Data Compression of D¡gital
lmages.

Programmer: Larry M. Wall
Deparlmenl of Electrical and Computer Engineering
University of Manitoba
Winnipeg, Canada
(larwall@ee. umanitoba.ca)

Version: 2.0

Last Update: 07106/92

Comments: This module conlains all the functions which perform
the individual fractal block transforms including
spalial cont[action, isomelric block transforms,
scaling, translation, and orthonormal¡zation.

t.----

LIBRARIES:

#include <stdlib.h>
#include <math.h>
#include <values.h>

#include "fbc_constants.h"

#include "f bc_transfo rm s. h"

t'.---

PUBLIC FUNCTIONS:

-t75-

MODLTI-E: TRANS FO RÌvf S

void blk_rdc0;
vo id blk_orth0;
void blk_norm 0;
void blk_isom 0;

PRIVATE FUNCTIONS

vo¡d ¡dnt0;
void f lp_x0;
vo¡d f lp_y0;
void f lp_d1 0;
vo jd flp_d20;
void rot_90 0 ;

void rot_1800;
vo id rot_2700;

/'==========

: Reduce image block from domain size to range size. ' I

void blk_rdc(x, y, image, s_block)int x,
v;

unsigned char imagelÀ/c_SZlilMG_SZI;
vector.s_block;
(

int rn g_x,
lng_Y,
dmn_x,
d m n_y;

f loal avg;

s_block->s1 = s_block->s2 = 0.0;
for (rng_x=O; rng_xcBLK_SZ; rng_x++)

for (rng-y=o; rngJ<BLK-SZ; rng-y++)

{
avg=00'
for (dmn_x=O; dmn_x<SCL_SZ; dmn_x++)

for (dmn¡r=O; dmnj<SCL_SZ; dmn_y++)
avg += imagelx + (rng_x 'SCL_SZ) + dmn_xl[y

+ (rngj. SCL_SZ) + dmn_yl;
s-block->pxlslrng_xl[rng3] = (avg / (SCL_SZ ' SCL_SZ));
s_block->s1 += s_bfock->pxlsIrng_x][rng_y];
s-block->s2 += s_block->pxls Irn g_x][rng_y] . s_block-

-176-

MODL'LE: TRANSFORMS

> px ls Irn g_x][rn g_y I ;

)

)

: Generate orthonormal veclor.

void blk_orth (s_block)
vector - s_block;
{

int x,
v;

f loat ic;

ic = s_block->s1 / (BLK_SZ ' BLK_SZ);

s_block.>s1 = s_block->sz = 0.0;
for(x=0; x<BLK_SZ; x++)

fo(Y=9; Y<BLK-SZ; Y++)

{

s_b lock-> pxls [x][y] -= ic;
s-block->s2 += s-block->pxls Ix][y] ' s-block-> pxlsIx][y];

)

blk_norm(s_block);
)
t-----

: Selêct the approriate isomelry.

void blk_isom(s_block, t_block, isom)
f loat s_blocklBLK_SZ][BLK_SZ] ;

lloat t_blockIBLK_SZ][BLK_SZ] ;

¡nt isom;

{

switch (isom)

{

case 0: idnt(s_block, t_block);
b reak;

case 1: flp_x(s_block, t_block);
break;

case 2: flp_y(s_block, t_block);

- t'7'7 -

MODULE: TRANSFORL,IS

break;
case 3: flp_d1(s_btock, t_btock);

b reak;
case 4: flp_d2(s_block, t_block);

b reak;
case 5: rot_90(s_block, t_block);

b reak;
case 6: rot_1 80(s_block, t_block) ;

break;
case 7: rot_270(s_block, t_block);

break;
)

)

t'----

: Normalize vectors.

void blk_norm(s_block)
vector.s_block;
{

inl x,
yi

f loat norm;

norm = sgrt(s_block->s2);

if(norm > 0.001)

