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ABSTRACT

Lossy signal compression based on fractals has attracted a great deal of attention
since the introduction of iterated function systems (IFSs), a compact fractal representation
scheme for complex self-affine structures. [FSs are an example of a more general class of
emerging fractal coding techniques referred to as collage coding. These techniques are all
based on a corollary of contractive transformation theory called the collage theorem. The

.problem with collage coding techniques is the high computational complexity of the
encoding procedure which is even NP complete for IFSs. Recently, a less compact but
more manageable collage coding technique called fractal block coding (FBC) has been
introduced for grey scale images. Using a divide-and-conquer encoding strategy, images
can be compressed with FBC in known polynomial time. However, this technique stili
requires a O(n#) search to encode nxn pixel images. This thesis develops a reduced
search FBC encoding procedure employing neural nerworks. A neural network paradigm
known as frequency sensitive competitive learning (FSCL) assists the encoder in locating
fractal self-similarity within a source image. For an network of appropriately chosen size
this decreases the time complexity of the encoding procedure to O(n3). For 256x256
images, compression times are improved by a factor of 45 and image quality is reduced by
less than 0.2 dB. The reduced search FBC encoding and decoding procedures were
implemented as part of a concatenated image compression scheme with FBC as the inner
code, and arithmetic entropy coding as the outer code. This addition of arithmetic coding
improves compression ratios by up to 20% without further effecting image quality. Using
the concatenated FBC/arithmetic compression scheme, grey scale images were compressed

at ratios in excess of 18:1 with peak signal-to-noise ratios (PSNR) of up to 31.0 dB.
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CHAPTER I

INTRODUCTION

The demand for digital images in both non-computing and computing related
applications is currently undergoing exponential growth. Present and future applications
include facsimile, remote sensing, video conferencing, multi-media, and digital television
for use in business, entertainment, education, the graphic arts, medicine, and scientific
research. Unfortunately, digital images contain an extremely large amount of data. For
example, a single 320 by 200 pixel color photograph requires 62.5 Kbytes of storage and
is considered small by todays standards. The NTSC broadcast standard for color
television, transmitting at 30 frames per second (fps) with 525 scanlines per image
requires 4 MHz of bandwidth in analog form. A digital representation of this same signal,
sampled at 14.3 MHz would require in excess of 100 Mbits per second. The new HDTV
standard for North America, when selected, will almost certainly be digital and will require

at least 400 Mbits per second.

The advent of larger computer memories, as well increased transmission bandwidth
(fiber optics) and mass storage devices (CD ROM), have magnified this problem. By
making digital imaging practical for the first time, these developments have dramatically
increased user demand for digital images and thereby made apparent the limitations of
current technologies. For example, current ISDN channels are confined to 64 Kbits/s and
even with a capacity of 650 Mbytes, a single CD ROM is capable of storing only about 6

minutes of moving video.



While it is important to concentrate on improving these technologies, it is equally as
important to reduce the demands placed on them. Dara compression provides the only
immediate solution to this problem. By removing unnecessary or redundant data from an
image, storage and bandwidth reﬁuirements can be dramatically reduced. Data
compression will not only allow application developers to satisfy current user requirements
within the confines of todays technology, but will also ensure that future technologies meet

or exceed growing user demand.

Unfortunately, traditional data compression techniques such as Huffman [Huff52]
and Lempel-Ziv-Welch (LZW) [Welc84] coding can compress digital images by less than
50%. These techniques generally result in low compression ratios because they are exact
or lossless. Lossless compression techniques are intended primarily for encoding critical
data such as text and executable files. Data of this nature must be reconstructed exactly
from the compressed format. In contrast, images are signals into which small amounts of
noise can be injected without noticeably corrupting the data. Images can therefore be
compressed using inexact or lossy compression techniques. Currently, these techniques
can result in compression ratios between 10:1 and 30:1 for still images without introducing

unacceptable levels of distortion into the reconstruction.

In lossy compression schemes, distortion is measured in one of two ways;
objectively and subjectively. Objective measurements are quantitative measures of
distortion based on some mathematical function such as signal-to-noise ratio (SNR).
Subjective distortion measures are more difficult to define universally but are equally or
even more important. These measures are based on the subjective opinions of human
observers. Lossy data compression techniques attempt to maximize compression ratios

while minimizing distortion, both objective and subjective.



There are two primary classes of lossy compression techniques; vector
quantization and transform coding. Vector quantization techniques segment an image into
blocks called vectors. A table of typical vectors is maintained from which a good match to
each image vector is located. Rather than transmitting the vector in its entirety, the vector
quantizer transmits or stores only the appropriate table indices. Reconstruction is achieved
by a simple table lookup procedure. Transform coding techniques use a mathematical
function to transform an image or portion thereof into an equivalent but more implicit
representation. Only a subset of significant components in this representation are retained.
An approximate reconstruction of the original image is generated by performing an inverse
transformation on this subset. The best known and most effective examples of transform
coding for images are those based on the discrete cosine transform (DCT) [ChSF77]
although discrete wavelet transforms (DWTs) [Mall89] are emerging as viable
competitors to these techniques. The discrete cosine transform produces a representation of
an image in the frequency domain, similar to that of the more familiar discrete Fourier
transform (DFT). The individual frequency coefficients in this representation are then

quantized and coded based upon their relative visual significance.

Although both vector quantization and transform coding have produced very good
results for image compression, the search continues for new techniques capable of
producing higher compression ratios with lower distortion rates. Signal compression using
fractal geometry or simply fractals represents an emerging area of lossy data compression
methods. Fractal compression schemes have attracted a great deal of attention since the
introduction of iterated function systems (IFSs) [Barn88], a remarkably compact scheme
for representing intricate self-similar structures. With IFSs, complex binary images can be
represented in as few as 10 bytes [Kins91]. These very compact representations have

encouraged a number of researchers to investigate the possibility of applying fractals to



lossy signal compression.

Current fractal compression techniques are based on a corollary of contractive
transformation theory called the collage theorem and are commonly referred to as collage
coding. The collage theorem implies that if an image or portion thereof can be completely
described in terms of smaller possibly distorted versions of itself, then the original image
can be reconstructed from this description using a simple iterative procedure. The objective
of a collage coding must therefore be to represent an image as a function of itself as

accurately and compactly as possible.

In this respect, collage coding differs fundamentally from both vector quantization
and transform coding. Vector quantization represents an image in terms of prototype
vectors stored in a table while transform coding represents the image by transforming it into
some other domain. In contrast, collage coding techniques represent an image in terms of a
mathematical function which transforms the image into itself. It is this function which

constitute the coded version of the image.

The primary difficulty associated with collage coding techniques is computational
complexity. The inverse problem of locating the IFS code which describes a given image
is an NP complete problem for which an adequate automated solution has not yet been
found [PeJS92]. Despite this, other researchers have applied collage coding to image
compression using less compact representations with promising results. Successful
implementations of these techniques are no longer NP or NP complete but instead operate
in known polynomial time. One such technique has been proposed by Jacquin for grey
scale images [Jacq92] and is referred to as fractal block coding (FBC). Unfortunately, the

generalized form of the FBC encoding procedure is still computationally intensive and



consists of an O(n4) search for nxn images. A number of authors have proposed
methods for reducing FBC encoding times but these approaches have generally been

heuristic in nature.

This thesis develops a reduced search FBC encoding procedure using a neural
network paradigm known as frequency sensitive competitive learning (FSCL)
[AKCMP90]. This new procedure avoids the uncertainties of heuristic techniques in favor
of systematically reducing the order of the encoding algorithm. The current implementation
performs a hierarchical rather than a complete search within the image and is based on sub-
image classification using neural networks. For an appropriately chosen network, the
hierarchical approach reduces the time complexity of the encoding procedure from O(n?) to

O(n3).

The reduced search FBC encoding and decoding procedures are implemented in the
context of a concatenated image compression scheme employing both FBC and arithmetic
entropy coding [WiNC87]. This scheme compresses an image using FBC and then
removes any redundancy remaining in the resulting fractal code with arithmetic coding. In
contrast to FBC, arithmetic coding is a lossless compression technique which implies that
the fractal code can be reconstructed exactly from its arithmetically compressed
representation. Using this concatenated FBC/arithmetic compression scheme, compression

ratios can be improved by as much as 20% over FBC alone.

This thesis is organized into nine chapters. Chapter 2 provides a very general
introduction to fractals, discusses some of their properties, and indicates why fractal

geometry may be applicable to data compression. Chapter 3 develops the contractive



transformation and collage theorems upon which all current and practical fractal
compression schemes are based. Barnsley’s iterated function systems are described in
chapter 4 as the first example of a representation scheme which satisfies the preconditions
of the contractive transformation theorem. Even in the absence of an automated encoding
procedure, IFSs are historically significant and highly illustrative of collage coding
techniques. Chapter 5 discusses a generalized form of the basic fractal biock coding
procedure developed by Jacquin. The chapter concludes with a review of extensions to this
generalized procedure appearing in previous literature. In Chapter 6, the systematic
reduced search fractal block coding procedure is developed. This development includes a
discussion of frequency sensitive competitive learning neural networks. Chapter 7
describes the implementation of the concatenated fractal/arithmetic coding system for grey
scale images. A complete description of arithmetic coding and motivation for its inclusion
are also provided. Finally in Chapter 8, FBC compression results are presented and
compared against other popular image compression schemes based on vector quantization

and transform coding. Conclusions and recommendations are presented in Chapter 9.



CHAPTER II

FRACTALS, NATURE, AND SELF-SIMILARITY

The formal definition of a fractal is “a set for which the Hausdorff-Besicovitch
dimension strictly exceeds the topological dimension” [Mand83]. Unfortunately, this
definition is only meaningful to a select group of mathematicians and even then it does not
‘convey any indication of how or why fractals may be applicable to data compression. A
true understanding of fractals and fractal data compression requires a more intuitive
perspective than that offered by the formal definition. Consequently, the best way to
discuss fractals is by considering a few examples ~ both classical (fractais which exist only
in the minds of imaginative mathematicians) and natural (fractals which seem to materialize
in every corner of the physical world). These examples will yield some instinctive
understanding of fractal geometry, and reveal a few of the properties which make fractals

particularly applicable to data compression.
2.1 What are Fractals?

Consider the straight segment line of length L in Fig. 2.1. With a reasonably
accurate ruler, the length of this segment is not difficult to measure. One would simply
hold the ruler up to the page, and read off the appropriate result. Now consider the circle
of Fig. 2.2c. Knowing what mathematicians have known since the time of Archimedes
(about 260 B.C.) you could measure the diameter of the circle and say that its

circumference is pi (w) times its diameter D. However, if you were not aware of



Archimedes equation for the circumference of a circle you might do exactly as Archimedes
did. That is, measure or calculate the circumference using a piecewise linear approximation
of the circle. This can be accomplished by inscribing a polygon inside the circle and then
calculating the total length L. of its perimeter as shown in Fig 2.2a. Of course the total
length determined in this way is only an approximation for the circumference of the circle
and depends upon the particular polygon chosen. A polygon with more and shorter sides.
as in Fig. 2.2b, results in an approximation which is not only more accurate but, longer.
By increasing the number of sides on the polygon, thus improving the accuracy of this
approximation, you would find that the approximate circumference of the circle increases
towards a limit. This limit is © times the diameter — Archimedes equation for the

circumference of a circle.

U

Fig 2.1 A straight line segment of length L.

() (b) (c)

Fig. 2.2. Polygon approximations of the circumference of a circle. Approximated with (a)
four line segments for a total length L¢e = 2Y2D , and (b) six line segments for a
total length of L- =3D. (c) The limit as the number of line segments is taken
to infinity yields a true circumference of ntD.



Now consider the object shown in Fig. 2.3. This object is an approximate
representation of what is referred to as the Koch curve after the Swedish mathematician
von Koch, who first described it. The Koch curve is a non-differentiable function which.
like the circle, does not have any straight line components. For this reason, any
measurement of its length would have to be a piecewise linear approximation. Following
the same logic that resulted in the equation for the circumference of a circle one might
suspect that an equation for the length of the Koch curve could be found by taking the iimit
of a piecewise linear approximation as the pieces are made smaller and smaller. The gross
error in this supposition becomes apparent when one considers the particular method by

which the Koch curve is constructed.

Fig. 2.3. An approximate rendering of the Koch curve.

One technique for constructing the Koch curve is a simple recursive procedure
beginning with a straight line segment as show‘n in Fig. 2.4a. This line is partitioned into
three equal parts and the central portion replaced by an equilateral triangle (Fig. 2.4b.).
This step is then repeated for each of the remaining segments in the new figure. Each
iteration of the construction procedure adds more and more detail to the image but the curve

never intersects itself. Repeating this process indefinitely results in the Koch curve.



(a)

(b)

©

(d)

e

(e

Fig. 2.4. First four iterations of the Koch curve construction procedure.

Now reconsider the length of the Koch curve assuming that the original line
segment was of length L. The first iteration of the construction procedure produces a
piecewise continuous curve made up of four line segments of equal length. Each line
segment is exactly% the length of the original line so that the new curve is % the length of
the original. The next iteration of the procedure replaces each line segment by another
piecewise continuous curve of exactly 531— times its length. The length of the curve therefore

increases by a factor of ‘3l at each iteration. After N iterations the length of the curve is

given by
Ln=(4L (2.1)

Since the Koch curve results from an infinite number of iterations of the construction
procedure, the length of the Koch curve Ly is given by the limit of Eq. 2.1 as N goes to

infinity or

- 10 -



(3]
g

Lg= lim (%}NL (2.

But Eq. 2.1 has no limit. As N goes to infinity, so to does the length of the curve. This

implies that the length of the Koch curve must be infinite or more appropriately undefined.

Without a finite value for the length of the Koch curve, the following problem
arises. Von Koch has described an non-intersecting curve of infinite length which is
contained within a bounded two dimensional space. Although confined to a finite area, the
Koch curve is still just a line and it is of course impossible to talk about the area of a line.
At the same time, as Eq. 2.2 illustrates, we can not describe the Koch curve in a strictly one
dimensional sense because its length is undefined. It follows that if we wish to the discuss
the nature of Koch curve we must do so in the context of a space whose dimension is
somewhere in the interval between one and two. However traditional mathematics, which
was drawn primarily from natural observation, only recognized dimensions which are of
integer values. Objects like the Koch curve which seemed to be of some form of fractional
dimension severely upset traditional mathematicians of the 19th and early 20th centuries
who called them pathological curves, mathematical monsters, and space-filling curves
[Kins72]. Mandelbrot calls them fractals (Mand83] and in many ways they have

revolutionized the way we view mathematics and its relation to the world around us.
2.2 Fractals in Nature
In proposing objects like the Koch curve with their fractional dimensions,

‘surrealist’ mathematicians such as Cantor, Peano, Hilbert, Sierpinski, Julia and

Hausdorff, set out to illustrate that pure mathematics was capable of describing a ‘gallery of

-11-



monsters’ far beyond anything possible in the ‘real world’. These objects led to the
redefinition of many traditional concepts in mathematics, like dimension, which had been
formerly derived from natural observation. Many mathematicians believed that these
expanded definitions would eliminate the limitations previously imposed on traditional
mathematics by its natural origins. It was Mandelbrot who pointed out that far from being

the exception, in nature fractals appear to be the norm.

In order to illustrate the existence of fractal objects in nature Mandelbrot proposed
“the apparently simple question — ‘How long is the coast of Britain?’ [Mand67). In an
attempt to answer this question consider the coastline illustrated in Fig. 2.5. This coastline
contains a multitude of ‘irregular’ bays, inlets, and peninsulas. The only way to resolve
the length of the coastline is to measure it and since it is so ‘irregular’ the only way of
doing so is once again by a piecewise linear approximation. Even if it were possible to
obtain a very accurate approximation for the length of the curve in Fig. 2.5, consider what
would happen if we acquired a map of the same coastline but at a larger scale. On a larger
map, previously imperceptible detail would become apparent — a single bay or peninsula
might consist of many subbays or subpeninsulas in turn constructed from other features
visible only at successively larger scales. In fact, regardless of the scale at which the
coastline is measured, there is always another scale just beyond perception containing a
plethora of detail equal to the present. These details would have to be accounted for and in
doing so the approximate measure for the length of the coastline would increase without
bound. Figure 2.6 shows imperical data representing the length of the west coast of Britain
measured at different scales which substantiates this claim. Here the total length of the
coastline L is measured in small steps of length s. The total length resulting from this
measurement then is plotted on a log scale against the inverse of the steps size. As the

length of the coastline is measured using smaller and smaller step sizes the total length
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measured increases without bound. Consequently a coastline, like the Koch curve. is a
fractal object for which length is an elusive and undefinable notion and there is no single

universal answer to Mandelbrot’s question.

Fig. 2.5. Eastern seaboard of the United States from the Great Lakes to the Gulf of
Mexico.

Total Length
of Coastline

logyo(L)

-3.0 -2.5 -2.0 -1.5 -1.0

Inverse Measurement Step Size

10gi({%)

Fig 2.6. Log diagram for the total length of the west coast of Britain L versus the inverse
of the measurement step size s [Mand67].
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An equally interesting observation is the fact that each of the points in Fig. 2.6 falls

roughly on a straight line. Mandelbrot calls the quantity
Drp=1+d (2.3)

where d is the slope of this line, the fractal dimension of the coastline. The fractal
dimension is a form of the aforementioned Hausdorff-Besicovitch dimension and for the

western coastline of Britain it is approximately 1.28,

The idea of a coastline as a fractal object can be easily extended to objects in higher
dimensional spaces. Like the length of a coastline, the surface area of a rugged landscape
like the mountain range shown in Fig. 2.7 is also ir-rectifiable. A more artificial but
equally interesting fractal object is the photograph in Fig. 2.8. At first glance, this
photograph may appear to be two dimensional figure with finite area but if we plot it in a
three dimensional space with brightness as the third dimension the result (Fig. 2.9) has
many characteristics in common with the mountain range. Whether or not the actual
photograph is truly a fractal is debatable. A dithered photograph like the one shown
actually consists of a finite number of picture elements (pixels) which when enlarged will
appear as round areas of uniform brightness. Nevertheless, the original scene of which the
photograph is a projection is most definitely a fractal and as such the possibility of
modeling digital images as fractal objects has excited many researchers in image

processing.

Coastlines, mountain ranges, and photographs are just a few examples of the many
fractal objects found in the every day world. In fact, nature abounds with fractals.
Snowflakes, the leaves of a fern, the human vascular system, clouds, and even galaxies all

exhibit fractal geometry.
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Fig. 2.8. A black-and-white photograph of Lena.
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Fig. 2.9. The pﬁotograph of Fig. 2.8 rendered in three dimensions with pixel intensity
plotted as altitude.

2.3 Fractals and Self-Similarity

Now let us return to the Koch curve in order to discuss another important property
of many fractals — seff-similarity. A close examination of this curve will reveal that, in
addition to the recursive procedure described in Section 2.1, this structure can be
constructed out of four smaller but otherwise exact copies of itself as shown in Fig. 2.10.
Together these four copies form what is referred to as a collage of the original image.
Objects like the Koch curve which can be constructed from collages of themselves are
called self-similar. Self-similarity, while not a sufficient condition, is a property common

to many fractals.
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Fig. 2.10. The Koch curve as constructed from four exact copies of itself reduced by a
factor of three in all directions [PeJS92].

The self-similar nature of the Koch curve leads to an alternate procedure for its
construction called the multiple reduction copy algorithm (MRCA). Peitgen et al. refer to
this a multiple reduction copy machine (MRCM) analogous to a photocopy machine with
multiple reducing lenses [PeJS92]. This new procedure begins with the same straight line
segment of Fig. 2.4a. This line segment is reduced by a factor of three in all directions and
four copies of it are placed in the positions indicated by the dotted boxes of Fig. 2.10
representing the self-similar portions of the Koch curve. The resulting image is identicle to
that of Fig 2.4b which depicts the first iteration of the previous generation algorithm. This‘
new image is also reduced and copied and the procedure, if repeated, produces exactly the
same sequence of images illustrated in Fig. 2.4. An infinite number of iterations yields the

Koch curve.

The MRCA may at first seem like just another method of generating the Koch curve
but it has a fundamental and remarkable difference. Instead of starting with a straight line
as in Fig 2.4, consider the circle of Fig 2.11a. If we perform the MRCA with the circle as

the starting image something unexpected happens — the MRCA still converges to the Koch
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curve. In fact, no matter what image we begin with the result will always be a Koch curve.

The final image is not a function of the starting image but rather of the way in which we

map the original Koch curve into itself. Furthermore, since this mapping was derived from

the particular collage associated with the Koch curve, this collage must be unique to that

object.

(a)

o,
dP0 0, oq,
o 09 £ .
@ of oot 3 0,8 .00,
t'n"
fo.? 5‘.4"&:,
: 4

Fig. 2.11. The first four iterations of the multiple reduction copy algorithm (MRCA) for

the construction of a Koch curve from a circle.

This is a very important and useful result. The Koch curve appears to be a very

complex object which, using conventional geometry, might be very difficult to describe.

waever, using the MRCA it can be described completely with just a handful of

-18 -



parameters derived from its collage. These parameters include the reduction factor. the

number of self-similar portions in the collage, and the x and y coordinates of each portion.

Most natural fractals, however, are not strictly self-similar. Consider the coastline
of Fig. 2.5 again. We indicated that zooming in on any portion of the coastline. say a
peninsula, would reveal more and more detail. Subpeninsulas and sub-subpeninsulas
would become visible. These peninsulas would not be exact copies of the original coastline
but they would resemble it in many ways. Objects like the coastline, while not strictly self-
similar, are called se/f-affine. Many objects in nature possess self-affinity. For example,
each branch of a tree can be thought of as a smaller but inexact copy of the entire tree

structure.

The MRCA applies to self-affine as well as self-similar objects. If an object can be
represented in terms of smaller distorted copies of itself, then it can be reconstructed from
an arbitrary starting image using the MRCA as long as an appropriate set of functions can
be identified to perform these distortions. Using these functions, the original self-affine
image can be reconstructed by making properly distorted copies of an arbitrary image,
reducing these copies, and positioning them correctly to construct a new image. Repeating
this process indefinitely results in the MRCA for self-affine images. Of course, the MRCA
for strictly self-similar images is just a special case of the MRCA for constructing self-

affine images where no distortion of the original object is performed.

The MRCA does not actually require that a self-affine image be represented exactly
in terms of itself. Barnsley has developed a theorem which predicts the performance of the
of the MRCA for images described only approximately in terms of smaller distorted

versions of themselves. Barnsley theorem, called the collage theorem [Barn88}, implies
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that if an image can be approximated using smaller distorted versions of itself, then the
original image can be reconstructed approximately using the MRCA. This is a result of
considerable importance since it may be very difficult to locate a set of functions which

generate an exact collage of the original self-affine structure.

In addition to the collage theorem, Barnsley has developed a set of simple functions
which, combined with the MRCA, can compactly represent many intricate self-affine
structures like the Koch curve. This representation scheme, called iterated function
systems (IFSs), is the subject of Chapter 4. However, in order to fully understand [FSs
and more importantly the implications and preconditions of the collage theorem, a number
of mathematical principles are required. These principles, while furnishing a precise
mathematical statement of the collage theorem, will also provide more insight into self-

affinity and the Workings of the MRCA.
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CHAPTER III

MATHEMATICAL F_OUNDATIONS: CONTRACTIVE
TRANSFORMATION THEORY

Bamnsley’s collage theorem, briefly discussed in Chapter 2, is actually a corollary of
a more general theorem in metric topology [NaSe82] called contractive transformation
theory. The contractive transformation theorem, describes the behavior of infinite
sequences like those resulting from repeated application of the MRCA. It was this
description that led Barnsley to formulate the collage theorem which provides the
mathematical foundation for a group of data compression techniques known collectively as
collage coding. Contractive transformation theory is itself built upon a number of
fundamental principles in metric topology including metric spaces, convergence, and
contractions. These principles must of course be developed before a complete

understanding of the theorem and its implications is possible.
3.1 Metrics and Metric Spaces

Any discussion of contraction mapping theory must begin with distortion
measures. A distortion measure is a real valued function d(x,y) which measures the
difference or distance between two vectors x and y in a set X. Mathematically, vectors
are simply elements of a set. A vector also consists of discrete elements but unlike a set,
the elements of a vector are ordered. It is this order which makes vectors useful as

representations of physical objects or phenomena. These objects may be as simple as a
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point on the Cartesian plane or as complex as a color photograph. In either case, a

distortion measure is a function which places a quantitative value on the difference between

two objects of the same type.

Two qualify as a distortion measure a function must simply return a single real

valued result for any pair of vectors in the same set. However, a more interesting set of

functions are distortion measures known as metrics which also satisfy the following four

axioms:

M1)
(M2)
(M3)
(M4)

d(x,y) 2 0 and d(x,x} = 0 for all x and y in X.
Ifd(x,y)=0thenx =y forall x and y in X.
d(x,y) = d(y.x) forall x and y in X.

d(x,y) < d(x,z) + d(z,y) forall X,y , and z in X.

