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ABSlRACl

A finiLary caLegory is defined iri t,Lris v¡ori< as a

st+e j-eLaJ-1y smail cat e¿ory Q such LhaL Lhe set or'

ilorphisms bctwccn any two 1.-obJècLs is finit,e.

i,iany combinat,orial probÌerns can be vie-r,reci as

relating Lo quarìtiLies involving appropriaLe finiLary

caLegories " Ln lhis v¡ork general Lect-ln j-ques for

analyzing such prooleins are developed ar¡d applj_eci to

varj-ous typical exa.ü'r ples,

'Ine chief tool i.n such an analysis is Lhe notion of

V¡e cal-I a set-valued funcLorS - r e p r e s e n L a þ i 1 i L y .

S-representable if' ít Ís the disjoinL urrj-on of

represcnra.bie f'uncLors. l¡¡ith lhis j-ciea, various oLher

ca.Legonical- concepts are general_ized. For exanple, we

der j.ve a concept of an S-procigcL, a good il-ÌusLration

of which j-s given by the collection of su'oclirecL

prociucLs irr ¡he cartesian product of' two f iníte seLs.

It is an S-product in the caLegory of'finiíc seLs anci

surjectlvÈ maps.

Vihen such an S-produet is preserì¿, it is possibie

wifh the frnitary caLegory a comiluLaLive-r"o ASsOciale

ring i'¡iLhin xhich rnany combinaLoria-L caÌculalions can

ire carrieci ouL i¡rLh f'acility. A concepL of

S-ad.iointness ail-ov¡s one to esLabi-ish homomorphisms

beLween such rings which also frequenlly encapsulaLe a

greaL deal of combinaLoriaÌ ínf or:nalion. iìor example,



using such Lechniques, ue âre able to prove the

following resul-L:

LeL Lhe function Q' on t he posiLive integers oe

oef j-ned as Lhe f uncLion whose value aL Lhe i-nt,eger k :'. s

the I'n-Lh difference of'0k"; thaL is,

Q-(k) = ^n 
ûk = n!S(k,n),

n

v¡here S(k,n) is Lhe designated Stirling number of the

second kinci. '1 iren, Qn ís equal t,o a unique polynorniaÌ

with integrat coef'ficienLs in the functions Q for

primes p less t,han or equai f o n.
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CHAPTER ONE

INTRODUCT]ON

This chapter will- provide some examples and ( hopef utJ-y)

some molivation for the theory Lo be developed in the

following chapt ers .

A rrnul-tiplicationlr of two f inite algebras ( in the sense

of u.niversal- algebra) of the same type is defined as the

formal sum of their subdirect products ( Ioosely speaking).

The problem is then posed as to whether this multiplicaLion

is associative. That this is so is proved in two different

!úays. En route, a number of interesting combinalorial-

relaLions are derived, which beconè lhe focus of later

deveJ-opmenLs.

Two specifÍc cases are then studied: first, that of

finite algebras without any openations (i.e., finite sets)

and then, finiLe Boofean algebras (which are dual, in the

sense of category theory, to fínite sets) . SeveraL

cl-assical results involving binomial coefficients and

StirJ-ing numbers are proved, plus a f ew ne$r ones. Perhaps

the most satísfying of the new resul-ts is the following:

For integers n, k > 1, l-eL S(n,k) Oenote a Stirling

number of the second kind and S(-,k) denote the

corresponding function on the posilive inLegers. Thert,



S ( - , k) is expressibl-e as a unique potynomiaL in the

functions S(-,p1), S(-,Þr), ..,, S(-,p"), where thu pi are

the primes l-ess than or equal to k.

(¡'or example, s(-,4) = I tf -,2)2 - s(-,3) - : s(-,2) . )'o-o
The chapter concl-udes with some noLational- remarks LhaL

anticípate the caLegory-theoretic viewpoint which wiIl

dominate the rest of Lhis dissertation.



1. A Mul-tiolicalion Derived from Subdirect Produet,s:

lie use the term "algebrarr in the sense of universal

algebra; i. e. , a set with operatÍons. Two aJ-gebras are of

Lhe same type if , loosely speaking, they have the tt samerr

operations. (ln that case, il ís possible to speak of an

algebra homomorphism from one to the other.)

Now let I be a cl-ass of finite aJ-gebras of lhe same

type, which is cl-osed under the formation of subalgebras and

of Lhe direcL product of two atgebras. Thus, e couJ_d

consist of aIl- finite groups, all- finiLe p-groups, finiLe

Iaftices, finiLe distribuLive lattices, eLc.

Let C be a skeletal sel for C; thal is, C conlains

exacLly one member from each isomorphísm class of algebras

in C. Form the f ree Z-modul-e Z(C) on the eLements of C;

J-oosej-y speaking , Z(C ) consists of al-l- formal-, f inite l-inear

combinations of the members of c with integer coefficients.

Thus, íf we wnite C = {4, : j- e Ii, where I is some

suitabl-e indexing set, then an arbitrary ei_ement v of Z(C)

can be wrilten as:

v = f v(i)A.
iãr I

where the v(i) are integers only a finite number of which

are non-zero.

If Bl and BZ are algebras in e, then Bt * BZ denoLes

their direct product; whil" n 
1 
r B,t * BZ -> 8.,, and

nZ, Bt * BZ u BZ denote the natural proieclions of Lhe



direcl product onto ils first and second factors,

respecLively. A subalgebra B of Bl * BZ is subdirect in

B,t * R2 if n,, (B) = Bi and nr(B) = BZ. f n other words, B is

subdirect in Bl * RZ if the restrictions of n1 and nZ to B

are surj ective. Define a mul-tiplication in Z(C) as foffows:

I.-or A. and A . in C, set1J

(1.1) A. . A.i = ¿ r(í,i;k)Au,1¡k

where r(i,j;k) is the number of subaJ-gebras B which are

subclirect, in Ai " Oj and isomorphic to Ak. (Thus,

r(i,j;k) is the number of subdirect algebras in the

isomorphisn class defined by Ot.)

We nolr pose the following problem: ts lhe

mul-tiplicaLion defined by equation ( 1.1 ) associative?

lrle shaf 1 prove this in two ways. For our f irst proof

r¡¡e require a f ew def initions:

If B. and B^ are two algebras in C, let D|.8., B^]t¿t¿

denote the family of all- surjective homomorphisms lrom

B1 to 82. For each Ai in C define a corresponding

Z-Iinear map di: Z(C) + Z on basis elements by means

of the f ormul-a:

(t.z) dí(Aj) = llD[Ai, o¡].



(In this work, Lhe symbol ttlnu shafl stand for ttthe

number of el-ements inrr a given f inite set. )

Prooosition (1.3): Let B,! , 82, and U3 be arbiLrary

algebras in C, arrd l-et W be Lhe f amily of al-l- algebra

homomorphisms h: Bi o BZ " 83 such that h(81 ), the

image of Bl under h, is subdirect in BZ * 83. Then,

there is a natural- orìe-one correspondence between l,i a,nd

D[81' 827 x D[81' t¡].

Proof: Given a pair of surj ecLiv e homomorphisms

(f, g) e D[81, Bz] x DIBr, t3], one derives a

corresponding honomorphism (f, g>: B I * BZ * B3 by

the prescripLiori (f , g)(x) = (f(x), e(x)). Since

n1 o (f, g) = f and nZ o (f, g) = B, and f and g are

surjective, it follows that the image of (f, g) is

subdirect in BZ t 83, alrd hence

(f , g) e !,.l . Conversely, if h: Bl * BZ r B3 has a

subdirecL image, then it yields a pair (n,, o h, nZ o h)

of surj ective homomorphisms. QED

The above proposiLion can also be staLed as

f ol-l-ows:



Let tB* : x e XÌ be the family of all subdirect

al-gebras in BZ " B3 ( suit.ably indexed ) . Then,

(1.4) p[81, Bz] ' piB1, t¡l = tJt") D[n,, B*].

The union on the right hand side of ( 1.4) is of

course disjoint. This immediately gives us the

following proposition:

Proposition (1.q): F'or each index i e f , the map dl

defíned by ( 1 .2) preserves multiplication. That is,

(1.6) di(Aj)di(Ak) = di(R. " AH)

for al-l- Oj, At e C

Proof : If ote thaL the lef t hand síde of ( 1 .6 ) is simpty

#(DIAi, oj] x DIAi, Akl ); while the right hand sicle is

di(l r(j,k;m). Ar) = ; r(j,k;m)(+¡ lAi, Aml),

which clearly counLs the number of el-ement,s in the

(ais¡oint) union U(*) DIAi, B*], where th" B* vary over the

subdirect algebras of Oj ' Ak. (SimpIy replace each B* by

its isomorphic copy in C. ) Bul by proposition ( 1 ,3 ) these

t,wo counts must be equal. QED



lle used the awkward phrase t'preserves multiplicationrr

in the above instead of the preferable description "di is a

ring homomorphismrtsince r^re do not yel know lhat Z(C) is a

ring under the muttiplicat,ion ( 1.1 ); Z(C ) will be a ring if

this multiplication is associative.

Since the multiplicaLion in Z is associative, it fol-Iows

thaL f or any el-ements v, , !2, y3 e Z(C) ,

dr((v,, ' yz) 'o3) = d.(v1 " (oz. vr))

for all indices i in I. We shall- show that there are

I'enoughtt of these homomorphisms _di so LhaL this f act impJ-íes

that

((v, '12) 'o3) - (tt (or' vr)),

and thus compl-ete our first proof of the associativity of

(1.1).

Towards this end, consider ZC, the space ofl all-

f unctions ¡[ : C + Z. ]t is a ring under pointv¡ise

operations. That is, if &1 , ,2, ZC, Lhen the funclions

"1 o EZ anci ]{, ' y-2 are defined ("pointwise'r) by the

equations:

(tt o Ez)(Rt) = w,(Ar) * !z(Rr),

and (t,, . -w2)(Ai) = r¡,,,(nr) . t2(oi),

for all A. e C. Now define the Z-tinear map d z Z(C) * ZCI

on basis el-ements by lelLing d(Ar) be the function whose

value aL A*, d(4.)(4.), is simpty d,(4.), and, of course,J' r- J - -J 1

exLenci d Lo the resL of Z(C) by lineariLy.



Thus, by definition, we have that

d(4.)(n-) = d*(4.) = IÉDLA., A.l;a J -J ]-' J', l_-',

consequently, if v = I v( i)4. is an arbiLrary eLement of
i

Z(C), then d(v) = ) v(i)d(4. ), the function in ZC whose
i

val-ue at, a point Oj e C is given by the equation

(1.7) d(v)(Ar) = ìv(i)(#p[A., 
A.]).

(gecause of the form of lhe equation (1.7), in which

summation occurs over the right hand argument j_n the

expression #DlA., Ai], we shall refer to Nhe process of

f orming d f rom iLs rtcomponentrr homomorphisms d, as

r¡LinearÍ zaLion on the right't . )

IL is cl-ear that lhe Z-linear map dz Z(C) + ZC is

also ttmul-tiplication-preservingrt, since lhe mul-tipJ-ication

in ZC is defined pointwise, and eachrrcomponentil Oj of d

pre serves mul- tipl ication .

!'Je now aim to show that d is failhful (i.e., injective);

from which fact the associalivity of ( 1.1 ) is immedialely

deducible.

fn orcier to show that d is faithful, iL is necessary and

sufficient to show that the image of the basis efements of

Z(C), nameJ-y td(4.) : i e f i, forms a l-inearJ-y independent



_Cset in Z-. As a first step towards lhis resulL, define the

relation tr>ti on Lhe set C by:

(1.8) A¡- , oj if p[Ai, oj] / Ø.

It is imnediately obvious that the relation ) is both

transitive and reflexive. A little thought, shows LhaL it is

al-so anti-symmeLríc. (ff there exist surjective aj_gebra

homomorphisms f: Ai -' A, and g: Oj + Ai, Lhen since

the underlying seLs are finite, both f and g must be

bi j ective. But an aJ-gebra homomonphism which is a set

isomorphism is al-so an algebra isomorphism. Consequently,

A. and A. are isomorphic as algebras; which by ther_J
definiLion of C means that A. = 4..)fJ

In other words, ) is a partial order on C. Also note

lhat d(A )(nr) = d.(A.) = Q unl-ess Oj ) Oi.; while

d(4. )(nr) / o. (rrraL is, d.(Ai) / 0 if and onty if

A, > A..)Jr-

Proposítion (1.9): The Z-l-inear map d : Z(C) + ZC is

faiLhfuI.

Proof: As stated, vle must show that the set td(Ai) : i e Ii

is l-inearly independent. For inf inite sets, J-inear

índependence means that any finite subseL is Iinearty

independent. Thus, let f,/ = {Ai(t), Ai(e1,..., Ai.(n)} be an



arbif.rary finile subset of C, and suppose Lhat z

r,d(Ai(1)) + rrd(or(r)) +...+ "nd(or_(n)) = 0.

lrl e cl-aim that ,1 = ,2 r . .. = "n - 0, and therefore fl is

linearly independertt. For suppose othervlise, that aL l-easL

one of Lhe ?. is non-zero: We may assume 0 has been indexed
].

in rrnon-decreasingrr order; i.e., íf Ai(") a Ai(t), then

s 5 t. This means that the funclion d(Ai(sl) . ZC Lakes on

zero vafues at poinLs in the sequence o after Ai(s),

Let r be the first non-zero term in the series
S

= Y d(4., ,)(n., ,) = 0.s-- 1(sl f(s,r

But, -d(a'("))(Ai(")) / 0, and Lherefor" "" - 0, a

contradiction. QED

CoroLl-arv ( 1 .10 ): The mul-tiptication ( 1 . 1) on Z(C) is

associaLive.

(11, Yrt...t "r,); 
Lhen,

Lr,o(or(t)) + rrd(oi(r)) +...+ rr,d(Ai(r,r)J(ni(s))

This compl-etes our first proof of Lhe associaLívily of

the multiplication (1.1). Under t'his mutLiplication, Z(C)

is a ring. Indeed, it is clearly a commutatíve ring.

Bef ore vJe begin Lhe developmerrL of the secorld proof , it

will be helpful to develop some notation. Let us use

Z(C, Ð.> to denote Lhe Z-modul-e Z(C) equipped r¿ith the

10



mufiiplication ( 1.1 ) , and with the ( f'aithful) ring

homomorphism d: Z(C) * ZC

We noi¿J construct a second such structure. Begin by

defining a second multiplicaLion on Z(C) via the

prescription:

(t.ll) o, 'oj = Ak,

wheru Ak is the unique algebra in C isomorphic to Ai t Oj.

As bef ore, hre extend ( 1 . 1 1 ) to aÌl- of Z(C) by Iinearity.

This muLtipJ-ication is clearly associative, and under it

Z(C) is again a commutative ring.

It is also possible to find a natural- ring homomorphism

from Z(C) (equipped wifh the multiplication (1.1 1)) to ZC :

F-or Bt and BZ j-n C, 1et C[81, 
"ZJ 

denote Lhe fami]y of

a1] algebra homomorphisns from Bl to 82. For each index

i e I, defj-ne the Z-Iinear map gi: Z(C) * Z on basis

el-ements by c.(A=) = /ÉCLA-, A.l.1 J 1' J

Proposition (1.12): For al-l i e I, the map gi : Z(C) * ZC

is a ring homomorphism, assuming Z(C) is equipped wilh the

nutLiplication ( 1. 1 1 ).

Proof: The proof fol-l-ows immediately from the fact that for

al-l- B, 81, Bz e C, the sets O[n, Bl] r O[9, BZ-) and

11



9[¡, Bt " BZI are in a naLura]- one-one correspondence, and

Lherefore their cardinalifies are equaI. QED

We now proceed lo define as before, from the collection

of alL the ring homomorphisms c. the ring homomorphism
Ic : Z(C) * 2". To be quite explicit, c(Rr) is the function

on C whose value aL Oj is given by:

c(ar)(nr) = lÉcIAj, oi] = ej(ar).

(¡fternatively, we say that c is obtained by 'rlinearization

on the right" of the express j-on #C I A j , Ai ] . )

FoIlowing the same nolation inLroduced above, l-et

Z(C, C> denole the structure consisting of Z(C) equipped

with the nultiplication (1.11) and the ring homomorphism c.

!'Je shaII now show thaN the two structures Z(C, !-> and

Z(C, C> are isomorphic; that is, there is a Z-linear

isomorphism l: Z(C ) * Z(C,\ which is boLh an isomorphism of

the multiplicalions invofved, and also commutes wífh the

ring homonorphisms c and d.

llje define t on basis el-ement" Ai e C by the formufa:

(1.13) r(Ai) = ì ¿(i,i)4.,
J

where t(i,j) is the number of subal-gebras of Ai isomorphic

Lo A ..
J

12



Proposition ( 1 . 14'ì : The f ol-Iowing diagram commutes f or all

i e I:

Proof: It suffices to verify this for the basis

el-ements A = e C. Thus, we must show
J

cr(Ar) = di(t(Aj)) =nI t(i,k)or(an),

oF, (referring to the definitions of gi and d.) that

(*) í'g[Ai, Ar] = I t(i,k)(tÉp[A., Ak]).
LJk

Let tU* : x e XÌ be the ( suiLabty indexed) famil-y of al-l-

subalgebras of Ak. Since every algebra homomorphism from Ai

to Oj corresponds to a unique surjective homomorphism from

Ai to a subalgebra of Oj, iL is cl-ear that Lhe sets

C iA. , o j l and U( *) U[4. , B*] are in a one-one

correspondence.

Furlhermore, from the definition of lhe coefficients

t(j,k), it is cfear ihat the right hand side of (*È) is equal

d.
L

Z(C)

.l
I

Z(C)

13



Lo /ÉU(") DLA , B*1 , which from what we have just said must

be equal to the l-ef t hand side of ( * ) . QED

bie shal-l- now show Llnal, L is a homomorphi sm of Lhe

mul-tiplicaLions invol-ved. Agaj-rr, this needs to be verif ied

only on basis el-ements. lrJrite the mul-Liplicatiorr ( 1.11) i-n

lhe form: 4., '4. = [ t] =), where p(i,i) is the uniquef J P(I,J,

index in I such that Ai * Aj is isomorphic to Ap(i,j).

Thus, we want to prove:

(1.15) t(Ao{i,¡,,) = t(4.) 't(Aj),

where the mul-tipJ-ication on the right hand side of ( 1 . 15 ) is

thaf given by (1.1). The proof hinges on the following

simple femma:

Lemma (1.16): Given algebras A, B e C, set:

iA* : x e XÌ to be the family of subaJ-gebras of A,

{u, : y e Y} to be the famiry of subalgebras of B'

(Uotn sets appropriateJ-y indexed). For each index i e I,

let:

Ui(A * B) be the family of subalgebras of I x B

isomorphÍc to Ai,

u-i(A x B) be Lhe family of subdirect subalgebras of

A x B isomorphic lo Ai.

Then, for al-l- i e f ,

14



Ui(A x B) = tJt(x,yl lrli(Ax * Bu).

Proof : CIearly, U. (A * B)ä U {*,y) }tí(Ax , Bu). On the

other hand, if Ar is an arbitrary subalgebra of A x B

isomorphic to Ai, then Ar is subdirect in A* " Ur, where

A* = ïr1(A') and tu = nz(A'). (Here n,,l and n2 are the

natural- projecLions of A x B onLo its first and second

facLors, respecLively.) Consequently,

ui(A * B) g U(*,y) !'J.(Ax * rr). QED

Prggosition ( 1.17 ): The map L is a mul-Liplication

preserving ilâp, L : Z(C, C) * Z(C, D>.

Proof: Expanding both sides of (1.15) we get:

: t(p(t,i),m)Am = : t(i,k)r(i,n)(l Ao,)
m k,il m

= I (l t(i,k)t(j,n)r(k,n;m))ar.
m k,tr

Equating coefficients, we see thal Lhe required result is

equivalent to the equation:

(1.18) t(p(i,j),n) = I t(i,k)r(j,n)r(k,n;m),
k,tr

for aII m e f , The Ieft hand side of (l.lU) is clearJ-y the

number of el-emerits in Um( Ai ' O j ) . 0n the other hand, a

term of the form t(i,k)t(j,n)r(k,n;m) counLs lhe number of

subalgebras (isomorphic to Ar) of Ai * Oj which are

15



subdirect ín A__ x B__, where A__ < 4.. B I A*, r^rith A-_ = A,_X Y' 1, Y: J' X K

and B = A This surn is equal (via l-emma 1.16) Lo theyn
rìumber of el-ements ín U (4. x A.). QEDmfJ

It, remains only to show that, t is in fact an

isomorohism. It suffices to show thaL L is invertible as a

Z-l-inear map t : Z(C) * Z(C); if it is inverLlble, then ¿-1

al- so preserves Lhe mul- tiplications j-nvolved . Towards this

result, r¡re def ine another partial order on C:

SeL A. 4 A= if A. is isomorphic to a subalgebra of 4..-1J1 
J

Thus, A*r-J

aJ-gebra homomorphísm Ai * Aj. The following are some easily

verified assertions:

(i.19) a) 5 is a parfiat order on C.

b) The seL (Ai)- defined bY

(A-)- = {A= e c : A*]. J J: 1

generated by Ai) is finite for all- Ai e C.

c) t(i, j) I 0 if and only if oj 5 Ai; Lhus, r^re

may wríte L(Ar) = I {t(i,i)1. : (nr 5 Ai)}.

d) l(i,i) = 1 for all- i e f .

Because of (c) and (d) above, vre can write:

t=a+l¿,

where 1 is Lhe identily mapping on Z(C), and ¡¿ is defined

by:
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(1.20) _u(a.) = ; r(i,j) A-t R.<R. J

J1

where of course "Oj . Airrmeans t,hat Oj 5 Ai

bul A. r' A..Ji-

Cal-I a l-inean endomorphism s: Z(C) * Z(C) locally

niJ-potent íf for all w e Z(C) there exists a positive

irrLegen n such that sn(w) = 0. ClearIy, for s to be

locally rrilpotent it suffices thal s saLisfy this

condiLion on basis elements.

Prooosition (1.21): The Z-Iinear endomorphism u

def ined by ( t . eO ) i.s locaJ-ly nitpotent.

Progf: Define the support of an efement vr = I w(i)A*,i'
denoted by supp(w), by:

suPp(w) = tA, e C: w(i) / 0i.

Thus, for example, the supporl of t( A, ) for any i is

the order ideal (Ai)-, and supp( u(Ai) ) = (Ai)- - {Ar} .

Of course for any w e Z(C), supp(w) is a finite subsel

of C.

Now note that j-f Ai is a maximal element ( under -l)
of supp(w) , then Ai É supp( u(w) ) . Let ( supp(w) )-

denoLe the order ideal- generated by by the set supp(w).
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Since ( supp( w) )- is the union of the prinipal order

ideals (Ai)- for Ai in supp(w) (ie, a fínite union of

finite sets), iL is clear that (supp(w))- is also

finite. But now if t¡I / 0 (ano hence supp(w) I ø ), hle

have a proper containnent

( supp(w) )- ) ( supp( u(w) ) )-,

since the maximal- elemenLs of suPp(w) are not in

suPP( u(w) ) .

Consequently, the sequence:

(supp(w))- a (supp(u(¡¿)))- 3 (supp(r¿2(w)))- 3

is strictly decneasing until- we hít a poinL al which

ut(*) = 0, but since the sets ínvolved are finite, this

must occur after a finite nunber of steps. QED

Prooosition (1,22): If s is a localJ-y nilpotent tinear

mapping z(C) z(C) , then "! + 5 is invertible.

Proof: The inverse of s is gíven by the formufa:

Of course the sequence on the right is infinite, but it

rtconvergestr in the sense thaL when appljed to any

element r^r of Z(C) it yietds only a finite number of

non-zero Lerms. That it is the ínverse of (1 + s) is

easily venified by applying (1 + s) to the right hand

side. QED
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The above proposition shows lhaL L is invertible'

and lhus our second demonstration of the associativity

of lhe multipJ-ication (1.1) is complete:

Since the mulfiplicabion in Z(C, C> is associative,

and sinc e Z(C , D> is isomonphic to Z(C , C) , it f olloi^rs

LhaL the nultiplicaLion in Z1C, D> is also associative.

Needl-ess to sâV, the byproducts of our ínvestigaL j-ons

are of grealer interest than their putative object' the

associativity of ( 1.1 ).

The resul-ts can be briefly summed up in the

following commutative LriangJ-e of ring homomorphisms:

( 1 .23) ZC

logether with the fact that I is invertible.

Before we go on to apply these concepts to some

special cases, Lhere is one more f ormula that v,ie wish

to der j-ve, Towards Lhis obi ective, l-eL us suppose that
-1t ' is given by Lhe formufa:

\

.¿

Z(C,\

,l
I

Z(C)
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t-1(nr) = I w(i,j)a,
J

Then, it is not harci to derive the rrinversj-onrr of

formul-a (1.18):

(1 .2\ ) r( i, j;n) = | w( i ,t<)w( i ,m) t( p( k,m) ,n) .

k,t

The proof foll-ows the same pattern as thaL of (,l. tB):

expand the equation t-1{A. 'A.) = L-1{R.,) " t-1{Rr)- t J- I' J

(keeping in mind that the mul-tipliealíon on the teft of

the equal sign is in Z(C, D), while that on Lhe right

is in Z(C, g> ) , and then equate coefficients.

hie shal-I now see what these results l-ook tike in

one particular ( and inLeresling) case,
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2- Finite Sets:

VJe noüi turn our attentiorr Lo lhe simpfesL possible

class of finite algebras: those wit,hout any operatíons

aL aJ-l; i . e . , f in j-te seNs without any additional-

sLr uc t ure .

Denole the cl-ass of all finite sets by N-. I

skel-etal set for N is given by:

fJ = {4,,, A2,...,4n,...i,

where A.- is a set with n elements, say A.- ="nn

i1,,2,...,nÌ. (In l-ine wiLh our at,Lj-tude LhaL lhese are

finite algebras, vte exclude the emply set from

consideration. )

Ln order to be abfe to interpret the resufLs of the

previous section in this conlext, ïIe introduce some

notation:

LeL q(i,j;k) = nunlber of subdirecL subsets of

A. x A = of card:'-nality k . ( f'fris is perhaps more easilyrJ
conceptual-ized as the number of i-by-j (0,1 )-matrices

whÍch have a 'l in every now and column, and which

contain precisely k 1ts allogeLher as entries.) Then

ihe mulliplication (1.1) takes the form:

(2.1) A. " A. = I o(j ;'r'\n' 1 ^i - 
I 

9\f,rJsni*.o-'
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Denote the fanily of all- surjecLive maps from a

f inite seL A to a f iniLe set B by Q[¿, E], anci sei

Q(i,¡¡ equal to #QlAi, Ajl; t,hus Q(i,¡1 is the number

of surj ective maps from an i* sef to a j- seL. The

quarìtity Q ( i , j ) can be expressed in terns of more

traditional comì¡inalorial- expressions as f ol-l-ows:

The number of ways of partítioning an i-seL inlo j

bl-ocks is given by the Stirling number of lhe second

kinci S(i,j). AlternaLiveJ-y, S(i,j) j-s the number of

distincl quotient sets of an i* set which are of

cardinality j. Since every surj eclive map from arì

i-set to a j-seL carì be decomposed uniquely as the

natural projection onto a quotÍerrt set (of cardinalify

j ) f oll-owed by a set isomorphism, j.t, j-s easily deduced

that Q(i,¡; = jlS(i,j)"

Wit,h this in mind, we know thaL the Z-linear map

e.tZ(¡l)-+ Z defined by -Sr(Aj) = Q(r,i) = lÉQlAr,Ojl

is a ring homomorphism r¡hen Z(N ) is given the

mul-tiplícation (2.1) Consequently, appl-ying g," lo

boLh sides of (2.1) aL once yields the foll-owing

multiplicalive idenlity for lhe quantiLies Q(i,j):

(2.2) Q(r,i)Q(r, j) = I q(i, j;k)a(r,k).
k

A little fiddling with this (using lhe equaLion Q(i,¡1

= j!S(i,j)) then yields the corrèsponding



nui-tiplicative formuf a

seconci kind:

for t,he Stirl-ing numbers of the

(2 . J) s ( r , i ) s ( r , j ) {(c(i,i;k)k! )/(itj!)iS(r,k)_1-L
k

a) gr(A*) = Q(i,j) = 0 unl-ess i > j. (tne naturalr-J

order on the i-ntegers corresponds to the orderrr)rrof

the previous sectj on. )

b) -s.i(Ai) = Q(i,i) i!

The f ollor.iing ( easily verif ied )

mentioning:

resul-ts are al-so rvorth

the ring Z(N, Q>; Lhus

write '! instead of A 
1 

.

i j;

Q(i,¡¡. (ProoL: Apply

q(i,i;k)Au to get:

c) At ís

Lhe se qu.e1 we

lhe idenLiLy of

shaIl generally

in

d) q( i,j; k) / 0 if and only if max{ i,j } 5 k

q(i,i;ii) = 1.

e) rf i ì j, Lhen q(i,j;

-s. lo the eouation A. " A-
-1 '].J

i!Q(i,i) = q(i,i;i)i!.

Alternatively, orìe may note that

cardinaJ-ity i that are subdirect
trgraphsrr of surjecLive maps from

:'-) =

_r-L
k

the only

in A. x
1

A. to A.1l

subsets of

A. are the
J

.)



Now lel NLA,

AtoB(landB

derived from the

B I cienole the

both finite).

direct product

famiJ-y of al-l- maps from

The multiplication

is of course simply:

(2.4)

For each index

by:

n.(R.)
-r_ ' J'

A. ' A = [...T J IJ

i, we get the Z-l-inear map !i def ined

tÉNIAi, Uj]

Thus n: Z (N ) -' ZN is Lhe z-Iínear

component is !ii esserrtially, n(Ar) is
( i¿enfifying Oi wilh the integer i) i

5)(z

map whose i-th

the funclion
r -Ll+ J

This def ines the ring Z<l\i, N), which also has A I as

its identity. The fact that nU is a ring homomorphism

for each index k reduces to the trivial equaLion ( ij ) 
k

. k .k= i" j". The ríng homomorphism t: Z(N, N) * Z(N, 8->,

â ta ( 1.13), is given by:

(2.6) r(Ar) c(i,j)A.,

where C( i , j ) is the number of combinalions of j things

out of i, or equally, the number of subsets of A- oft
cardinality j

(l¡ote thaL writing 1 for A, and hence i for iA1,

this sum is i + C(í,2)A2 + + C(i,i-1)Ai-1 + Ai.)

-t-L
i>1
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0ur basic commutative triangle means that

(g.. o t)(4, ) = n.(4, ), which expandeci becomes:'*r_ R- -r-- R'

(2.'t) I c(t,j)Q(i,¡¡ = ; c(k,j)j!s(i,j) = ki,
iìl iì1

a r^iel-I-known identity involving lhe Stirling numbers

S(i,j) (cf. IR]-.l, p.34).

Nor^r using the f act that t is a ring homomorphism,

and in parlicul-ar equation ( 1 . 1B ) , we gef the

inLeresting identit,y :

(2.8) c(ij,m) = I q(k,r;m)c(i,k)c(i,r),
k,rì_i

since in this context the index p ( i , ¡ ) is simpJ-y ij .

}le can, with a Iit,tle extra work, spêciafize ( 2. B ) to

the case i = 2 and obtain the foll-owing idenlity:

(2.g) c(2j,m) = I c(r,m-r)22''mc(¡,r).
r¿(n/2)

The proof of (2.9) f ol-lows f rom the f oll-owing f emma:

Lemma (2.10L:

a) q(2,r;m) = c(r,m-r)r?r-m if r ( m f 2r;

b) q(2,r;r) = 2Y - 2 (which is also Q(r,2)).

Proof: Interpret q(2,rim) as the number of 2-by-r
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(0, i )-matrices such that every roll and cofumn conlains

à 1, and with precísely m entries equal to 1. In such

a malrix there must be precisely (m - r) cof umns of the
1form (; ), while the remaining r - (m - r) = 2r - m
I

col- u'mns musL be of the f orm t Jl or f 
1 I . Thus there ar e

C(r,m-r) hrays of choosing the t]l columrrs, and ,2r-m of
I

choosing the remaining columns; and this gives us (a).