{
for(x=0; x<BLK_SZ; x++)

fo(Y=g; Y<BLK-SZ; Y++)
s_block->pxlsIx][y] /= norm;

s_block->s1 /= norm;
s_block-> s2 = 1 .0;

)

tt

t'----
: ldentity transformal¡on.

void idnt(s_block, t_block)
f loat s_blocklBLK_SZ][BLK_SZ] ;

-178-

MODL{-E: TRANSFORMS

f ioat t_blocklB LK_SZlIB LK_SZ];
{

¡nt x,
yi

for (x=0; x<BLK_SZ; x++).
for (y=g; y<BLK_SZ; y++)

t-blocklxl[Y] = s-b lock Ix][y];

)

t..---
:Orthogonal reflect¡on of block about mid-vertical axis. . /
void flp_x(s_block, t_block)
f loat s_blockIBLK_SZIIBLK_SZ] ;

f loat t_blocklB LK_SZjIBLK_SZl;
{

int x,
v:

for (x=0; x<BLK_SZ; x++)
for (y=0; y<BLK_SZ; y++)

t-block[x][y] = s-blockIBLK-MX x][y];

)

t.-.--

:Orthogonal reflect¡on of block about mid-hor¡zontal axis. . t

vo¡d flp_y(s_block, t_block)
f loat s_blockIBLK_SZ][BLK_SZ] ;

f loat t_blockIBLK_SZ][BLK_SZ];
{

int x,
tl

for (x=g; x<BLK_SZ; x++)
for (y=9; y<BLK_SZ; y++)

t-block[x][y] = s-blocklxllB LK-MX yl;

)

t'----

-179-

MODULE: TRAr\S FORtvls

:Orthogonal reflection of block about first diagonal.

void flp_d1(s_block, r_btock)
f loat s_blockIB LK_SZ][BLK_SZ];
f loat t_block[B LK_SZlIBLK_SZ];
{

int x,
v;

for (x=0; x<BLK_SZ; x++)

for (y=6; y<BLK_SZ; y++)

t_block[x][y] = s_blockIBLK_tt/X - y][BLK_MX - x];

I

: Orthogonal refleclion of block about second diagonal.

void f lp_d2(s_block, t_block)
f loat s_blockIB LK_Sz][BLK_SZ] ;

f loat t_blocklBLK_SZIIBLK_SZI;
{

for (x=0; x<BLK_SZ; x++)
for (y=Q; y<BLK_SZ; y++)

t_block[x][y] = s_blocklyj[x];

)

t'----
: Botate block 270 degrees about center.

rol_270(s_block, t_block)
s_blockIBLK_SZ][BLK_SZ] ;

l_blocklBLK_SzlIBLK_Szl ;

int x,
yi

for (x=0; x<BLK_SZ; x++)
for (y=9; y<BLK_SZ; y++)

t_block[x][y] = s_block[y][BLK_MX x];

¡nt x,
v;

void
float
float
{

MODLTLE: TRANSFOR-VS

: Rotate block 180 degfees about center. . I
void rot_180(s_block, t_block)
f loat s_blockfB LK_SZlIBLK_SZ];
float t_blockIBLK_SZ][BLK_SZ];
{

int x,
v;

for (x=0; x<BLK_SZ; x++)
for (y=6; y<BLK_SZ; y++)

t_block[x][y] = s_blockIB LK_trrtX - x][BLK_tr4X - y];

)

t'----
: Rotate block 90 degrees about center. , /

void rot_90(s_block, t_block)
f loat s_blocklBLK_SZ][BLK_SZ] ;

floar t_b¡ockIBLK_SZ][BLK_SZ];
{

inl x,
yi

for (x=0; x<BLK_SZ; x++)
for (y=0; y<BLK_SZ; y++)

t-block[x][y] = s-blockIB LK-[a x-y][x];

l

/'----------

-181 -

MODLTLE: ARITI{\,{ETIC

Header:

extern void ac_compress0;
extern void ac_decompressfl;

Source:

/'==========

l\if odule: ARITMETIC

Program: Block Orienled Fractal Dala Compression of Dig¡tal
lmages.

