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Abstract

Scheduling problems in Flexible Manufacturing Cells present varying degrees of
difficulty. The objective of the present work is to develop a fuzzy logic based
methodology for generating the sequence of flow of parts through the cell by selecting
appropriate movements of the robot within the manufacturing cell. The goal is to meet
certain production objectives, given a multi-product batch. The production objectives
taken into account are maximization of the throughput and machine utilization, as well

as, minimization of penalty for tardy jobs and robot travel time.

The fuzzy-based approach uses membership functions to find the contribution of each
part type to the objectives according to the specifications of the batch. The evaluation of
these contributions generates the sequence of the parts within the cell. Two fuzzy based
strategies have been developed: fuzzy-job and fuzzy-machine. These strategies are
compared to well known dispatching rules. The effects of using priorities such as loading
versus unloading, and sequencing parts in a sequential/non-sequential mode are
investigated as well. Custom designed software is created to control the robot moves
within the cell. The software has the ability of processing information in simulation (off-
line) and in real time (on-line), and is successfully implemented and tested in the
experimental cell. In general, the proposed fuzzy-based methodologies especially fuzzy-
job show a superior performance compared to traditional dispatching rules. The model

can be further expanded or modified to include different or more objectives.
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1L.Introduction

1.1 Background

Evolving society and economy have an impact on manufacturing trends. Manufacturing
design and processes are undergoing constant changes as a result of individualistic
demands from customers, as well as, international competition. The survival of
companies may depend on how quickly and how well they can satisfy consumer needs.
This has led to industrial systems with high levels of flexibility. One method of achieving
this flexibility is through automation and computerization of processes. In addition, it is
necessary to improve productivity by reducing production costs and times. Flexible
Manufacturing Systems (FMSs) have become popular due to their ability to produce
medium volume and medium variety of parts (M-M). In an M-M system, flexibility and

production are keys elements [1]. Flexible Manufacturing Cell (FMC) is a subset of FMS.

FMC is an automated system composed of a group of machines served by a material-
handling device, where families of parts are processed. Parts are usually classified into
families by using the concept of Group Technology (GT). Because of the flexibility,
robots are usually employed for the movement of parts between machines as well as
loading and unloading. However, that flexibility leaves numerous ways of routing the
parts within the cell. Therefore, one of the most important problems encountered in the
FMC environment deals with the assignment of given resources to different processes, in

order to achieve the best efficiency. FMC scheduling deals with the efficient allocation of



the resources for manufacturing products. The objective of scheduling is to find a way to

assign and sequence the use of resources; thereby production objectives can be achieved.

Due to the complexity of scheduling in the FMS environment, various researchers have
suggested dividing the problem into different levels. One such proposal is the framework
provided by Suri and Whitney [2]. It provides three levels of decision problems:

1. upper level management, long term decisions regarding production and economical
goals as well as setting policies for part-mix changes and system modification as well
as expansion;

2. medium term decisions involving grouping of parts and balancing of workload; and

3. short term decisions including scheduling of work, selection of parts, tool

management and reaction to system failures.

The problem investigated in the present work focuses on short-term decisions,
specifically on scheduling jobs. The scheduling problem can be classified according to

Graves [3] as follows.

1. Requirements generation.
® Inan open shop, production orders are generated by customer request.
" Ina closed shop, production orders are based on stock.

2. Nature of the arrival of parts and their processing times.

® Input parameters are known and certain for a deterministic model.



® Input parameters are random variables with probabilistic distributions for a
stochastic model.
3. Scheduling environment.
® For a static environment, all jobs to be scheduled are available at the beginning of
the scheduling process.
®* For a dynamic situation, the set of jobs to be processed is continuously changing
over time.
4. Type of processing environment.
® For a one stage-one processor problem, all jobs require only one processing step,
using one single processing machine.
® For a one-stage-parallel processor problem, one single processing step is required,
but it can be performed on any of the processing machines.
* In a multistage-flow shop problem, all the jobs require the same processing steps
in a strict precedence.
® Ina multistage-job shop problem, each job has its own processing requirements in
different sequences.
5. Scheduling criteria.
® Cost related measures such as set-up costs, production costs, inventory costs,
shortage costs and expediting costs are considered.
* Performance related measures such as machine utilization, flow time, lateness and

tardiness are key issues.



The scheduling problem considered in this thesis is an open, deterministic, static and
multistage-job shop problem. The scheduling criteria include both cost related measures

and performance related measures.
1.2 Objective

The main objective of this project is to develop a computer based intelligent technique to

generate a sequence of parts, and control the movement of the robot within a

manufacturing cell in order to fulfill certain production objectives, given a multi-product

batch. Although standard industrial robots are heavily computerized, they do not possess

the intelligence to dynamically alter preprogrammed motions. This thesis relies on an

external PC to impart that additional contro] capability. The production objectives taken

into account are: |

" Maximize throughput, or, in other words, producing a batch in the shortest possible
time. Throughput time refers to the time between the beginning of the batch
production and its completion.

® Minimize penalty for tardy jobs. This is probably one of the most important
objectives in a production environment. Tardy costs not only relate to tardy penalties,
but also significantly to the loss of clients and future sales, as well as rush shipping
costs [4].

® Maximize machine utilization. Machines usually vary in cost and energy efficiency.
Therefore, it is important to use machine resources efficiently. In a static setup like

the one in consideration, machine utilization is proportional to the throughput time,



thus the insertion of this objective is almost irrelevant. However, in a dynamic
scheduling problem it would be an important parameter.

® Minimize robot travel time. It is difficult to measure the performance of a certain rule
or heuristic in terms of robot travel time. At first sight, one may think that the shorter
is the robot idle time, the better. However, this parameter needs to be looked at
closely. The robot idle time will increase when the throughput time increases.
Therefore, it is logical to assume that, if a dispatching rule gives a shorter throughput
time than another, the robot idle time would be shorter as well. However, there are
cases when more than one rule performs the best in terms of the throughput time. In
such tied cases, if the robot idle times vary, the rule with the best performance is the
one that gives the highest robot idle time. This means, decreasing energy costs and

increasing robot life span, thus reducing production costs.

In the present scenario, each batch consists of orders placed by diverse customers. Thus,
each batch involves multiple products, each with different specifications, but similar
processing operations. These specifications depend on the customer’s requirements and
production costs involved. Customer requirements refer to processing times, due dates
and penalties, whereas production costs refer to robot and machine idle costs. Depending
upon the complexity of the machining requirements, the machining times vary from part
to part. Certain parts may need to be processed on one or more than one machine, and the
sequence of these operations may be relevant or not. The FMC considered in this work
has the ability to process the parts both sequentially and non-sequentially. In a sequential

process, the parts are routed through the cell to visit machines in a pre-specified order.



On the other hand, a non-sequential processing will allow the flexibility to route the parts
bypassing the sequencing requirement. Due dates are set by the customer. There are
many different types of Customers; thus, it is fiecessary to assign penalty values to each
part type. These penalties depend on the characteristics of the Customer and terms of
contracts. It may be more significant to have certain orders on time for an Important
client than for one for whom deadlines are not that critical. Penalties also involve fines,
loss of future sales and rush shipping costs. Robots are an expensive investment. They
have a life span, and hence it is necessary to use them effectively. The importance of
efficient utilization of the robot to reduce costs is critical. Likewise, machines have an
associated utilization cost. It may not be efficient to let the machine remain idle. It is
important to balance the idle times of the robot versus that of the machines. Machine idle
cost requires a production study, and these values have to be set by the user. In our

setting, all data is randomly assigned.

The machines in the cell perform different operations such as milling, grinding, drilling,
etc. It is assumed that there is only one operation at a time on a machine. The length of
the operation depends on the machining requirements of the part type. Processing times
are part specific and are not machine dependent. Preventive maintenance of the machines
is assumed and, therefore, no breakdowns are expected. Parts are delivered to the
machines when needed, and hence there are no buffers present in each machine. The task
of the robot is to pick up parts from an input buffer, move them through the cell, and drop
them off at an output buffer. The travel time of the robot between machines is known and

remains fixed.



A PC based, custom designed software accomplishes the control of the FMC. The
software manages the sequence of parts and robot moves within the cell. The software
controls the cell both online and off-line. Simulations are important for experimental
purposes and actual implementations, and hence there is a need for simulation capability.
An experimental cel] provides a better visualization of performance of various scheduling
models developed. Any hardware specific aspects that cannot be simulated can be readily

seen in real-time implementation.

The multi-objective nature of the problem under consideration is a difficult problem.
Many approaches can be followed. For this project, a fuzzy-based approach is
considered. Fuzzy logic is an artificial intelligence tool that is very useful when dealing
with uncertain data found in multi-objective decision-making problems. It is easy to
model and the computational times are found to be very minimal, an aspect that is very

critical for real-time implementations.

The nature of the implemented technique explores the following issues.

® To verify the functionality of the project in a real setting versus computer simulation.

" To determine whether there is a difference between two commonly employed part
loading strategies, namely ‘loading’ and ‘unloading’ priority.

® To examine the differences between sequential and non-sequential part processing.

® To compare the performance of the proposed methodology to some of the standard

rules and heuristics.



1.3 Organization

The rest of this work is structured as follows. A literature review pertaining to scheduling
of Flexible Manufacturing Systems is presented. Then, an overview of the fuzzy logic
theory and model implemented is given. This is followed by a description of the
experimental setup and the developed software. Next, experiments and results are

examined. Finally, conclusions and recommendations are provided.



2. Review of literature

Extensive research has been done on aspects related to scheduling of FMS systems. Due
to the complexity and nature of scheduling, several approaches have been considered,
ranging from traditional solutions involving complex mathematical analysis to the recent
approach, namely reasoning algorithms. In addition, a number of different dispatching
rulés have been proposed. The following sections examine dispatching rules and the
progress made to develop new improved rules and heuristics, as well as, review

traditional and artificial intelligence based approaches.

2.1 Dispatching rules

The number of dispatching rules reported in the literature is overwhelming. Ramasesh [5]
proposed a classification of rules based on performance measure criteria: time, work-in-
process, due date and cost. Time based rules such as SPT (Shortest Processing Time)
have been found to be good to reduce flow time and machine idle time. However, jobs
with long processing times tend to be tardy [4]. Due-date based rules have beeh found to
be more effective for tardiness related criteria [6], but their performance decline when
applied to congested shops [7]. Furthermore, SPT was found to perform well in

congested shops and for very tight due dates [5,8].

Cost-based priorities are one of the most important criteria to evaluate the performance of

a scheduling rule. The cost related to tardy jobs, machine utilization, late orders, etc



usually vary from customer to customer. Vepsalainen and Morton [7] tested six priority
rules with a weighted cost against two new proposed rules: Weighted COVERT and
‘Apparent Tardiness Cost’ (ATC). They assigned priorities based on the expected
tardiness cost. The results indicated that the new rules are superior in minimizing

weighted tardiness penalties. Throughput criteria were not considered in this study.

Chen and Lin [4] presented a multi-factor priority rule to improve the Weighted
COVERT rule [7]. Processing time criteria were included in this study. This rule gives
higher priority to those jobs that have a longer expected waiting time, shorter slack time,
and higher ratio of tardiness cost over processing time. The objective was to reduce the
total tardiness cost. Its performance was compared to five other priority rules. This rule
outperformed for tardiness cost criteria under certain conditions; however, simple rules

such as SPT and EDD (Earliest Due Date) performed better on throughput criteria.

Kutanoglu and Sabuncuoglu [9] examined recently proposed dispatching rules in terms of
tardiness criteria. Their experiments investigated the bottleneck dynamics, resource
pricing and the effects of inserted idleness. The experiments showed that different pricing
schemes should be used in different environments. A Pricing scheme refers to the
different methods employed to calculate extra costs if resource capacity (i.e. machines) is
decreased. Moreover, the inserted idleness improved the performance of ordinary

dispatching rules.
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From the brief review, it can be concluded that no generalization can be made regarding
various dispatching rules. No single rule has shown to be superior in all type of scenarios,
neither has it shown to perform uniformly well on more than one criterion. This is
compounded by the fact that, at times, the literature presents conflicting evidence on the
performance of the same set of rules [5]. As a result, some authors have developed new

heuristics in order to improve the performance of single rules.

2.2 Heuristics

A common belief among researchers is that a combination of simple dispatching rules or
a combination of heuristics with simple dispatching rules performs better than single

rules in many cases [6].

Gere [6] proposed the use of “good” priority rules and tailored them to a particular
problem at hand. He showed the effectiveness of certain heuristics: ‘alternate operation’
and ‘look ahead’ in combination with priority rules. For further improvement, the
schedule ‘was re-run with an enhancement of priorities for late jobs; however, the

improvement was not significant.

Wu and Wysk [10] employed a simulation-based method to evaluate the performance of
a set of dispatching rules for a short planning horizon. An evaluation process was carried
out to select the best rule at a given period of time. The selection of the time span

depended on the characteristics of the system and measures of performance. The process

11



was repeated based on a short time frame, By alternating rules in such a manner, they
tend to compensate the undesirable effects that each produces, to make a scheduling

Strategy more sensitive to the dynamic changes of the system.

Holthaus and Ziegler [11] implemented a coordination rule, called ‘look ahead job
demanding’ (LAJID). This rule is based on ‘look ahead’ information about machine idle
times, and a mechanism is incorporated for demanding, offering and selection of jobs.
The simulation demonstrated the effectiveness of the rule in improving flow-time and

due-date based objectives compared to scheduling rules without coordination.

Another approach with multi-objective criteria was proposed by Pierreval and Mebarki
[12]. They developed a simple heuristic dispatching strategy, called ‘shift from standard
rules’ (SFSR). This rule is based on a dynamic selection of pre-determined dispatching
rules. A new selection is carried out each time that a machine becomes available,
depending on the objectives, operating conditions and actual system state. The rules
employed to choose the dispatching rules contained thresholds, which are tuned off.line
with a simulation technique. The thresholds need to be adapted if important changes
occur in the configuration of the system. The rule performed well to meet the primary
objective, but it did not perform as good for the secondary objective. These objectives are
usually based on a measure of the level of work in progress and on the capability to meet

the due dates.

12



A number of researchers have used heuristics to approach the FMS scheduling problem,
without combining or using simple rules. To name a few, Moreno and Ding [13], as
opposed to the traditional hierarchical approach, developed a concurrent solution to the

loading and scheduling problem in a FMS. The solution proved to be quite effective.

