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ABSTRACT

Simulation of the electromagnetic fields radiated from high speed printed circuits is

becoming increasingly important in electronic system design as well as to ensure compliance

with present electromagnetic compatibility standards. Furthermore, increasing complexities

in the pdnted circuits and electronic systems being considered have created a need for quick

and efficient techniques for the calculation of such radiated emissions. In this thesis,

electromagnetic radiation due to high speed transient signals on printed circuit board,

multi-chip module, and integrated circuit interconnects is examined using a simple closed

form solution for the time domain radiated fields due to an arbitrary, single-dielectric

interconnect geometry. The developed technique is intended to use currents generated by

common, time domain ci¡cuit simulation softwares to calculate the desired transient fields.

The development ofthe method is described in detail and then demonstrated by considering

several interconnect examples involving transmission line mismatches and ringing. The

accuracy of the method is addressed and found to be excellent fo¡ far field distances.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Previous Work

In the past, the calculation of radiation from printed circuit structures, (usually in terms of

microstrip and stripline transmission lines), was largely the domain of the academic or the

microstrip antenna designer. However, in the last several years, with the advent of ever

increasingly fast electronics, radiation ftom a growing variety of printed circuits has become

of great concem to the electronics industry. The reason forthis is due in part to environmental

and health concems but is for the most part, due to the unwanted interference ofhigh speed

printed circuits with other electronic products. Because ofthis, most industrialized countries

have now instituted strict standards dealing with these concems, the most recent of these

having come into full effect on January lst 1996. This was the European Community's

CISPR 22 standard conceming radiation from electronic and computing devices.

To adhere to these new standards, electronics designers and manufacturers now

require some sort of numerical, radiation calculation software so they can design for EMC

from the beginning of their product development cycle. Because of this, many numerical,

radiation calcuiation softwares are now being developed. Many of these are based on

numerical methods such as the Boundary Element Method, the Finite Element Method and

the Finite-Difference Time-Domain Method [Archambeault], which are all fairly rigorous

and accurate but are therefore also time consuming. Furthermore, software tools based on

these methods are usually quite expensive [Cabral], and because of this, there is a lot of

interest in quick yet reasonably accurate approximate methods.

Much research into radiation from printed structures has employed a complete

frequency domain approach for determining the cunents on, and subsequent radiation from,

a printed circuit structure ([Aksun], [Naishadham]), using a spectral domain approach in one

form or another. Another standard approach to calculating radiated emissions is to use a



circuit simulatorto solve for the stnrcture cunents and voltages in the time-domain [Goyal],

and then evaluate the radiated emissions in the frequency domain through a Fourier

transform ([Gravelle], lHerault]). Because of this many electromagnetic software

companies, (who up to this time have been calculating voltages and cunents in the time

domain for the purposes of signal integrity and cross-talk), are now making fte logical leap

toward the development of tools which calculate electromagnetic radiation from real

physical products based on the voltages and cunents which they already have available to

them. An added advantage in the use of a time-domai¡ approach to the circuit simulation,

is that such a method also provides the capability of directly modeling the non-linear

elements present in active ctcuits which complete frequency domain methods have

difficulties with.

The numerical Fourier transforms required in the above approach are time

consuming however, and so, as an altemative, several resea¡chers have recentiy formulated

the radiated fields in the time-domain ([Cicchetti], [Felsen2]). This enables the emissions

to be determined directly from the transient current data without the need of a Fourier

transform. This is obviously very beneficial when considering time domain currents with

wide band frequency domain characteristics since in the frequency domain one complete

analysis must be done for each frequency component of the cunent spectra. Furthermore,

if only the far zone fields are required an approximate closed form solution is available for

a single dielectric, printed ctcuit geomeüy and has been shown to give good accuracy

lCicchenil.

1.2 Objective and Document Summary

Herein will be presented a method, based on the work of lcicchetti], [Bridges2] and

fl-ohsel], whereby a user can have an approximate but fast time domain solution of the

radiation from general, single dielectric, printed circuit structures. This method requiÌes the

availability of a signal integrity tool, or some other kind of cur¡ent simulation software, and



the writhg of a short bit of code to calculate the actual radiation due to these currents. The

radiation code is based on a closed form solution of the spectral-ftequency to frequency

domain Fourier transform integral for single dielectric, printed circuit structures. The printed

circuit interconnects are assumed to be horizontal or vertical thin wire structures located on

or within a single dielectric, grounded substrate, although the theory can be extended to

multilayered substrates of different dielectric constants as well.

In Chapter 2 we will rigorously develop the spectral-frequency domain magnetic

vector potential dyadic Green funclion, where this work is based on preceding works by

[Bridgesl], [Choi], [Harington], fRana], [Tai], lTsandoulas] and [Uzunoglu]. This

development begins with the use of the Maxwell equations and the magnetic vector potential

and proceeds to calculate the spectral-frequency domain magnetic vector potential dyadic

Green function for a single dielectric, printed circuit structure.

Section 3.1 of Chapter 3 then proceeds to calculate a closed form solution of the

inverse Fourier transform integration ofthe magnetic vector potential dyadic Green function

from the spectral-frequency domain into the frequency domain. This work was based on

preceding works by [Barkeshli], [Collin], lFelsenl], [Kong], and [Mosig] as weil as some

of the ones mentioned above for the previous chapter. The ciosed form result is obtained via

the method of steepest descents (or the saddle point method) and includes much discussion

about integration in the complex plane and the problems caused by the poles and branch cuts

which are inherently present. Section 3.2 then transforms the above closed form frequency

domain result into the time domai¡ and a complete closed form expression for the fields

radiated from a transient current source on or within a single dielectric, printed circuit

structure are given.

Then in Chapter 4 section 4.1 the exact inverse Fourier transform integration, which

converts from the spectral-frequency domain into the frequency domain, is evaluated

numerically for all non-zero components of the electric field dyadic Green function in the



E-plane. These are then compared graphically with the approximate solutions obtained from

the saddle poi¡t method and error results are given. Following this, section 4.2 examines

several interesting printed circuit problems by discussing their mdiated electric field

E-plane results and then gives some algorithmic timing information. Finally, the work and

its ¡esults are briefly summarized, appropriate conclusions are drawn and future work is

discussed.

Before proceeding with this extensive formulation and discussion, it is impoflant to

note that throughout this thesis the convention of Maxwell Equations and a Green Function

has been used as opposed to Maxwell's Equations and a Green's Function for similarreasons

to those of flackson].



CHAPTER 2

DERTVATION OF THE SPECTRAI.FR-EQUENCY DOMAIN
DYADIC GREEN FTJNCTION

2,1 The 'Wavet Equations

The calculation of electric and magnetic fields in space due to the existence of electric or

magnetic sources can be performed through proper application ofthe time honored Maxwell

equations. These differential equations are shown below for homogeneous, isotropic and

lossless regions [Hanington], and define the instantaneous electric ( Ii ) and magnetic (Ii )

vector fields at a particular point in space due to the instantaneous electric and magnetic

vector cunents (i and lrl ) and scalar charges (4 and rå ) at a given source point. Be aware

that, within these equations and throughout this document bold faced type denotes a vector

quantity andtilde ( - ) denotes an instantaneous time domain quantity. The coordinate system

a) v x p:-rË-m
"ôt

c) V.ñ,:g
ê

e\ V.i:-g'ô1

å) V x li:e39+.i'at

d) v'fi:L
p

n v.M:-!a"' aÍ

(2.1)

required by these equations is shown in Fig. 1. Here the field is calculated at the point P
z

and the outlined aÏrow at the source point ,S

represents a dtected (vector) cunent source

that could be either electric or magnetic but

could also be an undirected (scalar) eiectric or

magnetic charge source. Examining these

y equations then, one can immediately see that

equations (2.1a) and (2.1b) are coupled with
Figure I : The Field Calculation

coordinitte system 
respect to the vector fields which we wish to

find. They can however be uncoupled by



substituting equation (2.ib) hto the curl of equation (2.1a) to obtain equation (2.2a) and

similarly substituting equation (2.1a) into the curl of equation (2.1b) to obtain equation

(2.2b). These 'wave' equations for the electric and magnetic fields are now not only

uncoupled, but they are also completely defined by the sources i an¿ Nl or, perhaps more

exactly, they implicitly include the effect of any charge sources present. This will be shown

in the next section.

a) (o,. o ".*#)u=-øfij-v x na

øt (v *v * *ør4\g=-uarnr+v x j
\ ð(l ô1

a) F(a):Ï uUr-r,¿,

(2.2)

The similarity between equations (2.2a) and (2.2b) is immediately obvious and in

general only one of these equations is solved, yielding either the electric or the magnetic

field, from which the other field quantity is obtained through dtect application of the

appropriate Maxwell equation. For our purposes however, we will deal with both of these

equations as required, the solution of which is more complicated than need be for most field

problems encountered due to the time derivatives which exist within them. These derivatives

can be removed and the equations thereby simplified through application of the Fourier

transform which converts these equations and the resultant fields into the frequency domain.

The equations are then solved in the frequency domain following which the i¡verse Fourier

transform is applied to the resultant fields yielding the instantaneous time domain results

which we desire. Taking this approach, the Fourier transform pair which we will use here

is written below as appropriate for vector quantities [Trim2],

where ø :2d , fþ) is any well behaved time domain function and Fþ) is the

conesponding frequency domain function. Note that frequency domain quantities are

represented as simple vectors or scalars since most of the subsequent derivations will be in



the frequency domain. Furthermore, from here on in, function dependencies will only be

included in an equation if clariJication of such a dependency is wananted. Before preceding

it is also wofihwhile to note that since the inverse Fourier transform uses the multiplier e+Þr

the frequency domain functions are said to haye an e*þÍ ûme dependance.

Now, applying the Fouúer transform (equation (2.3a)) to equations (2.2) we obtaín

the following equations where ,t : a ,lpt is known as the wave-number of the medium.

a) (v " 
v * -o')": -japJ-v xM (2.4)

b) (V * v r -Ê)u=-¡aerø+V x J

These equations can be further simplified by taking into account thek linearity, and thereby

breaking each one ofthem into two equations as,

a) (v x v x -Ê)n"=-¡,tpt b) (v r v " -or)"¡:-v x M (2.s)

c) (v*v* -*2)n¡:-¡aewr d) (v*v"-r,)u":Vxr
where E, and H, are the electric and magnetic fields due to electric sources (j ) and E¡,

and Hr¡ are the etectric and magnetic fields due to magnetic sources ( M ). The desired total

elecfic and magnetic fields are then simply the superposition ofthese single source fields.

2.2 The Method of Potentials

Equations (2.5), simplified as they are, are still formidable equations due to the double curl

of the fields, which exists within them. Because of this, a simplified method is usually

employed ([Hanington], Fail), which takes an intermediate step using equations that are

easier to solve. These intermediate equations make use of the theory of potentials. As it tums

ouf, electric sources make use of the magnetic vector potential A while magnetic sources

use the electric vector potential F. This is perhaps a partial justification for bothering to

separate equations (2.4) llf,to electric and magnetic source parts.



To derive the definitions ofthese potentials we begin by examining equation (2.5a)

from which we notice that, it looks exactly like equation (2.4a) with no magnetic sources

present. Similarly (2.5c) looks exactly like (2.4b) with no electric sources present. Because

of this we can look back to the Maxwell equations and, without magnetic sources present,

the divergence ofthe magnetic field (equation (2.1d)) is seen to be zero while without electric

sources present, the divergence of the electric field is zero, (equation (2.1c)). These results

immediately remind us of the identity which says that any divergence-less vector can be

represented by the curl of another arbitrary vector, namely,

v.u : V.(V x v): o (2.6)

Because of this we can represent the magnetic field due to electric sources and the electric

field due to magnetic sources in terms of their still unknown vector potentials as,

4) H_,:VXA b) En:-V x F (2.7)

where the negative sign was chosen on the curl of the electric vector potential so as to be

consistent with accepted methodology [Balanis].

Noq knowing one field quantity for both elecfic and magnetic sources we need to

fi¡d the other field quantity as well as the equations defining the vector potentials. To do this

we begin by taking the divergence of equations (2.5a) and (2.5c) and once more apply

identity (2.6) to obtain divergences of the fields E" and H¡ as follows,

a) -k2V'8":-japY.J b) -k2v.Hh= -þev.M (2,8)

It is encouraging to note that by substituting the frequency domain versions ofthe continuity

equations (equations (2.ie) and (2.1Ð) into equations (2.8a) and (2.8b) we obtain the

frequency domain divergences ofthe electric and magnetic fields given in equations (2.lc)

and (2.1d). This suggests that i-f the cunents and charges obey the continuity equations, as

they must, equations (2.5a) and (2.5c) implicitly satisÐ, the <livergence equations for the

corresponding fields as expected.



If we now apply the following identity to equations (2.5a) and (2.5c),

VxVxV:V(V.v)-V'?V (2.e)

we obtain,

a) (vv.-vt-r,)n":-þttJ b) (vv.-v'-*)nn:-þevr (2.i0)

and substituting equations (2.8) into equations (2.10) we find,

a) (v2+r2)r,":-#(ou +Ê)t ut (v'*r,')uo:-h(o, +É)na . 1z.rr¡

Now, since only the curl ofthe vector potentials has been defined up to this point there is still

some arbitrariness to these vector potentials. To make the potentials unique we must then

also define thek divergences. Keeping this in mind we can immediately see, observing

equations (2.11), that if the fieids E, and H, are defined in terms of their vector potentials

as,

') E":#(w.+r2)a b) H,:#(w.+É)r (2.12)

and these equations are substituted back into equations (2.11) we can! upon reananging the

linear panial derivative operators slightly, write,

,r ¡f(vv.*r)l(v'**)r 
:-r], #(r,.r')[(v'.r')r:-r].rr.'sr

The equations defining the vector potentials are thereby seen to be,

ol (v2+*2)n =-t b) (v'z+r'?)r:-M (2.14)

As we can now see, the electric and magnetic fields due to both electric and magnetic

sources can be defined in a rnuch easier way than the double curl equations ofequation (2.5)

by using equations (2.7), (2.12) and (2.14). That is, using equations (2.7) and (2.12), we can

define the totaleiectric and magnetic fields due to both electric and magnetic sources tkough



superposition, as mentioned previously, to obtain,

(2.15)

(2.16)

and use equations (2.14) to define the potentials [Balanis]. Comparing equations (2.15) and

(2.16) with the original equations, (2.4), we can see that the new equations have been

significantly simplifed since we have managed to remove the fields ftom being a diÌect part

of these equations, These fields are now simply dependent on the divergence and curl of the

magnetic and electric vector potentials, which are both obtainable through simple partial

differential equations.

2,3 The Green Function

In the previous section we derived a simplified solution methodology which defines the

electric and magnetic fields in terms of electric and magnetic vector potentials. These

potentials were in tum defined in tems of the electric and magnetic cunents existing

anywhere in the problem space, Such currents however can be completely arbitrary so

solution of the vector potentials would seem to be dependent on the unknown or changing

location of an unknown or changing current. To reconcile this it is necessary to make use of

a Green function. Such a function defines the required vector potential at a particular

observation point due to a unit current existing at a parlicular source poilt. To do this the

Green function assumes that the cunent distribution for the vector potentials is a three

dimensional dirac delta function, ô(r - r') , in each of the tfuee vector directions. This delta

function is defined as follows [MyintU],

E:8"+E¡:#(nu +r2)a-v x n

H : H,+H¡ : v x A .fi(vv..,e),

d(r-r') =0, r¡¿r' (2.17)

and has the following properties,

a) lll,a"_nw-t, IIJun(r)a(r-r')'nz:n("') 
(2'18)
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assuming that the point r' is contained within the volume of integration. Furthermore, F(r)

is an arbitrary function defined tfuoughout this volume and tr'(r') is the value ofthis function

at the point r' . Using one dirac delta excitation for each of the three component cunent

directions, equations (2.I4) can be written in three similar sets as,

a) (v'?*É)c!):-ð(r-r')i tt (v'*Ê)efi):-ô(r-r'),î (2.1e)

where Ga is the vector Green function for the magnetic vector potential, G¡ is the vector

Green filnction forthe electric vector potential and the superscript ¿/ attached to these Green

functions represents the direction ofthe forcing di¡ac delta which can be either of .r , y or

z in carlesian coordinates. From these equations we can see that each vectorGreen function

always results from one inhomogeneous equation, having a homogeneous as well as a

particular solution, due to the singly directed source and two homogeneous equations for

each of the two remaining component directions. The solution of equations (2.19) now

depends on the boundary conditions of the problem space, where the homogeneous

equations are used to represent the fields scattered from the problem geometry and,

obviously, the inhomogeneous equation represents the source function residing within this

problem geometry.

It is convenient to first rewrite the three equations for each of the vector potentials

in a more compact manner by defining the Dyadic or Tensor Green functions as in equation

(2.20) [Tai]. Note that dyadic functions are denoted by variables in bold faced type with a

bar since they contain several vector functions.

a) Ge=Gfî +cf'j+Gf'â b) Gr: GFï + GX'j + GF'å (2.20)

These dyadic Green functions are each simply a collection of the three appropriate vector

Green functions for the threecomponent directions of field and are usually written in matrix

form with the three vector Green functions being the three columns of the three by three



dyadic. In this form, equations (2.20) would look as follows,

lcfl't c?l; cfì;l ichl* cþl- ckì;.]
ò E¡=l"fJr, 

"lJr, "$¡,,1 
, "-.:|"tjrn i#1,.,F,¡rl . e./)

LcH^ c\)a c1lul LcU. cPl ¡, 
"ßI¿J

From this construct of the dyadic, it is also useful to define a unit dyad,as l: ìÎ + yj + ü ,

which we can see is simply a unit diagonal dyadic in matrix form. Therefore, using this new

dyadic notation equations (2.19) can be written in the following simplifed way which now

includes all three of the vector Green ñ¡nction equations,

a) (v'z*P)eo:-ô(r-r')I- b) (vz+r'?)G:-ô(r-r')l (2'22)

Furthermore, given these dyadic vector potential Green functions and equations (2.15) and

(2.i6) we can then write the electric and magnetic field dyadic Green functions as well,

namely,

G":d'"*G,,=#(oo'+r'?)de-v x G Q.2s)

co:do.*do,:v x c-o*]-(vv.+*2)Er . Q.24)
l(Ðl¿ ,

After calculating equations (2.22) to (2.24)wecancalculate the fields for an arbitrary

source by directly applying the integral properties of the dirac delta function which were

defined in equation (2.18). In this vvay the potentials can be obtained through the following

equations,

a) A: [!l,e,t* b) F: [[[,e,** (2.2s)

and similarly the desired electric and magnetic fields can be obtained as,

a) ,:IIL""".t**fi1,e,^** (2.26)

b) ": I I L"o,'** [ | l,e,^**
t2



In these equations it is important to note that the dot product ofa vector with a dyadic is taken

simply to be a maEix multiplication where the vector is çritten as a column malrix.

2.4 The Single Dielectric, Printed Circuit Boundary Conditions

Now that we have defined the vector potential solution methodology along with the concept

of the dyadic Green function we are ftee to begin the setup for the solution of an actual

problem. In this thesis we will concem ourselves with a single dielectric, Printed Ci¡cuit

Board @CB) structure as shown in Fig. 2. We will assume that the dielecfic layer and its

ground plane extend infinitely in the transverse (x and y) dtections, that the ground plane

is perfectly conducting, and that the dielectric layer is homogeneous, isotropic and lossless.

