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Abstract

Using a single type of database solution to support real-world applications is be-

coming more and more challenging because of the volume and variety of data. For

instance, the data collected for the transportation industry include both structured

and unstructured data. Using solely a single type of database solution—relational

database system-only or graph database-only—to store and manage data can be chal-

lenging. As real-world applications ask even more complex questions related to data,

the database solution should be able to facilitate answering these questions in a rea-

sonable time. Hence, for my MSc thesis, I present a hybrid database solution to

support transportation analytics. The hybrid solution consists of relational and non-

relational databases, pooling their strengths to support the demands of the modern

application. I also demonstrate this as a practical solution with two case studies on

improving emergency medical services (EMS) response times by having the support

of the presented hybrid database solution. My key contributions to this thesis include

(a) the design and implementation of the hybrid database for supporting transporta-

tion analytics, (b) algorithms to extract and convert connected linear shapefiles into

a graph network, and (c) two case studies on improving EMS response times.
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Chapter 1

Introduction

Data mining aims to extract “implicit, previously unknown, and potentially useful

information” from large amounts of data [FPS96]. In recent years, the advances in

data storage and communication technologies have led to increased availability and

diversity of data [CHB+20]. In the transportation industry alone, we have multiple

data sources coming from, but not limited to, global positioning systems (GPS),

Wi-Fi/Bluetooth sensors, road condition assessment reports, and data associated

with land use. These many forms of data underscore the need to extract previously

unknown and potentially useful information. Therefore, we need new capabilities for

data extraction, storage/management, and dissemination systems [GTH+17].

Knowledge discovered from these rich sources of information can significantly im-

pact the results of any analysis. For example, when dealing with Emergency Medical

Services (EMS) transportation, knowing of a new factor that might affect emergency

responders’ travel time can be crucial when making decisions. Hence, it will be very

beneficial to researchers and other stakeholders for managing traffic systems and con-

1



2 Chapter 1: Introduction

ducting traffic analysis [CHB+20].

Unsurprisingly, the process of data mining strives towards deriving useful infor-

mation from raw data. The gained information help to make better predictions and

identify patterns to facilitate the decision-making process [KSA16]. Such facilita-

tion in decision-making could yield substantial benefits in EMS. EMS administrators

seek methods to minimize response time (RT) (i.e., the time between reporting an

incident and when first responders arrive at the scene [BK02]). According to some

studies [BK02; hea12; PA20], the risk of fatality remains very low if affected individ-

uals receive medical attention within 4-8 minutes of an emergency. Hence, following

the National Fire Protection Association (NFPA) 1710 standard [Nat21], the Win-

nipeg Fire and Paramedics Services (WFPS) set their aim that the first EMS unit

responding to an emergency must arrive at the scene within four minutes.

In reality, there are several challenges [BK02; PJY+16; MPS+19; PA20] that could

hinder an EMS vehicle from arriving at the scene within this established time frame.

For the WFPS, the most challenging factor is delay or blockages at active grade-level

crossings (subsequently referred to as crossings) when responding to calls [Dul15].

An active crossing is a crossing blocked by a moving or stopped train. At any rate,

emergency responders are delayed daily by trains at active crossings, costing them

precious minutes in a time-critical situation. Delays at crossings are usually caused

by freight trains stopping or moving slowly at those crossings [CR17; US 19]. That

being the case, one would think a trivial solution is to avoid active crossings if there

were predictions for the blockages. However, predicting the arrival times of freight

trains at crossings is also really difficult [APR+16; PPP+19], hence, very difficult to
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avoid.

As a result, these blockages are a significant cause for concern, especially for

Winnipeg, which, according to the Government of Canada crossing inventory [Gov18],

has the highest number of crossings within any Canadian city. While being delayed

at a crossing could be nothing more than an inconvenience for many, emergency cases

(as it usually is for EMS) could mean life or death. According to Deputy Chief Jo

Zambito from the Niagara Falls Fire Department [Zam20], they are aware of the risk

of being delayed at crossings. Because of this risk, their default response navigation

strategy is to use an alternative route that does not interact with crossings. Although

the alternative route may add an extra two or three minutes to their travel time, they

consider it acceptable. However, in cardiac arrest emergencies, two minutes could be

the difference between life and death [hea12].

Therefore, the WFPS increasingly faces the need for a personalized mobility solu-

tion that ensures lower risks of delays at crossings when responding to emergencies.

So, having a model to assess their risks of being exposed to such delays on their route

would immensely reduce travel time — saving lives. Knowing the risk of exposure

would benefit their decision-making when navigating to call locations. As a result, a

data management system that can support this type of analysis would be crucial in

helping the WFPS mitigate their risks of exposure. This data management system

would allow for a quick and efficient generation and storage of these models.

We contend that using one kind of database is not a satisfactory solution. While

it is possible to use a non-relational database to perform transportation analysis, this

thesis shows that it is inefficient. However, by leveraging the strengths of relational
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and non-relational databases, we demonstrate this as a model solution to support

modern-day use for EMS transportation analytics.

1.1 Thesis Statement

There are some bodies of work [ZBP+18; SGB20; VAOA22] that have used re-

lational and non-relational databases to support one another, popularly called the

hybrid approach. Although, few have shown real-world or large-scale use. The ap-

proaches that show real-world applications use difficult-to-retrieve data sources [ZBP+18;

Bes22] – making these approaches non-reproducible. The others [SGB20; VAOA22]

are not in the transportation industry.

For this MSc research, the goal is to design a hybrid database management sys-

tem (DBMS) that combines the strengths of relational and non-relational databases

to support transportation analytics. Our key contributions include (a) the design and

implementation of the hybrid database for supporting transportation analytics, (b) al-

gorithms to extract and convert connected linear shapefiles into a graph network and

(c) two case studies on improving emergency medical service response times. Ques-

tions to be answered in this thesis:

Q1. How well can the hybrid DBMS handle traditional structured data (e.g., non-

geo-spatial data)?

Q2. How well can the hybrid DBMS handle semi-structured and unstructured data

(e.g., geo-spatial data)?
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Q3. How well can the hybrid DBMS handle some real-life applications with struc-

tured, semi-structured, and unstructured data?

1.2 Thesis Organization

This thesis is structured the following way. We provide more background in-

formation on hybrid databases and various technologies used throughout this thesis

in Chapter 2. We further describe the current dispatch process of units during an

emergency by the WFPS.

Chapter 3 contains a review of related work in DBMS in general and the trans-

portation industry. We highlight the desired features in both kinds and databases

and summarize how this thesis research compares to existing work.

In Chapter 4, we describe the hybrid database design. We go into detail about the

datasets that we used throughout the system. We also show the system architecture

and how the different components interact for optimal performance.

Chapter 5 describes two real-life case studies on how we used the hybrid database

to improve emergency first responders’ response times. We showed how the results

from these case studies could help dispatchers make better routing decisions.

Chapter 6 contains the evaluation outcomes from two single-style database ap-

proaches compared to our hybrid database solution. This chapter also discusses the

conclusions we draw about using hybrid databases in supporting transportation an-

alytics.

Finally, in Chapter 7, we give our research conclusion and discuss future work

that one could do to extend this project on leveraging hybrid databases.



Chapter 2

Background

In this chapter, we describe and explain some essential terms, techniques and tools

used in our thesis work.

2.1 Relational Databases

Relational databases have been around since the 1970s and are a common choice

for most data-intensive storage and retrieval applications [VMZ+10; VKT18]. They

usually store data in rows with column names defining each cell’s representation,

similar to spreadsheets. We perform data retrieval using Structured Query Language

(SQL) — a declarative query language.

Relational databases comprise relations, loosely described as a collection of tables

containing rows of data with column headings [Leu22]. The rows (tuples) represent

unique relationships between the column headings. Relational databases use the rela-

tional model, a mathematical way of structuring data and using data [Dar12; VKT18].

6
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Table 2.1: A tabular depiction of the relation: Trips

incidentID timeStarted timeArrived Origin Destination

3666 2022-01-01 00:07:29 2022-01-01 00:11:34 123 Apple Way 555 New St.

3667 2022-01-01 14:00:38 2022-01-01 14:12:03 123 Apple Way 333 Old St.

Table 2.1 is a tabular representation of a relation. Here, we have a relation called

Trips, with five attributes (incidentID, timeStarted, timeArrived, Origin, Destination)

and two tuples — each row in the table.

Relational databases range from small, personal databases like Microsoft Access

to large-scale database servers like Microsoft SQL Server and MySQL. The most

common is MySQL [DE20] which is why we used it for our research.

2.1.1 MySQL

Because of its practical use in the industry and academic world, we chose MySQL

for this research. Not to mention, there is also extensive documentation and support

both from the manufacturers and the user community. MySQL performs well on

storing and processing spatial data for Geographic Information System (GIS) [Lak18]

applications, which is very useful when we need to perform specific spatial-related

queries. The hybrid design used in this thesis leverages the speed of retrieval of

structured data and specific spatial data.
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2.2 Non-relational Databases

Non-relational databases do not conform to the relational model of storing and

accessing data as a collection of rows and columns in tables [VMZ+10; RS20].

The major criticism of relational databases is that they do not efficiently handle

large volumes of data, especially when it is not entirely (or at all) structured. As a

result, Not-Only SQL (NoSQL) emerged [VMZ+10; AC18; MMR18] — the funda-

mental difference being that it does not have to conform to the constraints that we

will further discuss in Chapter 3.

More so, there are four categories [Lak18] of storing data using the NoSQL ap-

proach, namely:

1. key-value storage, where we store data as a pair of keys and values. An example

is Amazon’s DynamoDB [Ama21].

2. column storage, we store data in columns associated with row keys. An example

is Google’s Bigtable [Goo21].

3. document storage, where we store data in a single document. An example is

MongoDB [Mon20].

4. graph database, which uses a relation of nodes to form a network of nodes. An

example is Neo4j [Neo20].

In this thesis, the categories that we use in our research are the document and graph

databases.
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2.2.1 Document-Oriented Databases

The document-oriented database model is based on key-values [Mon20; HELD11].

The data stored are documents in which they encode the data in a semi-structured for-

mat, the most popular being JavaScript Object Notation (JSON), Binary Javascript

Object Notation (BSON), Extensible Markup Language (XML) or Portable Docu-

ment Format (PDF) [Mon20; HELD11]. More so, a document stores information

about an object, its primary identifiers and any of its related metadata [TRBB15].

A document database comprises a collection of documents [HELD11]. A document

comprises fields and associated values, as seen in Figure 2.1.

Figure 2.1: Structure of a document-oriented database
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A key advantage of document databases is that the schema is flexible because

a document can contain other nested documents. For example, in Figure 2.1, the

second document contains two nested documents in “recordings”. In this example,

the “recordings” documents hold audio recordings of a train at a crossing captured by

a roadside sensor. This nesting structure makes it possible for documents of unique

structures to be stored as part of the same set [TRBB15]. This advantage makes

reading performance superior to relational databases, as one can, via a single key,

retrieve a set of structured information hierarchically.

Although several implementations of document databases exist, the most popular

implementations are Apache’s CouchDB, RavenDB and MongoDB [DE20]. For our

research, we go with MongoDB.

2.2.2 Graph Model

The graph model is a collection of two elements: a node (also called a vertex)

and an edge [VKT18]. Each node represents an entity (student, railway crossing, or

another piece of data), and each edge represents a relationship or connection between

the two nodes.

Graphs have become one of the most valuable structures for developing data prove-

nance systems [VMZ+10]. The term provenance means lineage—how something came

to be. Hence, graphs have become an increasingly popular choice for modelling ob-

jects and interactions—as seen with social networks and gene clusters in biology.

More specifically, in the transportation industry, graph models are a popular choice

for representing networks when conducting analyses [ZJH+21].
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For this thesis, we use a property graph as our data store. A property graph is

a type of graph model that comprises nodes, edges and other properties [Ang18]. We

model the data structures for a property graph schema as graphs. Hence, prop-

erty graphs facilitate the modelling of entities, their relationships and properties

because one does not need to develop a complete graph data model on the first

attempt [PVSZ19].