Programmer: Larry lVl. Wall
Department of Electr¡ca¡ and Computer Engineering
University of Man¡toba
Winnipeg, Canada
(larwall@ee,uman¡toba.ca)

Version: 1 . 0

Last Update: 16/02193

Commenls: This module performs dynam¡c arilhmetic entropy encoding
and decoding ol FBC paramters.

t'--.-
PRIVATE CONSTANTS:

#define SBL_NM 2048
#define NEG 1024
#define NDX_NM (SBL_NM + 1)
#define MAX_CUM 32767
#def¡ne NM_Code_Bits 17
#define EOF_SBL MAXINT

#detine NM_SZ 20
#define SUCCESS 1

#define FAILURÊ 0

#define TOP (((unsigned long int)1<<NM_Code_B¡ts).i)
#define QTR (TOP/4+1)
#define HALF (2'OTR)
#define THREE_OTR (3'OTR)

.182-

MODULE: ARITHMETIC

#def ine FLD NM 5

LIBFARIES

#include <std lib. h >

#include <stdìo. h>
#include <math.h>
#include <time.h>
#include <values. h>

#include "fbc-constants. h "

#include "fbc_arithmetic.h"

t'.--.
PUBLIC FUNCTIONS:

void ac_compress0;
void ac_docompress0;

PRIVATE FUNCTIONS:

vo¡d init_stats0;
void update_stats0;

void put_bit0;
void close_bit_oul0;

vo¡d close_bit_in 0;

void compress0;
void init_encoder0;
void encode_smbO;
vo¡d bit_plus_follow0 ;

vo¡d flush_encoder0;

void decompress0;
void ¡nit_decoder0;

vo¡d open_data_in0;
vo¡d close_data_¡n0;

-r83-

MODLTI-E: ARITTn{ETIC

DATASTFUCTURES: . /
lypedef strucl {

int sbl_nm,
ndx_nm;

int -index,

'symbl;
unsigned long int

'p rb,
-cum;

)statistics;

/.==========

: lnitialize the stat¡stical model. , I

void init_slats(stats, sbls)statistics .s tats ;

int s bls;
{

inl c;

stats->sbl_nm = sbls;
stats->ndx_nm = sbls + 1;

stats->¡ndex = (int ') calloc(stats->ndx_nm, sizeof(int));
stats->symbl = (int ') calloc(stats->ndx_nm, sizeof(int));
stats->prb = (unsigned long ¡nl ') calloc(stats->ndx_nm + 1, sizeof(uns¡gned

long int));
stats->cum = (unsigned long int ') calloc(stats->ndx_nm + 1, sizeof(unsìgned

long int));

fo(c=Q; c<stals->ndx_nm; c++)

{

stats->index[c] = c;
stats->symbl[c] = ci

)

stats->cum[0] = 0;
stats- > prbIstats-> ndx_n ml = 0;
for(c=0; c<stats.>ndx_nm; c++)

{

stats->Prb[c] = 1;
stats->cumlcl = c;

)

-184-

MODTJLE: ARIT!$.ÍET Ic

stats->cumlstals-> ndx_n m] = c;
)

t'----
I Update lhe statist¡cal model to reflect the character coded/received. . i
void updale_stats(stats, smb)statistics 'stats;
int smb:

i
int ndx_1,

ndx_2;

ndx-1 = stats'> indexIsmb];

if(stats->cu m lstats->ndx_nm] >= MAX_CUIV)
for(ndx_2=0; ndx_2 <stats- >ndx_nm; ndx_2++)

{

stats-> prb [ndx_2] = (stats->prb[ndx_2j >> 1) + 1;
stats->cu m Indx_2+ 1] = s1¿¡s-t¿u mIndx_2] + stats-

>prbIndx_2];
)

for(ndx_2=ndx_1 ; stats->prbIndx_2] == stats->prb[ndx_2+ 1]; ndx_2++);

if(ndx_2>ndx_1)

