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GATCCATCCGCCTCGGCCTCCCAAAGTGCTGGGATTACAGGCGTGAGCCACCG
CGCCCGGCCCCCAACCTTGGGACATTTTCATCCATTCATTCATCCTTTTTTTT
TTTTTTTTTTTGAGACGGAGTCTTGCTCTGTCACCCAGGCTGGAGTGCAGGGG
CAAGATCTCAGCTCCTGCACCCTCCACCTTCCGGATTCAAGTGATTCTCCTGC
CTCAGCCTCCCAAGTAGTTGGGATTACAGGCATGCCATCAACATGTCTGGCTA
ATTTTTGTATTTTTAGTAGAAATGGGGTTTCACCATGTTGGCCAGGCTGGTCT
CGAACTCCTGACTTCAGGTGATCCTCCCACCTCAGCCTCCCAAAGTGCTGGGA
TTACAGGTATGAGCCACCGCGCCTGGCGCATGGGCACATCCATTGAGTGTGCA
CTTGGTGCCAAGTTCTGTGCCAGGCACAGGCAATTCAACATTTATTGGAATGA
TGTAGTCCCTGTCTGCATGGAATTCATAGGCTAGAGGAGGAAGCAGTTTGCCT
CTCGTCCCATGGCCAGAGCAGCCCCAGGTGAAGGTTATGAATTATTTGTCCCA
TCTAATGGTGTTCCAGCAGTCTGCCACATGGTGGGAAGGAGGCCCCACAGAGC
TGTGCTGTCTCCTTCCCAGGATCACCTGGAGCACAGCCTGGGGGAGAGTGCGG
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ABSTRACT

This thesis presents a study of the chaotic property of DNA sequences and an
approach for characterization of DNA sequences based on multifractal techniques. The
DNA sequence analysis provided in the thesis is motivated by the possibility of identifying

biological functionality using information contained within the DNA sequences.

Numerical mapping is the basis of DNA sequence analysis. Improper mapping
may introduce artifacts into the resulting DNA signals. To resolve this problem, a new
numerical mapping method based on the organism’s codon usage is introduced. Using
mutual information and false nearest neighbourhood analysis, it has been shown that there
is a strong correlation among the three bases within the codons, and that DNA sequences
have a high-dimensional structure. A novel model of multifractal measures for an m-
dimensional object is proposed in the thesis. With this model, it is shown that the three-
dimensional Lorenz attractor and the x-variable time series of the Lorenz system have a
similar structure of the Rényi dimension spectrum in general. Rather than using DNA sig-
nals, an approach based on frame signals for Rényi and Mandelbrot dimension spectra
analysis is developed. The experimental results of Rényi and Mandelbrot dimension spec-
tra demonstrate that there is a significant difference between the open reading frames and
the other non-coding reading frames. Furthermore, local Rényi dimension analysis with
different resolution reveals the interior structure of the genes and the genomic DNA
sequences. Therefore, it opens up a possible way for coding prediction as well as for

extracting the higher order structure information stored in the genomic DNA sequences.
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CHAPTER I
INTRODUCTION

1.1 Problem Definition

Better understanding of our life and other living systems may benefit our society. It
may help to raise better plants and animals, create enhanced pharmaceuticals for our
health and improve living level, develop new sources of energy, as well as mitigate the
long-term impacts of climate change and clean up the environment. An ambitious pro-
gram, Genomes to Life, has been launched by the Department of Energy of the USA in
2001. The goals of this program are to achieve a fundamental, comprehensive, and sys-

tematic understanding of life [DOEOI].

Understanding genomes is a fundamental step to understanding life. A genome
stores a complete and complex set of instructions, which is embedded in the deoxyribonu-
cleic acid (DNA) sequence, necessary for building and maintaining the life of an organ-
ism. Found in many trillions of cells in our body, the human genome contains the
information for all cellular structures and lifetime activities of the cells in our body, as
well as for body growth, development, and its functions. This information is mostly stored
in the genes. A gene is a piece of DNA sequence which is composed of exons and introns
in higher eukaryotic organisms. It has been long known that the exons, called coding
regions, of the genome carry information which instructs the cellular processes in the way
of leading the events from DNA sequences to amino acid sequences or proteins, while the

introns of the genes and the intergenic regions, which are called non-coding regions con-
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tains no information for making the proteins in the organism. The proteins in the organism

do essentially all the work of the cells.

