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Abstract
Credit value adjustment (CVA), as a quantified measure of counterparty credit

risk for financial derivatives, is becoming an increasingly important concept for

the financial industry. In this thesis, we evaluate CVA for an interest rate swap

via a new structural default model. In our model, the asset value of a company

is assumed to follow meromorphic Lévy processes with infinite jumps but finite

variation. One important advantage of our model is that we are able to assume a

random recovery rate which depends on default severity. Compared with the case

with a fixed recovery rate, we show that the effect on CVA with a random recovery

rate is significant.
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Chapter 1

Introduction

This chapter will be arranged as follows. In Section 1.1, we will start with an

introduction to the historical background of counterparty credit risk, in particular,

how the topic becomes important after the 2007 financial crisis. Then, we will

review the literatures on credit value adjustment (CVA) and explain the motivation

and contribution of this thesis in Section 1.2. Finally, Section 1.3 will give us an

outline to demonstrate how we are going to construct this thesis.

1.1 Background

This thesis gives an alternative method for pricing credit value adjustment

(CVA) that quantifies the counterparty credit risk for a financial contract. Coun-

terparty credit risk is the risk of the counterparty’s failure to perform its financial

obligation for a contract. 1 It is important to price and recognize the counterparty

1 A counterparty refers to the other party that participates in a financial contract.

1



2 Chapter 1: Introduction

credit risk, because counterparty credit risk is inherent in financial transcactions

since the 2007 financial crisis (Gregory, 2012, p.6). Lack of recognition of the coun-

terparty credit risk, particularly for the over-the-counter (OTC) derivatives could

lead to serious failures to the financial market. (See the detail discussion in Chapter

2.)

Prior to the 2007 crisis, institutions and investors tried to control their coun-

terparty credit risk by setting the credit limit for given counterparties based on

their financial stability and credit rating (Gregory, 2012, p.34-38). One limitation

of this approach is that it makes the decision making process a binary event. The

transaction will be approved only if its value does not go beyond the credit limit.

As a result, institutions and investors are more likely to trade with those large

financial institutions who seem to be financially stable. Eventually, those large fi-

nancial institutions became the common counterparties to numerous institutions

and investors. Another limitation of the credit limit approach is that it ignores the

counterparty risk for those transactions that are approved. But we learned, from

the crisis, that even the companies with the highest credit ratings could still sud-

denly go bankruptcy (i.e. they still have counterparty credit risk). And when those

financial institutions default, it could create a chain reaction in the entire market

since there will be large numbers of investors involved. CVA, on the other hand,

allows us to move beyond the binary decision process and to price the counter-

party credit risk directly for all the transactions. As a result, CVA has become a

major subject for credit risk in the financial markets ever since the 2007 crisis.
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1.2 Literature review

CVA is the difference between the risk-free value of a financial contract and

its risky value when taking counterparty credit risk into account (Gregory, 2012,

p.242). With the assumption of independence, CVA (without considering DVA

component) at each future transaction date can be calculated as the product of two

separate parts: the credit exposure and the default probability with the recovery

rate. The credit exposure can be evaluated by multiplying the expected risk ex-

posure with the corresponding discount factor. With the assumption of a fixed

recovery rate, the other part can be obtained by multiplying the marginal default

probability with the fixed recovery rate. (See the detail discussion in Chapter 2)

In this thesis, we will focus on the default probability and recovery rate. Gen-

erally speaking, in the literature, there are two kinds of models for calculating the

default probability: the reduced-form model and the structural model. (See Arora

et al. (2005) for detailed literature review on these two models.) The Reduced-

form models assume that the default event is an unpredictable random event, and

is characterized by a default intensity function. Duffie and Singleton (1999) and

Hull and White (2000) presented detailed explanations of several reduced-form

models. Instead of modeling the default time with an intensity function, the struc-

tural models consider that default happens the first time when the asset value falls

below a certain threshold level. Merton (1974) proposed the first structural model

by reformulating the problem of a firm’s default into the problem of modeling the

firm’s asset value. His basic assumption was that default happens when the firm’s

asset value falls below its liabilities. Black and Cox (1976), Vasicek (1984), and
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Zhou (2001), among others, proposed different structural models by eliminating

some unrealistic assumptions from the Merton’s model. In this thesis, we will de-

velop a new structural model in which the asset-value process includes pure jumps

with infinite activities and finite variation.

It is worthwhile to point out the importance of infinite activities and finite vari-

ation for the processes in modeling asset values. Carr et al. (2002) found evidence

that the equity prices are pure jump processes with infinite activities and finite

variation. Their findings are summarized by Hao and Li (2015) as follows. (1) A

diffusion component is statistically insignificant while jump components consis-

tently account for significant skewness levels from equity prices. (2) The shape

of the mean corrected density for asset returns appears to depart from that of a

normal distribution. However, the densities of processes with infinite activity and

finite variation are consistent with equity prices.

Another important feature is that we are able to assume a random recovery rate

in our model. According to Das and Hanouna (2009), the recovery rate is com-

monly assumed to be a constant number at 40% to 50% range for U.S. corporates

and 25% for sovereigns. It might be practically exigent for this assumption due to

the difficulty and complexity of including the random recovery rate in the pricing

of the financial products. (See comments in Das and Hanouna (2009).) However,

it is an unrealistic one since the recovery rate shows a strong fluctuation and large

variation over time and sectors. (See Figures 1.1 and Table 1.1) In fact, Altman et al.

(2005) studied the default rate and the recovery rate for corporate bonds defaulted

between 1982 and 2002, and reported that their empirical result shows the recov-
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ery rate has a strong variation and negative correlation with the default rate. Thus,

it will be a great advantage for a model that is able to capture a random recovery

rate and take the dependence between default probabilities and recovery rate into

account. Calabrese and Zenga (2010) analyzed 149,378 recovery rates on the Ital-

ian bank loans by regarding the recovery rate as a mixed beta random variable.

They applied a kernel estimation on the recovery rates and found that the recov-

ery rate shows a bimodal distribution. Van Damme (2011) introduced a method to

take into account a stochastic loss-given-default by incorporating a common de-

pendence of the loss-given-default and the default probability on a latent variable

that represents the systemic risk. Ruf and Scherer (2011) provided a Monte Carlo

simulation algorithm for computing the bond prices in a structural default model

with jumps. They showed that a structural model with jumps is able to capture the

stochastic recovery rate. Zhou (2001) studied the defaultable bonds with a Monte

Carlo simulation and suggested modeling the logarithm of the asset value as a pro-

cess with the combination of a diffusion component and a jump component and

the assumption that the jumps are normally distributed.

It is reasonable to assume a random recovery rate depending on default sever-

ity. Guo et al. (2009) provided a model for a piecewise recovery rate in a reduced

form model. In their model, the recovery rate is determined by the severity of

default and by whether a firm is insolvent or bankrupt (i.e. the level of a firm’s

financial distress) when default happens. Tang and Yuan (2013) introduced a static

structural model for the loss-given-default with the consideration of the severity

of default; and their results show that the model provides an accurate estimate for
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Figure 1.1: Strong Variation of the Recovery Rates Over Time. (Moody’s Investors
Service, 2009)

the tail probability of the loss-given-default.