Hathout [14] proposed a heuristic to maximize the throughput and optimize the sequence
of robot moves. The ability of parts being routed sequentially versus non-sequentially,
and their effect on throughput were investigated. Several rules pertaining to loading of
machines were implemented, and the study clearly demonstrated that certain rules

performed better in certain cases.

2.3 Traditional approaches

Many of the prior FMS scheduling research works have utilized linear programming

techniques and modeling approaches.

Linear programming techniques are usually difficult to formulate and to solve. Proposed
solutions cannot handle large-problem size. One such case was presented by King,
Hodgson and Chafee [15]. They applied a branch and bound technique to optimize the
moves of a robot within a two-machine cell, The trade-off between computational time
and its influence on obtaining close-to-optimal solutions has been reported. Their solution
became ineffective for problems when the number of parts increased past ten. Likewise,

Chen, Chu and Proth [16] concluded that this technique is somewhat successfill when

13



adapting it to three machines. Nonetheless, they concluded that further investigation is
required to solve large-size problems. Sethi and others [17] utilized a state space
approach to address the problem of sequencing parts and robot moves in a robotic cell.
The objective was to maximize the throughput of the system. Their solution was limited
to two machines and one single part type. In addition, many issues such as unequal travel

times between different machines were not addressed.

Petri-nets are common and useful tools for the modeling of FMCs. Cheng, Sun and
Fu[18] used a time place Petri-net (TPPN) to model a FMS. They obtained an optimal
schedule by using a heuristic search algorithm. Yalcin and Boucher [19] presented a
solution based on colored Petri Nets (CPNs) to control the alternative machining and
sequencing in a FMC. Both papers showed that Petri-nets could be used as an effective

modeling tool.
Lin, Wakabayashi and Adiga [20] presented another modeling technique. They developed
an object-oriented model of the entities involved in a cell and their interactions. Their

emphasis was on analysis and modeling rather than the development of heuristics or

algorithms.
2.4 Artificial intelligence (AI) approaches

The scheduling of a FMC has been found to be a difficult problem to solve due to its

dynamic nature. The use of Artificial Intelligence tools has proved to be effective to

14



approach such problems. The most known AI techniques utilized in the scheduling of

FMC are knowledge based, neural networks, genetic algorithms and fuzzy logic.

Knowledge based systems use human expertise and knowledge of the environment to
solve the problem. Lee [21] developed a knowledge-based scheduling system, where
knowledge could be easily updated or extended. The proposed solution was flexible and
versatile, and did not require long computational times. The system consisted of
automated guided vehicles (AGVs) for material handling. The author suggested that this
might lead to bottlenecks when applied to a system containing one single material

handling device. Further investigation is required to adapt it to a FMC environment.

Chen and Guerrero [22] devised a rule-based system to assist the controller in a FMC in
making good decisions by using the current system state. The results showed that this
approach gives better results in comparison to either applying heuristics or Petri-net

models separately.

One of the most critical issues when developing knowledge-based systems is finding the
required knowledge. Simulation techniques are usually used to acquire information, but
they do not usually provide the required knowledge for making decisions. Pierreval and
Ralambondrainy [23] overcame this problem by utilizing learning algorithms in a flow
shop. These algorithms were proposed to generate a set of rules from simulation
experiments. The results were encouraging; however, further studies are required to apply

the technique to more complex and dynamic cases.

15



Expert systems (ES) have been frequently adopted to tackle scheduling problems. Kusiak
and Chen [24] suggested that using ES, combined with operations research approaches,

seem to be more suitable than each one separately.

Neural networks attempt to reflect the learning and prediction abilities of the human mind
[25]. Jain and Meeran [26] presented a work, based on training a back-error propagation
network, to solve a job-shop-scheduling problem. Their problem was claimed not to be

feasible for large-scale applications.

Genetic algorithms (GA) provide a methodology that has been found to perform better
than heuristics methods. Moreover, when integrated with other search procedures, it has
been shown to give even better results [25]. Its limitation could be the large amount of

computational time required.

Fuzzy set theory can be useful in modeling and solving scheduling problems with
uncertain data. In the same way, fuzzy logic is an excellent tool when it comes to multi-
objective criteria. Kazerooni, Chan and Abhary [27], presented a multi-objective fuzzy
approach that uses membership functions to find the share of each objective in final
decision rules. The outcome of this final decision was applied to the selection of
machines, after a job had been previously selected by the use of traditional scheduling
rules. Thus, different rules were combined for the selection of jobs and for the selection

of machines. A combination of FUZZY/STPT (Fuzzy/Shortest Total Processing Time)

16



showed improvement in net profit and average lead-time. The proposed methodology

proved to be easy to implement and could be improved to yield better results.

Vidyarthi and Tiwari [28] developed a fuzzy-based methodology to address the machine-
loading problem. Even though the minimization of system unbalance and maximization
of throughput were their objectives, they did not take into account the inclusion of due-
date related objectives to reduce costs. The job ordering and sequencing, as well as the
operation-machine allocation decisions are made based on the evaluation of membership

functions.

2.5 Summary

FMS scheduling is a very complex problem. The many different aspects involved and
their complexity makes it a challenging research area. Although dispatching rules have
not been found to perform efficiently in all cases, they have been shown to be an efficient
tool for experimental tests. Dispatching rules are usually easy and fast to program. New
~and sophisticated rules in combination with heuristics have been proposed, but they
usually lack intelligence to perform well when different system configurations or when
multi-objective criteria are introduced. In mathematical terms, the FMS scheduling
problem is difficult to formulate and solve. Likewise, the problem has proved to be NP-
Hard, which usually restricts the solution to no more than two machines and/or a large

number of parts.

17



Artificial intelligence tools have proved to be far more effective than the techniques
explained above. For the present study, fuzzy logic has been chosen over all the other Al
techniques because of its ability to deal with uncertain data. As would be shown in this
thesis, fuzzy logic is easy to model and is an excellent tool for decision making in multi-
objective systems. Moreover, in comparison to ES or knowledge-based systems, fuzzy
logic needs fewer rules, and the knowledge is easier to model. It is easier to train than
neural networks. It also leads to faster solutions than neural networks or genetic
algorithms. Very few studies on FMC scheduling using fuzzy logic have been
undertaken, and most of the previous research has been done on FMS systems with more

than one material handling device or none.

The present work has adopted some elements from the work done by Hathout[14] in
terms of the layout and configuration of the system, as well as, management of some
internal data. The modeling of the internal data is accomplished by using object-oriented

programming.
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3. Methodology

In a typical computerized machine cell serviced by a single robot, many objectives can be
taken into account. One usual production objective is to maximize the throughput, or, in
other words, to reduce as much as possible the total processing time of the batch; thus
increasing productivity. However, the batch may be composed of multiple products
ordered by different clients, and hence may have different due dates. Not only due dates
but also the importance of the clients and the terms of contracts are important. It is
needless to say that penalties due to late jobs must also be taken into consideration.
Machines and robots are a high investment, and hence it is important for the production
floor to use the resources effectively. These objectives constitute the multi-objective

problem under consideration. More details have been provided in Section 1.2.

The methodology proposed is fuzzy-logic based, and can analyze a multi-objective
problem. It is an extension of SPT (Shortest Processing Time) and WEDD (Weighted
Earliest Due Date), and, has the ability to take into account factors such as machine and
robot idle costs. SPT and WEDD are well known for their effectiveness in optimizing the
throughput and tardiness cost, respectively. However, they are not effective in dealing
with multi-objective problems. The performance of the fuzzy-based approach is
compared to SPT and WEDD, used individually and the results will be reported in
Chapter 5. Before describing the fuzzy-based approach, it will be useful to review the

following:
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SPT (Shortest Processing Time) - jobs are sequenced in increasing order of their
processing times. The sequence is accomplished by selecting the part with the shortest
machining processing time among many combinations of job/machine. As is well known,
SPT provides good performance for throughput criteria. However, jobs with long
‘processing times and early due dates tend to be tardy. SPT is defined by:

SPT = MinPT(j,m), 3.1

where MinPT(j,m) = minimum processing time of the job/machine combinations.

WEDD (Weighted Earliest Due Date) - jobs are sequenced in increasing order of the ratio
of the due date of the job to the penalty of the job assigned when the job is late. Although
WEDD performs well in terms of due date and penalty, it does not take into account
processing time information, and thus it leads to a poor use of resources. WEDD can be

expressed as:

, 32
WEDD = ]\/[zn(%?—) ,

where

Min(DD/P) = minimum ratio of the due date (DD) over the penalty (P) of the jobs.
3.1 Fuzzy logic

The foundation of fuzzy logic is fuzzy theory. Zadeh [29] introduced fuzzy set theory in
1965. The aid of fuzzy logic is to provide a framework to deal, in a natural way, with
problems in which the source of imprecision is the absence of sharply defined criteria. A

fuzzy set, 4, in X is characterized by a membership function 1 (x) which associates each

20



element in X a real number in the interval [0,1]. The value of yy (x) at x represents the
grade of membership of x in A. The closer this value is to unity, the higher is the level of
membership of x in 4. On the contrary, in crisp logic the membership values are either 0
or /. Fuzzy logic introduces the possibility of intermediate values, and a more precise

way of defining grades of membership of an element in a domain.

Fuzzy set operators can be defined in terms of operations between membership functions,
the same way it can be done for crisp sets. These operations are important because they
can describe interactions between variables. The basic operations in fuzzy logic are

intersection, union and complement. They are defined by Zadeh [29] as follows:

Intersection: Vxe X : u anp (X)) = min( gz, (x), 1, (x)), 33
Union: VxeX:p, 5 (x) =max(u, (x), 1y (x)), 3.4
Complement: Vxe X : L () =1= 1, (x). 35

This is a very simple extension of the classical operations. Other extensions using simple
algebraic transformations are given in Table 3.1 [30]. For reference, Zadeh’s definition is

included as the first type.

Intersection Union
Zadeh min(u,,(x), 1, (x)) max(ss,(x), 45 (x))
Mean _‘M 2xmin( s, (x), g (%)) + 4 x min( u , (x), 25 (x))
2 6
Product Ha (X)X g (x) (14 (x)+ 125 (x)) - (1,4 (x) % 125 (x))
Bosu:[ged max(0, 12, (x) + 2, (x) -1) min(l, £z, (x) + 2, (x))

Table 3.1 Algebraic intersection and union operations
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Fuzzy set theory is characterized by its capability of handling linguistic variables. This
ability makes fuzzy logic an attractive tool to mimic the behavior of human experts. In
addition, fuzzy sets have been shown to be a very effective tool when it comes to multi-
objective decision-making [32]. Consequently, fuzzy logic is a useful tool to approach the

FMC scheduling problem under consideration.
3.2 Multi-objective decision making

Bellman and Zadeh introduced the concept of fuzzy decision making in 1970 [31]. They
defined it as “a decision process in which the goals and/or constraints, but not necessarily
the system under control, are fuzzy in nature”. They pointed out that fuzzy goals and
constraints can be defined accurately as fuzzy sets. A fuzzy decision may be viewed as
the intersection of the given goals and constraints. The major reasons for utilizing fuzzy
sets when handling multi-objectives are [32]:

1. its ability to represent objectives,

2. its convenient forms for combining objectives, and

3. its realistic means of including different degrees of importance to the objectives.
Based on the work proposed by Bellman and Zadeh [31] as well as Yager [32], the
decision-making technique used in the present work will incorporate material presented

below.

Objectives (goals and constraints) can be easily represented by fuzzy sets. Assuming we

have a set of alternatives in a decision X’ =[X1, X, ..., Xn] and a particular objective 4, we
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can associate with each element in X; a number 44(X;) in the interval [0,1] indicative of
how well X; satisfies objective A. The advantage of fuzzy sets derives from the fact that

very fuzzy objectives as well as very precise objectives can be represented. Moreover,

fuzzy sets allow the manipulation of subjective phenomenon.

In order to extend the above definition to combining multi-objectives in decision making,
let us assume we would like to select among the set of alternatives X the one that best
satisfies a set of objectives A4, -.4p. Each alternative X;, is assigned a number

indicative of how well it satisfies the objectives as a group x,(X,) and, of course, the X

with the highest value is the best. The dilemma would be on how to combine the
contribution of each element to each objective, in order to get an overall general
contribution of each element to all the objectives as a whole. One approach is the
linguistic connection of the objectives, stated as “we want an X; from X such that X;
satisties A; and A, and...and A,”. Therefore, by doing intersection we would be able to
combine the objectives. Another approach includes bargaining procedures followed in
game theory where solutions are negotiated. The second approach shows a remarkable

similarity to the first one. For further details on the second procedure, please refer to [32].

The values of the alternatives are obtained by using membership functions. As mentioned
in the previous section, there are different ways of representing the intersection of
objectives. For instance, Zadeh’s method chooses the minimal value among the
objectives. However, if an alternative does not contribute to an objective at all (i.e. sy

(X)=0), then the result of the intersection would be zero (0), thus excluding the
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contribution of the alternative to the other objectives even if those are close to unity.
Similarly, product and bounded sum methods eliminate the contribution of the objectives
if one among them has membership value of zero (0). On the contrary, mean method
produces an average value of the contributions of the alternative to the different
objectives. Hence, if the alternative does not benefit an objective at all, the solution does
not go to zero (0). Furthermore, in our specific case we are not only interested in the best
alternative, but also in the second or third best one. For example, in the case of an _
alternative (part type), which cannot be chosen because of no availability of resources
(i.e. machine that needs to process being unavailable, blockage, etc), then second or even

third best alternative has to be looked at.

Table 3.2 presents a batch composed of three different part types: 4, B and C; and three
objectives represented by membership functions ta(p), () and pc(p). In this table,
columns 1 and 2 refer to the part type and the number of parts to be produced
respectively. Column 3 refers to the job number. Columns 4,5 and 6 represent the
processing times for the respective machines, namely MI, M2 and M3. This table shows
the numerical results obtained by using the four methods shown in Table 3.1. As can be
observed, the mean method is the only one that can assure us that we would have more
than one alternative to choose from. For example, if part type B cannot be selected for
any reason, by using any method but mean, we would not have a second choice. In fact,

mean would leave us to choose a second alternative (part type C) and a third alternative

(part type A).
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Part # Jobs # M1 M2 | M3 ra®) | us@®) | pelp) Z M P B
type | parts

A 2 1,2 4 2 0 0 0.40 0.50 0 0.32 0 0
B 3 3,4,5 0 3 0 0.50 1 1 0.50 0.83 0.50 0.50
C 1 6 0 5 1 1 0 0.5 0 0.50 0 0

Z —Zadeh; M —Mean; P — Product; B - Bounded Sum.
Membership functions are only given for example purposes. Results do not show relevance to the data set.

