
ADAPTIVE TRIANGULATIONS

by

Oleksandr Maizlish

A Thesis submitted to the Faculty of Graduate Studies of

The University of Manitoba

in partial fulfilment of the requirements of the degree of

DOCTOR OF PHILOSOPHY

Department of Mathematics

University of Manitoba

Winnipeg

Copyright c© 2014 by Oleksandr Maizlish

UNIVERSITY OF MANITOBA

DEPARTMENT OF MATHEMATICS

The undersigned hereby certify that they have read and

recommend to the Faculty of Graduate Studies for acceptance a thesis

entitled “Adaptive triangulations” by Oleksandr Maizlish in partial

fulfillment of the requirements for the degree of Doctor of Philosophy.

Dated:

Research Supervisor:
Kirill Kopotun

Internal Examiner:
Nina Zorboska

Internal Examiner:
Gabriel Thomas

External Examiner:
Carl de Boor

ii

UNIVERSITY OF MANITOBA

Date: June 2013

Author: Oleksandr Maizlish

Title: Adaptive triangulations

Department: Mathematics

Degree: Ph.D.

Convocation: May

Year: 2014

Permission is herewith granted to University of Manitoba to circulate

and to have copied for non-commercial purposes, at its discretion, the above

title upon the request of individuals or institutions.

Signature of Author

THE AUTHOR RESERVES OTHER PUBLICATION RIGHTS, AND
NEITHER THE THESIS NOR EXTENSIVE EXTRACTS FROM IT MAY
BE PRINTED OR OTHERWISE REPRODUCED WITHOUT THE AUTHOR’S
WRITTEN PERMISSION.

THE AUTHOR ATTESTS THAT PERMISSION HAS BEEN OBTAINED
FOR THE USE OF ANY COPYRIGHTED MATERIAL APPEARING IN THIS
THESIS (OTHER THAN BRIEF EXCERPTS REQUIRING ONLY PROPER
ACKNOWLEDGEMENT IN SCHOLARLY WRITING) AND THAT ALL SUCH
USE IS CLEARLY ACKNOWLEDGED.

iii

To my brother Leonid,

who has always been an example for me

Abstract

In this dissertation, we consider the problem of piecewise polynomial approximation

of functions over sets of triangulations. Recently developed adaptive methods, where

the hierarchy of triangulations is not fixed in advance and depends on the local prop-

erties of the function, have received considerable attention. The quick development

of these adaptive methods has been due to the discovery of the wavelet transform in

the 1960’s, probably the best tool for image coding.

Since the mid 80’s, there have been many attempts to design ‘Second Generation’

adaptive techniques that particularly take into account the geometry of edge singu-

larities of an image. But it turned out that almost none of the proposed ‘Second

Generation’ approaches are competitive with wavelet coding. Nevertheless, there are

instances that show deficiencies in the wavelet algorithms. The method suggested

in this dissertation incorporates the geometric properties of convex sets in the con-

struction of adaptive triangulations of an image. The proposed algorithm provides

a nearly optimal order of approximation for cartoon images of convex sets, and is

based on the idea that the location of the centroid of certain types of domains pro-

vides a sufficient amount of information to construct a ’good’ approximation of the

boundaries of those domains. The new algorithm is presented in Chapter 2 with

the main result established in Theorem 2.2. Along with the theoretical analysis of

the algorithm, a Matlab code has been developed and implemented on some simple

cartoon images.

v

Acknowledgments

I wish to thank, first and foremost, my advisor Prof. Kirill Kopotun for sharing

his knowledge with me; I thank him as well for his patience and encouragement

throughout my graduate studies.

I express my gratitude to Prof. Carl de Boor for his many valuable comments that

improved the presentation of this dissertation.

I would also like to acknowledge the Natural Sciences and Engineering Research

Council of Canada for its support during the years of my Ph.D. study.

And of course, this work would not be possible without the support and inspiration

from my Ukrainian and Canadian families.

vi

Contents

0.1 Notations . 1

1 Geometric Methods in Image Coding 6

1.1 Introduction . 6

1.2 Wavelet Coding . 9

1.3 Curvelets . 18

1.4 Wedgelets . 21

1.5 Adaptive Triangulations . 24

2 Hierarchial Adaptive Triangulations for Cartoon Images 29

2.1 Preliminaries and General Principle 29

2.2 Approximation of Convex Curves . 31

2.2.1 Centroid of Convex Figures 31

2.2.2 The Main Idea of Subdivision 35

2.2.3 Centroids of Angular Sets . 37

2.2.4 Approximation of “curves crossing angles” 46

2.3 General Algorithm and Its Properties 56

2.3.1 Main Subdivision Rule . 57

2.3.2 Properties of the Algorithm 66

2.3.3 Further Assumptions on ∂Ω 72

2.3.4 Convergence of the Algorithm 74

3 Conclusions 81

vii

Table of Contents viii

Bibliography 82

A Matlab Code with Implementation 85

List of Figures

1.1 Geometric vs Natural images . 7

1.2 Periodic signal . 10

1.3 Approximating signal using truncated Fourier series 11

1.4 Piecewise regular function and its wavelet coefficients 14

1.5 ’Lena’ test-image and its wavelet decomposition 16

1.6 ’Lena’ test-image corrupted with a gaussian white noise 17

2.1 Construction of 4ADE using the location of its centroid 36

2.2 Point D lies outside 4ABC . 37

2.3 Non-convex and convex curve separable by a line 41

2.4 Centroids of 4APQ and 4AKL coincide 42

2.5 Φ∠A(γ) (4AKL . 45

2.6 Order of points M1,M2,M3 and M 48

2.7 S(∠A)\Φ∠A(γ) is convex: the ratio A(4ADhEh\Φ∠A(γh))
A(Φ∠A(γh))

is large 52

2.8 Φ∠A(γ) is convex: the ratio A(4ADhEh\Φ∠A(γh))
A(4PhQhN)

is large 55

2.9 Subdivision of ∆ ∈ Tr0(Ω) . 58

2.10 Subdivision of ∆ ∈ Tr∗1(Ω), case (1) 60

2.11 Subdivision of ∆ ∈ Tr∗1(Ω), case (1), points E and E2 lie outside ∆ . 61

2.12 Subdivision of ∆ ∈ Tr∗1(Ω), case (2) 62

2.13 Subdivision of ∆ ∈ Tr1(Ω)\Tr∗1(Ω) 63

2.14 Subdivision of ∆ ∈ Tr2(Ω), case (1) 64

2.15 Subdivision of ∆ ∈ Tr2(Ω), case (2) 65

A.1 Implementation: square . 125

ix

Table of Contents x

A.2 Implementation: circle . 126

A.3 Implementation: polygon . 127

1

0.1 Notations

In this section, we list the notations used throughout the dissertation. The notations

introduced in the subsequent chapters are listed with a reference to the page they

are defined on.

Set Theory:

Given a subset S of a metric space (X, ρ),

• S denotes the closure of S;

• int(S) denotes the interior of S;

• ∂S denotes the boundary of S, ∂S = S\int(S).

• dist(x, S) := inf
y∈S

ρ(x, y) denotes the distance between a point x ∈ X and the

set S.

Planar Geometry:

• AB denotes the straight line segment between the points A and B in the plane.

• |AB| denotes the length of the straight line segment AB, and, in general, |γ|
denotes the arc length of a rectifiable curve γ.

•
−−−−→
(A,B) denotes the ray (half-infinite line) originating at A and passing through

point B.

•
−→
AB denotes the vector on the plane connecting the initial point A with the

terminal point B.

•
←→
AB denotes the line on the plane passing through the points A and B.

• ∠A denotes the angle, i.e., the geometric figure formed by two rays (called the

sides of the angle), originating at the common vertex A.

• S(∠A) denotes the set of points inside ∠A together with the sides of the angle

(see page 38).

2

• Γ(∠A) denotes the set of simple rectifiable curves inside S(∠A) with the end-

points on the sides of ∠A (see page 38).

• Γ0(∠A) denotes the set of convex curves γ ∈ Γ(∠A) that have two points of

intersection with its straight line segment approximation DE = DE(∠A, γ)

(see pages 46,50).

• Φ∠A(γ) denotes the ‘angular set’ for each γ ∈ Γ(∠A) (see page 38).

• ∆ (or 4) denotes a triangle, i.e., a closed region bounded by three straight

line segments (called the sides of the triangle) connecting three points on the

plane (called the vertices of the triangle). A triangle with vertices A,B and C

is denoted by 4ABC. The interior angles ∠A,∠B and ∠C of 4ABC can be

also denoted by ∠BAC,∠ABC and ∠ACB, respectively.

• conv(S) denotes the convex hull of a set S ⊂ R2 (see page 29).

Function Theory:

Given an open subset U of the Euclidean space Rm, m ≥ 1,

• Pn denotes the set of polynomials of degree ≤ n.

• C(U) denotes the set of all continuous real-valued functions on U .

• C(k)(U) denotes the set of all k times continuously differentiable real-valued

functions f on U , i.e., all of the (partial) derivatives of order k of f exist and

are continuous.

• d2f denotes the Hessian matrix of f , i.e., for f ∈ C(2)(U), d2f is a m × m

matrix such that (d2f)ij =
∂2f

∂xi∂xj
, 1 ≤ i, j ≤ m.

• supp(f) denotes the support of the function f , i.e., the smallest closed set such

that f is identically zero almost everywhere outside this set.

• λ = λm denotes the Lebesgue measure in Rm.

3

• L1,loc(U) denotes the set of locally integrable real-valued functions on U , i.e.,

(Lebesgue) integrable on any compact subset K ⊂ U .

• Lp(U), 0 < p ≤ ∞, denotes the space of all measurable functions f : U → R
such that

‖f‖Lp(U) :=


(∫

U

|f(x)|pdλm(x)

)1/p

, if p <∞,

ess supx∈U |f(x)|, if p =∞

 <∞.

• lp, 0 < p ≤ ∞, denotes the space of all sequences {xn}∞n=1 such that

‖x‖p :=


(
∞∑
n=1

|xn|p
)1/p

, if p <∞,

supn≥1 |xn|, if p =∞

 <∞.

• The function g ∈ L1,loc(U) is called the αth-weak derivative of f ∈ L1,loc(U) (α

is a multi-index) if ∫
U

fDαϕ = (−1)|α|
∫
U

gϕ

holds for all infinitely many times differentiable functions ϕ with compact sup-

port in U . Notation: g = Dαf .

• W k,p(U) denotes the Sobolev space, i.e., the set of all functions f ∈ Lp(U) such

that for every multi-index α with |α| ≤ k, Dαf ∈ Lp(U).

• Let ∆r
h(f, x) denote the rth order difference with step h ∈ Rm, i.e.,

∆r
h(f, x) =

r∑
k=0

(
r

k

)
(−1)r−kf(x+ kh).

Then the modulus of smoothness of order r of f ∈ Lp(U), p > 0 is defined as

ωr(f, t)p := sup
|h|≤t
‖∆r

h(f, ·)‖Lp(U(rh)), t > 0,

where ‖ · ‖Lp(U(rh)) is a (quasi-)norm on Lp(U(rh)), with U(rh) := {x ∈ U :

[x, x+ rh] ⊂ U}.

4

• BV ([0, 1]2) denotes the space of the functions of bounded variation on the unit

square [0, 1]2 (see the details on page 16).

• Bs
p,q (s, p, q > 0) denotes the Besov space, i.e., the set of functions f ∈ Lp(U)

such that for s < r,

|f |Bsp,q =

(∫ ∞
0

(t−sωr(f, t)p)
q dt

t

)1/q

is finite.

• χY is the characteristic function of a set Y ⊂ Rm, i.e.,

χY (x) =

1, if x ∈ Y,

0, otherwise.

• A function that is smooth on a finite number of subdomains Yi ⊂ R2 separated

by a union of smooth discontinuity curves is called a cartoon function (image).

Discrete Mathematics and Graph Theory:

• #S denotes the cardinality of a set S.

• G = (V,E) denotes an undirected graph, i.e., an ordered pair (V,E), where

the first component is a non-empty set V of the vertices of the graph, and the

second component is a set E of 2-element subsets of V (the so-called edges).

• Given a graph G = (V,E), a path in graph G is defined as a sequence of

edges that connect a sequence of vertices. A path is called simple if it has no

repeated vertices. The length of a path is the number of edges that the path

uses (counting multiple edges multiple times).

• A tree is an undirected graph such that any two of its vertices can be connected

by exactly one simple path. A tree is called rooted if one vertex has been

designated the root, in which case the edges have a natural orientation, towards

or away from the root.

5

• A forest is a disjoint union of trees.

• Let {an}∞n=1 and {bn}∞n=1 be two sequences of real numbers. Then we say that

an = O(bn), n→∞,

if there exist a natural number n0 and a positive constant C such that

|an| ≤ C|bn|, for all n ≥ n0.

Let an, bn ≥ 0. We say that an ∼ bn as n → ∞ (an and bn are asymptotically

equal) if

an = O(bn), bn = O(an), n→∞.

Chapter 1

Geometric Methods in Image

Coding

1.1 Introduction

Until the 1980’s, most image coding methods relied on techniques based on clas-

sical information theory and exploited the redundancy in the images in order to

achieve compression. These techniques utilized the information carried by each in-

dividual pixel and did not use any specific features of the whole image (see overview

in [15],[28],[35]). However, any non-artificial image is a combination of geometric,

smooth, and textured regions. Geometric characteristics, so-called edges, usually

indicate the transitions between smooth or textured regions and are often repre-

sented by rapid variance in the pixel intensity (or simply speaking, pixel color) in

the neighbourhood of straight or curved contours. Edges communicate important in-

formation, conveying the location and shape of pictured objects. Figure 1.1a shows

an example of an image where the relevant information is mainly carried along a

set of edges (the line of the horizon between the sky and the ocean along with the

shape of the mountain). Natural images (see Figure 1.1b) are usually more complex

than in the example shown in Figure 1.1a (or any cartoon image), but taking advan-

tage of geometric structures in them is crucial for an efficient compression/processing

algorithm.

6

Chapter 1: Geometric Methods in Image Coding 7

Figure 1.1: Geometric vs Natural images

(a) Geometrical image (b) Natural image

Geometric structures appear in various signal models and often carry most of the

perceptual information [19]. The motion of objects in a movie is described using

an optical flow that follows the 3D geometry of the signal (2D picture flow over

time). Natural sounds also exhibit geometric patterns in the time-frequency plane

where evolving harmonics follow geometric paths. All these geometric features are

essential for human perception and should be exploited by modern signal processing

methods. While first-generation lossy image techniques could provide high ratios of

compression (greater than 30 to 1) only at the expense of image quality [29], second-

generation image techniques attempt to identify geometric features of the image and

thereby separate the visually significant and insignificant areas of the image and then

apply appropriate coding techniques to each area afterwards [18],[28].

From a mathematical perspective, the tools of classical differential geometry can

efficiently characterize contours when the edge curves are well defined. Introduction

of wavelet transform and wavelet bases allows efficient representation of the regular

parts of images. This is the reason why orthogonal wavelet bases are at the heart of

JPEG2000 [32], the latest and probably the best image compression standard, which

totally supersedes the well-known image standard JPEG. However, in the case of

edges where a singularity extends along a contour, the number of 2D wavelets over-

lapping the singularity grows exponentially at higher scales, and thus, reconstruction

of even a simple, straight edge requires ’many’ wavelet coefficients [34]. The problem

Chapter 1: Geometric Methods in Image Coding 8

gets even more complex since natural images have varying blurring and turbulent

textures, and even the local description of geometric regularity is not very well de-

fined. In Section 1.2, we discuss the wavelet approach and explain its deficiencies for

geometric images. In the next sections, we will continue the overview of the geomet-

ric techniques in Image Processing in a sequence similar to the structure of [22]; the

reader can find information on the modern state of the art in Image Compression

techniques, however, we do not aim to mention all of the existing tools and focus

only on the basic innovative ideas in Data Compression.

A thresholding in a wavelet basis is equivalent to a finite element approximation

with a square support, such that the elements are refined near the singularities. In

Section 1.4, we will introduce another square-based representation using wedgelets.

In order to geometrically adapt to the edge singularities, the wedgelets of Donoho

divide the support of the image in dyadic adapted squares, and on each square, the

image is approximated with a constant value on each side of some straight edge. The

choice of this edge is optimized using the local content of the image. This approach is

generalized by Shukla et al. [31] where they replace constant values by polynomials of

higher degree and the straight edges by polynomial curves. This approach is efficient

as long as the geometry of the image is again not too complex and edges are not

blurred.

To enhance the performance of the finite element method, it is necessary to use

geometrically more flexible figures; for instance, an adaptive triangulation. In Section

1.3, we give an overview of another representation method proposed by Candes and

Donoho that uses so-called curvelets, functions with support elongated along the

singularities (similar to thin and long triangles stretched along the contours of an

image).

In Section 1.5, an overview of general adaptive isotropic and anisotropic triangu-

lation methods is given (with no fixed hierarchy of triangles used in representations).

We discuss the optimality of the Newest Vertex Bisection Method among adaptive

isotropic triangulation methods as well as progress in the anisotropic direction.

Finally, in Chapter 2, we suggest a completely new and geometric approach. The

Chapter 1: Geometric Methods in Image Coding 9

main idea of the method is that the location of the centroid of an area bounded

by two sides of a triangle and a curve crossing these two sides contains a sufficient

amount of information to construct a ‘good’ approximation to the curve. Further-

more, for a special class of curves, knowing the coordinates of the centroid allows

full reconstruction of the curve. The condition of convexity is a significant part of

the algorithm thus far, as there are many nice and simple facts regarding the cen-

troid of a convex body along with more complicated but no less beautiful results like

Winternitz’s theorem [3, pp. 54-55]. We show that the proposed algorithm implies a

nearly optimal order of approximation for cartoon images.

1.2 Wavelet Coding

A general transform coding scheme involves subdividing an N×N image into smaller

n × n blocks and performing a linear invertible transform on each sub-image. This

discrete transformation produces a representation in a new, often orthonormal basis.

This procedure generally results in the signal energy being redistributed among only

a small set of the coefficients in the new basis representation. For instance, in the

JPEG compression standard, each 8 × 8 block is converted to a frequency-domain

representation using the 2-dimensional Discrete Cosine Transform. As a result, most

of the signal has a tendency to aggregate in one corner of an 8× 8 frequency-domain

representation of the sub-image. This step is followed by quantization, when the

signal is being multiplied by some scale and then rounded to the nearest integer.

The procedure of quantization in JPEG is the only lossy operation in the process:

it produces many zeroes in the higher frequency coefficients and thus reduces the

number of bits required to represent the signal.

Now given a continuous (periodic) signal f(t), decomposing it in an orthogonal

basis allows one to define a sparse representation using a simple thresholding. In

particular, one can decompose the signal into the superposition of its high order

harmonics based on the Fourier expansion theory. The following example shows how

a truncated Fourier series approximates the original signal.

Chapter 1: Geometric Methods in Image Coding 10

Example 1.1. Let f be a T -periodic function (T > 0) such that f(t) = 1− 2|t|/T ,

for |t| < T/2 (see Figure 1.2).

Figure 1.2: Periodic signal

Then, the Fourier series representation for f is

f(t) =
∞∑

k=−∞

ak exp

(
i
2πkt

T

)
= a0 +

∞∑
k=1

2ak cos

(
2πkt

T

)
,

where the Fourier coefficients ak are

ak =
1

T

∫ T/2

−T/2
f(t) exp

(
−i2πkt

T

)
dt =

2 sin2(πk/2)

(πk)2
,

and we use the fact that f is even.

Based on the decreasing rate of the coefficients, the signal concentrates most in the

low frequency components. Below on Figure 1.3, we show the approximation of the

signal f obtained by truncating the series coefficients in the range |k| ≤ 1, i.e., by

keeping only the terms in the series that correspond to k = −1, 0, 1.

In general, as N approaches infinity, we can expect the approximation∑
|k|≤N

ak exp

(
i
2πkt

T

)
to be arbitrarily close to the original signal.

Chapter 1: Geometric Methods in Image Coding 11

Figure 1.3: Approximating signal using truncated Fourier series with |k| ≤ 1

However, if we take a Fourier transform of not necessarily periodic functions

over the infinite time domain, we cannot distinguish at what instant a particular

frequency occurs. Time-localization can be partially resolved by first windowing the

signal [8], and then taking its Fourier transform. A full solution to this problem can

be achieved by introducing a different basis for representation, a so-called wavelet

basis that can localize both the time and frequency of the signal.

The first reference to the idea of wavelet bases was proposed by the mathemati-

cian Alfred Haar [14] in 1910. However, the concept of the wavelet did not exist at

that time. In 1981, the concept was proposed by geophysicist Jean Morlet. After-

wards, Morlet and physicist Alex Grossman invented the term wavelet in 1984 (or to

be precise, they used an equivalent French word ‘ondelette’, meaning ‘small wave’).

Since then, a wavelet system usually involves dilations and shifts of a single function

that form an orthogonal basis in some space. Before 1985, the Haar wavelet was the

only existing orthogonal wavelet until the mathematician Yves Meyer constructed a

second orthogonal wavelet system now called Meyer wavelets [23] in 1985. More and

more scholars joined this study at the first international conference held in France

in 1987. In 1988, Stephane Mallat and Meyer proposed the concept of multireso-

lution analysis. In the same year, Ingrid Daubechies found a systematical method

to construct compactly supported orthogonal wavelets. In 1989, Mallat proposed

Chapter 1: Geometric Methods in Image Coding 12

the fast wavelet transform. With the appearance of this fast algorithm, the wavelet

transform received numerous applications in Signal Processing.

Returning to the basis representation problem, given f ∈ L2(I) (I is a possibly in-

finite interval), the best approximation fN of the function f with N coefficients in an

orthonormal basis B =
{
gµ
}
µ∈S is computed using N absolutely largest coefficients

above some threshold L:

fN =
∑

|〈f,gµ〉|>L

〈f, gµ〉gµ, N := #{µ : |〈f, gµ〉| > L},

where 〈·, ·〉 denotes the inner product in L2(I). It is easy to see that then the

approximation error is

‖f − fN‖2
L2(I) =

∑
|〈f,gµ〉|≤L

|〈f, gµ〉|2.

Hence, aiming to optimize the representation, one is looking for a basis B such

that the decay of the approximation error is maximized, i.e., ‖f − fN‖2
L2(I) =

O(N−β), N → ∞, for the largest possible β. Thus, the approximation problem

is the key part of any compression algorithm.

Remark 1.1. In some instances, we may consider expansions in more general sys-

tems of functions:

• Frames. Given a vector space V with inner product 〈·, ·〉, a sequence of vectors{
vk
}

is called a frame if there exist real A and B, 0 < A ≤ B <∞, such that

A‖u‖2 ≤
∑
k

|〈u, vk〉|2 ≤ B‖u‖2, for all u ∈ V. (1.1)

One can show that condition (1.1) implies existence of a sequence of dual frame

vectors
{
ṽk
}

such that, for any u ∈ V ,

u =
∑
k

〈u, ṽk〉vk =
∑
k

〈u, vk〉ṽk.

A frame is called tight if A = B in condition (1.1), i.e., Parseval’s identity is

satisfied.

A frame is called exact if it ceases to be a frame whenever any single element

is removed from it.

Chapter 1: Geometric Methods in Image Coding 13

• Riesz Basis. Given a Hilbert space H, a system
{
xk
}
⊂ H is a Riesz system

with constants A,B > 0 if for any c =
{
ck
}
∈ l2, the series

∑
k ckxk converges

in H and

A‖c‖2
l2
≤

∥∥∥∥∥∑
k

ckxk

∥∥∥∥∥
2

H

≤ B‖c‖2
l2
.

If additionally the system
{
xk
}

is a basis, it is called a Riesz basis. Note that

any sequence
{
xk
}

in a Hilbert space H is an exact frame for H if and only if

it is a Riesz basis in H.

We refer readers to, for example, [27, §1.1,1.8] for more information about

frames and Riesz bases.

1D-wavelets. Given a function ψ ∈ L2(R), a system of functions

{ψj,k = 2j/2ψ(2jx− k) : j, k ∈ Z}

is a called a discrete wavelet system if it is an orthonormal basis of L2(R). In order

to characterize approximation smoothness classes, one often requires ψ (also called

mother-wavelet) to have compact support and r vanishing moments, i.e.,∫
R
xlψ(x) dx = 0, 0 ≤ l ≤ r.

This condition arises naturally since a locally smooth function is locally ’well-approximated’

by polynomials. And hence, provided ψ has r vanishing moments, for any f ∈ L2(R)∫
R
fψj,k dx =

∫
R
(f − P)ψj,k dx,

as long as P has degree ≤ r. If P approximates f well on the interval contain-

ing the support of ψj,k, then the corresponding wavelet coefficient 〈f, ψj,k〉 is small.

Daubechies (see [8, §6.3, Theorem 6.3.6] for instance) showed the possibility of con-

structing a mother-wavelet with compact support, vanishing moments and generating

an orthonormal basis of L2(R). These properties of a mother-wavelet ensure that

(reader can be referred to [13, Theorem 37, p.46]) for a function f ∈ C(n)(I) and a

wavelet ψj,k with supp(ψj,k) ⊂ I,

〈f, ψj,k〉 = O(2−j(n+1/2)), j →∞ (uniformly in k). (1.2)

As a corollary from this, one can show that

Chapter 1: Geometric Methods in Image Coding 14

Corollary 1.1. If f is a piecewise C(n)-function with a finite number of singularities,

then ‖f − fN‖2
L2(R) = O(N−2n), N →∞.

This asymptotic decay is optimal and coincides with the rate of approximation

for an f with no singularity. Hence, the existence of a finite number of singularities

does not affect the asymptotic precision of a wavelet approximation on the real line

[22].

