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ABESTRACT

A finitary category is defined in this work as a

skeletally small category € such that the set of
morpnisms between any two (-~objects is finite.

lMany combinatorial problems can be viewed as
relating to guantities involving appropriate finitary
categories. In this work general technigues for
analyzing such problems are developed and applied to
various typical examples.

The chief tool in such an analysis is the notion of

S=-representabilityv. We call a set-valued functor

S-representable 1f it is the disjoint union of
representable functors. With this idea, various other
categorical concepts are generalized, For exanmple, we
derive a concept of an S-product, a good illustration
of which is given by the collection of subdirect
products in the cartesian product of two finite sets.
It is an S-product in the category of finite sets and
surjective maps.

When such an S~-product is present, it is possible
to associate with the finitary category a commutative
ring within which many combinatorial calculations can
be carried out with facility. A concept of

S~adjointness allows one to establish homomorphisms

between such rings which also frequently encapsulate a

great deal of combinatorial information. For example,



using such techniques, we are able to prove the

following result:

Let the function Qn on the positive integers be

defined as the function whose value at the integer k is

the "n-th difference of Ok"; that is,

n Ok

Q (k) = 8 = nis(k,n),

where S(k,n) is the designated Stirling number of the
second kind. Then, Qn is equal to a unique polynomial
with integral coefficients in the functions Qp for

primes p less than or equal to n,.
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CHAPTER ONE

INTRODUCTION

This chapter will provide some examples and (hopefully)
some motivation for the theory to be developed in the
following chapters.

A "multiplication" of two finite algebras (in the sense
of universal algebra) of the same type is defined as the
formal sum of their subdirect products (loosely speaking).
The problem is then posed as to whether this multiplication
is associative, That this is so is proved in two different
ways. En route, a number of interesting combinatorial
relations are derived, which become the focus of later
developments.

Two specific cases are then studied: first, that of
finite algebras without any operations (i.e., finite sets)

and then, finite Boolean algebras (which are dual, in the

sense of category theory, to finite sets). Several
classical results involving binomial coefficients and
Stirling numbers are proved, plus a few new ones., Perhaps

the most satisfying of the new results is the following:

For integers n, k > 1, let S(n,k) denote a Stirling
number of the second kind and S(-,k) denote the

corresponding function on the positive integers. Then,



S(~,k) is expressible as a unique polynomial in the
functions S(—,pT), S(—,pz), e S(—,pr), where the p, are

the primes less than or equal to k.

(For example, S(-,4) = é S(—,2)2

The chapter concludes with some notational remarks that

1
- S5(-,3) - z S(-,2) .)

anticipate the category-theoretic viewpoint which will

dominate the rest of this dissertation.



1. A Multiplication Derived from Subdirect Productis:

We use the term "algebra" in the sense of universal
algebra; i.e., a set with operations. Two algebras are of
the same Ltype if, loosely speaking, they have the "same"
operations. (In that case, it is possible to speak of an
algebra homomorphism from one to the other.)

Now let € be a class of finite algebras of the same
type, which is closed under the formation of subalgebras and
of the direct product of two algebras. Thus, € could
consist of all finite groups, all finite p-groups, finite
lattices, finite distributive lattices, etc.

Let C be a skeletal set for (; that is, C contains

exactly one member from each isomorphism class of algebras
in C. Form the free Z-module Z(C) on the elements of C;
loosely speaking, Z(C) consists of all formal, finite linear
combinations of the members of C with integer coefficients.
Thus, if we write C = {Ai : 1 e I}, where I is some
suitable indexing set, then an arbitrary element v of Z(C)

can be written as:

vV = Z V(i)A.
. i
iel
where the v(i) are integers only a finite number of which

are non-zero,.

1r B1 and B2 are algebras in £, then B1 X B2 denotes

their direct product; while Tyt B1 x B2 > B1 and

W2: B1 x 82 + B2 denote the natural projections of the



direct product onto its first and second factors,

respectively. A subalgebra B of B1 X B2 is subdirect in

B, x B, if "T(B) = B, and "Z(B) = B In other words, B is

1 2 2°

subdirect in B1 x B2 if the restrictions of Ty and T to B

are surjective. Define a multiplication in Z(C) as follows:
For A. and A, in C, set
i J

1 ° _ v . s,
(1.1) Ai Aj = é P(l,J,k)Ak,

where r(i,j;k) is the number of subalgebras B which are

subdirect in A, x Aj and isomorphic to A (Thus,

K

r{(i,j;k) is the number of subdirect algebras in the

isomorphism class defined by Ak.)
We now pose the following problem: Is the
multiplication defined by equation (1.1) associative?

We shall prove this in two ways. For our first proof

we require a few definitions:

Ir B1 and B2 are two algebras in

denote the family of all surjective homomorphisms from

C, let 2[51, B2]

B, to B,. For each Ai in C define a corresponding

1 2

Z-linear map di: Z(CY ~» Z on basis elements by means

of the formula:

Y -
(1.2) Qi(Aj, = #g[Ai, Aj].




(In this work, the symbol "#" shall stand for "the

number of elements in" a given finite set.)

1 BZ’ and B3 be arbitrary

algebras in C, and let W be the family of all algebra

Proposition (1.3): Let B

homomorphisms h: B, =+ B, x By such that h(B,), the

image of B, under h, is subdirect in B2 x B,. Then,

1 3

there 1is a natural one-one correspondence between W and
DB, ,
Proof: Given a pair of surjective homomorphisms

(£, g) e DI[B,, B,] x D[B,, B3], one derives a
corresponding homomorphism <f, g>: B1 + B2 X B3 by
the prescription <f, g>(x) = (f(x), g(x)). Since

L o <f, g> = f and T, 0 <f, g> = g, and f and g are
surjective, it follows that the image of <f, g> is
subdirect in B2 X B3, and hence

<f, g> & W. Conversely, if h: B1 > B2 x B3 has a

subdirect image, then it yields a pair (w, o h, T, 0 h)

of surjective homomorphisms. QED

The above proposition can also be stated as

follows:



Let {BX : X € X} be the family of all subdirect
algebras in B, x B_, (suitably indexed). Then,
) [ r 1 = '
(1.4) DB ] x niBy, Byl = U¢,y RIB,, BJ.
The union on the right hand side of (1.4) is of

course disjoint. This immediately gives us the

following proposition:

Proposition (1.5): For each index i ¢ I, the map d,

defined by (1.2) preserves multiplication. That is,

(1.6) d.(A.)d. (A

for all A., A, e C .,

Proof: Note that the left hand side of (1.6) is simply

#(Q[Ai, Aj] x Q[Ai, A 1); while the right hand side is

gi(é r(j,k;m) - Am) = % r(j,k:m)(#D [Ai, Am]),

which c¢clearly counts the number of elements in the

(disjoint) union L’(x\ DlaA., BX], where the B vary over the

i
subdirect algebras of Aj X Ak.
its isomorphic copy in C.) But by proposition (1.3)

two counts must be equal. QED

(Simply replace each B, by



We used the awkward phrase 'preserves multiplication®
in the above instead of the preferable description "gi is a
ring homomorphism" since we do not yet know that Z(C) is a
ring under the multiplication (1.1); Z(C) will be a ring if

this multiplication is associative.

Since the multiplication in Z is associative, it follows

that for any elements gy ¥y, Ny o€ Z(C),
gi((z1 ° 12) . 13) = gi(l1 ° (12 ° 13))
for all indices i in I. We shall show that there are

"enough'" of these homomorphisms di so that this fact implies

that
o ° \ -~ ° ° \
((x, v,) vy) o= (v, (¥, 13,),
and thus complete our first proof of the associativity of

(1.1).

Towards this end, consider ZC, the space of all
functions w : C > Z, It is a ring under pointwise
operations. That is, if My, M, € ZC, then the functions
M, o+ M, and Y, ° W, are defined ("pointwise") by the
equations:

(E1 + ﬂz)(Ai) =z ET(Ai) + ﬂZ(Ai),

o \ s ° \
and (_Vl1 ﬂz,(Ai) = _&i1(Ai) ﬂZ(Ai,,

for all Ai e C. Now define the Z-linear map d: Z(C) - ZC

on basis elements by letting Q(Ai) be the function whose
value at Aj, g(Ai)(Aj), is simply gj(Ai), and, of course,

extend d to the rest of Z(C) by linearity.



Thus, by definition, we have that

) ) = = .
Q(Ai,(Aj/ = Qj(Ai) = #QLAJ, AiJ,

consequently, if v = 2 v(i)A. is an arbitrary element of

Z(C), then d(v) = v(i)g(Ai), the function in ZC whose

[l S

value at a point Aj e C is given by the equation

(1.7) d(u)(a.) = 7§ v(i)(#Q[Aj, Ai]).
i

(Because of the form of the equation (1.7), in which
summation occurs over the right hand argument in the
expression #Q[Aj, Ai], we shall refer to the process of
forming 4 from its "component" homomorphisms gj as

"linearization on the right",)

It is clear that the Z-linear map d: Z(C) =~ Z is
also "multiplication-preserving", since the multiplication
in ZC is defined pointwise, and each "component® gj of d

preserves multiplication.

We now aim to show that d is faithful (i.e., injective);
from which fact the associativity of (1.1) is immediately

deducible,

In order to show that d is faithful, it is necessary and
sufficient to show that the image of the basis elements of

Z(C), namely {Q(Ai) : i e 1}, forms a linearly independent



set in ZC. As a first step towards this result, define the

relation ">" on the set C by:

(1.8) A, > Aj if Q[Ai, Aj] £ 0.
It is immediately obvious that the relation > is both
transitive and reflexive. A little thought shows that it is

also anti-symmetric, (If there exist surjective algebra

homomorphisms f: A. + A, and g: A. > A, then since

i J J i’
the underlying sets are finite, both f and g must be
bijective. But an algebra homomorphism which is a set
isomorphism is also an algebra isomorphism. Consequently,
Ai and Aj are isomorphic as algebras; which by the

definition of C means that Ai z Aj')

In other words, > is a partial order on C. Also note
that d(A_ )(A,) = d.(A.) = O unless A, > A,; while
x J J 1 J i
Q(Ai)(Ai) # 0. (That is, Qj(Ai) # 0 if and only if
)
Aj > Ai"

Proposition (1.9): The Z-linear map d : Z(C) =+ Z is

faithful.

Proof: As stated, we must show that the set {Q(Ai) : i e I}
is linearly independent. For infinite sets, linear
independence means that any finite subset is linearly

independent. Thus, let o = {Ai(T)’ Ai(2)""’ A )} be an

i(n



arbitrary finite subset of C, and suppose that:

)
P1Q(Ai(1)) + rzg(Ai(z)) et rng(Ai(n>, 0.
We claim that r'1 = r2 = ... =P = 0, and therefore f is
linearly independent. For suppose otherwise, that at least

one of the Pi is non-zero: We may assume £ has been indexed

in "non-decreasing" order; i1.e., if Ai(s) < Ai(t)’ then

. This means that the function d(A ) ¢ 7% takes on

S i(s)’

A

zero values at points in the sequence g after Ai(s\'
Let ro be the first non-zero term in the series
(P1, Poyeens Pn); then,

[P1Q(Ai(1)) + PZQ(Ai(Z)) .+ rnQ(Ai(n))](Ai(s))

But, Q(Ai(s))(Ai(s)) # 0, and therefore r_ = 0, a
contradiction. QED

Corollary (1.10): The multiplication (1.1) on Z(C) is

associative.

ER X X

This completes our first proof of the associativity of
the multiplication (1.1). Under this multiplication, Z(C)

is a ring. Indeed, it is clearly a commutative ring.

Before we begin the development of the second proof, it
will be helpful to develop some notation. Let us use

Z<C, D> to denote the Z-module Z(C) equipped with the

10



multiplication (1.1), and with the (faithful) ring

homomorphism d: 7Z(C) - 7¢

We now construct a second such structure. Begin by
defining a second multiplication on Z(C) via the

prescription:

1 ° -
(1.11) A, Aj = A,

where Ak is the unique algebra in C isomorphic to Ai X Aj'
As before, we extend (1.11) to all of Z(C) by linearity.
This multiplication is clearly associative, and under it
Z(C) is again a commutative ring.

It is also possible to find a natural ring homomorphism

from Z(C) (equipped with the multiplication (1.11)) to z°

For B, and B_ in g, let Q[B1, B2] denote the family of

1 2
all algebra homomorphisms from BT to B2. For each index
i e I, define the Z-linear map g;: Z{C) + Z on basis

N \ - . .
elements by gi(Aj, #QLAi, AjJ

C

Proposition (1.12): For all i e I, the map c; z(C) ~ 2
is a ring homomorphism, assuming Z(C) is equipped with the

multiplication (1.11).

Proof: The proof follows immediately from the fact that for

all B, By, B, ¢

C, the sets CIB, B1] x CLB, B2] and



CIB, B, x B2] are in a natural one-one correspondence, and

1

therefore their cardinalities are equal. QED

We now proceed to define as before, from the collection

of all the ring homomorphisms <, the ring homomorphism
e+ Z(C) - ZC. To be quite explicit, g(Ai) is the function

on C whose value at Aj is given by:

. #C[A., A.] = c.(A.).
j Ccl i ;] _QJ( 5

lo
~~
=
N
~
s
p—
Hj§

(Alternatively, we say that ¢ is obtained by "linearization

on the right" of the expression #Q[Aj, Ai].)

Following the same notation introduced above, let
Z<C, L> denote the structure consisting of 2Z(C) equipped
with the multiplication (1.11) and the ring homomorphism ¢c.
We shall now show that the two structures Z<C, D> and
Z<C, C> are isomorphic; that is, there is a Z-linear
isomorphism t£: Z(C) ~» Z(C) which is both an isomorphism of
the multiplications involved, and also commutes with the

ring homomorphisms ¢ and d.
We define £ on basis elements Ai ¢ C by the formula:

\ - v . .\
(1.13) t(Ai) = ét(l,J/Aj,

where t(i,j) is the number of subalgebras of Ai isomorphic

to A..
J

12




Proposition (1.143: The following diagram commutes for all

i e I:

|t

Proof: It suffices to verify this for the basis

clements Aj e C. Thus, we must show

C-(Aj) = _cii(L(Aj)) = ) t(J,k)d; (A ),

or, (referring to the definitions of <y and gi) that

,~
£
-
B
(o]
s
o=
[N
=
| s}
1]
N~

t(J,k)(#DLA,, A 1),

Let {BX : X ¢ X} be the (suitably indexed) family of all
subalgebras of Ak' Since every algebra homomorphism from Ai
to Aj corresponds to a unique surjective homomorphism fromn
Ai to a subalgebra of Aj, it is clear that the sets

cla,, Ajj and &J(x) Q[Ai, BX] are in a one-one

correspondence.,

Furthermore, from the definition of the coefficients

t(j,k), it is clear that the right hand side of (¥) is equal



to #LJ(X) g[Ai, BX], which from what we have Just said must

be equal to the left hand side of (¥). QED

We shall now show that t is a homomorphism of the
multiplications involved. Again, this needs to be verified
only on basis elements. Write the multiplication (1.11) in
the form: A, ° Aj = Ap(i,j)’ where p(i,j) is the unique
index in I such that Ai x Aj is isomorphic to Ap(i,j)'

Thus, we want to prove:

where the multiplication on the right hand side of (1.15) is
that given by (1.1). The proof hinges on the following

simple lemma:

Lemma (1.16): Given algebras A, B € C, set:

{AX : x € X} to be the family of subalgebras of A,

{By : vy € Y} to be the family of subalgebras of B,
(both sets appropriately indexed). For each index i e I,
let:

U, (4 x B) be the family of subalgebras of A x B
isomorphic to Ai’

wi(A x B) be the family of subdirect subalgebras of

A x B isomorphic to Ai'

Then, for all i e I,

4



Y = )]
U;(&4 x B) = u(x,y> WA, x By)-

. o ) )
Proof: Clearly, Ui(A x B)2 LJ(X v) W, (A x By,. On the

] Fa
other hand, if A' is an arbitrary subalgebra of A x B

isomorphic to Ai, then A' is subdirect in AX X By, where

(A')Y, (Here w, and w, are the

- ¥ -
AX = ﬂT(A ) and By = T, ) 1 >

natural projections of A x B onto its first and second
factors, respectively.) Consequently,

U.(a x BY € U W.(A_ x B_). QED
i it Tx y

(x,y)

Proposition (1.17): The map £ is a multiplication

preserving map, L : Z<C, £C> * Z<C, D>.
Proof: Expanding both sides of (1.15) we get:

y t(p(i,5),m)A = J t(i,k)t(3,n)(] A )
m k,n m

= 3 (J t(i,k)t(j,n)r(k,n;m))Am.
m %

(
k,n
Equating coefficients, we see that the required result is

equivalent to the equation:

(1.18) t(p(i,j),m) = § t(i,k)t(j,n)r(k,n;m),
k,n

for all m ¢ I, The left hand side of (1.18) is clearly the
number of elements in Um(Ai x Aj). On the other hand, a
term of the form t(i,k)t(J,ndr(k,n;m) counts the number of

subalgebras (isomorphic to Am) of Ai X Aj which are



subdirect in A_ x B_, where A_ < A,., B, < A., with A_ = A

X y X = i y = ] X k
and B £ A . This sum is equal (via lemma 1.16) to the
number of elements in Um(Ai x Aj). QED

1t remains only to show that £ is in fact an
isomorphism, It suffices to show that t is invertible as a
Z-linear map t : Z(C) = Z(C); if it is invertible, then L_1

also preserves the multiplications involved, Towards this

result, we define another partial order on C:

Set Ai < Aj if Ai is isomorphic to a subalgebra of Aj'
Thus, Ai < Aj if and only if there exists an injective
algebra homomorphisnm Ai > Aj‘ The following are some easily

verified assertions:

(1.19) a) < is a partial order on C.
b) The set (A,)7 defined by
(Ai)" = {Aj e C : Aj < Ai}, (the principal order ideal
generated by Ai) is finite for all A, e C.
¢} t(i,j) # 0 if and only if A, < A ; thus, we
may write t(A ) = ¥ {t(i,j)Aj : (A, < A)

d) t(i,i) = 1 for all i e I.

Because of (c¢) and (d) above, we can write:
L:_l-l-_l_l_,

where 1 is the identity mapping on Z(C), and u is defined

by:

16




3 \ - T . .
(1.20) u(Ai yoot(i,3) Aj

where of course "Aj < Ai" means that A. < Ai

J
but A, # A..
J i

Call a linear endomorphism s: Z(C) = Z(C) 1locally
nilpotent if for all w ¢ Z(C) there exists a positive
integer n such that s™(w) = 0. Clearly, for s to be

locally nilpotent it suffices that s satisfy this

condition on basis elements.

Proposition (1,21): The Z-linear endomorphism u

defined by (1.20) is locally nilpotent.

Proof: Define the support of an element w = | w(ilA,,
i

denoted by supp(w), by:

supp(w) = A, e C w(i) # 0}.

Thus, for example, the support of L(Ai) for any i is

(8,07 - {8},

the order ideal (Ai)—, and supp(Q(Ai))
Of course for any w ¢ Z(C), supp(w) is a finite subset
of C.

Now note that if Ai is a maximal element (under X)
of supp(w), then Ai ¢ supp(u(w)). Let (supp(w))~

denote the order ideal generated by by the set supp(w).




Since (supp(w)) is the union of the prinipal order
ideals (Ai)— for A, in supp(w) (ie, a finite union of
finite sets), it is clear that (supp(w)) is also
finite. But now if w # 0 (and hence supp(w) £# @ ), we
have a proper containment
(supp(w))™ = (supp(u(w)))™,
since the maximal elements of supp(w) are not in
supp(ufw)).
Consequently, the sequence:

(supp(w))™ D (supp(u(w)))” D (suppu®(WIN™ D ...

is strictly decreasing until we hit a point at which

ut(w) = 0, but since the sets involved are finite, this

must occur after a finite number of steps. QED

Proposition (1.,22): If s is a locally nilpotent linear

mapping Z(C) —* Z(C) , then 1 + s 1is invertible,

Proof: The inverse of s is given by the formula:

(1L + 8) = 1 - s+ 8 -8 + - ....

Of course the sequence on the right is infinite, but it
"converges" in the sense that when applied to any
element w of Z(C) it yields only a finite number of
non-zero terms. That it is the inverse of (1 + s8) is
easily verified by applying (1 + s) to the right hand

side., QED

18



The above proposition shows that £ is invertible,
and thus our second demonstration of the associativity
of the multiplication (1.1) is complete:

Since the multiplication in Z<C, L£> is associlative,
and since Z<C, D> is isomorphic to Z<C, C>, it follows

that the multiplication in Z<C, D> is also associative.

& HE

Needless to say, the byproducts of our investigations
are of greater interest than their putative object, the
associativity of (1.1).

The results can be briefly summed up in the

following commutative triangle of ring homomorphisms:

Z(C)
c
(1.23) t 7,C
¥ 4
Z(C)

together with the fact that £ is invertible.

Before we go on to apply these concepts to some
special cases, there is one more formula that we wish
to derive, Towards this objective, let us suppose that

2t is given by the formula:




7N, = I owli,i)a,

J
Then, it is not hard to derive the "inversion" of
formula (1.18):

(1.24) r(i,jyn) = 7 w(i,k)w(j,m)t(p(k,m),n).
k,m

The proof follows the same pattern as that of (1.18):

expand the equation _1:_—1(Ai . Aj) = t 1‘(Ai) ° t (Aj)
(keeping in mind that the multiplication on the left of
the equal sign is in Z<C, D>, while that on the right
is in Z<C, £>), and then equate coefficients.

We shall now see what these results look like in

one particular (and interesting) case.

20




2. Finite Sets:

We now turn our attention to the simplest possible
class of finite algebras: those without any operations
at all; i.e., finite sets without any additional
structure,.

Denote the class of all finite sets by N. A

skeletal set for N is given by:

No= AL, Ay, ..., An,...},
where An is a set with n elements, say An =
{1,2,...,n}. (In line with our attitude that these are

finite algebras, we exclude the empty set from

consideration.)

In order to be able to interpret the results of the
previous section in this context, we introduce some

notation:

Let q(i,j;k) = number of subdirect subsets of
Ai x Aj of cardinality k. (This is perhaps more easily
conceptualized as the number of i-by-j (0,1)-matrices
which have a 1 in every row and column, and which

contain precisely k 1's altogether as entries.) Then

the multiplication (1.1) takes the form:

a(i,j;k)A

—
no
—
=
©
=
f
W e

=



Denote the family of all surjective maps from a
finite set A to a finite set B by Q[4, Bl, and set
Q(i,J) equal to #Q[Ai, Aj]; thus Q(i,j) is the number
of surjective maps from an i-set to a Jj-set. The
gquantity Q(i,j) can be expressed in terms of more

traditional combinatorial expressions as follows:

The number of ways of partitioning an i-set into J
blocks is given by the Stirling number of the second
kind S(i,j). Alternatively, S(i,j) is the number of
distinct quotient sets of an i-set which are of
cardinality j. Since every surjective map from an
i-set to a j-set can be decomposed uniquely as the
natural projection onto a quotient set (of cardinality
j) followed by a set isomorphism, it is easily deduced

|

that Q(i,3) = jis(i,j).

With this in mind, we know that the Z-linear map

° 7 \| . : \ - \ = . -
Q.: Z(N) » Z defined by gr(Aj’ Qlr,J) #Q[Ar’ AjJ
is a ring homomorphism when Z(N) is given the
multiplication (2.1} , Consequently, applying a, to
both sides of (2.1) at once yields the following
multiplicative identity for the quantities Q(i,j):

(2.2) Q(r,i)a(r,jY = 1} q(i,j;k)Q(r,k).
k

A little fiddling with this (using the equation Q(i,J)

= jis(i,J)) then yields the corresponding



multiplicative formula for the Stirling numbers of the

second kind:

(2.3) S(r,i)s(r,3) = § {(q(i,i;k)k?Y/(itjt)}S(r,k).
k

The following (easily verified) results are also worth

mentioning:

a) gi(Aj) = Q(i,j) = 0 unless i > j. (The natural
order on the integers corresponds to the order ">" of

the previous section.)

c) A1 is the identity of the ring Z<N, Q>; thus in

the sequel we shall generally write 1 instead of A1.
d) q(i,j;k} # 0 if and only if max{i,j} < k < ij;
q(i,d;iJ) = 1.

e) If i > j, then q(i,j;i) Q(i,j). (Proof: Apply

g, to the egquation Ay o AL = q(i,j; kA to get:

J

Nt~

k

i1Q(i,3) = q(i,j;iYdit.
Alternatively, one may note that the only subsets of
cardinality i that are subdirect in Ai x Aj are the
)

"graphs" of surjective maps from Ai to Aj'
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Now let NLA, B] denote the family of all maps from

A to B (A and B both finite). The multiplication

derived from the direct product is of course simply:
(2.4) A, ° A, = A, ..

For each index i, we get the Z-linear map n. defined

by:
) - L
(2.5) ni(Aj) = #N[A.

Thus n: Z(N) =~ ZN is the Z-linear map whose i-th
component is n,; essentially, Q(Aj) is the function

(identifying A, with the integer i) i |~ 3t

This defines the ring Z<N, N>, which also has A1 as

its identity. The fact that Qk is a ring homomorphism
for each index k reduces to the trivial equation (ij)k

ikjk. The ring homomorphism t: Z<N, N> =+ Z<N, Q>,

la (1.13), is given by:

Wy

(2.6) t(Ai)

1

IH
v o~

1 C(i,J)Aj,
where C(i,J) is the number of combinations of j things
out of i, or equally, the number of subsets of Ai of
cardinality J .

(Note that writing 1 for A, and hence i for iA1,

. . . . fi-1) . )
this sum is i + C(1,2)A2 +oe.. + C(i,i-10A, o + A,




OQur basic commutative triangle means that

) = n.(A, )

K s WA ) which expanded becomes:

(_qi o £)(A

(2.7) Jooc(k,3daQ(i,3) = ¥ c(k,jyj!s(i,j) = k*,
jz1 Jz1

a well-known identity involving the Stirling numbers

S(i,j) (ef. [(R11l, p.34).

Now using the fact that £ is a ring homomorphism,
and in particular equation (1.18), we get the
interesting identity:

(2.8) c(ij,m) = Y q(k,r;m)C(i,k)C(J,r),
k,r>1
since in this context the index p(i,j) is simply ij.

We can, with a little extra work, specialize (2.8) to

the case i = 2 and obtain the following identity:
(2.9 c(2j,m) = ¥ C(r,m—r)ZZP—mC(J,P).
r>(m/2)

The proof of (2.9) follows from the following lemma:

Lemma (2.10):

a) q(z2,r;m) = C(r,m-r)ZaP—m if r <m £ 2r;

r

b) q(2,r;r) 2° - 2 (which is also Q(r,2)).

Proof: Interpret g(2,r;m) as the number of 2-by-r
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(0,1)-matrices such that every row and column contains
a 1, and with precisely m entries equal to 1. In such
a matrix there must be precisely (m - r) columns of %the
form (1), while the remaining r - (m - r) = 2r - m
columns must be of the form (g) or (?). Thus there are
C(r,m-r) ways of choosing the (}) columns, and 22r-m of
choosing the remaining columns; and this gives us (a).
The above argument breaks down for the case m = r,
when there are no columns of the form (1). As before,
there are 2r ways of choosing the columns, but two of

]
these (namely (86 co g) and (?? oo ?)) do not satisfy

the conditions laid down. Hence, q(2,r;r) = 2° - 2 .

QED

Proof of (2.9):

Using (2.8), we can write:

c(2j,m) = g(k,r;m)C(2,kXC(j,r)

= Y 2q(1,r;m)c(j,r) + } qg(2,r;m)C(j,r).
>

r>1 rz1

Now, in the first place, q(1,r;m) = 0 unless r = m, in
which case q(1,m;m) = 1; secondly, q(2,r;m) = 0 unless
r <m < 2r; i,e., unless (m/2) < r <m . Finally

substituting in the above via lemma (2.10) and

simplifying slightly, we get (2.9). QED
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Let us now turn again to the ring homomorphism t;

the inverse of a map of the form L(Ai) = ) C(i,j)Aj
Jjz21

is well-known (ef. [R<Z], p.4L4), and is given by:

(2.11) 7'y = 3 (-nF e, a.
S )

= 1 -nfcti0n,

0<k<i k

From our commutative triangle, we have that

-1
) - - .
(Qi ot ,(Ak) gi(Ak), which expanded gives us the
identity:
(2.12)  § (-0 ek, dxd = a(i,k) = kiS(i,k),
21

a standard way of defining S(i,k) (ef. [Lil, p.39).