Launched in 1986, the Human Genome Project (HGP) is currently being com-

pleted with a great success. It has recently published a draft sequence of the human

genome, which covers 96% of the human genome containing 3 x 109 base pairs of DNA.
However, obtaining the DNA sequences of the entire genomes of the human and other
organisms is just the beginning of understanding our and other organisms’ genomes. The
immediate challenge is characterization of the genome structures, including the mapping

and packing structure of the total set of genes and their regulatory elements.

A vast amount of genomic DNA sequences has been sequenced to date with an
exponential growth rate due to the tremendous improvement of the sequencing techniques.
For example, new sequences averaging about 30 million DNA bases (which represents
approximately 105 genes and their respective proteins) were sequenced every day in 2000
[NCBIO1] [Uber01]. However, the progress of characterizing genome structure and the
pace of gene discovery actually is rather slow because of the limitations of the traditional

biological techniques.

So far, only a small fraction of genes that cause human genetic disease have been
identified. Each new gene revealed by genome sequence analysis has the potential to sig-
nificantly affect human health. Within the human genome, it is estimated that total of
6,000 genes have a direct impact on the diagnosis and treatment of human genetic dis-

eases. The timely development of diagnostic techniques and treatment for these discases
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has immeasurable value for the world. Computational analysis is a key component that can
contribute significantly to the knowledge to effect such developments. In addition, new
computational methods will provide complementary information which can be of benefit

for gene prediction by the traditional experimental methods.

Most of the current research in deciphering the meaning of DNA sequences is
approached from the low base-pair level. Its main objective is to search for patterns or cor-
relations existing in the DNA sequence related to codons, amino acids, and proteins. A
number of gene prediction systems have been developed in recent years. These systems
use a variety of sophisticated computational techniques, including neural network
[UbMu91}, dynamic programming [SnSt93], rule-based methods [SoSL94], decision trees
[HuHa92], probability reasoning [GKDS92] and hidden Markov chains [HeSF97). Most
of these techniques rely on the statistical qualities of exons in the genome and, therefore,
the fundamental limitation of them is the use of a known gene data pool as a training set
for their classification. Consequently, they are capable of finding only the genes that are

homologous with those in the training data set.

It has been demonstrated that fractal techniques [Kins94] can be useful in the clas-
sification of stationary and nonstationary signals such as speech, image, human finger-
prints, biological signals, and radio transmitter transients [Lang96] [Chen97] [Shaw97]

[Jang97] [Grie96] [Ehti99] [Dans01].

1.2 Goal and Objectives

The general goal of this thesis is to develop techniques for structural characteriza-
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tion of DNA sequences, with the main interest in coding region prediction for genomic

DNA sequences. More specifically, the follwing objectives have to be achieved:

(i) A method of characterizing the chaotic property of DNA sequences;

(ii) A technique for extracting features from the structural information in DNA
sequences in order to be able to distinguish the coding regions from the non-

coding pool in a given genomic DNA sequence; and

(iii) A technique for on-line coding region prediction of genomic DNA

sequences.

To address these objectives, this thesis focuses mainly on fractal and multifractal
techniques [Kins94] for feature extraction. The established methods such as mutual infor-
mation criterion [FrSw86] are also used for chaotic characterization of the DNA

sequences.

1.3  Thesis Organization

This thesis is organized in seven chapters. Chapter 1 states the motivation, objec-
tives and goal for this thesis. Chapter 2 contains the background information on genomics.
Chapter 3 gives the background knowledge on fractal, multifractal, as well as chaos and
stranger attractors. The theoretical basis for reconstructing strange attractors from a single
variable time series and chaos characterizing criteria are also provided in this chapter. In
Chapter 4, experimental algorithms for DNA sequences analysis are described. Chapter 5

provides experimental design and experimental parameter choosing. The experimental
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results of characterization and classification of the DNA sequences are given in Chapter 6.