Figure 1.4 shows a piecewise regular function together with its Haar wavelet

coefficients 〈f, ψj,k〉, j = 0, . . . , 9. We can notice that the large coefficients are

localized in the neighborhood of singularities. At the end, we plot fN computed with

the 10% largest wavelet coefficients. As we can now see, the existence of singularities

does not affect the asymptotic precision of a wavelet approximation in this case.

Figure 1.4: Piecewise regular function together with its wavelet coefficients; trun-
cated Haar wavelet representation using 10% largest wavelet coefficients.

2D-wavelets. Wavelets in R2 can be constructed using tensor products, or more

Chapter 1: Geometric Methods in Image Coding 15

precisely, by dilations and translations of three elementary wavelets

{ψH(x, y), ψV (x, y), ψD(x, y)},

which oscillate in the horizontal, vertical and diagonal directions (for details, see

[8],[27]). These functions may be obtained as a product of the corresponding wavelet

functions in the 1-dimensional case of x and y variables, i.e., these wavelets are

separable products of monodimensional wavelet functions. Thus,

B = {ψqj,k,l(x, y) = 2jψq(2jx− k, 2jy − l), q = H,V,D}j,k,l∈Z.

2-dimensional wavelets play a key role in the JPEG2000 image compression standard

decomposing an image in a wavelet basis followed by quantization and encoding that

uses the redundancies in the statistical distribution of the image coefficients and

optimizes the binary code [32]. Figure 1.5 shows a famous test-image compressed

using wavelet decomposition with a threshold of 10% and 2% largest coefficients. As

we can see, the compressed image with 10% threshold is fairly accurate.

Another application of wavelet bases on square domains is the denoising of images.

The next example shows the same test-image corrupted with a gaussian white noise

W of variance σ = 0.03. One of the possible approaches is to use a convolution with

an optimized filter. However, such a method often suppresses a part of the noise but

also smooths the image singularities which creates a blurry image. On the other hand,

it is shown in Figure 1.6 that by thresholding 1% of the largest wavelet coefficients,

and then performing the inverse wavelet transform on the thresholded coefficients,

the noise level in the image is significantly reduced in homogeneous regions and

edges are better reconstructed because their wavelet coefficients are retained by the

thresholding.

In terms of the accuracy of the wavelet approximation in the 2-dimensional case,

the regular C(n) images on a domain Ω allow the rate of convergence similar to the

1-dimensional case:

‖f − fN‖2
L2(Ω) = O(N−n), N →∞.

However, in contrast to the 1-dimensional scenario, this estimate is no longer valid if

f is discontinuous along some edge. If f is only a piecewise C(n) image (on the sets

Chapter 1: Geometric Methods in Image Coding 16

Figure 1.5: ’Lena’ test-image and its wavelet decomposition with a threshold of 10%
and 2% largest coefficients

outside a finite number of contours of finite length), then the rate of convergence

becomes

‖f − fN‖2
L2(Ω) = O(N−1), N →∞. (1.3)

This result is a particular case of a more general statement, a direct Jackson-type

estimate, from [6]. If f belongs to the class BV ([0, 1]2) (of bounded variation), then

‖f − fN‖2
L2([0,1]2) ≤ CN−1|f |BV ([0,1]2),

where the constant C is independent of N and f . The space of the functions of

bounded variation with the seminorm |·|BV ([0,1]2) is defined as follows: f ∈ BV ([0, 1]2)

if and only if

|f |BV ([0,1]2) := sup
h>0

h−1
[
‖∆he1(f, ·)‖L1(Q(he1)) + ‖∆he2(f, ·)‖L1(Q(he2))

]
<∞,

Chapter 1: Geometric Methods in Image Coding 17

Figure 1.6: ’Lena’ test-image corrupted with a gaussian white noise W of variance
σ = 0.03; wavelet denoising using 1% of the largest wavelet coefficients

where ∆µ(f, x) := ∆1
µ(f, x) is the first difference, e1, e2 are two unit vectors in x- and

y-directions, respectively, and set Q(µ) := {x : [x, x+ µ] ⊂ [0, 1]2}.
However, if the image singularities are located along a smooth contour, one can

still hope for an an efficient geometric representation. More precisely, the desired

result is that the rate of approximation ‖f − fN‖2
L2(I) will have the order of N−n as

if there were no singularities in the image.

As mentioned in the introduction, thresholding wavelet decomposition by choos-

ing only the N absolutely largest wavelet coefficients is equivalent to using piecewise

constant approximation over adaptive anisotropic triangulations with N triangles (or

Chapter 1: Geometric Methods in Image Coding 18

asymptotically proportional to N). Clearly, we can construct a triangulation with N

vertices along the discontinuity edges, and in case of black and white cartoon images

with C(2) edges, the approximation f trN based on this triangulation will have an error

‖f − f trN ‖2
L2(Ω) ≤ CN ·N−3 = CN−2, (1.4)

since the error over each triangle will have an order of N−3 due to the estimates of

type (2.40) and (2.42) mentioned in Subsection 2.3.3. Thus, estimate (1.4) implies

that it is possible to obtain approximation error rates that decay faster than wavelet

approximation by adapting the representation to the geometry of the image. Replac-

ing triangles with geometric structures that have polynomial curves as boundaries

will lead to even better rates of approximation. However, even in simple cases of

triangulation, finding an algorithm that constructs an adaptive triangulation that

satisfies (1.4) is still an unresolved problem in general. Some partial progress on this

problem will be discussed in Section 1.5.

1.3 Curvelets

Despite the lack of an algorithm to construct result (1.4), it provides an objective

performance benchmark. Its asymptotic convergence rate is actually the correct

optimal behavior for approximating general smooth objects having singularities along

piecewise C(2) curves. Consider a binary (black and white) image for which the

curvature of the boundary curve separating black from white is bounded above.

The approximation-theoretic arguments in [11] and [17] lead to the fact that

retaining the N absolutely largest coefficients in any orthogonal basis representation

cannot imply an approximation error rate better than N−2 (in L2-norm). Even if one

considers finite linear combinations of N elements of an arbitrary basis (not neces-

sarily orthogonal basis or near-orthogonal system), there is no depth-search-limited

dictionary that can achieve a better rate than N−2; see [11]. By “depth-search-

limited”, we mean allowing sequences of dictionaries whose size grows polynomially

in the number of terms to be kept in the approximation. Furthermore, no fixed basis

Chapter 1: Geometric Methods in Image Coding 19

even comes close to the optimal convergence rate (1.4). In fact, the wavelet conver-

gence rate is the best published nonadaptive result. However, Candes and Donoho

showed that there is a basis whose simple thresholding achieves a nearly optimal rate

of convergence, and it is due to the introduction of curvelets.

There exist different constructions of curvelets. The earlier introduction of curvelets

involves the construction of so-called ridgelets [4]. However, in our further discussion

we will refer to the second generation of curvelets and follow [5].

Let µ be a triple (j, l, k), where j ∈ N ∪ {0} is a scale parameter; l = 0, 1, . . . , 2j

is an orientation parameter; and k = (k1, k2), k1, k2 ∈ Z, is a translation parameter.

Then the system of curvelets {γµ} is defined as follows

γµ(x) = 23j/2γ(DjRθJx− kδ),

where

• γ is smooth and oscillatory in the horizontal direction and bellshaped (nonoscil-

latory) along the vertical direction on R2 (to give a better idea on the structure

of γ, one can think of it as a 2-dimensional wavelet separable in variables x1

and x2);

• Rθ is the matrix of the planar rotation by θ radians in the counter-clockwise

direction;

• θJ = 2πl/2jl is the rotation angle (J = (j, l));

• Dj is a parabolic scaling matrix

Dj =

(
22j 0

0 2j

)
,

• kδ is the translation parameter.

It was shown in [5] that for a certain class of γ, {γµ} is a tight frame of L2([0, 1]2),

and thus any f ∈ L2([0, 1]2) can be reconstructed by f =
∑
µ

〈γ̃µ, f〉γµ. Then, if f

Chapter 1: Geometric Methods in Image Coding 20

is piecewise C(2) with singularities along C(2) contours, the authors have shown that

thresholding of the curvelet expansion leads to nearly optimal results.

To further elaborate, let us first introduce some notations. We say that a set

S ∈ STAR2(A) if S ⊂ [0, 1]2 and the boundary of S (or translated S) is bounded by

some polar curve r = ρ(θ), 0 ≤ θ ≤ 2π, with ‖ρ‖∞ ≤ ρ0 and ‖ρ′′‖∞ ≤ A. As well,

C
(2)
0 ([0, 1]2) is defined as the collection of twice continuously differentiable functions

supported strictly inside the unit square. We also define the collection of functions

E(A) as follows

E(A) := {f = f0 + f1χS : f0, f1 ∈ C(2)
0 ([0, 1]2), S ∈ STAR2(A)}.

We are now ready to state the main result on curvelet approximation optimality.

Theorem 1.1 (Candès, Donoho [5]). Let aµ(f) := 〈γµ, f〉 be the curvelet coefficient

sequence for a function f ∈ E(A) (A > 0 is fixed). Let also |a(f)|(N) be the N th

absolutely largest entry in the coefficient sequence {a(f)µ}µ. Then

sup
f∈E(A)

|a(f)|(N) ≤ CN−3/2(logN)3/2,

where the constant C = C(A, ρ0) depends on A and ρ0.

Thus, we deduce that under the assumptions of Theorem 1.1 above,

‖f − f cN‖2
L2
≤ CN−2(logN)3, (1.5)

where f cN is the N -term approximation of f obtained by extracting from the curvelet

series the terms corresponding to the N absolutely largest coefficients. It is also

worth noting that the results remain valid if we allow several piecewise C(2) edge

curves with finitely many intersections, as demonstrated in [5] as well.

Up to the logN factor in (1.5), one recovers the result (1.4) obtained using an

optimal triangulation, but this time with an algorithmic approach. Unlike an op-

timal triangulation that has to adapt the aspect ratio of its elements (see Section

1.5), the curvelet basis is a priori fixed and the thresholding of the curvelet coef-

ficients is enough to adapt the approximation to the geometry of the image. This

Chapter 1: Geometric Methods in Image Coding 21

simplicity however has a downside. The curvelet approximation is only optimal for

piecewise C(n) functions with n = 2, but it is no longer optimal for n > 2, or for less

regular functions such as functions of bounded variation. Recently (see [30]), it was

established that the convergence rates of the curvelet approximation increase when

smoothness increases. The main result is that the logarithmic factor in the result

above is unnecessary if the function and the edges that separate smooth regions have

C(3) smoothness.

Another disadvantage of the proposed method in this section is that as of today,

none of the constructed bases of curvelets is an orthogonal basis, which makes them

less efficient than wavelets for compressing natural images.

1.4 Wedgelets

Many adaptive geometric representations have been proposed recently with good

results in Image Processing. The wedgelets of Donoho [10] segment the support of

the image into dyadic adapted squares. On each square, the image is approximated

with a constant value on both sides of a straight edge. The direction of this estimated

edge is optimized using the local content of the image. This approach is generalized

by Shukla et al. [31] by replacing constant values by polynomials and the straight

edges by polynomial curves.

Now, let us discuss the construction of wedgelets in details. We will consider

so-called “horizon” functions defined on the unit square [0, 1]2:

f(x) = χ{(x1,x2):x2≥H(x1), x1∈[0,1]}, for some H(x).

For every level j ≥ 0, the unit square can be partitioned into the set of dyadic

squares:

[0, 1]2 =
⋃

k1,k2∈{0,1,...2j−1}

Sj(k1, k2) :=
⋃

k1,k2∈{0,1,...2j−1}

[k12−j, (k1+1)2−j]×[k22−j, (k2+1)2−j].

Fix an integer n = 2J . Then each dyadic square SJ(k1, k2), k1, k2 ∈ 0, 1, . . . , n− 1,

can be viewed as one of n2 pixels of the image with resolution n × n. In order to

Chapter 1: Geometric Methods in Image Coding 22

construct some approximation to H(x), we may consider a collection of edge elements

(edgels) connecting all possible vertices (k1/n, k2/n) of the dyadic partition. This

construction will, though, lead to O(n4) distinct edgels. To avoid the search over this

obviously large number of edgels, one can reduce the number by introducing a new

subfamily of edgels, so-called edgelets. Choose a level of resolution δ := 2−J−K , K ≥
0. On the perimeter of each dyadic square Sj(k1, k2, j), 0 ≤ j ≤ J , mark off a set of

equispaced vertices, with distance δ apart, starting at the right upper corner. Denote

by V (Sj) the set of these vertices vi,Sj labeling them in a clockwise order. Note that

Mj := #V (Sj) = 2J+K−j+2. Now, for given dyadic n and δ, we define the set of

edgelets as follows

En,δ :=
⋃

0≤j≤J

⋃
Sj

Eδ(Sj) :=
⋃

0≤j≤J

⋃
Sj

{e = vi1,Sjvi2,Sj : 0 ≤ i1, i2 ≤Mj}.

The set En,δ obviously contains fewer than O(n4) edgels. Taking into account that

#Eδ(Sj) =

(
Mj

2

)
, we estimate #En,δ:

#En,δ =
J∑
j=0

∑
k1,k2∈{0,1,...,2j−1}

#Eδ(Sj(k1, k2)) =
J∑
j=0

22j

(
Mj

2

)

≤
J∑
j=0

22jM2
j /2 =

J∑
j=0

22j22J+2K−2j+4/2 = 8(J + 1)
(
2−J−K

)−2

= 8(log2 n+ 1)δ−2.

This in particular implies that if K = 0 (i.e., δ = 1/n), then the number of edgels

in En,δ has order of O(n2 log n).

One of the results concerning the approximation of image contours is as follows:

Theorem 1.2 ([10]). Let H be a continuous “horizon” function, 0 ≤ H(t) ≤ 1, t ∈
[0, 1]. Let Γ := {(t,H(t)) : t ∈ [0, 1]} be the associated horizon set in [0, 1]2, and

suppose that this set can be approximated to within Hausdorff distance ε using at

most m edgels with arbitrary vertices. Then this curve may be approximated within

Hausdorff distance ε+ δ using at most 8m log n edgelets from En,δ, for n > 2, m ≥ 2.

Chapter 1: Geometric Methods in Image Coding 23

The collection of edgelets generates an efficient segmentation of images and is

a useful tool to represent the edges in the images. In particular, one can build a

basis for the space of “horizon” images. Indeed, for each dyadic square S, its every

non-degenerate edgelet e ∈ Eδ(S) (not lying entirely on one of the sides of S) divides

S into two regions. By ωe,S, we denote the characteristic function of one of these

regions, namely, the one containing the segment joining vertices v0,S and v1,S. Then

let

Wδ(S) := {χS} ∪ {ωe,S : e ∈ Eδ(S) is nondegenerate}

be the set of functions that bijectively correspond to all the ways of splitting S into

two pieces by edgelets (including the special case of not splitting it at all). For a

given n = 2J and dyadic δ, by W(n, δ) we denote the set of all wedgelets ωi such

that ωi ∈ Wδ(S), for some dyadic square Sj, 0 ≤ j ≤ J .

In some sense, the wedgelets constructed above provide near-optimal representa-

tions of “horizon” functions.

Definition 1.1. Let H be a function defined on the interval [0, 1]. Then we say

• H ∈ Hölderα(C), 0 < α ≤ 1, if

|H(x)−H(y)| ≤ C|x− y|α, x, y ∈ [0, 1];

• H ∈ Hölderα(C), 1 < α ≤ 2, if

|H ′(x)−H ′(y)| ≤ C|x− y|α−1, x, y ∈ [0, 1].

Theorem 1.3 ([10]). Let H be a “horizon” function such that H ∈ Horizα(Cα, C1) :=

Hölderα(Cα) ∩ Hölder1(C1), for some α ∈ [1, 2], and let f(x1, x2) = χ{x2≥H(x1)} be

the corresponding image-function defined on [0, 1]2. In addition, suppose that n > 2

and 2 ≤ m ≤ n. Then, there exist m′ ≤ 8(C1 + 2)m and a collection of m′ wedgelets

ωi ∈ W(n, δ) such that

‖f(x1, x2)−
m′∑
i=1

ωi(x1, x2)‖2
L2([0,1]2) ≤ C

1

mα
+ δ,

where the constant C depends only on α.

Chapter 1: Geometric Methods in Image Coding 24

Taking m = n and δ = O(m−α), one can obtain the following estimate on the

approximation error of f by fm′(x1, x2) =
∑m′

i=1 ωi(x1, x2):

‖f − fm′‖2
L2([0,1]2) = O(m−α), m→∞.

In addition, wedgelet descriptions achieve the optimal exponent rate O(ε−2/α) of

growth of the number of bits necessary to retain to be sure that the reconstruction

of any f ∈ Horizα(C1, Cα) will have accuracy ε.

The wedgelets are known to be very efficient in noise removal applications. Some

extensions of the results are possible (such as considering H ∈ Bα
p,q or the cartoon

images of star-shaped domains).

Due to the fact that wedgelets are discontinuous functions, the reconstructions

they provide generate bad visual artifacts away from the actual boundary being

estimated: so-called blocking effects. Such artifacts are not acceptable in the Im-

age Processing context. In addition, since the system of wedgelets is overcomplete

there have been various approaches to create efficient computational algorithms for

wedgelet coding.

To summarize, wedgelets can be used as long as the geometry of the image is not

too complex and the edges are not blurred.

1.5 Adaptive Triangulations

Now we restrict our attention to functions defined on polygonal domains and ap-

proximation techniques using finite element methods. To start with, there are two

distinct approaches: uniform and adaptive. In the uniform case, all the elements of

the mesh have comparable shapes and sizes, while these parameters may vary in the

case of an adaptive approximation. Furthermore, the mesh in adaptive methods is

not fixed in advance but uniquely constructed for each individual function f to be

approximated. The function itself may or may not be fully known (only partially

known or even fully unknown as in denoising or in solutions of PDEs). From now

on, we will consider only triangular partitions.

Chapter 1: Geometric Methods in Image Coding 25

Another distinction among adaptive methods is between isotropic and anisotropic

triangulations. Each triangle in an isotropic triangulation must satisfy some (reg-

ularity) condition that guarantees the triangular element does not differ too much

from an equilateral triangle. These conditions can be either (i) a lower bound θ0 > 0

for every angle of the triangle, or (ii) a lower bound on the aspect ratio

ρ∆ :=
R∆

r∆

≥ ρ0 > 0, (1.6)

where R∆ and r∆ are the radii of the circle with triangle ∆ inscribed and the circle

inscribed in triangle ∆, respectively. For an anisotropic triangulation, the aspect

ratio can be arbitrarily large, or geometrically speaking, long and thin triangles are

allowed.

In terms of the approximating elements, in this section we assume that the func-

tion f is approximated by a linear function on each triangular element. More pre-

cisely, given a triangulation DN (comprising N triangles) of a polygonal domain Ω,

we approximate f by a piecewise linear function fN such that fN
∣∣
∆

is a polynomial

of degree ≤ 1, for any ∆ ∈ DN . We are interested in estimating the asymptotic

behaviour of ‖f − fN‖Lp(Ω), as N →∞.

Definition 1.2. The best piecewise-linear approximation error of f over triangula-

tions of cardinality N is defined as

eN(f)Lp(Ω) := inf
#D≤N

inf
fN |∆∈P1,∆∈D

‖f − fN‖Lp(Ω).

In the next part of this section, we follow the approach presented in [24] to

investigate the rate of this approximation in three possible scenarios of triangulations:

uniform, isotropic and anisotropic.

Uniform triangulations. From numerical analysis basics, one can always establish the

following inequality on the error of approximation by the finite elements method: for

f ∈ W 2,p(Ω) and any triangulation D with N := #D and h := max∆∈D diam(∆),

‖f − fN‖Lp(Ω) ≤ Ch2‖d2f‖Lp(Ω), (1.7)

where C is a positive constant independent of N and f . In the estimate (1.7),

we view the collection of the elements of 2 × 2 Hessian matrix d2f(z), z ∈ Ω, as

Chapter 1: Geometric Methods in Image Coding 26

the corresponding homogeneous polynomial in the Taylor expansion of f at point

z = (x, y):

d2f(z) ≡ ∂2f(z)

∂x2
x2 + 2

∂2f(z)

∂x∂y
xy +

∂2f(z)

∂y2
y2.

Now, imposing the additional requirement that D be a uniform triangulation, we

obtain that h2 ∼ N−1, and thus,

‖f − fN‖Lp(Ω) ≤ CN−1‖d2f‖Lp(Ω). (1.8)

This convergence rate can only be guaranteed for smooth f , and obviously not for f

with discontinuities along the edges.

Isotropic triangulations. Uniform partitions do not take into account any individual

properties of the function to be approximated. That is why the estimate (1.8) can

be improved using adaptively generated partitions.

As in the uniform case, we do not intend to rigorously obtain or prove the esti-

mates. We are rather looking for some arguments and ideas of how these estimates

may be derived. Hence, we assume that for large values of N , d2f can be viewed as

a constant over each triangle ∆ (in other words, we replace f with its approximation

by quadratic function).

Similarly to (1.7), we note that the local error of approximation satisfies

e(f)Lp(∆) ≤ Ch2
∆‖d2f‖Lp(∆),

where h∆ := diam(∆). Taking into account that the triangulations {DN} are

isotropic, all of the triangles must have minimal angle bounded away from 0, and

therefore h2
∆ ∼ |∆|, where |∆| here denotes the area of triangle ∆. In other words,

h2
∆ can be bounded below and above by some multiple of |∆|, for all ∆ in the trian-

gulation. If we denote by τ the positive number defined by
1

τ
:=

1

p
+ 1, we get the

following

e(f)Lp(∆) ≤ C‖d2f‖Lτ (∆). (1.9)

Assume now that we can construct adaptive isotropic triangulations DN with N :=

#DN that equidistribute the local error in the sense that for some prescribed ε > 0,

cε ≤ e(f)Lp(∆) ≤ ε, (1.10)

Chapter 1: Geometric Methods in Image Coding 27

with c > 0 independent of ∆ and N . Then, condition (1.10) immediately implies

that

‖f − fN‖Lp(Ω) ≤ N1/pε. (1.11)

We can estimate ε from above using inequality (1.9)

N(cε)τ ≤
∑

∆∈DN

[e(f)Lp(∆)]
τ ≤

∑
∆∈DN

Cτ‖d2f‖τLτ (∆) = Cτ‖d2f‖τLτ (Ω). (1.12)

Combining inequalities (1.11) and (1.12), we get:

‖f − fN‖Lp(Ω) ≤ CN−1‖d2f‖Lτ (Ω). (1.13)

Comparing with (1.8), the same rate O(N−1) is proven for a wider class of functions,

and coincides with the rate of wavelet approximation using threshold of N absolutely

largest coefficients.

One of the approaches for constructing isotropic triangulations with the error

equidistribution property (1.10) is so-called Newest Vertex Bisection method [1]. At

each step of this algorithm, a triangle of maximal error is being bisected from the

most recently created vertex. It is possible to show that the generated triangulations

will satisfy isotropy property (1.6). However, such an algorithm cannot guarantee

the error equidistribution exactly in the sense of (1.10), and thus does not lead to

the same estimate (1.13). On the other hand, for functions f ∈ B2
τ,τ , it is possible to

show (see [2]) that

‖f − fN‖Lp ≤ CN−1|f |B2
τ,τ

which provides the optimal rate O(N−1) as well.

Anisotropic triangulations. The following theoretical results provide the asymptotic

rate of best piecewise-linear approximation over triangulation with N elements.

Theorem 1.4 ([24]). Let f ∈ C(2)(Ω) and det(d2f) be the determinant of the 2× 2

Hessian matrix of f . Then

lim sup
N→∞

NeN(f)Lp(Ω) ≤ C‖
√
| det(d2f)|‖Lτ (Ω),

1

τ
=

1

p
+ 1,

where C is a positive constant independent of N and f ;

Chapter 1: Geometric Methods in Image Coding 28

If in addition f is convex, then

lim inf
N→∞

NeN(f)Lp(Ω) ≥ c‖
√
| det(d2f)|‖Lτ (Ω),

1

τ
=

1

p
+ 1,

while c is a positive constant independent of f and N .

The essence of this theorem is that the optimal triangulations have the following

properties: (a) the aspect ratio of triangles is locally adapted by the Hessian of f ,

and thus, optimal triangulations are isotropic with respect to a scaled metric induced

by the local value of the determinant of the hessian
√
| det(d2f)| on each triangle

(and hence may be anisotropic in the Euclidean metric sense); (b) the triangulation

should equidistribute the local approximation error.

From the numerical point of view, the algorithm taking into account the prop-

erties above is executed using Delaunay triangulation. This algorithm is efficient

however lacking some features:

(i) it is based on the value of
√
| det(d2f)|, and therefore cannot be applied to

non-smooth or noisy functions;

(ii) the meshes {DN}N produced by these algorithms are non-hierarchical in the

following sense: for M > N , the triangulation DM is not a refinement of DN .

Hierarchical structures in meshes allow the construction of wavelet bases and

multiresolutional analysis, which plays an important role in Image Coding and Com-

pression. There have been some greedy refinement procedures [7] that even enlarge

the class of function that satisfy the estimate in Theorem 1.4, but still do not achieve

estimate (1.4) for simple cartoon images.

Chapter 2

Hierarchial Adaptive

Triangulations for Cartoon Images

2.1 Preliminaries and General Principle

In this chapter, we consider the problem of constructing adaptive triangulations for

the approximation of the characteristic function

f(x) := χΩ(x), x ∈ [0, 1]2,

where Ω is a subset of [0, 1]2 with a piecewise-smooth boundary.

Conditions on the set Ω. We will often require Ω to be convex.