(Of course it is merely the inversion of (2.7).)

We can now apply equation (1.24) to derive a

formula for the "structural constants" q(i,j;n) of the

ring Z<N, Q>. Noting that in this context w(i,k)

(—1)l—k C(i,k) and p(k,m) = km, we get:

E (_1)(1+J)—(k+m)

k>1
m21

(2.13) q(i,j;n) =

This is actually a fairly efficient formula, since
the terms on the right hand side are non-zero only when

i >k and j > m but km > n., Using the fact that Q(i,j)

27

C(i,k)Cc(j,m)C(km,n).



= jts(i,J) = q(j,i;i) when i 2 j leads via (2.13) to

another formula for the Stirling numbers S(i,j):

(2.14) Q(i,3) = j3is(41,3)

) . -\.-'
To(oqy (B3 (k+m)C(i,k)C(j,m)C(km,i),

"
£~

when i 2

A\
o

Before proceeding with our investigations, we need

to introduce another tool:

Let X = {xi : 1 e J} be a family (finite or
infinite) of "indeterminates"™. Then the ring Z[X] of
polynomials (with integer coefficients) in the
commuting indeterminates X, can be described as the
free Z-module Z(F[X]), where F[X] is the free
commutative semigroup (with identity) on the set X, and
Z(FLX]1) has the multiplication derived from the
multiplication in F[X]. The basis elements in F[X] of
the free Z-module Z(F[X1) = Z[X] are of course simply
the monomials in Z{X]. (In particular, the identity 1
in ZLX] is considered a monomial of degree zero.)

As is well-known, the ring Z[(X] has the important
"universal mapping property" that any map f :X » R,
where R is any commutative ring with identity, extends

to a unique (identity preserving) ring homomorphism
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f: Z[X1 - R.
Usually if X is a singleton set X = {x}, then Z[X]
is denoted by Z{x]; similarly, if X is finite and is

equal to {x1, X c ey xn}, then Z[X] is often denoted

20
by Z[XQ, Xppene Xn].

Now if R is a commutative ring with identity and A
= {ai : i e J} is a family of (not necessarily
distinect) elements of R also indexed by J, then a
necessary and sufficient condition that R be generated
by A (as a ring with identity) is that the ring
homomorphism f: Z[X] + R determined by the map
X, | > a, be surjective. If, on the other hand, f is

injective, then the elements a, are said to be

algebraically independent. (Thus, {ai} forms an
algebraically independent set if and only 1if there
exists no polynomial relation connecting the ai.)

If the set {ai} generates R and is also
algebraically independent, then we shall call {ai} an
algebraic basis for R. Under those conditions R is

clearly isomorphic to Z[X].

The ring Z<N, N> provides an illustration of a ring

with an algebraic basis:
For the rest of this section, X = {xp : p a primet}

will denote a family of indeterminates indexed by the

rational primes (p-= 2, 3, 5,...). Define the ring
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homomorphism 95 . Z[X] ” Z<N, N> by X5 Re Ap. Since
under multiplication the basis elements An of Z<N, N>
form a semigroup with identity isomorphic to the
multiplicative semigroup of positive integers, and
since that semigroup is freely generated by the prime
numbers, it is easy to see that ¢S is an isomorphism.

Hence, the set ¢ = {Ap : p a prime}l forms an algebraic

basis for Z<N, XN>.

A more interesting question is: could it be that ¢
forms an algebraic basis for Z<N, Q>? This question
will be answered (eventually) in the affirmative. But

first we will show that ¢ generates Z<N, Q> as a ring:

Proposition (2,15): For all n > 2, An is equal, in
Z<N, Q>, to a polynomial without a constant term in the

elements of ¢ corresponding to the primes X n.

Proof: We proceed by induction on n. For n

2, there
is nothing to show since A2 is an element of @,

Suppose now that the proposition holds for all k such
that 2 £k <n . If n is prime, again there is nothing
to show. Hence suppose n is composite, and write n

= pm, where p is the smallest prime divisor of n. Then
using the multiplication in Z<N, Q> we may write:

Ao A = A+ ) g(p,m;k)A

m<k<n-1 k
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and therefore we have:

A =4 A - 7 g(p,m;k)A
BP T pcgenn k

By the induction hypothesis, Am and each Ak is equal to
a polynomial in the elements of ? indexed by the primes
less than n, and without a constant fterm, It follows

by substitution that the same holds for An' QED

Notice that in the proof we have given an inductive
procedure for constructing a sequence of polynomials
SD2, SD3, SDyyeeey SD y.n. in ZLX] with the property
that the substitution of Xp by Ap yields An as the

value for SDn' There is another point worth making

about these polynomials:

Let m be a positive integer; we define the
corresponding monomial &, in Z[X] by taking the prime
decomposition of m, and replacing each prime factor p
in it by the indeterminate Xp. We set gy = 1. Note

that g Indeed, every monomial in Z[X] is

k8m = Bym-
equal to gm for some integer m, and the semigroup they
form is isomorphic to the multiplicative semigroup of

the positive integers. Thus, any polynomial f in Z[X]

can be uniquely expressed in the form:

£ = r(k)gk.
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Let us then write:

(2.16) SD_ = § 8D(n,k)g, .
n K> 1 ' k

We can now note the following description of what SDn

looks like:

Proposition (2.17):

a) SD(n,1) = 0 for all n > 2,

b) for a prime p, SDp = X
c) SD_ = ] SD(n,k)g, ;
25kZn

that is, SD(n,k) = 0 for k > n;

d) Sb(n,n) = 1.

Proof: (a) is merely a restatement of the fact that
the polynomials SD have no constant term, and (b) is
obvious. To show (c¢) and (d), just add them to the
induction hypothesis in the proof of (2.15), and note
that these properties are preserved by the construction

employed. QED

For the sake of completeness, we set SD1 = 1, so

that SD(1,t) = 1, but SD(1,n) = 0 for n 2 2.
In order to show that ¢ forms an algebraic basis

for Z<N, Q>, we must now make a short digression into

ring theory:
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A commutative ring R is Noetherian if it satisfies

the ascending chain condition on ideals; or, to put it
in another way, if there are no infinite strictly
increasing sequences of ideals in R. As is well-known,
Z is Noetherian.

The Hilbert Basis Theorem (viz. [F], p.16) asserts
that if R is Noetherian, then so is the ring of
polynomials over R in a finite number of indetermi-
nates. The following results explore some of the

properties of Noetherian rings of interest to us:

Lemma (2.18}: Let R be a ring, and ¢: R > R a

surjective endomorphism of R. Then, if ¢—1(O) Z 0, the
sequence of ideals:
0} sy e P e ... e T € ...,

where ¢ 7(0) = Ker(¢") = {aeR : ¢"(a) = 0} , is

strictly increasing (i.e,, the containments are all
proper).
Proof: It is clear that this sequence of ideals is at

least increasing. We shall show that the containment

—(r=1) -
o (r 1’(O) c o~ 7(0) (where ¢O(O) = 0) is proper for all

r > 1 by induction, The case r = 1 is a proper

inclusion by assumption.

-(r-1

) -
Now suppose that ¢ ‘(0) €477(0) is a proper

inclusion, and choose an element b in the set

- - -1)
difference ¢ “o)y - ¢ (r 1’(O). Since ¢ is surjective,
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-1 . . -1 . .
¢ "(b) is non-empty. Choose ¢ in 97 '(b). Then ¢ is in
- 1 - -

o (P+‘)(O), but ¢ ¢ ¢~5(0); for c e ¢~ F(0) implies

that ¢(ec) = b € ¢_(P—1)(O), a contradiction. Thus,

- - 1)
6" (0) C o (P+‘/(O) is a proper inclusion. QED

Corollary (2.19): If R is a Noetherian ring, and

¢: R - R is a surjective ring endomorphism, then ¢ is

an isomorphism.

The following gives a nice application of these

ideas:

Proposition (2.20): Let R be the ring of polynomials

over Z in a finite number of indeterminates; say,

R = ALX1, Xonenns xn].

Suppose {fq, o vvey fn} is a set of elements of R

which generate R as a ring. Then {f1, for ven, fn} is

an algebraically independent set.

Proof: The map Xi | + fi determines a ring homomorphism

$: Z [Xl’ Xppenen xn] - Z[x1, Xoyenes xn], ("replace X,
1"

by £, ).

Since the fi generate R as a ring, the map ¢ is
surjective. But, by the Hilbert Basis Theoremnm,
Z[XT’ x2,..., xn] is Noetherian, and therefore ¢ must

be an isomorphism, QED
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O0f course the above proposition also applies to any
ring isomorphic to a polynomial ring; that is, if a
ring has an algebraic basis consisting of n elements,
then any other n elements that generate the ring must

also form an algebraic basis.

Now let us return to the consideration of the ring

Z<N, Q>. Let ¢Q: ZLX] = Z<N, Q> denote the ring
homomorphism defined by the mapping x5 | > Ap. For
example, earlier we showed that ¢Q(SDn) = An, and that

therefore ¢Q is surjective and ¢ generates Z<N, Q> as a
ring.

It would be nice to apply the above results
immediately to the ring Z<N, Q>, which we know is
isomorphic to Z[X], since it is isomorphic to Z<N, N>.
Unfortunately, since Z[X] is a polynomial ring in an
infinite number of indeterminates, it is not
Noetherian. We can, however, get around this problen
in the following manner:

For each prime p, let @p denote the family of

elements Ap in ¢ for which p' £ p. Furthermore, let

Z(p)<N, N> be the subring of Z<N, N> generated by @
(p)

p b
and Z <N, Q> the subring of Z<N, Q> generated by Qp
It is clear that @p is an algebraic basis for

Z(p)<N, N>. We shall now show that the same is true

for @p in Z(p)<N, Q>:



Proposition (2.21): For each prime p, the set Qp forms

an algebraic basis for Z(p)<N, >.

Proof: Consider the restriction of the ring
homomorphism t£: Z<N, N> =+ Z<N, Q> to the subring
Z(p)<N, N>. The image of an element A , in @ under &

is a linear combination of elements Ak for k £ p. By

(p)

proposition (2.15), these elements lie in Z <N, Q>.

Hence, t defines a corresponding homomorphism Lp from

)
2P, w> to 2¢PP<w, @>. (Basically, it is the
restriction of & to Z(p)<N, N>, except that we are also

restricting the codomain of the map.) Similarly, it is

easy to see that the image of Z(p)<N, Q> under L—l is

contained in Z(p)<N, N>. Thus it defines a
(p)

corresponding homomorphism from Z <N, Q> to

) -
Z(p’<N, N> which we denote by tp 1. It is clear that

t_ and tp"1 are inverses of each other. Consequently,

Z(p><N, Q> also has an algebraic basis consisting of
the same number elements as there are in ¢p; but since
by definition ® generates 7 PV (N, @>, it must also be

(p)

an algebraic basis for Z <N, Q>. QED

From the above proposition we also see that ®p is
an algebraically independent set in Z<N, Q> for all
primes p. But since every finite set of the elements

A p' a prime, is contained in ¢p for sufficiently

pl’
large p, it follows that every finite subset of ¢ is
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algebraically independent, and therefore that ¢ is an

algebraic basis for Z<N, Q>.

We state this fact as a proposition, together with sone

immediate corollaries:

Proposition (2.22): Let X = {xp: p a prime} be a
family of indefterminates in a one-one correspondence
with the rational primes. Then the ring homomorphism
0% Z[x1 ~ z<N, Q>
defined by the map xp |+ A is a ring isomorphism.
That is, the set ¢ = {Ap : p a prime} forms an

algebraic basis for Z<N, Q>.

Corollary (2.23): Every element of Z<N, Q> is

expressible as a unique polynomial with integer
coefficients in the elements Ap, p prime, In

particular, SDn is the unique polynomial with "value"

An in Z<N, Q> under the substitution Xp |+ Ap (i.e.,

the unique polynomial such that ¢Q(SDn) = An).

For the sake of illustration, we give SD& and SD6

explicitly:

i
>
|
=
w4
i
[\
"

SDM

2
SD6 = x2x3 - 6x5 - 12x2 + 42x3 + 24X2



Thus, in Z<N, Q>:
Au = A - 4A3 - 2A
2

A6 = A2°A3 - 6A5 - 12A2 + 42A3 + 24A2

Now, as noted earlier, g is a faithful ring
homomorphism Z<N, Q> + ZN; that is, an isomorphism
with its image in ZN. Under this isomorphism, An is
essentially mapped into the function Q(-,n) (i.e.,

- - - 1 = )
Q(An, is the function A, | > #QLAK, AnJ = Q(k,n)),

Thus, we at once have the following result:

Corollary (2.,243: For all n > t, the function Q(-,n)

is expressible as a unique polynomial with integer
coefficients (namely, SDn) in the functions Q(-,p) for

primes p < n .

(For example:

Q(-,4) = Q(-,2)% = 4a(=,3) - 2a(-,2).)

Corollary (2.25): For all n 2 1, the "n-th Stirling

function" S(-,n) (defined as the mapping k |~ S(k,n))
is expressible as a unique polynomial (with rational
coefficients) in the Stirling functions S(-,p) for

primes p < n,
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To arrive at the polynomials of corollary (2.25),

one makes use of the fact that n!S(-,n) = Q(-,n).

¥ R%E

Knowing the existence of the polynomials SDn’ one
would like to have at hand some convenient way of
calculating them. The inductive procedure described in
proposition (2.15) is quite unwieldy in that it
requires a knowledge of the structural constants
aCi,js k). The following describes a more efficient and

elegant procedure for finding the polynomials SDn:

According to our results above, Z[X] is isomorphic
to Z<N, Q> under ¢Q, with the polynomial SDn
corresponding to An; and Z[X] is also isomorphic to
Z<N, N> under ¢S, but with An now corresponding to the
monomial 8+

Now look at the ring isomorphism
t: Z<KN, N> » Z<N, Q>. Since it is a ring isomorphisn,

the elements:

t(A ) = ¥ c(n,k)Ak
k> 1

have the property in Z<N, Q> that L(Am) ° t (An)

= L(Amn). Thus, if one transfers this result (via ¢Q)
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to Z[X] by defining the polynomial sd, by:

(2.26) sd_ = )} C€(n,k)SD ,
n k>1 k

then one immediately has the result that:

(2.27) sd sd = sd_ .
m n mn

Define the quantities sd(n,k) by means of the equation:

sdn = 7 sd(n,k)gk.

k
Then from (2.26) one deduces that sd1 = 1, while for
n > 2 we have:
(2.28) sd(n,k) = } C(n,j)SD(j,k),

[

in which the summation only takes place over k < j < n,
since SD(Jj,k) = 0 if j < k. Thus, it is also true that
sd(n,k) = 0 if n < k , Additionally, one can also
easily deduce that sd(n,n) = SD(n,n) = 1, while sd(n,1)
= n, (Recall that SD, = 1 by definition, while SDn
contains no constant term; so that (2.26) can be

written as

sd = n+ | C(n,k)SD .)
n K>2 k

On the other hand, if we interpret equation (2.27)

in terms of the coefficients sd(n,k) (using the fact
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- 3 : NP
that gjgk = gjk” we get:
sd(m,j)Ysd(n,k).

(2.29)
J
jk

k

sd(mn,r) = §
b
=r

Finally, we note that the relation (2.26) can be
inverted to obtain:
(—1)n—kC(n,k)sdk.

SD =
> 1

(2.30)
n o3
In terms of the gquantities SD(n,k) and sd(n,k), this

becomes for n > 2:

Y

(2.31) SD(n,j) = }
k<j<n

(-1 ¥c(n,x)sd(k,j).

These relations form the basis of a simple

inductive procedure for Jjointly computing the

polynomials SDn and sdn

n-1,.

A

are known for 1 < k

and sdk
either n is

Suppose that SDk

There are then two possibilities for n:
prime; or n is composite and hence we can write n = rs,
where r and s are proper factors of n.

and we can

is not prime,

If n is prime, then SD = x , use (2.26)

to compute Sdn' On the other hand if n

then we can compute sd_ as sd_ = sd_sd , and then use
n n r- s

(2.30) to calculate SDn'
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Let us illustrate the process:

2 2 3
thus sd2 = SD2 + 2SD1 = X, + 2,
and sd3 = SD3 + 3SD2 + 56D1 = x3 + 3x2 + 3.
2 2 2 )
sdy = sd,” = (X2 + 2)° = X," + Bz, + b
thus SDA = sdu - Msd3 + 6sd2 - 4
2
= X, - 4X3 - 2X2.

SD5 = X5;

= N 1
thus sd5 = SD5 + bSDq + .OSD3 + 1OSD2 + 5

] 2 _

= x5 + 5X2 K0x3 + 5.

.= - <)
sd6 sd2sd3 (X2 + 2)(x3 + 3X2 + 3)
2
= XpXg o+ 3x2 + 2x3 + 9 X, + 63
thus SD6 = sd6 - 6sd5 + TBSd4 - 2Osd3 + 15sd2 - 6
2
= x2x3 - 6x5 - 12x2 + 42x3 + 24x2,

and so on.

The procedure described above for recursively
defining the polynomials SDn and sdn can be made the
basis of a simple computer program for calculating the
coefficients SD(n,k) and sd(n,k). Partial results from

one such program are displayed in tables I(a) and I(b).
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°
.

SD(n,k)

able I(a),

T

n/k 2 3 4 5 6 7 8 9

4| o _4 1

5 0 0 0 _ 1

6 24 42 -12 -6 1

7 0 0 0 0 0 1

8 -548 -952 272 112 -28 -8 1

9 3150 5466 -1557 -530 174 36 | -9 1

10 | -11500 | -19940| 5650 2270 | =700 | -120| 50 -10 | 1
11 0 0 0 0 0 0 0 0

12 | 316032 | 547716 | -154392 | -61908 | 20860 | 3168 | -1812 | 440
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n/k 2 3 4 5 5 7 & | 9 |10 f11 |1
2 1
3 3 1
L 4 0 1
5 0 -10 5 1
%) 9 2 3 O 1
7 119 189 -49 -21 7 1
& 12 0 6 O 0 O 1
9 18 6 9 0 o 0 C 1
10 5 -20 10 2 -10 0O 5 0 1
11 -3318 -5754 161811 6480 | —-2288 | -3 220 |-55 111 1
Mb/_ 12 24 4 15 0 4 0] 3 0 O 0]
o
5
0
o Note: sd(n,l1) = n Tor all n.
a
=
()
o
©
o]




3. Boolean algebras:

It should be apparent to the reader that there is a
distinct category-theoretic flavour to our work. In
the general theory developed in section 1 of this
chapter, we were concerned in fact with categories of
finite algebras; indeed, a good deal of the theory
simply involved the act of counting morphisms within a
given category. 1In section 2 we particularized matters
to the category of finite sets and mappings (which we
shall henceforth denote by N), and to the subcategory
of finite sets and surjective mappings (which we shall
denote by Q). It is our intention in this section to
reinforce this impression.

We will apply the ideas of section 1 to the
category of finite boolean algebras and boolean algebra
homomorphisms (which we shall henceforth denote by BA)
together with the subcategory of finite boolean
algebras and surjective boolean algebra homomorphisms
(which in this section will be denoted by D). Our
method of attack, however, will consist in utilizing
the fact that BA is "dual" (in the sense of category
theory) to N to transport our considerations back to
the consideration of sets and mappings. In doing so,
we will be able to show that there is indeed a dual

aspect to our ideas which has not yet become apparent.
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Qur first order of business is to describe
(succinetly) the duality between BA and N:

Ls an algebra, a boolean algebra has five
operations: the two binary operations of meet and join
(set ¥ = join and A= meet), one unary operation of
complementation (denoted by ') and two nullary
operations that give the distinguished elements 0 and 1
of the boolean algebra. Of course a boolean algebra
homomorphism must preserve all five operations.

We have a (contravariant) functor PW: N * BA

("power set functor") which can be defined as follows:

Given any finite set A, we have the finite boolean
algebra PW(A) of all subsets of A, in which the meet
operation is given by set intersection, the join
operation by set union, complementation by set
complementation in A, and of which the 0 and 1 are
given by the empty set ¥ and A itself, respectively.
If f: A » B is a mapping between finite sets, then the
corresponding boolean algebra homomorphism
PW(f) f§: PW(B) » PW(A) is defined by letting

% -
f (YY) = f 1(Y) = pre-image of Y under f, for all

Y € PW(B).

The functor PW is in fact a (dual) equivalence of

categories, but its "inverse" (so to speak) is not
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guite as easy to describe:

Any boolean algebra is a poset if one defines
b £ c¢c to mean b A ¢ = b (or equivalently, bW ¢ = ¢).

An element x in B is an atom if it covers 0; that is,

if 0 < x (0 £ x and 0 # x), and there is no element
between 0 and x. If B is finite, it is clear that
every element of B besides 0 "contains"™ an atom; that
is, for all b € B, b £ 0, there is an atom x such that
x X b. For B € ob BA, let M(B) denote the family of

atoms in B. (Note:_For any category £, we shall denote

the object class of C by ob L, and the morphism class
of C by mor C.) For b e B, let Mb(B) denote the set of
atoms in B which b contains. (If b = 0, then Mb(B) is
the empty set.) As is well-known, b is completely
determined in B by the set Mb(B). To be more precise,
every element b in B is uniquely expressible as a join
of atoms, namely the atoms in Mb(B). Thus, for

elements b, b' € B, b = b' if and only Mb(B) = M,_,(B).

b?
(Note: To be quite correct, one must adopt the
convention that the Jjoin of an empty set of elements
from B is 0.)

We wish now to show that M extends to a
contravariant functor BA - N. For this we need a few
more results, which happen to apply to a wider setting
than that of boolean algebras. Thus, suppose that L1

and L2 are finite lattices, and suppose that f:L, * L2
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is a mapping which preserves meets and 1's. (Since L,

and L2 are finite, each has both a 0 and ', given

respectively by the meet and the join of the elements

of each.) We then have the following simple lemma:

L and f be as described above.

Lemma (3.1): Let L1, 5

Then, for each b € L2 there is a unique element

£7(b) € L, such that, for all ¢ ¢ L,, we have the

relation:
f(c) 2 b if and only if ¢ 2 £7(b).

The map f: L2 * L1 so defined satisfies:

a) £7(0) = 0;

b)Y £f7 is join preserving.

Proof: Set Uf(b) = {d & L £f(d) 2 b}. Then Uf(b) is

1

non-empty since it contains 1 € L1. It is easy to see
that Uf(b) is closed under meets, and hence it contains
a least element, namely the meet of all the elements in
Uf(b); this we set equal to f (b). Then it satisfies
the given relation by its very definition.

Statement (a) is also immediate.

For ¢ ¢ L,, let (e)" = {4 ¢ L1 : d > el i.e., (e)™

is the "order co-ideal in L1 generated by c". It is

easy to show that (01)+f\ (02)+ = (01\, 02)+. On the
other hand, we have essentially shown that

Uf(b) = (£*(b))", and it is easy to prove that

= ) )
Uf(bl’V’bZ) Uf(b1,€1 Uf(bZ" Thus (b) follows
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ijmmediately. QED

(As an aside, it is interesting to note that the
above has a categorical interpretation. Any poset may
be interpreted as being a category in its own right,
with an "arrow" from b to ¢ if b 2 c. Then, meets are
categorical products, while joins are coproducts. An
order-preserving map is a functor. The relation
between f and £ given in the above lemma simply
asserts that £~ is a left adjoint, and the fact that £
preserves joins can then be viewed as an instance of
the fact that left adjoints always preserve

coproducts.)

Proposition (3.2): Let f: B, B, be a homomorphism of

finite boolean algebras. Then if x is an atom in B2,

£*(x) is an atom in B,.

Proof: First note that £ (x) # 0 (since the smallest
element y satisfying f(y)20 is zero itself). We can
then express f (x) as a join of atoms, say:

~

P (x) = Y4V VYoV o0 VY., ¥y ¢ M(B1).
But, by definition of f", this implies that
x < f(y1)v "'Vf(yr')’
(We also used the fact that f is join preserving.)

But since x is an atom, this means that for some i we

have that x =2 f(yi), and thus £ (x) £ V- But since y,

b9



is an atom, and f"(x) # 0, we must have £ (x) =y

QED

Now, given a homomorphism f: B, =+ Bg, we define
M(f): M(BZ) + M(B1) by setting M(f)(x) = f£7(x) for all
x € M(BZ)' It is easy to show that M so defined is

indeed a (contravariant) functor.

The verification that the pair (PW, M) defines an
egivalence between the categories BA and N now rests on
noting that for all A in ob N, we have a natural
isomorphism between A and M(PW(A)) (the atoms in PW(A)
are simply the singleton subsets of A), and similarly,
for B in ob BA, a natural isomorphism between PW(M(B))
and B (under the one-one correspondence between subsets
of M(B) and elements of B). We omit the details, which

are elementary.

This dual equivalence shows that every finite
boolean algebra "looks like" the power set of a finite
set, and every boolean algebra homomorphism "looks
like"™ a map of the form f§: PW(A) » PW(B) for some
function f: B > A between finite sets. In particular,
..} is a skeletal set for N,

if N = {A A1,..., A

0’ k'’
with Ak being a k-element set, then
{BO, B1,..., Bk""}’ where Bk = PW(Ak), is a skeletal
set for BA. (Note that in this context we do include
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the empty set as an object of N, unlike the previous

section.) Since PW is a dual equivalence, it

establishes a one-one correspondence between

BA[Bi, B,) and ﬂLAk,AiJ; in particular #EA[Bi, Bk]

= #N [A , A.] = ik. Also, under PW the product in BA
k i

corresponds to the coproduct in N , which is given by

the disjoint union operation on sets, and which we
shall denote by "\/",

Now, it is possible to "linearize on the left" of N
in the same way that we have "linearized on the right"
previously. That 1s, we again form the free Z-module

2%

Z(N), but this time define Z-linear maps n, o Z(N) » Z

on basis elements by:

(3.3) g.*(Ak>

5 #ﬂ[Ak, AiJ.

As before, the collection of all such maps defines a

%
Z-linear map n : Z(N) =+ ZN. Similarly, we turn Z(N)

into a ring by using the coproduct (i.e., disjoint

union) in the category N; thus, multiplying Aj and Ak

yields the unique element of N isomorphic to Aj \/ Ak’
.'_4;
namely Aj+k' Then it is easy to see that the maps n;

#
(and hence n ) are ring homomorphisms. The resultant

structure (consisting of Z(N), the multipllication

derived from the coproduct, and the ring homomorphism
# #

n ) we shall denote by Z<N, N >, This structure,

however, because of the duality outlined above, is seen
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to be completely isomorphic to the right linearization

Z<BA, BA> of BA.

Now, from a combinatorial viewpoint, the subdirect
products of two boolean algebras are much more
interesting than their direct product. As is generally
true, the family of subdirect products of a pair of
boolean algebras is connected with the category D of

boolean algebras and surjective boclean algebra

homomorphisms., At this point, we can again make use of
duality. It is not difficult to show that a
homomorphism PW(f): PW(B) * PW(A) is surjective if and
only if the map f: A » B is injective; and similarly,
PW(f) is injective if amd only if f is surjective.
Consequently, one sees that under our dual equivalence
the subcategory of N corresponding to D is that of
finite sets and injective maps, which we shall denote
by P. Thus, PLA,B] will denote the family of all
injective maps from A to B., The reason for this
notation is that we have:

(3.4) #P[A a1 = P(n, k),

k,
where P(n,k) = n(n-1)...(n-k+1) is a standard symbol
for the number of "r-permutations of n objects" (cf.

(R1], p.2). (Note, however, the reversal of order of

the indices k and n.)