Table 3.2 Example of intersection methods

3.3 Implemented fuzzy logic based solution

In the present study, the evaluation of the overall contribution of the fuzzy membership
function of each part type determines the sequence of the jobs in a given batch. Two
methods are proposed: fuzzy-job and fuzzy-machine. These strategies are mainly used to

choose the jobs and machines in the sequence,

3.3.1 Fuzzy-job

As stated in the previous section, job sequencing is determined by evaluating the overall
contribution of the fuzzy membership function of the part type to the optimal
performance of the system. The fuzzy membership function is composed of membership
functions that correspond to the objectives of thé problem under consideration. The

various membership functions are defined below.

®  4n(p): The throughput of part type p is defined by a membership function that is

defined as the ratio of the difference between the maximum total processing time PT
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of the part types, and the total processing time of the part type p to the difference
between the maximum and minimum total processing time of the part types. This
membership evaluates the contribution of the part type to maximize the throughput of

the batch. This can be expressed as:

MaxPT - PT(p) 3.6
0< <1
MacPT —MinPT’ Hn(P)<1,

U (p) =

where
MaxPT = maximum processing time of part types,
MinPT = minimum processing time of part types, and

PT(p) = total processing time of part type p.

M 3.7
PI(p) is defined by PT(p)= N(p)xZPT(p,m),

il
where
N() = number of jobs for part type p,
m = machine number, m=123,... M

2

M

I

number of machines, and

Il

PT(p,m) processing time of part type p on machine .

£p(p): The membership function for the penalty of part type p is defined as the ratio
of the difference between the maximum total penalty 7P of the part types, and the
total penalty of the part type p to the difference between the maximum and minimum

total penalty of the part types. This membership evaluates the contribution of the part

type to minimize the total penalty due to late jobs. This can be expressed as:
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MaxTP —TP(p) 3.8
0< <1,
MaxTP - MinTP #e(P)

Hp(P)=

where
MaxTP = maximum total penalty of part types,
MinTP = minimum total penalty of part types, and

TP(p) = total penalty of part type p.

TP(p) is defined by TP(p) = 22 *
P(p)

where

I

DDp) due date of part type p, and

P(p) = penalty of part type p.

e (p) - The membership function for the machine idle cost of part type p is defined

as the ratio of the difference between the tofal machine idle cost of part p, and the
minimum total machine idle cost of the parts to the difference between the maximum
and minimum total machine idle cost of the part types. This membership evaluates the
contribution of the part type to minimize the total machine idle cost when producing
the batch. This can be expressed as:

C(p)-MinC 3.10
BT 0< <1
MaxC —~MinC”’ #ie(P)<T,

e (D)=
where
MaxC = maximum total machine idle cost of part types,

MinC = minimum total machine idle cost of part types, and

C(p) =total machine idle cost for part type p.
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M 3.11
C(p) is defined by C(p) = > U x IC(m),

m=}1

where
I, if machine is needed for processing the part type p, and
Vs 0,  if machine is not needed for processing the part type p, and
IC(m) = machine idle cost of machine m.

#7(p) :The membership function for the robot travel time of part type p is defined as:

1 if jobs visits 1 machine, and

2

Hr(p) =
1/M, if job visits more than 1 machine,
where,
M = number of machines part type p has to visit.
This membership evaluates the contribution of the part type to minimize the total

robot travel time when producing the batch.

15 The overall membership function of part type p is the average “mean” of the

individual membership function of the penalty, throughput, machine idle cost and
robot travel times for part type p. By using the mean method defined in Section 3.1

this can be expressed as:

1 (p) = Lo P+ En (D) + e (D) + 17 (P) 3.12

4

0<py(p)<l.
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3.3.2 Fuzzy-machine

Fuzzy-machine is similar to fuzzy-job. However, instead of evaluating the contribution of
the part type to meeting the objectives of the system, the evaluation is given by obtaining
a membership function for each combination of part type and machine. Thus, for fuzzy-
job, there would be as many membership functions as number of part types, while for
fuzzy-machine, there would be as many membership functions as number of part types

and machines each part has to visit. For example, for the batch given in Table 3.3, the
number of membership functions for fuzzy-job would be three ( 1, (A), 11, (B), 12, (C)),
and for fuzzy-machine would be six (Wo(A,M1),  po(4,M2), Uo(B.M2),  p1,(BM3),
Ho(CM3), 11,(C,M4)). The variables employed in Table 3.3 are the same as those used in

Table 3.2.

Part # Jobs M1 M2 M3 M4
type | parts #

A 2 1,2 4 2 0 0
B 2 3,4 0 13 7 0
C 2 5,6 0 0 5 8

Table 3.3 Batch example 3.1

Penalty and robot travel time values remain constant for each part type. These values do
not vary according to the machine. Therefore, these membership functions are defined as
in fuzzy-job. Throughput and machine idle cost memberships are defined somewhat

differently as described below.
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®  fig,(p,m): The membership function for the throughput of part type p on machine m
is defined in the same terms as in fuzzy. The difference is that the processing time is
given by PT(p,m) instead of PT(p). p,,(p,m) can be defined as:

(p.m) MaxPT —PT(p,m) 0< 1 (pom) <1 3.13
= = m) =<
/uTh pam MGXPT—MZ}’IPT > :uTh p: 3

where

MaxPT = maximum processing time of combinations part-type/machine, and

MinPT = minimum processing time of combinations part-type/machine.

e tc(p,m): The membership function for the machine idle cost of part type p on
machine m is defined as before, but with the difference that instead of the total
machine idle cost C of part p, the membership function is defined in terms of machine

idle cost of part p on machine m. u,.(p,m) can be defined as:

[C(m) = MinlC 3.14
- 0< <1
MaxIC - MinlC’ e (p,m) <1,

U (p,m)

where

MaxIC = maximum machine idle cost of machines, and

MinIC = minimum machine idle cost of machines.

3.3.3 Numerical example

For the batch data given in Table 3.4, the numerical results are shown below. For fuzzy-
job, there are three membership functions that are evaluated: o (A), 11, (B), 1, (C) . For

part type A, the membership functions are determined as follows.
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Membership function for throughput:

Membership function for penalty:

Membership function for machine idle cost:

Membership function for robot fravel time:

Overall membership function:

40-12
40-12

My (A) =

17.5-133

Ay=—127133 o
() =133

3-3
ﬂzc(A):Eﬂ)-

,LlT(A)Z%:O.S.

1+1+0+0.5

Lo (A) = =0.625.
Part # Jobs M1 M2 M3 M4 | DD(p) | P(p) | PI(p) TP() | C(p)
Type | parts #
A 2 1,2 4 2 0 0 40 3 12 13.3 3
B 2 3,4 0 13 7 0 35 2 40 17.5 4
c 2 5.6 0 0 s 8 55 4 26 13.75 s

Machine idle cost rate: M1=2, M2=1, M3=3, M4=2.

Table 3.4 Batch example 3.2

The numerical results for the rest of the parts are shown in Table 3.5. As can be noticed,

part type C (machine M3) would be the first in the sequence followed by part type A

(machine M1), and finally part type B (machine M2).

Part type “p(p) He, (D) e (D) He () o (D)
A 1 1 0 0.50 0.62
B 0 0 0.50 0.50 0.25
C 0.89 0.50 1 0.50 0.72

Table 3.5 Numerical results for fuzzy-job
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For the fuzzy-machine method, membership functions are expressed in terms of part type
and machine. For the combination of part type A and machine M1, the various
membership functions are given as follows. Notice that penalty and robot travel time

membership functions have the same numerical value as part type A in fuzzy-job.

Membership function for throughput: fiyy (AM1) = 13-4 =081
13-2
Membership function for machine idle cost Lo (A, M1) = 2-1 05
3-1
Overall membership function fig (A1) = 1+0.81 ZO.S +0.5 _ 0.70.

The rest of the calculations are given in Table 3.6. From the results presented in the table,
the sequence would be Part type C-Machine M3, Part type A-MI1, Part tybe A-M2, Part

type C-M4, Part type B-M3, and Part type B-M2.

I::;;’{E: / Ly (p,m) U, (p, 1) e (p,m) Uy (p,m) Ho(p,m)
Part A, M1 1 0.81 0.50 0.50 0.70
Part A, M2 1 1 0 0.50 0.62
Part B, M2 0 0 0 0.50 0.12
Part B, M3 0 0.54 1 0.50 0.51
Part C, M3 0.89 0.72 1 0.50 0.77
Part C, M4 0.89 0.45 0.50 0.50 0.58

Table 3.6 Numerical results for fuzzy-machine

Having defined the methodology used for fuzzy-job and fuzzy-machine, the next chapter
provides an overview of the structure of the implemented software, the experimental

setup and the results obtained when comparing the different strategies.
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4. Experimental setup and software

4.1 Layout of the flexible manufacturing cell

Input Buffer Output Buffer

Robot

Figure 4.1 FMC Organization

The proposed methodology was tested on an experimental flexible manufacturing cell
located at the University of Manitoba. It consists of a central robot arm serving four
machining stations, an input buffer, and an output buffer (Figure 4.1). The machines are
labeled M1, M2, M3 and M4. The robot has five degrees of freedom, and it was used for
part transfer between different stations. The input buffer contains the raw parts that need
to be processed. The parts are depoéited on the output buffer when processing is
completed. Each machine has a sensor that detects when a part is placed on the machine.
The cell is controlled by graphic software written in Borland C++[33,34] using OWL
(Object Windows Library) programming [35], that runs on a central PC. The PC
communicates with the robot controller and sensors through an I/0 board (Figure 4.2).
There are fourteen robot subprograms controlled by a master program. The structure of

the programs is shown in Appendix A. Each subprogram corresponds to a unique robot
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move within the cell. The master program continuously monitors the status of inputs of

the robot controller and runs a subprogram according to the action required to be taken.

PC
(Software)

Robot v 4 Sensors
Controller > I/O card ¢ (Machines)

Figure 4.2 FMC 1/O configuration

The PC software has a graphic interface where the user enters a batch data and its
characteristics. An internal algorithm processes the data and sends orders to the robot
through the I/O card. The master program in the robot controller responds to the PC
controller and runs an appropriate subprogram; thus, the corresponding operation will be
performed. At the end of each operation, the robot sends a signal to the I/O card,
acknowledging to the PC that the requested operation has been finished and it is available
for new operations. When loading a part onto a machine, the part triggers a sensor that
sends a signal to the PC. This signal starts a timer in the software according to the part
processing requirements. This signal indicates whether a station is occupied as well. The
software continuously monitors the status of the timers to know when a part is finished
and is ready to be picked up. Besides the ability of operating in real time, the software is
capable of operating off-line, simulating results on the screen. Simulations are a quick
way of assessing results prior to hardware implementations. They provide an overall

picture of the system so that flaws or malfunctions can be visualized ahead of time.
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4.2 Software operation

The software has the capability of online, real time implementation as well as off-line
simulation, in both text and graphic mode. A windows-based graphic environment
permits the insertion of data about the batch conditions in a user-friendly manner. The
following figures show how data should be entered on each dialogue window in the
software. For illustrative purposes, batch data corresponding to batch #1 shown in

Appendix G.1 will be used.

The first screen (Figure 4.3) is the “Batch Information” window. The user is allowed to
insert information about the number of parts to be produced, and the processing times. If
a part is not required to visit a machine, the processing time should be entered as zero.
The second screen is the “Starions” window (Figure 4.4). Machine idle cost rate data
must be provided at this stage. If a machine is not needed for the current batch, the data

entered must be zero.

St # identifies the
station (machine)
number

Figure 4.3 Batch information window
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Figure 4.4 Station idle rate window

Figure 4.5 Due date/Penalty window

The third screen is the “Due Dates” window (Figure 4.5). For each station, data about the
due date and penalty rate for tardy jobs must be inserted. If a machine is not used, the
values must be entered as zero. In addition, when the option “Robot” is selected on the
main menu, a window pops up requesting the name of a file that contains the robot travel
times (Figure 4.6). The file has an extension .rbt. The advantage of using files instead of
dialogues is to avoid typing long sets of data (in this case 41). The .rbt data files contain
robot travel times between various operations. Appendix D shows a sample of
“Robot.rbt” file, which is the default file. Travel times can be changed using any word

processor. However, the structure of the file cannot be altered, only the robot travel time
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data can be adjusted, if necessary. More details about robot travel times and their

significance are given in Section 4.4.

54 program

Robot times files {= 43 c: powerland

Figure 4.6 Robot idle time file window

Figure 4.7 Part sequence window

Having inserted the numerical data, additional considerations must be entered. The
window titled “Sequence” (Figure 4.7) allows the end-user to choose between a
sequential versus a non-sequential loading of machines. If “sequential” is chosen, the
order of the machines has to be inserted. If it is not chosen, the order of the parts has no
effect on the sequence. The “Heuristics” window (Figure 4.8) contains the different

strategies that can be run: SPT, WEDD, Fuzzy-Job, Fuzzy-Machine and ALL. If “ALL”
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is chosen, the software runs the four strategies for a loading and unloading priority, as
well as sequential and non-sequential options. Therefore, a total of sixteen simulation
results (combination of strategy-priority-mode) are shown. At the end of the simulation, a
list of the combinations is displayed in descending order of performance for each
objective. When “ALL” is selected, choosing “text mode” on the “Mode” window, as
well as “simulation” on the “Run-Setup” window is recommended. In addition, in the
“Sequence” window, “non-sequential” mode must be checked and the order of the
sequence of the parts must be entered. The “Heuristics” window also provides two robot
movement priorities: “loading” or “unloading”. The rest of the windows allow the user to
choose from two options. The “Run-Setup” window gives the option of choosing FMC
(on-line implementation) or simulation (off-line). The “Mode” window provides the two
modes in which the simulation can be carried out: text or graphic. Text mode is especially

useful for test and analysis purposes.