Note that any ofthese conditions can be removed at the expense of added complexity to the

problem (and hence the solution), and so we will simply concem ourselves with the general

idea. Before we proceed however it must aiso

be stated that, for this type of problem, oniy

elecfic sources are present and so, for our

purposes, the magnetic source vector in

equation (2.14b) can simply be set to zero. This

leaves a homogeneous equation to define the

elecÍic vector potential but by no means

requires the electric vector potential itself to be

zero. Therefore, to avoid confusion the equations to be solved in this instance are repeated

below

a) (v'?+r'?)a:-r ¿l (v'* É)r : o e.27)

c) n:U|(vv +Ê)r-vxF' d) H:vxn+l(vv.*P)r

Now that we know the probiem which we wish to tackle we can immediately deduce

the boundary conditions which need to be satisfied. Observing the cross-sectional diagram

Figure 2 : Aþpical Single Dielectric PCB



in Fig. 3 and applying some basic electromagnetic knowledge we know that at a perfect

conductor ( d = oo ) the total tangential electric field must vanish. This yields the following

boundary condition at the ground plane,

E,¿(z= -d): o (2'28)

where the subscripts refer to the transverse ( r )

component of the field (which is either x or y + o:æ
in this case) within the dielectric region (d). 

Ffg;tre 3: The pCB Ctoss_Sectíon

The remaining boundary conditions which are immediately obvious ftom Fig. 3 are simple

statements of the fact that the tangential electric and magnetic fields as well as the normal

electric and magnetic flux densities must be continuous across any material boundary. It can

be shown [Hanington], that enforcing any two ofthese conditions also enforces the third and

so we write for the tangential components,

a) F.n(z = 0): Elz: 0) b) Hn(z: o) : ulz: o) . (2.29)

Here the added subscript (0 ) refen to the ai-r region above the microstrip. Beyond these

conditions one other boundary condition remains, due to the open af upper half space, which

effects all three components ofboth the electric and magnetic fields. This condition, krown

as the radiation condition, states that all fields must be both outward propagating and

decaying as the distance from their source approaches infinity [Tai].

We now know the boundary conditions on the electric and magnetic fields for the

PÓB problem which we wish to solve but have no idea as to what type of cunents will be

present. We should therefore find the dyadic Green functions for the vector potentials and

eventually for the fields themselves. Writing equations (2.27) in terms of dyadic Green

functions and dirac delta excitations for both possible regions within this problem, but with

the source residing inside the dielectric, we obtain the following equations for the magnetic

vector potential dyadic Green function d¿ ,

o> (v, + *zo)eo, : -ô(r- r')t b) (v'?+ *fr)e,. : o (2.30)



as well as the equations for the remaining three dyadic Green functions, namely,

1 t -\- 1 t ^\-a) Gr: þ, (w +k¿)GA-v x GF b\ Gu= V x G4+Jt,t:(w.+k,)Gr

c) (v'?+t'z)G=o (2.31)

Examining equations (2.31a) and (2.31b) we can immediately see that due to the differential

operators within these equations, each component of G-6 and G¡7 is deRned by a total of

five components of Ç and Ç. For example, each component of Ç is defined by three

components of F¡ due to the gradient ofthe divergence ofthis dyadic and two components

of Ç due to the curl of this dyadic. As it tums out however, we require at most two

components of the vector potentials, in both regions, to completely define the boundary

conditions on the electric and magnetic fields for any single component of source direction,

(.r. y or e ). Because of this we can sêt G¡ equal to zero and proceed with only d¡,

(although many different choices are also possible). This simplifies equations (2.3i)

substantially and yields,

1 t ^\-¿) G¡:-. (W'+k'lG¡ b) Gn:V x GA c) G¡:0
l(De \ t

(2.32)

Expanding the above partial differential equations for G¿ and õs in both of the two

transverse di¡ections then gives the equations which must be continuous across the

dielectric-air interface while equations (2.33a) and (2.33c) must also vanish at the ground

plane according to the previousiy derived boundary conditions.

a) Gt, : J-( *+.t^o! *to!, * t'c*\ u¡ Gu, : ð9^t, 
-ôG-^o, (2.ss)

iae \ ð:r' ôxôy ðxôz - I ' ðy ðz

c) c,.,: r ( a'c* *ð2G4, *a2G¡,**rc,.\ d) G.--- ôG,* 
-ôGt;þe \ ðxay ðy" ôyïz - I ' ôz ðx

Within these equations if should be noted that ê : e Êo and that €¡ , the relative permittivity



of the material, will change depending on the region in which the equation occurs, (either

in the at or in the dielectric itseþ.

Within equations (2.33) we can again see partial derivatives cropping up which

reminds us of the Fourier transform which we used in section 2.1 to remove partial

derivatives with respect to time. ln this case a similar Fourier transform pair can be defined

but only for the transverse components of the potentials. This is due to the fact that the

Fourier transform integral is evaluatedftom - o --Ð oo and the dielectric and ground plane

layers extend to infinity in these di-rections with the only boundary conditions being that the

fields must go to zero at i¡fi¡ity to satisfy the radiation condition. These conditions are

i¡herent in the Fourier transform of a derivative fMyintu], and so we can use the following

double Fourier transform pair for the fansversely directional potential components.

a \t*r,): Ï Ï"O,r,t 
w*r,ùdxdy

b) ß(x,y) : # I i r\r,,, r,,Þ,t0**"1¿kdky

(2.34)

Applying equation (2.34a) ro *"o"i, ir.r) yields the following simplified set of

equations which are now no longer partial differential equations but are simply ordinary

differential equations in what is known as the spectral-frequency domain.

,) G* : +fþe - Ê)c 
^ 

- r,^t,o ^,.,0,+\ b) G a, : ¡r,,c o, - fu pss'¡

.( ì
c) G 4 = # lF, 

- r,)G ¡, - k^k,G a, + ik,+J ^ 
c o, : ff - ¡r,c o,

For the remainder of this chapter it should be understood that we are in the

spectral-frequency domain and therefore no special delimiters will be used on any vector

or scalar quantities to indicate that they occur ín this paticular domain.

Obviously, it is now easy and straight forward to write the desired boundary



conditions in terms of equations (2.35). Doing this, condition (2.28) yields,

^ ftn- 
e)"^u- k^k,G'o+ ik,#j,-,: o

u 
f(or 

a)o 
^ 
¿ - k*k vG a o, + ik v#\=, :,

and because the relative permittivity of air is unity condition (2.29a) yields,

(2.36)

a,,,f!a-e)G¡6,-k,ky'¿oy+,0,+\,.=flor-n)o^--r*,coo**.ffj*o

(2.37)

,,,,{{oa - n)G ¿ oy - k ¡k yG ¡ 6, + u, TI=, = 
fF, 

- n), ^. - 
o,o,o o o * o, !9"1,-o

and finally condition (2.29b) yields,

a) {o,o*-ryJ,*:{u,o^,,-ry},. (2sB)

b) {+ - o.o 
^",},. 

: 
{+ - irs *,1,.

Equations (2.36) to (2.38) completely describe the boundary conditions on the electric and

magnetic dyadic Green functions for our single dielectric, PCB problem. It is now left for

us to transfer these, onto conditions on the magnetic vector polential dyadic Green function.

Before we proceed with actually calculating this dyadic however, we must also expand

equations (2.30), which are the defìning equations for the magnetic vector potential, and

apply the Fourier transform of equation (2.34a) as with the above boundary conditions. In

doing so we must remember. that the sources in this problem will always reside within the

dielectric or on its surface and so we obtain the following spectral domain equations for the

1,7



two regions of our problem,

a) (#-n¡.^,: _ rtu+*e,)61r_ z,)i: _ a¿ô(z_ z,)1 (2.3e)

where z6 : ,lE-Ç-Fr, ro: ,f k',*k'r-t¿o andwehavelet E¿: ¿-nk,|+*,t'\ .In the next

b, (#-.,)"^,:,

two sections we will proceed to define the boundary conditions on the magnetic vector

potential dyadic Green function for each ofthe three component source directions and using

these conditions we will derive this Green function in both the air and dielectric regions.

2.5 The Magnetic Vector Potential Green f,'unction due to a Vertical Electric Source

In the previous section, the magnetic vector potential dyadic Green function equations for

both possible regions were derived. It was noted that each column of this dyadic ¡epresents

one ofthe three vector Green Functions, each one of which is due to a source directed in one

of the three component di¡ections. In this section we will concem ourselves with the last

column ofthis dyadic whose vector Green function is due to a z-directed source and so the

appropriate vector Green function equations are reiterated below for the dielectric and air

regions which we are interested in.

a) (# o),fl:' b) (#-,r)'n:-Eþ(z-z')i (240)

Splitting these two equations into component parts yields three homogeneous equations in

the source-free (air) region along with two homogeneous equations and one inhomogeneous

equation in the dielectric region, namely,

a) (#-n)"*",,:' b) (#-,r)*,:'
,, (#-,4"t;)*: - n¿a(z- z')'

t8

(2.41)



However, an inhomogeneous equation consists of a homogeneous as weil as a particular

solution, as was mentioned prevíously, and so the hhomogeneous equation above can be

split into two pafis as,

a) (#-,r)"n,:, b) (# ,r)er:-E,i(z-2,) (242)

where the subscript l¡ represents the homogeneous solution while the subscript p represents

the paÍicular soiution.

Now remember that in the previous section we postulated that, for our particular

geometry we would need at most two components of vector potential, in each of the two

regions, to completely define the boundary conditions on the electric and magnetic fields.

Obviously then, we must decide how many components are required and which ones we

need. In a free space problem the obvious answer would be one and the appropriate choice

would be the component of potential directed parallel to the source which in our case would

t"\
be the component G)'l . If we use this component by itself it must be able to satisfy all the

required boundary conditions as well as properly represent the source whe¡e, as mentioned

previously, the particular solution represents the source while the homogeneous equations

are used to represent the fields scattered from the problem geometry. The simplest way to

proceed in this case is then to set the components transverse to the source direction to zero

and see if the source component by itself can possibly satisry ali our boundary conditions.

Then if it doesn't we must add another component and try again.

. Taking this approach in the case of equations (2.41) and (2.42) we will fint try and

set the components transverse to the source direction to zero which leaves us with the

following equations,

a) (# n)"*:, b) (#-,,)"n =,

c) (# ,r)"n"=-Eþ(z-z')

t9

(2.43)



where the following equalities were applied.

t_\ /_\

a) G';L= G';:^:0
t_ì t_\

b) G,Ålr- G';i- o (2.44)

We then proceed by trying to apply equations (2.44a) and(2.44b) tothe boundary conditions

derived in the previous section, (equations (2.3ó) to (2.38)) and in doing so we obrain rhe

following. very sirnplified conditions, on Cl¿) .

l.*:o u) ,,#1^:#1^ , GP*1,=,:"?*l*" e^s)

Since these new boundary conditions on the z component of the magnetic vector potential

Green function were derived with no mathematical inconsistencies and satisfying these

boundary conditions will ensure the satisfaction of all the original boundary conditions on

the electric and magnetic fields we can be confident that our choice of setting the transverse

components to zero was conect,

Now using these simplified boundary conditions and applying them to equations

(2.43) we can obtain the spectral-frequency domain magnetic vector potential Green

function for a z-dfected source. To do this we begin by solving the equation in the

source-ftee air region, (equation Q.43a)). The solution of this homogeneous ordinary

differential equation is very well known [Campbell], and so we just write it here without

delving into the details ofthe solution which can be found in any basic differential equation

text.

GÍ)-= Aoe"o'+ Bt{'o' (2.46)

In this solution the multipliers A6 and B¡ are unknowns which will be determined through

the application of the boundary conditions of equation (2.45). Before we apply these

conditions, for which we need the solution ofthe inhomogeneous equation as well, we can

immediately enforce the radiation condition which allows us to set Ao : 0 si¡ce the

exponential on whích it operates approaches infinity as z approaches infinity. Vy'e are now



left with the following soiution of the homogeneous equation in the source-free region,

which contains only one unknown.

G?*: Boe-Itaz (2.47)

Moving on to the inhomogeneous equation in the source region we can immediately see that

its homogeneous equation (equation (2.43b)) is very similar to that in the source free region

and can therefore, simply deduce its solution from equation (2.46) to write,

Gf;),r: A¿¿"a ¡ 3 o'-uo' (2.48)

Note that there is no radiation condition on z to satisfy in this region and so we are left with

two unknowns to solve for.

Next, we tackle the solution of the particular equation, (equation (2.43c)). If we

forget for the moment that this equation is only valid in a fi¡ite region we can use the

following Fourier transform pairto simplify the solution. The finiteness ofthe region is then

enforced along with the boundary condfions.

a) F(*,): 
fÁòao,oo,

ø) Áz):[ | r&,¡,.nk.òar, e. s)

Applying equation ,l.onur roequation (2.43c) andreanung; *, outuin,

^-ik,z'
cÍ)*(r,) = E¿ j';' - 

;\ (2.s0)

\kí + uâ)

which is the solution we want in the fr. domain. To get the solution in the spectral-frequency

domain we simply apply the inverse transform (2.49b) which yields the following integral

to solve.

,*L:*J_ffi*n, (2.51)

It is immediately obvious that the integrand of this integral has two poles at f 7ø¿, which

points us in the djrection of the Cauchy residue theorem flrimll, in the complex k, plane



as the possible means to a solution. In this complex plane equation (2.51) becomes,

(2.52)

where the subscript C on the f,trst integral represents the closed contour to be traversed and

the subscript I on the second integral represents the part of this contour which does not

coincide with the original path of integration along the real fr. axis. It is evident that if the

integral along the f section of the closed contour is zero the desired Green function will

simply be equal to the contour integration around the closed contour itself, which can easily

be solved by the aforementioned resídue theorem. As shown in Fig. 4 we can see that thete

"r:.:*{{,ffi",-l,ffi*+

are two possible choices forthe contour C . The

upper contour ( Ç, ) traverses around the

positive imaginary pafi of the complex k plane

in a counter-clockwise direction and contains

the pole ju¿ wbile the lower contour ( Ct )

traverses clockwise around the negative

imaginary part of this plane and contains the

pole - ju¿ . Now, letting I, (he I section of

Im
-

a, ì\*

ijuo .,.\
."'6 c',ì

!

Re

\,

'..:0 Cl

l-¡ua "'.-rl
/

c, ) have a ¡adius of R we can let kr: R& Figure 4: The Integtation Paths in the k,

along this contour and substituting this relation Plane fot the Inverse Fout'ier Transform

into the integrand of the integral along I in equation (2.52) we obtain,

I¡,,: 
e+lR&('-'')'+R(rcoed-sin0)(z-z')

@a"4:-@a";{
the magnitude of which is,

(2.53)

,-n sn9(z-z'l ,-Rsn1(z-z \

F4f;_q
22

--R sindl¿-¿')V,"l:@ (2.54)



where we have used the relation [Trim1],

11
V+Ã< la:1;¡ l'l'l'l (2'55)

Using this result we can immediately write the following relation for the integral alongl,,

to be,
lr .+¡klz-z') | .-n,ue(.-.')

ll,.ffioo,l=\¡¿-("n) (2'56)

l¿'u\Kz+ udJ | " -'a

which we can see, upon taking the limit as R -> oo , becomes zero rt z > z' . In a similar

marurer, we can let kz: R{fr along l¡ (the f section of C¡ ) and repeat equations (2.53)

to (2.56) to find that as R --+ æ the magnitude of the integral approaches zero f z 3 z' .

From these two relations we can immediately rewrite equation (2.52) as,

",u:rl{*ffi*" 
zzz'

2z I r .+jktz_z,l

lf*@;d"z' z3z'
(2.57)

where the contour integral around C/ is traversed in a counter-ciockwise direction,

(denoted by the right anow) while the contour integral around Ci is traversed in a

clockwise direction (denoted by the left anow).

To now solve equation (2.57) we simply apply the Cauchy residue theorem [Trim1],

which states that the contour integral is proportíonal to the sum of the residues of the

integrand at the enclosed poles, or more exactly,

r1
þ Áò¿r:-þ Ár)¿r:n¡f.nesfiz).2¡] (2.s8)
J c'-' ' J r:-' '

Therefore, for contour Cu- which only encircles the pole + ju¿ ,we must find the residue

of the integrand at this pole and simiiarly for contour Ci which encircles lhe pole - jud,

we must find the residue of the integrand at that pole. These residues are trivial to calculate,



see [Triml], and therefore are simply stated below.

| ¿*¡_t) I ¿,t,_t\¿) R¿sl .o' ^"1-n,*i*){o-iû',,1: * (2'5e)

,. - I ¿*!z-z'\ I ,-ufz'-z|b) R"l@,* 
i,;)(,k=rã'-iu,t l: - r*

Now, using these residues we can fìnally write our desired solution to equation (2.5 1) as,

.+¡k!z-z'\
)----------.-dk.: E,
\rê*,1)

--u ¿lz-z'l

Gf)r: A¿e'oz + B¿e-tte + E¿' ---..
LU¿

^k\ Ea I(r; -:- I2n)

1r-ulz-z')
f-. ,, ),,1
I 2w' z4z 

^ r-u)z-z'l

I o-ulz'-z) " 2u¿f" zsz'
¡ Zut

(2.ô0)

where, due to the equality ofthe two solutions when ¿ : ¿' , we have used the absolute value

of z - z' within the exponential to allow us to wdte the upper and lower contour solutions

as one result. Note also that this result satisfies the radiation condition as it should. Now that

we have the homogeneous solution for Gf;)u (equation (2.48)) as well as the particular

solution (equation (2.60)) we can write the total solution as,

(2.61)

Al1 that still remains to be done to obtain the magnetic vector potential Green

function for a z directed source is to match equation (2.47) w||h equation (2.61) according

to the boundary conditions outlined il equation (2.45). To do this we will begin with equation

(2.45a) which simply sets the derivative of G!¿]. equal to zeÍo at z : - d .In doing this we

can easily see that the relation z s z' holds since the source will always be within the

dielectric and therefo¡e above or on the ground plane. We therefore write,

Zu¿(A¿e'' i - B ¿e+u "a) * B or-ulz' 
a) : g (2.62)



which can be reananged and reduced to yield,

--utzl
Aa : Bae*ù,xt - Eo!- (2.63)

Proceeding to apply condition (2.45b) which enforces the continuity of the derivative of

C!t] at ttre air-Oielectric interface we note that the source will this time always be below or

at the surface of the dielectric so the relation ¿ ¿ ¿' holds, (this will also be true for

condition (2.45c)). To then apply condition (2.45b) we equate equations (2.47) and(2.61)

as follows,

Bge uaz : A¿eudz + B¿e uo, * Boe-'úZ-z'\ (2,64)
¿ud

and take the derivative with respect to z, thereafter setting z to zero and including the

dielectric constant multiplier, to yield,

Ò+udZ,

uoê,¿Bo= ulea-a¿)-n¿" , (2.65)

Substituting equation (2.63) into the previous equation and reananging we obtain,

uo - 
- e"í2uoBo + E¿(e*".'' 

'+ 
¿-uo/)

@
which we can quickly substitute back into equation (2.63) to yield,

(2.66)

(2.67)

We now have two of the three unknowns in terms of 86 . This leaves us tvith only one

condition left to apply, which enforces the continuity of Clt] itsef at the aiÌ-dielectric

interface. The application of this condition simply entails setting z equal to zero ín equation

(2.64) yielding,

no:na+na+Zaff (2.68)



into which we can substitute the two previous equations ((2.66) and Q.67)) leavng,

Bo:
2ua(e*2'i - t)

(2.69)

Examining equation (2.69) we can see hyperbolic functions emerging, so collecting like

terms and applying the appropriate hyperbolic def,mitions [CRC], this equation reduces to,

2u¿

sinh( u,z'\ tanh( u d\ + cosh(u,z'\ ,¡V,,-D gD. -----jg¿.." eduo+ u¿tanhlu¿d) " Dru "
(2.70)

where the numerator function N,,o can be further simplified by expanding the tanh function

in terms of sinh and cosh and applying a simple hyperbolic identity as is shown below.