• The set Ω ⊂ R2 is called convex if for all X, Y ∈ Ω, XY ⊂ Ω. A curve γ is

called convex if it is the boundary of some convex set.

• For a given set S ⊂ R2, the convex hull of S is the smallest convex set

containing S. We denote the convex hull of S by conv(S). Alternatively,

conv(S) may be defined as a set of all convex combinations of points of S, i.e.,

conv(S) :=

{
n∑
k=1

αkxk : xk ∈ S, αk ∈ [0, 1],
n∑
k=1

αk = 1, n ≥ 1

}
. (2.1)

29

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 30

Triangulation structure. By D0 we denote the initial triangulation of [0, 1]2, and all

the subsequent triangulations/partitions are denoted by Di, i ≥ 1. Each triangula-

tion is a set of triangles ∆.

In other words, ⋃
∆∈Di

∆ = [0, 1]2,

and

int(∆1 ∩∆2) = ∅, for any two distinct triangles ∆1,∆2 ∈ Di.

Definition 2.1. When a triangle ∆ is being split by some rule, the triangles obtained

are called children of ∆, and the set of all children of ∆ is denoted by C(∆).

If ∆′ ∈ C(∆), then we say that ∆ is the parent of ∆′, and write ∆ = P(∆′).

The set of children of ∆ of kth generation will be denoted by C(k)(∆) (for instance,

C(1)(∆) = C(∆)).

Error of approximation over a triangulation.

Definition 2.2. Given S ⊂ R2, by Er(f, S)p we denote the error of best Lp-approximation

of a function f ∈ Lp(S) by polynomials (of two variables) of total degree < r.

For a partition D of [0, 1]2, we define

σr(f,D)pp :=
∑
∆∈D

Er(f,∆)pp (2.2)

to be pth power of the global error of approximation of f by piecewise polynomials of

total degree < r on the partition D.

General algorithm. The whole sequence of hierarchial partitions can be understood

as a collection F of trees (or, more precisely, as a forest) where the vertices of

the graph are triangles. Suppose that initial partition D0 consists of k0 triangles.

These triangles from D0 form the roots of the trees, and so we start with graph F0:

V (F0) = D0 and E(F0) = ∅.
Now given a forest Fk, we subdivide some of the triangles from Fk that do not

have children (so-called leaves) using some rule. In our case, for a precision ε > 0

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 31

given in advance, our algorithm suggests that ∆ is to be subdivided iff e(∆) > ε.

e(∆) is called the local error indicator or the decision function.

For each Fk, denote this set of subdivided triangles by Mk. Then, the forest

Fk+1 obtained after the subdivision of Fk can be described as follows:

V (Fk+1) := V (Fk) ∪
⋃

∆∈Mk

C(∆), E(Fk+1) := E(Fk) ∪
⋃

∆∈Mk

⋃
∆′∈C(∆)

{∆∆′},

where {∆∆′} denotes the edge connecting the vertices ∆ and ∆′. The triangulation

Dk+1 is the set of all the leaves in Fk+1.

The procedure stops whenMN = ∅, and hence the final partition DN consists of all

the leaves in FN . Note that in comparison with Section 1.5, here N indicates the

length of a longest (simple) path between the leaves and the corresponding roots in

the final forest of hierarchical triangulations.

Remark 2.1. Note that in this hierarchial structure if two triangles ∆1,∆2 ∈ FN
have a common interior point then ∆1 ⊂ ∆2 or ∆2 ⊂ ∆1, and one of the triangles

is a child of some generation of the other one, i.e., one of them is obtained after a

certain number of subdivisions of the other one.

2.2 Approximation of Convex Curves

In this section, we introduce an algorithm that constructs a straight line approxima-

tion to a curve from a special class. We first present some definitions and auxiliary

facts that we use in the study of properties of this approximation.

2.2.1 Centroid of Convex Figures

We start with the definition of the moment about a line.

Definition 2.3. The moment about a line of a point-mass is the product of the

mass with the directed distance from the point to the line.

In the case of the line l given by the equation px + qy + r = 0, |p| + |q| 6= 0 (with

either p > 0 or p = 0, q > 0, which can always be achieved by multiplying both sides

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 32

of the equation of the line by −1 if necessary), and the mass m located at the point

(x0, y0), the moment about the line l of the point-mass m becomes

m
px0 + qy0 + r√

p2 + q2
.

This concept can be easily generalized to a moment of an area (plane figure) about

a line via integrals. For instance, the moments of the area bounded by the curves

y = f(x), y = 0, x = a, x = b (f(x) ≥ 0, x ∈ [a, b]), about the x- and y-axis are

defined as follows:

Mx(A) :=

∫ b

a

(f(x))2

2
dx, My(A) :=

∫ b

a

xf(x) dx.

Definition 2.4. The centroid of a plane figure Φ is the intersection of all straight

lines about which Φ has zero moment.

The centroid can be understood as the arithmetic mean of all points within the figure

with equally distributed mass. There are various practical methods of finding it such

as the plumb line method, the balancing method (for convex figures), etc. In the

case of a plane figure in the first quadrant bounded by the x-axis, the graph of the

function y = f(x), and lines x = a and x = b, the coordinates of the centroid M can

be found analytically via the formula:

xM =

∫ b

a

xf(x) dx∫ b

a

f(x) dx

, yM =

1

2

∫ b

a

(f(x))2 dx∫ b

a

f(x) dx

.

Lemma 2.1 ([16, pp. 248-251],[20, pp. 499-503],[33, pp. 48-50]). Elementary prop-

erties of centroids

(a) The centroid of a finite collection of n points X1, X2, . . . , Xn is the point

M =
1

n

n∑
i=1

Xi.

(b) Decomposition Rule: Suppose that a plane figure Φ is divided into a fi-

nite number of pairwise essentially disjoint figures Ψ1,Ψ2, . . . ,Ψn with areas

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 33

A1, A2, . . . , An and centroids M1,M2, . . . ,Mn. Then the centroid M of the fig-

ure Φ can be computed as follows:

M =

n∑
i=1

MiAi

n∑
i=1

Ai

.

(c) The centroid of a triangle with vertices A,B,C is the point of intersection of

all three medians, and can be found as follows

M =
A+B + C

3
.

(d) Let P be a non-self-intersecting closed polygon with n vertices P1, P2, . . . , Pn.

Then the centroid of the figure bounded by the polygon P is the point

M =

n−1∑
i=0

(Pi + Pi+1)Ai

3
n−1∑
i=0

Ai

,

where Ai := det[
−−→
OPi;

−−−→
OPi+1] is the (signed) area of the parallelogram spanned

by the vectors
−−→
OPi and

−−−→
OPi+1, O is the origin and P0 := Pn.

(e) If a plane figure has a line of symmetry, then its centroid lies on this line.

(f) The centroid of a convex figure always lies inside the figure (more precisely, in

its interior for the figures with non-empty interior in R2).

(g) Suppose that Φ ⊂ Ψ, and Ψ is a convex figure in the plane. Then the centroid

of Φ lies inside Ψ.

(h) Let Φ be a set entirely lying in a half-plane about a straight line l. Then the

centroid of Φ lies in the same half-plane about the line l (more precisely, in the

interior of the half-plane for non-degenerate cases).

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 34

(i) Let Φ be a planar set that is the union Φ = Φ1∪Φ2 of two sets Φ1 and Φ2 with

non-empty interiors and λ2(Φ1 ∩ Φ2) = 0. Then the centroids of the three sets

Φ1,Φ2 and Φ are collinear (i.e., they lie on the same line).

(j) The moment of a plane figure Φ about any line passing through its centroid is

zero.

(k) A translation of a plane figure by a vector translates its centroid by the same

vector.

It is worth noting that part (h) follows from part (g) since a half-plane is a convex

set, and part (i) follows from part (b). All other parts follow from the definition of

the centroid and the properties of the moment of the area about a line.

In our setting, we are mostly dealing with convex objects. In order to study certain

features of our algorithm presented in the next subsection, we need some further

properties of the centroid of convex figures.

The following classical result was proved by Winternitz and first published in 1923

in [3, p. 54]. This theorem remained unnoticed for some period of time and was

rediscovered by Lavrent’ev and Lusternik [21, pp. 357-358] in 1935, Neumann [25,

Theorem 2.5, p. 229] in 1945, Yaglom and Boltyanski [33, p. 50] in 1951, Ehrhart

[12, pp. 483-485] in 1955 and Newman [26, Abstract, p. 510] in 1958.

Lemma 2.2 (Winternitz Theorem). If a convex figure is divided into two parts

by a line l that passes through its centroid, then the ratio of the areas of the two parts

always lies between the bounds 4/5 and 5/4.

Proof. One of the proofs of the Winternitz theorem can be found in [33, pp. 196-198].

It is based on a construction of a triangle that has a smaller ratio of the areas of

the parts cut by the same line, and then on further analysis of this ratio for the case

when the figure is a triangle. As a conclusion, it is proven that the ratio of the areas

S1 and S2 of two figures obtained by splitting a convex set Φ with a straight line l

passing through the centroid of Φ is minimal if and only if Φ is a triangle and the

line l is parallel to one of the sides of this triangle. This in particular implies that

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 35

for a non-triangular convex figure the ratio S1/S2 lies even in a more narrow interval

than [4/5, 5/4].

Remark 2.2. Note that without the condition of convexity one can only guarantee

the existence of a point O inside the figure such that any line crossing the figure

divides it into two figures with areas S1 and S2 and 1/2 ≤ S1/S2 ≤ 2 (the proof of

this fact uses Helly’s well-known theorem and can be found in [33, pp. 156-157] as

well).

2.2.2 The Main Idea of Subdivision

Let ∆ be a triangle such that ∆ ∩ ∂Ω is a segment of a straight line. The main

idea of the algorithm we propose is based on the possibility of the full reconstruction

of ∆ ∩ ∂Ω in this case, and uses only the knowledge about the coordinates of the

centroid of ∆ ∩ Ω or ∆\Ω (whichever is a triangle).

Indeed, given ∆ := 4ABC and a point M inside it (later on, we will choose M to

be the centroid of ∆∩Ω or ∆\Ω), the following procedure leads to the construction

of the unique 4ADE such that D ∈
−−−−→
(A,B), E ∈

−−−−→
(A,C) and M is the centroid of

4ADE (see Figure 2.1):

Construction 2.1. (Main Idea of Subdivision)

Step 1. Construct the point M ′ such that
−−→
AM ′ = 3/2

−−→
AM .

Step 2. Draw the lines l1 and l2 passing through M ′ and parallel to AC and AB,

respectively.

Step 3. Construct points D and E such that
−−→
AD = 2

−−→
AK and

−→
AE = 2

−→
AL, where K

is the point of intersection of l1 and
−−−−→
(A,B), and L is the point of intersection of l2

and
−−−−→
(A,C).

In this construction,

−−→
AM ′ =

−−→
AK +

−−−→
KM ′ =

−−→
AK +

−→
AL =

1

2

(−−→
AD +

−→
AE
)
,

and hence, the points M ′, K and L are the midpoints of the sides DE, AD and AE,

respectively, and so the centroid of 4ADE is located at M .

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 36

Figure 2.1: Construction of 4ADE using the location of its centroid

Conclusion: Thus, if ∆ ∩ ∂Ω is a segment of a straight line, Construction 2.1 will

fully reconstruct it. In the general case when ∆ ∩ ∂Ω is a connected curve but not

necessarily a straight line segment (and M is the centroid of ∆ ∩ Ω or ∆\Ω), the

same procedure produces the segment DE which is some approximation to this curve.

Note that one of the points D or E may not be in ∆ and can lie on the extension of

one of the sides of the triangle (see Figure 2.2 below for an example; in the following

subsections, we will show that only one of the points D or E may be outside ∆).

Remark 2.3. The construction 2.1 can be expressed analytically as follows:

Input points: A,B,C,M .

Step 1 (preliminary): Verify that the points A,B,C are not collinear, and that the

point M lies in the interior of 4ABC (this can be done by verifying that each of

the three triangles ABM , ACM and BCM has a positive area, and that the sum of

these three areas is equal to the area of 4ABC).

Step 2: Solve the system of linear equations with two variables t and s

3(M − A) = s(B − A) + t(C − A),

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 37

Figure 2.2: Point D lies outside 4ABC

(which can be derived from the requirement that
D = A+ s(B − A),

E = A+ t(C − A),

M = (A+D + E)/3,

,

and has a unique solution since 4ABC has non-empty interior, and the matrix

[B − A,C − A] is therefore invertible).

Output points: D,E.

2.2.3 Centroids of Angular Sets

In this subsection, we restrict our attention to specific types of plane figures, namely

sets enclosed by the sides of an angle and some curve crossing the angle (here and

throughout the thesis, such sets are closed with the enclosing set always included in

the figure described). We establish results about the centroids of such sets and the

analysis of the application of Construction 2.1 to these ‘angular sets’. We start with

a precise definition of these objects:

Definition 2.5. Let ∠A be the geometric figure on the Cartesian plane consisting of

two different rays p1 and p2 originating at a common vertex A such that p1 and p2

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 38

do not lie on the same line (i.e., ∠A is not a ray or a line).

• By S(∠A), we denote the convex hull of ∠A, i.e., the set of points inside the

angle together with the sides of the angle. Note that S(∠A) is always a region

enclosed by an angle with degree measure in the interval (0◦, 180◦).

• By Γ(∠A), we denote the set of simple rectifiable curves γ = r(t), t ∈ [a, b],

(i.e., curves of finite length that have no points of self-intersection except pos-

sibly r(a) = r(b)) such that

∀t ∈ (a, b) : r(t) ∈ S(∠A)\∠A and r(a) ∈ p1, r(b) ∈ p2.

Note that one or both points r(a) and r(b) may coincide with the vertex A.

• For each γ ∈ Γ(∠A), by Φ∠A(γ) we denote the (closed) set enclosed by the

curve γ and the sides of ∠A (the ’angular set’).

We also introduce some auxiliary notations:

Definition 2.6. Given two points P and Q on a simple curve γ,

• γ(P,Q) denotes the portion of the curve between the points P and Q;

If, in addition, PQ ∩ γ = {P,Q}, or in other words, PQ ∪ γ(P,Q) remains to be a

simple curve (which will be the case if γ is convex for instance)

• Seg(γ, P,Q) denotes the closed set of the points enclosed by γ(P,Q) and the

straight line segment PQ.

Note that Seg(γ, P,Q) is a closed set with ∂Seg(γ, P,Q) = γ(P,Q) ∪ PQ.

Now we are ready to present some facts about the centroids of ‘angular sets’.

Lemma 2.3. Let ∠A be an angle on the plane and γ ∈ Γ(∠A) be a convex curve

intersecting the sides of the angle at the points P and Q (the set Seg(γ, P,Q) is

convex). Let, in addition, R be a set that is homothetic to Seg(γ, P,Q) with ratio

2 : 3 about point A, i.e.,

R := {X ∈ S(∠A) :
−−→
AX = 2/3

−→
AY , for some Y ∈ Seg(γ, P,Q)}. (2.3)

Then, the centroid of Φ∠A(γ) lies in the set R.

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 39

Remark 2.4. The set R can be described in a simpler form as

R =
1

3
A+

2

3
Seg(γ, P,Q).

Proof. Since the curve γ is convex, we can split the set Φ∠A(γ) into n curvilinear

triangles by drawing n − 1 rays originating at A and dividing ∠A into n equal

angles. Denote by H1, . . . , Hn−1 the points of intersection of the constructed rays

with γ, and, for simplicity of notation, let H0 := P and Hn := Q. Let M and Mn

be the centroids of Φ∠A(γ) and the polygon AH0H1 . . . Hn, respectively. For any

ε > 0, we can choose a sufficiently large n such that |MMn| < ε. Note that, for

each 1 ≤ i ≤ n, Hi−1Hi ⊂ Seg(γ, P,Q) due to the convexity of Seg(γ, P,Q). In

particular, the midpoint of Hi−1Hi lies within Seg(γ, P,Q). Then by Lemma 2.1(c),

the centroid of 4AHi−1Hi lies in the set R defined in (2.3). By Lemma 2.1(b),

Mn belongs to the convex hull of the centroids of 4AHi−1Hi’s, and thus, since R is

convex, Mn ∈ R. This implies that dist(M,R) < ε. Since ε was an arbitrary positive

value, we conclude that dist(M,R) = 0, and therefore, because R is a closed set,

M ∈ R.

Remark 2.5. A curve γ ∈ Γ(∠A) is convex if and only if one of the sets Φ∠A(γ) or

S(∠A)\Φ∠A(γ) is convex.

Remark 2.6. Note that the statement of Lemma 2.3 and its proof remain valid if

one or both of the points P and Q coincide with A. The only adjustment required in

the proof is to take into account that, in this case, not necessarily all of the n−1 rays

originating at A and dividing ∠A into n equal angles intersect the curve γ. However,

for a sufficiently large n, at least two of the n − 1 rays intersect γ; we denote by

Hk, . . . , Hm, 1 ≤ k < m ≤ n− 1, the respective points of intersection. Then one can

consider the union of 4AHi−1Hi’s, k + 1 ≤ i ≤ m, as an approximation of the set

Φ∠A(γ).

Remark 2.7. Constant 2/3 in (2.3) cannot be replaced with any other constant.

This can be easily seen by looking at the case when γ is a straight line segment.

Next, we want to look at the centroids of two different angular sets simultaneously.

Namely, the question we are interested in is as follows: given two curves γ1, γ2 ∈

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 40

Γ(∠A) with no points of intersection, is it possible that the centroids of Φ∠A(γ1) and

Φ∠A(γ2) coincide? It turns out that, under some conditions on γ1 and γ2, this is not

possible.

Lemma 2.4. Let γ1, γ2 ∈ Γ(∠A) be two convex curves that can be separated by

some straight line l not intersecting any of the two curves (i.e., γ1 and γ2 lie in the

interior of different half-planes about l). Then the centroids of Φ∠A(γ1) and Φ∠A(γ2)

are distinct.

Note that the assumptions of the lemma imply that γ1 and γ2 do not have points

of intersection.

Proof. Let {P1, Q1} = γ1 ∩ ∠A and {P2, Q2} = γ2 ∩ ∠A (it is possible that, not

simultaneously, P1 coincides with Q1 or P2 coincides with Q2). Also, let R1 and R2

be the sets defined via equation (2.3) for the curves γ1 and γ2, respectively. Since γ1

and γ2 are convex and separated by the line l that does not intersect any of the two

curves, the convex hulls of γ1 and γ2, i.e., sets Seg(γ1, P1, Q1) and Seg(γ2, P2, Q2),

lie in the interior of different half-planes about the line l, and thus, Seg(γ1, P1, Q1)∩
Seg(γ2, P2, Q2) = ∅. This immediately implies that

R1 ∩R2 = ∅, (2.4)

whereasR1 andR2 are homothetic (with the same ratio of homothety) to Seg(γ1, P1, Q1)

and Seg(γ2, P2, Q2), respectively. Therefore, taking into account Lemma 2.3, we can

now conclude that the centroids of Φ∠A(γ1) and Φ∠A(γ2) are distinct.

Remark 2.8. The condition of convexity imposed on the curves γi, i = 1, 2, cannot

be removed from the statement of Lemma 2.4. The next example shows that even if

only one of the curves is not convex, the statement of Lemma 2.4 is no longer valid.

Indeed, we present a sketch of such an example in Figure 2.3.

Curve γ1 is a straight line segment P1Q1 while curve γ2 consists of a part of a fixed

4KLN and two parallel lines crossing the sides of the angle at points P2 and Q2.

Both of the curves are symmetric about the bisector of 4AP1Q1 towards the side

P1Q1, and thus the centroids of Φ∠A(γ1) and Φ∠A(γ2) lie on that bisector. We choose

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 41

Figure 2.3: Non-convex and convex curve separable by a line

4KLN so that its centroid is located above the centroid of 4AP1Q1. Hence, if the

distance P2Q2 is small enough, the centroid of Φ∠A(γ2) is located above the centroid

of Φ∠A(γ1). If P2Q2 is large enough (so that γ2 becomes convex), then the centroid

of Φ∠A(γ1) is located above the centroid of Φ∠A(γ2) by Lemma 2.4. By continuity

argument, one can conclude that for some intermediate length of P2Q2, the centroids

of Φ∠A(γ1) and Φ∠A(γ2) will coincide.

For instance, one can choose the points with the following coordinates in the Carte-

sian plane:

A(0, 0), P1(−9.8325, 9.8325), Q1(9.8325, 9.8325), K(0, 5),

L(−3, 8), N(3, 8), P2(−0.1, 0.1), Q2(0.1, 0.1),

and in this case the centroids of Φ∠A(γ1) and Φ∠A(γ2) will be both located at M(0, 6.555).

The condition of separation of two convex curves by a line is quite strong. One might

think that it can be replaced with a weaker condition on γ1 and γ2 that one of the

sets of Φ∠A(γ1) and Φ∠A(γ2) is a subset of the other one (assuming again that both

curves are convex). However, the following example shows that for some polygonal

curves, the latter condition does not guarantee that the centroids of Φ∠A(γ1) and

Φ∠A(γ2) are distinct.

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 42

Example 2.1 (Figure 2.4). Given an ∠A, we choose γ1 to be a straight line segment

PQ. We choose γ2 to be the boundary of 4AKL such that the points K, L lie on

PQ, points A,P,K,L,Q are in clockwise order, and |KP | = |LQ|. |KP | = |LQ|
implies that the midpoints of KL and PQ coincide, and thus, it is easy to see that

the sets Φ∠A(γ1) = 4APQ and Φ∠A(γ2) = 4AKL have their centroids located at

the same point.

Figure 2.4: Centroids of 4APQ and 4AKL coincide

In the following subsections, we construct a linear approximation for any convex

γ ∈ Γ(∠A) and some fixed angle ∠A. That is why, in our further discussion, we focus

on the case where γ2 is a straight line segment. It turns out that, in this case, the

condition that either Φ∠A(γ1) ⊂ Φ∠A(γ2) or Φ∠A(γ2) ⊂ Φ∠A(γ1) can be sufficient to

establish results similar to Lemma 2.4. More precisely, in the following Lemmas 2.5

and 2.6, we prove that, if Φ∠A(γ1) ⊂ Φ∠A(γ2) or Φ∠A(γ2) ⊂ Φ∠A(γ1), the centroids

of Φ∠A(γ1) and Φ∠A(γ2) can coincide only in the case described in Example 2.1.

Lemma 2.5. Let ∠A be some angle, γ ∈ Γ(∠A) be convex, K and L be two points

lying on the different sides of ∠A such that 4AKL (Φ∠A(γ). Then the centroids

of 4AKL and Φ∠A(γ) cannot coincide.

Proof. Let γ be a convex curve crossing ∠A, and KL be a segment with the endpoints

on the sides of ∠A such that 4AKL (Φ∠A(γ).

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 43

By way of contradiction, assume that the centroids of 4AKL and Φ∠A(γ) coincide.

Note that

Φ∠A(γ) = 4AKL ∪ (Φ∠A(γ)\4AKL), int
(
4AKL ∩ (Φ∠A(γ)\4AKL

)
= ∅,

and since the centroids of 4AKL and Φ∠A(γ) coincide, by Lemma 2.1(b), the cen-

troids of Φ∠A(γ)\4AKL and4AKL coincide as well. However, the sets Φ∠A(γ)\4AKL
and4AKL lie in different half-planes about the line

←→
KL, and thus, by Lemma 2.1(h),

the centroids of Φ∠A(γ)\4AKL and 4AKL are distinct. We arrived at a contra-

diction. Hence, our assumption is false, and the centroids of 4AKL and Φ∠A(γ) are

not the same.

Lemma 2.6. Let ∠A be some angle, γ ∈ Γ(∠A) be convex, K and L be two points ly-

ing on the different sides of ∠A. Suppose that Φ∠A(γ) (4AKL. Then the centroids

of Φ∠A(γ) and 4AKL coincide if and only if γ is the boundary of some 4AXY with

XY (KL, and the midpoints of XY and KL coincide.

Proof. The sufficiency part follows from Example 2.1, and thus we need to show only

the necessity part.

Assume that γ is a convex curve crossing ∠A, and KL is a straight line segment

with the endpoints on the sides of the angle such that Φ∠A(γ) is a proper subset of

4AKL. Also assume that the centroids of Φ∠A(γ) and 4AKL coincide. We will

prove the necessity part of the lemma in two steps.

Step 1. We now show that the set KL ∩ γ contains the midpoint of KL and at least

one more point distinct from the endpoints K and L.

Let N be the midpoint of KL, and define sets Φ1 and Φ2 as follows:

Φ1 := Φ∠A(γ) ∩4AKN, Φ2 := Φ∠A(γ) ∩4ALN.

Note that both Φ1 and Φ2 have non-empty interiors since otherwise Φ∠A(γ) would

entirely lie in a single half-plane about the line
←→
AN , and that, by Lemma 2.1(h),

would be a contradiction to the fact that the centroid of Φ∠A(γ) (we denote this

point by M) lies on the median AN of 4AKL. We can also conclude that γ and

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 44

AN have one point of intersection distinct from A. We denote this point by O and

also denote by M1 and M2 the centroids of Φ1 and Φ2, respectively.

We now represent γ as

γ = γ1 ∪ γ2,

where γ1 = γ(P,O), γ2 = γ(O,Q), and P ∈ AK, Q ∈ AL are the points of intersec-

tion of γ and the sides of ∠A (one or both of P and Q can coincide with the vertex

A). The sets Φ1 and Φ2 can be now written as

Φ1 = Φ∠KAN(γ1), Φ2 = Φ∠LAN(γ2).

