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ABSTRACT

Simulation of the electromagnetic fields radiated from high speed printed circuits is
becoming increasingly important in electronic system design as well as to ensure compliance
with present electromagnetic compatibility standards. Furthermore, increasing complexities
in the printed circuits and electronic systems being considered have created a need for quick
and efficient techniques for the calculation of such radiated emissions. In this thesis,
electromagnetic radiation due to high speed transient signals on printed circuit board,
multi-chip module, and integrated circuit interconnects is examined using a simple closed
form solution for the time domain radiated fields due to an arbitrary, single-dielectric
interconnect geometry. The developed technique is intended to use currents generated by
common, time domain circuit simulation softwares to calculate the desired transient fields.
The development of the method is described in detail and then demonstrated by considering
several interconnect examples involving transmission line mismatches and ringing. The

accuracy of the method is addressed and found to be excellent for far field distances.
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CHAPTER 1
INTRODUCTION

1.1 Motivation and Previous Work

In the past, the calculation of radiation from printed circuit structures, (usually in terms of
microstrip and stripline transmission lines), was largely the domain of the academic or the
microstrip antenna designer. However, in the last several years, with the advent of ever
increasingly fast electronics, radiation from a growing variety of printed circuits has become
of great concern to the electronics industry. The reason for this is due in part to environmental
and health concerns but is for the most part, due to the unwanted interference of high speed
printed circuits with other electronic products. Because of this, most industrialized countries
have now instituted strict standards dealing with these concerns, the most recent of these
having come into full effect on January 1st 1996. This was the European Community’s

CISPR 22 standard concerning radiation from electronic and computing devices.

To adhere to these new standards, electronics designers and manufacturers now
require some sort of numerical, radiation calculation software so they can design for EMC
from the beginning of their product development cycle. Because of this, many numerical,
radiation calculation softwares are now being developed. Many of these are based on
numerical methods such as the Boundary Element Method, the Finite Element Method and
the Finite-Difference Time-Domain Method [Archambeault], which are all fairly rigorous
and accurate but are therefore also time consuming, Furthermore, software tools based on
these methods are usually quite expensive [Cabral], and because of this, there is a Iot of

interest in quick yet reasonably accurate approximate methods.

Much research into radiation from printed structures has employed a complete
frequency domain approach for determining the currents on, and subsequent radiation from,
a printed circuit structure ([Aksun], [Naishadham]), using a spectral domain approach in one

form or another. Another standard approach to calculating radiated emissions is to use a



circuit simulator to solve for the structure currents and voltages in the time-domain [Goyal],
and then evaluate the radiated emissions in the frequency domain through a Fourier
transform ([Gravelle], [Herault]). Because of this many electromagnetic software
companies, (who up to this time have been calculating voltages and currents in the time
domain for the purposes of signal integrity and cross—talk), are now making the logical leap
toward the development of tools which calculate electromagnetic radiation from real
physical products based on the voltages and currents which they already have available to
them. An added advantage in the use of a time-domain approach to the circuit simulation,
is that such a method also provides the capability of directly modeling the non-linear
elements present in active circuits which complete frequency domain methods have

difficulties with.

The numerical Fourier transforms required in the above approach are time
consuming however, and so, as an alternative, several researchers have recently formulated
the radiated fields in the time—domain ([Cicchetti], [Felsen2]). This enables the emissions
to be determined directly from the transient current data without the need of a Fourier
transform. This is obviously very beneficial when considering time domain currents with
wide band frequency domain characteristics since in the frequency domain one complete
analysis must be done for each frequency component of the current spectra. Furthermore,
if only the far zone fields are required an approximate closed form solution is available for
a single dielectric, printed circuit geometry and has been shown to give good accuracy

[Cicchetti].

1.2 Objective and Document Summary

Herein will be presented a method, based on the work of [Cicchetti], [Bridges2] and
[Lohsel], whereby a user can have an approximate but fast time domain solution of the
radiation from general, single dielectric, printed circuit structures. This method requires the

availability of a signal integrity tool, or some other kind of current simulation software, and



the writing of a short bit of code to calculate the actual radiation due to these currents, The
radiation code is based on a closed form solution of the spectral-frequency to frequency
domain Fourier transform integral for single dielectric, printed circuit structures. The printed
circuit interconnects are assumed to be horizontal or vertical thin wire structures located on
or within a single dielectric, grounded substrate, although the theory can be extended to

multilayered substrates of different dielectric constants as well.

In Chapter 2 we will rigorously develop the spectral-frequency domain magnetic
vector potential dyadic Green function, where this work is based on preceding works by
[Bridgesl], [Choi], [Harington], [Rana], [Tai], [Tsandoulas] and [Uzunoglu]. This
development begins with the use of the Maxwell equations and the magnetic vector potential
and proceeds to calculate the spectral-frequency domain magnetic vector potential dyadic

Green function for a single dielectric, printed circuit structure.

Section 3.1 of Chapter 3 then proceeds to calculate a closed form solution of the
inverse Fourier transform integration of the magnetic vector potential dyadic Green function
from the spectral-frequency domain into the frequency domain. This work was based on
preceding works by [Barkeshli], [Collin], [Felsenl1], [Kong], and [Mosig] as well as some
of the ones mentioned above for the previous chapter. The closed form result is obtained via
the method of steepest descents (or the saddle point method) and includes much discussion
about integration in the complex plane and the problems caused by the poles and branch cuts
which are inherently present. Section 3.2 then transforms the above closed form frequency
domain result into the time domain and a complete closed form expression for the fields
radiated from a transient current source on or within a single dielectric, printed circuit

structure are given.

Then in Chapter 4 section 4.1 the exact inverse Fourier transform integration, which
converts from the spectral-frequency domain into the frequency domain, is evaluated

numerically for all non—zero components of the electric field dyadic Green function in the



E-plane. These are then compared graphically with the approximate solutions obtained from
the saddle point method and error results are given. Following this, section 4.2 examines
several interesting printed circuit problems by discussing their radiated electric field
E-plane results and then gives some algorithmic timing information. Finally, the work and
its results are briefly summarized, appropriate conclusions are drawn and future work is

discussed.

Before proceeding with this extensive formulation and discussion, it is important to
note that throughout this thesis the convention of Maxwell Equations and a Green Function
has been used as opposed to Maxwell’s Equations and a Green’s Function for similar reasons

to those of [Jackson].



CHAPTER 2

DERIVATION OF THE SPECTRAIL-FREQUENCY DOMAIN
DYADIC GREEN FUNCTION

2.1 The ‘Wave’ Equations

The calculation of electric and magnetic fields in space due to the existence of electric or
magnetic sources can be performed through proper application of the time honored Maxwell

equations. These differential equations are shown below for homogeneous, isotropic and
lossless regions [Harrington], and define the instantaneous electric (E ) and magnetic (H )
vector fields at a particular point in space due to the instantaneous electric and magnetic
vector currents (J and M ) and scalar charges (g and 2 ) at a given source point. Be aware

that, within these equations and throughout this document bold faced type denotes a vector

quantity and tilde ( -~ ) denotes an instantaneous time domain quantity. The coordinate system

. oH - ) S
VxE--u22M 5 VxH=-:Z
%) Y ) v et
o VE=Z d vA=-Z 2.1)
€ K
3G arn
vj--4 VM =-22
€) a1 n ot

required by these equations is shown in Fig. 1. Here the field is calculated at the point P
A P and the outlined arrow at the source point S
represents a directed (vector) current source
that could be either electric or magnetic but
R=trord could also be an undirected (scalar) electric or

magnetic charge source. Examining these

5 =Y equations then, one can immediately see that
equations (2.1a) and (2.1b) are coupled with
Figure 1: The Field Calculation
) respect to the vector fields which we wish to
Coordinate System
X find. They can however be uncoupled by



substituting equation (2.1b) into the curl of equation (2.1a) to obtain equation (2.2a) and
similarly substituting equation (2.1a) into the curl of equation (2.1b) to obtain equation

(2.2b). These ‘wave’ equations for the electric and magnetic fields are now not only

uncoupled, but they are also completely defined by the sources J and M or, perhaps more
exactly, they implicitly include the effect of any charge sources present. This will be shown

in the next section.

2
a) (VXVX+;L£:—12)E=—,LL-—-§—V><M (2.2)

b) (V X V X +m§—;)ﬁ=-s§;M+V x J

The similarity between equations (2.2a) and (2.2b) is immediately obvious and in
general only one of these equations is solved, yielding either the electric or the magnetic
field, from which the other field quantity is obtained through direct application of the
appropriate Maxwell equation. For our purposes however, we will deal with both of these
equations as required, the solution of which is more complicated than need be for most field
problems encountered due to the time derivatives which exist within them. These derivatives
can be removed and the equations thereby simplified through application of the Fourier
transform which converts these equations and the resultant fields into the frequency domain.
The equations are then solved in the frequency domain following which the inverse Fourier
transform is applied to the resultant fields yielding the instantaneous time domain results
which we desire. Taking this approach, the Fourier transform pair which we will use here

is written below as appropriate for vector quantities [Trim?2],

& Flo)- jﬁ(t)e‘j“”dt B ()= [ Flo)e™'do (2.3)

where @ = 2mf, ¥{f) is any well behaved time domain function and F{w) is the

corresponding frequency domain function. Note that frequency domain quantities are

represented as simple vectors or scalars since most of the subsequent derivations will be in



the frequency domain. Furthermore, from here on in, function dependencies will only be

included in an equation if clarification of such a dependency is warranted. Before preceding
it is also worthwhile to note that since the inverse Fourier transform uses the multiplier ¢*/’

the frequency domain functions are said to have an ¢ time dependance.

Now, applying the Fourier transform (equation (2.3a)) to equations (2.2) we obtain

the following equations where k = @ JE is known as the wave-number of the medium.

&) (VXVX-KE=—jop]-VxM (2.4)

b) (V XV X —2)H=—jweM+V x J
These equations can be further simplified by taking into account their linearity, and thereby

breaking each one of them into two equations as,

D (VXVX-RE=—jou] b (VXVX-PJE,=-VxM (25)

O (VXYX-i)H=-joeM &) (VXVx-2JH=Vx]
where E, and H, are the electric and magnetic fields due to electric sources (J ) and E;,

and Hj, are the electric and magnetic fields due to magnetic sources (M ). The desired total

electric and magnetic fields are then simply the superposition of these single source fields.

2.2 The Method of Potentials

Equations (2.5}, simplified as they are, are still formidable equations due to the double curl
of the fields, which exists within them. Because of this, a simplified method is usually
employed ([Harrington], {Téi}), which takes an intermediate step using equations that are
easier to solve. These intermediate equations make use of the theory of potentials. As it turns
out, electric sources make use of the magnetic vector potential A while magnetic sources
use the electric vector potential ¥ . This is perhaps a partial justification for bothering to

separate equations (2.4) into electric and magnetic source parts.



To derive the definitions of these potentials we begin by examining equation (2.5a)
from which we notice that, it looks exactly like equation (2.4a) with no magnetic sources
present. Similarly (2.5¢) looks exactly like (2.4b) with no electric sources present. Because
of this we can look back to the Maxwell equations and, without magnetic sources present,
the divergence of the magnetic field (equation (2.1d)) is seen to be zero while without electric
sources present, the divergence of the electric field is zero, (equation (2.1¢)). These results
immediately remind us of the identity which says that any divergence—less vector can be

represented by the curl of another arbitrary vector, namely,
VU=V(VXV)=0. (2.6)

Because of this we can represent the magnetic field due to electric sources and the electric

field due to magnetic sources in terms of their still unknown vector potentials as,
a) H.=VXA by E,=-VXF (2.7)

where the negative sign was chosen on the curl of the electric vector potential so as to be

consistent with accepted methodology [Balanis].

Now, knowing one field quantity for both electric and magnetic sources we need to
find the other field quantity as well as the equations defining the vector potentials. To do this
we begin by taking the divergence of equations (2.5a) and (2.5¢) and once more apply

identity (2.6) to obtain divergences of the fields E, and Hj, as follows,
a) —kVE,=—jouv-J b —k*VH,=-jweVM . (2.8)

It is encouraging to note that by substituting the frequency domain versions of the continuity
equations (equations (2.1e) and (2.1f)) into equations (2.8a) and (2.8b) we obtain the
frequency domain divergences of the electric and magnetic fields given in equations (2.1c)
and (2.1d). This suggests that if the currents and charges obey the continuity equations, as
they must, equations (2.5a) and (2.5c) implicitly satisty the divergence equations for the

corresponding fields as expected.



If we now apply the following identity to equations (2.5a) and (2.5¢),

VXVXV=VVV)-V¥V (2.9)
we obtain,

Q) (VW-V2-R)E =—joud  b) (VV--V-K)H,=-jweM  (2.10)

and substituting equations (2.8) into equations (2.10) we find,
&) (V?+#)E, = —,—1—(VV- +B2)) by (V24 R2)H, = L (VY- + )M . 2.11)
JOE Jop

Now, since only the curl of the vector potentials has been defined up to this point there is still
some arbitrariness to these vector potentials. To make the potentials unique we must then
also define their divergences. Keeping this in mind we can immediately see, observing

equations (2.11), that if the fields E, and H, are defined in terms of their vector potentials

as,

a) E,= —-_3——(VV- + k?-)A B H = L(vv- + k2)F 2.12)
Jjoe Jop

and these equations are substituted back into equations (2.11) we can, upon rearranging the

linear partial derivative operators slightly, write,
1
a) —(vv. +k2)[(V2 +RPA = J] b) _—1-(vv- ¥ k2)[(V2 +E)F =~ M]. (2.13)
JWE JOU

The equations defining the vector potentials are thereby seen to be,
a) (V2+k2)A=—J H (V+RF=-M . (2.14)

As we can now seg, the electric and magnetic fields due to both electric and magnetic
sources can be defined in a much easier way than the double curl equations of equation (2.5)
by using equations (2.7), (2.12) and (2.14). That is, using equations (2.7) and (2.12), we can

define the total electric and magnetic fields due to both electric and magnetic sources through



superposition, as mentioned previously, to obtain,

E-E +E =—,—1——(VV-+I<2)A—V><F (2.15)
Jwe
H-H,+H,=V X A+—_—1——(VV-+k2)F (2.16)
Jou

and use equations (2.14) to define the potentials [Balanis]. Comparing equations (2.15) and
(2.16) with the original equations, (2.4), we can sec that the new equations have been
significantly simplified since we have managed to remove the fields from being a direct part
of these equations. These fields are now simply dependent on the divergence and curl of the
magnetic and electric vector potentials, which are both obtainable through simple partial

differential equations.

2.3 The Green Function

In the previous section we derived a simplified solution methodology which defines the
electric and magnetic fields in terms of electric and magnetic vector potentials. These
potentials were in turn defined in terms of the electric and magnetic currents existing
anywhere in the problem space. Such currents however can be completely arbitrary so
solution of the vector potentials would seem to be dependent on the unknown or changing
location of an unknown or changing current. To reconcile this it is necessary to make use of
a Green function. Such a function defines the required vector potential at a particular
observation point due to a unit current existing at a particular source point. To do this the

Green function assumes that the current distribution for the vector potentials is a three
dimensional dirac delta function, 8(r — r'} , in each of the three vector directions. This delta

function is defined as follows [MyintU],

dr-r'}=0, r#r (2.17)

and has the following properties,

2 ] j jvé(r—r’)dV=l ) I j jvy(r)a(r_r')JV=F(rf) (2.18)
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assuming that the point r' is contained within the volume of integration. Furthermore, F(r)
is an arbitrary function defined throughout this volume and F(r’) is the value of this function

at the point r' . Using one dirac delta excitation for each of the three component current

directions, equations (2.14) can be written in three similar sets as,
o (V)6 =—oe-ri b (PrR)CY -or-r)i (219

where G, is the vector Green function for the magnetic vector potential, G is the vector
Green function for the electric vector potential and the superscript # attached to these Green
functions represents the direction of the forcing dirac delta which can be either of x, y or
z in cartesian coordinates. From these equations we can see that each vector Green function
always results from one inhomogeneous equation, having a homogeneous as well as a
particular solution, due to the singly directed source and two homogeneous equations for
each of the two remaining component directions. The solution of equations (2.19) now
depends on the boundary conditions of the problem space, where the homogeneous
equations are used to represent the fields scattered from the problem geometry and,
obviously, the inhomogeneous equation represents the source function residing within this

problem geometry.

It is convenient to first rewrite the three equations for each of the vector potentials
in a more compact manner by defining the Dyadic or Tensor Green functions as in equation
(2.20) [Tai]. Note that dyadic functions are denoted by variables in bold faced type with a

bar since they contain several vector functions.
a) Gi=G{%+GPy+ Gz B Gr=GP+G6P5+6P: . (2.20)

These dyadic Green functions are each simply a collection of the three appropriate vector
Green functions for the three component directions of field and are usually written in matrix

form with the three vector Green functions being the three columns of the three by three

11



dyadic. In this form, equations {2.20) would look as follows,

G@fff G(szy GEfA). Xz (A) 5 XX Gl(vl}xy G()xz
a) Gu= fo)), yx ij’}), yy Ggfl yz| ) Gp= Ggy){ yx G(};), yy G{J), yz| - (2.21)
quz)zx G&Z}zy G() ngx G()’) ﬁﬁl zZ

From this construct of the dyadic, it is also useful to define a unit dyad, as T = ££ + yy + 22,
which we can see is simply a unit diagonal dyadic in matrix form. Therefore, using this new
dyadic notation equations (2.19) can be written in the following simplified way which now

includes all three of the vector Green function equations,
o) (V+R)Ga=-olr-r)T &) (V+£)Gr=-0(-rT . (222

Furthermore, given these dyadic vector potential Green functions and equations (2.15) and
(2.16) we can then write the electric and magnetic field dyadic Green functions as well,
namely,

EE = 6}35 + C—E,, = “L(VV + k2)(_;A -V X (TF (2.23)
jwe
GH = EHe + (_;H;, =V X §A + L(VV + kz)G‘F . (2.24)
Jop

After calculating equations (2.22) to (2.24) we can calculate the fields for an arbitrary
source by directly applying the integral properties of the dirac delta function which were

defined in equation (2.18). In this way the potentials can be obtained through the following

equations,
a)y A= I J f G4Jav by F= f j I GMdV (2.25)
14 v
and similarly the desired electric and magnetic fields can be obtained as,
r _ r r -
a) E= I I GEe-JdV'i- j GEthV (2.26)
JJv J v

r r
b H=f (J‘ (THE-JdV+J' (}—Hh-MdV X
JJv JJv

12



Inthese equations it is important to note that the dot product of a vector with a dyadic is taken

simply to be a matrix multiplication where the vector is written as a column matrix.

2.4 The Single Dielectric, Printed Circuit Boundary Conditions

Now that we have defined the vector potential solution methodology along with the concept
of the dyadic Green function we are free to begin the setup for the solution of an actual
problem. In this thesis we will concern ourselves with a single dielectric, Printed Circuit
Board (PCB) structure as shown in Fig. 2. We will assume that the dielectric layer and its
ground plane extend infinitely in the transverse (x and y) directions, that the ground plane
is perfectly conducting, and that the dielectric layer is homogeneous, isotropic and lossless.
Note that any of these conditions can be removed at the expense of added complexity to the
problem {(and hence the solution), and so we will simply concern ourselves with the general

E(r,w) idea. Before we proceed however it must also

be stated that, for this type of problem, only

electric sources are present and so, for our
purposes, the magnetic source vector in

equation (2.14b) can simply be set to zero. This

leaves a homogeneous equation to define the

= electric vector potential but by no means
Figure 2: A Typical Single Dielectric PCB . . o
& P 8 requires the electric vector potential itself to be
zero. Therefore, to avoid confusion the equations to be solved in this instance are repeated

below,

a) (V+R)A=-3J b)(VHwﬂF=o (2.27)

o) E=$—WV+F%fVXF & H=VxA+J—WV+#ﬁ
Jjwe R 7

Now that we know the problem which we wish to tackle we can immediately deduce

the boundary conditions which need to be satisfied. Observing the cross—sectional diagram

13



in Fig. 3 and applying some basic electromagnetic knowledge we know that at a perfect
conductor { g = o ) the total tangential electric field must vanish. This yields the following

boundary condition at the ground plane,

Efz=-d)=0 (2.28)

where the subscripts refer to the transverse ( 1)

component of the field (which is either x ory

in this case) within the dielectric region (d ). Figure 3: The PCB Cross-Section

The remaining boundary conditions which are immediately obvious from Fig. 3 are simple
statements of the fact that the tangential electric and magnetic fields as well as the normal
electric and magnetic flux densities must be continuous across any material boundary. It can
be shown [Harrington], that enforcing any two of these conditions also enforces the third and

so we write for the tangential components,
a) Eglz=0)=E4z=0) b Hplz=0=Hz=0) . (2.29)

Here the added subscript (0 ) refers to the air region above the microstrip. Beyond these
conditions one other boundary condition remains, due to the open air upper half space, which
effects all three components of both the electric and magnetic fields. This condition, known
as the radiation condition, states that all fields must be both outward propagating and

decaying as the distance from their source approaches infinity [Tai].