(2.71)

Before going on, the denominator function Dru n equation (2.70) demands some

discussion. It can be shown that this denominator arises from the magnetic fields transverse

to z being suppofted within the dielectric fFelsenl], which is the reason fol the TM

subscript. It is important since its zeros will be seen to reek havoc in the inverse Fouder

transform integration which takes the dyadic magnetic vector potential Green function back

into the spatial-frequency domain. Furthermore, it should be mentioned that the poles ofthe

numerator function Nuo can possibly cause problems, similar to those of the DTna function,

at ftequencies where the wavelength is smaller than the dielectric thickness by a significant

degree. This will all be discussed fufher in section 3.1.2.

Finally, we can substitute equation (2.70) n expanded form into equation (2.66)

which can then be substituted into equation (2.63) to solve for the remaining two of the three

required unknowns, r .-t
ur:-!''o I e,¿uosinh(u¿z')-u¿cosh(u¿z') lro e.72)"o - Dr, | zu¿cosh(u¿d) 

J""



and - I o-u¿Z,o,:- r*"n l e,¿uoslnh(u¿z')-.u¿cosh(u¿z') lE,_- E, e.7g\o* l_ 2u¿cosh(u¿d) l" 2r¿ ""

At last, we have all the unknowns needed to write the magnetic vector potential

Green function due to a vertically di¡ected source. Dealing with this vector Green function

in the source-free region first, (which will be of most interest to us in the rest of this

document), we find that it can be written by simply substituting equation (2.70) into equation

(2.47) ?ftd writing the result in vector form, as,

(2.74)

Then for the same Green function in the dielectric region we substitute equations (2.72) and

(2.73) into equation (2.61) to obtain,

ç<,t-(-e,¿uosnh(u¿z')+uocosh(uor')cosn(zlz+.d)) - 
r+uÁz-z'\-r-uÅz-z'l\",r rr.ru,"Ad 

\ uoor* cosh(z¿zi) 2u¿ )-a' 
\-" - '

which allows us to check the boundary conditions used to anive at these two magnetic vector

potential Green fu nctions.

2,6 The Magnetic Vector Potential Green Function due to Horizontal Electric Sources

In the previous section we derived the magnetic vector potential vector Green function for

a vertical electric source, (i.e. the thi¡d column ofthe conesponding dyadic Green function).

Now we deal with the remaining two vector Green functions which we need, to completely

define the desi¡ed dyadic Green function. We are able to find both of these remaining vector

Green functions at the same time since the dielectric and ground layers extend infinitely in

both the x and the y directions so it is obvious that these dfections are interchangeable. This

can also be seen from the boundary conditions on the magnetic vector potential Green

functions (equations (2.36) to (2.38)), where we find that if we interchange G¡,. with G¡,

and fr" with ¿y we obtain the exact same boundary conditions. We will therefore, write this

.lÍì=*"*'*¿



section solving for the magnetic vector potential vector Green functlon for an x-directed

electric source and then apply the preceding interchanges to obtain the Green function for

a y-directed source.

For an x-directed source we can write similar equations to those written for the

z-directed source in the previous section. These equations are as follows.

a) (# n)"rt:, b) (# ,r).rl:-8,ð(z-2,)î (276)

As before we can split these two equations ínto component parts yielding three homogeneous

equations in the source-free (air) region along with two homogeneous equations and one

inhomogeneous equation ir the dielectric region. If we also try, as before, to set both

components ofthe Green function transverse to the di-rection ofthe source to zero we obtain

the following identities,

ò G,l-: c$: o

and the foliowing equations to be solved.

Ð Gn,:Gl|i)":o (2.77)

a) (# n)*=, b) (#-,,)e-,

It is again prudent to check if ttre Cfl component alone will satisfy all of the required

boundary conditions. Therefore, applying equations (2.7'1) to the boundary conditions in

equation (2.36)we simply get,

Gl)),:u:o (2.7e)

with no difficulties. Similarly from the boundary conditions in equation (2.38) we obtain,

c) (# n)"r;:-n¿ð(z-z')

(2.78)

dcftrl ,tcf),
a, l'o: d, (2.80)



with no difficulties either. However problems arise when trying to apply ídentities (2.77) to

the remaining boundary conditions in equation (2.37). In this case equation (2.37a) gives us,

(2.81)

while equation (2.37b) gives us,

of;].]., = r,,cÎ"ll.* (2.82)

Remembering that k: @,lpe and that within this wave number only e changes between

the two regions by the amount 8,¿ we can easily write /<o: 6øfr0. Because of this, these

two equations obviously contradict each other since the only way both of them could be

satisfied is tf k¿= ks, or in other words if e,¿: 1 . Since restricting a dielectric to having

a dielectric constant of I is basically useless, we can see that using only one component of

this vector Green function does not allow us to satisfy the requi¡ed boundary conditions.

From our earlier postulate however, we know that we need at most two components of the

magnetic vector potential Green function, in both regions, to properly satisry all their

boundary conditions. We therefore need to choose another component to help satisfy all of

the boundary conditions, where obviousl¡ it would be useful to use the one that yields the

simplest boundary conditions, if that particular choice allows the boundary conditions on the

fields to be properly satisfied. It can easily be shown that for this case the easier boundary

conditions comefrom using the z component along with thex, and so we proceedby applying

only equation (2.77a) to eqtations (2.36) to (2.38). Doing this we end up with the following

reduced set of boundary conditions.

a) 
l@-,*)ottr.*.ffi,-,:o

='.(m)"rr1''

a 
l- 

r ^*,cf'j^. in,4),-. : o

29

(2.83)



a,,,l!,a-,c)"rtr. u.&o)^ :l{,a - r)otl **.4),=o e.B4)

ø¡ u,ol- p 

^*,clì.. o,4o)^ :l- u,,cltr * *,+]^

a) ikrcfl,l,=6 : ¡t rc'ì)|,:o (2.85)

u) l¡opy',-S ^: [n "9¡-*Í']-lll"'-'ot dz lz't l"'"^o' dz lt't

Before we proceed with calculating the Green functions, we find that it is possible

to simplify boundary conditions (2.83) by rewriting equation (2.83b) as follows,

l¿cÇ)- ,.1

| " 
=-¡*^cx|l,=¿ (2.86)

and substituting this equation into equation (2.83a) to directly obtain a reduced boundary

condition on Cf;) as,

cf)^|,-u: o (2.87)

If we then substitute this boundary condition back into equation (2.83b) we obtain a reduced

boundary conditions on Cf;) as,

¿c9.1
-f|-,:o ' (2'88)

Moving on to equations (2.84), collecting like terms and using the relation /<¿ : ,li¿ko we

can write,

a) 
þ " + @r )^ : ff {o',tr - cf!) - i *'("'s,g - c1}) 

1.. 
tz' ao l

, þ,,# - H^ : - ¡*.(,,";îì, -ofl,)|,-,



from which we immediately see some obvious

Therefore, we can substitute equation (2.89b)

condition on Gfl , namely,

similarities between these two equations.

i¡to (2.89a) to obtain another boundary

which we can substitute into (2.89b) to obtain a second condition on Cf;) , as,

b) (# n).*=-E¿ò(z-z')

ofJ-l.o: ofj,l.-o

:&¿=o dz

31

(2.e0)

(2.e4)

(2.e1)

Now that we have obtained reduced boundary conditions from equations (2.83) and (2.84)

we need only to do the same with equations (2.85). The last condition on Gf;] can be seen

immediately upon examiling equation (2.85a), namely,

cll,l-,: Gfl,l-, (2.e2)

which when substituted into equation (2.85b) yields the last remaining boundary condition

on u,4; , as,

dcî),1

drl

dGîIl dGîI
a, l'o= dz

(2.e3)

Equations (2.8'1), (2.g0) and (2.93) now defme tkee boundary condítions on Gfl, while

equations (2.88) ,(2.91) and(2.92) define three boundary condítions on Gf;]. Writing these

conditions together with the appropriate differential equations to be solved we obtain, for

the Green function Cfl , tne equations,

a) (# n)"rr-,
along with the boundary conditions,

,) ooll.
4?.

ot cf;N,-u:o c) GlJ],.: Gfll,:. . (2.es)



Similarly, for the Green function Gf;] we frnd the equations to be,

a) (# n)u:'
while the boundary conditions are,

Then,inordertoapplycondition(2.95b),wheretherelationeàz'holds,wenotethatthis

condition is identical to condition (2.45b) on C!t] save for a permittivity multiplier.

Therefore, since the equations to be matched are the same and the matching condition is

almost identical, we can directly write, by inspection, the solution from equation (2.65) as,

b) (#-.,)"rr:,

A¿:-Bo¿+2,i-"rff .

2+udZ

-u&o= u¿(A¿-B¿\-E¿- 
='¿

(2.e6)

(2.100)

(2.1 01)

(2.57)

,, #1^ :l ^#.,0^,'o -,)oß].,

We will now proceed to solve for the Green function Gfl . In so doing we can wite

the solutions to equation (2.94) dtectly from equations (2.47) and (2.61). This is because

the equations to be solved for Gf (equations (2.94)) are the same as the ones used to solve

ior C!t] in the previous section (equations (2.43)) and so we have,

a) Gf;f,=hg¡'"' $ Gf;!:A¿e'&*por''o'*Eo4 . (2.98)

Begirming the matching of the boundary conditions with condition (2.95a) and noting that

the relation z S z' holds in this case we can write,

2u¿(A¿e-"i + B ¿r+uÅ) * ¿or-ulz' +d) = g (2.ee)

which can be reananged and reduced to yield,



which, upon substitution of equation (2.100) then yields the following equation for B¿.

2u686- E¿(e+I'az' * r-"o''\
^ ----------------ud- 

2ua(e*2"at+t)
(2.102)

(2.103)

Thereafter, substituting this equation for B¿ back into equation (2,100) gives the following

equation for A¿r .

A¿
- 2usB s + E ¿(e*u 

o'' + ¿:u oz' 
) D.:--

¿u¿2ua(e*h'Å + t)

Now, with one condition remaining, (2.95c), we notethat this is exactly the same as condition

(2.45c) on G!t] . therefore, we can directly write the solution to this condition from equation

(2.68) as,

Bo= Aa+B¿+E¿{!
¿u¿

which, upon substituting the above equations defining B¿ and

(2.104)

.4¿ yields,

-2uSs+E¿(e+u¿z' +e-ttdz'\ t ^, (s*'o'' -r-un'\B¡: "","\ . r (¿*zuì _ 1)+ E¿\___:_____J . (2,105)" 2ua(e*o'¡*l) \ / " 2u¿

Rewriting equation (2.105) using appropriate hyperbolic functions, as was done in the

previous section, gives,

sinh(u¿z')coth(u¿d) + co.sh(u¿z'l E,: Nt,o E, , 12. j 06)86 : --------: 
us+ u¿ corhluþ) - D7B "

where the numerator function N,io can be further simplified by expanding the coth function

in terms of si¡h and cosh and applying a simpie hyperbolic identity as is shown below.

^, sinh(z¿¿') cosh(z¿d) + cosh(z¿z') sinh(z¿d) sinh(alz' + d))
^,- -- la 1^'7\"tto sinh(uþ shh(u¿d)

Before going on, the denominator and numerator functions in equation (2.106) again

demand discussion. As in the previous section, the zeros of the denominator function, Dr¿ ,

and the poles of the numerator function, N¡o , will cause probiems in the inverse Fourier



transform integration which takes the dyadic magnetic vector potential Green function back

into the spatial-ftequency domain. Furthermore, it is woÍhwhile to note that the equations

defining Gfl , and its boundary conditions, which we have just solved are identical to those

of a vertical magnetic dipole within the substrate Belsen1l. This can easily be shown by

going back to equations (2.14) to (2.16) and setting the electric cunent and magnetic vector

potential to zero, (instead of the magnetic cunent and the electric vector potential as was

done previously), and then repeating the boundary condition calculations and calculating the

solution of a veftical magnetic dipole. This is a very important result since it shows that a

horizontal electric source within a single dielectric, grounded layer can be represented by

using a linear combination of a horizontal electric source and a vertical electric source or a

vertical electric source and a vertical magnetic source. Because of this result the D7p

function can be seen to be caused by the transverse electric fields existing within the

dielectric which is the reason for the ZE subscript.

Finally, we can substitute equation (2.106) in expanded form into equations (2.102)

and (2.103) and by so doing we can solve for the remai¡ing two of the three required

unknowns, yielding,

(2.108)

Therefore, we can now write the solution for the x component of the magnetic vector

potential Green function for an x directed electric source. In the air region this component

can be found by substituting equation (2.106) into equation (2.98a) as,

cY¡:ffinaa* (2,110)



and for the dielectric region this Green function can be found by substituting equations

(2.108) and (2.109) into equation (2.98b) to obtain,

"<,¡--(-uosinh(u¿z'l+u¿cosn(uoz')sinh(an'(z+.d)) 
- 

r+'"lz-z'J-ê-uÅz-z'l\r,.,r..',.,.,,
"A¿\ 

\ uoo- sinh(u¿d) 2u¿ 1"" '-'' ' ''

With one component completely solved for we are only half done with this

derivation. To solve for the z component weneed to solve equations (2.96) for the conditions

(2,97).To begin we can again immediately write the solutions to these equations as,

ò Gn: Boe-uoz Ð cfl,r: Adeu¿z + B.F tt'z (2.112)

which are identical to equations (2.98) with no source term present. Applying firstly,

condition (2.97a) to equation (2.ll2b) we obtain,

u¿(A¿e-'i -B¿et',) : o (2.113)

which can be reananged to yield,

A¿: Po¿+tual

Then applying condition (2.97b) to equations (2.112) we directly obtain,

(2.114)

Bo: A¿+ B¿

and substituting equation (2.1L4) we are left with,

B¡
B.t : -----------:-" (e+2il.,1 + ll\/

which when substituted back into equation (2.i14) yields,

(2.115)

(2.116)

er:arffi. (2.117)

Now, to apply the firal condition (2.97c) we take the derivative with respect to z ofequations



(2.112) and equate them in the manner demanded by the boundary condition while settirg

z:0 to obtain,

ulA¿-Ba):-e¡¿uoBo+ikkr- 1)lcfl.l-. (2.118)

which when (2.i16) and (2.II'7) are substituted and the result is reananged yields,

B s(e,¿u6 + u ¿tanh(u ¿d)) : jk 
Åe,¿ - t)[cf]-].* . (2.119)

Examining equation (2.119) we recognize the denominator D7¡a from the prevíous section

and so substituting this denominator and equation (2.110) with z = 0 for the x component

of the magnetic vector potential required we obtain simply,

^(¡) jk,\e¿- l)N¡," cosh zfz + d) -uon:--lãT-@'a

(2.120)

Substituting this result back into equations (2.116) and (2.117) finally yields the other two

unknowns as follows,

o¡ no:-ikk'o;l)N!-60 ø¡ eo: ik^\".,-!)uo" - e*ù,d,¿ . (2.121)
DrcDTyle+2"ã + I) Dr¿D1y\e+2"t! + 1)

Now, substituting equation (2.120) into (2.112a) we obtain the z component of the magnetic

vector potential Green function for the air region as,

o!t_ - ik^\e,¿ - l)Nt o,,n,^,
^o' DrrDru

(2.122)

and then, substituting equations (2.121a) and (2.121b) into equation (2.112b) we obtain this

Green function component for the dielectric region.

(2.123)

Finally, the total magnelic vector potential Green function due to an x-dfected

elecffic source can be written as.

ef'j:cf)t+cf)e (2.124)



Forthe airregion, this is simply a combination ofequations (2.110) and (2.122) and is written

in vector form as,

(2.125)

while in the dielectric region this becomes a combination of equations (2.111) and (2.123)

as,

..(¡) | - uosnn(r¿z') + u¿cosh(u¿z') sinh(zlz + d)) ,*,.l'-.-'\ - ,-')z-z'l\ - ..r'e': 
\ u¿ott -lt hQd-- ,w ) 

*

*( it^(r,o- t)¡vo".costr ¿,f¿ +,/)\r,, e.126\
\ DoOr* cosh u¿d I "

It is interesting to note before continuing that in the case ofa simple horizontal dipole above

ground (i.e. êd= I ) these functions are only defined in terms of the magnetic vector

potential component dlected parallel to the source as we would expect.

Now that we have the x-directed magnetic vector potential Green function it is

simple to find the y-directed vector potential Green function as we have previously

mentioned. To do this the following substitutions must be applyed to equations (2.125) and

(2.126), (x)'* (-v), i --+ !, k, --+ fr, ' In so doing the resultant y-dírected magnetic vector

potential Green functions become,

"g:*.(# r.ffiz),u'^' (2.127)

"n=*.(# 
i.ffi;),u'^,

"+,/z-z') - "-u)z-z'l\_:----:lEú2u¿ )"

.(ry#w)',u (2128)

Obviously, all the previous results can easily be checked th-rough their application to the

appropriate boundary conditions, which must ho1d.



2.7 An Interesting Result

In sections 2.5 and2.6 we calculated the magnetic vector potential dyadic Green function

in both the air and dielectric regions. Now writing the results for the airregion in dyadic form

we obtain the following very compact result,

(2.129)

which at the aiÌ-dielectric interface. (i.e. the surface of the PCB) becomes,

(2.130)

This result however, is based entirely on the dipole source having been somewhere within

the dielectric, so let us regress momentarily and assume that the dipole is hovering above

the PCB. To solve this new problem we would simply redo the calculations of sections 2.5

and 2.6 with the source term moved from the defi¡ing equation in the dielectric region to the

one in the air region, (equation (2.39)). Since this procedure is so similar to that al-ready

followed we simply state the result to be,

lllp-lt:s: ¿d

ll zunoo
c;":]l 0

ll 7*,,{e'a - r)

lL D,,.D,"

0

uo - ud coth udd

2uÐrz
jkr(e,¿- l)
DrcDru

0

0

e,¿uo- u¿tãtlh u¿d

2uÐru

e-,alz+z'l + (2.131)

*lååil u'r-]".

This new dyadic has some similarities to the one in equation (2.129) ànd at ilhe surface of



the PCB it becomes,

(2.132)

Now, comparing equation (2.132) to equation (2.130) we find that these equations

are identical except for the single component due to a z-directed dipole. However, since both

of these results are complete solutions and the position at which they occur is in both cases

at the surface of the PCB we would really expect the solutions to be identical. This seeming

contradiction should be examined further to make sure that it actually represents a physical

phenomenon. Ifit is physically correct it has interesting implications in the design ofprinted

circuit boards or integrated circuits. The immediately obvious implication is that since the

magnetic vector potential Green function for a vertical electric source is larger for a source

slightly above the substrate than a source slightly inside the substrate by an amount identical

to the relative permittivity ofthe substrate, the magnetic vector potential itselfand hence the

elecÍic and magnetic fields display the same phenomenon. This \¡vould indicate that in the

design of printed circuits the radiation from these circuits could be significantly reduced by

reducing component pin length or burying the pils or even the entire components within the

substrate.



CHAPTER 3

CONVERSION FROM THE SPECTRAI,-FREQUENCY DOMAIN
BACK INTO THE TIME DOMAIN

3.1 Conversion from the Spectral-Frequency Domain into the Frequency Domain

In the iast chapter we derived the complete dyadic representation of the magnetic vector

potential Green function, õ¿, in both the dielectric and air regions for an electric source

residing within the dielectric. For the remaining part of this paper however, we will just

concem ourselves with the dyadic for the source-free air region since for our purposes we

are only interested in radiation within this region. We therefore reiterate this

spectral-ftequency domain dyadic in full below,

,-l(ks'+*rv'\r-,o7 (3.1)

and must now continue on to calculate the electric dyadic Green function, GE,, in the

frequency domain (and eventually ir the time domain). To do this we can either use equation

(2.23), remembering that Gr : 0 , to calculate G¿o before convefting back into the

frequency domain orwe can conven G-¿o into the frequency domain directly and then obtain

G¡¡ . These two methods can be shown to be identical and so forour purposes we will choose

the simpler approach of conveÍing the magnetic vector potential dyadic Green function into

the frequency domain first.