{

stats->index[smb] = ndx_2;
slats-> indexIstats->symblIndx_z]l = ndx_1 ;

stats- >sym blIndx_1] = s1¿1s-;symblIndx_21;
slats->symbl[ndx-2] = s¡þ'

)

stats->prbIndx _21+ =2;
for(ndx_1 =(ndx_2+ 1); ndx_1 <= stals->ndx_n m; ndx_1 ++)

stats- >cu m Indx -11+=2t

static FILE 'B ¡t F ile;

static int buff er,
buff_count;

t'----

-185-

MODL,'l-E: .{RITHÌ\fETIC

: Open the Arithmetic code output bit stream.

int open_bit_out(filename)
char f ilenameIN lvl_SZ];
{

int sl atu s;

buffer = 0;
buff_count = 0;

BitFile = fopen(filename, "*b");
if(BitFile != NULL)

status = SUCCESS;
e lse

status = FAILURE;
I

: Write a bit to the output stream bit buffer.

void put_bit(bit)
int bit;
{

buffer = 1 butfer << 1) | bit;
buff_count++;
if(buff_cou nt == I)
(

putc(butf er, BitFile);
buffer = 0;
buff_count = 0;

)

: Close the arithmetic code output stream.

void close_bit_out0
{

buffer <<= (I - buff_count);
purc(buffer, BitFile);

fclose(B¡tFile);

- 186.

MODIILE: ARITHMETIC

static ¡nt garbage_count;

t'----
:Open the arithmetic code input stream, , /

int open_bit_in(f ilename)

char f ¡lename[NM_SZj;
{

in t statu s i

buffer = 0;
bulf_count = 0;
garbage_count = 0;

BitFile = fopen(f ilename, "rb");
¡f(B¡tFile l= NULL)

status = SUCCESS;
else

status = FAILURE;

)

t'----

:Get a bit from the arilhmetic input stÍeam bit bufler.

int get_bit0
{

int bit:

if(butf_count <= 0)

{

¡f(lfeof(BitFile))

{

butfer = gerc(BirFite);
buff_count = 8;

buffer = g;

garbage_count++;
if(garbage_count > (NM_Code_Bits - 2))

{
puts("Bad Source Bit File.");
exit(-1);

)

l
else

{

-187-

MODULE: ,{RI TT{MET IC

)

bit = (buffer & 0xB0)>> 7i
buffer <<= 1;
buff_count--;
feturn bit;

i

t'---.
: Close the input bit stream. . I

'void clos e_bit_in 0
(

fclose (BitFile);
)

/'========== ============./

static unsigned long int
low,
high;

slatic int f o llow_bits;

/'----

: Compress FBC paÍamters us¡ng arilhmetic encoding. . I
void ac_compress(FileName, fr_code)
char FileName[N M_SZ];
fractal fr_codeIBLK_NM][BLK_N[/];
(

int x,
b lk_x,
blk_y,
count;

slatist¡cs statsIFLD_NM];
int offserlFLD_NMl;
int max[FLD_NM];

in ir_stats(&srars[0], tMG_szsTp_sZ);
in ir_srals(&srars[1j, tMc_szlsTp_sz);
in it_stars (&stats[2], 512);
in it_stats (&srarsf3l, 2049)i

188 -

MODtTLE: ARITHMETIC

in ir_s tats (&stats[4], I);

in it_encoder0;
open_bit_out(F¡teName);

for(blk_x=0; blk_x<BLK_NM; blk_x++)
for(blk_y=0; blk_ycBLK_NM; btk_y++)