Lemma 2.3 implies that M1 ∈ R1 and M2 ∈ R2, where R1 and R2 are the sets

defined via formula (2.3) for γ1 and γ2, respectively. Note that

M1 /∈ (AK ∪ AN), M2 /∈ (AN ∪ AL) (2.5)

due to Lemma 2.1(h). At the same time, since Φ∠A(γ) ⊂ 4AKL, we have the inclu-

sion γ ⊂ 4AKL, and thus Seg(γ1, P, O) and Seg(γ2, O,Q) are subsets of 4AKL.

This immediately implies that both sets R1 and R2 are subsets of 4AK ′L′, where
−−→
AK ′ := 2/3

−−→
AK and

−−→
AL′ := 2/3

−→
AL. On the other hand, according to Lemma 2.1(i),

M ∈ (M1M2 ∩K ′L′), which implies that

Mi ∈ K ′L′ ∩ ∂Ri, i = 1, 2.

(Mi ∈ ∂Ri, since otherwise, Mi has to be an interior point of Ri, and hence, an

interior point of 4AK ′L′. Obviously, due to Lemma 2.1(b), M cannot coincide with

either of Mi’s, and therefore, if one of the Mi’s is an interior point of 4AK ′L′, the

point M has to be an interior point of 4AK ′L′ as well which contradicts the fact

that M ∈ K ′L′.)
For each i, we construct the point M̃i satisfying

−−→
AM̃i = 3/2

−−→
AMi. Then clearly,

M̃1 ∈ KL ∩ ∂ (Seg(γ, P,O)) , M̃2 ∈ KL ∩ ∂ (Seg(γ,O,Q)) ,

and neither M̃1 nor M̃2 falls into the set of points {K,N,L}.
Taking into account that ∂Seg(γ, P,O) = PO∪γ1 and ∂Seg(γ,O,Q) = OQ∪γ2,

we claim that both M̃1 and M̃2 lie on γ. Indeed, if we assume that, for instance,

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 45

M̃1 /∈ γ, then M̃1 ∈ PO. However, because of condition (2.5) and the fact that

M̃1 ∈ KL, this may only happen if P = K and O = N , which implies that KN ⊂ γ,

and in particular, M̃1 ∈ KN ⊂ γ. This contradiction proves our claim.

Therefore, both points M̃1 and M̃2 along with the segment M̃1M̃2 are in γ. This

also implies that N ∈ γ as points M̃1 and M̃2 lie in different half-planes about the

line
←→
AN . The proof of step 1 is now complete.

Figure 2.5: Φ∠A(γ) (4AKL

Step 2. We now prove that γ must be the boundary of some triangle as indicated in

the lemma.

Note that since #(γ ∩ KL) > 2, we may conclude that Φ∠A(γ) is convex, while

S(∠A)\Φ∠A(γ) is not. Thus, Φ∠A(γ)∩KL must be some closed segment XY because

the intersection of any closed convex sets is also closed and convex. It is evident that

X 6= Y because #(γ∩KL) > 2. As well, XY 6= KL, since otherwise, γ must coincide

with segment KL and thus Φ∠A(γ) = 4AKL, which contradicts Φ∠A(γ) (4AKL.

Furthermore, since N ∈ XY , we can choose X and Y to be in the same half-

planes (about the line
←→
AN) with points K and L, respectively. We now show that

γ = ∂ (4AXY).

Consider two sets

Ψ1 := Φ∠A(γ) ∩4AXK, Ψ2 := Φ∠A(γ) ∩4AY L.

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 46

If at least one of the Ψi’s has a non-empty interior, then by Lemmas 2.1(h) and

2.3, its centroid is located strictly inside 4AK ′L′ (and not on the boundary of the

triangle), and by Lemma 2.1(i) again, the centroid of Φ∠A(γ) cannot lie on K ′L′.

This contradicts the fact that M is the midpoint of K ′L′.

Therefore, both sets int(Ψ1) and int(Ψ2) are empty, and hence, Φ∠A(γ) = 4AXY .

Since the centroids of Φ∠A(γ) and 4AKL coincide, the midpoints of XY and KL

must coincide as well.

The proof of Lemma 2.6 is complete.

This concludes the section on auxiliary statements about properties of the centroids

of the angular regions, and we now move to the actual approximation of the curves

that cross angles.

2.2.4 Approximation of “curves crossing angles”

Construction 2.2. Given an angle ∠A and a curve γ ∈ Γ(∠A), we construct the

following approximation of γ:

• We find the centroid M of Φ∠A(γ).

• Use Construction 2.1 (page 35) to obtain 4ADE such that D,E lie on the

sides of ∠A and the centroid of 4ADE is located at M .

Notation 2.1. Throughout this section,

DE := DE(∠A, γ) (2.6)

is the straight line segment approximation of the curve γ constructed above.

First, we want to know how many points the intersection of γ and DE has. We

can establish the following result for convex γ.

Lemma 2.7. For a given ∠A, let γ ∈ Γ(∠A) be a convex curve that is neither

a straight line segment nor a boundary of some 4AXY in S(∠A) such that the

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 47

midpoints of the segments XY and
←→
XY ∩ S(∠A) coincide. If DE = DE(∠A, γ) is

the straight line segment approximation of the curve γ, then

#(γ ∩DE) = 2, (2.7)

and furthermore, both points of intersection are distinct from D and E.

Proof. Since γ is convex, the number of points of intersection of γ with a straight line

segment can be equal to 0, 1, 2 or can be infinite. However, either of the equalities

#(γ ∩DE) = 0,∞ or γ ∩DE = {D,E}, {D}, {E} (together with the convexity of

γ) implies that one of the three following cases takes place:

(1) Φ∠A(γ) (4ADE, (2) 4ADE (Φ∠A(γ), (3) Φ∠A(γ) = 4ADE.

The cases (1) and (2) can be eliminated by Lemmas 2.5, 2.6 and the fact that γ is

not the boundary of some triangle inside ∠A. Case (3) would imply that γ = DE,

and can be eliminated as well since γ is not a straight line segment by assumption.

Therefore, the only possible cases are #(γ ∩DE) = 1 or 2 and γ ∩DE must contain

at least one point distinct from D and E. In other words, we can further distinguish

three cases:

(1′) γ ∩DE = X,X /∈ {D,E}; (2′) γ ∩DE = {X, Y }, X /∈ {D,E}, Y ∈ {D,E};

(3′) γ ∩DE = {X, Y }, X, Y /∈ {D,E}.

We now show by contradiction that cases (1′) or (2′) cannot take place. Assume

that DE intersects γ at a point X, X /∈ {D,E}, and possibly at D or E. Due

to the convexity of γ, this would mean that one of the points D,E is in Φ∠A(γ),

and the other point is in S(∠A)\Φ∠A(γ). Without loss of generality, assume that

D ∈ Φ∠A(γ) and E ∈ S(∠A)\Φ∠A(γ).

Let

Φ1 := 4ADE ∩ Φ∠A(γ), Φ2 := 4ADE\Φ1, Φ3 := Φ∠A(γ)\4ADE,

and let M1,M2,M3,M be the centroids of Φ1,Φ2,Φ3,4ADE, respectively.

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 48

Since Φ∠A(γ) = Φ1 ∪ Φ3 and int(Φ1 ∩ Φ3) = ∅, by Lemma 2.1(i) the centroids

M1,M and M3 lie on the same line l∗. Furthermore, since Φ1 and Φ3 lie in different

half-planes about the line
←→
DE, M1 6= M3 by Lemma 2.1(h). In addition, the Decom-

position Rule (Lemma 2.1(b)) implies that the point M cannot coincide with either

of M1 or M3. Therefore, M1, M3 and M are three distinct points lying on the line

l∗, and M ∈M1M3.

Since 4ADE = Φ1 ∪ Φ2 and int(Φ1 ∩ Φ2) = ∅, by Lemma 2.1(i) the points M , M1

and M2 lie on the same line, which clearly has to be the line l∗. Since M 6= M1, the

Decomposition Rule (Lemma 2.1(b)) implies that M2 cannot coincide with either of

M or M1, and M ∈M1M2. In addition, the sets Φ2 and Φ3 lie in different half-planes

about the line
←→
DE, and hence, M2 6= M3 by Lemma 2.1(h). This implies that all

four points M1,M2,M3 and M are distinct and lie on the line l∗. Furthermore, since

M3 and the set of points {M1,M,M2} lie in different half-planes about the line
←→
DE,

the order of the points on the line l∗ has to be as indicated in Figure 2.6:

Figure 2.6: Order of points M1,M2,M3 and M

The following construction leads us to a contradiction to the order of pointsM,M1,M2,M3

shown in Figure 2.6.

Depending on the type of convexity of γ (i.e., whether Φ∠A(γ) or S(∠A)\Φ∠A(γ) is

a convex set), we now define the point Z ∈ AE such that XZ separates Φ2 and Φ3:

• Φ∠A(γ) is convex. By Z we denote the point of intersection of γ and AE.

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 49

• S(∠A)\Φ∠A(γ) is convex. First, by T we denote the point of intersection of γ

with the side of ∠A containing point D. The point Z is then defined as the

point of intersection of the lines
←→
XT and

←→
AE.

Let the points X ′ ∈ EX and Z ′ ∈ EZ be such that |EX ′| = 2|X ′X| and |EZ ′| =

2|ZZ ′|. Also, denote by D′ and A′ the points on DE and AE, respectively, such

that |ED′| = 2|DD′| and |EA′| = 2|AA′|. The inequalities |EX| < |ED| and

|EZ| ≤ |EA| imply that |EX ′| < |ED′| and |EZ ′| ≤ |EA′|, and thus, D′A′ and

the point E lie in different half-planes about the line
←−→
X ′Z ′. Lemma 2.3 implies that

M2 ∈ 4EX ′Z ′ while by Lemma 2.1(c), M ∈ D′A′. An immediate conclusion is that

points M and M2 lie in different half-planes about the line
←−→
X ′Z ′. In addition, due

to the convexity of γ, M3 and M2 lie in different half-planes about
←→
XZ and hence,

about
←−→
X ′Z ′ as well. We can now draw the conclusion that M2 and the set of points

{M,M3} lie in different half-planes about the line
←−→
X ′Z ′, which contradicts the order

of points in Figure 2.6 (indeed, according to the order of points shown on Figure 2.6,

M2 ∈MM3, and thus, if both points M and M3 lie in the same half-plane, M2 must

lie in that same half-plane as well). This contradiction implies that our assumption

about the possibility of cases (1′) and (2′) is false, and thus, case (3′) must take place,

which is exactly what was required to be proven in the claim of the lemma.

The results of Lemmas 2.6 and 2.7 can be combined as follows:

Corollary 2.1. Let γ ∈ Γ(∠A) be a convex curve inside some angle ∠A, and let

DE := DE(∠A, γ) be the straight line segment approximation of the curve γ defined

by (2.6). Then

#(γ∩DE) =


∞, if γ is a segment of a straight line,

∞, if γ = ∂(4AXY), 4AXY ⊂ S(∠A) such that |XK| = |Y L|, {K,L} =
←→
XY ∩ ∠A,

2, otherwise.

Remark 2.9. In the proof of Lemma 2.7 and in Corollary 2.1, equality #(γ∩DE) =

∞ is interpreted as the set of points of intersection of γ and DE is infinite, even

though the cardinality of the set γ ∩DE, in that case, is the continuum.

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 50

Corollary 2.1 states that #(γ ∩DE) = 2 except for some triangular or linear curves

γ. For simplicity of further analysis, for a fixed angle ∠A, we introduce the set

Γ0(A) := {γ ∈ Γ(∠A) : γ is convex,#(γ ∩DE) = 2}.

One can establish further results regarding the way DE cuts the set Φ∠A(γ). It turns

out that this cut is, in some sense, balanced:

Lemma 2.8. Given ∠A on the plane and a curve γ ∈ Γ(∠A) such that γ ⊂ ∂Ω

for some convex set Ω, the midpoint of the segment DE = DE(∠A, γ) defined via

Construction 2.2 always lies in Ω.

Proof. Let P and Q be the points of intersection of γ and ∠A. By Lemma 2.3, the

centroid of 4ADE is in the set R defined via (2.3). This immediately implies that

the midpoint of DE is in Seg(γ, P,Q). Since Ω is convex, Seg(γ, P,Q) ⊂ Ω and the

claim of Lemma 2.8 follows.

Now that we have established the geometric interrelation between DE and γ, we

present some quantitative results of this approximation. Since we expect DE to

provide a sufficiently good approximation of γ, we want to control the areas of

Φ∠A(γ)\4ADE and 4ADE\Φ∠A(γ). It turns out that, depending on which of the

sets Φ∠A(γ) or S(∠A)\Φ∠A(γ) is convex, we can provide various estimates of these

areas.

Notation 2.2. Given a bounded region Φ in R2, A(Φ) denotes the area of this region.

Given a simple convex curve γ and two points P,Q ∈ γ such that PQ ∩ γ = {P,Q},

A(γ, P,Q) = A (Seg (γ, P,Q)) .

Lemma 2.9 (Positive result). Suppose that γ ∈ Γ0(∠A) for some ∠A in the plane

and Φ∠A(γ) is convex. Let D′ and E ′ be the points of intersection of DE and γ, where

DE = DE(∠A, γ) is the straight line segment approximation defined in Construction

2.2. Then,

A(γ,D′, E ′) ≤ 5

9
A(Φ∠A(γ)).

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 51

Proof. Let M be the centroid of both 4ADE and Φ∠A(γ) (by construction, the

centroids of both sets coincide). Draw the line l parallel to DE and passing through

M . l divides Φ∠A(γ) into two sets Φ1 and Φ2, and assume that A ∈ Φ1. Then since

Seg(γ,D′, E ′) ⊂ Φ2,

A(γ,D′, E ′) ≤ A(Φ2). (2.8)

Lemma 2.2 (Winternitz theorem) implies

A(Φ1)

A(Φ2)
≥ 4

5
,

and hence,

A(Φ2)

A(ΦA(γ))
=

A(Φ2)

A(Φ1) +A(Φ2)
=

1
A(Φ1)
A(Φ2)

+ 1
≤ 1

4/5 + 1
=

5

9
. (2.9)

Combining equations (2.8) and (2.9), we obtain the desired inequality.

The next example shows that there is no similar result for the curves γ such that

S(∠A)\Φ∠A(γ) is convex.

Remark 2.10 (Negative example). For any given ∠A,

sup
{γ∈Γ0(∠A):S(∠A)\Φ∠A(γ)−convex}

A(γ,D′, E ′)

A (Φ∠A(γ))
=∞, (2.10)

where D′ and E ′ are the points of intersection of γ ∈ Γ0(∠A) and its straight line

segment approximation DE = DE(∠A, γ) defined in Construction 2.2.

Proof. Let K,L be two points on the different sides of ∠A such that |AK| = |AL|,
and let ∠KAL =: β and F be the midpoint of KL. For every h, 0 < h ≤ |AF |,
we construct γh ∈ Γ0(∠A) and its straight line segment approximation DhEh with

Dh ∈ AK and Eh ∈ AL (we use the subscript h to emphasize the dependence on the

parameter h).

Choose Oh to be the point on the median AF of 4AKL such that |AOh| := h.

Now, let γh := KOh ∪LOh. It is evident that the set S(∠A)\Φ∠A (γh) is convex, for

all 0 < h ≤ |AF |. We now show that

lim
h→0+

A(γh, D
′
h, E

′
h)

A (Φ∠A (γh))
=∞. (2.11)

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 52

Figure 2.7: S(∠A)\Φ∠A(γ) is convex: the ratio A(4ADhEh\Φ∠A(γh))
A(Φ∠A(γh))

can be arbitrarily
large

Indeed, it is easy to see that

A (Φ∠A (γh)) = 2

(
1

2
|AK|h sin

β

2

)
= |AK|h sin

β

2
,

and, hence,

lim
h→0+

A (Φ∠A (γh)) = 0. (2.12)

Let Mh denote the centroid of Φ∠A (γh). Since Mh is the arithmetic mean of the

centroids of 4AOhK and 4AOhL, one can show that Mh ∈ AF and |AMh| =

(|AF |+h)/3. From this, we can conclude that lim
h→0+

|OhD
′
h| = lim

h→0+
|OhE

′
h| = |AK|/2,

and therefore,

lim
h→0+

A(γh, D
′
h, E

′
h) =

1

2

(
|AK|

2

)2

sin β =
1

4
A(4AKL). (2.13)

The continuity of A (Φ∠A (γh)) and A(γh, D
′
h, E

′
h), as functions of h, together with

(2.12) and (2.13), imply (2.11), and (2.10) follows.

However, one can establish another kind of estimate on the proposed approximation

of γ of the type considered in Remark 2.10.

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 53

Lemma 2.10 (Positive result). Let ∠A be given and assume that γ ∈ Γ0(∠A) inter-

sects ∠A at the points P and Q. In addition, assume that the set S(∠A)\Φ∠A(γ) is

convex and DE = DE(∠A, γ) is the straight line segment approximation of γ defined

in Construction 2.2. Then

A(Φ∠A(γ)\4ADE) ≤ A(4ADE\Φ∠A(γ)) ≤ A(γ, P,Q).

Proof. The second inequality trivially follows from the convexity of γ and the fact

that γ(D′, E ′) ⊂ γ, where D′ and E ′ are the points of intersection of DE and γ.

We now prove the first inequality. Let M1,M2 and M3 be the centroids of Φ1 :=

Φ∠A(γ) ∩ 4ADE, Φ2 := 4ADE\Φ∠A(γ) and Φ3 := Φ∠A(γ)\4ADE, respectively.

Also, by M we denote the centroid of 4ADE. Since the centroids of 4ADE =

Φ1 ∪ Φ2 and Φ∠A(γ) = Φ1 ∪ Φ3 coincide, and no two sets Φi and Φj (i 6= j) have

a common interior point, from Lemma 2.1(i) we deduce that M1,M2,M3 and M lie

on the same line and M lies between M1 and M2 as well as between M1 and M3.

Furthermore, since the regions Φ1 and Φ2 are separated from Φ3 by the segment

DE, M2 lies between M1 and M3 (we actually have the same order of these points as

shown in Figure 2.6). Applying the Decomposition Rule (Lemma 2.1(b)), we obtain

|M1M | A(Φ1) = |M2M | A(Φ2) = |M3M | A(Φ3). (2.14)

Taking into account that |M2M | < |M3M |, we conclude that

A(Φ3) < A(Φ2), (2.15)

and the first inequality follows.

Although Lemma 2.9 already provides some quantitative estimates on the approxi-

mation of γ by the straight line segment DE defined in Construction 2.2 in the case

where Φ∠A(γ) is convex, the next example shows that one cannot establish a result

similar to Lemma 2.10 in that case. More precisely, the set 4ADE\Φ∠A(γ) can have

arbitrarily large area while the area of the set 4Φ∠A(γ)\4ADE can be arbitrarily

small.

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 54

Remark 2.11 (Negative example). For any given ∠A,

sup
{γ∈Γ0(∠A): Φ∠A(γ)−convex}

A(4ADE\Φ∠A(γ))

A(γ,D′, E ′)
=∞, (2.16)

where P,Q are the points of intersection of γ ∈ Γ0(∠A) and the sides of angle

∠A, DE = DE(∠A, γ) is the straight line segment approximation of γ defined in

Construction 2.2, and D′, E ′ are the points of intersection of DE and γ.

Proof. Given angle ∠A, choose the points K and L on the sides of the angle such

that |AK| = |AL| > 0, and let N be the midpoint of KL. For every h, 0 < h ≤ |AK|,
consider the following construction for γh (once again, the subscript h denotes the

dependence on the parameter h):

1. Let Ph ∈ AK and Qh ∈ AL be such that |APh| = |AQh| := h.

2. γh := PhN ∪QhN .

Then, for 0 < h ≤ |AK|, the set Φ∠A(γh) is convex. We will show that

lim
h→0+

A(4ADhEh\Φ∠A(γh))

A(4PhQhN)
=∞. (2.17)

Indeed, it is easy to see that

A(4PhQhN) <
1

2
|PhQh||AN | <

1

2
(|APh|+ |AQh|)|AN | = |AN |h,

and therefore,

lim
h→0+

A(4PhQhN) = 0. (2.18)

Let Mh,M
′
h and M ′′

h be the centroids of the quadrilateral APhNQh,4APhQh and

4PhQhN . Note that since 4AKL and 4APhQh are isosceles, the points Mh,M
′
h

and M ′′
h lie on the median AN of 4AKL. Let h1 be the length of the median of

4APhQh towards the side PhQh. The Decomposition Rule (Lemma 2.1(b)) implies

that

|MhM
′
h|A(4APhQh) = |MhM

′′
h |A(4PhQhN) ⇔ |MhM

′
h|h1 = |MhM

′′
h |(|AN | − h1),

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 55

Figure 2.8: Φ∠A(γ) is convex: the ratio A(4ADhEh\Φ∠A(γh))
A(4PhQhN)

can be arbitrarily large

and since clearly lim
h→0+

h1 = 0, we obtain that

lim
h→0+

|MhM
′′
h | = 0,

and hence,

lim
h→0+

|AMh| = lim
h→0+

|AM ′′
h | = lim

h→0+
[h1 + (|AN | − h1)/3] =

|AN |
3

.

We can conclude from the last equality that lim
h→0+

|DhK
′| = lim

h→0+
|EhL′| = 0, where

K ′ and L′ are the midpoints of AK and AL, respectively. Then,

lim
h→0+

A(4ADhEh\Φ∠A(γh)) = lim
h→0+

A(4ADhEh) = A(4AK ′L′) =
1

4
A(4AKL) > 0,

(2.19)

whereas

0 ≤ lim
h→0+

A(4ADhEh ∩ Φ∠A(γh)) ≤ lim
h→0+

[
A(4APhQh) +A(4PhQhN)

]
= 0.

The continuity of A(4PhQhN) and A(4ADhEh\Φ∠A(γh)), as functions of h, to-

gether with (2.18) and (2.19), imply (2.17), and (2.16) follows since clearlyA(γh, D
′
h, E

′
h) ≤

A(4PhQhN).

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 56

Remark 2.12. Following the notations introduced in the proof of Remark 2.11, we

note that if we can further split 4ADhEh into two triangles 4ADhF and 4AEhF
such that (NPh∩4ADhEh) ⊂ 4ADhF and (NQh∩4ADhEh) ⊂ 4AEhF , the next

application of our approximation of the curves inside the ∠ADhF and ∠AEhF will

fully reconstruct each of the two segments of γh inside 4ADhEh.

These properties conclude the analysis of the proposed approximation method, and

thus we move to the final algorithm.

2.3 General Algorithm and Its Properties

In this section, we introduce the subdivision algorithm for our adaptive triangulation

method to approximate the characteristic function

f(x) := χΩ(x), x ∈ [0, 1]2,

where Ω is a closed convex set contained in [0, 1]2 with a piecewise-smooth boundary.

A general approach in constructing adaptive triangulations is described on pages

30-31, under the paragraph “General Algorithm”. According to that algorithm,

before implementing any subdivision, we need to determine which triangles in a

triangulation we subdivide and which we do not, i.e., we need to define the decision

function e(∆). In our setting, a suitable choice for e(∆) is E1(f,∆)1, the error of

best L1-approximation of f by constants over ∆. In other words, if for simplicity of

notation, we set

ε(S) := E1(f, S)1 = min{A(S ∩ Ω),A(S\Ω)}, S ⊂ R2, (2.20)

we choose e(∆) to be ε(∆).

Now given a precision ε > 0 and an initial triangulation D0, we construct a

sequence of hierarchial triangulations as follows: for every k ≥ 0, we obtain the

triangulation Dk+1 from Dk by subdividing the triangles ∆ ∈ Dk with ε(∆) > ε

(we do not necessarily subdivide all ∆ ∈ Dk). In the following Subsection 2.3.1, we

define the subdivision rule for the triangles ∆ that require a further split (i.e., with

ε(∆) > ε).

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 57

2.3.1 Main Subdivision Rule

Given a triangle ∆ such that ε(∆) > ε, we decide on the type of subdivision based

on the values of the function at the vertices v1, v2, v3. Thus, we define the following

types of triangles

Tri(Ω) := {∆ := 4v1v2v3 :
3∑

k=1

f(vk) = i}, i = 0, 1, 2, 3.

Remark 2.13. Note that for every ∆ ∈ Tr3(Ω), vk ∈ Ω (k = 1, 2, 3), and hence,

since Ω is convex, ∆ ⊂ Ω and ε(∆) = 0. This implies that if ε(∆) > ε > 0,

∆ /∈ Tr3(Ω).

We also distinguish a particular subset of Tr1(Ω):

Tr∗1(Ω) := {∆ ∈ Tr1(Ω) : f(vj) = 1, #(Ω ∩ vkvl) ≤ 1, k, l 6= j}.

In other words, for triangles ∆ ∈ Tr1(Ω), we distinguish two cases: when ∆ ∩ ∂Ω

is a connected curve, and when it is not. It is our idea to approximate ∆ ∩ ∂Ω by

the straight line segment approximation DE defined in (2.6). If ∆ ∩ ∂Ω is not a

connected curve (and f(vj) = 1), the straight line segment DE approximates

(∆ ∩ ∂Ω) ∪ (Ω ∩ vkvl), k, l 6= j,

and the second set in the union is not a part of ∂Ω. That is why in our subdivision

algorithm, if ∆∩ ∂Ω is not a connected curve, we first split ∆ into two triangles ∆1,

∆2 such that the curves ∆i ∩ ∂Ω, i = 1, 2, are both connected, and then construct

the straight line segment approximation for each triangle separately.

Remark 2.14. Note that for any ∆ ∈ Tr∗1(Ω)∪Tr2(Ω), ∆∩∂Ω is a connected curve

due to the convexity of Ω.

Now we are ready to precisely describe our subdivision algorithm.

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 58

Main Subdivision Algorithm:

Preliminary Step: Given ∆ as the input triangle, we first verify whether ε(∆) > ε.