3.1.1 The Inverse Fourier Transform Integrals

To proceed in the above marurer we simply apply the ínverse Fourier transform (equation

(2.34b)) to the above dyadic and in so doing write,

, ii_ ,

G^.k,v, z) : # I I eolr,, tr, r)r.lk'\x-x'J+k'(rt'\l¿k,¿ky (3.2)



which when w¡itten as separate equations for each non-zero component ofthe dyadic yields

the following four integrals.

cflJ,,,y) : c|ì,r",¡ = #Ï_j_yn*"u'-"'\'*,vÐ)¿¡¡¡,, (3.3)

. t.cî¡¡-,yl:W [ 1ffi",ø,*i*Á,-t¡**P-v'¡1on^oo, 
(3.4)

G^),(-,y) :@F! [ [ !*",-nz+i*'(^-x'J+*,(rt'))¿¡,on,^o'\ '¿ ' 4t J_ J*DrcDru

ctì,6, y) - # I i ;; n*rro* )**,0-ù)¿¡¡¡¡ç,

Let us now appty the followtr.*.*lr*riables to these four equations.

(3.5)

(3.6)

Figure 5 : The Spatial Coordínate Relations

a) us: I t¿{kt,

a) k, : knsntþ , k, : kn costþ (3.7)

b) x-x'=gcos/ , y-y':Qsnó

This change of variables is basically a

transformation to polar coordinates in boththe

y spectral, (3.7a), and spatial, (3.7b), domains,

with the spatial origin moved to the position

of the source, (as shown in Fig. 5). From this

we find that t4 + *? = ft! , and thereby z6 and

a¿ become,

b) ua : ,l k', - t,^k', (3.8)

denominator fi¡nctions also change appropriately.

4t

with which the numerator and



Furthermore, this change of væiables also causes part ofthe common exponent within these

integrals to become,

kf,x - x')+ kJy -)') : frep(sin{rcos@ + cosr¿sin@) : lnp sin(r/ +d) (3.9)

Therefore the integrals, which are now integrable over a polar surface, can be written as,

@tÍ

cftrþ,r,,ù : oflì,(or,,t) : # I 1ffi,'*.ioæ"n(v'4)¡,n¿¡,n¿1p 
(3.10)

O _tt

Ø¿t

ofl,Ur,,p) :WI Iuii##" "uo.+ik&s,rL(rt)+þ)kedkedt) 
(s.11)

O -tt

@rt

o3ì,(or,rù :WI 
I'W"uz+iknestn(e4)¡,n¿¡,n* 

(s.12)

O -_sÍ

@Jt

c*ì,(t r,,p) : # I [ .ffir^'*i*æ "n('tró)pn¿r,n¿,p (3.13)

O-t

These new integrals can be further simplified th-rough application of the identity [MyintU],

J,,(kea)"r'í : [ ! 
n*.u" "¡o(vø) aþ (3.14)

/\
where J,,(kpOJ is the Bessel function ofordern. Using this identity, equations (3.10) and

(3.13) can immediately be rewritten as follows.

GfJ(¿.) : c?l,k ) : * I Æ'4re),-..,kndkn
0

c*ì,(n,) : *Ï * t,tr, nQ), ^, k 
n 

d r, n

0

(3.15)

(3.16)

The remaining two equations ((3.11) and (3.12)) howeve¡, need special consideration due



to the trigonometric functions within their integrals. Therefore, w¡itirg equation (3.11) with

respect to its g integration on1y, we obtain,

cî,,(,ù : * [ 
snt¡te'ika "^kt+¡av : # [{æ - 

n*¡,.tre " þ!*ó)q) (s. 1 7)

which, through application of equation (3.14) becomes,

Now, making use of another identity which states, l-r(fnO) : - ¡r(enp)

(3.18) can be rewritten as,

cf ,(tp): ¡cosqr(*np)

and consequently equation (3.11) simplifies to the following.

cfl,(fr.) : - cos a b:!)T r-: !#) ",*r",
0

(3.20)

Likewise, in a similar manner equation (3.12) becomes,

- 
v,,J,,(kop\

o¿,(n,) : -,n Q 
hz) 

[ 
" I fåt a*4are

0

(3.21)

to yield the last of the four double integrals in terms ofa single integral only.

' Now examining the four Green function integrals which we are now required to

solve, (equations (3.i5), (3.16), (3.20) and (3.21)) we find that there are actually only three

individual integrals which we need to solve for. These are shown in the next three equations

along with theiÌ relations to the four Green function component integrals just mentioned.

a nþ,n): +:fl4pe-*'kedkq Ð Gf)(fr.) : cll,(r.) : r(n ) (s.22)

0

(3.18)

lCRCl, equation

(3.1e)
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ø n(r,):+Ty$e-hzkndkn øt cf*(r,):uþ,n) (3.23)

0

a n(0,) : *\ry#,-'Qctkq a cî)(t,): 
{|îffä,-,),,(on),r 

ro,

0

To go about solving these integrals it would seem prudent to find a solution strategy though

contour integration in the complex frn plane. This is because, as was mentioned previously,

the denomi¡ator functions (D7s and D7¡a ) and numerator functions (N,o and N¡o ) yield

poles of the integrand and so the infamous Cauchy residue theorem springs to mind again.

To proceed in this direction we must first convert the three previous integrals so that they

are integrated from - co + oo . This is accomplished by writilg the Bessel functions in

terms of Hankel functions, as is shown below [CRC], and following through with fhe

elimination of one or the other of these functions.

t,(o,n): *l¿,,þ.p) -' ar2þ.e)] (3.25)

Therefore, let us begin this procedure with equation (3.22a) from which the others

will follow in a similar marner. Splitting this equation into two pats (each of which contains

one of the two Hankel functions) yields,

4k ):4"(frn).f'(k )
(3.26)

where,

a) t (rò:*l-'ü:!;,) .uúkQdke p.27)
0

b) t (r) : +Tr'ry::'r) è-,úkedke

0

Now, making use ofanother ingenious identity (equation (3.28)), which is a relation between

the two Hankel functions [Abramowitz],

(3.28)

I

Á,Ð (rno "*) 
: - r-i,"r#(k ea)



allows us to interchange the functions in equations (3.27). This allows us to only use one of

the Hankel functions were we find that the properHankel function to use is that ofthe second

nna, d,'?)(tnp) , since it will ensure that the solution we obtain satisfies the radiation

condition, a fact which will be proven before the end of this chapter. It therefore behooves

us to rewrite equation (3.27a) in term of nl,')(r*e) , which can be accomplished by applying

the following change of variable

kn = rrk; : -fe, kQdke = etbkQdke = kedke (3.2e)

The limits of integration now become negative along with the argument of the Hankel

function but since the definitions of the D7p denominator function and the Nt¡o numerator

function only contain È! the previous change of variable has no effect on them. Hence

equation (3.27a) can be written in terms of the new variable of integration fr! as,

t (oL) : *Ï 
-'ü:!;ù,u.,kedke

(3.30)

and when it is again combined with its counterpafi through equation (3.26) the desired

integral finally becomes,

,t(or): *
i 

'vot/,j'(*"o\
J -Èluúkpdkp (3'31)

Similarly then, integrals (3.23a) and (3.24a) become,

and

respectively.

,,(0,) : *i r' üi!;') n* o,*,

,,tù:i;i!Ê@.n*r3arn

(3.32)

(3.33)



3.1.2 The Relevant Poles of the Inverse Fourier Ttansform Integrands

Before moving on into the complex plane let us examine equations (3.31) to (3.33) a little

more carefully. As was discussed in the previous chapter the two denominator functions,

D7B and D7y , as wellas the two numerator functions, Nuo and N¡0, contain singularities

which must somehow be overcome in these integrations. To do this however, we must have

some idea as to where and why these singularities occur. Beginning therefore, with the

numerator functions which are reiterated below,

cosh(uf,z' + d\\ sit¡th(u,lz' + d\\c) Àr,,:----# å) Àr¡,": i:')- r "cosh[a¿d) sitthlu¿d)

we fmd that singularities of N,o occur when cosh(a¿d) becomes zero unless the z€ros of

cosh(ufz' + d)) , which are of the same order, coincide to cancel them. This cancellation of

singularities is contained between two special cases of N,o , which are shown below and are

dependent on the position of the source within the dielectric,

(3.34)

(3.35)

where in thg fllst of the two cases, Nuo has no poles at a]l and in the second case it has many.

Let us now find an equation defining the locations of al1 the poles of N,o . To do so we allow

ud tobecomplex, as ud:a,+ jþ, and substitute this into cosh(a¿d) :0 to obtain,

cosh(u¿d): coshl(d + ¡fla]: o (3.36)

which can be ¡ew¡itten using a complex hyperbolic-trigonometdc identity [CRC], as,

cosir[þ +;p)a] : coshþd)cos(pd)+ jsinhþd)sinß¿) - o (3.37)

Collecting the real and imaginary pans of this equation we obtain two equations which

define the desired possible poles, where no:0,1,2,... and we note that negative values

46
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of ,2p have not been included, in order to eliminate redundancy, These are,

a) coshþd)co rßo) f o' þ'u:P"+t)fi
l* O, othenvise

å) sinh(ad)sinl,,r) {=0, 
a:o o' þ,,,:T

lt 0, othenuise

For both of these equations to be zero simuitaneously we must obviously choose a : 0 and

Þ,,: (2r, + t)fi .tnus u¿: iþ,,0: i(zno + t)+ 
"the 

possible poles of N,¡ . Equating

this result to the actual definition of u¿ as follows,

w : J r'r,r- t,r4 : lzno + t)fi (3.40)

we can obtain the values of /<n at vi hich the poles of Nuo occur ( ftqu, ), namely,

0r,,,:* 
\f 
,,r,¿-lþr.it (s.41)

Now, the zeros of N,o are defined by a similar equation which is obtained sirnply by

substituting z' + d for d in equation (3.41) yielding,

r,,,.:*JM ß42)

The cancellation of singularities, which was mentioned previously, occurs when the values

of kn,,, and Êg,,. are identical. The criterion for this occunence can easily be deduced from

the above two equations and is simply,

z'+d :t ?t+:?+ , nz = np (3.4s)d 2nr+ 1 2no+ 1

where the positive sign has b.een chosen since the ratio of z' + d to d must be positive and

both r. and no have been chosen to be positive. Fufihermore, we also know that n¿ must

(3.38)

(3.3e)



be smaller than or equal to r¿p since -d = z'< 0 and therefore 0 = z'+d = d.Lerus

now give an example to clar$ this singularity cancellation relation. If we let n¿: 0 and

np:1 the above result yields z'+d= df3 or z'=-2df3 for which we obtain,

l, _ l. _,r-
^gre - ^err¿ -J- (3.44)

where it should be obvious that this is the fint non-trivial singularity cancellation

encountered, (i.e. the cancellation occurring at the largest value of fre (when frn is real) other

than the one which occurs at z' : 0 where no poles occur anyway accordirg to equation

(3.35)). Furthermore, this value of tn conesponds to the second occuning pole, (which can

be seen from equation (3.41)), so if the source resides at a depth of z' : -2df3 within the

substrate the second singularity will be cancelled.

Now, for e r¿Ps real, we can see that all possible poles will occur either on the real

,te axis in the ran ge - ,||¿fo = ke < l;,,tko or somewhere on the imaginary Én axis. At

this time however, it is the ones which occur on the real ,te axis which are of particulæ

concem to us since they lie directly on the integration path for equations (3.31) to (3.33).

Consequently, from equation (3.41) we can see that kn,o will be real if,

..',f

'!e,¿ko > \znr+ t)ç (3.45)

and that increasinE ed,Ih ord will allow more values of np to satisfy this relation, hence

allowing more poles to occur on the real &n axis. Of interest then, is a ratio of thickness to

wavelength below which no poles can occur on the reai axis. This ratio can be found ftom

the previous equation by letting np : 0 and kD : ?-fi /1 , (where .l is the wavelength of the

frequency corresponding to ks ), and then solving for df)' as below,

dl
), 4le,¿
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(3.46)



From this we can see that if d becomes too large or Å too small, poles of N,o could reside

on the real kn axis unless singularity cancellation happens to occur. This is obviously a

useful relation to know for any future numerical analysis of our Green functíons.

Proceeding to the other numerator function, N¡o , we find that it has very similar

properties to Nvo and so we wi-ll just give conesponding conclusions to the ones made

previously. For this numerator function, two special cases dependent on the position of the

source within the dielectric are again evident and occur for the same values of z' as before.

These are shown below. 
L "t : (\

N,:l''' " (3.47),'no 
[0, z, : _d

In this case however, no poles occur for either of the two extremes of N¡o but as before poles

do occur for other possible values of z' . This time we find ø¿ : iff ut tn poles of N¡o ,

where no:0,1,2, .. . as previously, and the equation defining frn,,, is,

kqno: *

while the equation defrning tn,,. is,

',rß-(ry)'
(3.48)

(3.49)

and the criterion for singularity cancellation is,

z'+d n,

ï:i'"=n' (3'50)

One major difference between the results for N¡o and Nuo is that for N¿o we get an added

cancellation which occurs for all values of z' when np:1r:0 due to the fact that i¡ this

case !/d becomes zero and hence both the numerator and the denominator of N¡o become

zero simultaneously. Because of this we can ignore flp: flz:0 in equations (3.48) and

0r,,,=*JUftü



(3.49) and consider them valid for flp: nz: 1,2, ., . . With this in mind we can again find

a ratio of thickness to waveiength below which no poles can occur on the real &p axis as,

dt
l, 2.le,¿

(3.51)

whose value is obviously twice that of the same ratio for N,o . This tells us that if the

thickness of the substrate or the wavelength for a given frequency is such that, N,,o has no

poles on the real axis, N¡o wili also have no poles on the real axis.

Filally, one remaining question should come to mind regarding the numerator

functions. This pgrtains to the values that these functions take on when singularity

cancellation occum. These can be found very simply by takilg the limit of N,,o and N¿o as

/<n approaches a kQ,,p at which such cancellation occurs. Making use of I'Hopitals rule

[Trim1], we find that for both numerator functions this value is simply,

-t LÅ
I a\ --rt-. t v
\_ry.,b- _- (3.52)

Now that we have examined both numerator functions to our satisfaction let us move

on to the denominator functions, DLy and D1¡a. Rehashing the definitions of these

functions as,

a) Drv: us+ u¿coth(u(i) b) Dr¡,,t = erduo+ u¿tanh(u¿d) (3.53)

c) uo:144 tÐ u¿: lø-;,Þ"
we can see that, for all quantities real, as must be imaginary for - ko < kp < &0 and real for

the rest ofthe range of frn with its only zeros being at f ko. Similarly then, a¿ is imaginary

for - ,lli ko < kn < '/1j ks and real for the rest of the range of frn with its only zeros being

at *, Jl¿ko. From this we can immediately see that since both uo and ud are real, positive

and monotonically increasing in the range 
lrnl = ,ll^t o and the hyperbolic tangents are



therefore also real, positive and both approach a value of one as their arguments approach

infinity, neither D7¿ not D7y cãn be zero in this range. NoW in the range

-,ll¿fo < kn < 
"E¿ks, 

ø¿, becomes,

,o:x i,f t,oteutQ=x iu'¿ (3.54)

and so the hyperbolic terms in D7p and D7¡a become,

a) u¿coth(u¿d): u'¿cot(u'¿d) b) u¿fanh(u¿d): - u'¿tan(u'¿d) (3.55)

which are both rea1. Vy'hat this means then is that within the range - frs < kp < fro neither

D7p nor D7¡a can possibly be zero since a¡ is imaginary and therefore no cancellation can

occur. Examining the remaining range of the real Èn axis between i fto and t ,/ii ko we

can see that both D.rE and D7y are real functions and although a6 is monotonically

increasing the trigonometric terms can have both roots and poles of varying sign within this

range. We can therefore conclusively state that ali poles occurring along the real ftn axis

given a real wave-number and relative permittivity must occur within the ranges

*o . 
l*nl 

. 6J *o . The question then is where are they, how many will there be and is there

a ratio of substrate thickness to wavelength below which no poles can occur.

Considering where these poles occur, we can see that since both DrE : 0 and

Dru:o are ranscendental equations no diÌect formula for kno can be found. Their

positions can be found graphically or numerically however, for given values of frequency,

substrate thickness and dieiectric constant. Now, although we can not find theiI exact

positions with an equation as we did with the numerator poles, it is possible to find out how

many poles can occur by noting that both the tangent and cotangent functions have values

ranging from - oo [o co for every multiple of ø that their arguments subtend. This means

that for both D7p arld D7¡a we will have at most n¡ + I poles for n¡ full multiples of ø



occurring in between * ks and L 'l;r,tko. Let us then, calculate the value of ¿,. foÍ

arbitrary values of êy¿ , ks or cl .'1o do so we note that s nce koli,¿- I < u'¿ < 0 as kn

ranges between * fts and + ,l;r,tko, the maximum range of the trigonometric function

arguments is k6a,f1,u 1 .setting this eqval to n, ,letting k0 ={,unasolving for n.
tL

we obtain,
1,t _

n,: î,lr,o- i (3.5ô)

where, since n¡ must be an integer, the value is rounded down. Finally, setting ¿,: I v7s

can solve for the ratio of substrate thickness to wavelength below which only one pole can

occur in the range of both D7¿ and D7¡a yieldng,

dl
7 2 Je,a- 1

(3.57)

This has considerable similarity with the ratios calculated for the numerator functions,

(equations (3.4ó) and (3.51)). Such a mtio however, below which no poles can occur, can

only be foundfor the function D¡¿ since this function can become zero only if the cotangent

function is negative which occurs for arguments greater than ø/2. Therefore setting

kodl;,,1-L eqtal to øf2 it can be found that D7p canhave no poles below,

dl
(3.58)1- 4,8,0- t

For D7y though, a value such as this can only be found by finding the location of the first

pole which will occur for some argument of the tangent function less than ø/2. tne

locations of the preceding denominator poles was discussed briefly by Marin et al [Marin2].

3.1.3 The Inverse Fourier Tlansform Integrals in the Complex kn Plane

Now that we know a bit about the poles ofthe numerator and denominator functions we can

move into the complex kn plane with more confidence. It is appropriate however, to first



make a few remaÍks on convergence and propagation, remembering that the radiation

condition requiÌes a decaying and ou!ward propagating wave at infinity [Tai]. Looking at the

exponential e-uoz within the integrations which we wish to peform (equations (3.31) to

(3.33)), and remembering from section 2.1 that we are using an e+i@Í úme dependance we

know that each wave in space and time for any individual frequency will be characterized

by the following phase reiation, where we have let us = a + jþ .

e-uoze+þ)t : s-þ*iþ)za*ir' : a-az r-i(pz-arl (3.5e)

From this it is immediately evident that the fhst exponential relation, ¿{¿ , describes a wave

that decays with increasing positive z, only if ø > 0 and that the second exponential,

¿úf'--'l,describesawavepropagatingoutwa¡dfromtheoriginalongpositivez,ifp>0.

These then, are the conditions which must then be met in defining our integration path in the

complex fts plane. To meet the above conditions, ( Re{ae} > 0 and Im[a¡] > 0 ), we require

a closer look at ¿r0. Note first of all, that this is a square root function and therefore is

double-valued for complex arguments ffriml l. This can be seen by examining the function

wll2 , which is written below in terms of the magnitude and phase of w where Ary(w) has

been defhed between - ø and ø .

*i: Jl*lri*t* : ,f l*lr+(o""'*o*):* Jl*lriou* (3.60)

lf Arg(+v) is restricted to this range we know from the phase of wr/2 thatwhichever sign

is chosen to represent ñ , this choice will remain constant for any lu whose phase is within

this range. Restriction of the range of Arg(w) in this way means however that we are not

allowedtosteponthenegative,realwaxissincethisiswherethesignof1'6mustchange.