Structurally, the nodes of the property graph have a label and a set of properties

as key-value pairs. A relationship between two nodes is a directed edge between

them. Similarly, edges have labels and can hold a set of properties in the same form

as nodes [Ang18; PVSZ19]. We depict this in Figure 2.2.

Figure 2.2: Example of a property graph representing the relationship between three

intersections on a road transportation network
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2.3 Emergency Response Process

The emergency response-time process involves call processing time (the time from

receiving the 9-1-1 call to alerting emergency response stations or units), turnout

time (the time from receiving the emergency alert to boarding the response vehicle),

and travel time (the time that the vehicle begins travelling to the call location to

the arrival time) [Nat21]. Based on the case studies to be discussed in Chapter 5,

Figure 2.3 explains the overall process of responding to an emergency by the WFPS,

which is like other emergency response processes in North America. Three parties are

involved: call takers, dispatchers and responders [vKvB17]. Call takers are in charge

of inbound requests and communicate with an emergency caller. Dispatchers are in

charge of outbound calls to the ambulance teams, fire services and hospitals. It is

important to note that dispatchers support an emergency event from when they are

assigned to them until the case is closed.

Figure 2.3: General overview of WFPS’ emergency response process
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The WFPS faces a huge complexity when dispatching units because of limited

resources. There are several reasons for limited WFPS resources. The two most

pressing reasons are:

1. EMS specialization: Different first responder units may have different licenses,

allowing them to administer certain medications in emergencies. Certain spe-

cialized units must remain available for deployment.

2. Equipment access: Some fire trucks are more equipped for certain emergency

scenarios than others. For example, WFPS possesses only five ladder-equipped

fire trucks servicing the entire city, making their availability equally important.

Dispatchers aim to maintain reasonable response times and fleet capacity while

responding to emergencies. The presence of an active crossing presents a challenging

dilemma for dispatchers. For example, if a responder is stuck at a crossing, the

dispatchers can instruct the unit to either:

1. turn around and go another way, or

2. stay put while the dispatcher sends another unit from the opposite side of the

train to respond to the event

In the first scenario, the responder would have increased their response time. Even

worse, in the second scenario, we have two units responding to a call that only needed

one unit, reducing fleet capacity by two. For crossings notorious for causing delays,

WFPS sends multiple units from different directions to respond just in case the cross-

ing is active upon the unit’s arrival.
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2.3.1 Composition of an EMS Trip

To further the understanding of the analysis that our proposed database will

support in Chapter 5, let us give a high-level description of WFPS’ composition of

responder trips which we referenced a lot in that chapter. We can further break an

EMS trip down into multiple legs. A leg is a physical trip of a responder from one

point to another. Depending on the call, a trip can compose two or more legs.

In order to understand the concept of legs, let us first review the spatial compo-

nents of completing a call. An emergency responder completing a call can comprise

the following spatial components:

1. Emergency response station: The station they assign the responder unit.

2. Call location: The location of the emergency response event.

3. Hospital: A facility a responder can deliver a patient to for transferring care.

Having reviewed the spatial components in Figures 2.4, 2.5 and 2.6, there are three

primary trip compositions a responder would follow when responding to emergencies:

1. Trip originates from station: When a trip originates from a station, there are

three possibilities:

(a) the unit arrives at the location and then returns to the station if the call

does not require advanced medical care and they do not dispatch the unit

to another call

(b) the call does not require advanced medical care, but when the call is closed

at the call location, they dispatch the unit to another call.
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Figure 2.4: Response trip path originating from station

Figure 2.5: Response trip path originating from previous call location

Figure 2.6: Response trip path originating from hospital
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(c) the call requires advanced medical care, so they transport patient(s) to the

hospital. When responders transfer care over to the hospital, they return

to the station; or are assigned to a new call and begin a new trip.

2. Trip originates from a previous call location: Here, the trip composition will

have the responder dispatched after the completion of the previous call. The

trip composition also has one of three possibilities mentioned above.

3. Trip originates from hospital: Here, the trip composition will have the responder

dispatched after completing a previous call at the hospital. Again, the rest of

the trip will follow one of the three possibilities mentioned above.

As outlined, three leg types exist for emergency responder trips:

1. Origin leg: the first leg of a trip associated with a call

2. Waypoint leg: the leg of the trip connecting the call location to a hospital

3. Return leg: the leg of the trip returning the responder to a station. In the

study conducted in Chapter 5, we ignore return legs to stations as they do not

directly affect response time.

2.4 Shapefiles

Classically, spatial data can be considered as raster or vector data. There are

three types of vector data: points, lines, and polygons. Note that a school could be

represented as a polygon at larger scales, whereas it is likely represented as a point

at smaller scales.
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Shapefiles are referred to as “data layers”. They are files that include geographical

boundaries and spatial features in a format that software can use [RCPR02]. They

store geometric locations and attribute information of geographic features. Shapefiles

may include polygonal features. When representing vector data at larger scales, cities

or postal code regions could be described using polygons. They could also have linear

features such as streets, highways, or railway tracks. Lastly, shapefiles could include

point features such as schools and hospitals when representing vector data at a small

scale, intersections, or railway crossing [Env98; RCPR02].

A shapefile contains structured data; the data is in rows and columns, and one

could store it in a relational database. A shapefile has a required column called

“geometry”—where we store the geometric data as a Binary Large Object commonly

referred to as a “blob”. A shapefile can only store one type of geometric feature per

file. Hence, if one were to represent a road network, they may need one shapefile to

store all the roads as a linear feature. Then, another shapefile to store all intersections,

bus stops, and other points of interest as point features.

Figure 2.7 is a screen capture of the data contained in a lines shapefile visualized

using QGIS, a GIS software. This screen capture shows the layout of roads in a small

town in Manitoba. We can see that the street labelled 1 and 2 are selected. Street 1

is a cycle trail with its properties shown in the yellow box on the right. Street 2 is

a residential street and its properties are displayed in the blue box. By looking at

both boxes one would notice the absence of the geometry property. This data is not a

single text value but a number of points used to describe the curvature of a line. This

geometry field is therefore unstructured. So, we classify shapefiles as semi-structured
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Figure 2.7: Visualized lines shapefile using QGIS

data.

2.5 Summary

In this chapter, we provided some relevant background information for the rest

of this thesis. For example, we talked about relational databases, mentioning that

MySQL was the most commonly used relational database. We also discussed two

kinds of non-relational databases: document-oriented and graph databases. Graph

databases are best used in storing well-connected data like transportation or social

networks. We also discussed how the emergency response process works, using WFPS
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as an example. We showed how an active rail crossing could limit fleet capacity and

increase response times. Finally, we discussed shapefiles, highlighting their impor-

tance in transportation studies.



Chapter 3

Related Works

Typically, the fundamental decisions involved in the design and development of

big data management systems are choosing appropriate infrastructures for storage

and computation [KLAA20]. As a result, this field has been subject to several con-

tributions.

With massive volumes of transportation data collected at high velocity from dif-

ferent sources, integrating these valuable data sources for transportation analysis has

become challenging. Because of their variety, many studies sought to find systems

that accommodate heterogeneous data of various levels of structuredness [Bje18].

The term “structuredness” describes the ability of data to follow a particular style of

representation (or schema) [ADF+14]. As reported, Big data can be in structured,

semi-structured or unstructured form [FPS96; ZCW+16; CS17; DCL18; CHB+20;

KLAA20; VML20].

Most of the world’s previously unknown information is in unstructured form.

Even though Relational Database Management Systems (RDBMS) remain a lead-

20
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ing database solution [DE20], their use as a “one size fits all” solution has become

antiquated [SÇ18]. Additionally, RDBMS are difficult to expand once created; and

requires a lot of computing power to return results in a reasonable time [SMA+18].

Since the introduction of relational databases, there has been the introduction

of model solutions that can house and process large amounts of data, regardless of

their structuredness. The most prominent of them is NoSQL databases [ACP17].

NoSQL databases prove to be a cheaper solution for large volumes of data, as they

can scale horizontally by adding more servers [SSPM16]. One cannot say the same

about relational databases, as they need physical hardware upgrades to scale. There

are many applications of non-related databases as DBMS solutions; most of them are

used in complex domains, as shown by some studies [ACP17; AC18; DCL18; MNL20].

One cannot ignore the strengths of using relational databases for structured data.

They fully support the requirements for ACID properties:

• Atomicity: The entire transaction is executed completely or it does not happen

at all.

• Consistency: The database must remain consistent before and after a transac-

tion takes place.

• Isolation: Multiple interactions occur independently of each other.

• Durability: The data is permanent in the database once the execution is com-

pleted.

In contrast, not all NoSQL databases fully support the requirements for ACID. Not to

mention, access to information is fast, and relational databases provide efficient stor-
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age of data [RS20]. Some [GOR+15] have proposed completely migrating to NoSQL

DBMS. In contrast, others [VCGF16; JMM+18] proposed techniques to integrate

structured and unstructured data for data analysis.

Jankovic et al. [JMM+18], whose contribution was in the transportation domain,

proposed a schema-on-read modelling approach and data virtualization. The contri-

bution of this study was to display heterogeneous data sources as one integrated data

source. Here, the data producer provides data in its raw form, and it will be up to

the data consumer to apply their schema. Therefore, this approach works best when

exploring data lakes or dealing with data from multiple sources [Del20]. While their

approach showed outstanding results, the steps taken to integrate these data sources

and leverage them for querying seem cumbersome and unpractical as a general solu-

tion. They do not represent the data graphically, which can be crucial for knowledge

discovery analyses [ACP17].

Bessa [Bes22] proposed methods to get knowledge from transportation data by

analyzing urban mobility patterns. Specifically, they analyze how traffic counts, me-

teorological conditions and public transportation demand affect the movement of peo-

ple within a city. The approach collects and stores both structured and unstructured

data into a NoSQL database. Our concern with this approach is that they use Eastic-

Search which has a steep learning curve to use. Our approach uses popular database

solutions like MySQL and Neptune for managing structured, semi-structured and

unstructured data.

Villari et al. [VCGF16] proposed a data-intensive approach. They employed

Model-Driven Engineering (MDE) methods to generate data models from unstruc-
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tured data. Notably, it forces the unstructured data to behave in a structured manner.

The methods also leverage background knowledge in SQL-like databases when query-

ing the data. However, their research only focused on the conceptual modelling of

the data. The most prominent challenge with this school of thought is the lack of an

explicit model to describe (big) data requirements, as seen in relational databases.

Villalobos et al. [VAOA22] proposed a hybrid of a relational and document database

for evaluating the response times of a geoservice. Their work focused on the faster

retrieval of geospatial data by combining the strengths of both database types. Their

approach strengthens our case for a hybrid approach when storing and managing

transportation, hence spatial data. Still, we think a graph database in their hybrid

approach would be better suited to manage and retrieve spatial data.

Bjeladinović et al. [Bje18] proposed another line of thought. They insisted that

relational and non-relational databases be used simultaneously instead of integrating

them. Similarly, more studies [ZCW+16; CS17; ZBP+18; CHB+20; KLAA20; SGB20;

VML20] have proposed this novel approach of utilizing hybrid databases compris-

ing both relational and non-relational characteristics. They claim hybrid databases

are a sound solution for handling big data while the ongoing transition from rela-

tional to non-relational database solutions. Even though some [KP17] believe that

both database types are rather complements than substitutes to each other, only

few [ZBP+18; SGB20; VML20] studies demonstrated this transition with real case

solutions.

Zečević et al’s [ZBP+18] approach was to extract data structures from data

streams and then use these structures as a formal specification for a target model.
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An issue with this approach (as with similar MDE approaches) was that they used

one model in each stage of the design process. As we stated with Bessa [Bes22], the

data sources make it difficult to easily adopt this approach.

We think it is important to mention that several studies [CR17; PPP+19; PPK+19]

have shown how computationally demanding it is when a system performs data analy-

sis from multiple data sources. While the framework proposed by Cui et al. [CHB+20]

is very sound for transportation data analysis, it only considers road transportation

using data from one source. Since Cui et al.’s solution [CHB+20] only uses one data

source, it is fair to assume that it may not be thorough enough to be used as a

standard.