The above argument breaks down for the casè m = r

when there are no col-umns of the form t]1. As before,
I

there are 2r ways of choosing the columns, but two of

these (namery ,;; jl and ,?? ?,, do not satisry
the conditions l-aid down. tience, q(2,r ir) = 2? - 2

QED

Pnoof of (2 ql:

Using (2.8), i^re can write:

C(2j,m) = I q(k,r;m)C(2,k)C(i,r)
1_<klz
15r5j

2q(i,r;m)c(j,r) q(2,r;m)c( j,r)1L
rl1

_r-L
rì1

Noini, in the

which case q

r _f m f 2r;

substituting

simplifying

first place,

(1,m;m) = 'l 
;

i.e., unless

in the above

sl ightiy , vre

q(1,r;m) =

secondly,

(n/2) 5 r

via l-emma

set (2.9).

0 unless r = m, in

q(2,r;m) = 0 unless

5 m Finall-y

(z.to) and

QED
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Let us no$¡ turn again Lo the ring homomorphism l;

the inverse of' a map of the form t(Ai, = 
.ri., 

t(t,i)A j

is well-known (cf. IR2], p.44), and is given by:

(2.11) r-1{1.l) = I (-r)i-ic(i,i)Aj
' j.'t

= I (-l)kc(i,k)or_u.
05k<i

From our commutaLive Lri-angJ-e, hre have that
-1(o, o t ')(au) = s-i(Ak), which expanded gives us the

identity:

(2.12) T (-1)k-ic(t,j)t<i = Q(i,k) = k!s(i,k),
j¿ 1

a standard hray of defining S(i,k) (cf . lLil, p.J9).

(Of course it is merel-y the Ínversion of (2.7 ) . )

1rle can now apply equation (1.2U ) to derive a

formul-a for the rtsLructural, constantstr q(i,j;n) of lhe

ring Z(N, Q>. Noting that in this context w(i,t<)
i -ìz= (-1)* " c(i,k) and p(k,m) = kïr, r¡re geL:

(2.t3) q(i,j;n) = I (-r)(i"i)-(k+m)r(r,k)c(¡,m)c(km,n).
kì1
mì1

This is actually a fairly efficienL formula, sirice

lhe terms on fhe right hand side are non-zèro only when

i ì k and j ì m buL km ì n. Using the fact that Q(i,¡;
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= jlS(i,j) = q(j,i;i) when i I j teads via (2.13) Lo

another formula for the SLirling nu¡nbers S(i,j):

(2.14) a(i,j) = j!s(i,j)

= I (-1)(i*i)-(k+m)c(i,k)c(i,m)c(km,i),
k.n>1

when i > i.

Before proceeding with our investigatJ-ons, we need

to introduce another tool-:

Let X = {x. : i e J} be a famiJ-y (finite or

infinite) of rrindeterninatestr. Then the ring Z[X1 of

polynomial-s (with irrteger coefficients) in the

commuting indeLerminates *i can be described as the

free Z-module Z(FIX.l ), where FlXl is the free

eommutative semigroup (with identity) on the set X, and

Z(FlXl ) has the multiplicaLíon derived from the

multiplication in FIX]. The basis elements in FIXl of

the free Z-nodule Z(FIX] ) = ZlXl are of course simply

the monomials in ZLX.1. ( f rì parlicular, the identity 1

in ZLXI is considered a monomial of degree zero.)

As is wel-t-known, Lhe ring ZlXl has the important
rruniversal mapping propertyil Lhat any map F :X * R,

where R is any commutative ring v¡ith idenlity, exLends

to a unique ( identiby preserving) ring homomorphism
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f z ZIX"J + ft.

Usually if X is a singlelon seL X = {x}, then ZLX)

is denoted by ZLxi; simJ-Ìar1y, if X is finile and is

equal- to tx,, *2, ..., *r], then ZLXI is often denoLed

by ZLxrt x2t...t *n].

Now if R is a commutative ring with identiLy and A

= {a, : i e J} is a famiJ-y of (not necessarily

distirrct) etements of R also indexed by J, then a

necessary and sufficient condition that R be gerìerated

by A ( as a ring with idenLity) is that the rirrg

homomorphism f: ZLXI + R determined by the map

x. | + a. be surj ective. ff, on the other hand, f is
l-'l-

in'i ective , lhen the elemenls .i are said to be

algebraicaffy independent. (fhus, {a.i forms an

algebraically independent set if and only if there

exists no polynomial rel-ation connecLing the .i. )

If the set { ar} generates R and j-s al-so

aJ-gebraically independent, then i^ie shai-1 call- t a- i an

al-eebraic basis for R. Ur¡der those conditions R is

cJ-earJ-y isornorphic to ZLXi.

The ring Z<II , L> provides an illu.straLion of a ring

with an algebraic basis:

For Lhe rest of this section, X = {*O: p a primei

will denote a family of incieLerminates indexed by the

rational primes (p.= 2, 3, 5,...). Define the ring

¿y



homomorphism SS: ZIX') * Z<N, N> by *p l+' Ap. Since

under mul-tÍplicaLion the basis el-ements O' of Z<l!, N>

form a semigroup with identity isomorphic to t,he

multiplicative semigroup of positive integers, and

since that semigroup is freely generated by lhe prime

numbers, it is easy to see that ôS is an isomorphism.

Hence, the set Þ = {OO: p a primei forms an algebraic

basis for Z(lrÍ, N.>.

A more interestirrg question is: could it be Lhat @

forms an algebraic basj-s for Z(N, Q>? This question

will be answered ( eventualJ-y) in the affirmative. Bul

first we will show that 0 generates Z(N, Q> as a rj-ng:

Pronosition (2 ,1 5 ) : For aII n ì 2, A' is equal, in

Z(N, Q>, to a polynonial without a constant term in the

elements of 0 corresponding to the primes _( n.

Proof : hle proceed by induction on n. For rì - 2, there

is nolhing Lo show sinc" A2 is an el-ement of 0.

Suppose now that the proposition hol-ds for alI k such

thaL 2 _< k ( ¡ If n is prime, again there is nothing

to show. Hence suppose n is composite , and wrj-te n

= pm, vJhere p is the smallest prime divisor of n. Then

using the mul-tiplication in Z(N, 0> we may write:

A- o A = A + I q(p,m;k)AnP m n m-<k<n-1
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and there fore

A=A"Anpm

vie have:

- I q(p,m;k)4,-
m-<k-Ín- 1 i<

By the induction hypothesis, A,o and each Ai. is equal to

a polynomiat in the el-ements of @ indexed by the prímes

Less than rì, anci wiNhoul a constanL Lerm. It f ol-lows

by substitution thal lhe same holds fot Arr. QED

lilotice that in the proof vue have given an inductive

procedure for constructing a sequence of polynomials

SD., SD-,, SDr, ,..., SD*., ... in Zl-Xl with the property
z5+rl

that the substitution of *p by OO yields An as the

val-ue for SD.^. There is another point worth making
n

about these polynomial-s:

Let m be a positive integer; i,ie def ine the

corresponding monomiaf B* in ZLXi by taking the pri-me

decomposilion of m, and neplaeing each prime factor p

in it by the indeterminate *p. lve set g1 = 1. Note

that BkB,o = gk*. Indeed, every monomial- in ZLXI is

equaJ- Lo C* for some inLeger m, and Lhe semigroup they'-m
form is isomorphic to the mul-LiplicaLive semigroup of

the positive inLegers. Thusr atry polynomial- f in ZLXi

can be uniquel-y expressed in lhe f orm:

I r(k)ck.
k> i
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Let us then write:

(2"16) sln =.¿_ SD(n,k)Bu.-- k>1

[,i e can now note the following description of what SD

looks l-ike:

ProoosiLion (z -l-¡ ):

a) SD(n,1) = 0 for al-l- n

b) for a prime p, too = "p,
c) sD.. = I sD(n,k)g,_;n zslsn -K

LhaL is, SD(n,k) = 0 for k t ni

d) SD(n,n) = 1.

Proof: ( a) is merely a restatement of lhe facL t,hal

the polynomiaÌs SD' have no constant term, and (b) is

obvious. To shovr ( c) and ( ci) , just add then to the

induction hypothesis in the proof of (2"15) , and note

f,haL these properties are preserved by Lhe construction

employed. QED

For the sake of compl-eterìess, we set SD,l - 1, so

LhaL SD(1,1) - 1, but SD(1,n) = 0 for n ì 2.

fn order to show that @ forms an algebraic basis

for Z(N, Q), $re must now make a short digression into

ring theory:
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A commutaLive ring R is Noetherian if it saLisfies

the ascending chain condition on ideals; or, to put it

in another wâV, if there are no infinite slrictly

increasing sequences oÍ' ideal-s in R. As is wel-1-knov,rn,

Z ís Noetherian.

The Hilbert Basis TheorÈm (ví2. Lf'1, p.16) asserts

LhaL if R is Noetherian, then so is the ring of

polynomials over R in a finite number of indetermi-

nates. The following results explore some of the

properties of Noetherian rings of interest to us:

Lemma (2.i8): Let R be a ring, and O: ft + R a

surj ecLive endomorphism of R. Then, if O- 
1 (O ) / 0 , the

sequence of ideal s:

{0} o-1(o) c, o-',(o) c, ... c o-t(o) c ...,
r^¡here ô-"(O) = Ker(Ot) = {aeR : Or(a) = 0i , is

strictl-y increasine (i.e., Lhe containments are all-

proper).

Proof: It is cl-ear LhaL this sequence of ideal_s is at

least increasing. lJe shall show thal the containment

o-(t-1)(o) Go-r(0)(wrrere o0(o) = 0) is proper for ar-r

r ì 1 by inducLion. The case r = 1 is a proper

inclusion by assumption.

Now suppose that o- 
("- 1 ) (o ) € 6-"(o ) is a proper

incl-usion, and choose an ei-ement b in the set

difference O t(o) - O-(t-t )(o). since 0 is surjectíve,
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O-i(u) is non-empty. choose c in ô-1(¡). Then c is in

4-(r+1 )(o), but c É o-r(o); for c e o-r(o) impties

that ö(c) = b . O-(t-')(O), a contradiction. Thus,

o-r(o ) e ô- 
(r+1) 

1g r is a proper incl-usion. QED

Corol-l-ary (2.ia): lf R is a Noetherian ring, and

ö: Iì * R is a surjective ring endomorphisn, then ö is

an isomorphism

The following gives a níce application of these

icieas:

Proposition (2.20 ): Let R be the ring of polynomials

over Z tn a finÍte nurnber of indeterminates; sây,

R = ZLx,, xrr...s *n].

Suppose if 1, f2, ..., frri is a set of efements of R

which generate R as a ring. Then {f1, f2, fr,} is

an algebraical-l-y independent set.

Proof: The map *i l+ fi determines a ring homomorphism

ô: z Lx1, xzr,.., "rr] 
* zLx1, x2t...t *n], (ttreplac" *i

by f i" ) .

Since Lhe fi generate R as a ring, the map 0 is

surj ective. But , by the lìilbert Basis Theorem,

ZLxr, xZ,...t *n] is Noetherian, and therefore 0 must

be an i somorphi sm. QED
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0f course the above proposiLion afso applies to any

ring isomorphic to a polynomial ring; Lhat is, if a

ring has an algebraic basis consisting of n elements,

Lhen any other n elements that generate the ring musL

also form an algebraic basis.

Now leL us return to the consideration of the ring

Z(N, q>. Let OQr Ztxl * Z(N, Q) denote the ring

homomorphism defined by the mapping *p l+ Ap. For

example, earl-ier we showed that OQ {Slrr) = Arr, and that
otherefore 0= is surjective and 0 generaLes Z(N, Q> as a

ring.

IL woul-d be nice to apply the above resul-ts

imnediately to Lhe rirrg Z(N, Q>, which vre knov,r is

isomorphic to ZlXl, since it is isomorphic to Z(N, N>.

Unf orturiately, since Z IX] is a polynomial ring in ari

infinite number of indelerminates, it is not

Noetherian. l¡Je can, however, geL around this problem

in the following manner:

Fof each prime p, Iet aO denote lhe family of

elemenls A . in Õ for which ptp'
l^lZtt'(N, N> be Lhe subring of Z<N, L> generated by ap,

and Z(P)<N, Q> the subring of Z(N, Q> generaled by aO.

It is clear that aO is an algebraic basis for

z 
( p ) <tç , N) . We shaÌl- now show that the same ís true

for o- in z(P)<iv, e):p
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Pronosition (2^21\: For each prime p, the set tO forms

an atgebraic basis for z(P)<u, Q>

P roof: Consider the restricLion of the ring

homomorphism t: Z<i\i, N> * Z(N, 8> to the subring

z 
( P) <l- , N>. The image of an element Ap, in ao under L

is a l-inear combination of el-ements At f or k 5 p. By

proposition (2.15), these el-ements l-ie in z(p)<N, Q).

Hence, t defines a corresponding homomorOhism fO from

z(P)<tt, i!> to z(P)<u, e>. (gasicatly, ít is the

restriction of t to z(P)<tl , N), except that r¿Ie are

resLricting the codomain of the map. ) Similarly,

easy to see Lhat the image of z(P)<¡i, Q> under t-i

contained in z( P) <t'l , N>. Thus it, def ines a

corresponding homomorphism from z( P) <l¡, q> to

z( Þ) <w, w> which v¡e denote uy t-- 1 . rt is cl-ear that"-p
t^ and t-- 1 

^re inverses of each other. Consequently,-p -p
z(P)<u, Q> also has arì algebraic basis consisting of

the same number elements as there are in aOi but since

by definition *o generate" z(P)<tu, Q>, it nust al-so be

an argebraic basis for z(P)<tu, e>. QED

From the above proposition r^re also see that aO is

an algebraically independent seL in Z(N, Q> for al-1

pri-mes p. But since every f inite set of lhe el-ements

A^,, pt a prime, is contained in 0_ for sufficientlyp' p

large p, it foÌlows ihat every finite subset of Õ is

al- so

it is

is
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algebraicaf ly independent, and therefore thal ,Þ is an

algebraic basis for Z<N, 8>.

Vie state this fact as a proposiLion, togeLher wilh some

immed iat e corol-l arie s:

Prooosition (2.22): LeL X = {x_-: p a primei be a

famij-y of ir¡determinates in a one-one correspondence

with Lhe ratÍonaI primes. Then lhe ring homomorphism

OQ, ZLxJ + Z(N, Q->

defined by the map *p l+ OO ís a ring isomorphism.

That is, the set Õ = tOO: p a primeÌ forms an

algebraic basis for Z(N, 8_).

Corol-Iary (2.21): Every efement of Z(N, Q> is

expressible as a unique polynomial with integer

coefficienls in Lhe elements Ap, p prime. ln

particular, SD., is the unique potynomiaf wif h trvaluer¡

A in Z<N. Q> under Lhe substitution x l* A (Í.e.,npp
the unÍque polynomial such that Oa(Sn-) = A ).nn

For the sake of illustration, we give SD4 and SD6

explicif J-y:

SD,, = *^' - 4x- - 2x^+¿j¿

SD6 = *Z*3 - 6*5 - 1Zxr2 + 42x, + 2)x,
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Thus, ín Z(N, Q):
24,, = A^- - 4A- - 2A^¿r .'2 '"j 

¿

A6 = AZ"A3 - 6OS - 12Ar2 + 42A3 + 24A2

Now, as noted earlier, g is a faifhful ring

homomorphism Z(N, Q> * Zi!; that is, an isomorphism

with its image in ZN. Under this isomorphism, A' is

essentially mapped into the function Q ( -, n) ( í, e. ,

g(A') is the function At l+ llQ[Ar, orr] = Q(k,n)).

Thus, we at once have the foll-owing result:

Corol-lary (2.24): For alI n : 1, the funcLion Q(-,n)

is expressibl-e as a unique polynomial- with integer

coefficients (namely, SDn) j_n the functions Q(-,p) for

primes p < n

( For example:

Q(-,4) = Q(-,2)2 - 4Q(-,3) - 2Q(-,2).)

Coroll-ary (2-25): Þ-or al-I n ì 1, the rin-th Stirling

f unction" S(-,n) (ctefined as the mapping k l+ S(k,n) )

is expressibl-e as a unique polynomial ( with raLional-

coefficients) in the Stirling functions S(-, p) for

primes p _f n.
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To arrive at the polynomial_s of coroll-ary (2.25),

one makes use of the facL that n!S(-,n) = Q(-,n).

Knowing lhe existence of the polynomials SDn, one

woul-d like to have aL hand some convenient way of

cal-culating them. The índuclive procedure described in

proposilion (2.15 ) is quite unwieJ-dy in ihat it

requires a knowl-edge of the structural_ constants

q( i , j ; k) . The fol-Iowing de scribes a more efficient and

elegant procedure f or f inding Lhe polynomial_s SDrr:

According to our results above, ZLXJ is isomorphic

to Z(N, Q> unden OQ, wiLh the polynomial SD.,

corresponding to Ani and ZLXI is also isomorphic lo

Z(N, L> under OS, but with A' nor¡r corresponcling to the

monomial- grr.

Now look aL Lhe ring isomorphism

L: Z<hl , N> -' Z(N, Q>. Since it is a ring isomorphism,

the elemer¡ts:

t(4._) = I c(n,k)A,n r._!1 k

have the properLy in Z(N, e> that t(Am) " L (An)

= -L(A--). Thus, if one transfers thi-s result (via O0)mn'
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to Zlx ) by def ining the polynomial- 
"d., by :

(2.26) sd- = J C(n,k)SD.,n r<it R'

then one immediately has the resul-t thaL:

(2.2''() sd sd = sdmnmn

Define the quanlities sd ( n, k) by means of the equation:

sd^ = I sd(n,klp--n 
; --

Then from (2.26 ) one deduces fhat sd. - 1, while for
I

n Z 2 we have:

(2.28) sci(n,k) = I c(n, j)st( j,k),
j

in which the summation only takes place over k _< j _f n,

since SD(j,t ) = 0 if j < k. Thus, il is also true that

sd( n,k) = 0 if n < k Additionally, one can also

easily deduce thal sd(n,n) = SD(rr,n) = 1, while sd(n,1)

= n. ( Recall that SD I = 1 by definition, while SDn

contains no constant Lerm; so t,hat (2.26 ) can be

writLen as :

"dr, = n * ) C(n,k)SDk.)
" k>2

0n the other hand, if v\re interpret equation (2.27 )

in terms of the coefficienLs sd(n,k) (using the fact
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LhaL gjBI" = B¡¡), we geL:

(2.29) sd(mn,r) = | sd(m,j)sd(n,k).
i'k

jk=r

FinaÌIy, i¡re note thaL the relation (2.26 ) can be

inverted to obLain:

(2.30) sl,, =01,, (-1)n-kc(n,k)sdu.

In terms of the quanLities SD(n,k) and sd(n,k), this

becomesforn>22

(2.31) sD(rr,j) = I (-t)n-kc(n,k)sd(i<,j).
k--< j5n

These nel-ations form the basis of a simple

inductive procedure for jointly computing the

polynomial s SD. and sdrr:

Suppose Lhaf SDt and "dk are known f or 1 _l k _f n- 1.

There are then two possibilities for n: eiLher n is

prime; on n is composite and hence we can write n; rsr

where r and s are proper facLors of n.

If n is prime, then SDn = "rr, and r¡re can use (2.26)

lo compute sd-. 0n the other hand if n is noL pnime,'n
theri we can compuLe "d' as "dn = sd""d", and then use

(2.30 ) to cal-culate SD

41



Let us il-lustraLe the process:

SDe = *Z , SD3 = *3i

thus "d2 = SD, + 2SD1 = *Z + 2,

and "d3 = SD, + 3SD2 + 3SD1 = *3 + 3x2 + J.

"d4 = sdr2 = (*Z o 2)2 = *r' + 4x, + 4;

thus SD4 - "d4 4sd, + 6sd, - 4

- x2 U*3 - 2*2.

SO5 = *5i

thus "d5 = SDU + 5SD4 + 1OSD, + 10SD2 + 5

= *5 * ,*r' - 1ox, + 5-

"d6 = sdrsd, = (*Z + 2)(x, * 3xZ + 3)

= x2x3 + 3*22 + ,*3 + 9 *2 + 6;

thus SD6 - "d6 6sdU + 15sdU - 20sd, + 15sd, - 6

= *2*3 - 6*5 - 12xr2 + 4Zx., + Z|xr,

and so on.

The procedure described above for recursiveJ_y

defining the poJ-ynomials SDn and "d' can be made the

basis of a simple computer program for cal-culating the

coefficients SD(n,k) and sd(n,k). partial- results from

one such program are displayed in tables f(a) and I(b).
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3 . Boolean al-sebras:

IL should be apparenL Lo the reader Lhat there is

dislinct category-theoretic fl-avour to our work. fn

the general theory developed in secLion'l of this

chapter, we IÁIere concerned in f act wilh categories of

f iníte algebras; irrdeed, a good deal- of the theory

simply invol-ved the act of counting morphisms within a

given category. In section 2 we parLicularized matters

to the category of finíte seLs and mappings (which I¡ie

shaII henceforth denote by N), and to the subcategory

of finite sets and surjective mappings (which we shall-

denote by O). It is our j-ntention in this section to

reinforce this impression.

We wilI apply the ideas of section to the

calegory of finite boolean algebras and boofean aJ-gebra

homomorphisms ( which vre shall- hencef orth denote by BA )

together with the subcategory of finite bool-ean

algebnas and surj ective boolean algebra homomorphisms

( which in this section will be denoted by D ) . 0ur

method of aLt,ack, however, will consist in utilizing

the f act that BA is Itdual-tt ( in the sense of calegory

theory) to N to transport our considerations back to

the consideration of sets and mappings' In doing so,

we will be abfe to show thai there is indeed a dual

aspecL to our ideas which has noL yel become apparertt
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0ur firsL order of business is to describe

( succinctJ-y) the dualíty betr+een Bå and N:

As an algebra, a boolean algebra has five

operalions: lhe Lwo binary operaLions of meet and ioin
(set g = join and ¡\= meet), one unary operaLion of

compJ-ementation (denoted by I ) and two nullary

operations lhat give the disLinguished elements 0 and 1

of the boolean algebra. 0f course a boolean algebra

homomorphism must preserve all five operations.

We have a (conLravaríanl) functor PW: N * BA

(ttpower set functortt) which can be defined as foll-ows:

Given any f inile set A, r^re have the f inite boof ean

algebra Púi(A) of al-1 subsets of A, in which the meet

operation is given by set intersection , the j oin

operation by set union, compl-emenLation by set

compl-ementation in A, and of which lhe 0 and 1 are

given by the empty set Ø and A itself, respecLivefy.

If f: A + B is a mapping between finiLe sets, then lhe

corresponding boolean algebra homomorphism

PW( f ) = f : PW(B) * PW(A) ¡.s def ined by letting
# _1f (Y) = f '(Y) = pre-image of Y under f, for all

Y e Pt'l(B).

The functor PW is in facL a (dual) equivalence of

categories, buL ils rrinversett (so to speak) is not
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quiLe as easy to describe:

Any boolea,n algebra is a poset j-f one defines

b -< c to mean b A c = b (or equivalentJ-y, bV c = c),

An element x in B is an atom if it covers 0; that is

if 0 < x (O 5 x and 0 I x), and there is no el-emerrt

between 0 and x. If B is finíte, it is cfear that

every element of B besides 0 rrcontainstt an atom; lhat

is, for all b e B, b / 0, there is an atom x such that

x 5 U. For B e ob BA, let M(B) denoLe Lhe family of

atoms in B. (irl ote: For any calegory C, we shal-l- denote

the objecl class of C by ob C, and the morphism class

of C by mor C.) For b e B, let Mb(B) denote the set of

aLoms in B which b contains. (ff b = 0, then Mb(B) is

lhe emply sef.) As is well-known, b is completely

determined in B by lhe set lvlb( B) . To be more precíse,

every efement b in B is uniquely expressibl-e as a join

of atoms, namely the atoms in Mb(B). Thus, for

elements b, br e B, b = b' if and only MO(e) = VrO,(n).

(Note: To be quite correct, one must adopt the

convention thal the join of an empty set of elements

from B is 0.)

We wish now to show that M extends to a

contravariant f uncLor BA -> N. For this hre need a f ew

more results, which happen to apply lo a r¡ider selting

than that of bool-ean algebras. Thus, suppose that L 
t

and L. are finite lattices, and su.ppose thaL f:L. + L,
' 

q^¡v -'-1 -2
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is a mapping rvhich preserves meets and 'l t s. ( Sirrce L,'

and L^ are finiLe, each has bofh a 0 and 1, given
I

respectively by the meeL and the join of the el-ements

of each . ) l{e then have the f ol-l-owing simple lemma:

Lemma (?.1L: Lel L1, LZ and f be as described above.

Then, for each b e LZ there is a unique element

f^(b) e L1 such that, for all c e Lr, v.re have the
I'

relation:

f(c) I b if and onJ-y if c ì_ f^(b).

The map f^: LZ * L1 so defined satisfies:

a) f^(0) = 0;

b) f^ is j oin preserving.

Proof: Set Ur(b) = {0. L1 : f(o) ì bi. Then Uf(b) is

non-empty since it contains 1 e L1. It is easy to see

LhaL Uf( b) is cLosed under meets, and hence it contains

a Ieast element, namely the meet of all the efements in

Uf ( b) ; this r^ie set equal to f ^ ( b) . Then it satisf ies

the given rel-ation by its very definition.

St atemerìl ( a) is aI so immed iate .

For s Ê L1, Iet (c)* = {d. L1 : d ì ci; i.e., (c)+

is the tlorder co-ideal- in Lt generaLed by ctr. It is

easy to show that {c,, )"f\ (cr)* = (c1V 
"r)n. on the

other hartd, we have essentially shown that

Ur( b) = ( f^ ( b) )+, and it is easy to prove that

Uf(b1 Vbr) = Uf(br)fì Uf(b2). Thus (b) fol-l-ows
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immediately. QED

( Rs arì aside, it, is interesting to riote that the

above has a categorical- interpretaLion. Any poset may

be interpreled as being a category in its own right'

with an trarrowtt f rom b to c if b 5 c. Then, meets are

caLegonicaf products, while joins are coproducts. Arr

order-preserving map is a functor. The rel-ation

between f and f^ given in Lhe above lemma simply

asserts LhaL f^ is a Ieft adjoint, and lhe fact that f

preserves joirrs can then be viewed a.s an instance of

the fact that lefl adjoints always preserve

coproducLs. )

Pronosi t ion (? -2): Let f : B,t * BZ be a homomorphism of

Then if x is an alom in 82,f inite bool-ean algebras.

f^(x) is an alom in 81.

Proof: Fínst note that f^(x) / 0 (since the smallest

el-ement y satisfying f(y)ìO is zero itself). We can

Lhen express f^(x) as a join of atoms, say:

f^(x) = Vl V yZV V y", Vi e I"1(Bl).

But o by definition of f^, Lhis implies lhat

xS r(v,)V...Vr(v").
(t'le al-so used the fact that f is join preserving.)

Bul since x is an atom, this means that for some i we

have Lhat x 5 f(v. ), and thus f^(x) < v.. But sinc" Vi
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is an alom, and fl^(x) / 0, we musL have f^(x) = yi.

QED

Now, given a homomorphism f: Bt + BZ, vJe define

M(f): N(Br) * M(8,, ) by setting M(f)(x) = f^(x) for atl

x e þ1(Ur). It is easy to show that M so defined is

indeed a (contravariant) functor.

The verificatÍon that the pair (PW, M) defines an

eqivalence belÌ{een the categories BA and l{ now resls on

noting that f or al-I A in ob N, we have a naturaL

isomonphism between A and M(PW(A) ) (tfre atoms in PI,i(A)

are simply the singl-eton subsets of A), and similarty,

f or B in ob BA, a natural- isomorphism between Pi,J( M( B) )

and B (under the one-one correspondence between subsets

of M(B) and efements of B). [{e omit the detaiÌs, which

are elementary.

This duaf equivafence shows that every finite

boolean algebratrl-ooks likerrthe power set of a finite

set, and every boolean algebra homomorphism rrl-ooks

ti
liken a map of the form f : Plrl(A) * Plil(B) for some

function f: B + A beLween finiLe sets. In particular,

if lri = {40, 41,..., Ak,...i is a skeletal set for N,

wiLh A,- being a k-elemenl set, then
K

iB0, Br,..., 8k,...i, wheru Bk = Phl(Ak), is a skel-etal-

sel flor BA. (Note that in this conLext we do include
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lhe empty set as an ob j ect o f N , unl- j-ke the pnevious

section. ) Since PW is a duat equival-ence, it

establishes a one-one correspondence between

BAIBi, un] and NIlu,ArJ; in particufar #BA[8. , ut ]

= /ÉN I Ak, or] = ik. Ar so , under PW the producl in BA

corresponds to the coproduct in [, which is given by

the d j-s j oint union operation on sets, and which üie

shal-I denote by tr\/rrr

Nor,v, it is possible to rrlinearize on

in the same way that Iiùe have rrl-inearized

previously. That is, we agaÍn form the

Z(N), but this lime define Z-Linear maps

on basis efements by:

the leftrr of II

on the rightrt

free Z-modufe

n. : z(trl) * Z
I

(3.3) ni (Ak) = llNIA¡, Ai]

As bef ore, the coi-lection of al-I such maps def ines a

À1 ì\l

Z-finear rnap -o : Z(N) * 2". Simil-ar1y, we Nurn Z(i'i)

into a. ríng by using the coproduct ( i. e. , disj oÍnt

union) in the category N; thus, multiplyirrg O j and Af

yields lhe unique element of irl isomorphic to Oj \/ AX

namefv A=,_. Then it is easy to see thal fhe maps n-------J --j+k -r
( and hence ,,') are ring homomorphisms. The resultant

sLructure ( consisting of Z(N ) , the mul-tipllication

deríved from the coproducl, and the ring homomorphism
.?$

n ) we shall denote by Z(N, N >. This structure,

however, because of the duality outl-ined above, is seen

,
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to be compleLely isomorphic to the right linearization

Z<BA, BA) of BA.

No!,r, from a combinatorial- viewpoint, the subdirect

products of two boolean algebras are much more

interesting lhan their dj-rect product. As is generally

true, the farní1y of subdirect products of a paír of

boolean algebras is connected wit,h the calegory D of

bool-ean aJ-gebras and sur-'i ective boolean algebra

homomorphisms. At t,his poinl, r¡re can again make use of

duaIiLy. It is not dif f icu.f t to show that a

homomorphism PW(f ): Ptr¡(B) * PW(A) is surjective if and

only if the map f: A + B is injective; and simiJ-arly,

PÍ¡( f) is injective if amd only if f is surjective.

Consequently, one sees that under our dual- equival-ence

the subcategory of N corresponding to D is that of

finite sets and injective maps, which t{e shafl denoLe

by P. Thus, PIA,B] wilt denote the family of a].1

injective maps from A Lo B. The reason for this

notation is that we have:

(3.4) #PIAk, An] = P(n,k),

where P(n,k) = n(n-1)...(n-k+1) is a standard symbol

for the number of ttr-permutations of n objectstt (cf.

IR1], p.2). (trlote, however, the reversal of order of

the indices k and n.)
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Given this duaIiLy, we naturally ask what in the

category ¿ conresponds to subdirect products in D. The

anslrer to this questiorr is not hard to give. A

subdirect product of two boolean algebras is a

subalgebra of the direcL product with the propenty that

the natural- pnoj ections, resLricted Lo it , are

surjective. The dual notion for tivo sels A and B,

then, is a quotíent of the disjoint union A \/ B such

thaf the composition of the natural- inj ections

rr:A o A \/ B and ,2, B + A \/ B with the natural map

of A \/ B onto the quotient, remains inj ective.

0ne constructs such a quotienL in the fol-]owing

manner: Let X and Y be subsets of A and B respectively

with the same cardinality, and let g: X + Y be a

one-one correspondence. Let A tr* B be the quotienl

space of A \/ B obtained by identifying each poinL x in

X with the correspondíng poinl g(x) in Y. If

h: A \/ B + A tr* B is the naLural- surjection, then

it ís clear that the maps h o , ,,, and h o , Z (which in

the sequel r^re shal-l- denote by t ,, 
* and , ,f respectively)

are injecLive, Any quotient of A \/ B with this

property is in fact determined by such a one-one

correspondence between subsets of A and B.