1.3 Structure of the thesis

Chapter 2 will start with the discussion on the importance of quantifying coun-

terparty credit risk for OTC derivatives as well as the assumptions and formulas

for computing CVA. Then, Chapter 3 will have a detailed discussion of several im-

portant structural models as well as a new structural model. In particular, we will

introduce a Lévy default model that includes finite variation and infinite activi-

ties in the asset value process; and we will discuss the method for computing the

expected discounted penalty functions (EDPFs) for particular families of meromor-

phic Lévy processes. In Chapter 4, we will talk about a numerical experiment on

the calculation of CVA for an interest rate swap. We will provide detailed descrip-
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Industry Average recovery rate
Public utilities 70.5%

Chemicals, petroleum, rubber and plastic products 62.7%

Machinery, instruments and related products 48.7%

Services (business and personal) 46.2%

Food and kindred products 45.3%

Wholesale and retail trade 44.0%

Diversified manufacturing 42.3%

Casino, hotel and recreation 40.2%

Building material, metals and fabricated products 38.8%

Transportation and transportation equipment 38.4%

Communication, broadcasting, movie, printing and publishing 37.1%

Financial institutions 35.7%

Construction and real-estate 35.3%

General merchandise stores 33.3%

Mining and petroleum drilling 33.0%

Textile and apparel products 31.7%

Wood, paper and leather products 29.8%

Lodging, hospitals and nursing facilities 26.5%

TOTAL 41.0%

Table 1.1: Strong Variation of the Recovery Rates Over Sectors. (Moody’s Investors
Service, 2009)

tion on the evaluation processes, including the valuation of the credit exposure as

well as the default probabilities. Finally, conclusions will be drawn and summa-

rized in Chapter 5.



Chapter 2

Credit Value Adjustment

This chapter discusses the counterparty credit risk and CVA. In particular, Sec-

tion 2.1 will talk about the counterparty credit risk and why counterparty credit

risk of OTC derivatives should be of the concern. In Section 2.2, we will discuss

the general formulas and the major components for calculating CVA with a fixed

recovery rate. Then, we are going to propose an equation for the calculation of

CVA with a random recovery rate in Section 2.3.

2.1 Counterparty credit risk of the OTC derivatives

Counterparty credit risk is the risk that the counterparty defaults (i.e. is unable

to fulfill its financial obligations) before the maturity of a contract. According to

Gregory (2012, p.21), the counterparty credit risk for the over-the-counter (OTC)

derivatives 2 should be of particular concern, because

2An over-the-counter (OTC) derivative is a financial contract settled between two private parties
for exchanging a series of cash flows at some specified time in the future.

8



Chapter 2: Credit Value Adjustment 9

1. The high profile financial institutions are the common counterparties to a

large number of investors in the OTC derivative market. As a result, the fail-

ure of those institutions could lead to a contagious effects and perceptional

impact to the whole financial market.

2. Those high profile institutions are considered to be ”too big to fail”, thus a

very small amount of collateral, or sometimes even no collateral, is required

when trading with those high profile institutions. In other words, people

tend to underestimate the credit risk for the transactions with those high pro-

file institutions.

2.2 CVA

CVA, by definition, is the difference between the risk-free value of a financial

contract and its risky value when taking the counterparty credit risk into consid-

eration (Gregory, 2012, p. 242). In other words, it is the market value of the coun-

terparty credit risk.

CVA = Risk-free value− Risky value

Gregory (2012) provided us a practical formula for the calculation of CVA,

which can be expressed as:

CVA = (1− R)
K

∑
k=1

DF(tk)EE(tk)PD(tk−1, tk), (2.1)
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where

• {t0, t1, ..., tK} is a set of valuation dates;

• K is the total number of valuation dates;

• R represents the recovery rate, that is, the proportion of the exposure that can

be recovered at default;

• DF(tk) is the discount factor used to discount the future cash flows at time tk

back to the current time;

• PD(tk−1, tk) is the marginal probability that counterparty’s default happens

between time tk−1 and tk;

• EE(ki) refers to the expected credit exposure, which is the expected future

value of the contract at default.

Note that (2.1) is based on the following assumptions:

1. The institution itself is considered to be free of credit risk (i.e. it will not de-

fault). This means there is no need to consider debt value adjustment (DVA)

component.

2. All the components are assumed to be independent to each other. This as-

sumption allows us to separate the responsibilities of calculating the compo-

nents to different sources, and then combining them together.

3. The recovery rate is assumed to be a fixed ratio.
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2.2.1 Credit exposure

The credit exposure of a contract is defined as the amount of loss in case of a

counterparty’s default. In the event of default, the net amount owing between the

two parties will be determined when the contract is closed and future payment

is stopped. If this amount has a negative present value, then it is a liability to

the default side (i.e. the default party has the obligation to pay the value to the

counterparty). If the contract has a positive present value, then it is an asset of the

default party that is to be received from the counterparty. Note that the institution

will incur a loss if the value is positive and will not have a gain if the value is

negative. Thus, the exposure is equal to the net amount if it is positive and zero

otherwise. (See Gregory (2012, p. 121) for credit exposure.)

2.2.2 Recovery rate

When a default happen, the default party sometimes may still have the capabil-

ity to pay off some portion of their liabilities. The recovery rate is the proportional

amount that can be recovered in case of a default. It can also be expressed as

1− LGD, where LGD is the loss-given-default defined as the proportional amount

that would not be recovered at default. (See Gregory (2012, p.209) about the recov-

ery rate.)

2.2.3 Default probability

According to Gregory (2012, p.197-200), there are two different ways to define

the default probabilities: real-world versus risk-neutral. Real-world default proba-
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bility aims at the estimation of the actual probability of the counterparty’s default.

Risk-neutral default probability is the counterparty’s default probability, which re-

flects the market information. In this thesis, our concern will be the risk-neutral

default probability estimated by a structural model.

As we will discuss in more detail in Chapter 3, structural models estimate

the default probabilities based on the information from the equity market. In

the framework of structural models, a firm’s asset value is considered to follow

a stochastic process; and the time of default is considered to be the first time where

the firm’s asset value is lower than its liabilities (or some predetermined barrier).

The major idea is to translate the low-frequency default event into modelling a

continuous process of the asset value and calibrating with high-frequency equity

market data.

2.3 CVA with random recovery rate

We know that (2.1) is developed based on the assumption of a fixed recovery

rate and the independence among risk exposure, recovery rate and default prob-

ability. However, as we discussed in Chapter 1, it is not realistic to make such an

assumption on the recovery rate. Therefore, we want to remove this assumption

from our model. Considering the recovery rate as a random variable in the calcu-

lation of the default probabilities, we propose our equation for CVA as follows.