If ε(∆) ≤ ε, no subdivision is required; otherwise, we determine i ∈ {0, 1, 2} such

that ∆ ∈ Tri(Ω). The subdivision rule is now described for every set of triangles

Tri(Ω), i = 0, 1, 2 (i 6= 3 due to Remark 2.13).

∆ ∈ Tr0(Ω) . Label the vertices with the labels A,B,C randomly in the clockwise order.

We proceed as follows (note that ∆ ∩ Ω 6= ∅, since otherwise ε(∆) would have to be

0):

We find the centroid of the closed region ∆ ∩ Ω, point M , and split ∆ into 3

triangles: 4AMB,4AMC and 4BMC (see Figure 2.9). Note that since ∆ ∩ Ω is

convex, f(M) = 1, and the sum of the values of the function at the vertices of each

child is equal to 1.

Children: C(∆) ⊂ Tr1(Ω).

Figure 2.9: Subdivision of ∆ ∈ Tr0(Ω)

∆ ∈ Tr1(Ω) . Label the vertices with the labels A,B,C in the clockwise order so that

f(A) = 1. We now distinguish two cases: ∆ ∈ Tr∗1(Ω) and ∆ /∈ Tr∗1(Ω). (To

determine which of the cases takes place, for instance, we may calculate the line

integral of f over the straight line segment BC, or the 2-dimensional integral of f

over [0, 1]2 ∩ Φ, where Φ is the semiplane of points about the line BC that does not

contain the point A.)

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 59

• ∆ ∈ Tr∗1(Ω). Then, as mentioned in Remark 2.14, γ := ∆ ∩ ∂Ω is a connected

curve, and since Ω is convex, γ ∈ Γ(∠BAC). We construct the straight line

segment approximation DE of γ such that D ∈
−−−−→
(A,B) and E ∈

−−−−→
(A,C). Note

that one of these two points may lie outside ∆.

1. Denote by F the midpoint of DE. Note that F ∈ Ω by Lemma 2.8 (as

shown in Figures 2.10 and 2.11).

2. Let γ1 := 4ADF ∩ ∂Ω and γ2 := 4AEF ∩ ∂Ω. Note that γ1 ∈ Γ(∠ADF)

and γ2 ∈ Γ(∠AEF). We now construct straight line segment approximations

D1D2 and E1E2 of γ1 and γ2, respectively (D1 ∈
−−−−→
(A,B) and E1 ∈

−−−−→
(A,C); note

that we use distinct, different from ’common DE’, labels for the straight line

segment approximations constructed for different parts of ∆∩∂Ω). Once again,

one of the points D1, D2, E1, E2 may lie outside ∆.

The segments DE, AF , D1D2 and E1E2 subdivide ∆ into five (polygonal but

not necessarily triangular) regions. We denote them

Φ1 := ∆\4ADE, Φ2 := 4DD1D2, Φ3 := 4EE1E2,Φ4 := AFD2D1, Φ5 := AFE2E1.

Note that ∆ can be a proper subset of
5⋃
i=1

Φi, because 4ADE may not entirely

lie in ∆. However, we make our error analysis based on the local error of

approximation of f over these regions.

3. Let

δ1 := max{A(Φ1 ∩ Ω),A(Φ2 ∩ Ω),A(Φ3 ∩ Ω)}.

In order to guarantee that the error of approximation of f over the children ∆′

of ∆ is decreasing (at a certain rate) compared to the error of approximation

of f over ∆, we want to bound the quantity ε(∆′)/ε(∆) (see more details in

Remark 2.16). In particular, we aim to have bounds for

δ1

A(∆\Ω)
and

δ1

A(∆ ∩ Ω)

from above. The second ratio can be bounded by 5/9 from above using Lemma

2.2 (Winternitz Theorem) (see the details in Subsection 2.3.2). Hence, we

consider two further subcases when δ1
A(∆\Ω)

≤ 5/9, and when δ1
A(∆\Ω)

> 5/9.

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 60

Case (1) If δ1 ≤
5

9
A(∆\Ω), then we perform the following steps to ‘complete’

our subdivision, i.e., split ∆ into triangles (from Tr∗1(Ω) and Tr2(Ω)):

3.1. Denote by M1,M2 and M3 the centroids of Φ1 ∩ Ω, Φ2 ∩ Ω, Φ3 ∩ Ω,

respectively. Mi ∈ ∆, i = 1, 2, 3.

3.2. Let F1 and F2 be the midpoints of D1D2 and E1E2, respectively.

3.3. Denote by Φ̃i := Φi∩∆, i = 2, 3, 4, 5 (maximum two of Φi’s are not entirely

in ∆). Note that each Φ̃i is a polygon.

3.4. Split polygon Φ1 into triangles by joining M1 with all of its vertices and

F . Split polygon Φ̃2 by joining M2 with all of its vertices and F1. Split polygon

Φ̃3 by joining M3 with all of its vertices and F2. Split polygons Φ̃4 and Φ̃5 by

joining A and F with F1 and F2.

If D and E both lie inside ∆, Step 3.4 provides the final split into 19 triangles

(see Figure 2.10): 4BM1C,4BM1D,4EM1C,4FM1D,

4FM1E,4M2D1F1,4M2F1D2,4DM2D2,4DD1M2,4M3E1F2,4M3F2E2,

4EM3E2,4EE1M3,4AF1D1,4AF1F,4AFF2,4AF2E1,4FE2F2,4F1D2F .

Figure 2.10: Subdivision of ∆ ∈ Tr∗1(Ω), case (1)

If one of the points D or E lies outside ∆, butD1D2 and E1E2 are entirely in ∆,

Φ̃4, Φ̃5 are quadrilaterals, and Step 3.4 provides the final split into 19 triangles

as well.

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 61

If one of the points D1, D2, E1, E2 lies outside ∆, one of Φ̃4, Φ̃5 is now a pen-

tagon. Without loss of generality, assume that either E1 or E2 is outside ∆.

We complete Step 3.4 by joining F2 with the vertex of the pentagon Φ̃5 on

the side BC. The final split consists of 19 triangles as well (see Figure 2.11).

Children: C(∆) ⊂
(
Tr∗1(Ω) ∪ Tr2(Ω) ∪ Tr3(Ω)

)
.

Figure 2.11: Subdivision of ∆ ∈ Tr∗1(Ω), case (1), points E and E2 lie outside ∆

Case (2) If δ1 >
5

9
A(∆\Ω), then disregard Steps 1,2,3,3.1–3.4, and

3.5. Find a point H ∈ BC such that

max{A(4AHB\Ω),A(4AHC\Ω)} ≤ 5

9
A(∆\Ω).

The algorithm for finding such a point can be as follows:

Construction 2.3. Step 1. Choose a natural number n such that

A(∆\Ω) ≥ 9A(∆)

n
,

and denote by H1, . . . , Hn−1 the points that divide BC into n equal parts, i.e.,

|Hi−1Hi| =
|BC|
n

, 1 ≤ i ≤ n, (H0 := B,Hn := C).

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 62

Figure 2.12: Subdivision of ∆ ∈ Tr∗1(Ω), case (2)

Step 2. Find i∗ := min{i : A(4AHiB\Ω) ≥ 4

9
A(∆\Ω)}.

The point H := Hi∗ will have all the necessary properties.

3.6. The final split is now 4AHB and 4AHC (see Figure 2.12).

Children: C(∆) ⊂ Tr∗1(Ω).

• ∆ /∈ Tr∗1(Ω), or in other words, ∆ ∈ Tr1(Ω), f(A) = 1 and BC ∩ Ω contains

more than one point. Then, we find a point G ∈ BC such that f(G) = 1. This

can be done, for instance, by:

1. Finding the centroids M,M0 of ∆∩Ω and the part of Ω lying in the half-plane

about the line
←→
BC that does not contain point A.

2. Finding the point of intersection of MM0 and BC. ∆ is to be split into

4ABG and 4ACG (see Figure 2.13). If Ω is contained in the same half-plane

about
←→
BC as the point A, G can be found as the centroid of the 1-dimensional

set BC ∩ Ω.

Children: C(∆) ⊂ Tr2(Ω).

∆ ∈ Tr2(Ω) . Label the vertices of ∆ with the labels A,B,C in the clockwise order so

that f(A) = 0. The next procedure is as follows (refer to Figures 2.14 and 2.15):

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 63

Figure 2.13: Subdivision of ∆ ∈ Tr1(Ω)\Tr∗1(Ω)

1. Denote by M the centroid of ∆ ∩ Ω. Let N be the point of intersection of

AM and BC.

2. Note that 4ABN,4ACN ∈ Tr2(Ω). Let γ1 := 4ABN ∩ ∂Ω and γ2 :=

4ACN ∩ ∂Ω. Then γ1 ∈ Γ(∠BAN) and γ2 ∈ Γ(∠CAN). Next, we construct

the straight line segment approximations D1E1 and D2E2 of the curves γ1 and

γ2, respectively, such that D2 and E1 are on AN .

3. Let δ2 := max{A(4AD1E1 ∩ Ω),A(4AD2E2 ∩ Ω)}.

Once again, in order to guarantee that the error of approximation of f over

the children ∆′ of ∆ is decreasing (at a certain rate) compared to the error of

approximation of f over ∆, we want to bound the quantity ε(∆′)/ε∆ (see more

details in Remark 2.16). In particular, we aim to bound the two ratios

δ2

A(∆\Ω)
and

δ2

A(∆ ∩ Ω)

from above. The second ratio can be bounded by 5/9 from above using Lemma

2.2 (Winternitz Theorem) (see details in Subsection 2.3.2). Hence, we consider

two further subcases when δ2
A(∆\Ω)

≤ 5/9, and when δ1
A(∆\Ω)

> 5/9.

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 64

Case (1) If δ2 ≤
5

9
A(∆\Ω), then we proceed as follows:

3.1. Denote by Mi the centroid of 4ADiEi ∩ Ω, i = 1, 2.

3.2. Denote by Fi the midpoint of DiEi, i = 1, 2.

3.3. ∆ is now divided into 14 triangles: 4AM1E1,4AD1M1,4F1E1M1,

4D1F1M1,4BNF1,4BD1F1,4E1F1N,4AM2E2,4AD2M2,4F2E2M2,

4D2F2M2,4D2F2N,4CE2F2 and 4CF2N (see Figure 2.14).

Children: C(∆) ⊂
(
Tr∗1(Ω) ∪ Tr2(Ω) ∪ Tr3(Ω)

)
.

Figure 2.14: Subdivision of ∆ ∈ Tr2(Ω), case (1)

Case (2) If δ2 >
5

9
A(∆\Ω), then

3.4. Choose a point G ∈ BC such that max{A(4AGB\Ω),A(4AGC\Ω)} ≤
5

9
A(∆\Ω). The procedure of finding such a point is described in Construction

2.3.

3.5. The split consists of two triangles: 4AGB and 4AGC (see Figure 2.15).

Children: C(∆) ⊂ Tr2(Ω).

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 65

Figure 2.15: Subdivision of ∆ ∈ Tr2(Ω), case (2)

Remark 2.15. The number of children of each triangle in the algorithm is bounded

by 19.

Remark 2.16 (Cases (1) and (2) in the subdivision of ∆ ∈ Tr∗1(Ω) and ∆ ∈ Tr2(Ω)).

Both subdivision rules of ∆ ∈ Tr∗1(Ω) and ∆ ∈ Tr2(Ω) use the straight line segment

approximation introduced in Section 2.2.4. The goal of an adaptive algorithm is to

reduce the local error of approximation on the set of the triangles that are subdivided.

In our setting, the error of approximation over ∆ is either A(∆ ∩ Ω) or A(∆\Ω)

(whichever is the smaller value). That is why we need to control the ratio of the

error of the straight line segment approximation and the areas A(∆∩Ω) or A(∆\Ω).

However, we have established both positive and negative estimates on this ratio in

Section 2.2.4, and thus, proposed two different subdivision rules for the cases when

the ratio is less (cases (1)) and greater (cases (2)) than desired, respectively.

Remark 2.17. In the case, when ∆ ∩ ∂Ω is a segment of a straight line or the

boundary of a triangle such that ∆∩ ∂Ω and its straight line segment approximation

DE have infinitely many points of intersection, after one iteration of our algorithm

the local error of approximation on ∆ will become 0.

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 66

2.3.2 Properties of the Algorithm

In this section, we want to establish the key properties of the algorithm. First, we

re-state the results of Lemmas 2.9 and 2.10 in terms of the classes of triangles rather

than the angular sets.

Corollary 2.2. (a) Let Ω be convex and ∆ = 4ABC ∈ Tr∗1(Ω) be such that

f(A) = 1. Let also DE = DE(∠BAC,∆∩ ∂Ω) be the straight line segment approx-

imation of ∆ ∩ ∂Ω ∈ Γ(∠BAC). Then

A
(

∆ ∩ (Ω\4ADE)
)
≤ 5

9
A(∆ ∩ Ω). (2.21)

(b) Let Ω be convex and ∆ = 4ABC ∈ Tr2(Ω) be such that f(A) = 0. Let also

DE = DE(∠BAC,∆ ∩ ∂Ω) be the straight line segment approximation of ∆ ∩ ∂Ω ∈
Γ(∠BAC). Then

A
(

∆\(Ω ∪4ADE)
)
≤ A(∆ ∩ Ω). (2.22)

Proof. (a) Assume that ∆ = 4ABC ∈ Tr∗1(Ω) with f(A) = 1 (A ∈ Ω).

If [∆ ∩ ∂Ω] ∈ Γ(∠BAC)\Γ0(∠BAC), i.e., ∆ ∩ ∂Ω is a straight line segment or the

boundary of some triangle 4AXY such that the midpoints of the segments XY and
←→
XY ∩ S(∠BAC) coincide, then in either of these cases, the set Ω ∩ ∆ ⊂ 4ADE
(even though one of the points D or E may lie outside ∆), and hence,

A
(

∆ ∩ (Ω\4ADE)
)

= 0,

and inequality (2.21) trivially follows.

If ∆ ∩ ∂Ω ∈ Γ0(∠BAC), then denote by D′ and E ′ the points of intersection of

∆ ∩ ∂Ω and its straight line segment approximation DE = DE(∠BAC,∆ ∩ ∂Ω).

Note that even though one of the points D or E is not in ∆, D′, E ′ ∈ ∆ ∩ ∂Ω ⊂ ∆.

In this case,

∆ ∩ (Ω\4ADE) = Seg(∆ ∩ ∂Ω, D′, E ′),

and inequality (2.21) follows from Lemma 2.9.

(b) Assume that ∆ = 4ABC ∈ Tr2(Ω) with f(A) = 0 (A /∈ Ω).

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 67

If ∆ ∩ ∂Ω ∈ Γ(∠BAC)\Γ0(∠BAC), then ∆ ∩ ∂Ω must be a straight line segment

inside ∆. In this case, ∆ ∩ ∂Ω = DE(∠BAC,∆ ∩ ∂Ω), and hence,

(Ω ∩∆) ∪4ADE = ∆,

which implies that ∆\(Ω ∪4ADE) = ∅, and inequality (2.22) follows.

If ∆∩∂Ω ∈ Γ0(∠BAC), then denote by P and Q the points of intersection of ∆∩∂Ω

and the sides AB and AC of ∆, respectively. Then by Lemma 2.10,

A(Φ∠BAC(∆ ∩ ∂Ω)\4ADE) ≤ A(∆ ∩ ∂Ω, P,Q). (2.23)

Note that Φ∠BAC(∆∩∂Ω) = ∆\(Ω∪4ADE). In addition, since Seg(∆∩∂Ω, P,Q) ⊂
∆ ∩ Ω,

A(∆ ∩ ∂Ω, P,Q) ≤ A(∆ ∩ Ω),

which together with inequality (2.23) implies (2.22).

Lemma 2.11. Let Ω be convex and ∆ ∈ Tr∗1(Ω) ∪ Tr2(Ω) with ε(∆) > ε (ε is the

precision of the adaptive triangulation algorithm). For each child ∆′ of ∆ obtained

after applying the Main Subdivision Algorithm described in Subsection 2.3.1, we have

ε(∆′) ≤ 5

9
ε(∆). (2.24)

Remark 2.18. Since #C(∆) can be as large as 19 and the error of approximation

over ∆ is the sum of the errors over its children, inequality (2.24) may not seem

to guarantee the decreasing order of the global error of approximation over the se-

quence of produced triangulations. However, combining (2.24) with (2.45), another

type of estimate on ε(∆′), allows us to prove the convergence of the global error of

approximation to 0 in Subsection 2.3.4.

Proof. Let ∆ = 4ABC ∈ Tr∗1(Ω) ∪ Tr2(Ω) such that f(A) = 1, if ∆ ∈ Tr∗1(Ω), and

f(A) = 0, if ∆ ∈ Tr2(Ω).

Note that if ∆ ∩ ∂Ω ∈ Γ(∠BAC)\Γ0(∠BAC), then by Remark 2.17,

ε(∆′) = 0, for any ∆′ ∈ C(∆),

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 68

and inequality (2.24) holds. Therefore, in the rest of the proof we assume that

∆ ∩ ∂Ω ∈ Γ0(∠BAC).

Consider two cases: ∆ ∈ Tr∗1(Ω) and ∆ ∈ Tr2(Ω).

Case 1: ∆ ∈ Tr∗1(Ω). Using the same notations as in the Main Subdivision Algo-

rithm in Subsection 2.3.1 (see Figure 2.10), we recall that

∆ ⊂
5⋃
i=1

Φi,

where

Φ1 := ∆\4ADE, Φ2 := 4DD1D2, Φ3 := 4EE1E2,Φ4 := AFD1D2, Φ5 := AFE1E2,

and estimate the local error over each of these five components. Since any 4 in the

final split of ∆ is a subset of some Φi,

ε(4) ≤ max
1≤i≤5

ε(Φi) (2.25)

and in order to prove (2.24), it is sufficient to show that

ε(Φi) ≤
5

9
ε(∆), 1 ≤ i ≤ 5. (2.26)

Corollary 2.2(a) implies that

A(Φ1 ∩ Ω) ≤ 5

9
A(∆ ∩ Ω). (2.27)

Recall that F is the midpoint of DE, and hence, AF passes through the centroid of

∆ ∩ Ω. Therefore, by Lemma 2.2 (Winternitz Theorem)

max{A(4ADF ∩ Ω),A(4AEF ∩ Ω)} ≤ 5

9
A(∆ ∩ Ω),

and hence,

max{A(Φ2 ∩ Ω),A(Φ3 ∩ Ω)} ≤ 5

9
A(∆ ∩ Ω). (2.28)

By Lemma 2.8, F is always in Ω, i.e., f(F) = 1. By Lemma 2.7 and Corollary 2.1,

D,E /∈ Ω, and so f(D) = f(E) = 0. Therefore, each of the triangles ADF and AEF

is in Tr2(Ω). Corollary 2.2(b) together with inequality (2.28) again implies that

A(Φi\Ω) ≤ max{A(Φ2 ∩ Ω),A(Φ3 ∩ Ω)} ≤ 5

9
A(∆ ∩ Ω), i = 4, 5. (2.29)

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 69

Recall that δ1 = max{A(Φ1 ∩ Ω),A(Φ2 ∩ Ω),A(Φ3 ∩ Ω)}. From inequalities (2.25),

(2.27), (2.28) and (2.29), we conclude that for each of the 19 4’s obtained by sub-

division of ∆ ∈ Tr∗1(Ω),

ε(4) ≤ δ1 ≤
5

9
A(∆ ∩ Ω). (2.30)

Hence, if δ1 ≤ 5
9
A(∆\Ω), then the final split of ∆ consists of 19 triangles, and for

each child ∆′ of ∆, we clearly have inequality (2.24) of the lemma.

If δ1 >
5
9
A(∆\Ω), then the final split consists of two triangles 4AHB and 4AHC

such that

max{A(4AHB\Ω),A(4AHC\Ω)} ≤ 5

9
A(∆\Ω).

Therefore, in this case for each ∆′ ∈ C(∆),

A(∆′\Ω) ≤ 5

9
A(∆\Ω) <

5

9

(
9

5
δ1

)
≤ δ1. (2.31)

By (2.30), δ1 ≤ 5
9
A(∆ ∩ Ω). This with inequality (2.31) immediately implies

ε(∆′) ≤ 5

9
ε(∆), ∆′ ∈ C(∆),

and the proof of the lemma when ∆ ∈ Tr∗1(Ω) is complete.

Case 2: ∆ ∈ Tr2(Ω). Using the same notations as in the Main Subdivision Algo-

rithm in Subsection 2.3.1 (see Figure 2.13), we represent ∆ as

∆ = 4AD1E1 ∪4AD2E2 ∪BD1E1N ∪ CE2D2N,

and estimate the error over each of these four components.

Since AN passes through the centroid of ∆∩Ω, by Lemma 2.2 (Winternitz theorem)

max{A(4ABN ∩ Ω),A(4ACN ∩ Ω)} ≤ 5

9
A(∆ ∩ Ω), (2.32)

and hence,

max{A(4AD1E1 ∩ Ω),A(4AD2E2 ∩ Ω)} ≤ 5

9
A(∆ ∩ Ω). (2.33)

Inequality (2.33) immediately implies that for each subtriangle 4 of 4AD1E1 and

4AD2E2, we have:

A(4∩ Ω) ≤ max{A(4AD1E1 ∩ Ω),A(4AD2E2 ∩ Ω)} ≤ 5

9
A(∆ ∩ Ω). (2.34)

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 70

Each of the triangles ABN and ACN is in Tr2(Ω) since f(A) = 0 and f(N) =

f(B) = f(C) = 1. Therefore, Corollary 2.2(b) together with inequality (2.33) again

imply that for any 4 inside quadrilaterals BD1E1N and CE2D2N ,

A(4\Ω) ≤ max{A(4AD1E1 ∩ Ω),A(4AD2E2 ∩ Ω)} ≤ 5

9
A(∆ ∩ Ω). (2.35)

Recall that δ2 = max{A(4AD1E1 ∩Ω),A(4AD2E2 ∩Ω)}. From inequalities (2.34)

and (2.35), we conclude that for each of 14 4’s mentioned in part 3.3 of the Main

Subdivision Algorithm for ∆ ∈ Tr2(Ω),

ε(4) ≤ δ2 ≤
5

9
A(∆ ∩ Ω). (2.36)

Hence, if δ2 ≤ 5
9
A(∆\Ω), then the final split of ∆ consists of the 14 triangles, and

for every child ∆′ of ∆, we clearly have inequality (2.24) of the lemma.

If δ2 >
5
9
A(∆\Ω), then the final split consists of two triangles: 4ABG and 4ACG

such that

max{A(4ABG\Ω),A(4ACG\Ω)} ≤ 5

9
A(∆\Ω).

Therefore, in this case for each ∆′ ∈ C(∆),

A(∆′\Ω) ≤ 5

9
A(∆\Ω) <

5

9

(
9

5
δ2

)
≤ δ2. (2.37)

By (2.36), δ2 ≤ 5
9
A(∆ ∩ Ω). This with inequality (2.37) immediately implies

ε(∆′) ≤ 5

9
ε(∆), ∆′ ∈ C(∆),

and this completes the proof of the lemma.

According to the Main Subdivision Algorithm, for any ∆ ∈ Tri(Ω), i = 1, 2,

C(∆) ⊂
[
Tr∗1(Ω) ∪ Tr2(Ω) ∪ Tr3(Ω)

]
,

and only children of ∆ ∈ Tr0(Ω) may belong to Tr1(Ω), a class wider than Tr∗1(Ω)

(in the case when ∆ is not subdivided (i.e., ε(∆) ≤ ε), C(∆) = ∅). However, it is

easy to see that for any ∆,

C(2)(∆) ⊂
[
Tr∗1(Ω) ∪ Tr2(Ω) ∪ Tr3(Ω)

]
,

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 71

where C(2)(∆) denotes the set of children of ∆ of second generation (see Definition

2.1), and, once again, C(2)(∆) can possibly be ∅. Hence, after performing the first two

iterations of the Main Subdivision Algorithm on the initial triangulation, the input

triangles that actually require a further split will always be from Tr∗1(Ω) ∪ Tr2(Ω).

Therefore, the following corollary from Lemma 2.11 applies:

Corollary 2.3. Let D0 be an initial triangulation of convex Ω ⊂ [0, 1]2 and {Di}Ni=1

be the sequence of triangulations produced by the adaptive triangulation algorithm

with the subdivision rule introduced in Subsection 2.3.1 and a precision ε > 0 (0 ≤
N ≤ ∞). Then for any ∆ ∈ ∪1≤i≤NDi with ε(∆) > ε,

ε(∆′) ≤ 5/9ε(∆), ∆′ ∈ C(∆). (2.38)

Remark 2.19. Corollary 2.3 guarantees termination of our adaptive triangulation

algorithm for any initial precision ε > 0, i.e., N is finite and for every ∆ in the final

triangulation DN , ε(∆) ≤ ε.

In addition to the decreasing rate of ε(∆) established in Lemma 2.11 and Corollary

2.3, we can also provide the estimate of ε(∆) in terms of some geometric character-

istics of ∆ ∩ ∂Ω.

Definition 2.7. Let ∆ ∈ Tr∗1(Ω) ∪ Tr2(Ω) and γ = ∆ ∩ ∂Ω, for some convex

Ω ⊂ [0, 1]2. Suppose that γ intersects the sides of ∆ at points P and Q. Then,

A(γ,∆) := A (Seg (γ, P,Q)) , L(γ,∆) := |γ(P,Q)|.