Together, the metric d and the set X are referred to as the metric space (X,d). Some

familiar examples of metric spaces include

(1) the set of all real numbers R were

dx,y) = lx - yl, (3.1)

(2) and the Cartesian plane denoted R? with the Euclidian metric given by

dyx,y) = V{x1-y1 P + (x3-y2 . (3.2)

where the notation x; and y; refers to the ith elements of the vectors x and y respectively.

[t should be noted that two different metrics, defined on the same set, form two

entirely different metric spaces. For example the function

d(x,y) = lxl-yll + uz-yzf (33)
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is valid metric on the Cartesian plane but results in a metric space which is very different
from (R*.d,). Which metric is better? This question can only be answered in the context
of a particular application. The pilot of an airplane flying in a straight line from point x to
point y might use the Euclidian metric to measure the distance he or she must travel.
However, the metric described by Eq. 3.3 would be far more relevant to a taxi cab driver in
Manhattan who must drive from x to y along the perpendicular lattice of roadways which

make up that cities infrastructure.

Having chosen an appropriate metric space, it becomes possible to talk about
convergent sequences in that space. Instead of a single vector x in the set X, consider an
infinite sequence of vectors (X,} = {X{,X;,X3,...} in X. This sequence is said to be
convergent 1if there is a point X, in (X,d) with the property that for any real number >0
there is an integer N such that d(x,,x,)<e for all n=N. The point x, is referred to as the
limit of the sequence {x,,} and is often written

lim x,=x, (3.4)

R—yes

This simply means is that successive vectors in the sequence {x,} become closer and

closer to some point x,,.

A metric space is said to be complete if any Cauchy sequence {x,} in (X,d) is
also a convergent sequence. This means that, if for any >0, there exists a positive integer
N such that d(x,,x,,)<e for any n,m2N, then the sequence (x,} has a limit x, in
(X.d). A Cauchy sequence is simply a sequence for which the distance between
successive pairs of elements becomes arbitrarily small. In a complete metric space, all such

sequences converge to a defined limit.
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3.2 Contractions, Fixed Points, and the Collage Theorem

With an understanding of metrics and sequences, it now becomes possible to
introduce contractions and the contractive transformation theorem as well as its corollary,

“the collage theorem.

A contraction is a function f, defined on a metric space (X,d) which maps X into
iself. Furthermore, to qualify as a contraction there must exists a real number £ called the

Lipschitz coefficient or contraction factor, where 0 < k < 1, such that

d{f(x).f(y)) < kd(x,y) (3.5)

forall x and y in X.

The importance of contractions to fractal coding is described by Banach's fixed
point or contractive transformation theorem. Formally, this theorem states that for a
contraction f, defined on a complete metric space (X,d), there is one and only one point

X, in X such that
f(x,) = x,. (3.6)

Moreover, if X is any point in X and {x,} is-a sequence defined by x| = f(x), X5 =

Axy), ... x, =f(x,.1) =f(x), then {x,} is convergent and

lim x,= im f*(x) = X,. 3.7

n—yeo n—see

More simply put, every contraction in a complete metric space has associated with it a

unique fixed point to which successive iterations of the contraction on an arbitrary starting
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point will always converge. This fixed point is often called the attractor of the contraction.

In addition to a unique attractor, there exists an estimate which relates the distance
between the n™ iteration of f in the sequence {x,} and the attractor to the distance
between the starting point x and the first point in the sequence x;. This estimate, called the
a priori estimate, is given by

dXp,Xo) < ;‘_1 dx,x1) (3.8)

Letting n equal zero and substituting x; = f{x) into Eq. 3.8 yields

&X,Xo) < ﬁd(x,j{x)) (3.9)

which is the generalized form of Bamsley’s collage theorem.

What is so interesting and relevant about the contraction mapping theorem is that it
describes exactly the type of behavior exhibited by the MRCA. Regardless of initial image
x, the MRCA always converges to the same final image x,. This occurs because the
functions which map self-affine objects like the Koch curve into themselves are

contractions.

The contractive transformation theorem and its corollary, the collage theorem, have
important implications in image coding which should be understood outside of the context
of a particular metric space or contractive function. The contractive transformation theorem
implies that if an image x can be described approximately by a contractive function f(x) of
itself, successive iterations of the contraction on any initial image will result in an image x,,
unique to f. Furthermore, the collage theorem establishes an upper bound (Eq 3.9) on the

error between the original image and the attractor x, associated with f. This bound relates
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the error between the original image and the attractor to the error between the original image

and its collage, f(x).

Encoding/decoding schemes based on contractive transformation theory and the
collage theorem are appropriately called collage coding or coding by iterative contractive
transformations. The objective of these coding techniques is to locate a contractive
function or set of contractive functions which can be used to generate a collage of a given
image. In the techniques described in this thesis, a basic form for these functions is
assumed. The encoder then locates the specific parameters within this form that minimize
the distance between the original image and the resulting collage. These parameters
represent the fractally encoded description of the image and are either transmitted or stored

for reconstruction at a latter time.

For a successful collage coding technique both an appropriate metric space and
general form for the contraction must be established. As Section 3.1 indicated, it is
important that the metric associated with the selected metric space yield relevant measures
of the distance between images. In selecting a form for the function one must also ensure

that

(1) with appropriately chosen parameters the resulting functions will
indeed be a contraction,

(2) functions based on this form will produce adequate collages of the
original image with respect to the chosen distance measure,

(3) the parameters which govern the behavior of these functions can be
represented more compactly than the original image, and

(4) for a particular image, these parameters can be located efficiently and
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systematically.

If the basic form meets these criterion then the original image, or an approximation thereof,
can be decoded by iterating the resulting functions with the appropriate parameters on any

starting image as per the MRCA,

Both of the fractal coding techniques presented in the remainder of this thesis are
examples of collage coding and satisfy at least the first three of the above requirements.
fterated function systems (IFSs) are a remarkably compact fractal coding technique used
-primarily for representing complex self-similar binary images. Unfortunately, it may be
tremendously difficult if not impossible to extract the IFS parameters for a particular source
image via an automated procedure. Nevertheless, IFSs are highly illustrative of collage
coding techniques in general and are therefore worth examining before proceeding to
fractal block coding (FBC) — a less compact but more manageable fractal compression

technique for gray scale images.
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CHAPTER IV

ITERATED FUNCTION SYSTEMS

The first difficulty associated with the development of any data compression
scheme based on collage coding is locating a set of functions which satisfy the
requirements of the contraction mapping theorem. In conjunction with the collage theorem,
Barnsley introduced iterated function systems (IFSs), a scheme for representing intricate
self-similar structures. An IFS consists of a set of simple contractive functions which
describe an object in terms of smaller distorted versions of itself. This description is

remarkably compact - complex binary images can be represented in as few as 10 bytes.

Unfortunately, the inverse problem of locating the IFS code which describes a
given image is an NP complete problem for which an adequate automated solution has yet
to be found. Despite this, the importance of IFSs can not be overemphasized since they
have inspired other collage coding techniques based on more manageable representation
schemes. In addition to their historical significance, IFSs are extremely useful for
illustrating general collage coding principles and give some indication of the very high
compression ratios (eg., 10,000:1 [BaS188]) which may be possible using fractal

compression techniques.
This chapter describes the basic IFS representation scheme and shows how it

satisfies the requirements of the contraction mapping theorem. In addition, an alternative

form of the MRCA called the random iteration algorithm (RIA) is introduced. The RIA,
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also developed by Barnsley, has a number of advantages over the traditional MRCA and is
useful for establishing the connection between fracrals and the affiliated field of chaos
[PeJS92]. Finally image compression based on IFSs is discussed briefly with particular

attention paid to the difficulty of designing an automated encoding procedure.
4.1 Overview of Iterated Function Systems

Iterated function systems (IFSs) are a scheme for representing complex self-affine
structures. An IFS consists of a set of contractive affine transformations (CATs) of the
form

=] 2 84 ¢

which are used to transform a set of points contained within in the Cartesian plane. In this
equation, the parameters ¢ and f represent translations along the horizontal and vertical

a b

axes while the matrix[ y ] is linear operator which can distort an image in four different

c
ways. These distortions, illustrated in Fig. 4.1., include scaling, rotation, reflection, and
shearing. Figure 4.2 illustrates the combined effect of translation and distortion by a

single CAT on an object H.

Given a distorted and translated version of some object, the coefficients of the CAT
which generate this distortion and translation lcan be determined by solving a system of
simple linear equations. Three points X, y, and z on the original structure are selected and
then the three corresponding points X, ¥, and Z on the distorted version are located.

Substituting these points into Eq. 4.1 yields
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Fig. 4.1. Distortions producible using contractive affine transformations CATs. (a)
original image, (b) scaling, (c) rotation, (d) reflection, and (e) shearing
[Pe]S92].

0525

w{H)

24}

Fig. 4.2. Scaling, rotation, reflection, skewing, and translation of an object H by a CAT.
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Equations (4.2) through (4.4) can be rewritten in terms of the following two systems of

linear equations

xpx 1 a X
yiya || b |=|7) (4.5)
2122 1 JL o 73

and
x1x 1 c X2
yiyva L a|=|%1]. (4.6)
nzn VLl |5

Solving Egs. 4.5 and 4.6 yields
a Xy
bi=T|y (4.7)
¢ z :

and
¢ X2
d|=T1y (4.8)
f F7)

where
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[ Y2-72 72-X2 X2-yv2 “‘

T = j;J 21-Y1 Xi-21 Yi-x (49}
L Y122-Y221 X2Z21-X1Z2 X|1y2-Xayi
and
[=X(Y2-X(22-X0Y 1 +Y122+X221-Y22) (4.10)

Any self-affine image which can be described in terms of itself under any
combination of the distortions illustrated in Fig. 4.1 can be constructed using IFSs. Each
.self-affine portion in the original images has associated with it a unique CAT. For
example, the Koch curve K illustrated in Fig. 4.3 has four self-affine portions and is
therefore constructed from an IFS consisting of four CATs. The CAT coefficients for each
of the self-affine portions of the curve can be extracted by selecting three points on the
original image, locating the corresponding points on each self-affine portion, and solving

Eqgs. 4.7 through 4.10.

X ~ z
z
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! N e Y
K J \\_)<,f \
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7 2 N \ 5
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Fig. 4.3, The Koch curve K as constructed from four CATs of itself, w, through w.
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Using the IFS coefficients, the original self-affine structure can be constructed trom
an arbitrary starting image using the MRCA. Each CAT in the IFS is in turn applied to the
starting Image to create a new image consisting of N copies of the original. This new
image is then transtormed in the same way, and this process, if repeated indefinitely will
result in a reconstruction of the coded self-affine structure tndependent of the starting

lmage.

A wide variety of fractal images can be constructed using IFSs. A small subset of
these images are ‘classical’ fractals like the Koch curve but more interesting examples
include surprisingly realistic looking renditions of natural objects such as leaves, ferns, and
trees. Examples of both types of images are shown in Figs. 4.4 through 4.7 along side
their self-affine constructions and IFS coefficients. Each of these images is 200 by 200
pixels in size and would therefore require almost 5 Kbytes of storage each. The IFS
storage requirements for these image are significantly less and are included with the
corresponding figure. These values assume that only seven bits are required to adequately
represent each IFS coefficient. For objects like the fern in Fig. 4.6 which require only four

CATS this represents a compression ratios of 238:1.
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(a) (b)

Wi a b C d e f

1 0.00 0.58 -0.58 0.00 | 0.05 0.59
2 0.00 0.58 -0.58 0.00 | 040 0.79
3 0.00 0.58 -0.58 0.00 | 0.05 0.8

()

Fig. 4.4. (a) A Dragon curve, (b) its self-affine components, and (¢) its [FS description; 3
CATs, 16 bytes.
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I L
L L
(b)
w; a b C d e f

1 034 000 000 034 | 000 0.00

2 034 0.00 000 034 | 000 0.33

3 034 0.00 000 034 | 000 0.67

4 0.34 0.00 000 034 {033 000

5 034 000 000 034 {033 0.67

6 034 000 000 034 | 0.67 0.00

7 034 000 000 034 | 067 033

8 034 0.00 000 034 | 067 067

Fig. 4.5. (a) Sierpinski’s carpet, (b) its self-affine components, and (¢) its [FS description;
& CATs, 42 bytes.

(€)
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0.85 004 -004 085 | 008 0.18
0.20 -0.23 023 020 | 040 0.05
-0.15 028 026 024 | 048 -0.08
000 000 0.00 0.16 { 0.50 0.00

Bl B -

(c)

Fig. 4.6. (2) Barnsley’s fern, (b) its self-affine components, and (c} its IFS description; 4
CATs, 21 bytes.

-36 -



(a) ®)
w; a b c d e f

1 020 0.04 -0.04 0.85 [0.08 0.18

2 046 041 -025 036 |0.25 0.57

3 1-006 -007 045 011 {060 0.10

4 1-004 070 -047 -002 }049 051

5 1-0.63 000 000 050 j086 0.25

(c)

Fig. 4.7. (a) A fractal tree, (b) its self-affine components, and {c) its [FS description; 5
CATs, 27 bytes.
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4.2 Mathematical Foundations: The Hausdorff Distance

[terated function systemns result in unique attractors when combined with the MRCA
because they satisfy the preconditions of Banach’s contractive transformation theorem. In
particular, an IFS is a contraction with respect to the Hausdorff distance defined on the
complete metric space formed by sets of ordered pairs in the Cartesian plane. The
Hausdorff distance is a metric which measures the distance between two sets of points X
and Y, each representing a binary digital image. In order to discuss the distance between
sets of points we must first be able to talk about the distance between a point X and a set ¥

given by
d(x,Y}= min{dy(x,y)! ye ¥} (4.11)

where d, is the familiar Euclidian metric for order pairs and is given by

dofx,y) = Vlx1 - y1f +{x2 - 2P (4.12)
The distance between two sets X and Y is in turn given by

dX,Y)= max{d{x,Y)! xe X} (4.13)
The Hausdorff distance follows from this and is simply

HX.Y)= max{dX.Y), dY .X)} (4.14)

The Hausdorff metric takes into account the relative positions of pixels when
determining the distance between two images. For each pixel in an image X, the
Hausdorff metric locates the nearest (in the Euclidian sense) pixel in the second image Y.

The maximum distance measured between corresponding pairs of nearest pixels is retained
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as a measure of the distortion between the image X and the image ¥. This procedure is
then repeated for every pixel in the the image ¥ resulting in a measure of the distortion
between the image Y and the image X. The Hausdorff distance is the maximum of these

(WO Imeasures.

Under the Hausdorff metric, the contraction factor associated with an [FS can be
calculated from the contraction associated with each CAT [Hutc81]. The contraction factor

for each CAT is the maximum of the scaling factors in each of two directions given by
s1=Ya? + ¢? (4.15)

and

sy =102+ a2 (4.16)

respectively, so that
ki = max{s,57) (4.17)

The contraction factor for the entire [FS is simply the maximum contraction factor of the

individual contraction factors asscciated with the N CATs in the IFS or

k= max{k;1i=1,2,. N} (4.18)

The motivation for selecting a complex metric like the Hausdorff distance is based.
in part, on the psychology of visual perception which determines whether or not a
particular metric ts in fact meaningful. The two binary images X and ¥ can also be
considered as two nxm vectors X and Y for which a simpler metric such as the nxm

dimensional Euclidian metric given by
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dAX.Y) = »JZ, DXy - vyP (4.19)

i=t j=1

could be used. However, Fig. 4.8 illustrates how this measure is not as visually
meaningful as the Hausdorff metric. The distance between Figs. 4.8a and 4.8b and the
distance between Figs. 4.8a and 4.8¢ are identical with respect to Eq. 4.19. However, to
both the human visual system and the Hausdorff metric, Fig. 4.8a resembles Fig. 4.8b
more than Fig. 4.8¢c. The Hausdorff metric provides distance measures more in line with
the human visual system because it takes into account the relative position of pixels in the

image.

(a) (b) (©)

Fig. 4.8. Ambiguity of the Euclidian metric. Under the euclidian metric the distance
between (a) and (b) is equal to the distance between (a) and (c). Under the
Hausdorff metric the distance between (a) and (b) is significantly less than the
distance between (a) and (c). The Hausdorff metric reflects the way in which a
human being might compare these objects and is therefore a more meaningful
distortion measure for binary images [Jean90].

Before concluding this section, a remark on notation is in order. In Chapter 3,
images were represented as vectors in a metric space and were therefore denoted by lower

case boldface text (eg. x). Sometimes, as was the case with the Hausdorff metric, it is
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more convenient to think of these images as sets of points denoted X. In future chapters,
images will be described as vectors which can be further subdivided into smaller
component vectors. To avoid confusion, in the remainder of this thesis images will always
be referred to using capital letters consistent with the notation adopted in this chapter. [f the
image should be viewed in the context of a set of points then it will be represented by
capital italics (eg. X). Conversely, if the image is better represented using vector notation

then it will be referred to using capital boldface lettering (eg. X).

4.3 The Random Iteration Algorithm

Barnsley’s third contribution to fractal data compression, besides the collage
theorem and iterated function systems, is an alternative form of the MRCA known as the
chaos game or random iteration algorithm (RIA). The primary disadvantage of the
MRCA is that it may take many iterations to converge to an acceptable representation of the
attractor associated with a particular IFS. As an example consider Barnsley’s fern
constructed at a scale of 200x200 using the MRCA. At each iteration of the MRCA, the
first CAT in the IFS reduces the current image by only 85%. If the starting image is a
200x200 pixel box as shown in Fig. 4.9a then even after 10 iterations as shown in Fig.
4.9b, artifacts caused by the particular starting image are still visible. In fact, these artifacts
will only disappear at the point where the original square has been mapped into a single

pixel. This occurs when

200 0.85M =1 (4.20)

where M is the number of iterations of the MRCA. Solving Eq. 4.20 yields M=33.
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(a) (b)

Fig. 4.9. Bamsley’s fern as constructed using the MRCA. (a) The starting image and (b)
the reconstructed fern after 10 iterations of the MRCA.

The random iteration algorithm shown in Fig. 4.10, is a less computationally
intensive procedure equivalent to the MRCA. The RIA begins with a random point,
usually x = (0,0), then selects a CAT at random from the IFS according to a discrete
probability density function. The probabilities p; reflect the relative area occupied by each

CAT in the self-affine representation of the image and are given by

_ ajdj — b,-cj

== 4.21)
'Zi lajd; - bjcj
=

Once selected, the CAT is applied to the current point to generate a new point which is then
plotted. The procedure is repeated until enough points have been plotted to adequately
represent the attractor of the IFS. In most implementations of the RIA, the points resulting

from the first 10 iterations of the algorithm are usually not plotted since the initial point is
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chosen arbitrarily and may not lie within the attractor of the IES. However, because the
IFS is a contraction the RIA converges very quickly and after 10 iterations the current point
seems always to lie within the attractor. An implementation of the RIA with a good starting
point and automatic scaling is described by Kinsner [Kins91]. C language source code for

both the RIA and the MRCA is also provided in Appendix A of this thesis.

STEP 1: Initialize the starting point x = (0,0).

STEP 2: Select a random CAT w; from the IFS W = {w,w,,...,wy)
according to the discrete probability density function p;,.

STEP 3: Let x = wi(x).

STEP 4: Plot the point x. Goto STEP 2.

Fig. 4.10. The random iteration aigorithm (RIA) for IFS decoding.

The first 100, 1000, 10 000, and 100 000 iterations of the RIA for the construction
of Barnsley’s fern are shown in Fig. 4.11. Note that although in excess of 10000
iterations of the RIA were needed to adequately reconstruct the fern, each iteration requires
that only one point be plotted. In contrast a single iteration of the MRCA for a 200x200
pixel image would require that 40 000 points be considered. This would amount to over a

million points for the 33 iterations of the MRCA required to reconstruct the fern.
Having illustrated that the RIA requires significantly less computation than the

MRCA, it is necessary to indicate how the two algorithms are otherwise equivalent. To do

so we must show that like the MRCA, the RIA will fill out the attractor of the IFS. A
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(a)

(c) (d)

Fig. 4.11. The first (a) 100, (b) 1000, (c) 10 000, and (d) 100 000 iterations of the RIA
for the construction of Barnsley’s fern. In each case the first 10 points are not
plotted.

formal proof of this is based on ergodic theory [Barn88] however a simple probabilistic

discussion of this is based on the fact that each CAT is associated with a particular self-




affine portion of the original image. By selecting CATs at random, each self-affine portion
will be visited a number of times relative to the probability of its associated CAT being
chosen. Peitgen er al. provide an intuitive discussion of the operation of the RIA based on
such a probabilistic approach and in fact suggest that this discussion may be more useful

than any formal mathematical proof based on ergodicity [PeJS92].
4.4 Data Compression with IFSs

[FSs can be applied to the compression of binary, grey scale, and color images as
well as other lossy signals but are most naturally discussed in the context of binary images.
An IFS compression system for binary images would begin with an image or portion
thereof and generate a collage of that image using a set of CATs. The encoder must then
manipulate the CAT coefficients so as to minimize the Hausdorff distance between the
original image and its collage. The collage theorem implies that if the collage is close to the
original image in terms of the Hausdorff distance, the attractor of the IFS generated using
the MRCA or RIA decoding algorithms will be a good representations of the original
image. Of course the original image can be represented exactly by choosing an IFS which
has one CAT for each pixel in the original image. However since each CAT increases the
storage requirement of the IFS code this will not result in a particularly efficient
representation of the original image. Therefore, the IFS encoding algorithm must not only
generate a collage which adequately covers the original image but must do so using as few

CATs as possible.
Unfortunately, while it is often easy for an intelligent observer to recognize the self-

affine portions in an image and thus construct an acceptable collage, an adequate automated

solution to this problem has not yet been found. A number of optimization techniques such
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as simulated annealing [LaAa87] and genetic algorithms [Davi91] have been attempted but
with only limited success [MoHS90). The primary disadvantage of such techniques is that
they must perform repeated calculations of the Hausdorff distance. Each time a new set of
CATs is considered as a possible solution to the encoding problem, a new collage must be
generated and the Hausdorff distance calculated to determine the suitability of that particular
solution. Although fast algorithms [Shon89] for the calculation of this metric do exist, this
is still a computationally intensive procedure. In addition to the computational requirements
of the Hausdorff metric, for many images this metric is a non-monotonically decreasing
function with many local minima. This non-monotonicity eliminates optimization
techniques based on gradient descent and may severely impede more global approaches
should the Hausdorff metric become particularly erratic. This is often the case for images

in which the self-affine components of the collage overlap.

Other researches have attempted to extract the IFS parameters directly from the
source image without generating a collage. Such attempts include the use of
morphological skeletal transforms [MaSh90] and wavelet transforms [FrDu90] from
which the IFS coefficients may be determined directly. These methods seem to work well
for some images and not so well for others since the relationship between images in one

domain and the IFS paramters in another has not been clearly established.

In all, no single algorithm has emerged which is capable of solving the IFS
encoding problem quickly and for all images. It remains to be seen whether or not the role
of the intelligent observer in recognizing seif-affinity can in fact be automated. Despite
this, since the introduction of IFSs, literally dozens of papers have appeared with titles
such as “Image compression using the fractal transform” [Bam90]. More often than not,

these papers describe little more than the MRCA and RIA algorithms for fractal image
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decoding not encoding. These papers bring to mind a joke amongst information theorists

about

“a fellow who developed a data compression algorithm which could reduce
any file of any size down to a single bit. Unfortunately, he’s still trying to
work a few bugs out of the decompression algorithm.”

Nevertheless, [FSs are an efficient way of representing complex self-affine structures and
despite the lack of an adequate automated compression algorithm, a scheme does exist for
manually extracting the [FS parameters from a certain class of images. Even though [FS
encoding is an NP complete problem for which a fast general purpose solution may not
even exist, other researchers have applied the collage theorem and the concept of self-
similarity to image compression using less compact but more manageable representation
schemes. One such technique, known as fractal block coding, is the subject of the

remaining chapters.
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CHAPTER V

GENERALIZED FRACTAL BLOCK CODING

Collage coding schemes can be applied to grey scale as well as binary images
although the approach is somewhat less intuitive. Jacquin has proposed a fractal encoding
technique for self-affine grey-scale images called fractal block coding (FBC)
[Jacq89]{Jacq90a][Jacq90b][Jacq92]. Like iterated function systems, Jacquin’s technique
attempts to eliminate redundancy by describing an image as a mathematical function of
itself. In particular a function is chosen which describes the image at one scale in terms of

its self-affine portions at another.