Now l-eL W( A, B) denote the f amily of alL such

one-one correspondences g: X -> Y between respective
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subsels of A and B. Then Lhe set

{a \/- B : g e hl(A,B)} of aIl suchtramalgamatíonsrr of A
b

and B Ís universal r¡ith respecl to injectíve maps in

lhe same way as the seL of subdj-rect algebras of a

product of two algebras is universaL with respecl lo

sur j eclive al-gebra homonorphisms ( excepl f hat al-1

rrarrows" are reversed). To be precise, if f1t A -'' C

and f Z, B -' C are both injective maps, then there is a

unique g in lri( A, B) and a unique iniective map

f : A \/^ B + C such thaL f o ,,,* = f1 and f o ,r* - fz
c

This can be seen by notíng thaL the overlap of the

images of A and B in C under fi and fZ respectively,

defines a one-one correspondence g bei!¡een the subsets

X and Y (of A and B respectively) which correspond to

fhis overÌap. hle use lhe family of such amalgamations

to define a multipl-ication in Z(N) by writing:

(3.5) Oj' Ak = I" p(i,k;r)4",

where p( j,k;r) ís simply the number of amal-gamations of

A and B isomorphic to A" (i.e., of cardinality r).

Through duality, it is noL hard to show that there

is a naLuraL one-one correspondence beLween

amalgamations of Oj and AX and subdirecL products of tj

and Bk. Thus, if ïIe neplace Oj,Ak, and A" in (3.5) by

B . . B. and B. respeclively, we have the mul-liplicaLion
J' K' I

derived from subdirect products in lhe right
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l-inearization Z<BA, D> of D. 0f course the ring

homomorphisms d.: Z(BA) * Z defíned by

d.(B=) = #DIB-,8.] correspond enlirely lo the Z-:..j-near
-t-- J' 1' J-

ïrå
maps !j : Z(tl) * Z defined by !" (R.) = llP[A=,4.]" -r i - J' l
= P(i,i); consequently, the maps -p-. (together with

å l\'r l+

the map ! from Z(N) to Z" defined in terms of the p. )

are ring homomorphisms ( assuming Z (N ) is given the

multíplication ( 3 .5 ) ) . 0f course this can be proved

directly. This enLirertright l-inearizationrrof P is

( forlowing our usuaf convention) denoted by Z(N, P*>.

0f course, it is entirely isomorphic to the right

1 ine arization Z< BA , D> of D .

Continuing to use dua.lity, since subatgebras of tj

correspond to quotient seLs of Oj, it is not hard to

see that the ring homomorphism Z<BA, BA> + Z<BA, D>

*c
becomes the ring homoraorphism t: Z(N, -N. ) * Z(N, P >

de fined by :

(3.6) r ( A j ) s(j,k)Ak,=l
k

where S(j,k) is lhe indicated Stirting number of the

second kind, since S( j , k) counLs the number of quotient

seLs of a j-sel which are of cardinality k. l¡,Je lhen
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have the commutative diagram:

Z<I{

(3.7) L

for each index

then yields the

(3.8)

tr,

N>

Z<N P>

i ; and ex pand ing

identity:

j,k)P(i,k)

t(Ai) = o, (ai)

å

D_ o*l-

I st
k

iJ,

which, since P(Í,k) = C(i,k)k! , is the same as (2.7).

(nut note the considerable difference in interpretaLion

of the same idenLity under t.he two contexts.)

Let us investigate what other resul-ts of

combinatorial- interest can be obtained from this l-ine

of lhought. First of a1I, let us compute the

structural constants p( i,i; k) . To do so, consider the

number of nays it is possible to form amalgamations of

A. and A. by identifying an r-subset of A. with anIJ-1

r- sub set of Oj t

Since there are C( i , r ) ways of picking such a

subset of 4., C(j,r) of picking an r-subset of 4., and
l-' 1'

r ! i^rays of identif ying lhe Lwo subsels, this number is

C( i, r) C( j , r) r ! . The resulting amalgamation, however,

has car=dinality i + j - ?. Consequently, we have t'haf
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p(i,j;i+j-r) = C(i,r)C(j,r)r!,

whence the substitutions k = i + j - ?, r = i + j - k,

give us the formufa:

(3.9) p(i, j;k) = c(:^-,i+j-k)c( j,i+j-k)(i+j-k) !.

Nor¿ applying p. to both sides of (3.5) yields the"-a

foll-owing multipficative formula for the quantities

p(i,j):

(3.10) p(i,j)p(i,k) = I p(j,k;r)p(i,r).
?

This identity is known (cf. IR2], p.15), usually in the

form of a corresponding multiplicative idenlity for the

binomial- coefficients C(i,j), which can be obtained

from (¡.tO) ny using the identity P(i,j) = C(i,j)j!.

The fact Lhat t is a ring homomorphism all-ows us to

appty equation (1.18); ín this conlexL p(i,j) = i + j,

and the formul-a then gives the interesting identity:

(3.11) s(i+j,m) = I p(k,n;m)S(i,k)s(j,n).
k,ñ

¿Ë

Now, it is easy to see that in Z(N, l_ > AO is Lhe

identity 1 , whilu O,,n = Àn. From this I¡Ie see that

Z(N, N > is isomorphic to the polynomial ring ZLx)

under the homomorphism defíned by mapping the

indeterminate x lo 4.. Under this isomorphism, 4.,
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corresponds lo the monomial-

al, x = k.

and n. Lo eval-uaLíon
-lr

I¿ is

Z(N, P >

Note

A =An+l n

that:

also not

that A.
I

" (A- -
I

hard to see that, Al generates

[=A+nA.son n+l n'
n) , By induction it

that in Z(N, P

is then cfear

(Al-n+'l ).

Thus it fol-l-ows that Z(N, Pu> is also isornorphic to

Zlxl under the map determined by sending x to At and

that under this isomorphism A' corresponds to lhe

porynomial (x)r, = x(x-1)(x-2)...(x-n+1). (lvote that

therefore equation ( 3 .5 ) can af so be interpreted as a

formul-a for multiplying the 'tfal-Iing factorial-str (x)-

Finally, let us l-ook again aL the map t. Vrle know

LhaL it is invertible; we can, with a litlle work, give
_1

an explicil description of L Define the map
sy-

ê: Z(N, P > * Z(N, N > on basis elements by setting

s(An) = A,t ' (41-1)' (41-2) o ... o (An-n+1),

where the mul-liplicalion on the right hand side of the
**

above equation is in Z(N, N- > (not in Z(N, P >). Thus,

r^Ie have thaL:

(3.12) s(t )
n

where s( n,k) above is

the first kind ( which

s(n,k)An,

the designated StirJ-ing number of

by definition (viz. IR1 ], p.33)

1
=L
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is the coefficient of *k in the exparìsÍon of (x)- 
=

x(x-1)...(x-n+1)).

Now it is clear thal t(4,,) = At (since a one element

set has no quoLierrts other than itseJ- f ) , and of course

t(A^)= t(1) = 'l . Since t is a ring homomorphism, we
U'

can cal-cuf aLe the composition ( t o s) (Rrr) as f oll-ows:

t(s(An)) = t,(41 ' (41-1)' ' (4,-n+1))

= t(41)' (t(41)-1) ' (t(Al)-n+1)

- Ai (41-1)' ' (4,, -n+1)

in which l-ast expression the mul-tiplication is now in

Z(N, P ), and in lhaf ring the expression is equal to

A Thus. (i o s)(A ) = A for al-] basis elements A.-,n- n n n

whence s = t-1. We have thereby proved the wel-t-known

resuft (viz. IR1], p.34) tnat the Stinling numbers of

the first and second kind are refated to each other as

the coefficients of inverse transformations.
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4- Funth¡-n Remanks:

It should now be cl-ear that Lhe proper setfing for

Lhe techniques used in this chapter l-ies in category

theory. Let us isolate the particufar cl-ass of

categories whích can be studied by these methods:

0ne of the things t¡e have been doing is simply

counting; and in particular, we have been counting the

family of morphisms from one object of the category in

question to another. In order to do this, we require

LhaL thís family be finite.

A second thing we have assumed is that it is

possible to form a set which picks one representative

out of each isomorphism cl-ass of objects in the

calegory. In order to be able Lo do thís r^re must

assume that the category in question is skel-etall-y

srBaII. This concepl can be explicated as foll-ov¡s:

If L is a category, then a subcategory D is a

skel-eton for C if every object in ob C is j-somorphic Lo

precisely one object in ob D. A category j-s small if

iLs object class is a seL. (Then its morphísm cl-ass

al-so forms a set. ) Thus, a category ís skefetalty

smal-1 if it has a smal-1 skel-eton. If C is skef etally

sma11, we shal-1 cal-1 the ob j ecl class of a skeleton of
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C a skefetaf set for C.

Definition (4.1 ): Call a category C finitary if it

satisf ies the f ol-lowing two cond j-tions:

a) C is sketetally small,

b) f or al-I ob j ects A, B e ob C, the set C [4, B]

(of aIl morphisms in C flrom A to B) is fíniLe.

Given a finitary category C, one can already

construct its rrright l-inearizalionrr. Thaf is, choose a

skel-etaI set C = tn. : i e IÌ for C and form lhe free
1

Z-module Z(C) , and then define the Z-linear map

(1

c: Z(C) * Z" (as we already have done in our earlier

examples) as the map whoserri-th componentrris defined

on basis efements by:

g.(4.) = lÉgLA., A.l.
J-JI-J

Thus , c( A. ) is essentiaJ-1y lhe f unction ligL-, A.I .J-J
ClearIy, since there is a rìatural bijection between

any two skeftaI sels for C, the choice of skel-etaL set

i s immater j-aI . We shal-I adopt the notaLion Z(C , C> to

denote the right Iinearization of a category C using

Lhe skeletal- set C. Generally, r¡re use one or two roman

lelters , underì- ined , f or the category invol-ved , and

(unless il becomes to unwieJ-dy) tne same roman letLers,

but lower case and underlined, to denoLe the

corresponding Z-Iinear map Z(C) * zC. In fact, this

homomorphism will itsel-f be frequently referred to as
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the f'right linearizaLiontt of the category, Its

trcomponentsrl will be distinguished by suiLable

sub-indices.

0f course the I'feft linearízationrrof a finíLary

category can be def ined anal-ogous1y. IÏ, should be

clear, however, that the left l-inearízalion of a

finitary category C ís identical to the right

l-inearization of the duaf (orttoppositet') categoFV,

which vre denot" by g*. (g* has the same objects as C,

and the same morphisms but with lheirrrdirecLionstr
*reversed; i.e., C [4, Bl = QlB, A], and the order of

compositions is reversed. ) For this reason, r¡re shatl

denote the left line arízation of C by Z(C, !-o>.

0f course, there is nothing very interesting in

such l-inearizations without the development of some

further structure" This will- be done in the next

chapler. There is, however, a question v{e can ask, and

give a parlial ansv\rer to, now. The quesLion is: when

is lhe homomorphism g: Z(C) * ZC (of Lhe right

l-inearizalion Z(C, C> of a finilary category) faithful?

Ii{e shal-l- shor.r ( in basically the same v'ray r.re did in the

case of a calegory of algebras and surjective algebra

homomorphj-sms) tnat if mor C consists only of

epimorphisms, then c is indeed faithful.
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Lemma (4.2): LeL C be a category, and suppose A e ob C

satisfies lhe condition that C [4, A] is finite. If e

j-n C [4, A ] is an epimorphi sm, Lhen e is an ísomorphi sm.

Proof: Since Cil, lJ is finite, there mu.st be a lerm

"" in the sequence e, e o e = u2, u3,... which is

equal to a succeedirrg term er+s = "" o ""; that is,

1 o "" = o" o €f ,A

where 1^ is the identity on A. Bul the composition of
A

epimorphisms is again an epimorphism, and since by

definilion epimorphisms are right cancellable, the

above equation implies:
1 <- 1

e" - 1n, and e '= e" QED

Corol-l-ary- (4.3 ) : Let C be a f initary category, and

A, B in ob C. Suppose e1: A + ! and uZ, N -+ A are both

epimorphisms. Then they are both isomorphisms.

Proof : By the above lenma, both 
",! 

o .Z and "Z 
o 

".,'
-1are isomorphisns. Clearly "1 o (e, o e,,) is a right

inverse, and ("t o *r)-1 o "1 a l-eft inverse, for e2.

By a standard argument, these inverses nust be equal

and henc" u2 is invertibl-e. The proof that e, is

invertible proceeds -simi1ar1y. QED
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Corol-tary (4"4): Let C be a finitary category all of

whose morphísms are epímorphisms, and suppose that

Ç = iA. : i e IÌ a skel-etal set for C. Define the
1

refation ) on C by:

A. > A, if oin., A.l / Ø.fJLJ

Therr ) is a partial order on C.

Proof: Transitivity and reflexivity are immediate,

while anti-symmetry foffows from (4.¡). QED

We can nor^r apply the same arguments used in the

proof of proposition ( 1 .9 ) to show that:

ProBosition (4.5 ): Let C be a finitary category al-1 of

whose morphisms are epimorphisms, and l-et C be a

skel-etal- set for C. Then the homomorphism c: Z(C) * ZC

associaled wifh the righl l-inearization of C is

failhful.
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Chapter fI

El-ements of a Theory of Categorical Combinatorics

1- Introdtictorv nemar, l¿s:

In this chapter we outl-ine the fundamenLal_s of a

category-theoretic approach to combinatorial probl_ems.

We assume on the part of the reader knowl-edge of the

basics of category theory, incl_uding f amil-iarity with
the concepts of functor, naturar transformation, 1imít,
and adjoinLness (viz. , for example, IHS] or tpl ) .

I f g is a category, then ( as r,re have atready said )

-Ç-[R, B] repnesents the seL of C-morphisms lvith domain A

and codomain B. If r^re have two categories C anci D,

then (C, D> will- denote the ttquasi-caLegoryt' whose

objects are ( covariant) functors from c to D, and whose

morphisms are natural- transformations between such

functors. ( ¡epending on the set- theoretic foundaLions

thaf one adopts, <9, D> may not be a categony because

of set-theoretic niceties, or it may be a category in

higher order iluniverser'. fn this work, wê will
generalJ-y ignore these difficutties. ) Thus, if F and

are f unclors C * D, Lhen <C, D> lF, GJ is the cl_ass of
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a1I natural lransformatíons from F to G. If o is an

el-ement of (9, D>LF, G], v¡e afso write o: F -' G, and

for A in ob C, onr F(A) -n G(A) aenoLes the
]{

corresponding elernenL of mor D.

A contravariant functor from C to D can be equally
#

well corìceived as a covariant functor from C Lo D, or

from C lo D. lrie sha]1 generally adopt the former

viewpoint, anci thus derrote the quasi-category of

contravariant functors from C to D (and natural-

transformations) by (c*, D>.

In this work, ö will- denote Lhe calegory of sels

and mappings. Set-val-ued functors are of special

importance in category theory" If g is a category and

A e ob C, then Cl-, Al will generalJ-y be used to stand

for the (contravarÍant) functor which assigns to each

B e ob C the set 9[8, A], and to a g-morphism

f: Bl * BZ the mapping:

cIf , A] = f : O[82, A] * g[81, A], defined by:

f (g) = C o f for g in C[82,4].

Similarly, we let C IA , - ] denote the ( covariant )

set-valued functor which assigns to each B e ob C the

set C[4, B], and to the C-morphism f: Bl + BZ Lhe

mapping ciA, fl - fÈ: g[4, B,] -] CiA, Bzl defined by:

fË(g) = f e g for I e C[4, Br].

( f requently i^ie sha1l denote the image of a morphisn
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f under a covariant functor by f*, and under a

contravarj-anL funcLor by f*, as lorrg as the conLexL

makes it clear what functor j-s intended. Thus, w€
.:i.

always have (f,, o fr)* = fi* o f2x , and (t, o fz)
\= tZ o t1 .)

The sirrgle most important resul-t for Lhe study of

set-val-ued functors is Yonedats Lemma (viz. IHS], pp.

221-230), which vùe stale in the following form:

Pronosition (1-1):

( a) Let, I be a category, A e ob O, and K: I * 
S

any contravariant set-val-ued functor. Then the family

of naturaf Lra,nsformations s' Cl-, A] * K is in a

one-one correspondence wiLh the elements of the set

K(A).

To be precise, each efement x e K(A) determines a

naturaf transformation ox: -q[-, A] * K under which the

map o*r,Ç"[e, A] * K(B) is defíned by lhe prescription:
o*-(n) = (K(c))(x) for aÌL c t gls, AJ,

Bto'

and every naLural Lransformation Cl-, A] * K is equal

Lo 0x for some x e K(A).

(b) Similarly, if K: g * å is any covariant

set-valued functor, then Lhe family of naturaf

Lransf ormations ß: !-[R, - ] -] K is in a one-one

correspondence with the elements of the seL K(A).
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That is, each elemer¡t x e K(A) determines a nalural-

Lransformalion ßx: C[4, -l + K under which Lhe map

B*- r Ç-[R , B] * K ( B) ¡.s def ined by the prescription:
.B

ßx-ig) = (K(c) )(x) for al-t g e Ç,[4, B].
B '"'

By Yonedaf s l-emma, the nalural Lransformalions from

g[-, ot] to C[-, oz] are al-] of the form of for f in

to of o g, SimilarIy, natural- tranformations from

c[41, -] to cIAr, -] are of the form ßf for f in

gLA2, Ail, and ßf o ß8 = ßf o g. Thus, the nul-e that

sends A to the funct,or CL-, A], and a morphism f to the

naLural transformation of, defines a funclor ( indeed,

an imbedding) of Q into the quasi-category (O*, $->,

called the ïoneda. emebedding. Simílar1y, the

assignment A l* cIR, -], f l* ßf is contravariant, and

hence can be regarded as a.n embeddding of C* into
(c, s>.

AnoLher important point about the caLegory (9, ê,>

is that l-imits and col-imits in iL can be defined
ttpoinLwiserr ín terms of l-imits and colimits of sets.

For our purposes, the mosL important instances of this

are those of the product and coproduct of two

set-valued functors. The product in S is given by the

carLesian producL of sets, while the coproduct is given
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by the disioint union of sets. Thus if Kt and KZ arc

lr'¡o set-valued f unctors ( either both covariant or both

contravariant), then Kl * KZ denotes the product of the

two, defined poínt-wíse by:

(0,, 'Kr)(a) = Kr(A) 'xr(R) for A e ob c,

and (K. " K.)(f) = K1(f)'K"(f) is Lhe mapping froml¿¿

K,,(A) x K"(A) to K,(B) x K'(B) for any g-morphism
l¿lL

f : A -+ B. (Assuming Kl and KZ are covariant. 0f

course the arrov,is are revensed if they are

contravariant. )

Similarly, the coproducL ( or disj oint union) of the

lwo will be denoted by Kl \/ KZ, defined poinLwise by:

(Kr \/ K2)(A) = K1(A) \/ K2(A) for R e ob O,

(o,, \/K ,)(r) = K1(f) \/ K2(f) for f e mor c.

The cartesian product and disjoint union of an

arbiLrary family tKi : ieI] of set-valued functors is

defined similarly.

Another useful- concepi is thaL of a subfunctor of a

set-vafued functor:

If K is a sel-val-ued functor (covariant or

contravariant) on the category C, a subfunctor of K is

a second set-valued functor (of the same trvariancert as

K) such t,haL:

a) L(B) S K(B) for atl- B e ob O,

b) the inclusion maps oBr L(B) * K(B), as B varies

over ob g, def ine a naLural- transf ormaL j-on q: L + K.
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It is easy to see LhaL if K is a covariant
(respectively, conlravariant) seL-val-ued functor on C

and L is any funcLion v¡hich assigns to each A e ob C a

subset L(A) of K(A), then L extends to a ( unique)

subfunclor of K if it satifies the condiLion:

(1.2) (K(f))(L(A)) ËL(B) for atl_ c-morphisms

f: A + B (respectÍvety, f: B * A).

SubfuncLors can almost be treated like subsets of a

set. For example, if L t and LZ are subfunctors of K,

Lhen i/\re al-so have subf unctors L,, U LZ and L t ft LZ such

that f or al-1 A Ê ob C:

(L, u L^)(A) = (L.(A)) U (L^(A)),t ¿ I Z'

and (L, Nì L^)(A) = (L.(A)) n (L^(A)).| ¿ 1 2'
Continuing with t,his anaJ-ogy with sets, we note that if

K. and K- are two set-val-ued functors (of lhe samel¿

varíance) on C, and o¡ Kl * KZ is a natural_

Lransformation, then o deternines a subfunctor im( o) of

KZ by setting im(o)(A) equat to the image of K1(A)

under *^A, f or all A e ob _Ç_. Proceeding pointwise, w€

see that o facLors uniqueJ_y as e, = o o õ, where

o: im(o) * K^ is the incLusion natural- transformation
¿

and õ: Kl + im(s) is a surjective transformation (i,e.,
:oA is sur j ecLive f or atl- A in ob C )
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2. Reoresentabilitv and S-renrê.qent.¡hi I i iw:

A contravariant set-val-ued funcLor K: C + S is

said to be repCesentabfe if there exists an object
A irr ob C such that K ís naturally equíval_enL Lo

C[-, A]. }je say that, A represenLs K. From the yoneda

lemma it is clear that an object representing K is

unique up to isomorphism in G.

SimilarIy, a covarianL functor K: C + S is

representable Íf there is an A e ob g such thal K is

naturally equival-ent to g[4, - ] . Again, a representing

object is unique up to isomorphism in C.

þÍosl categorical- concepts can be expressed in terms

of representabilÍly. F'or example, lhe product of trvo

objects Al and AZ in ob C exists if and onty if the

functorQl-, Orl *C-[-, Orl isrepresentableing. The

obj ect A I n ÃZ ( if it exisLs) which represents

cl-, All x Q[-,ArJ is the producl. one negains the

natural- proj ections usually associated with the product

by choosing a fixed natural- equivalence

c,: C[-, At n AZ] * -Q[-, 4,, ] " C[-, Orf ;

then by YonedaIs Iemma, or is equal to the naturaL

Lransformation o* for a unique x = (n1, nZ) in

C[41 n Az, A1] * clA,, ,r Az, orl. Thus, since o* is aïr

equivalence, for any B e ob C and (fi, fr) in
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ct¡, Atl 'O[e, A2] there

such Lhat o*u{f) = (nt o f

is the usual definition of

theory.

f e g[B, A1 r Ar1

(f, ,f2'\' which

in caLegory

ts a un]-que

. r^ o f ) ='¿
a product

Similarly, the coproduct of Al and AZ exists if and

only if C[41, -] " CIAr, -] is represenlable, and the

coproduct A, v AZ is a representirig object for thal

f unctor.

In the following vJe describe a fev¡ other

categorj.cal concepts from the viewpoírrt of

r e p r e s e n t a b i I i t y :

a) Sub-obiects: A C-morphism f: At + AZ is a

monomorphísm if and only if of is an inj ective natural-

transformation from C[-, Al] to g[-, Az]. Dual]y, f is

an epimorphism if ßf is an injectíve natural

transf ormation C[42, -.1 * ClAr, -].

Usually a sub-object of an object A j-s defined as

an equivalence cl-ass ofl monomorphisms with codomain A.

Note, however, lhat if f is a monomorphism, then the

subfunctor im(of) of C[-, AZ] is naLurall-y equivafent

to C[-, A1], and is therefore representabÌe, that if

two monononphisms f and g with codomain AZ represent

the same subobject of A2, then ¡m(of) = imlog), and

Lhat if a subfunctor of C[-, Or] is representabÌe, then

a representation of it deLermines a corresponding
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monomorphÍsm with codomain AZ. The upshot of al_L this
is fhat there is a one-one correspondence bet,ween

representable subfunctors of CL-, A.] and subobjects of

42.

In the same wây, there is a one-one correspondence

between representable subfunctors of C[4,, -] and

quotient obj ects of A 1 .

b) Imaee and co-imase: We can also use these

ideas to arrive at the concept of the rtimagen of a

!-morphisn. If f : Al u AZ is a morphism, we get the

naturaL transformation q = of , gl-, o,I * e_[- , Azf ,

which in turn defines the subfunctor im(s) of gl-, Arl.
If im( a) ¡-s representable, then it corresponds to a

unique subobject of AZi let Im(f) e ob g be a

represenfing obj ect for im( q) " (0f course Im( f) is
unique up to isonorphism in C.) Now, we have the

unique factorization of 0 as:

g[-, 0,, ] *-g-+ im(o) o p g[-, or],

where o is the inclusion natural transformation. Using

ihe isomonphism beLween im( q ) and g[-,lm( f ) ] , vie can

then perform a substit,ution to get a factorization of q

of the form

cf-, Arl --jL+ g[-, Im(f)f J-È gl-, or],
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in which ?Je must have that y = sg where g is a morphism
t^from A1 Lo Im(f), n - o" where h is a morphism frorn

Im(f) to A,r, and f = h o g. I¡ie can cal-l- the object¿'
Im( f) ( or, more precisely, the subobj ect it represents

via the morlomorphism h) the ímaee of f. It is of

course unique up to isomorphism; the facLorízation of

as f = h o g is al-so essentially unique, and we shalI

call- it the imaee factorization of f. Note thaL oB =

is surjectíve in the sense LhaL yA ís a surjective map

f or al-i A e ob C. Thus, it must be an epimorphism in
<g , å), and, since the Yoneda emebedding is indeed an

embedding, this implies thaf g j_s an epimorphism in g.

0f course, al-l- this ís immediately dualizable. The

morphism f: Ai * AZ al-so determines lhe natural_

transformation B = ßf , g[A2, -] * g[A1, -]. rf im(ß)

is representable, denote "'"uoresenting object, for it

by Coim( f); we then deríve an ( essentially unique)

facLorízation of f as f = g o h, where h is an

epimorphism and g a monomorphism such that sg is a

surjective natural- transf ormation. Thus, caJ_l_ Coim(f )

(or the quolient object it represents via h) the

coimaee of f, and the factorization f = g o h the

coimaee factorization of f

These ideas may be regarded as general_izations of
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Lhe facLorj-zation of set mappings into the composition

of a surj ecLive and an inj eclive map . Note Lhat in

general , Lhese ti,¡o factorizations (if they exist at

aIl ) are distincL. It can, however, be shown LhaL if C

ís bal-anced, then lhe two factorizations must coincicie.

(n morphism is calted a bimorphísm :i-f it is both an

epimorphism an a monomorphi sm; a category is balanced

if the only bimorphísms in e are isomorphisms. )

c ) L imits and colimils: In general , the existence

of a particular limit or col-imit can be reduced to bhe

question of the representability of an appropriale

set-val- ued f unctor. lrl e have already seen this in the

case of products and coproducts. We f urther il-l-ustrate

this in the notions of equalizer and coequalizer:

If f and C are Q-morphísms Al * AZ, then define the

subfunctor K = K(f,g) of g[-, Ar] by defining:

K(B) = {h e !-ls, o1l : f o h = g o h}

f or al-I B in ob C. If K is representable, then e

representing object f'or K (or more precisely, the

subob j ect it represents ) is cal-l-ed the equalizer of f

and g.

Similarly, if the subfuncLor L = L(f,e) of CIAr, -]
defined by:

L(B) = ih e CLA, Bl : h o f = þ o gi

f or all B in ob C n :'-s representable, then LIte quoLient
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ob.j ecL of A^ LhaL it delenmines is the coeoual-izer of f

and g"

d) Ad.'i ointness: As one more example, l-ook aL the

concept of aci j ointness. We shal-l discuss this at much

greater lenglh in section 4 of th:'-s chapter. Al th j-s

point, we simply note that a (covariant) funclor

F: C * D has a left adjoint if and only if the

set*valued f unctor D [8, F (- ).1 is represenlab]-e f or all

B in ob D. (Note that Dle, F(-)l i-s a set-val-ued

f unclor on C, and hence when i.re say representable r^¡e

mean repnesentable in C. )

SimiIarIy, it has a right adjoint if and only if

DIF(-), B] is representable (in C) for all B e ob D.

&gæ

For the purpose of lhis dissertation, Lhe concept

of representability is not quite general- enough. We

extend it vía lhe f ollowing cief inition:

Definition (2.1 ): A ( conlravariant) set-valued functor

K on the category C is S-representable if there exisLs

an indexed family {Ai : i e Ii of objecls Ai e ob g

such that K is naLurally equivalent to the disj oinL

union \/. C[-. A. ] of the set-val-ued f unctors C[-. A. ] .I -- l-- I

Similarly, a (covariant) set-valued functor K on C
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is S-represenLable if there exists an indexed family

{4, : i e 1i of objects such that K is naturally
l-

equivalenL to the disioint union \/i C IAi, - ] .

The disjoinl union \/i Xi- of an indexed famÍ1y

{X- : i e I} of sels can be unambiguously defined as
1

the set of all- pairs (i,x), wilh i e I and x . Xi.

Then, the natural injection,kt Xk * \/i Xi (for k e I)

is simpty the mapping x l* (k,x).

It is usuaf (when there is no danger of confusion)

Lo identify X,- with its image in \/. X. under the map"l{"r-l-
1,_. We shall- usual-l-y do so here, and call X, the rrk-th
k- I{

componentrr of the disjoint union \/i Xl. We can

transport these concepts to the case of a disioint

union of set-vaLued funclors \/i Ki on C, and (for

j e I) calf the functor *j the i-th componerìt of the

dis joint union. 0f course, working pointwise, Ì.¡e have

the injective natural Lransformation ,j t Kj + \/i Ki,

under which it is possible to identify *j wiLh the

corresponding subfunctor of \/i K. .

The importanL thing about a disjoint union \/i Xi-

is LhaL maps f rom it may be def ined rrcomponenL-wiserr .

In particular, l-et us consider the case of two índexed

famil-ies of sets {ti : i e I} and {tj : i e J},

together with their corresponding disjoinL unions

\/. X. and \/ . Y .:1]-JJ

Let f : f -+ J be a map between the index sets, and
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suppose addifionally we have a function F which assigns

to each index i e f a mappping Fit Xi * Yf ( ¡_). Then

the pair ( f, p) ¿efines a corresponding map

\/( f .F) : \/. X. -n \/ . Y . via the f ormul-a:'l-1 JJ
(\/(f,F))(i,x) = (f(i),F.(x)).

Essentially, i"re simply ItgJ-ue" together the map" Fi

Now, the above discussion applies ( pointwise)

disjoint unions of sel-val-ued functors:

Suppose t*i : i e IÌ and {tj :j e J} are Lwo

indexed families of set-valued functors on ! (al1

the same variance), f : f + J is a mappíng between

indexing sets, and F a function which assigns to

i e r a naturar- t'ransformation Fir Ki * Lr(i).

each B e ob O, l-et F(g,i) denote lhe mappirrg

K.(B) * tr(r)(t) LhaL Fi assigns to B, and l-el Fe be

the function i l* F(e,i). Then Lhe pair (f,F) ¿efines

a natural Lnansforna.tíon \/(f ,F): \/i Ki * \/j Lj

ivhích is defined by the recipe (\/(f ,F))B = \/(f ,FB).