We now know the boundary conditions on the electric and magnetic fields for the
PCB problem which we wish to solve but have no idea as to what type of currents will be
present. We should therefore find the dyadic Green functions for the vector potentials and
eventually for the fields themselves. Writing equations (2.27) in terms of dyadic Green
functions and dirac delta excitations for both possible regions within this problem, but with

the source residing inside the dielectric, we obtain the following equations for the magnetic

vector potential dyadic Green function G4,

@) (V2+#3)Gy, =~ ofr—r') B (V2+13)Gy,=0 (2.30)
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as well as the equations for the remaining three dyadic Green functions, namely,

a) (—;—E='T-1__(W'+k2)€:q*v % (_;—F b) (_;H=V % §A+#(W'+k2)@p
Jot Jeop

¢) (V2+k2)(fp=0 . (2.31)

Examining equations (2.31a) and (2.31b) we can immediately see that due to the differential

operators within these equations, each component of Gg and Gy is defined by a total of
five components of G4 and G . For example, each component of G is defined by three
components of G, due to the gradient of the divergence of this dyadic and two components

of Gy due to the curl of this dyadic. As it turns out however, we require at most two

components of the vector potentials, in both regions, to completely define the boundary

conditions on the electric and magnetic fields for any single component of source direction,
(x, y or z). Because of this we can set Gy equal to zero and proceed with only G4,

(although many different choices are also possible). This simplifies equations (2.31)

substantially and yields,
a) C'E=-]¢wl;(vv. +K)Gy b) Ty=VxTs o Gr=0 . (2.32)

Expanding the above partial differential equations for Gz and Gy in both of the two
transverse directions then gives the equations which must be continuous across the
dielectric—air interface while equations (2.33a) and (2.33¢) must also vanish at the ground

plane according to the previously derived boundary conditions.

a) Gg,= + + +k°Gar Vb)) Gpyy=———-—""2  (2.33
) e Jwe ( a2 | axdy = axdz ax | ) Grix 3y oz (2.33)
1 2Gae %G 2G4 - 3Gy,
C) GEy =- 0 GA.\ + sz + d Az + szAy d) GHy _ aGAA _ 0 Az
Jwe \ dxdy ay 0yoz dz ox

Within these equations if should be noted that & = £,&¢ and that &, , the relative permittivity
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of the material, will change depending on the region in which the equation occurs, (either

in the air or in the dielectric itself).

Within equations (2.33) we can again see partial derivatives cropping up which
reminds us of the Fourier transform which we used in section 2.1 to remove partial
derivatives with respect to time. In this case a similar Fourier transform pair can be defined
but only for the transverse components of the potentials. This is due to the fact that the
Fourier transform integral is evaluated from — e — o and the dielectric and ground plane
layers extend to infinity in these directions with the only boundary conditions being that the
fields must go to zero at infinity to satisfy the radiation condition. These conditions are
inherent in the Fourier transform of a derivative [MyintU], and so we can use the following

double Fourier transform pair for the transversely directional potential components.

@) flkek,) = I [F(x, e Hhh3)dxdy (2.34)
b) Flx,y)= I Jﬂkl,k Jees kol dk,

Applying equation (2.34a) to equations (2.33) yields the following simplified set of
equations which are now no longer partial differential equations but are simply ordinary

differential equations in what is known as the spectral-frequency domain.

»

1 Ga; dG
@) Grnm e (= )G ke Gayt e el B) Gy = hyGipo ~ 22 (2.35)
Jwe d
4
3
1 _ dGy dGas
C) GEy = ;D: (k2 — k%)GAy — kxkyGAx +_]ky » Z Jp d) GHy dz —jk GAZ

For the remainder of this chapter it should be understood that we are in the
spectral-frequency domain and therefore no special delimiters will be used on any vector

or scalar quantities to indicate that they occur in this particular domain.

Obviously, it is now easy and straight forward to write the desired boundary
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conditions in terms of equations (2.35). Doing this, condition (2.28) yields,

L

. dGy
a) [(kg - k)%)GAaw — kikyG Ay + jkx dzdz J =0 (2.36)

LN

dGy,,

b) { (K3~ 83)Gay — keky G + ity

and because the relative permittivity of air is unity condition (2.29a) yields,

. dG . dGa,
a) s,d{ (43~ 1) ape— ek Gorgy + s i ]Z= - {(kg )G kikyGap+ ;kx%}zz

(2.37)

_ dG,, _ dG
b) e,d{(k%—kg)GAoy—kAkyGA(}ﬁ g d;‘ Z}z=o - {(k%—k?,)GAdy—klkyGAdx+ ky d‘z“ﬁ-}zzo

and finally condition (2.29b) yields,

. dG .
a) [JkyGAgZ— dzoyjhz=0 = {JkyGAdz" dz J'Z=O (2'38)

dGAD,_- . 3 dGay .
D) { dz “kaGAng z=0_[ dz "Jk.xGAdz

v

z=0

Equations (2.36) to (2.38) completely describe the boundary conditions on the electric and
magnetic dyadic Green functions for our single dielectric, PCB problem. It is now left for
us to transfer these, onto conditions on the magnetic vector potential dyadic Green function.
Before we proceed with actually calculating this dyadic however, we must also expand
equations (2.30), which are the defining equations for the magnetic vector potential, and
apply the Fourier transform of equation (2.34a) as with the above boundary conditions. In
doing so we must remember that the sources in this problem will always reside within the

dielectric or on its surface and so we obtain the following spectral domain equations for the
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two regions of our problem,

2
a) jzz ~ 13 |Gy, = - e Y57 - T = — Ed(z—2/)T (2.39)
d2
b) pEa iy }Ga,= 0

where uy = ‘/ K+ k3—kE, ug= ‘/ k2 + k2 — k3 and we have let E; = ¢ MeX'+%5') T the next

two sections we will proceed to define the boundary conditions on the magnetic vector
potential dyadic Green function for each of the three component source directions and using

these conditions we will derive this Green function in both the air and dielectric regions.

2.5 The Magnetic Vector Potential Green Function due to a Vertical Electric Source

In the previous section, the magnetic vector potential dyadic Green function equations for
both possible regions were derived. It was noted that each column of this dyadic represents
one of the three vector Green Functions, each one of which is due to a source directed in one
of the three component directions. In this section we will concern ourselves with the last
column of this dyadic whose vector Green function is due to a z—directed source and so the
appropriate vector Green function equations are reiterated below for the dielectric and air

regions which we are interested in.

& 5\ £ L\ .0 A
@ |\ oz G4 =0 b\ 7w Gy, =-Ed(z-2') (2.40)

Splitting these two equations into component parts yields three homogeneous equations in
the source—free (air) region along with two homogeneous equations and one inhomogeneous

equation in the dielectric region, namely,

& : &
@) |2z |Cihe=0 B |z o, -0 2.41)

a2,

) . us folz =-Edb(z—-7')
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However, an inhomogeneous equation consists of a homogeneous as well as a particular
solution, as was mentioned previously, and so the inhomogeneous equation above can be

split into two parts as,

¢ )6k 2 2 )ge ,
a) d—ZQ—Md Gy, =0 b) ‘E}Zi—ud GAde=——E(15(z—z) (2.42)

where the subscript # represents the homogeneous solution while the subscript p represents

the particular solution.

Now remember that in the previous section we postulated that, for our particular
geometry we would need at most two components of vector potential, in each of the two
regions, to completely define the boundary conditions on the electric and magnetic fields.
Obviously then, we must decide how many components are required and which ones we
need. In a free space problem the obvious answer would be one and the appropriate choice

would be the component of potential directed parallel to the source which in our case would

(z)

be the component G . If we use this component by itself it must be able to satisfy all the

required boundary conditions as well as properly represent the source where, as mentioned
previously, the particular solution represents the source while the homogeneous equations
are used to represent the fields scattered from the problem geometry. The simplest way to
proceed in this case is then to set the components transverse to the source direction to zero
and see if the source component by itself can possibly satisfy all our boundary conditions.

Then if it doesn’t we must add another component and try again.

Taking this approach in the case of equations (2.41) and (2.42) we will first try and
set the components transverse to the source direction to zero which leaves us with the

following equations,

& P
a) ‘dz—z-— ng) G&{L =0 b) d—zg- Ll(% Gﬁi}ﬂz =0 (243)
d*
c) pi ug Gglpz =—E(z-7')
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where the following equalities were applied.

a) G,(fgx = Ggfl =0 b) Gﬂfg}. = fol} =0 (2.44)

We then proceed by trying to apply equations (2.44a} and (2.44b) to the boundary conditions
derived in the previous section, (equations (2.30) to (2.38)) and in doing so we obtain the

(2)

following, very simplified conditions, on Gjj.

dG% aGy|  dG, @ @
a) dzdz ea=0 D) & dzﬂ» 0" dzd |z=0 ) Gidmo=Galo (2.45)

Since these new boundary conditions on the z component of the magnetic vector potential
Green function were derived with no mathematical inconsistencies and satisfying these
boundary conditions will ensure the satisfaction of all the original boundary conditions on
the electric and magnetic fields we can be confident that our choice of setting the transverse

components to zero was correct.

Now using these simplified boundary conditions and applying them to equations
(2.43) we can obtain the spectral-frequency domain magnetic vector potential Green
function for a z-directed source. To do this we begin by solving the equation in the
source—free air region, (equation (2.43a)). The solution of this homogeneous ordinary
differential equation is very well known [Campbell], and so we just write it here without
delving into the details of the solution which can be found in any basic differential equation
text.

Gféfgz = Aoelloz + BOe_HOZ (2.46)

In this solution the multipliers Ag and By are unknowns which will be determined through

the application of the boundary conditions of equation (2.45). Before we apply these
conditions, for which we need the solution of the inhomogeneous equation as well, we can

immediately enforce the radiation condition which allows us to set Ag=0 since the

exponential on which it operates approaches infinity as z approaches infinity. We are now
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left with the following solution of the homogeneous equation in the source—free region,

which contains only one unknown.
G, = Boe™* (2.47)
Moving on to the inhomogeneous equation in the source region we can immediately see that

its homogeneous equation (equation (2.43b}) is very similar to that in the source free region

and can therefore, simply deduce its solution from equation (2.46) to write,

GP - A 4E"F + Bye | (2.48)

Ayt

Note that there is no radiation condition on z to satisfy in this region and so we are left with

two unknowns to solve for.

Next, we tackle the solution of the particular equation, (equation (2.43c)). If we
forget for the moment that this equation is only valid in a finite region we can use the
following Fourier transform pair to simplify the solution. The finiteness of the region is then

enforced along with the boundary conditions.

ay Flk)= f A)e &k, » flz)= -—21; IF(kz)e**f("zz)dkz (2.49)

Applying equation (2.4%a} to equation (2.43c) and rearranging we obtain,
e_jkzzi
(k2+23)

which is the solution we want in the £, domain. To get the solution in the spectral-frequency

G(Z) (kz) =Ey

Q. (2.50)

domain we simply apply the inverse transform (2.49b) which yields the following integral
to solve.

—dk, (2.51)

It is immediately obvious that the integrand of this integral has two poles at + ju;, which

points us in the direction of the Cauchy residue theorem [Trim1], in the complex £, plane
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as the possible means to a solution. In this complex plane equation (2.51) becomes,

+jkz(z~z') +jk{z-7')
¢ - Ed ‘f c dk, j c (2.52)
C r

where the subscript C on the first integral represents the closed contour to be traversed and
the subscript I' on the second integral represents the part of this contour which does not
coincide with the original path of integration along the real &, axis. It is evident that if the
integral along the T" section of the closed contour is zero the desired Green function will
simply be equal to the contour integration around the closed contour itself, which can easily
be solved by the aforementioned residue theorem. As shown in Fig. 4 we can see that there

are two possible choices for the contour C . The A

kz

upper contour (C, ) traverses around the

positive imaginary part of the complex &, plane

in a counter—clockwise direction and contains

the pole juy; while the lower contour () =
traverses clockwise around the negative
imaginary part of this plane and contains the

pole — jus. Now, letting T',, (the T section of

C,) have a radius of R we can let k, = Re? Figure 4: The Integration Paths in the k;

along this contour and substituting this relation Plane for the Inverse Fourier Transform

into the integrand of the integral along I' in equation (2.52) we obtain,

o HRe (=) o HRlicos B-sinb)z—2')

Ir = - 2.53
M (R d) (R 4 ) 259
the magnitude of which is,
I_[ ) e—RsinB{z—z') - e—RsinG(z~z') _ e—RsinB(z—z'}
Ly 1R2e’29+u§| - IRzejzel_Iugl RZ—u3 (2.54)
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where we have used the relation [Trim1],

11
la+ 8 ™ |a|-[p]

B (2.55)

Using this result we can immediately write the following relation for the integral along I',

to be,

+jkf7-z") g Rsin 8(z—7')
J (1 (7R) (2.56)

———dk| = ——2——————

L, (k2 + u%) R?—uj
which we can see, upon taking the limit as R —» o , becomes zero if z = z’. In a similar
manner, we can let k, = Re”® along I (the T section of C;) and repeat equations (2.53)

to (2.56) to find that as R — o the magnitude of the integral approaches zero if z <

From these two relations we can immediately rewrite equation (2.52) as,

[ § +ﬂ<(4—1')
2
G(Z) =ﬂ< il (k +ud)
At ™ g % ) (2.57)
CT(k%%-u?! ¢ oz=7

where the contour integral around C;” is traversed in a counter—clockwise direction,
(denoted by the right arrow) while the contour integral around C7~ is traversed in a

clockwise direction (denoted by the left arrow).

To now solve equation (2.57) we simply apply the Cauchy residue theorem [Trim1],
which states that the contour integral is proportional to the sum of the residues of the

integrand at the enclosed poles, or more exactly,

%rﬁz)dz =- §c* Ad)dz = 27j Y Res|f(z).z)] (2.58)

Therefore, for contour C;;” which only encircles the pole + juy, we must find the residue

of the integrand at this pole and similarly for contour C;~ which encircles the pole — jug,

we must find the residue of the integrand at that pole. These residues are frivial to calculate,
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see [Trim1], and therefore are simply stated below.

) R P Il (2.59)
a es Jug | = —— )
(kz + judle.—jug) " |~ 2jug
i ejkz(z—z') e—-ud(z’~z}
b) Res - —,—Jjuqd | = -
(k; + jualko—jug) " 2jua

Now, using these residues we can finally write our desired solution to equation (2.51) as,

oide'}
E, [ etke?) 4 e
GO == f gk -E4 = ES (2.60)
2‘717_& (kg + u%) e‘”d{z ""Z) 7 < Z' 2ud
2Hd ’

where, due to the equality of the two solutions when z = z' , we have used the absolute value
of z—7z' within the exponential to allow us to write the upper and lower contour solutions

as one result. Note also that this result satisfies the radiation condition as it should. Now that
we have the homogeneous solution for Gﬂsz (equation (2.48)) as well as the particular
solution (equation (2.60)) we can write the total solution as,

~i 2|

G,(sz = Age" + B + Ey (2.61)

Ud

All that still remains to be done to obtain the magnetic vector potential Green
function for a z directed source is to match equation (2.47) with equation (2.61) according
to the boundary conditions outlined in equation (2.45). To do this we will begin with equation

(2.45a) which simply sets the derivative of Gﬁsz equal to zero at z = —d . In doing this we

can easily see that the relation z < 7’ holds since the source will always be within the

dielectric and therefore above or on the ground plane. We therefore write,
Zud(A,;e‘”dd -Bde*f”aﬂ’) f Egede+d) = o (2.62)
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which can be rearranged and reduced to yield,

1
—H,
e dZ

Ad = Bde'}m(“d— Ed (263)

2uy

Proceeding to apply condition (2.45b) which enforces the continuity of the derivative of
fo; at the air-dielectric interface we note that the source will this time always be below or

at the surface of the dielectric so the relation z = z’ holds, (this will also be true for
condition (2.45¢c)). To then apply condition (2.45b) we equate equations (2.47) and (2.61)

as follows,

ot

2uy

BGe—ugz = Ade"a‘z + Bde—lldl + Ey (264)

and take the derivative with respect to z, thereafter setting z to zero and including the

dielectric constant multiplier, to yield,

+iez’

2

€

— to€raBo = ufAy—Ba)— Eq (2.65)

Substituting equation (2.63) into the previous equation and rearranging we obtain,

— &r42u0Bo + Ed(e“‘dz‘ + e‘"f’z')

2u,g(e+2”dd - 1)

B, = (2.66)

which we can quickly substitute back into equation (2.63) to yield,

- &, d2H030 +E d( e+ndz‘ + e—-udz‘) e~lld?.'
€+2u,,d _ Ed

2ud(e+2uad_ 1) o (2.67)

Ag=

We now have two of the three unknowns in terms of Bg. This leaves us with only one

condition left to apply, which enforces the continuity of Gﬁfz) itself at the air—dielectric

interface. The application of this condition simply entails setting z equal to zero in equation

(2.64) yielding,
+ugz'

B()=Ad+Bd+Ed62

(2.68)

Uq
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into which we can substitute the two previous equations ((2.66) and (2.67)) leaving,

—&,42uoBo + E ot 4 gl
By = d 2;d(e+i£d— 1) ) (g+2udd+ 1) +E

(e+udz' _ e-—udz')

2.69
0 (2.69)

Examining equation (2.69) we can see hyperbolic functions emerging, so collecting like

terms and applying the appropriate hyperbolic definitions [CRC], this equation reduces to,

By - sinh{u.z'} tanh{u,d) + cosh(uz') £, - Ny, B 2.70)
&ratty + ugtanh{u.d) Dou

where the numerator function N, can be further simplified by expanding the tanh function

Vo

in terms of sinh and cosh and applying a simple hyperbolic identity as is shown below.

sinh(usz') sinh(ugd) + cosh{uzz') cosh{uad)  cosh(udz’ + d))

cosh(zd) cosh{u.d) .7)

N, =

Before going on, the denominator function Dy in equation (2.70) demands some
discussion. It can be shown that this denominator arises from the magnetic fields transverse
to z being supported within the dielectric [Felsenl], which is the reason for the TM
subscript. It is important since its zeros will be seen to reek havoc in the inverse Fourier
transform integration which takes the dyadic magnetic vector potential Green function back
into the spatial-frequency domain. Furthermore, it should be mentioned that the poles of the

numerator function N,, can possibly cause problems, similar to those of the Dyys function,

at frequencies where the wavelength is smaller than the dielectric thickness by a significant

degree. This will all be discussed further in section 3.1.2.