Unlike IFSs, an algorithmic procedure exists for extracting the FBC parameters
from a particular image. This procedure is based on a divide-and-conquer approach in
which both the image and the fractal transformation are segmented into simpler
components. Rather than attempting to locate appropriate values for all of the FBC
parameters at once, the encoder resolves the parameters associated with each of these
segments independently and in succession. Using this approach, an appropriate fractal
representation for a source image can be located in polynomial rather than NP or NP

complete time.
This chapter outlines the fractal representation scheme for grey scale images

developed by Jacquin. Jacquin’s fractal transformation and its associated parameters are

described as well as generalized forms of the compression and decompression procedures
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referred to as FBC encoding and FBC decoding, respectively. After outlining the FBC
representation scheme in general terms, it is discussed in the context of metric spaces and
the contractive transformation theorem. This discussion focuses on the particular
constraints (or lack thereof) which must be placed on the paramters of the fractal
transformation. Finally, a number of extensions to the generalized procedure, concerned
primarily with improving its comnputational efficiency, are described. These extensions,
while mostly heuristic in nature, form the basis of a more systernatic approach described in

Chapter 6.

5.1 Exhaustive Search FBC Encoding Procedure

The generalized form of Jacquin's encoding algorithm begins by subdividing a
large image into many smaller square vectors or blocks. Rather than coding the image as a
single entity, a method is sought for efficiently representing each of these blocks
individually. Jacquin’s technique represents each image block in terms of a transformed
version of some larger block in the same image as shown in Fig. 5.1. The blocks being
coded are referred to as range blocks while the larger blocks, from whence the range
blocks are represented, are termed domain blocks. Domain blocks, being larger than
range blocks, represent larger scale features in the image. The set of all possible range
blocks is called the range pool and consists of all non-overlapping rxr blocks in the
image to be coded. The set of all possible domain blocks is likewise referred to as the
domain pool and consists of all possible dxd blocks in the image — overlapping or
otherwise. Jacquin’s fractal block coding technique is a collage scheme in so far as the
representation of each block in the range pool from some block in the domain pool forms a

collage of the original image.
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Fig. 5.1. Fractal transformation of domain blocks into ran ge blocks [Jacq92).

The basic FBC coding procedure consists of an exhaustive search of the image for
the domain block and set of fractal transformations which most closely represent each range
block. The suitalﬁiity of a particular range/domain block pair is determined according to the
Euclidian metric denoted by d,. For a range block y and a transformed domain block X

each containing rxr pixels, d, is given by

biXy)= A >3 G- i 5.1

i=1 j=1
The encoder locates the domain block and fractal transformation parameters which
minimize d, for each range block. Compression results by ensuring that the representation
scheme for each range block (in this case the pointer to the domain block and the
transformation parameters) is more compact than the explicit description of the block itself.

5.2 Fractal Image Transformation

Since domain blocks are larger than range blocks some form of transformation is
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required to map domain blocks into range blocks. In fact, the fractal transformation
depicted in Fig. 5.1 consists of three distinct transformations performed sequentially as
shown in Fig. 5.2. These transformations are spatial contraction, isometric block

ransformation, and grey level scaling and translation respectively.

Domain Block Range Block
- . Isometric Grey Level
Cosnpt?;(?tjion Block Scaling and
Transform Translation

Fig. 5.2. The fractal block transform in terms of its sequential component transforms:
spatial contraction, isometric block transformation, and grey level scaling and
translation.

Spatial contraction serves to reduce a domain block of size dxd to the size rxr

associated with range blocks. If d is an integer multiple of r, this can be accomplished by

simply taking the average of every (%)2 adjacent pixels in the domain block.

The isometric block transform redistributes pixels within a contracted domain block
in a deterministic manner. This alters the physical orientation of the input block without
effecting the individual pixel intensities. In actuality, a set of isometric transforms are
maintained from which the most appropriate for each domain/range block pair is chosen.

For square domain and range blocks the following eight transforms are used:
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(1) identity,

(2) reflection about mid-vertical axis,
(3) reflection about mid-horizontal axis,
(4) reflection about first diagonal,

(5) reflection about second diégonai,

(6) +90° rotation about center,
(7) +180° rotation about center, and

(8) -90° rotation about center.

The effect of each of these transforms is illustrated in Fig. 5.3. Together, the eight
isometric block transforms form what is called a group. Each transform in a group has an
inverse and successive application of two or more transforms results in a sin gle transform
already in the group. For this reason combinations of multiple isometries need not be

considered.

i
:

i
<G
!

!

I

(1) 2 (3) @
identity reflection about reflection about reflection about
mid-verticle axis mid-horizontal axis first diagonal

(6) (7) [ ©)
+90 ° rotation +180° rotation -90° rotation reflection about
about center about center about center second diagonal

Fig. 5.3. Isometric block transformations.
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Finally, grey level scaling and translation modify pixel intensity without effecting
the blocks physical orientation. This is accomplished by scaling and translating each block

X as follows:
X=ax +m (5.2)

where « and r are the scaling and translation coefficients, respectively. The vector u is

such that all components are equal to one; i.c.,
U, =1 forall 1 <ij<r {5.3)

Adding a multiple of u to the original vector has the effect of altering the original blocks

mean intensity.

During the coding procedure, the optimal values of a and ¢ for any given
combination of contracted domain blocks and isometric block transforms must be calculated
so as to best represent the range block being coded. For a ran ge block y and a spatially
contracted domain block x this is accomplished by minimizing d,(X,y) with respect to a

and 7 (see Appendix B) for which

. lull¥x,y) - (x,u)y,u) (5.4)
luli2lixii? - (x,u)?

and

= ilxllzbr,u)-(x,y)(x,u)‘ (5.5)
Nl - (x,u)?

Here the functions llell and (s,¢) are the Euclidian norm and inner product and are given by
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i =~/ D 3 i (5.6)

and

{x.y)=

t

Xij Yij (3.7)

r
= l

,
l j=

The Euclidian norm is commonly interpreted as signal energy while the inner product is

. often referred to as the correlation of two vectors.

From the preceding description, it follows that each range block is represented by

an individual block code containing the following four parameters:

(1) a pointer to the best domain block,

(2) a pointer to the best isometric transform,
(3) an optimal scaling coefficient, and

(4) an optimal translation coefficient.

The set of block codes for all range blocks in the the image is referred to as the fractal code

for that image.
5.3 Iterative Image Reconstruction: FBC Decoding

To reconstruct the original image from its fractal code, an iterative decoding
algorithm is used. This decoding algorithm begins with an arbitrary image referred to as
the domain image. A second image called the range image is then generated by
transforming the domain image according to the fractal code. Remember that the fractal

code represents each range block in terms of some contractively transformed domain block
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in the same image. During coding, the range and domain pools are drawn from the same
image. During decoding however, the domain pool is drawn from the domain image while
the range pool constitutes the range image and is generated by transforming the appropriate
domain blocks from the domain pool as shown in Fig 5.4. This transformation is
performed according to the specific parameters for each ran ge block outlined by the fractal
code. The algorithm is iterative in that the range image generated in this way, becomes the
new domain image and the transformation is repeated. Each successive iteration results in a

new range image closer to the source image used during the encoding procedure.

Domain Image Range Image

Fractal ...... o
Transform Range Block :

...........................

Domain Block

Fig. 5.4. Reconstruction of the range image from a domain image via the fractal code.

The iterative nature of the algorithm is extremely important to the fractal aspect of
the coding technique. An important feature associated with scale self similarity is the fact
that fractal images possess infinite resolution. Since the spatial reduction portion of the
fractal transform maps large domain blocks into smaller range blocks, repeated application
of the fractal code will produce images of successively higher resolution (limited of course
by the resolution of the computer display). In this way a 256x256 pixel image could be
fractal coded and then reconstructed at a resolution of 512x512. Similarly, a small portion

of a fractal image could be magnified without exhibiting the blockiness or edge degradation
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which results from the magnification of fixed resolution images.
5.4 Mathematical Basis for FBC

In order to establish that the iterative reconstruction procedure will in fact converge
to a reasonable representation of the original image, we must discuss the conditions under
which fractal block coding satisfies the requirements of the contraction mapping theory.
This discussion must of course take place in the context of some complete metric space. In
fact we will define two metric spaces valid for grey scale images and use both in the

ensuing discussion of the fractal block code as a contractive function.
5.4.1 Metric Spaces for Grey Scale Images

Mathematically, an nxm digital image is simply an element of the set of all
possible nxm digital images. Since a digital image can be thought of as a simple two
dimensional array of pixels, this set can be described as the set of all real nxm matrices

denoted R ™",

To make R ™" a metric space requires a metric. Two valid metrics for the set R "
are the Euclidian metric and the sup metric. For two nxm images X and Y, the

Euclidian metric is given by

/‘/ nom

X Y)=Al DY (Xy- ¥)? (5.8)
i=1 j=1

which is the same as Eq. 5.1 except defined on the entire image rather than a single rxr

block. Similarly on R ™ the sup or Tchebychev metric, denoted d__ is given by
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d(X,Y) =sup {|X,-J,~ - Yy} 1Si<n, ISjSm} (5.9)

Combining the set R ™™ and the metrics d, and d., yields the metric spaces (R " ds)

and (R "™ d_.) which are both complete.

The Euclidian and sup-metrics have very different physical meanings. The
Euclidian metric is a measure of the energy in the signal resulting from the difference
between the two images X and Y. In this sense, the Euclidian metric provides a measure
of distance which reflects (although not exactly) the average of the errors between
corresponding pixels in either image. This means that very large or very small single pixel
errors will not appreciably effect the outcome of the Euclidian metric. In contrast, the sup-
metric provides an upper bound on the error associated with any single pixel location by
implying that no two corresponding pixels in the images X and Y differ by more than
d.(X,Y). The reason for defining two metric spaces for grey scale images becomes
apparent when we attempt to discuss the contraction factor of the fractal code. Although
the Euclidian metric is visually more meaningful and therefore used in the encoding
procedure, it is much easier to establish that a complex function is a contraction in the

(R"™.d_) space.
5.4.2 Contractivity of the Fractal Block Code

Jacquin has provided a formal proof which establishes that the fractal
transformations outlined in Section 5.2 are in fact contractive [Jacq89]. The important

results of this proof are discussed here in the context of the sup metric.

The spatial contraction function for square range blocks reduces the domain block
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by a factor bf% in both directions. This is accomplished by taking the mean of every (i)z
f.
pixels in the domain block. Under the sup metric, the contraction factor associated with

this operation is equal to one.

Since the isometric block transforms redistribute pixels within rx pixel blocks

without effecting the pixels intensities, they all have a contraction factor of one.

The grey level scaling and translation function scales and translates pixel values in

the image by the constant factors a and ¢ or

X=ax+m (5.10)
Grey level sca.Iing4has the contraction factor

ky = lai (5.11)
while grey level translation has a constant contraction factor of one.

The contraction factor for the fractal block transform representing a single range
block x;is given by product of the contraction factors associated with each of the

individual component functions in the entire transform. Since the contraction factors are

one for all but the grey level scaling function this product is given by
ki=ky=la] (5.12)

where g; represents the scaling coefficient associated with the it range block.

Under the sup metric, the contraction factor for the entire fractal code is given by

the supremum of the contraction factors for each range block or
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k = sup{k;) = supla} (5.13)

This means that to ensure that the fractal block code is in fact a contraction and will
therefore converge to a fixed image, the absolute value of scaling factor lal associated with

each range block must be strictly less than one or
lal <1 foralli (5.14)

However, the constraint placed on the scaling factor a by Eq. 5.14 is actually much too
strong if the complex interaction between overlapping range and domain block is taken into
consideration. This interaction may result in a function which is eventually contractive

even if for certain range blocks the absolute value of the scaling coefficient exceeds one.

A function fis said to be eventually contractive if there exists some integer g>0
such that the function f7 is a contraction. The eventually contractive function f has
associated with it a the same fixed point as the contractive function f?. So, even if the
fractal code is not in itself contractive, it may be eventually contractive and the collage
theorem will still hold. As the selection of domain blocks becomes more uniformly
distributed, the interactions between overlapping range and domain blocks makes it more
likely that the fractal code will in fact converge. In practice, the fractal codes for non-mrivial
images such as photographs are all eventually and strongly contractive without any

restrictions placed on a or the domain pool [OiLR91].
Finally, it should be pointed out that if a function is a contraction on one metric

space then it will yield a fixed point in any metric space defined on the same set since the

metric does not in any way effect the behavior of the function. This result is of practical
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importance since it is considerably more difficult to determine the contraction factor for the

fractal code under the Euclidian metric than the sup-metric.
5.5 Extensions to the Generalized Coding Procedure

The main problem with the generalized coding procedure is the time required to
compress images. Since every range block in the image must be compared against every
domain block in each of its eight possible isometric configurations, the total number of

block comparisons is given by
T =8(n-ap(Lf (5.15)

This is an O(n%) problem. A number of authors including Jacquin himself have introduced
schemes for improving the speed of the coding algorithm. This section outlines a number
of methods which have been used in the past to reduce compression time while maintaining

acceptable levels of quality and compression ratios.

The actual encoding technique proposed by Jacquin [Jacq89] was much more
complicated than the generalized form outlined in Sections 5.1 and 5.2. Jacquin realized
that searching the entire image for the ideal domain block for each range block was too time
consuming. Instead he proposed a reduced domain pool. This was accomplished by
dividing large images (256x256) into 128x128 sub images and encoding these
independently. This also had the effect of increasing the compression ratio since a 14 bit
pointer is required to address any pixel in a 128x128 image while 256x256 images for
example, require 16 bit pointers. Unfortunately, reducing the domain pool decreases image
quality since there are fewer domain blocks from which to construct the best fractal block

transform.
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To further reduce the search time, Jacquin classified each range and domain block
according to its ac signal energy into one of four categories; shade blocks. simple edges.
mixed edges, and midrange blocks [RaGe86). Domain blocks were only considered as
possible sources for a range block if they were classified into the same category. In
addition, shade, midrange, and edge blocks were each coded slightly differently. Shade
blocks, being the simplest were coded with the fewest number of bits, while edge blocks
required the most bits. This led to an overall improvement in compression ratio.
Unfortunately, although the four categories chosen had a basis in image analysis, four was

not the most appropriate number for an optimal time improvement.

Having severely reduced image quality by reducing the domain pool, Jacquin
decided to divide the image up into domain and range blocks of two different sizes. The
coding procedure would proceed and attempt to code the image with the largest size of
range blocks available. If a particular range block could not be coded acceptably, then it
was broken down into four smaller blocks each coded individually. Unfortunately, it took
just as many bits to code these smaller blocks as is did the larger ones so the compression,
ratio which he had sought to improve by limiting the domain pool and classifying the

blocks, was reduced.

In all, Jacquin’s attempts to improve quality and compression ratio seemed to cancel
each other out although a noticeable improvement in speed was realized. Since O(#%) is 16
times less for n = 128 than for n = 256 and four 128x128 subimages must be coded, a

speed improvement of a factor of four could at most result for 256x256 images.

Oien, Lepsoy, and Ramstaad [OiLR91] have also attempted to improve
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compression time by reducing the size of the domain pool. Their version of the fractal
block coding technique uses only non-overlapping domain blocks in the image. In a
256x256 image, there are only 256 -non-overlapping 16x16 domain blocks compared to
57,600 overlapping blocks. In addition to requiring less search time. this significantly
improves the compression ratio. Addressing these non-overlapping range blocks requires
only 8 bits rather than the 16 bits required to address every possible overlapping range
block in a 256x256 image. Since reducing the domain pool also significantly reduces
image quality, two extra components were introduced to the grey level translation function.
Instead of shifting the block by a multiple of some vector u, three vectors uy, u,, and uy
were used. As in the generalized form, the vector u, consisted of all ones. The vector u,

was a slope in the / direction or

[u];;=1i (5.16)
while the vector u3 consisted of a slope in the / direction or

[us]y = /. (5.17)

where the notation [u,];; refers to the i/th element of the kth vector. The expanded grey
level translation function resulted in an improvement in image quality at the expense of
compression ratio since two new coefficients, associated with u, and u3, where required.
However, the bits saved by reducing the domain pool were applied to representing the two
new translation coefficients u; and uz so the overall compression ratio remained
unchanged. First and foremost, this improved translation function combined with the large
reduction in the domain pool resulted in a dramatic decrease in coding time. In their paper,
Oien, Lepsoy, and Ramstaad do however show a small improvement in image quality over

the original work of Jacquin and their technique is much simpler since only one block size
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is required.

Finally, Beaumont [Beau91] has proposed an improved distortion measure for
calculating the error between range and domain blocks. Rather than using the straight
Euclidian metric he first transforms each block using the Hadamard transform. He then
exploits the varying sensitivity of the visual cortex to frequency by establishing error
thresholds for each of the Hadamard coefficients according to their relative importance to
the human visual system. This has two effects. Firstly, a domain block can be eliminated
as soon as the error threshold for a single Hadamard coefficient is exceeded which will
speed up the compression scheme. Secondly, although in terms of signal-to-noise ratio
(SNR) these images may be of lower quality, in subjective visual tests they will be of

superior quality.

5.6 Summary

This chapter has described the basic fractal block coding technique proposed by
Jacquin. The fractal representation scheme as well as generalized encoding and decoding
procedures were discussed. To ensure that the decoding procedure would in fact converge
to an adequate representation of the original image it was necessary to confine the scaling
coefficient associated with each range block to values strictly less than one. However,
previous experimental results indicate that for non-trivial images, the complex interaction
between overlapping range and domain blocks causes the fractal code to become eventually

and strongly contractive even when these coefficients are left unconstrained.

It cannot be over emphasized that the success of this technique, as opposed to IFSs,

is based on the fact that a divide-and-conquer encoding procedure can be employed to
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locate the FBC parameters associated with a particular image. This procedure

(1)  partitions the image into smaller range blocks and encodes each of
these blocks individually, and

(2) divides the fractal transform into three sub-transformations: spatial
contraction, isometric block transformation, and grey level scaling and
translation. For each range block the paramters associated with these
transformations are then solved consecutively.

For nxn images the generalized form of the encoding procedure is an O(n%)
problem to which a number of heuristic time reducing approaches have been applied.
These approaches focus primarily on reducing search time by limiting the size of the
domain pool. Unfortunately, a reduced domain pool usually results in reconstructed
images of much lower quality and must be compensated for by introducing additional
quality improving techniques into the encoding procedure. While all of the extensions to
the generalized FBC encoding procedure discussed in this chapter do in fact reduce
compression time, they do not address the fundamental issue of computational complexity.
That is, even with these extensions, the encoding procedure remains O(n4). A more
systematic approach for improving compression times without adversely effecting image
quality is presented in the next chapter. This approach uses neural networks to assist the
encoder in its search for appropriate domain/range block pairs and is aimed at actually

decreasing the computational complexity of the encoding procedure.
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CHAPTER VI

REDUCED SEARCH FRACTAL BLOCK CODING WITH
NEURAL NETWORKS

The primary disadvantage of fractal block coding is the time required to search the
domain pool for the best domain blocks to represent each range block in the image.
Reducing the domain pool is of course the easiest way to tackle this problem but it results
in image degradation. Of all the speed improving techniques proposed thus far, the only
one that does not dramatically decrease image quality is Jacquin’s approach of classifying
domain and range blocks and comparing only those which are of the same type. However,
Jacquin’s choice of classification schemes did not fully exploit this technique. Using four
types of block classifiers and assuming that the classification of image blocks was
approximately uniform this could at most improve the speed of the algorithm by a factor of
four. Unfortunately, the blocks were not classified in a uniform manner and it took time to
classify them so the resulting speed improvement was actually less than this. Despite these
shortcomings, the general idea of block classification is a promising one if the number of
categories is selected appropriately. Unlike Jacquin’s classification scheme and other
extension to the generalized FBC encoder, the technique described in this chapter
concentrates on systematically reducing the actual computational complexity of the

encoding procedure using neural networks.

This chapter develops a reduced search FBC encoding scheme based on block

classification using vector quantization (VQ) and neural networks. The basic VQ
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procedure is described and then extended into a complete image classification scheme
capable of categorizing image blocks independent of scaling, translation, or physical
orientation (isometries). The frequency sensitive competitive learning (FSCL) neural
network used to develop an appropriate set of image block categories is then introduced.
Competitive learning neural networks have become the predominant approach to VQ
codebook design and represent very natural implementations of vector quantizers. Finally,
equations for the computational complexity for the reduced search procedure are developed.
The ideal neural network size for optimal compression time improvement is then

established from these equations.
6.1 Block Classification with Vector Quantization

The idea behind a reduced search algorithm employing block classification is a
simple one. Rather than considering each domain block in the image as é possible source
for coding a particular range block, both the range and domain blocks are classified into a
number of pre-determined categories. Only those domain blocks which are classified into
the same category as a particular range block are considered as a possible source for that
range block. If the number of categories into which blocks may be classified is chosen

judiciously, search time may be reduced dramatically.

A wide variety of image classification techniques are available but one of the
simplest is vector quantization (VQ) a form of classification by table lookup. A basic
vector quantizer consists of three components as illustrated in Fig. 6.1. The codebook is
the most fundamental of these components and is simply a table of prototype vectors
statistically representative of those vectors found in the actual data to be classified. A

distortion measure such as the Euclidian metric is used to compare the relative error
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between an input vector x and the individual codebook prototypes ¢,. The input vector is
classified by searching the codebook for the prototype vector which it most closely
resembles according to the distortion measure. The minimum error detector keeps track of
the error associated with each codebook prototype and determines which is best. This
"best’ prototype is commonly referred to as the winner. The codebook index of the
winner, denoted p,,;,, is assigned to the input vector as its classification. Two or more
input vectors which are best represented by the same prototype vector are considered to be

of the same class.

Error Optimal
Input Vector d>(x,c - Codebook Index
g Distortion 2( p) Minimum
QS Measure EMOT  feeeeee @B D
Detector
Codebook c
Prototype 7
Codebook Index
P
Codebook |2

Fig.6.1 The vector quantization (VQ) classification scheme.

A reduced search fractal block coding algorithm employing vector quantization
would contain a codebook of ¢ vectors representing the categories into which domain and
range blocks are to be classified. As indicated in Chapter 5, domain and range blocks are
not compared directly. The fractal block transform has three basic components; spatial
contraction, isometric block transformation, and grey level scaling and translation. The

distortion between domain and range blocks is measured for optimally chosen isometries as
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well as scaling and translation coefficients. During the classification procedure, the values
of these coefficients are not of interest. Therefore, vectors are classified independent of

these coefficients and the codebook prototypes reflect this.

To classify an image block independent of the eight isometries, we can simply
compare the block against the codebook prototypes in each of its eight possible isometric
configurations and choose the prototype and isometry which result in the minimum
distortion. To classify a block independent of scaling or translation, any scaling or
translation components already present in the block must be removed. This is procedure is
referred to as orthonormalization. Orthonormalization is actually a two step procedure
consisting of orthogonalization and normalization. Orthogonalization removes any

component of the input vector X in the u direction by letting
X!=X‘(x,u>’u (61)
where u is once again the translation vector

;=1 forall 1 <ij<r (6.2)

This eliminates the effect of grey level translation. Normalization eliminates the effect of

grey level scaling and is accomplished as follows

%=X : (6.3)
iix’ll

Normalization also leads to a computational simplification of the vector quantizer.
A known property of the Euclidian metric commonly used in signal processing {Fran69] is

that for the normalized input vector X and the two codebook prototype vectors ¢, and ¢,

dofX,ep) < difX.cq) & K,cp)>(K.e,) (6.4)
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Therefore, rather than calculating the Euclidean metric for each prototype in the codebook,
the computationally simpler inner product may be used. Of course since the inequalities of
Eq. 6.4 are reversed, the minimum error detector of Fig. 6.1 must be replaced by a

maximum correlation detector.

A complete isometric configuration, scaling, and translation independent vector
quantizer is shown in Fig. 6.2. It is similar to the vector quantizer of Fig. 6.1 but with the
addition of the orthonormalization and isometric block transform stages as pre-processing.
Moreover, the maximum correlation detector which replaces the minimum error detector,
- must locate the optimum isometry i, in addition to the winning prototype p,,;,. This is
accomplished by correlating each orthonormalized input vector X against each codebook
prototype c,, in all eight of its isometric configurations denoted X; and finding the

combination of p and { which maximizes ('i ,-,cp).