Given this duality, we naturally ask what in the
category P corresponds to subdirect products in D. The
answer to this question is not hard to give. A
subdirect product of two boolean algebras is a
subalgebra of the direct product with the property that
the natural projections, restricted to it, are
surjective. The dual notion for two sets A and B,
then, is a guotient of the disjoint union A \/ B such
that the composition of the natural injections
11:A + A \/ B and 12: B * A \/ B with the natural map
of A \/ B onto the gquotient, remains injective,

One constructs such a quotient in the following
manner: Let X and Y be subsets of A and B respectively
with the same cardinality, and let g: X = Y be a
one-one correspondence. Let A \/g B be the quotient
space of A \/ B obtained by identifying each point x in
X with the corresponding point g(x) in Y. ir

h: AN/ B =+ A \/g B is the natural surjection, then

it is clear that the maps h © ' and h o 12'(which in

1gand1g

1 5 respectively)

the sequel we shall denote by
are injective. Any quotient of A \/ B with this
property is in fact determined by such a one-one
correspondence between subsets of A and B,

Now let W(A,B) denote the family of all such

one~one correspondences g: X * Y between respective
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subsets of A and B. Then the set

{a \/g B : g€ W(A,B)Y} of all such "amalgamations" of A
and B is universal with respect to injective maps in
the same way as the set of subdirect algebras of a
product of two algebras is universal with respect to
surjective algebra homomorphisms (except that all
"arrows" are reversed). To be precise, if f1: A > C
and f2: B * C are both injective maps, then there is a

unique g in W(A,B) and a unique injective map

g

Bo=r and £ o 1.5 = ¢

f:+ A\/_ B > C such that f o 1 = f..

g 1 2 2
This can be seen by noting that the overlap of the
images of A and B in C under f, and f2 respectively,
defines a one-one correspondence g between the subsets
X and Y (of A and B respectively) which correspond to

this overlap. We use the family of such amalgamations

to define a multiplication in Z(N) by writing:

(3.5) AL c Ay = ZP p(J,kir)A

where p(j,k;r) is simply the number of amalgamations of

A and B isomorphic to A (i.e., of cardinality r).

Through duality, it is not hard to show that there
is a natural one-one correspondence between
amalgamations of Aj and Ak and subdirect products of Bj
and Bk' Thus, if we replace Aj’ Ak’ and AP in (3.5) by

B and Br respectively, we have the multiplication

j! Bk’

derived from subdirect products in the right
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linearization Z<BA, D> of D. Of course the ring
homomorphisms d.: Z(BA) * Z defined by

gi(Bj) = #g[Bi,Bj] correspond entirely to the Z-linear

% %
. y . -
maps p; Z{N) = Z defined by Dy (Aj) = #B[Aj,Ai]

B3

= P(i,j); consequently, the maps b, (together with
the map g% from Z(N) to zZV defined in terms of the giv)
are ring homomorphisms (assuming Z(N) is given the
multiplication (3.5)). Of course this can be proved
directly. This entire "right linearization"™ of P is
(following our usual convention) denoted by Z<N, £§>.

Of course, it is entirely isomorphic to the right

linearization Z<BA, D> of D.

Continuing to use duality, since subalgebras of Bj
correspond to quotient sets of Aj’ it is not hard to
see that the ring homomorphism Z<BA, BA> *» Z<BA, D>
becomes the ring homomorphism Lt: Z<N, ﬂ§> + Z<N, £§>

defined by:
(3.6) t(A.) = 1 S(j,k)A
J k
where S(j,k) is the indicated Stirling number of the

second kind, since S{(j,k) counts the number of quotient

sets of a j-set which are of cardinality k. We then

55




have the commutative diagram:

%
Z<N, N > .
3 n.
i
(3.7) i yA
/
% D
Z<N, P > *
% %
for each index i; and expanding p, © t(Aa3) = n, (A3)
then yields the identity:
(3.8) J S(3,k)P(i,k) = i,
k
which, since P(i,k) = C(i,k)k! , is the same as (2.7).

(But note the considerable difference in interpretation

of the same identity under the two contexts.)

Let us investigate what other results of
combinatorial interest can be obtained from this line
of thought. First of all, let us compute the
structural constants p(i,j;k). To do so, consider the
number of ways it is possible to form amalgamations of
Ai and Aj by identifying an r-subset of Ai with an
r-subset of Aj:

Since there are C(i,r) ways of picking such a
subset of Ai, C(j,r) of picking an r-subset of Ai’ and
ri{ ways of identifying the two subsets, this number is

c(i,r)C(j,r)r!. The resulting amalgamation, however,

has cardinality i + j - r. Consequently, we have that
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p(i,j;i+j-r) = Cc(i,r)C(j,rdrt,
whence the substitutions k = i + j - r, r = i + j§ - k,

- give us the formula:
(3.9) p(i,jsk) = C(i,i+j-k)C(j,i+j-k)Y(i+j=-k)?,

Now applying Qi% to both sides of (3.5) yields the
following multiplicative formula for the quantities
P(i,j):

(3.10) P(i,3)P(i,k) = L p(J,k;r)P(i,r).
r
This identity is known (ecf. [R2], p.15), usually in the
form of a corresponding multiplicative identity for the
binomial coefficients C(i,j), which can be obtained
from (3.10) by using the identity P(i,j) = C(i,j)j!t.

The fact that t is a ring homomorphism allows us to
apply equation (1.18); in this context p(i,J) = i + j,
and the formula then gives the interesting identity:

(3.11) s(i+j,m) = } p(k,n;m)S(i,k)S(Jj,n).
k,n
#

Now, it is easy to see that in Z<N, N > AO is the
identity 1, while A1n = An’ From this we see that
Z<N, ﬂ%> is isomorphic to the polynomial ring Zix]
under the homomorphism defined by mapping the

indeterminate x to A1. Under this isomorphisn, An
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%

corresponds to the monomial xn, and n, to evaluation
at x = k.

It is also not hard to see that A1 generates

Z<N, P >
#
Note that A, ° A = A + nA , so that in Z<N, P >
1 n n+1 n

A = A ° (A, - n)., By induction it is then clear
n+1 n 1

that:
A= Ay (Ag=1) 0 (8,-2) ° ...t (A,-ns1),

Thus it follows that Z<N, £*> is also isomorphic to
Z[x] under the map determined by sending x to A1 and
that under this isomorphisn An corresponds to the
polynomial (x)n = x(x-1)Y(x=2)...(x=-n+1), (Note that
therefore equation (3.5) can also be interpreted as a

formula for multiplying the "falling factorials® (x)n.)

Finally, let us look again at the map t. We know
that i1t is invertible; we can, with a 1ittle work, give
an explicit description of 3_1. Define the map
s: Z<N, £%> > Z<N, ﬂ%> on basis elements by setting

§(An) = A1 ° (AT—T) ° (A1—2) ° a.e " (An—n+1),
where the multiplication on the right hand side of the

% %
above equation is in Z<N, N > (not in Z<N, P >). Thus,

we have that:

(3.12) §(An) s(n,k)Aa

k )

n
5

where s(n,k) above is the designated Stirling number of

the first kind (which by definition (viz. [R1], p.33)
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is the coefficient of Xk in the expansion of (x)n =
x(x=1)...(x=n+1)).

Now it is clear that L(A1) = A, (since a one element
set has no quotients other than itself), and of course

£(A_ )= £(1) = 1, Since t is a ring homomorphism, we

)
0

can calculate the composition (t © §)(An) as follows:

Y - ° - ° ° - AT
t(s(a )Y = t(4, (a,-1) ces (A ,-n+1))

= L(A1) ° (L(A1)-T) ° L. (L(Al)-n+1)
- o - ] 3 - 1
= A, (A1 1) e (A1 n+1)

in which last expression the multiplication is now in
s

Z<N, P >, and in that ring the expression is equal to

A . Thus, (t © s)(A ) = A for all basis elements 4_,

n n n n

whence s = L_l. We have thereby proved the well-known

result (viz. [R1], p.34) that the Stirling numbers of

the first and second kind are related to each other as

the coefficients of inverse transformations.
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4L, Further Remarks:

It should now be clear that the proper setting for
the techniques used in this chapter lies in category
theory. Let us isolate the particular class of

categories which can be studied by these methods:

One of the things we have been doing is simply
counting; and in particular, we have been counting the
family of morphisms from one object of the category in
question to another. In order to do this, we require
that this family be finite.

A second thing we have assumed is that it is
possible to form a set which picks one representative
out of each isomorphism class of objects in the
category. In order to be able to do this we must
assume that the category in question is skeletally

small. This concept can be explicated as follows:

If C is a category, then a subcategory D is a
skeleton for £ if every object in ob £ is isomorphic to
precisely one object in ob D. A category is small if
its object class is a set. (Then its morphism class
also forms a set.) Thus, a category is skeletally
small if it has a small skeleton. If C is skeletally

small, we shall call the object class of a skeleton of
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C a skeletal set for C.

Definition (#.,13: Call a category C finitary if it

satisfies the following two conditions:
a) C is skeletally small,
b) for all objects A, B € ob C, the set C[A, BI

(of all morphisms in € from A to B) is finite.

Given a finitary category C, one can already
construct its "right linearization™. That is, choose a
skeletal set C = {Ai : i € I} for C and form the free
Z-module Z(C), and then define the Z-linear map
c: Z(C) = ZC {(as we already have done in our earlier
examples) as the map whose "i-th component™ is defined
on basis elements by:

Qi(Aj) = #Q[Ai, Aj].
Thus, Q(Aj) is essentially the function #Q[—,Aj].

Clearly, since there is a natural bijection between
any two skeltal sets for L, the choice of skeletal set
is immaterial. We shall adopt the notation Z<C, C> to
denote the right linearization of a category £ using
the skeletal set C. Generally, we use one or two roman
letters, underlined, for the category involved, and
(unless it becomes to unwieldy) the same roman letters,
but lower case and underlined, to denote the

C

corresponding Z-linear map Z(C) + Z~. In fact, this

homomorphism will itself be frequently referred to as



the "right linearization" of the category. Its
"components" will be distinguished by suitable

sub-indices.

O0f course the "left linearization" of a finitary
category can be defined analogously. It should be
clear, however, that the left linearigzation of a
finitary category C is identical to the right
linearization of the dual (or "opposite") category,
which we denote by Q§. (Q* has the same objects as C,
and the same morphisms but with their "directions"®
reversed; i.e., Q%[A, Bl = c[B, Al, and the order of

compositions is reversed.) For this reason, we shall

%
denote the left linearization of C by Z<C, C >.

Of course, there 1is nothing very interesting in
such linearizations without the development of some
further structure. This will be done in the next
chapter. There is, however, a question we can ask, and
give a partial answer to, now. The question is: when
is the homomorphism c¢c: Z(C) ~ ZC (of the right
linearization Z<C, £> of a finitary category) faithful?
We shall show (in basically the same way we did in the
case of a category of algebras and surjective algebra

homomorphisms) that if mor C consists only of

epimorphisms, then ¢ is indeed faithful.
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Lemma (#.2)Y: Let C be a category, and suppoese A ¢ ob C

satisfies the condition that C[A, Al is finite. 1If e

in C[A, A] is an epimorphism, then e is an isomorphism.

Proof: Since C[A, A] is finite, there must be a term
ro. 2 3 . .
e” 1in the sequence e, € o e = e , €7 ,,.,. which is
equal to a succeeding tern e"T5 - % o er; that is,
r 8 r
’A o € = e o e ,
where 1A is the identity on A. But the composition of

epimorphisms is again an epimorphism, and since by
definition epimorphisms are right cancellable, the
above equation implies:

e = 1,, and el = e . QED

Corollary (4.3): Let C be a finitary category, and

A » B and e,: B = A are both

A, B in ob C. Suppose e, 5

epimorphisms. Then they are both isomorphisms.

Proof: By the above lemma, both e, o e, and e, 0 ey

are isomorphisms. Clearly e1 0 (e2 o e1) is a right
inverse, and (e1 ) 62)—1 ) e1 a left inverse, for €5
By a standard argument, these inverses must be equal

and hence e, is invertible. The proof that €, is

invertible proceeds similarly. QED
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Corollary (4,4Y: Let C be a finitary category all of

whose morphisms are epimorphisms, and suppose that
C = {Ai : i e I} a skeletal set for C. Define the
relation > on C by:

A, > A, if CclA,, A.] # @.
x J L J

Then > is a partial order on C.

Proof: Transitivity and reflexivity are immediate,

while anti-symmetry follows from (4.3). QED

We can now apply the same arguments used in the

proof of proposition (1.9) to show that:

Proposition (4.,5): Let C be a finitary category all of

whose morphisms are epimorphisms, and let C be a
skeletal set for C. Then the homomorphism ¢: Z{(C) =~ ZC
associated with the right linearization of ( is

faithful.
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Chapter IT

Elements of a Theory of Categorical Combinatorics

1. Introductory remarks:

In this chapter we outline the fundamentals of a
category~-theoretic approach to combinatorial problems.
We assume on the part of the reader knowledge of the
basics of category theory, including familiarity with
the concepts of functor, natural transformation, limit,

and adjointness (viz., for example, [HS] or [P]).

If € is a category, then (as we have already said)
Cl[A, B] represents the set of C-morphisms with domain A
and codomain B. If we have two categories C and D,
then <C, D> will denote the "quasi-category" whose
objects are (covariant) functors from £ to D, and whose
morphisms are natural transformations between such
functors. (Depending on the set-theoretic foundations
that one adopts, <C, D> may not be a category because
of set-theoretic niceties, or it may be a category in a
higher order "universe". 1In this work, we will
generally ignore these difficulties.) Thus, if F and G

are functors C * D, then <C, D>LF, G] is the class of
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all natural transformations from F to G. If ¢ is an
element of <C, D>IF, G], we also write o¢: F =+ G, and
for A in ob C, ©o,: F(A) > G(A) denotes the
corresponding element of mor D.

A contravariant functor from C to D can be equally

%
well conceived as a covariant functor from C to D, or

#
from C to D . We shall generally adopt the former
viewpoint, and thus denote the quasi-category of

contravariant functors from C to D (and natural

%:.
transformations) by <€ , D>,

In this work, S will denote the category of sets
and mappings. Set-valued functors are of special
importance in category theory. If £ is a category and
A € ob C, then C[-, A] will generally be used to stand
for the (contravariant) functor which assigns to each
B € ob £ the set CI[B, A], and to a C-morphism
f: B1 + B2 the mapping:
Al -~ Q[Bw Al, defined by:
f%(g) = g o f for g in Q[BZ,A].

Similarly, we let C[A,-] denote the (covariant)
set-valued functor which assigns to each B ¢ ob £ the

set C[{A, B], and to the C-morphism f: B, » B, the

2
mapping ClLA, f] = f,: C[A, B1] > Cla, B2] defined by:

fy(g) = f o g for g ¢ ClA, B J.

(Frequently we shall denote the image of a morphism
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f under a covariant functor by fy;, and under a

%
contravariant functor by £ , as long as the context
makes it clear what functor is intended. Thus, we

;:%\

always have (f, o f‘2)%é = fy5 o fyy » and (f1 o f2)
% %

- )]
= f2 [o] f,! v /
The single most important result for the study of

set-valued functors is Yoneda's Lemma (viz. [HS], pp.

221-230), which we state in the following form:

Proposition (1.1):

(a) Let £ be a category, A € ob C, and K: C ” 38
any contravariant set-valued functor. Then the family
of natural transformations %: C[-, A] * K is in a
one-one correspondence with the elemen£s of the set
K(A).

To be precise, each element x ® K(A) determines a
natural transformation ©°; Cl-, Al 7 K under which the

map % CI[B, Al > K(B) is defined by the prescription:

B:

°¥ (g) = (K(g))(x) for all g © CIB, &l,

and every natural transformation C[-, A] * K is equal

to ¥ for some x € K(A).

(b) Similarly, if K: L * 8§ is any covariant
set-valued functor, then the family of natural
transformations B: C[A, -] » K is in a one-one

correspondence with the elements of the set K(A).
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That is, each element x € K(A) determines a natural
transformation B : ClA, -] » K under which the map

BXB: ClA, Bl = K(B) is defined by the prescription:
B¥.(g) = (K(g))(x) for all g e c[4, BI.

&%

By Yoneda's lemma, the natural transformations from

ci-, A1] to Cl-, A2] are all of the form of for f in

Q[AT’ A2]’ and it is easily shown that of o o8 is equal

to uf ° g' Similarly, natural tranformations from

-1 to Q[AZ, -] are of the form 6 for r in

. - [o]
cla,, 4,1, and 6l o 8% = 8T ° 8 Thus, the rule that

sends A to the functor Cl-, A]l, and a morphism f to the

natural transformation &f, defines a functor (indeed,

%
an imbedding) of C into the quasi-category <C , S>,

called the Yoneda emebedding. Similarly, the

assignment A |» c[a, -1, F£ |~ gt is contravariant, and
%

hence can be regarded as an embeddding of C into

<L, s8>.

Another important point about the category <C, S>
is that limits and colimits in it can be defined
"pointwise'" in terms of limits and colimits of sets.
For our purposes, the most important instances of this
are those of the product and coproduct of two
set-valued functors. The product in S is given by the

cartesian product of sets, while the coproduct is given
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by the disjoint union of sets. Thus if K, and K2 are

i

two set-valued functors (either both covariant or both

contravariant), then K1 X K2 denotes the product of the

two, defined point-wise by:

(K, x K2)(A) = KQ(A) x K2(A> for A € ob (C,

1

and (K, x Kz)(f) = K, (f) x Kz(f) is the mapping from

i

KT(A> x K2(A) to KT(B) x KZCB) for any C-morphism

f: A > B. (Assuming K, and K2 are covariant, Of

course the arrows are reversed if they are
contravariant.)

Similarly, the coproduct (or disjoint union) of the
two will be denoted by K1 \/ K2, defined pointwise by:

(K, \/ Kg)(A) = K,(A)Y \/ K2(A) for A € ob C,

1
(K, \/K 2)(f) = K,(f) \/ Kz(f) for f € mor (C.
The cartesian product and disjoint union of an

arbitrary family {Ki : i€1} of set-valued functors is

defined similarly.

Another useful concept is that of a subfunctor of a
set-valued functor:
If K is a set-valued functor (covariant or

contravariant) on the category €, a subfunctor of K is

-~ 9
a second set-valued functor (of the same "variance'" as
K) such that:
a) L(B) € K(B) for all B ¢ ob C,

b) the inclusion maps O© L(B) * K(B), as B varies

B:

over ob L, define a natural transformation o: L = K.
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It is easy to see that if K is a covariant
(respectively, contravariant) set-valued functor on c,
and L is any function which assigns to each A € ob C a
subset L(A) of K(A), then L extends to a (unique)

subfunctor of K if it satifies the condition:

(1.2) (K(£))(L(AY) € L(B) for all C-morphisms

f: A » B (respectively, f: B = A).

Subfunctors can almost be treated like subsets of a
set. For example, if L] and L2 are subfunctors of K,
then we also have subfunctors LTL) L2 and L1 ) L2 such
that for all A € ob C:

(LT U L,)(A) = (L, (A)) v (L2(A)),

1
and (L, 0 L, )(A) = (L, (A)) A (L, (A)).

Continuing with this analogy with sets, we note that if

K1 and K2 are two set-valued functors (of the same

variance) on €, and ©: K, > K2 is a natural

transformation, then ¢ determines a subfunctor im(e) of
K2 by setting im(e)(A) equal to the image of K, (A)

under o for all A € ob (C. Proceeding pointwise, we

A
see that o factors uniquely as © = 0 0 &, where

o: im(a) = K2 is the inclusion natural transformation

and o: K1 > im(e) is a surjective transformation (i.e.,

aA is surjective for all A in ob ().
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2., Representability and S-representabilitv:

A contravariant set-valued functor K: C - S is

said to be representable if there exists an object

A in ob C such that K is naturally equivalent to
Cl-, Al. VWe say that A represents K. From the Yoneda
lemma 3t is clear that an object representing K is
unique up to isomorphism in C.

Similarly, a covariant functor K: C + S is
representable if there is an A € ob C such that K is
naturally equivalent to C[A, -]. Again, a representing

object is unique up to isomorphism in (.

Most categorical concepts can be expressed in terms
of representability. For example, the product of two

objects A1 and A_ in ob L exists if and only if the

2

functor C[-, A1] x C[-, A2] is representable in C. The

object A, 7 A (if it exists) which represents

2
cl-, a,1 x Cl-,A,] is the product. One regains the
natural projections usually associated with the product
by choosing a fixed natural equivalence

@ Cl-, A, m a,] » Cl-, &,) x Cl-, 8,15
then by Yoneda's lemma, o is equal to the natural

, X . .
transformation o for a unique x = (ﬂT’ “2) in

. X .
T A A_.1. Thus, since o is an

A ] X CLA 2! 2

~C_LA1 T A2, 1

equivalence, for any B ¢ ob C and (f1, f2) in
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clB, A,] x CI[B, A2] there is a unique f e C[B, A, = A2]

X .
such that o B(f) = (my o f, 7, o f) = (f, ,fz), which
is the usual definition of a product in category
theory.

Similarly, the coproduct of A1 and A2 exists if and
only if Q[A1, -1 x Q[AZ, -] is representable, and the
coproduct A1 u A2 is a representing object for that

functor.

In the following we describe a few other
categorical concepts from the viewpoint of

representability:

a) Sub-objects: A C-morphism f: Ay, > A, is a

monomorphism if and only if af is an injective natural
transformation from C[~-, A1] to Cl~-, Az]. Dually, f is
an epimorphism if Bf is an injective natural
transformation Q[AZ, -] - Q[A1, -1.

Usually a sub-object of an object A is defined as
an equivalence class of monomorphisms with codomain 4.
Note, however, that if f is a monomorphism, then the
subfunctor im(af) of Cl[-, A2] is naturally equivalent
to C[~-, A,], and is therefore representable, that if

1

two monomorphisms f and g with codomain A, represent

2

the same subobject of A2, then im(af) = im(ag), and
that if a subfunctor of C[-, A2] is representable, then

a representation of it determines a corresponding
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monomorphism with codomain AZ' The upshot of all this
is that there is a one-one correspondence between
representable subfunctors of C[~-, A2] and subobjects of
A2.
In the same way, there is a one-one correspondence

between representable subfunctors of Q[A1, -] and

quotient objects of Al'

b) Image and co-image: We can also use these

ideas to arrive at the concept of the "image" of a
C~morphism,. If f: A1 - A2 is a morphism, we get the
natural transformation ¢ = a
which in turn defines the subfunctor im(a) of C[-, AZ]'
If im(q) is representable, then it corresponds to a

unigue subobject of A let Im(f) ¢ ob C be a

2
representing object for im(a). (OFf course Im(f) is
unique up to isomorphism in C.) Now, we have the

unique factorization of o as:
o ) o
cl-, A1] —> im(a) e— C[-, A2],
where 0 is the inclusion natural transformation. Using
the isomorphism between im(a) and C[-,Im(f)], we can

then perform a substitution to get a factorization of «

of the form

Cl-y 8] = Cl-, In(£)] 13 cl-, 4,1,
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in which we must have that y = o where g is a morphism

from A, to In{(f), n = uh where h is a morphism fron

In(f) to A and £ = h o g. We can call the object

2
Im(f) (or, more precisely, the subobject it represents
via the monomorphism h) the image of f. It is of
course unique up to isomorphism; the factorization of f
as f = h o g is also essentially unique, and we shall

call it the image factorization of f£f. Note that ag = v

is surjective in the sense that Yy is a surjective map
for all A e ob C. Thus, it must be an epimorphism in
%

<€ , 8>, and, since the Yoneda emebedding is indeed an

embedding, this implies that g is an epimorphism in C.

Of course, all this is jimmediately dualizable. The
morphism f: A] + A2 also determines the natural
transformation B = Bf: Q[AZ, -] - Q[AT’ -]. If im(8B8)
is representable, denote a representing object for it
by Coim(f); we then derive an (essentially unique)
factorization of f as f = g o h, where h is an
epimorphism and g a monomorphism such that o8 is a
surjective natural transformation. Thus, call Coim(f)

(or the quotient object it represents via h) the

coimage of £, and the factorigation £ = g o h the

coimage factorization of f.

These ideas may be regarded as generalizations of
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the factorization of set mappings into the composition
of a surjective and an injective map. Note that in
general, these two factorizations (if they exist at
all) are distinct. It can, however, be shown that if C
is balanced, then the two factorizations must coincide.

(A morphism is called a bimorphism if it is both an

epimorphism an a monomorphism; a category is balanced

if the only bimorphisms in C are isomorphisms.)

c) Limits and colimits: In general, the existence

of a particular limit or colimit can be reduced to the
question of the representability of an appropriate
set-valued functor. We have already seen this in the
case of products and coproducts. We further illustrate
this in the notions of equalizer and coequalizer:
If £ and g are C-morphisms A1 - A2, then define the
subfunctor K = K(f,g) of Cl[-, A1] by defining:
K(B) = {h  ¢[B, A,] : £ o h = g o h}
for all B in ob L. If K is representable, then a
representing object for K (or more precisely, the
subobject it represents) is called the equalizer of f
and g.
Similarly, if the subfunctor L = L(f,g) of Q[AZ, -]
defined by:
L(BY = {h ¢ Q[AZ, Bl : h o f =h o g}

for all B in ob £, is representable, then the quotient

75



object of A, that it determines is the c¢oequalizer of f

2
and g,
d) Adjointness: As one more example, look at the
concept of adjointness. We shall discuss this at much

greater length in section 4 of this chapter. At this
point, we simply note that a (covariant) functor

F: C » D has a left adjoint if and only if the

set-valued functor D[B, F(-)] is representable for all
B in ob D. (Note that D[B, F(-)] is a set-valued
functor on C, and hence when we say representable we
mean representable in C.)

Similarly, it has a right adjoint if and only if

DLF(=), B] is representable (in C) for all B e ob D.

For the purpose of this dissertation, the concept
of representability is not quite general enough. We

extend it via the following definition:

Definition (2.1)Y: A (contravariant) set-valued functor

K on the category £ is S-representable if there exists

an indexed family {Ai : 1 e I} of objects Ai e ob C
such that K is naturally equivalent to the disjoint
union \/i cl-, Ai] of the set-valued functors C[-, Ai].

Similarly, a (covariant) set-valued functor K on C
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is S-representable if there exists an indexed family
{Ai : 1 e 1} of objects such that K is naturally

equivalent to the disjoint union \/i g[Ai, -1,

The disjoint union \/i Xi of an indexed family
{Xi : i € I} of sets can be unambiguously defined as
the set of all pairs (i,x), with 1 € I and x ¢ X, .

Then, the natural injection Ll Xk > \/i Xi (for k ¢ I)

is simply the mapping x |+ (k,x).
It is usual (when there is no danger of confusion)

to identify X, with its image in \/i Xi under the map

k

We shall usually do so here, and call X, the "k-th

! Kk

K
component"™ of the disjoint union \/i Xi' We can
transport these concepts to the case of a disjoint
union of set-valued functors \/i Ki on £, and (for

j & I) call the functor Kj the Jj-th component of the
disjoint union., Of course, working pointwise, we have
the injective natural transformation lj: Kj > \/i Ki’
under which it is possible to identify Kj with the
corresponding subfunctor of \/i Ki'

The important thing about a disjoint union \/i Xi
is that maps from it may be defined "component-wise".
In particular, let us consider the case of two indexed
families of sets {Xi : i € I} and {Yj : j e Ji,
together with their corresponding disjoint unions
\/i Xi and \/j Yj:

Let f: I » J be a map between the index sets, and
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suppose additionally we have a function F which assigns

to each index i € I a mappping Fi: Xi > Yf(i)' Then

the pair (f,F) defines a corresponding map
\N/(f,F): \/i X, - \/j Yj via the formula:
(N/7(E,FX)(i,x) = (f(i),Fi(x)).

Essentially, we simply "glue"™ together the maps Fi'

Now, the above discussion applies (pointwise) to
disjoint unions of set-valued functors:

Suppose {Ki : i e I} ang {Lj :J ¢ J} are two
indexed families of set-valued functors on C (all of
the same variance), f: I + J is a mapping between the
indexing sets, and F a function which assigns to each

i € I a natural transformation F.,: K. =+ [ Ly . For
i i £(1i)

each B € ob £, let F denote the mapping

(B,i)

i)(B) that F. assigns to B, and let Fp be

Then the pair (f,F) defines

Y >
Ki(B/ Lf(

the function i |-+ F(B,i)'

a natural transformation \/(f,F): \/i K, ~ \/j Lj

which is defined by the recipe (\/(f‘,F))B = \/(f,FB).
In particular, suppose {Ai : i e I} and

{Bj : J e J} are indexed collections of C-objects,

f: I » J a mapping, and F: I » mor C , i |+ F(i) = Foy

is a function such that F, ¢ ClA., B, .y] for all i in
i i £(1i)

I. Then each Fi determines the corresponding natural

transformation C[-, Ai] > C[-, Bf(i\] ; and therefore

the collection of these natural transformations




determines (as above) a natural transformation

\/i cl-, Ai] > \/j cl-, Bj] which we shall henceforth

)
denote by a(f’F'.