Conclusions, recommendations and contributions are presented in Chapter 7.
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CHAPTER 11
BACKGROUND ON GENOMICS

This chapter provides the basic concepts of molecular biology as well as an over-
view of the research in DNA sequence analysis and the techniques of gene prediction.
First, a background knowledge of DNA, gene, genome, as well as gene expression is pro-
vided. A brief review of codon usage is then described. The chapter finishes by discussing
the problems and techniques of gene prediction and DNA sequence structural analysis

from the point of view of bioinformatics.

2.1 Structural Genomics

A genome contains a full set of genetic instructions for the organism and allows a
sharing of the knowledge with offspring, from simple bacteria to remarkably complex
human beings. A genome is made of DNA (deoxyribonucleic acid). Understanding how a

genome functions requires the knowledge of its structure and organization.

2.1.1 DNA Molecule

A DNA molecule is composed of smaller units called nucleotides. Tens of thou-
sands of nucleotides link together in a polynucleotide chain. The upstream end of a DNA
chain is called the 5’ end of the chain and the downstream end is called the 3” end of the

chain. Two DNA chains wrap around each other to resemble a twisted helical ladder (Fig.

2.1).
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Nitrogenous Base |
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Fig. 2.1. The structure of a DNA molecule (after [NHGIO1]).

As shown in Fig. 2.1, a nucleotide consists of three parts: a deoxyribose sugar res-
idue, a phosphate group, and a nitrogenous base. The sugar of one nucleotide links to the
phosphate group of the next. The sugar and phosphate are often called the “backbone” of
the DNA. The nitrogenous base is the part of the nucleotide that carries hereditary infor-
mation, so the words “nucleotide” and “base” are often used interchangeably. There are
four main nitrogenous bases found in DNA: adenine, thymine, cytosine, and guanine,

abbreviated as A, T, C, and G, respectively. Adenine and guanine are double-ringed
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purines. Thymine and cytosine are single-ringed pyrimindines. The two polynucleotide
chains are held together by van der Walls forces, weak hydrogen bonds between the
nitrogenous bases on each chain, forming base pairs (bp). The hydrogen bonding between
complementary base pairs is such that the most energetically stable DNA configuration is
achieved when adenine pairs with thymine and guanine pairs with cytosine. Although the
spatial requirements of DNA potentially allow four complementary base pairs to be
formed (i.e., G-T, G-C, A-T, and A-C), only the G-C and A-T base pairs are normally
found in DNA. In other words, the order of bases on one DNA strand, or a side of the lad-
der, determines the bases on the complementary DNA strand, or the other side of the lad-
der. Three hydrogen bonds stabilize G-C base pairs and two hydrogen bonds stabilize A-T
base pairs. Because hydrogen bonding between base pairs contributes to the stability of
the DNA double helix, base sequence affects the stability of DNA. This means that the
regions of the DNA with an abundance in G-C base pairs are more stable than A-T rich

regions of the DNA,

The helical structure, described in Fig. 2.1, is called B-Form DNA. It was found by
James D. Watson and Francis Crick in 1953. B-DNA is only one of several possible con-
figurations. Other DNA conformations use the same nucleotides and molecular bonds, but
the three-dimensional structure of the helix is different. At least six different DNA config-
urations (designated A, B, C, D, E, and Z) have been identified, but only the A, Z, and B
conformations are found in nature. B-Form DNA is the most common form of DNA found
in living organisms. It has an average diameter 2.0 nm and approximate 10.1 to 10.6 bp
per turn. A-Form DNA, which is present in RNA, has a diameter of 2.3 nm and 11 bp per

turn. Z-Form DNA has a diameter of 1.8 nm and 12 bp per turn. Unlike B-Form and A-
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Form DNA, Z-Form is a left-hand helix. Only a very restricted set of DNA sequences
appear able to adopt the Z-Form structure. The biological significance of the range of

structures accessible to particular DNA sequences is not fully understood [Sind94].