Therefore, to keep us offthis axis we will d¡aw a line called a branch cut along it, This branch

cut emanates from a branch point at y, : 0 and is simply the 'dividing' line between two

w planes (commonly called Riemann sheets lFelseni]) which yield opposite signs for



r-ì
ne{/wJ . Now, in the case of a6 , if we choose the positive sign of the square root we can

immediately see one of the two conditions specified earlier being satisfied. This is evident

from equarion (3.60) since the real part of the phase of fi , ( cos(ary(w)/z) ¡ wu atways

be positive in the above specified argument range. In the i(p plane we find however, two

branch points of n6 , defined at kp : * ks , and the branch cuts reside along the lines where

R.{/€-l6} < 0 and h[4-k8]:0.If &o is real, these lines are evident by direct

inspection of k2Q-ß since the above conditions will hold for frn real and less than l&61 as

well as for frn imaginary. Now, to enforce the other required condition, Im[øe] > 0 , we can

let kp:l +p and frs be real to write the argument of ¡ro as,

tà-4:(y2-ô2-k|)+ziyð (3.61)

Then, since we know from the phase of equation (3.60) that Im{ze} > 0 when

requiring frn to be in the first or thtd quadrants

of the ftp plane fFelsenl].

These above defined criteria will affect

the integration contour i¡ the ¿e plane and so

the aforementioned branch cuts along with the

path of integration which satisfies the radiation

Ir{4 - 4} > 0 , the real and imaginary parts of &n must be of the same sign thereby

E
x Poles due 1o DTE

o Poles due to D TÀt

-€ã ko.?õ

condition requirements a¡e shown in Fig.6 cco

along with some poles due to D¡¿ and D7¡a. 
Figure 6: The contour InteSrction in the

ko Plane for the Inverse Fourier Transþrn
Note that the branch points and poles are

positioned off the real axis since in an actual situation fr¡ will have some loss. The sign of



this loss determines the quadrant in which the poles or branch points occur and has been

found by specifying a conductivity in the Maxwell equations and solving for &e in a similar

way to that done in section 2.i. Note also that the path of integration has been drawn to

explicitly show its course through the quadrants giving proper convergence and that the

branch cut residing within the region, encircled by the contour, is never crossed since the

contour is deformed around the branch. The fact that the path passes though the fourth

quadrant where waves are inward propagating does not cause a discrepancy in our result

since at infinity the waves are attenuated. Figure 6 also shows several other branch cuts, one

of which runs along the negative ftn axis and is due to the multi-valued logarithm function

i¡herent in the Hankel function present in all three of the integrals. This branch wili cause

no problems for our integration since it is completely outside of the integration contour.

There are also two other branch cuts (represented by dotted lines in this figure) emanating

from the branch points i ,l;; ko. These come from the other square root function, ,r./,

contained in all of our integrands via the numerator and denominator functions. They are

dotted since they essentially have no effect on our results due to the fact that a change ofsign

of ø¿ will always be offset by a conesponding sign change from the hyperbolic functions,

making their effect single valued and therefore an integration around this branch would not

contribute to the integral. Note that if the dielectric slab was not grounded, an integration

around this branch would contribute, from which we see that the contribution would then

have to be a downward propagating space wave.

We can now take equations (3.31) to (3.33) and evaluate them using contour

integration along the path speci-fied in Fig. 6. The result of this integration is, as we know,

proportional to the sum of the residues at the poles contained within the contour and can be

written as,
N

,"(0.) : r"-þn) * r",þn) . L.(on) : -zniÈn^lr"(*.),-.,] (3.62)
í:T

where the integral which follows the real &q axis ( 1¿" ) is the desired result. Rewriting the



previous equation with this in mind we obtain,

t,r\,n): -*iio,,,l,,(nn),*n,f*u"Q,n)-..(0.) (s.63)

where the integral along Iç* is znro due to the radiation condition which we enforced

previously. It is useful to note from the form of this equation, that the íntegration around the

branch cut yields an upward propagating space wave while the residues of the contained

poles contribute to the suface waves supported by the structure. We are now left with two

options as to how we can obtain the result which we desire ( 1¿,, ). The frst of these is just

to integrate along C¡ while the other requires integration along CB as well as inclusion of

the residues ([Marinl], [Barkeshli]). As it tums outthefkst option is usually the betterchoice

since the exact positions of the poles a¡e defined by transcendental equations and the

integration around the branch is at least as difficult as the integration along the real axis.

Because of this, the next two sections of this chapter will deal with the solution of integrals

(3.31) to (3.33) along the contour C¡ which must generally be solved numerically to obtain

correct answers in the near fieid region. For a far field solution however, we can use an

asymptotic approximation to these integrals to obtain reasonable results lFelsenl]. This

approach is the one we will apply since it is the more interesting of the two in that it yields

a closedform solution ofthe integrals which gives surprisingly accurate results. The method

of asymptotic approximation which we will use here is known as the method of steepest

descents tfuough which the contour C¡ will be deformed to yield a contour along Ìvhich the

iniaginary part ofthe exponent within the integrand is constant and the real part varies to the

greatest degree [Collin]. The advantage of this new path of integration is that the major

contribution to the result will occur in a very small section of the deformed integration path

allowing us to approximate the result analytically. It should be noted however, that full

integration along this contour will yield results identical to the original contour as long as

no poles are crossed in the contour deformation.

Before deforming the path of integration along C¡ into the steepest descent path we



note frst ofall that, since we are using an asymptotic approximation to the required integrals

we can immediately substitute the asymptotic form ofthe appropriate Hankel functions, (all

of which are defined by the following equation),

r-:-#'þ*): J 17 u'nn,,l o*na
? ,-t(o'n'+o):

nkpQ
(3.64)

into integrals (3.31) to (3.33) [Kong]. Writing these integrals as contour integrals we obtain,

¡,kn): *J*[".Æe-u"z-ikæ,lkndkp (3.6s)

,4rt:* 
J#l,r*",",-iræ,ledke 

(s.66)

r,(0.) = * J-# I 
"^#¡uoz-ikoq,l 

tq r,¿rn (3.67)

from which we can explicitly see the source ofthe Hankel function branch cut ofFig. ó, (i.e.

the square root of frn function contained in all three of the integrals).

3.1.4 Solution of the Inverse F ourier Tiansform Integrals in the Complex lU Plane

To solve the th-ree contour integrals ofequations (3.65) to (3.67) we ftst convert the spatial

variables from the cylindrical coordinate system hto the spherical coordinate system by

applying the following transformations, z: rcos0,p : rsin0 and simultaneously change

the variable of integration using the transformatíon, ftn : fts sin lY . This change of variable

modifes the following parameters as well as the numerator and denominator functions,

a) dkn:frecosVd\I b) uo:kofrj"'rVJ :/¡coslI (3.68)

c) uo : t o,f ,o?v - t^ : jko'E,u t^'-rv : i',ll;¡*
c

and yields the next th¡ee integrals.



,,W) : * JÆ L,_ffi**".,(wr),Æñnwfrscosrp./\p 
(s.6e)

' ' ,-j_ 
[ _&_"-roo,.o,(w+) fto sin V *6 cos lprÄI (g.70)¡,lv):-L I4n-l nrsn9 Ic*Dyy

v

rrq) : + 14[ =\-ntr",cos(w+)fi¡sirlrykfr 
sin\rcosrvdrrr (3.71)

4n rf nrsne I c**D6Dy¡a

Note that, in these integrals the cos term in the exponential was anived at by using a simple

trigonometric identity [CRC]. These integrals also i¡dicate that the choice of the Hankel

function of the second kind was the proper one, since the exponential within these th¡ee

integrals represents an outward propagating and decaying wave for an e*i'' time

dependence.

Let us now examine the new lU plane in some detail. Notice first of all ftom equation

(3.68b) that ,/0 no longer contains a square root and therefore looks single valued. This does

not mean, however, that \rye have lost any information, since what has actually happened is

that the two Riemann sheets discussed earlier have been unfolded and now lie together in

the V plane fFelsenl]. This is evident when we

graphically conveft Fig. 6 into the V plane as

is shown in Fig. 7. The proper Riemarur sheet,

which has Re{a¡} > 0 , is shown as the shaded

area and the quadrants conesponding to those

in the frp plane are labeled, P¡P2,P3 and Pa.

The improper sheet is correspondingly

unshaded and the quadrants corresponding to

those in the &n plane are labeled I¡12,þ and

14 . Note that the anangement of the quadrants

X Poles due to D TE OPoles due to D Tlr¿

Figure 7: The Contour Integration in the

V Plane for the Inverse Fourier Transform



on both sheets is determined from the sign of the exponential decay and direction of

propagation in those quadrants lKong].

Now, with the change of variables which takes us into the W plane we find that

kp :t kn conesponds to !y : + øf2 and, if ke is real, the section of the real kn axis

between * È6 corresponds to the real !U axis between X. nf 2 .Furthermore the remainder

of the real /<n axis maps onto the vertical lines passing through V :*. fifz and lhe

imaginary axis maps onto the veÍical line passing through V = 0 . On the proper sheet then

we can see the poles of D?E and D7¡a,whilch coÍespond to those in Fig. 6, residing in

quadrants2and4andoccuningbetween tlr =*. ?r/2 and lI.¡ =* ø/z + ¡sø-t(,11,) witn

the same added 1oss. At this time it is worthwhile to note that no other poles, besides those

due to the numerator functions, occur on the proper sheet of the Riemann surface. This can

be proven numerically as well as though mathematical manipulation of the denominator

functions [Collin]. There are however an infinite number of poles occuûing on the improper

sheet which do not effect the normal integration along CRs, but may effect the saddle point

integration. As for the numerator poles, it can be shown that they occur along the branch cuts

and so would not effect the original integral but may contribute to an integration along the

deformed path. It should be stated here, conceming these numerator poles, that only the

locations of these poles have been studied in this thesis, and no explanation of their physical

meaning or theh exact effect have been found.

Now, as mentioned previously the steepest descent path resides along a contouralong

which the imaginary part ofthe exponent within the integrand is constant and the real part

varies to the greatest degree. To see what this means we flfstly observe the thee integrals

(3.69) to (3.71) and find that they all contain a complex exponential which we know is an

oscillatory function and whose exponent can be represented as,

lV):-7*srcos(q,-0) (3.72)



Saddle points of this exponent occur where #: t and are so ca1led since complex

functions such as the one in question have no maxima or mirima as a whole but rather, the

real and imaginary parts themselves have maxima and minima. When they occur

simultaneously they form a saddle point (i.e. a graph of the function around a saddle point

takes on the shape of a saddle). Therefore, calculating the previous derivative we obtain,

(3.73)

from which we can immediateiy see one saddle point occuning when lI = 0 . The steepest

descent path which passes though this point is then defined by the condition,

rmt{v)-lo)}: o (3.74)

which simply enforces the imaginary part ofthe complex exponent to be equal to its value

at the saddle point. From this we can obtain an equation defining the steepest descent path

by letting V : a + jp in the above condition and writing,

Im[-i¿olcos(d- e +ip)+iksr]:/<6rlt-cosþ-0)costr(B)]= o (3.75)

or,

cosþ-0)costrþ): t

Along this path then, fV) becomes,

ð#) ::to'''in1v-e¡

lø(v) : -7fr¡r cos(rv - á)lap: - ikor cos(a -e + jÐlø

: - jfr6r[cosþ - 0) cosrr(B) -;snþ - á) shh[6)f¿o

= - jfrsr - Éer sin(d - 0) sinh(B)

(3.76)

(3.77)

which we can see causes the exponential to decay rapidly with r as well as with sinh(p) .

Because of this we can state that the major contribution to the integral comes from the

immediate vicinity of the saddle point. This statement is not altogether true if any poles lie

near the saddle point or steepest descent path or more imporlantly are crossed when

deforming the original path of integration to the steepest descent path. In this case the



solution is much more difficult since the contribution from each ofthese poles must be taken

into account individually. For this reason we will assume for the moment that all poles are

far ftom the steepest descent path and that none are crossed in the deformation of the path.

The error caused by this assumption will be assessed later in the numerical results ofChapter

4, using the positions of the poles which we took such pains to find in section 3.1.2 as

accuracy indicators. Having made this clarification and assumption we can proceed by

representing all thee of integrals (3.69) to (3.7i) as follows,

I,(v) : A, I r,,(v\rf"Áv)¿v (3.78)
J Cør

and expand 4,(V) in a Taylor series about the saddle point. Doing so yields,

(3.7e)

which upon substitution into equation (3.78) and interchange of the order of integration and

summation leaves,

,,,(*):o,å{ #1",,* e)"'"r,,Áv)av\. (3.80)

Of course, the exponent ,Êap(!Il) can also be expanded in the same way but since f,¿o'(Vr)

(and for that matter all the odd order derivatives) are equal to zero at the saddle point this

becomes,

F,,(v): i'v-?)"',4a¡e¡

f"øF) : n4 +fe)(q(w -0)2 + f<t>¡e¡E:-t- .. .. (3.81)

Taking only the first two terms of this expansion and substituting them into equation (3.80)

we obtain,

r,,¡w¡ : e,ñt,f{#l 
"-* 

-e¡^etÐtet++rnavl (3.82)

which, upon substitution of the transfo¡mation ¡t2l(A)(V- e)' : - ? becomes,

r,,(v):e.ñ\ 
,i^{Ú-@¡-r.t l* j_*.+o+ (3.83)

Òt



This equation can easily be solved using Gamma functions [Collin], and so we are now

trivially able to solve integrals of the type described by equation (3.78). Assuming

furthermore that the fírst term of equation (3.83) is dominant we can write solutions to

equations ofthe foIm given in equation (3.78) in a trivial manner as [Kong],

t,,(v): e,, 
| 

""*r,,(w)er,,Ávtdv 

: e^ 

f hr,,le)Átl (3.84)

where for our purposes fá) = -/sr and f '(0): jk6r. The solutions ofthe three integrals

which we desired to solve with the method of steepest descents can now be simply written

by inspection of equations (3.69) to (3.71) and equation (3.84). In so doing we obtain,

rrP):iffffiøcose

t,(e:¡#*ø*,e

¡^¡tyl : - 
e-ih' N no 

,4 cos á sin o
2nr DTBDyy "

which when applied to the equations defining the Green functions (equations (3.22b),

(3.23b) and (3.24b)) yields,

cfÌ{v):cg}{w):r,{e) :iffffir"*'e (3.88)

*ì,(v): n@: iff\o*r,*,e (3.8e)

Gfl.(w): -cos@þ,¿- t)/3(a) : 4'(?--1)N¡'' 
frfrcosá sin0 cos@ (3.90)?nr DrrDnt

G9¿M : -sia/(e,¿- 1)1,(d) : +g##kfr cosdsinosin/ (3.s1)

3.1.5 The Closed-Form Results of the Electric Field Dyadic Green Function

Given the above results for the magnetic vector potential dyadic Green function in the

spatial-frequency domain we can use equation (2.23) with d¡:0, (which .is repeated

(3.85)

(3.86)

(3.87)



below in spherical coordinates) to obtain the electric field dyadic Green function in the

spatial-fr equency domain.

cfu,e,Q):#(oo +Ê)Gof,e,q) (3.e2)

Before applying this equation however, we must first convert equations (3.88) to (3.9i) into

spherical coordinates and thereby obtain, for an x-directed dipole source,

cfl,: c$sinecos@ + cf;jsind sint' + Gf;l,cos0

: ; r"(^# * ffi ,o,, e 

) 
sin a cosø

cf], : cflcosa cosp + Gf;]rcos á sin/ - cf].sind

: + r "("# - ffi ,^,a 
) 

.o, a .o, ø

(3.e3)

(3.e4)

and

cf;, :-cf],i" ç +Gf,l,cosQ : #-,"(#),^, . (s.es)

Then, since the results for a y-directed dipole source are very similar we can simply write

them in terms ofthe x-directed results by inspection of the magnetic vector potential Green

functions and the relations forconversion to spherical coordinates given in the previous three

equations, namely,

ò G?l,=tançcf;j Ð Glh:tan¡cf;þ Ò cf):-cotøcf;) .1s.oo¡

Finally, the zlirected results are found by again using the same conversion relations to

spherical coordinates as above, giving,

") GXl,:#r,(W).",, ,, cf;þ:-tanecf;)* c) c!)*:o.1s.oz¡

It is interesting to note that all ofthe preceding equations are proportional to one halfofthe

free space radiation from an electric dipole source [Balanis], and so can be considered as the



free space solution multiplied by a geometry factor which takes into account the effect of

the grounded dielectric substrate.

Now that the magnetic vector potential Green function has been completely

convened into spherical coordinates we can proceed to solve equation (3.92). To do this it

is first worthwhile to note that all the components ofthe preceding dyadic can be written as

follows,
.-jkor

GN'.J ::-f,,(e ø) (3.e8)

wnere 10,ç) is some function of d andø andthe superscript ,/ refers to any ofthe three

dipole directions while the subscript y refers to any of the three spherical components.

Writing the above dyadic components in this way is important as far as we are concemed

since we wish to deal with fa¡ field results only, (as was indicated by the use of the steepest

descent method). As a result of this, any components which have terms varying with inverse

powers of ," greater than unity can be ignored. Let us now expand equation (3.92) in terms

of equation (3.98) for one direction of source. Note that the particular source dtection is

irelevant in this case and so no superscripts will be shown in the following expansion.

Therefore, beginning with the divergence term we can wite,

v e o 
" 

= 
Ífr 

P ¡ ç*-'^) . #l# r- *^r' rtl . fi nt', øtf (s e e)

where the second term of the expanded divergence can be seen to vary with the inverse

square of r. Neglecting this term from here on in and simply performing the derivative within

the first term gives,

v'G¡o =, 
t${ç*-t'"') 

= t (e,ù Ç(r -7k0,) * - ¡ro{¡(e, ç) (s. 1 oo)

where one term resulting from the derivative has also been thrown away for the same reason

as above. Now that wehave the proper divergence let us proceed with the gradient. Applying



the gradient operator to the result of equation (3.100) we obtain,

vvcÁ.:-iÀo{r r,^*(+),

. #l*u v,r' oùâ .*L 
#øtr, øru 

]Ì 
p' *r

where we can again neglect the second term for the same reasons as previously, giving,

VV.G¡. ^, - Jkrf,(e, ø) *(+),

: -jkof,(0,d+F¡tsr - t)ì * - 49{.fÅe,ø)t (s.1os)

within which another term was again neglected due to expansion of the derivative. The

dyadic produced by this operator is then obviously,

vv.c-Áo : - k"+('te'ø 
f'j{e' ol'+')te øl

while the remaining dyadic within equation (3.92) is,

' Il:'{e' ç¡ ¡¡4e'ø) l"@' d1
Êoe o, - Êo +ll;, te, ol #\e, øl i;, te, oll

W@'ol8'@'ø)lí'P,ÐJ

(3.101)

(3.104)

(3.105)

where relation (3.98) was again used. Finally then, combining the above two dyadics as in

equation (3.92) we obtain the electric field dyadic Green function, as dispiayed below.

(3.106)

From this result we can immediately see that there is no radial component of field in this

result, which is expected due to its far field nature.



Now that we have the electric field dyadic Green function let us write out its

individual components. To do this let us ftst expand the numerator and denominator

functions using equations (3.68b) to (3.68c)andlet ks: af c, h=t+(z'/d) and u¿d: þ16

where,

,u = I +u t:ol e (¿/r) (3.1 07)

and c is the wave velocity in the air region. Using these substitutions the numerator

functions become,

,., 
"" 

: sinh(r.42'l,i)) _ sin(øølr) å) M': cosh(alz'+¿i)) _ cos(arreå) 
,a.., or,,sinï(a¿rl) sin(øre) cosh(u¿d) cos(øze)

while the denominator functions become,

a) Drz: uç+ u¿coth(u¿d)- toþcose *ref,rot(rQ) (3.10g)

b) DrM = e,¿us+ u¿tanh(u¿d): foþ.acosa - ø]a"(trr)) .

It is also useful to write out the multiplication of the denominato¡ functions and reanange

them slightly for future use as follows.