Sokolova et al.’s [SGB20] proposal stand out as the most promising approach to

a hybrid database solution for Big Data analysis. They use topology to migrate from

SQL databases to NoSQL databases while maintaining the original SQL databases.

This migration offers different modes of storing the same information and taking

advantage of the strengths of both types of databases. Not to mention the effort it

takes to perform such a transformation, Sokolova et al.’s [SGB20] approach reproduces

the same data in different forms, hence inefficient from a data storage perspective.

The data replication also introduces an additional concern, consistency, which the

database administrator must ensure between databases. It is also important to note

that their contribution is to the management of retail business data, whereas our

contribution is to the management of transportation data.

Most of the data collected in the transportation domain are spatial. Mobile de-

vices like smartphones, remote sensors and Internet-of-Things (IoT) produce location-
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based data, which has become increasingly available because of technological advance-

ment [Kan19]. We refer to them as geospatial data. Geospatial data contains specific

geographic information, such as longitude and latitude, representing a point on the

map. They can also contain a series of longitude and latitude points, showing lines

representing roads and areas (to represent a region) [WE18]. Geospatial data can also

contain temporal information [EHG+21]; that is, the data holds information about a

location at a specific time.

Some immediate challenges are the storage solutions to use in housing and query-

ing temporal data [Lak18]. In their study, relational database systems cannot satisfy

the requirements for Spatio-temporal analysis [EHG+21]. One primary requirement

is visualization—their lack of a visual-based interface makes relational databases un-

favourable for users when performing geospatial analysis [Kan19; EHG+21]. In like

manner, the choice of data storage can affect the results from the geospatial analy-

sis [WE18]. For example, applying traditional data mining techniques to geospatial

data could yield biased results when performing spatial auto-correlation studies. The

biased results could be because the data needs to be stored in a way that shows rela-

tionships between nearby objects [WE18]. Having such data stored in a graph data

structure can make performing techniques like running Spatio-temporal clustering

algorithms on the data feasible.

Table 3.1 shows a summarized table of the related work. We highlight the preferred

component (relational database vs. non-relational database) for each criterion in

green.
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Table 3.1: Comparison of relational and non-relational databases
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3.1 Summary

In this chapter, we outlined some existing work on relational, non-relational, and

a mix of both databases. The consensus among the research seems to be that just one

kind of database cannot support the modern-day application because of the variety

of data. Many existing works directed our approach to implement a hybrid database.

In particular, Sokolova et al.’s work inspired us to maintain the structured data in

SQL databases while extracting unstructured features into a NoSQL database. We

saw that there is a large body of work on database design. However, most of the

literature does not show practical, real-world use cases of the hybrid approach on

significant volumes of transportation data. In contrast, our research shows how we

can use a hybrid database to support real-world transportation studies. We did

not find any existing work directly comparable to our own. Our solution combines

relational and non-relational databases to support a real-world data set.



Chapter 4

Hybrid Database Management

System for Transportation

In this chapter, we answer the following questions: Q1. How well can the hybrid

DBMS handle traditional structured data? Q2. How well can the hybrid DBMS

handle semi-structured and unstructured data?

4.1 Overview

We provide scenarios using a single-style database approach to support emergency

transportation analysis. We then compare them to a hybrid database approach. We

conclude that a hybrid-style database approach is the better way to go. We provide

an overview of the several stages we took to arrive at this conclusion as follows:

1. We identify essential data features/attributes that one needs to capture for a

generic emergency responder transportation study.

28
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2. We model the data attributes using a single style database approach. We take

turns modelling the data sets captured in a relational-database-only system and

then a non-relational (graph-database-only) system.

3. Observing that both approaches thrive in specific scenarios and do poorly in oth-

ers, we explore a composite (hybrid) database style comprising both databases,

which appears to be the best of both worlds.

4.2 Essential Features Needed to Perform Generic

Transportation Analysis

This study intends to build a model to support analyzing railway and road trans-

portation. On the most basic level, if we intend to analyze any form of transportation,

we need to build that transportation network model to proceed. Hence, we will build

railway and road transportation networks, which will be the skeleton of our analysis

process. The building blocks of the model for our analysis will be as follows.

4.2.1 Transportation Network

Road and rail have geospatial features. Hence, to build a network for these com-

ponents, we need to ingest geospatial data, hence, shapefiles. It is important to

note that, although shapefiles are available as open data in many cities, the specific

features and attributes vary between cities. Hence, to make our approach as eas-

ily adaptable as possible, we decided to use shapefiles from OpenStreetMap (OSM)

because they are the most common providers worldwide. Note that, unfortunately,
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many jurisdictions still maintain and use their own spatial datasets, with their own

unique fields and structures. Shapefiles combine both structured and unstructured

data. Other than the geometry column, they strictly conform to a structure. Hence,

we consider shapefiles semi-structured data.

In addition, all layers from the OSM data set have the following common at-

tributes:

• id: the identifier for the feature, a unique identifier

• osm id: an OSM identifier for the feature

• name: the name of the feature

• code: a four-digit code defining the feature class

• fclass: the class name of the feature

• geometry: the geospatial record of this feature (e.g., POINT, POLYGON,

LINESTRING)

Let us describe the shapefiles for road and rail.

• Roads shapefile holds linear features of all kinds of roads, from streets and

avenues to gravel tracks and lanes. For example, depending on the size of the

location, the data set can contain between 200,000 to 500,000 rows of data.

In addition to the attributes mentioned earlier, this shapefile also contains the

following attributes:

– ref: A reference number for the road segment, expressed as a character

string.
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– oneway: A single-character string containing ‘T’ or ‘F’ or ‘B’. Which an-

swers the question: “Is this a one-way road?” The ‘B’ indicates that it is

bi-directional. When it is ‘F’ (false), only driving in the direction of the

line-string is allowed.

– maxspeed: The maximum allowed speed in km/h, expressed as an integer.

– layer: The relative layering of roads, expressed as an integer.

– bridge: A single-character string containing ‘T’ or ‘F’. Which answers the

question: “Is this road on a bridge?”.

– tunnel: A single-character string containing ‘T’ or ‘F’. Which answers the

question: “Is this road in a tunnel?”.

• Railways shapefile holds linear features of the railway tracks. For example,

depending on the size of the location, the data set can contain between 3,000

to 5,000 rows of data.

In addition to the attributes mentioned earlier, this shapefile also contains the

following attributes:

– layer: The relative layering of railways, expressed as an integer.

– bridge: A single-character string containing ‘T’ or ‘F’. Which answers the

question: “Is this rail track on a bridge?”.

– tunnel: A single-character string containing ‘T’ or ‘F’. Which answers the

question: “Is this rail track in a tunnel?”.

• Traffic shapefile holds traffic-related points information from stops and crossings

to traffic signals and speed cameras. The feature class of interest in this data
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set is “crossings”. Although OSM does not differentiate between railway or

pedestrian crossings, we will have to filter out pedestrian crossings as it is not

a feature of interest for our analysis. Again, for example, depending on the size

of the location, the data set can contain between 2,000 to 50,000 rows of data.

4.2.2 Supplemental Data Sets

Shapefiles on their own may not be enough source of information upon which to

build our analysis. More often than none, supplemental data sets rich in information

may be required to complement the data in the shapefiles. For example, say one

intends to group their analysis by postal code or other regions of interest, one would

need to ingest those data sources. We can include other grade crossing information as

a structured CSV file for this case. It is standard practice worldwide for transporta-

tion authorities to generate and maintain statistics on transportation infrastructure.

We have used this database approach to perform analysis in the United States and

Canada. Our findings reveal that the US Federal Railway Authority (FRA) and

Transport Canada provide important statistical information about grade crossings in

the United States and Canada, respectively.

We will discuss some essential attributes in the data set with similar data points.

Grade Crossing Inventory is a CSV file containing all the railway grade crossings in

Canada provided for free by Transport Canada. In addition to the name, latitude and

longitude, the inventory also contains statistical information. Core information like

the number of accidents, fatalities, and trains per day will be important for analysis.

For example, there are 26 attributes contained in the Transport Canada data set



Chapter 4: Hybrid Database Management System for Transportation 33

Table 4.1: Data sources, their formats, and structure

Data Owner Format Structure

Bidirectional road network OSM Shapefile semi-structured

Train tracks inventory OSM Shapefile semi-structured

Traffic related points OSM Shapefile semi-structured

Grade crossing inventory Transport Canada/ FRA CSV structured

and 255 in FRA’s. In order to conserve space in this document, we will include just

four important attributes. These four attributes are:

• Protection: Type of warning at the crossing, expressed as a character string.

• Vehicles Daily: An estimate of the number of road vehicles per day over the

crossing, expressed as an integer.

• Total Trains Daily: An estimate of the number of freight (and passenger) train

movements per day over the crossing, expressed as an integer.

• Train Max Speed (mph): An estimate of the maximum train speed over the

grade crossing in miles per hour, expressed as an integer.

For the most generic transportation analysis, Table 4.1 is a list of our data set,

the data owners, their format and structure.
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4.3 Using Only a Relational Database Model

After analyzing the data requirements, the next step is to attempt to design a

model to handle these data sets using only a relational database. To perform an

analysis, let us design a high-level description of the data to be stored and derived.

4.3.1 Road Segment

It describes a single linear road object. Based on the attributes mentioned in

Section 4.2, it would be logical to have the following conceptual schema for the road

segment.

Listing 4.1: Road Segment schema

CREATE TABLE ‘ roads ‘ (
‘ id ‘ varchar (10) NOT NULL,
‘ osm id ‘ varchar (10) NOT NULL,
‘ code ‘ int DEFAULT NULL,
‘ f c l a s s ‘ varchar (40) DEFAULT NULL,
‘name ‘ varchar (100) DEFAULT NULL,
‘ r e f ‘ varchar (20) DEFAULT NULL,
‘ oneway ‘ varchar (1 ) DEFAULT NULL,
‘ maxspeed ‘ int DEFAULT NULL,
‘ l ayer ‘ int DEFAULT NULL,
‘ br idge ‘ varchar (1 ) DEFAULT NULL,
‘ tunnel ‘ varchar (1 ) DEFAULT NULL,
‘ geometry ‘ l i n e s t r i n g NOT NULL,

PRIMARY KEY ( ‘ id ‘ )
) ;

4.3.2 Railway

It describes a single rail track. Its conceptual schema would be:
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Listing 4.2: Rail Track schema

CREATE TABLE ‘ r a i l t r a c k s ‘ (
‘ id ‘ varchar (10) NOT NULL,
‘ osm id ‘ varchar (10) NOT NULL,
‘ code ‘ int DEFAULT NULL,
‘ f c l a s s ‘ varchar (40) DEFAULT NULL,
‘name ‘ varchar (100) DEFAULT NULL,
‘ l ayer ‘ int DEFAULT NULL,
‘ br idge ‘ varchar (1 ) DEFAULT NULL,
‘ tunnel ‘ varchar (1 ) DEFAULT NULL,
‘ geometry ‘ l i n e s t r i n g NOT NULL,

PRIMARY KEY ( ‘ id ‘ )
) ;

4.3.3 Crossing

It describes an intersection between a road segment and a rail track. Its conceptual
schema would be:

Listing 4.3: Crossing schema

CREATE TABLE ‘ c r o s s i n g s ‘ (
‘ id ‘ varchar (10) NOT NULL,
‘ osm id ‘ varchar (10) NOT NULL,
‘ code ‘ int DEFAULT NULL,
‘ f c l a s s ‘ varchar (40) DEFAULT NULL,
‘name ‘ varchar (100) DEFAULT NULL,
‘ p ro t ec t i on ‘ varchar (40) DEFAULT NULL,
‘ num veh i c l e s da i l y ‘ int DEFAULT NULL,
‘ num tra ins da i ly ‘ int DEFAULT NULL,
‘ train max spd ‘ int DEFAULT NULL,
‘ geometry ‘ po int NOT NULL,

PRIMARY KEY ( ‘ id ‘ )
) ;

4.3.4 Relationships among Railway, Crossings, and Roads

As defined earlier, crossings are an intersection between rail and road segments.