Figure 4.8 Heuristics window

Finally, the user has to click on the menu “Begin” to be able to start the simulation. If the
user has chosen “text” on the “Mode” window, a window pops up prompting for the

name of the file where the user wants to store all the data. The file must have extension
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sen. A sample file is given in Appendix E. If the user chooses “graphic”, a screen
simulation appears on the main window (Figure 4.9). In this figure, “time” refers to the
value of the general timer, or the time that has elapsed since the beginning of the
simulation. The “station state” shows the state of the five stations respectively. Each
number corresponds to a color as shown on the figure (blue=0,red=1,yellow=2,black=4).
The “state of each station timer” refers to the processing time left for each machine. The
“number of parts lefl” provides the number of parts left for each part type. The queues

“qdone” and “qalmost™ indicate which machine has finished its processing and which

machine is almost finished, respectively.

Time: 85.00 The robet is moving to 6
Station state is: 200 2 4 ‘ The number of jobs left=5
State of each station timeris: 0 2 0 g ¢ qalmest00000

Number of parts left 311000 qdone 14000

Machines are displayed in different colors

according to their current state:

- Blue(0), machine is unoccupied

- Red(1), machine is occupied, and it is

processing the part

- Yellow(2), machine is occupied, but it has
Sinished processing the part

-Black(4) machine is not being currently
used for the processed batch

Robot

M5

In/Out .
/ buffers V\

Raw material 4P Finished parts

Figure 4.9 Main screen
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Once the simulation is finished, general results about the performance of the strategy are
shown. These results refer to throughput time, robot idle time, tardiness cost and machine
idle cost. Other features of the software pertain to the /O communication protocol. These

features allow the user to test inputs and outputs prior to actual implementations.

4.3 Logic and data structure management on software

This section will provide software details on the implementation of the proposed fuzzy
logic based methodology. Details of the fuzzy logic model were provided earlier in
Section 3.3. After entering all the data as outlined in the previous section, the user can
initiate the simulation. At this point, internal calculations are made to determine the
contribution of each part type to the objectives of the system using the fuzzy theory
presented earlier. Then, the program enters a loop, which continues until all the parts
have been processed. This loop can be part of the sequential or non-sequential option.
This depends on the specifications selected by the user. Inside each loop, an internal
variable responds to the choice of the user to follow either a loading or unloading
priority. This internal variable will lead the sequence of operations within the loop:
loading, shifting, unloading, and moving and waiting. Loading means the robot will pick
up a part from the input buffer and load a machine. Unloading means the robot will pick a
finished part from a machine and drop it off at the output buffer. Shifting corresponds to
unloading a part from a machine and transferring to another machine for further
processing. Moving and waiting, refers to the movement of the robot to a machine and
waiting until the processing ends prior to picking up the part. This last action is a look-

ahead feature, which seeks to reduce the throughput time of a batch by saving extra travel
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time. Instead of waiting for the next part to be finished, the robot keeps track of which
parts are almost done and goes next to the corresponding station, thus saving movement
time. If a loading priority is chosen, the program first looks at the possibility of loading.
If it is not possible, it considers the possibility of shifting a part. If that is also not
possible, then it considers unloading. Finally, if nothing else is possible, the robot moves
to the machine with the earliest finishing time. In the case of an unloading priority, the
program first looks at the possibility of unloading, then shifting, then loading, and finally

moving and waiting. Appendix F provides an overview of the loading priority logic.

Several structures were implemented to manage and use various data effectively. These
include data pertaining to processing time, due date, penalty, cost, time and so forth. For
instance, each job has a number of related parameters such as machines to visit and
processing times, location, part type, etc. In terms of programming, these data would be
unmanageable if it is not organized as a structure. Therefore, these parameters are
collected in a job matrix (data structure) as shown in Figure 4.10. The first five variables
correspond to the processing time requirements of the part. If the part needs to be
processed on a machine, the variable corresponding to that machine would have as its
value the processing time, otherwise that value would be zero. When the part is being
processed, that value will be continuously updated towards zero. When the value reaches
zero, it signifies that the part does not need any more processing on that machine. The
sixth variable states how many machining processes are required by the part. This value
is decreased every time the part is processed on a machine. The seventh variable indicates

the part type. This is done for identification purposes, especially when dealing with
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software-based timers. The eighth variable shows the current location of the part. This
value could be 0 for input buffer, 6 for output buffer or the machine number where the
part is located. The ninth variable points to the status of the part. These values could be 1
if the part is being worked on, 2 if part is waiting to be unloaded, 3 if part is being shifted

and 4 if the part is done.

1 2 3 4 5 6 7 8 9
— 7
~

Each number corresponds to a machine. If the

value is 0, it means the part does not need

processing on that machine, otherwise the value Sum of number

must be the machining time, which would of process art Curr ent Status of

decrement when the part is being processed at required number  location of the part
that machine the part
Figure 4.10 Job matrix

Timers are managed in two different ways depending on the type of mode: off-line or
online. In off-line mode, when a part is loaded onto a machine, a timer is set to a value
corresponding to the machine processing time given by the job matrix. This value
decreases as the general timer increases. When the timer reaches a value of zero, the
corresponding machine number is inserted into a “job done” queue indicating that the
processing of the part is completed. In online simulation, the program also manages the
machine timers, but there are differences. Once the PC sends a command to the robot to
load a part, it begins scanning the sensor located at the respective machine. Once the
sensor is triggered indicating that the part is in place, the program starts the timer that
corresponds to the machine where the part is being processed. The program keeps track
of these timers. Once the timer has reached the time that is stored in the job matrix, a “job
done” queue gets the information, and when possible, the program sends a command to

the robot to pick up the part. Then, the timer is reset.
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Besides the “job done” queue, there is a “job almost done” queue. This queue is useful
for moving and waiting actions. This queue has a list of machines that are about to
complete their processing. This queue is fed when a part is loaded onto a station for
processing. However, since that queue is updated constantly, machines are increasingly

ordered according to their remaining processing times.

The primary difference between sequential and non-sequential mode is that, in sequential
mode there is a matrix that stores the sequence of the parts. In non-sequential mode, a
“check” function instead of a matrix format is used to prevent conflicts that may rise as a

result of the movement of the parts through certain routes.

4.4 Robot travel time issues

As stated in Section 4.1, there are fourteen robot subprograms. Each subprogram
corresponds to a specific robot move as shown in Appendix A. The number of programs
is presently limited since the robot has only fourteen inputs, and each program has to be
called by an input triggered by an output from the PC. This limitation causes difficulty if
all the robot travel times have to be made equal. Each robot subprogram corresponds to a
part of a total robot move. This means, that a robot move or subprogram is part of a
bigger move. For instance, if the robot is needed to go from the input buffer to pick up a
new part, and then load it onto machine M1 (IN-M1), the PC would have to send two
signals to call two different programs: program 1 and program 3 (Appendix C). Thus, if

the speed of movement of the robot in program 1 or 3 were changed, then the travel
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distance of other moves that involve program 1 or 3 would change. Therefore, it is quite
difficult to set all robot travel times equal. In fact, this would never be the case in a real
situation. These travel times were measured and any one value was found to vary from 4
to 6 seconds. Since the objective of simulation is to obtain results that correspond as
closely as possible to those in real time implementations, it is necessary to measure the
robot travel times as accurately as possible. The robot utilized for the experiments is
routinely used in many assembly tasks that require high precision and repeatability in
positioning. It has been found to maintain both of these parameters over many trials, and
hence it was deemed unnecessary to evaluate either of these parameters. However, the
travel time as it shifts from one program to another is of greater importance in the
experiments to be conducted. For instance, the robot could be waiting at a central location
before the PC sends a request. Since the robot controller scans the inputs sequentially, the
time of call from the PC to the actual time of response may vary. The measured travel

time will also include a measure of repeatability of time measurements.

In order to measure the robot travel times accurately, small modifications were done in
the robot programs. These modifications were inserted instructions. In Appendix A, these
instructions are highlighted in bold lettering. For example, in order to measure the robot
travel time between output buffer and input buffer (OUT-IN); we would need to measure
the time just after the robot has dropped off the part at the output buffer, and immediately
after the gripper has been triggered to pick up a new part. As seen in Appendix C, the
related robot subprograms are numbered 2 and 1, in that sequence. The problem now is

that; program 2 goes from a central position to the output buffer and returns to the central
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position. The time needed for the robot to go from the central position to the output
buffer should not be accounted, and neither should be the time after the robot picks up the
part in program 1. To solve this problem, an instruction was inserted in the robot sub-
programs at these moments. The robot sets or resets an output to the PC, hence the
software is instructed to start or end the timer, respectively. In this case, for program 2,
the inserted instruction sets output 7. Then, the PC registers that signal and the software
registers the exact time. Later, program 1 resets output 7, and the software records that
moment and calculates the time between these events. These modifications were done in
all the robot programs. The first program in the sequence sets output 7, and the last resets
output 7. The software records the time between these events. The accuracy of this time
is + one hundredth of a second. All the travel time data collected for the experimental

setup is stored in file “Robot.rbt” given in Appendix D.

This section has provided an outline of the experimental and software structure
developed. In addition, aspects related to the user-operation and internal logic of the
software, as well as, management of the robot travel time has been explained. The next
chapter provides details of the experiments and results. In addition, aspects such as online
versus off-line results, loading versus unloading priority, and sequential versus non-

sequential mode are also investigated.
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S. Experiments and results

The objective of the experiments is to compare the performance of the two proposed
methodologies: fuzzy-job and fuzzy-machine in real-time as well as through off-line
simulation. In order to study their performance in a multi-objective setting, they are
compared to two dispatching rules: SPT and WEDD, as well as to the heuristic proposed
by Hathout [14]. In Hathout’s work, that preceded this work, all the parts in the batch
have equal processing times. Comparisons with her heuristic are possible only when such
conditions are met. Comparisons to many other heuristics reported in the literature are
difficult due to specific characteristics of different FMCs. For example, handling devices
are usually omitted or Automated Guided Vehicles (AGVs) are used for material
handling. Part movement using AGVs, in comparison to using a robot, follows a different
path generation procedure. Furthermore, many authors do not usually provide details
about their software logic. For these reasons, comparisons with a wide variety of models

are not attempted.

5.1 Real time implementation versus simulation

One of the most interesting and challenging aspects of this work is the real time
implementation, or, in other words, the online control of the robot moves within the
manufacturing cell, an aspect that is never mentioned by many investigators. Most
authors have limited their studies to simulations only. Real time implementations allow
readily visualizing the relationsﬁip between various parameters that contribute to the

throughput in a cell. In addition, they allow seeing the effect of uncertainties such as
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slight differences in the time synchronization between the robot and PC controllers that

may give rise to altogether a different type of part routing than the one determined.

Several challenges were encountered during the real time implementation. For a
meaningful comparison between the real time implementation and the simulation, the
robot travel times must be precisely measured and matched to those in the simulation. A
Ct++ program was designed for this purpose, as well as, some modifications were
performed to the robot sub-programs as outlined in the previous chapter. The robot travel
times were measured to an accuracy of one hundredth of a second using a PC-based
timer. These times were then entered into the simulation. Table 5.1 presents the
throughput times, in seconds, for four sets of batches. Relevant data for these batches is
given in Appendix G-1. A small difference of about 1% to 3% between the real time and
the simulation results can be seen. Figure 5.1 shows the same results graphically. The
plot is essentially linear with only a small variation. The results from real time
implementation are always slightly greater than those obtained from simulation. The
small variation could be attributed to a number of factors. The first one may be due to the
imprecision in the measurement of the robot movement times. Initial experiments showed
that measuring the robot move times repetitively yields slightly different results. The
second factor might be the slight communication time delay between the PC and the
robot controller. It should be pointed out that, the robot controller scans the main program
sequentially, and this will cause a small delay in response. The sequential scanning built

into the hardware of the robot controller cannot be modified.
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BATCH # 1 BATCH#2
Throughput time (s) Throughput time (s)
Real Simulation % Difference Real Simulation % Difference
SPT 218.49 216.24 1.0 % 412.16 402.22 25%
WEDD 216.66 211.85 22% 428.05 415.39 3.0%
FUZZY-JOB 219.65 216.85 1.3% 428.00 415.39 3.0%
FUZZY-MACH 216.59 211.85 22% 412.16 402.22 2.5%
BATCH#3 BATCH#4
Throughput time (s) Throughput time (s)
Real Simulation Y Difference Real Simulation % Difference
SPT 459.12 445.75 3.0% 701.27 681.60 29%
WEDD 458.85 445.75 29% 691.35 671.77 29%
FUZZY-JOB 366.64 357.56 25% 691.14 671.77 2.9%
FUZZY-MACH 458.94 445.75 29% 691.03 671.77 2.8%

Table 5.1 Comparison of throughput time between real time versus simulation

All robot moves correspond to those programmed on the software. Feedback loops
function accordingly. The purpose of the feedback loops is to ensure that the robot is
responding to the request initiated, and to prevent the sofiware from sending additional

requests to the robot until the robot has finished the programmed move.
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Figure 5.1 Plot of throughput for real time versus simulation for different strategies
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3.2 Validation of the proposed methodologies

Some parts or products may require their manufacturing operations to follow a fixed
sequence. There are also examples of part processing where the sequence is irrelevant. In
the latter cases, it is wise to take advantage of the flexibility provided by the robot to
move parts through the system more efficiently. Moreover, in some cases, it has been
found that non-sequential operations maximize the throughput, especially when
processing times are long [14]. For the present work, the experiments consider both
sequential and non-sequential options. Comparisons are made in terms of machine idle
cost, tardiness cost, and throughput resulting from employing different strategies. Criteria
related to robot idle time can be only analyzed when more than one rule performs best
and their robot idle times are not equal. Further details related to this issue are given in
Section 1.2. Therefore, this criterion is analyzed only when such a comparison is

possible.