A similar definition applies to disjoint unions of
covariant functors of the form \/i Q[Ai, -] and
\/j Q[Bj, -] except that we require that Fi be an
element of Q[Bf(i)’ Ai] in order that the corresponding
natural transformation go in the correct direction,

from Q[Ai, -] to CI[B -], Thus, a pair (F,f) in

£(i)?

which f is a mapping I » J and F: I + mor C is a
function such that F(i)= Fi £ Q[Bf(i)’ AiJ defines by
the above process a natural transformation from

\/i Q[Ai, -] to \/j Q[Bj, -] which we shall from now on

' )
denote by B<F’f’.

Lemma (2.2): Let {Ai : i e I} and {Bj : j e J} be two
indexed collections of objects in ob C, and suppose
that a: \/, C[-, A.,] » \/, C[-, B.,] is a natural

1 1 J J
transformation. Then there is a unique mapping

f: I » J and a unique function F: I » mor C satisfying
. : (f,F)
Fi € QLAi, Bf( o .

Similarly, if B: \/i QLAi, -1 - \/j Q[Bj, -] is a

natural transformation, then there is a unique mapping

.yJ such that o =
i)

)
B(F,f,

f: I » J and function F: I =+ mor C satisfying

Fi € Q[Bf(i)’ Ai] such that B8 =

Proof: The "restriction" of o to the component



of the disjoint union yields a natural transformation
cl-, Ai] + \/j Cl-, Bj] for each i e I, By Yoneda's
lemma, this transformation is given by a unique element
of \/j Q[Ai, Bj]' Therefore let Fi be this element,
which must lie in a unique component Q[Aj, Bf(i\] of
the disjoint union \/j Q[Ai, Bj]' This defines the

. L _ (fr,F)
pair (f,F), and it is clear that o = « .

A similar proof applies to the natural

transformation B. QED

Proposition (2.,3): Suppose K: C » S is a

contravariant functor which is S-representable. Then,
its representation as a disjoint union of functors of
the form C[-, A] is essentially unique.

To be precise, if K is naturally equivalent to both
\/i cl-, Ai] and \/j cr-, Bj], where {Ai : i e I} and
{Bj : J e J} are given indexed families of objects from
ob €, then there exists a bijection f: I =+ J such that,
for all i ¢ I, Ai is is isomorphic in C to Bf(i)'
Proof: If both disjoint unions are naturally
equivalent to K, then there is a natural equivalence
o \/i cl-, Ai] *> \/j cl-, Bj]' By lemma (2.3), there

)]
are unique pairs (f,F) and (g,G) such that a = a(f’F’

-1 (g,G) .

and « =« . It is easy to show, then, that
-1 -1

g = ¢ and Gf(i) = Fi . QED
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Of course, the dual of proposition (2.3) also
holds. That is, the representation of a covariant
set-valued functor on £ by a disjoint union of the form
\/. C[Ai, -] is essentially unique.

Call an S-representable functor finitary if in its
representation as a disjoint union \/i cl-, Ai] (or, in
the case of a covariant functor, as a disjoint union

\/i Q[Ai, ~-1), the indexing set I is finite.

¥wE
We now apply the notion of S-representability to

arrive at the following generalization of the notions

of product and coproduct:

Definition (2.4): The pair (AT’Az) of objects in ob C

will be said to have an S-produect in C if the

set-valued functor C[-, A,] x Cl~, A.] is
S~-representable.

If so, let
Ay m A, = {(4, 0 A0 (x) & ox e dom(A, = AZ)} be the
(unique up to equivalence) indexed collection of
objects that represents the functor, and call it the
S=product of A and B. Note that dom(A1 m A2) is the
indexing set for the S~product.

More generally, we say an n-tuple

17 PR An) of L-objects has an S-product in C if
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the functor Cl-, A1] x Cl=-, A2] X oo aX Q[—,An] is
S=-representable in C. The indexed set of obJjects
representing this functor (assuming it is
S-representable) will be denoted by

AQ T A2 Teool An and will be called the S-product of

the n-tuple. Of course, A, m7...T An represents an
indexing which assigns to each x in a set
dom(A, m...7" A ) a C-object (A, w...m A Y (x).
1 n 1 n
(Clearly the definition can be extended to apply to

an infinite number of factors; in this work, however,

we shall be concerned with only a finite number.)

Definition (2.5): Say that a pair (A1,A2) of C~objects

has an S-coproduct if the set-valued functor

C[A1, -] x Q[AZ, -] is S-representable in C. If so, we
write:

- . )
A1 u A2 = {(A1 u AZ)(X)' X e dom(A1 u AZ,}

for the indexed collection of objects that represents

o -1, and call it the S-coproduct of A1
and A2.

Similar notation will apply for the S-coproduct of

, A ) of C-objects.

an n-tuple (A1, A n

PR

BEH

Suppose that a pair (AT’A of C-objects has an

)
5

S-product A, A2. Then choose a fixed natural
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transformation o from N/ cl-, (a, Az)(X)] to
Cl-, a1 x Cl~, Az]. Then ¢ is determined on each

component C[~-, (A1 m A2)(x)] of the disjoint union by a

pair (FTX,Nzx) in the morphism set

) 3 )
_C_[(A1 i AZ)(X" A1] x Q_L(A1 T A2,(x),A2]. For any

object B & ob C, the restriction of QB to the component

clB, (A1 T AZ)(X)] of the disjoint union

\/X clB, (4, = A2)(X)} is given therefore by the map

£ |- (nTX o f,nzx o f). Thus, since « is a natural

equivalence, the S-product has the following property:
For all B € ob C, and every pair (f1,f2) of

LC-morphisms £.,: B » A, and f_.: B + A there is a

1 1 2 2"
unique x e dom(A1 T A2) and morphism f in

CLB, (&) 7 4,)(x)] such that w,* o £ = £, and

X
v2 o f = f2 .

Conversely, given an indexed family

{(A1 T Az)(x): X € dom(A1 T A2)} of C-objects equipped

with a family of "natural projections"

X

(1r1

X . 3 \ y i ) ) J
T } in Q[(A1 T Az,(x,, ATJ x Q_L(A1 T AZ’(X” Ayl

having the above property, one can conclude that the

family A1 T A2 is the S-product of the pair (A1,A2).

Similar remarks apply to the S~coproduct of a pair

(A1,A2), which can be equipped with a family of

i

"natural injections" (11x,12X) from A, to (A, A2)(X)

and from A_ to (A1 u A_)(x) respectively.

2 2
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We shall say that a category C has S-products if

the S-product of any pair of C-objects exists in £, and

similarly that it has S-coproducts if the S-coproduct

of any pair exists.

Examples:

a) Any product can be regarded as a finitary

S-product, any coproduct as a finitary S-coproduct.

b) If A is an appropriate class of finite algebras
of the same type, as in chapter I, then the category C
of algebras in A and surjective algebra homomorphisms
has finitary S-products. As we saw, the S-product of a

pair (A, ,A in £ is provided by the family of

)
2/
subdirect algebras of A x B.

In particular, the category @ of finite sets and
surjective maps has finitary S-products,
The same considerations in fact apply to non~finite

algebras, but then the S-product will not in general be

finitary.

¢c) As we also saw in chapter I, the category P of

finite sets and injective maps has a finitary
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S=coproduct, the S-coproduct of a pair (A,,Az) being

given by the family of all amalgamations A1 \/g AZ'
Similar considerations apply to the category of all
sets and injective maps, but then if either A1 or A2 is

infinite, the S-coproduct will not be finitary.

d) It is worth noting that the S-product (and

,A.) may exist

likewise the S-coproduct) of a pair (A& 5)

1
but be empty. That is, we may have dom(A, 7 A.) = @.

1 2
This simply means that for all B € ob L, at least one
of the sets CI[B, A1] or C[B, A2] is empty.

For an example of this situation, let us consider
posets. A poset (P, <) can be viewed as a category by
considering the relation a < b as indicating the
existence of a single morphism a + b (which we identify
with the pair (a,b)), and that otherwise P[a, b] = @.
Thus, ob (P, X) = P, while mor (P, <) consists of all
pairs (a,b) such that a < b; i.e., it is simply the
graph of the relation <. Composition is provided by
the transitivity of <.

Under this interpretation, the product of a pair
(a,b) of elements in P is given by their meet a A b (if

it exists), and the coproduct by their join a v b.

A poset P is a partial meet semi-lattice if
when elements a and b of P have a lower bound, they
have a greatest lower bound a A b. Similarly, it is a

partial Jjoin semi-lattice if when a and b have an upper
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bound they also have a least upper bound a ¥ b in P.
From our point of view, a partial meet semi-lattice
P has finitary S-products (when viewed as a category),
with a m b = {a A b} when a and b have a lower bound,
and a ™ b = @ otherwise. Similarly, a partial join
semi~-lattice, viewed as a category, has finitary

S~coproducts.

e) For one more example, we look at finite graphs.
Following what now seems standard terminology, the tern
"graph" here means an undirected graph without loops or
multiple edges. We must also distinguish between
different candidates for the title of a morphism from
one graph to another.

If G, and G, are graphs with vertex sets V(G1) and

2
V(GZ)’ respectively, then call a map f: V(Gl) > V(G2)

adlacency-preserving if, when x1 and x2 are adjacent

vertices in G then f(x,) and f(x2) are adjacent in

T L

G Note that this means that two adjacent points in

5
G1 cannot be mapped into a single point of G2, since a
vertex is not considered to be adjacent to itself.
Another type of map between graphs is what we shall
call a simplicial map: A graph can be considered as a
one dimensional simplicial complex, with its vertices
as its O-simplexes, and its edges as its '-simplexes.

A simplicial map is then one which is "simplex~

preserving®; i.e., the image of a simplex must be a
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simplex. In this case, one is allowed to map two
adjacent points into a single point,

Both of these candidates are possible choices for
the role of a morphism between graphs. Let G then
denote the category of finite graphs and adjacency-
preserving maps, and GS the category of finite graphs
and simplicial maps. Clearly G is a subcategory of GS.

Both categories have (distinct) products. In G the

product of two graphs G, and G, has V(GT) x V(GZ) as

1
its vertex set, with a pair (x1,y1) being adjacent to

(x ) if and only if x, is adjacent to vy, in G and

2 Yo 1 1

X5 is adjacent to Yo in G2. In GS, however, one has
V(G1) x V(G2) as the vertex set of the product, but in
addition to the adjacencies already given, (x,yT) is
adjacent to (X,y2) if Yy and y, are adjacent in GZ’ and
(x1,y) is adjacent to (xz,y) if x, and x, are adjacent
in G2.

In GS the product of two counnected graphs is again
connected; in G, however, the product of two connected
graphs may well be disconnected. For example, the
product of the graph E with itself (in G) is the graph
ii, which has two components.

There is another way of looking at this situation.
Let CG be the full subcategory of G generated by
conncted graphs. Then CG does not have a product, but

it does have an S-product, under which the S~product of

two connected graphs is the family of the connected



components of their product in G.

KEE

It is clear that S-products, like products, are

commutative in the sense that AT T A2 is naturally

isomorphic to A2 T A1' This follows from the fact that
the functors C[~-, A1] x Cl-, Az] and C[-, A2] x Q[—,A1]
are naturally equivalent. Another "product-like"
property is that if the S-product of any two objects
exists in C, then the S-product of any finite n-tuple

of objects also exists in C. This fact we shall now

prove:

Lemma (2.7): Suppose that C has S-products (i.e., the

S-product of any pair of objects exists). If K1 and K2
are (contravariant) S-representable set-valued

functors, then K, x K, is again S-representable.

2

Proof: Suppose K1 and K2 are naturally equivalent to

\/i cl~, Ai] and \/j cl-, Aj] respectively. Among
set-valued functors as among sets, the cartesian
product distributes over the disjoint union. Thus it

follows that K1 x K, i1s naturally equivalent to the

2

disjoint union \/

(1,3) ClL-, Ai] x C[-, Aj]‘ But by the
hypothesis each component of this disjoint union is
S~-representable, and it is clear that the disjoint

union of S-representable functors is again
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S~representable. QED

Proposition (2.8): Suppose the category C has
S-products. Then, for all positive integers n and all
n-tuples (A1, Ayyenn, An) of C-objects, the S-product
of (A1, Aoyenn, An) also exists. If C has finitary

S-products, then A1 T A2 Taool An is also finitary.

Proof: The proof is by induction on n. The case

n = 2 is given. Suppose then that n 2 2, and that the
S-product of n factors always exists. Let

(A

A A +1) be any (n+1)-tuple of C-objects.

1) PR n

Then it is clear that the cartesian product

of functors is naturally equivalent to

(cl-, A1] x Cl-, A1 x...x c[-, An]) x Cl=-,A 1.

2 n+1

By the induction hypothesis, the functor in the round

brackets above is S-representable, cl-, An+1] is
trivially S-representable, and therefore by lemma (2.7)
their cartesian product is S-representable.

In case that C has finitary S-products, just add
"finitariness" to the induction hypothesis, and note

that it is preserved by the proof. QED

Of course the analogous theorem for S-coproducts is

also true,
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One way of looking at our results so far is to
distinguish the "full sub-quasi-categories" of <Q%, S>
and of <C, S> generated by representable functors and
by S-representable functors., Let R<KC, S> denote the
category of representable covariant functors and
natural transformations, and SR<C, S> the category of
S-representable (covariant) functors and natural
transformations. Both are full subcategories of
<€, 8>, and recall that <C, 8> has products given
pointwise by the cartesian product in S. Then the
situation for products and coproducts is as follows:

L has products if and only if R<Q%, S> is closed
under the formation of products in <Q%, S>, and it has
coproducts if and only if R<C, S> is closed under the
formation of products in <C, S>.

The situation for S-products and S-coproducts is
similar:

Iirf SR<Q*, S> is closed under the product in
<Q%, S>, then C has S-products (and conversely); while
if SR<L, 8> is closed under the product in <, 8>, then
C has S-coproducts. It is for this reason that general
results about products and coproducts also hold for
S-products and S-coproducts (when properly
interpreted); what looks like an S-product in C is
simply a product in SR(Q%, S>, while what looks like an

S-coproduct is simply a product in SR<C, S>.
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Let us now turn to the case in which we are
especially interested:

Let C be a finitary category with skeletal set
Cc = {Ai: i ¢ I}, and suppose that L has finitary

S-products. We then define a multiplication in the

right linearigation Z<C, C> of C by writing:

) ° - v 1 7 .
(2-9/ Al Aj = é P(l,J,k)Ak

where r(i,j:;k) is the number of elements x in

dom(Ai T Aj) such that (Ai T Aj)(x) is isomorphic to

Ak, and extending to all of Z<C, £> by linearity.
There is another convenient way of writing the
above multiplication. For this, we introduce what we

shall call the "angle bracket convention":

For any A € ob L, let <A> denote the unique element
Ai in the skeletal set C such that A is isomorphic to
i.. Then, we may alternatively write the above

1

multiplication in the form:

(2.10) A, ° A. = E <(Ag w Aj)(x)>,

where x varies over the set dom(A___L T Aj).
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Proposition (2.11): The multiplication law (2.9) is

commutative and associative, and hence makes Z(C) into

a commutative ring.

Proof: The proof consists in showing that both

-] -] -] ° \
(Ai Aj) A and &, (Aj A} are equal to the sum

Y )
; <(AiﬂAjﬂAk)(X,>,

where x varies over the set dom(Ai T Aj T Ak)' This is

done by noting that the S-product Ai T A j T Ak can be
arrived at either by forming the indexed set
) ) ).
LAy 1 a0 (x0) w A ) (y)e
) )
X € dom(Ai T Aj” y € dom((Ai m Aj)(x, T Ak)}
which corresponds to the expression (Ai ° Aj) ° Ak’ or

else by forming the indexed set
A .
{(Ai ™ (Aj ™ Ak,(x))(y).
X ¢ dom(Aj T Ak), y € dom(A:.L T (Aj T Ak))(x)}
which corresponds to the expression Ai ° (Aj ° Ak)'
For example,

¥ ) ) )
A <((Al m Aj)(X/ m Ak/(yz>
(x,y)

- v (¥ ) )
}ﬁ (; <((Ai T Aj)(x, T Ak)(y,>

(by (2.10)) = ] (<(ay 7 40(x)> = &
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But by the uniqueness of S-representability, we
must have the equivalence of these two ways of arriving
at Ai i Aj ™ Ak’ and hence the equality of the

corresponding sums. QED

Let us call the multiplication (2.9) on Z(C) the

multiplication derived from the S-product in c. It is

obvious from the manner in which the S-product is
defined that the Z-linear maps &, are ring
homomorphisms from Z(C) to Z when Z(C) is given the
multiplication derived from the S-product. Thus, the

map ¢: Z(C) = 7% is also a ring homomorphism.,

0f course by duality the same concepts and results
%
apply to the left linearization Z<C, L > of a finitary
category C. If C has finitary S-coproducts, then we

define the multiplication derived from the S-coproduct

by:

(2.12) A, = A, = 7§ <(Ai n AJ.)(X)),
X

where X varies over the set dcm(Ai u Aj).
%
Under this multiplication, Z<C, C > is a

%
commutative ring and ¢ : 2(C) -» ZC is a ring

homomorphisn.
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Before we leave this section, note that other
limits and colimits besides products and coproducts can
be generalized via the notion of S-representability, to
give us the concepts of S-limits and S-colimits. The
key to such a generalization is the fact (which we
noted earlier) that the existence of a particular limit
or colimit can be reduced to the question of the
representability of a corresponding set-valued functor.
To generalize, then, we just replace the condition of
representability with the condition of

S-representability.
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3. Factorizationss:

In the first chapter, we showed that if A is a
class of finite algebras closed under the formation of
direct products and sub-algebras, then both the
category C of A-algebras and algebra homomorphisms, and
the category D of A-algebras and surjective algebra
homomorphisms are finitary categories with finitary
S-products. (Of course the S-product in C is a
product.) Thus, if C is a skeletal set for C (and
hence a skeletal set for D), then both Z<C, > and Z<C,
D> are equipped with multiplications (derived from
their respective S-products) making them into
commutative rings. But in addition to this, we also
have a ring homomorphism (indeed, an isomorphism)

t: Z<C, C> 7 Z<C, D> which commutes with the ring
homomorphisms ¢ and d. In this section we shall give a

category~theoretic account of this phenomenon.

Fundamental to the definition of £ was the fact
that every algebra homomorphism f: A > B has the

(essentially unique) factorization:

B, 7B, f =m o e,

where e is a surjective homomorphism and m is

injective,
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In the previous section, we gave a brief account of
what we called "image factorizations" and (dually)
"co-image factorizations". These are examples of
so-called (M,E)-factorizations (viz. [HS]), which we

now define:

Let M be a class of C-monomorphisms closed under
composition with isomorphisms, and E a class of
L~epimorphisms also closed under composition with
isomorphisms. We shall say that a C-morphism
£ A, 7 A, has an (M,E)-factorization if it is possible
to "factor" f as a composition f = m‘O e with m € M and
e € E. Say that f is uniquely (M,E)-factorigable if f

has an (M,E)-factorization, and any two

(

b=

yE)~factorizations of f, f = m o0 e and f = m' o &',
are equivalent in the sense that, supposing the

factorizations are given by the diagrams:

e m
A, » B » A2
e' m'

and A, » B's A,,

then there is an isomorphism i: B + B' such that the
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diagram:

@
=

el ¥ m'

B'

commutes, If every morphism in mor C is uniquely
(M,E)~factorizable we shall say that C is
(M,E)-factorizable.

We have already seen some important examples of
such factorizability:

In the first place, we have the family of examples
given by (injective, surjective)-factorizations of
homomorphisms of A-algebras as in chapter 1I. More
generally, if C is a category all of whose morphisms
admit image factorizations (as defined in section 2
above), then C is (M,E)-factorizable, where M is the
class of all C-monomorphisms, and E is the class of
epimorphisms e such that the natural transformation ae
is surjective, Similarly, if € is a category all of
whose morphisms admit co-image factorizations, then C
is (M,E)-factorizable where E is the class of all
C-epimorphisms and M is the class of monomorphisms m

such that the natural transformation Sm is surjective.
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As general as the concept of (M,E)-factorizations
is, it is not quite general enough for our purposes.

Consider the following example:

Let PN be the category of finite sets and partial
functions. A partial function f: 4 »- B is a function
which may be defined only on a subset of A. The subset
of A on which f is defined we shall call the domain of
definition of £, and denote by Def(f). (It must be
distinguished from the domain of f, which, in category
theory, is the set A.) For example, between any two
sets A and B we have the "empty" partial function,
whose domain of definition is the empty set ¢ c 4.

Note that N, the category of finite sets and
mappings, is a subcategory of REN. Now consider the
class E of PN-morphisms e: A1 > AZ such that e is a set
isomorphism of Def(e) with A2. (Essentially, e is the
"inverse" of an injective map A, > A1.) Note that the
elements of E are all are all PN-epimorphisms. Then it
is not hard to see that PN is (N,E)-factorizable in the
sense that every partial function f: A1 * A2 admits a
factorization of the form f = f? 0 e where f, & mor N
and e € E; simply choose € to be the "inverse" of the
inclusion of B = Def(f) ~ A1, and fT: B * A to be the
restriction of f to B. And it is not hard to verify

that this factorization is unique if one uses the same

definition of uniqueness as that used for
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(E,M)-factorizations. But, mor N is not a class of

monomorphisms in PN.

The above example suggests the need for a wider
definition of factorizability. In fact, we shall
provide two definitions, which will be dual to each

" other.

Definition (3.1): A right factorization of the

category £ is a pair (M,D) such that:

a) D is a subcategory of C with same object class
as L and containing all C-isomorphisms,

b) M is a class of C-monomorphisms closed under
composition with C-isomorphisms,

¢) every C-morphism f has a unique factorization of

the form f = m © f,, where m € M and f, € mor D.

1
"Uniqueness" in this context means, as before, that if
f = m' o f; is a second such factorization, then there

is an isomorphism which makes the following diagram

commute:
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Definition (3.2): A left factorization of the category

C is a pair (Q,E$ such that:

a) D is a subcategory of C with the same object
class as €, and containing all C-isomorphisms,

b} E is a class of C-epimorphisms closed under
composition with C-isomorphisms,

¢) every C-morphism has a unique (as above)

factorization f = f1 0 e, where f1 € mor D and e € k.,

If (M,D) is a right factorigation of (, we shall

also say that D is a right factor of C, and call M its

associated class of monomorphisms. Similarly, if (D,E)

is a left factorization of L, we shall call D a left

factor of C, E being its associated class of

epimorphisms.

We give a few examples of factorizations:

a) Suppose L is a category such that every f in
mor C has an image factorization. If we let M be the
class of all C-monomorphisms and E be the class of all
epimorphisms e such that e® is surjective, then (as we
have already noted) C is (E,M)-factorizable,
Additionally, however, both E and M are closed under
composition. Thus, if we define subcategories CE and

CM of C by setting ob CE = ob CM = ob £ and mor CE = E,

@}

mor CM = M, it is clear that CE is a right factor of
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(with M as its associated class of monomorphisms) and
LM is a left factor of £ (with E as its associated
class of epimorphisms).

Similar remarks apply if every C-morphism has a

co-image factorization.

b) As we saw in the example preceding our
definitions, N is a left factor of BEN.

¢) Consider again the categories G (finite graphs

and adjacency-preserving maps) and GS (finite graphs
and simplicial maps). We have noted that G is a
subcategory of GS; in fact, it is a left factor of GS.

To see this, notice that a GS-morphism f: G1 > G2
is a G-morphism if and only if, for all y ¢ V(G2), the
subset f_T(y) is "totally disconnected" in G1 (i.e.,
no two points in f-l(y) are adjacent in Gl)‘ Now let E
consist of all morphisms e: G1 > G2 in mor GS which
satisfy:

i) e is surjective as a function between vertex

sets,

ii) for all y e V(Gg) the subgraph of G1 generated
by f—T(y) is connected.
(If G is a graph and Y a subset of its vertex set, then
the subgraph of G generated by Y, which is denoted by

G(Y), is the graph with Y as its vertex set and having

two points in it adjacent if they are adjacent in G.)
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Let f: G, ~» G2 be any GS-morphism. Define a

quotient" graph @1 of G, by identifying to a point

1

-1 )
each connected component of G,(f "(y)), for each y in

V(GZ), with two such points being adjacent in GT if the

corresponding connected subgraphs of G1 have at least

one edge between them. Then the natural projection

e: G1 > G1 is an element of E, while f factors

(uniquely) through 51 as f = f, o e with f, e mor G.
It is not hard to show that this factorization is
unique (in the sense of our definition of
factorizations), and that therefore (G,E) is a left

factorization of GS.

It is also interesting to notice that E is not

closed under composition, unlike our other examples.

Suppose (M,D) is a right factorization of the category
€., Call a subobject of an object A ¢ ob L an
M-subobject of A if it can be represented by a
monomorphism from M. (Then, since M is closed under
composition with C-isomorphisms, it can only be
represented by monomorphisms from M.) We shall call
the factorization (M,D) locally small if the class of

M~subobjects of A, for any A in ob L, form a set.
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Further, call (M,D) finitary if for all C-objects A the
class of M-subobjects of A form a finite set.

Similarly, if (D,E) is a left factorization of (C,
then a E-quotient object of A & ob £ is a quotient
object of A which can be represented by an element of
E; (D,E) is locally small if the class of E-quotient
objects of any A € ob £ form a set and is finitary if
that class forms a finite set.

With this terminology established, we can state and

prove the following proposition:

Proposition (3.3): Suppose (M,D) is a locally small

right factorization of (. Then for all A ¢ ob C, the
set-valued functor C[-, Al, restricted to D, is

S~-representable in D.

X
m

Specifically, if {AX >+ A ¢ x ¢ X} is a family of
representatives of the M-subobjects of A, then the
restriction of Cl-, A] to D is naturally equivalent to
\/X Dl-, AX].

Proof: The family of morphisms n® define
(component-wise) a natural transformation

o \/X D[-, AX] > Cl~-, A].
The definition of a right factorization asserts that

for all B ¢ ob (C, ey is a set isomorphism. QED
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0Of course, the dual of the above proposition also
holds. That is, if (D,E) is a locally small left
factorization of £, then for all A in ob £ the

set-valued functor ClA, -], restricted to D, is

X
(S

S-representable in D. That is, if {A - AX : X e X}
is a family of representatives of the distinct
E~-quotient objects of A, then the restriction of

ClA, -] to D is naturally equivalent to \/x Q[AX, -]

We now look at what these concepts so far entail
for finitary categories and their linearizations.
Thus, let C be a finitary category with skeletal set
C = {Ai: i e I}. Clearly, if D is a right or left
factor of C, then D is also finitary, and C is also a
skeletal set for D.

Let us then suppose that D is a finitary right
factor of £, with associated class of monomorphisms M.
Corresponding to the factorization (M,D) of C define a
Z-linear map Z(C) =+ Z(C) as follows:

For each A, ¢ C, let {AX : x ¢ X(1)} be a family of
distinet representatives for the M-subobjects of Ai'
By assumption, this set is finite for all i. Thus,

using the angle bracket convention, we write:

(3.4) m(Ai) =} <4_>,
X



where the summation is over the elements x in X(i).
O0f course it follows at once that the above can

also be written as:

(3.5) m(A,) = 7§ m(i,3)4;
J
where m(i,j) is the number of distinct M-subobjects of

Ai representable by Aj'

It is almost immediate from our definitions, that

the following diagram commutes for all k e I:

z(C)
Ly
(3.6) m Z
\ 2 Qk
z(C)
since oy and gk simply count morphisms (that is, gk(Ai)
= Y = #DI .
#Q[Ak, Ai] and gk(Aj, #DLA, , Aj])

Dually, if (D,E) is a finitary left factorization
of C, then it determines a a corresponding Z-linear map

% %
e: ZKC, € > » Z<C, D > defined on basis elements by:

(3.7) g(Ai) = § e(i,j)Aj,
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where e(i,j) is the number of distinct E-quotient
objects of Ai representable by Aj. Clearly, the

following diagram commutes for all k ¢ I:

Z(C)

(3.6) e YA

X

It is our intention at this point to turn our
attention to the question of the relationship between
factorizations and S-products. Before going on to our
principal result on this matter, we need some further

properties of factorizations:

Proposition (3.9): Suppose that (M,D) is a right

factorization of the category (. Then the following
statements are true:

a) All C-isomorphisms are elements of M; in
particular, all identities are in M.

b) If m € M and f € mor D are such that

m o f € mor D, then m is an isomorphism.
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c) If £ € mor D and g € mor C are such that

g o f € mor D, then g & mor D,

Proof: (a) Let ?A: A * A be an identity in C. Then 1A

admits the factorization TA =m ° f, where m € M and

f & mor D. Say the diagram looks like:

3
4 _ B
£
Then, m © (f om) = (m © f) O m = m = m © 1B' But
since m is a monomorphism (i.e., left cancellable),
this implies that f o m = TB' Thus, f and m are
inverses of one another. Since M is closed under

composition with isomorphisms, it follows that

f om = 1A is an element of M. Since all identities
are in M, and M is closed under composition with
isomorphisms, M also contains all isomorphisms.

b) Let £f' =m o f, Then f' = m © f is an
(M,D)-factorization of f'. But since by assumption f'
is an element of mor D, and all identities are in M, it
follows that f' = 1B o f' is a second such
factorization of f', where 1B is the identity on the

codomain of f. By the uniqueness of such

factorizations, there must be a C-isomorphism i such
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that the following diagram commutes:

B?
T m
A i B
T
£ ) "5
B
But then we see that m = 1 o i = i is an isomorphism,

B

c) The morphism g has an (M,D)-factorization

mog, (me M, g, € mor D). But then since
1 1

0]
1

g o f =mo (g1 o ), with m ¢ M and g, o f e mor D, by
(a) m must be an isomorphism. And since D contains all
L~isomorphisms, it follows that m o g, = 8 is an

element of mor D. QED

Proposition (3.10): Let C be a category which has

S-products. Suppose that (M,D) is a locally small

right factorization of C. Then D also has S-products.