Thus, we will have to design that relationship in a table. We can look up the re-
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lationship between these three components by the (rail track ID, road ID, crossing

ID,)-tuple. These describe where these three data sources align in the real world.

Hence the conceptual schema will be as follows:

Listing 4.4: Railway × Crossing × Roads Relationship schema

CREATE TABLE ‘ r o a d s r a i l w a y x i n g i n t e r a c t i o n ‘ (
‘ id ‘ int (11) NOT NULL AUTO INCREMENT,
‘ cd c ro s s i ng ‘ varchar (10) NOT NULL,
‘ cd road ‘ varchar (10) NOT NULL,
‘ c d r a i l t r a c k ‘ varchar (10) NOT NULL,
‘ s t a r t t ime ‘ timestamp NOT NULL,
‘ end time ‘ timestamp NOT NULL,

PRIMARY KEY ( ‘ id ‘ ) ,
KEY ‘ r i f k c r ‘ ( ‘ cd c ro s s i ng ‘ ) ,
KEY ‘ r i f k r d ‘ ( ‘ cd road ‘ ) ,
KEY ‘ r i f k r t ‘ ( ‘ c d r a i l t r a c k ‘ ) ,
CONSTRAINT ‘ r i f k c r ‘ FOREIGN KEY ( ‘ cd c ro s s i ng ‘ )
REFERENCES ‘ c r o s s i n g s ‘ ( ‘ id ‘ )
ON DELETE NO ACTION ON UPDATE NO ACTION,
CONSTRAINT ‘ r i f k r d ‘ FOREIGN KEY ( ‘ cd road ‘ )
REFERENCES ‘ roads ‘ ( ‘ id ‘ )
ON DELETE NO ACTION ON UPDATE NO ACTION,
CONSTRAINT ‘ r i f k r t ‘ FOREIGN KEY ( ‘ c d r a i l t r a c k ‘ )
REFERENCES ‘ r a i l t r a c k s ‘ ( ‘ id ‘ )
ON DELETE NO ACTION ON UPDATE NO ACTION

) ;

4.3.5 Potential Issues with Using Just the Relational Model

Having seen the data and subsequently generated tables, let us explore some

potential difficulties when attempting to perform analysis using this database design

alone:

• Relationships between roads: In this relational model, we have extracted the

contents of the shapefile and put them into a table. The caveat of having this
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data stored in a table form is that we cannot infer certain spatial information

with the way we stored the data. For example, without performing several

queries, one cannot look at a row in the road segment table and infer the road

segments that are spatially next to it.

• Navigation: Similarly, if one intends to find a route from one road segment

to another on the road network, it would prove cumbersome. We first must

build a relationship between each road segment and all other road segments.

This process is computationally expensive, hence inefficient, not to mention

impractical.

• Multiple knowledge bases: With the relational database model, we must join

several tables to pull in all those properties to see the characteristics of a feature,

say, a road segment. For example, if we needed to determine the number of

casualties/accidents on a road segment. We would need to create a join with

the (crossings-roads-rail) table and then use that to look at the grade crossing

inventory table where that record lies.

• Some aggregation will be cumbersome: Imagine the effort it would take to

aggregate the number of trips interacting with each crossing. We will need to

generate another table. Essentially, we will need to generate another table or

view to analyze each new metric of interest.

• Ease of adoption: At the very generic level, the number of tables is already

growing. Conveying these multiple tables might be a steep learning curve.

Notwithstanding, the relational database has a decisive advantage in data visualiza-
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tion. Many widely used industry-standard data visualization tools work best with re-

lational data. They make aggregation and information conveyance very easy. Among

the notable solutions are PowerBi, AWS Quicksight, Tableau and IBM Cognos. More-

over, although standard geographic information system (GIS) software may handle

all these issues (e.g., buffer analysis, building of a “connected” network to facilitate

routing and other spatial analyses), it can be expensive. Furthermore, we are aiming

for a more “first principles” solution.

4.4 Using Only a Graph Database model

We mentioned in Section 4.3 that we could present everything in a relational

model. However, it did not seem like a practical approach for analysis and manage-

ment. Since we are dealing with highly connected data, storing it in a graph database

may be more effective.

As the basis on which we will be conducting our analysis, the first step would be

to extract the content and features of the shapefiles. The elements in the shapefile

already store connected information. We will then add other data sources that com-

plement the attributes of the shapefiles. These will become additional properties of

the edges and nodes in the graph.

If we revisit Table 4.1, we have three shapefiles from the same source. The benefit

of building the framework of the graph from shapefiles of the same source is that the

data points will match across the files as they do geographically, since they are from

the same source.

The purpose of this database will be to support studies that analyze the interaction
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Figure 4.1: Fused graph network of rail, road, and traffic shapefiles

between road and railway transportation. Our graph will also need to be composed

of a network of road and railway edges and nodes; that is, nodes and edges can be

road or rail components. To build such a graph, we will first need to extract the

road and rail features and build them as individual layers. Then, in another step,

we will join both layers into a fused network of nodes and edges. Remember, the

traffic-related points shapefile, among other things, holds records of grade crossings,

that is, locations where the rail lines interact with the road network. Those points

will be the fusing locations to merge both layers into a single graph layer. As seen in

Figure 4.1, the image on the left shows an intersection of a rail line across Bison drive.

The graphical representation on the right shows the composite graph of the fused rail

network layer with the road network layer once we have merged both layers into a

single layer. Note that the graphical representation only captures the south-bound

Pembina Highway road segment.

We find it pertinent to mention that a standard GIS software like QGIS is capable
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of retrieving information from shapefiles, as we propose here for the graph model.

Also, GIS facilitates routing from one point to another. However, the real value of

using a graph model is integrating multiple data sets. Observed from Table 4.1, we

have a mix of geospatial and non-geospatial data sources. One must manipulate the

underlying program to merge these data sets to use in a GIS environment. Even

so, with a graph, we can run various graph algorithms, for example, Monte Carlo or

Dijkstra’s Shortest Path—these are areas where standard GIS software falls short.

Hence, using a graph model appears more desirable due to this utility.

4.4.1 Forming of the Individual Graphs

As mentioned earlier, we will create two separate graphs; one for roads and the

other for the railway. We will then fuse both graphs at their geographical meeting

points. Table 4.2 shows the node and edge classes for our graphs.

The first step is to create the individual graphs from their shapefiles before joining

both layers. Algorithm 1 converts a lines shapefile (rail or road) to a simple graph.

4.4.2 Joining the Layers of the Graph

The goal of this step of the design is to generate a composite graph of edges and

nodes from the road and rail network. The composite graph will be generated from

two graph meta sources formed in Section 4.4.1. With the input of both graphs, we

will then go ahead to fuse them together at joining points as seen in Algorithm 2 as

follows:

After fusing the road and rail network graphs, we proceed to the last stage of
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Algorithm 1 Convert lines shapefile to graph

Input: shapefile
Output: edges, nodes
1: nodes : Dict[str, Point]← {}
2: edges : Dict[str, List[LineSegment]]← {}
3: createOneEdgeAndTwoNodesFromLines(shapefile.rows, nodes, edges)
4: for line : edges do
5: intersectingLines← getAllLinesThatIntersectsWith(line)
6: for intersectingLine : intersectingLines do
7: point← findIntersectionPoint(line, intersectingLine)
8: if point = NULL then
9: continue

10: if isPointAtEitherEndOfLine(intersectingLine, point) then
11: continue . No need to split intersectingLine into two at point

. This line needs to be split into two segments at point. point becomes a node in the graph
12: createNewNodeAndAddToNodes(point, nodes)
13: subSegment1, subSegment2 ← splitLineAtPoint(intersectingLine, point)
14: addEdgeToEdges(subSegment1)
15: addEdgeToEdges(subSegment2)
16: removeEdgeFromEdges(intersectingLine)

Algorithm 2 Fuse road and rail graphs

Input: edgesRoad, edgesRail, nodesRoad, nodesRail
Output: compositeEdges, compositeNodes
1: compositeNodes← nodesRoad
2: compositeEdges← edgesRoad
3: compositeEdges.addAll(edgesRail)

. Insert nodesRail into compositeNodes. Update edge references IF the node already exists
4: for nodeRail : nodesRail do
5: if nodeRail.coordinates /∈ nodes then
6: addToNodes(nodeRail)
7: else . We have found a grade crossing
8: commonNode← nodes[nodeRail.coordinates]
9: validCrossing ← doesNodeAppearInTrafficDataset(commonNode.coordinates)
10: if validCrossing 6= TRUE then
11: continue . Manually investigate odd occurrence.

12: railEdges← findEdgesWithNodeCoordinates(nodeRail.coordinates) . Update
rail edges to now reference commonNode instead of nodeRail.

13: for railEdge : railEdges do
14: if railEdge.startNode.coordinates = nodeRail.coordinates then
15: railEdge.startNode← commonNode
16: else
17: railEdge.endNode← commonNode

18: copyOverNodeProperties(commonNode, nodeRail)
19: commonNode.type← NodeType.RAILCROSSING
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Table 4.2: Node and Edge Classes for the Graph

Component Node or Edge Description

Road segment Edge A road or way that a vehicle travels on

Rail segment Edge A train track

Road Intersection Node A point where two road segments overlap

Road Junction Node A point where two road segments touch,

but do not overlap

Rail Crossing Node A point where a road segment crosses a

rail segment

Rail Junction Node A point where two rail segments touch

building the property graph. This stage involves adding supplemental data containing

crucial statistical information from the grade crossing inventory file. Our concern was

that, as both data sets were from different sources, they did not align as a 1:1 match

in several spots. We needed to find a way of guaranteeing that we matched one row of

data in the additional data set with the correct, corresponding node generated from

the OSM shapefiles.

We evaluated some approaches, including searching for grade crossings by street

names and subdivisions. The best approach we found was to use the coordinates

from both data sets to try and find their match. With the coordinates approach,

the challenge was to match crossings with their corresponding values in the other

data set. With some crossings close to each other, we explored using the precision of

decimal points in both sets to see if we could find a match. Our resulting matches
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included some false positive matches. Ultimately, we achieved the best results by

making a simple circle around the coordinates of both data sets with a diameter of

eight to ten metres. Then, we considered intersecting circles from both data sets as

matches. We could confirm we were achieving over 95% accuracy in aligning both

data sets than a mere 68% when using coordinates precision matching. Algorithm 3

shows this process.

Algorithm 3 Align supplemental grade crossings data source

Input: nodesRail, gradeCrossingCSV
1: for gradeCrossing : gradeCrossingCSV do
2: crossingBoundary ← gen10MetreGeofence(gradeCrossing.coordinates)
3: node← findNodeThatIntersects(crossingBoundary)
4: if node = NULL then
5: continue
6: copyOverAttributes(gradeCrossing, node)

Having the road and rail network graphs fused, we can start analysis to understand

the relationships between the activities on a node in the graph and how it impacts

the rest of the network. For instance, we can now better understand how an active

crossing node impacts road traffic flow.

4.4.3 Potential Issues with Using Just the Graph Model

Nevertheless, the graph database still has its shortcomings. Let us explore some

potential difficulties when we attempt to use this database type for our analysis:

• Visualization: There is currently very little support for visualizing big data on

graph databases, especially geospatial data. As a result, conveying results of

analysis to end users would be difficult to do as some data are best explained

visually.
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• Building the graph: We had mentioned in Section 4.4 that we need to store

the composite graph’s meta sources somewhere. We store the meta sources to

reproduce the graph in the future. We also keep the meta sources if we need to

isolate a graph layer and perform an analysis only on one layer. Building these

individual layers, then combining them, may be cumbersome.

• Query time: When we run analysis on the graph, the question that comes to

mind is how we store the results from that analysis. With the graph database

only approach, we would have to store the results from graph operations directly

on the graph. A typical operation includes pathfinding routes between two

nodes. Over time, storing those results on the graph would increase the size of

the nodes and edges and may cause searches to become slower.