CVA =
K

∑
k=1

DF(tk)EE(tk)E
(
(1− Rτ)1{tk−1<τ≤tk}

)
, (2.2)
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where

• τ is the time of default for the counterparty;

• Rτ represents the random recovery rate that is the proportion of the exposure

that can be recovered at default;

• 1{tk−1<τ≤tk} is an indicator function of the counterparty’s default between

time tk−1 and tk;

Note that there are three following assumptions for (2.2).

1. The institution itself is free of credit risk (i.e. it will not default). So, again,

there is no need to consider debt value adjustment (DVA) component.

2. The expected credit exposure is independent of default probability and re-

covery rate.

3. The recovery rate is assumed to be a random ratio depending on default

severity.



Chapter 3

Lévy Default Model

This chapter introduces a Lévy default model. We will structure the chapter

as follows. First, we will review several important structural models and intro-

duce our default model in Section 3.1. Then, in Section 3.2, we will introduce

some important definitions and properties of Lévy processes, meromorphic Lévy

processes, and the beta and theta families of meromorphic Lévy processes. Next,

in Section 3.3, we will discuss the finite-time and the infinite-time expected dis-

counted penalty functions. It is essential for us to be able to apply theorems and

properties discussed in this chapter in order to efficiently and accurately perform

a numerical experiment in Chapter 4.

14
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3.1 Strucutral models

3.1.1 Merton model

Merton (1974) first introduced the structural models that assume the default

occurs when the asset value of a firm (V) falls below the value of its liabilities. In

Merton’s model, the asset value of a firm (Vt) is assumed to follow a geometric

Brownian motion defined on a filtered probability space (Ω,F , (Ft)t≥0)

dVt = Vt(µdt + σdWt)

where σ is the volatility of the asset value V and can be inferred from the volatility

of the equity value E, which is the sample mean of log returns on equity value.

Merton’s model further assumed that the firm has a simple debt structure con-

sisting of a single outstanding bond with a face value D and maturity T. Thus, in

Merton’s model, a counterparty’s default can only happen at maturity T. Since the

firm’s assets are first used to pay off its debt in case of default, the shareholders

only get the payoffs when there is any residual values. If the asset value of a firm

is larger or equal to its debt (i.e. V ≥ D), then the debtor is paid in full amount

and the remaining value is distributed among the shareholders. If the asset value

is less than its debt (i.e. V < D), then the default occurs and the debtor get the

liquidation value of the asset while the shareholders get nothing. In other words,

in case of a default event, the debtor receives a fraction of the debt value VT/D,

called the recovery rate; the remaining value of the debt 1 − VT/D is called the

loss given default or LGD. According to the fundamental accounting principles,
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the asset value of a firm is equal to its debt plus its equities (i.e. V = D + E). So

the value of the firm’s equities at time t can be written as

Et = max(0, Vt − D)

The payoff to shareholders is equivalent to a call option on the value of the

firm’s assets. Therefore, the equity value of the firm can be viewed as an European

call option with the strike price equaling to the debt value and the maturity equal-

ing to the period of the observation. Then, we can apply the Black-Scholes pricing

formula (Black and Scholes, 1973) for European options as follows.

Et = E
Q
t [e
−r(T−t)(VT − D)+] = VtN(d1)− e−r(T−t)DN(d2)

where E
Q
t is the expectation taken under the risk-neural probability measure Q

with respect to Ft; N(d1) and N(d2) are the standard normal cumulative distribu-

tion function; and

d1 =
ln(Vt/D) + (r + σ2/2)(T − t)

σ
√

T − t
, d2 =

ln(Vt/D) + (r− σ2/2)(T − t)
σ
√

T − t

Therefore, the probability of default at the time of maturity is

Q(τ = T) = Q[Vt ≤ D] = N(− ln(Vt/D) + (µ− σ2/2)(T − t)
σ
√

T − t
)

There are three major shortcomings for the Merton model:

1. The Merton model assumes a simplest debt structure with only the bond.



Chapter 3: Lévy Default Model 17

Figure 3.1: Merton’s Model

Whilst, in the reality, the debt structure is often much more complicated than

a single bond.

2. In the Merton model, the default can only occur at the time of maturity. This

allows the asset value to drop below the debt value then rise above the debt

value before maturity, without being recognized as a default (Feng and Volk-

mer, 2012). In practice, a company would have been defaulted before matu-

rity in such a situation.

3. The asset value in the Merton model is continuous as it is assumed to follow a

geometric Brownian motion. However, Carr et al. (2002) suggested evidence

that the asset value seems to follow jump processes with infinite activities
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and finite variation.

3.1.2 Poisson jump-diffusion model

Kou (2002) and Kou and Wang (2003) introduced a jump-diffusion structural

model. Suppose that that the asset value of a firm is

Vt = eXt ,

then the logarithmic asset value Xt is defined to be a combination of drifted Brown-

ian motion and compound Poisson process on a filtered probability space (Ω,F , (Ft)t≥0).

Xt = X0 + µt + σWt +
Nt

∑
k=1

Yk

with the cumulant generating function

k(s) = ln E[exp{sX1}] = 1
2

σ2s2 + µs + λ
( pη1

η1 − s
+

qη2

η2 + s
− 1
)

,

where µ, σ are the drift and volatility parameters; λ, p, η1, q, η2 are the parameters

from the jump component; and

µ = v− σ2

2
.

Feng and Volkmer (2012) pointed out that the equity value should be equivalent

to the price of a down-and-out barrier option instead of a European call option,
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thus the equity value is given by

Et = E
Q
t

[
e−r(T−t)(VT − D)+ 1{inft≤s≤T Vs≤D}

]
;

and the probability of default by the maturity of debt is

Q(τ ≤ T) = Q( inf
t≤s≤T

Vs ≤ D) = N(
ln(D/Vt)− (µ− σ2

V/2)(T − t)
σV
√

T − t
)

+ exp{
(2µ− σ2

V) ln(D/Vt)

σ2
V

}

× N(−
ln(D/Vt) + (µ− σ2

V/2)(T − t)
σV
√

T − t
)

There are three shortcomings for the Poisson jump-diffusion model:

1. The Poisson jump-diffusion model assumes a fixed recovery rate when calcu-

lating the CVA. However, as we discussed in Section 1.2, this is an unrealistic

assumption since the recovery rate shows a strong fluctuation and random-

ness.

2. There are too many parameters in the Poisson jump-diffusion model. There-

fore, Feng and Volkmer (2012) used a two-stage calibration for the model.

In the first stage, the drift and volatility parameters are estimated without

considering the jump components. Then, in the second stage, the parameters

from the jump component are determined by matching the model with the

empirical quantiles. The problem of this two-stage model calibration is that

it may effect the fitting precision of the model.