Specifically, the relationship is as follows:

For objects A1 and AZ’ let

A1 i A2 = {(A1 T A2

denote the S-product of A, and A2 in the category (.

Y(x) : x e dom(A, 7w A)}

For each x ¢ dom(A1 m AZ)’ let n1x and nzx be the

"natural projections" from (A1 T AZ)(X) to A and L
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respectively. For each x ¢ dom(A, = AZ)’ also let:
mY

Ty Ay (x,y) - (A, A2)(X): y e Y(x)}

{(a, w,

be the family of representatives of the distinct
M-subobjects of (A1 m AZ)(X) which satisfy the

following additional condition:

¥

both =~ o mY and =« 0o m° are elements of mor D.

1 2

Then, the indexed set

A1 ™ A2 = {(A1 T

is the S-product of A

AZ)(x,y) s (x,y) € \/X Y(x)}

1 and A2 in the category D.

Proof: We show that, for any object B and any pair of

D-morphism (f1,f2) ¢ D[B, A,] x DI[B, A2]’ there is a

unique (x,y) and a unique D-morphism

f: B » (A1 T 1

5 A5)(x,y) such that (nTX om’) o £ = f

and (WZX 0 my)Of = f2. This will establish a natural

equivalence between D[-, A.] x D[-, A2] and
= )
\/(x,y) DL-, (A1 ™ A ) (x,y)].
First, since f1 and f2 are C-morphisms (as well as
D-morphisms), there is a unique x ¢ dom(A1 T AZ) and a

unique morphism f: B - (A, m &,)(x) such that

2

WTX o T = £, and ﬂzx o F = f,. Furthermore, f has a

unique factorization as f = m o f, where f € mor D and
m: H -+ (A1 T A2)(X) is a representative of a unique
M-subobject of (A, = Az)(x).

We must show that m can be chosen as one of the
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mY's described in the proposition. That is, we must

show that both =« £ o m and X 0 m are elements of

1 2
mor D. But, by proposition (3.9a), since
(n. % \ _ X \ _
m," o m) o f = £, (ﬂz o m) o f = f2, and f, are all

elements of mor D, it follows that n1X o m and ﬁzx o m

are also elements of mor D. Thus there is a unique

y e Y(x) such that F = m¥ o f, and therefore such that
be y - X y -

™y o m’ o f = f1 and T, om0 f = f2. QED

From the manner in which the "inherited" S-product
is constructed, it is clear that if C has finitary
S-products, and (M,D) is a finitary right factorization

of C, then the S-product in D is also finitary.

The dual of proposition (3.10) can be stated as
follows:

If (D,E) is a locally small left factorization of
L, and £ has S-coproducts, then D also has
S-coproducts, Specifically, if

A1 u A2 = {(AT i A2)(X) : X € dom(A1 B A2>}

is the S-coproduct of A1 and A, in C, then their

2

S-coproduct in D can be constructed as follows: For

each x ¢ dom(A1 n AZ) let

Y

" Az)(x) - (A1 wy A XM (x,y) 1y e Y(x)}

1

be a family of representatives of the distinct

E-quotient objects of (A1 u Az)(x) with the property
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y X

that the compositions e’ o 1 y

1 and e 0 12X are both

elements of mor D. (Here, of course, 11X and 12X are
the "natural injections" from A1 and A2 respectively to

(A, w A )(x) associated with the S-coproduct.) Then we

1 2

can form the S-coproduct in D as the indexed family of
objects

A, w, A, = {(A1 u

. /(%)
p oMy Ay Az(x,y) : (x,y) € \/X Y(x)}.

D
We have alreédy seen this phenomenon of the
inheritance of S-products and S-coproducts at work in
the case of subdirect products and amalgamations of
sets. Let us look at one more example of interest, in

this case an S-coproduct inherited from a coproduct:

Example: Consider the category G of finite graphs and
adjacency-preserving maps, Call a G-morphism

f: GT - G2 adjacency-reflecting if whenever f(x1) and

f(xz) are adjacent in G2, then X, and x, are also
adjacent in GT‘ It is not hard to verify that finite
graphs and adjacency-reflecting maps form a subcategory
of G which we shall denote by GR.

Now let B be the class of adjacency-preserving maps
between finite graphs which are bijective as maps
between vertex sets. It is not hard to see that B
consists entirely of bimorphisms; i.e., each element of

B is both a monomorphism and an epimorphism in G. (In

fact, B is precisely the class of all bimorphisms in
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G.) A typical example of such a bimorphism is given by

graphs G, and G, such that V(GT) = V(GZ) but

2

}; then the identity mapping on the vertex

T \ v
E(G,) o E(G,

set defines such a bimorphism G1 > G2.

One can verify that (GR,B) is a left factorization
of G. Now, G has a coproduct, namely the disjoint
union operation (defined in the obvious way) on graphs.
Thus, by the above result, we can assert that GR has an
S-coproduct (at least). To describe it with some
clarity we introduce yet another notion:

Given two graphs G1 and G2, suppose that

p €V(G,) x V(Gz) is a relation between their
respective vertex sets. We define the new graph

G \/p G2 as the disjoint union G, \/ G2 given

1

additional edges making x and y adjacent for each pair
(x,y) € p. Clearly the natural map

e: G, \/ G, ~ G \/p G

1 5 1 is a B-morphism, and thus

2

determines a B-quotient object of G1 \/ G2;

furthermore, if 1y and 1, are the natural injections

from G1 and G2 respectively into G, \/ G2, then e o Uy

and € o 1, are elements of mor GR. In fact, one

2

verifies that these are essentially the only B-quotient

objects of G1 \/ G, with this property. Hence, by our

2

results above, we see that for finite graphs G1 and G2,

the indexed set {G1 \/p G2 : o < V(G,) x V(GZ)} is the

S-coproduct of G1 and G2 in the category GR .

FEE




A short note on the "smallness" conditions in the
statement of (2.10):

If € is "locally small" (or well-powered, as it is

more commonly termed: the class of subobjects of any
object form a set), then any right factorization of C

is a _fortiori locally small. Similarly, if £ is

co-well-powered (gquotient objects of an object are a
set), then any left factorization of C is locally
small, These set-theoretical complications do not
arise with finitary categories, as it is easy to prove

that any finitary (indeed, any skeletally small)

category is both well-powered and co-well-powered.

We now turn to the following result:

Proposition (3.11): Let C be a finitary category with

finitary S-products, and (M,D) be a finitary right
factorization of C. (Thus D also has finitary
S-products.)

Consider the right linearizations Z<C, C> and
Z<C, D> (where C is a skeletal set for { and hence for
D) as rings under the multiplications derived from the

respective S-products,.

Then, if m: Z<C, €> + Z<C, D> is the Z-linear map




corresponding to the given factorization, m is a ring

homomorphism,

Proof: Set C = {Ai : 1 e I}, We must show the
equality, for all i,j € I, of Q(Ai . Aj) (where the
multiplication is in Z<C, C>) and Q(Ai) ° m(Aj) (where
the multiplication is in Z<C, D>). Let m denote the

S-product in €, and v, the S-product in D.

D
Consider m_(Ai ° Aj) first. Using the angle bracket

convention, we write:
Ay - Aj = <(Ai ™ Aj)(x)>,
X
and we can also write m((Ai T Aj(x)>) as:

(<A m A (x)> = 7 <A >,

v (x,y)

y varying over the set Y(x),
(XY
where {A( > (Ai T Aj)(x) :y € Y(x)} is for each

X,y)
X a family of representatives of the distinct
M-subobjects of (Ai T Aj)(x). Putting this together,
we can write:

m(A, < A.) = T <a VO
X 7
i J (x,7) (x,y

mu mV

. 5 Y . .
Now let {Bu N Ai :u e Y(i)} and {BV - Aj v oe Y(3)1

be families of representatives of the distinct
M-subobjects of Ai and Aj respectively. Then, by

reasoning similar to the above, we can express
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m(a,) © m(a.) = ) <(B, my B,)(2)>,
where in the sum u and v vary over the index sets Y(i)
and Y(Jj), while z varies over dom(Bu T BV).

Finally, consider the set-valued functor
Q[—,Ai] x Q[-,Aj] restricted to D. By proposition
(2.7), it is S-representable in D. There are two ways
of arriving at particular S-representations (in D) of
this functor:

In the first place, we may use the S-product in C
to give it as the disjoint union \/X Cl~-, (Ai T Aj)(x)]
(restricted to D), and then use (3.3) to express this
as the disjoint union \/(x,y) D[ -, A(x,y}]'

Alternatively, we may use (3.3) first to express
this functor as the cartesian product
D[-, Bu]) x (\/V bl-, BV], which is by distri-
butivity equivalent to \/(u,v) (nl-, Bu] x D[-, BV]),
and then use the S-product in D to express this as the

disjoint union \/(u v.z) D[-, (B T BV)(z)]. But by

u

the uniqueness of S-representability, the two
representations are equivalent; i.e., there is a

one-one correspondence between the objects A and

(x,y)

(Bu T BV)(Z) under which corresponding objects are
isomorphic., But since these are precisely the objects
that go into the two different expressions in question,

we conclude that they are equal. QED



The dual of the above proposition can be stated as
follows:

Let C be a finitary category with finitary
S-products, and let (D,E) be a finitary left
factorization of C, Consider the left linearizations
Z<C, Q%> and Z<(C, Q§> of C and D (where of course C is
a skeletal set for C and hence for D) as rings under
the multiplications derived from their respective
S-products. The Z-linear map e: Z<C, C§> + Z<C, D%>

corresponding to the given factorization is a ring

homomorphisn.

%% E

There is one further question relating to all this that
we should ask:

Under what circumstances is the map m (or &),
defined as above, invertible?

In giving conditions under which this is 50, we
shall essentially follow the same techniques used in
the previous chapter. In other words, to show that m
is invertible (in a particular case), we show that m
can be written as m = 1 + u , where 1 is the identity

linear transformation, and u is locally nilpotent.

Let C be a finitary category, and (M,D) a finitary
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right factorization of {; suppose C = {Ai i e I} is a
skeletal set for L, and let m: Z<C, £> =+ Z<C, D> be the
linear transformation corresponding to the
factorization.

The class M of monomorphisms is not necessarily
closed under composition. It does, however, generate
such a class M' of monomorphisms; M' simply consists
of monomorphisms m which can be expressed as a
composition m, o m, o...o0 m (for some r) of
monomorphisms mi in M. We shall call M' the derived
class of M. By an "M-derived subobject" of a C-object
A we mean a subobject representable by a monomorphism
in M' (i.e., an M'-subobject of A).

Now define a relation "<" on the skeletal set C as

follows:

(3.12) A, < Aj if there exists m: Ai -+ Aj’ M

Proposition (3.13): The relation < on C defined by

(3.12) is a partial order.

Proof: By proposition (3.9), M (and therefore M')
contains all identities. Thus Ai é,Ai- From the fact
that C' is closed under composition, it follows at once
that < is transitive. Finally, since € is finitary,

the dual of corollary (4.3) in chapter I holds; that

is, if m,: A, - A, and m_.: A, - A. are both
1 i J z J 1

T



monomorphisms, then they are both isomorphisms. It

follows that < is anti-symmetric. QED

As before, let us write (Ai)_ for the principal

A

A.}. More generally, if

order ideal (A.) = {A. : A
i j i

J
W is any subset of C, let (W) denote the order ideal

generated by W; i.e., (W) = { Aj: Aj < A, for some A,

in W}. Also write A, < Aj to mean that A, < A, but

A, # A..
x J

In the equation Q(Ai) = ¥ m(i,jdA, it is clear
J

by the definition of m that m(i,j) = 0 unless Aj < A

while m(i,i) = 1 since (by the dual of lemma (4.2) in

i

chapter I) Ai is a representative of an M-subobject of
itself precisely once. Consequently, we can write the
defining equation of m in the form:

(3.14) m(Ai) = A, + 3 m(i,j)Aj.

T oa.<a,
J 1

In other words, m = 1 + u, where 1 is the identity

linear transformation on Z(C) and u is defined by:

(3.15) y_(Ai) = 7 m(i,j)Aj.

A <A,
J 1

Now, it is easily seen that for an element w of

Zz(C), if we denote the support of w by supp(w), then:

(supp(w))™ 2 (supp(u(w)))”,



and that the containment is proper if w # 0.
Consequently, if (Ai)" is finite for all i € I, we can
conclude (as we did in chapter I) that for all i there
is a corresponding positive integer n such that gn(Ai)
= 0, and that therefore u is locally nilpotent and

m = 1 + u is invertible.

It is not hard to show that the finiteness of the
order ideal (Ai)- for all indices i is equivalent to
the condition that any object A in ob C have only
finitely many M-~derived subobjects., Thus we may state

these conclusions in the form of the following

proposition:

Proposition (3.163): Let m: Z<C, £> = Z<C, D> be the

Z-linear map corresponding to the finitary right
factorization (M,D) of the finitary category C.

If each C~object A has only finitely many M~derived

subobjects, then m is invertible.

In most of the cases we shall deal with, the family
of all subobjects of a L-object will be itself finite,
and therefore the conditions of this proposition will

be met a fortiori. The dual of (3.16) can be phrased

as follows:

% %
If : Z2<C, € > =+ Z<C, D > is the Z-linear map

corresponding to the finitary left factorization (D,E)
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of the finitary category C, and if the E-derived

qguotient obJjects of any L-object form a finite set,

then e is invertible.

Before we go on to the topics of the next section,
we note one application of this invertibility result:

When we form the right linearization Z<C, £> of a
finitary category L, we would frequently like to know
whether or not the "linearizing" homomorphism
c: z(C) =~ ZC is faithful. In the first chapter we
showed that if mor C consisted only of epimorphisms
then this was indeed the case. Using proposition
(3.16) we can extend this result somewhat further. For
suppose (M,D) is a right factorization of the finitary
category C satisfying the conditions of (3.16), and
suppose further that mor D consists only of
epimorphisms, Then the fact that d: z(C) - ZC is then
faithful, coupled with the invertibility of m and the
fact that ¢ = d o m, allows one to say that ¢ must also

be faithful.



4, Connections and S-adjointness:

Essentially, a "connection" is a supplementary
class of "arrows" going from the objects of one
category to the objects of another category. The
concept was introduced in [P] as a way of describing
the notion of adjointness. We shall find it a
convenient tool for generalizing our results still
further, as well as a means of introducing a concept of

"S-—adjointness",

Definition (4,1): Let C and D be categories. A

connection W from C to D is given by the following

data:
a) a function which assigns to each pair (A,B) of
objects in ob C x ob D a set W[A, B]l, whose elements
will be called W-morphisms (with domain A and codomain
B);
b) for A

A ¢ ob C and B B ¢ ob D, both a right

1’ 17

composition law which assigns to a W-morphism v: A » B
and a C-morphism f: A1 + A their "composition® v o f in

WLA

WiLA,, Bl, and also a left composition law which assigns

to a W~morphism v: A » B and a D-morphism g: B - B,
their composition g o v in W[A, BTJ;
¢) the stipulation that composition with

W-morphisms is associative and behaves correctly under
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composition with identities.

Specifically, (¢) in the above definition means
that:
(i) 4if v: A » B is a W-morphism, then
VO1A=V=‘!BOV,

and (ii) if we have a diagram of the form:

in which v is a W-morphism, f and f' are C-morphisms,
and g and g' are D-morphisms, then:

(v o £f) o ! v o (f o f£'),

(g'" og) ove=og' olgov),
and (g o v) o f = g o (v o f).
We shall write W = W(C, D) to indicate that U is
connection from C to D. The following are a few

examples:

a) Suppose B and D are subcategories of a category
c. Then we have the connection W = W(B, D) defined by
setting W[A, Bl = C[A, B] for all pairs (4,B) in
ob B «x ob\Q, with the composition laws inherited fron

c.

b) There is a "trivial" connection between any two
categories. For any pair (A, B) in ob L x ob D, simply

set WLA, BJ] equal to the empty set.
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c) Let C be the category of groups and group
homomorphisms, S the category of sets and mappings.
Define a connection W = W(S, C) by letting, for any set
X and any group G, UW[X, G] be the family of all maps
from X to (the underlying set of) G, together with the

obvious composition of functions.

d) For an example with more of a combinatorial
flavour, take the categories N (finite sets and
mappings) and GR (finite graphs and adjacency-
reflecting maps). Define W = W(N, GR) by setting, for
any finite set A and finite graph G, M[A, G] equal to
the family of all maps f from A to V(G) such that, for

any x and y in A, f(x) and g(y) are not adjacent in G,

together with the obvious composition laws. It is not
hard to verify that W, so defined, is indeed a

connection.

®HE

Just as in a category C where one can form the
set-valued functors C[~- ,A] and C[A, -], so when one is
given a connection ﬂyz W(C, D) one can also form:

a) for A in ob C, the covariant set-valued functor
¥laA, -1: D » S under which an object B in ob B is
mapped to the set W[A, Bl], and a morphism f: B1 > B2 is
mapped to the function W[A, f] = f : W[4, B1] > WlA, -]
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defined by fu(v) = £ o v for all v in u[A, B]];
b) for B in ob D, the contravariant set-valued

functor W[(-, Bl: C + S8, under which an object A in ob C

is mapped to the set HW[A, BJ, and a C-morphism

f: A1 > A2 to the function

&

“® - -
£ ﬂ[AZ, Bl = ﬁLAT’ Bl defined by setting

WLf, BJ

%
f (v) = v o f for all v in ﬂ[Az, Bl.

Additionally, if g: A1 + A2 is a L-morphism, then

it defines a natural ftransformation
88: wla,, -1 » uia,, -]
under which the map (for any B in ob D)
B8, MlA,, Bl » WlA,, B]
is defined by the prescription BgB(v) = v o g (for v in

Wia Bl).

LA 2 1)

In a similar manner, a D-morphism f: B1 > B2
defines a corresponding natural transformation af from

Wi-, B1] to Wl-, Bz].

Following the pattern established in the previous
section, one easily verifies that the rule which
assigns to each D-object B the contravariant set-valued

functor Wl-, B] and to a D-morphism g: B, ~ B2 the

g

natural transformation o can be considered as a

(covariant) functor from D to the quasi-category

%
<€ , S>. ©On the other hand, the rule assigning to a
C~object A the set-valued functor W[A, -] and to a

C-morphism g: A1 > A2 the natural transformation Bg is
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a (contravariant) functor from C to the quasi-category
<D, 8>. This is of course completely analogous to the
Yoneda embeddings discussed earlier (except that we do

not generally have embeddings from connections, lacking

the resources of Yoneda's lemma).

Call a connection W = W(C, D) finitary if the set

W[A, B] is finite for all pairs (A,B) in ob C x ob D.

"Let us now consider the situation in which we are
given finitary categories L and D, with respective
skeletal sets C = {Ai : i e I} and D = {Bj : j e d},
and also a finitary connection W = W(C, D). We can
then define Z-linear maps w: Z(D) > Z~  and
ﬂ*: z(c) - ZD as follows:

. For each i in I, define W, Z(D) + Z on basis

elements by:
(4.2) ﬂi(Bj) = #ula,, Bj].

Then, the family of all such maps defines a

corresponding Z-linear map w: Z{(D) = ZC under which

Y o4 i V) =
ﬂ(Bj/ is the function A, |~ (E(Bj ’(Ai) ﬂi(Bj).
Call w the right linearization of M.
Similarly, if we define, for each jJ in J, the
%
Z-linear map My Z(C) + Z on basis elements by:

(4.3) Y. (Ai) = #ﬂ[Ai, Bj],
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then the family of these maps defines (component-wise)

%

a Z-linear map w : Z(C) =» ZD, which we shall call the

left linearigzation of W.

The notions of the left and right linearizations of
a finitary connection are clearly dual to one another,
(Indeed, it is not hard to see that a connection
W = W(C, D) gives rise to a dual or "opposite"
connection ﬂ% = ﬂ*(g%, Q%) obtained by "reversing
arrows", and that the left linearization of W is the

KA
right linearization of W .)

Now suppose L and D are arbitrary categories. As
we have seen, if W = W(C, D) is a connection, then each
D-object B determines a corresponding (contravariant)
set-valued functor ¥W(-, Bl on C. Thus we can ask
whether or not Wl-, B] is representable, or

S-representable, in C. We adopt the following

terminology:

Call the connection W = W(C, D) realizable on the
right if the set-valued functor W[(-, Bl is
representable in C for all B in ob D. Call it

S-realizable on the right if W[-, B] is S-representable

in € for all B in ob D,

Similarly, W is realizable on the left if the the

functor W[A, -1 is representable in D for all C-objects
A, and S~realizable on the left if WlA, -1 is

S-representable in D for all C-objects A,
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If we are given a connection W = W(C, D) which is
realizable on the right, then it determines a
corresponding functor F: D =+ C in the following manner:

For each B in ob D, let F(B) be a C-object which
represents W[~-, Bl, and also let eB be a fixed natural
equivalence from C[-, F(B)] to W[-, Bl. By Yoneda's
lemma, eB is given by a unique element Vg in
WIF(B), Bl], and the set isomorphism from C[A, F(B)] to
¥[A, B] provided by eB is given by the assignment
f]+VB

It is not hard to see that the function B |+ F(B)
extends to a functor F from D to C:

If g: B, » B, is a D-morphism, then it determines
a corresponding natural transformation ag from W[-, B,
to Wl=-, B,]; using the natural equivalences eBl and eBz’
one then transfers this to a corresponding natural
transformation from C[-,F(B,)] to C[-,F(B,)], which by
Yoneda's lemma is given by a unique C-morphism F(g).

That the function so defined is indeed a functor is a

matter of routine verification, It is also not hard to

show that the functor F is unique up to natural

equivalence, We shall call it the right realigzation of
the connection K.

Conversely, if F: D - C is a (covariant) functor,
it defines a corresponding connection ¥ = W(C, D)

obtained by setting MW[A, B] = C[A, F(B)] for all pairs
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(A,B) in ob C x ob D. The composition on the right

(i.e., for a morphism f: A, + A) is simply given by the

1
usual composition in C; while the composition on the
left (for morphisms v: & » F{(B) in W[A, Bl and

h: B » B1) is given by the function (h, v) |+ F(h) o v.
One verifies without difficulty that W so defined is
indeed a connection; and because of the way it is

defined, we shall denote it by Cl-, F(-)]1. It clearly

has F as a right realization.

The same reasoning can be carried out on the left.
Thus if W = W(C, D) is a connection which is realizable
on the left, then there is a (covariant!) functor
G: C » D (unique up to natural equivalence) such that
WLA, -] is naturally equivalent to D[G(A), -] for all

C-objects A. We shall call it the left realization of

W. Conversely, if G: C » D is a covariant functor it
defines a corresponding connection W = W(C, D) which is
denoted by D[G(-), -], and which has G as a left

realization.

The relationship of these concepts to the notion of
adjointness is straightforward:

If W = W{(L, D) is a connection which is realizable
on both the right and left, and G: C - D and F: D + C
are the left and right realizations respectively of ¥,

then (G, F) forms an adjoint pair of functors. One
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also says that G is a left adjoint of F, and that F is

a right adjoint of G. (In many applications of these

ideas, one starts with one half of the pair, say F, and
then forms the connection C[-, F(-)] which, if it is
realizable on the left, then gives rise to the left

adjoint of F.)

We now proceed to extend these concepts to the case
in which a given connection is S-realizable on the left
or right. Let us first consider a connection
W = W(C, D) which is S-realizable on the right:

For each D-object B, let F(B) = {FX(B) : x e X(B)}

be a suitably indexed family of C-objects which
represent W[-, Bl in C, and let eB be a corresponding
natural equivalence from \/X ci-, FX(B)] to W[l-, BI.
Then, by Yoneda's lemma, GB 1s given on each component

cl-, FX(B)] by a unique W-morphism v in ﬂ[FX(B), Bl,

B

X
and the natural transformation eB is thus défined by the
family {VB X ¢ X(B)} of these {-morphisms.

X

Now, if g: B, » B, is a D-morphism, then it defines
a corresponding natural transformation g from W[-, B,]
to W[-, B,], which in turn can be transferred via the
the natural equivalences 9B1 and 6B2 to a natural
transformation from \/_Cl-, F _(B,)] to
\/y cl-, Fy(Bz)], where the disjoint unions are taken

over the indexing sets X(B,) and X(B,), respectively.

By lemma (2.2), however, such a natural transfor-
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mation is given by a unique mapping X(g) = &,

from X(B to X(B,) together with a unique function

L)
F(g) from X(B,) to mor C, x |~ F(g)x, such that
F(g)X € Q[FX(B1>, Fg%(x>(B2)].

This pair of functions (X, F), assigning as it does
to any D-object B the family {FX(B) : x e X(B)} of
C-objects, and to a D-morphism g the pair (X(g), F(g)),
looks very much like a functor, What must be done now
is to describe the category which is the "codomain" of
this (putative) functor. We shall do so by
constructing, given a category £, a new category which
we shall denote by S(C). Loosely speaking, S(C) is the
category of "indexed collections" of objects in C. The
formal definition is as follows:

An S(C)-object consists of a pair (X, A) in which X
is a set and A is a function from X to ob L, x |+ A(x).
We can call such a pair an indexing in . A morphism
(X, &) » (Y, B) between two such objects consists of a
pair (r, R), in which r: X = Y is a mapping and
R: X » mor C, x |~ Rx’ is a function such that RX is an
element of Cl[A(x), B(f(x))] for all x in X.

We must still define the composition law for the
morphisms of S(C). If we have such a morphism (r, R)
from the indexing (X!, A') to the indexing (X?, A?),
and (t, T) is a morphism from (X2, A2) to (X%, A%), we
note that for x in X! we get the C-morphisms
R_: A'(x) » A2(r(x)) and T () A2(r(x)) » A3(t(r(x))).

X
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The mappings more or less "tell" where the C-morphisms
are to go, and in forming the composition of the pairs,
we basically follow their "directions", Thus, under
the composition, we want to have an arrow from A(x) to
A((t o r)(x)), which is provided by the composition
r(x) © Rx. We put this idea in more precise terms as
follows:
Define the function T % r: X! - mor C by setting

(T * P)X = T (an element of the morphism set

r(x)
ClA2(r(x)), A3((t o r)(x))]). Now define the
composition (t, T) o (r, R) by means of the
prescription:

(t, T)Y o {r, R) = (t o r, (T ¥ r) o R),
where ((T ¥ r) o R)X = (T ¥ P)X o R for all x in X%,

The verification that S(C) so defined forms a

category is relatively straightforward. Also
straightforward (but tedious) is the verification that
the function (X, F) defined earlier in terms of the

connection W and its "right realigability", is indeed a

functor from D to S(C).

We have now seen that a connection W = W(C, D)
which is S~realizable on the right, determines a
functor (X,F): D -+ S(L), which we shall call the right

S-realization of W. It is unigque up to natural

equivalence,
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In the sequel, we shall frequently refer to a

functor from D to S(C) as an "S-functor" from D to C.

Before we go on to dualize the above result (which
process, unfortunately, is not quite straightforward),
we shall briefly examine the category S(C).