Corollary 2.4. Let ∆ ∈ Tr∗1(Ω) ∪ Tr2(Ω) and γ = ∆ ∩ ∂Ω, for some convex

Ω ⊂ [0, 1]2. If ε(∆) > ε and ∆ is subdivided using the Main Subdivision Algorithm

introduced in Subsection 2.3.1, then

ε(∆′) ≤ A(γ,∆), ∆′ ∈ C(∆). (2.39)

Proof. Let ∆ ∈ Tr∗1(Ω) or ∆ ∈ Tr2(Ω), and label the vertices of ∆ with A,B,C

so that f(A) = 1 if ∆ ∈ Tr∗1(Ω) and f(A) = 0 if ∆ ∈ Tr2(Ω). Furthermore, let

γ = ∆ ∩ ∂Ω be a curve intersecting AB and AC at P and Q, respectively.

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 72

Using the same notations as in the proof of Lemma 2.11 and in Figures 2.10, 2.14,

we have

Φ1 ∩ Ω, Φ2 ∩ Ω, Φ3 ∩ Ω ⊂ Seg(γ, P,Q), if ∆ ∈ Tr∗1(Ω),

and

4AD1E1 ∩ Ω, 4AD2E2 ∩ Ω ⊂ Seg(γ, P,Q), if ∆ ∈ Tr2(Ω).

The definition of δi’s implies that

δ1 ≤ A(γ,∆), ∆ ∈ Tr∗1(Ω), and δ2 ≤ A(γ,∆), ∆ ∈ Tr2(Ω),

which together with inequalities (2.30),(2.31),(2.36) and (2.37) implies (2.39).

As implicitly mentioned in Remark 2.19, Corollary 2.3 actually implies that the local

error approaches 0. Now using Remark 2.15 and Corollary 2.4, we want to control

the total number of triangles in the triangulation.

2.3.3 Further Assumptions on ∂Ω

We recall that, in our setting, ∂Ω has to be a piecewise-smooth curve (Ω can be a

polygon, and thus does not have to have a smooth boundary everywhere). More

precisely, for a convex Ω, its boundary ∂Ω must satisfy the following assumptions:

• ∂Ω =
q⋃
i=1

γk;

• Choosing a suitable local coordinate system, we represent each γi as the graph

of y = gi(x), ai ≤ x ≤ bi, gi ∈ C(2)[ai, bi];

In other words, we can always choose q points Ki on the boundary ∂Ω such that

∂Ω(Ki, Ki+1) is a C(2)-curve for any i, 1 ≤ i ≤ q (Kq+1 := K1). In this case, for any

curve γ̃ ⊂ ∂Ω that does not contain any of the points Ki in its interior, this portion

of the boundary of Ω is the graph of some y = g(x), x ∈ [a, b], with g ∈ C(2)[a, b], in

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 73

a suitable local coordinate system. Let A := (a, g (a)) and B := (b, g (b)). Denoting

by l(x) the line
←→
AB and using the notation introduced in Notation 2.2,

A(γ̃, A,B) =

∣∣∣∣∫ b

a

g(x)− l(x) dx

∣∣∣∣ ≤ ‖g− l‖C[a,b](b− a) = |g(ξ)− l(ξ)|(b− a), (2.40)

where ξ = argmaxx∈[a,b]|g(x)− l(x)|. Taking into account that g′(ξ)− l′(ξ) = 0 and

l′′ ≡ 0, we get from

0 = g(a)− l(a) = [g(ξ)− l(ξ)] + [(g′(ξ)− l′(ξ))(a− ξ)] +
g′′(η)

2
(a− ξ)2,

for some η ∈ (a, ξ), that

|g(ξ)− l(ξ)| ≤
‖g′′‖C[a,b]

2
(b− a)2 = c0(b− a)2, (2.41)

for some constant c0 depending on ∂Ω only. Inequalities (2.40) and (2.41) imply that

A(γ̃, A,B) ≤ c0(b− a)3 ≤ c0|γ̃(A,B)|3. (2.42)

Remark 2.20. Note that if γ̃ = γ̃(A,B) ⊂ ∂Ω contains some of the points Ki, (i.e.,

γ̃ is not necessarily a C(2)-curve), the Isoperimetric Inequality

A ≤ L2

4π
,

where L is the length of some closed curve and A is the area of the planar region that

it encloses, implies

A(γ̃, A,B) ≤ (|AB|+ |γ̃(A,B)|)2

4π
≤ |γ̃(A,B)|2

π
. (2.43)

Under these assumptions on the boundary of Ω, we may combine inequalities

(2.38), (2.39),(2.42) and (2.43) into the following theorem stating the main properties

of the algorithm:

Theorem 2.1. Let Ω ⊂ [0, 1]2 be a convex set such that the boundary of Ω is a

C(2)-curve except at the set of points

K := {K1, K2, . . . , Kq},

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 74

and let Di, 1 ≤ i ≤ N, be the partitions produced by the adaptive triangulation

algorithm with a precision ε > 0 and the subdivision rule introduced in Subsection

2.3.1. Then for any ∆ ∈ ∪2≤i≤NDi and ∆′ ∈ C(∆),

ε(∆′) ≤5/9ε(∆) (2.44)

and, with γ := ∂Ω and L as defined in Notation 2.2,

ε(∆′) ≤

c0(L(γ,∆))3, if K ∩ int(∆) = ∅,

(L(γ,∆))2, if K ∩ int(∆) 6= ∅.
(2.45)

Remark 2.21. In the next section, we relabel Di’s so that D2 becomes the initial

triangulation, and after such relabeling, we can assume that inequalities (2.44) and

(2.45) hold for any ∆ ∈ (D0 ∪ D1) with ε(∆) > ε as well.

2.3.4 Convergence of the Algorithm

In the following theorem, we establish convergence of our adaptive triangulation

algorithm along with some rates of its convergence.

Theorem 2.2. Let f(x) = χΩ(x), x ∈ [0, 1]2, be the characteristic function of a

convex set Ω ⊂ [0, 1]2 with a piecewise-smooth boundary γ := ∂Ω, and let δ :=

max∆∈D0 ε(∆) be the maximum of the local error over the initial triangulation D0.

Then the adaptive triangulation algorithm with the subdivision rule introduced in

Subsection 2.3.1 and a precision ε ∈ (0, δ) produces the final triangulation D with

#D ≤ Cε−1/3 ln(1/ε), (2.46)

and

σ1(f,D)1 ≤ Cε2/3 ln(1/ε), (2.47)

where the constant C does not depend on ε and σ1(f,D1) is as defined by (2.2).

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 75

Proof. Let the set Ω and precision ε be now fixed. Assume that the conditions of

the theorem are satisfied and that our initial partition D0 has k0 triangles. For

simplicity of notation, let α := 5/9, σ := 19, and since γ = ∂Ω is now fixed as well,

let L∆ := L(γ,∆).

Due to inequality (2.44), our adaptive algorithm will terminate, and let DN be

the final partition. Then the global error of approximation over DN (see Definition

2.2) can be bounded as follows:

σ1(f,DN)1 =
∑

∆∈DN

ε(∆) ≤ ε#DN , (2.48)

and we now want to estimate the number of triangles in DN using inequalities (2.44)

and (2.45).

Let P(DN) := {P(∆) : ∆ ∈ DN}. Following the methodology in [9], we write

these ’parental’ sets as follows

P(DN) =
⋃
j∈Z

Πj, where Πj := {∆ ∈ P(DN) : αj+1 ≤ ε(∆) < αj}. (2.49)

Due to Remark 2.1 and inequality (2.44), all the triangles in each Πj are disjoint.

Since each ∆ ∈ P(DN) was subdivided before obtaining the final partition DN ,

ε < ε(∆), and so we get a restriction on the index j:

ε < αj,

which is equivalent to j < logα ε since 0 < α < 1.

Another restriction on j can be derived from the fact that the local error may only

decrease and cannot exceed the maximum of the local error over the initial partition.

For every ∆ ∈ P(DN),

ε(∆) ≤ max
∆0∈D0

ε(∆0) = δ ⇒ αj+1 ≤ δ ⇒ j ≥ logα δ − 1.

The above inequalities imply that

#P(DN) =

j∗∑
j=j0

#Πj,

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 76

where j0 := dlogα δe− 1 and j∗ = dlogα εe− 1. Taking into account that each parent

from P(DN) may have no more than σ children and that some of the cells from the

final partition DN may be from the initial partition D0 and not have any parents,

we estimate

#DN ≤ σ#P(DN) + k0 = σ

j∗∑
j=j0

#Πj + k0. (2.50)

Now, we want to estimate the number of cells in each Πj by going one more generation

up in our forest FN . Recall that K is the collection of ‘singularity’ points on ∂Ω.

Then, any ∆ in the set Πj either has a parent or does not have one (which means

∆ ∈ D0). For every j, j0 ≤ j ≤ j∗, we write Πj as the following disjoint union

Πj = ΠSj ∪ ΠNSj ∪ (Πj ∩ D0),

where

ΠSj := {∆ ∈ Πj : int(P(∆)) ∩ K = ∅},

ΠNSj := {∆ ∈ Πj : int(P(∆)) ∩ K 6= ∅}.

For every ∆ ∈ ΠSj , inequality (2.45) implies that ε(∆) ≤ c0L3
P(∆), and hence,

1 ≤ α−j−1ε(∆) ≤ c0α
−j−1L3

P(∆) ⇒ 1 ≤ (c0)1/3α(−j−1)/3LP(∆).

Therefore,

#ΠSj ≤ c
1/3
0 α(−j−1)/3

∑
∆∈ΠSj

LP(∆) ≤ c
1/3
0 α(−j−1)/3

∑
∆∈Πj

LP(∆)

≤ c
1/3
0 α(−j−1)/3σ

∑
∆∈P(Πj)

L∆. (2.51)

Note that the elements of the set P(Πj) = {P(∆) : ∆ ∈ Πj} do not have to be

disjoint. However, as mentioned in Remark 2.1, for any two distinct triangular

cells ∆1,∆2 ∈ FN with a common interior point, ∆1 ⊂ ∆2 or ∆2 ⊂ ∆1. Due to

this property, we can find elements ∆∗k ∈ P(Πj), 1 ≤ k ≤ ν, such that for every

∆ ∈ P(Πj),

∆ ⊂ ∆∗k, for some 1 ≤ k ≤ ν,

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 77

and

int(∆∗k ∩∆∗m) = ∅, k 6= m.

Hence, we can write P(Πj) as the disjoint union

P(Πj) =
ν⋃
k=1

{∆ ∈ P(Πj) : ∆ ⊂ ∆∗k} =:
ν⋃
k=1

Xk, Xk ∩Xm = ∅, k 6= m.

From a geometric point of view, the union of all triangles in P(Πj) is equal to the

union of the ∆∗k’s. Each Xk is a subset of triangles of the tree that is a subgraph of

FN and has ∆∗k as its root. Also, by the definition of j0,

αj−j0ε(∆∗k) ≤ αjα−j0δ < αj, (2.52)

and for each ∆ ∈ P(Πj),

ε(∆) ≥ αj, (2.53)

which together with inequality (2.44) implies that the elements of P(Πj) may appear

among at most the first j − j0 − 1 generations of children of ∆∗k (since otherwise

inequalities (2.52) and (2.53) must hold simultaneously). Hence,

∑
∆∈P(Πj)

L∆ =
ν∑
k=1

∑
∆∈Xk

L∆ =
ν∑
k=1

j−j0−1∑
m=0

∑
∆∈[Xk∩C(m)(∆∗k)]

L∆

≤
ν∑
k=1

j−j0−1∑
m=0

L∆∗k
= (j − j0)

ν∑
k=1

L∆∗k
≤ (j − j0)L0,

where L0 is the length of the curve ∂Ω, and we used the fact that for every ∆ and

m ≥ 0, the disjoint union
⋃

∆′∈C(m)(∆)

∆′ is always contained in ∆. The last chain of

inequalities together with (2.51) implies that

#ΠSj ≤ c
1/3
0 σ(j − j0)α(−j−1)/3L0. (2.54)

Now we estimate #P(ΠNSj). Let Yi = {∆ ∈ P(ΠNSj) : Ki ∈ int(∆)}, 1 ≤ i ≤ q.

It is easy to see that each Yi is a subset of some Xk (with corresponding root ∆∗k).

Moreover, since all triangles in Yi have a common interior point Ki, each Yi is just a

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 78

collection of some children of ∆∗k of different generations, and since it is contained in

some Xk, the number of triangles in this collection does not exceed j − j0. Taking

into account that P(ΠNSj) =
⋃q
i=1 Yi (not necessarily a disjoint union), we proceed

to the estimate

#ΠNSj ≤ σ#P(ΠNSj) ≤ σ

q∑
i=1

#Yi ≤ σq(j − j0). (2.55)

We now come back to the estimate (2.50) applying inequalities (2.54) and (2.55)

#DN ≤ σ

j∗∑
j=j0

#Πj + k0

≤ σ

j∗∑
j=j0

[
#ΠSj + #ΠNSj + #(Πj ∩ D0)

]
+ k0

≤ σ

j∗∑
j=j0

[
c

1/3
0 σ(j − j0)α(−j−1)/3L0 + σq(j − j0) + k0

]
+ k0

≤ k0(σ(j∗ − j0 + 1) + 1) + σ2

j∗−j0∑
j=0

[
j
(
c

1/3
0 α(−j−j0−1)/3L0 + q

)]

≤ k0σ(j∗ − j0 + 1) + k0 +
σ2q(j∗ − j0)(j∗ − j0 + 1)

2
+
σ2c

1/3
0 L0

α(j0+1)/3

j∗−j0∑
j=1

jα−j/3

≤ k0σ(j∗ − j0 + 1) + k0 +
σ2q(j∗ − j0)(j∗ − j0 + 1)

2

+
σ2c

1/3
0 L0

α(j0+1)/3

∫ j∗−j0+1

1

xα−x/3 dx.

Recalling that j0 = dlogα δe − 1 and j∗ = dlogα εe − 1, we get

#DN ≤ c1+c2j
∗+c3(j∗)2+c4j

∗α−(j∗+1)/3 ≤ c1+c2 logα ε+c3(logα ε)
2+c4(logα ε)ε

−1/3,

where c1 = c1(σ, k0), c2 = c2(α, δ, σ, k0) c3 = c3(α, δ, σ, q) and c4 = c4(α, δ, σ,Ω).

Therefore, for ε ∈ (0, δ), by inequality (2.48)

#DN ≤ Cε−1/3 logα ε, σ1(f,DN)1 ≤ Cε2/3 logα ε, (2.56)

where the constant C does not depend on ε, and the statement of the theorem

follows.

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 79

Remark 2.22. Note that if ε ≥ δ (keeping the notations of Theorem 2.2 and its

proof), no subdivision is necessary and

#DN = #D0, σ1(f,DN)1 ≤ δ#D0.

If we take ε = n−3 in Theorem 2.2, then inequalities (2.46) and (2.47) provide the

following result:

Theorem 2.3. Let f(x) = χΩ(x), x ∈ [0, 1]2, be the characteristic function of a

convex set Ω ⊂ [0, 1]2 with a piecewise-smooth boundary, and let δ = max∆0∈D0 ε(∆0)

be the maximum of the local error over the initial triangulation D0. Then for any

n > δ−1/3, the adaptive triangulation algorithm with the subdivision rule introduced

in Subsection 2.3.1 and precision ε := n−3 produces the final triangulation D with

#D ≤ Cn lnn

and the global error σ1(f,D)1 of the piecewise-constant approximation of f on the

partition D is bounded as follows

σ1(f,D)1 ≤
C lnn

n2

(C is a positive constant independent of n).

Also, if we take

ε−1/3 logα ε = n (2.57)

in (2.56), then we obtain the following corollary:

Corollary 2.5. Under the settings of Theorem 2.3, for any n > δ−1/3, the adaptive

triangulation algorithm with the subdivision rule introduced in Subsection 2.3.1 and

precision ε that satisfies (2.57) produces the final triangulation D with

#D ≤ Cn, σ1(f,D)1 ≤
C(lnn)3

n2

Proof. Indeed, if ε−1/3 logα ε = n, then inequality (2.56) implies that

σ1(f,D)1 ≤ Cε2/3 logα ε = C
log3

α ε

ε−2/3 log2
α ε

= C̃
ln3 n

n2
,

where the last equality holds since −1/3 logα ε+ logα(logα ε) = logα n.

Chapter 2: Hierarchial Adaptive Triangulations for Cartoon Images 80

Comparing the result of Corollary 2.5 and inequality (1.4), we can conclude that

our algorithm provides a nearly optimal error of approximation of the characteristic

functions of convex domains over a triangulation with n triangles.

Chapter 3

Conclusions

In this doctoral thesis, we introduce a new adaptive method that has the poten-

tial to be used in Image Coding. In particular, given a characteristic function of

some bounded convex domain (a so-called cartoon image), our algorithm constructs

a hierarchial sequence of triangulations that adapt to the local properties of the func-

tion. In case of convex domains with piecewise-smooth boundary, this approximation

method implies a ‘theoretically correct’ rate of convergence and already outperforms

the well-known wavelet methods. Moreover, our approach can also be extended to

broader classes of not necessarily convex domains, since the smooth boundary of

any non-convex set is locally convex. All of this together with an extension of this

adaptive method to multivariate piecewise polynomial approximation is a subject for

future investigation.

81

Bibliography

[1] P. Binev, W. Dahmen, and R. DeVore, Adaptive finite element methods with convergence rates,

Numer. Math. 97 (2004), no. 2, 219–268.

[2] P. Binev, W. Dahmen, R. DeVore, and P. Petrushev, Approximation classes for adaptive meth-

ods, Serdica Math. J. 28 (2002), no. 4, 391–416. Dedicated to the memory of Vassil Popov on

the occasion of his 60th birthday.

[3] W. Blaschke, Vorlesungen über Differentialgeometrie. II, Affine Differentialgeometrie, Springer,

Berlin, 1923.

[4] E. J. Candès and D. L. Donoho, Curvelets and curvilinear integrals, J. Approx. Theory 113

(2001), no. 1, 59–90.

[5] , New tight frames of curvelets and optimal representations of objects with piecewise C2

singularities, Comm. Pure Appl. Math. 57 (2004), no. 2, 219–266.

[6] A. Cohen, R. DeVore, P. Petrushev, and H. Xu, Nonlinear approximation and the space

BV(R2), Amer. J. Math. 121 (1999), no. 3, 587–628.

[7] A. Cohen, N. Dyn, F. Hecht, and J. M. Mirebeau, Adaptive multiresolution analysis based on

anisotropic triangulations, Math. Comp. 81 (2012), no. 278, 789–810.

[8] I. Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied

Mathematics, vol. 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia,

PA, 1992.

[9] R. DeVore, K. Kopotun, and B. Popov, Adaptive Approximation (TAMU, November/December

2008): Notes (January 25, 2009).

[10] D. L. Donoho, Wedgelets: nearly minimax estimation of edges, Ann. Statist. 27 (1999), no. 3,

859–897.

[11] , Sparse components of images and optimal atomic decompositions, Constr. Approx. 17

(2001), no. 3, 353–382.

82

BIBLIOGRAPHY 83

[12] E. Ehrhart, Une généralisation du théorème de Minkowski (French), C. R. Acad. Sci. Paris

240 (1955), 483–485.

[13] C. S. Güntürk, Wavelets, Approximation Theory, and Signal Processing, Notes, Scribe: Evan

Chou (Fall 2010).

[14] A. Haar, Zur Theorie der orthogonalen Funktionensysteme, Math. Ann. 69 (1910), no. 3, 331–

371.

[15] D. Huffman, A method for the construction of minimum redundancy codes, Proc. IRE 40 9

(1952), 1098-1101.

[16] R. A. Johnson, Advanced Euclidean Geometry, Dover, 2007.

[17] B. S. Kashin, Approximation properties of complete orthonormal systems, Trudy Mat. Inst.

Steklov. 172 (1985), 187–191, 353. Studies in the theory of functions of several real variables

and the approximation of functions.

[18] R. Kazinnik, S. Dekel, and N. Dyn, Low bit-rate image coding using adaptive geometric piece-

wise polynomial approximation, IEEE Transactions on Image Processing 6 (September, 2007),

no. 9.

[19] M. Kunt, A. Ikonomopoulos, and M. Kocher, Second generation image coding, Proc. IEEE 73

(1985), no. 4, 549-574.

[20] R. Larson and B. H. Edwards, Calculus of a Single Variable, Ninth Edition, Brooks/Cole, 2010.

[21] M. A. Lavrent’ev and L. A. Lyusternik, Fundamentals of the Calculus of Variations (in Rus-

sian), Vol. 1, Part II, Moscow, 1935.

[22] S. Mallat and G. Peyré, A review of bandlet methods for geometrical image representation,

Numer. Algorithms 44 (2007), no. 3, 205–234.

[23] Y. Meyer, Wavelets and operators, Cambridge Studies in Advanced Mathematics, vol. 37,

Cambridge University Press, Cambridge, 1992. Translated from the 1990 French original by D.

H. Salinger.

[24] J. M. Mirebeau, Adaptive and anisotropic finite element approximation: Theory and algorithms,

PhD Thesis, 2010.

[25] B. H. Neumann, On an invariant of plane regions and mass distributions, J. London Math.

Soc. 20 (1945), 226–237.

[26] D. J. Newman, Partitioning of areas by straight lines, Notices Amer. Math. Soc 5 (1958), 510.

[27] I. Ya. Novikov, V. Yu. Protasov, and Skopina M. A., Wavelet theory, Vol. 239, American

Mathematical Society, 2011.

83

BIBLIOGRAPHY 84

[28] M. Reid, R. Millar, and Black N., Second-Generation Image Coding: An Overview, ACM Comp-

tuing Surveys 29 (March 1997), 3–29.

[29] , A comparison of first generation image coding techniques applied to the same magnetic

resonance image, Innovation et Technologie en Biologie et Medicine 15 4, 512 (1994).

[30] J. Sampo, Some remarks on convergence of curvelet transform of piecewise smooth functions,

Appl. Comput. Harmon. Anal. 34 (2013), no. 2, 324–326.

[31] R. Shukla, P. L. Dragotti, M. N. Do, and M. Vetterli, Rate-distortion optimized tree-structured

compression algorithms for piecewise polynomial images, IEEE Trans. Image Process. 14

(2005), no. 3, 343–359.

[32] D. Taubman and M. Marcellin, JPEG2000: Image Compression Fundamentals, Standards, and

Practice, Kluwer International Series in Engineering and Computer Science, 2001.

[33] I. M. Yaglom and V.G. Boltyanski, Convex Figures (in Russian), Vol. 4, State Technical-

Theoretical Literature Publisher, Moscow, 1951.

[34] M. Wakin, J. Romberg, H. Choi, and R. Baraniuk, Geometric methods for wavelet-based image

compression (conference proceedings), SPIE Wavelets X, San Diego, August, 2003.

[35] T. Welch, A technique for high performance data compression, IEEE Computing 17 (1984),

no. 6, 8–19.

Appendix A

Matlab Code with Implementation

Auxiliary Functions

Boundaries for a triangular set of pixels

%Boundaries of a triangle

function[low,upp,lt,rt,x_min,x_max,y_min,y_max]=...

Triangle(B,xxx_1,yyy_1,xxx_2,yyy_2,xxx_3,yyy_3)

%Input: image matrix B,

%the coordinates (xxx_i,yyy_i), i=1,2,3, of the

%vertices of a triangle;

%Output: strings of the boundaries of the triangle,

%the ranges for x- and y-coordinates of the points

%inside the triangle

[M,N]=size(B); x1=yyy_1; x2=yyy_2; x3=yyy_3; y1=M+1-xxx_1;

y2=M+1-xxx_2; y3=M+1-xxx_3;

x1=x1+(x1==0)-(x1==N+1); x2=x2+(x2==0)-(x2==N+1);

x3=x3+(x3==0)-(x3==N+1);

85

Appendix A: Matlab Code with Implementation 86

y1=y1+(y1==0)-(y1==M+1); y2=y2+(y2==0)-(y2==M+1);

y3=y3+(y3==0)-(y3==M+1);

x_min=min([x1,x2,x3]); x_max=max([x1,x2,x3]); y_min=min([y1,y2,y3]);

y_max=max([y1,y2,y3]);

a=[x1,x2,x3,x1];b=[y1,y2,y3,y1]; if (x_min==x_max)

low(x_min)=y_min;upp(x_max)=y_max;

for j=y_min:y_max

lt(j)=x_min;rt(j)=x_min;

end

elseif (y_min==y_max)

lt(y_min)=x_min;rt(y_min)=x_max;

for i=x_min:x_max

low(i)=y_min;upp(i)=y_min;

end

else

for i=x_min:x_max

c=[i,i];d=[y_min,y_max];

[p1,p2]=polyxpoly(a,b,c,d);

low(i)=round(min(p2));upp(i)=round(max(p2));

end

for j=y_min:y_max

e=[x_min,x_max];f=[j,j];

[p3,p4]=polyxpoly(a,b,e,f);

lt(j)=round(min(p3));rt(j)=round(max(p3));

end

end

Centroid of the black area

%Centroid of the ’black’ area

Appendix A: Matlab Code with Implementation 87

function [x_m,y_m]=Center_Tr(B,x_1,y_1,x_2,y_2,x_3,y_3)

%Input: image matrix B; (x_i,y_i) -- coordinates of

%the vertices of a triangle (i=1,2,3);

%Output: (x_m,y_m) -- coordinates of the centroid of

%the ’black’ area inside the triangle;

[M,N]=size(B);

[low,upp,lt,rt,x_min,x_max,y_min,y_max]=...