3. In addition, the quantile-matching method requires a precise choice of quan-
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tile to match. For example, if we choose to match the 90th percentile, we are

going to fit the distribution of the tail rather than the center. As a result, we

might get a good fit in the tail but a poor overall fit for the calibration. (See

Hardy (2003, Chapter 4) for details about the quantile-matching method.)

3.1.3 KMV model

Vasicek (1984) developed the KMV model that regards the event of default as a

firm’s asset values reach a certain critical level instead of the liabilities. Typically,

the critical level is define as the sum of all the short-term debt and half of the long-

term debt. Instead of inferring the default probability from a parametric lognormal

distribution, KMV model derived default probability from the historical database

with the following steps:

1. Estimate the asset value as well as its volatility.

2. Calculate the distance-to-default (DD) which is defined as

DD =
ln(Vt/D) + (µ− σ2

V/2)(T − t)
σV
√

T − t

3. Scale the distance-to-default to the probability of default with a default database.

3.1.4 Our model

We model the counterparty’s asset value by a stochastic process V = {Vt, t ≥ 0}

with

Vt = eZt (3.1)
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on a filtered probability space (Ω,F , (Ft)t≥0, Q) where Q is the pricing measure or

risk-neutral measure. The asset value is standardized such that V0 = 1. We assume

that the process Z = {Zt, t ≥ 0} starts from 0 and takes the form of a positive drift

minus a pure-jump subordinator 3. Specifically,

Zt = µt− St, t ≥ 0, (3.2)

whose Laplace exponent is

ψ(s) := ln E(esZ1) = µs +
∫ 0

−∞
(esx − 1)Π(dx),

where µ > 0 and Π(·), defined on (−∞, 0), is the Lévy measure of Z. Furthermore,

we require that Z has paths of infinite jumps and bounded variation.

Π((−∞, 0)) = ∞ and
∫ 0

−1
|x|Π(dx) < ∞.

Following the intuition of the structural models, we also assume that the de-

fault happens at the first time when the counterparty’s asset value Vt falls below

some predetermined barrier d ∈ (0, 1). Denoting the default time by τ, we have,

from (3.1),

τ := inf {t : Vt ≤ d} = inf {t : − ln d + Zt ≤ 0} . (3.3)

3 A pure-jump subordinator is a non-decreasing Lévy process with no drift.
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For convenience, we denote

Xt := x + Zt, t ≥ 0, (3.4)

where X0 = x > 0. Then τ is actually the ruin time of process X = {Xt, t ≥ 0}

with x = − ln d. We use−Xτ, the absolute deficit at ruin of X, to specify the default

severity.

One important feature of our modeling is that Rτ, the recovery rate at default,

is random. Let 0 = p0 < p1 < · · · < pn = 1. We assume the recovery rate as

Rτ = d
n

∑
i=1

li1{pi−1<Vτ/d≤pi} = d
n

∑
i=1

li1{pi−1<eXτ≤pi} (3.5)

with constants li ∈ [pi−1, pi], i = 1, . . . , n. So the recovery rate is a random number

from the interval [0, d] depending on the default severity. Precisely, the recovery

rate is a non-increasing function of−Xτ, which itself is random. It is indeed a very

reasonable assumption from an economic perspective since a lower recovery rate

is expected if the firm value is at a lower level at the time of default.

Remark 3.1.1 A similar piecewise fixed recovery rate like the one assumed in (3.5)

has been employed by Guo et al. (2009). In that paper, the authors assume the

recovery rate on a firm’s defaulted bond after the event of default is either R or K,

where R and K are two constants such that R < K ≤ 1. If the firm’s asset value falls

to a prescribed insolvency barrier and thus bankruptcy occurs before the financial

distress is resolved, the recovery rate is R. Otherwise, the firm remains solvent up

to the resolution of financial distress and the recovery rate is K.
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Remark 3.1.2 In our assumption of the recovery rate in (3.5), when n = 1 and

l1 = 1 we have Rτ = d, i.e., the recovery rate is fixed. This special case has been

extensively studied in the literature of default models. See, for example, Madan

and Schoutens (2008) and Hao et al. (2013) in a close context of this thesis. We

will show in Chapter 4, via a numerical example of an interest rate swap, that the

random recovery rate may significantly affect the CVA.

3.2 Lévy processes

According to Kyprianou (2006), Lévy process is a process on a probability space

(Ω,F , Q) for Z = {Zt : t ≥ 0} with the following properties:

• Stationary increments: For 0 ≤ s ≤ t, Zt− Zs is equal in distribution to Zt−s.

• Independence of increments: For 0 ≤ s ≤ t, Zt − Zs is independent of

{Zu : u ≤ s}.

• The paths of Z are almost surely right-continuous with left limits.

• Pr(Z0 = 0) = 1

Supposing that a ∈ R, σ ∈ R and Π is a measure concentrated on R\{0} such

that
∫

R
(1 ∧ x2)Π(x) < ∞, a Lévy process has the following property that for all

t > 0,

E(eisZt) = e−tΨ(s),
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where the characteristic exponent is given by the Lévy-Khintchine formula

Ψ(s) = ias +
1
2

σ2s2 +
∫

R
(1− eisx + isx1(|x|<1))Π(dx). (3.6)

3.2.1 Meromorphic Lévy processes

We assumed the process Z belongs to a specific class of Lévy processes called

meromorphic processes, which has been introduced by Kuznetsov and Morales

(2014). A meromorphic process is defined by requiring its Lévy measure Π(dx) =

π(x)dx to be a mixture of exponential distributions. Precisely, we assume that the

Lévy density of Z is given by

π(x) = 1{x<0}
∞

∑
m=1

bmeρmx, (3.7)

where the coefficients bm and ρm are positive and ρm increases to +∞ as m→ +∞.

According to Kuznetsov and Morales (2014), if

∫ 0

−∞
π(x)dx =

∞

∑
m=1

bm

ρm
= ∞,

then we have jumps with infinite activities; and if

∫ 0

−∞
| x | π(x)dx =

∞

∑
m=1

bm

ρ2
m
< ∞,
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then we have a process with finite variation. Therefore, if we want π(x) given in

(3.7) to be a Lévy density, then the following condition must hold

∫ 0

−∞
| x |2π(x)dx =

∞

∑
m=1

bm

ρ3
m
< ∞.

According to Kuznetsov et al. (2012), from (3.6) and (3.7), the Laplace exponent

of Z becomes

ψ(s) =

(
µ−

∞

∑
m=1

bm

ρ2
m

)
s + s2

∞

∑
m=1

bm

ρ2
m(ρm + s)

, (3.8)

where

• {−ρm}m=1,2,..., are the simple poles of the ψ(s);

• for q > 0, Φ(q) is the unique positive root of the function ψ(s)− q;

• for q ≥ 0, {−ζn(q)}n=1,2,... are the negative roots of the function ψ(s)− q;

• for q ≥ 0, there are no other roots in the entire complex plane for the function

ψ(s)− q, except for Φ(q) and {−ζn(q)}n=1,2,...;

• it is assumed that the ζn(q) are labeled so that they increase in n, thus, we

have the following interlacing property

0 < ζ1(q) < ρ1 < ζ2(q) < ρ2 < · · · .
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3.2.2 Beta and theta families of Lévy processes

According to Kuznetsov and Morales (2014), it is possible to compute the Laplace

exponent ψ(s) explicitly for meromorphic processes that belong to beta and theta

families by choosing coefficients bm and ρm.