{

encode_smb(stats[0], fr_cod e [blk_x][btk_y]. x);
update_srats(&stats[0], fr_code Ibtk_x]{btk_yl. x)i
encode_smb(stals[1], fr_code[btk_x][btk_y].y);
updare_srats(&stats[1], fr_code[btk_x][btk_y].y);
encode_smb(stats[2], fr-cod e [btk_x][btk_y]. rran state);
update_srats(&statsf2l, fr_code[blk_x][btk_y].transtate);
encode_smb(stats[3], fr_codeIbtk_x][btk_y].scate);
update_stats(&stats[3], fr_codeIbtk_x][btk_y].scate);
encode_smb(stats[4], fr_code [blk_x][btk_y]. tran sfo rm);
updare_stats(&srats[4j, fr_codeIbtk_x][blk_yl.transform);

)

flush_encoder0;
close_bit_out0;

)

/. ----

: lnitialize the arithmetic encoder.

void init_encoder0
(

low = 0;
high = TOP;
follow_bits = 0;

: Encode a s¡ngle symbol.

void encode_smb(stals, smb)
statistics slats;
int smb;
{

¡nt ndx;
unsigned long int

- 189-

MODITLE: ARITHÌUETIC

range;

ndx = s1¿¡5. ¡¡6t*¡tt6¡'

range = (high - low) + 1;
high = low + (range . stats.cu mlndx+ 1])/ stats.cumf stats. ndx_n ml . 1;
low += (range ' stats.cum[ndx])/ stats.cu m lstats. ndi_nm];

while((high < HALF) ll (tow >= HALF))
{

il(high < HALF)
b it_p lu s_f ollow(0);

else
(

bit_p lu s_f ollow(1);
low -= HALF;
high -= UnLr'

)

low <<= 1 ;

high = (high << 1) + 1;

)
while((low>=QTR) && (high<THREE_OTR))
{

follow_bits++;
low -= QTR;
low <<= 1 ;

high -= QTR;
high = (high << 1) + 1;

l
)

/'----

: Send a bit to the outpul bit stream. , I

void bit_plus_follow(b¡t)
int bil;
{

pur_b¡r(bil);
while(follow_bits>0)

{
pul_bir(!bir);
f o llo w_b ¡ts -.;

)

)

t'---.

-190-

MODtTLE: ARITHMETIC

:Send all remaining bits in the encode¡ to the output bit stream. . I

void flush_encoder0
{

follow_bits++;
if(low<QTR)

bit_plus_f ollow(0);
else

bit_plus_f ollow(1);
)

/'==========

static unsigned long int value;

t'----

: Recover FBC paramters from an arithmelic code stream. ' I

void ac_decompress(F¡leName, fr_code)
char FileName[NM_SZ];
fractal fr_codeIBLK_NM][BLK_NM];
{

int b lk_x,
b lk_y;

slar¡stics statsIFLD_NMl;

in ir_srats(&srars[0], IMG_sZ/sTP_sZ);
inir_stats(&srars[1], IMG_szlsTP_sz);
¡n it_srats(&stars[2], 512);
in it_stats (&stats[3], 20a8);
in it_stats(&stats[41,8);

open_b¡t_¡n(FileName);

init_decoder0;

for(blk_x=0; blk_x<BLK_NM; blk_x++)
for(blk_y=0; blk_y<BLK_NM; blk_y++)

{

fr-codeIblk-x][blk-y].x = decode-smb(stats[0]);
update_stats(&stats[0], fr_codeIblk_x][blk_y].x);
fr_codeIblk_x][blk_y].y = decode_smb(stats[1]);
updale_stats(&stats[1], f r_code [blk_x][blk_yl.y);
fr_codeIblk_xl[blk_yl.translate = decode_smb(stats[2]);
update_stats(&slals[2], fr_codeIblk_x][blk_y].translate);
f r_code Iblk_x][blkj].scale = decode_smb(stats[3]);

-191 -

MOÞL,rLE: ARI TI{lvfET IC

updare_stats(&srars[3], fr_codeIbtk_x][btk_y].scale);
fr_code Ibtk_x][btk_y].tran sform = decode_smb(stats[4]);
update_stats(&stats[4], fr_code [blk_x][b tk_y]. transfo rm)l

)

c lo s e_b il_in 0 i

)

t.----
: lnitia¡ize the arithmetic decoder and fill the operating register w¡th the first