In the first place, note that S(L) has a "disjoint
union" operation inherited from S. Given S(C)-objects
(X, A) and (Y, B), we define (X, A) \/ (Y, B) as the
pair (X \/ ¥, A v B), where X \/ Y is the ordinary
disjoint union of sets, and A v B is the function

X \/ Y » mor L defined by:

A(x) if x ¢ X,
(A v B)(x) =
B(x) if x ¢ ¥,

where we identify X and Y with their natural images in
¥ \/ Y. The disjoint union of any family of
S(C)-objects is defined similarly.

The disjoint union operation in S(C) can be shown
to be the coproduct in S(C). The natural injections of
(X, A) and (Y, B) into (X, A) \/ (Y, B) are given,
respectively, by the pairs (11, E!) and (12, E2), where

1, and 1, are the natural injections of X and ¥

1
respectively into X \/ Y, and E; is the identity on
A(x) for all x in X, and EZ is the identity on B(x) for

all x in Y. We leave the details to the reader.
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C may itself be regarded as a

The category
subcategory of S(C). Simply consider a C-object A as
being indexed by the singleton set {A} consisting of A
itself. Under this convention, an indexing (X, A) may
be regarded as the disjoint union \/X A(x), where x
varies over the "base" set X, The fact that \/ is a
coproduct in S(C) leads to the conclusion that the
morphism set S(C)[(X, A), (¥, B)] is naturally
equivalent to the cartesian product

X s(¢c)la(x), (¥, B)), where x varies over X.
X

This is not surprising if one recalls that the
cartesian product of an indexed family {VX : X e X} is
simply the family of all functions f from X to the
union of the sets VX such that f(x) e Vx‘ Applying
this to the present situation, and using the fact that
an S{(C)-morphism from the C-object A(x) to (Y, B) is
simply a rule that selects an element r(x) in Y
together with an element R_ in cla(x), B(r(x))], we
Just recover our original definition of an
S(L)=morphism,

On the other hand, it is easy to see that, for a
C-object A and an S(C)-object (Y, B), the morphism set
s(c)la, (Y, BY] = s(c)ia, \/y B(y)] is naturally
equivalent to the disjoint union \/y Cla, B(y)l (the
disjoint unions taken over the set ¥Y). This can be

seen by noting that \/y clA, B(y)] consists of the



family of pairs (y, Ry) with y in Y and Ry in

ClA, B(y)]. But such a pair determines trivially an
S(CY~-morphism from A to (Y, B), which (since A is being
taken as indexed by a singleton set) simply consists of
selecting a y in Y and a C-morphism Ry in ClA, B(y)],

and vice~versa.

A more important point to notice is the
relationship between S-products in £, and products in
S(L). They are, in fact, essentially identical. In
the first place, if S(C) has products, then the product
of two C-objects exists in S(L), since we take C as a
subcategory of S(C). This product is an indexing of
L-objects, which it is easily verified conforms to the
definition of an S-product in C. Conversely, if £ has
S~products, then the S~product of two L-objects A and
B, A m B, is essentially a pair (dom(A = B)), A 7 B) in
which A 7 B is a function from dom{(A 7 B) to C; i.e.,
an element of S(C). This extends to a product of two
S(L)Y-objects (X, A) and (Y, B) by "distributing" over
the index sets. We simply define the product
(X, A) = (Y, B) to be the disjoint union

\/(x,y) (dom(A(x) = B(y)), A(x) « B(y)).
The reader will verify the requisite universal
properties of this definition, utilizing the fact that

the cartesian product X x Y of X and Y is a product in

S, plus the universal properties of the S-product.
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Note that, by the very definition of the product in
S(C) obtained from the S-product in C, it distributes
over the disjoint union in S(C).

Finally, notice that lemma (2.2) can now be viewed
as stating that natural transformations from the set-
valued functor \/X Cl-, A(x)] to \/y Ccl-, B(y)l, where
the disjoint unions are taken over the sets X and ¥
respectively, are in a one-one correspondence with
S(L)-morphisms from (X, A) to (Y, B). Indeed, the
functor \/X Cl[-, A(x)] can be regarded as the
restriction of the functor S(C)[-, (X, A)] to the

subcategory C.

®H%

We leave off the discussion of S{(C) for the moment
to turn to the problem of the dualization of the above

concepts.

This process, as we said, is not quite
straightforward. The problem 1is discernible in the
second half of lemﬁa (2.2):

According to the lemma, a natural transformation
from the disjoint union \/_ D[A(x), -] to the disjoint
union \/y DI[B(y), -] (with respective index sets X and
Y) is given by a pair (F, f) in which f: ¥ > X is a

mapping and F: ¥ * mor D, ¥y | Fy’ is a function such



that F is in D[A(f(y)), B(y)l. The problem is that
the function f goes in the "opposite direction" to that
of the morphisms Fy

Thus, if we are given a connection W = W(C, D)
which is S-realizable on the left, and we apply the
same reasoning used above in the case of right
WS-realizability", we derive a pair (F, Y) which
assigns to each C-object A a pair (F(A), Y(A)) in which
Y(A4) is a set and F(A) a function Y(A) > mor D,
x |- F(A)X, and to each C-morphism f: A1 > A2 a pair
(F(£), Y(£f)) in which Y(f) = £ Y(A,) 7 ¥(A,) is a
mapping and F(f) is a function from Y(AZ) to mor D such
that F(f)X is an element of g[Ff*(x)(A1), FX(AZ)] for
all x in Y(AZ). Of course, (F, Y) has the property

that, for every C-object A, W[A, -] is naturally

equivalent to \/X Q[FX(A), -1,

If we look upon this pair as a functor, it appears
to be contravariant on the base sets, but covariant
(more or less) as far as D-morphisms are concerned.

One way of solving this problem is by creating a second
"indexing" category, which we shall denote by S%(Q), to
be the codomain of this (putative) functor:

The idea is to regard D as being indexed by §§, the
category dual to 3. (We will not, however, find it
necessary to bring §% explicitly into the picture.) An

%
object of S (D) is a pair (A, Y) in which Y is a set



and A: Y * ob D (x [|> A(x)) is a function. (This is
the same as in S(D); the change in the order of the
pair is for somewhat greater convenience in the writing
of the composition of two morphisms.)

%
An S (D)-morphism (4,, Y1) > (A YZ) consists of a

2 3

pair (R,r) in which r: Y2 - Y1 is a mapping, and R is a

function from Y, to mor D (x |~» RX) such that R is an

element of Q[A1(r(x)), Az(x)] for all x in Y (Think

5

of r as being an §'-morphism, and hence going from Y,

)
to YZ"

If we have two such morphisms, (R,r) from (AT’ Yl)

to (A2, Y.), and (T,t) from (AZ’ Y2) to (A3, Y.), then

2 3

define the composition (T, t) o (R, r) by:
(T, t) o (R, r) = (T o (R *¥ t), r o t),

where (T o (R ¥ t))x =T, oR Also note the

t({x)"
inversion in the order of composition of the set
mappings (which of course is consistent with regarding

%
them as morphisms in 8 ). Again, one can verify that

S%(Q) is a category. Also, we have the following
result:

If W = W(C, D) is a connection which is
S-realizable on the left, then there is a functor
(F, ¥): C ~» S%(Q) such that the set-valued functor
uwla, -1 (for all C-objects A) is naturally equivalent
to \/, D[FX(A), -1. The functor (F, Y) is unique up to

natural equivalence, and we shall call it the left

S~-realization of the connection W.

137



Again, we shall speak of a functor from C to SK(Q)
as an "S-functor" from L to D; but to distinguish it
from functors L -+ S(D), we shall dub it a

"semi-contravariant"™ S-functor.

#*
The category S (D) deserves a few remarks (the
proofs of which, however, will be left to the reader).

2
In the first place, S (D) also inherits a disjoint

union from S (or rather, iﬁ). The disjoint union in
this case, however, is a product rather than a
coproduct (consistent with the faet that the coproduct
in 8 is the product in 8¥). 1In order to avoid
collision with the notation under which \/ denotes the
coproduct in S (as well as some other categories), we
shall use the symbol /\ to denote the disjoint union
operation in S%(Q). Thus, for S%(Q)-objects (4, X) and
(B, Y), their disjoint union (A, X) /\ (B, Y) is
(still, as in S(D)) the pair (A v B, X \/ Y).

The following additional statements concerning

%
S (D) are not very hard to establish:

1f S%(g) has a coproduct, then D has a
corresponding S-~coproduct, Conversely, if D has an
S-coproduct, it extends to a coproduct in S%(g). If u
is such a coproduct in S§(Q), it distributes over the

#
disjoint union /\ in S (D).
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%
Any S (D)-object (A, X) can be regarded as the
disjoint union /\_ A(x) (x varying over X). 1In line

%
with the fact that /\ is a product in S (D), the

#

morphism set S (D)L(B, Y), (A, X)] is naturally
equivalent to the cartesian product

% , )
X S (DY((B, Y), A(x)], where x varies over X,
X

Again, D can be regarded as a subcategory of S%(Q).
Adopting this convention, we find that the morphism set
Sﬁ(_D_)[(B, Y), Al, for A in ob D, is naturally
equivalent to the \/y DIB(y), A] (y in Y).

Natural transformations from \/X DlA(x), -1 to
\/y DIB(y), -] (with respective index sets X and Y) are
in a one-~one correspondence with S%(Q)—morphisms from
(A, X)) to (B, Y). 1Indeed, the set-valued functor
\/_ D[A(x), -] may be regarded as the restriction to D

X
# . .
of the functor S (D)L(a, X), -1.

% %%

If (X, F) is an S-functor from D to C (i.e., a
functor from D to S(C)), then X is simply a functor
from D to S, which we can call the "set-theoretic part"
of (X, F). Similarly, in a semi-contravariant
S-functor (F, Y) from C to D, Y is simply a
contravariant set-valued functor, the Yset-theoretich
part of (F, Y). 1In either case, if the set-theoretic

part takes on only finite sets as values, we shall call



the S-functor in question finitary.

Now let C and D be finitary categories with
skeletal sets C = {Ai : 1 e I} and D = {Bj : J e Jd1}
respectively. Suppose (X, F) is a finitary S-functor
from D to L. We then define the Z-linear map

r: z(D) =+ Z(C) derived from (X, F) on basis elements

by:

(4.4) r(B.Y = § <F_(B.)>.
xeX(Bj) x

Here we are using the angle-bracket convention.

Clearly this can also be written as:

(4.5) L(Bj) ¥ r(J3,i)4,,

i
where r(Jj,i) is the number of elements x in X(Bj) such
that F_(B,) is isomorphic to A,.
b i
The Z~linear map derived from a semi-contravariant
S-functor is defined in the same way. The following
proposition is virtually immediate from our

definitions:

Proposition (4.,6): Suppose L and D are finitary

categories with skeletal sets C = {Ai : i e I} and
D = {Bj : j e J} respectively; and suppose W = W(C, D)
is a connection which has a finitary right realization

(X, F): D » sS(C).



Let w: Z(D) = ZC be the right linearization of H,

and r: Z(D) » Z(C) be the Z-linear map derived from

(x, F). Then the following diagram commutes:

A
7(D) —s 3
r
- c
Z(C)

where of course ¢ is the right linearization of (.
We omit the proof, which is straightforward.

Of course the dual proposition holds, and may be
stated as follows:

Suppose the situation is as above, except that now
W has a finitary left realization (F, Y): C =~ S*(Q),
and let s: Z(C) » Z(D) be the Z-linear map derived fromn

(F, Y). Then the following diagram comnmutes:

Just as the simultaneous left and right

realizability of a connection leads to the concept of
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adjointness,so we may speak of S-adjointness in the

case of simultaneous left and right S-realizability.

It turns out that there is not much of interest in such
a general situation. What is of interest is the case
in which one half of such an "S-adjoint" pair is a
functor rather than an S~functor. Let us be more
specific:

We shall say that the functor G: C » D has a right
S—adjoint if G is the left realization of a connection
W = W(C, D) (which we may take to be D[G(-), -1), and ¥
also has a right S-realization (X, F): D - S(C). 1In
such a case, we shall call (X, F) the right S-adjoint
of G, Similarly, G will be said to have a left
S-adjoint if G: D - £ is the right realization of W =
W(C, D), which also has a left S-realization

(F, ¥Y): ¢ » S (D).

Let us consider the finitary case:

Thus, we suppose ( and D are finitary categories
having respective skeletal sets C = {Ai : i e I} and
D = {Bj : j € dJ}, and G: D *» £ is a functor with a
finitary right S-adjoint (X, F): C + S(D). That is,
there is a connection W = W(D, C) (which may be taken
to be C[G(-), -1) that has G as its left realization
and (X, F) as its right S-realization.

Note that G determines a corresponding function

g: D » C defined by setting:
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B. = < B.)>:
g ( J) G( J) ;
i.e., g(Bj) = Ai’ where Ai is the unique element of C
isomorphic to G(Bj). For ease of notation, we transfer
the function g to a function g: J > I between the index
sets for D and C (and use g to denote both). Thus, we
write:
B.) = <G(B.)> = A Sy .
gl J ( J) g(J?
In this situation, we also have the Z-linear map

r: Z(C) » Z(D) derived from the S-functor (X, F).

Proposition (4,7): Let C, D; C, D; G: D » C,

¥ = (b, €)Y, (X, F): Q + Dy and g: D > C (as well as

J » 1), and r: Z(C) » Z(D) be as described above.
Further, let d: Z(D) = ZD and ¢: Z(C) - ZD be the right
linearizations of C and D respectively.

Then, the following diagram commutes for all

indices j in J:

z(C)

g
N

z(D)
Proof: We wish to show that for all j in J and i in I
that the following equation holds:

V) )
Qj(L(Ai,/ )(Ai,.

c ..
~g(J
The right hand side is equal to #Q[G(Bj), Ai], while it

is not hard to see that the left hand side is equal to
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#(\/X Q[Bj, FX(Ai)], the disjoint union taken over x in
X(Ai). But, by assumption, both of these are equal to

#W[B., A.]. QED

O0f course, the dual of the above proposition also
holds., Thus, if G: D » C has a finitary left S-adjoint
(F, ¥): C ~ S%(Q), then the following diagram commutes

for all j in J:

Z(C)
%
g ()
3
s yA
%
=J
Z(D)

where s is the Z-homomorphism derived from (F, Y) and

g: C D and J » I is the function defined by G.

We have already seen examples of both a right
S-adjoint and a left S~-adjoint of a functor. These are
given by a locally small factorizations (right and
left, respectively).

For example, if C has a right factorization (M,D),
then we have the inherited connection W = W(D, C)
defined by setting W[B, A] = C[B, A] for a D-object B
and a C-object A (of course, ob L = ob D). Then ¥
clearly has as a left realization the inclusion functor
G: D > C. But, if the factorization is locally small,

then the connection also is S-realizable on the right;

144



i.e., Wl=, Al is just the restriction of C[-, A}l to D,
and as we showed, under these conditions W[~-, A] is
S-representable for all A in ob (. Thus, we have a
right realization (X, F): C - S(D), under which the set
{FX(A) : x & X(A)} picks one representative for each
distinct M-subobject of A, Of course, if C, D, and
(M,D) are all finitary, then (X, F) is finitary, and
the homomorphism derived from (X, F) is simply the

homomorphism £ corresponding to the factorigzation

(M,D). Similar remarks apply to a (locally small) left
factorization (D,E) of L, which gives rise to a left

S-adjoint of the inclusion functor,

%%

An important feature of adjointness is the
well-known theorem which asserts that if a functor F is
a right adjoint of another functor, then F preserves
products (as well as other categorical limits). We
shall prove an analogue of this in the case of
S~-adjointness; but first, in the way of preparation,
let us briefly review the proof of the "classical"
result:

Suppose then that C and D are categories with
products 1 and %, respectively, and that F: C - D is
the right adjoint of a functor G: D + C. Essentially,
we wish to prove that the set-valued functors

DL-, F(A) m F(B)] and D[-, F(A m B)] are naturally
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equivalent for all C-objects A and B. Then, by the
uniqueness of representations, this yields the result
that F(A) 7 F(B) is isomorphic to F(A m B).

Of course, by definition D[-, F(A) T F(B)] is
naturally euivalent to D[-, F(A)] x D[-, F(B)]. By
adjointness, D[-, F(A 7 B)] is naturally equivalent to
ClG(-), A = B]. Also by adjointness,

D[-, F(A)] x D[- ,F(B)] is naturally equivalent to
clag(-), Al x c[G(~), B]. But it is easy to prove that
cla(-), A}l x clG(-), B] and CIG(-), A 7 B] are
naturally equivalent. Thus the result follows.

Of course, in the same way we have the result that

left adjoints preserve coproducts.

We cannot extend this result to the case of a
connection which is simultaneously both right and left
S-realizable (as one might think). But we can extend
it to the case in which a functor G: D » C has a right
S-adjoint (X, F): C = S(D).

To do so, we must return to our study of the
category S(D).

Suppose (X, F): C » 3S(D) is a functor. Then it
extends naturally to a functor S(X, F): S(C) - S(D).
The manner in which this is done is as follows:

An object (Y, A) in ob S(LC) can, as we have noted,
be thought of as a disjoint union \/y A(y), the

disjoint union being over y in Y. Thus, we simply let
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S(X, F)(Y, A) be the disjoint union, in S(D),
\/y (X(A(y)), F(A(y))). Similarly, given an

S{CY-morphism (r, R): (Y A

DENE:

A.), we take the

1 2’ 72

images of the morphisms (as y varies over Y1)
Ry: A1(y) *> Az(r(y)) under the functor (X, F) and
"glue" them together via the disjoint union in S(D).
(The details, though'messy, are straightforward). One
should note that, by the very definition of the
extension S(X, F), the extended functor preserves
coproducts {(i.e., the disjoint unions in S(C) and
S(D)).

O0f course, this extension also works for a functor
G: D+ C, which, since we regard C as a subcategory of
S(L), can also be looked upon as a functor from D to
S(C). We denote this extension simply by S(G), from
S(D) to S(L). Under it an S(D)-object (¥, B) is mapped
to the pair (Y, G(B)), where G(B)(y) is simply G(B(y)).

With this preparatory work out of the way, we may

now state the following result:

Proposition (4.8): Suppose the functor G: D + C has a

right S-adjoint (X, F): C + S(D). Then S(X, F) is a

right adjoint of the functor S(G).
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Proof: We shall merely sketch the proof.

For A in ob D and (V, B) in ob S(C), the morphism
set S(CY(G(A), (V,B)] is, as we noted earlier, in a
natural one-one correspondence with the (set) disjoint
union \/V ClG(A), B(v)]l, where v varies over the set V.
Since (X, F) is a right S-adjoint of G, this disjoint
union is in a natural one-one correspondence with the
(double) disjoint union \/V {\/X Dla, FX(B(y))]}, where
the x varies, for each v, over X(B(v)). This last
disjoint union, however, is identifiable with the
morphism set S(DY[A, S(X,F)(V, B)I].

The above one-one correspondences are "natural",
and imply that S(C)[G(A), -] is naturally equivalent to
S(DY[A, S(X,F)(-)] for all D-objects A.

On the other hand, using the fact that the disjoint
union in S(C) and S(D) are their coproducts, and that
consequently since an S(D)~-object (Y, A) can be
regarded as the disjoint union \/y A(y), we have that
s(eiyrs(e)(y,a), -1 = S(CYL(Y, G(AY), -] is naturally
equivalent to the cartesian product

X S(cY(G(A(y)), -1, y varying over Y,
y

which in turn by our above remarks is naturally

equivalent to:
X S(DYLA(Cy)Y, S(X, FY(=)], y in ¥
v .
which in turn is equivalent to S(D)Y[(Y,A), S(X, F)(-)].

QED
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We shall now briefly discuss the dualization of the
preceding result. In a manner essentially the same as

%
that used above, a functor (F, Y): C + S (D) can be

extended (via the disjoint union /\) to a functor

S%(F, Y): s&(c) > Sﬁ(g). Similarly, a functor G: D =+ C
extends to a functor S%(G): S%(Q) > Sﬁ(g). Then, as
before, if (F, Y) is a left S-adjoint of G, then

S%(F, Y) is a left adjoint of S#(G). Recall, however,
that the disjoint union /\ in S%(Q) is a product, as it

# % %
is in S (D), and the functors S (G) and S (F, Y) are by

their very definition product-preserving.

Now if C and D have S-products, then S(C) and S(D)
have products (as we indicated above). Thus, if the
functor G: D » C has a right S-adjoint (X, F): C -+ S(b)
then S{(X, F) is a right adjoint of S(G), and
consequently it preserves products. ©Notice that since
S(G) is a left adjoint, it must preserve coproducts,
but this represents no new information, since it
preserves coproducts by definition., Similarly, if
(F, Y): C - S%(Q) is a left S-adjoint of G, and € and D
have S-coproducts, then S¥(F, Y) preserves coproducts

(but again we gain no new information about G).

Finally, let us apply these concepts to the

finitary case:
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Proposition (4.9): Suppose we are given finitary

categories £ and D, both of which have finitary
S~-products. 81so suppose the functor G: D » C has a
finitary right S-adjoint (X, F): C » S(D).

Let C = {Ai : i e I} and D = {Bj : j e J} be
respective skeletal sets for € and D, let Z<C, C> and
Z<D, D> be given the multiplications derived from the
respective S-products, and let r: Z(C) = Z(D) be the
Z-linear map derived from (X, F). Then r is a ring

homomorphism,

Proof: The proof of this proposition merely requires a
proper interpretation of the fact that S(X, F)
preserves products.

Let us denote by N(C) the full subcategory of S(C)
generated by objects (Y, A) in which the set Y is
finite, We shall extend our angle bracket convention
by writing, for each N(L)-object (¥, A), the equation:

<Y, A> = Yoo<A(y)>.
yel

Now, it is easy to establish that, under this extension
of the bracket notation, we have the following

relations:

(a) <(Y, A) \/ (V, BY> = <(Y, A)Y> + <(V, B)>
(4.10) .

(b)Y <(Y, A) = (V, B)Y> = <(Y, A)Y> = <(V, B)>
in which w is the product in S(C), and '°*' is the

multiplication derived from the S-product in €. Also
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notice that if (Y, A) and (V, B) are isomorphic in
S(C), then <(Y, A)> = <(V, B)>. Of course similar
remarks apply to N(D). (Notice that it is the fact
that the S-products are fipnitary that allows N(C) and
N(D) to have products.)

Now we can also establish without difficulty that,
for any S-functor (X, F): C -+ S(D), we have the

relation:

(4.11) <S(X, FX(Y, A)>y = p(<(Y, A)>.),
where r is the Z-linear map derived from (X, F), and we
use the notation <>D and <>C to indicate that the
elements so designated are in Z(D) and 2Z(C)
respectively., In particular, we see that on basis
elements Ai’ we have that L(Ai) = <S(X, F)(Ai)>
= <(X, F)(Ai)>.

Thus, for A and B in ob C (and of course also
considered as elements of ob S(C)), we have that
S(X, F)(A = B) is (since S(X, F) is a right adjoint)
isomorphic to (S(X, F)(A)) 7 (S(X, F)(B)), where '7!'
denotes the product in S(D). Now, by the relations

established above, the result follows without

difficulty. QED

The dual result is, of course, that if G: D -~ C has

a finitary left S-adjoint (F, Y): C + D, and both £ and
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D have finitary S-products, then the map r: Z{C) = Z(D)
(derived from (F, Y)) is a ring homomorphism if Z(C)
and Z(D) are given the multiplications derived from the

respective S-products.

Example: Consider the category N of finite sets and
mappings, together with the connection W = W(N, N)
defined by letting W[A, B] be the set of all partial

functions from A to B (A and B being finite sets),

together with the obvious compositions.

Note that W is realizable on the right:

Let {p} be a fixed singleton set. Then, for all
finite sets B, W[l~, Bl is naturally equivalent to
N[-, B \/ {p}ll. The correspondence between W[A, B] and
N[A, B \/ {p}l]l is obtained as follows:

If h: A » B is a partial function, then it extends
to a unique function h:A + B \/ {p} which maps all of
the points outside the domain of definition of h into
the point p. Conversely, if h: A& - B \/ {p} is a
mapping, it defines a corresponding partial function
h: A » B defined on all points except those which were

originally mapped onto p by n.
Of course the function B |+ B \/ {p} extends to a

functor G: N » N which is the right realization of H.

Notice that G does not preserve products. It cannot
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therefore have a left adjoint. It does, however, have
a left S-adjoint, since ¥ is S-realizable on the left:

For all finite sets A, W[A, -] is naturally
equivalent to the disjoint union \/X NEAX, -1, where
the AX vary over the subsets of A. This is easily seen
since a partial fuction on A corresponds to a unique
function on a subset of A (namely, the domain of
definition of the partial function), while a function
defined on a subset of A clearly corresponds to a
partial function on A.

Since a left S-realization is involved, the rule
that assigns to a set A the (appropriately indexed)
family of subsets of A extends teo a functor
(F, X): N = S%(ﬂ). We can write the image of a set A
under this functor as (F, X)(A) = /\ A, the &
varying over the subsets of A. (0f course, we are
using the notation established earlier, under which /\
represents the disjoint union operation in S%(ﬁ), which
happens to be the product in that category.) According
to our results above, this functor (or rather its
extension to a functor S%(F, X) defined on Sﬁ(ﬂ))
preserves S-coproducts,. Since the S-coproduct in N is
in fact a coproduct (given by the disjoint union in N,
\/)}, we expect (F, X) to preserve coproducts. Let us
see how this looks:

We must have that, for a pair of sets A and B,

(F, X)(A \/ B) = /\w DW , the D varying over the



subsets of 4 \/ B, is naturally isomorphic with the
indexing (F, X)(A) \/ (F, X)(B)Y = (/\_ A_) \/ (/\_ B ).
X X y y
Note that in the last equation above, '\/' denotes
the extension of the coproduct \/ in N to S%(ﬂ), and in
%
S (N) the coproduct distributes over /\. Thus the last

expression is equivalent to /\( (AX \/ By). But

x,y)
now the equivalence we seek to verify is obvious, since
it merely states that every subset of A \/ B

corresponds to a disjoint union Ax \/ By’ where AX is a

subset of A and By is a subset of B.

Let us now look at the Z-linear map derived fron

A A ,...} be a skeletal set

(F, X). Let N = {A preey Ay

0°
for N in which An is an n-element set. The Z-linear
map r derived from (F, X) is clearly given by the
formula:

r(a ) = § Cln,k)A,,

k

where of course C(n,k) is the number of k-subsets of an
n-set. As a ring, Z<N, ﬂ%> is (as we saw in chapter I)
isomorphic to Z[{x]. Thus if we transfer these

considerations to Z[x] via this isomorphism, we can

write r as the map Zlx] - Z[x] defined by:

C(n,k)xX.

Irs
N
L
N~

Now the map g: N - N defined by the functor G is

%
. y :
clearly given by g(Ai, = Ai+1' The map gi , loqked at



from the point of view of Z[lx], simply corresponds to
evaluation at x = i. According to (the dual of)
%
proposition (4.7), we should have that n, o=r is equal
# #

to n g(i) ° LA In Z[x], this is equivalent to the

equation:

(1 + D™ = T cln,x)i¥,
k

which is certainly true since g(xn) is obviously (x + 1)7.

The dual of proposition (4.9) asserts that r must be a

ring homomorphism, and again this is clearly the case,
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CHAPTER TITT

FURTHER RESULTS AND APPLICATIONS

In this chapter we shall slightly extend the theory
developed in the previous chapters, and show their
relationship to some established results.

In the first section, we look at categories whose
objects can be regarded as being made up of "connected
components", In section 2, we show how certain well
known results concerning finite vector spaces may be
derived by our methods. Finally in section 3 we make a
short study of categories all of whose morphisms are
epimorphisms (or, dually, monomorphisms). For example,
we shall see that the "Mébius transform" can be
regarded as the inverse of a Z-linear map corresponding
to a factorization. More interesting, however, is the
relationship between such categories and the poset of

guotient objects of an object of the category.

1. Connectivity in categories:

In the preceding section, the category S(L) was
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introduced primarily as a technical device in order to
allow us to state certain results concerning S-functors
and S-adjoints. It turns out, however, that it is not
unusual for a category to be naturally equivalent to
S(L) for a suitable subcategory C. The common
denominator for such situations is that the category in
guestion allow a notion of an object's being
"connected" or not in some sense. In combinatorial
applications (where "finitariness" usually reigns), the
category of interest is frequently naturally equivalent
to N(D) for some suitable subcategory D.

For example, one can verify without difficulty that
the category G (finite graphs and adjacency-preserving
maps) is naturally equivalent to N(D), where D is the
full subcategory of G generated by connected graphs.