Example 3.2.1 Z is a θ-process with parameter λ = 3/2 if

bm =
2
π

cβm2, ρm = β(α + m2), m = 1, 2, . . . . (3.9)

Now its Laplace exponent becomes

ψ(s) = µs− c
√

α + s/β coth
(

π
√

α + s/β
)
+ c
√

α coth(π
√

α). (3.10)

Example 3.2.2 Z is a β-process with parameter λ ∈ (1, 2) if

bm = cβ

(
m + λ− 2

m− 1

)
, ρm = β(α + m), m = 1, 2, . . . . (3.11)

Now its Laplace exponent becomes

ψ(s) = µs + cB(1 + α + s/β, 1− λ)− cB(1 + α, 1− λ), (3.12)

where B(x, y) = Γ(x)Γ(y)/Γ(x + y) is the beta function.

Note that all the parameters in the above examples are positive (i.e. µ > 0, c >

0, α > 0 and β > 0). In particular, µ is the drift parameter, α is the parameter for the

rate of decay of the tail of the Lévy measure Π(x), β is the parameter for the shape
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of the Lévy measure Π(x), and c is the parameter describing the overall intensity

of the jumps.

3.3 Expected discounted penalty functions

The EDPF, originally introduced by Gerber and Shiu (1998), is a function of

a quantity that characterizes the relevant information about the ruin event. The

generalized EDPFs is a function of time of ruin (τ), the deficit at ruin (−Xτ), the

surplus immediately before ruin (Xτ−), and the last minimum surplus level before

ruin (Xτ−). With the discount factor e−rτ, if we imagine that w(−Xτ, Xτ−, Xτ−) is

a penalty function that reflects the costs to the institution at the time of ruin, then

the generalized EDPF is given as follows.

Definition 3.3.1 (Definitions 1 of Kuznetsov and Morales (2014)) For the process X

in (3.4), the generalized EDPF φ is

φ(x; r) := E
(

e−rτw(−Xτ, Xτ−, Xτ−)1{τ<∞}

∣∣∣X0 = x
)

, (3.13)

where r ≥ 0 and w a bounded measurable function on R3
+ = [0, ∞)3.

Definition 3.3.2 (Definitions 2 of Kuznetsov and Morales (2014)) For the process X

in (3.4), the generalized finite-time EDPF φt is

φt(x; r) := E
(

e−rτw(−Xτ, Xτ−, Xτ−)1{τ≤t}

∣∣∣X0 = x
)

, (3.14)

where r ≥ 0 and w a bounded measurable function on R3
+ = [0, ∞)3.
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3.3.1 Computing infinite-time EDPFs

Theorem 3.3.1 (Proposition 2 of Kuznetsov and Morales (2014)) Assume that pro-

cess Z in (3.2) is a meromorphic Lévy process. Then, for q > 0, the density of infimum is

a mixture of exponential distributions

Q(−Ze(q) ∈ dx) =
[

∑
n≥1

cn(q)ζn(q)e−ζn(q)x
]
dx, x > 0 (3.15)

where

cn(q) := −
( 1

ζn(q)
+

1
Φ(q)

) q
ψ′(−ζn(q))

(3.16)

and e(q) is an exponential random time with mean q−1.

Theorem 3.3.2 (Theorem 2 of Kuznetsov and Morales (2014)) Assume that process

Z in (3.2) is a meromorphic Lévy process. For q ≥ 0, x > 0, y > 0, if z ≥ x, then

E
[
e−rτ1{−Xτ<y;Xτ−<z}|X0 = x

]
= ∑

n≥1
cne−ζnx − e−Φ(q)(z−x)

ψ′(Φ(q)) ∑
m≥1

bme−ρmz(1− e−ρmy)

ρm(Φ(q) + ρm)

+
Φ(q)

q ∑
m,n≥1

cnζnbme−ζnx

ρm(Φ(q) + ρm)

[ e−ρmy

ζn − ρm
+

e−(Φ(q)+ρm)z(1− e−ρmy)

Φ(q) + ζn

]
,

(3.17)

where, for simplicity, we use ζn and cn to represent ζn(q) and cn(q) respectively. If X

is a beta or theta process, then in both cases all infinite series converge exponentially fast,

uniformly on compact subsets of the admissible set of variables (x, y, z).
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3.3.2 Computing finite-time EDPFs

Section 3.3.1 discussed the formulas for computing the infinite-time EDPFs. In

this section, we are going to look at the method introduced by Kuznetsov and

Morales (2014) for computing the finite-time EDPFs which is relevant for calculat-

ing CVA.

The Laplace transform in the t-variable of the generalized finite-time EDPF

φt(x; r) in (3.14) is given as follows:

∫ ∞

0
e−qtφt(x; r)dt =

∫ ∞

0
e−qtE

[
e−rτw(−Xτ, Xτ−, Xτ−)1{τ≤t}

∣∣∣X0 = x
]
dt

=
1
q

E
[

e−rτw(−Xτ, Xτ−, Xτ−)e
−qτ
∣∣X0 = x

]
=

φ(x; r + q)
q

.
(3.18)

Here, I want to focus on two probabilities that are essential for the calculation

of CVA.

Example 3.3.1 It is clear that the finite-time ruin probability is

Q(τ ≤ t) = φt(x; 0) with w(−Xτ, Xτ−, Xτ−) = 1.

According to Theorem 3.3.1, we can get the Laplace transforms of Q(τ ≤ t) as

∫ ∞

0
e−qtQ (τ ≤ t)dt = q−1Q(τ ≤ e(q)) = q−1 ∑

n≥1
cn(q)e−ζn(q)x. (3.19)

Example 3.3.2 In addition, we have

Q (−Xτ < y, τ ≤ t) = φt(x; 0) with w(−Xτ, Xτ−, Xτ−) = 1{−Xτ<y}.
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If we set z = +∞ in Theorem 3.3.2, then we can get the Laplace transforms of Q (−Xτ < y, τ ≤ t)

as

∫ ∞

0
e−qtQ (−Xτ < y, τ ≤ t)dt

= q−1Q (−Xτ < y, τ ≤ e(q))

=
1
q ∑

n≥1
cn(q)e−ζn(q)x +

Φ(q)
q2 ∑

m,n≥1

cn(q)ζn(q)bme−ζn(q)x−ρmy

ρm(Φ(q) + ρm)(ζn(q)− ρm)
. (3.20)

Note that the series in expressions (3.19) and (3.20) converge exponentially fast

due to the linear/quadratic growth of ρn and ζn. This feature is so important

that we are able to numerically compute the Laplace transforms of Q (τ ≤ t) and

Q (−Xτ < y, τ ≤ t) in a very efficient way with high accuracy.