Input
Vector Optimal Codebook _
X and Pmin Imin
Isometry Indeces A
Correlation
Orthanorm- [sometric Xi ( XiCp ) Maximum
. . Biock = Cormrelator | ~| Correlation
alization Transform Detector
Isometry . Codebook c
Index Prototype #
Codebook
u Index
Basis
Vector Codebook ket

Fig. 6.2. A scaling, translation, and isometric configuration independent vector quantizer.
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In the full search algorithm, it was necessary to consider all eight isometries to
locate the best isometric block transform between domain and range blocks. Similarly,
when classifying image blocks, it is necessary to compare all eight orientations of the input
block against each prototype vector in the codebook. However, it has already been
indicated that the eight isometries described in Chapter 5 form a group. This implies that
repeated application of any two isometries results in a third isometry also in the group and
that each isometry has an inverse. These two properties can be exploited to further reduce
the search time. Although it is necessary to locate the isometry which best maps each range
and domain block into the codebook, the isometry which best maps the domain block into a
particular range block of the same class can be calculated directly. Suppose that the
contracted domain block x is mapped into a codebook prototype ¢, by an isometry 7,
and that the range block y is mapped into the same codebook prototype by an isometry {,

It follows that the function which best maps x into y is the combined isometry I, given

[, =111 (6.5)

6.2 Neural Network Codebook Design

During the discussion of the vector quantizer, it was briefly stated that the VQ
codebook consists of a ‘table of prototype vectors statistically representative of those
vectors found in the actﬁal data to be classified’. Up to this point, nothing has been said
regarding how such a table is obtained. Two basic approaches exist for solving this
problem; they include clustering algorithms and neural networks. In the past, clustering
algorithms such as the Linde-Buzo-Gray (LBG) [LiBGR0] and k-means algorithms

[KaRo90] were used to design appropriate VQ codebooks, however, neural networks have
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recently emerged as the approach of choice.

Neural networks are an alternative paradigm for computing which possess the
ability to learn from experience. Neural networks, unlike traditional computers, are
inherently parallel consisting of two fundamental components; neurons and weighted
connections. The neurons are the processing elements of the neural network and transform
the neuron inputs into a single output via some simple (usually non-linear) transfer
function. The weighted connections serve as both the data paths and memory of the neural
network. Each connection has associated with it a particular weight. Neuron activations
are transmitted along these connections and are modified as a function of the weight values.
The network learns by adapting these weights according to a learning rule. A set of
training patterns is presented to the network for which it learns the combination of weights
which best satisfy the constraints of the learning rule. There are many forms of networks
but they are most commonly grouped into two categories: supervised (training) and
unsupervised (learning). Supervised networks require that a target activation be associated
with each training pattern. The network learns the appropriate mapping between each
training pattern and the associated target activations. The best examples of supervised
learning networks are those based on the back-propagation algorithm [McRug88].
Unsupervised networks perform what is commonly referred to as regulatory discovery
[RuMc86]. This means that they attempt to discover statistical properties of the training
data irrespective of any target values. These types of networks are especially useful for

clustering or categorization applications.
One form of unsupervised learning network which is particularly appropriate for the

implementation of vector quantizers is the competitive learning network [HeKP91].

Frequency sensitive competitive learning (FSCL) is an extension of this basic form.
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6.2.1 Competitive Learning

Figure 6.3 illustrates a simple competitive learning network. This network consists
of two distinct layers of neurons: an :mput layer and an output layer whose activations are
denoted a, and o, respectively. The neurons in the output layer are fully connected to
each other by a matrix of inhibitory connections. The neurons in the input layer are fully
connected to the output layer by a matrix of excitory connections w, The array of excitory
connections w, joining the input layer to an individual output neuron p must be

normalized to ensure that

N
lwoll = (wpe = 1 (6.6)

g=1

where N is the number of neurons in the input layer and w4 denotes the connection from
the gth input to the pth output neuron. This can be accomplished via the same procedure

used for normalizing image blocks by letting

~ W, ' 7
TN 6D
Inhibitory
Connections
........... —
a h Output
ot Layer
Excitory
Connections
Input
o e e Layer

Fig. 6.3. A competitive learning neural network.
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A competitive learning neural network is in fact equivalent to a vector quantizer with
normalized input and prototype vectors. The input activations a, are the individual
elements of an image block x, the output neurons are the codebook indices p. and the
excitory weights W, connecting the input layer to each output neuron are the codebook
prototypes ¢,. The only additional component required to implement the isometric

configuration, scaling, and translation independent vector quantizer of Fig. 6.2 is the

isometric block transform.

The competitive learning network operates in one of two different modes:
classification or learning. In the classification mode, an input pattern is applied to the
input neurons. The activations of the input neurons are then propagated through the

excitory connections to the output layer. Each input activation @, is multiplied by the

q
weight w,, of the connection through which it propagates. The net input i, to a neuron p

is the sum of these weighted activations or

N
p = Z} Wpgl = (Wp,a) (6.8)
q:

The output units are mutually exclusive and must compete for activation via the
inhibitory connections. The neuron with the maximum net input is always the winner of

this competition. The activation of a neuron p in the output layer is therefore given by

0p = | ifi, > i, forallu=p (6.9)

0 otherwise

The inhibitory weights are fixed while the excitory weights are dynamic. The
network determines the set of excitory weights which best represent the statistical

properties of the input data according to the algorithm described in Fig. 6.4. During this
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procedure, the network is said to be in learning mode.

STEP 1: Initialize the connection weights to the mean of all of the vectors in
the training set plus some small random perturbation,

STEP 2: Present a randomly chosen vector from the training set to the
network.

STEP 3: Update the connections to the winning neuron in proportion to the
learning rate.

STEP 4: Decrease the learning rate. Goto STEP 2.

Fig. 6.4. Competitive learning neural codebook design algorithm.

In the learning mode, vectors are chosen at random from the training set and
presented to the network. The input activations are propagated through the network and the
output activations are determined as before. The weights of the network are then updated

according to the following learning rule

Wpg = Wpq + Awp, (6.10)
where

Awpg = Noylag - wpq) (6.11)

and 7 is referred to as the learning rate. The learning rate is initially large (between 0.1 and
0.7) but decreases with time. Since the the weight change Awpg is proportional to the

output neuron activation and only one neuron is active at any given time, only the weights
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connecting the input layer to the winning neuron are updated. After updating, the weights

must be re-normalized as per Eq. 6.7.

One final note concerning implementation of the scaling, translation, and orientation
invariant vector quantizer of Fig. 6.2 is in order . While orthonormalizing the input blocks
will remove any effects caused by scaling or translation, block orientation must still be
accounted for. This is accomplished by presenting each input block to the network in all
eight of its isometric configurations during both the classification and learning modes. The
winning neuron and associated isometry are selected only after all eight sets of activations
have been propagated through the network and evaluated. In the learning mode, the
winning neuron must be updated with the input vector in the best of these eight

configurations.

6.2.2 Frequency Sensitive Competitive Learning

One problem with the standard competitive learning algorithm is that some neurons
may never win the competition. Should this occur, the neurons in question will never
come to represent any significant features within the image and for all intents and purposes
be wasted. To ensure that no single neuron is continuously left out of the competition,
Ahalt et al. have introduced a conscience mechanism which they call frequency sensitive
competitive learning (FSCL) [AKCM90). The idea behind a conscience mechanism is
- quite simple. If, during learning, a neuron wins the competition too often it should begin
feeling ‘guilty’ and temporarily shut itself off to allow other neurons to become active
[DeSi88]. In FSCL this is accomplished by dividing the net input to each neuron by the
number of times f, that the neuron has won the competition. This results in the following

equation for net input:
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iy =J%Z Wogdy (6.12)

Actually, FSCL ensures that during learning the weights associated with each neuron will
be updated an approximately equal number of times. This is a particularly important result
since equal prototype utilization is an assumption which must be made when discussing the

overall performance of the reduced search FBC encoding procedure in the next section,
6.3 Performance of the Reduced Search Coding Procedure

From the complete description of the reduced search FBC encoding procedure it is
now possible to calculate a time complexity for the reduced search algorithm. Consider an
nxn image with domain and range blocks of size dxd and rxr respectively, and a
codebook of size ¢ (a competitive learning neural network with ¢ output neurons). Each
domain and range block in the image must first be classified. This classification associates
a class and isometry with the vector in question. Then, all of the domain/range block pairs
belonging to the same class are compared using a combined isometry calculated from the
individual isometries associated with each block. Assuming that the vectors in the input
data are distributed equally amongst the ¢ categories, the time complexity of the reduced

search algorithm is

-qL
Te=8(n - dfc +8(Lfc + %ﬁ (6.13)

This includes the time required to classify all of the domain and range blocks and still

appears to be O(n4). However, minimizing Eq. 6.13 with respect to ¢ yields

5,7 (6.14)
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Now substituting Eq. 6.14 back into Eq. 6.13 results in the new time complexity
Tmin = 4ﬁ(n - d)z"% +2m%)3 {6.15)

which is O(n3). To further illustrate the effect which this technique has on search time,
we can divide Eq. 5.15, the time complexity for the full search algorithm, by Eq. 6.15 10

derive the following equation for the total compression time improvement

22(n - dPLt
7 _ 2 i ~ 38 (6.16)
Tin 2n-dp+ (%}2 d

For 256x256 images with 8x8 range blocks this represents a speed improvement by a

factor of 45.

It must be pointed out that the reduction in compression time described by Eq. 6.16
is achieved at a certain expense since the exhaustive and reduced search coding procedures
are not strictly equivalent. The exhaustive search procedure compares every range block
against every domain block in each of its eight possible isometric configurations. The
exhaustive search procedure is, in this sense, optimal. In contrast, the reduced search
procedure places each range and domain block into one of ¢ categories. It is possible for a
particular range block and the best domain block, to be placed into different categories.
This is illustrated two dimensionally in Fig. 6.5. The vector quantizer divides the set of all
domain and range blocks into ¢ disjoint subsets. A range block y and a domain block Xy
may be very similar but placed into different categories if they lie on or near the borders of
these categories. When this happens, a sub-optimal domain block x, will be chosen from
the same category as the range block. Although this will result in some image degradation,

the domain block chosen will usually be a very good match for the range block in question.
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In fact, coding results indicate that this degradation is generally not detectable by the human

eye.

Fig. 6.5. Misclassification of similar vectors. The vector quantizer divides the set of all
possible domain and range blocks into disjoint subsets centered on the
prototypes ¢, through ¢g. The range block y and the optimal domain block Xy
are placed in the categories ¢4 and ¢5 respectively. The sub-optimal domain
block x, will be chosen as the source for the range block y.

6.4 Summary

This chapter described a reduced search FBC encoding procedure based on
domain/range block classification using a frequency sensitive competitive learning neural
network which is equivalent to a vector quantizer. The network classifies image blocks
independent of scaling, translation, and isometric configuration. The basic encoding
procedure requires that every range and domain block in the image be classified by the

neural network and then domain blocks are only considered as possible sources for a
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particular range block if they are of the same class.

The FSCL network was chosen because it exhibits equal prototype utilization. This
implies that the vectors in both the domain and range pools will be allocated approximately
equally amongst the ¢ classes determined by the network. Equal prototype utilization is a
fundamental assumption made in determining the computational complexity of the reduced
search coding procedure. For an nxn image with rxr range blocks this complexity is

minimized by employing a vector quantizer with (L ~’;—] prototypes or equivalently, a two

22
- layer competitive learning neural network with the same number of output neurons. A -
network of this size will reduce compression time by a factor of ¥2 lr’— and reduces the
complexity of the encoding procedure from O(n4) to O(#3). In addition, the systematic
reduced search procedure discussed in this chapter does not preclude the use of heuristic
time saving techniques such as those described in Chapter 5. For example, the reduced
search FBC procedure could be combined with a smaller domain pool and extended grey

level translation functions proposed by Oien er al. [OiLR92] to further reduce compression

time.
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CHAPTER VII

IMPLEMENTATION

Both the reduced and exhaustive search fractal block coding procedures described

in Chapters 5 and 6 were implemented in the context of the concatenated image

compression system illustrated in Fig. 7.1. This system takes gray scale images and

compresses them using either the reduced or exhaustive search FBC encoding procedure.

The resulting fractal code is then further compressed using arithmetic entropy coding

resulting in an arithmetic code stream. This code stream, representing a doubly encoded

version of the original image, is then either stored or transmitted. The original image is

reconstructed by first decompressing the arithmetic code stream and then applying the

iterative FBC reconstruction procedure to the resulting fractal code. Since the fractal block

code is encapsulated within the arithmetic code stream, FBC is referred to as the inner

code, while arithmetic coding is called the outer code.

FBC
Encoder

Source

-

Image

Arithmetic
Entropy
Encoder

Iterative
FBC
Decoder

Arithmetic

T

Code Stream

Arithmetc
Entropy
Decoder

Fractal
Reconstruction

Fig. 7.1. A concatenated image compression system based on fractal block coding and
arithmetic entopy coding. ‘
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In contrast to FBC, arithmetic coding is a lossless data compression technique.
This implies that, using arithmetic coding, the FBC paramters can be compressed and then
reconstructed exactly. Therefore, the addition of an arithmetic encoder and decoder to the
basic FBC technique will improve the overall compression ratio but without introducing
any further distortion into the reconstructed image. This improvement, while modest, is

still significant and adds relatively little overhead to the entire coding procedure.

This chapter describes the implementation of the concatenated FBC/arithmetic image
compression system. The FBC and arithmetic coding subsystems are discussed
independently. A description of the FBC encoding algorithms is provided followed by a
derivation of the compression ratios resulting from FBC in the absence of entropy coding.
Entropy coding is then introduced along with the generalized arithmetic encoding and
decoding procedures. The chapter concludes with a brief description of the complete
FBC/arithmetic software implementation. The C language source code for this

implementation is supplied in Appendix D.

7.1 FBC Implementation

The reduced search FBC portions of the concatenated coding system can be further
divided in to the four macro-functions learn codebook, classify range image,
fractal code image, and decode fractal image illustrated in Fig. 7.2.

These functions are initiated in the proper sequence from the function main.

The learn codebook function generates an appropriate set of VQ prototypes
from a training image using the FSCL learning rule described in Section 6.2. Training

blocks are selected at random from the domain pool of a training image and propagated
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Main

Learn Classify Fractal Decode
Codebook Range Ccde Fractal
Image Image Image

Fig. 7.2. Functions required for the implementation of reduced search FBC encoding and
decoding.

through the network. These blocks are orthonormatized and then compared against every
prototype in the network in a single isometric configuration )before considering the
remaining configurations. This improves the overall efficiency of the function since the
training block is transformed eight times throughout the entire classification procedure,
rather than eight times per codebook prototype. After the best prototype and isometry have
been established the network weights are updated using the FSCL learning rule (Egs. 6.13
and 6.14). The network is trained on a total number of training blocks equal to 500 times
the size of the codebook [McAR90] . The learning rate 1 decreases linearly over time
from values of 0.2 to 0.01 so that general features are established during the early stages of

learning while fine tuning is accomplished later on.

Training vectors were selected exclusively from the domain pool for two reasons.
Firstly, the domain pool is much larger than the range pool. To ensure optimal time
performance, it is therefore more important that the domain blocks, rather than the ran ge

blocks, are equally distributed amongst the codebook prototypes. Secondly, if the training
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set contains both range and domain blocks then the network might locate certain features
which are present only in the range pool or the domain pool, not in both. Under these
circumstances, the network could assign range blocks to a particular category for which no
domain blocks had been allocated. It would not be possible to properly represent these
range blocks since the encoder would be unable to locate suitable domain blocks as

Sources.

The classify range image function uses the codebook generated by the
learn codebook function to classify the individual range blocks in the image. Each
range block is presented to the FSCL network which identifies the appropriate class and
corresponding isometry using the VQ procedure described in Sections 6.1 and 6.2. These
classifications are retained for comparison against domain blocks in the fractal code

image function.

The fractal code image function produces the FBC description of the
source image using the reduced search encoding procedure described in Section 6.1. In
this function, an individual domain block is extracted from the domain pool and classified
by the neural network. This domain block is then considered as a source for all range

blocks assigned to the same class by
(1) determining the appropriate isometry as per Eq. 6.4,
(2) calculating the optimal scaling an translation components (Egs. 5.4 and 5.5),

(3) calculating the Euclidian distance between the range block and the appropriately
transformed domain block.

If the distance between the domain block and a particular range block is less than the
distance between that range block and any domain block considered thus far, then the

domain block and associated transformation parameters are assigned to that range block as
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its fractal representation. This procedure is then repeated for the remaining domain blocks

in the domain pool.

The decode fractal imdge function generates an approximate reconstruction
of the original image from the fractal code using the iterative reconstruction procedure
described in Section 5.3. The function begins with an entirely black image (all pixel values
set to zero) and, using the fractal code, transforms this image into a second image. This
image is similarly transformed and the process is repeated for seven to nine more iterations.
" The number of iterations has been selected based on results obtained experimentally

[Jacq92].

Structure charts describing the complete reduced search FBC procedure are
supplied in Appéndix C along with technical descriptions of each function. The exhaustive
search procedure is simply a subset of the reduced search procedure which does not include
the learn codebook orclassify range image functions. As a result, the
exhaustive search fractal code image function compares every block in the domain
pool directly against every range block in the image. The decode fractal image

function remains the same for both the reduced and exhaustive search procedures.
7.2 Calculation of Compression Ratios for FBC

Section 5.2 described the fractal block code as containing

(1) a pointer to the best domain block,

(2) a pointer to the best isometric transform,
(3) an optimal scaling coefficient, and

(4) an optimal translation coefficient
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for each range block in the image. The number of bits bg required to represent each range
block is given by the sum of the number of bits required to represent each parameter in the

individual fractal block transform or
bp=bp + b+ by + by (7.1)

For an nxn image encoded with dxd domain blocks the number of bits bp required to

address a unique domain block in the domain pool is given by
bp =[2logy{n-d)i (7.2)

The eight isometries were distinguished by b; = 3 bits per range block while the scaling
and translation coefficients were represented with b, = 11 and by = 9 bits, respectively.
This was sufficient for representing fixed point scaling values between +4.0 and integer

translation values between +255.

The compression ratio achieved by the FBC encoder can be calculated based on the
number of bits required to represent each range block in both its original and coded and

forms. Using rxr range blocks, this ratio is given by

2
compression ratio = %{?ﬁ (7.3)

R

where bp is the number of bits per pixel (bpp)‘in the original image. For a 256x256 eight
bpp image encoded using 8x8 and 16x16 range and domain blocks respectively, b, = 39.

This results in a compression ratio of 13.1:1.

The compression ratio can be selected by choosing appropriately sized range blocks

or by reducing the number of unique blocks in the domain pool thus decreasing bp,.
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Alternatively, the number of bits b, and by used to represent the scaling and translation
coefficients can be reduced. The values b, = 11 and by =9 represent the number of bits
required to express these paramters exactly. Both the scaling and translation coefficients
can be quantized into a number of distinct values represented with fewer bits. This
quantization may be linear or more preferably non-linear but in either case will introduce

some distortion into the reconstructed image.

The compression ratios given by Eq. 7.3 represent the amount of compression
achieved strictly by the FBC encoder. The overall compression ratio will increase by

between 5% and 20% when arithmetic entropy coding is added to the system.

7.3 Arithmetic Entropy Coding

Following the FBC encoding procedure, the resulting fractal code may still contain
some statistical redundancy within its parameters. This redundancy can be removed and
the fractal code further compressed using statistical coding techniques [Kins91]. These
techniques attempt to generate a minimal entropy representation of a source file based on
the relative probability with which each symbol in that file is likely to occur. In this
respect, arithmetic coding is generally considered to be superior to all other statistical
techniques including Shannon-Fano and Huffman coding [Huff52]. In addition,
arithmetic coding possess certain fractal characteristics making it a particularly appropriate

addition to any fractal based coding scheme.
Entropy is a thermodynamic principle which can be applied to a data source as a

measure its information content [Shand9]. The entropy of a randomly generated data

stream containing multiple incidents of M unique symbols is given by
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M
H=-Y pilog{pi) (7.4)
=1

where each p, is the probability of occurrence for the ith unique symbol. Furthermore. it
is impossible to precisely represent this data stream in fewer average bits per symbol than

the value indicated by its entropy.

It is the objective of lossless data compression techniques, including entropy based
or siatistical coding to develop a code which represents some source message in a minimal
number of bits by approaching, as closely as possible, the entropy bound of Eq. 7.4. This
can be accomplished by developing a statistical model of the data to be coded and then
representing each symbol in this data with a number of bits inversely proportional to its
probability of oceurrence. The optimal number of bits per symbol, A;, follows directly

from the entropy measure of Eq. 7.4.
Ai = logg_(-l—)z—logz(p,-) (7.5)
Di

[n this way, symbols in the source data occurring more frequently are represented by fewer

bits than those which are statistically less common.
7.3.1 Arithmetic Encoding Procedure

An arithmetic code consist of a fixed point value representing an interval between
0.0 and 1.0. This interval is indicative of, and unique to, the particular message being
coded. Figure 7.4 shows an example of the arithmetic encoding procedure for the word
eat followed by an End of File (EOF) character. The encoder begins with the open

interval [0.0,1.0) and subdivides it into M subintervals, where M is the number of unique
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symbols in the source stream. Each subinterval represents a unique source symbol, and the
size of the interval is proportional to that symbol’s probability of occurrence, p; Fora
given source symbol, the encoder locates the corresponding subinterval, and then divides
this interval into subintervals whose ratios are the same as the original cumulative
probabilities. The encoder finds the appropriate subinterval for each successive symbol.
As this subinterval is located within the previous interval, it represents not only the present
but also the past symbols. This process continues recursively unti! the entire source stream

has been encoded, at which time the encoder transmits the final interval,

0.72 - 0.688

0.688 0.6784
1t e 1t
0.3 0.6712
- a e = 4
0.1 0.6664 5= Transmitted
0.0 EOF EOF 0.664 A Interval

Fig. 7.3. Arithmetic encoder. Example encoding of the symbol stream “‘csasteEQE”
[WINCB7][Kins91].

The arithmetic encoding procedure bears some resemblance to the MRCA since, at
each iteration, the entire structure is divided up into M self-similar components. Since each
subdivision of the original interval [0.0,1.0) is constructed out of M reduced copies of

itself, arithmetic coding appears to be fractal in nature [Kins91]. Although this is a very
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recent observation, the basic principle of arithmetic coding was first associated with the
Hausdortf-Besicovitch or fractal dimension in an obscure paper on information theory
published in 1961 [Bill61]. Unfortunately, since the term fractal did not even exist prior to
1976, it was impossible to make any connection between arithmetic coding and fractals at

the tume.

7.3.2 Arithmetic Decoding Procedure

The arithmetic decoder recovers the source symbols from the received interval using
a procedure similar to that of the encoder, as shown in Fig. 7.4. Like the encoder, the
decoder begins with the open interval [0.0,1.0) subdivided into the same M subintervals.
The decoder locates the subinterval in which the received interval resides, yielding the first
symbol in the stream. This subinterval is further divided in the same manner to recover
subsequent symbols. The procedure terminates when the current and received intervals are

equivalent. At this point the entire source stream has been decoded.

1.0 8 102 0.72 t 0.688
Received ] e
Interval _—
0.6664 _
0.664 0.6784
N t
0.6712
- a
0.6664
0.64 0.664

Fig. 7.4. Arithmetic decoder. Example decoding of the interval [0.664, 0.6664) into the
data stream “‘esa°teEOF” [WiNC87][Kins91].
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A complete description of practical algorithms for arithmetic encoding and decoding
is described in [WaFK93]. The implementation of arithmetic coding used in this thesis is

based upon that description.
7.3 Software Organization

The complete concatenated FBC/arithmetic compression system was implemented
in the C programming language because C is versatile, efficient, and popular amongst
software developers. Unfortunately, modern software engineering techniques such as
information hiding [Pfle87] are often more difficult to enact in C than in other languages.
C does not enforce ‘safe’ programming practices and therefore places the onus of software
reliability entirely on the programmer. For this reason, it is extremely important to follow a

systematic design philosophy when developing C applications.

The FBC and arithmetic coding procedures outlined in Sections 7.1 and 7.3 were
implemented using a modular design approach [Vela91] based on constructs available in
the programming language ADA. This approach requires that an application be divided into -
a number of smaller carefully organized modules. A single module only contains functions
which operate on the same data structures or perform logically related tasks. Each module
is further divided into two segments referred to as interfacing and implementation. The
interfacing segment is always contained within a C header (.h) file and includes only the
declarations of public functions and data structures required for inter-module
communication. The implementation segment contains the executable code for these public
functions as well as any private data structures, functions, and variables. The

implementation segment always takes the form of a C source {.c) file. A module which
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requires the services of a second module must simply include that modules header file in

its own implementation segment.