In particular, suppose {Ai : í e Ii and

{8., : j e J} are incjexed coll-ecLions of C-objects,
J

f : I + J a rnapping, and F: f + mor C , i l+ F(i) = Fi,
j-s a function such that Fi s CiA1, Bf ( i) I f or al-I i in

I. Then each Fi delermines the corresponding naLural

transformation C[-, Ai] * C [-, Ua( r) ] ; and therefore

fhe col-Iection of these natural transformalions

Lo

of

lhe

each

For
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determines (as above) a natural Lransformation

\,/i gl-, Ail * \/j g[-, tj] r¿hich we shal-L henceforth
. (f,F)

denoLe by o'-

A sinil-ar definition applies to disj oÍnt unions of

covariant funcLors of the form \/. OIAi, -] and

\/. ClB., -j except LhaL vre require fhaL þ-. be an
JJl

el-ement of EIBf ( i), Ai] in order that the corresponding

natural- transformation go in the correct direction,

from g[Ai, -l to g[Br(i), -.l. Thus, a pair (F,f) in

which f is a mapping I + J and F: f * mor g is a

function such that F(i)= Fi e CiBf(i), Oil defines by

the above process a natural- transformation from

\/. g[4., -] lo \/o .t[n., -i which we sha]-1 from rìor^r on1-- 1' - J J',
r c, f )denole by ß "

Lemma (2.2): Let ior: i e Ii and {uj: j e J} be two

indexed collections of obj ects in ob C, and suppose

fhat o: \/. g[-, A.] * \/. Ct-, B.l is a naturalr -- r-- J -- -j-
transformatíon. Then there is a unique mapping

f: f + J and a unique funcLion F: f * mor C satisfying

Fi e cIAi, ur(r)] such that c¿ = 0(f 'F).

sÍni]ar1y, if B: \/, cLAi, -l * \/j e[Bj,-] is a

natural Lransformation, then there is a unique mapping

f: f + J and function F: f + mor C satisfying

Fi e Ç-[¡f(i), Ai] such that P = ß(F'f)

Proof : The rtrestrictiont' of or to the component C[-,Ai]
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of the disjoirrt union yields a natural transformation

E[-, oi] * \/j gi-, tjl for each i e I. By yonedars

lemma, this transformation is given by a unique element

of \/., !-lA- , Brl . Theref ore let F. be t,his element,
JlJl-

which must lie in a unique componerìt gIA¡_, Ur(r)] of
the disjoint union \/j elAi, Ujl. This defines the

pair (f,F), and it is clear that o = *(f,F)

A simil-ar proof applj_es to the natural_

transformation B. QED

Proposition (2 .3 I : Suppose K: L + g is a

contravariant functor which is s-representabl-e. Then,

its representation as a disjoint u-nion of functors of
lhe form gi-, Al is essentially unique.

To be precise, if K is naturarly equivarent to both

\,/. C[-, Ai] and trj g[-, tj], where {A. : i e Ii and

ttj : j e Ji are given indexed families of objects from

ob C, then there exists a bijecLion f : I -+ J such that,
f or al-l- i e I, Ai is is isomorphic in e to Bf ( i).

Proof: If both disjoint unions are naturally

equival-ent Lo K, then there is a natural equival-ence

o: \/. Cl-, A:.1 * \/ j gt-, tjl. By l_emma (2.3), there
are unique pairs (r,r) and (g,G) such that c¿ = o(f,F)

and c-'l = o(g'G). If i-s easy to show, then, LhaL

I = f-1 rnd Gr(i) = ,r-t QED
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0f course, lhe dual- of proposítion (2,3) also

hoIds. That is, the representation of a covarianL

set-val-ued f unctor on e by a cìis j oinL union of the f orm

\/i CIAi, -] is essentially unique.

Ca11 an S-representabfe functor finitary íf in its

representation as a dj-sjoint union \/. C[-, Ar] ( or, in

the case of a covariant functor, as a disjoint union

\,/. CIAi, -] ) , the indexing seL r is f inite.

lle now apply the notion of S-representability Lo

arrive at the following generafizaLion of the notions

of product and coproduct:

Definition (2 .4 ) : The pair ( l, , R, ) of obj ects irr ob g

will be said to have an S-product in C if the

set-valued functor C[-, Al] " C[-, O2l is

S- repre sentabl-e .

If so, l-et

Al , Az = {(Ar n Ar)(x) : x e dom(4, n Ar)} be the

( unique up to equivalence) indexed cofl-ection of

objecLs that represents lhe funclor, and cafl- it the

S-producL of A and B. Note that dom(4, n Or) is the

indexing set for the S-product.

More g eneral ly , we say an n- I up j- e

(A1, Ar,..., Orr) of C-objecls has an S-product in Q if
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the functor -Q-[-, Al] * C[-, ÃZ) x...x C[-,An] is

S-representable in C. The indexed seL of objects

representíng this functor ( assuming it is

S-represent able ) will be denoteci by

A t n A2 II. . .1Ì An and will be caÌl-ed lhe s-producl of

the n-tuple. 0f course, Al 1I ...1r On represents an

indexíng which assigns to each x in a seL

dom(4, n...r A ) a C-ob.iecL (n, n...1T A )(x).' 1 n' I n

(Clearly the definition can be exLended to appfy to

an infínite number of factors; in fhis work, hovJever,

we shall- be concerned with only a finite number.)

Definition (2.5 ): Say that a pair (41 ,42 ) of C-objects

has an S-coproduct if the set-val-ued functor

ClA1, -l x CLA2, -l is S-representabl-e in C. If so, we

write:

At u A2 = {(41 , A2)(x): x e dom(4,, u Ar)i

for íhe indexed col-lection of objects that represents

CLAi, -l * 9[42, -], and call- it the S-coproduct of At

and AZ.

Similar notation will apply for the S-coproduct of

an n-tuple (41, Ar,..., An) of g-objects.

Suppose LhaL a pair (R1,42) of g-objects has an

S-producl A, , A2. Then choose a fixed natural
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t,ransformation o from \/x Ci-, (4,, n A2)(x)j to
gi-, 0,, I * CL- , AZ1. Then c is deLermined on each

component gl-, (At n AZ)(x)l of the djsjoint union by a

XYpair (n, ,nr^,, in the morphism set

cf (4,, n Ar)(x), otl * !_[(a, , Az)(x), oz]. For any

obiect B e ob c, rhe restríction of oB to the component

Q[¡, (0, , A2)(x)] of the disjoint union

\/x ctB, (0., n A2)(x)l is given therefore by the map

f l* (rl o f,nrx o f). Thus, since o is a naLural-

equivalence, the s-product has Lhe following property:

For aIl- B e ob -Q, and every pair (f 1,f Z) of

Q-morphisms fr: B * A1 and f2, B -* A2, there is a

unique x e dom( 4,,, n A2) and morphism f in

!.[s, (0,, n Az)(x).] such that n,, * o f = f1 and
XnZ o f = f 

z

Conversely, given an indexed family

t(a, n A2)(x): x e dom(4., n Ar)i of C-objects equípped

with a family of ttnatural projectíonsil
(n,*,nr*) 1¡ Ç[(A1 n A2)(x), ot] * e[(Al n Ar)(x), Azi

having the above property, one can concl-ude Lhat the

f amily A I n AZ j-s the S-product of Lhe pair ( R,, , a, ) .

simil-ar remarks apply to the s-coproduct of a pair
(41,42), which carì be equipped i¿ith a family of
rrnatu.ral- injeelionsr? (,.,, ,rr*) from Ai to (0,, u Ar)(x)
and from AZ to ( O, u A, ) ( x) respectively.
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irfe shal-1 say that a caLegory C has S-products íf

the S-product of any pair of C-objects exists in C, and

similarly that il has S- coprodr¿cts if the S-coproduct

of any pair exists.

ExamBl-es:

a) Any product ean be regarded as a finitany

S-product, any coproducl as a finitary S-coproduct.

b) If A is an appropniate class of finit,e algebras

of the same type, as ín chapter I, then the category C

of algebras in A and surjective algebra homomorphisms

has finitary S-products. As we saw, the S-producL of a

pair ( A, , A, ) in c is provided by the f amiJ-y of

su.bd irect aIg ebras of A x B .

In particular, the category Q of finite sets and

surj ecLive maps has finitary S-products.

The same considerations in fact apply to non- finite

algebras, but then lhe S-product will not in general be

finit ary.

c) As we afso savl in chapter I, the calegory P of

finit,e sets and injective maps has a finitary
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S-coproducL, the S-coproduct of a pair (A1.,AZ) Ueing

given by the family of all amalgamaLions Al tr* AZ.

Simifar considerations apply to the category of a]1

sets and injeclivè maps, but then if either At or AZ is

infinite, the S-coproduct witl not be finitary.

d) It is worth noting LhaL the S-product (and

l-ikewise the S-coproduct) of a pair (Al,Ae) may exj-sL

but be empty. ThaL is, we may have dom(4, n Or) = Ø.

This simply means that for all- B e ob C, at l_east one

of the sets g[8, 0,, ] or C[8, Ar-J is empty.

For an example of this situation, let us consider

posels. A poset (P,5) can be viewed as a category by

considering the relation a 5 b as indicating the

existence of a single morphism a + b ( which v,re identif y

with the pair (a,b)), and Lhat otherwise PIa, b1 = Ø.

Thus, ob (P, _<) - P, whil-e mor (P, _<) corìsists of al-I

pairs (a,b) such that ¿ _( b; i.e., it is simply the

graph of the rel-ation _f. Composition is provided by

the transitivity of <.

Under this interpretation, the producL of a pair

(a,b) of el-ements in P is given by Lheir meet a.Â b (if

it exisLs), and the coproduct by lheir join a V b.

A poset P is a partial- meet semi-lattice if

irrhen el-ements a and b of P have a l-ower bound, they

have a grealest i-ower bound a Â b. Similarly, it is a

oartial- ioin semj-l-attice if when

öb

a and b have an upper



bound they also have a l-east upper bound a V b in P.

Fron our point of view, a partial meeL semi-lattice

P has finitary S-products (i'¡hen viewed as a category),

r¿ith a n b = {a A b} r¡hen a and b have a l-ower bound,

and a r b = Ø oLherwise. Similarly, a partial join

semi-Iattice, viewed as a category, has finiLary

S-coproducts.

e) For one more example, vJe look at finite graphs.

Followíng what nohr seems standard terminol-ogy, the terrn

ttBrap¡tt here means an undirected graph without loops or

mul-tiple edges. L,le musL also distinguísh between

different candidates for the title of a morBhism from

one graph to anoLher.

If Gt and GZ are graphs wiLh verLex sets V(G1) and

V(G2), respectivefy, lhen cal-l- a map f : V(Gi ) * V(CZ)

adiacencL-u¡e¡-et¡¿j¡g if , when *1 and *Z are adjacent

vertices ín G1, then f(x,, ) and f(xr) are adjacent in

GZ. Note that this means thaL two adjacent points in

Gi cannot be mapped into a single point of GZ, since a

vertex is not considered to be adjacent to itself.

Another type of map between graphs is what r^ie shal-l

cal-l a simplicial map: A graph can be considered as a

one dimensional simplicial complex, with its vertices

as its 0-simplexes, and iLs edges as its 'l -simplexes.

A simplicial map is then one which is rrsimplex-

presenvingrt; i. e. , the image of a simplex must be a
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simplex. f n thís case, one is al-l-owed to map Lwo

adj acent points into a single point.

Both of these candidates are possibl-e choices for

the rol-e of a morphism beLween graphs. Let G then

denote the category of finite graphs and adjacency-

presenving maps, and GS the category of finite graphs

and simplicial- maps. Clearly G is a subcategory of GS.

Both categories have ( disfinct ) producLs. fn G Lhe

product of two gnaphs G,, and GZ has V(G,, ) * V(G2) as

iLs vertex sel, r^rith a pair ( x, , V, ) being ad jacent lo
(xr,Vr) if and only if *i is adjacenl to y1 in G1, and

*Z is adjacent to y2 in GZ. In GS, however, one has

V(Cr) " V(G2) as the vertex sel of the product, but in

addition to the adjacencies already given, (x,y,' ) is

adjacent to (x,V2) if y1 and yZ are adjacent in GZ, and

(x'y) is adjacent to (x,y) ir *1 and *2 are adjacent

in cZ.

In GS the product of two connected graphs is again

connected; in G, however, the producL of two connected

graphs may weÌ1 be disconnected. For example, the

product of the graph I with itse]-f (in G) is the graph

It, which has lwo comporìenLs.

There is another vray of looking at, this situation.

Let CG be the full- subcategory of G generated by

conncted graphs. Then CG does not have a product, but

it does have an S-product, under whích the S-product of

two connecled graphs is the family of the connected
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components of their product in G.

It is cl-ear that S-producLs, like producbs, are

commutaLive in the sense that At n AZ is naLurally

isomorphic to AZ n 41 . This f ol_l_ows f ron the f act that

lhe functors c[-, At] " ç-l-, Azl and 9[-, Ãz'] ' c[-,41]

are naturaJ-1y equival-enL. Another flproduct-l-ikerr

property is that if the S-product of any two objects

exists i.n Q, then the S-product of any finÍte n-tupJ-e

of ob j ects also exists in O. This f act v,/e shall- now

prove:

Lemma (2.7 ): Suppose that C has S-producls ( i.e. , the

S-product of arìy pair of objects exists). If Kt and KZ

are ( con Lrav ariant ) S-representable set-val-ued

functors, then K 1 * KZ is again S-representable.

Pnoof: Suppose Kt and KZ are naturally equíval-ent to

\/. g-[-, Ai] and trj gL-, ojl respecLively. Among

set-val-ued functors as among sels, the carLesian

product distribuLes over the disjoint union. Thus it

f ol-l-or¡s tha.l K I * KZ is naturally equival-ent to the

disjoint union tr,r,r, g[-, Oi] * C[-, Oj]. But by Lhe

hypothesis each componerìt of this disjoint union is

S-representable, and it is cl-ear that the disjoint

unj.on of S-representabÌe funcLors is again
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S-representabl-e. QED

Proposition (2.8 ): Suppose the category C has

s-products. Then, f or all- positive integers n and all-
n-tuples (41 , Ar,... , Orr) of C-objects, the S-product

of (41, A2,..., An) al-so exists. If g has finitary
S-products, then Al n AZ îr. . . r A., is also f iniLary,

Proof: The proof is by induction on n. The case

n = 2 is given. Suppose then that n Z 2, and that the

S-product of n facLors always exj-sts. Let

(41, A2,..., An*t) ¡e any (n+i)-tupte of C-objects.

Then it ís cl-ear thal the cartesian product

g[-, ol] * g[-, Ãz-J xo.,x gL-, Ar,*1]

of functors is naturally equival-ent to
(C[-, Al] * Cl-, AZl x...x g[-, An]) * gL-,Ano1l.

By the induction hypothesis, the functor in the round

brackets above is S-representable, g[-, Ano 
1 
] is

trivially S-representable , and therefore by l_emm a (2.7 )

their carLes j-an product is S-representabl_e.

fn case that C has finiLary S-products, just add

trfinitarinesstr to the induclion hypothesis, and note

that, it is preserved by the proof. QED

0f course lhe analogous theorem for s-coprodu.cls is
al- so tr ue ,
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0ne vlay of looking aL our resul-ts so far is to

dj-stinguish the rrful-l- sub-quasi-categories,, of (C*, S>

and of (C, S> generaLed by represent,able functors and

by S-representabl-e funcLors. LeL R<C, å> denote the

category of representable covariant fu.nctors and

naLural transformalions, and SR<C, å> the calegory of

S-representabl-e ( covarianl) functors and natural

transformatíons. Both are full subcategories of
(9, S), and recaIl that <C, S> has products given

pointwise by the cartesian product in -S.. Then the

situation for products and coproducts is as foll_ows:

!. has products if and only if R(On, S) is cl-osed

under the formaLion of products in (!-*, å>, and it has

coproducts if and only if R(C, S> is closed under the

formaLion of products in (C, ö_>.

The situation for S-producLs and S-coproducts is

similar:

If SR<g, S.) is cl-osed under the product in

<g , S.) , then e_ has S-product s ( and conversely ) ; while

if SR<9, S> is cl-osed under the product in (C, Ë->, Lhen

C has S-coproducts. 1t is for this reason that general

results about products and coproducts al_so hold for

S-products and S-coproducts ( when properJ-y

interpreted); what looks like an S-product, in C is

siriply a product in SR<g'á, S), whil-e what tooks l- j-ke an

S-coproduct is simply a product in SR<C, ;.>.
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Let us no'hr lurn to the case in v¡hich we are

especially interested:

Let C be a finitary category with skeLetal- set

Ç = {A*: i e I}, and suppose that C has finitary
].

S-products. fJe then define a multiplication in the

right tinearj-zalion Z(C, C> of C by writing:

(2.9) A:_ " A..i = .l r(i,i;k)nu
k

where r( i , j; k) is the number of efements x in

dom(4. r A.) such that (A* r A.)(x) is isomorphi-c lo]J].J
Ak, and extending Lo al-1 of Z(C, e_> by linearity.

There is anoLher convenient way of writing lhe

above mul-tiplication. For Lhiso we introduce what we

shafl- cal-1 the I'ang1e bracket convenLionrr:

For any A e ob C,1et <A> denoie the unique el-emenL

A. in the skeletal set C such thal A is isomorphic to
l_

4.. Then, we may alternatively write the above
a

multipJ-ication in the form:

(z.to) o, . oj = 
Ì 

.(Ai n Aj)(x)),

where x varies over the set dom( A. ri A . ) .1J
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Propos j-tion (2,'! 1): The mul-tipì-ícaLion t-aw (2"9) is

commutalive and associative, and hence makes Z(C,\ into

a commuLative ring.

Proof: The proof consists in showirrg that both

(4. ' A.) ' A. and A. ' (4. ' A. ) are equal to t,he sum]. J k r J l{'

j <(a.nA,rAu)(x)>,
À

where x varies over the seL dom(A. n Oj n AU). This is

done by noting that the S-product Ai n A j n At can be

arrived aL either by forming the indexed set

i((n, n Ar)(x) n Ak)(y):

x e dom(4, n Ar), y e dom((4, n A.)(x) n AU)i

which corresponds to the exprcssion (0, ' Oj) " Ak, or

e-l- se by f orming the indexed seL

{(l r (Aj r An)(x))(y):

x e ciom(4, n An), y e dom(4, n (4, n no))(x)Ì

which corresponds to the expression Ai . (Oj ' OO).

For exan:pIe,

I <t{n, r A.)(x) n Ak)(y)>
(x,y) - J

= I (J <((a. r A.)(x) n Ak)(y)>
X'1J

(by (2.10)) = I (((R.i r' nr)(x)> . Ak
xrJ

= (l .(0, n Aj)(x)>) " Ar

= (4. " A.) u 4..lJK
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But by Lhe uniqueness of S-represenLability, we

must have the equivalence of these li^¡o ways of anriving

aL Ai n Oj n Ak, and hence t,he equality of the

conresponding sums. QED

Lel us cal_l_ the muLLiplication (Z.g) on Z(C) the

mul-Lipl-ication delrived from the S-nroclr:et in C. It is
obvious from the manner in which the S-product j.s

defined that the Z-Iinear maps c. are ring

homomorphisms from z(c) to Z when z(c) is given the

mul-tiplication derived from the S-product. Thus, the

nap g.: Z(C) * zC is aLso a ring homomorphism.

0f counse by duality the same concepts and resul-ts

appty to the left linearization Z<C, Cn> of a finitary
category g, If C has f initary S-coproclucts, then i^ie

define the mul-tiBlication derived from Lhe s-coproduct

by:

(Z.lZ) A* " A* = J <(A* u A.)(x)),1J;1J

where x varies over the set dom(A. u A.),tJ

*Under this mul_tipIi-calion, Z<C, C > is a

commutative ring and on: Z(C) * ZC is a ring

homomorphism.
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Before we leave this section, note that other

Limits and col-imits besides products and coproducts can

be gerìeraLized v j-a the notion of S-representabiJ_ity, to
give us the concepts of S-Iimits and S-colimits. The

key to such a general-ization is the fact (r¿hich we

noted earfier) ttrat the existence of a particular limit

or colimit can be reduced to the question of the

representability of a corresponding set-val_ued functor.

To gerìera1ize, then, we just replace the condiLion of

representability with the condition of

S-representability.
ggs
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3 - F a c t or i z. a t i on s :

fn the firsl chapLer, we showed that, if A is a

cl-ass of finite algebras cl-osed under the formation of

direcL products and sub-al_gebras, then both the

category C of A-algebras and algebra homomorphisms, and

the category D of A-aJ_gebras and surjective algebra

homomorphisms are finitary categories with finitary

S-producls. (Of course the S-product in e is a

product.) Thus, if C is a skel-etal set fon O (and

hence a skel-etal set for D ) , then both Z(C , g> and Z(C ,

D> are equipped with mul-tiplicatíons (derived from

their respective S-products) making them into

commutaLive rings. But in addition to Lhis, ne also

have a ring homomorphism (indeed, an isomorphism)

L; Z(C, C> u Z(C, D> whj-ch commutes nith the rÍng

homomorphisms c a.nd d. In this secLion we shall give a

category-theoretic accounL of this phenomenon.

Fundamental lo the definition of t was the fact

LhaL every algebra homomorphism f: A + B has the

(essentially unique) factorízation:

em
A * Bn * B, f = m 0 €,

I

where e is a surjecL.ive homomorphism and m is

inj ective.
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Ln lhe prevíous section, we gave a brief accounL of

what we called rlimage factorizat,ionsrr and (dualJ_y)

frco-image f acLor izaíionsrr . These are examples of

so-caf led (M,E)-factorizatj-ons (viz. IHS] ), which we

noI^I define:

Let M be a cl_ass of C-monomorphisms cl_osed uncier

composition with isomorphisms, and E a cl_ass of

O-epimorphisms al-so cl_osed under composiLion with

isomorphisms. lde shal-l say that a C-morphism

f: A, -'4. has an (tq,n)-factorization if it is possibtel¿

to ttfactorrr f as a composition f = m o s r¿ith m e M and

e e E. Say that f is uniouel-y (U,E)-factorizable if f
has an (lt,E_)-factorizaLion, and any two

(M,n)-factorízaLions of f, f = m o e and f = mr s err

are equivalent in the sense that, süpposing the

facLorizaLions are given by the diagrams:

em
A1 + B * A2

el ml
and A. * Br* A-- 1 - '-2t

Lhen there is an isomorphism i: B -* B I such Lhat lhe
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diagram:

l\l/ A.
a

ml

Br

commutes. If every morphism in mor C is uniquely

(M,E)-factorÍzabl-e we shal-l- say that I is

(M,E)-factorizabfe.

We have aJ-ready seen some imporLant examples of

such facLorizability:

fn the first pIace, r{e have the family of examples

given by ( inj ective, surjective)-factorizations of

homomorphisms of A-algebras as in chapter I. More

generaì-1y, if C is a categony al-l- of whose morphisms

admit image facLorizations (as defined in secLion 2

above) , then C is (U.,-E-)-f actorizable, where M is the

class of alJ- Q-monomorphisms, and S is the cl-ass of

epimorphisms e such that the natural Lransformation ou

is surjective. Similarly, if g is a. caLegory all of

whose morphisms admit co-intage factorizalions, lhen C

is (t"l,g)-factorizable where E is the class of al-1

9-epimorphisms and M is the class of monomorphisms m

such that, Lhe natural transformation ßm is surjective.
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As general a.s the concept of ( l¡

is, it is not quite generaJ- enough

Consider the f ollow:'-ng example:

incl-usion of B = Def(f)

restriction of f to B.

that this f'aclorization

definition of uniqueness

, E )-factorizations

for our purposes.

* 4., and f.: B -t' A to be thett

And it is not hard to venify

is unique if one uses the same

as that used for

Let PN be the categony of finite sets and partial

funclions. A partial function f: A + B is a function

l+hich may be defined only on a subset of A. The subsel

of A on which f is defined we shal-1 cai-l the domain of

definition of f , and denote by ¡ef(f). (ff must be

distj.nguished from lhe domain of f, which, in category

theory, is Lhe set A.) For example, between any two

sets A and B we have the rtemptyrt partial function,

whose domain of definition is the empty set ø € A.

Note NhaL N, the category of f in j-te sels and

mappings, is a subcategory of PN. Now consider the

cl-ass E of PN-morphisms e: A t * AZ such íhat e is a set

isomorphism of Def(e) wiLh AZ. (EssenLially, e is lhe
rrinversett of an injeclive map AZ * 41.) Note that the

el-ements of E a-re all are all PN-epimorphisms. Then it

is not hard to see that pN is (N_,E)-faclorizabl-e in the

sense that every partial- function f : Al u A2 admits a

factorizaLion of the form f = ft o e where f,, e mor N

a.nd e e E; simply choose e to be the ttinversetr of the
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(E,l"i)-factorizations. Eut, mor lri is not, a cl-ass of

monomorphisms in PN.

The above example suggests the need for a wider

definition of facLorízabíIity. In fact, !,re shal_l

provide two definitions, which will be dual_ to each

other.

Definition (3.1): A right factorization of the

category C is a pair (l¡,1) such that:

a) D is a subcategory of C with same objecl cl-ass

as C and containing all C-isornorphisms,

b) M is a cl-ass of g-monomorphisms closed under

composiLion with O-isomorphisms,

c) every C-morphism f has a unique factorization of

the form f = m o f1, where m e M and fl e mor D.

ItUniquerìessrr ir¡ this context means, as before, that if

f'= mr o f; is a second such factorization, lhen there
I

is an isomorphism whích makes the following diagram

commute:

\
I

Å

B

Bì

"/

\
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DefiniLion (3.2): A l-eft factorízat,ion of the category

C is a pair (D,g) such that:

a) D is a subcaLegory of g with the same object

cl-ass as C, and conla j-ning all C-isomorphisms,

b) E is a cl-ass of g-epimorphisms closed under

compositíon with C-isomorphisms,

c) every C-morphism has a unique ( as above)

factorization f = fI o e, where f,' e mor D and e e E.

If (t'l ,¡) is a right facLorization of Q, we shall

also say that D is a right factor of g, and call- M its

associated class of mgrromoLphisms. SimilanJ-y, if ( ¡,E_)

ís a l-eft factorizatj-on of Ç, we shall call D a l-efl

factor of C, E being its associated class of

epimorphi sms .

We give a. few examples of facLorízaLions:

a) Suppose C is a category such that every f in

mor Q has an image factorizalion. 1f we 1et M be lhe

cl-ass of all C-monomorphisms and E be the class of al-l-

epimorphisms e such that o€ is sur j ective, then ( as i¡ie

have aJ-ready noled) C is (E,pl)-factorizable.

Additionally, however, boLh E and M are cl-osed under

composition. Thus , if we define subcategorie s CE and

CM of C by setting ob CE = ob Civl = ob l- and mor CE = E,

mor CM = M, it is cl-ear Lhal CE is a right factor of C
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(r¡ith l',i as its associaLed cl-ass of monomorphisms) anO

CM is a left factor of g (with E as its associated

cfass of epimorphisms).

Similar remanks apply if every C-morphism has a

co-image fact orízation.

b) As i^ie sar^r in the example preceding our

def initions, N is a l-ef t f actor of PN.

c) Consider again the categories I ( finite graphs

and adj acency-preserving maps) and GS ( finite graphs

and simpl-icial- maps). We have noted that G is a

subcategory of GS; in fact, it is a left factor of GS.

To see this, notice lhat a GS-morphj-sm f : Gl * G2

is a G-morphism if and only if , for al-l- y e V(Gr), the
I

subseL f- (y) is'rtotally disconnectedrrin Gt (i.e.,

no two points in f-1(y) are adjacent in G,,). Now l-et E

consist of al-1 morphisms e: G i * G 2 in mor GS which

satisfy:

i) e is surjective as a function between vertex

sets,

ii) for all y e V(Gr) the subgraph of Gt generated
-1by ¡ '( v) :.s connected.

(ff G is a graph and Y a subset of its vertex set, then

the subgraph of G generated by f, which is denoted by

G(Y), is Lhe graph with Y as its vertex set and having

two poinLs in it adjacent if they are adjacenl in G.)
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Let f: G1 u G2 be any GS-morphism. Define â

"quotienttr grapn õ,, of Gl by identifying to a point

each connected component of G1(f-t(U)), flor each y ín

V(G^), wílh two such points being adjace. uo such points being adjacent in Gl if Lhe

corresponding connecLed subgraphs of Gi have at, least

one edge beli+een them. Then the natural projection

e: Gr o G, is an element of E, while f factorstt

(uniquely) through õ1 as f = f I o e with f I e nor g.

It is not hard to show that thi-s factorization is

unique (in the sense of our definition of

facLorizations), and that therefore (C,E) is a Ieft

facLorization of GS.

It is al-so interesLing to notice thaf E is not

cl-osed under composition, unlike our other examples.

Suppose (.U.,D) is a right factorization of Lhe category

C, Call a subobject of an object A e ob Q an

M-subobject of A if it can be represented by a

monomorphism from M. (tnen, sínce luf is cl-osed under

composition with O-isomorphisms, it can only be

represented by monomorphisms from U. ) i¡le shal-l- caII

the factorizaLion (U,l) focaÌ1y smalf if the class of

M-subobjects of A, for any A in ob C, form a set.
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Further, call (M,D) fínitary if for all C-objects A the

class of M-subobj ects of A form a finite set.

SimilarJ-y, if (l,n) is a l-eft factorízaLion of O,

then a E-quoLient object of A e ob C is a quoLÍenL

object of A which can be represented by an el-ement of

E; (l ,E ) is l-oca11y small if the c j-ass of E-quoLient

objects of any A e ob C form a set and is finiLary if

that class forms a finile set.

l''lith lhis terminology established, we can slate and

prove the f ol-lowing proposition:

Proposition (î.3): Suppose (M,D) is a 1oca11y smal-l-

right facLorization of g. Then for al1 A e ob C, the

set-val-ued f unctor O[-, A] , restricted to D, is

S-representabl-e in D.

**
Specifically, if {A* + A: x e X} is a family of

representatives of the M-subobj ects of A, then the

restrietion of Cl-, Al to D is naturally equival-ent to

\,/x D[-, A*].

Proof: The famiJ-y of morphisms ro* define

( component,-wise) a natural Lransformalion

0: \/x D[-, O*] * C[-, Al.

The definition of a right factorízaLion asserts that

for al-1 B e ob 9, eU ís a seL ísomonphism" QED
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0f course, the duaf of the above proposítion afso

holds. That is, if (n,E) is a locaJ-1y smal-l left

factorization of C, then for ai-I A in ob g lhe

sel-val-ued f unctor glA, - I , restricted to D, is

"*S-representabl-e in D. That is, if {n -} A* : x e X}

is a famíly of representatives of the distinct

E_-quotient objects of A, then the restriction of

C[4, -] to D is nalural-l-y equival-ent to \/x DIAx, -].

We nor{ look aL what these concepls so far enLail

fon finiLary caLegories and their lir¡earizaLions.

Thus, Ìet C be a finitany category with skel-etal set

C = tA.: i e I]. ClearJ-y, if D is a right or left
l-

factor of C, then D is al-so f iniLary, and C is al-so a

skeletal set for D.

Let us then suppose that D is a finitary right

f actor of C, with associated cl-ass of monomorphisms lul .

Corresponding to the factorization (U,l) of g define a

Z- l- inear map Z(C) * Z(C ) as f of l ows :

For each Ai e C, let tA*: x e X(i)Ì be a family of

distinct representatives for the M-subobj ecLs of A. .

By assumption, this set ís finite for all i. Thus,

using the angJ-e brackeL conventíon, vre write:

(3.4) m(Ar) = I (Ax),
À
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where the summation is over

0f course it, fol-Iows at,

al-so be written as:

m(R. )
1

the elements x in X(i).

once that the above can

5)(J m(i,j)4.

where m(i,j) is lhe number of distinct M-subobjects of

A. reDresentabl-e bv 4..1-"J
It Ís almost immediate from our defiriitions, LhaL

lhe followíng diagram commuLes for a1I k e f:

(3.6) m

Z(C)

sinc" 9k and dn simply count morphisms (tnat is, cU(4.)

= lÉglAu, orl and du(4.) = /iDIAk, A.] ).

DualIy, if (D,E) is a finitary left factorízation

of C, then it determines a a corresponciing Z-l-inear map

sse: ZlC , C > -+ Z(C , D > def ined on basis elements by:

e(i,j)4.,

( C)

-r-L
J

(3.7) e(Ar)
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where e(i,j) is the number

ob j ects of Ai represerìtable

following diagram commutes

of distinct E_-quotient

by A, . Cl- earIy, the"J
for al-] k e f :

Z(C)

(3.6)

dt

z (c)

It is our intention aL Lhis

attention to lhe question of the

factorizations and S-products.

principal result on this matter,

properties of facLorizations:

point to turn

rel-ationship

Be fore going

we need some

our

between

on to our

further

Propositj-on (i.a):

facLorization of the

staLement s are tr ue :

Suppose lhat (U., D )

categony C. Then

15 a right

the following

a) AII C-isomorphisms are el-ements of -Mi in

parLicular, al-I identities are in trJ.

b) If m € M and f e mor D are such that

m o f e mor D, then m is an isomorphism.
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c) If f e mor D and g e mor C are such LhaL

g o f e mor D, then g e mor D.