Finally, we need to invert Laplace transforms (3.19) and (3.20) numerically.

One possible technique suggested by Kuznetsov and Morales (2014) is Gaver-

Stehfest algorithm. Using this algorithm, an approximation of generalized finite-

time EDPF φt(x; r) is given as

φGS
t (x; r; M) =

2M

∑
n=1

an

n
φ(x; r + nln(2)t−1), (3.21)

where M is a reasonably large integer and an is a coefficient given as

an = (−1)M+n
n∧M

∑
j= n+1

2

jM+1

M!

(
M
j

)(
2j
j

)(
j

n− j

)
. (3.22)
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Numerical Experiment

This chapter will show a numerical experiment on a hypothetical interest rate

swap, and it will be constructed as follows. We will start with an illustration of

a hypothetical interest rate swap that will be shown in Section 4.1. In particular,

we are going to describe the hypothetical interest rate swap as well as the valu-

ation process for this hypothetical interest rate swap. Then, a discussion of the

calculation of the CVA for the interest rate swap will be presented in Section 4.2.

We are going to focus on the recovery rate and the default probability as well as

the calibration result in this section. Finally, the numerical results for CVA will be

discussed in Section 4.3.

4.1 Interest rate swap

An interest rate swap is a contractual agreement between two parties for ex-

changing a series of interest payments over a certain period of time. (See Figure

31
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Figure 4.1: Interest Rate Swap

4.1) The most popular interest rate swap is the plain vanilla (”LIBOR-for-fixed”)

interest rate swap in which the LIBOR rate is exchanged for a fixed rate of interest.

(See Hull (2014, p.157) for the definitions.) In this thesis, we are going to show a

numerical experiment on a hypothetical plain vanilla interest rate swap.

Suppose that we have a hypothetical interest rate swap between ”Institution”

and ”Counterparty” with a notional principle amount of $100 million in US dol-

lars. The agreement is settled on January 15, 2016 and will be expired on January

15, 2019. In the contract agreement, Institution agrees to pay a fixed interest rate

at 1.1985% per annum for receiving a floating interest rate as the 6-month LIBOR

quote on the US dollars. The Institution and Counterparty will exchange the pay-

ments every 6 months during the 3-year period, starting from July 15, 2016 to and

including January 15, 2019. A summary of this hypothetical interest rate swap is

given in Table 4.1. Note that the fixed rate can be determined by setting the present

value of the fixed-rate payments equal to the present value of the floating-rate pay-

ments; and all the rates are quoted continuously.

In order to determine the value of an interest rate swap, we first need to fig-

ure out the time value (i.e. the risk-free discount rate) of the cash flows. In this

thesis, we will use the LIBOR rate as the risk-free discount rate for the valuation
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Effective date 15-Jan-2016
Termination date 15-Jan-2019
Notional principal USD 100 million
Payment dates From 15-Jul-2016 to and including 15-Jan-2019
Fixed-rate payer Institution
Fixed rate 1.1985% per annum
Floating-rate payer Counterparty
Floating rate USD 6-month LIBOR

Table 4.1: Hypothetical Interest rate swap confirmation

purposes. Therefore, we will first discuss how to find the LIBOR zero rates in Sec-

tion 4.1.1 and then we will figure out how to use the LIBOR zero rates to valuate a

hypothetical interest rate swap in Section 4.1.2.

4.1.1 LIBOR rates

LIBOR rate, short for London Interbank Offered Rate, is the rate of interest at

which the banks and financial institutions will make loans in the capital markets.

Since the banks and financial institutions normally have the highest credit rating,

LIBOR rates are usually regarded as the risk-free interest rate even though LIBOR

rates also carry credit risk. LIBOR rates are available for all major currencies for

maturities up to 12 months. (See Table 4.3) According to Ron (2000), the observed

market LIBOR rate (rm) can be converted into the continuously compounded LI-

BOR rate (rc) by the following equation:

rc =
ty

tm
ln(1 + rm

tm

ty
); (4.1)
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where ty represents the total day counts (i.e. 360) for a year, tm represents the time

to maturity.

When valuing the derivatives with longer maturities, we will need to extract

the LIBOR rates from the Eurodollar futures market where the maturities are longer

than 12 months. The Eurodollar futures is the futures contract on the interest that

will be paid on Eurodollars deposited at banks outside the United States. Accord-

ing to Hull (2014, p.140), the futures interest rate can be extracted from the price of

Eurodollar futures contract by:

Futures rate = 100− Futures price. (4.2)

We collect the quotes of the Eurodollar futures from Bloomberg and then we

apply the above equation to get the futures rates. Please see Table 4.2 for the quotes

and rates of the Eurodollar futures achieved on the January 15, 2016. Note that the

futures rates from 4.2 is quarterly compounded (r f q), so we need to compute the

continuously compounded futures rates (r f c). (See Table 4.3)

r f c =
360
90

ln(1 +
r f q

4
). (4.3)

For short maturities, the Eurodollar futures rate is essentially the same as the

forward rate. For long maturities, the difference between the two rates is known

as the convexity adjustment. Hull (2014, p.143) gives us the formula as follows.

Forward rate = r f c −
1
2

σ2T1T2 (4.4)
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Date Futures Futures rate Futures rate Convexity Forward rate
price (quarterly) (continuously) adjustment (continuously)

15-Mar-2016 99.3350 0.6650% 0.6644% 0.000003 0.6644%
15-Jun-2016 99.2600 0.7400% 0.7393% 0.000010 0.7393%
15-Sep-2016 99.1800 0.8200% 0.8192% 0.000023 0.8191%
15-Dec-2016 99.0950 0.9050% 0.9040% 0.000040 0.9039%
15-Mar-2017 99.0100 0.9900% 0.9888% 0.000062 0.9887%
15-Jun-2017 98.9150 1.0850% 1.0850% 0.000088 1.0834%
15-Sep-2017 98.8150 1.1850% 1.1850% 0.000120 1.1831%
15-Dec-2017 98.7150 1.2850% 1.2850% 0.000155 1.2828%
15-Mar-2018 98.6300 1.3700% 1.3700% 0.000196 1.3675%
15-Jun-2018 98.5450 1.4550% 1.4525% 0.000241 1.4521%
15-Sep-2018 98.4600 1.5400% 1.5400% 0.000291 1.5368%
15-Dec-2018 98.3750 1.6250% 1.6250% 0.000346 1.6214%
1 The volatility is 0.00865.
2 Futures prices and volatility are achieved from Bloomberg on January 15, 2016.

Table 4.2: Forward LIBOR Rates

where r f c is the continuously compounded futures rate, T1 is the time to maturity

of the futures contract, and T2 is the time to the maturity of the rate underlying the

futures contract (usually 90 days), σ is the volatility of the short rate.