NM_Code_Bits from the input bit stream. . I

void inil_decoder0
{

int i;

value = 0i
for(i=0; i<NM_Code_Bits; i++)

value = 2 ' value + get_bit0;

low=0;
high=TOP;

)

/'----

: Decode a slngle symbol from the input bit slream. , I

int decode_smb(stats)
statislics stats;
{

unsigned long int
range;

int v_cu m,
ndx,
s mb;

range = (high - low) + 1;
v_cum = (int) ((((value - low)+ l). stats.cu mlstats.ndx_n m] -'1)/

range);

for(ndx = slats.ndx_nm; stats.cu m[ndx]>v_cum; ndx-.);

-192-

MODULE: ARITE\4ETIC

high = low + (range. stats.cu m{ndx+ 1 I)/ stats.cum lstats. ndx_nm] 1;
low += l range ' stats.cum[ndx])/ stats,cu m lstats. ndx_n m];

while((high < HALF)ll (tow >= HALF))
{

if(low >= HALF)

i
Va|ue.= HALF;
low -= HALFi
high -= HALFì

)

low <<= 1 ;

high = (high << 1) + 1;

value = (value << 1) + get_bit0;
)
while((low>=QTR) && (high<THRÊE_OTR))

{
VAIUE -= QTR;
value = (value << 1) + get_bit0;
low -= QTR:
low <<= 1 ;

high '= QTR;
high = (high << 1) + 1;

)

smb = stats.symbllndxl;

return smb;

)

/'========== ------------'/

-t93-

MODLTLE: tO

Header:

extern u nsig n ed char '¡mg_alloc0i
extern fractal -fcd_alloc0;

exlern vector'cbk_alloc0;
extern index .ndx_alloc0;

extern int img_load0;
extern int img_save0;
extern void fcd_save 0;
extern void fcd_load0;
extern int cbk_load0;
exlern int cbk_save0;

Source:

/'==========

Module: lO

Program:

Programmer:

Version:

Last Updats

Commenls:

LIBRARIES:

#include <stdio.h>
#include <stdlib.h>

#include "fbc_co n st a n ts. h "

Block Oriented Fractal Data Compression of Digital
lmages.

Larry M. Wall
Department of Electrical and Computer Engineering
University of Manitoba
Winnipeg, Canada
(larwall@ee.umanitoba.ca)

1.0

07 /06t92

lnput/Oulput and Memory Allocation Routines, and Type
Declarations for Block Orienled Fractal Data Compression
Program.

-r94-

MODLTI-E: IO

#include "fbc_io.h"

PRIVATECONSTANTS: . /

#define SUCCESS 1

#define FAILURE 0
#def ine NM_SZ 20

t'.---

PUBLIC FUNCTIONS: . t

unsigned char'img_alloc0;
fractal 'fcd_alloc0;
veclor 'cbk_alloc0;
index .ndx_alloc0;

¡nt img_load0;
int img_save0;
void fcd_save0;
void fcd_load0; .

int cbk_load0;
inl cbk_saveO;

/.==========

:Dynamically allocate memory for image array . t

unsigned char'img_alloc0
{

u nsig ned char 'ptr;

ptr = (unsigned char ') calloc(lMc_SZ ' IMG_SZ, sizeof(unsigned char));
if (lptr)

puts("Memory Allocation Error.");

retufn ptf;

)

t'----
: Dynamically allocate memory for fraclal cods ' t

fractal -fcd_alloc0

-195-

MODLLE: IO

fractal .ptr;

ptr = (fractal ') ca oc(BLK_NÀ/,1 . BLK_NM, sizeof(fractal));if (lptr)
puts("Memory Al¡ocation Error.");

return ptr;

)

/'-.--

:Dynam¡cal¡y allocate memory for codebook array . I

vector'cbk_alloc0
{

veclof.plr;

ptr = (veclor') calloc(CBK_SZ, sizeof(vector));
if (lprr)

puts("Memory Allocation Error.");

feturn ptr;

)

l''--- --:----
: Dynamically allocate memory for coded image array ' I
index.ndx_alloc0
{

index'ptr;

ptr = (index ') calloc(BLK_NM ' BLK_NM, sizeof (index));
if (lptr)

puts("Memory Allocation Error.");

retufn ptr;

)

t'---.