D rxD ru = 4 (r cos e . r, 9a *t(rr r))þ t, a c os e - 4 ] tan(rr s))

: tE ( - r,o .o r' a - i co s 0 r e ] (tan(tor 6) - e, ¿ c ot(a r rrl - (* 1)')

: k\(iro ;- cos e 
""t 

rr))þ, 
i.e¡¿r 

cos d .otþ"a)) (3.110)

Now using equation (3.106) and a slightly modified version of equation (3.94) the Green

function d[) cunbe witten as,

r.6),..... r-jk* sn(aøt,l ( jkocoslDru _ kte,¿_ 1)sn2 0) 
cos0 cosd (3.lll)uw:-"Y¿P'2îtì.lt'iõj-\------D-D- 

t
where if we expand the numerator within the brackets of this equation using equation



(3.109b) and rearrange slightly we obtain,

,-(x) .....e-iw t^(r*'ùlt&tì(ntì-'*et^"(*t))lcosácosó (s.112)u+re=-"r,Dþ6ML D*D* 
lcosucos9 

(ó'rr¿)

Within this equation then, we can immediately see that most of the new numerator withir

the brackets of the above equation can be cancelled by the modified form of DLyD7¡a given

in equation (3.110). Therefore, our final resuit for this component is,

.-jkar cf sin(øzo¡) Iaffi : - øu fi "' e l6i-- nuk t 6l cos d cos @ (3' 1 1 3)

and the corresponding result for a y-directed source is simply found by applying this

component to equation (3.96b). Moving on to G$) we can write, by inspection of equations

(3.106) and (3.95) and use of the previous substitutions,

which simply becomes,

^r,ì uio"l-------t^(rrr[- Iciþ:-ørllfficososin@ (3.115)

The conesponding result for a y-directed source is then found by applying this component

to equation (3.96c). With only the vertical source components remaining we can agair write,

by inspection of equations (3.106) and (3.97b) and use of the previous substitutions,

-,-\ ./'-.or(,rrrt)l------:19-.of-lrma (s.116)GÈ:e=-þP ht ;"'þ-#L-@'.*ä fitan(at))l

which becomes,

of)=iur!"f' '"'ø-'l Jcos0sind (3.117)v En' - rs.+ h, 
l(r,acore ros(,,rs) + ¡6frsnfr"r))J' 

¡ \v¡ I L /

Now, sirce we already know through equation (3.97c) rhal the last remaining component,



dfþ , is simply equal to zero, we know all nine components of the electric dyadic Green

function in the farfield. These compare exactly with previously documented results IVegni].

3.2 Conversion From the Frequency Domain into the Time Domain

In the preceding section we derived the frequency domain representation of the electric field

dyadic Green function, however, in this thesis we wish to work with tine domain fields. We

can therefore obtain these desired fields for any particular single dielectric, printed circuit,

problem by one of two ways. The first is to obtain the spectrum of the elecfic field for a

particular problem numerically at a given point in space and then convert to the time domai¡

(probably through employing an FFT). The other way is to analytically convert the

frequency domain field representation into the time domain, and then proceed to obtain the

time domain results numerically through a new time domain electric field dyadic Green

function. The tatter is the approach that we will use in this document, and its derivation is

accomplished in this, the last, section of this chapter.

Before performing the inverse Fourier transform on the electric dyadic Green

function we should take a closer look at the dipoie source which we used in section 2.1 to

excite the magnetic vector potential Green function defining equation. The reason for this

is that i¡ the previous case the dipole source was simply a three dimensional unit impulse

occuning at some point in space and at time zero. However, if the source does not occur at

time zero but at some initial time, another unit impulse would be needed as defined in the

following cunent density representation,

r(r) : ô(r- r')ôþ--;') (3.118)

This in tum wouldrequire another integral similarto the volume integral in equation (2.25a),

(or in equation (2.26a) with no magnetic sources present), which would then be responsible

for summing up all the contributions to the freld from each point in time just as the volume

integral is responsible for summing up the contributions from each point in space. The
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combination ofthese two integrals is shown in equation (3.119),

where we can see that the the added time integral only adds contributions up to the present

time ¡ . This is a reasonable result since currents occuning at future times cannot be expected

to affect currents at the present time or past times.

To now find the time domain elecffic dyadic Green function shown in equation

(3.119) we proceedto convert the new cunent density representation ofequation (3.118) into

the frequency domain as foliows,

t(a) : e-i'" ô(r - f) (3.120)

and therefore include the facto r e-r'" 'tn all of the components of the electric field dyadic

Green function derived in the previous section. Now, the Fourier transform pairwhich allows

us to move between the time domain and the frequency domain was given in section 2.1,

(equation (2.3)). In this case however, we only require the inverse Fourier transform, which

we have reiterated below.

I

E.d = f I I I "U,,,t 
r',t- /).1(r',/)ar æ

'v

$ lt - /) <' e-i@t' F{a)
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(3.11e)

(3.121)Áù:*i,1'¡,.''^

Before applying this transform however we find, obsewing the results obtained in the

preceding section, that all of these results can be written in the form,

cfl,,(a): pdr,'1,')(a): i'te-ø+4')1ø¡ ß:22)

Therefore, substituting this and the time shift factor into the inverse Fourier transform we

immediately obtain,

Gg,Ø:+ 
løÁ"'¡,¡r.'tt-i-t'lda 

. (3.123)

This can then be simplified by using ,nJ ro,to*t, two relations tMyintul,

') *Áù., iarla) (3.124)



in equation (3.i23) to obtain,

osì(,-:-,) = Gnk) *W t-4Òtd,'*'a,,1

where we have used the variable ,: ,-L-t' to represent the shifted value of time.
C

Let us now work at converling the remaining parts ofeach ofthe electric field dyadic

Green function components one by one. Beginning witfr G$16 we can write by inspection

of equation (3.113) the function remaining to be converted as,

(3.125)

(3.126);l^
which when written in time domain form yields,

¡f)þ): -#",

8'k):+ I *

1Ìþ) = -Lr'{cosa cos¿f)þ)- 2Jû' d

] 
.o,a.o,ø

where,

(3.127)

(3.128)
- je,¿ cos 0

To begin solving this integral let us first expand the trigonometric functions containing

omega. In so doing we anive at,

¡,v\¡ \ , i e+juÍoh - e-þ)toh
'Ê|þt-^19 au (u..i 2v)'0 \'t- 2Í I ref,(e*wt -¡irre)+ e,¿cosî(e+ia --"- -l

which when r.uounr.oiuu.r,

l,l-r: 1 [ e+þtêh -e-ianêh
'ø \'t h ]_þ*rote +teft)e*tu'+(e,acosl -4ft)e-nn

e+tuda . (3.130)

Dividing the top and bottom of the integrand Uy (e,acose *ru|)r'*, and collecting

exponents we then obtain the following representation of the integral,



where.
(e,¿roro -re+\

.r(0) =)'- -"( 
e-i2tùte = ç,¡r2nne

le,acose +4fr)
(3.132)

Examining x(d) , Cefinea above, we should immediately notice that its magnitude will be

less than one, unless I : 90' . That is,

rt,r:|fr#,"#l:,.,,=, (3.133)

Because of this, we can make use of the following identity [CRC],

(3.134)
¡;TrD-: i1-t¡"1'¡, ["(a)l''

and the definition of å (see the definitions prior to equation (3.107)) to rewrite equation

(3.131) as follows.

It should be noted at this point that this equation does not hold at d :90o since the

summation itself doesn't hold in this case. Now, interchangilg the summation and

integration, removing any constants from inside of the integration, and writing this

integration separately for each term of the integrand we obtain the following much

simplified integral.

r;'(,t : 
E#.,,Ð¿f- r"lr j "ü,,(r 

+ þe - 2ne)¿,

-, i n *þ-*,,-4,*,1,,)-ll . (3.136)*J* 
JJ

The i¡verse Fourier transforms represented by the two integrals in this equation ate well

known using the property given in equation (3.I24b), In the case when F.þ) : 1 this



property becomes, ô(r- f ) .- "-:att' 
[MyintU], and so we see that equation (3.136) simply

becomes,

ú,þ) : 6#e.;Ðå{."r{, þ (. +),,)

-,1,- (t..,',.å)",]ÌÌ (s 137)

Substituting this equation into equation (3.127) and then in tum, into equation (3.125) and

simultaneously substituting the value of r we obtain the final time domain expression for

the 0 component of the x-directed electric field dyadic Green function as,

,r 0,, : o[,-r- ,' -(^-l)*] ,, u,,., : ul,-:-,- (0" . ',.i)'4

Gshþ) : 
w#;ðå {,-."r(*,,,-#,*,)}cosdcos@ 

(3 1s8)

where the two delta functions are defined as follows.

(3.13e)

Equation (3.138) is now obviously a closed form solution, (albeit an infinite summation),

and we also already know that equation (3.96b) defines the same component due to a

y-dtected source in terms of this x-directed solution. So let us now try to put some

significance to the two delta functions in this solution. Obviously, when we apply equation

(3.138) to equation (3.119) to obtain the electric field due to a specific source at a specific

point in time and space these differentiated delta functions serve to extract the time

derivatives ofthe cunent at various points in previous time, a combination of which produce

the field at the present time. Note that the extraction of cunent derivatives by use of the

derivative ofa di¡ac delta function can be accomplished in this case without a change in sign,

(which would normally be present because of integration by pafis) since the cunent

derivative was present on the right hand side of the original wave equation, (2.2a). To see

exactly how this current derivative extraction works we can look at the case when the source
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is on the surface of the grounded dielectric. In this case ¿' : 0 and the fißt term of the

summation, n:0, yields ôs: ö(r-r/c*t') and ö1 = ô(t-rfc-t' - 2re) . Here we can

see that 4¿o *Ut extract the cunent derivative at the present time less the directdt"

propagation time ( r/c ) at a particular cunent position. This is the last curIent derivative that

could possibly effect the field at the present time and can be viewed as that derivative which

produces a wave that propagates directly from the source to the obsewation point. The time

derivative ofô I however, moves yet further back in time by twice the amount of the variable

øp , which was defi¡ed in equation (3.107) and represents the propagation time through the

substrate along a path dependent on the permittivity ofthe dielectric and the elevation angle

Å
to the observation point. The current derivalive extracted by f ô r is the next to last current

derivative which could possibly effect the field at the present time and can be viewed as that

derivative which produces a wave that bounces once from the ground plane before

propagating dhectly to the observation point. The contribution to the field at time t forthis

term of the summation is then proportional to the difference between these two current

derivatives. For the next term of the summation, n : 1 , ô6 + ðr and ôl --Ð ô2 and the

contribution to the field for this term of the summation is proporlional to the difference

between the cunent derivative whose wave bounces twice offthe ground plane and the one

that bounces only once. Now, since the summation is infinite we must mathematically

proceed back in time to - æ , but realistically we only need to go back to the start time of

the.waveform since before that we can assume the current derivatives to al1 be zero.

Furthermore, because the (- 1,,)" te.. (in which we remember that I, is less than one)

decays with increasing n we only need to go back enough terms in time until the contribution

to the summation is negligible.

Let us now move on to solving fo r the Gfu component of the electric field dyadic
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Green function, defined in the ftequency domain by equation (3.115). In this case, the

function remaining to be converted within equation (3.125) can be written as,

4'øl = *'lfficososin@ (3'140)

which when written i¡ time domain form yields,

Ú'Vl: -ficose snç$þ)

¡g)t") :-.1-f . ,in(,,uh) ,n*ø,^v \ t h 
!_(irt;ro4ans)-cososin(arzo))

where,

To solvethis integral we proceed, as previously, to expandthe trigonometric functions within

the integral givirg,

lr\r\=L[, &'o-d*'o ,n.¡*a. (3.143)
v \' * !.þri(¿t*' * 

"-i*r') 
+ cosî(r+iwø - r-iua))

which when rearranged leaves,

+'ø : a I-ffie+iot'Ída' (s'144)

Dividing the top and bottom of the integrand Ov (cosA *rrfi)r.i*, and collecting

exponents we obtain the following representation of the above integral,

*rfu):r--J...........-l 
t i r-¡""u*'l- ¿*"'ø-tl r*,,,¿r1 (g.14s)'e \'' 

(rose *"e¡)ln l_ I -*{d) " *l \v' rrvl

where,

"{rl 
: l'"" 

-*;ì 
,-t2otte :t,, e-Jtue

\cose +øft)

(3.141)

(3.142)

(3.146)

As previously, the magnitude of -r(0) can again be seen to be less than one. unless 0 :90' ,



and we can therefore use the following identity [CRC],

tri'D-=å'*' ' f'(a¡'r (3.147)

and the defi¡ition of å (see the definitions prior to equation (3.107)) to rewrite equation

(3. i45) as follows.

ú, (,) = - 
F;*;Ðl+Ï_ç.*r,--,r, 

. *)) i { 
t ïe121,0,rofe+iar ù,, I o. r ou,

Now, interchanging the summation and integration, removing any constants from the

integration and writing this integration separately for each term of the integrand we obt¿in,

the following much simplified integral.

8,t'l:-6,*4,å{.,1*j '+¡u('l+þe-2''re\¿o (3'14e)

- 1 [ .*¡,þ-*,-r(*,þ.,)¿,ll . 13.1so)_ñ 
J_""'

These two inverse Fourier transforms are obviously the same as those used to solve equation

(3.136) and so we can write the result of 1P(ø) dtectly by inspection of the above giving,

4o : -þ-,,*,Ðå{- 
{,t" þ i),']

-,1,- (0,.',.#)',]Ìi (s 1s1)

Finally, this component can be found in its entirety by substituting this equation into equation

(3.141) and then in tum i¡to equation (3.125) and simultaneously substituting the value of

r which yields,

"y.ø 
: ;É;;Ð\f,(#,, -*4,,.,)].o,e,' ø (s 152)

where the two delta functions are defined as in equation (3.139) and the y-directed result



can be written in terms ofthis x-dilected result using equation (3.96c).

Lastly then, we have to solve for the G!f6 component which is defined in the

frequency domain by equation (3.117). In this case, the function remaining to be converted

within equation (3.125) is written as,

r*\r\:Yl . *"'l 
., '"tt' cosásiná (g.1s3)

2nr 
lle, a cos 0 cos(ar s) + 7 6 ft sin(øzfl) 

J

which when written in time domain form yields,

4e"@): fi"oro sinoløò(r) (3.154)

where, @t'ø:|l-ffi'"*^ (3155)

Again expanding the trigonometric functions within the integral yields,

co

l*)r¿=J-¡. e*i*'h+e-þ'h ,n*i*¿. (3.1s6)
2tt l_le,¿cos0(e*t "" + e-t n)+q;(e+iane _ ¿-þr'))

which when reananged gives,

If we compare this equation with equation (3.130) it is immediately obvious that they are

identical except that the exponential terms in the numerator of the integrand are added

insteadof subtracted. Becauseof this we can simply writedown andslightly modify equation

(3.137) to give the final form of this integral.

ú'vt : ç;fi4å{,-""t{{' (' *),]
.,'þ- ('". 

".#)",]ÌÌ 
(s 1sB)



Substituting this equation into equation (3.i54) and then in tum into equation (3.125) along

with the value of z yields,

Gg,(ò : *6#, e,_,,,Aå ia " 
r (#r,, -.- #u*' )i 

cos á sin g (3 1 5e)

where the two delta functions are defined as in equation (3.139). Note that in this case the

contributions ofthe two cunent derivatives for each summation term are additive unlike in

the previous results.

Now we have the final electric field dyadic Green function completely defined in the

time domain by equations (3.13S), (3.152), (3.96b) and (3.96c) for the x and y-di-rected

results as well as by equation (3.159) fo¡ the only z-directed result, (note that these results

correspond exactly with lcicchetti]). These resulting time domain electric field dyadic

components are then ali that we require to numerically obtain time domain fields for any

problem, that fits our problem definition, given that the time derivatives ofthe currents are

known for each point along the printed circuit traces. Several typical problems will be

examined in the following chapter for clarifcation of the method.



CHAPTER 4

NUMERICAL RESULTS AND DISCUSSION

4.1 Accuracy Considerations

In the two previous chapten we calculatedthe electric fielddyadic Green function in the time

domain by making use of the magnetic vector potential dyadic Green function, which was

first calculated in the spectral-frequency domain and then converted into the frequency

domain through the saddle point method. After this, the frequency domai¡ electric field

Green function was calculated and converted finally into the time domain. Following this

immense amount of work a pressing concem needs to be addressed which peltains to the

accuracy of our time domain results of section 3.2 as compared with the ones which would

have been obtained without any approximations, (i.e. if direct integration had been used

instead of the saddle point method in conversion from the spectrai-frequency domain into

the frequency domain). To address this concem in the easiest possible way we can simply

compare the agreement of the exact inverse Fourier transform integration results of the

electric field dyadic Green function in the spectral-frequency domain with its closed form

approximate far field results which we obtained at the end of section 3.1 .5. Such a check in

the frequency domain is equally valid to a similar check in the time domain, (except at

0 : 90o where the time domain summation becomes invalid), since we used a direct

mathematical transformation with no approximations to go from the frequency domain into

the time domain. Furlhermore, it is easier to test the frequency domain results since our

approximate result is just a simple closed-form algebraic equation, not an infinite

summation, and the exact result in the frequency domain does not require a semi-infinite

integration with respect to time as it would in the time domain.

The ftst way to test our ftequency domain results is to compare them with the well

documented equations for a directed dipole source above ground and in free space. To do

this we simply let e,¿ : I and h = 1 , (since this depth ratio has no meaning for free space



conditions), in our resultant frequency domain equations of section 3. i.5. Consequently we

obtain the same results as those documented in [Balanis] with a slight modification to the

phase term due to the difference in origin, (ours being at the source and his being at the

ground plane). This is a very good initial indication that the methods and procedures which

we used to obtain our results are justified.

To now further assess the accuracy ofour results we must calculate the exact electric

field dyadic Green function and somehow compare it numerically with our approximate

results. Doing this howeve¡ requires difficult and hence time consuming, integrations along

thepositivereal ftn axis, which was thereason for finding an approximate method in the ftst

place. Difficulties aside however, we proceed in this way by first calculating G¡. in tne

spectrai-ftequency domain and then, though those time consuming inverse Fourier

transform integrations, converting into the frequency domain. Note that this is the exact

opposite of the procedure used in chapter 3 where we converted into the frequency domain

before calculating G-¿0. Therefore, the electric field dyadic Green function is calculated

e;: 1 lvv.+#lc-,
þ¿o \ "t '-

and d¡o has been defi¡ed earlier as,

(4.1)

(4.2)

Now, as we did in equation (2.33a) and (2.33c), equation (4.1) can easily be expanded for

each column of d¿0, as in equations (4.3) below, where the direction of the source is

irrelevant and has not been explicitly shown in these equations.