Once we have determined the forward rates, we can simply use the bootstrap

method (Hull, 2014, p.144) to calculate the zero rates from the forward rates. Sup-

pose that Fi is the forward rate calculated from the ith Eurodollar futures contract

and Ri is the zero rate for a maturity Ti, then we can calculate the zero rate Ri+1 by:

Ri+1 =
Fi(Ti+1 − Ti) + RiTi

Ti+1
(4.5)

Following the process described above, we could eventually construct the LI-

BOR zero curve with the piecewise linear interpolation. (Please see Table 4.3 for
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Maturity LIBOR zero rates
3 m 0.6191%
6 m 0.8473%
9 m 0.9929%
12 m 1.1386%
14 m 1.0502%
15 m 1.0466%
17 m 1.0393%
18 m 1.0415%
20 m 1.0459%
21 m 1.0519%
23 m 1.0638%
24 m 1.0723%
26 m 1.0891%
27 m 1.0998%
29 m 1.1212%
30 m 1.1316%
32 m 1.1522%
33 m 1.1632%
35 m 1.1852%
36 m 1.1967%
38 m 1.2196%

Table 4.3: LIBOR Zero Rates

the LIBOR zero rates.)

4.1.2 Value of an interest rate swap

In the previous section, we discussed how to find the LIBOR zero rates. This

section will focus on the valuation of the hypothetical interest rate swap (See Table

4.1) using these LIBOR zero rates. We are going to use the method of valuation

in terms of bond prices, discussed in Hull (2014, p.158), to assess the interest rate

swap. Our intention is to provide the valuation of the hypothetical interest rate
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Date 6 m 12 m 18 m 24 m 30 m 36 m B f ixed B f loat Vswap
15-Jan-16 0.8473% 1.1386% 1.0415% 1.0723% 1.1316% 1.1967% 100.0000 100 0.0000
15-Jul-16 1.4429% 1.1386% 1.1472% 1.2026% 1.2665% - 99.8253 100 0.1747
15-Jan-17 0.8474% 1.0059% 1.1269% 1.2257% - - 99.3430 100 0.6570
15-Jul-17 1.1644% 1.2666% 1.3518% - - - 99.7674 100 0.2326
15-Jan-18 1.3688% 1.4455% - - - - 99.7507 100 0.2493
15-Jul-18 1.5223% - - - - - 99.8365 100 0.1635

Table 4.4: Value of the interest rate swap

swap from the perspective of the fixed rate payer (i.e. Institution). The swap can

be viewed as a short position in a fixed-rate bond and a long position in a floating-

rate bond, so that

Vswap = B f loat − B f ixed (4.6)

where Vswap is the value of the interest rate swap, B f loat is the value of the floating-

rate bond and B f ixed is the value of the fixed-rate bond. Note that the value of the

floating-rate bond is always the notional principal immediately after an interest

payment because both the coupon rate and the discount rate for the floating-rate

bond are both the LIBOR rate. Now, we can easily calculate the values of two

bonds by discounting all the cash flows to the current time values with the above

equation.

Table 4.4 lists the results of the valuation of the interest rate swap. In partic-

ular, the columns 2-7 show the LIBOR zero rates (for every six months) on the

corresponding date. In the last three columns, we show the value of the fixed-rate

bond, the value of the floating-rate bond and the value of the swap. Note that the

values are in millions of dollars.
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4.2 CVA of an interest rate swap

An interest rate swap is a type of the OTC transaction in which two private

parties make an agreement to exchange the cash flows. As mentioned in Chapter

2, CVA is needed to reflect the adjustment on the prices due to the counterparty

risk of an OTC derivative contract.

To calculate CVA in (2.2), we need to evaluate three major components: credit

exposure, recovery rate and the default probability. We have discussed how to

evaluate the credit exposure for the hypothetical interest rate swap in the last sec-

tion. Now, we need to calculate the recovery rate and the default probability, i.e.,

E
(
(1− Rτ)1{τ≤t}

)
. Plugging in the random recovery rate Rτ from (3.5), we have

E
(
(1− Rτ)1{τ≤t}

)
= E

(
1{τ≤t}

)
−E

(
Rτ1{τ≤t}

)
= Q (τ ≤ t)− d

n

∑
i=1

liQ
(

pi−1 < eXτ ≤ pi, τ ≤ t
)

= Q (τ ≤ t)− d
n

∑
i=1

li (Q(−Xτ < − ln pi−1, τ ≤ t)−Q(−Xτ < − ln pi, τ ≤ t)) .

(4.7)

According to the above derivations, we can see that we essentially need to cal-

culate Q (τ ≤ t) and Q (−Xτ < y, τ ≤ t) for arbitrary y, t > 0. These two proba-

bilities turn out to be the finite-time EDPFs. As we have discussed in Chapter 3,

we are able to numerically compute the finite-time EDPFs by inverting the corre-

sponding Laplace transforms with the Gaver-Stehfest algorithm.
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4.2.1 Calibration

The risk-neutral probabilities are obtained from the market spreads of Credit

Default Swap (CDS) which is the most common credit derivative designed to shift

credit risk for the referenced entity. The market spreads of CDS reflect the in-

vestors’ perceptions of default probability of the referenced entity. Therefore, our

model is calibrated to the market CDS spread curve (data collected from CDX.NA.IG

index).

Our target for the calibration is to find the most accurate representation of the

market CDS spread curve. The accuracy is captured by the mean absolute error

(MAE) defined as the mean of the absolute differences between the observed mar-

ket CDS par spread and the estimated model CDS par spread Hao and Li (2015).

MAE =
∑ |Market CDS par spreads−Model CDS par spreads|

Number o f CDS par spreads
. (4.8)

In other words, we intend to find out the optimal parameters with minimum MAE

for each company. Then, we use the calibrated parameters to calculate term struc-

ture of calibrated CDS spread curve.

In order to perform a numerical study for companies with different levels of

credit risk, we randomly choose three companies from CDX.NA.IG index with

three different Moody’s credit rating levels. (See Table 4.2.1 for Moody’s rating

scales) In particular, United Parcel Service Inc with high grade (Aa3), Home Depot

Inc with upper-medium grade (A2) and McDonald’s Corp with lower-medium

grade (Baa1) are chosen for the calibration.
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Rating Scale Meaning
Aaa Aaa are judged to be of the highest quality,

subject to the lowest level of credit risk.
Aa Aa are judged to be of high quality,

subject to very low credit risk.
A A are judged to be upper-medium grade

and are subject to low credit risk.
Baa Baa are judged to be medium-grade

and subject to moderate credit risk.
Ba Ba are judged to be speculative,

subject to substantial credit risk.
B B are considered speculative

and are subject to high credit risk.
1 Moody’s appends numerical modifiers 1, 2, and 3 to each

generic rating classification from Aa through B.
2 The modifier 1 indicates that the obligation ranks in the higher

end of its generic rating category; the modifier 2 indicates a mid-
range ranking; the modifier 3 indicates a ranking in the lower
end of that generic rating category.