Triangle(B,x_1,y_1,x_2,y_2,x_3,y_3);

Area=0; Mx=0;My=0;

for i=x_min:x_max

for j=low(i):upp(i)

if (B(M+1-j,i)<0.8)

Area=Area+1;

My=My+i;

Mx=Mx+j;

end

end

end

if (Area==0)

x_m=0;

y_m=0;

else

y_m=round(My/Area);

x_m=round(M+1-Mx/Area);

end

Appendix A: Matlab Code with Implementation 88

Centroid of the white area

%Centroid of the ’white’ area

function [x_m,y_m]=Center_Trwhite(B,x_1,y_1,x_2,y_2,x_3,y_3)

%Input: image matrix B; (x_i,y_i) -- coordinates of

%the vertices of a triangle (i=1,2,3);

%Output: coordinates (x_m,y_m) of the centroid of

%the ’white’ area inside the triangle;

[M,N]=size(B);

[low,upp,lt,rt,x_min,x_max,y_min,y_max]=...

Triangle(B,x_1,y_1,x_2,y_2,x_3,y_3);

Area=0; Mx=0; My=0;

for i=x_min:x_max

for j=low(i):upp(i)

if (B(M+1-j,i)>=0.8)

Area=Area+1;

My=My+i;

Mx=Mx+j;

end

end

end

if (Area==0)

x_m=round((x_1+x_2+x_3)/3);

y_m=round((y_1+y_2+y_3)/3);

else y_m=round(My/Area);

Appendix A: Matlab Code with Implementation 89

x_m=round(M+1-Mx/Area);

end

Initial partitioning of an image

%Initial partitioning of an image

function [x_m, y_m]=Center_In(B)

%Input: image matrix B;

%Output: (x_m,y_m) -- coordinates of the

%centroid of the ’black’ area in the image;

[M,N]=size(B);

Area=0;

My=0;

Mx=0;

for i=1:M

for j=1:N

if B(i,j)<0.8

Area=Area+1;

My=My+j;

Mx=Mx+M-i+1;

end

end

end

y_m=round(My/Area);

x_m=round(M+1-Mx/Area);

Error over triangle

Appendix A: Matlab Code with Implementation 90

%Error over triangle

function [mean,eps]=Error(B,xx_1,yy_1,xx_2,yy_2,xx_3,yy_3)

%Input: image matrix B; coordinates of the vertices

%(xx_i,yy_i), i=1,2,3, of a triangle;

%Output: mean -- approximant of the image over triangle

%(0 or 1); the error of the approximation by 0 or 1;

[M,N]=size(B);

[low,upp,lt,rt,x_min,x_max,y_min,y_max]=...

Triangle(B,xx_1,yy_1,xx_2,yy_2,xx_3,yy_3);

Lone=0;Area=0;

for i=x_min:x_max

for j=low(i):upp(i)

Lone=Lone+B(M+1-j,i);

Area=Area+1;

end

end

%Area -- area of the triangle

%Lone -- L_1-norm of the characteristic function

%over the triangle;

if (2*Lone>Area)

mean=1;eps=Area-Lone;

else

mean=0;eps=Lone;

Appendix A: Matlab Code with Implementation 91

end

Draw a line between two pixels

%Draw the straight line segment between two pixels;

function[G]=Draw(B,D,x_1,y_1,x_2,y_2)

%Input: image matrix B;

%existing triangulation on B;

%coordinates of two points

%(x_i,y_i), i=1,2, to be joined;

%Output: adds red straight line segment

%to the image joining two points;

[M,N]=size(B);

[low,upp,lt,rt,x_min,x_max,y_min,y_max]=...

Triangle(B,x_1,y_1,x_2,y_2,x_2,y_2);

G=D;

for i=x_min:x_max

for j=y_min:y_max

if (i==lt(j))||(i==rt(j))||(j==low(i))||(j==upp(i))

G(M+1-j,i,1)=1;

G(M+1-j,i,2)=0;

G(M+1-j,i,3)=0;

end

end

end

Main Parts of the Code

Appendix A: Matlab Code with Implementation 92

Subdivision procedure

%Implementation of the Main Subdivision Algorithm

function [D,Im,number]=...

Division(B,D,Im,xx1,yy1,xx2,yy2,xx3,yy3,pres)

%Input: image matrix B;

%D - image with intriangulation;

%Im - (old) approximation of the image

%(xxi,yyi) -- coordinates of the vertices of

%a triangle (i=1,2,3);

%pres - local error maximum

%Output: D - image with final triangulation

%Im - (new) approximation of the image;

%number - number of triangles in

% the obtained triangulation

clear V

[M,N]=size(B);

V(1,1,1)=xx1+(xx1==0)-(xx1==M+1); V(1,1,2)=yy1+(yy1==0)-(yy1==N+1);

V(1,1,3)=xx2+(xx2==0)-(xx2==M+1); V(1,1,4)=yy2+(yy2==0)-(yy2==N+1);

V(1,1,5)=xx3+(xx3==0)-(xx3==M+1); V(1,1,6)=yy3+(yy3==0)-(yy3==N+1);

D=Draw(B,D,V(1,1,1),V(1,1,2),V(1,1,3),V(1,1,4));

D=Draw(B,D,V(1,1,1),V(1,1,2),V(1,1,5),V(1,1,6));

D=Draw(B,D,V(1,1,3),V(1,1,4),V(1,1,5),V(1,1,6)); [mean,eps]=...

Error(B,V(1,1,1),V(1,1,2),V(1,1,3),V(1,1,4),V(1,1,5),V(1,1,6));

Appendix A: Matlab Code with Implementation 93

V(1,1,7)=eps; k=1;level=1;num=0;

while (eps>pres)

num=0;level=level+1;

for i=1:k

x_1=V(level-1,i,1);y_1=V(level-1,i,2);

x_2=V(level-1,i,3);y_2=V(level-1,i,4);

x_3=V(level-1,i,5);y_3=V(level-1,i,6);

err=V(level-1,i,7);

if (err<=pres)

V(level,num+1,1)=x_1;V(level,num+1,2)=y_1;

V(level,num+1,3)=x_2;V(level,num+1,4)=y_2;

V(level,num+1,5)=x_3;V(level,num+1,6)=y_3;

[mean,er]=Error(B,x_1,y_1,x_2,y_2,x_3,y_3);

V(level,num+1,7)=er;

num=num+1;

else

K=[x_2-x_1,x_3-x_1;y_2-y_1,y_3-y_1];

if (det(K)==0)

[x_m1,y_m1]=Center_Tr(B,x_1,y_1,x_2,y_2,x_3,y_3);

[x_m2,y_m2]=Center_Trwhite(B,x_1,y_1,x_2,y_2,x_3,y_3);

x_m=round((x_m1+x_m2)/2);y_m=round((y_m1+y_m2)/2);

Appendix A: Matlab Code with Implementation 94

x_11=min([x_1,x_2,x_3]);y_11=min([y_1,y_2,y_3]);

x_22=max([x_1,x_2,x_3]);y_22=max([y_1,y_2,y_3]);

if (det([x_11-x_22,y_11-y_22;x_2-x_1,y_2-y_1])==0)&&...

(det([x_11-x_22,y_11-y_22;x_3-x_1,y_3-y_1])==0)

V(level,num+1,1)=x_11;V(level,num+1,2)=y_11;

V(level,num+1,3)=x_m;V(level,num+1,4)=y_m;

V(level,num+1,5)=x_m;V(level,num+1,6)=y_m;

[mean,er]=Error(B,x_11,y_11,x_m,y_m,x_m,y_m);

V(level,num+1,7)=er;

V(level,num+2,1)=x_m;V(level,num+2,2)=y_m;

V(level,num+2,3)=x_m;V(level,num+2,4)=y_m;

V(level,num+2,5)=x_22;V(level,num+2,6)=y_22;

[mean,er]=Error(B,x_m,y_m,x_m,y_m,x_22,y_22);

V(level,num+2,7)=er;

else

V(level,num+1,1)=x_22;V(level,num+1,2)=y_11;

V(level,num+1,3)=x_m;V(level,num+1,4)=y_m;

V(level,num+1,5)=x_m;V(level,num+1,6)=y_m;

[mean,er]=Error(B,x_22,y_11,x_m,y_m,x_m,y_m);

V(level,num+1,7)=er;

V(level,num+2,1)=x_m;V(level,num+2,2)=y_m;

V(level,num+2,3)=x_m;V(level,num+2,4)=y_m;

V(level,num+2,5)=x_11;V(level,num+2,6)=y_22;

Appendix A: Matlab Code with Implementation 95

[mean,er]=Error(B,x_m,y_m,x_m,y_m,x_11,y_22);

V(level,num+2,7)=er;

end

num=num+2;

else

color=...

[(B(x_1,y_1)<0.8),(B(x_2,y_2)<0.8),(B(x_3,y_3)<0.8)];

% 1 if black 0 if white

colorsum=sum(color);

if (colorsum==3)

x_m=round((x_1+x_2+x_3)/3);

y_m=round((y_1+y_2+y_3)/3);

[D]=Draw(B,D,x_m,y_m,x_1,y_1);

[D]=Draw(B,D,x_m,y_m,x_2,y_2);

[D]=Draw(B,D,x_m,y_m,x_3,y_3);

V(level,num+1,1)=x_1;V(level,num+1,2)=y_1;

V(level,num+1,3)=x_2;V(level,num+1,4)=y_2;

V(level,num+1,5)=x_m;V(level,num+1,6)=y_m;

[mean,er]=Error(B,x_1,y_1,x_2,y_2,x_m,y_m);

V(level,num+1,7)=er;

V(level,num+2,1)=x_1;V(level,num+2,2)=y_1;

Appendix A: Matlab Code with Implementation 96

V(level,num+2,3)=x_m;V(level,num+2,4)=y_m;

V(level,num+2,5)=x_3;V(level,num+2,6)=y_3;

[mean,er]=Error(B,x_1,y_1,x_m,y_m,x_3,y_3);

V(level,num+2,7)=er;

V(level,num+3,1)=x_m;V(level,num+3,2)=y_m;

V(level,num+3,3)=x_2;V(level,num+3,4)=y_2;

V(level,num+3,5)=x_3;V(level,num+3,6)=y_3;

[mean,er]=Error(B,x_m,y_m,x_2,y_2,x_3,y_3);

V(level,num+3,7)=er;

num=num+3;

end

if (colorsum==0)

[x_m,y_m]=Center_Tr(B,x_1,y_1,x_2,y_2,x_3,y_3);

[D]=Draw(B,D,x_m,y_m,x_1,y_1);

[D]=Draw(B,D,x_m,y_m,x_2,y_2);

[D]=Draw(B,D,x_m,y_m,x_3,y_3);

V(level,num+1,1)=x_1;V(level,num+1,2)=y_1;

V(level,num+1,3)=x_2;V(level,num+1,4)=y_2;

V(level,num+1,5)=x_m;V(level,num+1,6)=y_m;

[mean,er]=Error(B,x_1,y_1,x_2,y_2,x_m,y_m);

V(level,num+1,7)=er;

V(level,num+2,1)=x_1;V(level,num+2,2)=y_1;

V(level,num+2,3)=x_m;V(level,num+2,4)=y_m;

Appendix A: Matlab Code with Implementation 97

V(level,num+2,5)=x_3;V(level,num+2,6)=y_3;

[mean,er]=Error(B,x_1,y_1,x_m,y_m,x_3,y_3);

V(level,num+2,7)=er;

V(level,num+3,1)=x_m;V(level,num+3,2)=y_m;

V(level,num+3,3)=x_2;V(level,num+3,4)=y_2;

V(level,num+3,5)=x_3;V(level,num+3,6)=y_3;

[mean,er]=Error(B,x_m,y_m,x_2,y_2,x_3,y_3);

V(level,num+3,7)=er;

num=num+3;

end

if (colorsum==2)

%Case 1.

if (color(1)==0)

[x_m,y_m]=...

Center_Trwhite(B,x_1,y_1,x_2,y_2,x_3,y_3);

%pixels with intensity >0.8 = black

E=[x_2-x_1,x_3-x_1;y_2-y_1,y_3-y_1];

F=[3*x_m-3*x_1;3*y_m-3*y_1];

cd=E\F;

lambda=cd(1); mu=cd(2);

c1=round(x_1+lambda*(x_2-x_1));

d1=round(y_1+lambda*(y_2-y_1));

c2=round(x_1+mu*(x_3-x_1));

Appendix A: Matlab Code with Implementation 98

d2=round(y_1+mu*(y_3-y_1));

x_mw=round((c1+c2)/2); y_mw=round((d1+d2)/2);

V(level,num+1,1)=c1;V(level,num+1,2)=d1;

V(level,num+1,3)=x_mw;V(level,num+1,4)=y_mw;

V(level,num+1,5)=x_1;V(level,num+1,6)=y_1;

[mean,er]=Error(B,x_1,y_1,c1,d1,x_mw,y_mw);

V(level,num+1,7)=er;

V(level,num+5,1)=c2;V(level,num+5,2)=d2;

V(level,num+5,3)=x_mw;V(level,num+5,4)=y_mw;

V(level,num+5,5)=x_1;V(level,num+5,6)=y_1;

[mean,er]=Error(B,x_1,y_1,c2,d2,x_mw,y_mw);

V(level,num+5,7)=er;

[D]=Draw(B,D,x_1,y_1,x_mw,y_mw);

[D]=Draw(B,D,c1,d1,c2,d2);

[D]=Draw(B,D,x_2,y_2,x_mw,y_mw);

[D]=Draw(B,D,x_3,y_3,x_mw,y_mw);

V(level,num+2,1)=c1;V(level,num+2,2)=d1;

V(level,num+2,3)=x_2;V(level,num+2,4)=y_2;

V(level,num+2,5)=x_mw;V(level,num+2,6)=y_mw;

[mean,er]=Error(B,x_mw,y_mw,c1,d1,x_2,y_2);

V(level,num+2,7)=er;

V(level,num+3,1)=c2;V(level,num+3,2)=d2;

V(level,num+3,3)=x_mw;V(level,num+3,4)=y_mw;

V(level,num+3,5)=x_3;V(level,num+3,6)=y_3;

Appendix A: Matlab Code with Implementation 99

[mean,er]=Error(B,x_mw,y_mw,c2,d2,x_3,y_3);

V(level,num+3,7)=er;

V(level,num+4,1)=x_3;V(level,num+4,2)=y_3;

V(level,num+4,3)=x_2;V(level,num+4,4)=y_2;

V(level,num+4,5)=x_mw;V(level,num+4,6)=y_mw;

[mean,er]=Error(B,x_2,y_2,x_mw,y_mw,x_3,y_3);

V(level,num+4,7)=er;

num=num+5;

end

%Case 2.

if (color(2)==0)

[x_m,y_m]=...

Center_Trwhite(B,x_1,y_1,x_2,y_2,x_3,y_3);

%pixels with intensity >0.8 = black

E=[x_1-x_2,x_3-x_2;y_1-y_2,y_3-y_2];

F=[3*x_m-3*x_2;3*y_m-3*y_2];

cd=E\F;

lambda=cd(1); mu=cd(2);

c1=round(x_2+lambda*(x_1-x_2));

d1=round(y_2+lambda*(y_1-y_2));

c2=round(x_2+mu*(x_3-x_2));

d2=round(y_2+mu*(y_3-y_2));

x_mw=round((c1+c2)/2); y_mw=round((d1+d2)/2);

Appendix A: Matlab Code with Implementation 100

V(level,num+1,1)=c1;V(level,num+1,2)=d1;

V(level,num+1,3)=x_mw;V(level,num+1,4)=y_mw;

V(level,num+1,5)=x_2;V(level,num+1,6)=y_2;

[mean,er]=Error(B,x_2,y_2,c1,d1,x_mw,y_mw);

V(level,num+1,7)=er;

V(level,num+5,1)=c2;V(level,num+5,2)=d2;

V(level,num+5,3)=x_mw;V(level,num+5,4)=y_mw;

V(level,num+5,5)=x_2;V(level,num+5,6)=y_2;

[mean,er]=Error(B,x_2,y_2,c2,d2,x_mw,y_mw);

V(level,num+5,7)=er;

[D]=Draw(B,D,x_2,y_2,x_mw,y_mw);

[D]=Draw(B,D,c1,d1,c2,d2);

[D]=Draw(B,D,x_1,y_1,x_mw,y_mw);

[D]=Draw(B,D,x_3,y_3,x_mw,y_mw);

V(level,num+2,1)=c1;V(level,num+2,2)=d1;

V(level,num+2,3)=x_1;V(level,num+2,4)=y_1;

V(level,num+2,5)=x_mw;V(level,num+2,6)=y_mw;

[mean,er]=Error(B,x_mw,y_mw,c1,d1,x_1,y_1);

V(level,num+2,7)=er;

V(level,num+3,1)=c2;V(level,num+3,2)=d2;

V(level,num+3,3)=x_mw;V(level,num+3,4)=y_mw;

V(level,num+3,5)=x_3;V(level,num+3,6)=y_3;

[mean,er]=Error(B,x_mw,y_mw,c2,d2,x_3,y_3);

V(level,num+3,7)=er;

V(level,num+4,1)=x_3;V(level,num+4,2)=y_3;

Appendix A: Matlab Code with Implementation 101

V(level,num+4,3)=x_1;V(level,num+4,4)=y_1;

V(level,num+4,5)=x_mw;V(level,num+4,6)=y_mw;

[mean,er]=Error(B,x_1,y_1,x_mw,y_mw,x_3,y_3);

V(level,num+4,7)=er;

num=num+5;

end

% Case 3.

if (color(3)==0)

[x_m,y_m]=...

Center_Trwhite(B,x_1,y_1,x_2,y_2,x_3,y_3);

%pixels with intensity >0.8 = black

E=[x_2-x_3,x_1-x_3;y_2-y_3,y_1-y_3];

F=[3*x_m-3*x_3;3*y_m-3*y_3];

cd=E\F;

lambda=cd(1); mu=cd(2);

c1=round(x_3+lambda*(x_2-x_3));

d1=round(y_3+lambda*(y_2-y_3));

c2=round(x_3+mu*(x_1-x_3));

d2=round(y_3+mu*(y_1-y_3));

x_mw=round((c1+c2)/2); y_mw=round((d1+d2)/2);

V(level,num+1,1)=c1;V(level,num+1,2)=d1;

V(level,num+1,3)=x_mw;V(level,num+1,4)=y_mw;

V(level,num+1,5)=x_3;V(level,num+1,6)=y_3;

[mean,er]=Error(B,x_3,y_3,c1,d1,x_mw,y_mw);

Appendix A: Matlab Code with Implementation 102

V(level,num+1,7)=er;

V(level,num+5,1)=c2;V(level,num+5,2)=d2;

V(level,num+5,3)=x_mw;V(level,num+5,4)=y_mw;

V(level,num+5,5)=x_3;V(level,num+5,6)=y_3;

[mean,er]=Error(B,x_3,y_3,c2,d2,x_mw,y_mw);

V(level,num+5,7)=er;

[D]=Draw(B,D,x_1,y_1,x_mw,y_mw);

[D]=Draw(B,D,c1,d1,c2,d2);

[D]=Draw(B,D,x_2,y_2,x_mw,y_mw);

[D]=Draw(B,D,x_1,y_1,x_mw,y_mw);

V(level,num+2,1)=c1;V(level,num+2,2)=d1;

V(level,num+2,3)=x_2;V(level,num+2,4)=y_2;

V(level,num+2,5)=x_mw;V(level,num+2,6)=y_mw;

[mean,er]=Error(B,x_mw,y_mw,c1,d1,x_2,y_2);

V(level,num+2,7)=er;

V(level,num+3,1)=c2;V(level,num+3,2)=d2;

V(level,num+3,3)=x_mw;V(level,num+3,4)=y_mw;

V(level,num+3,5)=x_1;V(level,num+3,6)=y_1;

[mean,er]=Error(B,x_mw,y_mw,c2,d2,x_1,y_1);

V(level,num+3,7)=er;

V(level,num+4,1)=x_1;V(level,num+4,2)=y_1;

V(level,num+4,3)=x_2;V(level,num+4,4)=y_2;

V(level,num+4,5)=x_mw;V(level,num+4,6)=y_mw;

[mean,er]=Error(B,x_2,y_2,x_mw,y_mw,x_1,y_1);

V(level,num+4,7)=er;

Appendix A: Matlab Code with Implementation 103

num=num+5;

end

clear col clear low clear upp clear lt clear rt

end

if (colorsum==1)

%Case 1.

if (color(1)==1)

[x_mw,y_mw]=...

Center_Tr(B,x_2,y_2,x_2,y_2,x_3,y_3);

if (x_mw==0)

[x_m,y_m]=Center_Tr(B,x_1,y_1,x_2,y_2,x_3,y_3);

%pixels with intensity >0.8 = black

E=[x_2-x_1,x_3-x_1;y_2-y_1,y_3-y_1];

F=[3*x_m-3*x_1;3*y_m-3*y_1];

cd=E\F;

lambda=cd(1); mu=cd(2);

c1=round(x_1+lambda*(x_2-x_1));

d1=round(y_1+lambda*(y_2-y_1));

c2=round(x_1+mu*(x_3-x_1));

d2=round(y_1+mu*(y_3-y_1));

if (c1<min(x_1,x_2))||(c1>max(x_1,x_2))

Appendix A: Matlab Code with Implementation 104

a1=[x_2,x_3]; b1=[y_2,y_3];

a2=[c1,c2];b2=[d1,d2];

[e1,f1]=polyxpoly(a1,b1,a2,b2);

x_med=round((c1+c2)/2);y_med=round((d1+d2)/2);

c1=round(e1);d1=round(f1);

V(level,num+1,1)=c1;V(level,num+1,2)=d1;

V(level,num+1,3)=x_2;V(level,num+1,4)=y_2;

V(level,num+1,5)=x_1;V(level,num+1,6)=y_1;

[mean,er]=Error(B,x_1,y_1,c1,d1,x_2,y_2);

V(level,num+1,7)=er;

V(level,num+2,1)=c1;V(level,num+2,2)=d1;

V(level,num+2,3)=x_med;V(level,num+2,4)=y_med;

V(level,num+2,5)=x_1;V(level,num+2,6)=y_1;

[mean,er]=Error(B,x_1,y_1,c1,d1,x_med,y_med);

V(level,num+2,7)=er;

V(level,num+3,1)=c1;V(level,num+3,2)=d1;

V(level,num+3,3)=x_med;V(level,num+3,4)=y_med;

V(level,num+3,5)=x_3;V(level,num+3,6)=y_3;

[mean,er]=Error(B,x_3,y_3,c1,d1,x_med,y_med);

V(level,num+3,7)=er;

V(level,num+4,1)=x_med;V(level,num+4,2)=y_med;

V(level,num+4,3)=c2;V(level,num+4,4)=d2;

V(level,num+4,5)=x_1;V(level,num+4,6)=y_1;

[mean,er]=Error(B,x_1,y_1,x_med,y_med,c2,d2);

V(level,num+4,7)=er;

Appendix A: Matlab Code with Implementation 105

V(level,num+5,1)=x_med;V(level,num+5,2)=y_med;

V(level,num+5,3)=c2;V(level,num+5,4)=d2;

V(level,num+5,5)=x_3;V(level,num+5,6)=y_3;

[mean,er]=Error(B,x_3,y_3,x_med,y_med,c2,d2);

V(level,num+5,7)=er;

[D]=Draw(B,D,c1,d1,c2,d2);

[D]=Draw(B,D,c1,d1,x_1,y_1);

[D]=Draw(B,D,x_med,y_med,x_3,y_3);

[D]=Draw(B,D,x_med,y_med,x_1,y_1);

num=num+5;

elseif (c2<min(x_1,x_3))||(c2>max(x_1,x_3))

a1=[x_2,x_3]; b1=[y_2,y_3];

a2=[c1,c2];b2=[d1,d2];

[e1,f1]=polyxpoly(a1,b1,a2,b2);

x_med=round((c1+c2)/2);y_med=round((d1+d2)/2);

c2=round(e1);d2=round(f1);

V(level,num+1,1)=c2;V(level,num+1,2)=d2;

V(level,num+1,3)=x_3;V(level,num+1,4)=y_3;

V(level,num+1,5)=x_1;V(level,num+1,6)=y_1;

[mean,er]=Error(B,x_1,y_1,c2,d2,x_3,y_3);

V(level,num+1,7)=er;

V(level,num+2,1)=c2;V(level,num+2,2)=d2;

V(level,num+2,3)=x_med;V(level,num+2,4)=y_med;

V(level,num+2,5)=x_1;V(level,num+2,6)=y_1;

[mean,er]=Error(B,x_1,y_1,c2,d2,x_med,y_med);

Appendix A: Matlab Code with Implementation 106

V(level,num+2,7)=er;

V(level,num+3,1)=c2;V(level,num+3,2)=d2;

V(level,num+3,3)=x_med;V(level,num+3,4)=y_med;

V(level,num+3,5)=x_2;V(level,num+3,6)=y_2;

[mean,er]=Error(B,x_2,y_2,c2,d2,x_med,y_med);

V(level,num+3,7)=er;

V(level,num+4,1)=x_med;V(level,num+4,2)=y_med;

V(level,num+4,3)=c1;V(level,num+4,4)=d1;

V(level,num+4,5)=x_1;V(level,num+4,6)=y_1;

[mean,er]=Error(B,x_1,y_1,x_med,y_med,c1,d1);

V(level,num+4,7)=er;

V(level,num+5,1)=x_med;V(level,num+5,2)=y_med;

V(level,num+5,3)=c1;V(level,num+5,4)=d1;

V(level,num+5,5)=x_2;V(level,num+5,6)=y_2;

[mean,er]=Error(B,x_2,y_2,x_med,y_med,c1,d1);

V(level,num+5,7)=er;

[D]=Draw(B,D,c1,d1,c2,d2);

[D]=Draw(B,D,c2,d2,x_1,y_1);

[D]=Draw(B,D,x_med,y_med,x_2,y_2);

[D]=Draw(B,D,x_med,y_med,x_1,y_1);

num=num+5;

else

x_med=round((c1+c2)/2);y_med=round((d1+d2)/2);

Appendix A: Matlab Code with Implementation 107

c1=c1+(c1==0)-(c1==M+1);c2=c2+(c2==0)-(c2==M+1);

d1=d1+(d1==0)-(d1==N+1);

d2=d2+(d2==0)-(d2==N+1);

V(level,num+1,1)=c1;V(level,num+1,2)=d1;

V(level,num+1,3)=x_med;V(level,num+1,4)=y_med;

V(level,num+1,5)=x_1;V(level,num+1,6)=y_1;

[mean,er]=Error(B,x_1,y_1,c1,d1,x_med,y_med);

V(level,num+1,7)=er;

V(level,num+2,1)=c1;V(level,num+2,2)=d1;

V(level,num+2,3)=x_med;V(level,num+2,4)=y_med;

V(level,num+2,5)=x_2;V(level,num+2,6)=y_2;

[mean,er]=Error(B,x_med,y_med,c1,d1,x_2,y_2);

V(level,num+2,7)=er;

V(level,num+3,1)=x_2;V(level,num+3,2)=y_2;

V(level,num+3,3)=x_med;V(level,num+3,4)=y_med;

V(level,num+3,5)=x_3;V(level,num+3,6)=y_3;

[mean,er]=Error(B,x_med,y_med,x_2,y_2,x_3,y_3);

V(level,num+3,7)=er;

V(level,num+4,1)=c2;V(level,num+4,2)=d2;

V(level,num+4,3)=x_3;V(level,num+4,4)=y_3;

V(level,num+4,5)=x_med;V(level,num+4,6)=y_med;

[mean,er]=Error(B,x_3,y_3,x_med,y_med,c2,d2);

V(level,num+4,7)=er;

V(level,num+5,1)=x_med;V(level,num+5,2)=y_med;

Appendix A: Matlab Code with Implementation 108

V(level,num+5,3)=c2;V(level,num+5,4)=d2;

V(level,num+5,5)=x_1;V(level,num+5,6)=y_1;

[mean,er]=Error(B,x_1,y_1,x_med,y_med,c2,d2);

V(level,num+5,7)=er;

[D]=Draw(B,D,c1,d1,c2,d2);

[D]=Draw(B,D,x_med,y_med,x_1,y_1);

[D]=Draw(B,D,x_med,y_med,x_2,y_2);

[D]=Draw(B,D,x_med,y_med,x_3,y_3);

num=num+5;

end

else

x_m=x_mw;y_m=y_mw;

[D]=Draw(B,D,x_m,y_m,x_1,y_1);

x_m=x_m+(x_m==0)-(x_m==M+1);

y_m=y_m+(y_m==0)-(y_m==M+1);

V(level,num+1,1)=x_1;V(level,num+1,2)=y_1;

V(level,num+1,3)=x_2;V(level,num+1,4)=y_2;

V(level,num+1,5)=x_m;V(level,num+1,6)=y_m;

[mean,er]=Error(B,x_1,y_1,x_2,y_2,x_m,y_m);

V(level,num+1,7)=er;

V(level,num+2,1)=x_1;V(level,num+2,2)=y_1;

Appendix A: Matlab Code with Implementation 109

V(level,num+2,3)=x_3;V(level,num+2,4)=y_3;

V(level,num+2,5)=x_m;V(level,num+2,6)=y_m;

[mean,er]=Error(B,x_1,y_1,x_m,y_m,x_3,y_3);

V(level,num+2,7)=er;

num=num+2;

end

clear col

clear low

clear upp

clear lt

clear rt

end

%Case 2.

if (color(2)==1)

[x_mw,y_mw]=Center_Tr(B,x_1,y_1,x_1,y_1,x_3,y_3);

if (x_mw==0)

[x_m,y_m]=...