ø c*:L(+.W.ffi.ao^*)
79
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b) Gav:#(#.+.k*6c^,)

c) G"-, - 
t ( a2co* ,ð2G¡0, ..,-ô2G¡o, 

\
L) v Loz-.* l# - ffi - ff + tÅce",)

In the spectral domain then, these equations simply become, respectively,

a) "r-:#{(-3-Ì&)Go,,-*,t,ca*+ir,ff} *."

b) o^, : fif- nr,c^** (4- 4)c^..,*,ryj

c) o^,:#þ,Y.u,** (å;.-r¡r"i

and so, applying one column of õeo at a time, we obtain for the first column (which as we

remember is due to an x-directed source) the following components of dE" .

a) "*-+{#*ÊLo('s-:)lno"ø.n,* (4.5)
iaeo L Dru nrcDw )

b) cfl, ' | -0,0, r"t"a(e'a- l)] 
N¡oE¿e-uaz: 

øræl o* - D*Dr" 
J"n""n'

c) cg¿ :f{-ri'* **-.(¿?j-*il("'- 
rl} 

N¡oE¿¿-'ÌtozþeolDrc DrcDru J'"
Aþplying the second column, (due to a y-directed source) we obtain the next three similar

components as,

a) "*:-J_f+* 
t''"trzo(e¡- r)lroror-^, 

(4.6)
þeolD*' DrcDru

b) 
"g,:-l-[+Ê*4!o('rr)l¡¡opu-,*þeo I DrE Prcptu 

)

c) cg,- :J-[--t!yp-*i.,(*tr+ 4)þ'o- \IN,,,¿e-,o2
' Dô' ireo I D* DrcDtu J ' 

"



and finally, for the last column (due to a z-directed source) we obtain,

a) Gg: *{*}N,n¿e,,.. øt cgl,: ;^{+#}N*E¿e-^z 
(4.7)

( L: , ,.2\\

ò G9, = 1 
.{ \":'^Yi 

lr'^ror-'0,"" iueo I or* 
)

We now proceed to convert thesenine components from the spectral-frequency domain back

into the frequency domain by applying, (as in chapter 3), the inverse Fourier transform given

in equation (2.34b).In so doirg we use,

cik,y,.) =# I Ie""(t.,tr,r¡,.'F'\^-')*,(rt'\)¿¡,¿¡,, 
(4.8)

and apply this integral to each of th-e-n-irie dyadic components in tum. To do this we fint make

the same substitutions defined in equations (3.7) to (3.9) which again allow us to convert the

double integrals of equation (4.8) into single integrals containing Bessel functions in place

of the complex exponential. The procedure to obtain these integrals will not be reiterated

here due to its distinct similarity to the procedure given previously in section 3. i.1 and its

length of derivation, however, the final integrals for the nine components are given in

equations (4.9) to (4.14), below.

"H.{-.) ;^{* t*u 
n"to(tnp)e,",kna*n

*T (+ H) "4^10.n ) -' os tw z(t ne))'-" "'oa * nl (4' e )

oB,(0.) : oH.(*.) ;^{+-lG W)r ^,,(o 
nn),-,^,,a,00,} e., ot

cg,k ) ;^{*t*u^to(tæþ ^,*na4

*lê W)*(^(-") + cos zç t zp<np))u^'4oon\ e'' u



Examining these equations we find that there are only six components which require

the solution ofan integral since three components can be obtained easily from others through

simple trigonometric equalities. Examining these six equations more closely we find eight

integrations are required to solve for all of them. However, these eight integrals can be

obtained through the superposition of several of only six distinct integrals as an observant

reader might notice. Regardless of how the integrations are reananged for programming or

numerical expediency these are the integrations which must be performed in order to obtain

a solution for the frequency domain electric field dyadic Green function ISphicopoulos].

The integration of the previous integrals is exceedingly difficult in many instances

so let us examine some of the properties of these integrals to get a better feeling for their

integration difficulties. The first thing to notice is that each of the integrals contains an

exponential Íerm ¿-t¡oz which oscillates when a6 is purely imaginary, decays when as is

real and positive, and yields a damped oscillation when ¡/0 is complex with a positive real

paÍ. Now, forour purposes the sign of ,to was chosen to be positive to ensurethe satisfaction

ofthe radiation condition and so we know that this exponential will either oscillate, decay

or both. From the defìnition of us: J t¿e - f¿s then, we can see that along the real axis the

exponential will osciilate for 0 < I < /(6 while it will decay for .Â > te and furthermore

the larger the height, z , of the observation point above the dielectric surface the smaller the

period of the oscillation or the faster the decay with respect to the .integration variable /(n .



The next thing to notice is that each integral contains a Bessel function of some order, each

of which has a domain which increases with p , which we know is simply the transverse

distance from the source to the observation point. Now, as the domain of these Bessel

functions increases, more oscillations of these functions are consequently realized in the

integrations. Therefore we can see that the Bessel functions and the exponential have a

combíned detrimental effect as the vertical distance from the source to the observation point

decreases and the transverse distance increases, since the exponential decays more and more

slowly as z -+ 0,until it doesn't decay at all when z:0, while the Bessel functions will

ensure more and more oscillations are present as p increases. We can now see why the

integrals which we are required to evaluate becorne very memory and time intensive at

angles of 0 approaching 90 degrees. To make mafters worse, in addition to the above

behavior we still have the poles of the numerator and denominator functions to deal with!

Considering then the difficulties inherent in calculating these integrals we must

proceed with caution. As a frst attempt at a solution we can simply use a very high order

gauss quadrature fRecipes], or some such integration technique, and break the range ofthe

integral into many smaller ranges. This however, produces time consuming and highly

memory intensive integrations but should give adequate results if the segmentation is done

with the period of the oscillations in mind, (exceptilg the segments near the poles). By a

simple integration trick however, we can improve the accuracy ofthese integrations and side

step the problems caused by those pesþ poles altogether. This so called trick is simply not

to integrate along the ¡eal axis but instead integrate offthe real axis in the complex frq plane.

This can be done since we know that any such modification of the integration path is valid

and will yield the same answer as long as no poles or branch points are crossed in the act of

deforrning the path [Triml]. Now, as we have previously discussed, all the poles on the

proper Riemann sheet occur on the real axis for a lossless substrate and beneath this axis for

a lossy substrate and so we can be confident that no poles w.ill be crossed in any upward
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deformation of the path that we choose. This new path of integration will in effect avoid

integrating over the poles entirely and furthermore will also help lessen the oscillations due

to the Bessel functions which have to be integrated since the exponential will always contain

a decaying term when frn is complex.

To integrate along such a complex path a C++ program was written which obviously

entailed the calculation of Bessel functions of complex argument [Abramowitz]. This

prograrn was also designed to &aw the integrand with respect to tn and an example of the

difference in the integrands along the real axis and one deformed path is shown in Fig. 8 for

a substrate of thickness 1.5mm , relative permittivity of 2.55 , a frequency of iGHz and a

source residing at the exact middle ofthe substrate. Notice first of all that the pole occuning

at 1.000183 ko (which was found numerically) due to the DrM denominator function

results in a sharp peak in Fig. 8a where the path is along the real axis. FuÍhermore, the

integrand along the deformed integration path will obviously be much easierto integrate and

use much less memory and time, with excellent accuracy.

Given the previous equations for the electric field dyadic Green function components

in cartesian coordinates wenow requte the spherical conponents for direct comparison with

our approximate results ofseclion 3.1.5. To obtain these components we can either calculate



the cartesian components and then convert into spherical components or conveÍ the

integrals fint and directly calculate the spherical components. The transformations needed

to do this conversion were given in equations (3.93) to (3.95) and so the transformed integrals

are simply given below for completeness, with Gg)ø = O as defined in the previous chapter.

"g,(rò:cotçc!](rn)#{{t-i*r,¿,(o,r),-u"zkedke

*T (# W) "'{^(rn ) - 
" 

(o,n)) u* oao n,}'*'

. #l@ W)'u'þ,n)n*4arn\*' o (4 1 5)

cgÀ(k,):*tçcfu(rn);r{{t-i**0",0(onn)n^*noon

+lé W)",(øþæ) -', (nn))u*'s,o\ *"

#l@ W)r*'(,')u*4oJ*'ø (4 16)

oà*(n,): -,^øc,ù(k,) : #{{# i grø,1n,,)e*úkndkn

. *T(# ##)'"þ'1n n¡.,' þn'))u*enonn]'','o'''



oE(0.) : ;^{*t*(cosernro(rne) 
+ sineøorr(,rno) )"*rUr,l (4.18)

,grþò : *þ+!*(*" ernro(rne 
) - .* e,or,(rnn)),-,^*Aonn\ (4. 1 e)

Let us now look at some electric fields resuits given a dipole ofconstant magnitude

equal to 7: (ì + y + 2)/at , (where dt is the component length of the dipole), at the middle

of a lSmm thick substrate of permittivity, e,d : 2.55 . Let us choose to observe these fields

along the E-Plane half cut, (ø = 0, 0 < 0 < 90 ), at distances of one, three and five

lambda with the dipole operating at, first lGHz and then 10GHz. Therefore, substituting

{ : 0 into equations (4.i5) to (4.19) and looking only at the 0 and Q components, (since

the radial components are zero in the approximate case), we find that only three components

are non-zero, narnely, Ef) , $) and, {t) . The results for these components are shown in

Figs. 9-i1 for the lGHz case and Figs. l2-14for the 10GHz case where, for each case and

for each component the results are displayed together with a graph of the enor. This enor

has been defined as,

tn'çv"¡:E!:Esrt' x roouo (4'20)
tEl,

where lETl is the magnitude of the field calculated through integration of the six required

transform integrals and lE6¡l is the magnitude of field obtained ftom the approximate

closed form equations. Now, observing these results we can see that, as expected, those

calculated using the closed-form equation agree more and more closeiy with the integrated

results as the electrical distance ftom the source increases. Furthermore, all the results show

that the enor (which was only displayed up fo lj7o since any greater error value is

unacceptable) increases with d until it goes off the scale. Note also that the enor for the

lGHz field results at a distance of five lambda remains under 2Vo for all three field

components until 0 exceeds approximately 74o . Similarly for the 10GHz case, at a distance

of five lambda the 2Va enor mark is not exceeded by any of the three components until A
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becomes larger than 55'. This increase in enor as the frequency increases and/or the

elevation angle decreases is also an expected result sinceeventually the steepest descent path

gets too close to a pole so that the contribution by the saddle point is no longer the only

contributor to the field result.

NoW as 0 increases, the steepest descent path will eventually cross directly over a

pole. The value of d at this point (denoted d".¡ ) serves as a minimum elevation angle

indicator since as d approaches this value the enor will begin to increase at an increasing

rate and once the pole is crossed the er¡or becomes much too large for the closed-form result

to be useful due to the exclusion of an enti¡e pole contribution. Finding the value of d.,¿

is quite straight forward assuming we know the value of ke at which these poles occur,

(recall that the pole locations for the numerator functions are simply defined by equations

(3.41) and (3.48) while the pole locations for the denominator functions must be found

numerically). Noq begiming with the denominator poles, remember that they occur in the

range &6 .141..11*t, in the frQ plane, (or conespondingly betweenV :x, øf2 and

V : r. ø/2 * isin-l('fe¿ in the tp plane) for a iossless substrate. Therefore, observing

Fig. 7 in section 3.1.4 we notice that since the steepest descent path in the W plane crosses

the line ìIr : x/2 witn a decreasing imaginary value of Y as 0 increases, the steepest

descent palhs f,lfst possible encounter with a denominator pole occurs at the upper end ofthe

range of possible \, . To then obtain the actual value of 0",¡t conesponding to the value of

Èn (or ìP) at which such a pole is crossed we simply take equation (3.76) and substitute

therein, !I¡ : ø/Z + ¡B givng,

*,(;-t",,,):rb (4.21)

(4.22),",,, =,*-,[*k_)_]
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Then, since kp = È6 sin ìI we have,

and therefore,

kee: ksrr(T+jÉ) : rocosrr(P)

,"rr,:rt-t(#) .

,"'r,:-a""'1ffi] .

(4.23)

(4.24)

Note that this expression for d"r¿ is also valid for any numerator poles which occur in the

range fr6 .l*nl.,lli*o. For the numerator poles which occur in the range

tt
-ko < 

lkql 
< &o in the ,tn plane (or conespondingly lie on the real {r axis) we simply

obtain the equation 0c,h: d from substituting p : 0 into equation (3,76) and obtain,

,"r,r:r*-'(*) (4.25)

for the value of 6".¡ given the pole location in the ftn plane.

Finally, for the numerator poles which are situated on the negative imaginary ftn

(orlI ) axis wecan substitute V : jp into equation (3.76) toyielda similarresultto equation

(4.22),namely,

(4.26)

This time however, &n, becomes ftpo: É6sinllr:7t¡sinhp and substituting this into the

above equation gives the following, where several familiar trigonometric identities have

been used [CRC].

e".u:-.os,lr/.",n¡,*-,(H)]] : .-'l',/{Ð.] (427)

In this case kno is purely imaginary and negative. Therefore substituting knr: ¡klno nto the

above equation and applying another well documented identity tCRCl, wo obtain the final



definition for d",¡ due to poles on the negative imaginary ,tp (or ll ) axis as,

,"rr,:ra"_'(-*) (4.28)

Armed with this new information we can now calculate a minimum elevation angle

indicator for our substrate and operating ftequencies. Table 1 therefore, shows the location

of the fi$t denominator pole encounteted at the required operating ftequencies, the

conesponding value of 9".¡ and the elevation angle. It also includes the largest possible pole

Frequency (/) Pole Position (Èno 0 
"r¡¡

ElevationAngle

lGHz 1.000183 ko 88.90' 1 .10'

l0GHz 1.019068 ko 78.90' I 1,1O',

All llr*n = r.596872 k( 38.',|70 51.23'

Table 1 : The Relevant Denominaror Poles

Iocation (which occurs at kn = ,[Ç) ¡ro or V : nf2+ j sin-t(Æ) as mentioned earlieÐ

with its corresponding angles since this is valid for any frequency. A nume¡ical root solver

was written in FORTRAN to find these poles and it should be noted that the poles given in

Table 1 at our desired operating frequencies are the only denominator poles present at these

frequencies and are due to the D¡¡a function. Now, Table 2 is simi-lar to Table 1 but shows

Frequency (/) Pole Position ( tno 0crit Elevation Angle

lGHz - 49.974493 ko 88.850 1 .150

lOGHz - 4.738t43 ko 78.08', 1r.92'

Table 2 : The Relevant Numerator Poles

the locations and corresponding angles of the numerator functions. Note that these pole

locations will change not only with frequency, as for the denominator poles, but also with

the depth of the source within the substrate. Finally, compar.ing these two tables we find that,



for both frequencies, the numerator pole is encountered first. It should be stressed at this

point, that the minimum eievation angle indicators shouid only be used as an indication of

where the enor becomes much too large for the result to be acceptable. The actual value of

dc¡r at which the result becomes unacceptable may be much smaller than the one indicated

by the minimum elevation angle and is dependent on the accuracy desired. This is obvious

when comparing the points at which our results exceed2Vo enor with the values given in the

above tables. Remember that only proximity to a pole is requi-red to throw off the accuracy

of the results, not just actual pole exclusion.

The above discussion ofthe numerator and denominator poles is important but since

our steepest descent path does not remain on the proper Riemann sheet for its entirety we

can also encounter improper poles whose contribution should be accounted for. These poles

are usually termed leaþ wave poles lFelsenl], and their positions must be found

numerically. Given their location however we can also calculate their 0"r¡ and elevation

angle indicators in a similar way to that used for the proper poles.

Before ending this section it is interesting to note from Figs. 9-14 that the integrated

E0 results for both the x and z dfected dipoles increase as I approaches the substrate

surface while the corresponding closed-form results become zero at the surface. This is due

to the fact that the closed-form equation assumes that no poles ofany kind are present while

the integration obviously takes them into account. The reason for the i¡crease in field result

is that the denominator poles are responsible for the launching of surface waves, so called

since they propagate along the surface ofthe substrate and decay much more slowly than the

regular space waves with a decay proporti onal to t/ lr lFelsenl].

4,2 Time Domain Results

In this section we wiil examine and discuss time domain electric field waveforms radiated

from several different microstrip sûrctures. Before we do however, it should be noted that

simple dipole results were compared with [Cicchetti] and found to be identical so we will

92



only deal with more complex stn¡ctures here. Now, as was mentíoned early on in this

document, our solution depends on the knowledge ofthe cunent derivatives present on each

part ofa radiating structure for all points in time up to the present. These cuÏrent derivatives

will be obtained here using a two dimensional Finite Difference Time Domain (FDTD)

algorithm which uses square cells and assumes a constant propagation time for all lines,

equal to 213 the speed of light, This propagation lime would in actuality vary depending on

the permittivity of the dielectric and the depth of the source within the substrate

(fPramanick], [Schneíder]), but is not relevant for our purposes since the requted cuffent

derivatives can be obtained using any desired cunent simulator, (if it can calculate

derivatives), and therefore accuracy of these cunent derivatives in not our major concem.

The equation which sums the field contributions from each radiating cunent cell at

a particulartime and source point was given in equation (3.119) and was discussed in section

3.2. h our development and consequent solution of this equation we chose to do the time

integration flfst for convenience sake and are now left with a volume integration to take into

account the contributions from each radiating cunent element. As we know, there ate many

ways to perform this integration with varying degrees of accuracy. For simplicity of

programming and since our cunent derivatives were obtained using equally spaced square

ceils we have chosen a simple rectangularrule ofintegration. If more accuracy is desired this

integration can easily be changed or the number of cells in the FDTD cunent calculation

program increased. It is important to stress again that the currents derivatives can be obtained

using any available cunent calculation software as long as it can calculate the current

derivatives at each point required by the chosen integmtion scheme. FuÍhermore the

accumcy of the fields is directly dependent on the accuracy of the current calculation

software and so for large problems a fairly rough (but generally quick) cunent calculation

can be adequate to give a general idea ofthe time domain radiation, and if increased accuracy

is then desired a more robust (but usually slower) current calcuiation can be used.

Let us begin by looking at some simple, onelimensional, straight line, x-di¡ected,
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and lossless interconnect examples. To be more specific, let us compare the radiated eiectric

field for three similar lines residing in (or on) a 1.5mm thick substrate of relative

permittivity 2.55 at three spatial observation points and for two different voltage

waveforms. Let all three lines have a characteristic impedance of 50 Q , a length of 4cm and

be matched at both the source and load, Then, let one line ¡eside on the surface of the

subslrate, another be buried inside the substrate at a depth equal to 44.4470 the thickness and

the last be similarly buried but with vias reaching the surface. Let our excitation cunent

wavefonns be gaussian pulses defined as,

v,þ) = toexp(-?¡fi)v Ø.2s)

where in the first case t":20ps and in the second t" :200ps and let us compare their

radiation waveforms at a distance of lm

and spherical angles, e:0',A:0',

0 :45',þ: 0o and e : 45o,ø : l80o .

The cunent waveform and its derivative

multiplied by the width of a single cell are

shown in Fig. 15 where the current is

Tim€ (F) 
shown at a point just after it has entered the

Figure l5: The Transmission Line Currcnt
line while its derivative is shown at a point

and its Derivative for a Sn'aight,

one-Dimensionar, Lossress Line 
just before it leaves the line' This was done

for two reasons, the fhst being simply to

clarify the picture while the second was to show that the line has a 200ps propagation time

as we would expect forthe given line length and propagation velocity. This paÍicular choice

ofwhere to examine these waveforms does not cause a problem since the li¡e is lossless and

matched so we know that the cunent waveform and its derivative will be identical along the

entte length of the line. Note also that the maximum current value is 100m4 as we would

expect for a 10v source with a 50 Q source resistance feeding a 50 Q line.
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Figure 17: The EsField Component

at Spherical Position (lm,45o ,0o)

Due to a 20 ps Gaussían Excitation
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Now, knowing the \ aveform of the

curent derivative multiplied by the cell

width allows us to perform our spatial

numerical integration by sirnply summing

this derivative value for each cell over all

the cells. To do both the time and space

summations a FORTRAN program was

written together with an openlook

windows program for ease of data entry.