Table 4.5: Moody’s credit rating scales (Moody’s Investors Service, 2016)

Table 4.6 lists the market CDS spread curve for those chosen companies with

six maturities (1 year, 2 years, 3 years, 5 years, 7 years, and 10 years). Note that

the spreads are collected from Bloomberg on January 15, 2016, and are quoted in

terms of basis points. (One basis point is equal to 0.01%.)

We calibrate our model on a theta process with the parameters c, α, β, λ. (See

Equation 3.9) The calibrated results are shown in Table 4.6. For United Parcel Ser-

vice Inc, we find that the optimal parameters are c = 4.498, α = 3.214, β = 2.571

and λ = 1.5. For Home Depot Inc, we find that the optimal parameters are

c = 2.491, α = 2.254, β = 2.613 and λ = 1.5. For McDonald’s Corp, we find

that the optimal parameters are c = 12.536, α = 1.782, β = 5.954 and λ = 1.5.

In addition, we also show the calibrated CDS spread curve along with the cor-
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Company Moody’s 1y 2y 3y 5y 7y 10y c α β λ MAE
United Parcel Aa3 Market 7.11 10.03 14.12 21.98 39.05 50.69

Calibrated 3.071 8.895 15.991 29.278 39.051 48.07 4.498 3.214 2.571 1.5 2.827

Home Depot A2 Market 9.38 11.64 16.40 22.98 34.12 47.91
Calibrated 5.624 11.242 16.994 26.932 34.125 40.841 2.491 2.254 2.613 1.5 2.629

McDonald’s Baa1 Market 9.77 11.67 19.59 35.99 58.8 76.87
Calibrated 2.359 10.896 22.659 44.188 58.826 71.061 12.536 1.782 5.954 1.5 4.214

Table 4.6: Calibration result

responding MAE in Table 4.6. From the table, we can observe that MAE is quite

small (2.827 basis points for United Parcel Service Inc; 2.629 basis points for Home

Depot Inc; 4.214 basis points for McDonald’s Corp). This means that our model

fits the term structures of market CDS well.

4.3 Numerical results

In order to investigate whether there is a significant impact on the result of CVA

when we release the assumption of a fixed recovery rate, we calculate CVA in both

cases. In Table 4.7, the third column shows the numerical results of CVA with a

fixed recovery rate at 40%, and the fourth column shows the results of CVA with

a random recovery rate. For United Parcel Service Inc, CVA with a fixed recovery

rate is $739.34 (0.00073934 millions) while CVA with a random recovery rate is

$904.62 (0.00090462 millions), For Home Depot Inc, CVA with a fixed recovery rate

is $901.31 (0.00090131 millions) and CVA with a random recovery rate is $1105

(0.00110556 millions). For McDonald’s Corp, CVA with a fixed recovery rate is

$986.60 (0.00098660 millions) while CVA with a random recovery rate is $1205.94

(0.00120594 millions). It is easy to observe that company with higher credit rating

(i.e. lower credit risk) has lower CVA in both cases. This means that our numerical
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Company Moody’s CVA (fixed RR) CVA (random RR) % change
United Parcel Service Inc Aa3 0.00073934 0.00090462 22.3541%
Home Depot Inc A2 0.00090131 0.00110556 22.6610%
McDonald’s Corp Baa1 0.00098660 0.00120594 22.2317%

Table 4.7: CVA result

results of CVA is consistent with Moody’s credit ratings.

In order to test the effect of a random recovery rate on CVA, we compute the

percentage change which expresses the difference between CVA with a fixed re-

covery rate and CVA with a random recovery rate. From the last column of Table

4.7, we can see that CVA with a random recovery rate is 22.3540%, 22.6593% and

22.2385% higher than CVA with a fixed recovery rate for United Parcel Service Inc,

Home Depot Inc and McDonald’s Corp respectively. This means that there is a

large impact of capturing the randomness of the recovery rate in our model.
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Conclusions

This chapter concludes analysis of this thesis. We will first summarize the re-

sults of the thesis in Section 5.1. Then, we will discuss some possibilities for future

research.

5.1 Summary of results

In this thesis, we introduce a Lévy default model for pricing CVA. This thesis is

inspired by the increasingly importance for CVA and counterparty credit risk since

the 2007 crisis. In Chapter 1, the backgrounds for CVA and the motivations of this

thesis are introduced. Then, Chapter 2 reviews the formulas for computing CVA.

This thesis focuses on the default probability and recovery rate via a new struc-

tural model. In Chapter 3, we review some important structural models. Then, we

introduce a new structural model - Lévy default model. One important feature is

that we are able to include a random recovery rate in our model. The piecewise

43
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random recovery rate is assumed to depend on the default severity which itself is

random. Another important feature is that the asset value of a company is assumed

to follow meromorphic Lévy processes with infinite jumps but finite variation. Us-

ing the theorems and properties of Beta and Theta families of meromorphic Lévy

processes, we are able to efficiently and accurately compute the default probability

via finite-time EDPFs.

In Chapter 4, a numerical experiment is performed on a hypothetical interest

rate swap. In particular, we illustrate the valuation for the credit exposure of the

interest rate swap at first. Then, our default model is calibrated to term structure of

market CDS spread curve. According to the small mean absolute error, we found

that our model fits the market CDS spread curve well. To compare how a random

recovery rate and a fixed recovery rate affect CVA, we compute CVA in both cases.

The numerical results show the consistency with Moody’s credit ratings. The com-

panies with better Moody’s rating has a lower CVA. In addition, it is shown that

CVA with a random recovery rate is usually 22% higher than CVA with a fixed re-

covery rate. Therefore, we conclude that there is a significant impact of including

a random recovery rate in our model.

5.2 Future research

In this thesis, the Lévy default is calibrated to term structure of market CDS

spread curve. One limitation of such calibration is that market CDS par spreads are

only available up to ten years. This thesis uses an interest rate swap to show how

to price CVA. Since the maturity for an interest rate swap is usually shorter than
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10 years, market CDS par spreads is long enough for the calibration. However, our

method is not suitable for other common OTC derivatives with longer maturities,

such as longevity swap, q-forward, K-forward, etc. Thus, one possible extension

is to find a calibration method for OTC derivatives with longer duration. When

considering CVA for longevity derivatives, one will need to try to find the risk

exposure under risk-neutral probability that will be more complicated than the

interest rate swap cases.

In addition, our model assumes a piecewise random recovery rate which de-

pends on default severity. We make such an assumption because it is more efficient

and accurate for the numerical experiment. Although it is reasonable to make such

an assumption, it will be more realistic if a random recovery rate can be continu-

ously varying. Therefore, another possible extension for the future research is to

find an efficient and accurate way to include a continuously varying random re-

covery rate.
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