Finally, we can substitute equation (2.70) in expanded form into equation (2.66)
which can then be substituted into equation (2.63) to solve for the remaining two of the three

required unknowns,

e i 7' — !
B, -=f &auo Sinh(ugz') — ug coshlugz') Ey (2.72)
Dyas 244 cosh(ugd)
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and

_rud inh{uz' )~ h{ugz' wa!
A= e Erqlln S (udZ ) Uq COS (”dz ) Ey— € E; . (2.73)
Do 2144 cosh{uqd) 2uq

At last, we have all the unknowns needed to write the magnetic vector potential
Green function due to a vertically directed source. Dealing with this vector Green function
in the source-free region first, (which will be of most interest to us in the rest of this
document), we find that it can be written by simply substituting equation (2.70) into equation

(2.47) and writing the result in vector form, as,

N, ,
GY = B—;:;Ede""ﬂzz . (2.74)

Then for the same Green function in the dielectric region we substitute equations (2.72) and
(2.73) into equation (2.61) to obtain,
— & rauto Sinh(ugz') + ugcosh(uz') cosh{ufz +d))  ede) _ gmude=2|

GP = - Ez (2.75
Ad ugDrys cosh{uyd) g a (2.79)

which allows us to check the boundary conditions used to arrive at these two magnetic vector

potential Green functions.

2.6 The Magnetic Vector Potential Green Function due to Horizontal Electric Sources

In the previous section we derived the magnetic vector potential vector Green function for
a vertical electric source, (i.e. the third column of the corresponding dyadic Green function).
Now we deal with the remaining two vector Green functions which we need, to completely
define the desired dyadic Green function. We are able to find both of these remaining vector
Green functions at the same time since the dielectric and ground layers extend infinitely in
both the x and the y directions so it is obvious that these directions are interchangeable. This
can also be seen from the boundary conditions on the magnetic vector potential Green

functions (equations (2.36) to (2.38)), where we find that if we interchange G4, with G4,

and k, with k, we obtain the exact same boundary conditions. We will therefore, write this
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section solving for the magnetic vector potential vector Green function for an x—directed
electric source and then apply the preceding interchanges to obtain the Green function for

a y—directed source.

For an x-directed source we can write similar equations to those written for the

z—directed source in the previous section. These equations are as follows.
d? : d? X N
@ (d_z-?_ ug)(;f;‘j -0 b (52—2— ug)(;gj - Ed-7)  (2.76)

As before we can split these two equations into component parts yielding three homogeneous
equations in the source—free (air) region along with two homogeneous equations and one
inhomogeneous equation in the dielectric region. If we also try, as before, to set both
components of the Green function transverse to the direction of the source to zero we obtain

the following identities,

a) GE;Zy = I(:l)’ =0 b) GE;;)Z = &32 =0 (2.77)
and the following equations to be solved.
d (9 d )
a) (d_zf_ u%)GAOx =0 b) (E— u3 Gu,x=0 (2.78)

It is again prudent to check if the GEQ component alone will satisfy all of the required

boundary conditions. Therefore, applying equations (2.77) to the boundary conditions in
equation (2.36) we simply get,
GOl 4= (2.79)

with no difficulties. Similarly from the boundary conditions in equation (2.38) we obtain,

) e
dz 10 dz |z=0 (2.80)
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with no difficulties either. However problems arise when trying to apply identities (2.77) to

the remaining boundary conditions in equation (2.37). In this case equation (2.37a) gives us,

K-k o
=0 ( k?' k%)GAo\Z

) )
G;d.xlz—() = srdG}?()l

Gin

" 2.81)

while equation (2.37b) gives us,

(2.82)

Remembering that £ =@ \/E and that within this wave number only & changes between

the two regions by the amount g,; we can easily write k; = Je;ko . Because of this, these
two equations obviously contradict each other since the only way both of them could be
satisfied is if ks = kg , or in other words if €,4 = 1. Since restricting a dielectric to having
a dielectric constant of 1 is basically useless, we can see that using only one component of
this vector Green function does not allow us to satisfy the required boundary conditions.
From our earlier postulate however, we know that we need at most two components of the
magnetic vector potential Green function, in both regions, to properly satisfy all their
boundary conditions. We therefore need to choose another component to help satisfy all of
the boundary conditions, where obviously, it would be useful to use the one that yields the
simplest boundary conditions, if that particular choice allows the boundary conditions on the
fields to be properly satisfied. It can easily be shown that for this case the easier boundary
conditions come from using the zcomponent along with the x, and so we proceed by applying
only equation (2.77a) to equations (2.36) to (2.38). Doing this we end up with the following

reduced set of boundary conditions.

- . dG(—l‘)-'
@) | (K= 3)GS + b dﬁ“]z: =0 (2.83)

T dGS)
b) |-kidyGoh+jy—E| =0
) dz ]Z=—d
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2 2\~ 2) ~(2) had: %4
a) &l (K3~ R2)GSD,+ = }ﬁ [@dk)c | (284)

™

I dG%), dGS
(x) (x) Agz
b) Erd —‘k-kGA(}x'l‘ k dz ]z=0= [—kxk GAdA+ k 4 0

a) jk GAoc

0= G0 (2.85)

o dGSD. . dGY)
b) [jkleiﬁz——d?‘]w - [jkaEi‘jz L)

Before we proceed with calculating the Green functions, we find that it is possible

to simplify boundary conditions (2.83) by rewriting equation (2.83b) as follows,

dG$, -
d__k(;" 2.86
[dz g 2.86)

and substituting this equation into equation (2.83a) to directly obtain a reduced boundary

condition on G(x)

GHg=0 . (2.87)

If we then substitute this boundary condition back into equation (2.83b) we obtain a reduced
boundary conditions on G Az

mﬂg

=0 . 2.
7 0 (2.88)

7e=d

Moving on to equations (2.84), collecting like terms and using the relation ky = Jerako we

can write,
dGz(é?z dGEsz- k(AN PG
a) |&n dz iz 0 e (GA(,o. GA{}r) —ka(er Agx T GA&x) 2=0 (2.89)
(x) ) 7
dGA z dGA Z (x) {x}
b) erd dzo dzd Z = _Jk ( ADX GA[{’:) z:O

30



from which we immediately see some obvious similarities between these two equations.

Therefore, we can substitute equation (2.89b) into (2.89a) to obtain another boundary

condition on Gm , hamely,

Glinfimo = Glonfo (2.90)

which we can substitute into (2.89b) to obtain a second condition on G% AZ , as,

dG;‘jZ
dz

&)
dGy,
_ Aoz &3]
z:O"[E"" 7 + jkfe,q - 1)Gy ]% . (2.91)

Now that we have obtained reduced boundary conditions from equations (2.83) and (2.84)
we need only to do the same with equations (2.85). The last condition on GE;? can be seen

immediately upon examining equation (2.85a), namely,

(x) )
GAth = Gfi;z

0 (2.92)

z=0
which when substituted into equation (2.85b) yields the last remaining boundary condition

on G,(ji),as

a6 a6y,

dz |Z=0 dz |Z=0 (2.93)

Equations (2.87), (2.90) and (2.93) now define three boundary conditions on G , while
equations (2.88), (2.91) and (2.92) define three boundary conditions on GS'Z) . Writing these
conditions together with the appropriate differential equations to be solved we obtain, for

the Green function G$) , the equations,

d x d?
a) (d—z2 )G” 0 b) (dz —uf,)G(}.——Edd(z 7)) (294

along with the boundary conditions,

dGg| _ dGg)
dz Iz=0 dz Iz-=()

&) Gonjero = G

&) Gl q=0 b o - (2.95)
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Similarly, for the Green function fog we find the equations to be,

& X d? .
a) (d—zz—u%)c;gjﬁo b) (a,—z2 )G() 0 (2.96)

while the boundary conditions are,

dG’(:jZ (x) x)
@) dz = =0 b GAoZ =07 GAdz z=0 (2.97)

dz dz ¥ =0

dGS), G .
) —2& | l}:rd 22 4 (e ra—1)Go

We will now proceed to solve for the Green function Ggi). .In so doing we can write

the solutions to equation (2.94) directly from equations (2.47) and (2.61). This is because

the equations to be solved for G(” (equations (2.94)) are the same as the ones used to solve

for G(Z) in the previous section (equations (2.43)) and so we have,

—t 7z

a) G(l) = Bpe b) G(x) = Age"® + Bae < + Eg (2.98)

Ug
Beginning the matching of the boundary conditions with condition (2.95a) and noting that

the relation z < z' holds in this case we can write,

2ud(Ade‘“ﬂ'd+Bde+“ﬂd) + Egevdd+d) _ o (2.99)

which can be rearranged and reduced to yield,

-F
=,
4 d%

Ag=— Byt _E, (2.100)

2uy

Then, in order to apply condition (2.95b), where the relation z = z’' holds, we note that this

condition is identical to condition (2.45b) on G(Z) save for a permittivity multiplier.

Therefore, since the equations to be matched are the same and the matching condition is

almost identical, we can directly write, by inspection, the solution from equation (2.65) as,

4
-+
e Had

—LloB() == Hd{Ad—Bd)—Ed (2101)
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which, upon substitution of equation (2.100) then yields the following equation for B,.

2ugBo — Ed(e“‘d"*' + e‘”dz')
By=
2ud(e+2”ﬂd -+ I)

(2.102)

Thereafter, substituting this equation for B, back into equation (2.100) gives the following

equation for A,.
~2upBo + Ed(e“‘a’zl + e"‘dz’) ~ug'
e
e+2uad ~Ey

Aa= Zud(eﬂ”a‘d + 1) 2uq

(2.103)

Now, with one condition remaining, (2.95¢), we note that this is exactly the same as condition

(2.45c)on GE;? . Therefore, we can directly write the solution to this condition from equation

(2.68) as,
F17
Bo=As+ B+ Ey (2.104)
2uy
which, upon substituting the above equations defining B; and A; yields,
~2uoBo + Ed( €+Hdz' + e—udz') ( e‘Hle' _ e—udz’)
Bo= (¢t~ 1)+ Eq . (2.105)
2,

2ud(e+2"“‘d + 1)

Rewriting equation (2.105) using appropriate hyperbolic functions, as was done in the

previous section, gives,

_ sinh(ugz') coth(ugd) + cosh(uaz') E, - Np, E, . (2.106)

Bo
Uy + 1y coth(udd) D

where the numerator function Ny, can be further simplified by expanding the coth function
in terms of sinh and cosh and applying a simple hyperbolic identity as is shown below.

sinh{uaz') cosh({uad) + cosh(ugz') sinh{uad) sinh{uAz’ + d))
sinh(u d) sinh{ud)

N, = (2.107)

Before going on, the denominator and numerator functions in equation {2.106) again

demand discussion. As in the previous section, the zeros of the denominator function, Dyg ,

‘and the poles of the numerator function, Np,, will cause problems in the inverse Fourier
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transform integration which takes the dyadic magnetic vector potential Green function back

into the spatial-frequency domain. Furthermore, it is worthwhile to note that the equations

defining fol) , and its boundary conditions, which we have just solved are identical to those

of a vertical magnetic dipole within the substrate [Felsenl]. This can easily be shown by
going back to equations (2.14) to (2.16) and setting the electric current and magnetic vector
potential to zero, (instead of the magnetic current and the electric vector potential as was
done previously), and then repeating the boundary condition calculations and calculating the
solution of a vertical magnetic dipole. This is a very important result since it shows that a
horizontal electric source within a single dielectric, grounded layer can be represented by
using a linear combination of a horizontal electric source and a vertical electric source or a
vertical electric source and a vertical magnetic source. Because of this result the Dygp
function can be seen to be caused by the transverse electric fields existing within the

dielectric which is the reason for the TE subscript.

Finally, we can substitute equation (2.106) in expanded form into equations (2.102)
and (2.103) and by so doing we can solve for the remaining two of the three required

unknowns, yielding,

il BT sinh(udz') —Hy cosh(udz')

B = E 2.108
T Do 2uy sinh{ugd) ¢ ( )
e i N ! ald
A= e Uo smh(udz ) MdCOSh(”dZ ) Eg— € E; . (2.109)
Dre 2ugsinh{uyd) 2uq

Therefore, we can now write the solution for the x component of the magnetic vector
potential Green function for an x directed electric source. In the air region this component

can be found by substituting equation (2.106) into equation (2.98a) as,

N .
GS) = e Egetor (2.110)
Dy
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and for the dielectric region this Green function can be found by substituting equations

(2.108) and (2.109) into equation (2.98b) to obtain,

o _ [ o sinh(zgz’) + ug cosh{uyz’) sin}?(ud(z + d)) B etudez') _ gl B, (2.111)
uDr smh(udd) 2ug

With one component completely solved for we are only half done with this
derivation. To solve for the zcomponent we need to solve equations (2.96) for the conditions

(2.97). To begin we can again immediately write the solutions to these equations as,
a) GSVO)Z — Bpe Vot b) Gz(;zz = Age"d + By t# (2.112)

which are identical to equations (2.98) with no source term present. Applying firstly,
condition (2.97a) to equation (2.112b) we obtain,
g Aqe™ !~ Bgee?) = 0 (2.113)
which can be rearranged to yield,
Ag= BgetPed (2.114)
Then applying condition (2.97b) to equations (2.112) we directly obtain,
By=As+ By (2.115)

and substituting equation (2.114) we are left with,

By

B = e (2.116)
(e*z"d“' + I)
which when substituted back into equation (2.114) yields,
e+2”ad
Ag= By (2.117)
(e*‘?“dd + 1)

Now, to apply the final condition (2.97c) we take the derivative with respect to z of equations
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(2.112) and equate them in the manner demanded by the boundary condition while setting

z =0 to obtain,
tAd—Ba) =~ £raoBo + Jlera— 1) Gind] o (2.118)
which when (2.116) and (2.117) are substituted and the result is rearranged yields,
s (x)
B()(Srdll(} +uy tanh(udd)) = jkd€rq— 1)[G Aor]z o - (2.119)

Examining equation (2.119) we recognize the denominator Dy, from the previous section
and so substituting this denominator and equation (2.110) with z = 0 for the x component
of the magnetic vector potential required we obtain simply,

Bo = %Ed . (2.120)
Substituting this result back into equations (2.116) and (2.117) finally yields the other two
unknowns as follows,

Jk{€ra— 1)Np,
DIEDW(e-le"d + I)

a) By= — E; b As= 2R, (2,121)

Now, substituting equation (2.120) into (2.112a) we obtain the z component of the magnetic

vector potential Green function for the air region as,

s Fkfea— 1N
6 - Aera = UNpg o oy (2.122)
° DreD 1y

and then, substituting equations (2.121a) and (2.121b) into equation (2.112b) we obtain this

Green function component for the dielectric region.

o Jkd€ra— 1)Np, coshufz +d)
GAdZ = E
DD cosh ud

(2.123)

Finally, the total magnetic vector potential Green function due to an x-directed

electric source can be written as,

GY = G5%+6: . (2.124)
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Forthe airregion, this is simply a combination of equations (2.110) and (2.122) and is written

in vector form as,

, 1, jkdesa-1).
GV =N, 4 20T Eqe 2.125

A =\ Doy ¥ DD ¢ ( )
while in the dielectric region this becomes a combination of equations (2.111) and (2.123)

as,

e ( — upsinh(ugz') + ugcosh(ugz') sinh(agz +d))  erdez) _ gnde| ) £
) -

A D1z sinh{zqd) 2ug @

+ sz(srd'— 1)Nho cosh HJ(Z + d) Ez . (2.126)
DreDrs cosh ugd

It is interesting to note before continuing that in the case of a simple horizontal dipole above
ground (i.e. &,4=1) these functions are only defined in terms of the magnetic vector
potential component directed parallel to the source as we would expect.

Now that we have the x—directed magnetic vector potential Green function it is

simple to find the y—directed vector potential Green function as we have previously

mentioned. To do this the following substitutions must be applyed to equations (2.125) and

(2.126), (x) = (), X =y, k, — k, .In so doing the resultant y—directed magnetic vector

potential Green functions become,

1, jkfea-1).Y,

and

c [ —% sinh(zgz') + g cosh(ugz’) Siﬂh(ud{z + d)) _ grudez) _ gudez] B
A~ D1z sinh{ngd) 2ug it

| * {&ra— 1)Np, coshugz +d)
DDy coshu,d

)Edz“ . (2.128)

Obviously, all the previous results can easily be checked through their application to the

appropriate boundary conditions, which must hold.
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2.7 An Interesting Result

In sections 2.5 and 2.6 we calculated the magnetic vector potential dyadic Green function

in both the air and dielectric regions. Now writing the results for the air region in dyadic form

we obtain the following very compact result,

G, -

Np, 0 0
Dix Np,
0 Dy 0

TN (era—1) Ny lea—1) Ny,

E et (2.129)

DreDps

DDy Doyl

which at the air-dielectric interface, (i.e. the surface of the PCB) becomes,

[ 1 0 0
Drg 1
Galo=| O D 0

Fhdera—1) jhlea—1) 1

| DDy DDy Dl

E et (2.130)

This result however, is based entirely on the dipole source having been somewhere within

the dielectric, so let us regress momentarily and assume that the dipole is hovering above

the PCB. To solve this new problem we would simply redo the calculations of sections 2.5

and 2.6 with the source term moved from the defining equation in the dielectric region to the

one in the air region, (equation (2.39)). Since this procedure is so similar to that already

followed we simply state the result to be,

I}

[ — vy coth ugd

G, = 1

= o

0 0

e—zlﬁ(z+z') +

(2.131)

2uaD g Ho — ugcoth uyd
0 2uoD TE 0
Fhdera—1) Jklera—1)  €rqup— ugtanh ud
DeDy DDy 2uoD

| [roo
7—[010 e-ZILE,
“loo01

This new dyadic has some similarities to the one in equation (2.129) and at the surface of
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the PCRB it becomes,

S 0 0 -
Dz 1
Gy, = 0 Dz o |Ewe™ . (2.132)

jk,\(erd"‘ 1) jky(erd_ 1) Erd
| DygDy DD Drm ]

Now, comparing equation (2.132) to equation (2.130) we find that these equations
are identical except for the single component due to a z—-directed dipole. However, since both
of these results are complete solutions and the position at which they occur is in both cases
at the surface of the PCB we would really expect the solutions to be identical. This seeming
contradiction should be examined further to make sure that it actually represents a physical
phenomenon. If it is physically correct it has interesting implications in the design of printed
circuit boards or integrated circuits. The immediately obvious implication is that since the
magnetic vector potential Green function for a vertical electric source is larger for a source
slightly above the substrate than a source slightly inside the substrate by an amount identical
to the relative permittivity of the substrate, the magnetic vector potential itself and hence the
electric and magnetic fields display the same phenomenon. This would indicate that in the
design of printed circuits the radiation from these circuits could be significantly reduced by
reducing component pin length or burying the pins or even the entire components within the

substrate.
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CHAPTER 3

CONVERSION FROM THE SPECTRAL-FREQUENCY DOMAIN
BACK INTO THE TIME DOMAIN

3.1 Conversion from the Spectral-Frequency Domain into the Frequency Domain

In the last chapter we derived the complete dyadic representation of the magnetic vector
potential Green function, Gy, in both the dielectric and air regions for an electric source
residing within the dielectric. For the remaining part of this paper however, we will just
concern ourselves with the dyadic for the source—free air region since for our purposes we

are only interested in radiation within this region. We therefore reiterate this

spectral-frequency domain dyadic in full below,

i Nhg O O i
Drg Ni,
Gy, - 0 Dz 0 ol +ky' o (3.1)

jk.xN h{)(s rd — 1) jkyNho(Sfd — 1) N, Vo
DDry Dyl

L DD
and must now continue on to calculate the electric dyadic Green function, Gg, , in the
frequency domain (and eventually in the time domain). To do this we can either use equation

(2.23), remembering that Gp=0, to calculate Gg, before converting back into the
frequency domain or we can convert G, into the frequency domain directly and then obtain

G, . These two methods can be shown to be identical and so for our purposes we will choose

the simpler approach of converting the magnetic vector potential dyadic Green function into

the frequency domain first.

3.1.1 The Inverse Fourier Transform Integrals
To proceed in the above manner we simply apply the inverse Fourier transform (equation

(2.34b)) to the above dyadic and in so doing write,

1
4n?