Since in this section we shall be principally
interested in categories of the form N(D) rather than
S(D), the following easily verifiable results are in

order:

a) A finitary functor (X, F): D » S(L) can (and in
this section, will) be regarded as a functor from D to
N(C). Such a functor extends to a functor N(X, F) from
N(D) to N(L); the functor N(X, F) preserves coproducts
(i.e., the disjoint union in S(R) and S(C)).

In particular, if a connection has a finitary right

157



S-realization, it will be regarded as a functor taking
its values in a category of the form N(D).

b) The category N(D) has products if and only if C
has finitary S-products.

c) If the functor G: C - D has a finitary right
S-adjoint (X, F): D - S(L), then N(G) has N(X, F) as a

right adjoint.

Let us now turn to the question of "connectedness".

The following definition represents one way of

conceiving of this notion:

Definition (1.1): Let C be a category which has a

coproduct u, Then, a C-object A will be said to be

C~objects,

connected in C if, for any pair (B,, BZ) of
any C-morphism f: A -~ B1 U B2 factors uniquely through
one (and only one) of the natural injections

1,: B + B B and B - B

1 1 1 P o8 By 1 v B

53 that is, there

is a unique morphism f in C[A, B,] Vv C[4, B2] such that

either £ = 1, o F or f = 1., o ¥ (but not both).

1 2

We can phrase the definition alternatively in the
following manner:

A pair (B,, B of C-objects, together with the

)
2

natural injections 1y and 1, of B1 and B2 respectively

p B, determines a natural

into their coproduct B 5

1

158



transformation 1 = A(B,, B,),

r: Cl-, BI] \/ ¢c[-, B

c 2] + Cl-, B, u BZ],

simply defined on each component of the disjoint union
as the natural transformation corresponding to 1, or

12.

Thus, A is connected in C if for all pairs (BT’ B2)
of C-objects, the function A, from C[A, BT] \/ cla, B,]

A 2

to Cl4, B1 u B2] determined by the natural

transformation x = A(B1, B2) is a set isomorphism.

Now suppose that the class of connected objects in
£ is non-empty, and let D be the full subcategory of C
generated by its connected objects. Call a C-object A

componented if it is isomorphic to a coproduct of a

finite number of connected objects, and let CQO be the

full subcategory of L generated by componented objects,

For the sake of simplicity, we shall also assume that C

has an initial object A and adopt the convention that

O )

A, is the coproduct of the empty family of objects from

0

D, so that AO is considered componented. (Of course,

we also take the viewpoint that the coproduct of a
singleton set of C-objects is the single member of that
set, so that D is a subcategory of C0.)

Note that the definition of connectedness
establishes a natural equivalence between
ClA, B, w B,] and C[A, B,] \/ C[A, B,] for all

D-objects A and pairs (B,, B2) of C-objects. One can
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easily show by induction that, for any B-object A and

any n-tuple (BT’ B ooy Bn) of C-objects, this extends

2°°

to a natural equivalence between

clA, B, u B 1,

.U Bn] and ClA, BT] \/...\/ ClA, Bn

1 2 M-

determined by the natural injections ' (j = 1,..., n)

of each Bj into the coproduct.

Proposition (t,2}: Let C, D, and CO be as above. The

representation of a componented object B in ob CQO as a
coproduct is unigue in the following sense:

If B is isomorphic to both A1 u A2 ool Am and
B1 u B2 Deool Bn’ where the Ai and the Bj are connected
objects, then m = n and there is a one-one

correspondence A, |+ B_ ., such that A, and B_, ., are
i g(i) i g(i)

isomorphic in C.

Proof: Let W be the inherited connection from D to CO;
i.e., W[A, B] = C[A, B] for A in ob D and B in ob (O,
with the obvious compositions. Note that for all
CO-objects B, MWl~-, B] is S-representable in D since, if
B is isomorphic to A1 i A2 Heooll Am’ then W[-, Bl is
naturally equivalent to D[-, A1] \/...\/ Dl[-, Am].

Now, invoking the unigueness of S-representability

establishes the result. QED

We shall call the connected objects (unique in the

above sense) which under the coproduct operation make
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up a componented object B, the components of B.

In the proof of the above proposition, it was
established that the connection W is S-realizable on
the right. Let (X, F) be its right S-realization.
Since (X, F) is clearly finitary, we have (X, F) as a
functor from CO to N(D). On the other hand, W is
certainly realizable on the left, its left realization
being simply the inclusion functor of D in £0; thus,

(X, F) is a right S-adjoint,

Proposition (%1.3): Let £, D, CQO, and

(X, F): CO + N(D) be as above. Then (X, F) is an

equivalence of CO with N(D).

Proof: If (Y, A) is an S(D)-object, let u(Y, A) denote
the coproduct of the elements A(y) as y varies over Y.
"This extends to a functor u: N(D) » CO. (In fact, the
functor u so defined is the left realization of the
connection ¥ = V(N(D), CO) defined by letting

VIL(Y, A), B] be the family of functions T which assign
to each y in Y a C~morphism Ty: A(y) - B, together with
the obvious composition laws. So defined, V[(Y, A), BJ
is in fact the cartesian product of the morphism sets
ClA(y), Bl, and since pu is a coproduct in C,

vi(y, A), -1 is naturally equivalent to C[u(Y, A), -1.)

It is not hard to see that ((X, F) o pul)(Y, A) is



naturally isomorphic to (Y, A), since p(Y, A} is the
coproduct of connected objects, and (X, F) analyzes a
componented object into its connected components. On
the other hand, (pu o (X, F))(B) is clearly isomorphic
to B. The required equivalence follows from these

facts. QED

If in fact £ = CO, we shall call C a componented

category. That is, a componented category is a
category C in which every object is isomorphic to a
coproduct of connected objects. We have just seen that
a componented category is equivalent to the category
N(D), where D is the full subcategory of L generated by
connected objects.

(A note on the proof: We assumed that C had an
initial object, which we regarded as being componented.
This was necessary in order that the functor
p: N(D}) + CO could be defined on all of N(D), since
N{D) contains the "empty indexing" as an object. This
gets mapped by u into the initial object of (CO. orf
course, if £ does not have an initial obJject, CO would

still be equivalent to N(D) minus the empty indexing.)

The simplest example of a componented category is N
itself, the connected objects being the singleton sets.
On the other hand, N(D) is of course componented for

any category D, the connected objects being the objects



indexed by singleton sets; i.e., essentially D itself,

The principal reason for introducing the notion of
a componented category is to establish the relationship
between the ideas developed in this thesis and those
found in earlier work of W. Burnside and (especially)
L. Lovasz. To do so succinctly, however, we require

yet another concept:

Let C be a skeletally small category equipped with
a commutative and associative operation ; that is, a
functor @: C x C » C such that the associated functors
(), @ (-),) @ (-)5 and (=), @ ((=), @ (-)3) from
C x £ x £ to € (where the subscripts indicate which
factor is being operated on by the operation) are
naturally equivalent (associativity), and the functors
(-)16 (-)2 = and (-)2@ (—)1 from C x L to C are
alsc naturally equivalent (commutativity).

Then the Grothendiek group of the pair (C,@®) is
defined as an (additive) abelian group GG(C,®)
equipped with a map b: ob C + GG(C,@®) such that:

a) b(A1) = b(Az) if A, and A, are isomorphic in C,

b) b(A1$ A,) = b(A,) + b(A,) for all C-objects 4,

and A2,
¢) the function b: ob C =+ GG(QJGB) is universal
with respect to properties (a) and (b) above. That is

if b': ob L » G (where G is an additive abelian group)



is a function satifying (a) and (b) above, then there
is a unique group homomorphism h: GG(Q,@B) + G such

that b' = h o b.

It is easy to show from the universal property (c)
above that the Grothendiek group of a pair (C,@®) is
essentially unique. It is also true that given any
pair (C,@ ) as described above, one can construct a
Grothendiek group for it.

In many applications, in addition to the operation
@ as described above, C has a second commutative and
associative operation@: C x £ » £, which distributes
over@; that is, the functors (—)1 ® ((--)2 @(-)3) and
(-2, XD (-3, @((—)1 ®(—)3) from C x C x C to C are
naturally equivalent. In that case, if GG(C,&) is the
Grothendiek group of the pair (C,@), then it is not
hard to show that it can be equipped with a
multiplication '°' making it into a commutative ring,
and such that b(A, @ A,) = b(&,) * b(A,) for all
C-objects A1 and A2. When that is the case, we shall
call the ring (equipped with the function b) the
Grothendiek ring of the triple (C,®,®), and denote it
by GR(C,® ,®).

The reader will no doubt notice the similarity
between the universal map b of a Grothendiek group

GG(C,&) and the angle bracket function <-> from ob

S(D) to Z(D) (where D is a skeletal set for D)



introduced in the proof of proposition (4.9). 1In fact,

we have the following proposition:

Proposition (1.4): Let D be a skeletally small

category with skeletal set D. Consider the pair
(N(D), \/), where \/ is the disjoint union operation
(coproduct) on N(D). Then the free Z-module Z(D),
together with the bracket function <-> from ob S(D) to
Z(D) (as defined in the proof of (4.9)), is the

Grothendiek group of (N(D), \/).

Proof: We must show that the bracket function has the
required universal property. Thus, let b: ob N(D) + G
be any function from ob N(D) to an additive abelian
group G satisfying properties (a) and (b) in the
definition of a Grothendiek group.

As usual, we regard D as a subcategory of N(D), and
hence D as a subset of ob N(D). Thus, b is defined on
D. If there exists a map h: Z(D) = G such that
h o <=> = b, then we must have that h(Ai) = b(Ai) for
all Ai in D, since <Ai> = Ai by definition., But then,
the assignment Ai |- b(Ai) already defines a unique map
h: Z(D) » G since the A, form a basis for Z(D). It is

trivial to show that indeed h o <-> = b, QED

It is not hard to see that equivalent categories

have isomorphic Grothendiek groups. Thus, we have the
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following immediate corollary:

Proposition (1.5): Let C be a (skeletally small)

componented category, D the full subcategory generated
by the connected objects in C, and (X, F): C + S(D) the
equivalence which assigns to each A in ob C the indexed
family of its connected components. Let D be a

skeletal set for D. Then Z(D), equipped with the

function b: ob C » Z(D) defined by:

(1.6) b(A) = <(X(A), F(A))>,

is the Grothendiek group of the pair (C, u).

Clearly, by its equivalence with N(D), a
componented category £ has a product 7 if and only if
the subcategory D (generated by the connected objects)
has an S-product. In that case, the product must then
also distribute over the coproduct (since it does so0 in
S(D)), and then the Grothendiek ring of the triple
(C, u, m) is simply Z(D) equipped with the

multiplication derived from the S-product in D.

Now, let us continue with the situation as above
(i.e., a componented category C, a subcategory D of

connected objects, etc.), but additionally suppose that

H
7y
(6)]



£ is finitary. (Note that C is finitary if and only if
D is finitary.) Also let D = {Ai : i e I} be a
skeletal set for D, and d: Z(D) - ZD be the usual right
linearization. Then, clearly the composition gi o b,
mapping ob C into ZC, can be defined directly by the

formula:

(1.7) ' (gi o bY(A) = #_C_[Ai, Al,

for all A in ob C and Ai in D.

Note that if d is faithful (for example, if D has a
finitary right factorization (M, D') in which D
consists entirely of epimorphisms, and the class of
subobjects of a D-object is finite) then we have the
following result:

If {Ai : 1 e I} is a set of representatives of the
connected objects in C, then two C-objects B1 and B2
are isomorphic in C if and only if #Q[BT, Ai] is equal

to #Q[BZ, Ai] for all i in I.

With these remarks in mind, we can now turn to the

examples we have in mind:

The Burnside Ring: If X is a set, let P(X) denote the

group of all permutations of X; i.e., P(X) is the

symmetric group on X.
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Now let G be a finite group. By an action of G on
a set X we mean a group homomorphism a: G > P(X),
g |- ég' If a and b are actions of the group G on the

sets X and Y respectively, then call a map f: X » ¥ an

intertwining map from a to b if f o gg = Qg o f for all

b o f o a 1 for all g in
g g

g in G (or equivalently, f
G).

The class of actions of G on finite sets, together
with intertwining maps as morphisms, forms a category
which we shall denote by B(G).

The category B(G) inherits the operations of
cartesian product and disjoint union from N. The

catesian product x and disjoint union \/ (as the

product and coproduct in N), extend to functors from

N x N to N, and thus 2 x b and a \/ b are simply
defined by setting (a x g)g = gg X Qg and
(a \/ b)) =a \/ b_ for all g in G.

g g g

It is easy to show that x and \/ are the product
and coproduct in B(G), respectively, and of course x
still distributes over \/,. It is also clear that B(G)
is finitary. The Grothendiek group of the triple
(B(GY, \/, x) has been christened the Burnside ring of
G by L. Solomon in [S], in honor of Burnside's work on

the subject (viz. [Bl1).

An action a of G on a set X is called transitive
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if, for any x and y in X, there is an element g in G
such that gg(x) = y. It can be shown that every action
of G on a finite set X is isomorphic to a disjoint
union of a finite number of transitive actions. More
precisely, an action a of G on a set X determines a
partition of X into orbits of the action (two elements
x and y in X being in the same orbit if there exists a
g in G such that gg(x) = y), and each orbit determines
a corresponding transitive action of G; then a is

naturally isomorphic to the disjoint union of these

transitive actions. They are called the transitive

components of a. 1t is easy to see, in fact, that the

transitive actions of G are the connected objects in
B(G). Thus, B(G) is a componented category.

If H is a subgroup of G, let G/H denote the family
{gH : g € G} of left cosets of H in G. Then there is a
natural action @H of G on G/H via left multiplication.
This action is clearly transitive. In fact, it is not
hard to prove that every transitive action a of G is
isomorphic to an action @H for some subgroup H of G,
One can construct such an isomorphism as follows:
Suppose a is a transitive action on the set X. Pick a
point x in X, and let H be the subgroup of all g in G
that fix x; i.e., H is defined as

H={g G : a (x) = x}.

We shall call H the isotropy subgroup of x under the




action a. Now define f: X - G/H by writing

f(y) = gH if ég(x) = y.
It is not hard to show that f is well-defined by this
prescription (i.e., independent of the choice of g in
the above equation), and that f is in fact a
B(G)-isomorphism.

In the case of the action gH of G on G/H, it is
easy to see that the isotropy group of the coset H in
G/H is simply H (now considered as a group rather than
a point). More generally, the isotropy group of the
coset gH is the conjugate gHg"1 of H. Thus, if H and K
are conjugate in G, then QH and gK are isomorphic as
actions of G. We can conclude, then, that there are
only a finite number of transitive actions of G, up to
isomorphism, and these are given by selecting one
representative H out of each conjugacy class of
subgroups of G, and taking the corresponding action gH.

The structure of the Burnside ring is now clear,
Let D be the subcategory of B(G) generated by
transitive (i.e., connected) actions. A skeletal set
for D can then be chosen by first choosing a set
W = {H

H ceny Hr} of subgroups Hi of G that selects

17 T2

precisely one representative out of each conjugacy

class of subgroups of G, and then forming the skeletal

) ) ) ]
set D = {g(1’ g(Z/,..., g(r’}, where @(l) is the

1

action of G on G/Hi' Then the Burnside ring can be

taken as Z(D), together with the multiplication derived



from the S-product in D. (Note that D has only an
S-product in general, since the product of two
transitive actions may well not be transitive,. In
fact, it can be shown that the transitive components of
the product @H x @K are in a one-one correspondence

with the distinct double cosets HgK of H and K in G.)

The universal map b: ob B(G) + B(G) is thus defined by:
b(a) = § r(ida
i

where r(i) is the number of transitive components of a
isomorphic to g(l).

All these results are essentially contained in

{B]; Burnside also proved the following result:

Let W be as above. For any action a of G on a set
X, define the function m(a): W » Z Dby:

(m(_a_))(Hi) = #{x ¢ X : g_g(x) = x for all g in Hi},
the number of points in X that Hi leaves fixed.

(Burnside calls the quantity (m(@))(Hi) the mark of H

in the action a.) Then two actions a and b of G are

isomorphic if and only if m(a) = m(b).

In order to see the connection between this result
and the ideas we have developed in this section, it is
only necessary to prove the following simple

proposition:
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Proposition (1.6): Let a be a transitive action of G

on the set X, choose a point x in X, and let H be the
isotropy subgroup of x under the action a. Then, if b
is any other action of G on a set Y, the intertwining
maps from a to b are in a one-one correspondence with
the points y in Y that are left fixed by H under the

action b.

Proof: 1In the first place, given an intertwining map f
from a to b, it is easy to see that f(x) is left fixed

by H under b, since for g in H we have that

f(x),

b (f(x)) = f(a_(x))
g( ( 8
On the other hand, suppose y in Y is left fixed by H
under b, Then the assignment x |+ y extends to a
unique intertwining map f from X to Y defined by
setting, for any x' in X,

f(x") = b (y) if x' = a (x).

g g

Again, it is easy to show that f is well-defined and is

an intertwining map. QED

Thus, we can now see that for any action a of G,
(m(a))(H,) is simply the number of intertwining maps
to a; that is, #ﬁ(g)[g(i), al. The function
m(a) is, for all practical purposes, d(b(a)), where of
course d is the right linearization of D.

One recovers Burnside's result by noting that mor D

consists only of epimorphisms, (an intertwining map




from one transitive action to another is necessarily

surjective) and therefore d must be faithful.

Before we leave this example, we will look at one
more representation of the Burnside ring:

Let L(G) be the lattice of subgroups of G, and form
the free Z-module Z(L(G)). We can make Z(L(G)) into a
commutative ring by using the meet operation, A, in
L(G) to define a multiplication on basis elements, and
then extend to all of Z(L(G)) by linearity. Denote
this ring by Z<KL(G),A >.

For any action a of G on a set X, define the

element w(a) in Z<KL(G), A > by means of the formula:
(1.7) w(a) = | I(a, x),
X

where I(a, x) denotes the isotropy group of x under the
action a, and the summation is over all x in X. By
definition, it is clear that w(a \/ b) = w(a) + w(b).
On the other hand, it is easy to show that, for actions
a and b of G on sets X and Y respectively,

I(a x b, (x,y)) = I(a, x) A I(b, vy,

o
N

for all (x,y) in X x Y; whence it follows that w(a x
= w(a) ° w(b) in Z<L(G), A >.

By the universal property of the map
b: ob B(G) » B(G), w must factor through b and

determine a corresponding ring homomorphism w from B(G)

to Z<KL(G), A >. This homomorphism is faithful:



Under w, the basis element a(l) of B(G) is mapped

into w(@(i)), which it is easy to see is simply a
multiple of the sum of the conjugates of Hi' But since
Hi is not conjugate to Hj for i # j, these sums are
clearly "non-overlapping" and hence linearly
independent in Z(L(G)). It follows that w is faithful.

We shall have more to say about this representation
of B(G) in a later section of this chapter. Now,

however, we shall turn to another class of examples of

componented categories.

Relational structures: For this example, we look at

some of the ideas developed by L. Lovasz in [L1].

If A is a finite set, let x (A) denote the
cartesian product of A with itself n times. An element
x in x"(A) can be written as a n-tuple:

x = (x(1),x(2),...,x(n)),
or alternatively, we may regard X as a function from
the set An = {1,2,...,n} to &, with x(i) denoting the
value of x at the point i in An' Taking this latter
viewpoint, we see that (A is simply the set
N[A , A]l, and therefore the Y“operator™® «% can be
identified with the (covariant) set-valued functor

-J on N, In particular, if f is a mapping from

the set A to the set B, we have the corresponding
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mapping x"(f): x™(A) » x™(B), under which an element x
in x"(A) simply goes to f o x = (£(x(1)),...,f(x(n))).

An n-ary relation on the set A is simply any subset
R of xn(A). In the most general terms, a relational
structure is a set A equipped with a family of
relations (of varying "arities"); however, for the sake
of simplicity we shall restrict ourselves here to sets
equipped with a single n-ary relation., Thus,
specifically, by an (n-ary) relational structure B we
shall mean a pair B = (V(B), R(B)) in which V = V(B)
is a finite set and R = R(B) is a subset of x (V).
Given two n-ary relational structures B1 and B2, by a
structure-preserving map from B1 to B2 we shall mean a
map £: V(B,) » V(B,) such that (x (f£))(R(B,)) is

contained in R(Bz). It is readily seen that n-ary
relational structures and structure preserving maps
form a category we shall denote by L(n). Clearly, L(n)

is finitary.

The category L{(n) inherits the operations of
cartesian product and disjoint union from N in the
following manner:

In the first place, given finite sets A and B, we
see that x"(A4) and x"(B) can be identified in a natural
way with subsets of x"(A \/ B); we simply identify an
element x in x(A) with the element i, o X =

))(x) of x"(& \/ B), where 1, is the natural

! 1

1
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injection of A into A \/ B, and similarly identify an
element y of x"(B) with 1, o y. With this
understanding, if R1 and R2 are n-ary relations on A
and B respectively, then R, \/ R2 (denoting the union
of (x"(1,2)(Ry) and (x"(1,))(R}) in x"(4 \/ B)) can be
simply thought of as the union of R1 and RZ'

Thus, the disjoint union of two L(n)-objects B1 and

B denoted by B, \/ B

2’ 1 2’
(V(B1) \/ V(B2), R(B1) \/ R(BZ)). It is not hard to

is simply defined as the pair

establish that \/, so defined on L(n), is the coproduct
in that category.

The cartesian product of two n-ary relational
structures is defined in even a more natural manner;
since x i1s the product in N, it follows that
«(a x B) = ﬁ[An, A x B] is naturally isomorphic to
(x(A)) x («™(B)). Given x in x"(A) and y in x"(B),
the product X x y is simply defined in the standard
manner by the equation:

(x x y)(i) = (x(i), y(i)).

Thus, given n-ary relations R1 and R2 on A and B
respectively, we define a new n-ary relation R1 ° R2 on
A x B by:

Ry * R, = {x xy : x ¢ Ry» ¥ € RZ}‘
Then, the cartesian product of two relational
59 denoted by B1 x BZ’ is defined as
the pair (V(B1> x V(BT)’ R(B1) . R(BZ))' It can be

structures B1 and B

shown to be the product in the category L(n).



The cartesian product in L(n) distributes over the
disjoint union, a property also inherited from N.
Consequently, we can form the Grothendiek ring of the

triple (L(n), \/, x); we shall denote it by L(n).

The category L{(n) is componented. In it, an object
B is connected if an only if it is not possible to

divide V(B) into two non-empty subsets V, and V, such

1
that R(B) is equal to the union of R(B) N xn(V1) and
R(BY M x"(V,). If this is possible, then it is not
hard to show that B is isomorphic to the disjoint union
of the structures (VT’ R(B) N\ xn(VT)) and

(v R(B) @ x™(V2)), and then, by progressive

2 3
refinement in this manner, one can show that every

n-ary structure is isomorphic to a disjoint union of (a

finite number of) connected structures.

Let D be the full subcategory of L(n) generated by
the connected structures, and let D = {Bi : i e I} be a
skeletal set for D. One of Lovasz's principal results

in [L] is the following:

Two n-ary relational structures B and B' are
isomorphic in L(n) if and only if:
#L(n)[Bi, Bl = #Q(n)[Bi, B']

for all i in I.
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Of course, from our vantage point we recognize that
this result is eqguivalent to the faithfulness of the
right linearization d: Z(D) = ZD of D. And to show
that d is faithful, it suffices to show that D has a
finitary right factorization (M, D') in which mor D'
consists only of epimorphisms. (The invertability of
the Z-homomorphism m corresponding to such a
factorization follows easily from the fact that any
L(n)-object clearly has only a finite number of
subobjects.)

In fact, it is not hard to show that one obtains
such a factorization if one lets M be the class of all
relation-preserving maps which (considered as maps in
N) are injective, and lets D' be the subcategory whose

morphisms are surjective relation-preserving maps

f: B -~ B' such that (x“(f£))(R(B)) = R(B').

¥ % ¥
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2. Finite vector spaces:

We begin by establishing some notation:

F = GF(qg) = the finite (Galois) field with g (a
prime power) elements.

X = category of finite-dimensional F-vector spaces
and F-linear transformations.

Cq(i,j) = the number of j-dimensional subspaces in
an i-dimensional F-vector space.

Pq(i,j) = number of injective linear
transformations from an j-dimensional F-vector space to
an i-dimensional space.

Aq(i) = number of F-linear automorphisms of an

i-dimensional F-vector space.

MW = category of F-vector spaces and injective
linear transformations; M = mor MW.

EW = category of F-vector spaces and surjective
linear transformations; E = mor EW.

W = {VO, Var Voueen, Vn,...} is a skeletal set for
W, with Vn being a n-dimensional space. Of course W is

also a skeletal set for MW and EW,.

Define the polynomial (X)(q a) € Z[x] by means of

[} 7

the formula:
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() (g my = x(x-(q-1))(x-(q%=1)).. . (x-(q" o)),

9 &2/

Finally, define the quantity {(nlg) Dby the

equations:

n—l_ n-2

n
(g =-1)(g 1Y {(q -1)...(g=-1),

(ntq)

(0tg) = 1,

The direct sum operation,@, is both a product and
coproduct in ¥. Additionally, we have the "dual space"
functor W * W which assigns to any F-vector space V the
dual vector space V¥ (consisting of all linear maps
from V to F, with pointwise operations),. If f: U >~V
is a W-morphism, then we have its dual f¥: Vie > Uﬁ
defined by fﬁ(w) = w 0 f for all w ¢ V*. The functor
()* so defined is, as is well-known, a dual equivalence
(i.,e., a contravariant functor that is also an
equivalence.) Specifically, ()%2 is naturally
equivalent to the identity functor on ¥. The functor
()% of course preserves the direct sum; it can be
regarded as mapping the product on W into the
coproduct, or vice-versa,. It also takes any injective
linear map into a surjective linear map, and any
surjective linear map into a injective linear map.
Consequently, it also defines a dual equivalence
between MW and EW.

These facts allow us to establish some elementary

facts about the quantities defined above. Define,
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temporarily, the quantities Pé(i,j) as the number of
surjective linear maps from an i-dimensional to a
j-dimensional space, and C&(i,j) as the number of
j-dimensional quotient spaces of an i-dimensional
space., Of course, there is a one-one correspondence
between subspaces V'&V of an i-dimensional space and
its quotient spaces V/V'; under this correspondence, a
j-dimensional subspace corresponds to an
(i=j)-dimensional quotient space. Thus, we immediately
deduce that Cq(i,j) = Cé(i,i-j). On the other hand,
through the dual equivalence of EW and MW under ()% it
is easy to show that Pq(i,j) = Pé(i,j). Finally, since
every injective linear map f: V' > V can be decomposed
uniquely as an isomorphism of V' with its image £(V')
followed by an inclusion, and every surjective linear
map g: V * V' can be decomposed uniquely as the natural
projection of V onto the quotient V/Ker(g) (where
Ker(g) is the kernel of g) followed by an isomorphism
of the quotient with V', one can see that Pq(i,j) =
Aq(j)Cq(i,j) and Pé(i,j) = Aq(j)Cé(i,j). Thus, we

derive the following facts:

Cq(i,j) = Cq(i,i—j) is both the number of
j-dimensional subspaces of an i-dimensional space, and
the number j-dimensional quotient space of an

i-dimensional space,



i,3)Y = A (j)C (i,3) = #MWIv.,, V.] = #EW[V., V.].
Pq(l,J q(J) q(l J #MUWL i 1] #EWI[ 5 J]

Under the dual equivalence of W with itself, we see
that the right and left linearizations of W, Z<W, K>
%
and Z<W, W > are not only isomorphic, but identicalj;
indeed:
W (V) = w. (V.) = #W[V., V.] = #uW[V., V.1 = qiJ
it g i J’ i’ J =3’ i !
since by choosing bases for the vector spaces we can
establish a one one correspondence between linear maps
Vi -+ Vj and i-by-J matrices with entries from F. The
multiplication derived from the product (or
coproduct) is easily seen to be given by
A, = A, = A, .,
i J i+ ]
whence one concludes that Z<W, W> is isomorphic to the

polynomial ring Z[x], with Ai corresponding to xl, and

the map M, Z<W,¥W> + Z corresponding to evaluation at

Clearly (M,EW) forms a finitary right factorization
of W, just as (MW,E) forms a finitary left
factorization. Thus, EW inherits a finitary S-product
from W, while MW inherits a finitary S-coproduct.
Indeed, since the two categories are dually equivalent
under ()%, the S-product in EW and the S-coproduct
in MW correspond under ()%. In fact one easily
verifies that the rings Z<W, EW> and Z<W, M§> are
identical, Even the ring homomorphisms

# *
Z<W, W> » Z<W, E¥Y> and Z<W, W > » Z<W, MW > derived
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from the respective factorizations are identical, being

given in each case on basis elements by the formula:

1 \ - ‘* . . \
(2.1) L(Ai, ) Cq(l,J,Aj.
J
From the standard commutative triangle, we have
that ﬂk = g_k o t, which when applied to Ai and
expanded via (2.1) yields the identity:

(2.2) = Y c (1,5)0P (k,3).
L % q

(Of course gﬂk(Aj) = #Eﬂ[Ak, Aj] = Pq(k,j).)