4.5 Observations

By looking at the database information without actually considering the data

involved in the analysis, the relational database seems to have some advantages. The

relational database has an index which makes it more efficient to search through some

related data, something we cannot achieve with the graph database. The relational

database also has mass support of visualization tools, making it an easy choice for

relaying results from analysis to users.

Since relational databases are best at handling transactional records, they will

be the preferred storage choice to hold and process transactional transportation

data. These data include travel logs, commuter schedules, and terminal information.
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Storing abstract data types such as lines, polygons, and bit maps allow relational

databases to store and retrieve spatial information efficiently.

The structure of the transportation network is inherent to a graph structure.

Geographical information in shapefiles makes a strong case for storing it on the graph

as the data is highly connected. Whereas, in just the tabular model, the network’s

complexities have been represented using multiple relationship tables and joins. The

graph structure would eliminate this overhead if we were to store the data in the

structure of the road and rail networks.

We also discussed the challenges of solely using a graph database approach. One

of those challenges was slower query times when analysis data are stored directly on

the graph. We will explore the possibility of performing analyses on the geospatial

data on the graph database, then storing the results and statistical summarizations

on the relational database.

One thing is inevitable. We must retrieve the data from shapefiles and store them

in tables or a graph database. With tables, we can hold transactional records that

run on the graph or hold results retrieved from the graph. Whereas with a graph,

we maintain the same class structure, the extraction becomes cleaner, and the data

features are all in one place.

Ultimately, we need to use a relational database for some data types, while we

need the graph database for others. As a result, there is a trade-off between the

relational model and the graph database model—we do not have a clear winner. In

Chapter 6, we will assess the desired features of a database solution to support our

kind of analysis to determine if a single database approach satisfies all criteria.
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4.6 Using a Hybrid Model

We present a hybrid model design comprising a relational database and a property

graph database. A two-component hybrid model will help us take full advantage of

the strengths of each component database. We discuss the roles of the individual

components as follows:

1. Graph database: We will use a property graph for this component. For all

the reasons mentioned in Section 2.2.2, we can have all the key/essential data

attributes in one place, at the node or edge. Since the structure works best

for connected data, we use this database to perform most of the analysis. The

graph aids us in discovering connections and patterns between nodes and edges.

It will also help us answer questions we did not know to ask at the beginning

of the database design. Hence, the graph database is essential to the hybrid

database design. Then, the relational and document databases exist to support

the capabilities of the graph. Since the graph database is a property graph,

the contents of the shapefiles and crossing inventory listed in Table 4.1, once

extracted by Algorithms 1, 2 and 3, will be stored as key-value attributes in the

graph.

2. Relational database: This will be the second of the two components of the Data

Warehouse. Table 4.1 shows us that the initial data set we will need for build-

ing our transportation network structure is primarily structured. It is crucial

to take advantage of the relational database’s quick look-up functionality, es-

pecially when building the graphs in Algorithms 1 and 2. With the contents of
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the shapefiles loaded into a relational database, we can save time when building

the graph. Without calling the ST_* (Intersects, Touches) functions for

MySQL (or similar), finding these corresponding geometries would be cumber-

some. Those built-in functions take constant time to yield results, whereas the

alternative would be to loop through the data.

Additionally, the relational database can hold summarization statistics about

our analyses, that is, the output of the analyses that run on the graph. We had

mentioned in Section 4.5 that a strong reason for using relational databases over

graphs is their strong support for visualization. Holding summary data from

analyses in the relational database makes using readily available visualization

tools seamless. In the future, when graph databases develop strong support for

visualization, this may not be a required feature.

More so, to improve the efficiency of the graph database, we can store graph

traversals between two nodes in the relational database. That way, instead of

repeating a traversal, we easily retrieve the path from a table.

4.6.1 Database System Architecture

We had mentioned in Section 4.5 that the meta-sources that form the composite

graph might need to be stored somewhere. Our reason for this decision is to give

us the ability to quickly regenerate the graph and/or perform isolated analysis on

layers if desired. Additionally, we need a place to store the shapefiles and CSV files

before they are transformed and loaded into the relational database. It would be more

efficient to have a document-oriented database to serve as a data lake to facilitate
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this particular hybrid model.

Following the database roles described, we will have the following resulting database

architecture:

• Data Lake: We propose facilitating the hybrid model with a Data Lake. A

NoSQL document database instance will store the data in their raw forms,

available on demand. It will primarily hold the contents of Table 4.1 before

they can be extracted (transformed) and loaded into more usable forms. Also,

to extract and transform the data in the lake into the warehouse, we use Python

scripts. They are represented by the boxes “Algorithm x” in Figure 4.2. We

can also use the document-oriented database to store larger components used in

characterizing edges and nodes of the graph database. For example, it may be

crucial for an analyst to have grade crossing nodes of the graph reference all the

unique train bells encountered at that location over time. They may also need

road edges in the graph to reference historical images to show road degradation

over time.

These additional data characteristics can be easily stored directly in the graph.

However, storing all this data on the graph may be inefficient as it may have

adverse effects such as more network latency or increased traversal cost. Our

opinion is to have an attribute of the edge or node reference an external location.

The reference could be the collection’s name in the document-oriented database,

where the data can be easily accessed when needed. This strategy may help

keep the load on the graph light.

• Data Warehouse: Our Data Warehouse contains the proposed hybrid model. It
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will house the data ready to be used by the analysis tool. The data warehouse

will comprise a property graph for representing geospatial features. Our research

uses the graph to model the road and railway network in the city/province/state.

We will load data from the lake and transform that data into a format ready for

use by the analysis tool. Additionally, the warehouse will include a relational

database best used for storing tabular data. We will use it in storing CSV data

as they are already structured. To summarize, these are the components of the

warehouse:

– Property Graph: for modelling the rail and road network of the city

– Relational Database: for holding statistical data records in the form of fact

and dimension tables, trip traversal records, and references of data located

in the Data Lake.

Consequently, Figure 4.2 shows how these components interact with one another.

We should mention that the analysis tool does not contribute to the hybrid database

design. We will look at it as a “black box” that queries our databases for data. As a

result, we will not discuss its contents and functionality in this thesis.

4.7 Discussion

Our hybrid design is a very generic design of a database architecture that can

support an EMS transportation study. There are undoubtedly several concerns one

might have. Some of those concerns include:
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Figure 4.2: Architecture design for our hybrid model

1. Is this hybrid approach indeed faster than the single-style approach?

We will assess this in Chapter 6.

2. Are we introducing new problems in communication lags and connectivity be-

tween databases?

We will also assess this in Chapter 6.

3. How about data consistency among databases?

Data consistency is not an issue as the information captured is disjoint between

databases.
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4.8 Summary

This chapter presented a hybrid database architecture for supporting EMS trans-

portation analysis studies. We outlined the most crucial data attributes essential to

any transportation study. In most cases, these data attributes are present in shape-

files. Additionally, we used the most commonly used shapefile source in the industry

in OSM.

We analyzed the pros and cons of using a relational-only database to support this

analysis and a graph-only database. The analysis led us to conclude that there is

no clear winner between both databases. We then presented our hybrid database

approach comprising a graph database as the primary database for running our anal-

ysis, with support from a relational database. In particular, the relational database

supports the graph by helping us visualize results from our analyses and reducing

the number of graph traversals. We also suggest facilitating our hybrid model with

a document database for long-term data storage. We propose that this is the better

approach as we enjoy each database’s strengths without suffering the drawbacks of a

single-style approach. The graph best models the nature of our transportation net-

work; it allows us to look at data attributes and their interaction with one another

in a very simplistic, intuitive manner. The hybrid approach helps us to relate trans-

actional records to segmentation of the graph. We hold certain summary aspects

that require more complexity in a different location when we use the hybrid approach

instead of it being fused directly into the graph.

Finally, we also mentioned that there might be challenges with this approach. We

mentioned the issue of latency and communication between databases. These con-
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cerns will need to be experimented upon in Chapter 6 to determine if those concerns

are significant or worth the design decision.



Chapter 5

Case Studies: Using the Hybrid

Database for EMS Response Times

Study

In this chapter, we answer the following question: Q3. How well can the hy-

brid DBMS handle some real-life applications with structured, semi-structured and

unstructured data?

5.1 Overview

We introduced a generic architectural design for supporting EMS transportation

analysis in Chapter 4. Here, we go one step further to describe how we used this

hybrid database approach to support two real-world studies on emergency response

times. Using two real-world first responder transportation logs, we show that we can

53
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apply the approach to any first responder-specific transportation analysis.

These case studies are a research effort between the Federal Railroad Authority

(FRA) in the United States and TRAINFO Corp. TRAINFO conducted an exten-

sive study in Winnipeg, Manitoba, Canada, measuring first responder delays caused

by trains in the year 2018. While writing this thesis, TRAINFO is also conducting

another study on first responder trips in Charleston, South Carolina, USA, for 2021,

with preliminary results only available now. Both studies aim to determine the num-

ber of first responder trips affected by the blockage of crossings. They also determine

if responders could have saved time if they used another route during said trips.

It is crucial to note that this hybrid approach supported two studies on EMS

response times from different cities in North America, highlighting its adaptability.

There is no significant difference in the data set requirements from city to city. The

data in Table 4.1 will still be required to build the database regardless of this city.

Likewise, any data set on trips regardless of the city will have the following attributes

in common: origin, destination, an identifier of the travelling unit (e.g. bus number),

and optionally, a route travelled. By supporting both studies, we show that our

hybrid design approach is not limited to any geography.

The result of this study highlights two key contributions of this hybrid database

approach:

1. It can be used for real-world applications, and

2. It enhances simple data mining through information retrieval (from a historical

archive), which can help advise non-real-time decision-makers.

We will discuss both case studies supported using the hybrid database approach
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individually. However, certain things remain the same in both studies.

In both studies, first responders provided TRAINFO with a one-year history of

EMS and Fire trips completed. TRAINFO developed an EMS Risk Model to:

1. Quantify the frequency and duration of first responder delays at rail crossings

in the city.

2. Identify which areas of the city were most affected by these delays.

3. Determine if real-time and predictive train information could reduce these de-

lays.

The process involved:

1. Importing call log and Automatic vehicle locator (AVL) data (if provided) into

the model. An AVL is a device that makes use of the Global Positioning System

(GPS) to enable agencies to track the location of its vehicle fleet remotely by

using the internet. AVL pings are the intermittent GPS locations for the vehicles

as they travel.

2. Running the model to determine the first responder trips delayed by trains and

3. Simulating re-route options to calculate possible travel time savings.

Figure 5.1 shows a map of call origins and destinations, hospitals, and rail cross-

ings. The model generated responder trip paths and identified units that were poten-

tially delayed by trains when a trip satisfied three conditions:

1. the unit’s route crossed railway tracks,
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Figure 5.1: WFPS call origins and destinations

2. a train was blocking the crossing during the unit’s travel time, and

3. the unit’s actual response time was longer than the expected response time.

We estimated unit travel times based on the time of day, day of the week, speed

limit, the number of lanes, and traffic volume characteristics. We called this estimate
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the expected travel times. The model compared the expected travel time to the

actual travel time for units meeting the three conditions and calculated the amount

of delay caused by the train. For delayed units, the model simulated travel times

along alternative routes. Alternative routing was to determine if delayed trips could

have saved time by re-routing and estimated how much time the unit could have

saved.

The EMS Risk Model also produced two metrics: the Crossing Risk Score and

the Area Risk Score. Crossing risk scores show the frequency of first response delays

caused by blocked rail crossings. We stored this value as an attribute of the crossing

node in the graph. The Area Risk Score reveals which areas of Winnipeg had the

highest risk of experiencing first responder delays because of trains (measured as units

delayed per month).

We should mention that TRAINFO decided on how to conduct the analysis. Thus,

we will limit the scope to how we used the hybrid database to perform the analysis.