G 7,7) = Al oy, ) b IR0 N (3.2)

ilz"'—'”-.B
g ‘=8



which when written as separate equations for each non—zero component of the dyadic yields

the following four integrals.

o }. N . A !
Gﬂ%ﬂ=G?&ﬂ="5jf b kb bbb Ngear,  (3.9)
¢ 0¥ dar DTE
: -0 [ [ jNw, _ o ,
G(,I) X, - (em’ j At ¥ g J{OZ-{-_}{I(X(A X )+k).(y—y )]dk dk 34
Aoz(r y) 4”2 J DTEDTM € xitity ( )
- 1 ) i jkyNh _ ot 1
G(y) ) = (Erd f o oz kdn—a’ J+k y—y )]dk dk 35
Aoz(x y) ) ] DeDang e ARy (3.5)
GEf) (x,y) = 1 ] j Ny, e—ugz+_}{k,{x—-f)+k)-(y-y')]dkl dk, (3.6)
0 4 Dy ’
Let us now apply the following change of variables to these four equations.
A a) ke=kpsing , ky=kycosy  (3.7)
._9\ b) x-x"=gcos¢ , y-y =psing
R This change of variables is basically a
transformation to polar coordinates in both the
0'(xly/z") -y spectral, (3.7a), and spatial, (3.7b), domains,
N with the spatial origin moved to the position
o p
of the source, (as shown in Fig. 5). From this

X

Figure 5: The Spatial Coordinate Relations

a) uo= Jkg-k%

we find that k2 + &3 = k3 , and thereby uo and

1y become,

b) a= B erakd (3.8)

with which the numerator and denominator functions also change appropriately.
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Furthermore, this change of variables also causes part of the common exponent within these

integrals to become,

kfx —x') + kfy—y') = koo(siny cos ¢ + cosy sing) = koo sinfy +¢) . (3.9)

Therefore the integrals, which are now integrable over a polar surface, can be written as,

X 1 N 20 gzt i
ke w) = Cfkg) =3 | | g eoshesitvPldtedy  (3.10)

DTE

C"-—--.S
H‘“—*—-ﬁ-l

== 4

x) 3 (Erd— I) Jko Sin‘t/}NhD ~tpz o0 sinfyp+p)

GAUz(k w)— 0 I f DD o kodkochp (3.11)
0 -xn

®
rd—1 ik, N, o
G (kgdlf) - (3 d ) j j] o COSYNp, e—r;gzﬂkegsm(w-lgﬁ)kgdkgdw 3.12)
0 —r

Aot 4o DrrDrum
@ Jr
1 N, —ugz+jk 0 st
G (ko) = s f J p e P dhydy . (3.13)
0 -

These new integrals can be further simplified through application of the identity [MyintU],

7
jﬂ(kgg )eﬁxﬁ - % J eIk sinlyd) (3.14)
T

where J,,(kgg) is the Bessel function of order n. Using this identity, equations (3.10) and

(3.13) can immediately be rewritten as follows.

Giko) = G\ k) = —21; f g—zjo(kgg)e"’ﬂzkgdkg (3.15)
0
GUAE —21; ] 2;; Jo{ko )& %kqdly (3.16)
0

The remaining two equations ((3.11) and (3.12)) however, need special consideration due
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to the trigonometric functions within their integrals. Therefore, writing equation (3.11) with

respect to its 4 integration only, we obtain,

Ganly) = ﬁ jsin et sl — i}% ] (¥ —eH)eTesnvlay  (3.17)

which, through application of equation (3.14) becomes,
Giodw) = —-;—(e-w_l(kgg)-e+f'¢11(k99)) . (3.18)

Now, making use of another identity which states, J_l(kgg) =—] 1( QQ) [CRC], equation

(3.18) can be rewritten as,

Giokw) =jcospi(kge) 3.19)

and consequently equation (3.11) simplifies to the following.

AL
(x) (srd_ 1) h 1( QQ) —I,
G (k) =~ cos g f D¢ ke (3.20)

Likewise, in a similar manner equation (3.12) becomes,

Gk) = - sin o - = ) Oj N;";g{:j) 2k, (3.21)

to yield the last of the four double integrals in terms of a single integral only.

Now, examining the four Green function integrals which we are now required to
solve, (equations (3.15), (3.16), (3.20) and (3.21)) we find that there are actually only three
individual integrals which we need to solve for. These are shown in the next three equations

along with their relations to the four Green function component integrals just mentioned.

a) Ifky) = % J ﬁ{i;)———ggg)-e"‘“kgdkg B G{ke) = G(ke) = 1i{ke) (3.22)
0
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T Mool keo)

a) Dfky) = "21} " hydky D) G (kg) = Iolp) (3.23)
0
T Nigilk ’ $GY) =

@) I3(k9) B —Z%Jr_g—r;g—:j)e_mkgdkg b) GE@‘U)Z(I{Q) - {ioctos ¢/Ezd~ 1)13(k9) .

0
To go about solving these integrals it would seem prudent to find a solution strategy through

contour integration in the complex &, plane. This is because, as was mentioned previously,
the denominator functions (Drx and Dryys ) and numerator functions (N,, and N, ) yield

poles of the integrand and so the infamous Cauchy residue theorem springs to mind again.
To proceed in this direction we must first convert the three previous integrals so that they
are integrated from — e« — oo, This is accomplished by writing the Bessel functions in
terms of Hankel functions, as is shown below [CRC], and following through with the

elimination of one or the other of these functions.
_Lm )
T{kee) = E[HSI (kee) + H(kc0) (3.25)

Therefore, let us begin this procedure with equation (3.22a) from which the others
will follow in a similar manner. Splitting this equation into two parts (each of which contains

one of the two Hankel functions) yields,

1y(kg) = 1) + 5k (3.26)
where, - GH(I)
o) (k)= % J Nh—l(;—g"’fl eyl (3.27)
0
0 o
n 1Pk - —4-1; j —A—Iﬁiﬂ%@f"@kg%
0

Now, making use of another ingenious identity (equation (3.28)), which is a relation between

the two Hankel functions [Abramowitz],

H(koe™) = - 7 H kg0 (3.28)
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allows us to interchange the functions in equations (3.27). This allows us to only use one of

the Hankel functions were we find that the proper Hankel function to use is that of the second
kind, HS” (kgg) , since it will ensure that the solution we obtain satisfies the radiation
condition, a fact which will be proven before the end of this chapter. It therefore behooves
us torewrite equation (3.27a) interms of HS;Q)(kgg) , which canbe accomplished by applying

the following change of variable.

L

= H L . _ '2‘7.[ i L} _ T L
ko =eTkg=—ky , kodky = ekodky = kodky (3.29)
The limits of integration now become negative along with the argument of the Hankel
function but since the definitions of the Dyx denominator function and the N, numerator
function only contain kg the previous change of variable has no effect on them. Hence

equation (3.27a) can be written in terms of the new variable of integration k;, as,

4] D,
(k) =Zlnf J %e‘"ﬂz@d@ (3.30)

and when it is again combined with its counterpart through equation (3.26) the desired

integral finally becomes,

o
Ii{kg) = 41—” I Lfﬁé@ﬂeﬂ%@d@ . (3.31)

— o0

Similarly then, integrals (3.23a) and (3.24a) become,

o N, 02)( kgg)

1 e
Ig(kg) = _-’:1-.7; j ——W—e Ozkgdkg (332)
and ( )
2)
I [ NaH ko
Lk, =— ot 2 g 3.33
3( 9) A J DDy ¢ e (8.83)
respectively. w
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3.1.2 The Relevant Poles of the Inverse Fourier Transform Integrands
Before moving on into the complex plane let us examine equations (3.31) to (3.33) a little
more carefully. As was discussed in the previous chapter the two denominator functions,

Drg and Dy, as well as the two numerator functions, N, and Nj, , contain singularities

which must somehow be overcome in these integrations. To do this however, we must have
some idea as to where and why these singularities occur. Beginning therefore, with the
numerator functions which are reiterated below,

& N = cosh(ufz' +d))
° cosh{ud)

(3.34)

we find that singularities of N,, occur when cosh(u,d) becomes zero unless the zeros of

cosh(u,;{z’ + d)) , which are of the same order, coincide to cancel them. This cancellation of

singularities is contained between two special cases of N, , which are shown below and are

dependent on the position of the source within the dielectric,

1, 7'=0
N, = 1 "o g (3.35)

] - z =

cosh{uyd)’
where in the first of the two cases, N,, hasno poles at all and in the second case it has many.

Letus now find an equation defining the locations of all the poles of ¥, . To do so we allow

ug to be complex, as u, = a + jB , and substitute this into cosh(#sd) = 0 to obtain,

cosh{uad) = coshl(a + jB)d] = 0 (3.36)

which can be rewritten using a complex hyperbolic—trigonometric identity {CRC], as,
cosh|(a + jB)d] = cosh(ad) cos(Bd) + j sinh{ad) sin(Bd) = 0 . (3.37)

Collecting the real and imaginary parts of this equation we obtain two equations which

define the desired possible poles, where n, = 0,1, 2, ... and we note that negative values
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of n, have not been included, in order to eliminate redundancy. These are,

7
a) cosh(ad) cos(Bd) {= 0. B, = (2n +I)2_d (3.38)

# 0, otherwise

=0, a=0 or B, ="

b) sinh(ad) sin{Bd) { d . (3.39)

# 0, otherwise

For both of these equations to be zero simultaneously we must obviously choose e = 0 and

4 . . 1 . .
ﬁnp = (2np + 1) 23 Thus uy = ]ﬁnp = J(an + I)E at the possible poles of N, . Equating
this result to the actual definition of u; as follows,

4

g = ‘/kgnp“efdk(z) =j(2np + 1) 24

(3.40)

we can obtain the values of k, at which the poles of N, occur (4o, ), namely,

2
kon, =% \/ erdk%—[(2np+1)—§id] : (3.41)

Now, the zeros of N,, are defined by a similar equation which is obtained simply by

substituting z' +d for d in equation (3.41) yielding,

2
fon =% <] a2 (2n,+1)=——2n0o]| . 3.42
on, \/80’0 (nz"' )2(Z'+d) ( )

The cancellation of singularities, which was mentioned previously, occurs when the values

of kgn, and kg, are identical. The criterion for this occurrence can easily be deduced from
the above two equations and is simply,

Z+d | 2m+1 2m+1
d 2n,+1  2n,+1

n, < n, (3.43)

where the positive sign has been chosen since the ratio of z' +d to 4 must be positive and

both n; and n, have been chosen to be positive. Furthermore, we also know that n, must
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be smaller than or equal to n, since —d < 7' < 0 and therefore 0 < z' +d = d.Letus
now give an example to clarify this singularity cancellation relation. If we let n, =0 and

n, =1 the above result yields z’ +d = d/3 or z' = -2d/3 for which we obtain,

2
3z
kgnp = kop, == ‘/erdk%“ (E;,‘) (3.44)

where it should be obvious that this is the first non-trivial singularity cancellation

encountered, (i.e. the cancellation occurring at the largest value of k, (when &, isreal)other

than the one which occurs at z' = O where no poles occur anyway according to equation

(3.35)). Furthermore, this value of £, corresponds to the second occurring pole, (which can

be seen from equation (3.41)), so if the source resides at a depth of z' = —2d/3 within the

substrate the second singularity will be cancelled.

Now, for &,4k3 real, we can see that all possible poles will occur either on the real

ko axis in the range — Verako = kp < V€rako or somewhere on the imaginary ko axis. At
this time however, it is the ones which occur on the real k, axis which are of particular

concermn to us since they lie directly on the integration path for equations (3.31) to (3.33).

Consequently, from equation (3.41) we can see that kp,, will be real if,

T

Verako = (2, + 1)2d

(3.45)

and that increasing &,4, ko or 4 will allow more values of #n, to satisfy this relation, hence
allowing more poles to occur on the real &, axis. Of interest then, is a ratio of thickness to

wavelength below which no poles can occur on the real axis. This ratio can be found from

the previous equation by letting n, = 0 and ko = 2 /A , (where 4 is the wavelength of the

frequency corresponding to kg ), and then solving for d/A as below,

(3.46)



From this we can see that if d becomes too large or 4 too small, poles of N,, could reside
on the real k, axis unless singularity cancellation happens to occur. This is obviously a

useful relation to know for any future numerical analysis of our Green functions.

Proceeding to the other numerator function, N, , we find that it has very similar
properties to N,, and so we will just give corresponding conclusions to the ones made

previously. For this numerator function, two special cases dependent on the position of the
source within the dielectric are again evident and occur for the same values of 7' as before.

These are shown below.
1, z7=0

Mw=1o, 7 --a

(3.47)

In this case however, no poles occur for either of the two extremes of Ny, but as before poles

12

n
do occur for other possible values of z' . This time we find u; = j—Zi— at the poles of Ny, ,

where n, =0,1,2, ... as previously, and the equation defining k,,, is,

kgn, =% [ Enakl- (—’%”—)2 (3.48)

while the equation defining &, is,

kgnz =% Em‘k% - '(Z_,ni% (349)

and the criterion for singularity cancellation is,

7 +d n
- =-Ii , np=n, . (3.50)

One major difference between the results for Ny, and N,, is that for Ny, we get an added
cancellation which occurs for all values of z' when np, = n; = 0 due to the fact that in this
case uy becomes zero and hence both the numerator and the denominator of Ny, become

zero simultaneously. Because of this we can ignore n, = n, =0 in equations (3.48) and
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(3.49) and consider them valid for n, = n, = 1,2, ... With this in mind we can again find

a ratio of thickness to wavelength below which no poles can occur on the real &, axis as,

(=9

1
4 2/en

whose value is obviously twice that of the same ratio for N,, . This tells us that if the

(3.51)

thickness of the substrate or the wavelength for a given frequency is such that, N,, has no

poles on the real axis, Np, will also have no poles on the real axis.

Finally, one remaining question should come to mind regarding the numerator
functions. This pertains to the values that these functions take on when singularity

cancellation occurs. These can be found very simply by taking the limit of N,, and N, as
ko approaches a k,, ~at which such cancellation occurs. Making use of 1'Hopitals rule

[Trim1], we find that for both numerator functions this value is simply,

' +d

__Inz—lt
1yt

(3.52)

Now that we have examined both numerator functions to our satisfaction let us move
on to the denominator functions, D7z and Dgyy . Rehashing the definitions of these

functions as,

a) Drg =g+ ugcoth{ugd) b) Dy = &qup+ g tanh(ud) (3.53)

O mw= R B wi= [~ enkd
we can see that, for all quantities real, up must be imaginary for — ko < k, < kg and real for
the rest of the range of &k, with its only zeros being at £ ko . Similarly then, #, is imaginary
for — /e, qko < ko < J&,4ko and real for the rest of the range of k, with its only zeros being

at £ ve,qko .From this we can immediately see that since both #g and u, arereal, positive

and monotonically increasing in the range |k9| > Je,qko and the hyperbolic tangents are
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therefore also real, positive and both approach a value of one as their arguments approach

infinity, neither Dyg nor Dgqy can be zero in this range. Now, in the range

~Vesako < ko < Verako, ug becomes,
g =k j[erakd - kg = ju'a (3.54)
and so the hyperbolic terms in Dyg and Dy, become,
a) wugcoth(ugd) = u' geot(u'yd)  b)  ugtanh(ugd) = — o' gtan(e’4d)  (3.55)

which are both real. What this means then is that within the range —ko < k, =< ko neither
Dy nor Dyyy can possibly be zero since ug is imaginary and therefore no cancellation can
occur. Examining the remaining range of the real &, axisbetween =+ ko and =+ Ve,sko we

can see that both Dyz and Dy are real functions and although g is monotonically
increasing the trigonometric terms can have both roots and poles of varying sign within this

range. We can therefore conclusively state that all poles occurring along the real k, axis

given a real wave-number and relative permittivity must occur within the ranges
ko < |kg| < Y&rqako . The question then is where are they, how many will there be and is there
a ratio of substrate thickness to wavelength below which no poles can occur.

Considering where these poles occur, we can see that since both Dyz =0 and

Dy =0 are transcendental equations no direct formula for &y, can be found. Their

positions can be found graphically or numerically however, for given values of frequency,
substrate thickness and dielectric constant. Now, although we can not find their exact
positions with an equation as we did with the numerator poles, it is possible to find out how
many poles can occur by noting that both the tangent and cotangent functions have values
ranging from — @ to o forevery multiple of & that their arguments subtend. This means

that for both Dyg and Dy, we will have at most n,+ 1 poles for n, full multiples of 7
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occurring in between + ko and = vVe,qskp. Let us then, calculate the value of n, for

arbitrary values of £, , ko or d.To do so we note thatsince kgve,—1 < u'yg = O as &,

ranges between £ kg and & Ve,qko . the maximum range of the trigonometric function

27
arguments is kod y€,4— 1 . Setting this equal to nr, letting kg = = and solving for n,

we obtain,

", =%£ e 1 (3.56)

where, since n, must be an integer, the value is rounded down. Finally, setting n, = 1 we
can solve for the ratio of substrate thickness to wavelength below which only one pole can

occur in the range of both Dy and Dy yielding,

d 1

2 2/ea-1

This has considerable similarity with the ratios calculated for the numerator functions,

(3.57)

(equations (3.46) and (3.51)). Such a ratio however, below which no poles can occur, can

only be found for the function Dz since this function can become zero only if the cotangent

function is negative which occurs for arguments greater than s/2. Therefore setting

kod Je,q4—1 equal to 7/2 it can be found that Dzg can have no poles below,

1

4J/e4~1

For Dy though, a value such as this can only be found by finding the location of the first

d
7" (3.58)

pole which will occur for some argument of the tangent function less than /2. The

locations of the preceding denominator poles was discussed briefly by Marin et al [Marin2].

3.1.3 The Inverse Fourier Transform Integrals in the Complex &, Plane

Now that we know a bit about the poles of the numerator and denominator functions we can

move into the complex %, plane with more confidence. It is appropriate however, to first



make a few remarks on convergence and propagation, remembering that the radiation
condition requires a decaying and outward propagating wave at infinity [Tai]. Looking at the

exponential e within the integrations which we wish to perform (equations (3.31) to

(3.33)), and remembering from section 2.1 that we are using an ¢*®’ time dependance we

know that each wave in space and time for any individual frequency will be characterized
by the following phase relation, where we have let up =a + jB .

eitgtion - glaiBlighion  pazgilfe-wi) (3.59)
From this it is immediately evident that the first exponential relation, e %, describes a wave
that decays with increasing positive z, only if @ >0 and that the second exponential,
o) , describes a wave propagating outward from the origin along positive z,if 8 > 0.
These then, are the conditions which must then be met in defining our integration path in the
complex k, plane. To meet the above conditions, (Re{uo} > 0 and Im{uo} > 0), we require
a closer look at wug . Note first of all, that this is a square root function and therefore is
double—valued for complex arguments [Trim1]. This can be seen by examining the function
wl/2  which is written below in terms of the magnitude and phase of w where Arg(w) has

been defined between —z and .