The software developed for the FBC/arithmetic compression system consists of the
seven modules shown in Fig. 7.6. These modules are arranged hierarchically with
subordinate modules appearing beneath their calling modules. All modules access the
module CONSTANTS which contains global system constants and data structures. The
module MAIN contains only one function which initiates other portions of the FBC coding
procedure and provides a simple user interface to display coding status. The FRACTALS
module implements all of the functions associated with the FBC encoding and decoding
algorithms as well as utility functions to display the resulting fractal codes. The module
FSCL contains all of the executable code associated with the frequency sensitive
competitive learning neural network. These include functions to initialize the network,
learn an appropriate set of image prototypes, and classify image blocks. All of the image
block transformations are performed by functions located within the TRANSFORMS
module. These include the spatial reduction, range block isometries, grey level scaling and
translation, as well as orthonormalization functions. Implementations of both the arithmetic
encoding and decoding procedures are included within the module ARITHMETIC. Finally,
the module IO contains executable code for dynamically allocating memory for complex
data structures such as images and the connection weight matrix of the neural network.
Disk I/O routines for saving and retrieving the data contained within these structures are

also provided.
C language listings for all seven modules, representing the entire reduced search

FBC/arithmetic compression system, are provided in Appendix D. These listings consist

of 2200 lines of C source code which was compiled into a 45 Kbyte executable program on
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FRACTALS Ic ARITHMETIC

\
e \ v

TRANSFORMS ] CONSTANTS

//

Fig. 7.6. The reduced search FBC program module hierarchy. All modules reference the
module Constants.

a SUN SPARCStation 2 using the cc UNIX compiler with the -O optimization setting.
The FBC image compression experiments described in the next chapter were all conducted

using this program.

7.4 Summary

This chapter described the software implementation of a concatenated image
compression system with FBC as the inner code followed by arithmetic entropy coding as
the outer code. This concatenated scheme will, in general, produce higher compression

ratios than either FBC or arithmetic coding alone. Since arithmetic coding is a lossless
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compression scheme, the fractal code can be compressed and then reconstructed from the
arithmetic code without further effecting image quality. In addition to improving
compression ratios, arithmetic coding possesses certain fractal characteristics and therefore

seems particularly appropriate as an addition to any fractal compression scheme.

The software was designed using a modular approach and implemented in C under
UNIX on the SUN SPARCStation 2 platform. Modularity assisted in software testing and
facilitated incremental development. The system was implemented on the SPARC 2
because of that workstations high performance (28 MIPS) and the ‘barrier-free’
environment provided by UNIX. In contrast, the software could be ported to standard
MS-DOS platforms but that operating systems 16 bit framework would limit images to less
than 64 Kbytes (256x256 pixels). The software was successfully ported to an extended
DOS environment using the freeware C/C++ compiler gcc and DOS extender go32
[Delo92]. With the DOS extender, the software was executable only on IBM 386 and 486
type computers running DOS 4.0 or higher, however, image dimensions were limited only
by the size of the computers internal memory. On DOS machines one MEG of internal
RAM and a floating point processor are highly recommended. Although the experiments in
the following chapter were all conducted on the SPARC 2, the extended DOS
implementation was tested on a 33-MHz 486 DX under DOS 6.0. With this configuration,
compression times were approximately 1.5 times that of the SPARCStation suggesting that

compression time might actually be improved on a 50-MHz 486 DX or 66-MHz 486 DX2.
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CHAPTER VIII

EXPERIMENTAL RESULTS

Subjective and objective evaluation of the reduced search fractal block coding
(FBC) procedure was performed using the software implementation outlined in Chapter 7.

Experiments were conducted to

(I) determine the reconstruction quality of FBC encoded images using both
objective and subjective means,

(2) demonstrate the ability of the FSCL neural network to generalize,

(3) investigate FBC’s ability to reconstruct images at larger than their
encoded size without exhibiting edge degradation by the ‘staircase’
effect, and

(4) compare FBC against two popular image compression techniques
based on transform coding and vector quantization.

All experiments were performed on the same SUN SPARCStation 2 platform.

The majority of the encoding experiments were conducted with the 256x256 eight
bits per pixel (bpp) test image Lena shown in Fig. 8.1 (although originally named Lenna
processing literature as the picture itself). This image was selected as a suitable test image
for three reasons. Firstly, Lena can not be compressed appreciably using traditional
lossless compression schemes. For example, the LZW algorithm [DuKi91] is capable of

compressing this image by only 1.58% or 1.02:1. Secondly, the image is composed of a
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diverse collection of visually significant features. Portions of the background are very
smooth and contain areas in which intensity changes slowly and uniformly. In contrast,
the feathers in Lena's hat represent an area of very high complexity. Subtle textures occur
in the ribbon surrounding this hat while sharp edges are well represented by the border of
Lena’s shoulder and throughout the background. The final motivation for selecting Lena
as a test image is based simply on its popularity. Lena occurs throughout image
processing literature more than any other photograph and therefore makes possible direct

comparison between the current implementation and the work of others.

Originai Image

Fig. 8.1. The original 256x256 eight bpp image Lena.
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8.1 FBC Image Compression Experiments

Both the exhaustive and reduced search coding procedures were used to code the
original Lena image. Both impleméntations used 8x8 range and 16x16 domain blocks.
For 256x256 images, the entire set of overlapping domain blocks comprised the domain
pool. For each range block, a total of 16 bits were required to reference the appropriate
domain block from the domain pool. The eight isometries were coded with three bits per
range block. The scaling and translation coefficients @ and ¢ were represented with 11 and
9 bits respectively. Before entropy coding, this produced a compression ration of 13.1:1
or 0.61 bpp. For the reduced search procedure, a codebook containing 11 prototypes was

used.

Compression time for the full search procedure was over 13 hours on a SUN
SPARCstation 2. On the same workstation, the reduced search algorithm required
approximately 18 minutes. The result of compression by the reduced search procedure
after eight iterations of the reconstruction procedure is shown in Fig. 8.2. The first six

iterations of this same procedure are shown in Fig. 8.3.
8.1.1 Objective Analysis
Quantitatively, the quality of the decompressed images are measured according to

the peak signal-to-noise ratio (PSNR). For the original image X and its reconstruction

X* this is given by
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Reduce Search Fractal Block Coding Image

14.3:1 (0.56 bpp) PSNR: 29.22 dB

Fig. 8.2. Fractal reconstruction of Lena compressed by 14.3:1 at 0.56 bpp and 29.09 dB
using reduced search fractal block coding (FBC).

x,x*F}
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For the 256x256 version of Lena the exhaustive search and reduced search procedures
resulted in reconstructed images with PSNRs of 29.38 dB and 29.22 dB, respectively.
After entropy coding, the compression ratio achieved for both these procedures was 14.3:1
or 0.56 bpp — an improvement of 9%. The 0.16 dB loss in quality resulting from the

reduced search procedure can be attributed to block misclassification. Range blocks which
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(b)

2347 dB

d

28.9%

(e)

29.20dB

29.19 dB

Fig. 8.3. The first six iterations of the fractal image reconstruction procedure. Images are
displayed at 60% of their actual size.
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lie on or near the border of a category may be placed in an inappropriate category by the
vector quantizer. If this is the case, the domain block chosen to represent the range block
will be from a suboptimal subset of the domain pool. Despite this, for the images coded.

the 0.16 dB loss in quality was not detectable by the human eye.

Besides block misclassification, one of the primary concerns with the reduced
search FBC encoder is generalization. The codebook prototypes used to code the Lenu
image in the above examples were learned using the FSCL neural network. The image
vectors used to train this network were derived from the original Lena image. The
resulting 11 codebook prototypes are shown in Fig. 8.4. Because these prototypes were
derived from Lena, the question arises as to how applicable they are to other images.
Fortunately, due to the small size of the codebook the neural network was forced to learn
very general features. Specifically, the network identified gradients, simple edges, and
double edges or stripes, as important features in the image. The network was then trained
on a second image airplane shown in Fig. 8.5. The codebook derived form this image
was used in the reduced search FBC procedure to compress Lena, resulting in a PSNR of
29.19 dB. A reduction in PSNR of this magnitude (0.03 dB) is insignificant in image

processing applications.
8.1.2  Subjective Analysis

Subjectively while some blocking artifac‘ts were visible, areas of relatively uniform
intensity and sharp edges were well preserved by FBC. Blocking was most visible in areas
of high complexity such as the feathers in Lena’s hat. One bothersome anomaly was
FBC’s apparent inability to code Lena’s eyes adequately. This shortcoming reoccurred on
a number of test images and resulted from a lack of adequate source features at larger

scales.
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5) (6) (8)

©) Coao) dn

Fig. 8.4. The I1 prototypes in the scaling, translation, and isometric configuration
independent VQ codebook as learned by the frequency sensitive competitive
learning (FSCL) neural network from the image Lena.

Or@ginal Image

Fig. 8.5. The training image airplane used to develop the VQ codebook for the reduced
search FBC encoding procedure.
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To illustrate fractal coding’s ability to interpolate along edges without exhibiting the
‘staircase effect’, Fig. 8.6 shows Lena’s shoulder enlarged by a factor of four in both
dimensions. Figure 8.6a shows an enlargement of the shoulder taken directly from the
original Lena image. Figure 8.6b s-hows the fractal coded image reconstructed at four

times its original size using the iterative reconstruction procedure,

(a) (b)

Fig. 8.6. A portion of Lena’s shoulder enlarged to four times its original size. (a) Taken
from the original 256x256 eight bpp image. (b) Fractal reconstruction of
Lena’s shoulder at four times its encoded size.

The reduced search procedure was also applied to a 512x512 version of the same
image but this time with 8x8 range and 24x24 domain blocks. Domain blocks were chosen

from a reduced domain pool of 24x24 non-overlapping range blocks. Only 10 bits were
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required to address a single range block in this pool resulting in a compression ratio of
15.5:1 or 0.52 bpp before entropy coding. With entropy coding, compression increased
by 19% to 18.5:1 or 0.43 bpp. The combined reduction in domain pool size and block
classification scheme reduced compression time to a manageable 78 seconds. This is
comparable to compression times for straight vector quantization techniques. Despite the
reduced domain pool, the PSNR for the reconstructed 512x512 image (Fig. 8.7) was
31.00 dB. The improvement in reconstruction quality can be attributed to three factors.
First, the 512x512 image had larger areas of uniformity and therefore lower ac energy per
unit area making it easier to code. Second, more self-similarity existed between the 24x24
domain and 8x8 range blocks than between 16x16 domain and 8x8 range blocks. Third,
for 24x24 domain blocks and 8x8 range blocks, the ratio % is greater than for 16x16
domain blocks. This tends to improve the overall contraction factor of the fractal code
[OILR91]. The reduced search procedure was repeated with 24x24 overlapping domain

blocks on 256x256 images but the net result was a 0.1 dB reduction in image fidelity from

earlier experiments,
8.2 FBC Versus Transform Coding and Vector Quantization

As a means of benchmarking FBC, two other commonly employed image
compression schemes were used to compress the Lena image. Figures 8.8 and 8.9 show
Lena compressed with the proposed JPEG (Joint Photographic Experts Group) standard
[Wall91] and straight vector quantization (VQ) [TrMe90], respectively.

The proposed JPEG standard outlines a number of requirements for the

compression of continuous tone still images. The method which seems to best satisfy these

requirements, in terms of subjective image quality, is a form of adaptive transform coding
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Reduced Search Fractal Block Coding Image

18.5:1 (0.43 bpp) S PSNR: 31.00 dB

Fig.8.7. Fractal reconstruction of the 512x512 version of Lena compressed by 18.5:1 at
0.43 bpp and 31.00 dB using reduced search FBC with a reduced domain pool.
Image is cropped to 420x512 for display purposes.
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JPEG Image

PSNR: 30.70 dB

1 (0.56 bpp)

Fig. 8.8. Lena compressed by 14.4:1 at 0.56 bpp and 30.07 dB using JPEG.

based on the discrete cosine transform (DCT). The implementation of JPEG included
within the freeware image processing package XV [Brad92] was used to perform the
JPEG coding experiments. At compression ratios comparable to those used in the FBC test
the DCT based JPEG compression technique performed very well. Quantitatively, DCT-
JPEG resulted in the highest PSNR (30.07 dB) of the three techniques tested.
Subjectively, a certain ‘blotchiness’ was observed in areas of slowly changing contrast
such as the shadows on Lena’s shoulder and cheek, or the image background. In addition
areas of high contrast, such as the border of Lena’s shoulder, or the top of her hat were
reconstructed less accurately than with FBC. In particular, a ‘ringing’ effect was visible
along sharp edges. This ringing manifested itself in terms of a faint duplication of the

edge adjacent proper edges. Despite this, JPEG was superior to FBC when it came
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Vector Quantization Image

14.2:1 (0.56 bpp) PSNR: 29.39 dB

Fig. 8.9. Lena compressed by 14.2:1 at 0.56 bpp and 29.39 dB using vector
quantization (VQ) based on frequency sensitive competitive learning (FSCL).

to representing areas of fine detail like the feathers in Lena’s hat, the bridge of her nose,

and her eyes.

Although superior to FBC in terms of PSNR (29.39 dB), subjectively, straight
vector quantization was the worst of the three schemes tested. The implementation used,
was based on the simple vector quantizer illustrated in Fig. 6.1. In this scheme, images
were divided into 4x4 vectors and presented to the vector quantizer. The codebook was
learned using the FSCL neural network algorithm described in Section 6.2. The resulting
image displayed the same ‘blotchiness’ present in the JPEG image and edges were very

jagged and fuzzy. VQ reproduced complex areas such as the feathers betier than FBC but

- 105 -




the overall effect was less pleasing.

8.3 Summary

The experimental results presented in this chapter have demonstrated that the
reduced search fractal block coding procedure employing frequency sensitive learning
results in a considerable time saving over the corresponding exhaustive search procedure.
thermofe, this saving is achieved without significantly effecting reconstruction quality.
The effectiveness of concatenated compression schemes was also established by illustrating

an improvement of compression ratios by up to 20%.

Although objectively, FBC performed poorer than both of the other techniques
tested (FBC: 29.22 dB, VQ: 29.39 dB, and JPEG: 30.70 dB), in subjective tests the
reconstructed image was of higher quality than images resulting from straight vector
quantization. This is consistent with the observations of other researchers [OILR91] and
stems from FBC’s ability to preserve sharp edges. Visually, edges are extremely
significant features [Scha89] which simple vector quantizers are poor at preserving
[RaGe86]. The discrepancy between objective and subjective assessments of image quality
for FBC and VQ also illustrates that PSNR is not an absolute measure of image quality and

thereby establishes the validity of subjective observations.

In some respects, notably the reconstruction of sharp edges, FBC also
outperformed the DCT based JPEG implementation. Nevertheless, based on an overall
subjective evaluation, DCT-JPEG must be considered superior to the current FBC
implementation. However, it should be pointed out that DCT-JPEG has resulted from the

combined efforts of many researchers over an extended period of time. The limited number
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of researchers currently involved in fractal coding believe that, with comparable effort.
FBC will achieve reconstruction quality equivalent or even superior to DCT-JPEG

[Beau9ll.

Even if FBC can only be elevated to the point at which coding quality is comparable
to DCT-JPEG, images compressed using DCT coding can not be reconstructed at targer
than their encoded sizes without introducing very visible blocking artifacts and
‘straircasing’.  For applications such as digital television and remote sensing,
reconstruction at higher than coded resolutions may be a very attractive feature. Much to
the chagrin of those owning large and expensive television sets, it has often been observed
thét televisions with smaller pictures tubes (14”-20”) yield better picture quality than larger
models (34" and above). This is due in part to the fact that the NTSC broadcast standard is
fixed at 525 scanlines which can become quite noticeable when o-bserved on large picture
tubes. Using fractal encoding schemes, NTSC images could be compressed, transmitted,
and then reconstructed at 1050 scanlines on larger televisions. In applications such as
remote sensing, FBC’s ability to interpolate along sharp edges makes it a natural form of
image enhancement. An image or portion thereof could be fractally encoded and then
reconstructed at a larger size, allowing small details to be examined more closely. For such
applications, the focus of the coding procedure would shift from efficient towards more

accurate representation of the source image.

Before concluding this chapter it should be pointed out that both FBC and reduced
search FBC do have certain fundamental limitations. The success of FBC techniques in
general depends on the encoders ability to locate self-affinity at different scales in an image
while generating an eventually contractive function. For non-trivial images, like the

photograph of Lena, the encoder is able to adequately satisfy these requirements (although
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for some features, like the eyes or feathers in Lena’s hat, only marginally sufficient source
features could be located). However, the technique may fail completely for trivial images
such as simple computer generated graphics. These images often contain objects like
circles which do not possess self-affinity and are better represented using traditional
Euclidian geometry. For these images, it may be impossible to either locate adequate
source features or maintain contractivity. Of course, FBC is a compression scheme
intended for digital photographs, not computer graphics for which very compact

representation schemes already exist.

The reduced search FBC algorithm has additional ramifications which may lead to
the failure of the FBC encoding procedure. Although steps were taken to prevent range
blocks from being assigned to a category for which no domain blocks have been allocated,
there is no guarantee that this will not in fact occur. However, this situation was never
encountered for any of the test photographs and, once again, it is unlikely to occur for non-

trivial images.
Despite these limitations, applications in digital television, remote sensing, and

other areas, combined with the reduced search FBC coding results presented in this

chapter, warrant the continued investigation of FBC and similar collage coding techniques.
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CHAPTER IX

CONCLUSIONS AND RECOMMENDATIONS

The work described in this thesis was motivated by the need for new and better
image compression techniques. Signal compression using fractals represents an emerging
area of /ossy data compression methods which have been applied successfully to digital
images. A study of fractals, the collage theorem, and fractal block coding (FBC) has led
to an implementation of a concatenated image compression scheme using FBC, arithmetic

coding, and neural networks.

Since the enormous storage and transmission requirements of digital images can not
be substantially reduced using traditional /ossless data compression methods, /ossy
approaches are used. For still images these may result in compression ratios as high as
30:1 but will introduce some-distortion into the reconstructed image. It is the objective of
lossy compression schemes to maximize compression ratios while minimizing this

distortion.

Fractals have been proposed as the basis for good lossy compression techniques.
Fractals appear to be well suited to image compression because many objects in nature
exhibit fractal geometry and fractals often posses self-similarity or self-affinity at different
scales. This similarity is redundancy and can therefore be removed resulting in data

compression.
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Existing fractal compression techniques are based on a corollary of contractive
transformation theory called the collage theorem. The collage theorem implies that if an
image can be described approximately by a contractive function of itself, then it can be
reconstructed approximately from that description using an iterative procedure. Coding
techniques based on contractive transformation theory and the collage theorem are called
collage coding techniques. A collage encoding algorithm attempts to represent a source
1mage as a function of itself. This function must be a contraction, produce an adequate and
compact representation of the original image, and have an associated systematic encoding

procedure.

The fundamental difficulty associated with collage coding techniques is the
computational complexity of the encoding procedures. [terated function systems (IFSs),
the first proposed collage coding technique provides very compact representations of
complex self-affine images. Unfortunately, locating the appropriate IFS coefficients for a
particular image is an NP complete problem. A less compact compression technigue
known fractal block coding, operates in known polynomial time by employing a divide-
and-conquer compression strategy. Using this sirategy, both the the source image and the
fractal transformation are segmented into more manageable components for which the
appropriate fractal parameters can be located systematically. Unfortunately, using even this
systematic approach the generalized form of the FBC encoding procedure is still O(n4). A
number of heuristic approaches have been described for reducing FBC encoding time but
none of these have dealt specifically with the O{n*) computational complexity of the

encoding procedure.

A reduced search coding procedure based on subimage classification using neural

networks provides an alternative to heuristic time-saving approaches, and reduces the
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computational complexity of the encoding procedure to O(x3). In this scheme. domain
and range blocks are pre-classified independent of scaling, translation, or isometric
configuration using a frequency sensitive competitive learning (FSCL) neural network.
During the encoding procedure, a domain block is only considered as a possible source for
a range block if they are both of the same type. FSCL was selected as an appropriate
neural network because it results in equal prototype utilization whfch 1s critical in the
derivation of compression times for the reduced search algorithm. For 256x256 images,
encoding time was reduced by a factor of 45 with further image degradation of less than

0.2 dB.

Reduced search FBC was implemented as the inner code of a concatenated
FBC/arithmetic image compression scheme. FBC can compress images by up to 16:1 but
some statistical redundancy may remain in the fractal code. Lossless arithmetic entropy
coding can remove this redundancy and thereby further increase compression ratios by up
to 20%. The concatenated compression scheme was capable of compressing grey scale
images at ratios in excess of 18:1 with a PSNR of 31.00 dB. The ability of the iterative
reconstruction procedure to interpolate along sharp edges in these images also suggests that

FBC may have applications in image enhancement.

This thesis has contributed to general and technical knowledge through

(1) study and understanding of collage coding techniques,

(2) the implementation of exhaustive search FBC encoeding and decoding
algorithms which can serve as both starting points and benchmarks for
future FBC developments,

(3) the development and implementation of a reduced search FBC encoding

procedure using neural networks to improve on the computational
complexity of the exhaustive search encoding procedure, and
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{(4) an implementation of FBC within a concatenated FBC/arithmetic image

compression system, thereby establishing experimentally the
effectiveness of concatenated coding.

Recommendations for future work related to this thesis include:

()

(2)

3

4

(5)

The current implementation relies heavily on floating point calculations.
These could be replaced by fixed point calculations using integers to
improve performance on computers without floating point processors
(eg., 386, 486 SX).

The iterative decoding procedure could be replaced by a random
decoding procedure similar to the RIA for [FSs. This procedure would
select fractal block transforms at random from the fractal code and
apply them one at a time to portions of the same image. This would
decrease the memory requirements of the implementation by almost
50%.

The possibility of combining other time, quality, and compression ratio
improving techniques with the systematic reduced search procedure
with neural networks should be investigated. Specifically,

- the improved translation functions of QOien et. a/ [OiLR91]
could be incorporated,

- distortion measures based on the Hadamard transform could
be implemented to improve the subjective quality of the
reconstructed images [Beau91], and

- the scaling and translation paramters could be quantized to
further improve compression ratios using a non-linear scalar
or vector quantization scheme. The appropriate quantization
step sizes would be derived from extensive objective and
subjective experimentation.

A complete investigation into FBC as an image enhancement technique
should be performed.

Monro and Dudbridge [MoDu92] have recently proposed their own
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collage coding procedure for grey scale images which does not possess
the search associated with Jacquin’s technique. The authors claim that
their technique is less computationally intensive than even the fast
discrete cosine transform {ChSF77] although it does result in images
of lower quality. Nevertheless they are also optimistic that this new
fractal technique may achieve performance levels equal to JPEG. It
remains to be seen whether or not this new technique also retains the
advantageous properties associated with FBC such as superior edge
reconstruction.
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APPENDIX A

C LANGUAGE LISTING FOR IFS SYNTHESIS SOFTWARE
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Program: Random lterartion (RIA) and Multiple Recuction Copy (MRCA)
Algorithms for IFS Synthesis.