Proof: (a) LeL 1At A * A be an identity in l]" Then 1R

admits the factorizaLion 1R = m o f , where m Ê I'l and

f E mor D. Say the diagram Iooks l-ike:

m

A *B
f

Then, m o (r o m) = (m o f) o ¡ = rì = m o 18. But

since m is a monomorphism ( i.e. , left cancellable) ,

this implies that f 0 m = 18. Thus, f and m are

inverses of one another. Since lvl is cl-osed under

composition with isomorphisms, ít fol-l_ows that
f o m = 1A is an el-ement of M. Since all_ identities

are in M, and lvi is closed under composiLion with

isomorphisms, M al_so contains alI isomorphisms.

b) Let fr = m o f. Then fr = m o f is an

(l¡,¡)-factorizaLion of f'. But since by assumplion fr

is an eLement of mor D, and al-] identities are in lul , it

fol-l-ows that f ' = 1B o f I is a second such

factori-zation of f', wheru 1B is Lhe identiLy on the

codomain of f. By the uniqueness of such

factorizations, there must be a e-isomorphism i such
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that the following diagram commutes:

But Lhen $Ie see that m = 1B o i = i is an isomorphism.

c ) The morphism g has an (M,D )-factori zat ion

g = m o g1 (m Ê M, g1 e mor D). But Lhen since

g o f = m o {8t o f), with m e M and c1 o f Ê mor D, by

(a) m must be an isomorphism. And since D contains all

C-isomorphisms, it f ol-l-ows that m o g1 = g is an

el-ernent of mor D. QED

Prooosition (3.10): Let g be a category which has

S-products. Suppose that (V,l) is a local_l_y small_

righL factorization of C. Then D al_so has S-products.

Specif ica11y, the rel-aLionship is as f ol_Iows:

For objects Al and AZ, let

At n AZ = t(Ar n Ar)(x) : x e dom(4,, ri Ar)Ì

denote the S-product of Al and AZ in the categony C.

For each x e dom(4, r Ar), l-et n,* and nr* be the
trnatural- proiectionsfi from (O, n Ar)(x) to Ai and AZ,

108



respectivel-y. For each x e dom(4,, n Ar), al_so 1et:

my
t (4, nD Ar) (x,y) * (4,, n Ar) (x): y e y(x) Ì

be the family of representalives of the distinct

M-subob j ects of ( 0,, n R, ) ( x) which satisf y the

following additional condition:

both n,,' 
* o *V and , Z* o rY are ef ements of mor D .

Then, the indexed set

Ai nD AZ = i(41 nD Ar)(x,y) : (x,y) e \/* y(x)i

is the S-product of Al and AZ in the category D.

Proof : lJe show LhaL, for any object B and any pair of

D-morphism (f1,f2) e D[9, A,] 'ÐlB, Ar7, there is a

unique (x,y) and a unique D-morphism

f : B + (0,, nD A2)(x,v) such lhat (n.,* o mv) o f = f I
xvand (nZ^ o mr)of = fZ. This rvill establ-ish a natural-

equival-ence between ùl-, All 'Dl-, ÃZf and

\/(*,y) Dl.-, (o', nD A2)(x,Y)J'

First, sincu f 1 and f Z are Q-morphisms (as well- as

D-morphisms), there is a unique x e dom(A, n AZ) and a

unique morphism 1: B * (A, n Ar)(x) such that

nr* o -r = f1 and ,r* o -f = fz. Furthermore, I tras a

unique factorízation as -f = m s f , where f e mor D and

m: H * (4,, n Ar)(x) is a representative of a unique

M-subobject of (0,, , AZ)(x).

lrle must show LhaL m can be chosen as one of the
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*Yt " describect in the proposition. That is, t{e must,

show that both n,, 
* o m and n r* o m are el-ements of

mor D. But, by proposit j-on ( 3.9 a) , sÍnce

(n,* o m) o f = f1, (nr* o m) o f = f2, and f , are al-t

el-ements of mor D, it f ollor¡s Lhat n. * o m and n^x o mt2
are al-so el-ements of mor D. Thus there is a unique

y e Y(x) such that ? = *Y o f, and therefore such that

n., 
* o *Y o f = f ,l and nr* o *V o f = f 2. QED

From the manner in which the rtÍnheritedt' S-product

is construcLed, it is cl-ear that if C has finitary

S-products, and (U,D ) is a finitary right factori zaLion

of C, then the S-product in ù is al-so finiLary.

The dual- of proposition (¡. I O ) can be stated as

f ol-l-ov¡s:

If (l,E) is a l-oca11y smal-l left factorízation of

C, and Q has S-eoproducts, then D also has

S-coproducts. Specif icall_y, if

At v Az = {(4,' u Ar)(x) : x e dom(4., u Ar)i

is the S-coproduct of Al and AZ in C, Lhen their

S- coproduct in D can be constructed as f ol_l_ows: Fon

each x e dom(4,, u Az) Let

"Y{(4, u Ar)(x) * (4, uo Ar)(x,y) : y e y(x)}

be a family of representatives of the distinct

E-quotient obj ecfs of ( O, u A, ) ( x) wifh fhe property
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that the composilions ey o ,l* and cy o ,2* are bolh

el-ements of mor D. (Here, of course, ,,, t and ,r* are

the rrnatural- injectionsrr from At and AZ respectively Lo

( 0,, u A, ) ( x) associated with the S-coproduct,. ) Then hre

can form Lhe S-coproducl in D as the indexed family of

objects

At uD AZ = { (41 uD Ar(x,y) : (x,y) . \/* Y(x) }.

iie have already seen this phenomenon of the

inheritance of S-products and S-coproducts at work in

bhe case of subdirect products and amalgamations of

sets. Let us l-ook al one more example of interest, in

this case an S-coproduct inherited from a coproduct:

Exampl-e: Consider the category G of finite graphs and

adj acency-preserving maps. CalI a G-morphism

f : Gt u Gz adjacency-reflect,i-ng if whenever f (x,, ) and

f(x,) are adjacent in GZ, then *i and *Z are aLso

adjacent in G1. It is not hard to verify that finit,e

graphs and adjacency-reflecting maps form a subcategory

of G which we shall denote by GR.

Now leb B be the cl-ass of adjacency-preserving maps

between finiLe graphs which are bijective as maps

beLween vertex sets. It is not hard to see that B

consísts entirely of bimorphisns; i , e. , each el_ement of

B is both a monomorphism and an epinorphism in G. (ln

laeL, B is precisely the cLass of all bimorphisms in
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G-. ) A typical exampJ-e of such a bimorphism is given by

graphs Gt and GZ such that V(G,, ) = \l(G2) ¡ut

E (G, ) g e (G. ); Lhen the identity mapping on the vertext-¿

seL defines such a bimorphism Gl * G2.

0ne can verify that (GR,B) is a left factorizatiorr

of G. Now, G has a coproduct, nameJ_y the disjoinl

union operation (defined in the obvious way) on graphs.

Thus, by the above resuLt, we can assert that GR has an

S-coproduct (at Ieast). To describe it with some

clarity vre introduce yet anoLher rìot j-on:

Given ti^ro graph" G 1 and G Z, suppose that

p gV(Gr) * V(Gr) is a rel-ation between their

respective vertex sets. hie def ine Lhe nehr graph

Gi t/o GZ as the disioint union G1 \/ GZ given

additional edges making x and y adjacent for each pair

( x,y) e p. CJ-earIy the natural- map

e: Gt \/ GZ * G1 t/o GZ is a E-morphism, and thus

determínes a B-quotient object of Gt \/ GZi

furthermore, if ,1 and ,Z are the natural- injections

from Gl and GZ respecLively into Gt \/ GZ, then e o ,1

and e o ,2 are elements of mor GR. Ln fact, one

verifies that these are essentially the only !.-quotient
objects of Gl \/ GZ with this property. Hence, by our

resulLs above , vJe see that, f or f iniLe graphs G.,, and G Z,
the indexed seL tct \/o GZ : p E V(c1 ) * V(GZ)] is the

S-coproduct of Gt and GZ ín Lhe category GR
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A short note on the rrsmal-Inessrr conditíons in the

statemerìt of (2.10):

If C is rrlocaJ-1y smalltr (or wel-I-powered, as Ít is

nore commonly Lermed: the class of subobjects of any

object forn a sei), then any nighL factorizaLion of g

is a f ortiori 1oca11y small-. Sinilarl-y, if C is

co-r'relt-powered ( quotient ob jects of an ob ject are a

set), Lhen any left factorization of I is locally

smal-i , Th ese set- theoret ical compl icaL ions do not

arise wíth finiLary categories, as it is easy to prove

that any finitary (indeed, any skel-eLa11y small)

caLegory is both wei-l--powered and co-welI-powered.
j***

We no!ù turn to lhe following result:

Proposition (3.1'! ): Let g be a finilary category with

finitary S-producLs, and (.U,D) be a finitary right

factor,'zation of C. (Thus D al-so has finitary

S-producLs. )

Consider the ríght l-inearizatíons Z(C, g> and

Z(C, D> (where C is a skel-eta] set for C and hence for

D) as rings under Lhe multiplications derived from the

respective S-products.

Then, j-f nz Z1C, Q) o Z(C, D> is the Z-Linear map
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corresponding to the given faclorization, m is a ring

homomorphism,

Proof: Sel C - tA:_ : i e IÌ. We musL show the

equality, for all- i,j e I, of m(4. . Oj) (where the

nul-tiplication is in Z(C, C> ) and m(R. ) " m(4. ) (where

the multiplication is in Z<C, D>). Let n denote the

S-product in C, and nD the S-product in D.

Consíder m( A. Oj ) first. Using the angle bracket

convenLion, we write:

A= o A= = I <(n- 1 A.)(x)),1J;rJ

and we can also write m( (A . n A, ( x) > ) as:

m((4. n A.(x)> = J <4, )e""i - 
i'^(x,y)"

y varying over the set Y(x),

r(x'Y)
where {Ar_- __\ * (A. n t.) (x) : y e y(x) } is for each\x,Y) 1 J'
x a famiJ-y of representatives of the distirrct

E-subobjects of (0, n Aj)(x). Putting this together,

i,Je can write:

m(At' oj) =r*lr)to(*'v)>'

mm
Now let tS,. * A* : u e Y(i)i and {e.. + A. : v e y( j)lu I - v J '-

be families of representalives of the distinct

M-subobj ects of Ai and Oj respectively. Then, bV

reasoníng similar to the above, .hre can express
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m(Ai) m(

m(ar) . m(Aj)

the equaLion:Oj) as in

I Bv)(z)),

where in Lhe sum u and v vary over the index sets y(i)

and Y(i), while z varies over dom(Bu nD Bu).

Fina1ly, consider t,he set-val ued functor
gl-,Ail x Çl-,ArJ restricled to D. By proposition
(2.1) , íL is S-representabl-e in D. There are two r4rays

of arriving aL partj_cular S-representations ( in ¿) of

lhis functor:

fn the first pIace, we may use the S-product in g

to give it as the disjoint union \/x Cl-, (oi * Oj)(x)l
(restricted to D), and then use (3.3) to express this
as the disioint union \/(*,r) D[-, A(*,y)].

A1 ternatively, we may use ( 3 . 3 ) first lo express

fhis functor as Lhe cartesian product

(\/u D[-, Bu]) , (\/r Ð[-, Brl, which is by distri-

butivity equival-ent to \/(r,rr) (Ð_l-, tul * D[-, Bvl ),
and then use the s-producf in D to express this as the

disjoint union \/(u,v,z) D[-, (t, nD Bu)(z)J. But by

the uniqueness of S-representabiiiLy, the Lwo

representations are equivalent i i. e. , there is a

one-one corresponderice beLween the objecls O(*,y, and

(tr tD Bu)(z) under which corresponding objects are

isomorphic. Bul since these are precisely the obj ects

that go into the two different expressions in question,

v'¡e concl-ude thaf they are equal. QED

I <(s
(u,ri,z) u
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The dual- of the above proposition can be staLed as

follows:

Let O be a finit,ary category with finiLary

S-products, and tet (D,E) be a finitary left

factorization of c. consider the l-eft linearizaLions
I.' Y#

Z(C, C > and Z(C, D > of C and D (where of course C is

a skeletal set for C and hence for Ð) as rings under

the mul-tipl-ications derived from their respecLive

S-products. The Z-l-inear map e : Z(C, Co) -> Z(C, D*>

corresponding to the given factorízation is a ring
homomorphi sm.

There is one further quesLion rel-ating to al-l lhis that,

we should ask:

Under what circumstances is Lhe map ! (or e),
defined as above, invertíb1e?

f n giving conditions under which t,his is so, v,¡e

shal-l- essential-l-y folIow the same techniques used j-n

the previous chapter. fn other words, to show that m

is invertibfe (in a particular ca6e), hre show that m

can be written as U = 1 + u, where 1 is the identity
linear transfornation, and u is 1oca11y nilpotent.

Let C be a finitary caLegory, and (M,D) a finiLary
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right faetorizaLion of -Q-; suppose Ç = {Ai : i e I} is a

skeletal- seL f or I, and let rn: Z(C, C) o Z(C ¡ D) be lhe

l-inear t-y'ansf'orrnatíon corresponding to the

faclorízalion.

The cl-ass M of monomorphisms is not necessarily

closed under composition. It does, hovrever, generate

such a class Mf of üonomorphj-sms; Mr simply consists

of monomorphisms m which can be expressed as a

composition *1 o *Z o...o r" (for some r) of

monomorphisms ti in M. l''ie shall cal-L Mr the derived

cl-ass of M. By an t'lul-derived subobjectfi of a g-objeeL

A we mean a subobject representable by a monomorphism

in M' (í.e., an Me-subobject, of A).

Now define a rel-ation tr<rt on the skel-etal_ set C as

f ol-l-ows:

(z.tz) a. < A. if
J

Pnonosition (?-1?):

thene exists m: Ai -+ A, , m e M I .

The rel-ation _< on C defined by

(3.12 ) is a partial order.

Proof: By proposiLion (3.9), M (and therefore Mt)

contains al-l- ident,ities. Thus Ai 5 Ai. Frorn the f act

that Or is cl-osed under composition, it f oltows at, once

LhaL 5 ís lransitive. Finaj-1y, since C is fini Lary ,

the dual- of corol-lary (4,3 ) in chapter I holds; that

is, if m": A. + A. and m^: A. + A. arc both'tlJ¿Jl
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monomorphj-sms, then they are both isomorphisms. IL

f oll-oi¿s LhaL 5 is anti- synmetric. QED

As bef ore , l-et us write ( A, ) - f or Lhe principal-

order ideal- (R. )- = {A * : A ì -f Ar }. lulore generally, if]. J J: 1

lrl is any subset of C, tet (W)- denote the order ideal-

generaled by W; i,e., (W)- = { Oj, Oj 5 Ai for some Ai

in l,lÌ. Al-so writu Ai . Oj to mean that Ai 5 O¡ but

Ai t oj.

In the equation m(Ar) = | m(i-, j )A, it is clear
J

by the definition of m that m(i,j) = 0 unfess Oj 5 Aii

while m(i,i) ="1 since (Uy the dual of femma (4.2) in

chapter I) A. is a representative of an U-subobjecl of'1

itsel f precisely once . Consequently, \¡Je can write the

defining equation of m in the form:

(3.14¡ m(Ai) = [, *o 
lo.*,1,j)A¡.

J1

In other Ì¡ords, m = 1 * Lr r where i is the ident,ity

linear transf ormation on Z(C,\ and u is def ined by:

(3.15) u(R.) = I m(i,j)n..
' A.<A. J

Jr

Now, it is easiJ-y seen that f or an el-ement w of

Z(C), if we denote the support of w by supp(¡¿), then:

(supp(¡¿) )- P (supp(u(:¿) ) )-,
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and that the conlainment is proper if r^r / 0.

Consequently, if (R. )- is f inite f or al-l- i e f , r¡re can1-

conclude ( as r^re did in chapLer I ) that f or all i thene

is a corresponding positive integer n such that un( A. )
a

* 0 , and that theref ore u is J-ocali-y nil potent and

m = 1 + u is invertibl-e.

It is not hard to show that the finiLeness of the

order ideal- (Ai)- for ai-l- indices i is equival-enl to

the condition that any object, A in ob C have only

finiteJ-y many U.-deríved subobjects. Thus hre may slate

these concl-usions in the form ofl the fol-l-owing

proposition:

Proposition (?.16): Let m: Z(C, Q) + Z<C, D> be the

Z-Iínear map corresponding to the finiLary right

factorization (t"1,¡) of the finitary category g.

If each C-object A has only finitely many,ll-derived

subobj ecLs, then m is invertible.

In most of the cases r^/e shal-l- deal with, the f amily

of al-l subobject,s of a O-objecf will be itself finite

and therefore the conditions of this proposition will

be met a fortiori. The duat- of (3.16) can be phrased

as f ollov\¡s:

If ez z(c, 0 ) * z(c, D > is the z-Iirìear map

corresponding to the finiLary left factorization (l,g)
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of the finitary category C, and if the E-denived

quotienL objects of any C-object form a finiLe set

then e Ís invertibl-e.

Before we go on to Lhe topics of the next secLion

r,re note one application of this invertibility result:

When vre form the right Iinearization Z1C, C> of a

finítary calegory C, we would frequently like to know

v¡hether or not the rrl-inearizing" homomorphi-sm
Ig: Z(C) * Z" is f aithf ul. In the f irst chapter r^re

showed thal if mor C consisted onJ-y of epimorphisms

then this was indeed the case. Using propositíon

( 3 . 16 ) we can extend th j-s resul-t somewhat f urther. For

suppose (l"l,D) is a right factorizaLi-on of the finitary

categony C satÍsfying the condiLions of (3.16), and

suppose furlher that mor D consists only of

epimorphisms, Then the fact that d: Z(C) * ZC is then

faithful, coupled with the invertibiJ-ity of m and Lhe

fact that c = d o er al-fows one to say fhal c nusL al-so

be faithful.
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4. Connections and S-ad iointness:

Essentially, a rrconnectionrr is a supplementary

cl-ass of rrarrovJsn going from the objects of one

calegory to the obj ects of anoLher category. The

concept was inLroduced in lPl as a way of describing

the notion of ad j oinLness . h-e shal-1 f ind it a

convenient tool- f or generali zing our resul-ts stitl

further, as well as a means of introducing a concept of
I' S - a d j o i n t n e s s rt .

Def inition (4,1 ): Let C and D be categor j-es. A

connectioO S from C to D is given by the following

data:

a-) a function which assigns to each pair (A,g) of

objects in ob C x ob D a set XlA, Bl, whose elements

will be caIled jd.-morphisms ( with domain A and codomain

B);

b) for Ai, A . ob C and 81, B e ob D, both a righL

composition l-aw which assigns to a -Li.-morphism v: A -+ B

and a .1]-morphism f: Al * A their trcompositionrt v o f in

ltl[41, B], and also a l-eft composition law whÍch assigns

to a ld-norphism v: A * ts and a D-morphísm g: B * Bt

their composition I o v in -E[1,, B1];

c) the stipul-ation that composition with

[-morphisns is âssociat,ive and behaves correcLly under
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composiNion r¡ith identities.

Specifically, ( c) in Lhe above definition means

that:

(i) if v: A + B is a l-morphism, then

v e 1A = v = 18 o v,

a.nd ( ii) if üie have a diagram of the f orm:

fr f v g gl
A2 + A1 * A + B + 81 * BZ

in which v is a L-morphism, f and f I are C-morphisms,

and g and gt are D-morphisms, then:

(v o f) o ft = v o (f o f'),

(g' o g) o v = g' o (g o v),

and (e o v) o f = g o (v o f).

We shall write U = -W( C, D ) to indicate that I is

connection from C to D. The following are a few

examples:

a) Suppose ! and D are subcategories of a category

l-. Then v,¡e have the connection & = -U(8, D) defined by

setling X[4, B] = Cll, BJ for al-l- pairs (A,B) in

ob B x ob Ð, wíth the composition l-a.ws inherited from

t.

b) There is a ftLrj-víalrrconnection between any two

categories. For any pair (4, B) in ob C x ob D, simply

set IilA, Bl equal to the empty set.
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c) Let C be the category of groups and group

homomorphisrns, S the category of sets and mappings.

Def ine a connection L = lrt(S, C) by j-etLing, f on any set

X and any group G, liIX, G] be the family of aIl maps

from X to (tfie underlying set of) G, togeLher with the

obvíous composition of functions.

d) For an example wiLh more of a combinatorial-

ffavour, take the calegories N (firrite sels and

mappings) and cR (finite graphs and adjacency-

reflecting maps) . Define ! = U.(N, GR ) Uy settÍng, for

any f inite set A and f inite graph G, IIR, G] equaJ- to

the family of all- maps f from A to V(G) such thal, for

any x and y in A, f(x) and g(y) are not adjacent in G,

together with the obvious composition Iaws. It is not

hard to verify that [, so defined, is indeed a

corìnection.

Just as in a category C where one can form the

set-val-ued f unctors gi- , Al and g[A, -], so when one is
given a connection I = -W(Ç_, D) one can al-so form:

a) for A in ob C, the covariant set-val_ued functor

-Wla, -l: D + S under which an object B in ob B is

mapped to the set X[4, B], and a morphism f: Bl u B2 is

mapped to the funclion X.[R, fl - f*: X[4, t,] * _UlA, -j
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defined by fi¿(v) = f o v for all v in -ElA, Btl;

b) for B in ob D, the contravariant set-val-ued

functor ![-, B]: C * S, under which an object, A in ob g

is mappeci to Lhe set WiA, ts1, and a C-morphism

f: Al + AZ lo the function

I{.i r, Bl = f : l[Az, B] * i¡tr[4,, , Bl def ined by setti'g

f (v) = v o f for all v in _W[4, B].

Additíona11y, if g: At * A2 is a C-morphism, then

it defines a natural transformation

ß8: u[42, -] * I'llA,, -l

under which tLre map ( for any B in ob Ð)

ß*r' -w[42' BJ * !lA,' B]

is defined by the prescription ßgU(v) = v o C (for v in

_w.lA2 ' Bl ) .

fn a similar manner, a Ð-morphism f: Bl * B2

defines a corresponding natural transformation of from

X[-, Bt] to l'i[-, ue].

FoIlowing the pattern esLablished ín the previous

section, one easily verifies that the rul-e which

assigns to each D-object B the contravarianL set-valued

functor ]l[-, B] and to a D-morphism g: Bt * BZ lhe

natural- Lransformation oB can be considered as a

( covariant) funcLor from D to the quasi-category

<e_, S). 0n lhe other hand, the rul-e assigning to a

C-ob j ect A the set-val-ued f unctor X[4, - ] and to a

Q-morphism g: Al * A2 the natural- transformation ßg is

I24



a (contravariant) functor from O to the quasi-category
(D,. S). This is of course completely analogous to the

Yoneda embeddings discussed earlier ( excepl that we do

not generally have einbeddin$s from connections, lacking

the resources of Yonedar s lemma).

Call a connection W = !.(C, D) finitary if the set

l'j[4, B] is f inite f or al-I pairs ( A, e) in ob C x ob D.

LeL us now consider the siLuation in which r^re are

given fínitary categorj-es C and D, with respective

skeletal sets Ç = {Oi : i e I} and D = {Bj : j e Ji,

and also a f initary connection lü = -!¿(C, D). I'ie can

then def ine Z-Linear maps -14: Z ( D ) + ZC and
*n

r : Z(C) * Z" as foffows:

' For each i in I, def ine vr. : Z(D ) + /, on basis

el-emenis by:

(4.2) wr(nr) = lÉ-!ú.[Ai, uj].

Then, the family of aIl- such maps defines a

corresponding Z-Iinear map r: z(D) * ZC under which

r(8.) is the function A. l+ (:¿(¡.))(4.) = r=(8.).J 1 ' J 1- _f - 
J

Call ¡4 the rieht l-ineanization of -W.

Simitarly, if v'¡e def ine, f or each j in J, the
i{

Z-Iínear map ¡4. : Z(C) + Z on basis el-ements by:
J

*!(4.3) 14. (1. ) = lilúlA., B*],
J-LI-J
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lcff. lincaniq.¡t-ion o f -w..

The nolions of the l-eft and right IinearizaLions of

a finitary connection are cfearly duai- to one anolher.

(fndeed, it is noL hard to see that a connection

U. = tnj(O, ù) gives rise lo a duaf or "oppositerr

connection X. = ! (D , C ) obtained by rrreversing

arrornrsrr, and that Lhe Ief t linearization of _W. is the
x.

right tinearízatíon of -U . )

Now suppose C and D are arbitrary categoríes. As

we have seen, if W = -U(9, D) is a connection, then each

O-object B determines a corresponding (contravariant)

set-valued f uncLor !l -, Bl on C. Thus i^re can ask

whether or nol tri[-, B] is representab]e, or

S-representable, in C. üle adopt t,he f oll-owing

terminol-ogy:

Ca11 the connection lrJ = lrl (C, D ) realizable on the

then Lhe fanily of these
Èåa Z- linear map ¡4 : Z(C,\

rieht if the seL-valued functor

represerìtable in C for aIl B Ín

maps defines ( component-wise)

+ ZD, v¡hich we shall catl the

-!¿[-, B] is

ob D. Ca]l it

, Bl is S-representabl-eS-reatizable on the riehL if fl-

in C for all B in ob D.

Similarly, ! is reai-izable on tbe left if the Lhe

functor

A, and

-Wl R, - I is representabl-e

S-np¡l'i zal'r'l e ôn f.hr. l eft

in D for all C-obj ects

if -u.lA, -l is

S-represenlabl-e in D for all 9-objects A,
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If \¡re are given a conrìection [ = I(C, Ð-) which is

realizabfe on lhe right, then it determines a

corresponding functor F: D + C in the following manner:

For each B in ob D, leL F(B) be a C-object which

represenLs il,J[-, B] , and al-so tet oB be a f ixed natural

equivalence from C[-, F(B) I ¿o X[-, B]. By Yonedafs
Þ

lemma , 0" is g iven by a unique el-ement rB in

-U[F ( B) , B] , and the set isomorphism f rom g[4, F( B) I to

-ElR, Bl provided by eB is given by tlre assignment
FlI t+ v_ o r.'.u

It is not hard to see that the function B l+ F(B)

extends to a funclor F from D to C:

If g: Br * Be is a D-morphism, then it determines

a corresponding natural transf ormat j-on *8 f rom -W[-, B, ]

to -Wl -, B,I ; using the natunal equivalences ur, and ur r,
one then transfers this to a corresponding natural

transformation from g[-,F(Br)] to C[-,F(82)], which by

Yonedar s l-emma is given by a unique C-morphism f( g) .

That the function so defined is indeed a funcLor is a

matter of routine verification. Il is also not hard to

show thal the functor F is unique up to naturaf

equivalence. hle shal-l- call it the rÍght real-ization of

the connection -!i.

Conversely, if F: D * C is a (covariant) functor,

it def ines a corresponding connect ion I = -W( C , D)

obtained by setting XiA, Bl = O[4, F( B) ] for all pairs
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( A, B) in ob C x ob D. The composition on lhe r j-ght

(i.e,, for a morphism f: Al o A) is simply given by the

usuaL composition in C; whj te the composition on t,he

lef t ( f or morphisns v: A + F(B) in tri[4, B] and

h: B + B, ) is given by the f unction (h, v) l-r F(h) 6 v.

0ne verifies wiLhout difficully lhat X so defined is

indeed a connection; and because of the way it is

def ined, Íre shall- denote it by C[-, F( - ) ] . IL clearty

has F as a right realization.

The same reasoning can be earried ouL on the Ieff.

Thus if -W. = -U,(C, D) is a connection which is real-izabl-e

on the leff, then there is a (covariant! ) functor

G: Ç- * D ( unique up to natural- equival-ence) such that

-W.[], -] is naturaJ-1y equivalent to DIc(A), -] for all

O-objects A. We shall- caIl it the left realization of

W, Conversely, if G: _q + D is a covariant f unctor iL

defines a corresponding connectiorì U = X(C, Ð) r¡hich is

denoled by DIG(-), -], and v,rhich has G as a left

real- ízaLion.

The rel-ationship of these concepls to the notíon of

adjointness Ís straightforr¡ard:

If W = .k(9, D) is a connectíon which is realizable

on both the righl and left, and G: C + D and F: D + C

are the left and right realizaLions respectively of X,,

then (G, F ) f orms an ad-i oint pair of f unctors . One
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afso says that G is a l-ef t adjoint of F, and thaL F is

a right adioint of G. ( tn nany appfications of these

ideas, one starts r¡ith one half ofl the pair, sâ-y F, and

then forms lhe connecLion g[-, F(-)J r.rhich, if iL is

realizabl-e orì the l-eft, then gives rise to the lef t

adj oint of F . )

We nolr proceed to extend these concepts to the case

iri lnlhich a given connection is S-real-izabl-e on the left

or right. Let us first consider a connection

l{ = -W(C, D) which is S-reaLizabl-e on the right:

For each D-object B, let F(B) = {F*(n) : x e X(B)}

be a suit,ably indexed family of C-objects which

represent -Ul - , B] in C , and l-et eB be a corresponding

natural equivaf ence from \/x e-[-, Fx(B).1 to lnl[-, B].

Then, by Yonedar s Iemma, 0B is gÍven on each componenL

Ci-, Fx(B)l by a unique U.-morphism uB in -W.iFx(B), Bl,
x

and the natural transformation 0g is thus O<ifined by the

family iv- : x e X(B)] of these I-morphisms.B
Ã

Now, if g: Bl o B, is a D-morphism, Lhen it defines

a corresponding naturaf transformaLíon og from _Wi-, Br]

to -Wl-, Br], which in turn can be transferred via the

the natural- equival-ences eB, and oB t to a naLural-

transfornation from \/x CL-, Fx(Br)l to

\/,, g[-, F,,(Br)], where the disjoínt unions are taken
JY

over the indexing sets X(Br) and X(82), respectively.

By lemma (2.2), however, such a natural Lransfor-
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maLion is given by a unique mapping X(S) = Ex

from X(Br) to X(Br) together with a unique function
p(e) from X(81) to mor C, x l+ n(B)o, such thaf

F(s)* e Ç.[n*(8,), Fgu(*r(nr)].

This pair of functions (X, F), assigning as it does

to any D-object B lhe family tFx(B) : x e X(B)Ì of

l--objects, and to a D-morphism C the pair (X(e), F(e)),

l-ooks very much like a f uncLor. lllhat must be done no!{

is Lo describe Lhe category which is the rtcodomainrr of

lhis ( putativ e) f unctor. hle shal-1 do so by

constructing, given a category C, a. new category which

'û{e shall- denote by S (q) . LooseJ-y speaking, S ( C ) is the

caLegory of ttindexed collectionsrr of objects in C. The

f ormaf def inition is as foIlo\¡rs:

An S(C)-object consists of a pair (X, A) in which X

is a set and A is a function from X to ob C, x l+ A(x).

l¡l e can call- such a pair an indexins in Ç. A morphism

(X, A) * (Y, B) between two such objects consisLs of a

pair (", R), in which r: X + Y is a mapping and

R: X -) mor Q, x l-> R*, is a f unction such thal R* is an

element of CIR(x), B(f(x))] for al-t x in X.

lrle must stiIl define the composition law for the

morphisms of S (g) . If vre have such a Íìorphism ( r, R )

from the indexing (Xt, AI) to the indexing (Xt, A2),

and (t, T) is a morphism from (Xt, A2) to (Xt, At), we

note that for x in X I vJe get the C-morphisms

R*t Ai(x) * A'z(r(x)) and Tr(x), 4'(r(x)) + A3(t(r(x))).
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The nappings more or less rrteflrr where the C-morphisms

are to Bo, and in formíng the composiLion of the pairs,

r{e basically f oLlow t,heir rrdirectíonsrr. Thus, under

the composition, i¡Ie want to have an arrow from A( x) Lo

A( ( t o r) ( x) ) , which is pnovided by the composítion

T,, 1 o R l,l'e put this ídea in more precise Lerms asr(X] X

foll-oi^¡s:

Def ine the f unction T ;r r: X I + mor !. by setting
(f * r)-- = T._,__., (an elemenL of the morphism setx rtxl
OLR'(r(x)), A3((t o r)(x))l). Nov¡ define the

composition (t, T) o (r, R) by means of the

prescriplion:

(t, T) o (r, R) = (t o r, (r x r) o R),

where ((T # r) o R)* = (T * r)* o R* for alt x in X1.