5.2 WFPS Case Study in Canada

Winnipeg is the capital city of the Province of Manitoba in Canada. It has a

growing population of 800,000 and a land area of 180 square miles. There are two

Class 1 railroads with mainline tracks running through the city, resulting in over 100

rail crossings and upwards of 50 trains moving through the city daily. Winnipeg

Fire Paramedic Service (WFPS) provides fire and EMS services to the city, from

27 fire stations, three stand-alone ambulance stations, and six hospitals. WFPS

responders complete around 3,000 trips per week, with approximately 15% of trips



58 Chapter 5: Case Studies

crossing railway tracks.

WFPS dispatchers and call-takers do not know if or when a rail crossing will be

blocked when they select units and routes to respond to an emergency. When first

responders encounter a blocked rail crossing, they radio dispatch and await instruc-

tions. Dispatchers do not know when the crossing will be clear and cannot judge if

it is faster for the unit to re-route, wait for the train to clear, or dispatch a second

unit. Depending on the situation, they use one or more of these options. Dispatchers

automatically send multiple units for specific call locations just in case a train blocks

the primary route. Dispatchers can contact the railroad and request they cut the

train to allow first responders to go through. However, they rarely use this process

because it takes longer than the other options.

WFPS explored various approaches to address first responder delays at rail cross-

ings. One approach was grade separation (building over-or underpasses at rail cross-

ings); however, this was cost-prohibitive and infeasible in dense parts of the city. A

second approach involved WFPS requesting live train location data directly from the

railroads. However, the railroads were unable to share this information. A third ap-

proach was to pull a signal from the flashing lights and bells at the crossing when they

were activated. This approach, known as an interconnected crossing, is occasionally

used to adjust traffic signals, so vehicles do not get stuck on the tracks when trains

are approaching. Interconnection requires a physically-wired connection from the rail-

road’s cabinet at the crossing to a city-owned cabinet on public right-of-way. WFPS

concluded that this approach was infeasible since only a few crossings in Winnipeg

were interconnected, and the interconnection data did not provide enough prediction
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to avoid blockages. They did not have the internal resources to manage this system.

Finally, WFPS turned to TRAINFO to help solve this problem. WFPS provided

TRAINFO with a one-year history of EMS and Fire trips completed in 2018 as a

basis to study and come up with a solution.

5.2.1 Additional Data Attributes for This Study

The data collection process involved:

1. EMS and Fire trip logs for 2018 (168,000 rows of data).

2. Collecting postal code geographical data to aggregate findings by area.

3. Collecting crossing blockage data from train detection sensors at various cross-

ings in the city.

4. Generating and storing blockage impact data for blockage events in 2018.

5. Collecting occupancy distribution data for crossings in 2018.

We discuss their attributes as follows: The files that hold additional information that

we will need to perform the analysis for this study include:

1. EMS trip logs, which contain the emergency call log data of the WFPS for 2018.

It contains vehicle origin, destination coordinates, and time of departure and ar-

rival of individual trips. WFPS removed any personally identifiable information

prior to sharing this data set. We need the coordinates for the analysis phase to

determine the route taken by the EMS. We then use the route to determine if

they could have avoided delays (if any). Thus, having the following attributes:
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• incident number: The number assigned to the incident, and is only present

for calls that have turned into incidents. This value is an integer.

• unit number: Expressed as a character string.

• unit type: Whether the unit is a fire truck or EMS, expressed as a character

string.

• unit origin: Location of the unit at the time it begins to respond to an

incident, expressed in GPS coordinates.

• call location: Location of the incident the unit is dispatched to, expressed

in GPS coordinates.

• dispatch time: The time they dispatched the unit. All the time values are

timestamps.

• responding time: The time the unit begins to respond to an incident.

• at scene time: The time the vehicle arrives at the call location.

• depart scene time: The time the vehicle leaves the call location (EMS) or

is cleared from the call (FIRE).

• at hospital time: The time the vehicle arrives at the hospital.

• depart hospital time: The time the vehicle leaves the hospital or is released

from an incident.

• destination address: The address of the hospital if required, or the address

of the EMS station if it is a return trip to the station. The value is a

character string.
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2. EMS stations, which usually assign emergency responders to stations. Stations

are where the responders stage until dispatched to a call location. If we need

to make summations at the station level, we would also need to collect location

records of the EMS stations across the study region. In our study, the data

contains the following attributes:

• name: The name of the station, expressed as a character string.

• address: The address of the station, expressed as a character string.

• geometry: The geometry of the location, expressed as a point.

• boundary: The geometry of the area around the geometry, expressed as a

polygon. The polygon represents the compound (a circle with a radius of

about 100 metres)

3. Postal code data, which summarize data by postal code, we also needed to

ingest the Postal Code record for the study region. We generated the Postal

Code records by querying the Google Maps Geocode API. We generated 17,371

postal code records with the following attributes:

• name: The name of the postal code, expressed as a character string.

• geometry: The geometric record of the area the postal code covers, ex-

pressed as a polygon.

4. Crossing blockage data, which were retrieved from TRAINFO’s database. It

comprised the start and end times of individual blockage events at crossings in

2018. Here, each entry will have the following attributes:
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• crossing identifier: a unique id used to identify a particular grade crossing,

expressed as a character string

• blockage start time: a timestamp of the time train blocks a grade crossing

expressed as a timestamp.

• blockage end time: a timestamp of the time a blockage clears a grade

crossing, expressed as a timestamp.

• train recording: ten-second audio of the train captured by the sensor,

expressed as a waveform audio file format (WAV) audio blob file.

5. Blockage impact, which is a temporal component of blockage events. When a

railway crossing is active, vehicles begin to queue up on both sides, anticipating

the crossing to clear. Eventually, the barrier preventing vehicle movement lifts

when the blockage clears. However, it will take some time for the queued-

up vehicles to go over the crossing and for the traffic velocity to resume its

usual rate before the initial blockage. When long blockages occur, the queue

formed can impact surrounding streets. As a result, for each blockage event,

a dynamic geofence models the queue that increases in size as the blockage

duration increases. The size increases up to a point if the roadway reaches

capacity and then shrinks as the theoretical vehicles move after the blockage.

As a result, the blockage impact will have the following attributes:

• blockage event identifier: a unique id used to identify a particular blockage

event, expressed as an integer.

• start time: a timestamp of when this impact started, expressed as a times-
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tamp.

• end time: a timestamp of when this impact ended, expressed as a times-

tamp.

• geofence: a geo-spatial polygon covering the area of this impact, expressed

as a polygon.

Note that an active crossing can impact a trip even though it does not interact

with a crossing. We explained this by the queue formed when the crossing is

active. We consider a trip impacted if the travel path is within the temporal

geofence. So, we need also to determine if a blockage activity impacted trips.

6. Occupancy distribution, which was generated on a per-crossing basis using his-

torical blockage records for the crossings monitored in 2018. The data attributes

are summarized as follows:

• crossing identifier: a code used to identify a crossing uniquely, expressed

as a character string.

• hour of day probabilities: a list of 24 probability values indicating the

likelihood of the crossing being occupied each hour of the day, for each day

of the week.

In summary, Table 5.1 outlines these additional data requirements and their structure.
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Table 5.1: WFPS study: additional data sources, their formats, and structure

Data Owner Structure

Trip logs of Emergency Response Units for 2018 WFPS structured

Occupancy distribution at crossings TRAINFO structured

Historical crossing blockages TRAINFO unstructured

Spatial blockage impacts at crossings TRAINFO semi-structured

Postal code geo-spatial records TRAINFO semi-structured

EMS station location information WFPS & TRAINFO semi-structured

5.2.2 Hybrid Model for WFPS Study

Firstly, we stored these raw data in Table 5.1 in the data lake. For this study,

we used MongoDB as the document-oriented database, MySQL for the relational

database and Neptune for the graph database. For each data set, we either extracted

them into the graph or loaded them into the relational database. We should mention

that we used the approach in Chapter 4 to build the basics of the graph. Transport

Canada provided the grade crossing inventory mentioned in Table 4.1. Each crossing

in that data set has a unique Transport Canada ID number. When we discussed the

additional attributes above, we referred to this ID as the crossing identifier.

We use Table 5.2 to describe how we inserted the additional data sets into the

database.
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Table 5.2: How additional data fit in the hybrid model

Data MySQL Neptune
Graph

Comments

Crossing
blockages

X X Blockage start and end dates, and cross-
ing identifier were stored in MySQL. The
train recordings were stored in a collec-
tion in MongoDB with a reference to the
location stored as a node attribute on the
graph.

Trip logs X Transactional in nature
Spatial
blockages at
crossings

X Loaded into MySQL, referenced crossing
identifier.

Occupancy
distribution
at crossings

X same as above

Origin-
destination
records

X This is an additional table for caching
graph traversals from one node to an-
other. It represents a trip between a
unique combination of origin-destination
postal codes.

Postal code
geo-spatial
records

X Each node has a single value postal code
string attribute based on the coordinates.
Edges also has a postal code attribute
with a list of postal code strings for lines
that appear in multiple postal codes.

EMS station
location in-
formation

X This was a node attribute. It was as-
signed to the closest intersection node to
the EMS station

In addition to this model’s primary analysis, we organized the entire trip log using

a star schema model as fact and dimension tables. We used this to show the city a

classification of their trips throughout the year by different dimensions. Table 5.3

shows these dimensions, yielding the resulting schema in Figure 5.2.
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Table 5.3: Aggregation of WFPS trips

Name Fact/Dimension
Table

Description

Trips Fact Holds aggregated numeric facts on travel
time and distance based on the dimension
the data is filtered by

Station Dimension For aggregating data based on EMS sta-
tions

TimeOfDay Dimension Time of day when a trip took place. There
will be 24 of this for each hour of the day

Vehicle Class Dimension Classification of Emergency Vehicle Re-
sponse. Fire or Paramedic Vehicle

Origin-
destination
traversal

Dimension Holds traversal records from Point A to
Point B where A and B are two Postal
Codes

StationPostal-
CodeTraversal

Dimension Holds traversal records from one Station
to a Postal Code

5.3 The Municipalities of Charleston Case study

in the USA

As mentioned earlier, this study is in the beginning stages. However, there are

preliminary results using the hybrid database architecture that we would like to high-

light. In this case study, we did not have as many data inputs as the WFPS study.

The data collected two CSV files containing:

1. EMS and Fire trip logs for 2021 (80,000 rows of data), and

2. AVL Pings of Emergency Response Units as they respond to events (233,000

rows of data).

The EMS log had similar attributes as the WFPS data. AVL ping data contain

individual trip identifiers, a timestamp, and the latitude and longitude coordinates
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Figure 5.2: ER-Diagram of WFPS trips using a star schema

of the vehicle at that time. The AVL explicitly reveals the route taken by the EMS.

Thus, having the following attributes:

• incident number: The number assigned to the incident, expressed as an integer.

• unit number: Unit number, expressed as a character string.

• unit location: Location of the unit at the time of the ping, expressed as a string.

• unit coordinates: Location of the unit at the ping time, expressed in GPS

coordinates.
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• timestamp: The time of the ping, expressed as a timestamp.

Consequently, Table 5.4 outlines these additional data requirements and their

structure.

Table 5.4: Charleston Municipalities Study: Additional data sources, their formats,

and structure

Data Owner Structure

Trip logs of Emergency Response Units for 2021 Charleston structured

AVL Pings of Emergency Response Units for 2021 Charleston structured

5.3.1 Hybrid Model for Charleston Study

Both data were stored in tables as they are transactional. We should mention that,

unlike the WFPS study, TRAINFO did not have any sensors deployed in Charleston

in 2021. The lack of sensors made it impossible to confirm potentially impacted trips

as impacted. Nevertheless, through the use of the graph database, we were able to

make educated inferences on potentially impacted trips. We flagged trips where the

actual travel time was at least 1.5 times greater than the expected travel time as

potentially impacted. The process involved using the graph to compute the expected

time of travel given the AVL ping data.

We reconstructed the path travelled by each unit by using its periodic ping data.

With the reconstructed path, we queried the same edges on the graph. We computed

the total expected travel time using the posted speed limit and length of the road
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segments. Those values are edge properties retrieved from the shapefiles. We then

compared the expected travel times to the actual trip times. Trips were then flagged

as potentially impacted if they met two criteria:

1. the travel path went over a crossing node, and

2. the actual travel time was at least 1.5 times greater than the expected travel

time

5.4 Discussion

We have demonstrated that this database architecture can find more interesting

information from a large data set. The insights from the data can help make crucial

decisions. As seen from the case studies, identifying and predicting these blockages

and regions of impact is a massive advantage in the effort to save lives.