Programmer: Larry M. Wall
Department of Electrical and Computer Engineering
University of Manitoba
Winnipeg, Canada
larwall@ee.umanitoba.ca

Version: 1.1

LastUpdate: 01/12/92 *
L o e e e e e e e e e e e e
LIBRARIES: b

#include <stdio.h>
#include <stdliip.h>
#include <values.h>
#include <math.h>
#include <time.h>

L e e e e e e e e e e e e e e e e
CONSTANTS *
#define IMG_SZ 256 /* size of fractal image in pixels t
#define IMG_SCL 1.0 /* scaling factor of fractal image *
#define IFS_SZ 6 /* number of data fields in each IFS record =
#define NM_SZ 20 /* maximum filename size *

#define SUCCESS 1
#define FAILURE 0

FUNCTIONS: t

unsigned char *img_alloc();

int  img_save();

int ifs_load();
void  ifs_alloc();
void ifs_free();
void calc_prob();
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void img_box();
void img_L{);

void img_neg();
void img_fip();

void ifs_RIA();
void ifs_MRCA(};
doubte collage();

void img_box{);
void img_L(};
void img_neg();
void img_fip();
void print_code();

GLOBAL DECLARATIONS: *

typedef struct {
int b
float *tm{IFS_SZ],
*p;
) ifs;

MAIN PROGRAM: v

main(}

{

int t,

time_tit;

struct tm
*started,
*finished;

unsigned char *img_1,
*img_2;

ifs ifs_1;
char choice:

char  IFSFile[NM_SZ],
ImgFile[NM_SZ];
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printf("\nEnter IFS Filename: ");
scanf( "%s", IFSFile );

puts( "Loading IFS Code." );
ifs_load( IFSFile, &ifs_1 ):
img_1 = img_alloc();

printf("\n[r] Random Iteration Algorithm\n");
printf("[m] Multiple Reduction Copy Algorithm\n"):
printf("\nSeiect Function: "};

scanf( “\n%c", &choice );

switch( choice )

{

case r:
ifs_RIA( img_1, ifs_1 );
break;

case 'm"
ifs_MRCA( img_1, ifs_1 );
break;

default:
exit(};

}

printf("\nEnter Destination Filename: ");
scanf( "%s", ImgFile );

img_box( img_1 );

img_neg( img_1 );

img_2 = img_alloc();

img_flp( img_1, img_2 };

img_save( ImgFile, img_2 );

free( img_1 );

free{ img_2 );

ifs_free( &ifs_1 );

}
/'=s=======szccsz=o=s=sz======s==z=sczoz=====s=ssms======z=c==
: Dynamically allocate memory for image array *
unsigned char *img_alioc()

{ int x;

unsigned char *ptr;
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ptr = (unsigned char *) calloc( IMG_SZ*IMG_SZ, sizeof(unsigned char) );
if ( Iptr)
{

puts( "Memory Allocation Error.” );
exit(Q);
}

for( x=0; x<IMG_SZ*IMG_SZ; x++ )

ptrix] = 0;
return ptr;

:Load IFS code *

int ifs_load( filename, code )
char filename[NM_SZ];

ifs *code;

{
int status,

record,

field,
data;
FILE *InFite;
float *ptr;

InFile = fopen( filename, "rt" );
if { InFile '= NULL )

{
status = fscanf( InFile, "%d\n", &(code->I) );
if ( (status ==1) && ( code->l 1=0))
{
status = 0,

ifs_alloc( code };
puts( "Allocated" );

for ( record=0; record<code->I; record++ )
{
for ( field=0; field<IFS_SZ; field++ )
if ( !feof(InFile) )
{
status += fscanf( inFile, "%d", &data );
code->tmffield]{record] = (float) data /
100;
}

fscanf( InFile, "\n" );
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}
it ( status != ( code->| * IFS_S§2) )

{
puts("File Format Error.");
code->| = O;
}
else
{
puts{ "Loaded." };
calc_prob( code );
puts{ "Calculated.” );
)
}
else
{
puts{ "File Format Error." );
code->| = 0;
)
fclose( InFile );
}
else
{ .
puts{ "File Not Found." };
code->l = 0;
}

return code->I;

: Dynamically allocate memory for IFS code *

void ifs_alloc( code )
ifs *cods;
{

int t,

for( t=0; t<IFS_SZ; t++ )
code->tm[t] = (float *} calloc{ code->|, sizeof(float) );
code->p = (float *) calloc( code->l, sizeof(float) );

: Free memory dynamically allocated for IFS code *
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void ifs_free( code )
ifs *code;
{
int t;
for( 1=0; t<iFS_SZ; t++ )

free( code->tmft] };
free( code->p );

: Calculate Probabilites for IFS Code v

void calc_prob( code )

ifs *code:
{
int t
float area,
total;
total = 0.0;

for { t=0; t<code->I; t++ )

{
area = fabs( ( code->tm[O}{t] * code->tm[3]{t] } - ( code->tm{1]}{] *
code->tm[2]{t] ) };
if ( area < 0.01)
area = 0.01;
total += area;
code->p[t] = total;

}

for ( t=0: t<code->i; t++ )
code->p[t] /= total;

: Random Iteration Algorithm (RIA) for Generating Fractal Images from IFS Code * /
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void ifs_ RIA(

image, code )

unsigned char image[IMG_SZ][IMG_SZ];

ifs code;

{

int

img_x,
img_y,
t-

unsigned long int itr;

float

int

rnd_nm,
X,

Y,

new x,
new_y,
x_scl,
y_scl;

num_itr;

printf{ “\nEnter Number of |terations: " );
scanf( "%6d", &num_itr);

x_scl = y_scl = IMG_SCL;
for { img_x=0; img_x<IMG_SZ; img_x++ )

X =Yy
for {
{

IMG_SZ;

IMG_SZ;

(img_y<IMG_S2) )

for { img_y=0; img_y<IMG_SZ; img_y++ )
image[img_x][img_y] = 0;

= 0.0;
itr=0; itr<num_itr; itr++ )

rnd_nm = (float) random() / MAXLONG:
t=0;
while ( rnd_nm > code.p[t] )
t++;
new_x = code.tm[O][t] * x + code.m[i][t] * y + code.tm[4][t] *

new_y = code.tm[2][t] * x + code.tm[3][t] * y + code.tm[5][t] *

X = New_x;
y = new_y;
if { itr>10 )
{
img_x = x + 0.5/ IMG_SZ * IMG_SCL"/;
img_y =y + 0.5/ IMG_SZ * IMG_SCL"/;

if ( (img_x>0) && (img_x<IMG_SZ) && (img_y>0) &&

imagelimg_y][img_x] = 255;
}
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: Multiple Reduction Copy Algorithm (RIA) for Generating Fractal Images from IFS
Coce £y

void ifs_MRCA( image, code )
unsigned char image[IMG_SZ][IMG_SZ];
ifs code;

{

unsigned char “img_temp;

int num_itr,
count;

printf( “\nEnter Number of Iterations: " );
scanf( "%8&d", &num_itr);

img_temp = img_alloc();
img_box( image );
for( count=0; count<(num_itr/2); count++ )}
{
collage( image, img_temp, code );
collage( img_temp, image, code );

}

free( img_temp );

: Create collage image from IFS code *

double collage( s_image, ¢_image, code )
unsigned char s_image[IMG_SZ|[IMG_SZ];
unsigned char c_image[iIMG_SZ][IMG_SZ);

ifs code;
{
int t,
img_x,
img_y,
col_x,
col_y;
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double error:
error = 0.0;

for ( col_x=0; col_x<IMG_SZ; col_x++ )
for ( col_y=0; col_y<IMG_SZ; col_y++ )
¢_image[col_y][col_x} = 0;

for ( t=0; t<code.l; t++ )
for ( img_x=0; img_x<IMG_SZ; img_x++ )
for ( img_y=0; img_y<IMG_SZ; img_y++ )
if ( s_image(img_y][img_x] != 0 )
{

img_y + code.tm[4]{t]*IMG_SZ;

col_x

i

code.tm[0]{t} * img_x + code.tm[1]jt] *

col_y

code.tm[2][t] * img_x + code.tm{3][t] *
img_y + code.tm[5][t]*'IMG_SZ,;
if ( (col_x>=0) && (col_x<IMG_SZ) &&
(col_y>=0) && (col_y<IMG_SZ) )
{
if { c_image[col_y][col_x] == 0 )
c_imagefcol_y]fcol_x]

s_imagelimg_yl}{img_x];
else
error += QVRLAP;

else
error += {(IMG_SZ*IMG_SZ)>>2);

return error,

: Save fractal image to disk *

int img_save( filename, image )
char filename[NM_SZ};
unsigned char image[IMG_SZ][IMG_SZ];

{

int status;
FILE *QutFile;

OutFile = fopen( filename, "wb" };

if ( OutFile != NULL )
{
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if { fwrite( image, sizeof(unsigned char), IMG_SZ * IMG_SZ, OutFile ) )
status = SUCCESS;
else

{
puts( "File Write Error." );

status = FAILURE:

}
fclose( QutFile ),

else

puts{ "Cannot Create File." );
status = FAILURE;

}

return status;

void print_code( code )
ifs code;

{

int c;

for ( ¢=0; c<code.l; c++ )
printf( "%t %f %f %f %f %f %fn", code.tm[0][c], code.tm{1][c],
code.tm(2][c], code.tm[3][c], code.tm[4][c], code.tm[5][c], code.p[c] );

printf( "\n" );

: Generate a box as the starting image for the MRCA. b

void img_box{ image ) :
unsigned char image(IMG_SZ][IMG_SZ];
{

int X,
Y

for( x=0; x<IMG_SZ; x++ )

{
image[x][0] = 255;
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image[0][x] = 255;
image([x][IMG_SZ-1]
image[iMG_SZ-1}{x]

255;
255;

: Place an L in the top left corner of the image for diplaying self-affine portions. * ¢

void img_L{ image )
unsigned char image[IMG_SZ}{IMG_SZ];
{
int X,
Y.

for( x=0; x<(IMG_SZ*0.1); x++ )

{
imagel[(int)(IMG_SZ2"0.95)-x]{(int) (IMG_SZ*0.05)] =
image[(int)(IMG_SZ*0.85)][(int)IMG_SZ*0.05)+x] =

. Flip the image about the horizontal axis. v/

void img_flp( s_image, c_image )
unsigned char s_image[IMG_SZ][IMG_SZ];
unsigned char ¢_image[IMG_SZ][IMG_SZ];
{

int X,
'
for( x=0; x<IMG_SZ; x++ )

for( y=0; y<IMG_SZ; y++ )
c_image(x]ly] = s_image[IMG_SZ-1-x][y}];

. Produce the negative of an image. */
void img_neg( image )

unsigned char image{IMG_SZ][IMG_SZ];
{

-130 -



int X,
'R

for( x=0; x<IMG_SZ; x++ )
for( y=0; y<IMG_SZ; y++

)
if( image(x{ly] == 0 )
image[x][y] = 255;
else
image(x]ly}] = O;

)

/* ______________ *y
=================—-=—=_—~_—_—_-——--——-———-—_=================== i
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APPENDIX B

DEREVATION OF OPTIMAL SCALING AND TRANSLATION
COEFFICIENTS FOR FBC

Equations 5.4 and 5.5 for the optimal FBC scaling and translation coefficients
result from the formal definitions of norms and inner products, and their relationship to

metrics.

Vector Spaces

Similar to metrics, norms and inner products are defined in terms normed vector
and inner product spaces. While a metric space was defined as a simple set and a
corresponding metric, normed vector and inner product spaces are formed from vector
spaces. A vector space consists of a nonempty set V and two special operators. These
operators, called vector addition and scaler multiplication, are denoted v + w and av
respectively. Vector addition and scalar multiplication must be defined in such a way as to

satisfy the following axioms:
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(Al} IfuandvareinV,thenu+visin V.

(A2) u+v=v+uforalluandvinV,

(A3) u+(v+w)=(u+v)+wforallu v, andwinV.

(Ad)  There exists a unique element 0 in V such that v + 0 = v.

(A5) Foreach element v in V there exists an element —v such that v + -v = 0.
{§1) IfvisinV, thenavisinV, for all real a.

(82) a(v+w)=av+awforall vand win V. and real «.

(83) (a+b)v=aqv+bvforallvinV, andreal ¢ and b.

(S4) a(bv)=(ab)vforallvinV, and real g and b.

(83) lv=vforallvinV.

Norms and Inner Products

A norm is a real valued function llell defined on a vector space V which satisfies the
following axioms:

(N1) iivit=0forallvin V.

(N2) v +wl<lvil+ liwlt for all v and win V.

(N3) liavll =lal livll for all v in V, and real a.
(N4) vl =0 if and only if v = 0.

A normed linear space is simply a vector space V upon which a norm llsll is defined and is
denoted (V,llell). Associated with any normed vector space is a corresponding metric

given by
divw)=llv—wl (B.1Y

Similarly, an inner product space is defined to be a vector space V together with an
inner product defined on V. The inner product, denoted (v,w), is a real valued function of

two vectors v and w which satisfies the following axioms:
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(P1)  (u+v, w)y={uw)+{v.w)forallu. vand w in V.
(P2) (av.w)= dv w) for all v and w in V.

(P3) (v.w)={w,v)forallvand win V.

(P4) {vv)>0forv=0.

[S)

Once again, of particular interest is the fact that an inner product generates a norm.

Specifically
vl = ¥{v,v) (B.2)

It follows from Eq. B.2 that if an inner product generates a norm then an inner
product space must also be a normed vector space. Likewise, Eq. B.1 intimates that a
normed vector space must also be a metric space. It is important to realize however that the
converse of either of these statements is not necessarily true. There exist many examples of
metrics which ﬁave no associated norms as well as norms for which there are no

corresponding inner products.

Calculation of Optimal Grey Level Scaling and Translation Coefficients

During the FBC encoding procedure we are interested in locating the scaling and
translation coefficients g and ¢ respectively, which minimize the Euclidian distance
between the contracted domain block x and the range block y given by dy{ax+mu,y).

Using Eq. B.1 and B.2 in conjunction with the axioms N1 through N4 and P1 through P4,

d, can be rewritten as
dola x+t u,y) = liyli2 + 2IxI? + 2llul? - 2(a(x,y) + ¢ {y,u) — &t (x,u)) (B.3)

This equation can be minimized by taking partial derivatives with respect to @ and ¢ which

yields the system of two linear equations
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dds R
—8— =2a lIxll* = 2(x,y} + 2r{x,u)= 0 (B.4)
a

and

aﬁ%:zfi|u|12_2@,u>+2a(x.u)=0 (B.5)

or

Equations B.4 and B.5 can be rewritten in terms of the following system of linear

equations

X2 (x,u) -
{( )liullzh } HY H (B.6)

Solving this system of equations yields

]

a _{ flxiI? (x,u)]l{@,y
[:]_ (ou) a2 | LGysu)

2
- 1 full* ~x.u) M (x.y) (B.7)
lallixi? - cu? | xu) k2 |Lou)
from which Egs. 5.4 and 5.5 follow directly
_ lui{x,y) - (x,uy,u) (B.8)
lul21x1? — (x,u ¥
and
_ Iixllz{y,u)—(x,y)(x,u)‘ (B.9)

HaliEI1? - (x ,u )
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The same results can be derived using the projection theorem [NaSe82] which
would lead directly to Eq. B.6. However this would require the introduction of an number

of additional topics in metric topology such as orthonormal and spanning sets.
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APPENDIX C

STRUCTURE CHARTS AND FUNCTIONAL DESCRIPTION
OF FBC IMPLEMENTATION

C.1 Data Structures

Image (img) - A two dimensional array of pixels which represents an image. Images to
be coded as well as decoded images are stored in data structures of this type.

Vector (b1k) - This data structure describes a range block. It has three basic fields
pixels, norm, and projection. Pixels is a two dimensional array which contains
the actual picture elements of the range block. Norm contains the norm of the
range block and projection is the projection of the block along the u axis or {»,u).

Codebook (cbk) - A codebook is a table of vectors which represent the prototypes of
the VQ codebook.

Classes (ndx) - This data structure contains the classes and isometries associated with
each range block in the range image. The structure has four fields, class,
isometry, norm, and a projection. The class is the index to the VQ prototype
which most closely resembles the range vector. The isomerry field represents that
isometry which best maps the range vector into the prototype class. The norm and
projection are as described for the vector data structure. These are calculated and
saved to reduce computation in during fractal coding of the image where they would
otherwise have to be recalculated repeatedly.

Fractal Code (£cd) - This structure contains the fractal code for an image. It contains
five fields which represent the parameters of the fractal block transform for each
range block in the image. The first two fields are the x pointer and y pointer to the
source domain block . The remaining fields are the isomerry, scale, and transiate
parameters of the fractal transform.
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C.2 Structure Charts and Functional Description

fractal code

tralning image

. range
image
& ; vector reconstructed

codebookg c]assesqa %‘—'OdebOOk Fo image
‘f i range vector
codebook V 1someltries %

Initialize Lean Classify Fractal Code Decode
Codebook Codebook Range Image Image Fractal Image

(] [B] [ D]

tmage

codebOOAk/Oﬂ

Rofractal code

Fig. C.1. Structure chart for reduced search FBC employing FSCL.

Initialize Codebook.
Module: FSCL.
Alias: ¢bk_init.

Inputs: ftraining image (type image),
codebook ( type codebook).
Outputs: initialized codebook.

Description: This module initializes the prototype vectors in the VQ codebook based on the

training image. Each prototype is initialized to the mean of all of the possible
vectors in the training image plus some small random perturbation.
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Learn Codebook.
Module: Fscr..
Alias: cbk_learn

Inputs:

training image (type image)
randomly initialized codebook (type codebook)

Outputs: updated codebook.

Description: This function generates a codebook which is statistically representative of the

vectors in the training image using the frequency sensitive competitive
learning algorithm. A structure of this function and its subordinates is shown
in Fig C.2. Each of the resulting codebook vectors is orthogonal to the vector
u and normalized. Each training vector is presented to the network in each of
its eight possible isometric configurations and the best prototype as well as
configuration is chosen. The best prototype and configuration are then used
to update the codebook as per the FSCL learning rule.

Search Codebook (Learning)
Module: FSCL.
Alias: cbk_search_learn.

Inputs:

Outputs:

image vector (type vector),
codebook (type codebook),
frequency.

winner,

isometry.

Description: This function searches the codebook for the best prototype for the image

vector based on the learning phase of the FSCL algorithm. The image vector
to be classified must be compared against every prototype in each of its eight
possible isometric configurations. Since the FSCL learning algorithm
attempts to ensure that each prototype is chosen an equal number of times, a
table of frequencies is maintained for each codebook prototype. The
frequency table records the number of times that each prototype has been
chosen as the winner. This value is divided by the correlation measure for
each prototype and the winner is chosen according to this weighted value.
The index of the winning prototype as well as the best isometry are returned.
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Fig.C.2. The Learn Codebook function and its subordinates.

Update Codebook.

(Physically contained within Learn Codebook)

Inputs:

winner,
isometry,

image vector (type vector),
codebook (type vector),

frequency.

Outputs: updated codebook,
updated frequency table.

Description: This function updates the components of the winning prototype in the
codebook according to the FSCL learning rule. The training vector and
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isometry,are passed to the function, The training vector is then transformed
by applying the appropriate isometry to it and the winning prototype in the
codebook is then updated using this transformed vector.

Classify Range Image.
Module: £5CL
Alias: ndx_img.

Inputs: image to be coded (type image)
codebook (type codebook)
Outputs: range vector classes and isometries (type classes)

Description: This function divides the image to be coded into range vectors. Each of these
vectors is then presented to the vector quantizer and then classified. The class

and optimal isometry are then recorded and returned. A structure chart of this
function is illustrated in Fig. C.3

5 |

Classify
Range Image

image vector

Sa

image vect‘?([dv

codebook

vector

image % winnz\o

isometry

O alize Normalize ngggcohok
Vestor Vector (Classify)
isometry @ % image vector
. % % codebook vectos
tmage vecto;gdd correlatior
I[sometries Calculate
Correlation

Fig. C.3. The Classify Range Image function and its subordinates.
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Search Codebook (Classify)

Module: FSCL.

Alias: cbk_search_range,
cbk_search _domain.

Inputs:  image vector (type vector),
codebook (type codebook).
Outputs: winner,
isometry.

Description: This function classifies an image vector according tho the best matching
prototype in the codebook. Because the codebook has been appropriately
learned a frequency count is not used here. The function returns the an index
to the best prototype indicating the image vector class and the isometry which
best maps the image vector into that prototype.

Calculate Correlation
Module: FsCL.
Alias: calc_corr.

Inputs: image vector (type vector),
codebook vector (type vector).

Outputs: correlation.

Description: This function receives an image vector and a codebook vector and calculates
the inner product or correlation between them.
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Fractal Code Image.
Module: FRACTAL.
Alias; £cd_img.

Inputs:  image to be coded (type image),

codebook(type codebook),

range vector classes and isometries (type classes).
Outputs: complete fractal code for the image (type fractal code).

Description: This function generates the fractal code for a source image. It requires an
image, a codebook, and the range classes and isometries for the image to be
coded. A structure of the Fractal Code Image function and its
subordinates are illustrated in Fig. C.4. The function extracts and reduces
each domain block in the image. This reduced domain block is then
orthonormalized and classified using the vector quantizer and its class as well
as best isometry are determined. The reduced domain block is then compared
against all of the range blocks in the image which are of the same class. This
is done by calculating the isometry which best maps the domain block into the
range block, calculating the optimal scaling and translation coefficients, and
then determining the error. If for a particular range block the error is less than
that associated with any other domain bock, then the scaling, translation and
isometry parameters as well as x and y pointers to the domain block are
recorded.

Extiract and Reduce Domain Block
Module: FRACTAL.
Alias: blk_rdc.

Inputs: image to be coded (type image),
vector pointer.
Outputs: reduced domain vector (type vector)

Description: This function extracts domain vector from a image at the x and y positions

indicated by the vector pointer. This domain vector is then reduced to the
same size as range blocks and returned.
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Fig. C.4. The Fractal Code Image function and its subordinates.

Calculate Fractal Coefficients
(Physically contained within Fractal Code Image.)

Inputs: reduced domain vector (type vector),
range vector (type vector),
domain isometry,
range isometry,

Outputs: combined isometry,

scaling coefficient,
translation coefficient,
erTor.

Description: This function calculates and returns the ideal fractal coefficients for mapping

the domain vector into the range vector. The remaining error resulting from
these ideal coefficients is also computed and returned.
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Decode Fractal Image.
Module: FRACTALS.
Alias: fcd_img.

Inputs:  fractal code for image (type fractal code)
Output: image reconstructed from the fractal code {type image)

Description: This function, shown in Fig. C.5, reconstructs the original image from its
fractal code using the iterative reconstruction algorithm. The function begins
with an arbitrary image and then maps it into a new image according to the
parameters of the fractal code. This image then becomes the source image and
the procedure is repeated iteratively.

D
Decode
Fractal Image

scaling coefficient

2a

image 7
vector pointetge

domain
vecto?f

translation ceefficien

dom:ng %‘gomam vector

domain§ yector

V isometry%

domain vectoroy

Extract and
. . Scale and
Reduc_e Orthoganalize Normalize [sometries Translate
Domain Vector Vector V.
ector
Vector

Fig. C.5. The Decode Fractal Image function and its subordinates.
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Orthogonalize Vector
Module: TRANSFORMS.
Alias: blk_orch.

Inputs:  image vector (type vector).
Outputs: orthoganalized vector (type vector)

Description: This function removes the component in the u direction from a vector.

Normalize Vector
Module: TRANSFORMS.
Alias: blk_nrm.

Inputs: image vector (type vector)
Outputs: normalized image vector (type vector)

Description: This function normalizes an image vector.

Isometries
Moduile: TRANSFORMS.
Alias: isometries.

Inputs: isometry,
image vector (type vector)
Outputs: isometrically transformed image vector (type vector)

Description: This function performs one of eight isometric transformations on an image
block. The particular transform is selected according to the isometry index.
The actual transformations are handled by eight subordinate functions

(1) idnt - identity,

(2) £flp_x - flips the vector about the x axis,

(2) £lp_y - flips the vector about the x axis,

(3) flp_dl - flips the vector about the first diagonal,

(4) £lp_d2 - flips the vector about the second diagonal,

(5) rot_90 - rotates the vector 90° about the center,

(6) rot_180 - rotates the vector 1800 about the center,

(7) rot_270 - rotates the vector 230° (-90°) about the center.
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APPENDIX D

C LANGUAGE LISTINGS FOR CONCATENATED
FBC/ARITHMETIC IMAGE COMPRESSION SOFTWARE

- 147 -



MODULE: MAIN

Program: Block Oriented Fractal Data Compression of Digital
Images.

Programmer: Larry M. Wall
Department of Electrical and Computer Engineering
University of Manitoba
Winnipeg, Canada
(larwall@ee.umanitoba.ca)

Version: 2.1
Last Update: 16/02/93

Comments: V2.0 impiiments a reduced range search by employing
vector quantization. A number of new data structures are
introduced to improve modularity. It also stores the
fractal code in a format appropriate for additional
compression later with arithmetic coding.