-196-

MODtTLE: IO

: Load image to be compressed into memory. . I

¡nt img_load(filename, image)
char f ilename[NM_SZ];
u nsig n ed char imageIlMG_SZ][tMc_SZ];
{

¡nl statu s;

FILE 'lnFile;

¡nFile = fopen(filename, "rb");
if (lnFile != NULL)
(

if (fread(image, sizeof(unsigned char), IMG-SZ , |MG*SZ, tnFile))
status = succESs'

else
(

puts ("File Read Error.,');
slatus = FAILURE;

I
fclose(lnFile);

puls("Fils Not Found.");
status = FAILURE;

)

return status;

)

/'----

: Save reconslructed fraclal image.

int img_save(filenama, image)
char filen ame[NM_SZ];
unsigned char imagellMG_SZIllMG_SZI;
{

¡nt status;

FILE .OutFile;

OutFile = fopen(filename,"*b");

)
else
{

- t9'7 -

MODLII-E: IO

if (OutF¡te t= NULL)

{

¡f (fwrite(image, s¡zeof(unsigned char), liVc_SZ . ttvtc_Sz, OutFile))
status = SUCCESSi

e lse

{
puts("File Read Error.");
status = FAILURE;

)

fclose(OutFile);

puts("F¡le Not Found.");
status = FAILURE;

)

return stalus;

)

t.----
: Load fractal code for image. . I

void fcd_load(filename, code)
char filen am elN M_SZI;
fractal codelBLK_NMl[BLK_NM];
(

FILE'lnFile;

lnFile = NULL;
lnFile = fopen(filename, "rb");
it (lnFile != NULL)

fread(code, sizeof(fractal), (BLK_NM ' BLK_NM), InFile);
else
(

puts("File Not Found.");
exil(3);

)

fclose(lnFlle);

l
e lse
(

I

/'---.

: Save fractal code for image.

-r98-

ùfOD[,I.I-E: IO

v0¡d fcd_save(filename, code)
char f ilename[NM_SZ];
fractal cod eIB LK_N ñ4][B LK_NM];
{

FILE'OutFile;

OutFile = NULL;
OutFile = fopen(f ilâname, "*b")'
if (OutFile l= NULL)

fwrite(code, sizeof (f ractal), (BLK_NM - BLK_NM), OutFite);
else

{
puts("Unable to Open File.");

)

fclose(OulFile);

)

t'---.
: Load the codebook from disk. . t

int cbk_load(filename, cbook)
char f ilen ame[NM_SZI;
vsctor cbook[CBK_SZ];
{

i n t slalus;

FILE 'lnFile;

lnFile = fopen(filename, "rb");
if (lnFile != NULL)
(

if (fread(cbook, sizeof(vector), CBK_SZ , tnFite))
status = SUCCESS;

else

{
puls("File Read Error,");
status = FAILURE;

)

fclose(lnFile);
)

e lse

-t99-

MODL,TÌ-E: IO

puts("Fite Not Found");
status = FAILURE;

)

return status;

i

t---..
: Save the codebook to disk.

¡nt cbk_save(filename, cbook)
char f¡lename[NM_SZj;
vector cbookICBK_SZ];
{

in t status;

FILE .OutFile;

OutFile = fopen(lilename,"*b,');
if (OutFile l= NULL)
{

if (twrite(cbook, sizeof (vector), CBK_SZ , OutFile))
status = SUCCESS;

else

{
puls("File Write Error.,');
slatus = FAILURE;

)
fclose(OutFile);

puts("cannot open output Fite.");
slatus = FAILURE;

)

relufn status;

)

/'========== ============'/

l
else

{

-200 -