In order to compare the performance of various scheduling options, a set of data that
produces a wide variety of part processing requirements and due dates was generated. For
the tardiness costs to be more meaningful, data from real-life situations should be used.
No such data could be found. The effect of due date penalties is reflected by variations in
due date indicated. Again, it was chosen arbitrarily. The data for different batches were
randomly generated to study the effect of variations in processing times, processing

requirements and due dates.
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5.2.1 Sequential case

For the sequential case, it is assumed that the sequence follows the order in which the
machines are numbered. However, it is important to clarify that the software designed has
the capability of processing any sequence. The sequence followed is only for illustrative
purposes. For instance, for batch 5.1 ( See Table 5.2), the sequence for part type A is M1-
M2, for part type B, it is M2-M4 and M1-M3 for part type C. The part processing is
simulated using a loading priority. Some attributes can be noticed for this batch. The part
type with the longest processing time (part type A) is also the part with the longest due
date, and it has the highest penalty for tardiness. Besides, the part with the shortest
processing time and shortest machining time (part type B - machine M2) has the lowest
penalty and the earliest due date. Choosing the right sequence to reach multiple
production goals is challenging in view of the conflicting objectives. It is known that
choosing parts with the shortest processing time usually gives the best throughput. For
this batch, the part with the shortest processing time (part type B) has the lowest tardiness
penalty. However, it may be beneficial to start the process by choosing the part with the
highest penalty in order to avoid high production costs. The proposed fuzzy
methodologies are designed to look at these aspects and find a middle ground so that all

the objectives can be fulfilled as far as possible.
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Part | # Job# | M1 | M2 | M3 [ M4 [DD@p) | P() | PT(p) | TP(p) | Cp)
type | parts

A 3 1,23 45 48 0 4] 280 4 279 70 3
B 2 4,5 0 43 0 42 220 2 170 110 4
C 2 6,7 44 0 46 0 220 3 180 733 4

Machine idle cost rate: M1=2; M2=1; M3=2; M4=3

DD(p) — Due date of part type p

P(p) — Penalty of part type p

PT(p) - Total processing time of part type p

TP(p) — Total penalty of part type p, defined by: DD(p) / P(p)
C(p) —Total machine idle cost for part type p.

Table 5.2 Batch example 5.1

Simulation results for batch 5.1 are shown in Figure 5.2. This figure shows the resulting
improvement when using fuzzy-job and fuzzy-machine over SPT and WEDD. The bar
graph compares the performance of the different strategies. The percentage difference of
improvement is defined as given below. For this particular case, the strategies selected

are fuzzy-job and fuzzy-machine, and the strategies to which comparison is made are

SPT and WEDD.

measure of criterion obtained from the strategies
% difference of =100-  selected %
improvement measure of criterion obtained from the strategies

to which comparison is made

For this batch, fuzzy-job and fuzzy-machine produce identical performance, and the
figure presents the results using them as base line. In this example, SPT chooses part type
B first. Part type B has the smallest processing time, and the highest due date over
penalty ratio. At the same time, SPT tends to leave part type A for processing to the end.

Part type A has the highest penalty; therefore, tardiness cost would tend to be higher
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(Figure 5.2). On the other hand, WEDD chooses part type A, which has the lowest due
date over penalty ratio. However, that part type has a very long processing time, which at
the end gives rise to a long robot idle time, and thus a longer throughput time. This
produces a very high tardiness cost. Fuzzy-job and fuzzy-machine perform 71% better
than WEDD in this case. Although, it is expected that WEDD would tend to give the best
results when it comes to tardiness criterion, it did not turn out to be so since WEDD does

not take into account processing times.
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Figure 5.2 Percentage difference of improvement of fuzzy-job and fuzzy-machine with respect to SPT
and WEDD for batch 5.1

Table 5.3 shows the part sequence for batch 5.1 given by fuzzy-job, fuzzy-machine, SPT,
and WEDD. The sequence is displayed in a tabular form and the actions taken at various
stages use the following abbreviations. A letter represents an action, with L referring to
loading, U referring to unloading, and S referring to shifting. For example, L06-M1
means loading job number 6 onto machine 1, S06-M3, means shifting job number 6 from
the current position to machine 3; and, U04 means unloading job number 4. The ‘Time’

represents the time during which the action is being performed.
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Time (s)

Fuzzy-Job

Fuzzy-Machine

SPT

WEDD

5

L06-M1

L06-M1

L04-M2

LO1-M1

15

L04-M2

L04-M2

L06-M1

L04-M2

48

S04-M4

45

S06-M3

S06-M3

58

S04-M4

63

LO5-M2

64

LO7-M1

L07-M1

68

506-M3

69

S04-M4

S04-M4

73

L05-M2

83

LO7-M1

84

LO5-M2

LO5-M2

95

Uo4

100

Uo6

Uos

105

Uo4

106

S05-M4

110

S07-M3

S07-M3

116

S05-M4

119

Uo6

125

LOI-M1

LO1-M1

126

S01-M2

129

S07-M3

130

Uo4

Uo4

140

S05-M4

S05-M4

141

L02-M1

144

LO1-M1

153

uos

161

Uo7

Uo7

163

uos

171

S01-M2

S01-M2

179

Uo1

180

Uo7

186

L02-M1

L02-M1

189

S02-M2

190

S01-M2

191

Uos

Uos

204

L03-M1

205

L02-M1

224

Uo1

Uol

234

$02-M2

S02-M2

242

U0z

243

Uo1

249

L03-M1

L03-M1

252

S03-M2

253

S02-M2

267

LO6-M1

268

L03-M1

287

Uo2

yoz

297

S03-M2

S03-M2

305

Uo3

306

U2

315

506-M3

316

S03-M2

330

LO7-M1

350

U03

Uo3

355

END

END

366

U06

369

Uo3

374

END

376

S07-M3

427

Uo7

432

END

Table 5.3 Part sequence of fuzzy-job, fuzzy-machine, SPT and WEDD for batch 5.1
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As can be noticed from Table 5.3, fuzzy-job and fuzzy-machine result in a throughput
time of 355 seconds and SPT and WEDD has a throughput time of 369 and 432 seconds,
respectively. Another example is given in Table 5.4. In this case, part type A has the
longest due date and the highest tardiness penalty. Part type B has the smallest processing

time, while part type C has values in between, and the shortest processing time (machine

M3).
Part # Jobs # M1 M2 M3 M4 | DD(p) | P(p) PT(p) | TP(p) C(p)
type | parts
A 5 1,2,3,4,5 28 32 0 0 480 3 300 60 3
B 5 6,7,8,9,10 0 25 30 0 460 2 275 230 4
C 5 11,12,13, 0 0 23 35 440 2 290 220 5
14,15

Machine idle cost rate: M1=2; M2=1; M3=3; M4=2

Table 5.4 Batch example 5.2

Simulation results are shown in Figure 5.3. Fuzzy-job and fuzzy-machine find a middle
ground by initially choosing part type C. SPT chooses part type C as well, since it has the
lowest processing time. Results show the same performance for fuzzy-job, fuzzy-machine
and SPT, even in terms of robot idle time. There is a 10.7% improvement over WEDD in

terms of tardiness cost.

12% 1
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0% L T
Machineidle Tardiness cost  Throughput
cost time

Percentage of improvement
of fuzzy over WEDD

Criteria

Figure 5.3 Percentage difference of improvement of fuzzy-job and fuzzy-machine with respect to
WEDD for batch 5.2
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In order to study whether further enhancement can be obtained by any of the different
strategies, more experiments were conducted using an unloading priority. In some cases,
when using an unloading priority, results tend to be better; however, the results are not
generalizable. For illustration purposes, simulation results of batch 5.2, using an
unloading priority are shown in Figure 5.4. As seen in this figure, unloading priority
yields better results than loading priority, however, this is not always the case. More

results and analysis of loading versus unloading priority are given in subsequent sections.
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Figure 5.4 Loading versus unloading priority for batch 5.2

For illustrative purposes, three more simulation results are shown below. Once again,

fuzzy-job and fuzzy-machine are compared against SPT and WEDD, but taking into
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account loading and unloading priority. There are eight combinations (methodology-
priority) in total. In addition, when parts have the same processing time, results are also
compared to those of Hathout [14]. Results are shown in figures and tables that indicate
the improvement in percentage of the best performance compared to the worst, and the
improvement of the best methodology compared to SPT. The data set for the first set of

experiments is given in Table 5.5.

Part # Jobs# | M1 | M2 | M3 | M4 | DD(p) | P(p) | PT(p) | TP(p) | C(p)
type | parts
A 3 1,2,3 15 18 0 0 120 4 99 30 3
B 2 4,5 0 18 0 12 140 2 60 70 4
c 2 6,7 15 0 16 0 130 3 62 433 4
Machine idle cost rate: M1=2; M2=1; M3=2; M4=3
Table 5.5 Batch example 5.3
Machine idle cost Tardiness cost Throughput time
Best strategy | Fuzzy-job-load Fuzzy-job-unload Fuzzy-job-load
Fuzzy-job-unload Fuzzy-job-unload
Best 1392 826 221
Worst 1592 927 246
IBSP(worst)' | 12.5% 10.9% 10.1%
IBSP (SPT)* | 9.4% load 6.7% load 7.5% load

" Improvement of the best strategy performance over the worst
z Improvement of the best strategy performance over SPT

Table 5.6 Tabulated results - batch example 5.3

Percentage
improvement in

10%

performance

0%

Machine idle cost

Tardiness cost

Criteria

Throughput time

FUZZY-J LOAD COFUZZY-J UNLOAD BSPT EBHATHOUT'S

Figure 5.5 Performance plots - batch example 5.3
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From the results shown in Table 5.6 and Figure 5.5, it is clear that fuzzy-job outperforms
the other methodologies. For a fuzzy-job methodology, there is a remarkable similarity
between the results of loading and unloading priority, except in terms of tardiness cost.
Although the unloading priority is 1.8% better than loading priority in terms of the
tardiness cost criterion, the percentage difference is too small to conclude that fuzzy-job
with unloading priority yields the best results. In terms of robot idle time, there is not
much difference in performance between the priorities. For this specific case,
comparisons against Hathout’s heuristic are possiblé since the processing times are equal.
However, these comparisons are only possible in terms of throughput since Hathout’s
problem does not take into account other criterion. The throughput time for an identical
batch of parts with loading priority produces a 7.5% improvement for fuzzy-job strategy

in comparison to Hathout’s.

In Table 5.6, the strategy that performed “best” has been identified. No consistent pattern
could be observed in regards to the strategy that performed “worst”. This statement

applies to all the tables in which the “best” and “worst” performance has been compared.

Part # Jobs# | M1 | M2 | M3 | M4 | DD(p) | P(p) | PT(p) | TP(p) | C(p)
Type | parts

A 4 1,234 85 85 0 0 840 1 680 840 3
B 5 5,6,7,8,9 0 85 0 85 870 2 850 435 4
C 3 10,11,12 0 0 85 0 760 3 255 2533 1

Machine idle cost rate; M1=1; M2=3; M3=1; M4=2

Table 5.7 Batch example 5.4
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Another batch example is given in Table 5.7. In this case, fuzzy-machine has the best
performance (Table 5.8, Figure 5.6). As in the previous example, loading and unloading
priority give similar results. Loading performance is better by 35.3% for tardiness cost. In
terms of throughput, unloading and loading have the same performance, however the
robot idle time for the unloading priority is longer, which means less robot-related
production cost. The difference is 0.8%. This difference is minimal; hence, it can be
concluded that fuzzy-machine with loading priority has the best performance. For this
specific case, comparisons against Hathout’s heuristic are also possible since all
processing times are equal to 85 seconds. In terms of throughput, Hathout’s heuristic

gives identical results to those obtained using fuzzy-machine.

Robot idle time Machine idle cost Tardiness cost | Throughput time
Best strategy | Fuzzy-mach- Fuzzy-mach-load Fuzzy-mach- Fuzzy-mach-load
unload Fuzzy-mach-unload | load Fuzzy-mach-unload
Best N/A 2865 55 895
Worst N/A 3705 380 1015
Improvement | N/A 22.7% 85.5% 11.8%
IBSP (SPT)' | N/A 2.4% 15.3% 1.1%
ILP (unload)® | -0.8% - 35.3% -

Improvement of the best strategy performance over SPT

% Improvement of loading over unloading priority

Table 5.8 Tabulated results - batch example 5.4

Percentage of
improvement over the
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Figure 5.6 Performance plots - batch example 5.4
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The next case is given in Table 5.9. SPT and fuzzy-machine have the best performance
(Table 5.10, Figure 5.7) Unloading priority for both methodologies seems to perform
better than loading priority except for the tardiness cost criterion. An important factor to
be noticed in Table 5.10 is that, unloading is better (>6%) than loading priority in all

cases. Nevertheless, when loading is better in tardiness criterion, the difference is 23%.

Thus, SPT and fuzzy-machine with loading priority have the best performance.

Part # Jobs # M1 M2 M3 M4  DD(p) | P(p) | PT(P) | TP() | C()
type | parts
A 4 1,2,3,4 48 43 0 0 440 1 364 440 3
B 5 5,6,7,8,9 0 41 0 49 470 2 450 235 4
c 3 10,11,12 0 0 45 0 310 3 135 103.3 1
Machine idle cost rate: M1=1; M2=2; M3=1; M4=3
Table 5.9 Batch example 5.5
Machine idle cost Tardiness cost Throughput time
Best strategy | SPT-unload SPT-load SPT-unload
Fuzzy-mach-unload Fuzzy-mach-load Fuzzy-mach-unload
Best 1957 167 539
Worst 2503 463 617
Improvement | 21.8% 63.9% 12.6%
ISFU (load) ' | 5.4% -23% 2.8%

Improvement of SPT & fuzzy-machine unloading priority over SPT & fuzzy-machine

loading priority

Table 5.10 Tabulated results - batch example 5.5
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5.2.1.1 Summary of results for sequential mode

In order to compare the results, thirty batches were analyzed. Some of the results were
shown in previous sections. In this section, a compilation of the results from all the trials
is given. Figures show the percentage of how many times the methodology-priority
combination was the best in the thirty trials. For compactness, letters represent the
combination methodology-priority. For example, FJ means fuzzy-job, FM means fuzzy-
machine, W and S mean WEDD and SPT respectively. Likewise, L and U represent

loading and unloading priority, respectively.
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Figure 5.8 Performance for machine idle cost criterion
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The first aspect to analyze is the performance of the methodologies with respect to the
machine idle cost criterion (Figure 5.8). Fuzzy-job has the best performance. It is best
56.6% of the time with unloading priority, and 53.3% of the time with loading priority.
SPT and WEDD with loading priority have the worst performance. Unloading priority

seems to yield somewhat better results than the loading priority.
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Figure 5.9 Performance for tardiness cost criterion
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For the tardiness cost criterion (Figure 5.9), fuzzy-job with unloading priority has the best
performance followed by fuzzy-job with loading priority. Indeed, it was expected that
unloading priority would perform best in terms of the tardiness criterion since jobs would
be unloaded faster, thus reducing tardiness costs. However, this is not always the case.
For instance, the loading priority performs better for fuzzy-machine and SPT. WEDD

with the loading priority showing the worst performance, followed by SPT.