LIBRARIES: "

#include <stdiib.h>
#include <time.h>
#include <stdio.h>

#include "fbc_constants.h”
#include "fbc_fractals.h"
#include "fbc_fscl.h"
#include "fbc_arithmetic.h"
#include "fbc_io.h"

MAIN PROGRAM: “

main{)

{

unsigned char *img_1, /" source image T/
‘img_2,
"img_f; /* decoded fractal image *
fractal *fed_1; /* fractal code *
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MODULE: MAIN

vector chbk_1; * V@ codebook
index ndx_1; /* VQ coded image
time_tit;
struct tm
“started,
“finished;
img_1 = img_alloc();
fed_1 = fed_alloc();
cbk_1 = cbk_alloc(};

ndx_1 = ndx_alloc();

puts( "Loading image Data.” );
img_load( "len1.img", img_1 );

puts{ "Initializing VQ Codebook." };
cbk_init( img_1, cbk_1 );

puts{ "Learning VQ Codebook." );
It = time( NULL );

started = localtime( &lt );
printf{ asctime( started ) );
cbk_learn{ img_1, cbk_1 );

it = time( NULL );

finished = localtime( &lt );
printf{ asctime( finished ) );

puts({ "Saving VQ Codebook." };
cbk_save( "len11.cbk", cbk_1 };

puts{ "Loading VQ Codebook." );
cbk_load( "len11.cbk", cbk_1 );

puts( "Generating Picture of the Codebook." );
img_f = img_alloc();
cbk_img( cbk_1, img_f );

puts( "Saving Displayed Codebook.” );
img_save( "len11CBK.img", img_f );
free{ img_f );

puts{ "Quantizing Image." );

It = time( NULL );

started = locaitime( &lt );

printf( asctime( started ) );
ndx_img( img_1, cbk_1, ndx_1});
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MODULE: MAIN

It = time( NULL );
finished = localtime( &lt );
printf( asctime( finished ) );

puts( "Reduced Fractal Coding Image." );

It = time{ NULL ): :

started = locaitime( &It );

printf( asctime( started } );

img_code_r( img_1, cbk_1, ndx_1, fed_1 );
free( img_1 );

it = time{ NULL );

finished = localtime( &It );

printf( asctime( finished } );

puts( "Exhaustive Fractal Coding Image." );
t = time( NULL });

started = localtime( &lt );

printf( asctime( started } );

img_code_e( img_1, fcd_1 );

free( img_1 );

It = time( NULL );

finished = localtime( &lt );

printf( asctime( finished ) );*/

puts( "Saving Fractal Coded Image.” );
fcd_save( "len11.fed", fcd_1 );

puts( "Loading Fractal Coded Image.” }:
fed_load( "len11.fed", fed_1 );

puts( "Packing Fractal Code." );
fed_pack( fed_1 );

puts( "Arithmetic Compressing Fractal Coded Image." );
ac_compress{ "len11.ac", fcd_1 );

puts{ "Arithmetic Decompressing Fractal Coded Image.” );
ac_decompress( "len1t.ac", fcd_1 };

puts( "Unpacking Fractal Code." );
fed_unpack( fed_1 );

puts({ "Decoding Fractal Image.”" );
It = time{ NULL });

started = localtime( &t );

printf{ asctime( started ) );
img_f = img_alloc();
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MODULE: MAIN

fed_img( fed 1, img_£);

It = time( NULL });

finished = localtime({ &lt );
printf{ asctime( finished ) );

puts( "Saving Decoded Fractal Image." );
img_save( "len11.img", img_f );

free( img_f );
free( fed_1 );
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MODULE: CONSTANTS

/'=========================================================
CONSTANTS: *
#define IMG_SZ 256 /* size of image in pixels c
f#define BLK_SZ 8  /* size of range block in pixels *
#define BLK_MX 7 /* BLK_SZ - 1 t
#define BLK_NM 32 /* number of blocks per image dimension *
#define DMN_SZ 16 /* size of domain block in pixels M
#define SCL_SZ 2 /* scale factor between range and domain blocks T/
#define STP_SZ 1 /* step size between domain blocks *
#define FRC_IT 10 /* number of itterations of decoding algorithm )
#define CBK_SZ 11 /* size of the fscl codebook ‘o
static unsigned char t_t[8][8] = { /* Array which indicates the result of i
0,1,2,3,4,5, 86,7, !~ multiple applications of block )
1, 0,86, 7,5, 4, 2,3, I transformations b
2,6,0,5 7 3,1, 4,
3,5 7,0, 6,1, 4,2
4,7,5, 86,0, 2 31,
5 3,4,2, 1,86, 7,0,
6,2, 1, 4,3, 7, 0,5,
7,4,3,1,2,0,5,6
|
f e e e e e e e e e e e e e e e e e
TYPE DECLARATIONS: *
typedef struct {
int X,
YJ
translate,
scale,
transform;

} fractal;

typedef struct |
float pxIs{BLK_SZ]}{BLK_SZ],
s1,
s2;
} vector;

typedef struct {

int ptr;
unsigned char
transform;
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MODULE: CONSTANTS

float
} index;

s1,
s2;
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MODULE: FRACTALS

Header:

extern
extern
extern
extern
extern

extern

void img_code_r():
void img_code_e();
void fed_img();
void fed_disp();
void fed_pack();
void fed_unpack();

Source

/' =====c==ss=s======s=s====scc=zsz=sccsssmsocssoccomccsoeeoo
Module: FRACTALS

Program: Block Oriented Fractal Data Compression of Digital

Images.

Programmer: Larry M. Wall

Department of Electrical and Computer Engineering
University of Manitoba

Winnipeg, Canada

{larwall@ee.umanitoba.ca)

Version: 2.2

LastUpdate: 12/02/93

Comments: This module contains the code necessary to encode and

decode a fractal representation of an image using the
reduced search encoding procedure.

LIBRARIES: : t/

#include <stdlib.h>
#include <math.h>
#include <values.h>

#include "fbc_constants.h”
#include "fbc_io.h"
#include "fbc_transforms.h”

#include "fbc_fractals.h”
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MODULE: FRACTALS

PUBLIC FUNCTIONS:

void img_code_r();
void img_code_e();
void fed_img();
void fcd_disp();
void fcd_pack();

: Generate fractal code for source image using the reduced search fractal coding

procedure.

void img_code_r( image, cbook, vq_code, fr_code )
unsigned char image[IMG_SZ][IMG_SZ];

vector chook[CBK_SZ];

index vq_code[BLK_NM][BLK_NM]J;
fractal fr_code{BLK_NM][BLK_NM]:

{

float

int

int

float

float

float

int

low_err[BLK_NM][BLK_NM];

img_x,
img_y,
blk_x,
bik _y,
b_x,
b_y,

X,

Y.

type;
scale,
translate,
shift;

rd,

B,

D = BLK_SZ * BLK_SZ;

error;

c¢_transform;

unsigned char

t_transform,
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MODULE: FRACTALS

transform;

vector r_block,
s_block,
t block:

for { blk_x=0; bik_x<BLK_NM; blk_x++ )
for ( bilk_y=0; blk_y<BLK_NM; bik_y++ )
low_err{blk_x]{blk_y] = MAXFLOAT;

for ( img_x=0; img_x<(IMG_SZ - DMN_S2); img_x+=STP_SZ )
for ( img_y=0; img_y<(IMG_SZ - DMN_SZ); img_y+=STP_SZ )

{
blk_rde( img_x, img_y, image, &r_block );

for( x=0; x<BLK_SZ; x++ )
for( y=0; y<BLK_SZ; y++ )
s_block.pxIs[x][y] = r_block.pxIs[x][y];
r_block.s1;
r_block.s2;

s_block.s1
s_block.s2

blk_orth( &r_block );
blk_orth( &s_block );
type = cbk_search_domain( r_block, cbook, &c_transform ):

t_transform = (unsigned char) c¢_transform;

for ( bik_x=0; blk_x<BLK_NM; blk_x++ )
for ( blk_y=0; bik_y<BLK_NM; blk_y++ )
{
if( vq_code[blk_x][blk_y].ptr == type )
{
transform =

t_t{t_transform}{vq_code[blk_x][blk_y].transform];
blk_isom( s_block.pxis, t_block.pxls,

transform);
b_x = blk_x * BLK_SZ;
b_y = blkk_y * BLK_SZ;
rd = 0.0;

for { x=0; x<BLK_SZ; x++ )
for { y=0; y<BLK_SZ; y++ )
rd += (float} image[b_x +
x]lo_y + y] = t_block.pxis{x][y]:

scale = (int) rd ;
shift = vqg_code[blk_x][blk_y].s1/D;
error = vq_code[blk_x][bik_y].s2 + scale

* scale * s_block.s2 + shift * shift * D + 2 * ( scale * shift * s_block.s1 - scale * rd
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MODULE: FRACTALS

- shift * vq_code[blk_x][blk_y].s1 );
it ( (low_err[blk_x][blk_y] >= error) &&

{

( fabs(scale) < 1024 ) )

low_err[blk_x][blk_y] = error;

fr_code[blk_x][blk_y].x = img_x:
fr_code[bik_x|[bik_yl.y = img_y;
fr_code[blk_x][blk_y].transform =

transform;

fr_codel[blk_x][bik_y].scale =
scale;

fr_code[blk_x}{blk_y].translate =
(int) shift;

)
}
}
}

}
T

: Generate fractal code for source image using the exhaustive search fractal
coding procedure. */

void img_code_e( image, fr_code )

unsigned char image[IMG_SZ}[IMG_SZ];
fractal fr_code[BLK_NM][BLK_NM];

{
float low_err[BLK_NM][BLK_NM];

float rr,

int img_x,

float scale,
translate,
shift;
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MODULE: FRACTALS

float rd,
B,
D = BLK_SZ " BLK_Sz;

float error:

unsigned char
transform:

vector r_block,
s_block,
t_block;

for { blk_x=0; blk_x<BLK_NM; blk_x++ )
for { blk_y=0; blk_y<BLK_NM; blk_y++ )
fow_err[blk_x][blk_y] = MAXFLOAT;

for ( img_x=0; img_x<(IMG_SZ - DMN_S2); img_x+=STP_SZ )
for ( img_y=0; img_y<(IMG_SZ - DMN_SZ); img_y+=STP_SZ )
{
bik_rde( img_x, img_y, image, &r_block );

for( x=0; x<BLK_SZ; x++ )
for( y=0; y<BLK_SZ; y++ )
s_block.pxls[x][y] = r_block.pxIs[x][y];
s_block.st = r_block.s1;
s_block.s2 = r_block.s2:

blk_orth( &r_block );
blk_orth( &s_block );

for ( blk_x=0; blk_x<BLK_NM; blk_x++ )
for { bik_y=0; blk_y<BLK_NM; bik_y++ )
{

X

k_x * BLK_SZ;

b b
b blk_y * BLK_SZ:
0:

ll!<

r
rr = 0.0;
for ( x=0; x<BLK_SZ; x++ )
for ( y=0; y<BLK_SZ; y++ )
{

r += (float) imagelb_x + x]{b_y +

yl;
rr += (float) image[b_x + x][b_y

*

+ y] " imagelb_x + xjlb_y + v];
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MODULE: FRACTALS

for( transform=0; transform<8; transform++ )
{
blk_isom( s_block.pxls, t_block.pxls,
transformy);
rd = 0.0;
for ( x=0; x<BLK_SZ; x++ )
for ( y=0; y<BLK_SZ; y++ )
rd += {float) image[b_x +
x][b_y + y] * t_block.pxIs[x][y];
scale = (int} rd ;
shift = D,
error = rr + scale * scale * s_block.s2 +
shift * shift * D + 2 * ( scale * shift * s_block.s1 - scale * rd - shift * r );
if ( (low_err[blk_x][blk_y] >= erron) &&

* *

( fabs(scale) < 1024 ) )
{

low_err[blk_x}{blk_y] = error;
fr_code[blk_x][blk_y].x = img_x;
fr_code[blk_x][blk_yl.y = img_y;

fr_code[bik_x]{blk_y].transform =

transform;

fr_code[blk_x][blk_y].scale =
scale;

fr_code[blk_x][blk_y].translate =
{int) shift;

}
}
}
}

}
J e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e et e e e e e e e
. Reconstruct image from fractal code via iterative algorithm. )

void fcd_img( fr_code, image)
fractal fr_code[BLK_NM][BLK_NM];
unsigned char image[IMG_SZ][IMG_SZ];

{
unsigned char “img_t;
#define TEMP(j,k) (img_t[j"IMG_SZ+k]})

vector s_block,
t_block;
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MODULE: FRACTALS

float  Ivi:

int i,
bik_x,
blk_y,
X,

y,
img_x,
img_y;

img_t = img_alloc();

for ( x=0; x<BLK_SZ; x++ )
for ( y=0; y<BLK_SZ:; y++ )
TEMP(x,y) = 0;

for { i=0; i<FRC_IT; i++ )
{
for ( blk_x=0; blk_x<BLK_NM; blk_x++ )
for { blk_y=0; blk_y<BLK_NM; bik_y++ )

{
blk_rdc{ fr_code[blk_x][btk_y].x,
fr_code[blk_x][blk_yl.y, img_t, &s_block );
bik_orth{ &s_block };
blk_isom( s_block.pxls, t_block.pxls,
fr_code[bik_x][blk_y].transform);
for { x=0; x<BLK_SZ; x++ )
for { y=0; y<BLK_SZ; y++ )
{

vl = (float) ( t_block.pxis[x][y] *
fr_code[blk_x][blk_y].scale ) + fr_code|blk_x][blk_y].translate;
if (Wl < 0.0)
vl = 0.0;
if { vl > 255.0)
vl = 255.0;
image[{ blk_x * BLK_SZ } + x][( blk_y *
BLK_SZ ) +y] = (unsigned char) Ivl;
}
}
for ( img_x=0; img_x<IMG_SZ; img_x++ )
for { img_y=0; img_y<IMG_SZ; img_y++ )
TEMP(img_x,img_y) = imagelimg_x}{img_y];
| _

free( img_t );
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: Dispaly fractal code on screen.

void fed_disp( code )
fractal code[BLK_NM][BLK_NM]:
{

int blk_x,
blk_vy;

for { blk_y=0; blk_y<BLK_NM; blk_y++ )
for ( blk_x=0; blk_x<BLK_NM; blk_x++ }
printf("%5d %5d %5d %5d %5d %5d %5d\n", blk_x, blk_y,
code[blk_x][blk_y}.x,
code{blk_x][blk_y].y, code[blk_x][blk_y].translate,
code[blk_x][blk_y].scale,
(int) codelblk_x][blk_y].transform };

: Format fractal code for arithmetic compression. *

void fed_pack{ code )
fractal code[BLK_NM][BLK_NM];

{

int blk_x,
bik_y,
max,
min;

max = -5000;

min = 5000;

for( blk_y=0; blk_y<BLK_NM; blk_y++ )
for( blk_x=0; blk_x<BLK_NM; blk_x++ )
{
if( code[blk_x][blk_y].scale > max )
max = code[blk_x][blk_y].scale;
if( code[bik_x][blk_y}].scale < min }
min = code[blk_x}{blk_y].scale;
}
for( blk_y=0; blk_y<BLK_NM; blk_y++ )
for( blk_x=0; blk_x<BLK_NM; blk_x++ )
{
code[blk_x]{blk_y].x /= STP_SZ;
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code[blk_x][blk_yl.y /= STP_SZ;
code[blk_x][blk_y].scale += 1024:
}

printf{ "Range: %d\n", max - min );

for( blk_y=0; bfk_y<BLK_NM; blk_y++ )
for( blk_x=0; blk_x<(BLK_NM-1); blk_x++ )
code[blk_x][blk_y].translate = code[blk_x+1][blk_y].transiate

- code[blk_x][bik_y].translate + 256;

for( blk_y=0; blk_y<BLK_NM-1; blk_y++ )
code[BLK_NM-1][blk_y].translate = code[BLK_NM-

1][blk_y+1].translate - code[BLK_NM-1][blk_y].translate + 256:

: Recover fractal code arter arithmetic decompression. b

void fed_unpack( code )
fractal code[BLK_NM][BLK_NM];

{

1]

int bik_x,
blk_y,
max,
min;

for( blk_y=0; blk_y<BLK_NM; bik_y++ )
for{ blk_x=0; blk_x<BLK_NM; bik_x++ )
{
codefblk_x][blk_y].x *= STP_SZ;
code[bik_x][blk_y].y "= STP_SZ;
code[blk_x][blk_y].scale -= 1024;
}

for( bik_y=(BLK_NM-1); blk_y>0; blk_y-- )
code{BLK_NM-1][blk_y-1].translate = code[BLK_NM-
[blk_yl.transtate - code[BLK_NM-1][blk_y-1].translate + 256;

for( blk_y=0; blk_y<BLK_NM; blk_y++ )
for( blk_x=(BLK_NM-1); blk_x>0; blk_x-- )
code[blk_x-1][blk_y].translate = code[blk_x][blk_y].translate

- code[blk_x-1][bik_y].translate + 2586;
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MODULE: FSCL

Header:

extern void cbk_init();
extern void cbk_learn();
extern int cbk_search_range();
extern int cbk_search_domain{);
extern void ndx_img();
extern void cbk_img();

Module:

Program:

Programmer:

Version:
Last Update:

Comments:

LIBRARIES:

FSCL

Block Oriented Fractal Data Compression of Digitai
Images.

Larry M. Wall

Department of Electrical and Computer Engineering
University of Manitoba

Winnipeg, Canada

(larwall@ee.umanitoba.ca)

2.0
07/06/92

This moduie contains all of the functions for associated
with the frequency sensitive competetive learning neural
network. Functions are included to intititalize the
network, learn an appropriate set of weights, and
classify domain and range blocks.

#include <stdlib.h>
#include <math.h>
#include <values.h>

#include "fbc_constants.h"
#include "fbc_transforms.h"
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#include "fbc_fscl.h®

PUBLIC FUNCTIONS: : v

void cbk_init(};
void cbk_learn(};
int  cbk_search_range();
int  cbk_search_domain();
void ndx_img({);
void cbk_img(};

PRIVATE FUNCTIONS: */

static int  cbk_search_learn(};
static float calc_error();

/*=======================================================:=

: Initializes each element in the codebook to the average of all of the blocks in the
image plus some random pertibation. i

void cbk_init( image, chook )

unsigned char image[IMG_SZ][IMG_SZ];
vector chook{CBK_SZ];

{

vector avg;
float rnd_nm;

int blk_x,
bik_y,
X,

Y,
node;

avg.s1 = avg.s2 = 0.0;
for ( x=0; x<BLK_SZ; x++ )
for ( y=0; y<BLK_SZ; y++ )
avg.pxis[x]ly] = 0.0;
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for { blk_x=0; blk_x<IMG_SZ; blk_x+=BLK_SZ )
for ( blk_y=0; blk_y<IMG_SZ; blk_y+=BLK_SZ )
for ( x=0; x<BLK_SZ; x++ )
for ( y=0; y<BLK_SZ; y++ )
avg.pxis[x]ly] += (float) ( image[blk_x +
xjblk_y + y] )

for { x=0; x<BLK_SZ; x++ )
for ( y=0; y<BLK_SZ; y++ )
{
avg.s1 += avg.pxis[x][y];
avg.s2 += avg.pxis[x]ly] * avg.pxis(x][yl;
}

blk_orth( &avg );

for ( node=0; node<CBK_SZ; node++)
{
cbook[node].st = cbook[node).s2 = 0.0;
for { x=0; x<BLK_SZ; x++ )
for ( y=0; y<BLK_SZ; y++ )
{
rd_nm = { ( (float) random() / MAXINT ) - 0.5 ) * 0.2
+ avg.pxis[xi[yl;
cbook[node].pxis[x]ly] = rnd_nm;
cbook[node].s1 += rnd_nm;
cbook[node].s2 += rnd_nm * rnd_nm;:

}
blk_orth{ &cbook[node] );

: Generate the codebook using the Frequency Sensitive Competitive Learning
(FSCL) algorithm. M

void cbk_learn( image, cbook )
unsigned char image[IMG_SZ|[IMG_SZ];
vector cbook[CBK_SZ];

{
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vector s_block,
t_block:

float frequency[CBK_SZ],

i_gn = 0.2,
f_gn = 0.01,
c_gn,
w_chg,
scale;

int rnd_x,
rnd_y,
X,
Y.,
node,
transform;

long int
time,
mx_time = CBK_SZ * 1450;

for ( node=0; node<CBK_SZ; node++ )
frequency[node] = 1.0;

for ( time=0; time<mx_time; time++ )

{
cgn={((i_gn-fgn)* (1.0 - (float) time / mx_time } + f_gn );
rnd_x = (int) random(} % ( IMG_SZ - DMN_SZ );
rnd_y = (int) random() % { IMG_SZ - DMN_SZ );

blk_rde( rnd_x, rnd_y, image, &s_block );
blk_orth( &s_block };
node = cbk_search_learn( s_block, cbook, frequency, &scale,
&transform ); '
blk_isom( s_block.pxis, t_block.pxls, transform);
cbook{node].s1 = cbook{node].s2 = 0.0;
for( x=0; x<BLK_SZ; x++ )
for( y=0; y<BLK_SZ; y++ )
{
t_block.pxis[x]ly] *= scale;
w_chg = c_gn * ( t_block.pxis[x][y] -
cbook[node].pxisix]ly] );
cbook{node].pxis[x][y] += w_chg;
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cbook[node].s1 += cbook{node].pxIs[x][y];
cbook[node].s2 += cbook[node].pxIs[x]y] *
cbook[node].pxis[x][y]:

}
blk_norm{ &cbookfnode] );

frequency[node] += 1.0;

)

for (node=0; node<CBK_SZ; node++)
{
blk_orth( &cbook[node] };
printf( "%f\n", frequency[node] };

: Search the codébook for the best match to the input vector taking into
consideration frequency of occurance as per the FSCL learning algorithm. * /

static int cbk_search_learn( s_block, cbook, frequency, scale, transform )
vector s_block;

vector cbook[CBK_SZ];

float frequency[CBK_SZ};

float *scale;

int  *transform;

{

int X,

Y.

node,
t_transform,
best_node = 0;

float error,
low_err,
t_scale;

fow_err = MAXFLOAT;

for { node=0; node<CBK_SZ; node++ )
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: Search the codebook for the best match to the input range vector.

{

error = calc_error( s_block, cbook[node], &t_scale, &t transform )t
frequency[node};

if { error <= low_err )

{
low_err = error;
best_node = node;
*scale = t_scale;
*transform = t_transform;

}

return best_node;

int cbk_search_range( s_block, cbook, transform )
vector s_block;
vector cbook[CBK_SZ];

int

{

*transform:

int X,
Y,
node,
t_transform,
best node = 0;

float error,
low_err,
t_scale;

low_err = MAXFLOAT;

for { node=0; node<CBK_SZ; node++ )
{

error = calc_error{ cbook[node], s_block, &t_scale, &t_transform );

if { error <= low_err )

{

low_err = @rror;
best_node = node;
*transform = t_transform;
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}

return best node:

: Search the codebook for the best match te the input domain vector.

int cbk_search_domain{ s_block, cbook, transform )
vector s_block:

vector cbook[CBK_SZ];

int  *transform;

{

int X,
Y,
node,
t_transform,
best_node = 0;

float error,
low_err,
t_scale,
t_translate;

low_err = MAXFLOAT;

for ( node=0; node<CBK_SZ; node++ )
{

error = calc_error( s_block, cbook{node], &t_scale, &t_transform );
if ( error <= low_err )

{

low_err = error;
best_node = node;
*fransform = t transform;

}

return best_nods;
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: Generates the coded version of the image. *

void ndx_img( image, cbook, vgq_code )
unsigned char image[IMG_SZ]{IMG_SZ];
vector cbook{CBK_S2Z];

index vg_code[BLK_NM][BLK_NM];

{

vector s_block;

int blk_x,
bik_y,
X,

Y.
t_transform;

for ( blk_y=0; blk_y<BLK_NM; blk_y++)
for ( blk_x=0; blk_x<BLK_NM; blk_x++ )
{
s_block.s1 = s_block.s2 = 0.0;
for { x=0; x<BLK_SZ; x++ )
for { y=0; y<BLK_SZ; y++ )
{
s_block.pxIs{x}ly] = (float) image[ blk_x *
BLK_SZ + x][ blk_y " BLK_SZ + y |;
s_block.s1 += s_block.pxlIs{x]{y];
s_block.s2 += s_block.pxis[x]{y] *

s_block.pxIs[x]]y];

}
vg_code[blk_x][blk_y].s1 s_block.s1;
vg_code[blk_x][blk_y].s2 = s_block.s2;

blk_orth( &s_block );

cbk_search_range( s_block, cbook,

vq_code([blk_x][blk_y].ptr

&t_transform };
vq_code([blk_x][blk_y].transform = ( unsigned char )

t_transform;

}
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: Caleulate the difference between two vectors independent of amplitude scaling

and orientation. Return the optimum scale, and transform values.

static float calc_error( a_block, b_block, scale, transform)
vector a_block;

vector b_block;

float *scale;

int  “transform;

{

vector {_block;

int X,

y;
t_transform;

float ab,
error,
low_err,
t_scale;

low_err= MAXFLOAT;

for ( t_transform=0; t_transform<8; t_transform++ )

{

blk_isom( a_block.pxis, t_block.pxis, t_transform);

ab = 0.0;
for { x=0; x<BLK_SZ; x++ )
for ( y=0; y<BLK_SZ; y++ )

ab += ( t_block.pxis{x][y] * b_block.pxis[x]ly] );

if( ab < 0.0 )
{
t_scale = -1.0;
ab = fabs{(ab);
}
else
t_scale= 1.0;

error = 2.0 /"b_block.s2*/ - ( 2.0 * ab ) /*+ a_block.sz*/;

if( error <= low_err )
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}

return

low_err = error;
*scale = t_scale;
*transtform = t_transform:

fow_err;

: Display the codebook in image format.

void cbk_img( cbook, image )
vector cbook{CBK_SZ}];
unsigned char image[IMG_SZ][IMG_SZ];

{

int

float

X,

Y,
blk_x,
bik_y,
pxl_x,
pxl_y,
count,;

max,
min,

scale,
trans;

for{ x=0; x<IMG_SZ; x++ )
for( y=0; y<IMG_SZ; y++ )

for{ count=0;

{

1]

blk_x
blk_y =

imagefx]ly] = 255;

count<CBK_SZ; count++ )

count / 4;
count % 4;

for( pxl_x=0; pxl_x<BLK_SZ; pxi_x++)

for( pxl_y=0; px|_y<BLK_SZ; pxl_y++ )
for( x=0; x<7; x++ )
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for( y=0; y<7; y++ )
image(blk_x"72 + pxl_x*7 +

x|{blk_y*64 + pxl_y*7 + y] = (unsigned char) (cbook[count].pxIsfpxI_x|[px]_y] *

127 + 128);
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Header:

extern void blk_rdc();

extern void blk_orth{};
extern void blk_norm{);
extern void blk_isom();

Source:
['==========zs==s==s=o==s=====sss====c==szc==c=csscs==ss=zc=s=c==
Module: TRANSFORMS

Program: Block Oriented Fractal Data Compression of Digital

Images.