The insights also help inform fleet management planning and assessing cities’

Emergency Response systems. Given the results from such studies, cities can make

more informed decisions to relocate responder stations to areas where units will en-

counter fewer active crossings. They could also reallocate units to different staging

locations to mitigate the risk of them getting blocked. Decisions like these would be

better aided with this information now at their disposal, heavily aided by our hybrid

database architecture. We have shown that the database can be extensible for anal-

ysis in different cities. We have analyzed data from Winnipeg and Charleston using

the hybrid database model, strengthening the importance of using a hybrid database

for modern transportation analysis.
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Our solution is not just a database. We can use it to perform analyses that can

save lives. Our hybrid design supporting this type of study highlights its importance

in the real world. As a footnote, the results from both case studies encouraged the

FRA to expand this research effort to a few other cities, including Houston, Texas;

Chattanooga, Tennessee and Worcester, Massachusetts.

5.5 Summary

This chapter outlined two real-life data sets used in our EMS transportation anal-

ysis. We showed that our approach could be used in EMS transportation analytics

for different cities and across countries. In particular, we used our hybrid database

architecture to support studies conducted in both the city of Winnipeg, Canada, and

Charleston, USA. One study contained an additional six data sets, the other an ad-

ditional two. We show that ultimately, it does not matter the city where we conduct

the study; the process generally remains the same.

With the help of the graph and the relational database, we made several observa-

tions about first responder trips. Such observations could have been near impossible

without our hybrid architecture.

Finally, we showed that the observations from the case studies helped provide two

cities with decision-support making tools to manage and improve their emergency

response process.



Chapter 6

Evaluation

In the previous chapters, we described how the relational database was inefficient

when handling well-connected data like those in shapefiles. We suggested that having

the data in a graph was more efficient. We proposed that our hybrid architecture is a

more effective solution overall for supporting transportation analysis in the modern-

day. This chapter determines the effectiveness of our claim. We describe the testing

experiments and results, which will help to conclude whether this proposed archi-

tecture improves our ability to support the modern-day data requirements or limits

it.

We conducted our evaluation in three phases. The first phase is on the features.

The second phase of our assessment measured performance in terms of run times

of each database approach. The final stage of our evaluation measured the useful-

ness of the hybrid database in supporting studies to generate metrics to help EMS

administrators minimize their response times.

71
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6.1 Feature-wise Evaluation

This evaluation phase considers a list of desirable features for a database that

would support this kind of study. We attempt to show how the single-style database

approaches fared compared to the hybrid database comprised of both databases.

Effectively, we compared the features of individual components of the hybrid model

alone to our hybrid model, which consists of both.

As Table 6.1 shows, the hybrid approach meets all the the outlined criteria com-

pared to each database approach on their own.

Table 6.1: Feature-wise comparison of the three database approaches

Criteria Relational Graph Hybrid
database database database

Easily support visualization [VMZ+10;
Bik18]

Yes No Yes

Store and manage structured data effi-
ciently [VMZ+10; Bje18; ZBP+18]

Yes No Yes

Store and manage semi-structured data ef-
ficiently [Bje18; VML20]

No Yes Yes

Store and manage unstructured data effi-
ciently [VMZ+10; Bje18; VAOA22]

No Yes Yes

Easily modify schema [VMZ+10; SMA+18] No Yes Yes
Easily model geo-spatial data [WE18;
VAOA22]

No Yes Yes

6.2 Performance on Real-World Data

The next phase of our evaluation was runtime performance using real-world data.

We had shown in Chapter 5 how the hybrid model was used to support two stud-

ies in Winnipeg and Charleston. However, since we performed extensive studies in
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Winnipeg, we decided to use that study to evaluate the performance of our hybrid ap-

proach compared to the single-style database approaches. Hence, we calculated four

metrics of interest using all three systems and recorded the time it took to generate

our results.

6.2.1 Experiment Setup and Dataset Details

We ran all the tests using a computer running Ubuntu 20.04 LTS as the primary

operating system. The CPU was an Intel Core i7 with eight cores clocked at 2.8 GHz.

The machine also had 32 GB of RAM and a Solid State Drive.

The total data obtained was 168,419 WFPS trip records from the Winnipeg Fire

and Paramedics in 2018. Hence, the data comprises trips with different emergencies

and road conditions from all four seasons. We performed some quality control as

follows:

• We removed trips where the units did not have an assigned station.

• We removed trips whose origins and destination were at the same location.

• We removed trips without unique responder identification or unit numbers.

• We removed trips missing any of the following values: origin, destination or

waypoint location, unit number or type, incident number, time of call

After the data pruning, we broke down the remaining trips into legs, resulting in

196,265 leg records. In order to fully perform the analysis conducted in Chapter 5,

we also obtained the following data sets:
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• 11,630 time-based blockage impact records from TRAINFO.

• 13,104 occupancy distribution records from TRAINFO.

• 17,371 postal code records from TRAINFO.

• 4,446 rail crossing records from National Railway Network of Canada.

• 2,262 rail crossing records from Transport Canada.

• 5,774 rail track records from National Railway Network of Canada.

• 47 EMS station records, which includes hospitals and staging areas from WFPS.

6.2.2 Test Overview

We mentioned in Chapter 4 that we could store all of the data in a relational

database or graph, but both strategies would be inefficient. We evaluate this claim

by computing the following metrics:

1. Crossing Risk Scores of top three crossings: This calculation involves evaluating

every trip undergone by first responders and counting the frequency of the

crossings that interacted with the trips. We picked three crossings with the

highest frequency.

2. Area Risk Scores of top three city areas: This calculation involves the product of

two distributions. The first distribution is the crossing occupancy distribution

used for the crossing risk. The second distribution is the responder-crossing

interaction distribution. The responder-crossing interaction distribution is a
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subset of the responder destinations. We picked the highest three areas of the

city.

3. Number of responders delayed by a train per week: Aggregating trips confirmed

as delayed per week.

4. Average delay per trip.

We intend to compare the possibilities of calculating these four metrics with the

support of:

1. The relational database approach only

2. The graph database approach only

3. The hybrid model

Concerning our data architecture shown in Figure 4.2, when we performed our

analysis with individual database components of our hybrid model, we omitted one

of the two databases in the data warehouse. Specifically, with the relational model, we

used the Google Maps application programming interface (API) to retrieve the fastest

route between the origins and destinations of the WFPS legs. It was impractical to

find the path solely using the relational model. In comparison, in the other two

database approaches containing the graph, we used the graph to find the fastest

route by querying the edges between origins and destinations. Since the speed limits

are characteristics of the edge, we could still find the fastest route.

We ran the analysis in Chapter 5 two additional times. One with the support

of only a relational database and another with just a graph database. We recorded
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the run time to complete getting each result. In cases where errors occurred during

communication timeout, we used retry functions to repeat the queries, adding to the

run times.

6.2.3 Recorded Run Times for Each Database Approach

There are some sequential preliminary steps in order to be able to compute the

desired four metrics. They include:

1. Getting fastest path, best travel time for each leg.

2. Examine paths and flag legs that go over (a) crossing(s) as interacted with

crossing.

3. Cross-reference flagged legs with historical blockage event records at crossings

to see if there were trains at the time of travel. Flag as potentially impacted.

4. If the actual travel time of the leg was a threshold higher than the expected

travel time, we flag the trip as confirmed impact by a train.

Table 6.2 shows how long it takes to run each model step for the study. We auto-

mated this process using Python scripts and recorded the time it took the programs

to run to completion. We see that the relational database has the worst performance

in Step 1.

In Step 2 of Table 6.2, we flagged legs that interacted with crossings. We first

converted the path from Google’s API into points in the relational database approach.

We then iteratively checked each point to see if it touched a crossing in the crossing

table. We see that the database approaches containing graphs have no values because
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Table 6.2: Run times for preliminary steps when computing metrics for study

Run times per database style

Step / DB style Relational only Graph only Hybrid

1. Fastest path, travel times 738 minutes 100 minutes 74 minutes

2. Flag interacted legs 459 minutes - –

3. Flag potentially impacted legs 414 minutes 750 minutes 415 minutes

4. Flag confirmed impacted legs 54 minutes 139 minutes 54 minutes

TOTAL 1,665 minutes 989 minutes 543 minutes

this step is included in Step 1 while finding the travel path between the origin and

destination of WFPS legs.

In Step 3, we see that the relational database approach is the fastest. It was

the fastest because we are cross-referencing tabular data to find a connection at this

stage. As relational databases excel in this situation due to indexes, we expected

this to be the fastest approach. In the graph-only approach, we had to search the

blockage data for that crossing on the node itself. Due to the load of data on the node

and the amount of blockage information stored on the node, we see that we have the

most run-time when using this approach. Compared to the hybrid approach, it was

the second-fastest. We attribute the longer run time to latency and communication

between databases.

In Step 4, we also see that the relational-database-only approach performed the

best due to the transactional nature of the task. The same goes for the hybrid

approach. The graph-intensive approach was significantly worse because we had to
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run through all the legs on the graph again. We did this to confirm expected travel

times with actual trip travel times. In a tabular structure, this is a much simpler

operation.

From Table 6.3, we can see that the relational-database-only approach excelled

when computing aggregation metrics like the number of responders delayed and the

average delay. As we expected, the hybrid approach was significantly faster over-

all when calculating the area and crossing risk scores because these are primarily

geographic-driven computations. The graph-only method slightly underperforms the

hybrid due to the load on the graph. However, both graph approaches underperform

when calculating the other two metrics due to the complexity of storing and retrieving

and cross-referencing the tabular records when calculating those metrics.

Table 6.3: Run times to generate results using three different database approaches

Run times per database style

Operation / DB style Relational only Graph only Hybrid

Crossing risk score 117 minutes 51 minutes 36 minutes

Area risk score 157 minutes 49 minutes 40 minutes

#responders delayed per wk 60 minutes 492 minutes 62 minutes

Average delay per trip 45 minutes 284 minutes 44 minutes

TOTAL 379 minutes 876 minutes 182 minutes

Additionally, we explored the differences between the graph structure in a graph-

only approach and a hybrid approach. Table 6.4 shows the average query response

times when we used the graph-database-only approach compared to the hybrid ap-
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Table 6.4: Query response times and size of graph with both approaches

Metric Graph-intensive Hybrid approach

Size of entire graph 69.4 MB 18.3 MB

Average query response time 7.0046 seconds 4.3852 seconds

proach. As expected, we see that we are spending more time getting data back

during graph retrievals when we store lots of information on the nodes and edges of

the graph. We also see in Table 6.4 that the graph size is almost four times bigger

in the graph-only approach than in the hybrid approach, which supports our claim

that the graph load would affect latency. It is important to note that this gain in

performance would be more significant with a much bigger graph that represents a

larger area, for example, the Greater Vancouver area.

Our resulting graph was the same for both the graph-database-only and hybrid

approaches. Table 6.5 shows the graph’s composition of nodes and edges.

Table 6.5: Graph database composition counts

Component Count Total

Rail nodes 8,826

Road nodes 48,330 57,156 nodes

Rail edges 5,774

Road edges 35,326 41,100 edges
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6.3 Usefulness of the Hybrid Model

The last phase of our evaluation was its usefulness. In this section, we show how

the hybrid model supports the EMS study to minimize response times and how the

results can be helpful to EMS administrators. We discuss the results generated in

both studies conducted in Winnipeg and Charleston.

6.3.1 Winnipeg, MB, Canada Results

Let us analyze the following types of trips:

1. Identifying trips that went over crossing(s): We have a start and end position for

each trip. We then use the graph to find the fastest path between the start

and end position nodes on the graph. The path is a collection of nodes and

edges on the graph. Suppose any of the nodes is a grade crossing. In that case,

we flag the trip row on the relational database table as “possibly impacted”. In

turn, we will increase the count attribute for the number of trips the crossing

node encountered.