Percentage of times a
methodology-priority is
best

FJ.L FJU FM-L FMU WL WU S-L sU

Methodology-priority

Figure 5.10 Performance for throughput criterion

In terms of throughput criterion (Figure 5.10), results are very similar to before, fuzzy-job
with unloading priority showing the best performance. SPT and WEDD with loading
priority have the worst performance.

In general, fuzzy-job with the unloading priority gives the best results; SPT and WEDD
show poor performance. Furthermore, the unloading priority usually performs better than
the loading priority, except for the tardiness cost criterion, where results are difficult to

generalize.

63



5.2.2. Non-sequential case

Under certain circumstances, the sequence a part or product goes through a set of
machines may not be important. This suggests that flexibility in the route a part can go
through in processing may offer an improvement over a specific route. In the previous
section, fuzzy-job has been shown to perform the best, followed by fuzzy-machine.
However, one of the hypotheses is that, fuzzy-machine might have better performance in
a non-sequential mode. In addition, the non-sequential mode may yield better results. To

verify this hypothesis, sets of experiments were conducted.

The first experiment compares sequential and non-sequential mode of fuzzy-job, fuzzy-
machine and Hathout’s heuristic [14]. Ten experiments were done, using a loading
priority. Batch data for these experiments are given in Appendix G-2. Figure 5.11 shows

the results obtained for the two criteria: tardiness cost and throughput time.

For brevity, robot idle time and machine idle cost data are omitted. Machine idle cost
results are proportional to the results obtained for the throughput time criterion. Robot
idle time criterion can be analyzed only in specific cases, as stated before. Comparisons
using the throughput are made with results from Hathout’s [14] whenever all the parts in

a batch have identical processing times.
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Figure 5.11 Performance of non-sequential respect to sequential mode

In terms of throughput (Figure 5.11.2), the non-sequential priority performs better 40% of
the time for fuzzy-job, and remains the same 50% of the time. For fuzzy-machine, non-
sequential priority performs better 70% of the time, but its performance is worse 30% of
the time. For Hathout, results are better 50% of the time, and 25% of the time are worse
or remain the same. For tardiness cost (Figure 5.11.b), results are the same for fuzzy-

machine. However, for fuzzy-job, it is improved 40% of the time, and worse 30% of the
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time. Non-sequential mode yields better results or at least same results for both
throughput and tardiness cost criteria; however, there are cases when the performance is
very low as measured by the percentage shown. One interesting aspect is that fuzzy-
machine has the best improvement when in non-sequential mode. However, as shown
later, this improvement is not good enough to outperform fuzzy-job. Table 5.11 shows
the numerical results obtained for the ten trials. Results indicate the throughput time and
the tardiness cost for each batch. Tardiness costs are shown in parentheses. The best

results are highlighted in bold lettering.

Batch | Fuzzy-job Fuzzy-job Fuzzy-Mach | Fuzzy-Mach Hathout Hathout
# Sequential Non-seq Sequential Non-seq Sequential Non-seq
1 208 (1227)' 208 (1287) 204 (957) 208 (1057) N/A? N/A
2 415 (308) 415 (308) 502 (1079) 470 (808) N/A N/A
3 655 (300) 655 (300) 782 (1479) 750 (1148) N/A N/A
4 323 (1684) 319 (1908) 323 (1684) 319 (1908) N/A N/A
5 945 (107) 921 (102) 915 (75) 891 (42) N/A N/A
6 452 (4286) 450 (3935) 452 (4286) 445 (3705) N/A N/A
7 221 (841) 221 (841) 239 (885) 224 (768) 239 224
8 592 (267) 602 (438) 562 (181) 572 (273) 562 562
9 445 (4255) 445 (3645) 445 (4255) 452 (3679) 445 452
10 940 (3791) 787 (989) 940 (3791) 743 (696) 940 928

" Results represent throughput time (tardiness cost)
% Not applicable since processing times are not equal

Table 5.11 Throughput time and tardiness cost for sequential versus non-sequential

Three batches and their results are further analyzed next. Results are shown in the same

format as before. In this section, sequential and non-sequential modes are taken into
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consideration; thus, there are a total of sixteen combinations of methodology-priority-
mode. The data for the first batch is given in Table 5.12. For this batch, fuzzy-job has the
best performance. From the results presented in Figure 5.12, it can be observed that there
is no difference between the unloading and loading priority, and, the sequential and non-
sequential method of processing. The improvement over SPT is up to 18.8% in tardiness
cost criterion (Table 5.13, Figure 5.12). This difference is a result of SPT leaving the part
with the highest processing time (part type C) to be processed in the end. The part also

has the earliest due date. Therefore, jobs (part type C) may tend to be tardy.

Part # Jobs | M1 M2 M3 M4 [ DD() | P@) | PT(p) | TP(p) | C(p)
type | parts #
A 3 1,2,3 35 38 0 0 180 4 219 45 3
B 2 4,5 0 33 0 32 200 2 130 100 4
c 2 6,7 34 0 36 0 190 3 140 63.3 4
Machine idle cost rate: M1=2; M2=1; M3=2; M4=3
Table 5.12 Batch example 5.6
Machine idle cost Tardiness cost Throughput time
Best strategy Fuzzy-job Fuzzy-job Fuzzy-job
Best 1498 744 295
Worst 2034 1307 362
Improvement 26.3% 43.1% 18.5%
IBSP (SPT)’ 9.2% 18.8% 6.0%

T Improvement of the best strategy performance over SPT

Table 5.13 Tabulated results - batch example 5.6
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Figure 5.12 Performance plots - batch example 5.6

The data for another batch is given in Table 5.14. For this case, fuzzy-machine has the
best performance (Table 5.15, Figure 5.13). Sequential mode performs better than the

non-sequential. There is a similar behavior between the loading and unloading priorities.

Part # Jobs # M1 M2 M3 M4 | DD(p)| P(p) | PT(p) | TP(p) | C(p)
type | parts

A 4 1,2,3,4 68 68 0 0 640 1 544 640 3
B 5 5,6,7,8,9 0 68 0 68 670 2 680 335 4
C 3 10,11,12 0 0 68 0 510 3 204 170 1

Machine idle cost rate: M1=1; M2=3; M3=1; Md4=2

Table 5.14 Batch example 5.7

Robot idle time Machine idle cost Tardiness cost Throughput time

Best strategy | Fuzzy-m-unload- | Fuzzy-m-load-seq Fuzzy-m-load-seq | Fuzzy-m-load-seq
seq Fuzzy-m-unload-seq Fuzzy-m-unload-seq

Best 422 2202 121 742

Worst 540 2923 534 845

Improvement | 21.8% 24.6% 77.3% 12.2%

IBSP (SPT)' | 2.3% 3.1% 14.2% 1.3%

ILP (unload)” | -1.2 - 46.5% -

T Improvement of the best strategy performance over SPT
2 Improvement of loading over unloading priority

Table 5.15 Tabulated results - batch example 5.7
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Figure 5.13 Performance plots - batch example 5.7

As regards to the robot idle time criterion, unloading outperforms loading priority by a
slight margin of 1.2%. However, when it comes to the tardiness criterion, the loading
priority outperforms the unloading priority by a margin of 46.5%. In this case, Hathout’s
heuristic yields similar results to those given by the fuzzy-machine in terms of

throughput.

The data for the last illustrative example is given in Table 5.16. In this instance, SPT and
fuzzy-machine with non-sequential mode outperform (Table 5.17, Figure 5.14). There is
not much difference in performance between the loading or unloading priorities. SPT has
good performance since the part type with the smallest processing time, has also the
smallest due date over penalty ratio. In this case, Hathout’s heuristic with unloading

priority yields a result 0.2% better than SPT or fuzzy-machine.

Part # Jobs # M1 M2 M3 M4 | DD(p) | P(p) | PT(p) | TP(p) | C(p)
type | parts
A 5 1,2,3,45 50 45 0 0 580 3 475 193.3 3
B 5 6,7,8,9,10 0 45 52 0 560 2 485 280 4
C 5 11,12,13, 0 0 52 47 540 2 495 270 5
14,15

Machine idle cost rate: M1=2; M2=1; M3=3; M4=2

Table 5.16 Batch example 5.8
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Best strategy

Machine idle cost

Tardiness cost

Throughput time

SPT-nonseq
Fuzzy-mach-nonseq

SPT-nonseq
Fuzzy-mach-nonseq

SPT-nonseq
Fuzzy-mach-nonseq

Best

2964

696

743

950
21.8%

3981
82.5%

4620
35.8%

Worst
Improvement

Table 5.17 Tabulated results - batch example 5.8
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Figure 5.14 Performance plots - batch example 5.8

5.2.2.1 Summary of results for non-sequential mode

As in the previous section, experiments have been performed for thirty batches. Some of
the results were shown in previous sections. In this section, a recompilation of data from
the thirty trials is given. As before, figures show the percentage of how many times a
particular combination of methodology-priority-mode was the best in the thirty trials. The
acronyms used to abbreviate the combinations are the same as those used in section
5.2.1.1. Two additional abbreviations, S and N meaning sequential or non-sequential,

respectively, have been added.

The first observation relates to the machine idle cost criterion (Figure 5.15). The best

performance is achieved by fuzzy-job, for the loading priority and non-sequential mode.
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The second best is fuzzy-job, with loading priority and sequential mode. Fuzzy-job
strategy performs the best followed by fuzzy-machine, SPT and WEDD in descending
order. SPT with the unloading priority and sequential mode performs the worst. In
general, the loading priority, in combination with the non-sequential mode, produces the

best performance for all strategies.
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Figure 5.15 Performance for machine idle cost criterion

For the tardiness cost criterion, results are a bit different, as seen in Figure 5.16. The best
performance is given by fuzzy-job in combination with the unloading priority and non-

sequential mode, followed by fuzzy-job with loading priority and non-sequential mode.
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Figure 5.16 Performance for tardiness cost criterion
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As in section 5.2.1.1, the unloading priority is the best in terms of tardiness cost for
fuzzy-job and WEDD, and the loading priority is the best for fuzzy-machine and SPT.

The worst performance was given by SPT.

In terms of the throughput criterion (Figure 5.17), results are very similar to the machine
idle cost criterion, fuzzy-job with loading priority and non-sequential producing the best

performance.
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Figure 5.17 Performance for throughput criterion

To conclude, a fuzzy-job methodology has been shown to be the best, followed by fuzzy-
machine. SPT in a sequential mode produces the worst performance. In terms of tardiness
cost, results are similar to those obtained for the sequential mode. The unloading priority
has proved to be the best priority for fuzzy-job and WEDD, with the loading priority
being the best for fuzzy-machine and SPT. Moreover, in terms of throughput and
machine idle cost criteria, results are opposite to those obtained for the sequential mode.
Loading priority turns out to be the best priority for non-sequential mode, whereas,
unloading is the best priority for sequential mode. Furthermore, the non-sequential mode

produces better performance than the sequential mode.
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6. Conclusions and recommendations

6.1 Conclusions

The performance of the proposed fuzzy logic based methodologies is very promising.
They have shown much better performance than traditional dispatching rules such as SPT
and WEDD in a multi-objective scheduling environment. SPT and WEDD may still be
good when considering single objectives such as maximizing the throughput time or
minimizing the tardiness cost, respectively. This thesis has shown that fuzzy
methodologies are able to combine several objectives for effective scheduling of jobs.
The results presented also show that fuzzy-job is more effective than fuzzy-machine. As
indicated before, the difference in performance can be attributed to the way each strategy
analyzes the contribution of the jobs to reach the objectives. Fuzzy-job considers the
attributes of the job only, while fuzzy-machine evaluates the contribution of the job-
machine combination. The enhancement in performance shown by the fuzzy-job comes
from analyzing each job, keeping in perspective all the machines and their ability to
process a set of jobs that constitutes a batch. It does not restrict the analysis to just a job-
machine combination. The results also indicate a slight difference in performance
between SPT and WEDD. SPT has a tendency to perform better in machine idle cost and

throughput time criteria, while WEDD performs better in tardiness cost criterion.
Studies conducted to evaluate loading and unloading priority strategies did not result in

any generalizable results. For the tardiness cost criterion, the unloading priority has

proved to be the best priority for fuzzy-job and WEDD, while the loading priority has
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been the best choice for fuzzy-machine and SPT. In regards to improving the machine
idle cost and throughput time, the results are different. Loading priority turns out to be
the best priority for the non-sequential mode, whereas, unloading is the best priority for
the sequential mode. In addition, non-sequential loading of parts proves to be more

effective than sequential loading of parts.

The methodologies were successfully implemented in an automated machine cell. The
two strategies performed quite well and the results obtained from simulation (off-line)
show only a marginal difference with those from actual implementation (online). The
slight difference is unavoidable due to the preset control architecture of the robot and

communication aspects.

The capability of the custom designed software used to evaluate the performance of the
two strategies can be effectively used for simulations (off-line) and actual
implementations (online). The software has the ability of producing simulation in text or
graphic mode for valuable data collection for further studies. An example is the
generation of different sequences for a wide variety of batches for SPT, WEDD, fuzzy-
job and fuzzy-machine methodologies, or all of them. When the sequences of all the
methodologies are displayed, comparisons of the performance of the strategies for each
objective can be easily seen. Further insight into results that show inconsistencies can be

made using this tool.
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6.2 Recommendations

In spite of the effectiveness of fuzzy-job in improving the throughput in a multi-objective
environment, assigning random weights to the objectives could further enhance the
results. This assignment could be complex since there are four membership functions,
which could be assigned ten weight values ranging from 0 to 1. The number of possible
combinations would be enormous (10*). There are two possible ways of assigning and
evaluating these weights. The first one could be by using rules which would require
substantial user input and further experiments. A second approach, which may be more
efficient, is by using techniques such as genetic algorithms. These approaches may
require substantial computation times, and the improvement in performance will have to
be evaluated against the computational time that would be needed. This would require

further investigation.