Programmer: Larry M. Wall
Depantment of Electrical and Computer Engineering
University of Manitoba
Winnipeg, Canada
(larwaill@ee.umanitoba.ca)

Version: 2.0

LastUpdate: 07/06/92

Comments: This module contains all the functions which perform
the individual fractal block transforms including

spatial contraction, isometric block transforms,
scaling, translation, and orthonormalization.

LIBRARIES: *
#include <stdlib.h>

#include <math.h>

#include <values.h>

#include "fbc_constants.h”

#include "fbc_transforms.h”

PUBLIC FUNCTIONS: b
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void bik_rde();
void bik_orth(};
void bilk_norm();
void blk_isom();

PRIVATE FUNCTIONS:

void idnt{);
void flp_x({);
void flp_y();
void flp_d1();
void flp_d2();
void rot_90();
void rot_180();
void rot_270();

: Reduce image block from domain size to range size.

void blk_rde( x, y, image, s_block )
int X,

y,
unsigned char image[IMG_SZ|[IMG_SZ];
vector *s_block;

{

int rmg_x,
rng_y,
dmn_x,
amn_y;

float avg;

s_block->s1 = s_block->s2 = 0.0;
for { rng_x=0; rng_x<BLK_SZ; rng_x++ )

for ( rng_y=0; rng_y<BLK_SZ; rng_y++ )

{
avg = 0.0;

for { dmn_x=0; dmn_x<SCL_SZ; dmn_x++ )
for ( dmn_y=0; dmn_y<SCL_SZ:; dmn_y++ )
avg += imagefx + ( rng_x * SCL_SZ } + dmn_x]ly

+{(rmg_y * SCL_SZ ) + dmn_yJ;
s_block->pxIs[rng_x]{rng_y] =

(avg / ( SCL_SZ * SCL_SZ ) );

s_block->s1 += s_block->pxis{rng_x][rng_y];
s_block->s2 += s_block->pxis[rng_x][rng_y] * s_biock-
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>pxlIs[rng_x]{rng_y];

. Generate orthonormal vector. /

void blk_orth{ s_block )
vector *s_block;

{
int X,
M
float ic;
ic = s_block->s1 / ({ BLK_SZ * BLK_SZ };
s_block->81 = s_block->s2 = 0.0;
for( x=0; x<BLK_SZ; x++ )
for( y=0; y<BLK_SZ; y++ )
{
s_block->pxiIs[x][y] -= ic;
s_block->s2 += s_block->pxis{x][y] * s_block->pxis{x][y];
}
blk_norm( s_block );
}
L e e e e e e e e e e e e e e e e e e e
: Select the approriate isometry. *

void blk_isom( s_block, t_block, isom )
float s_block{BLK_SZ]{BLK_SZ];
float t_block{BLK_SZ][BLK_SZ];
int  isom;
{
switch ( isom )
{
case 0: idnt( s_block, t_block);
break;
case 1: flp_x( s_block, t_block);
break;
case 2. fip_y( s_block, t_block };
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break;
case 3. flp_d1( s_block, t_biock );
break;
case 4: flp_d2( s_block, t_block );
break;
case 5: rot_90( s_block, t_block };
break;
case 6: rot_180( s_block, t_block );
break;
case 7: rot_270( s_block, t_block );
break;
!
}
" / e e e e e e e e e e e e e e e e e e e e
: Normalize vectors. i

void blk_norm{ s_block )
vector *s_block;

{
int X,
y:
float norm;
norm = sqrt( s_block->s2 );
if( norm > 0.001 )
{
for( x=0; x<BLK_SZ; x++ )
for{ y=0; y<BLK_SZ; y++ )
s_block->pxis{x][y] /= norm;
s_block->s1 /= norm;
s_block->s2 = 1.0;
}
}
R
: Identity transformation. i

void idnt{ s_block, t_block )
float s_block[BLK_SZ][BLK_SZ];
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float t_block[BLK_SZ][BLK_SZ]:

{
int X,
y.
for ( x=0; x<BLK_SZ; x++ ).
for ( y=0; y<BLK_SZ; y++ )
t_block[x][y] = s_block[x]ly];
}
L e e e e e e e e e e e e e
. Orthogonal reflection of block about mid-vertical axis. t

void flp_x{ s_block, t_block )
float s_block[BLK_SZ][BLK_SZ];
float t_block{BLK_SZ][BLK_SZ];

{
int X,
Y
for { x=0; x<BLK_SZ; x++ )
for { y=0; y<BLK_SZ; y++ )
t_block[x]{y] = s_block{BLK_MX - X[yl
}
A
: Orthogonal reflection of block about mid-horizontal axis. =/

void flp_y( s_block, t_block )
float s_block{BLK_SZ]{BLK_SZ];
float t_block[BLK_SZ][BLK_SZ];

{
int X,
y.
for { x=0; x<BLK_SZ; x++ )}
for ( y=0; y<BLK_SZ; y++ )
t_block[x][y] = s_block[x][BLK_MX - yI;
}
s e e e e e e e e e e e e e e e e e e e e e e e e m e e e e —— e
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: Orthogonal reflection of block about first diagonal.

void flp_dt( s_block, t_block )
float s_block[BLK_SZ)[BLK_SZ]:
float t_block[BLK_SZ)iBLK_SZ]:
{

int X,
Y.

for ( x=0; x<BLK_8Z; x++ )
for { y=0; y<BLK_SZ; y++ )

t_block(x]ly] = s_block{BLK_MX - y][BLK_MX -

: Orthogonal reflection of block about second diagonal.

void flp_d2( s_block, t_block)
float s_block[BLK_SZ|[BLK_SZ];
float t_block[BLK_SZ|[BLK_SZ];
{
int X,
y:

for { x=0; x<BLK_SZ; x++ )}
for ( y=0; y<BLK_SZ; y++ )
t_block(x][ly] = s_block[yl[x];

: Rotate block 270 degrees about center.

void rot_270( s_block, t_block )
float s_block[BLK_SZ][BLK_SZ];
float t_block[BLK_SZ|[BLK_SZ];
{
int X,
Y
for ( x=0; x<BLK_SZ; x++ )

for { y=0; y<BLK_SZ; y++ )
t_block[x]ly] = s_block[y][BLK_MX - x];
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: Rotate block 180 degrees about center. i

void rot_180( s_bilock, t_block )}
float s_block[BLK_SZ][BLK_SZJ;
float t_block[BLK_SZ|[BLK_S2Z];
{
int X,
Y.
for { x=0; x<BLK_SZ; x++ )

for ( y=0; y<BLK_SZ; y++ )
t_block{x]ly] = s_block[BLK_MX - x][BLK_MX - y];

: Rotate block 90 degrees about center. )

void rot_90( s_block, t_block )
float s_block[BLK_SZ|[BLK_SZ];
float t_block[BLK_SZ}[BLK_SZ];

{

int X,

for ( x=0; x<BLK_SZ; x++ )
for { y=0; y<BLK_SZ; y++ )
t_block[x][y] = s_block[BLK_MX-y][x];

/*=======================================================./
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Header:

extern void ac_compress();
extern void ac_decompress();

Source
/f=====mss=s===sc=z==zs=s===sss=ccs=c=ccoczm=sssocommoooc=oooao
Moduie: ARITMETIC

Program: Block Oriented Fractal Data Compression of Digital

Images.

Programmer: Larry M. Wall
Department of Electrical and Computer Engineering
University of Manitoba
Winnipeg, Canada
(larwall@ee.umanitoba.ca)

Version: 1.0
Last Update: 16/02/93

Comments:  This module performs dynamic arithmetic entropy encoding
and decoding of FBC paramters.

PRIVATE CONSTANTS: Y

#define SBL_NM 2048

#define NEG 1024

#define NDX_NM (SBL_NM + 1)
#define MAX_CUM 32767
#define NM_Code_Bits 17
#define EOF_SBL MAXINT

#define NM_SZ 20
#define SUCCESS 1
#define FAILURE 0

#define TOP ({{ unsigned long int )1<<NM_Code_Bits)-1)
#define QTR (TOP/4+1)

#define HALF (2"QTR)

#define THREE_QTR (3*QTR)

- 182 -



MODULE: ARITHMETIC

#define FLD NM 5

LIBRARIES:

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <time.h>
#include <values.h>

#include "fbc_constants.h”
#include "fbc_arithmetic.h"

PUBLIC FUNCTIONS:

void ac_compress();
void ac_decompress{);

PRIVATE FUNCTIONS:

void init_stats();
void update_stats();

void put_bit();
void close_bit_out();

void close_bit_in{);

void compress{);

void init_encoder();
void encode_smby();
void bit_plus_follow();
void flush_encoder();

void decompress();
void init_decoder();

void open_data_in();
void close_data_in();
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DATA STRUCTURES: v/

typedef struct {

int shl_nm,
ndx_nm;

int “index,
*symbl;

unsigned long int
“prb,
*cum;

} statistics;

. Initialize the statistical model. */

void init_stats( stats, sbis )

statistics *stats;
fnt sbis;
{

int N

stats->sbl_nm = sbhis;
stats->ndx_nm = sbls + 1:

stats->index = (int *) calloc( stats->ndx_nm, sizeof(int) };
stats->symbl = (int *) calloc( stats->ndx_nm, sizeof(int) };

stats->prb = (unsigned long int *) calloc{ stats->ndx_nm + 1, sizeof(unsigned
long int) );
' stats->cum = (unsigned long int ") calloc( stats->ndx_nm + 1, sizeof(unsigned
long int} );

for( c=0; c<stats->ndx_nm; c++ )
{
stats->indexfc] = c¢;
stats->symblfc] = ¢;

}

stats->cumf0] = 0;
stats->prb[stats->ndx_nm] = 0;
for{ c=0; c<stats->ndx_nm; c++ )
{
stats->prb[c] = 1;
stats->cumic] = ¢;
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stats->cumistats->ndx_nm} = ¢;

. Update the statistical model to reflect the character coded/received. <

void update_stats( stats, smb )

statistics *stats;
int smb;
{
int ndx_1,
ndx_2;

ndx_1 = stats->index[smb];

if( stats->cumistats->ndx_nm]} >= MAX_CUM )
for( ndx_2=0; ndx_2<stats->ndx_nm; ndx_2++ )
{
stats->prb[ndx_2} = ( stats->prb[ndx_2] >> 1) + 1;
stats->cum[ndx_2+1] = stats->cum[ndx_2] + stats-
>prb{ndx_2];
b

for( ndx_2=ndx_1; stats->prb[ndx_2] == stats->prb[ndx_2+1]; ndx_2++ );

if{ ndx_2>ndx_1 )

{
stats->index[smb] = ndx_2;
stats->index|[stats->symbl[ndx_2]] = ndx_1;
stats->symbl[ndx_1] = stats->symbi[ndx_2];
stats->symbli[ndx_2] = smb;

}

stats->prb{ndx_2]+=2;

for( ndx_1=(ndx_2+1); ndx_1<=stats->ndx_nm; ndx_1++ )
stats->cum[ndx_1]+=2;

)
/*=======================“_"==============================='/

static FILE *BitFile;

static int buffer,
buff_count;
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: Open the Arithmetic code output bit stream.

int open_bit_out( filename )
char filename[NM_SZj;
{

int status;

buffer = 0;
buff count = 0;

BitFile = fopen{ filename, "wb" };
if( BitFile 1= NULL )

status = SUCCESS;
else

status = FAILURE;

: Write a bit to the output stream bit buffer.

void put_bit( bit )
int bit;
{
buffer = ( buffer << 1) | bit;
buff_count++;
if( buff_count == 8 )
{
putc{ buffer, BitFile });
buffer = 0;
buff_count = 0;

: Close the arithmetic code output stream.

void close_bit_out{)

{

buffer <<= ( 8 - buff_count );
putc( buffer, BitFile );

fclose{ BitFile };
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static int garbage_count;

: Open the arithmetic code input stream.

int open_bit_in( filename )
char filename[NM_SZ];
{

int status;

buffer = 0;
puff_count = 0;
garbage_count = 0;

BitFile = fopen( filename, "rb" };
if( BitFite = NULL )

status = SUCCESS;
glse

status = FAILURE;

: Get a bit from the arithmetic input stream bit buffer.

int get_bit()

{
int bit;

if( buff_count <= 0 )
{
if( 'feof( BitFile ) )
{
buffer = getc( BitFile );
buff_count = 8;

glse

buffer = 0;
garbage_count++;
if( garbage_count > ( NM_Code_Bits - 2 } )
{
puts( "Bad Source Bit File." );
exit(-1);
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}

bit = ( buffer & 0x80 ) >> 7;
buffer <<= 1;

buff_count--;

return bit;

: Close the input bit stream.

“void close_bit_in{)
{
fclose{ BitFile );

static unsigned long int
low,
high;

static int follow_bits;

: Compress FBC paramters using arithmetic encoding.

void ac_compress( FileName, fr_code )
char FileName[NM_SZ];
fractal fr_code{BLK_NM][BLK_NM]I;
{
int X,

blk_x,

blk_y,

count;

statistics stats[FLD_NM];
int offset[FLD_NM]);
int max{FLD_NM]};

init_stats( &stats(0], IMG_SZ/STP_SZ );
init_stats( &stats[1], IMG_SZ/STP_SZ );

init_stats( &stats[2), 512 );
init_stats( &stats[3], 2048 );
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init_stats{ &stats[4], 8 };

init_encoder(};
open_bit_out{ FileName );

for( blk_x=0; blk_x<BLK_NM; blk_x++ }

for( blk_y=0; blk_y<BLK_NM: blk_y++ }

{
encode_smb( stats[0], fr_code[blk_x][blk_y].x }:
update_stats( &stats[0], fr_code[blk_x][blk_y].x };
encode_smb{ stats{1], fr_code[blk_x][blk_yl.y );
update_stats{ &stats{1], fr_code{blk_x][blk_y].y };
encode_smb( stats[2], fr_code[blk_x]{blk_y].translate ):
update_stats( &stats[2], fr_code[blk_x]{blk_y].translate });
encode_smb{ stats{3], fr_code[blk_x][blk_y].scale );
update_stats{ &stats[3], fr_code[blk_x][blk_y].scale );
encode_smb( stats[4], fr_code[blk_x][blk_y].transform );
update_stats( &stats[4], fr_code[blk_x][blk_y].transform };

}

flush_encoder();
close_bit_out();

: Initialize the arithmetic encoder. v

void init_encoder()

{
low = 0;
high = TOP;
follow_bits = 0;
}
f e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e
: Encode a single symbol. *

void encode_smb( stats, smb )
statistics stats;
int smb;

{

int ndx;
unsigned long int
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range;
ndx = stats.index[smb];
range = { high - low } + 1;
high = low + ( range * stats.cum[ndx+1] ) / stats.cumistats.ndx_nmj - 1;

low += { range * stats.cumindx] ) / stats.cum(stats.ndx_nm];

while( ( high < HALF ) [[ ( low >= HALF ) )

{
if( high < HALF )
bit_plus_follow{0);
else
{
bit_plus_follow(1);
low -= HALF;
high -= HALF;
}
low <<= 1;
high = ( high << 1) + 1;
}
while( (low>=QTR) && (high<THREE_QTR) )
{
follow_bits++;
low -= QTR;
Jow <<= 1;
high -= QTR;
high = ( high << 1) + 1;
}
}
e
. Send a bit to the output bit stream. *

void bit_pius_follow( bit )
int bit;
{
put_bit( bit });
while( follow_bits>0 )
{
put_bit{ 'bit );
follow_bits--;
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: Send all remaining bits in the encoder to the output bit stream.

void flush_encoder()
{
follow_bits++;
if{ low<QTR )
bit_plus_follow{0};
else
bit_plus_follow(1);

/':==========================================

static unsigned long int value;

: Recover FBC paramters from an arithmetic code stream.

void ac_decompress( FileName, fr_code )
char FileName[NM_SZ];
fractal fr_code[BLK_NM][BLK_NM];
{
int bik_x,
blk_y;

statistics stats[FLD_NM];

init_stats( &stats[0], IMG_SZ/STP_SZ };
init_stats( &stats(t], IMG_SZ/STP_SZ );
init_stats( &stats[2], 512 );

init_stats( &stats[3], 2048 );
init_stats( &stats{4], 8 );

open_bit_in{ FileName };
init_decoder();
for( blk_x=0; blk_x<BLK_NM: blk_x++ )

for( blk_y=0; blk_y<BLK_NM; blk_y++ )
{

============*.{

fr_code[blk_x][blk_y].x = decode_smb( stats{0] };
update_stats( &stats[0], fr_code[blk_xj{blk_y}.x };
fr_code[bik_x][blk_yl.y = decode_smb{ stats[1} };
update_stats( &stats{1], fr_code[blk_x]{blk_y].y };
fr_code[blk_x][blk_y].translate = decode_smb( stats[2] );

update_stats( &stats[2], fr_code[blk_x}[blk_y].translate };
fr_code[blk_x]{blk_yl.scale = decode_smb( stats{3] };

- 191 -



MODULE: ARITHMETIC

update_stats( &stats[3], fr_code[blk_x]{blk_y].scale )
fr_code(blk_x|[blk_y].transform = decode_smb( stats{4] ):
update_stats( &stats{4], fr_code[blk_x][blk_y].transform );

}

close_bit_in();

: Initialize the arithmetic decoder and fill the operating register with the first

NM_Code_Bits from the input bit stream. v/
void init_decoder()
{

int i;

value = 0;

for( i=0; i<NM_Code_Bits; i++ )

value = 2 * value + get_bit();

low=0;

high=TOP;
}
f e e e e e e e e e e e e i e e e e e e e e e e e e e e e e e e e e e e
. Decode a single symbol from the input bit stream. s

int decode_smb( stats )
statistics stats;

{
unsigned long int
range;
int v_cum,
ndx,
smb;

range = ( high - low ) + 1;
v_ecum = (int) ( ( ( ( value - low ) + 1) * stats.cum|stats.ndx_nm] - 1 ) /
range );

for( ndx = stats.ndx_nm; stats.cum{ndx]>v_cum; ndx-- };
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high = low + ( range * stats.cum{ndx+1] ) / stats.cumfstats.ndx_nmj} - 1;
low += ( range * stats.cum[ndx} } / stats.cum(stats.ndx_nm];

while( ( high < HALF ) || { low >= HALF ) )
{

if( low >= HALF )

{

value -= HALF:
low -= HALF:
high -= HALF;
}
low <<= 1;

high = ( high << 1) + 1;

value = ( value << 1) + get_bit();
}
white( (low>=QTR) && (high<THREE_QTR) )
{

value -= QTRH,;

value = { value << 1) + get_bit();

low -= QTR;

low <<= 1;

high -= QTR;

high = ( high << 1) + 1;
}

smb = stats.symbl{ndx};

return smb;
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Header:

extern unsigned char *img_alloc();
extern fractal *fed_alloc();
extern vector “cbk_alloc();
extern index “ndx_alloc();

extern int img_load();
extern int img_save(};
extern void fcd_save();
extern void fcd_load();
extern int cbk_load();
extern int cbk_save();

Source:
/*===s=======z=s=====Ss===scc=czcz===-ss-sssss=sm==ccc=s==c=
Module: 0

Program: Block Oriented Fractal Data Compression of Digital

Images.
Programmer: Larry M. Wall
Department of Electrical and Computer Engineering
University of Manitoba
Winnipeg, Canada
(larwall@ee.umanitoba.ca)
Version: 1.0
LastUpdate 07/06/92
Comments:  Input/Output and Memory Allocation Routines, and Type

Declarations for Block Oriented Fractal Data Compression
Program.

LIBRARIES: "

#include <stdio.h>
#include <stdlib.h>

#include "fbc_constants.h”
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#include "fbc_io.h"

PRIVATE CONSTANTS:
#define SUCCESS 1

#define FAILURE ©
#define NM_SZ 20

PUBLIC FUNCTIONS:

unsigned char *img_alloc();

fractal *fed_alloc();
vactor “cbk_alloc();
index “ndx_alloc();
int img_load();

int img_save();
void fcd_save();
void fcd_load();
int  cbk_load();

int cbk_save();

/‘=========================================================

: Dynamically allocate memory for image array

unsigned char *img_alloc()

)

ptr = (unsigned char *) calloc( IMG_SZ * IMG_SZ, sizeof(unsigned char) );

{
unsigned char *ptr;
if ( lptr)
puts{ "Memory Allocation Error." );
return ptr;
}

: Dynamically allocate memory for fractal code

fractal *fed_alloc()
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{

fractal “ptr;

ptr = (fractal *) calloc( BLK_NM * BLK_NM, sizeof(fractal) );

if { Iptr)

puts{ "Memory Allocation Error." ):

return ptr;
}
S
: Dynamically allocate memory for codebook array *

vector “"cbk_alloc()

{

vector *ptr;

ptr = (vector *) calloc( CBK_SZ, sizeof(vector) );

if (Iptr)

puts( "Memory Allocation Error." );

return ptr;
}
f T e e e e e e e e e e e e e e e e e e e e e e e e e
: Dynamically allocate memory for coded image array )

index *ndx_alloc()

{

index *ptr;

ptr = (index *) calloc( BLK_NM * BLK_NM, sizeof{index) );

if { Iptr )

puts( "Memory Allocation Error." );

return ptr;
}
2

- 196 -



MODULE: [O

: Load image to be compressed into memory. T

int img_load( filename, image )
char filename[NM_S2Z);
unsigned char image(IMG_SZ)[IMG_SZ];

{
int slatus;
FILE ~InFile;
InFile = fopen( filename, "rb" );
if { InFile != NULL )
{
it ( fread( image, sizeof(unsigned char), IMG_SZ * IMG_SZ, InFile ) )
status = SUCCESS;
else
{
puts( "File Read Error." );
status = FAILURE;
}
fclose( InFite });
}
else
{
puts( "File Not Found." );
status = FAILURE;
}
return status;
}
f e e e e e e e e e e e e e e e e e e e e e e e e
: Save reconstructed fractal image. *

int img_save( filename, image )
char filename[NM_SZ];
unsigned char image[IMG_SZ][IMG_SZ];

{

int status;
FILE *QutFile;

QOutFile = fopen( filename, "wb" );
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if ( OutFile 1= NULL )

{
it ( fwrite( image, sizeof(unsigned char), IMG_SZ * IMG_SZ, OutFile ) )
status = SUCCESS;
eise
{
puts( "File Read Error.” );
status = FAILURE:
}
fclose{ CutFile };
}
else
{
puts{ "File Not Found." );
status = FAILURE;
}

return status;

: Load fractal code for image. *

void fcd_load( filename, code )
char filename[NM_SZ];
fractal code{BLK_NM][BLK_NM];

{

FILE *InFile;

InFile = NULL,;
inFile = fopen{ filename, "rb" );
if ( InFile = NULL )
fread( code, sizeof(fractal), (BLK_NM * BLK_NM), InFile );
else

{
puts{ "File Not Found." );

exit(3);
}

fclose(InFile);

: Save fractal code for image. "
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void fcd_save( filename, code )
char filename[NM_SZ];
fractal code[BLK_NM][BLK_NM]:

{
FILE *CutFile;

QutFile = NULL;
OutFile = fopen( filename, "wh" );
if ( QutFile 1= NULL )
fwrite( code, sizeof(fractal), (BLK_NM * BLK_NM), OutFile );
else

{
}

fclose(OutFile);

puts( "Unable to Open File." );

: Load the codebook from disk. *

int cbk_load( filename, cbook )
char filename[NM_SZ];
vector cbook[CBK_S2Z];

{

int status;
FILE “*InFile;

InFile = fopen( filename, "rb" );
if { InFile !'= NULL )

{ .
if ( fread( cbook, sizeof(vector), CBK_SZ , InFile ) )
status = SUCCESS;
else
{ .
puts( "File Read Error." );
status = FAILURE;
}
fclose( InFile );
}
else
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puts( "File Not Found" }:
status = FAILURE;

}

return status;

: Save the codeboaok to disk. /

int cbk_save( filename, cbook )
char filename[NM_SZ];
vector cbook[CBK_S2Z];

{

int status;
FILE *QutFile:

OutFile = fopen( filename, "wb" );
if { OutFile != NULL )
{
it ( fwrite( cbook, sizeof(vector), CBK_SZ , OutFile ) )
status = SUCCESS;

else
{
puts( "File Write Error." );
status = FAILURE;
}
fclose( OutFile );
}
glse
{

puts{ "Cannot Open Output File." );
status = FAILURE;

}

return status;

}
/':======================================================*/
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