2. Identifying delayed trips: The expected travel time is 240 seconds, as the stan-

dard requires for any EMS trip. Identifying delayed trips is a multi-stage pro-

cess:

(a) Retrieve travel time information of “possibly impacted” trips from the

trips table.

(b) We then pick those trips with travel time above their expected travel time.

Next, we retrieve their route from the origin-destination table. We corre-
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late the route to the spatial blockage impacts table to verify if the route

was within any geofence within an active crossing blockage time window.

If the route is within the geofence, we flag that trip in the trips table as

“confirmed impacted”.

3. Rerouting trips: The last phase of the analysis is rerouting trips confirmed as

impacted by an active crossing, then calculating the travel time difference. We

selected an active crossing node to avoid, then ran the traversal on the graph.

We then calculated the expected travel time for this new route. Figure 6.1

illustrates this process at the Shaftesbury crossing. A senior complex near the

rail crossing is a regular first responder destination with 11 calls per week. First

responders that respond to emergencies at this complex and other locations

north of the tracks typically travel north on Kenaston Blvd. They turn west on

Wilkes Ave and then north on Shaftesbury over the tracks. When the crossing

is clear, this is usually the fastest route. However, when the crossing is blocked,

an alternate route would be continuing north on Kenaston, turning west on

Grant Ave, and then turning onto Shaftesbury. This alternate route is nearly 2

miles further and takes about four minutes longer to reach the senior complex.

However, if there were a 5-minute train at the Shaftesbury crossing, it would

be at least one minute faster.

The model produced the Crossing Risk Scores and Area Risk Scores. The Crossing

Risk Scores, shown in Figure 6.2 reveal which crossings cause the most risk for first

responders. This value is in units delayed per month. The Area Risk Scores, shown

in Figure 6.3 reveal which areas of the city had the highest risk of experiencing first
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Figure 6.1: Rerouting simulation to calculate time savings

responder delays due to trains. This value is in units delayed per month. Crossing

Risk Scores larger than 1.5 units delayed per month and Area Risk Scores larger than

0.5 units delayed per month indicate a high risk.

The EMS Risk Model produced detailed rail crossing blockage statistics and esti-

mated the potential benefits of using predictive train information to re-route around

blocked crossings. The Shaftesbury Blvd rail crossing provides a useful example of

this feature. Figures 6.4, 6.5, and 6.6 illustrate train information statistics for the

Shaftesbury rail crossing. The model revealed several other important findings, in-

cluding:

1. 3 crossings in Shaftesbury Blvd, Panet Road, and Marion St have a high Cross-

ing Risk Score (exceeding 1.5 units delayed per month) and contributed to more

than 30% of the delayed trips.

2. 3 areas of the city in R3P2T4, R2J4L4, and R3R3X2 have a high Area Risk
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Figure 6.2: Crossing risk scores—crossings that impact first responders most fre-

quently

Score (exceeding 0.5 units delayed per month), and

(a) 26% of the delayed trips were servicing 8 out of 2,688 areas of the city

3. On average, nearly five first responder trips are delayed by a train each week.

Their average delay is 3 minutes per event
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Figure 6.3: Area risk scores—areas most impacted by first responders delayed by

trains

4. 10 of the 165 crossings in Winnipeg contribute to 60% of the delayed responders

5. 10% of every EMS interaction with Shaftesbury and Marion crossings resulted

in a delayed responder

6. In particular to the Shaftesbury crossing:

(a) 3 first responder trips per week travel over the tracks

(b) Trains delay 1-in-5 trips
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Figure 6.4: Shaftesbury Blvd crossing: percent of blockages by blockage duration

Figure 6.5: Shaftesbury Blvd crossing: Number of blockages and average duration by

hour of day
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Figure 6.6: Shaftesbury Blvd crossing: number of blockages and average duration by

day of week

(c) Average delay per trip of 184 seconds

(d) 81% of delayed trips would have saved time by re-routing

(e) Average time savings for re-routed trips would have been 182 seconds

6.3.2 Charleston, SC, USA Results

Since we did not have actual crossing blockage data to cross-reference, we could

only go as far as producing railway crossing interaction statistics, given the data

available. Table 6.6 contains a summarized set of results produced by the model

based on first responder trips in 2021.
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Table 6.6: Crossings with the most interactions with EMS trips in 2021

Crossing Interactions per week

Ashely Phosphate Road 18.18

Hillcrest Drive 9.97

Meeting Street Road 7.31

Ladson Road 3.54

Stewart Avenue 3.23

All Crossings (Total) 58.23

6.4 Discussion

The hybrid approach shows an overall significant performance gain when calculat-

ing the four desired metrics. We used the relational database to retrieve and calculate

the transactional data. Then, we used the graph to identify the related data quickly.

We are therefore getting the best of both worlds. Besides the performance gain in

using the graph, we should recall that we used the Google Maps API to get routing

information using the relational-database-only approach. This process costs many

dollars. Not to mention, Google has a strict policy on data scraping. As a result,

when using their API, we had to introduce sleep intervals during these queries to

avoid getting our account flagged for violating Google’s usage policy.

The graph-only approach is also not desirable as it does some things very poorly.

In our case, performing tasks as simple as finding the average delay per trip and the

number of responders delayed weekly was incredibly cumbersome. Our program had
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to query the graph numerous times to get this data. In contrast, this was a relatively

more straightforward procedure using the relational database. Table 6.4 also shows

that the speed of querying the graph improves with a lighter load on the nodes and

edges. This result supports our claim that one database style is not good enough for

the demands of modern-day applications.

6.4.1 Possible Issues with the Hybrid Approach

There were two concerns we had when we proposed this hybrid approach. They

were communication issues between the database components and the consistency of

data across the databases. There ultimately is a concern for communication failure

when dealing with non-isolated software. This concern is not limited to the database

world. Hence, as with good software design practices, we have to engineer our ap-

plications to catch those instances and either retry the communication or report it.

In our evaluation, we wrote retry functions that perform the communication task up

to three times for every failure. When all three attempts fail, we report the event in

the logs. We saw that we were getting primarily MySQL-related errors due to too

many parallel connections to the database simultaneously. We explored tuning the

number of parallel processes and having each process manage a pool of threads for

communication. We saw that in many cases, with an increased number of processes,

we were getting many failed MySQL database connection errors. We settled on run-

ning a maximum of 25 processes in parallel. At 25 processes, we stopped getting

these connection failure errors. The cost of doing this was that we had a much slower

process, as we can see from the high run-time numbers. Since we used the results from
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the study offline to support decisions after the fact, we felt this was an acceptable

trade-off.

The other concern was data consistency among databases. In our hybrid database

design, we are not replicating data, as the data we store across database components

is mainly disjoint. The databases serve as a historical archive, where we keep adding

data and are not deleting data.

6.5 Summary

In this chapter, we discussed the steps it takes to compute the metrics of interest

we saw in Chapter 5. We outlined the four steps of the EMS Risk model. We then

attempted these four steps using our hybrid approach, the relational-database-only

approach and the graph-database-only approach. We measured and compared the

run times of all three approaches. The numbers in Tables 6.2 and 6.3 show that

overall, the hybrid approach performs better than the other two for this study.

We also show in Table 6.4 that although the graph is fast at working with con-

nected data, the load on the graph is also crucial for performance. As such, one should

decide which data attributes make more sense to store on the graph and which ones

should not.

Finally, we discussed challenges with MySQL when working with all three database

approaches. Mainly how tuning the number of parallel processes querying the database

impacted our program run times. We found that keeping parallel processes to a maxi-

mum of 25 yielded a situation where we had no more loss of connections to the MySQL

database. The trade-off for this was longer run times, which we deemed acceptable
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for our use case.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis aimed to demonstrate that a single-style database architecture was no

longer an acceptable solution for modern-day transportation analytics. Our position

was that relational databases alone could not handle unstructured data; non-relational

databases alone would underperform when handling structured data. To the best of

our knowledge, current work in this area of research focused heavily on demonstrating

the power of NoSQL database solutions. Specifically, they focused on NoSQL’s han-

dling of unstructured data while ignoring the obvious benefits of relational databases.

Some bodies of work identify the need to use both styles of databases for handling

both data structures. However, they show little or no real-world application on a large

enough data set. Our model addresses both concerns by leveraging the strengths of

relational and non-relational databases in our hybrid architecture. We also went

further to show its applicability in the real world.

91
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Additionally, we showed that the approach is not geographically limited as studies

were on data from two countries. Even further, we can state that the generic database

architecture proposed in Chapter 4 is a sound solution for any transportation analyt-

ics. We can make this claim because we showed that it ultimately does not matter

if the studies are on first responder travel activity or trucking transportation. This

hybrid architecture can still support it better than a single-style database.

We believe that our work has great value for current application development and

future research. We used this hybrid database design to study the risk of delay to

emergency responders and evaluated alternative routing solutions. The results will go

a long way to helping cities understand their risks of delay. It will positively transform

their emergency response process and save lives. From a business perspective, we

uncovered several essential factors about notorious crossings and areas in Winnipeg

in the WFPS Case study. Such revelations can help resource planners focus resources

on areas that need more immediate attention. We can take this design strategy for

analysis and apply it to different emergency response processes in North America.

We can also apply it to a different field of the transportation industry altogether.

In Section 1.1, we stated the goal of our thesis with three questions. We answered

these research questions in Chapters 4 and 5:

Q1: How well can the hybrid DBMS handle traditional structured data?

A1: The hybrid data architecture comprises a relational database (Section 4.6.1),

and we loaded traditional structured data into the relational database compo-

nent (in Chapter 5).

Q2: How well can the hybrid DBMS handle semi-structured and unstructured data?
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A2: We observed in Section 4.6.1 that we used the Data Lake to store meta-graph

sources and the semi-structured shapefiles files from OSM. We then extracted

their attributes and loaded them onto the graph. In Table 5.2, we mentioned

that we stored the audio recordings of trains at crossings in the data lake.

Moreover, the graph data generated is unstructured and stored in the graph

database component.

Q3: How well can the hybrid DBMS handle some real-life applications with struc-

tured, semi-structured and unstructured data?

A3: Yes, we can. In Chapter 5, we showed that we could use the DBMS to support

two studies. In both case studies we had all three kinds of data as input. We

used the hybrid DBMS to support evaluating the emergency response process

in the city of Winnipeg, Manitoba and the municipalities of Charleston, South

Carolina.

Both databases used in this approach pooled their strengths to provide an ulti-

mately better solution than one or the other. We saw the results from the experiments

conducted in Chapter 6 to support this.

7.2 Future Work

While we believe we have satisfactorily answered the questions we set to address in

this research, there are still possibilities for future work. In Section 4.5, we mentioned

that a limitation of using the graph-only architecture is that there are currently

little to no visualization support tools for graph databases. A visualization tool that
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seamlessly supports the graph’s data structure could remove the need for storing

summary tables on the relational database.

Further probing on the WFPS study revealed that the EMS data for 2018 informed

us of some social demographics of the population. We noticed that the top five

postal codes had adult living facilities within the boundary of all the first responders’

destination locations. One of those five postal codes was also reported to have a high

crime rate by the Winnipeg Police Department that year. From a data management

perspective, the question arises as to how, if possible, our hybrid architecture can

ingest social demographic data and make sense of it? Could the data be stored as

graph attributes or in a tabular structure?

Chapter 6 also discussed the tradeoff between error rates and run times. With

more research into the problem of lost MySQL connections, we can look to improve

our run times by increasing the number of processes working in parallel without

having an increased error rate.

In our conclusion, we mentioned we could use the architecture proposed in Chap-

ter 4 to perform a non-first-responder-specific analysis. Exploring how this design

can support other transportation analyses would be valuable to this research. For

example, it is common knowledge that trains transport a significant portion of North

America’s goods. It would be interesting to analyze how the movement of crop yields

from the farms, for example, affects demand and supply.

Lastly, while we believe that having a document database benefits our hybrid

model. A scenario where we eliminate the need for a document database serving as

a data lake could also be worth exploring.
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