The verificaLion that S(C) so defined forms a

category ís rel-aLively straightforward. Also

sLraightforward ( Uut tedÍous) is lhe verification that

the function (X, F) defined earlier in terms of the

connection I and its I'right realizabilityt', is indeed a

f unctor f rom D to S (q) ,

!{e have now seen thal a conneclion I = _W.(C, Ð)

which is S-real-izable on the right, determines a

funcLor (X,n): D + S(C), which $ie shalt cal-1 the rlgbt

S-realization of -W.. It is unique up to natural

equivafence,
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f n Lhe sequel, i"¡e shall- frequenlly refer Lo a

f unctor from D to S (E) as an rrS-f uncLorrt from D t,o -O.

Before we go on to dual-ize the above resuft (which

process, unfortunately, is not quite straightforward) ,

we shafl- briefty examine the category S ( C ) .

fn the firsl place, note that S(C) has a ttdisjoint

union" operation inherited from S . Given S ( C )- obj ecls

(X, A) and (Y, B) , bre def ine (X, A) \/ (Y, B) as the

pair (X \/ Y, A u B), where X \/ Y is Lhe ordinary

disjoint union of sets, and A u B is lhe function

X \ / J -r nor ! def íned by:

(t(x) ir x e x,
(n u B)(x) = d

L e(x) ir x e Y,

r+here we identify X and Y with their rìatural- images in

X \/ Y. The disjoint union of any family of

S(C)-objects is defined similarly.

The disjoint union operation in S(C) can be shown

to be the coproduct in S(C). The natural- injections of

(X, A) and (Y, B) into (X, A) \/ (y, B) are given,

respectively, by the pairs (r1, Et) and (t2, Et), where

r1 and ,Z are the natural- injections of X and Y

respectively into X \/ Y, and Ei is the identity on

A(x) for atI x in X, ancl E; is the identity on B(x) for

all x in Y. I'Je leave the detail-s to the reader.
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The category C may ilsel-f be regarded as a

subcategory of S(C)" Simply consider a C-object A as

beíng indexed by the singleton sel tAi consisting of A

itself. Under this converrtiorr, an indexing (X, A) may

be regarded as the dis j oinL union \/* ,S( x) , where x

varies over the rrbasert set X. The fact t,haL \/ is a

coproduct in S (S) l-eads to the concl-usion that Lhe

morphism set S(g)[(X, A), (1, B)] is naturally

equival-ent to the cartesian product

X s(g) [a(x), (Y, B) ], where x varies over x.
x

This is not surprising if one recal-fs that the

cartesian product of an indexed family iV* : x e X] is

simply the family of al-l- functions f from X to the

union of the sets V* such that f(x) . V*. AppJ-yíng

this to the presenL situaLion, and using the fact that

an S(g)-morphism from the C-object A(x) to (Y, B) is

simpJ-y a rule thaL selecLs an element r( x) in Y

together with an element R* in g[A(x), n(r(x))], we

just recover our original- definition of an

S(C)-morphism.

0n the oLher hand, íL is easy to see that, for a

C-object A and an S(C)-object (Y, B), the norphism seL

s(c)iA, (y, B)l = s(c)LR, \r, B(y)l ts naturarly

equivafenl to the disioint union \/y Cl.4, B(V)] (lhe

disj oint unions taken over the set Y ) . This can be

seen by notíng that \,/y C[4, B(v)] consists of the
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family of pairs (y, Ry) with y in Y and O, in

9[4, B( V) ] . But such a pair determines triviatly an

S(g)-morphism from A to (Y, B), which (since A is being

taken as índexed by a singleton set) simply consists of

sel-ectíng a y in Y and a C-morphism OU in 9[4, g( y) ] ,

and vice-versa.

A more ímportant point to notice j-s the

relationship belween S-products in O, and products in

S ( C ) . They are , in fact , essentially identical. In

the first pIace, if S(g) has products, then the product

of two C-objects exists in S(C), since we take C as a

subcategory of S(g). This product is an indexing of

O-objects, which it is easily verified conforms to the

definition of an S-product in Q. Conversely, if C has

S-products, then the S-product of tv¡o C-objects A and

B, A n B, is essentialJ-y a pair (Oom(R r B)), A n B) in

which A n B is a function from dom(A r B) to C; i,e.,

an element of S(C). This extends to a product of two

S(g)-objects (X, A) and (Y, B) byrrdistribuLing,, over

the index sets. We simply define the product

(X, A) n (Y, B) to be the disjoínt union

\/, . (dom(A(x) r B(y)), A(x) r B(y)).(x'Y,r
The reader will verify the requisite universal-

properties of this definition, utilizing lhe facL that

the earLesian producL X x Y of X and Y is a product in

S, plus the universal- properties of the S-product.
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NoLe thal, by the very def init j-on of the product :--n

S(C) obtaíned from the S-product in !, it dislributes

over Lhe disjoint union in S(C).

FinalIy, notice that l-emm a (2 .2) can norv be viewed

as stating that naLural- transformations from the set-

vat-ued functor \/x C[-, A(x)] to \/y c[-, B(v)1, where

the disjoint unions are taken over the sets X and Y

respectively, are in a one-one correspondence with

S(g)-morphisms from (X, A) to (Y, B). Indeed, the

functor \/-- -q[-, A(x)l can be negarded as thex-'
resLríction of the functor S(C) [-, (X, A)] to the

subcategory g.

llle leave off the discussion of S(C) for the moment

to lurn to lhe problem of the dualization of the above

concepts.

This process, as i^re said, is not quite

straightforward. The problem is discernible in Lhe

second hal f of lemm a (Z .Z) :

According Lo the lemma, a natural-

from the disjoinL union \/x DiR(x), -l

union \/.- DIB(y), -l (with respecLive
V

Y) is given by a pair (F, f) in which

mapping and F: Y -| mor D, y l-'}- F--, i s
v

transformaLion

to the disjoinl

index sets X and

F. V + V I ^r. f 
^ 

f ò d

a function such
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LhaL F__ is in DIA(f(y)), s(y)1. The prob]-em is LhaL
v

t,he function f goes in the t'opposite directiontt to that

o f the rnor phi sms U, .

Thus, if vre are giverr a connecLion X = -E( C, D)

which is S-reaLizabl-e on the left, and we apply Lhe

same reasoning used above in the case of right
ItS-real-izabil-itytt, we derive a pair (F, Y) which

assigns to each 1]-object A a pair (F(A), Y(A)) in which

Y(A) is a set an¿ ¡'(R) a function Y(A) * mor D,

x l') F(A)x, and to each Q-morphism f : At * A2 a pair

(F(f), Y(f)) i.n which Y(f) = f*: Y(A-) * Y(4.) is a¿t

mapping and F(f) is a function from Y(42) to mor ! such

that F(f)x is an eLemenL of D[Ffo(*)(41 ), F*(42)] for

all x in Y(4.). 0f course, (F, Y) has the property
¿

that, for every g-object A, -W.Ie, -l is naturally

equivalent to \/x DIFx(A), -],

If vie look upon thís pair as a functor, it appears

to be contravariant on the base sets, but covariant

(more or l-ess) as far as D-morphisms ane concerned.

0ne r,Iay of soJ-ving this probJ-em is by creating a second

rrindexingrr category, which we shalf denote by S*(n), to

be the codomain of this (putative) functor:

The idea is to regard D as being indexed by So, the

category dual to ê_, (We witl not, however, find it
{i

necessany to bring S explicitly into the picture. ) An

objecf of S (D) is a pair (4, Y) in which Y is a set
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and A: Y -> ob D (x l+ A(x) ) is a f unction. (ttris is

the same as in S(D); the change in the order of Lhe

pain is for somei.+hat greater convenience in the writing

of the composition of two morphisms. )

An S (D)-morphism (41, t,, ) + (Az, 
"r) 

consists of a

pair (R,r) in rvhích r: YZ * Yi is a mapping, and R is a

function from YZ to mor D (x l+ R*) such Lhat R" is an

el-ement of DiA,, (r(x) ), nr(x)J f or all x in yZ. (tnint
lË

of r as being an .S_ -morphism, and hence going f rom Y 
1

to T^. )
¿

If lie have Lwo such morphisms, (R,r) from (41, Yt)

to (A2, 
"r), 

and (t,¿) fron (Ã2, Yr) to (43, Y3), then

define the composition (T, t) o (R, r) by:

(T, t) o (R, r) = (T o (R s t), r o t),

where (t o (n tÉ t)) = TXX

ir¡version in the order of

mappings (which of course
*then as morphisms in S ).

S (D) is a category. Also

resul- t :

If -W. = E(C, D) is a conrìectíon which is

o R, , \. Also note Lhet(x,r
composilion of the set

is consistent with regarding

Again, one can verify that

, h'€ have the following

funclor

functor

equival-ent

unique up to

the l-eft

S-realizabfe on the left, then there is a

-x

(F, Y): C + $ (l) such that the set-valued

-U.IR, -] (for all 9-objects A) is naturally

lo \/x DIFx(A), -]. The funcLor (F, Y ) is

natural equivalerice, and we shal-l- call it

S:reafization of the connection W.
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Again, we shaIl speak of a functor from Q Lo Sn(ù)

as arì rrS-functorrr from C to D; but to distj-nguish it

f rom f unctors C o S (D ) , we shal-1 cìub il a

rrsemi- contravariantrr S- functor .

*
The calegory S (D) deserves a few remarks (tne

proofs of which, however, wiÌl be left to the reader).
å¡fn the first place, S (D ) atso inherits a disj oint

union from S ( or rather, S*) . The disjoint union in

this case, hoidever, is a product nather than a

coproduct (consistent with the facL that the coproduct

in S is the product in -S.# ) . f n order Lo avoid

coll-ision with the notation under which \/ denotes the

coproducL in S ( as wef l- as some oLhen calegories) , uie

shal-l- use the symbol /\ to denote the disjoinl union

operation in so(l). Thus, for so(Ð-)-objecLs (4, x) and

(8, Y), their disjoint union (¿,, x) /\ (8, Y) is

(stiJ-l, as in S(D)) tne pa.ir (l u B, X \/ Y).

The following additional- statements concerning

S (D) are not very hard to esLabl-ish:

*1f S (D) has a coproduct, then D has a

corresponding S-coproduct. Conversely, if D has an
#

S-coproduct, iL extends to a coproduct in S (D). If u

äis such a coproduct in S (D), iL distributes over the
tËdisjoint union /\ in S (D).
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Any S'(D)-object (4, X) can be regarded as the

disjoint union /\* A(x) (x varying over X). Ln tine

r^¡ith the f act LhaL /\ is a product in S* (D) , the
t+

morphism sel S (D)L (8, Y), (4, X)l is naturally

equivalent to the carLesian producl

X s (D)[(8, Y), A(x)], where x varies ovcr X.
x

Again, D can be regarded as a subcategory of So(¡).

Adopting this convention, we find that the morphism set

S (Þ)[(8, Y), A], for A in ob D, is natural-Iy

equival-ent to lhe \/v D[¡( y) , A] (y in T ) .

Natural- transformations from \/x DIA(x), -] to

\/-- DIB(y), -l (with respective index sets X and Y) are
tiin a one-one correspondence with S (D )-morphisms from

( A, X ) to ( B, Y ) . Indeed, the seL-val-ued funcLor

\/x DIA(x), -] ûray be regarded as the reslrictíon to D

it
of the funcLor S (D)[(4, X), -].

If (X, F) is an S-functor fnom D to I (i.e., a

funcLor from D to S(C)), then X is simpty a functor

f rom D to S, which we can call- the rrset-theoretic parttt

of (X, F) . Similarly, in a semi-contravar j-ant

S-functor (F, Y) frorn C to D, Y is simply a

contravariant seL-val-ued functor, lhe t'seL-Lheoreticrt

part of ( F, y ) . In either case, if the set-theoretic

part Lakes on only finite seLs as values, we shal_l_ cal_l_



Now lel C and D be finitary categories wíth

skel-etal- sets Ç = {0, : i e I} and D = {uj : j e J}

respectiveJ-y. Suppose (X, F) is a finitary S-funcLor

from D to O. We Lhen defline the Z-Iinear map

r: Z(D) + Z(C) derived from (X, F) on basis elements

by:

(4'4) r(8., =*.il,r=Ít*,8.)>.
J

Here we are using the angJ-e-bracket convention.

Clearly this can al-so be written as:

(4.5) r(B*) = I r(j,í)4.,
J ; I',

where r( j,j-) is the number of elements x in X(Bj) such

that F-,(8.) is isomorphic to A..xJ^l-

The Z-Iinear map deríved from a semi-cont,ravariant

S-functor is defined in the same way. The following

proposition is virtually immediate from our

definitions:

the S-functor in question finitary.

Proposition (4.6 ): Suppose O and D are finitary

categories with skel-etal- sels Ç = iOi : i e IÌ and

D = iB. : j e J] respecLively; and suppose I = ld.(C, D)
J

is a connection which has a finitary righL rea:.-ization

(X, F): D * S(c)"
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Let

and r: Z

(x, F).

!t: Z(D) -'

(D) + z(c)

Then the

Z" be the right f inearization of .bi-,

be the Z-Iinear. map derived from

f'ollowing d iagram commutes :

ldF-----+ zc

É

T¡I

z(ctr-* zD

I'l\y
z(D)

he

Z(D)

I'l
Z( C)

is Lwhere of course c right linearization of g.

We omít the proof, which is straightforward.

0f course the dual proposition holds, and may be

stated as f oll-ows:

Suppose the sítuation is as above, except LhaT, novJ

X has a finitary J-eft neal-izalion (F, Y): C + So(n),

and let s: Z(C) * Z(D) be the Z-linear map derived frorn

(F, Y ) , Then the f ollowirig diagram commutes:

Just as the

real izability of

simul-taneous

a corìnection

teft and right

l-ead s Lo the concept

L4L

of



adjoinLness, so r{e may speak of S-ad iointness in the

case of simuÌLaneous Ief t and right S-real- ízabiIit,y.

IL turns out LhaL Lhere is not much of inLerest in such

a general- siLuat ion. l{hat is of interest is the case

in which one half of such anrrS-adjointrrpair is a

funcLor rather than an S-functor.

spec i fie :

Let us be more

We shall say that the f unctor G: I + D has a r j-eht

S-adioint if G is the lefl real-izaLion of a connection

-U = -W.(9, .Ð.) (which Ïre may take to be DIG (- ), -l ) , and üt

aLso has a right S-real-izaLion (X, F): D * S(Q). fn

such a case, !üe shal-I cal-1 (X, F) the right S-ad joinl

of G. Similarly, G wil-l be said to have a l-eft

S-ad joinL if G: D * C is the right neal-ization of _U =

-W.(9, D), which al-so has a l-efl S-rea:.:.zation

(F, Y): Ç + su(¡).

Let us consider lhe finilary case:

Thus, we suppose e. and D are finitary categories

having respeclive skeletal- seLs Ç = iAi: i e IÌ and

D = {8. : j e Ji, and G: D * C is a functor with a
J

fíniLary right S-adjoinL (X, F) : C * S (D ) . That is,

there is a connection ¡L = -W.(Ð, g.) (which may be taken

to be E[G(-), -]) ihat has G as its left realization

and (X, F) as its right S-rea'.i_zation.

Note that G determines a corresponding function

g: ! -+ C def ined by setting:

!42



c(Bj) = <c(Bj)>;

i.e., g(8.) = 4.., whene A. is the unique element of CJ Ì' 1

isomorphic Lo G(Bj). For ease of notatj-on, we transfer

the function g to a funcLion g: J + L betv¡een the index

sets for D and C (and use g Lo denote both). Thus, we

write:

g(8.) = <c(B=)> = IJ J 'e(j)'
fn this situation, bre also have the Z-Iínear map

r: Z(C,\ + Z(D) derived f rom the S-f unctor (X, F) .

Pronosition (4.7): Let C, D; C, D; G: D * C,

-U = -W.(0, O), (x, F): c -> D; and g: D + c (as wefl as

J '> f ) , and r: Z(C) * Z(D) be as described above "

Further, let d: Z(¡) * ZD and c: Z(C) * ZD be the right

linearízaLions of C and Ð respectively.

Then, the f ol-lowing diagram commutes f or all-

indices j in J:

"i'\,,
:,1,,,1;'

Proof: We wish to show that for all- j in J and i in I

thaf the following equation hold s:

d.(r(nr)) = estj)(Ai).

The right hand side is equal- to #gl-G ( n, ) , Ai j , l¡hiIe it

is not hard to see that the left hand side is equal- Lo
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#(\/
X

X(A.)
l-

#l,JiB.
J

DIB."J'
. But

. A.l.'l-

Fx(Ai)1, the disjoint

, bV assumption, both

QED

union taken over x in

of these are equal to

of the above proposition al-so

C has a finitary left S-adjoint

the following diagran commutes

0f

hol-ds.

(F, Y):

for aIl

course

Thus,

C*S

jin

, the dual-

if G: D +

-g (u), then

J:

\!

\*i,,
7

/Å'.

where 5 ís

g: Ç + D

) and

We have aJ-ready seen examples of both a right

S-adjoint and a Left S-adjoint of a functor. These are

given by a locally smalf factorizaLions (right and

left, respectively).

homomorphísm derived f rom ( F', Y

I is the function defined by G

Z(C)

.l-t
z(D)

the Z-

and J +

For example, if C has a right factorizaLion (M,D),

then r^¡e have the inheriLed connecLion !. = _W.( ¡, e-)

defined by setting ùilB, Al = g[8, A] for a D-object B

and a Q-object A (of course, ob O = ob D). Then W

clearly has as a l-eft real-ization Lhe inclusion functor

G: Ð -> C. BuN, if the factorization is J-oca11y smal1,

then the connection al-so is S-real-izabl-e on the right,;
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i.e., hll-, Al is just the restrietion of Cl-, Al to D,

and as we showed, under these conditions W[-, A] is

S-representabl-e for all A in ob C. Thus, we have a

right reaJ-izaLion (X, F): Q -+ S(D), under which t,he set

{f--(A) : x e X(A)} picks one representative for eachX-

distinct I-subobject, of A. 0f course, if C, D, and

(.U,D) are all finiLary, then (X, F) is finítary, and

the homomorphism derived f rom (X , F ) is simpJ-y the

homomorphism t corresponding to the factorization

(1"1,D). Simil-ar remarks appty to a ( locally small) lef t

factorization (¡,n) of C, which gives ríse to a left

S-adjoint of the inclusion functor.

An imporLant feature of adjointness is the

well-known theorem which asserts Lhat if a f'unclor F is

a right, adjoint, of another functor, then F preserves

products ( as wel-1 as other categorical limiNs) . i¡le

shall prove an analogue of this in the case of

S-adjointness; but first , in the way of preparation,

let us briefly review the proof of lhe rrcl-assical-t'

resul- t :

Suppose then that C and D are categories with

products n and;, respectively, and that F: e- + D is

fhe right adjoint of a functor G: D + C. EssenLialiy,

bre wish to prove that the set-val-ued functors

D[-, F(A) ;'F(B)] and D[-, F(A n B)l are naturally
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equivalenL lor all Q-objects A and B. Then, by the

uniqueness of represenlations, this yields the result

that F(A) ñ f'(s) is ísomorphic to F(A r B).

0f course, by definition Dl-, F(A) ; F(B) I is

riaturally euival-ent to D[-, F(A)] * D[-, F(B)]. By

ad jointness, D[-, F( A ri B) ] is naturally equival-ent to

CIc(-), A n B]. Also by adjointness,

D[-, F(A):l x D[- ,F(B)] ís naLurally equival-enL to

gLc(-), Al x g[G(-), B]. But i¿ is easy to prove that

cLc(- ), Al * glG(- ), Bl and cic(- ), r n BJ are

naturally equivalent. Thus the resul-t fol-]ows.

0f course, in the same way we have the resul-t thal

left adj oints preserve coproducts .

He cannot exLend this result to the case of a

corìnection which is simuftaneously both ríght, and teft

S-real- izabl-e ( as one might think) . But we can extend

it to the case in which a functor G: D + C has a right

S-adjoint (X, F): g * S(D).

To do so, vre must return to our study of the

category S(D).

Suppose (X, F) : Q + S (D ) is a functor. Then it

extends naturally to a funcLor S(X, F): S(C) * S(D).

The manner i.n which this is done is as f ol-lows:

An object (Y, A) in ob S(C) can, as we have noted

be thought of as a dísioint union trU A(y), the

dis joint union being over y in Y. Thus, we simpl-y l-et
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S(X, F)(Y, A) be the disjoinL unionn in S(D),

\/.. (x(A(y)), r'(A(v))). Sinilarly, given an

S(g)-morphism (r, R): (Y1, At) * (lz, Ar), we take the

images of the morphisms (as y varies over Yl)

R_-: An(y) * Ar(r(y)) under the functor (X, F) andy:-
rrgluerr them together via Lhe disjoint union in S(D).

(tfie details, though messy, are straightforward) . One

should note that, by the very definiLion of the

extension S (X, F) , the extended funclor preserves

coproducLs ( Í . e. , the dis j oint unions in S (_q) and

s(p)).
0f course, this exLension also works for a functor

G: D * O, which, sÍnce r¡Je regard C as a subcategory of

S(C), can also be l-ooked upon as a functor from D to

S (e-) . We denote thÍs extension s j-mp1y by S (G ) , f rom

S(D) to S(C). Under it an S(D)-object (Y, B) is mapped

Lo the pair (Y, c(B)), where c(B)(y) is simply c(ts(y)).

l{ith this preparatory work out of the wây, sre may

nor^r staLe the f'ollowing resul- t :

Proposition (4.8): Suppose Lhe functor G: D + C has a

right S-ad joint (X, Þ'): Q + S(D) . Then S (X, F) is a

right adjoint of the functor S(G).
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Proof : lle shall merely sketch the proof .

For A in ob D and (V, B) in ob S(C), the morphism

set s(C)l-G(A), (V,B)l is, as v¡e noted earlier, in a

natural one- one correspondence r¿ith the ( set ) Ois j oint,

union \/v CIG(A), e(v)i, where v varies over the set V.

Since (X , n ) is a right S-adj oint of G, this disj oint

union is in a natural- one-one correspondence with the

(double) disjoint union \/u {\/x D[t, Fx(B(y))]i, where

the x varies, for each v, over X(B(v) ). This last

disjoint union, however, is identífiable with the

rnorphism set S(D)[4, S(X,F)(V, B)].

The above one-one correspondences are rinaturalrl 
,

and impJ-y that S(C)[c(A), -] is naturalJ-y equival-ent to

S(D)[4, S(X,F) (-)] f or all D-objects A.

0n the other hand, using the fact that the disjoint

union in S(C) and S(D) are their coproducLs, and that,

consequently since an S(ù)-object (Y, A) can be

regarded as the disjoinN union tr, A(y), we have that

S(c)lS(c) (Y,A), -l = s(g)[ (Y, c(A)), -] is naturally

equivalenb to the cartesian product

X S(C)LG(A(y)), -1, y varying over Y,
v

which in turn by our above remarks is naturally

equivalent to:

X S(D)Ln(y), s(x, F)(-)1, y in y

v
which in Lurn is equivaf ent to S(D)l (Y,A), S(X, F) (-)1.

QED

N AÕ
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We shal-1 now briefly discuss the dual-ization of the

preceding result. fn a manrìer essentially the same as
*that used above, a functor (F, Y): C + g (Ð) ca.n be

extended (via lhe disjoint union /\) to a functor

S (F, Y): S (C) * S (D). Similarl-y, a functor G: D + C

exLends to a functor su(c), sn'(¡) o so(c). Then, as

before, if (F, Y ) is a left S-adjoint of G, then

S (F, Y) is a l-eft adjoint of SrÉ(G). Reca11, however,

that the disjoint union /\ in Su(C) is a producL, as it

ís in S (D), and the functors S (G) and S (F, y) are by

their very definition product-preserving 
"

Iilow if'C and D have S-products, then S(C) and S(D)

have products (as we indicaLed above). Thus, if the

funcLor G: D * C has a right S-adjoint (X, F): _q * S(D)

then S(X, F) is a righL adjoinl of S(G), and

corìsequently it preserves products. Notice that since

S (G ) is a l-eft adj oint, it must preserve coproducts ,

but this represents no nevJ information, since il

preserves coproducts by definition. Similarly, if

(F, Y): I * S (D) is a l-eft S-adjoint of G, and C and D

have S-coproducts, then S* ( F, Y ) pneserves coproducls

( but again vJe gain no nei¡I inf ormat ion aboul G ) .

FinaIly, l-el us apply these concepts lo the

f iniLary case:
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Proposilion (4.a ): Suppose we are given finitary

categories C and D, boLh of which have finiLary

S-producLs. Al-so suppose the funcLor G: D + C has a

finiLary right S-adjoinl (X, F): C + S(D).

Let Ç = {0, : i e Ii and | = {tj : j e J} be

respective skel-etal- seLs f or C and D, let Z(C, C> and

Z(D, D> be given the mul-Liplications derived from the

respective S-products, and fet r: Z(C) * Z(D ) be the

Z-l-inear map der:'-ved from (X, F). Then r is a ríng

homomorphísm.

Proof: The proof of this proposition merely requires a

proper interpretation of the fact that S (X, F)

preserves products.

Let us denoLe by N(C) the fuI1 subcategory of S(C)

generated by objects (Y, A) in which the set Y is

f ir¡ite. l,rJe shall- extend our angle bracket convention

by writing, for each N(C)-object (I, A), the equation:

(Y, A> = I <A(y)>.
y eY

Novr, it is easy lo establish that, under this extension

of the bracket notation, we have the foll-owÍng

rel-ations:

(a) ((Y, A) \/ (v, B)> = <(Y, A)> + ((v, B)>
(4. t0)

(b) <(Y, A) n (v, B)> = ((Y, A)> . ((v, B)>

in which n is the product in S(E), and I oI is the

mul-tiplication derived from the S-product in C. Af so
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nolice lhat jf (Y, A) and (V, B) are j-somorphic in

S(C), then ((Y, A)> = <(V, B)>. Of course similar

remarks apply to N(D). (trlotice that it is the fact

that the S-products are finitary that al-lows N(C) and

N (D ) to have products. )

Now we can al-so establísh without dif f icuJ_t,y that,

for any S-functor (X, F): C * S(D), we have the

relation:

(4.11) <s(x, F)(Y, A))D = r(<(1, A)>c),

where r is the Z-Iinear map derived from (X, F), and we

use the notation a)¡ and ()C to indicate that, the

elements so designated are in Z(D) and Z(C)

respectively. fn particular, vIe see that on basis

elements Ai, tÌe have that r(4.) = <S(X, F)(Ai)t

= <(x. F)(4.)>.'1

Thus, for A and B in ob C (and of course also

considered as eLements of ob S(C)), r{e have LhaL

S (X, F) (A n B) is ( since S(X, F) is a ríghf adjoint)

isomorphic to (s (x, F) (A ) ) ñ (S (x, F) ( B) ) , where 'ñ'
denotes the product in S(D ). Non, by the rel-ations

esLabl-ished above, the resul-t f ollor^¡s without

difficulty. QEI)

The duaÌ result is, of course, that if G: D * C has

a finitary lefi S-adjoint (F, Y): C * D, and both Q and
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D have finitary S-products, then the map X: Z(C) u Z(D)

(derived from (F, Y)) is a ring homornorphism if Z(C)

ancl Z (D ) are gíven the multipJ-ications derived from the

respeclive S-producls.

Example: Consider the category N of finite sets and

mappings , togeLher with the connection -W. = -U( N , N-)

defined by Ielting I[4, Bl be the set of aIl partiat

functions from A to B (A and B being finite sets),

logeLhen with the obvious compositions.

Note that ! is real-izabl-e on the righL:

Let { pi be a f ixed singl-eton set. Then, f or a1l-

f inite sels B , -W[ -, B] is naturally equivalent to

N[-, B \/ i p] I . The correspondence between ]ú[4, B] and

N[4, B \/ {p}] is obtained as fol-1ows:

If h: A + I is a parLíal funcLion, then it exLends

to a unique f uncLion ñ: A -> B \/ t p] which maps all of

the points oulside the domain of definition of h into

the point p. Conversely, if ñ: A + ! \/ {pi is a

mappi-ng, it def ines a corresponding partiaJ- f unction

h: { + B def ined on aIl points except those which i^iere

original-1y mapped onto p by ñ.

0f course the function B l* B \/ ipÌ extends to a

f unctor G: I'l + N which is the right real_ization of l{.

Notice that G does not preserve products. It cannoL
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theref ore have a lef t ad joint " It does, hov,rever, have

a l-eft S-adjoint, since g is S-reaIízab1e on the l-eft:

For all- f inite seLs A, ld.IR, - ] is naturally

equival-ent Lo the disj oint union \/x N IAx, - I , where

the A-- vary over the subsets of A. This is easily seen
X

sínce a partial fuction on A corresponds to a unique

function on a subseL of A (namely, the domain of

definition of the partial function) , while a funclion

defined on a subset of A clearly corresponds to a

partial function on A "

Since a left S-real,;zation is invol-ved, the rule

that assígns Lo a set A Lhe (appropriately indexed)

family of subsets of A extends to a functor
E(F, X): N + S (N). Ue can write the image of a set A

under this functor as (F, X)(A) = /\* A*,the A*

varying over the subsets of A. (0f course, vüe are

using the notation establ-ished ea.rlier, under which /\

represents the disjoinl union operation in S*(tr), which

happens to be the producN in that category.) According

to our results above, this functor (or rather its

extension to a functor s*(r', x) defined on s*(lr] ) )

preserves S-coproducts. Since the S-eoproduct in I is

in fact a coproduct (given by the disjoint union in N,

\/), $¡e expect (F, X) to preserve coproducts. Let us

see how this l-ooks:

We must have thaf, for a pair of sets A and B,

(F, x)(A \/ B) = /\ D , the D" varying over the
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subsets of A \/ B, j-s natural-l-y isonorphic with the

indexing (F, X)(A) fZ (F, X)(B) = (/\x o*) \/ (/\y uU).

Note Lhat in the lasl equation above, I \/ I denotes

the extension of the coproduct \/ in N to S*([), and in

S (N ) the coproduct distributes over /\. Thus the l-ast

expression is equival-ent to /\,__ , (A__ \/ B_). But(x,YJ x Y

now the equivaLence we seek lo verify is obvious, since

it merely sLates thaf every subset of A \/ B

corresponds to a disjoint union A__ \/ B--, where A is ax y' x

subset of A and B is a subset of B.
v

Let us noi"i l-ook aL the Z-Linear map derived from

(F, x). Let N = {40, 41,..., 4n,...} be a skel-etaL sel

f'or itl in which A' is an n-element set. The Z-Iinear

nap r derived f rom ( F, X ) is clearJ-y given by the

formula:

r(An) = | c{n,k)Ak,-'k

where of course C(n,k) is the number of k-subsei:s of an

n-set. As a ring, Z<N, No) is (as we saw in chapter I)

isomorphic to ZIx]. Thus if we transfer Lhese

considerations to Zlxl via this isomorphism, vüe can

write r as the map Zlx) * Zix) defined by:

r(xrr) = I c(n,k)xk.
k

Nov,r the map g: N -* N defined by the functor G is
*cl-early given by C(Ai) = Ai*1. The map !i , Looked aL
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from the point, of view of ZLxl, simply corresponds to

evaluaLion aL x = i. According to (ttre dual- of)
&proposition (4.'i ) , we shoul-d have that !i o r is egual

Lo n /. \ = rì i. . r In zlx), this is equival-ent to Lhe- g(r] 1+l
equation:

(i + 1)n = ; C(n,k)ik,
k

which is certainly true sínce r(xn) is obviously (x + 1)n.

The dual- of proposition (4.9) asserts that r must be a

ring hornomorphism, and again this is clearly the case.
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CHAPTER I]I

FURTHER RESULTS AND APPLICATIO-NS

fn this chapter we shal-l- sl-ightty extend the theory

developed in the previous chapters, and show their

relaLionship to some established results.

In the first section, rve look aL categories whose

objecLs can be regarded as being made up ofrtconnected

conponerltsrt. fn section 2, vie show how certain welf

known resul-Ls concerning finite vector spaces may be

derived by our methods. FinaJ-1y in sect j-on 3 we make a

short study of categories afl of whose morphisms are

epimorphisms ( or, dually, monomorphisms) . For example,

r^re shafl- see that theItMöbius transformtrcan be

regarded as the inverse of a Z-Ìinear map corresponding

to a factorization. More interesting, however, is the

rel-ationship between such categories and the poset of

quotienb obj ects of an obj ect of fhe category.