The results we obtained for the preceding

lines are shown in Fig. 1ó for the broadside

case, (á = 0o,A :0'), Fig. 17 for the 45

degree forward radiating case,

(0 : 45',ø: 0'), and Fig. 18 for the 45

degree backward radiating case,

@ :45',þ = 180'). The first thing that

we should notice in examining these three

figures is that for the broadside case the

time interval between the filst gaussian

derivative waveform and the second is

exactly 200ps, (except in the case of the

buried line with vias which looks slightly

shorter spatially and so the time interval is

about 196ps). This duration is exactly the

propagaticjn time of the cuûent waveform

down the line and goes to show that, as

3¡0 336 3,1¡ 5,19 3,55 361 368 3,71 ¡¡0
T¡me(ns)

Figure 18: TheEsField Component

at sphe|ical Position (1m, 45" 780')

Due to a 20 ps Gaussian Excilation
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expected for a lossless line, the only current values which contribute to the radiated electric

field are those occuning at entry and exit points of the line as well as at any geometrical

discontinuities on the line [Schelkunoffl. This occurs because the field contribution ftom

each segment of the line is just a time shifted version of the same electric field waveform,

causing all ofthe i¡dividual contributions to add at the propagation times corresponding to

the propagation from the beginning and end of the line to the observation point but cancel

at all other times. This cancellation is also responsible for the opposite signs of the two

waveforms radiated from each end ofthe line. It should be mentioned before proceeding that,

in actuality the buried line with vias has added discontinuities at the joints between the vias

and the horizontal line but since we used a two-dimensional FDTD method to obtain the

cunents these discontinuities are not present and so their contribution to the radiated fields

is not present either.

Now, comparhg the broadside results with the results of the forward radiating case,

Fig. 17, we find that in this case the field magnitude has increased and the time duration has

compressed by approximately 94ps. This time compression is due to the difference in the

distance from the end-points of the line to the observation point, (which can be proved

trigonometically), and to the fact that the cunent pulse is traveling in the direction of the

observation point forcing the field due to the final cur¡ent to travel a smaller distance than

the field from the initial cunent. This same phenomenon also accounts for the increase i¡

field magnitude since the waveforms of the fields radiated by each current element occur

clöser together causing their magnitudes to add up to a greater degree. The exact opposite

is tnre for the backward radiating case, Fig. 18, in which the field magnitude has decreased

and the time duration has expanded by 94ps as compared to that ofthe broadside case. This

expansion and decrease in magnitude is similarly due to the fact that the curent pulse is

traveling away from the observation point so that the field due to the final current has a larger

disfance to travel than the field from the initial cunent.

It should be noticed that the surface trace radiates more than the buried Íaces in all



cases as would be expected. We also find that the buried line with vias radiates a field of the

same magnitude as the buried line at broadside which is reasonable since as we saw in the

theprevioussectionverticalelementsdonotradiateinthisdirection.Thetwo0=45ocases

are interesting however since the buried line with vias radiates a greater field strength than

the buried line, for the ó :0o case and less for the 0 : 180' case. This is due to the fact

that in the fi-rst case the positively directed via is closer to the observation point and so the

fields due to the two vias end up adding to the radiation from the horizontal line while i¡ the

other case the negatively directed via is closer and the two vias end up subtracting from the

radiation due to the horizontal line. Finally, we should also note that in the case of a buried

line with vias the same expansion and compression as was discussed earlier is obvious but

since the line looks slightly smaller the change in time duration does not keep in step with

that of the two straight lines, as can be seen from the figures.

Now since we found in the preceding section that the accuracy of our results

increases with eiectrical distance but decreases with frequency and an increasing 0 angle

we should try to get a handle on our accuracy in the time domain. Since we have excited the

line with a20ps Gaussianvoltage source wecan perform a Fourier transform on this equation

to obtain the frequency domain representation ofthis source voltage waveform. This is a well

known Fourier transform [Trim2], and so we will simply state its frequency domain

equivalent to be,

t,,(r,¡) : tot 
".f 

ø exn(- rL* / +) : 4-@ *oç 
" 

¡r1¡ v (4.30)

were eÐ: 2/ø" . Now letting ø : 2¡tf , t, : 2.tø¡ and substituting into the previous

expression we obtain fi¡ally,

(4.31)

where q: i /z,rz . This finalFrequency Domainresult looks very similarto ouroriginal time

9'1



domain waveform except for a change in magnitude. Now from statistical anaiysis [Devore],

we know that a Gaussian distribution takes on the form,

(4.32)

where o is the the standard distribution and where * õ occur at the ínflection points of

the waveform. It can fufthermore be shown that, for a one sided distribution, 68.26 7a of the

area under this curve occurs in the range 0 s f < ø. Therefore we can use the standard

deviation as an indicator of the frequency content of a Gaussian. In the case of our time

domain Gaussian the frequency domain spectrum given in equation (4.31) has a standard

deviation which can be found by equating q Ío rll o giving ø : I/ liø, .

In our present case of a 20ps Gaussian we find that the standard deviation in the

frequency domain is 11.25GHz. We then know that the spectrum decays beyond this point

and contains only 31.74Va of the area under the waveform. ln the previous section we

graphed errorresults for l0GHz and so we shall usethis enor for our standard deviation enor.

The wavelength at lOGHz is 3cm which for our 100cm distance makes the observation point

33.33 wavelengths distant. We will therefore read off the 5 lambda curves for the component

Jr\E/' which gives us a maximum error of abotst 77a. This error is more than acceptable and

would only be better for our actual distance and only slightly worse for our actual standard

deviation frequency. In fact it seems to indicate that our error would remain acceptable for

many frequencies beyond our standard deviation ftequency. At frequencies below this

frequency our error decreases since the number of denominator poles decreases until there

are none. However at low frequencies such as those below 300MHz, (which has a

wavelength of 1m making the electrical distance one lambda for our observation distance)

the error will increase again since our distance from the source is no longer in the far field.

Let us now look at the same results for the case of the 200ps time domain Gaussian.

These results are shown in Figs. 19-21 from which we now see that there is no obvious

fi;*v(-r¡u'¡



separation between the radiation from the

beginning and end of the line, as there was

for the 20ps case. This is simply due to the

fact that the fansit time along the line is

much less than the duration of the

waveform. This accounts for all the

waveforms looking identical in shape and

duration but having varying magnitudes.

Looking more closely however we find, as

in the 20ps case, a slight time compression

in the forward radiating case and a slight

expansion in the backward radiating case

but since this time variation is, as

previously, 94ps and the graphs are

displayed in nanoseconds these shifts are

understandably hard to see. Other than this

the behavior is basically the same as that in

the 20ps case.

Now, as we did previously, we can

agai¡ find the st¿ndard deviation fo¡ this

excitation waveform, which tums out to be

7.125GH2. In the preceding section we

obtained results for the lGHz case which

has a wavelength of 30cm. For our lm

observation distance this tums out to be

3.33 lambda distant and so wè ¡ead off the

3 lambda curve for the component ff)

Time(ns)

Figure 19: The EsField Component

at Spherical Pos¡¡on (1m,0' ,0")

Due to a 200 ps Gaussian Excítation
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Figure 20: TheEsField Component

at Spherical Position (lm,45o ,Oo)

Due to a 200 ps Gaussian Excitation
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which yields an enor of approximately 0.14o which would again seem to indicate that the

enor would remain more than reasonable for many frequencies beyond our standard

deviation frequencies.

Let us now examine a few, more difficult cases using one-dimensional lines. In all

cases we will use a 1.578mm thick substrate with a relative permittivity of 2.55 . The first

case we will look at is agan a 4cm transmission line printed on the sudace of the substrate

but with an open circuit at the end of the line and a mismatch at the beginning. The

characteristic impedance ofthe line is 50Q and the source resistance is 20Q creating the

mismatch. We then excite the line using an exponential rise with a steady state value of one

volt. This waveform is defined as,

,,(4: 11-exp(-rl2")]y (4.33)

where f" : 100ps. The voltage waveform

at the beginrìing of the line and the á

component of the electric field at a dístance

of one meter directly above the center of

the line are shown inFig. 22 where the field

component has been shifted back in time,

by the transit time, to the observation point.

Observing first ofall the voltage waveform

o 0,2 0,1 06 08 r 12 1.1 r,6

TÌme(ß)

Figure 22: The Voltage and Elecn'ic Field

Waveforms at Broadside for a Lossless Line

Displaying Ringing Effecrs

we should note that the current entering the line is 5 /7v "(t) 
dueto the voltage division caused

by the source resistance and the line characteristic impedance. We then observe several

exponential cuwes occurring on top of one another but each delayed by 400ps from the

previous. This delay is simply equal to the propagation time to the end ofthe line and back.

Therefore we see in the the first 400ps interval the exponential trying to reach 5/7V (0.71V).

At the end of this interval the reflected wave from the end of the li¡e adds to the existing

voltage, (note that this waveform is identical to the waveform initially launched si¡ce the

t
E40;
õ
t-20,
I
t¡

:I
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end ofthe line has a reflection coefficient of 1). However, since we are observing the voltage

waveform at the beginning of the line we also have another reflected wave from the

begiming of the line addirg its contribution simultaneously. The voltage reflection

coefficient at the beginning ofthe line can be calculated to be -3l? and so the overall effect

of the incoming and reflected wave is only 5 /7(I - 3 /7]tv,(ù, which has a peek of 0.41V.

Adding this voltage to the initial voltage we obtain 1.12V which we can see is what the

waveform is trying to reach after another 400ps interval. At this time the incoming wave is

equal to the last wave reflected from the beginning of the iine or 5 /1(- 3 /1Þ,(t) while the

next reflected wave is equal to 5/7(-3/1)(-3/7)r"(t) giving us an overall effect of

5 /7(-3/1)(L -3 /"tÞ"(t) whichtends toward-0.17. Adding this to the firsttwo exponentials

yields 0.95 and now this is the value that the waveform is trying to reach after the next 400ps

interval. As this oscillation continues we can see the wave approachilg a steady state value

of one voit which would also have been the case had the line been matched, Now that we

understand the behavior ofthe voltage we see that the field results follow a similar pattem.

This time however we obtain a jump in the field value at the begfuming of every 200ps

interval followed by an exponential decay. This again is due to the radiation from the ends

of the line which we know have propagation times differing by 200ps. The ringing which

is apparent on top of the exponentiai decay

is most likely due to numerical

inaccuracies in the calculation of the

cunent derivative which is close to being

i¡finite af the begirning of each

exponential decay. Note that these resuits

are identical to the ones obtained by

IBridges2].

Moving on to a slightly more
Figure 23 : The Geotneny of a Complex,

O ne-D ìmens io nal I nterc onnect Exatnpl e



complicated case let us examine the radiation from a combination of lines printed on the

substrate and havi¡g both x and y dírected sections. Let us excite each of these lines

simultaneously with ídentical 5Ops Gaussian pulses. The geometry of these lines is shown

in Fig. 23 from which we can see several discontinuities which will add to the overall

radiation. The board that these lines are printed on is centered about the origin, has an overall

size of 4cm x 4cn and has been modeled using an FDTD grid of 60 x 60 cells to obtain

the current derivatives along the 1ines. The cunent simulation was run for 698ps to allow

all the waveforms to die down and the

cunent waveforms present on these lines at

two instants in time are shown in Figs. 24

and 25. Fig. 24 shows us these waveforms

as the T-junction on the middle line is

Figure 24: The Gaussian Waveþrms for reached while Fig. 25 shows us the waves

the Complex Example at a Time of 262 ps being reflected by the unmatched load on

the upper line and the T-junction on the middle line as well as the absorption ofthe currents

approaching the ends of the two bent lines. The 0 and @ components of the electric field

\--\
s,
s

for seve¡al d angles in the E-plane are

shown in Fig. 26 where the time duration

of each of the graphs is from 320ps to

420ps. We again notice the familiar

compression and expansion of the I
component depending on if the waveforms

Figure 25: The Gaussian Waveþrms for

the Complex Exatnple at a Time of 409 ps

s
s,s

are propagating toward the observation point or away from the observation point. It is

interesting to note that the ø component has a slightly later starting time than the P

component which is due to the fact that only the x-directed sections of line radiate E6 while

only the y-directed sections radiate Ed and obviously all the lines begin in the x-di¡ection.

I

t02



b) Phi Component

Figure 26: The E-Plane Radiated Elecn'ic Fiekls for the Complex Example

at Severcl Values of Theta
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The final case which we will look at ís that of a bent 'fat-line'. This line is basically

identical to the bent line in the previous example and is printed on the same substrate. This

line has the same center length as the previous line but is 4mm or 6 cells wide. Now, as the

line becomes wide with respect to the pulse duration the waveforms begin to reflect between

\. the walls of the ihe and not only directly

back on themselves. For our purposes we

have excited this 'fat-line' with a 30ps

Gaussian pulse. This pulse width begins to

show the preceding propeny but not to

such an extent that the reflections take an

extremely long time to die down. In this

to allow the line to settle down and the current

s:

Figure 28: The Gaussian Waveþrms for

the Fat-Line Example at a Time of 350 ps

The 0 and / components of the eiectric field for several 0 angles in the E-plane

are shown in Fig. 29 where, as in the previous example, the time duration of each of the

graphs is from 320ps to 420ps. As before we again notice the familiar compression and

expansion of the d component depending on if the waveforms are propagating toward the

observation point or away from the observation point. The d component again has a slightly

later staning time than the 0 component since ourGaussian propagates down the x-directed

section of line first. We notice however that this time the @ components of field look

basically identical to each other but their magnitude decreases with the elevation angle. This

Figure 27 : The Gaussian Waveþnns for

the Fat-Line Example at a Time of 2 10 ps

case the cunent simulation was run for 931ps

waveforms present on the lines at two

instants in time are shown in Figs. 27 and

28. Figure 27 shows the waveform just

after it has hit the comer while Fig. 28

shows the reflection and transmission from

the comer as they are about to be absorbed.

\
$



b) Phi Component

Figure 29: The E-Plane Radiated Elecn'ic Fields for the Fat-Line Example

aî Several Values of Theta



is due to the fact that now the waveform is propagating away from all of the observation

points in the exact same manner where the change in magnitude is simply caused by the

formula for this field component which decays as cos d . Many more examples could be

demonsfated in this section, however the ones already shown have one or more of the

general characteristics ofany lossless example we could probably think of. Besides, the idea

here was to show the merit of the method and not to grind out one example after another.

Before concluding this chapter though, it is worthwhile to note some approximate

computation times for the previous results. Al1 of the following times are for the broadside

instances, were calculated by the /usr/bin/time command on a Sun Sparc 10 workstation and

include the actual user cpu times only. The first set of examples for the 20ps Gaussian

travelling along the surface and buried lines took an average of approximately 6.15

seconds.These lines consisted of 60 cells and the results were calculated for 200 time points

giving us an average increment¿l time (time/(ce11*timepoints)) of 512p s. The 200ps

examples on these same lines took an average of approximately 1 minute 23.75 seconds and

since we now used 800 time points we get an average incremental time of 1.75ms. It is

interesting to note from this that the average incrementaÌ time increased from the previous

by a factorof3.4. Since the number ofcells remained constant forthese two cases this means

that as the number of time points increases more time is spent for each time point, (on

average). We can see that this must be the case by remembering that the result for each

component of fìeid at each point in time is due to a summation from the start of the waveform

to the present time. Therefore as the present time increases a greater number of terms are

included in the summation. These summations could be made more efficient however since

they decay with the factors (- f,,)" and r/l and so eventually the contributions ofany added

terms makes only negligible difference to the answer. This was not implemented here since

accuracy and not speed was desired. As for the remaining examples we find that the

exponential took the longest since it had the largest number of time.points at 1370. Together



with this it used 120 cells (rather than 60) for increased accuracy (the line iength remained

unchanged at 4cm) and took an average of 9 minutes 44.7 seconds to execute. Then the

'fat-line' consisting of720 cells and 400 time points took 5 minutes 20.6 seconds and finally

the complex one dimensional case consisting of 228 cells and 300 time points took

on average 2 minutes 14.5 seconds. In closing it should be mentioned that these times will

increase for angles of 0 greater than zero since the value of z6 decreases with I and so

the number of terms in each summation will increase since the time between the two adjacent

time derivatives of the cuûent decreases. A similar effect occurs for buried lines and was

evident for the preceding buried line examples for which we took the average between the

buried and surface lines. The effect was extremely small for the 20ps Gaussian pulse and

about a second in the case of the 200ps pulse.



CHAPTER 5

CONCLUSION

5.1 Summary and Concluqions

In this document we have developed, in detail, the procedure for obtaining a closed form far

field approximation to the time domain electric field dyadic Green function for a single

dielectric, PCB problem. To do this the frequency domain dyadic Green function was

developed fi¡st and although parts of that development have been done before, they were

included, discussed and explained herein so as to aidfuture researchen i¡ this area. This was

deemed important since no detailed explanations of such developments seem to exist, (at

least not one that someone nevr' to the area can understand). The method used thereafter to

obtain the time domain dyadic Green function from the frequency domain Green function

was developed by theauthorand theresults were shown to be identical to those of lcicchetti].

The time domain dyadic Green function was then implemented in a FORTRAN and

openlook program and severalresults oflossless lines and coilections of lines were dispiayed

and discussed. Some results of this work have already been published, fl-ohsell, or will be

published in the near future, (þohse2l, Þohse3l).

Following the actual development of the method we demonstrated that the saddle

point method, which was used to obtain the closedform result, yielded excellent results when

compared with the actual integrated results in the frequency domain. For example, at a

distance ofone wavelength from the source we found that the results had an enorofless than

27o for a frequency of I GHz and quite a large range of I , (up to about 50o or better

depending on the component). We also found that as the ftequency increases the error

increases due to the steepest descent paths approach on one or more poles or branch points.

The locations and effects of these poles were discussed tfuoughout the document and even

though their contributions were not included in the saddle point approximation to the inverse

(specÍal-frequency to frequency domain) Fourier transform integral it was shown that these

poles have a negligible effect at frequencies up to and beyond 1 GHz at observation distances



greater than one wavelength. Furtheffnore, at very small elevation angles it is only the branch

point that causes this effot to occur. Then, in the time domain we proved that our closed form

method yielded physically interpretable results very quickly.

It should be obvious that more complex stn¡ctures than the ones analyzed in this

document could be addressed without modifying the existing method. For instance, pCBs

consisting of many traces or multiple layers of the same or similar dielectric mater.ial could

be easily analyzed with good results. Furthermore, the method has shown distinct

advantages over frequency domain methods, one of which was that cuffent waveforms

which have a wide band frequency content can be evaluated with one simple summation

instead of requiring the solution of the radiated field at many frequency components. For

similar reasons, using this method to obtain time domain resutts and follow that by an FFT

to obtain the frequency domain spectrum is also a reasonabie and desirable approach to

analyzng wide band waveforms. The ease in programming these results was evident ftom

the simplicity of the resulting time domain dyadic Green function and so the fact that such

a program can easily be written to take cuÍent results from any available signal integrity

software and compute the time domain fields in a short time is a definite asset to cfucuit

designers and EMC engineers alike.

The down side of this method is its restriction to board level radiation only since this

type of radiation is completely unrealistic in most real word problems where enclosures,

cabling and otherscatterers are present. Having said this, it is perhaps possible to incorporate

this method into many, more general, applìcations to increase its scope and extend it

useful¡ess.

5,2 Recommendations for Future Work

Future research in this area is definitely warranted since quick, approximate methods are

always required even with the ever increasing computer pov/er that is available today. For

instance, to rigorously solve a printed circuit board problem where the board contains
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thousands of cunent traces or eiements would take many days or more. Therefore a quick

approximate method which has a reasonable enor over a cefiain range of some variable can

be invaluable. To the ciÌcuit designer or EMC engineer, who doesn't care about a perfect

answer (which is realistically unattainable anyway), an indication in a reasonable amount

of time, of where an EMC problem may occur may be more desírable.

Future work which is a direct extension to this written document could be to further

analyze the effects of the surface wave (denominator) poles, the numerator poles and the

leaþ wave poles which were discussed herein. A novel way of incorporating the effects of

all these poles in the time domain summation would be extremely valuable in increasing the

accuracy of the method. Other than further pole analysis, numerical methods to account for

more realistic fi¡ite transverse dimensions or multiple layen of different dielectric material

could be very useful. Finally, a parallel development using a lossy dielectric and/or ground

plane would be wananted to make the method more robust.

Lastly, it would be interesting to further investigate the result obtained in section 2.7

to determine if this is a physical phenomenon or simply some sort of mathematical

discrepancy. Such an investigation would perhaps bring greater understanding to the

radiation principles of printed ci¡cuit structures.
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