Although the non-sequential methodology proved to be more efficient than the sequential
mode, further research can be done to enhance the performance of the non-sequential
mode. In the present work, no special techniques were utilized to check the movements of
parts in the non-sequential method. An object-oriented function that checks for the
presence of no conflicts in part allocation was utilized. However, by using intelligent
techniques with look-ahead features, these conflict-checks can be further enhanced and

results for the non-sequential mode may show further improvement.
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The model can be easily expanded or modified to change or add more objectives.
Furthermore, it would be very interesting to adapt the model to different types of
scheduling problems such as the stochastic arrival of parts, dynamic environment, and

different kinds of processing environment such as those explained in section 1.1.

76



8. References

[1] Singh, N. Systems approach to computer design and manufacturing, New York: John
Wiley & Sons, Inc., 1996.

[2] Suri, T. and Whitney, C. “Decision support requirement in flexible manufacturing”,
Journal of Manufacturing Systems 3.1 (1985): 61-69.

[3] Graves, S. “ A review of production scheduling”, Operations Research 29.4 (1981):
646-675.

[4] Chen, S and Lin, L. “Reducing total tardiness cost in manufacturing cell scheduling
by a multi-factor priority rule”, Infernational Journal of Production Research 37.13
(1999): 2939-2956.

[5] Ramasesh, R. “Dynamic job shop scheduling: a survey of simulation research”,
Journal of Management Science 18.1 (1990): 43-57.

[6] Gere, W. "Heuristics in job shop scheduling", Management Science 13.3 (1966): 167-
190.

[7] Vepsalainen, A. and Morton, T. “Priority rules for job shops with weighted tardiness
costs”, Management Science 33.8 (1987): 1035-1047.

[8] Baker, K. “Sequencing rules and due-date assignments in a job shop”, Management
Science 30. 9 (1984): 1093-1104

[9] Kutanoglu, E. and Sabuncuoglu, I. “An analysis of heuristics in a dynamic job shop
with weighted tardiness objectives”, International Journal of Production Research 37.1
(1999): 165-187.

[10] Wu; S. and Wysk, R. “An application of discrete-event simulation to on-line control
and scheduling in flexible manufacturing”, International Journal of Production Research
27.9 (1989): 1603-1623.

[11] Holthaus, O and Ziegler, H. “Improving job shop performance by coordinating
dispatching rules”, International Journal of Production Research 35.2 (1997): 539-549.

[12] Pierreval, H. and Mebarki, N. “Dynamic selection of dispatching rules for
manufacturing system scheduling”, International Journal of Production Research 35.6
(1997): 1575-1591.

[13] Moreno, A. and Ding, F ”A constructive algorithm for concurrently selecting and
sequencing jobs in an FMS environment”, nternational Journal of Production Research
31.5(1993): 1157-1169.

71



[14] Hathout, L. “Dynamic robot control and part loading in a flexible manufacturing
cell”, Master's thesis, Department of Mechanical and Industrial Engineering, University
of Manitoba. 2000.

[15] King, R., Hodgson, T. and Chafee, F. “Robot task scheduling in a flexible
manufacturing system”, JIE Transactions 25.2 (1993): 80-87.

[16] Chen, H., Chu, C. and Proth, J. “Sequencing of parts in robotic cells”, The
International Journal of Flexible Manufacturing Systems 9 ( 1997): 81-103.

[17] Sethi, S.P., at al. “Sequencing of parts and robot moves in a robotic cell”, The
International Journal of Flexible Manufacturing Systems 4 (1992): 331-358.

[18] Cheng, C, Sun, T. and Fu, L. “ Petri-Net based modeling and scheduling of a flexible
manufacturing system”, Proceedings of the International Conference on Robotics and
Automation 1 (1994): 513-517.

[19] Yalcin, A. and Boucher, T. “An architecture for flexible manufacturing cells with
alternate machining and alternate sequencing”, IEEE fransactions on Robotics and
Automation 15.6 (1999): 1126-1130.

[20] Lin, L., Wakabayashi, M. and Adiga, S. “Object-oriented modelling and
implementation of control software for a robotic flexible manufacturing cell”, Robotics &
Computer Integrated Manufacturing 11.1 (1994): 1-12. '

[21] Lee, A. Knowledge-based flexible manufacturing systems (FMS) scheduling, New
York: Garland Publishing Inc., 1994.

[22] Chen, H. and Guerrero, H. “Robot scheduling system for flexible manufacturing
cells”, IEEE International Engineering Management Conference (1990): 113-118.

[23] Pierreval, H. and Ralambondrainyi, H. “A simulation and learning technique for
generating knowledge about manufacturing systems behaviour”, International Journal of
Production Research 41.6 (1990): 461-474.

[24] Kusiak, A. and Chen, M. “Expert systems for planning and scheduling
manufacturing systems”, European Journal of Operational Research 34 (1988): 113-130.

[25] Jones, A., Yuehwern, Y. and Wallace, E. “Monitoring and controlling operations”.
The handbook of Industrial Engineering, March 2000.
< http://www.mel.nist. gov/msidlibrary/doc/iehandbook.pdf>.

[26] Jain, A.S. and Meeran, S. “Scheduling a job-shop using a modified back-error
propagation neural network”, Proceedings of the First Turkish Symposium on Intelligent
Moanufacturing Systems 30-31 (1996): 462-474.

78



[27] Kazerooni, A., Chan, F.T.S. and Abhary, K. “Real-time operation selection in an
FMS using simulation - a fuzzy approach”, Production Planning & Control 8 (1997):
771-779.

[28] Vidyarthi, N.K. and Tiwari, M.K. “Machine loading problem of FMS: a fuzzy-based
heuristic approach”, International Journal of Production Research 39.5 (2001): 953-979.

[29] Zadeh, L.A. “Fuzzy sets”, Information and Control .8 ( 1965): 338-353.
[30] Cox, E,. The fuzzy systems handbook, 2™ ed, New York: AP professional, 1998.

[31] Bellman, RE. and Zadeh, L.A. “Decision-making in a fuzzy environment”,
Management Science 17 ( 1970): 141-164.

[32] Yager, R. “Fuzzy decision making including unequal objectives”, Fuzzy Sets and
Systems (1978): 87-95.

[33] Hubbard, J. Schaum’s outline of theory and problems of programming with C++,
New York: McGraw-Hill, 1996.

[34] Swan T., Tom Swan’s mastering Borland C++ 5, Indiana: Sams Publishing, 1996.

[35] Spencer, I. Teach yourself O programming in 21 days, Indiana: Sams Publishing,
1995. :

[36] Park, Y. “Optimizing robot's service movement in a robot-center FMC”, Computers
and Industrial Engineering 27.1-4 (1994): 47-50.

79



Appendix A - Robot program

Main robot program

10

20

30

40

50

60

70

80

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440

450

460
470
480
490
500
510
320

Velocity 1000-2000 mmy/sec

Robot coordinates

TCP 0 (Tool Center Point)

Frame 0

Move to position X,Y at Velocity=50%
Move to position X,Y at Velocity=75%

Set output 6

Jump to 240 if input 1=1
Jump to 260 if input 2=1
Jump to 280 if input 3=1
Jump to 300 if input 4=1
Jump to 320 if input 5=1
Jump to 340 if input 6=1
Jump to 360 if input 7=1
Jump to 380 if input 8=1
Jump to 400 if input 9=1
Jump to 420 if input 10=1
Jump to 440 if input 11=1
Jump to 460 if input 12=1
Jump to 480 if input 13=1
Jump to 500 if input 14=1
Jump to 70

Call Program 1

Jump to 70

Cail Program 2

Jump to 70

Call Program 3

Jump to 70

Call Program 4

Jump to 70

Call Program 5

Jump to 70

Call Program 6

Jump to 70

Call Program 7

Jump to 70

Call Program 8

Jump to 70

Call Program 9

Jump to 70

Call Program 10

Jump to 70

Call Program 11

Jump to 70

Call Program 12

Jump to 70

Call Program 13

Jump to 70

Call Program 14

Jump to 70

Return

80

// minimum and maximum velocity
/1 sets move’s frame of reference

// indicates robot’s point of reference
/1 sets work envelope

// robot moves to a recorded position

/1 sets output 6
// program goes to a line instruction
// when input is high

// program goes to instruction line # 70
// calls program #1



Subprograms

Program 1:
Program 2:
position.

Program 3:
Program 4:
Program 5:
Program 6:
Program 7.
Program 8:

Program 9:
Program 10:

Program 11:
Program 12:

Program 13:
Program 14:

Robot picks up a part from input buffer, and goes to central position.
Robot goes from central position to output buffer, and then it goes back to central

Robot goes from central position holding a part and drops it at machine M1.

Robot goes from central position holding a part and drops it at machine M2.

Robot goes from central position holding a part and drops it at machine M3.

Robot goes from central position holding a part and drops it at machine M4,

Robot goes from central position to a position above machine M1.

Robot goes from above machine M1 to pick up a part from M1, and goes to central
position.

Robot goes from central position to a position above machine M2.

Robot goes from above machine M2 to pick up a part from M2, and goes to central
position.

Robot goes from central position to a position above machine M3,

Robot goes from above machine M3 to pick up a part from M3, and goes to central
position.

Robot goes from central position to a position above machine M4.

Raobot goes from above machine M4 to pick up a part from M4, and goes to central
position,

Subprogram layout

The following is a sample of program 2.

10 Reset output 6 // resets output 6
20 Move to position X,Y at velocity of 100% // robot moves to recorded position
30 Move to position X,Y at velocity of 50%

40 Rectangular coordinates

50 Move to

position X,Y at velocity of 50%

60 Move to position X,Y at velocity of 50%, fine

70 Gripper wait 1 second /1 gripper is activated

80 Set output 7 /1 sets output 7 (travel time purposes)
90 Move to position X,Y at velocity of 50%

100 Move to position X,Y at velocity of 100%

110 Return
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Appendix B - PC 1/0 allocation

Inputs
Input # Function

0 Input buffer

1 Sensor located on machine M1

2 Sensor located on machine M2

3 Sensor located on machine M3

4 Sensor located on machine M4

5 Signal from the robot

6 Signal from the robot

Outputs
Output # Function

0 Robot picks up a part from input buffer, and goes to central position

1 Robot goes from central position to output buffer, then it goes back to
central position

2 Robot goes from central position holding a part and drops it at machine
Ml

3 Robot goes from central position holding a part and drops it at machine
M2

4 Robot goes from central position holding a part and drops it at machine
M3

5 Robot goes from central position holding a part and drops it at machine
M4

6 Robot goes from central position to a position above machine M1

7 Robot goes from above machine M1 to pick up a part from M1, and goes
to central position

8 Robot goes from central position to a position above machine M2

9 Robot goes from above machine M2 to pick up a part from M2, and goes
to central position.

10 Robot goes from central position to a position above machine M3

11 Robot goes from above machine M3 to pick up a part from M3, and goes
to central position

12 Robot goes from central position to a position above machine M4

13 Robot goes from above machine M4 to pick up a part from M4, and goes

to central position
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Appendix C - Notation for robot moves and corresponding programs

Notation Robot Move description Sequence/
Programs
INMI1 Robot picks up a part at input buffer and loads it onto machine M1 1,3
INM2 Robot picks up a part at input buffer and loads it onto machine M2 1,4
INM3 Robot picks up a part at input buffer and loads it onto machine M3 1,5
IN M4 Robot picks up a part at input buffer and loads it onfo machine M4 1,6
M1 IN Robots loads a part onto M1 and goes to input buffer to pick up a new part. 3,1
M2 IN Robots loads a part onto M2 and goes to input buffer to pick up a new part. 4,1
M3 IN Rabots loads a part onto M3 and goes to input buffer to pick up a new part. 5,1
M4 1IN Robots loads a part onto M4 and goes to input buffer to pick up a new part. 6,1
Mi10UT Robots unloads a part from M1 and goes to output buffer to drop it off 782
M2 OUT Robots unloads a part from M2 and goes to output buffer to drop it off 9,10,2
M3 0UT Robots unloads a part from M3 and goes to output buffer to drop it off 11,122
M4 0UT Robots unloads a part from M4 and goes to output buffer to drop it off 13,14,2
OUT IN Robot drops off a part at the output buffer and goes to input buffer to pick a new 2,1
part
ouT M1 Robot drops off a part at the output buffer and goes to M1 to unload a finished 2,78
part
OUT M2 Robot drops off a part at the output buffer and goes to M2 to unload a fimished 2,9,10
part
OUT M3 Robot drops off a part at the output buffer and goes to M3 to unload a fimished 2,11,12
part
OUT M4 Robot drops off a part at the output buffer and goes to M4 to unload a fimshed 2,13,14
part
Mlload M2unload | Robot loads a part onto M1 and goes to M2 to unload a part 3,9,10
Miload M3unload | Robot loads a part onto M1 and goes to M3 to unload a part 3,11,12
Mlload M4unload | Robot loads a part onto M1 and goes to M4 to unload a part 3,13,14
M2load Mlunload | Robot loads a part onto M2 and goes to M1 to unload a part 4,78
M2load M3unload | Robot loads a part onto M2 and goes to M3 to unload a part 41,12
M2load M4unload | Robot loads a part onto M2 and goes to M4 to unload a part 4,13,14
M3load Mlunload | Robot loads a part onto M3 and goes to M1 to unload a part 5,7.8
M3load M2unload | Robot loads a part onto M3 and goes to M2 to unload a part 5,9,10
M3load M4unload | Robot loads a part onto M3 and goes to M4 to unload a part 5,13,14
M4load Mlunload | Robot loads a part onto M4 and goes to M1 to unload a part 6,7,8
M4load M2unload | Robot loads a part onto M4 and goes to M2 to unload a part 6,9,10
M4load M3unload | Robot loads a part onto M4 and goes to M3 to unload a part 6,11,12
M!unload M2load | Robot unloads a part from M1 and goes to M2 to load that part 7,84
Mlunload M3load | Robot unloads a part from M1 and goes to M3 to load that part 7,8,5
Mlunload M4load | Robot unloads a part from M1 and goes to M4 to load that part 7,86
M2unload Mlload | Robot unloads a part from M2 and goes to M1 to load that part 9,10,3
M2unload M3load | Robot unloads a part from M2 and goes to M3 to load that part 9,10,5
M2unload M4load _| Robot unloads a part from M2 and goes to M4 to load that part 9,10,6
M3unload Mlload | Robot unloads a part from M3 and goes to M1 to load that part 11,123
M3unload M2load | Robot unloads a part from M3 and goes to M2 to load that part 11,124
M3unload M4load | Robot unloads a part from M3 and goes to M4 to load that part 11,12,6
MAunload Mlload | Robot unloads a part from M4 and goes to M1 to load that part 13,14,3
M4unload M2Joad | Robot unloads a part from M4 and goes to M2 to load that part 13,144
M4unload M3load | Robot unloads a part from M4 and goes to M3 to load that part 13,14,5
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Appendix D - Structure of file “Robot.rbt”