'! ^ Conneotivitv in cat.eB'ories:

In the preceding section , the category S ( C ) r¡ras
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inlroduced primarí1y as a technical device in order Lo

al-l-ow us to state certain results concerning S-functors

arid S-adj oints. It turns out, however, thal it is not

unusual for a category to be naturally equivafent Lo

S(C) for a suitable subcategory C. The common

denominator for such siluations is that the category in

question al-low a notíon of an ob j ect I s being

trconnectedrt or not in some sense. In combinatorial

applications (where rtfinitarinessrr usually reigns), the

category of interest is frequently naturally equival-ent

to N (D ) for some suitable subcategory D.

For exanple, one can verify without difficulty that

the category G ( finite graphs and adjacency-preserving

maps) is naturalty equival-ent to N(D ) , where Ð is the

full subcategory of G generated by connected graphs.

Since j-n this section i{e shal-i be principally

interested in categories of the form N(D) rather than

S (D ) , the following easily verifiabLe results are in

order:

a) A finitary functor (X, F): D + S(C) can (and in

this section, will) Ue regarded as a funcLor from D to

N (-q) . Such a f unctor exLends to a f uncLor I! (X, F) f rom

N(D) Lo N(C ); the functor N(X, F) preserves coproducts

(i.e., lhe disjoint union in S(D) and S(ç)).

fn particular, if a connection has a finitary right
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S-rea:-.ization, it will- be regarded as a functor laking

its val-ues in a caLegory of the f orm N (D ) .

b) The category i\i(D) has products if and only if C

has finiLary S-products.

c) If the functor G: C + D has a finitary right

S-a.djoint (X, F): D * S(C), Lhen N(c) has N(X, F) as a

r ight ad j oint .

Let us now turn to the quesLion of rtconnectednesstt.

The following definiLion represents one vüay of

conceiving of this notion:

Definition ( 1.1 ): Let C be a category which has a

coproducL u. Then, â C-object A will be said to be

eonnected in O if , for any pair (81, ,r) of C-objects,

any l_-morphism f: [ + B1 v BZ facLors uniquely through

one ( and only one) of the natural ínj ections

.1t B,l * 8., u B2 and ,2, B,t * B,l u 82; that is, there

is a unique morphism f, in C[4, Bt] u C[4, Bz7 such LhaL

either f = r1 o f, or f = ,2 o I (¡ut not both).

We can phrase the definition alternativel-y in the

f ol-l owing manner :

A pair (8il Be) of g-objecLs, togelhen wifh the

natural inj ections r , and . Z of B i and BZ nespectively

into their coproduct Bl u B2 determines a natural-
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lransformation À = À(Bl BZ),

À: gl-, Bll \/ c[-, Br] * c[-, Br u 82],

simpJ-y defined on each component of the disjoint union

as the natural lransfonmation corresponding to rr or

1^.
¿

Thus, A is connected in C if for all- pairs (81, 
"r)

of C-ob j ects, the f ur¡ction ÀR f rom .Ç-la, B I I \/ giR, BZ l

to C[4, Bt , Bz] ¿etermined by the nalural-

transformation | = À(B1, ,r) is a sef isomorphism.

Now suppose that the class of conn.ecled objects in

E is non-empty, and 1et D be the full subcategory of C

generated by its connected objects. Call a Ë-object A

comÞoneated if il is isomorphic to a coproduct of a

finite number of connected objecls, and let C0 be the

fu11 subcategory of C generaled by componenLed objects"

For the sake of simplicity, hre shall- al-so assume that C

has an initial- ob j ect 40, and adopt the corìvention LhaL

AO is the coproduct of the empty family of objecLs from

Ð, so that AO is considered componented. (Of course,

vüe also take the viewpoint that the coproduct of a

singf eton seL of g-objecls is the single member of that

set, so thal D ís a subcategory of lq.)

Note thal the definition of connectedness

establ-ishes a natural- equival-ence between

c[4, Bt u Bz] and clA, Bll \/ g[R, Be] for al-1

D-objects A and pairs (B' UZ) of g-objecLs. One can
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easily shoür by induction that, for any D-object A and

any n-tupIe (81, 8r,..., trr) of g-objecLs, lhis extends

lo a natural equival-ence between

OIR, Br u Be u...u Bn] and clA, Bll \/...\/ g[R, Bn],

determined by the natural- injection",j (i = 1,..., n)

of each B. into Lhe coproduct.
J

Prooosition (1.2): LeL C, D, and C0 be as above. The

represenLation of a componented object B in ob C0 as a

coproduct is unique in the foll-owing sense:

If B is isomorphic to bofh At , A2 u...u Aro and

Bl v B2 u...u Bn, where th" Ai and the Uj are connected

objecLs, Lhen m = n and there is a one-one

correspondence A- l+ B_r., such that A. and B ,.\ are1 ' 8(rl r- g(fl
isomorphic in C.

Proof : Let l¡l be the inherited connection f rom D to C0 ;

i. e. , -Wla, Bl = OlA, Bl for A in ob D and B in ob CO,

with the obvious compositions. Note that for al-I

C0-ob j ects B, -W[ -, B] is S-represenLable j-n D since, if

B is isomorphic Lo Al u A2 u...u Am, then Wl-, Bl is

naluraJ-1y equival-ent to D[-, At] \/...\/ Dl-, Arl.

Now, invoking the uniqueness of S-representabÍfit,y

establishes the resuft. 8ED

lúe shall- call t,he connected ob j ects ( unique in the

above sense) which under the coproduct operation make
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up a componented objecl B, the components of B.

In the proof of the above proposilion, it i^ias

estabfished that the connection W is S-real-izable on

the right. Let (X, F) be its right S-reaLization.

Since (X, Þ-) is clearly finitary, we have (X, F) as a

funclor from C0 to N(D). 0n the other hand, { ís

certainly real-izable on the Ieff , its lef t real-ization

being simply the inclusion functor of D in C0; thus,

(X, F) is a right S-adjoint,

Proposition (1.?): Let C, D. C0, and

(X, F): e-O- * N(D) be as above. Then (X, F) is an

equivalence of C0 with N (D ) .

Proof : If (Y, A) is an S(D)-object, l-et u(Y, A) denote

the coproduct of the efements A(V) as y varies over Y.

This extends to a functor u: N(D) + CO. (fn fact, the

functor u so defined is the.l-eft realization of the

connection V = I-(N(D), C0) defined by letLing

VL(Y, A), Bl be the family of funcLions T which assign

to each y in Y a Q-morphism tUt l(y) -¡' B, together with

f he obvious compositíon l-av¡s. So def ined, Vl (Y, A ) , Bl

is in fact the cartesian pnoducL of the morphi.sm sets

g[A(y), B], and since u is a coproduct in g,

V[ (Y, A), -l is naturally eQuivaf ent to Ç-[ u(Y, A), -]. )

It is not hard to see that ((X, F) o u)(Y, A) is
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naturalty isomorphic to (Y, A), since u(Y, A) is the

coproduc t, of connected ob j ects , and (X , F ) anal-yze s a

componented obj ect into its connecLed components. 0n

the oLher hand, (u o (X, F))(B) is clearly isomorphic

to B. The required equivalence f ol-l-ows f rom Lhese

facts. QED

If in fact C = C0, vre shall- call C a componented

category. That is, a componenLed category is a

category C in which every object is isomorphíc to a

coproduct of connecled objects. We have just seen lhat

a componented category is equivalent to the category

I\f (D), where Ð is Lhe fu11 subcaLegory of C generated by

connected obj ects.

(n note on the proof: We assumed LhaL C had an

initial objecL, which we regarded as being componented.

Thís v¡as necessary in order that the functor

u: I\f (D) * C0 coul-d be defined on all of N(D), since

N(D) contains the I'empty indexingrl as an object" This

gets mapped by u into the initial object of C0. 0f

course, if C does not have an initial objecL, C0 would

still be equival-ent to N(D) minus the empty indexing. )

The simplesL example of a componenLed category is N

ilseJ-f, the connected obj ects being the singfeton sets.

0n the other hand, N(D) is of course componented for

any calegory D, the connected objecLs being the objecls
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indexed by singleton sets i i . e. , essenlially D itsel-f.

The principal reason for introducing lhe notion of

a componented caLegory:'-s to establ-ish the reLationship

beLween the ideas developed in this thesis and those

found in earlier work of W. Burnside and ( especially)

L. Lovasz. To do so succineLly, hovlever, we require

yet another concept:

Let g be a skelefally smafl- category equipped wifh

a commutative and associative operation ; thaL is, a

functor @: C * I * O such that the associated functors

((-)1(Þ (-)2) (Þ (-)¡ and (-)1@ ((-)2 et (-)3) from

C x C x C to O (where the subscripts indicate which

factor is being operated on by the operation) are

naturaLly equivalent ( associativity) , and the functors

(-)1@ (-), = and (-)2 @ (-)1 fron C x C to C are

af so natural-1y equival-ent ( commutativity) .

Then the Grothendiek grouo of the paír (C,(þ ) is

defined as an ( additive) abeLian group GG(C,6 )

equipped with a map b: ob C * GG(C,@) such that:

a) b(41) = b(42) if Al and AZ are isomorphic in -e.,

b) b(41 @ Az) = b(4,,) + b(Ar) for alt C-objects At

and 42,

c) the funclion b: ob c * GG(c,@ ) :-s universal

with respect to properties ( a) and ( b) above. That is

if br: ob Q + Q (where G is an additive abelian group)

n:-
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is a funcLion satiflying (a) and (b) above, then there

is a uníque group homomorphism h: GG(C,(Þ ) + Q such

bhat b¡ = h o b.

It is easy to show from lhe universal- property (c)

above that the Grothendiek group of a pair (C,@) is

essentially unique. 1t is al-so true that given any

pair (e",@) as described above, one can construct a

Grothendiek group for it.

In nany apptications, in addition to the operation

@ r" described above, C has a second commutative and

associatj.ve operation6: g x g * C, which distributes

over@; t,hat is, the f unctors (-) 
1 @ ( (-)2 @ t-lrl and

((-)1G¡ (-)2) (Þ((-)1@(-)3) from Q x C x C to C are

naturally equival-ent. In that case, if GG (9, (Ð ) is Lhe

Grothendiek group of the pair (9, @ ) , then it, is nol

hard to show Lhal it can be equipped with a

multiplicalion I o I making it into a commutaLive ring,

and such bhat b(41@ A2) = b(41) . b(A^) for al-l-

O-objects 4,, and AZ. lihen that is the case, hre shall-

call- the ring (equípped with the function b) the

Grothendiek ring of the Lriple (C, (Ð,@ ), and denoLe it

by cR(c,@ ,&).
The reader will no doubt notice the similarity

between the universal map b of a Grothendiek group

GG(C,@) and lhe angle bracket function

S(D) to Z(D) (where D is a skeletal sel for D)
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introduced in the proof of proposition ( 4.9 ) . In fact ,

r^re have the f of l-owing proposition:

Pronosition (1.4): Let D be a skeletally smal-1

category ivith skeleLal- set D. Consider the pair

(N ( D ) , \/ ) , where \/ j-s the disj oint union operation

(coproducL) on N(D). Then the free Z-modufe Z(D),

togelher with the bracket function

Z(D) (as defined in the proof of (4.9)), is the

Grothendiek group of (N(D) , \/).

Proof: llJe must show that the bracket funcLion has Lhe

required universal property. Thus , let b: ob N (D ) + G

be any furrction from ob N(D) to an additive abefian

group G satisfying properties ( a) and ( b) in the

definition of a Grothendiek group.

As usual, we regard D as a subcalegory of N(D), and

hence D as a subset of ob N(D). Thus, b is defined on

D. If there exists a map h: Z(D) + Ç such that

h o (-) = b, then we must have thaf tr( R. ) = b( Ai ) f or

alI A . in D, since (4. ) = A . by defínition. But then ,l-11-

the assignmenN Ai l+ b(Ai) already defines a unique map

h: Z(D) + G since th" Ai form a basis for Z(D). IL is

trivial- to show t,hat, indeed h o (-) = b. QED

It is not hard to see lhat equival-ent categories

have isomorphic Grothendiek groups. Thus, we have the
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following immediaLe corollary:

ProposÍt.ion ( 1 ,5 ): Let, Q be a ( skeletally smalt)

componenLed categopy, D the full- subcaLegory generated

by the connected objects in C, and (X, F): C * S(D) ¿ne

equivalence which assigns to each A in ob O the indexed

family of its connected componenLs. Let D be a

skeletal- set for D. Then Z(D) , equipped wilh the

function b: ob g * Z(D ) Oefined by:

(1.6) b(A) = ((x(A), F(A))>,

is the Grothendiek group of the pair (L, u).

Clearly, by its equival-ence with N (D ) , a

componented category C has a producl n if and onJ-y if

the subcategory D (generated by the connected objects)

has an S-product. fn 1uhaL case, the product must then

also distribute over the coproduct ( since it does so in

S(D) ), and then the Grothendiek ring of the tripJ-e

(C, !r, n) is simply Z(D) equipped with the

mul-tipJ-ication derived f rom the S-product in D.

Nor^l , let us contínue with the situation as above

(i.e., a componented category C, a subcategory D of

connecteci obj ects, etc. ) , but, addiLionalJ-y suppose that
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O is finitary. (trlote that ll is finiLary if and only if

D is finitary.) Also l-et D = iAi : i e Ii be a

skeletal- set f on D, and d: Z(D,\ * ZD be the usual- right

Iinearization. Then, clearl-y the composition d, o b,

mapping ob C into ZC, can be defined directly by the

formul a:

(1.7) (di. o n)(A) = lÉ9[Ai, A],

f or all- A in ob C and A. in D.
l

Note that if d is faiLhful- (for example, if D has a

finitary right facLorízation (M, D') in which Dl

consísts entirely of epimorphisms, and the class of

subob j ects of a D-obj ect is f init,e) then tre have the

following result:

If {4. : i e I} is a set of representatives of thea

connected objects in C, then two C-objects Bt and BZ

are isonorphic in g if and only if i¡Q[B I , Ai] is equal

Lo lÉglB^, A. ] f or al-l- i in I.
¿L

i,'iith these remarks in mind, we can nov\r turn to the

examples i^ie have in mind:

The Burnside Ri¡e: If X is a seL, Iet P(X) denote the

group of all permutations of X; i.e., P(X) is the

symmeLric group on X.
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Now l-et G be a f inite group. By an action of G on

a set X we mean a group homomorphism a: G + P(X),

g l* a_. If a and b are actions of the group G on lhe
-g

sets X and Y respectively, lhen cafl a map f: X + Y an

intertwinine map from a to b if f o ao = b^ o f for a1l-ÞC
-1g in G (or equivalently, f = èo o f o êo' for at1 I in

õb

c).
The class of actions of G on finite sets, together

i,¡ith interlwining maps as morphisms, forms a category

which we shal-I denote by g(C ) .

The category B(G ) inherits the operations of

carLesian product and disjoint union from N. The

catesian product x and disjoint union \/ (as the

product and coproduct in N), extend to functors from

N x N lo N, and thus a x b and a \/ b are simpJ-y

defined by seLLing (a * b)o = êo ' Þ., and
Þoo

(a \/ b) = a \/ b for al-l- g in G.
-c' -çÕÞo

It is easy to shor^¡ LhaL x and \/ are the producl

and coproduct in B(G ) , respecLiveJ-y, and of course x

stiIl distribuLes over \/ " Il is also clear that B (G )

is finitary. The Grothendiek group of the triple

(e(C), \/, *) has been christened the Burnside rine of

G by L. Solomon in IS], in honor of Burnsiders work on

the subject (viz. l-Bl).

An acbion ê of G on a set X is called transitive
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íf , f or any x and y in X, there is an el-ement g in G

such thaf a-(x) = y, It can be shown that every acLion
-o b

of G on a finite set X is isomorphic to a disjoinL

union of a f ini-te number of lransilive actions. ivfore

precisely, an action g of G orÌ a set X delermines a

partition of X into orbits of the action (two el-ements

x and y in X being in the same orbit if there exisLs a

g in G such that êo(x) = y), and each orbit determines
b

a corresponding Lransitive action of G; then a ís

naturally isomorphic to the disjoinl union of these

transitive actions. They are calfed the transitive

components of a. It is easy to sec, in fact, LhaL the

transítive actíons of G ere Lhe connected objects in

B(G). Thus, ts(G) is a componenLed category.

If H is a subgroup of G, Let G/H denote the family

tgH : g e G] of left cosets of H in G. Then there is a

naLuraf aclior, "H of G on G/H via left multiplication.

This action is cJ-earJ-y transitive. In f acl, iL is not

hard to prove that every transitive action a of G is

isomorphic to an action "H for some subgroup H of G.

One can construct such an isomorphism as foflows:

Suppose a is a Lransitive action on the set X. Pick a

point x in X, and l-et H be the subgroup of al-1 g in G

lhat fix x; i.e., H is defined as

H = {g e G : ê*(x) = x}.

!{e shall call H the isoLropy suberoup of x under the
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action a. Now def ine f : X -+ G /H by writing

f(y) = gH if a",(x) = y.

It is not hard to show that f is well-defined by lhis

prescription ( i. e . , indeperrdent of the choice of C in

fhe above equation), and LhaL f is in fact a

B(G)-isomorphism.

In the case of the aclion rH of G on G/lt, it is

easy to see that the isotropy group of the coset H in

G/H is simply H (now considered as a group rathen than

a poinl), More generally, Lhe isolropy group of the

coset gH is the conjugaNe gHg 1 of H. Thus, lf H and K

are conjugaLe in G, then aH and "K are isomorphic as

actions of G. We can concl-ude, then, that there are

only a finite number of transilive acfions of G, up to

isomorphism, and these are given by selecling one

representative H out of each conjugacy cl-ass of

subgroups of G, and takíng the corresponding acLion 
"H.

The structure of the Burnside ring is now clear.

Let D be the subcalegory of E-(G) generated by

transiLive ( i. e. , connected ) acLions. A skel-ela1 set

for ! can then be chosen by finst ehoosing a sel

W - {H1, HZ,..., n"} of subgroups Hi of G that seLects

preciseJ-y one representative out of each conjugacy

cl-ass of subgroups of G, and then f orming the skel-eLaI
/1\ 

^(2) ^(r)., --L...^^ ^(ilset D = ta''', s ,.e., o "l, where a'-' is the

action of G on G/H.. Then the Burnside ring can be

laken as Z(D), togeLher wiLh the multiplication derived
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f rom lhe S-product in D. ( Note Lhat D has onJ-y an

S-product, in general, since the product of tr'¡o

iuransitive actions may welI not be Lransitive. In

fact, it can be shown Lhal the transitive components of
HKlhe product a-- x a are in a one-one correspondence

r^¡ith the dist,j-nct double cosets HgK of H and K írr G.)

The universal- map b: ob B(G) + B(G) is thus defined by:

b(a) = I r(i)"(i)
i

where r(i) is the nunber of Lransitive componenls of ê

isomorphic to t( i) .

All lhese results are essenlially conLained in

IB ] ; Burnside also proved the following resul-l:

Let lú be as above. For any action a of G on a seL

X, def ine the f unction m( a) : V'l + Z by:

(m(a))(Hi) = lÉ{x e X : a*(x) = x for al-l- g in Hi},

the number of points in X that Hi l-eaves f ixed.

(Burnside cal-1s the quantily (m(a) ) (Hr) tfre mark of H

in the action a.) Then two actions a and b of G are

isomorphic if and only if m( a) = m( b) .

In order to see the connection between this result

and the ideas we have developed in this sectiorr, il is

only necessary to prove the following simple

proposiLion:
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Prooosition ( 1 .6 ): Let a be a t,ransitive action of G

point x in X, and lel H be the

under the action a. Then, i f b

G on a set Y, the intentwining

a one- one cornespondence with

are left fíxed by H under the

left fixed by H

extends to a

defined by

Proof: In the first pIace, given an intertwining map f

f rom a to b, it is easy to see that f ( x) is l-ef t f ixed

by H under b, since f or g in H r¡re have that

on the set X, choose a

isotropy subgroup of x

is any other action of

maps from a to Þ are in

Lhe points y in ï that,

action b.

b*(f(x)) = f(eu(x)) = f(x).

0n ihe othen hand, suppose y in Y is

under b. Then the assignnent x l+ y

unique intertwining map f from X to Y

setling, for any xt in X,

f(x') = Þ.(y) if xt = ao(x).öõ
Again, it is easy Lo show LhaL f is well-defined and is

an inlerLwining map. QED

Thus, we can now see that for any action a of G,

( m( a ) ) (H, ) :.s simply the number of intertwining maps

^ (i) _ /'i\
rrom a Lo a; that is, #B(c) [a'-' , a.l . The f unction

m( a) is, for all practical- purposes, d( b( a) ) , where of

course d is Lhe right linearízation of D.

0ne recovers Burnsiders resul-N by noting that mor D

consisLs only of epimorphisms, (an intertwining map
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from one tnansitive acLion to another is necessarily

surjecLive) and therefore d must be faithful.

Bef ore we l-eave thís example, r^ie will look at one

more representation of the Burnside ring:

Let L (G ) be the l-attice of subgroups of G , and f orm

the free Z-modute Z(L(c)). We carì make Z(L(c)) into a

commutative ring by using the meet operation, Â, in

L (G ) to define a mul-tiplication on basis elements, and

then extend to aIl- of Z (L (G ) ) by Iinearity. Denote

this ring by Z<L(c ),4 >.

For any action a of G on a set X, define the

element w(a) in Z<L(G),4) by means of the formul-a:

(1.7) w(a) = I I(a, x),

where I(a, x) denoles the isoLropy group of x under lhe

action ê, and the summation is over aII x in X. By

definition, it, is cl-ear that w(a \/ b) = w(a) + w(n).

0n Lhe other hand, ít is easy to show that, for actions

a and b of G orì seLs X and Y respectively,

I(a * b, (x,Y)) = I(a, x) 
^ 

I(b, Y),

f or al-I ( x, y) in X x Y; whence it f ol-1ov¡s that w( a * þ)

= w(a) " w(b) in z<L(c), A >.

By the universal property of the map

b: ob B(G) * B(G), w must factor through b and

determine a corresponding ring homomorphism iör f rom B( G )

to z<L(G),Â>. This homomorphism is faithful-:
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Under &r, the basis elemerìt .( i) of B(G) is mapped

. (i).into w( a'-' ) , inrhich it is easy to see is simply a

multiple of the sun of lhe conjugates of H.. But since

H:- is not conjugate Lo tj for i / i, these sums are

clearly rrnon-overlappingt' and hence l-inearly

independent in Z(L (G ) ) . It f oll-ows that r4r is f aithf u1.

Ide shafl- have more to say about this representation

of B(G ) in a l-aten section of this chapter. Now,

however, 'hie shal-I turn to another class of examples of

componented categories.

Rel-ational structures: For this exampfe, we look aL

some of the ideas devetoped by L. Lovasz in IL].

If A is a finite set , let "n( A ) denote the

cartesian producL of A with ítself n times. An efement

x in *n(A) can be writLen as a n-tup1e:

x = (x(1),x(2),...,x(n)),

or al-ternatively, we may regard x as a function fron

the set A = { 1 ,2,...,n\ to A, with x(i) denoting the
n

val-ue of x at the poinl i in An. Taking this latter

viewpoint, we s€e that "n(A) is simply the set

N-[Rrr, A], and therefore therloperaLorrt *tt can be

identified with the ( covariant) set-val-ued funcLor

NlA.^, -l on N. In particular, if f is a mapping from
n

the set A to the set B, i^re have the corresponding
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mapping xn( f ): xn(A) * *n(B), under which an el-emenL x

in *t(A) simpry goes Lo f o x = (f(x(1)),...,f(x(n))).

An n- ary rel-ation on the set A is simply arìy sub sel

R of *n( R) . In the most general terms, a rel-ational-

structure is a set A equipped with a family of

rel-ations (of varying rrariLiesrt); however, for the sake

of simplicity r^Ie shaÌl- restricl ourselves here to sets

equipped wilh a single n-ary refatíon. Thus,

specif icaJ-1y, by an ( n-ary) rel-ational structure B we

shall mean a pair B = (V(B), R(B)) in which V = V(B)

is a finite set and R = R(B) is a subset of 
"(V).Given two n-ary relational- stnuctures B,' and BZ, by a

structure-Breservíng map f rom B I to BZ vre shal-l- mean a

map f: v(8. ) * v(B^) such rhaf (*n(r) ) (R(8" ) ) is-t¿t

contained in R(82), It is readily seen that n-ary

relational structures and structure preserving maps

f orm a ealegory ÍIe shal-l denote by L ( n) .

is finitary,

Clearly, L ( n)

The category L(n)

carLesian product and

following manner:

inherits the operalions of

disjoint union from N in the

In the first place, given finite sets A and B, we

see that 'n(A) and "n(B) can be identified in a natural

r^ray with subsets of *t'( A \/ B) ; vre simpty ideníif y an

element x in *n(A) with the el-ement il o å =

(*t(,,l))(x) of "n(A \/ B), where r1 is the natural-

1-75



injection of A into A \/ B, and similarly identify an

elemerrL y of *t'(B) v¿ith ,Z o J¿. idith t,his

understanding, if R,l and RZ are n-ary rel-ations on A

and B respectively, then Rl \/ RZ (denoting the union

of (*t(,1))(R1) and (*n(,2))(R1) in'n(A \/ B)) can be

simply thought of as the uniorr of Rl and RZ"

Thus, the disioint union of two L(n)-obiect" B1 and

BZ, denoted by Bl \/ 82, is simply defined as the pair

(V(81) \/ V(82), R(81) \/ R(ts2)). It is not hard to

establish that \/, so defined on t(n), is the coproduct

ín that category.

The earLesian product of two n-ary relational

structures is def irred in even a more natural- manner;

since x is the product in [, iL follows that

*n(A x B) = NlArr, A x Bl is naturally isomorphic to

(*n(n)) * (*t(s)), Given x in *n(A) and ¡¿ in "n{B),
the product x x J¿ is simply defined in the standard

manner by the equation:

(x " ¡¿)(i) = (x(i), ¡¿(i)).

Thus, given n-ary rel-ations R I and RZ on A and B

respectively, we define a new n-ary rel-ation Rt ' R2 on

A x B by:

Rt " R2 = {x x f¿ : x e R1, J¿ e Rr}.

Then, the cartesian product of two relational-

structures B, and BZ, denoted by Bt * 82, is defined as

the pair (V(81) * V(8,), R(81) . R(Bz)). rL can be

shown to be the product in the category t(n).
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The carLesj-an product in L(n) ciístribules over the

disjoint union, a property also inherited from N.

Consequently, we can form the Grothendiek ring of the

tripte (L ( n) , \/ , " ); we shal-l- denote it by L ( n) "

The category t(n) is componented. In it, an object

B is connected if an only if it is not possibl-e to

divide V(B) into two rìon-empty subsets Vl and Y Z such

lhat R(B) is equal- to the union of R(B) ¡ "n{V,, ) and

R(B) fì *n(vr). rf this is possible, then it is not

hard to show LhaL B is isomorphic to the disjoint union

of the sLructures (V1, R(B) ñ *n(v,, )) and

(vz, R(B) Ê.t 'n(v2)), and then, by progressive

refinement in this manner, one can show that every

n-ary sLructure is j-sornorphic to a disjoint union of ( a

finile number of) connected structures.

Let D be the fu11 subcategory ofl L(n) generated by

the connected slructures, and Iet D = iUi: i e Ii be a

skefetal seL for D. 0ne of Lovasz I s principal resufts

in tLl is Lhe following:

Two n-ary relational strucLures B and Bt are

isomorphic in L(n) if and only if :

lÉL(n)[Bi, B] = lÉL(n)lBr, B'l

for al-] i in I.
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0f course, from oun vanLage point we recogrtíze that

thj-s result is equivalent to the faithfulness of the

right linearÍ zaLion d: Z(D) * ZD of D. And to show

thal d is faiLhfuI, it suffices to show Lhat D has a

finiLary right factorization (M, D') in which mor Dl

consists only of epimorphisms. ( tne invertabílity of

the Z-homomorphism m corresponding to such a

factorization fol-Lov¡s easily from the fact that any

L(n)-object clearly has only a finite number of

subob j ects. )

In fact, it is not hard to show that one obtains

such a faclorization if one lets E be the cl-ass of al-1

rel-ation-preserving maps which ( considered as maps in

N) are injectÍve, and fets D' be the subcaLegory whose

morphisms are surj ecLive relation-preserving maps

f : B + B' such t,haf, (rn(r))(R(B)) = R(Bt).
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2 " Finite vector sDâoes:

We begÍn by establishing some notation:

F = cF(q) = Lhe f init,e (Galois) f ield wit,h q ( a

prime power) elements.

-U. = category of finite-dimensional F-vector spaces

and F-linear transformations.

C^(i,j) = the number of j-dimensional- subspaces inq

art i-dimensionaf F-vecLor space.

P^(i,j) = number of j-njective finearq

transformations from an j-dimensional- F-vecLor space to

an i- dimensional space .

A^ ( i) = number of F-linear automorphisms of anq

i-dimensíonal F-vecLor space.

UX. = caLegory of F-vector spaces and injective

finear lransformations; M = mor Mhl .

EilJ = category of F-vecLor spaces and surjective

l- j-near Lransf ormations; E = mor EW.

tl = tVg, V1, \'l ,,-.., Vn,...Ì is a skeletat set for

-!ù, with V being a n-dimens j-onal- space. 0f course W isn

al so a skel-etal seL f or MW and EW.

Define the polynomial (*)(q,n) e Zlxl by means of

Lhe formula:
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(x), ^ -\ = x(x-(q-1) ) (x-(q2-t ) ).. . (*-(qt'-1-t ) ).(Q,n,,

Finally, define the quant,it,y (n!q) ¡y the

equat j-ons:

(n!q) = (qn-1)(qt-1-r)( qn-z-1 )...(q-1),
(olq) = 1.

The direct sum operation, @, is both a product and

coproduct in -W_. AddítionaJ-1y, wê have the rtduaf spacett

functor I + _E which assigns to any F-vector space V the

dual- veclor space V* (consisting of all- l-inear maps

from V to F, with pointwise operaLíons). If f : U * V

is a -W.-morphism, then we have its dual- f *, Vo * Uiå

üs
defined by f (w) = v,i o f for all r{ e V The functor
( ) so defined is, as is weII-known, a dual equival-ence

(i.e., a contravariant functor that is al-so an
l{,

equival-ence. ) SpecificalJ-y, ()' is nalurally

equival-ent to the identity functor on X,. The funcLor

( ) of course preserves the direct sum; it can be

regarded as mapping the product on tri inlo the

coproduct, or vice-versa. It also takes any injective

l-inear map into a surjective linear ilâp, and any

sur j ective l-inear map into a inj ect j-ve linear map.

Consequently, it al- so def ines a dual- equivalence

between Mlrl and EW.

These facts allow us to establish some elementary

facts about the quantities defined above " Define,
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lemporarily, the quantities På(i,i) as lhe number of

surjeclive Iinear maps from an i-dimensional to a

i-dimensional space, and Cå( i, i ) as the number of

j-dimensional quotient spaces of an i-dimensional-

space. 0f course, there is a one-one correspondence

betweeri subspaces V'Ê V of an i-dimensional space and

ils quolient spaces V /U t; under this correspondence, a

j-dimensional subspace corresponds to an

( i-j )-dimensional- quotient space

deduce that Cq(i,j) = Cå(i,i-j).

through Lhe duaL equivalence of

is easy to show lhal Pq(i,i) = P

every injective linear map f : Vr

Thus, we immediately

0n the other hand,
?È

and lt4!,i under () it

i,j). Finally, since

V can be decomposed

E-U.

'(q

->

uniqueJ-y as an isomorphism of Vr with ils image f(Vr )

followed by an inclusion, and every surjective linear

map g: V + Vr can be decomposed uniquely as the naturaL

projection of V onto the quotient V/Ker(g) (where

Ker(g) is the kernel of g) followed by an isonorphism

of the quoLient with Vt, one can see lhat Pq(i,j) =

Aq(i)cq(i,i) and På(i,i) = oo(i)cå(t,¡). Thus, we

derive the f oi-lowing f acts:

Cq(i,i) = aO(i,i-i) is both the number of

j-dimensional subspaces of an i-dimensional space, and

the number j-dimensional quotient space of an

i-dimensional space,
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Pq(i,i) = Aq(i)Co(i,j) = #MhIVj, Vi] = lÉEurlVi, ojl.