We now wish to exploit the multiplication in
Z<W, EW> derived from the S-product, or, equivalently,
the multiplication in Z<W, Mﬂ%> derived from the
S-coproduct. We take the latter viewpoint since it
seems considerably easier to visualize what the
S~coproduct looks like.

For U, V € ob W, let Ly and 12 denote the natural
injections of U and V respectively into their direct

sum U @& V, and m, and 7w, denote the natural projections

1 2
of U@ V onto U and V respectively. (As a set, U@ V

is simply the cartesian product U x V.) Let (U, V)
denote the family of subspaces B of U@ V such that

1 o n, and 1 are both injective maps, where

1 B 1 B
U@® VvV » (U@ V)/B is the natural map onto the

o}

nB.
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indicated quotient space. By (the dual of) proposition
(3.170) of chapter II, we know that the family of
quotients spaces {(U@ V)/B : B ¢ @(U,V)} defines the

S~coproduct in MW.

Proposition (2.3): Let B be any subspace of the direct

sum U@ V. Then B is an element of 9(U, V) if and only
if B is the graph of a linear isomorphism from a

subspace B, of U to a linear subspace B2 of V.,

1
Proof: First of all note that (identifying U and V
with their images U @0 and 0 @ V under the natural
injections 1 and LPW respectively) the kernels of

1

1 o n, and 1 0 n respectively, are the subspaces

1 B 2 B’
U@O0ON B and 0 @V N B, respectively. Thus, B is an
element of Q(U, V) if and only if both these
intersections are zero,

Also note that the graph of a linear isomorphisnm
from a subspace of U to a subspace of V is indeed a
linear subspace of s @ v. It is also immediate that
the intersections of a subspace with U@ 0 and 0@ V

are both zero. Thus, such a graph is an element of

2(A, B).

Conversely, suppose B is an element of Q(A, B).
Let B1 = ﬂ1(B) and B2 = nZ(B). Clearly, B is a

subdirect subspace of B1€B By; i.e., if (u,v) is an
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element of B, then u ¢ B1 and v ¢ B2. We claim, that

for every element u in B1, there is a unique element v

in B2 such that (u,v) is in B. First of all, if u = 0,

then v must also be zero, since if we have (0,v) in B

with v # 0, then v is a non-zero element of BA 0 @ V,

a contradiction. Now, if (u,v,) and (u,v2) are two
elements of B, then (u,v1) - (u,vz) = (0, vy - V2) is
also in B, whence v, - v2 = 0 and v1 = v2, as was to be

shown. Thus, B is the graph of a function fron B1 to

B which it is easy to show is a linear map. But we

2 A
can also apply the same reasoning on the right hand

side of B to show that each v in B2 determines a unique
u in BT‘ Thus it is the graph of a linear isomorphism.

QED

)

Now let gk(vi, vj, be the subset of Q(Vi, vj)
consisting of subspaces B of dimension k. Since each
such B is the graph of a linear isomorphism from a
subspace B, of Vi to a linear subspace B2 of Vj’ it is

1
clear that B1 and B2 also have dimension k.
Consequently, we deduce that
#a, (V. Vj) = Cq(i,k)Cq(j,k)A(k),
since there are Cq(i,k) ways of choosing a
k-dimensional subspace of Vi’ Cq(j,k) ways of choosing
a k-dimensional subspace of Vj’ and A(k) linear

isomorphisms between two k-dimensional spaces.

Now, if we write the multiplication derived from
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the S~-coproduct in Z<W, Mﬂ*> as follows:
) ° = v 3 3 . Y
(2.4) v vV, ) Pq(l,J,m,Vm,
m
then the above reasoning shows that rq(i,j;i+j—k) is
equal to Cq(i,k)Cq(j,k)Aq(k), since it is c¢lear that

the dimension of (Vi® VJ.)/B is i+ j - k for B in

Qk(Vi, Vj). Then, the substitutions m = i + j - k and
k = i+ j - m at once yield the following formula for
rq(i,j;m):

(2.5) r (i,j;m) = C (i,i+j-m)C (j,i+j-m)A (i+j-m).
q Js g J q Jyi+] q j-m)

Of course by duality, this is also the multiplication
in Z<W, EW>.

We can now establish a multiplicative identity for
the quantities Pq(i,k) by simply applying ew, to
equation (2.4):

(2.6 P (k,i)P (k,j) = ¥V r (i,j;m)P (k,m)
q q 10T oL Tt difie,

It is clear that VO is the identity of this ring;
thus we shall generally denote it by ?'. On the other
hand, multiplication by V, is easy to write down, since

v

, has only two subspaces, namely 0 and itself. Thus,
we deduce the equation:
V, ° V., =V + (qi—l\V

1 i i+1 i

since the elements of Q(V1, Vi) are the zero subspace
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(which gives us the direct sum ViGB vV, =V , and the

)
i+’
graphs of the linear injections of V1 into Vi (which
are in a one-one correspondence with the ql—T non-zero

elements of Vi). From this equation we get:

V. = V, o (V

- -13))
i+ 1 i 1 (q;-1)),

whence it is easy to show by induction that:

(2.7) v —(q" T

Ve o (V,=Ca=1)) =...o(V

n 1 1

= )
= (V‘*/(q,n,)’

where (VY)(q n) of course means the evaluation of the
y

polynomial (X)(q n) in Z<W, EW> at x = A By standard

1°

)
arguments, we can then conclude that the ring

homomorphism from Z[x] to Z<W, EW> defined by the map
x |+ A

, 1is a ring isomorphism under which Vn

corresponds to the polynomial (x) .
(q,n)
%
Now, since ew = mw oG Z{W) » Z is a ring
homomorphism when Z(W) is given the multiplication of
% %
Z<W, BW> = Z<W, MW >, and mu (v1) = #Mﬂ[vT, Vn]
= g -1 = Pq(n,?), we get the following equations by

applying this map to (2.7):

& n
\ - -
(2.8) Pq(n,k) me (A ) = (g 1)(q,k)

(q"=1)(q"-q) (q"=q?)...(g"=g5 1)

-1)
= qk(k }’/2(n!q)/(n—k!q),

187




where the last expression is obtained by factoring out
of each bracket in the preceding line the highest power
of q possible (we of course assume n > k), and
collecting them in the factor qk(k_T)/z.

Now, it is clear that Aq(k) = Pq(k,k), and
therefore we have:

-1)
GKCR=1272 04 01

sy

) =
(2.9) Aq(k/
and, since P (n,k) = C (n,k)A (k), we get:
q q q
(2.10) Cq(n,k) = (ntq)/{(ktqg)((n-k)!qg)}.

Of course this is highly reminiscent of the standard
equation for the binomial coefficient C{(n,k). The
guantity (n!qg) was so defined to bring out this
analogy. Notice how the equation Cq(n,k) = Cq(n,n—k)
is now displayed in the symmetry in n and n-% of the

expression.

The fact that the multiplication in Z<W, W> is

given by Vi o vV where p(i,J) = i+j, allows

. =V .
J p(i,J?
us to appply equation (1.18) of chapter I:

t(p(i,3)Y,m) = 7 t(i,k)t(j,n)r(k,n;m),
k,n

which in the present contexi becomes:



(2.11) Cq(i+j,m) = 7 Cq(i,k)Cq(j,n)rq(k,n;m).
k,n

This last equation can be regarded as a
generalization of the recursion formula for the
quantity Cq(i,m). To see this let j equal 1 in the
above formula, and use the fact that Cq(1,n) = 0 except
for n = 0 and n = 1, in which cases it has the value 1,
Thus, (2.11) then becomes:

Cq(i+1,m) = z Cq(i,k)rq(k,o;m) + E cq(i,k)rq(k,1;m).

Now, keeping in mind that the quantities rq(k,o;m)

correspond to the multiplication of VO = 1 and Vk’ we
see that rq(k,O;m) = 0 except when k equals m, and in
that case, we have Pq(m,o;m) = 1. Similarly, the

quantities Pq(k,?;m) derive from the multiplication of
. k
Vk and V1, but since V1 Vk = Vk+1 + (q —T)Vk, we
deduce that Pq(k,T;m) = 0 except for k = m and k = m-1,
In those cases, we have
r {m=1,17:m) = 1 and r (m,1;m) = -1,
q y 13 q H a

Substituting these values in the above expression, we

get the recursion:

) o m .
(2.12) Cq(1+1,m) = Cq(l,m-T) + q Cq(l,m).

Finally, let us consider the inverse of the
transformation £ defined by (2.1). Of course, t is a
ring homomorphism from Z<W, W> to Z<W, EW>. Let us

then define the quantities Dq(m,k) by means of the
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equation:

.
~ y = 7
(2.12) £ (Vm’ = ﬁ Dq(m,k)Vk.

We wish to find a more explicit description of L—T.
Thus, define the transformation s: Z(W) » Z{(W) on basis
elements by means of the equation:

m),

(2.13) sV ) = (V,=1) ¢ (V. =q) =...° (V -q
where the multiplication is that of Z<W, H>. Now, if
one calculates (Lt o §)(Vm), using the fact that 1 is a
ring homomorphism and that £(1) = 1 and L(VT) = V1 + 1,

we get (V1)( but with the multiplication now in

q,m)
Z<W, EW>, in which it is equal to Vm. Thus we conclude
that s so defined is the inverse of t, and, recalling

the isomorphism of Z<W, ¥W> with Z[x], we may assert

in the expansion

that Dq(m,k) is the coefficient of X

of the polynomial (x=1)(x-q)...(x-q").

¥ E%
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3., Epimorphic and monomorphic categories:

By an epimorphic category we simply mean one all of

whose morphisms are epimorphisms, Similarly, call a
category monomorphic if all of its morphisms are
monomorphisms. (Following this line, we might as well
call a category bimorphic if it is both epimorphic amd
monomorphic; i.e., i1f all of its morphisms are
bimorphisms.)

Epimorphic and monomorphic categories are of some
interest, not only in their own right, but also because
it is not unusual for them to appear as right or left
factors of a given category. Consequently in this
section we shall make a modest study of them, and then

see what our results look 1ike in a few applications.,

Let C be an epimorphic category. Then it always
has the following left factorization:

Take D to be the subcategory of £ having the same
object class as C, but whose morphisms are

L-isomorphisms. We can call D the isomorphism

subcategory of C. Now, if we set E = mor C, it is not

hard to see that (D,E) forms a left factorization of C.
It is interesting to note that D has both
S-products and S-coproducts (the two being basically

the same in this case):
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Proposition (3.1): Let D be a category all of whose

morphisms are isomorphisms. Then D has both an
S-product and an S-coproduct. Specifically, the
S-product can be defined by:

A, ™ A_ = @ if Q[A1, A2] = @,

A, ™ A, = {A f € Q[A1, AZ]} where we set A, = A

f £ 1

for all f € Q[A1, AT,

2
(The S-coproduct can be defined in exactly the same

way, except that it is more convenient to take Af = A2

for all f ¢ D[A1’ A 1)

2

] = ¢ (i.e., A, and &, are

Proof: Clearly if D[A,, A 1 5

2
not isomorphic), then D[-, A1] x D[-, A2] is the empty

functor on D since for all A ¢ ob D at least one of
D[4, A1] or D[4, Az] must be empty.

Now suppose that Q[A1, A2] is non-empty; i.e., A,

and A2 are isomorphic. For each f & Q[AT’ A2], define

the "natural projections" Wf: Af = A1 > A, and
f

. f . . f
™ % -+ T = T = .
o A1 A2 by setting 1 identity on AQ, and 5 f

Then the family of pairs (“f,ﬂg) defines
(component~-wise) a natural transformation
N \/f bl-, a1 , D[-, A, 1
It is not hard to see that , is a natural
equivalence. Indeed, for (gl, gz) in the cartesian

.1 x R[A, A2] it is easy to see that

where [ = g2 o g]—l, and
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that this is the unique f Q[A1, A2] with this
property.

The proof regarding S-coproducts is similar. QED

Now let us further assume that € is finitary, with
a skeletal set C = {Ai O . I}, and that the left
factorization (D,E) is finitary. If (D,E) is finitary,
then any C-object can have only a finite number of
quotient objects in C. Consequently, if e: Z(C) , z(C)
is the Z-linear map corresponding to (D,E), then by
(the dual of) proposition (3.16) of chapter II, e must
be invertible,

Let us define the quantity B(i,j) as the
cardinality of Q[Ai, Aj]’ and A(Jj) as the cardinality

of Q[Aj, Aj] (= D[A A.l, the automorphism group of A,

J' 73 J
in C). We also have & defined by the equation
v ;s
(3.2) Q(Ai) = L e(l,J)Aj,

where e(i,j) is equal to the number of times that Aj
represents a subobject of Ai in C. We can easily see

that we have the equation:

(3.3) B(i,j) = A(jre(i,3).

Let us further define the quantities d(i,j) by means

of the formula:



(3.4) e 'a) = T ddi,ga..
i i N
% %

Now using the fact that gk = gk 0 e, and

expanding this via (3.2), we derive the (rather

trivial) identity:

Ta) = T oe(i,idd (a.)
—Q-k (Al - [: e liJ .g_.k (Aj ’
J
which can also be written as:
(3.5) B(i,k) = § e(i,j)YA(j,k),

J

where A(j,k) is the number of elements in Q[Aj, A T;
that is, 0 if j is not equal to k, and A(k) if j = k.
Thus, this essentially (3.3).

Of course precisely similar remarks apply to a
category C which consists only of monomorphisms. It
has an "obvious" right factorization (M,D) in which D
is the isomorphism subcategory of C and M = mor C. And

naturally a bimorphic category has both factorizations.

A simple example of this phenomenon is given by any
poset C = (P, X) regarded as a category. Recall that
there is at most one morphism from a point x to a point
y in €, with Clx, y] = {(x,y)} if x £ y, and
Clx, y] = @ otherwise. Clearly, all the morphisms in C

are both monomorphisms and epimorphisms; i.e., £ is

bimorphic. Of course it is finitary, and since it
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forms its own skeleton, P is a skeletal set for C.

Now, if ¢: Z(P) =+ ZP is the right linearigzation of
C, then c.: Z(P) * 7 is defined by:

tif x 2oy,
e (y) = #C[x, vyl =

X 0 otherwise;
i.e., gx(y) = Z(x,y), where L: P X P * 7 is the zeta
function of the partial order. Thus, c(y) is the

function ¢(-,y). In a similar way, we see that the
left linearization gﬁz Z{(p) ~ ZP maps an element x in P
to the function t(x,-).

Now, we noted earlier that if (P, X) is a meet
semilattice, then C may be regarded as having an
S-product. In that case it is clear that the
multiplication in Z(P) derived from the S-product is
clearly given on basis elements by:

XA vy, if the meet x A y exists,
(3.6) X ° y =
0 otherwise.

With the above multiplication, we shall call Z(P) the

meet algebra of (P, X), and denote it by Z<P, A >

(instead of using our usual notation). Of course, if
(P, Z) is a join semilattice, then C may be regarded as
having an S-coproduct, and we may define in an
analogous manner the Jjoin algebra of (P, <), which we
shall denote by Z<P,V¥ >,

For C = (P, Z), the isomorphism subcategory D of C

is simply P considered as a discrete category (i.e.,



all morphisms are identities). The corresponding right
factorization (£, D) of C (letting X stand for the
family of all morphisms in C) is finitary if and only
if the the principal order ideal (x) is finite for all
¥ in P. In that case, let us denote the Z-linear map
Z(P) * z(P) corresponding to this factorization by T,
which is defined by:

(3.7) T, (x) = Iy = I t(y,x)y.

yEx

It is the gzeta transform of the poset (P, ). Of

course it is invertible, and its inverse is the Mobius

transform, which we shall denote by Tu‘ Thus, we have
(3.8) T, (x) = [ uly,x)y,
y

where H: P x P > Z so defined is the Mobius function on
(p, 2).
0f course similar remarks apply to the left

factorization (D, X)) of C = (P, ).

In the case of posets regarded as categories, it
would be nice to know what in general S-products,
S-coproducts, and factorizations look like. The

following proposition answers the question:

Proposition (3.9):

a) A poset £ = (P, ;), considered as a category,

has an S-product if and only if the intersection of any
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two principal order ideals (x) and (y) in P can be
expressed as an (internal) disjoint union of principal
order ideals (i.e., a union of ideals (Xi)— such that
(xi)- A (Xj)— is empty if i # j).

Similarly, £ has an S-coproduct if and only if the
intersection of any two principal order co-ideals (x)+
and (y)+ can be expressed as an internal disjoint union
of principal order co-ideals.

b) Let (P, ;1) be a second partial order on the
set P, with <, weaker than <. Then D = (P, éT) is a
subcategory of C. Denote the principal order ideal
generated by an element x in D by (x)1—.

Then D is a right factor of £ if and only if any
principal order ideal (x) in C is expressible as an
internal disjoint union of ideals (Xi)T_ in D.

Similarly, D is a left factor if any order co-ideal
(x)7 is expressible as an internal disjoint union of

order co-ideals (xj)1+.

We omit the proof, which just consists of checking

definitions.
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We now shall introduce another general concept
which we shall find useful. Thus, let C be an
arbitrary category. For any L-object A, define the

right specialization of L at A, which we shall denote

by (A, C), as the full subcategory of C generated by
C-objects B such that C[A, B] is non-empty. Thus, B is
an (A, C)-object if and only if there exists a
L-morphism from A to B. (Of course, it is perfectly
possible that (A, C) = C.)

The following are some facts about such

specializations:

a) The inclusion functor (A, C) + C has a right
S-adjoint, which is defined on C~objects by the
assignments B |+ B if B is in ob (A4, C), and B |+ @

C). We

(the empty indexing) if B is not in ob (A,

shall call this S-functor the projection of £ onto

(A, C)Y. [Proof: Consider the "inherited" connection

¥ = W((A, C), C) defined by setting

W[B, B'] = C¢[B, B'] for B in ob (A, C) and B' in ob C.
It clearly has the inclusion functor as a left
realization. On the other hand, if B' is not an
element of ob (A, C), then there cannot be a C-morphism
from B to B' (since the existence of one would imply
that B' in ob (A, C€)). Thus, it is clear that the
"projection" S~functor as described above is a right

S-realization of W.]
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b)) If £ has an S-product, then (A, C) alsoc has an
S-product. Indeed, the S-product of two (A, C)-objects
B1 and B2 is simply obtained from the S-product in C,

A v B = {(A 7 BY(x) : x ¢ dom(A % B)}, by deleting from

the indexing all objects (A w B)(x) which are not in

(a, C).

¢ If (A, C) is a finitary category, and it has an
S-product, then the S-product is finitary.

[Proof: If the S-product in (A, C) of two objects
B1 and B2 were assumed to have an infinite number of
components, then (A, C)LA, B1] x (A, C)[4a, BT] would be

infinite, since by assumption (A, C)[A, (B1 T Bz)(x)]

is non-empty for all indices x; a contradiction.]

Let us return to the case in which C is finitary
and epimorphic. Choose a C-object A and form the right
specialization (A, C).

Now, we form yet another category by adding some
structure to (A, C). Define the category A/C as
follows:

The object class of A/C consists of pairs (f, B),
where B is in ob (A, C), and f is an (A, C)-morphism
from A to B. A morphism g from (fT’ Bl) to (f2’ BZ) is
given by a morphism g: B, + B, such that the following

1 2

diagram comnutes:
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i.e., g o f1 = f2.

Note that since all the morphisms in (A, C) are
epl, there can be at most one A/C~-morphism fron

) . : - -
B,) to (f2’ BZ)’ for if g, o f, = f, = g, o £, we

must have that g1 = g2 since f1 is epi. Thus,

(A/Q)[(fT, B,), (f2, BZ)] is either a singleton set or

1
is empty. We shall write (fT’ BT) < (f2, B2) to mean

that there exists an A/L-morphism from (fT’ BT) to
(f2, B2).
Also notice that (fT’ BT) and (f2, B2) are

isomorphic in A/C if and only if they represent the
same quotient object of A. Thus, if we let Quot(A)

= {(fi, Ai) : 1 e J} be a skeletal set for A/LC, then
the elements of Quot(A) are in a one-one correspondence
with the distinct quotient objects of A in C, and the
relation (fi, Ai) < (fj’ Aj) simply means that the
quotient object represented by (fi, Bi) is "finer" than
the quotient object represented by (fj, Bj)' (We use
the term "finer" in analogy with the case in which A is
a set, and hence the quotient objects may be identified
with partitions of A; then the relation < can be

identified with the relation of one partition being

finer than another.) Thus, Quot(A), under <, is
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naturally isomorphic with the poset of quotient objects

of A in C.

We have a natural connection U from A/C to (4, C),

given by setting

ut(r, B, B'] = (A&, C)[B, B'],
together with the obvious compositions. The connection
has an obvious left realization, given by the
"forgetful® functor from A/C to (A, C), which on
objects maps (f, B) to B. It is also S-realizable on
the right:

To see this, for each (A, C)-object B let (X, F)(B)
be defined by setting X(B) = (A, C)[A, B]l, and for each
f in X(B), let Ff(B) = (f, B)Y. The natural equivalence
between Ul-, B] and \/f (a/¢)[-, (£, B)] is then
provided by mapping any g in U[(h, B'), B] into the
unique element g o h in (A/C)L(h, B*'), (g o h, BYJ]. It
follows that (X, F) extends to an S-functor from (4, C)

to A/C, which is the right S-adjoint of the forgetful

functor from A/C to (&, C).

Proposition (3,10): If the category (A, C) has an

S-product, then A/C has a product, and therefore

(Quot(4), X)) has meets.
Proof: Looking at A/LC as a quasi-ordered class, we

wish to show that any two elements have a greatest

lower bound. (Of course, the object (1A, AY is a lower
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bound for any two elements of A/C.)

Given any two (A/C)-objects (f )

3

) B1) and (f2, B2

1
consider their S-product (in (A, C)):

B1 T B2 = {(B1 T B2)(X) P X € dom(B1 T BZ)}'

The morphisms f1 and f2 determine a unique x and a

unique (4, C)-morphism f: A -+ (B, = Bz)(x) such that

W1X o [ = f1 and n2X o [ = f2. Thus, we have:
) )
(£, (By m B2 (x)) < (£, B,)
)
and (f, (B1 T BZ)(X,) < (f2, Bz).

We must now show that (f, (B, = BZ)(X)) is a
greatest lower bound. Thus, suppose we have that
(g, B") é'(fT’ B1) and (g, B') < (f2, BZ)' Then, we
must have morphisms hQ: B' » B1 and h2: B! ~» B2 such
that h1 o g = f1 and h2 o g = ¢

In the S-product, there must be a unique y and a

5

unique (A, C)-morphism h: (B, 7 B,)(y) » B' such that

i

n1y o h = h1 and wzy 0 h = h2. But then, we must also
have wly o (h o g) = h1 0o g = f1 and wzy o (h o g)
= h2 o g = f2, and by the uniqueness of x and f, we
therefore have y = x and
(g, B') < (f, (By m B,)(x))
and (g, B') < (f, (B, = B,)(x)).
QED

So, the situation is as follows:
If £ is a finitary, epimorphic category with a

skeletal set C = {Ai : i e 1}, we form the
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specialization (Ai, C); it has a skeletal set
Ci = {Aj : j e I(i)} which can be chosen to be a subset
of C. Then the Z-linear map p: Z(C) = Z(Ci) derived

from the projection S-functor from C to (Ai, g) is

defined on basis elements simply by:

A., if A. e C,
J J 1

_p.(Aj) = .
0, otherwise,
If C has a finitary S-product, then so does (Ai, c),
and if Z(C) and Z(Ci) are given the multiplications
derived from the respective S-products, then p is a
ring homomorphism (since the projection S-~functor is a
right S-adjoint of the inclusion functor). (Of course
if C has an S-product, finitary or not, then (Ai’ c)
inherits a finitary S-product.)

If we now form Ai/g, then the S-functor (X, F) from
(A;, C) to A,/C (i.e., the right S-adjoint of the
forgetful functor from Ai/g to (Ai’ C)) is clearly
finitary. The Z-linear map u: Z(Ci) > Z(Quot(Ai)) can
be described as follows:

For each Aj in Ci’ let Qj be the family of all
(f

Bk) in Quot(Ai) such that B, is isomorphic %o Aj’

k’ k
Of course the number of elements in Qj is simply the
number of distinect gquotient objects of Ai which can be
represented by Aj. Let vy in Z(Quot(Ai)) be the sum of
the elements in Qj. Then, if A(j) is the cardinality

of the automorphism group of Aj in C, we have:
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) =
(3.11) E(Aj)

This can be seen by noting

f in (4, Q)[Ai, Aj] can be

where (f B is a unique

)
Kk

unique isomorphism from Bk

k’

Now, if (Ai’ C) has an

ACjlw

i

that every pair (f, A for

R

written as (g o £ o0 B ),

J
element of Qk' and g is a

to A..

J
S-product (which is

necessarily finitary), then we have shown that the
poset (Quot(Ai), <) has meets; indeed, the right
linearigation of Ai/g with the multiplication derived
from the product in Ai/g is simply the meet algebra
Z<Quot(Ai), A>. And since (X, F) is a right S-adjoint,
W is a ring homomorphism from Z(Ci) (with the
multiplication derived from its S-product) to
Z<Quot(Ai),A >. It is not difficult to see that the
elements v of Z(Quot(Ai)) are linearly independent
(since the sets Qj are, for different j, disjoint), and
that therefore yw is a faithful representation of
Z<C,, (A, C)>.

We are now in a position better to understand the
representation w: B(G) » Z<L(G),A> introduced in the

first section. The Burnside ring B(G) is the ring

Z<D, D> where D is the category of transitive actions
of G. But if we take a to be the action of G on itself
by right multiplication (i.e., the natural action of G

on G/H where H is the identity subgroup of G), it is
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easy to show that (a, D) = D. Furthermore, the
quotient objects of a are in a one-one correspondence
with the subgroups H of G (with the actions @H forming
a family of representatives of the distinct quotient
actions of a). 1In fact the poset L(G) is isomorphic to
Quot(a) under this correspondence, and w is essentially
the representation w: B(G) » Z<Quot(a), A> described

above,

Continuing with the case in which (Ai, C) has an
S~product, we can use the facts established above to
deduce some relationships between the structural
constants defining the multiplication in Z<Ci’ (Ai, c»
and the poset (Quot(A,), X). For elements Ay and A in

k
C., we write:
1
A, ° & = ) r(j,k;s)AS,

s
where of course the nmultiplication is that derived from
the S-product in (Ai’ c).

Now, for the elements ¥ and w, of Z<Quot(Ai),A >,

we can write:

(3.12) b(j,k;s)ws.

=4

(-]

e

1
W~

Here, it is not hard to see that the quantity b(j,k;s)
can be defined as the number of ways a given element of
QS can be expressed as a meet of an element of Qj with

an element of Qk‘ But it is also easy to establish the
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relationship between the quantities r(j,k;s) and
b(j,k;s); since w is a ring homomorphism (and faithful)

we at once have:

) r(j,k;s)ﬂ(AS)

Y e )
E(Aj, ﬂ(Ak/ L

= (A(j)wj . A(k)wk = ) r(j,k;s)A(s)ws
= ) A(j)A(k)b(j,k;s)wS,
s

from which we get the equation:
(3.13) b(j,k;s) = {r(j,k;s)a(sd}/{a(j)alk)}.

If we apply this to the category Q (finite sets and
surjective maps), we get the following:

Let g(i,j;k) be the number of subdirect k-subsets
of the product of an i-set and a j-set. Then, if by a
"k-partition" we mean a partition of a set into k
blocks, the number of ways of forming a k-partition of
a given finite set as the meet of an i-partition with a
JjJ-partition is given by the number:

b(i,js;k) = (aq(i,j;kd)kt)/(itjt),

The reader will easily dualize the above results to
arrive at the appropriate notion of left specialization
and establish a similar relationship between a
monomorphic category and the poset of subobjects of an

object of the category.
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