Hf’-?l: _ Jmeé.m-gw _ ‘/Me%(ftrgu%ﬁm) =4+ \/MeéArgw (360)

1/2

If Arg(w) is restricted to this range we know from the phase of w'/< that whichever sign

is chosen to represent Jw , this choice will remain constant for any w whose phase is within
this range. Restriction of the range of Arg(w) in this way means however that we are not
allowed to step on the negative, real w axis since this is where the sign of Jw must change.
Therefore, to keep us off this axis we will draw a line called a branch cut along it. This branch

cut emanates from a branch point at w =0 and is simply the ‘dividing’ line between two

w planes (commonly called Riemann sheets [Felsen1}) which yield opposite signs for
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Re{‘/ﬁ} . Now, in the case of #g , if we choose the positive sign of the square root we can
immediately see one of the two conditions specified earlier being satisfied. This is evident
from equation (3.60) since the real part of the phase of Jw , (cos(Arg{w)/2) ) will always
be positive in the above specified argument range. In the &, plane we find however, two

branch points of # , defined at k, == ko , and the branch cuts reside along the lines where
Re{kg—k%] < 0 and Im{kg—kg} =0.If ko is real, these lines are evident by direct

inspection of k3 -3 since the above conditions will hold for &, real and less than [ko| as
well as for kg imaginary. Now, to enforce the other required condition, Im{uo] >0, wecan

let kg =y + jO and ko be real to write the argument of ug as,
3-13 = (y2-82-i3) +2iy5 . (3.61)
Then, since we know from the phase of equation (3.60) that Im{ug}>0 when

Im[kg—k%} >0, the real and imaginary parts of k, must be of the same sign thereby

Im

requiring k, to be in the first or third quadrants
(ko

% Poles duetoD1E

of the &, plane [Felsenl]. ‘

y © Polesduec to D

These above defined criteria will affect V&g 1509.,;;]’{;

the integration contour in the k, plane and so

the aforementioned branch cuts along with the

path of integration which satisfies the radiation
Coe

condition requirements are shown in Fig. 6
. Figure 6: The Contour Integration in the

along with some poles due to Dyr and Dy,
_ ko Plane for the Inverse Fourier Transform

Note that the branch poinfs and poles are

positioned off the real axis since in an actual situation ko will have some loss. The sign of

54



this loss determines the quadrant in which the poles or branch points occur and has been
found by specifying a conductivity in the Maxwell equations and solving for kg ina similar
way to that done in section 2.1. Note also that the path of integration has been drawn to
explicitly show its course through the quadrants giving proper convergence and that the
branch cut residing within the region, encircled by the contour, is never crossed since the
contour is deformed around the branch. The fact that the path passes through the fourth
quadrant where waves are inward propagating does not cause a discrepancy in our result
since at infinity the waves are attenuated. Figure 6 also shows several other branch cuts, one

of which runs along the negative k, axis and is due to the multi-valued logarithm function

inherent in the Hankel function present in all three of the integrals. This branch will cause
no problems for our integration since it is completely outside of the integration contour.
There are also two other branch cuts (represented by dotted lines in this figure) emanating
from the branch points =+ V&,ako . These come from the other square root function, #y,
contained in all of our integrands via the numerator and denominator functions. They are
dotted since they essentially have no effect on our results due to the fact that a change of sign
of uy will always be offset by a corresponding sign change from the hyperbolic functions,
making their effect single valued and therefore an integration around this branch would not
contribute to the integral. Note that if the dielectric slab was not grounded, an integration
around this branch would contribute, from which we see that the contribution would then

have to be a downward propagating space wave.

We can now take equations (3.31) to (3.33) and evaluate them using contour
integration along the path specified in Fig. 6. The result of this integration is, as we know,
proportional to the sum of the residues at the poles contained within the contour and can be

written as, N
telte) = 1o{le) +Fefte) e (ke) = - 273 Res| i) | (362
i=1

where the integral which follows the real &, axis (I, ) is the desired result. Rewriting the

33



previous equation with this in mind we obtain,

N
Ie(ko) =~ 2y, Res[lc(kg), kg,-] ~ I, (ko) ~Te. (ko) (3.63)
i=1
where the integral along Ic_ is zero due to the radiation condition which we enforced

previously. It is useful to note from the form of this equation, that the integration around the
branch cut yields an upward propagating space wave while the residues of the contained
poles contribute to the surface waves supported by the structure. We are now left with two

options as to how we can obtain the result which we desire (I¢, ). The first of these is just

to integrate along Cg while the other requires integration along Cp as well as inclusion of
the residues ([Marin1], [Barkeshli]). As it turns out the first option is usually the better choice
since the exact positions of the poles are defined by transcendental equations and the
integration around the branch is at least as difficult as the integration along the real axis.
Because of this, the next two sections of this chapter will deal with the solution of integrals
(3.31) to (3.33) along the contour Cg which must generally be solved numerically to obtain
correct answers in the near field region. For a far field solution however, we can use an
asymptotic approximation to these integrals to obtain reasonable results [Felsenl]. This
approach is the one we will apply since it is the more interesting of the two in that it yields
a closed form solution of the integrals which gives surprisingly accurate results. The method
of asymptotic approximation which we will use here is known as the method of steepest
descents through which the contour Cr will be deformed to yield a contour along which the
imaginary part of the exponent within the integrand is constant and the real part varies to the
greatest degree [Collin]. The advantage of this new path of integration is that the major
contribution to the result will occur in a very small section of the deformed integration path
allowing us to approximate the result analytically. It should be noted however, that full
integration along this contour will yield results identical to the original contour as long as

no poles are crossed in the contour deformation.

Before deforming the path of integration along Cg into the steepest descent path we
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note first of all that, since we are using an asymptotic approximation to the required integrals
we can immediately substitute the asymptotic form of the appropriate Hankel functions, (all

of which are defined by the following equation),

lim H kg )z\/ 2 ket [ 2 ke (3.64)

kyp—> JI'](QQ ﬂkgg

into integrals (3.31) to (3.33) [Kong]. Writing these integrals as contour integrals we obtain,

1 2% { Nu _yon
Il(kg) = ""—J CR']‘)-;E‘Q 0z 99‘,0'](9 dkg (365)
1 (27 [ Noy wri
—_— — — 0 HoT K0
1ky) ) e Jko di, (3.66)
and
J 2j Nio et
Llkyl=— [ — | ——=—¢& %L jk,;k,dk .67
) 4"’\/:remeome ¢fee (8.67)

from which we can explicitly see the source of the Hankel function branch cut of Fig. 6, (i.e.

the square root of &, function contained in all three of the integrals).

3.1.4 Solution of the Inverse Fourier Transform Integrals in the Complex ¥ Plane

To solve the three contour integrals of equations (3.65) to (3.67) we first convert the spatial

variables from the cylindrical coordinate system into the spherical coordinate system by

applying the following transformations, z = rcos 6,0 = rsin@ and simultancously change
the variable of integration using the transformation, &, = ko sin W . This change of variable

modifies the following parameters as well as the numerator and denominator functions,

Q) dky=kocosWdY b) up=kosin?W -1 = jkocos ¥ (3.68)

0 uy=koSIN2W g,y = jkoe,q— s W = ;2 Je, - sin? W
C
and yields the next three integrals.
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—_—
L(P) = L 21’ Ny it cos(-6) JkosinWkocos Wd¥W  (3.69)
47 7rsing | Cry DTE

47 srsing J Cry Dy

. r N‘; )
L(WP) ! ‘/ 2 0 gkireos(¥-0) [ SinWkycos Wa¥  (3.70)

(W) =L ‘/ 2j ] Nho _ gmitorcos(¥-0) [Eosin i sin Weos WaW  (3.71)

zrsind Cry DTEDTM

Note that, in these integrals the cos term in the exponential was arrived at by using a simple
trigonometric identity [CRC]. These integrals also indicate that the choice of the Hankel
function of the second kind was the proper one, since the exponential within these three
integrals represents an outward propagating and decaying wave for an %% time

dependence.

Letus nowexamine the new W plane in some detail. Notice first of all from equation
(3.68b) that uy no longer contains a square root and therefore looks single valued. This does
not mean, however, that we have lost any information, since what has actually happened is
that the two Riemann sheets discussed earlier have been unfolded and now lie together in

the W plane [Felsen1]. This is evident when we Im

graphically convert Fig. 6 into the W plane as

is shown in Fig. 7. The proper Riemann sheet,

which has Re{uo} > 0, is shown as the shaded

area and the quadrants corresponding to those

inthe kg plane are labeled, Py, P>, P3 and Py.

The improper sheet 1is correspondingly

unshaded and the quadrants corresponding to X Poles due to DTe OPoles due to D™

. Figure 7: The Contour Integration in tf
those in the k, plane are labeled 73,/5,13 and 1gure 1e Lonlour tniegration i the

W Plane for the Inverse Fourier Transform
I, . Note that the arrangement of the quadrants
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on both sheets is determined from the sign of the exponential decay and direction of

propagation in those quadrants [Kong].

Now, with the change of variables which takes us into the W plane we find that

kg =+ ko corresponds to W=z z/2 and, if ky is real, the section of the real kg axis
between =+ ko corresponds tothereal W axisbetween + z/2 . Furthermore the remainder
of the real k, axis maps onto the vertical lines passing through W=+ /2 and the

imaginary axis maps onto the vertical line passing through W = 0 . On the proper sheet then

we can see the poles of Dyr and Dqyy, which correspond to those in Fig. 6, residing in

quadrants 2 and 4 and occurring between ¥ =+ /2 and ¥ =4 /2 + jsm‘l(@) with

the same added loss. At this time it is worthwhile to note that no other poles, besides those
due to the numerator functions, occur on the proper sheet of the Riemann surface. This can
be proven numerically as well as through mathematical manipulation of the denominator
functions [Collin]. There are however an infinite number of poles occurring on the improper

sheet which do not effect the normal integration along Cg,, but may effect the saddle point

integration. As for the numerator poles, it can be shown that they occur along the branch cuts
and so would not effect the original integral but may contribute to an integration along the
deformed path. It should be stated here, concerning these numerator poles, that only the
~locations of these poles have been studied in this thesis, and no explanation of their physical

meaning or their exact effect have been found.

Now, as mentioned previously the steepest descent path resides along a contour along
which the imaginary part of the exponent within the integrand is constant and the real part
varies to the greatest degree. To see what this means we firstly observe the three integrals
(3.69) to (3.71) and find that they all contain a complex exponential which we know is an

oscillatory function and whose exponent can be represented as,

AW) =~ jkorcos(¥-8) . (3.72)
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= ( and are so called since complex

A¥)
3

Saddle points of this exponent occur where

functions such as the one in question have no maxima or minima as a whole but rather, the
real and imaginary parts themselves have maxima and minima. When they occur
simultaneously they form a saddle point (i.e. a graph of the function around a saddle point

takes on the shape of a saddle). Therefore, calculating the previous derivative we obtain,

% = jkor sin(W — 6) (3.73)

from which we can immediately see one saddle point occurring when W = @ . The steepest
descent path which passes through this point is then defined by the condition,
Im{{¥)-/6)} = 0 (3.74)
which simply enforces the imaginary part of the complex exponent to be equal to its value
at the saddle point. From this we can obtain an equation defining the steepest descent path

by letting W =g + jB in the above condition and writing,

Im{- jkorcos(a - 6 + jB) + jkor} = kor[1 — cos(@ —B) cosh(B)] =0 (3.75)

or,
cos(a - @) cosh(f) =1 . (3.76)
Along this path then, f{¥) becomes,
Foap{®) = — jkor cos(® - 0)|y, = — jkor cos(a — 6 + jB),
= — jkor{cos{e - 6) cosh{B) - jsina ~ 6) sinh(B) .,
= — jkor — kor sin{e — 8) sinh{8) 3.77)

which we can see causes the exponential to decay rapidly with » as well as with sinh(8) .

Because of this we can state that the major contribution to the integral comes from the
immediate vicinity of the saddle point. This statement is not altogether true if any poles lie
near the saddle point or steepest descent path or more importantly are crossed when

deforming the original path of integration to the steepest descent path. In this case the
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solution is much more difficult since the contribution from each of these poles must be taken
into account individually. For this reason we will assume for the moment that all poles are
far from the steepest descent path and that none are crossed in the deformation of the path.
The error caused by this assumption will be assessed later in the numerical results of Chapter
4, using the positions of the poles which we took such pains to find in section 3.1.2 as
accuracy indicators. Having made this clarification and assumption we can proceed by
representing all three of integrals (3.69) to (3.71) as follows,

L{®) = A, f F, (@)l AY)qw (3.78)

Coap

and expand F,(¥) in a Taylor series about the saddle point. Doing so yields,

F,(®) = i MFS”’(@) (3.79)

!
m=0 m.

which upon substitution into equation (3.78) and interchange of the order of integration and

summation leaves,

m)
L{®) = A, [F( ) f (w-o)" sdp(“’)dllf}. (3.80)
m=0 m! Codp

Of course, the exponent f;q,(¥) can also be expanded in the same way but since f;z,' (%)

(and for that matter all the odd order derivatives) are equal to zero at the saddle point this

becomes,
(- 9) (w-o)

) (3.81)

Frap(®) = 16) + FAO)———+ o) —

Taking only the first two terms of this expansion and substituting them into equation (3.80)

we bbtain,

!
m=0 m:

m)
( ) A,,ef(f’ Z{F( ( ) j (w_g)meﬁi}(e}(\;f—e)zjqu,} (3.82)
Ceap

which, upon substitution of the transformation f@{@)(¥ - 8)? = - # becomes,

©0

.5 nt) m+ 1)
L(W) = 4,60 S 4 — ) [- f@(a)] = Jr”’e‘Tdt . (3.83)

!
m=0 m:

-~ DO
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This equation can easily be solved using Gamma functions [Collin], and so we are now
trivially able to solve integrals of the type described by equation (3.78). Assuming
furthermore that the first term of equation (3.83) is dominant we can write solutions to

equations of the form given in equation (3.78) in a trivial manner as [Kong],

F (@) - 4, \/ B e (e84)
C.ra’p
where for our purposes f{f) = — jkor and f’(6) = jkor . The solutions of the three integrals

which we desired to solve with the method of steepest descents can now be simply written

by inspection of equations (3.69) to (3.71) and equation (3.84). In so doing we obtain,

—jkor N
L(w) = jezm_ D:; ko cos 8 (3.85)
—jkor N
L(w) = jem 5 ko056 (3.86)
rad Ny,
L{W) =- — k3 i :
(W) i 2cos@sin@ (3.87)

which when applied to the equations defining the Green functions (equations (3.22b),

(3.23b) and (3.24b)) yields,

X . e‘j"‘}’ N

Girl®) = G (W) = 1,(6) = j — D;’; kocos (3.88)

@ e N,

(@) = 1,(6) = k ,
G W) = 1(6) = j—— o-kocosd (3.89)
) e (g,4— 1Ny, 5 .

Gar®) = - cosple,q— 1)15(6) = Y k§cos @ sinf cos ¢ (3.90)

o (g4~ 1)N,
GLW) = - sing(eq— 1)4(6) = = (Era— 1) o f2cosBsinfsing . (3.91)

27 DTEDTM
3.1.5 The Closed-Form Results of the Electric Field Dyadic Green Function
Given the above results for the magnetic vector potential dyadic Green function in the

spatial-frequency domain we can use equation (2.23) with Gr = 0, (which is repeated
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below in spherical coordinates) to obtain the electric field dyadic Green function in the

spatial-frequency domain.
— 1 —
Gr.0.¢) = P (VY- +K2)Gu(r.6.9) (3.92)

Before applying this equation however, we must first convert equations (3.88) to (3.91) into

spherical coordinates and thereby obtain, for an x—directed dipole source,

GS(?, G “.sinfcosg + G smB sing + G(x) cos 6

_ a4 N, ( Jkocos @ . k3{(erq -
2ar °

1) 2.\
cos“@ }sind cos 3.93
D DreDry ) ¢ ( )

Ggi?@ = G$.cosfcosp + G(") cos B sing - G, sin@

Ead N, ( Jkocos®  kolera—
il

Y 1) sin? 9) cos 6 cos ¢ (3.94)

Drx DreDry
and

. . . gk —jkocos® | .
GS%s =Gl sing + G4 cos g = S Nho( ;m )Smfp . (3.95)

Then, since the results for a y—directed dipole source are very similar we can simply write
them in terms of the x—directed results by inspection of the magnetic vector potential Green
functions and the relations for conversion to spherical coordinates given in the previous three

equations, namely,
a) G =tangGh b)) GYp=tangGlhy © GQp=-cotpGay - (3.96)

Finally, the z-directed results are found by again using the same conversion relations to

spherical coordinates as above, giving,

a) GE;?,, = N,

EAd jkocos 6
2r 0

)cose by GPp=-1tanbGP, ¢ GLy=0.(3.97)
™

It is interesting to note that all of the preceding equations are proportional to one half of the

free space radiation from an electric dipole source [Balanis], and so can be considered as the

63



free space solution multiplied by a geometry factor which takes into account the effect of

the grounded dielectric substrate.

Now that the magnetic vector potential Green function has been completely
converted into spherical coordinates we can proceed to solve equation (3.92). To do this it
is first worthwhile to note that all the components of the preceding dyadic can be written as
follows,

e-— jk{)r

GY) = =——£(6,¢) (3.98)

i
7

where f{6,¢) is some function of 8 and ¢ and the superscript u refers to any of the three

dipole directions while the subscript v refers to any of the three spherical components.
Writing the above dyadic components in this way is important as far as we are concerned
since we wish to deal with far field results only, (as was indicated by the use of the steepest
descent method). As aresult of this, any components which have terms varying with inverse
powers of r greater than unity can be ignored. Let us now expand equation (3.92) in terms
of equation (3.98) for one direction of source. Note that the particular source direction is
irrelevant in this case and so no superscripts will be shown in the following expansion.
Therefore, beginning with the divergence term we can write,

V-G, = J—cr—(é;’b)i(re"jk“’) + 27 2 (inag0.0) «2p6.9) | (3.99)

7 ar r-sinfg | a0 g

where the second term of the expanded divergence can be seen to vary with the inverse
square of r. Neglecting this term from here on in and simply performing the derivative within

the first term gives,

—jko?‘

ek €

V-G (1 - jkor) = — jko (6,¢)  (3.100)

¢ e r

~HE2) 2 (1)< 1l0.9)

where one term resulting from the derivative has also been thrown away for the same reason

as above. Now that we have the proper divergence let us proceed with the gradient. Applying
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the gradient operator to the result of equation (3.100) we obtain,

—ikor
VV-GAO =~jk(){f,(9,¢)—§;(e )FA‘ (3.101)

2

e—Jk()r

3 [’5%-(1?(9,¢))63+;i—:}—5 ‘;(f(e qb))qb]} (3.102)

¥

where we can again neglect the second term for the same reasons as previously, giving,

r

g [ edhor ),
VV-Gy, =~ — jkoﬁ(ﬂ,q&):a-; ;

eIk

—ikar
— abf0.0) (o - 1) = B le.g (3109

within which another term was again neglected due to expansion of the derivative. The
dyadic produced by this operator is then obviously,
—-jkor f(l) ¢ ¢ f(y) fgz}(99¢)

0 0 0 (3.104)
0 0 0

VV.Gy, = - K2

while the remaining dyadic within equation (3.92) is,

f""e ) £10.9) f‘Z)G (6.9)
0.9)7570.9)% ¢) (3.105)
fg>s,¢ 136.9) fé

where relation (3.98) was again used. Finally then, combining the above two dyadics as in

—~ikar
= 4
kOGAo = kg

equation (3.92) we obtain the electric field dyadic Green function, as displayed below.

0 0 0
c'Eﬁ_,wer 57(6.9)77(6.9)476.9) (3.106)
J{pem@ (6.4)/56.9)

From this result we can immediately see that there is no radial component of field in this

result, which is expected due to its far field nature.
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Now that we have the electric field dyadic Green function let us write out its

individual components. To do this let us first expand the numerator and denominator
functions using equations (3.68b) to (3.68c)and let ko = w/c, h=1+{z'/d) and ud = jwtg

where,

7o = y&,q—sin20{d/c) (3.107)

and ¢ is the wave velocity in the air region. Using these substitutions the numerator

functions become,

_ sinh(ufz’ +d))  sin(wreh) _ cosh(udz' +d))  cos{wreh)

Ny, = = by N, = - 3.108

D Moo= sz D T coshlud) - coslwrg) o 00
while the denominator functions become,

a) Dryg = ug+ ugcoth(uyd) = ko( jcos @ + rggcot(wtg)) (3.109)

b) D = &quio + ugtanh{uyd) = k()(j{:‘rd cosf Ta%tﬂl’l(ﬂ)tg)) .

It is also useful to write out the multiplication of the denominator functions and rearrange

them slightly for future use as follows.