Under the duaf equivalence of Vrl t'¡ith itself , $re see

LhaL the right and left linearízalions of [, Z<U, .!J">

and Z<\l, lr/ > are not only isomorphic, but identical;

indeed:
8,-- a'licj.(Vj) = !i (Vj) = /lUlVi, Ojl = /ÉWIVj, ui] = Q-J,

since by choosing bases for the vector spaces vJe can

establish a one one correspondence between linear maps

V. -n V. and i-by- j matrices with entries f rom F. The1J

mul-tipJ-ication derived from the product ( or

coproduct) is easiJ-y seen to be given by

Ai ' Aj = or-*¡ 
'

whence one concludes that Z(H, W> is isomorphic to the

polynomial ring ZLxf, wiLh Ai corresponding to *i, and

the map l¿= : Z(!ú,[) + Z correspondíng to eva]-uation at,'-1
ix=q

Clearly (¡¿,eW) forms a finitary right factorization

of W, just as (Ml,rl ,E) forms a f initary lef t

factorízalion. Thus, E_W inherits a finitary S-producL

from tr{, while MW inherits a finitary S-coproduct.

Indeed, since the Lwo categoríes are dually equivalent

under ( ) , the S-product in Elrl and the S-coproduct
*in Mlrl correspond under ( ) In fact one easily

verif ies that the rings Z(W, .E-W.) and Z(W, MIJ> are

identical-. Even Lhe ring homomorphisms
å-s

Z(W, -W.> + Z(W, .EI> and Z(W, -W ) + Z(W, I'lW > derived
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from the respective factorizations are identical, being

given in each case on basis el-ements by lhe f ormul-a:

(2.1) r(A.) = I Cn(1,j)A¡.
'jv

From the standard commutative triangJ-e, r^re have

t,hat:¿, = elr, o !, which when applied to A. and
-K 

-l{ 
1

expanded via (2.1) yields the identity:

(2.2) qkí = ¿ cq(i,i )Pq(r.,i).
J

(of course ewo(Ar) = llEWIAk, oj] = Po(t,i).)

We now wish Lo exploit the muftiptication in

Z<!tt, E-W> derived from the S-producL, or, equivalently,

the mul-tiplicalion in Z1\l , Mi,Jli> derived from the

S-coproduct. We take the l-atter viewpoinL since it

seems considerably easíer to visual-ize what the

S-coproducL l-ooks like.

For U, V e ob I'il , let , 1 and ,2 denoLe the natural

injeclÍons of U and V respectively into their direct

sum U (Þ V, and n1 and nZ denote the natunal proiections

of U €, V onto U and V respectively. (Rs a set, U @ V

is simply the cartesian product U x V. ) Let 0(U, V )

denote the family of subspaces B of U(Þ V such that

, ,'' o nB and , 1 o rB are both in j ective maps, where

nB, U(Ð l/ + (U (þ u) /B is the natural map onto the
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indicated quotierrt

(3.10) of chapter

quotients spaces i

S-coproduct in MW.

space. By ( tne dua.l of ) proposition

If, we know that the family of

(u@v)/B : B e o(u,v)] defines the

Pronosition (Z-q): Let B be any subspacc

sum U(PV. Then E is an el-ement of f¿(U,

if B is the graph of a linear isomorphísm

subspace B I of U to a l-inear subspace BZ

of the direcL

V) if and only

from a

of V.

Proof: First of all note that (identifying U and V

wj-th their images U (Ð 0 and 0 €Þ V under the naturaf

injecLions r, and ,2, respectively) tfre kernels of

, 1 o nB and ,2 o nB ' respectively ' are the subspaces

U(Ð0f1 B and 0 OV n B, respectively. Thus, B is an

el-ement of fì( U , V ) if and onJ-y íf both these

intersectiorrs are zero.

Al- so note lhat the graph of a l-inear isomorphism

fron a subspace of U to a subspace of V is indeed a

linear subspace of U @ V. It is also immediaLe that

the intersections of a subspace with U @ 0 and 0 (Þ V

are both zero. Thus, such a graph is an element of

CI(A, B).

Conversely, suppose B is an element of f¿( A, B) .

Let Bl = r1(B) and BZ = nr(g). Clearly, B is a

subdirect subspace of B1 (þ 82; i.e. , if ( u,v) is an
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element of B, then u e B t and v , BZ. lnJe cl-aim, that

for every element u in 81, there j-s a unique el-ement v

in BZ such that ( u, v) is in B. FirsL of al-J-, íf u = 0,

then v must al-so be ze?o, since if we have (0,v) :'-n B

u¡íth v / 0, then v is a non-zero element of B n 0 @ V,

a contradicLion. Nov,i, if (u,vr) and (u,vr) are two

efements of B, then (u,v,) - (u,vr) = (0, v,,, - vZ) is

al-so in B, whence v, - vZ = 0 and u1 = uZ, âs was to be

shown. Thus, B is the graph of a function from Bl to

BZ, which it is easy to show is a linear map. But we

can al-so appfy the same reasoning on the right hand

side of B to show LhaL each v in BZ deter¡nines a unique

u in 81. Thus it is the graph of a linear isomorphism.

QED

Now Iet, fìk(V., uj) be Lhe subset of CI(V., uj)

consisting of subspaces B of dimension k. Sínce each

such B is the graph of a l-inear isomorphism from a

subspace Bt of Vi to a finear subspace BZ of Uj, it is

clear that Bl and BZ al-so have dimension k.

Conseq uently , we deduce Lhat

lÉnk(vi, uj) = co(i,k)cq(i,k)A(k),

since there are Cq( i, k) i^¡ays of choosing a

k-dimensional- subspace of Vi, Cq( i , k) r{ays of choosing

a k-dimensional subspace of Uj, and A( k) finear

isomorphisms between two k-dimensional spaces.

Now, if r{e urrite the multiplication derived f rom
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the S-coproduct 1n z(w, MW > as foll-ows:

(2.4) vi " vj = j ro(i,j;m)v*,

then Lhe above reasoning shows that

equal to C_(i,k)C_( j,k)A_(k), sj.nce'qqq

Lhe dimerrsion of (Vi @ Vj)/B is i +

f¿,-(V*, V.). Then, the substitutions m = i + j - k andK 1' J

k = i + j - m aL once yiel-d the following formul-a for

r-(i,j;m):
(¿

(2 .5 ,\ rO(i,i;m) = aO(i,i+¡-m)CO( j,Íoj-m)Ao(l+i-m).

0f course by dualiLy, this

in Z{W, Ehl>.

Vle can nor,r establísh a

Lhe quantities P^(i,k) byq

equation (2.)) z

r^(i,j;i+j-k) is
q

íL is clear lhat

j-kforBin

is al so the multípJ-ication

multipl-icative j-dentity for

simply applying s.iúk to

(2.6) ro(k,i)ro(x,j) I "o(i,i;m)eo(r,m)m

It is clear that VO is the ident,ity of this ring;

thus we shall generally denote it by 1. 0n the other

hand, multiplication by V i is easy to write down, since

Vt has only two subspaces, namely 0 and ilself. Thus,

üre deduce Lhe equation:

v. o v. = !, . + (oi-1)v..'1 -i 'i+1 '-1 "'i'
sínce Lhe elements of o(V1, Vi) are lhe ze?o subspace
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( which gives us Lhe direct sum Vi @3 V r = U r*,, ) , and the

graphs of the linear i-njecLions of Vl into Vi_ (which

are in a one- one correspondence r.¡ith the qi- i non- zey'o

efements of V, ) . From this equation ÍIe get:

Vi*1 = Vi' (0,, - (q.-1)),

v¡hence it is easy to show by induction that:

(2.7) vr, = v1 " (0,-(q-1)) ...."(v1 -(qn-1-t))

= (V.), \.I (q,n.,

where ( V . ) , , of course means the evafuation of Lhet'(q,nl
polynomial (*)(q,n) in Z(W, EJú> aL x = 41. By standard

arguments, we can then conclude that the ríng

homomorphism from Zixl to Z(W,.E-W.> defined by the map

x l+ Al is a ring isonorphism under which V.

corresponds to the polynomiat (x)(q,n).

Now, since eui* = Inr'i.^ ! Z( l,.J) + Z is a ring
-n -n

homomorphism when Z(\f) is given the mul-tiplication of

z(w, Eül> = z(N, tuiül*> , and o,"rr* {u,' ) = l¡Mlilv 
1 , unl

= qn-1 = P^(n,1), vle get the following equations by-q
applying this map to (2.7):

(z.B) po(n,k) = *rn*{Au) = (qt-1)(q,L)

= (qn-r )(qn-q) (qn-q2)...(qn-qk-i )

k(k-1)/2,= q \ '"-(n!q)/(n't<tq),

LB7



where the last expression is obtained by factoríng oul

of each bracket in the preceding line the highest power

of q possibte (we of course assume p ) k), and

col-tectíng them in the f actor qk( k- 1) /2 
.

Now, it is clear that AO(k) = Pq(k,k), and

theref ore r^re have:

(z.g) A^(k) = qk(k-1)/2(xrq),
q

and. since P (n.k) = C (n.k)A (X). we eeL:' q q q'

(2.10) c^(n,k) = (n!q)t{(w!q)((n-k)!q)}.
q

0f course this is highly reminiscent of the standard

equation for the binomial coefficíent C ( n, k) . The

quanlity (n!q) was so ciefined to bring out this

analogy. Notice how Lhe equation CO(n,k) = aO(n,n-k)

is no'h7 displayed in the symmetry in n and n-k of the

expression.

The f act LhaL the multiplication in 211N, -W.> is

given by Vi " Vj = uo(i,j) where p(i,i) = i+i, aIl-ows

us to appply equation ( 1.18) of chapter I:

t(p(i,j),m) = | t(i,x)t(j,n)r(t<,n;m),
k,rt

which in the presenL contexl becomes:
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(2.11) c_(i+i,m) Cq(i,k)cq(i,n)ro(t<,nim).u nrn

Thj-s l-ast equation can be regarded as a

generalízaLíon of the recursion formula for the

quantity C^( i,m) . To see this l-et j equal- 'l in the
Ll

above formula, and use the fact lhat CO( 1,n) = 0 except

for n = 0 and n = 1, in which cases it has the value 1.

Thus, (2.11) then becomes:

C^(i+1,m) = I C_(i,k)r^(x,o;m) + | C_(i,k)r-(t<,i;m).qËqq kqq

Now, keeping in mind t,hat lhe quantities rO( k,0;m)

correspond to the mul-tiplication of VO = l and Vk, v,ie

see that r_(t,0;m) = 0 except when k equals m, and in
q

that caser we have rO(n,0;m) = 1. Similarly, the

quantit j-es r^ ( k, 1 ;m) derive f rom the multipJ-ication of'q
Vt and V1, but sinc" V,l 'Vk = Vk*1 * (qk-1)Vk, we

deduce that rO(k,1;m) = 0 except for k = m and ]4 = m-1.

f n those cases, r.re have

r-(m-1,1;m) = 1 and r,(m,i;m) = qm-1.qq
Substituting these vaLues in lhe above expression, we

get the recursion:

(2.1.2) Co(i+1,m) = Co(i,m-1) + qmCO(i,m).

Fina11y, l-et us consider the inverse of the

transformatíon t defined by ( 2. 1 ) . 0f course, L is a

ring honomorphism f rom Z(N, -W.> to Z(W, Eld.>. LeL us

then define the quantitie" rO(m,k) Uy means of the
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e quat ion :

(z.lz) r-t{o*) =.1 oo(m,k)vu.
l<

irtre wish to find a more explicít, description of ¿-1.

Thus , defíne the lransformalion s: Z(W) + Z ( hi ) on basis

el-ernents by means of the equatj-on:

(2.13) s(V*) = (V1-1) . (V.'-o) o...o (U'-qm),

where the mul-tiplication is that of Z(Itl , U.>. Now, if

one calculates (t o s)(U*), using the fact that t is a

ring homomorphism and that t(1) = 'l and l(V,, ) = V1 + 1,

we get (V 
1 

) ( q,n) bul with the multiplication now in

Z(W, Eiü), in which it is equaÌ to Vr. Thus we conclude

that s so defined is the inverse of t, and, recalling

the isomorphism of Z(U, -!¿> with ZLxJ, r^re may assert

LhaL DO(m,k) is the coefficient of *k in the expansion

of the polynomial- (x-i )(x-q)...(x-qm).
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? " Epimorphic and monomorghic categories:

By an epimorphic category we simply mean one all of

whose morphisrns are epimorphisms. SimiJ-arly, cal-l- a

category monomorphic if al-l- of its morphisms are

monomorphisms. ( potlowing this J-ine, we might as weLl-

ca1Ì a category binorphic if it is both epimorphic amd

monomorphic; i . e. , if alI of its morphisms are

birnorphi sms . )

Epimorphic and monomorphic categories âre of some

interest, noL only in their own right, but al-so because

it is not unusual- for them to appear as right or left

factors of a given category. Consequenlly in this

section vJe shal-f make a modest study of them, and lhen

see what our resul-ts l-ook like in a f ew applications.

Let C be an epimorphíc category. Then it always

has the f ollowing lef t f act orizat j-on:

Take D to be the subcategory of g having the same

ob j ect cl-ass as C, but whose morphisms are

L-isomorphisms. irle can cal-1 D the isomorphism

subcategory of C. Now, if we set E = üor C¡ it is not

hard lo see Lhat (D,E) forms a tefl factorizati-on of -O.

It is interesting to nole LhaL D has both

S-products and S-coproducts ( tile two being basically

the same in this case):
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Proposition (3.1 ): Let D be a category all- of whose

morphisms are isomorphisms. Then D has both an

S-product and an S-coproducL. Specifically, Lhe

S-product can be defined by:

At n A2 = Ø if D[Al, Orl = Ø,

A,t n AZ = tA,' : f e DlA1, A2lÌ where we set Af = A,t

for aII ¡ e Ð[41, Or].

(tne S-coproduct can be defined in exactly the same

wayr except that it is more convenient to take Af = Az

for al-t f e D[41, A2].)

Proof : CIearly íf !iA' Ael = Ø (i.e., A.t and AZ are

nol isomorphic), then D[-, 4,, ] * Ul-, AZ) is the empty

functor on D since for a]l- A e ob D at l-east one of

D[4, At] or D[4, Az] must be empty.

Now suppose that D[41, O2l is non-empty; i.e., A,

and AZ are isomorphic. For each f Ê DlA1, A2l, define

the rfnatural- proieclionsrr "Tt Af = Al + Al and

fffn), Al * A, by setLing tì = identity on A.,',and r; = f .

Then the family of pairs (rI,"5) oefines

( component-wise) a natura] LransformaLion

0: \/f D[-, of] * D[-, Al] * Ð[-, AZI .

It is not hard to see t,hat o i" a natural

equival-ence. Indeed, for (g1, gZ) in the cartesian

product D[4, 0,, ] x DlA, o2l it is easy to see that
, f f , -1(g,, ez) = (ni o 81, ,; o Bl) where f = Ez o Bt ', and
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The proof regarding S-coproducLs is similar. QED

Now l-et us further assume that C is finitary, with

a skeletal- set Ç = tAi : i , Iin and that the l-eft

factorization (l,g) is finitary. If (D,E) is finitary,

then any C-objecl can have onJ-y a finite number of

quotient, ob j ects in O. Consequently, if e : Z(C) * Z(C)

is the Z-Iinear map corresponding Lo (1,8"), then by

(tfre dual- of) proposiLion (3.16) of chapNer fI, e must

be inverfible.

Let us define Lhe quanliLy B( i , j ) as the

cardinality of OlAi, Ajl , and A( j ) as the cardinality

of glA*, A*l (= Ð1n., A.l, Lhe automorphism group of A.J' J - J' J J

in g). trrle al-so have e defined by the equation

Lhat this is the unique

property.

(3.2) e(Ar)

where e(i,j)

represents a

thaf ü¡e hav e

Ê D[41, Ar] with this

I e(i,j)A.
JJ

is equal to Lhe number

subobject of Ai in C.

the equation:

of times that A.
J

hie can easily see

(3.3)

Let us further

of the formula:

B(i,i) = A(i)e(i,i)

define fhe quantities d(i,j) by means
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(3.4) 
"-1(A.) = i d(i,j)A..tjJ

Now using the facL LhaL c,-* = d,-* o
-R -l{

expanding this via ( 3.2 ) , we derive the

trivial ) identity :

e, and

( rather

"k (nr) = Ì e(i,j)do (nr),
J

lvhich can al- so be written as:

(3.5) s(i,k) = ,i)^(i,k),

v¡here 
^( i,k) is the number of elements in DIAr, aUJ;

that is,0 if j is not equal to k, and A(k) if j = k.

Thus, this essentialty ( 3.3 ) .

0f course precÍseJ-y sinifar remarks apply to a

category C which consists only of inononorphisms. It

has an rrobvious't right factorízation (t¿,1) in which D

is the isomorphism subcategory of C and M = mor g. And

naturally a bimorphic category has both factorizations.

A simple example of this phenomenon is given by any

poseL C = (P, S) regarded as a caLegory. Recall- that

lhere is aL most one morphism from a point x to a point

y in C, with -O[x, y] = { (x, y) } if x -f y, and

O[x, y] = Ø otherwise. Clearly, all the morphisms in C

are both monomorphisms and epimorphismsi i.e., C is

binorphic. 0f course it is finiLary, and since if

I e( i
j
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f orms íls oi^in skel-eton, P is a skel-etal- set f or G.

Now, if c: Z(p) * ZP is the right line arízation of

C, then c : Z(P) * Z is defined by:-x
f I if x -< v,

c--(y) = lrCIx, y] = {
L o otherwise;

i.e., c*(y) = 6(x,y), where Ç: P x P -' Z is the zeLa

function of the partial order. Thus, c ( V) is the

f unction E(-,y). 1n a simil-ar wây, r^re see that the

left line arization c*: Z(P) * ZP rnaps an element x in p

to the function 6(x,-).

Now, we rroted earlier that if ( P, 5) is a neet

semilattice, then g may be regarded as having an

S-product. In that case it is clear that the

mul-tipJ-icatíon in ZG) derived from the S-product is

clearly given on basis efemenLs by:

f"n y, if the meet xfi y exists,
x'y= {

( O otherwise.
(3.6)

With the above muf tiplieation, r^ie shal-1 call Z (P ) the

meet al-&ebra of ( P , -<) , and denote il by Z<P , A >

( instead of using our usual- notation) . Of course, if
(P,5) is a join semilaltíce, then C may be regarded as

having an S-coproduct, and we may define in an

anal-ogous manner the join al_gebra of (P, _<) , which we

shal-L denoLe by Z(P,V >.

For C = (P, 5), the ísomorphisn subcategory D of C

is simply P considered as a discrete caLegory (i.e.,
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al-1 morphisms are identities). The corresponding right

factorízalion (-,<, D) of C (tetting *l stand flor the

family of al-l- morphisms in ç_) is finitary if and only

if the the principaL order ideaf (x)- ís finibe for aIl-

x in P. In that case, J-et us denote the Z-Ìinear map

Z(P) + Z(P) corresponding Lo this factorizaLion by TC,

which is defined by:

(3.7) r6(x) = 
ul* 

y 
i 

6(y,x)y.

It is the zeta transform of the poset (P, 5). Of

course iL is invertibJ-e, ar¡d íts inverse is the Mobius

tra.nsf orm, which we shal-l- denote by Tu. Thus, we have

(3.8) Tu(x) = | u(v,x)y,
v

where u: P x P + Z so defined is Lhe Mobius function on

(P,5).
0f course sinilar remarks apply to the left

factorízation (D,5) of C = (P,-S).

In the case of posets regarded as categories, it

would be nice Lo know what in generaJ- S-products,

S-coproducts, and factorizations look like. The

following proposilion answers the question:

Prooosition (3-Q):

a) A posel O = (P, 
-() , considered as a category,

has an S-product if and only if the intersection of any
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two principal order ideals (x)- and (V)- in P can be

expressed as an (internal) disjoint union of principat

order ideai-s (i.e., a uníon of ideal-s (x.)- such that

(x. )- A (x=)- is empty if í / j).
rJ

Sinilarly, O has an S-coproduct if and only if the

intersecLion of any two principal- order co-ideal-s (x)*

and (y)* can be expressed as an internal- disjoint union

of principal- order co-ideaIs.

b) Let (P, 5l) be a second partial order on the

set P, with 5, weaker than __<. Then D = (P, 5l ) is a

subcategory of g. Denote the principal order ideal-

generated by an efement x in D by (x)r-.

Then D is a right factor of g if and onJ-y if any

principal order ideat (x)- irr C ís expressible as an

internal disjoint union of ídeal-s (x:_) t in D.

Similarly, D is a l-eft facLor if any order co-ícieaI

(x)* is expressible as an internaf disjoint union of

order co-ideals ( x, ) ,,*.

We omit the proof, which just consists of checking

definitions.
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ÍJe now shall introduce another general concept

which i¡e shall f ind usef uL. Thus, 1et C be an

arbiLrary caLegory. For any g-object A, define the

rieht suecialization of C at A, which we shall denote

by (4, g), as the fult subcategory of C generated by

C-objects B such lhat C[4, B] is non-empty. Thus, B is

an (4, O)-objecL if and only if lhere exists a

C-morphism from A to B. (Of course, it is perfectly

possible LhaL ( A, ç-) = C. )

The following are some facts about such

s p e c i a I i z a t i o n s :

a) The inclusion f unctor (4, _q) -+ Q has a right

S-adjoint, which is defined on C-objects by the

assignments B l+ B íf B is in ob (4, g), and B l+ Çt

( ¿ire empty indexing) if B is not in ob ( A , e-) . We

shal-l cal-1 this S-functor the pro.iection of C onto

(4, ç"). IProof: Consíder the "inheritedrr connectíon

-U = iú( (4, g) , -g) def ined by setlíng

-L{[8, B'] = 9[8, B'] for B in ob (4, ç_) and Br in ob C.

IL clearly has the inclu.sion functor as a left

real-ization. 0n the olher hand, if BI is not an

element of ob (4, g), then Lhere cannot be a C-morphism

from B to B' (since the existence of one would imply

thaf B I in ob ( A, e-) ) . Thus , it is cl-ear that lhe
t'projectionrrS-functor as described above ís a right

S-reaLizalion of ld.l
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b) ff C has an S-product, then (4, ç-) also has an

S-producl. Indeed, the S-product of two (A, C)-objecls

Bt and BZ is sinply obtained from the S-product in Q,

A n B = t(A,t B)(x) : x e dom(A n B)], by detefing from

the indexing al-l- objects (¿ n B) (x) whlch are not in

(A, c).

c) If (4, ç") is a finitary category, and it has an

S-product, then the S-producl is finiLary.

IProof: ]f the S-product in ( A, E) of two obj ecLs

Bt and BZ ürere assumed to have an infinite number of

components, then (4, A)'ln, B1l ' (4, c)lA, ttl woul-d be

infinite, since by assumption (4,9)tl, (B1 n Bz)(x)l

is non-empty for al-1 indices x; a contradiction. ]

Let us return to the case in which C is finitary

and epimorphic. Choose a 9-object A and form the right,

special-izaLion (4, e") .

Now, we form yet another category by adding some

sLrucLure to (4, ç-). Define the category A/ç- as

f oll-ows:

The object class of A/C consists of pairs (f, B),

where B is in ob (4, e.), and f is an (4, Ç.)-morphism

from A to B. A morphism C from (fi, Bt) to (fZ, Be) is

given by a norphism g: B t -à BZ such thaf the following

diagram commutes:
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A

/\rt / \ rz
/\d\

81 -- Bz
b

i.ê., g o f t - f 
2

Note thal since afÌ the morphisms in (4, E) are

epí, there can be at most one A/C-morphism from

(f 1, Bl) to (f z, nr); for if e1 o f 1 = f z = Ez o f 1, r{e

must have that C1 = EZ sinc" f 1 is epi. Thus,

(A/C)l(r,, , B1), (fz, 82)l is either a singleton set or

is empty. lr,le shal-l write (f 1, ul) 5 (f Z, "r) 
to mean

that there exists an A/C-morphism from (fl1, tr) lo

(f 2' BZ) "

Al-so notice that ( f 
1 , Bl ) and (f Z, BZ ) are

isomorphic in A/g if and only if they represent the

same quotient ob ject of A. Thus, if r¡re l-et Quot(A)

= t(fi,Ai) : i e JÌ be a skel-et,al set for A/c,.then

the elements of Quot(A) are in a one-one correspondence

with the dislinct quotienL objects of A in C, and lhe

rel-aLion (fi, Ai) 5 (fj, oj) simply neans that lhe

quotient object represented by (fi, Bi) is rrfinerrr lhan

Lhe quolienL obj ecL represented by ( tj , Uj ) . ( We use

the term I'finerrrin analogy with the case in which A is

a set, and hence the quotienL objecLs may be identified

wit,h parLitions of A; lhen the rel-atíon 5 can be

identified v¡ith the relaLion of one partition being

finer than another. ) Thus, Quot(A), under 5, is
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naturally isomonphic with the poset of quotienl objects

of A in C.

i¡Je have a natural conneclion U fron A/C to (4, C),

given by seLting

-U_t(r, B), B'l = (A, c)[8, B'],
together with the obvious compositions. The connection

has an obvious l-eft realizatíon, given by the

ftforgetful-rr f unctor from A/C Lo (R, O), which on

objects maps (f , B) to B. It is al-so S-reaIízabl-e on

the right:

To see this, for each (A, C)-object B Iet (X, F)(B)

be defined by setting X(B) = (4, C)[4, B], and for each

f in X(B), Iet Fr(B) = (f, B). The natural- equivaLence

between ul-, Bl and \/,. (¡Zg)[-, (f , B)] is then

provided by mapping any C in U[(h, B'), B] into the

unique element c o h in (aZg)L(n, B'), (e o h, B)1. It

f ol-Iows thaL (X, F) ext,ends to an S-f uncLor f rom (4, C )

to A/C, which is the right, S-ad j oint of the f orgetf ul-

functor from Ã/9 to (4, !-).

Progosition (1.10): If the caLegory (R, g) has an

S-producL, then A/O has a product, and therefore

(Quot(A), 5) has meets.

Proof: Looking af, A/C as a quasi-ordered c1ass, we

wish to show thal any two elements have a greatest

lower bound. (0f course, lhe ob ject ( 1^ , A) is a l-ower
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bound f or any two el-ements of A/C . )

Given any two (A/C)-obiects (f 1, B,) and (f z, "r),
consider their S-product (in (4, C)):

Bl n Bz = {(81 n Br)(x) : x e dom(8,, n Br)i'

The morphisms fl and fZ determine a unique x and a

unique (4, O)-morphisn f: A * (8,, n Br)(x) such that

n,, 
* o f = f 1 and nr" o f = 12. Thus, we have:

(f , (u, , Bz)(x)) _l (fi, B,)

and (f, (u, n Bz)(x)) S (f2, rr).

We musl noll show that (f , (Bt n BZ)(x)) is a

greatesL Lower bound. Thus, suppose bre have that

(9, Bt )

musl have morphisms h1t Br -> Bl and hZ, Br * B2 such

fhat ht o g = f1 and hZ o g = fZ.

In the S-product, there must be a unique y and a

unique ( A, e)-morphism h: ( Bl n n, ) ( V) * Bt such lhat

nrU o h = hi and nrU o h = hZ. But then, t{e must also

have n,,U o (h o g) = h,l o g = f1 and nrU o (fi o g)

= h2 o g = f z, and by the uniqueness of x and f , üie

thereforehavey=xand

(9, B') _f (f , (Bt n Bz)(x))

and (9, B') 5 (f , (u,, , Bz)(x)).

QED

So, the sítuaNion is as f ol-lows:

If C is a finitary, epimorphic category with a

skel-eLal set C = {A- : i e 1}, we form the
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speciali zat,ion ( Ai, g) ; it has a skeletal set

C. = {4. : j e I(i) i which can be chosen Lo be a subseL
-LJ

of C. Then the Z-Iínear map p: Z(C) u Z(C.) Oerived

f rom the projection S-f unctor f rom C to (Ai, -Ç-) is

defined on basis elements simply by:

!(A') =J

IfChasafiniNa

and if Z(C) and Z

derived from the

ring homomonphism

righl S-adjoint o

if g has an S-pro

inherils a finita
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(3.11) ¡q(l-) = a(¡)o..
J-J

This carì be seen by noting lhaL every pair (f, Oj), for

f in (4, C)[Ai, oj] can be written as (e o fk, Aj),

where (fU, UU) is a unique element of nk, and g is a

unique isonorphism from BU to 4..

Now, if ( Ai , ç-) has an S-product ( which is

necessarily finitary), then we have shown fhat the

poset (0uot(4. ), 5) has meets; indeed, the right

l-inearízation of Ai/g with the multipJ-ication derived

from the product in Or/9_ is simply the meeL algebra

Z(Quot(Ai), 
^>. 

And since (X, F) is a right S-adjoint,

iú is a ring homomonphism fnom Z(Cí) (with the

mul-tiplication derived from its S-product) to

Z(Quot(4. ).^ >. It is not difficuft to see that Lhe
1

elemenLs o. of Z(Quot(A- ) ) are tinearly independenLJ ]-'

(since the sets nj are, for differenl j, clisjoint), and

thaL therefore $ is a faithful representation of

z(ci, (Ail c)>.

We are now in a posiLion better lo understand the

representation w: B(G) -+ Z(L(G),r\) introduced in the

first section . The Burnside ring B( G ) is the ring

Z(D, Ð-> where D is Lhe category of transitive actions

of G. But íf víe take a to be the action of G on iLsel-f

by right mul-tiplication ( i. e. , the natural action of G

on G/H where H is the idenlily subgroup of G), it is
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easy to show thaL (a, D) D. Furthermore, the

quotienL objects of a are in a one-one correspondence

with the subgroups H of G (with the action" rH forning

a family of representatives of the distinct quolient

aclions of -a). In fact the poset L(G) is ísomorphic to

Quot( a) under this corresponderrce, and r¡I is essentiaiJ-y

the represenLaLion ¡¿: B(G) * Z(Quot(a),Â) described

above.

Continuirrg with the case in which (Ai, ç-) has an

S-product, we can use the facts esfablished above to

deduce some relationships between the structural

constants def irring the multJ-plication in Z<C . , ( A. , C ) >

and the poset, (auot( A, ) , _f ) . F'or elements o j and At in

Ci, $Ie write:

h.

J
At I r(i,k;s)4",

s

where of course

the S-product in

Now, for the

rùe can write:

(3.12) u)
J

j,k;s)ar".

the mul-tiplication is that derived from

(4.. c).
I

efements ,j and ,k of Z(Quot(Ai), A ),

uJ,
K I ur

Here, it is not hard to see that the quantity b(j,k;s)

can be defined as Lhe number of r¡/ays a given el-ement of

fl can be exÞressed as a meet of an el-ement of CI. wilhS,J

an element of f?k. But it is also easy to establish the
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refationshíp between lhe quantities r( i , k; s) and

b( j,k; s) ; since v¡ is a ring homomorphism ( anO faithful)

we aL orìce have:

w(4.) " i^r(Ak) = | r(i,t;s)ru(R")
JS

= (¡(j)r." a(k)ou = I_ r(i,k;s)¡(s)rs
S

= I ^(j)^(k)b(j,k;s)r,r",

from which we geL the equation:

(3.13) b( j,k;s) = {r(j,k;s)¡(s)i/t^(j)¡(t<)}.

If v,ie appty this to Lhe category Q ( f inite sets and

surjective maps), we get the fol-l-owing:

Let q( i, i; k) be the number of subdirect k-subsets

of the producl of an i-set and a j-set. Then, if by a.

ttk-partitiorlrr'üre mean a partitíon of a sel into k

blocks, Lhe number of hrays of forming a k-partition of

a given finite seL as the meet of an i-partition with a

j-partition ís given by the number:

b(i,j;k) = (q(í,i;k)kt)/(i!i!).

The reader witl easily duafize the above resufls to

arrive at the appropriate notion of l-eft specializaLion

and establish a simil-ar relationship beti¡een a

monomorphic category and the poset of subobjects of an

objecf of the category.
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