Center_Tr(B,x_1,y_1,x_2,y_2,x_3,y_3);

E=[x_1-x_2,x_3-x_2;y_1-y_2,y_3-y_2];

F=[3*x_m-3*x_2;3*y_m-3*y_2];

cd=E\F;

lambda=cd(1); mu=cd(2);

c1=round(x_2+lambda*(x_1-x_2));

Appendix A: Matlab Code with Implementation 110

d1=round(y_2+lambda*(y_1-y_2));

c2=round(x_2+mu*(x_3-x_2));

d2=round(y_2+mu*(y_3-y_2));

if (c1<min(x_2,x_1))||(c1>max(x_1,x_2))

a1=[x_1,x_3]; b1=[y_1,y_3];

a2=[c1,c2];b2=[d1,d2];

[e1,f1]=polyxpoly(a1,b1,a2,b2);

x_med=round((c1+c2)/2);y_med=round((d1+d2)/2);

c1=round(e1);d1=round(f1);

V(level,num+1,1)=c1;V(level,num+1,2)=d1;

V(level,num+1,3)=x_1;V(level,num+1,4)=y_1;

V(level,num+1,5)=x_2;V(level,num+1,6)=y_2;

[mean,er]=Error(B,x_1,y_1,c1,d1,x_2,y_2);

V(level,num+1,7)=er;

V(level,num+2,1)=c1;V(level,num+2,2)=d1;

V(level,num+2,3)=x_med;V(level,num+2,4)=y_med;

V(level,num+2,5)=x_2;V(level,num+2,6)=y_2;

[mean,er]=Error(B,x_2,y_2,c1,d1,x_med,y_med);

V(level,num+2,7)=er;

V(level,num+3,1)=c1;V(level,num+3,2)=d1;

V(level,num+3,3)=x_med;V(level,num+3,4)=y_med;

V(level,num+3,5)=x_3;V(level,num+3,6)=y_3;

[mean,er]=Error(B,x_3,y_3,c1,d1,x_med,y_med);

V(level,num+3,7)=er;

V(level,num+4,1)=x_med;V(level,num+4,2)=y_med;

Appendix A: Matlab Code with Implementation 111

V(level,num+4,3)=c2;V(level,num+4,4)=d2;

V(level,num+4,5)=x_2;V(level,num+4,6)=y_2;

[mean,er]=Error(B,x_2,y_2,x_med,y_med,c2,d2);

V(level,num+4,7)=er;

V(level,num+5,1)=x_med;V(level,num+5,2)=y_med;

V(level,num+5,3)=c2;V(level,num+5,4)=d2;

V(level,num+5,5)=x_3;V(level,num+5,6)=y_3;

[mean,er]=Error(B,x_3,y_3,x_med,y_med,c2,d2);

V(level,num+5,7)=er;

[D]=Draw(B,D,c1,d1,c2,d2);

[D]=Draw(B,D,c1,d1,x_2,y_2);

[D]=Draw(B,D,x_med,y_med,x_3,y_3);

[D]=Draw(B,D,x_med,y_med,x_2,y_2);

num=num+5;

elseif (c2<min(x_3,x_2))||(c2>max(x_3,x_2))

a1=[x_1,x_3]; b1=[y_1,y_3];

a2=[c1,c2];b2=[d1,d2];

[e1,f1]=polyxpoly(a1,b1,a2,b2);

x_med=round((c1+c2)/2);y_med=round((d1+d2)/2);

c2=round(e1);d2=round(f1);

V(level,num+1,1)=c2;V(level,num+1,2)=d2;

V(level,num+1,3)=x_3;V(level,num+1,4)=y_3;

V(level,num+1,5)=x_2;V(level,num+1,6)=y_2;

[mean,er]=Error(B,x_2,y_2,c2,d2,x_3,y_3);

V(level,num+1,7)=er;

Appendix A: Matlab Code with Implementation 112

V(level,num+2,1)=c2;V(level,num+2,2)=d2;

V(level,num+2,3)=x_med;V(level,num+2,4)=y_med;

V(level,num+2,5)=x_2;V(level,num+2,6)=y_2;

[mean,er]=Error(B,x_2,y_2,c2,d2,x_med,y_med);

V(level,num+2,7)=er;

V(level,num+3,1)=c2;V(level,num+3,2)=d2;

V(level,num+3,3)=x_med;V(level,num+3,4)=y_med;

V(level,num+3,5)=x_1;V(level,num+3,6)=y_1;

[mean,er]=Error(B,x_1,y_1,c2,d2,x_med,y_med);

V(level,num+3,7)=er;

V(level,num+4,1)=x_med;V(level,num+4,2)=y_med;

V(level,num+4,3)=c1;V(level,num+4,4)=d1;

V(level,num+4,5)=x_2;V(level,num+4,6)=y_2;

[mean,er]=Error(B,x_2,y_2,x_med,y_med,c1,d1);

V(level,num+4,7)=er;

V(level,num+5,1)=x_med;V(level,num+5,2)=y_med;

V(level,num+5,3)=c1;V(level,num+5,4)=d1;

V(level,num+5,5)=x_1;V(level,num+5,6)=y_1;

[mean,er]=Error(B,x_1,y_1,x_med,y_med,c1,d1);

V(level,num+5,7)=er;

[D]=Draw(B,D,c1,d1,c2,d2);

[D]=Draw(B,D,c2,d2,x_2,y_2);

[D]=Draw(B,D,x_med,y_med,x_1,y_1);

[D]=Draw(B,D,x_med,y_med,x_2,y_2);

Appendix A: Matlab Code with Implementation 113

num=num+5;

else

x_med=round((c1+c2)/2);y_med=round((d1+d2)/2);

V(level,num+1,1)=c1;V(level,num+1,2)=d1;

V(level,num+1,3)=x_med;V(level,num+1,4)=y_med;

V(level,num+1,5)=x_2;V(level,num+1,6)=y_2;

[mean,er]=Error(B,x_2,y_2,c1,d1,x_med,y_med);

V(level,num+1,7)=er;

V(level,num+2,1)=c1;V(level,num+2,2)=d1;

V(level,num+2,3)=x_med;V(level,num+2,4)=y_med;

V(level,num+2,5)=x_1;V(level,num+2,6)=y_1;

[mean,er]=Error(B,x_med,y_med,c1,d1,x_1,y_1);

V(level,num+2,7)=er;

V(level,num+3,1)=x_1;V(level,num+3,2)=y_1;

V(level,num+3,3)=x_med;V(level,num+3,4)=y_med;

V(level,num+3,5)=x_3;V(level,num+3,6)=y_3;

[mean,er]=Error(B,x_med,y_med,x_1,y_1,x_3,y_3);

V(level,num+3,7)=er;

V(level,num+4,1)=c2;V(level,num+4,2)=d2;

V(level,num+4,3)=x_3;V(level,num+4,4)=y_3;

V(level,num+4,5)=x_med;V(level,num+4,6)=y_med;

[mean,er]=Error(B,x_3,y_3,x_med,y_med,c2,d2);

V(level,num+4,7)=er;

Appendix A: Matlab Code with Implementation 114

V(level,num+5,1)=x_med;V(level,num+5,2)=y_med;

V(level,num+5,3)=c2;V(level,num+5,4)=d2;

V(level,num+5,5)=x_2;V(level,num+5,6)=y_2;

[mean,er]=Error(B,x_2,y_2,x_med,y_med,c2,d2);

V(level,num+5,7)=er;

[D]=Draw(B,D,c1,d1,c2,d2);

[D]=Draw(B,D,x_med,y_med,x_1,y_1);

[D]=Draw(B,D,x_med,y_med,x_2,y_2);

[D]=Draw(B,D,x_med,y_med,x_3,y_3);

num=num+5;

end

else

x_m=x_mw;y_m=y_mw;

[D]=Draw(B,D,x_m,y_m,x_2,y_2);

V(level,num+1,1)=x_1;V(level,num+1,2)=y_1;

V(level,num+1,3)=x_2;V(level,num+1,4)=y_2;

V(level,num+1,5)=x_m;V(level,num+1,6)=y_m;

[mean,er]=Error(B,x_1,y_1,x_2,y_2,x_m,y_m);

V(level,num+1,7)=er;

V(level,num+2,1)=x_2;V(level,num+2,2)=y_2;

V(level,num+2,3)=x_3;V(level,num+2,4)=y_3;

V(level,num+2,5)=x_m;V(level,num+2,6)=y_m;

Appendix A: Matlab Code with Implementation 115

[mean,er]=Error(B,x_m,y_m,x_2,y_2,x_3,y_3);

V(level,num+2,7)=er;

num=num+2;

end

clear col

clear low

clear upp

clear lt

clear rt

end

%Case 3.

if (color(3)==1)

[x_mw,y_mw]=Center_Tr(B,x_1,y_1,x_2,y_2,x_1,y_1);

if (x_mw==0)

[x_m,y_m]=Center_Tr(B,x_1,y_1,x_2,y_2,x_3,y_3);

E=[x_2-x_3,x_1-x_3;y_2-y_3,y_1-y_3];

F=[3*x_m-3*x_3;3*y_m-3*y_3];

cd=E\F;

lambda=cd(1); mu=cd(2);

c1=round(x_3+lambda*(x_2-x_3));

d1=round(y_3+lambda*(y_2-y_3));

c2=round(x_3+mu*(x_1-x_3));

Appendix A: Matlab Code with Implementation 116

d2=round(y_3+mu*(y_1-y_3));

if (c1<min(x_3,x_2))||(c1>max(x_3,x_2))

a1=[x_2,x_1]; b1=[y_2,y_1];

a2=[c1,c2];b2=[d1,d2];

[e1,f1]=polyxpoly(a1,b1,a2,b2);

x_med=round((c1+c2)/2);y_med=round((d1+d2)/2);

c1=round(e1);d1=round(f1);

V(level,num+1,1)=c1;V(level,num+1,2)=d1;

V(level,num+1,3)=x_2;V(level,num+1,4)=y_2;

V(level,num+1,5)=x_3;V(level,num+1,6)=y_3;

[mean,er]=Error(B,x_3,y_3,c1,d1,x_2,y_2);

V(level,num+1,7)=er;

V(level,num+2,1)=c1;V(level,num+2,2)=d1;

V(level,num+2,3)=x_med;V(level,num+2,4)=y_med;

V(level,num+2,5)=x_3;V(level,num+2,6)=y_3;

[mean,er]=Error(B,x_3,y_3,c1,d1,x_med,y_med);

V(level,num+2,7)=er;

V(level,num+3,1)=c1;V(level,num+3,2)=d1;

V(level,num+3,3)=x_med;V(level,num+3,4)=y_med;

V(level,num+3,5)=x_1;V(level,num+3,6)=y_1;

[mean,er]=Error(B,x_1,y_1,c1,d1,x_med,y_med);

V(level,num+3,7)=er;

V(level,num+4,1)=x_med;V(level,num+4,2)=y_med;

V(level,num+4,3)=c2;V(level,num+4,4)=d2;

Appendix A: Matlab Code with Implementation 117

V(level,num+4,5)=x_3;V(level,num+4,6)=y_3;

[mean,er]=Error(B,x_3,y_3,x_med,y_med,c2,d2);

V(level,num+4,7)=er;

V(level,num+5,1)=x_med;V(level,num+5,2)=y_med;

V(level,num+5,3)=c2;V(level,num+5,4)=d2;

V(level,num+5,5)=x_1;V(level,num+5,6)=y_1;

[mean,er]=Error(B,x_1,y_1,x_med,y_med,c2,d2);

V(level,num+5,7)=er;

[D]=Draw(B,D,c1,d1,c2,d2);

[D]=Draw(B,D,c1,d1,x_1,y_1);

[D]=Draw(B,D,x_med,y_med,x_3,y_3);

[D]=Draw(B,D,x_med,y_med,x_1,y_1);

num=num+5;

elseif (c2<min(x_1,x_3))||(c2>max(x_1,x_3))

a1=[x_2,x_1]; b1=[y_2,y_1];

a2=[c1,c2];b2=[d1,d2];

[e1,f1]=polyxpoly(a1,b1,a2,b2);

x_med=round((c1+c2)/2);y_med=round((d1+d2)/2);

c2=round(e1);d2=round(f1);

V(level,num+1,1)=c2;V(level,num+1,2)=d2;

V(level,num+1,3)=x_1;V(level,num+1,4)=y_1;

V(level,num+1,5)=x_3;V(level,num+1,6)=y_3;

[mean,er]=Error(B,x_1,y_1,c2,d2,x_3,y_3);

V(level,num+1,7)=er;

Appendix A: Matlab Code with Implementation 118

V(level,num+2,1)=c2;V(level,num+2,2)=d2;

V(level,num+2,3)=x_med;V(level,num+2,4)=y_med;

V(level,num+2,5)=x_3;V(level,num+2,6)=y_3;

[mean,er]=Error(B,x_3,y_3,c2,d2,x_med,y_med);

V(level,num+2,7)=er;

V(level,num+3,1)=c2;V(level,num+3,2)=d2;

V(level,num+3,3)=x_med;V(level,num+3,4)=y_med;

V(level,num+3,5)=x_2;V(level,num+3,6)=y_2;

[mean,er]=Error(B,x_2,y_2,c2,d2,x_med,y_med);

V(level,num+3,7)=er;

V(level,num+4,1)=x_med;V(level,num+4,2)=y_med;

V(level,num+4,3)=c1;V(level,num+4,4)=d1;

V(level,num+4,5)=x_3;V(level,num+4,6)=y_3;

[mean,er]=Error(B,x_3,y_3,x_med,y_med,c1,d1);

V(level,num+4,7)=er;

V(level,num+5,1)=x_med;V(level,num+5,2)=y_med;

V(level,num+5,3)=c1;V(level,num+5,4)=d1;

V(level,num+5,5)=x_2;V(level,num+5,6)=y_2;

[mean,er]=Error(B,x_2,y_2,x_med,y_med,c1,d1);

V(level,num+5,7)=er;

[D]=Draw(B,D,c1,d1,c2,d2);

[D]=Draw(B,D,c2,d2,x_3,y_3);

[D]=Draw(B,D,x_med,y_med,x_2,y_2);

[D]=Draw(B,D,x_med,y_med,x_3,y_3);

Appendix A: Matlab Code with Implementation 119

num=num+5;

else

x_med=round((c1+c2)/2);y_med=round((d1+d2)/2);

V(level,num+1,1)=c1;V(level,num+1,2)=d1;

V(level,num+1,3)=x_med;V(level,num+1,4)=y_med;

V(level,num+1,5)=x_3;V(level,num+1,6)=y_3;

[mean,er]=Error(B,x_3,y_3,c1,d1,x_med,y_med);

V(level,num+1,7)=er;

V(level,num+2,1)=c1;V(level,num+2,2)=d1;

V(level,num+2,3)=x_med;V(level,num+2,4)=y_med;

V(level,num+2,5)=x_2;V(level,num+2,6)=y_2;

[mean,er]=Error(B,x_med,y_med,c1,d1,x_2,y_2);

V(level,num+2,7)=er;

V(level,num+3,1)=x_2;V(level,num+3,2)=y_2;

V(level,num+3,3)=x_med;V(level,num+3,4)=y_med;

V(level,num+3,5)=x_1;V(level,num+3,6)=y_1;

[mean,er]=Error(B,x_med,y_med,x_2,y_2,x_1,y_1);

V(level,num+3,7)=er;

V(level,num+4,1)=c2;V(level,num+4,2)=d2;

V(level,num+4,3)=x_1;V(level,num+4,4)=y_1;

V(level,num+4,5)=x_med;V(level,num+4,6)=y_med;

[mean,er]=Error(B,x_1,y_1,x_med,y_med,c2,d2);

V(level,num+4,7)=er;

Appendix A: Matlab Code with Implementation 120

V(level,num+5,1)=x_med;V(level,num+5,2)=y_med;

V(level,num+5,3)=c2;V(level,num+5,4)=d2;

V(level,num+5,5)=x_3;V(level,num+5,6)=y_3;

[mean,er]=Error(B,x_3,y_3,x_med,y_med,c2,d2);

V(level,num+5,7)=er;

[D]=Draw(B,D,c1,d1,c2,d2);

[D]=Draw(B,D,x_med,y_med,x_1,y_1);

[D]=Draw(B,D,x_med,y_med,x_2,y_2);

[D]=Draw(B,D,x_med,y_med,x_3,y_3);

num=num+5;

end

else

x_m=x_mw;y_m=y_mw;

[D]=Draw(B,D,x_m,y_m,x_3,y_3);

V(level,num+1,1)=x_1;V(level,num+1,2)=y_1;

V(level,num+1,3)=x_3;V(level,num+1,4)=y_3;

V(level,num+1,5)=x_m;V(level,num+1,6)=y_m;

[mean,er]=Error(B,x_1,y_1,x_m,y_m,x_3,y_3);

V(level,num+1,7)=er;

V(level,num+2,1)=x_2;V(level,num+2,2)=y_2;

V(level,num+2,3)=x_3;V(level,num+2,4)=y_3;

V(level,num+2,5)=x_m;V(level,num+2,6)=y_m;

[mean,er]=Error(B,x_m,y_m,x_2,y_2,x_3,y_3);

Appendix A: Matlab Code with Implementation 121

V(level,num+2,7)=er;

num=num+2;

end

clear col

clear low

clear upp

clear lt

clear rt

end

end

end

end

end

eps=max(V(level,:,7));

k=num; end

number=k;

for m=1:k

x_1=V(level,m,1);y_1=V(level,m,2);

x_2=V(level,m,3);y_2=V(level,m,4);

x_3=V(level,m,5);y_3=V(level,m,6);

[mean,er]=Error(B,x_1,y_1,x_2,y_2,x_3,y_3);

[low,upp,lt,rt,x_min,x_max,y_min,y_max]=...

Triangle(B,x_1,y_1,x_2,y_2,x_3,y_3);

Appendix A: Matlab Code with Implementation 122

for i=x_min:x_max

for j=y_min:y_max

if (i>=lt(j))&&(i<=rt(j))&&(j>=low(i))&&(j<=upp(i))

Im(M+1-j,i)=mean;

end

end

end

end

Input the image and output the result

function Triangulation(filename,pres)

%Input: image and presicion;

%Output: triangulated image and the approximation

%based on the triangulation

A=imread(filename); A=rgb2gray(A); A=mat2gray(A); [M,N]=size(A);

Im=A; Im=0; C(:,:,1)=A; C(:,:,2)=A; C(:,:,3)=A;

[x_m,y_m]=Center_In(A);

[C,Im,number1]=Division(A,C,Im,1,1,M,1,x_m,y_m,pres);

[C,Im,number2]=Division(A,C,Im,M,1,M,N,x_m,y_m,pres);

[C,Im,number3]=Division(A,C,Im,M,N,1,N,x_m,y_m,pres);

[C,Im,number4]=Division(A,C,Im,1,1,1,N,x_m,y_m,pres);

number1+number2+number3+number4

E=abs(A-Im); sum(sum(E))

Appendix A: Matlab Code with Implementation 123

figure(1); imshow(Im) figure(2); imshow(C)

Appendix A: Matlab Code with Implementation 124

Numerical Results

In the following comparison tables, we present the results of our adaptive approx-

imation of the same image with three different local error precisions. To show the

relation between the theoretical results established in Theorem 2.2 and the results

of the corresponding implementations, we add two columns that show the rates of

decay of the right-hand sides in the estimates established in Theorem 2.2:

Table A.1: Image of a square (Figure A.1a): analysis of adaptive approximation

Precision ε # of triangles Global error #D σ1(f,D)1

(in pixels) (in cm2) (final partition) (in pixels) (in cm2) ε−1/3 ln(1/ε) ε2/3 ln(1/ε)

200 0.14 40 1716 1.2 3.8 0.53
100 0.07 72 816 0.57 6.5 0.45
50 0.035 108 735 0.51 10 0.36

Table A.2: Image of a circle (Figure A.2a): analysis of adaptive approximation

Precision ε # of triangles Global error #D σ1(f,D)1

(in pixels) (in cm2) (final partition) (in pixels) (in cm2) ε−1/3 ln(1/ε) ε2/3 ln(1/ε)

400 0.28 92 2104 1.475 2 0.55
100 0.07 100 1397 0.98 6.5 0.45
50 0.035 140 1058 0.75 10 0.36

Table A.3: Image of a polygon (Figure A.3a): analysis of adaptive approximation

Precision ε # of triangles Global error #D σ1(f,D)1

(in pixels) (in cm2) (final partition) (in pixels) (in cm2) ε−1/3 ln(1/ε) ε2/3 ln(1/ε)

60 0.14 104 893 0.63 9 0.38
40 0.028 132 748 0.52 12 0.32
20 0.042 213 568 0.39 18 0.25

Appendix A: Matlab Code with Implementation 125

Figure A.1: Implementation: square

(a) 512× 512 original image of a square (b) Triangulation with 108 triangles

(c) Approximation of an image, local er-
ror = 50 pixels, total error= 735 pixels

Appendix A: Matlab Code with Implementation 126

Figure A.2: Implementation: circle

(a) 400× 400 original image of a circle
(b) Triangulation with 140 triangles

(c) Approximation of an image, local error
= 50 pixels, total error= 1058 pixels

Appendix A: Matlab Code with Implementation 127

Figure A.3: Implementation: polygon

(a) 474 × 380 original image of
a polygon

(b) Triangulation with 213 triangles

(c) Approximation of an image, local error
= 20 pixels, total error= 568 pixels

	Notations
	Geometric Methods in Image Coding
	Introduction
	Wavelet Coding
	Curvelets
	Wedgelets
	Adaptive Triangulations

	Hierarchial Adaptive Triangulations for Cartoon Images
	Preliminaries and General Principle
	Approximation of Convex Curves
	Centroid of Convex Figures
	The Main Idea of Subdivision
	Centroids of Angular Sets
	Approximation of ``curves crossing angles''

	General Algorithm and Its Properties
	Main Subdivision Rule
	Properties of the Algorithm
	Further Assumptions on
	Convergence of the Algorithm

	Conclusions
	Bibliography
	Matlab Code with Implementation