DDy = k%( jcos @ + g ;Cl-cot(a;tg)) ( jeracos B —1g %tan(wrg))

2
- k%(— £,4€0828 — jcos By g (tan(a)tg) — &4 cot(wrg)) - (1,-9 ?3) )

= k%( %o % ~cos@ tan(wrg)) ( 7o % +£,4c086 cot(cuzﬂ)) (3.110)
Now, using equation (3.106) and a slightly modified version of equation (3.94) the Green

function G% can be written as,

(x) . eIk sin(a)rgh) (jko cos @Dy — kg(sm' - 1) sin’@

Gp = —Jjop 2 sinlwtg) ) cosBcos¢g (3.111)

DDy

where if we expand the numerator within the brackets of this equation using equation
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(3.109b) and rearrange slightly we obtain,

eI sin(wrgh) ke S ( Jjra5—cosf tan(wrg))
27r  sinfwrg) DD

Gg;)e=—jwu cosBcosg . (3.112)

Within this equation then, we can immediately see that most of the new numerator within

the brackets of the above equation can be cancelled by the modified form of DzgDys given

in equation (3.110). Therefore, our final result for this component is,

G(A) — 7 —
Eyf JOH 7o To % sin(an‘g) "jS rd COS 0 COS(er)

e ¢ sin{wzgh)
2mr T d

] cosfcos¢g (3.113)

and the corresponding result for a y-directed source is simply found by applying this
component to equation (3.96b). Moving onto G% we can write, by inspection of equations

(3.106) and (3.95) and use of the previous substitutions,

oSk Sjn(w-l;sk) — jkocos @
2y sin(aﬂ'e) ko( jcosO +1g -f;cot(wra))

GS = — jou sing (3.114)

which simply becomes,

w . e sin{wrgh)

cos 6 sing
2701 (jE’g < cos(wrg) — cos @ SiI'l((O‘L’g)) - (3.119)

The corresponding result for a y—directed source is then found by applying this component
to equation (3.96c). With only the vertical source components remaining we can again write,
by inspection of equations (3.106) and (3.97b) and use of the previous substitutions,

o . e coslwrgh) — jkgcos B

62, = o sind (3.116)
Ef 2nr cos(wrg) ko( Jjeracos 8 — g ﬁ—tan(wrg))

which becomes,

e cos(wrgh)

Gy = jop ) cos@sing® . (3.117)

27y (e rd €08 B cos{wrp) + jro < sin(wrp)

Now, since we already know through equation (3.97c) that the last remaining component,
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G , is simply equal to zero, we know all nine components of the electric dyadic Green

function in the far field. These compare exactly with previously documented results [ Vegni].

3.2 Conversion From the Frequency Domain into the Time Domain

In the preceding section we derived the frequency domain representation of the electric field
dyadic Green function, however, in this thesis we wish to work with time domain fields. We
can therefore obtain these desired fields for any particular single dielectric, printed circuit,
problem by one of two ways. The first is to obtain the spectrum of the electric field for a
particular problem numerically at a given point in space and then convert to the time domain
(probably through employing an FFT). The other way is to analytically convert the
frequency domain field representation into the time domain, and then proceed to obtain the
time domain results numerically through a new time domain electric field dyadic Green
function. The latter is the approach that v.ve will use in this document, and its derivation is

accomplished in this, the last, section of this chapter.

Before performing the inverse Fourier transform on the electric dyadic Green
function we should take a closer look at the dipole source which we used in section 2.1 to
excite the magnetic vector potential Green function defining equation. The reason for this
is that in the previous case the dipole source was simply a three dimensional unit impulse
occurring at some point in space and at time zero. However, if the source does not occur at
time zero but at some initial time, another unit impulse would be needed as defined in the

foilowing current density representation,
() =68(r-¢)o(r-7) . (3.118)

This in turn would require another integral similar to the volume integral in equation (2.25a),
(or in equation (2.26a) with no magnetic sources present), which would then be responsible
for summing up all the contributions to the field from each point in time just as the volume

integral is responsible for summing up the contributions from each point in space. The
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combination of these two integrals is shown in equation (3.119),

E(r,1) = JIJ JGE(r the' i) J(e' ¢ )de' dv (3.119)

where we can see that the the added time integral only adds contributions up to the present
time ¢.This is a reasonable result since currents occurring at future times cannot be expected

to affect currents at the present time or past times.

To now find the time domain electric dyadic Green function shown in equation
(3.119) we proceed to convert the new current density representation of equation (3.118) into
the frequency domain as follows,

Jw) = e72"8(F - ) (3.120)
and therefore include the factor ¢ in all of the components of the electric field dyadic
Green function derived in the previous section. Now, the Fourier transform pair which allows
us to move between the time domain and the frequency domain was given in section 2.1,
(equation (2.3)). In this case however, we only require the inverse Fourier transform, which

we have reiterated below.

)= ] Flo)e™do 3.121)

Before applying this transform however we find, observing the results obtained in the

preceding section, that all of these results can be written in the form,

GPw) = jwe M FNw) = jwe F Y w) . (3.122)

Therefore, substituting this and the time shift factor into the inverse Fourier transform we

immediately obtain,

GEfd) = o [ JoFS w)e o~ g (3.123)

This can then be simplified by using the following two relations [MyintU],
d o
a) Ej{t) < joF(o) by ft—1') < e7? Flw) (3.124)
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in equation (3.123) to obtain,

G(")( ’C— ) GW(r) - (k f F¥w)e % (3.125)

— 0

: r . .
where we have used the variable 7= r———1t' to represent the shifted value of time.
¢

Letus now work at converting the remaining parts of each of the electric field dyadic
Green function components one by one. Beginning with GSD%; we can write by inspection

of equation (3.113) the function remaining to be converted as,

: i h)
F(A) _ H E SIH(&)T@ 6 .
0 () 27 0 d 795 sin(wtg) — je,q cos 6 cos(wrp) cosfcosg  (3.126)

which when written in time domain form yields,

) =t K 127
(z) Y rsdcosﬂcosq) [z) (3.127)
where, )
) - b I sinfoey! e % (3.128)
’ 2z ) 7 ;C;Sin(wﬁe) — jeqcos 0 cos{wry) ' '

—o

To begin solving this integral let us first expand the trigonometric functions containing

omega. In so doing we arrive at,

oo
1 j e"‘jw’fah — e"j(t)fgh Ny
T ” - . e Ja_r[dw
79 %(e*"ﬂ)’t’a — e"ﬂ’fe) + £,4COS g(eﬂwrg + e—_}G)Tg) (31 29)

which when rearranged leaves,

[+ o]
Ig\)(,t.) _ .—]__—‘ €+jﬂ)Tgh . e—jﬂﬂ'gh

27 j (s,d cosf +1p ;j—)e‘Lj“”ﬂ + (Em' cosf —1p %)e"j‘”’ﬂ

ey . (3.130)

Dividing the top and bottom of the integrand by (s,d cos@ + 1y %)eﬂ"’”ﬂ and collecting

exponents we then obtain the following representation of the integral,

oo

Bl -——— |5 | ehlit) i)
(erdcosﬂ +-59§-) 27 1 +x{60)

g (3.131)
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where,

g,4c080 —T95
9) - ( ) 20T o T g0 (3.132)

x =
(erd cosf + 795

Examining x{6) , defined above, we should immediately notice that its magnitude will be

less than one, unless @ = 90°. That is,

]x(8)|= (SrdCOSG~'FG§)|=IFVI <1 . (3.133)
(emr cos B + 17y §—)

Because of this, we can make use of the following identity [CRC],

ORI LGRS @134

and the definition of # (see the definitions prior to equation (3.107)) to rewrite equation

(3.131) as follows.

o0

B = | [ (i

(s,d cos B +17p 5) 27

e-f'wfe(2+%)) i{(_ I,)e oo % | (3.135)

=0
It should be noted at this point that this equation does not hold at 8 = 90° since the
summation itself doesn’t hold in this case. Now, interchanging the summation and
integration, removing any constants from inside of the integration, and writing this

integration separately for each term of the integrand we obtain the following much

simplified integral.

) = Y |5 [ el Fem2mn
(e,d cos 6 +1p ﬁ) )

L [ gHle—gm =2 tlee) gy L (3.136)

—o6

The inverse Fourier transforms represented by the two integrals in this equation are well

known using the property given in equation (3.124b). In the case when F(a)) =1 this
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property becomes, &{r— '} «» ¢ [MyintU], and so we see that equation (3.136) simply

becomes,

.l:),r _ 1 c v r— n_i 7o
Ié ( ) (srdcosﬂ +'zg§-) ,g'){( l"\.) {6 [ (2 d) :l
~(5|“17— (2(n+ 1)+—§-)rg]}} . {(8.137)

Substituting this equation into equation (3.127) and then in turn, into equation (3.125) and

simultaneously substituting the value of 7 we obtain the final time domain expression for

the 8 component of the x—directed electric field dyadic Green function as,

Gy1) = - Frod > {(— rv)"(ia,, _-‘f-a,,ﬂ)} cosfcosg  (3.138)

Zm'(e,d cosf +1g 5—) 10 dt dt

where the two delta functions are defined as follows.

a) o, = 6[1‘——’;— t— (Qn—i—)rg] b) 0,41 = 6|:t—1— t - (Z(n + I) +5—)1:9:| (3.139)
C d c d

Equation (3.138) is now obviously a closed form solution, (albeit an infinite summation),
and we also already know that equation (3.96b) defines the same component due to a
y—directed source in terms of this x—directed solution. So let us now try to put some
significance to the two delta functions in this solution. Obviously, when we apply equation
(3.138) to equation (3.119) to obtain the electric field due to a specific source at a specific
point in time and space these differentiated delta functions serve to extract the time
derivatives of the current at various points in previous time, a combination of which produce
the field at the present time. Note that the extraction of current derivatives by use of the
derivative of a dirac delta function can be accomplished in this case without a change in sign,
(which would normally be present because of integration by parts) since the current
derivative was present on the right hand side of the original wave equation, (2.2a). To see

exactly how this current derivative extraction works we can look at the case when the source
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is on the surface of the grounded dielectric. In this case 7z’ =0 and the first term of the

summation, n =0, yields 8y = 8(t—r/c—¢) and &, = 8(t—r/c—t' —2zp) . Here we can
d : o . .
see that -&-;60 will extract the current derivative at the present time less the direct

propagation time (/¢ ) at a particular current position. This is the last current derivative that
could possibly effect the field at the present time and can be viewed as that derivative which
produces a wave that propagates directly from the source to the observation point. The time
derivative of 6, however, moves yet further back in time by twice the amount of the variable
7g , which was defined in equation (3.107) and represents the propagation time through the

substrate along a path dependent on the permittivity of the dielectric and the elevation angle
. . — d . .
to the observation point. The current derivative extracted by Eé 1 is the next to last current

derivative which could possibly effect the field at the present time and can be viewed as that
derivative which produces a wave that bounces once from the ground plane before
propagating directly to the observation point. The contribution to the field at time ¢ for this
term of the summation is then proportional to the difference between these two current
derivatives. For the next term of the summation, n=1, dg — d; and d; — d, and the
contribution to the field for this term of the summation is proportional to the difference
between the current derivative whose wave bounces twice off the ground plane and the one
that bounces only once. Now, since the summation is infinite we must mathematically
proceed back in time to — o , but realistically we only need to go back to the start time of
the .waveform since before that we can assume the current derivatives to all be zero.

Furthermore, because the (— I‘l,)” term (in which we remember that I', is less than one)

decays with increasing n we only need to go back enough terms in time until the contribution

to the summation is negligible.

Let us now move on to solving for the G% component of the electric field dyadic
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Green function, defined in the frequency domain by equation (3.115). In this case, the

function remaining to be converted within equation (3.125) can be written as,

sin(wrgh)

1’{‘)( )= ) cos 8 sing (3.140)

2 [( Jto 5 cos(wrg) — cos B sin(wzg)
which when written in time domain form yields,

Fg)(r) = ”%0039 smqblg)(r) (3.141)

where,

oo

sin(ewgh)

J ey (3.142)
2n 4 ( Jro 5 cos(wrg) — cos B sin(wre)

Tosolve this integral we proceed, as previously, to expand the trigonometric functions within

the integral giving,

\‘) 1 . e—jwrgh . -i-jﬂ}’fgh .
)= — j — "y (3.143)
27 +Jms +e me'a) + COS 9( +iwtg _ e—ﬂ’fe))

—00

which when rearranged leaves,

X) 1 e wrgh _ e+jcor5h .
=—2;t— J *dew . (3144)
- ( cosf +1p5 +f“”8 (cosG 5 )e J“”ﬂ)

Dividing the top and bottom of the integrand by (cos@ +‘E'9-2-)e+jm" and collecting

exponents we obtain the following representation of the above integral,

T —wnlhel) _+or(h-1)
) = —— |1 ] e 2 T gy (3.145)
¢() (cosB+rg§) 27 1-x(6) ‘

where,

(cos 0 —1p —f;)
) = —— LT _ [, 0% (3.146)
@m9+m§

As previously, the magnitude of x{8) can again be seen to be less than one, unless 8 = 907,

74 . N



and we can therefore use the following identity [CRC],

LSy, Ke) <1 (3.147)

( 1- X(B) ) n=0
and the definition of A (see the definitions prior to equation (3.107)) to rewrite equation
(3.145) as follows.

o0
(2]

. 1 ] T 2 .
T | G ) Dy e R IR
(cos 0+1p %) 20
—00
Now, interchanging the summation and integration, removing any constants from the
integration and writing this integration separately for each term of the integrand we obtain,

the following much simplified integral.

oo

) =~ T 5 [ el el (8.149)
(cosB +1:9§) 710 -

o0

_-213; j eHle-Fm -2+ )y L (3.150)

— 0o

These two inverse Fourier transforms are obviously the same as those used to solve equation

(3.136) and so we can write the result of Ié;‘ Y) directly by inspection of the above giving,

X 1 od " 4
’é”'(“g—)%{l‘{"[ (25)]
—6[:—(2(n+1)+%)r9]}} . {3.151)

Finally, this component can be found in its entirety by substituting this equation into equation
(3.141) and then in turn into equation (3.125) and simultaneously substituting the value of

7 which yields,

) o d d
G = ad T =6, — =0, | b cosBsing  (3.152)
Zm-(cos 0 +15 ﬁ) Zo dt dr "

where the two delta functions are defined as in equation (3.139) and the y—directed result
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can be written in terms of this x—directed result using equation (3.96¢).

Lastly then, we have to solve for the G;jfg component which is defined in the

frequency domain by equation (3.117). In this case, the function remaining to be converted

within equation (3.125) is written as,

Ij
FPlw) = a cos{wrgh) cos@sin@ (3.153)
27y (s ra €08 B cos{wre) + jTo S sin(a)rg))

which when written in time domain form yields,

F&le) = ﬁe cos 6 sin B12(z) (3.154)
-
where, o
19) = = f costwegh) Ty . (3.155)
2 ’ (srd cos 6 cos(wtg) + jra f’f—sin(wtg))

Again expanding the trigonometric functions within the integral yields,

oo

K- |

— oo

€+jﬂ)‘rgh + e—ja)rgh

. , - — % (3.156)
(8racos Bet7 + o) + 79 & (etims — o)

which when rearranged gives,

[+ <]

I(Z) e-l—jﬂ)‘[gh + e—-j&)‘fgh
e ((Emr cosf + g %)e*f“"’ﬂ + (emr cosf —1p %)e“j"”ﬂ)

@) =2—;- e . (3.157)

If we compare this equation with equation (3.130) it is immediately obvious that they are
identical except that the exponential terms in the numerator of the integrand are added
instead of subtracted. Because of this we can simply write down and slightly modify equation

(3.137) to give the final form of this integral.

D) = ! S ~IJ'qd|7 - n_i K
Iﬁ, o (gm,coss +1:9§) g(){( ) {5[ (2 d) 9:|
+ a[,_ (2(11 +1) +%—)m}}} (3.158)
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Substituting this equation into equation (3.154) and then in turn into equation (3.125) along

with the value of 7 yields,

- d d
G2() = £ )| 6,56, | b coshsing (3.159)
£f 2751‘(8,(; cos 8 + g fi—) Z{) ( dt "

where the two delta functions are defined as in equation (3.139). Note that in this case the
contributions of the two current derivatives for each summation term are additive unlike in

the previous results.

Now we have the final electric field dyadic Green function completely defined in the
time domain by equations (3.138), (3.152), (3.96b) and (3.96¢) for the x and y-directed
results as well as by equation (3.159) for the only z-directed result, (note that these results
correspond exactly with [Cicchetti]). These resulting time domain electric field dyadic
components are then all that we require to numerically obtain time domain fields for any
problem, that fits our problem definition, given that the time derivatives of the currents are
known for each point along the printed circuit traces. Several typical problems will be

examined in the following chapter for clarification of the method.
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CHAPTER 4

NUMERICAL RESULTS AND DISCUSSION

4,1 Accuracy Considerations

Inthe two previous chapters we calculated the electric field dyadic Green function in the time
domain by making use of the magnetic vector potential dyadic Green function, which was
first calculated in the spectral-frequency domain and then converted into the frequency
domain through the saddle point method. After this, the frequency domain electric field
Green function was calculated and converted finally into the time domain. Following this
immense amount of work a pressing concern needs to be addressed which pertains to the
accuracy of our time domain results of section 3.2 as compared with the ones which would
have been obtained without any approximations, (i.e. if direct integration had been used
instead of the saddle point method in conversion from the spectral-frequency domain into
the frequency domain). To address this concern in the easiest possible way we can simply
compare the agreement of the exact inverse Fourier transform integration results of the
electric field dyadic Green function in the spectral-frequency domain with its closed form
approximate far field results which we obtained at the end of section 3.1.5. Such a check in
the frequency domain is equally valid to a similar check in the time domain, (except at
6 = 90° where the time domain summation becomes invalid), since we used a direct
mathematical transformation with no approximations to go from the frequency domain into
the time domain. Furthermore, it is easier to test the frequency domain results since our
approximate result is just a simple closed—form algebraic equation, not an infinite
summation, and the exact result in the frequency domain does not require a semi-infinite

integration with respect to time as it would in the time domain.

The first way to test our frequency domain results is to compare them with the well
documented equations for a directed dipole source above ground and in free space. To do

this we simply let ¢,4 =1 and 4 = 1, (since this depth ratio has no meaning for free space
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conditions), in our resultant frequency domain equations of section 3.1.5. Consequently we
obtain the same results as those documented in [Balanis] with a slight modification to the
phase term due to the difference in origin, (ours being at the source and his being at the
ground plane). This is a very good initial indication that the methods and procedures which

we used to obtain our results are justified.

To now further assess the accuracy of our results we must calculate the exact electric
field dyadic Green function and somehow compare it numerically with our approximate
results. Doing this however, requires difficult and hence time consuming, integrations along

the positive real k, axis, which was the reason for finding an approximate method in the first

place. Difficulties aside however, we proceed in this way by first calculating Gg, in the

spectral-frequency domain and then, through those time consuming inverse Fourier
transform integrations, converting into the frequency domain. Note that this is the exact

opposite of the procedure used in chapter 3 where we converted into the frequency domain

before calculating Gg, . Therefore, the electric field dyadic Green function is calculated

from G, using equation (2.32a), which we have reiterated below,

e 1 —
Gr,-—|(VV-+ 13]G 4.1
s LALRL) 8 (@)

and G,, has been defined earlier as,

[ Ny, 0 0 7
Dy Nho
Gy, = 0 D O |Egto . (4.2)
jkANho(sfd_ 1) jk)’Nho(efd— 1) Ny,
| DDy DEDmy Druld

Now, as we did in equation (2.33a) and (2.33c), equation (4.1) can easily be expanded for
each column of C—EO , as in equations (4.3) below, where the direction of the source is

irrelevant and has not been explicitly shown in these equations.

1 [ 8%G.. 8% 8%G
a) Gry=- L Ly T I (4.3)
Jowep ox dxady 0x0z
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1 | 8°G,, %G 8°G
b) Gy =- R Ny e
Jwgg \ dxdy dy oydz

1 [ %G, 8°G 3°G
C) GEoZ = - Aoy + Aoy + goz + k%GAoZ
Jjweg \ 0x0z vz dz

In the spectral domain then, these equations simply become, respectively,

f
! 2 2 . dGay
D Gppm e (k3 R2)G e hkyGay + o2 (4.4)
1 _ dGy
B Gpy= ey = ko Gon (13-13)Gay + Jky—zf]

1 |. 8Gay . dGa 92
Gy, = k, —2% 4 ik 4 +£ G
) Eoy P {J S JKy 7 ( a2 TR0 )T A

and so, applying one column of G, at a time, we obtain for the first column (which as we

remember is due to an x-directed source) the following components of Gg, .

a G-

1 kg—k§+k§ug(s,d-1)
Jogg | Drg DygDy

]N;,OEde“"ﬂz (4.5)

y 1 —k k.k -1
b) GJ%) - Ky . yuo(é‘m! ) Ny Eqe™
Y Drg DDy

JWEQ
1 , ik »(k2.+ k2)(e -1)
3 — jkyug +.] x iy y \erd
JwEQ D DyeDyy

Ny Eqe™

Applying the second column, (due to a y—directed source) we obtain the next three similar

components as,

—kky  kik -1
@) G(y)l - 1 ty K yHO(Srd ) NheEde_uoz (4.6)
jweo | Drg DDy

)
1 |- RBugle,q—1 )

bGP =2y ytolend 1) NjoEae™
Jweo | Drg DDy

.