(The robot trave! times correspond to the times measured in seconds for the project)

INM15.13

INM24.78

INM3 527

IN M4 5.66

M1 1IN 5.05

M2 IN 5.05

M3 IN 5.77

M4 IN 5.82

M5IN 0.0

M1 OUT 4.83

M2 OUT 4.85

M3 OUT 4.5

M4 OUT 4.73

M5 OUT 0.0

OUTIN 54

OUT M1 5.66

OUT M2 5.77

OUT M3 538

OUT M4 5.5

OUTM50.0

MI1LOAD MIUNLOAD 0.0
MILOAD M2UNLOAD 5.5
MILOAD M3UNLOAD 5.44
MILOAD M4UNLOAD 5.11
MILOAD M5UNLOAD 0.0
M2LOAD M1UNLOAD 5.11
M2LOAD M2UNLOAD 0.0
M2LOAD M3UNLOAD 5.44
M2LOAD M4UNLOAD 5.11
M2LOAD M5UNLOAD 0.0
M3LOAD MIUNLOAD 4.73
M3LOAD M2UNLOAD 4.89
M3LOAD M3UNLOAD 0.0
M3LOAD M4UNLOAD 4.62
M3LOAD M5UNLOAD 0.0
M4LOAD M1UNLOAD 4.56
MA4LOAD M2UNLOAD 4.34
M4LOAD M3UNLOAD 4.12
M4LOAD M4UNLOAD 0.0
M4LOAD M5UNLOAD 0.0
MS5LOAD M1UNLOAD 0.0
MS5LOAD M2UNLOAD 0.0
MS5LOAD M3UNLOAD 0.0
MSLOAD M4UNLOAD 0.0
MS5LOAD M5UNLOAD 0.0
MIUNLOAD MILOAD 0.0
MIUNLOAD M2LOAD 4.78
MIUNLOAD M3LOAD 5.45
MIUNLOAD M4LOAD 6.05
MIUNLOAD MS5LOAD 0.0
M2UNLOAD MI1LOAD 5.22
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M2UNLOAD M2LOAD 0.0
M2UNLOAD M3LOAD 5.54
M2UNLOAD M4LOAD 6.1
M2UNLOAD M5LOAD 0.0
M3UNLOAD MILOAD 4.83
M3UNLOAD M2LOAD 4.45
M3UNLOAD M3LOAD 0.0
M3UNLOAD M4LOAD 5.71
M3UNLOAD M5LOAD 0.0
M4UNLOAD M1LOAD 5.11
M4UNLOAD M2LOAD 4.72
M4UNLOAD M3LOAD 5.45
M4UNLOAD M4LOAD 0.0
M4UNLOAD M5LOAD 0.0
MSUNLOAD MI1LOAD 0.0
MS5UNLOAD M2LOAD 0.0
MS5UNLOAD M3LOAD 0.0
MS5UNLOAD M4LOAD 0.0
M5UNLOAD M5LOAD 0.0

Note: the notation is explained in Appendix C
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Appendix E - Structure of file “type *.scn”

Robot is moving to 0 to load job #1
Robot is moving to 1 to load job #1
Robot is moving to 0 to load job #6
Robot is moving to 3 to load job #6
Robot is moving to 0 to load job #4
Robot is moving to 4 to load job #4
Robot is moving tol to unload job #1
Robot is moving to 2 to load job #1
Robot is moving to3 to unload job #6
Robot is moving to 1 to load job #6
Robot is moving to 0 to load job #7
Robot is moving to 3 to load job #7
Robot is moving to2 to unload job #1
Robot is moving to 6 to load job #1
Robot is moving to4 to unload job #4
Robot is moving to 2 to load job #4
Robot is moving to 0 to load job #5
Robot is moving to 4 to load job #5
Robot is moving tol to unload job #6
Robot is moving to 6 to load job #6
Robot is moving to3 to unload job #7
Robot is moving to 1 to load job #7
Robot is moving to2 to unload job #4
Robot is moving to 6 to load job #4
Robot is moving to4 to unload job #5
Robot is moving to 2 to load job #5
Robot is moving tol to unload job #7
Robot is moving to 6 to load job #7
Robot is moving to 0 to load job #2
Robot is moving to 1 to load job #2
Robot is moving to2 to unload job #5
Robot is moving to 6 to load job #5
Robot is moving tol to unload job #2
Robot is moving to 2 to load job #2
Robot is moving to 0 to load job #3
Robot is moving to 1 to load job #3
Robot is moving to2 to unload job #2
Robot is moving to 6 to load job #2
Robot is moving to1 to unload job #3
Robot is moving to 2 to load job #3
Robot is moving to2 to unload job #3
Robot is moving to 6 to load job #3
Idle robot time is: 8

The total machine idle cost is: 1552
The tardiness cost is: 1057

The throughput time is: 208

Note:
0, refers to input buffer

1,2,3,4,5, refer to machine station number

6, refers to output buffer
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Time:0
Time:5
Time: 10
Time:15
Time:20
Time:25
Time:30
Time:35
Time:40
Time:45
Time:50
Time:55
Time:60
Time:65
Time:70
Time:75
Time:80
Time:85
Time:90
Time:95
Time: 100
Time:105
Time:110
Time:115
Time:120
Time:125
Time:130
Time:135
Time:140
Time:145
Time: 150
Time:155
Time:160
Time:165
Time:170
Time:175
Time:180
Time:185
Time:190
Time:195
Time:203
Time:208

qdone00000
qdone00000
qdone10000
qdone 10000
qdone10000
qdonel3000
qdone13400
qdone34000
gdone34000
qdone42000
qdone42100
qdone42100
qdone42100
qdone42130
qdone41300
qdone13000
qdone13200
gqdone13200
qdone13240
qdone13240
qdone32400
qdone24000
qdone24100
qdone24100
gdone41000
qdonel0000
qdone12000
qdone12000
qdone20000
qdone20000
qdone21000
qdone21000
qdone10000
qdone00000
qdone00000
qdone20000
qdone21000
qdone21000
qdone 10000
qdone00000
qdone20000
qdone20000



Appendix F - Loading priority logic

{ Start new batch * -

production

Jobs left =
number of jobs /

Load!

Loading
done?

Shift?
load
N\
( Yes )
N Shift load
<4 done?
®
Unload®
/ Jobs left -- . Unload
<— —
L done?
v
Update current ¢ Move® &
conditions® wait
Check number of
Jjobs left

1,2,3,4,5 — See next page for further
explanation
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@

LOAD

Robot picks up a selected part from
input buffer and loads it on the
respective machine.

Priority:
1. Fuzzy-job or Fuzzy-machine
2. According to part order

Conditions:

- Machine available

- No conflict with other parts

- Ifprocess is sequential, part must be
the first one in the sequence.

®

UNLOAD

Robot picks up a finished part from a
machine and drops it off at the output
buffer.

Priority:
First part done

O

UPDATE CURRENT CONDITIONS
Controller updates:

- Timers
Counters

- Queues

- Job matrixes

1
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SHIFT LOAD

Robot unloads a finished part from a
machine, and loads it onto a new
machine.

Priority:
First part done

Conditions:

- Machine available

- No conflict with other parts

- If process is sequential, part must be
the next one required in the

sequence.

MOVE AND WAIT

Robot moves to a machine and waits
until current processing is finished.

Priority:
Part almost done with shortest remaining
processing time.

Conditions:

- If part needs to visit other machine,
machine has to be available

- No conflict with other parts

- Ifprocess is sequential, part must be
the next one required in the
sequence.




Appendix G - Batch data

G.1 Batches used for real time versus simulation experiments

Batch #1
Part # Jobs# | M1 | M2 | M3 | M4 | DD(p) P(p) | PT(p) | TP(p) | C(p)
type | parts
A 3 1,23 5 8 0 0 90 4 39 22.5 3
B 2 4,5 0 3 0 2 110 2 10 55 4
C 2 6,7 4 0 6 0 100 3 20 333 4
Machine idle cost rate: M1=2; M2=1; M3=2; M4=3
DD(p) —- Due date of part type p
P(p) — Penalty of part type p
PT(p) — Total processing time of part type P
TP(p) ~ Total penalty of part type p, defined by: DD(p) / P(p)
C(p) - Total machine idle cost for part type p."
Batch #2
Part # Jobs# | M1 | M2 | M3 | M4 DD(p) | P(p) | PT(p) | TP(p) | C(p)
type | parts
A 4 1,2,3,4 28 23 0 0 240 1 204 240 3
B 5 5,6,7,8,9 0 21 0 29 270 2 250 135 4
C 3 10,11,12 0 0 25 0 210 3 75 70 1
Machine idle cost rate: M1=1; M2=2; M3=1; M4=3
Batch #3
Part # Jobs# | M1 | M2 | M3 | M4 DD(p) | P(p) | PT(p) | TP(p) | C(p)
type | parts
A 3 1,2,3 45 48 0 0 280 4 279 70 3
B 2 4,5 0 48 0 42 220 2 180 110 4
C 2 6,7 45 0 46 0 220 3 182 73.3 4

Machine idle cost rate: M1=2; M2=1; M3=2; M4=3

! For further details refer to Section 3.3
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Batch #4

Part

Jobs# | M1 | M2 | M3 [ M4 [DD(p) | P(p) | PT(p) TP(p) | C(p)
type | parts
A 5 12345 | 30 25 0 0 480 3 275 160 3
B 5 6,7,8,9,1 0 25 32 0 460 2 285 230 4
0
c 5 11,12,13 0 0 32 27 440 2 295 220 5
1415 '
Machine idle cost rate: M1=2; M2=1; M3=3; M4=2
G.2 Batches used for sequential versus non-sequential experiments
Batch #1
Part | # | Jobs# | M1 [ M2 | M3 | M4 | DD(p) P() | PT(p) [ TP(p) | C(p)
type | parts
A 3 1,2,3 5 8 0 0 90 4 39 22.5 3
B 2 45 0 3 0 2. 110 2 10 55 4
c 2 6,7 4 0 6 0 100 3 20 333 4
Machine idle cost rate: M1=2; M2=1; M3=2; M4=3
Batch #2
Part | # | Jobs# | M1 [ M2 [ M3 | M4 | DD@p) | P(p) PT(p) | TP(p) | C(p)
type | parts '
A 3 1,2,3 55 58 0 0 340 4 339 85 3
B 2 4,5 0 53 0 52 280 2 210 140 4
C 2 6.7 54 0 56 0 300 3 220 160 4

Machine idle cost rate: M1=2; M2=1; M3=2; M4=3
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Batch #3

Part # Jobs# | M1 M2 | M3 | M4 | DD(p) P(p) | PT() | TP(p) | Cp)
type | parts
A 3 1,23 95 98 0 0 580 4 579 145 3
B 2 4,5 0 93 0 92 420 2 370 210 4
c 2 6.7 94 0 96 0 480 3 380 160 4
Machine idle cost rate; M1=2; M2=1; M3=2; M4=3
Batch #4
Part # Jobs# | M1 M2 M3 M4 | DD(p) | P(p) | PT(p) TP(p) | C(p)
type | parts
A 4 1,2,3,4 8 3 0 0 80 1 44 80 3
B 5 5,6,7,8,9 0 1 0 9 90 2 50 45 4
c 3 10,11,12 0 0 5 0 70 3 15 233 1
Machine idle cost rate: Mi=1; M2=2; M3=1; M4=3
Batch #5
Part # Jobs# | M1 M2 | M3 | M4 | DD(p) P(p) | PT(p) | TP(p) | C(p)
type | parts
A 4 1,2,3,4 88 83 0 0 840 1 684 840 3
B 5 5,6,7,8.9 0 81 0 89 870 2 850 435 4
c 3 10,11,12 0 0 85 0 760 3 255 253.3 1
Machine idle cost rate: Mi=1; M2=2; M3=1; M4=3
Batch #6
Part # Jobs # | M1 M2 | M3 | M4 | DD(p) P(p) | PT(p) | TP(p) Clp)
type | parts
A 5 1,2,3,4,5 8 12 0 0 180 3 100 60 3
B 5 6,7,8,9,1 0 5 10 0 160 2 75 80 4
0
c 5 11,12,13 0 0 3 5 140 2 90 70 5
14,15
Machine idle cost rate: M1=2; M2=1; M3=3; M4=2
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Batch #7

Part # Jobs# | M1 M2 M3 M4 | DD(p) | P(p) | PT(p) TP(p) | C(p)
type | parts

A 3 1,23 15 8 0 ] 120 4 99 30 3

B 2 4,5 0 18 ] 12 140 2 60 70 4

c 2 6,7 15 ] 6 0 130 3 62 433 4

Machine idle cost rate: M1=2; M2=1; M3=2; M4=3

Batch #8
Part # Jobs# | M1 M2 M3 M4 | DD(p) | P(p) | PT(p) | TP(p) C(p)
type | parts
A 4 1,234 48 48 0 0 440 1 384 440 3
B 5 5,6,7,8,9 0 48 0 43 470 2 480 235 4
c 3 10,11,12 0 0 48 0 310 3 144 103.3 1

Machine idle cost rate: M1=1; M2=3; M3=1; M4=2

Batch #9
Part # Jobs # | M1 M2 M3 M4 | DD(p) | P(p) | PT(p) | TP(p) C(p)
type | parts
A 5 1,2,3,4,5 10 5 0 0 180 3 75 60 3
B 5 6,7,8,9,1 0 5 12 0 160 2 85 80 4
0
c 5 11,12,13 0 0 12 7 140 2 95 70 5
. 14,15

Machine idle cost rate: M1=2; M2=1; M3=3; M4=2

Batch #10
Part # Jobs# | M1 M2 M3 M4 | DD(p) | P(p) PT(p) | TP(p) | C(p)
type | parts
A 5 1,2,3,4,5 50 45 0 0 580 3 475 193.3 3
B 5 6,7,8,9,1 0 45 52 0 560 2 485 280 4
0
C 5 11,12,13 0 0 52 47 540 2 495 270 5
, 14,15

Machine idle cost rate; M1=2; M2=1; M3=3; M4=2
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