[ . v (1212 _
co L )= Fyto | Jky(kx + ky)(srd 1)
jweg | Dig DDy

.

Ny E g2
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and finally, for the last column (due to a z—directed source) we obtain,

ik ik
) G(Z) 1 ]k;x,uo NPOEde_HGZ b) G‘(Ezo)y= 1 —J yll{) NGE —H()Z (4-7)
jweo | D jweo | Dy

1 [(B+8)

) G(z) _
Jweo | Dy

Ny Eqe™0

We now proceed to convert these nine components from the speciral-frequency domain back
into the frequency domain by applying, (as in chapter 3), the inverse Fourier transform given

in equation (2.34b). In so doing we use,

— 1 — ) :
Crfx.y.7) == J I (ke Ky 2)e = Wl g i, (4.8)

and apply this integral to each of the nine dyadic components in turn. To do this we first make
the same substitutions defined in equations (3.7) to (3.9) which again allow us to convert the
double integrals of equation (4.8) into single integrals containing Bessel functions in place
of the complex exponential. The procedure to obtain these integrals will not be reiterated
here due to its distinct similarity to the procedure given previously in section 3.1.1 and its
length of derivation, however, the final integrals for the nine components are given in

equations (4.9) to (4.14), below.

Gi(ke) = leeo -2-;— J -5—2—-]\’;,4’ (k@ )e kodtk

1 o e,d ) —1921.3
N, J 200\ k otf o dk 4.9
(DTE DDy ) ho G QQ 08 2( QQ) ¢ e (4.9)

Gféfy(kg)=G%’3x(kg)= 1 sm2¢ ( 1 weq— 1))N;1J2( ) uoszdk (4.10)

JDED Dyz  DigDyy
CIPATLES R ot
GEgy(kQ)_mO - f N (kgg) oy

0

1 I uole,a—1) ( ) _
— - Nyo| Jol & oz 4.11
Oj( D ) Fo 0( QQ)+COS 2¢J2(kgg) e hpdky ¢ (4.11)
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Gf?fz(ke) - COt¢GgEyﬂ)z(k9) B ﬂuiﬁo C;:b j (Du; B

kalera—1)
NiJilkoo Ve k3dk, ¢ (4.12

DDy ;“]1( 99)6 gk (4.12)
@ (@ 1 Jcosg [ up d
GEZM(](Q)=COt¢Géy(kQ)=ﬁUEO . JDTMN"DJl(kQQ)e zmi](gdkg (4.13)

4]

Gk )=————1 J—ILNU Jo(ko@ e H3alk (4.14)
B jweo |2 ) Dy O OVE oo

Examining these equations we find that there are only six components which require
the solution of an integral since three components can be obtained easily from others through
simple trigonometric equalities. Examining these six equations more closely we find eight
integrations are required to solve for all of them. However, these eight integrals can be
obtained through the superposition of several of only six distinct integrals as an observant
reader might notice. Regardless of how the integrations are rearranged for programming or
numerical expediency these are the integrations which must be performed in order to obtain

a solution for the frequency domain electric field dyadic Green function {Sphicopoulos].

The integration of the previous integrals is exceedingly difficult in many instances
so let us examine some of the properties of these integrals to get a better feeling for their
integration difficulties. The first thing to notice is that each of the integrals contains an
exponential term ¢ which oscillates when #g is purely imaginary, decays when ug is
real and positive, and yields a damped oscillation when g is complex with a positive real
part. Now, for our purposes the sign of #y was chosen to be positive to ensure the satisfaction

of the radiation condition and so we know that this exponential will either oscillate, decay
or both. From the definition of ug = ,/ k% — k% then, we can see that along the real axis the

exponential will oscillate for 0 < A < kg while it will decay for 4 = kp and furthermore
the larger the height, z , of the observation point above the dielectric surface the smaller the

period of the oscillation or the faster the decay with respect to the integration variable £, .
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The next thing to notice is that each integral contains a Bessel function of some order, each

of which has a domain which increases with g , which we know is simply the transverse

distance from the source to the observation point. Now, as the domain of these Bessel
functions increases, more oscillations of these functions are consequently realized in the
integrations. Therefore we can see that the Bessel functions and the exponential have a
combined detrimental effect as the vertical distance from the source to the observation point
decreases and the transverse distance increases, since the exponential decays more and more
slowly as z — O, until it doesn’t decay at all when z = O, while the Bessel functions will

ensure more and more oscillations are present as g increases. We can now see why the
integrals which we are required to evaluate become very memory and time intensive at

angles of 8 approaching 90 degrees. To make matters worse, in addition to the above

behavior we still have the poles of the numerator and denominator functions to deal with!

Considering then the difficulties inherent in calculating these integrals we must
proceed with caution. As a first attempt at a solution we can simply use a very high order
gauss quadrature [Recipes], or some such integration technique, and break the range of the
integral into many smaller ranges. This however, produces time consuming and highly
memory intensive integrations but should give adequate results if the segmentation is done
with the period of the oscillations in mind, (excepting the segments near the poles). By a
simple integration trick however, we can improve the accuracy of these integrations and side
step the problems caused by those pesky poles altogether. This so called trick is simply not

to integrate along the real axis but instead integrate off the real axis in the complex &, plane.

This can be done since we know that any such modification of the integration path is valid
and will yield the same answer as long as no poles or branch points are crossed in the act of
deforming the path [Trim1]. Now, as we have previously discussed, all the poles on the
proper Riemann sheet occur on the real axis for a lossless substrate and beneath this axis for

a lossy substrate and so we can be confident that no poles will be crossed in any upward
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deformation of the path that we choose. This new path of integration will in effect avoid
integrating over the poles entirely and furthermore will also help lessen the oscillations due
to the Bessel functions which have to be integrated since the exponential will always contain

a decaying term when %, is complex.

To integrate along such a complex path a C++ program was written which obviously
entailed the calculation of Bessel functions of complex argument [Abramowitz]. This

program was also designed to draw the integrand with respect to k, and an example of the

difference in the integrands along the real axis and one deformed path is shown in Fig. 8 for
a substrate of thickness 1.5mm , relative permittivity of 2.55, a frequency of 1GHz and a
source residing at the exact middle of the substrate. Notice first of all that the pole occurring
at 1.000183 ko (which was found numerically) due to the Dry denominator function
results in a sharp peak in Fig. 8a where the path is along the real axis. Furthermore, the
integrand along the deformed integration path will obviocusly be much easier to integrate and

use much less memory and time, with excellent accuracy.

Given the previous equations for the electric field dyadic Green function components
in cartesian coordinates we now require the spherical components for direct comparison with

our approximate results of section 3.1.5. To obtain these components we can either calculate
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the cartesian components and then convert into spherical components or convert the
integrals first and directly calculate the spherical components. The transformations needed

to do this conversion were given in equations (3.93) to (3.95) and so the transformed integrals

are simply given below for completeness, with G%, = 0 as defined in the previous chapter.

G(x‘)r(kg)=cot¢G(g;(kg)=;wl?o -2%; ] _;_‘2_ nlo{kee Je " hydlt,

. ! HO(srd— 1) —1g21,3 .
Cam f ( Drg DDy )Nh"(‘fo(kﬁ’g) - Jz(kgg))e “kodkg SN0
0

T kalera—1
+cost9 ] ( o g( d ))Nhod’i(kog)e‘”ﬂzkgdkg cos¢ (4.15)

27 Dz DreDru
0
. 1 1 { k3 .
G()(k9)=cot¢G(gO§(k)—R E!%Nhj(k o)k,

1 1 HO(erd = 1) —tig7].3
C4n I ( Drg DDy )Nhﬂ(Jo(kQQ) - 2(;‘99))5 Ykodky ¢ cOS O
0

. < k2 g, -1
_sing f ( uo_Kglera M))N;,oJl(kQQ)e""“deke cosg  (4.16)

Gf;;(kg) -~ tang Gy (ko) = Jw—{eg 12-% f 5 y, Jo{ko@ e kgalk,

1 1 uO(erd— 1) ‘ — .
+_j (Dm_ DreDry )Nh°(J°("99)”2("99))e “hodk ¢ sing  (4.17)

85



-

Ggg?,(kg) = — ! : -1%

N Yo : —2y
f 5 (cos GkQJo(kQQ) + sin Gup/ (kgg))e Ozkgdkg {4.18)
0

JHOEQ ™
6O (k ) = d2 L Mo {0k 1o(k Ouod | ko0 } e o2 dk 4.19
EGB( 9)—}(—0;54—2_; Do sin Bk, 0( Qg)—cos uoh( QQ) e "kpdky (4.19)
- O

Let us now look at some electric fields results given a dipole of constant magnitude
equalto J = (¥ +y+2)/dl, (where dI is the component length of the dipole), at the middle
of a 1.5mm thick substrate of permittivity, &,; = 2.55 . Let us choose to observe these fields
along the E-Plane half cut, (¢ =0, 0 < 8 < 90), at distances of one, three and five
lambda with the dipole operating at, first 1GHz and then 10GHz. Therefore, substituting
¢ = 0 into equations (4.15) to (4.19) and looking only at the & and ¢ components, (since

the radial components are zero in the approximate case), we find that only three components
are non-zero, namely, ES Eg ) and Eff) . The results for these components are shown in

Figs. 9-11 for the 1GHz case and Figs. 12-14 for the 10GHz case where, for each case and
for each component the results are displayed together with a graph of the error. This error
has been defined as,

IEf — 1Ecg

Err(%) = __EE——;T——. X 100% (4.20)

where IEf is the magnitude of the field calculated through integration of the six required
transform integrals and |EcF is the magnitude of field obtained from the approximate

closed form equations. Now, observing these results we can see that, as expected, those
calculated using the closed—form equation agree more and more closely with the integrated
results as the electrical distance from the source increases. Furthermore, all the results show

that the error (which was only displayed up to 10% since any greater error value is

unacceptable) increases with 6 until it goes off the scale. Note also that the error for the

1GHz field results at a distance of five lambda remains under 2% for all three field
components until  exceeds approximately 74° . Similarly forthe 10GHz case, at a distance

of five lambda the 2% error mark is not exceeded by any of the three components until &
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becomes larger than 55°. This increase in error as the frequency increases and/or the
elevation angle decreases is also an expected result since eventually the steepest descent path
gets too close to a pole so that the contribution by the saddle point is no longer the only

contributor to the field result,

Now, as 8 increases, the steepest descent path will eventually cross directly over a

pole. The value of 8 at this point (denoted 8., ) serves as a minimum elevation angle

indicator since as 6 approaches this value the error will begin to increase at an increasing

rate and once the pole is crossed the error becomes much too large for the closed—form result
to be useful due to the exclusion of an entire pole contribution. Finding the value of @.,;

is quite straight forward assuming we know the value of &, at which these poles occur,

(recall that the pole locations for the numerator functions are simply defined by equations
(3.41) and (3.48) while the pole locations for the denominator functions must be found

numerically). Now, beginning with the denominator poles, remember that they occur in the

range kg < lkg| <Je,qko in the ko plane, (or correspondingly between W =+ /2 and

Y=+7/2 +j sin‘l(\/é_,—;) in the W plane) for a lossless substrate. Therefore, observing

Fig. 7 in section 3.1.4 we notice that since the steepest descent path in the W plane crosses
the line W = z/2 with a decreasing imaginary value of ¥ as @ increases, the steepest
descent paths first possible encounter with a denominator pole occurs at the upper end of the
range of possible W . To then obtain the actual value of 8., corresponding to the value of

ko (or W) at which such a pole is crossed we simply take equation (3.76) and substitute

therein, W = z/2 + j# giving,

cos(§~ ec,,.,) ool (4.21)

or [CRC],

(4.22)
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Then, since k, = kosin¥ we have,

kop = ko Sin(§+1ﬁ) = ko cosh(B) (4.23)

0, =sin | 22 ) (4.24)
k@P

Note that this expression for 8., is also valid for any numerator poles which occur in the

and therefore,

range ko< |k9| < V&;gkp. For the numerator poles which occur in the range

—ky = Ikgl < ko inthe k, plane (or correspondingly lie on the real W axis) we simply

obtain the equation 8.,; = a from substituting 8 = 0 into equation (3.76) and obtain,

k
ecrir = Sin—i ('f(')}l) (4'25)

for the value of 8., given the pole location in the &, plane.

Finally, for the numerator poles which are situated on the negative imaginary %,

(or W )axis we can substitute W = jB intoequation (3.76) to yield a similar result to equation

(4.22), namely,
1
0 =—cos | ——1| . (4.26)

cosh(B)

This time however, &y, becomes kg, = kosin W = jkosinh B and substituting this into the

above equation gives the following, where several familiar trigonometric identities have

been used [CRC].

k
Gcril = Cos—i[l/COSh[Sin.h_l(—.g—p-)]} = — COS_i 1/ J
jko

Inthis case kg, is purely imaginary and negative. Therefore substituting &g, = jk;,P info the

above equation and applying another well documented identity [CRC], we obtain the final
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definition for 6.,; due to poles on the negative imaginary ko (or W) axis as,

kr
By =tar ] -2 . (4.28)
ko

Armed with this new information we can now calculate a minimum elevation angle
indicator for our substrate and operating frequencies. Table 1 therefore, shows the location

of the first denominator pole encountered at the required operating frequencies, the

corresponding value of 8, and the elevationangle. It also includes the largest possible pole

Frequency (f)| Pole Position (kgp) 0. Elevation Angle
1GHz 1.000183 4o 88.90° 1.10°
10GHz 1.019068 kg 78.90° 11.10°
All Jeako = 1596872 ko|  38.77° 51.23°

Tuble 1 : The Relevant Denominator Poles

focation (which occurs at ko = @ko or W=n/2+ jsin”i(»/E,—d) as mentioned earlier)

with its corresponding angles since this is valid for any frequency. A numerical root solver
was written in FORTRAN to find these poles and it should be noted that the poles given in
Table 1 at our desired operating frequencies are the only denominator poles present at these

frequencies and are due to the Dy, function. Now, Table 2 is similarto Table 1 but shows

Frequency (f)[{Pole Position ( kg, ) 6 rir Elevation Angle

1GHz ~49.974493 kg 88.857 1.15°

10GHz —4.738143 kg 78.08° 11.92¢

Table 2 : The Relevant Numerator Poles
the locations and corresponding angles of the numerator functions. Note that these pole
locations will change not only with frequency, as for the denominator poles, but also with

the depth of the source within the substrate. Finally, comparing these two tables we find that,
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for both frequencies, the numerator pole is encountered first. It should be stressed at this
point, that the minimum elevation angle indicators should only be used as an indication of
where the error becomes much too large for the result to be acceptable. The actual value of
0.,ir at which the result becomes unacceptable may be much smaller than the one indicated
by the minimum elevation angle and is dependent on the accuracy desired. This is obvious
when comparing the points at which our results exceed 2% error with the values given in the
above tables. Remember that only proximity to a pole is required to throw off the accuracy

of the results, not just actual pole exclusion.

The above discussion of the numerator and denominator poles is important but since
our steepest descent path does not remain on the proper Riemann sheet for its entirety we
can also encounter improper poles whose contribution should be accounted for. These poles
are usually termed leaky wave poles [Felsenl], and their positions must be found
numerically. Given their location however we can also calculate their 8., and elevation

angle indicators in a similar way to that used for the proper poles.

Before ending this section it is interesting to note from Figs. 9-14 that the integrated
Ep results for both the x and z directed dipoles increase as @ approaches the substrate
surface while the corresponding closed—form results become zero at the surface. This is due
to the fact that the closed—form equation assumes that no poles of any kind are present while
the integration obviously takes them into account. The reason for the increase in field result
is that the denominator poles are responsible for the launching of surface waves, so called

since they propagate along the surface of the substrate and decay much more slowly than the
regular space waves with a decay proportional to 1//r [Felsenl].
4.2 Time Domain Results

In this section we will examine and discuss time domain electric field waveforms radiated
from several different microstrip structures. Before we do however, it should be noted that

simple dipole results were compared with [Cicchetti] and found to be identical so we will
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only deal with more complex structures here. Now, as was mentioned early on in this
document, our solution depends on the knowledge of the current derivatives present on each
part of a radiating structure for all points in time up to the present, These current derivatives
will be obtained here using a two dimensional Finite Difference Time Domain (FDTD)
algorithm which uses square cells and assumes a constant propagation time for all lines,
equal to 2/3 the speed of light. This propagation time would in actuality vary depending on
the permittivity of the dielectric and the depth of the source within the substrate
({Pramanick], [Schneider]), but is not relevant for our purposes since the required current
derivatives can be obtained using any desired current simulator, (if it can calculate

derivatives), and therefore accuracy of these current derivatives in not our major concern.

The equation which sums the field contributions from each radiating current cell at
a particular time and source point was given in equation (3.119) and was discussed in section
3.2. In our development and consequent solution of this equation we chose to do the time
integration first for convenience sake and are now left with a volume integration to take into
account the contributions from each radiating current element. As we know, there are many
ways to perform this integration with varying degrees of accuracy. For simplicity of
programming and since our current derivatives were obtained using equally spaced square
cells we have chosen a simple rectangular rule of integration. If more accuracy is desired this
integration can easily be changed or the number of cells in the FDTD current calculation
program increased. It is important to stress again that the currents derivatives can be obtained
using any available current calculation software as long as it can calculate the current
derivatives at each point required by the chosen integration scheme. Furthermore the
accuracy of the fields is directly dependent on the accuracy of the current calculation
software and so for large problems a fairly rough (but generally quick) current calculation
can be adequate to give a general idea of the time domain radiation, and if increased accuracy

is then desired a more robust (but usually slower) current calculation can be used.

Let us begin by looking at some simple, one—dimensional, straight line, x—directed,
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and lossless interconnect examples. To be more specific, let us compare the radiated electric
field for three similar lines residing in (or on) a 1.5mm thick substrate of relative
permittivity 2.55 at three spatial observation points and for two different voltage
waveforms. Let all three lines have a characteristic impedance of 50Q , a length of 4cm and
be matched at both the source and load. Then, let one line reside on the surface of the
substrate, another be buried inside the substrate at a depth equal to 44,44% the thickness and
the last be similarly buried but with vias reaching the surface. Let our excitation current

waveforms be gaussian pulses defined as,
vi{t) = 10exp(~ 222} vV (4.29)

where in the first case 7, = 20ps and in the second z; = 200ps and let us compare their

radiation waveforms at a distance of 1m

2 and spherical angles, 8=0°¢ =0°,
L L <
: ‘e—» 15 6=45°¢=0" and 6 =45°¢ = 180°.
E o <
E’ :‘ {_M_ (é The current waveform and its derivative
7 ;? multiplied by the width of a single cell are
. —_ , ; i ‘ '40 shown in Fig. 15 where the current is
] 56 100 150 200 230 300 350 <00

_ shown at a point just after it has entered the
Figure 15: The Transmission Line Current

_ . line while its derivative is shown at a point
and its Derivative for a Straight,

just before it leaves the line. This was done

One—Dimensional, Lossless Line
for two reasons, the first being simply to
clarify the picture while the second was to show that the line has a 200ps propagation time
as we would expect for the given line length and propagation velocity. This particular choice
of where to examine these waveforms does not cause a problem since the line is lossiess and
matched so we know that the current waveform and its derivative will be identical along the

entire length of the line. Note also that the maximum current value is 100mA as we would

expect for a 10v source with a 50 source resistance feeding a 50Q line.
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Now, knowing the waveform of the
current derivative multiplied by the cell
width allows us to perform our spatial
numerical integration by simply summing
this derivative value for each cell over all
the cells. To do both the time and space
summations a FORTRAN program was
written together with an openlook
windows program for ease of data entry.
The results we obtained for the preceding
lines are shown in Fig. 16 for the broadside

case, (0 = 0°,¢ = 0°), Fig. 17 for the 45

degree  forward  radiating  case,

(6 = 45°,¢ = 0°), and Fig. 18 for the 45

degree  backward radiating case,

(6 = 45°%,¢ = 180° ). The first thing that
we should notice in examining these three
figures is that for the broadside case the
time interval between the first gaussian
derivative waveform and the second is
exactly 200ps, (except in the case of the
buried line with vias which looks slightly
shorter spatially and so the time interval is
about 196ps). This duration is exactly the
propagation time of the current waveform

down the line and goes to show that, as



expected for a lossiess line, the only current values which contribute to the radiated electric
field are those occurring at entry and exit points of the line as well as at any geometrical
discontinuities on the line [Schelkunoff]. This occurs because the field contribution from
each segment of the line is just a time shifted version of the same electric field waveform,
causing all of the individual contributions to add at the propagation times corresponding to
the propagation from the beginning and end of the line to the observation point but cancel
at all other times. This cancellation is also responsible for the opposite signs of the two
waveforms radiated from each end of the line. It should be mentioned before proceeding that,
in actuality the buried line with vias has added discontinuities at the joints between the vias
and the horizontal line but since we used a two—dimensional FDTD method to obtain the
currents these discontinuities are not present and so their contribution to the radiated fields

is not present either.

Now, comparing the broadside results with the results of the forward radiating case,
Fig. 17, we find that in this case the field magnitude has increased and the time duration has
compressed by approximately 94ps. This time compression is due to the difference in the
distance from the end-points of the line to the observation point, (which can be proved
trigonometrically), and to the fact that the current pulse is traveling in the direction of the
observation point forcing the field due to the final current to travel a smaller distance than
the field from the initial current. This same phenomenon also accounts for the increase in
field magnitude since the waveforms of the fields radiated by each current element occur
closer together causing their magnitudes to add up to a greater degree. The exact opposite
is true for the backward radiating case, Fig. 18, in which the field magnitude has decreased
and the time duration has expanded by 94ps as compared to that of the broadside case. This
expansion and decrease in magnitude is similarly due to the fact that the current pulse is
traveling away from the observation point so that the field due to the final current has a larger

distance to travel than the field from the initial current.

It should be noticed that the surface trace radiates more than the buried traces in all
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cases as would be expected. We also find that the buried line with vias radiates a field of the
same magnitude as the buried line at broadside which is reasonable since as we saw in the
the previous section vertical elements do not radiate in this direction. The two @ = 457 cases
are interesting however since the buried line with vias radiates a greater field strength than

the buried line, for the ¢ = 07 case and less for the ¢ = 180° case. This is due to the fact

that in the first case the positively directed via is closer to the observation point and so the
fields due to the two vias end up adding to the radiation from the horizontal line while in the
other case the negatively directed via is closer and the two vias end up subtracting from the
radiation due to the horizontal line. Finally, we should also note that in the case of a buried
line with vias the same expansion and compression as was discussed earlier is obvious but
since the line looks slightly smaller the change in time duration does not keep in step with

that of the two straight lines, as can be seen from the figures.

Now since we found in the preceding section that the accuracy of our results
increases with electrical distance but decreases with frequency and an increasing @ angle
we should try to get a handle on our accuracy in the time domain. Since we have excited the
line with a 20ps Gaussian voltage source we can perform a Fourier transform on this equation
to obtain the frequency domain representation of this source voltage waveform. This is a well
known Fourier transform [Trim2], and so we will simply state its frequency domain
equivalent to be,

20/m

Tw

vi{w) = lOtSJEexp(—erf/tl) = exp(—wz/r?,,) 1% (4.30)

were 7, =2/7;. Now letting @ =2af, 7, = 27ty and substituting into the previous

expression we obtain finally,

10
/) = ‘/J—nfexp(— fz/'z}) 14 (4.31)

where 7= 1 /ryr . This final Frequency Domain result looks very similar to our original time
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domain waveform except for a change in magnitude. Now from statistical analysis [Devore],

we know that a Gaussian distribution takes on the form,

‘/2_;0 exp(~ f2/2{72) (4.32)

where ¢ is the the standard distribution and where + ¢ occur at the inflection points of
the waveform. It can furthermore be shown that, for a one sided distribution, 68.26% of the
area under this curve occurs in the range 0 < ¢t < ¢ . Therefore we can use the standard
deviation as an indicator of the frequency content of a Gaussian. In the case of our time

domain Gaussian the frequency domain spectrum given in equation (4.31) has a standard

deviation which can be found by equating z; to P20 giving 0 =1/ /2 7z;.

In our present case of a 20ps Gaussian we find that the standard deviation in the
frequency domain is 11.25GHz. We then know that the spectrum decays beyond this point
and contains only 31.74% of the area under the waveform. In the previous section we
graphed errorresults for 10GHz and so we shall use this error for our standard deviation error.
The wavelength at 10GHz is 3cm which for our 100cm distance makes the observation point

33.33 wavelengths distant. We will therefore read off the S lambda curves for the component
E,(J-,x) which gives us a maximum error of about 1%. This error is more than acceptable and

would only be better for our actual distance and only slightly worse for our actual standard
deviation frequency. In fact it seems to indicate that our error would remain acceptable for
many frequencies beyond our standard deviation frequency. At frequencies below this
frequency our error decreases since the number of denominator poles decreases until there
are none. However at low frequencies such as those below 300MHz, (which has a
wavelength of 1m making the electrical distance one lambda for our observation distance)

the error will increase again since our distance from the source is no longer in the far field.

Let us now look at the same results for the case of the 200ps time domain Gaussian.

These results are shown in Figs. 19-21 from which we now see that there is no obvious
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separation between the radiation from the
beginning and end of the line, as there was
for the 20ps case. This is simply due to the
fact that the transit time along the line is
much less than the duration of the
waveform. This accounts for all the
waveforms looking identical in shape and
duration but having varying magnitudes.
Looking more closely however we find, as
in the 20ps case, a slight time compression
in the forward radiating case and a slight
expansion in the backward radiating case
but since this time variation is, as
previously, 94ps and the graphs are
displayed in nanoseconds these shifts are
understandably hard to see. Other than this
the behavior is basically the same as that in

the 20ps case.

Now, as we did previously, we can
again find the standard deviation for this
excitation waveform, which turns out to be
1.125GHz. In the preceding section we
obtained results for the 1GHz case which
has a wavelength of 30cm. For our 1m
observation distance this turns out to be

3.33 lambda distant and so we read off the

3 lambda curve for the component E§°
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which yields an error of approximately 0.1% which would again seem to indicate that the
error would remain more than reasonable for many frequencies beyond our standard

deviation frequencies.

Let us now examine a few, more difficult cases using one—dimensional lines. In all
cases we willuse a 1.578mm thick substrate with a relative permittivity of 2.55 . The first
case we will look at is again a 4cm transmission line printed on the surface of the substrate
but with an open circuit at the end of the line and a mismatch at the beginning. The
characteristic impedance of the line is 50€ and the source resistance is 2082 creating the
mismatch. We then excite the line using an exponential rise with a steady state value of one

volt. This waveform is defined as,
vi{t) = [1-exp(~1/z)]V  (4.83)

where 7, = 100ps . The voltage waveform

at the beginning of the line and the @

Voltage (V)

Electric Field - Theta (mV/m)

component of the electric field ata distance

of one meter directly above the center of
- Lo ) o 02 o0e¢ 06 '> 08 1 12 14 6
the line are shown in Fig. 22 where the field Timne {rs)

i L Figure 22: The Voltage and Electric Field
component has been shifted back in time,

o ) . Waveforms at Broadside for a Lossless Line
by the transit time, to the observation point.

Displaying Ringing Effects
Observing first of all the voltage waveform playing Ringing Eff

we should note that the current entering the line is 5/7v(r) due to the voltage division caused

by the source resistance and the line characteristic impedance. We then observe several
exponential curves occurring on top of one another but each delayed by 400ps from the
previous. This delay is simply equal to the propagation time to the end of the line and back.
Therefore we see in the the first 400ps interval the exponential trying to reach 5/7V, (0.71V).
At the end of this interval the reflected wave from the end of the line adds to the existing

voltage, (note that this waveform is identical to the waveform initially launched since the
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end of the line has a reflection coefficient of 1). However, since we are observing the voltage
waveform at the beginning of the line we also have another reflected wave from the
beginning of the line adding its contribution simultaneously. The voltage reflection

coefficient at the beginning of the line can be calculated to be --3/7 and so the overall effect
of the incoming and reflected wave is only 5/7(1-3/7lv {1}, which has a peek of 0.41V.
Adding this voltage to the initial voltage we obtain 1.12V which we can see is what the
waveform is trying to reach after another 400ps interval. At this time the incoming wave is

equal to the last wave reflected from the beginning of the line or 5/7(~ 3/7v(t) while the
next reflected wave is equal to 5/7(-~3/7)~3/7 ) giving us an overall effect of

5/7(=3/7)(1 - 3/7(r) which tends toward —0.17. Adding this to the first two exponentials

yields 0.95 and now this is the value that the waveform is trying to reach after the next 400ps
interval. As this oscillation continues we can see the wave approaching a steady state value
of one volt which would also have been the case had the line been matched. Now that we
understand the behavior of the voltage we see that the field results follow a similar pattern.
This time however we obtain a jump in the field value at the beginning of every 200ps
interval followed by an exponential decay. This again is due to the radiation from the ends

of the line which we know have propagation times differing by 200ps. The ringing which

is apparent on top of the exponential decay 60%60 grid — X

. . . 50 Q

is most likely due to numerical el AN/
250Q é

inaccuracies in the calculation of the 50Q

current derivative which is close to being

infinite at the beginning of each

508 l

)

exponential decay. Note that these results

are identical to the ones obtained by ¢ 509i iSOQ
y

{Bridges2].
Figure 23: The Geometry of a Complex,

Moving on to a slightly more ] )
One-Dimensional Interconnect Example
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complicated case let us examine the radiation from a combination of lines printed on the
substrate and having both x and y directed sections. Let us excite each of these lines
simultaneously with identical 50ps Gaussian pulses. The geometry of these lines is shown
in Fig. 23 from which we ;:an see several discontinuities which will add to the overall
radiation. The board that these lines are printed on is centered about the origin, has an overall
size of 4dem X 4cm and has been modeled using an FDTD grid of 60 X 60 cells to obtain
the current derivatives along the lines. The current simulation was run for 698ps to allow
all the waveforms to die down and the
current waveforms present on these lines at
two instants in time are shown in Figs. 24
and 25. Fig. 24 shows us these waveforms

as the T—junction on the middle line is

Figure 24: The Gaussian Waveforms for reached while Fig. 25 shows us the waves
the Complex Example at a Time of 262 ps being reflected by the unmatched load on
the upper line and the T—junction on the middle line as well as the absorption of the currents

approaching the ends of the two bent lines. The # and ¢ components of the electric field

for several 8 angles in the E-plane are
shown in Fig. 26 where the time duration

of each of the graphs is from 320ps to

420ps. We again notice the familiar

Figure 25! The Gaussian Waveforms for

compression and expansion of the 6

_ ) the Complex Example at a Time of 409 ps
component depending on if the waveforms

are propagating toward the observation point or away from the observation point. It is

interesting to note that the ¢ component has a slightly later starting time than the 6
component which is due to the fact that only the x—directed sections of line radiate Eg while

only the y—directed sections radiate Eg4 and obviously all the lines begin in the x—direction.
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a) Theta Component

b) Phi Component

Figure 26: The E-Plane Radiated Electric Fields for the Complex Example

at Several Values of Theta
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The final case which we will look at is that of a bent ‘fat-line’. This line is basically
identical to the bent line in the previous example and is printed on the same substrate. This
line has the same center length as the previous line but is 4mm or 6 cells wide. Now, as the

line becomes wide with respect to the pulse duration the waveforms begin to reflect between

the walls of the line and not only directly
back on themselves. For our purposes we
have excited this ‘fat-line’ with a 30ps
Gaussian pulse. This pulse width begins to

show the preceding property but not to

Figure 27: The Gaussian Waveforms for

such an extent that the reflections take an
the Far-Line Example ar a Time of 210 ps
b f210p extremely long time to die down. In this

case the current simulation was run for 931ps to allow the line to settle down and the current

waveforms present on the lines at two
instants in time are shown in Figs. 27 and

28. Figure 27 shows the waveform just

after it has hit the comer while Fig. 28

Figure 28: The Gaussian Waveforms for

shows the reflection and transmission from

the corner as they are about to be absorbed. the Fat-Line Example at a Time of 350 ps

The 6 and ¢ components of the electric field for several 8 angles in the E-plane
are shown in Fig. 29 where, as in the previous example, the time duration of each of the
graphs is from 320ps to 420ps. As before we again notice the familiar compression and
expansion of the & component depending on if the waveforms are propagating toward the
observation point or away from the observation point. The ¢ componentagain has a slightly
later starting time thanthe @ component since our Gaussian propagates down the x—directed
section of line first. We not_i.ce however that this time the ¢ components of field look

basically identical to each other but their magnitude decreases with the elevation angle. This
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a) Theta Component

b) Phi Component

Figure 29: The E-Plane Radiated Electric Fields for the Fat-Line Example

at Several Values of Theta

105



is due to the fact that now the waveform is propagating away from all of the observation
points in the exact same manner where the change in magnitude is simply caused by the
formula for this field component which decays as cos@ . Many more examples could be
demonstrated in this section, however the ones already shown have one or more of the
general characteristics of any lossless example we could probably think of, Besides, the idea

here was to show the merit of the method and not to grind out one example after another.

Before concluding this chapter though, it is worthwhile to note some approximate
computation times for the previous results. All of the following times are for the broadside
instances, were calculated by the /usr/bin/time command on a Sun Sparc 10 workstation and
include the actual user cpu times only. The first set of examples for the 20ps Gaussian
travelling along the surface and buried lines took an average of approximately 6.15
seconds.These lines consisted of 60 cells and the results were calculated for 200 time points

giving us an average incremental time (time/(cell*timepoints)) of 512 s. The 200ps

examples on these same lines took an average of approximately 1 minute 23.75 seconds and
since we now used 800 time points we get an average incremental time of 1.75ms. It is
interesting to note from this that the average incremental time increased from the previous
by afactor of 3.4. Since the number of cells remained constant for these two cases this means
that as the number of time points increases more time is spent for each time point, (on
average). We can see that this must be the case by remembering that the result for each
component of field at each point in time is due to a summation from the start of the waveform
to the present time. Therefore as the present time increases a greater number of terms are

included in the summation. These summations could be made more efficient however since
they decay with the factors (- I,)" and I’} and so eventually the contributions of any added

terms makes only negligible difference to the answer. This was not implemented here since
accuracy and not speed was desired. As for the remaining examples we find that the

exponential took the longest since it had the largest number of time points at 1370. Together
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with this it used 120 cells (rather than 60) for increased accuracy (the line length remained
unchanged at 4cm) and took an average of 9 minutes 44.7 seconds to execute. Then the
“fat-line’ consisting of 720 cells and 400 time points took 5 minutes 20.6 seconds and finally
the complex one dimensional case consisting of 228 cells and 300 time points took
on average 2 minutes 14.5 seconds. In closing it should be mentioned that these times will
increase for angles of @ greater than zero since the value of 75 decreases with # and so
the number of terms in each summation will increase since the time between the two adjacent
time derivatives of the current decreases. A similar effect occurs for buried lines and was
evident for the preceding buried line examples for which we took the average between the
buried and surface lines. The effect was extremely small for the 20ps Gaussian pulse and

about a second in the case of the 200ps pulse.
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CHAPTER 5
CONCLUSION

5.1 Summary and Conclusions

In this document we have developed, in detail, the procedure for obtaining a closed form far
field approximation to the time domain electric field dyadic Green function for a single
dielectric, PCB problem. To do this the frequency domain dyadic Green function was
developed first and although parts of that development have been done before, they were
included, discussed and explained herein so as to aid future researchers in this area. This was
deemed important since no detailed explanations of such developments seem to exist, (at
least not one that someone new to the area can understand). The method used thereafter to
obtain the time domain dyadic Green function from the frequency domain Green function
was developed by the author and the results were shown to be identical to those of [Cicchetti].
The time domain dyadic Green function was then implemented in a FORTRAN and
openlook program and several results of lossless lines and collections of lines were displayed
and discussed. Some results of this work have already been published, [Lohsel], or will be

published in the near future, ([Lohse2], [Lohse3]).

Following the actual development of the method we demonstrated that the saddle
point method, which was used to obtain the closed form result, yielded excellent results when
compared with the actual integrated results in the frequency domain. For example, at a
distance of one wavelength from the source we found that the results had an error of less than
2% for a frequency of 1 GHz and quite a large range of @, (up to about 50° or better
depending on the component). We also found that as the frequency increases the error
increases due to the steepest descent paths approach on one or more poles or branch points.
The locations and effects of these poles were discussed throughout the document and even
though their contributions were not included in the saddle point approximation to the inverse
(spectral-frequency to frequency domain) Fourier transform integral it was shown that these

poles have anegligible effect at frequencies up to and beyond I GHz at observation distances
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greater than one wavelength. Furthermore, at very small elevation angles it is only the branch
point that causes this error to occur. Then, in the time domain we proved that our closed form

method yielded physically interpretable results very quickly.

It should be obvious that more complex structures than the ones analyzed in this
document could be addressed without modifying the existing method. For instance, PCBs
consisting of many traces or multiple layers of the same or similar dielectric material could
be easily analyzed with good results. Furthermore, the method has shown distinct
advantages over frequency domain methods, one of which was that current waveforms
which have a wide band frequency content can be evaluated with one simple summation
instead of requiring the solution of the radiated field at many frequency components. For
similar reasons, using this method to obtain time domain results and follow that by an FFT
to obtain the frequency domain spectrum is also a reasonable and desirable approach to
analyzing wide band waveforms. The ease in programming these results was evident from
the simplicity of the resulting time domain dyadic Green function and so the fact that such
a program can easily be written to take current results from any available signal integrity
software and compute the time domain fields in a short time is a definite asset to circuit

designers and EMC engineers alike.

The down side of this method is its restriction to board level radiation only since this
type of radiation is completely unrealistic in most real word problems where enclosures,
cabling and other scatterers are present. Having said this, it is perhaps possible to incorporate
this method into many, more general, applications to increase its scope and extend it

usefulness.

5.2 Recommendations for Future Work

Future research in this area is definitely warranted since quick, approximate methods are
always required even with the ever increasing computer power that is available today. For

instance, to rigorously solve a printed circuit board problem where the board contains
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thousands of current traces or elements would take many days or more. Therefore a quick
approximate method which has a reasonable error over a certain range of some variable can
be invaluable. To the circuit designer or EMC engineer, who doesn’t care about a perfect
answer (which is realistically unattainable anyway), an indication in a reasonable amount

of time, of where an EMC problem may occur may be more desirable.

Future work which is a direct extension to this written document could be to further
analyze the effects of the surface wave (denominator) poles, the numerator poles and the
leaky wave poles which were discussed herein. A novel way of incorporating the effects of
all these poles in the time domain summation would be extremely valuable in increasing the
accuracy of the method. Other than further pole analysis, numerical methods to account for
more realistic finite transverse dimensions or multiple layers of different dielectric material
could be very useful. Finally, a parallel development using a lossy dielectric and/or ground

plane would be warranted to make the method more robust.

Lastly, it would be interesting to further investigate the result obtained in section 2.7
to determine if this is a physical phenomenon or simply some sort of mathematical
discrepancy. Such an investigation would perhaps bring greater understanding to the

radiation principles of printed circuit structures.
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