Composed of four letters (A, T, C, and G), DNA sequences are often used fo repre-
sent the order of DNA nucleotides in DNA molecules since (1) only the nitrogenous bases
contain genetic information, (2) the sugar-phosphate backbone mainly maintains the same
structure along the DNA molecules, and (3) one DNA strand determines the complemen-

tary strand.

2.1.2 Gene

A gene is a specific small piece of DNA and is the basic physical and functional
unit of heredity. Roughly speaking, each gene carries a set of instructions required for the
constructing of one specific protein. Proteins are a diverse group of large, complex mole-
cules that determine, among other things, how the organism looks, how well its body
metabolizes food or fights infection, mediate much of the information flow within a cell,
and sometimes even how it behaves. Genes also contain the information that help to con-

trol where, when, and in what amount proteins are produced.

A gene is composed of several parts. As shown in Fig. 2.2, in higher organisms, the
protein-making instructions are broken up into relatively short sections named exons. The
exons are separated by longer sections of “nonsense” DNA, called introns. For genes in
higher organisms, the size of exons is small (on the average, 145 bp for humans) but long
in introns (some exceeding 10 kb) [HGPO1]. A gene also contains regulatory sequences,

named regulatory elements. Most of the regulatory elements of a gene are located in the §°

-9.
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flank region of the gene, while some may be located in the 3° flank region, or buried in the

middle of the gene.

The regulatory elements are crucial to how a living system works. With the binding
of specific proteins onto its regulatory elements, the gene is turned on or off. Most higher
organisms are composed of different kinds of cells, each type of cell performs a particular
function different from others. A liver cell, for example, does not have the same structure
and biochemical duties as a brain cell, but both of them contain the same set of genes.
Consequently, different groups of genes are turned on and off between the liver cell and
the brain cell to produce different sets of proteins which perform different biochemical

functions.

Genes vary widely in length. For human, the average size of a “typical” gene is
about 27.9 kb long and contains an average of 8.8 exons. The average length of a human
exon is 145 bp and 3365 bp for a human intron. To date, the largest human gene found has
a length of 2.4 Mb, the largest number of exons in a human gene is 178, and the longest

single human exon is approximately 17 kb [HGPO1] [VAMLO1}.

Regulatory Element

) T~

Exon E:Intron Exon Intr(;n- B Exon —§—

—_— (—-
5" Flank Region I 3’ Flank
Region

Fig. 2.2. The gene structure of eukaryotes.
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2.1.3 Genome

A genome is all of the genetic material of an organism. It is the entire set of hered-
itary instructions for building, running, and maintaining the organism, as well as passing
life on to the next generation. A genome consists of genes, which are packaged in chroma-

somes and affect specific characteristics of the organism.

As shown in Fig. 2.3, in most organisms, a genome is made of DNA and composed
of intergenic regions and genes. In general, the exons of genes are called the coding
regions of the genome while the introns and the intergenic regions are called the non-cod-

ing regions.

: Gene .
Intergenic I Intergenic Gene

Region Region

Intergenic

L Region

Fig. 2.3. The Structure of a higher organism genome.

2.1.3.1 Chromosome

Genomes are organized into a number of physically separated parts, called chro-
mosomes. Composed of DNA and protein, chromosomes are stored in the nucleus of cells.
It helps a cell to keep the large amount of genetic information neat, organized, and com-
pact. Chromosomes are the fundamental elements of inheritance, since they are passed

from parent cell to daughter cell, from parent to progeny.

The number of chromosomes in an organism varies with species. In a lower organ-

ism like bacteria, the entire genome is packaged into a single chromosome. A mosquito

-11-
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has six chromosomes, a sunflower 34, a goldfish 94, and a cat 38. A normal human being

has 46 chromosomes, 22 pairs of autosomes and one pair of sex chromosomes.

Different chromosomes contain different genes. For example, in humans, the gene
HBB encodes the f—globin amino-acid polypeptide, a part of the haemoglobin protein that
carries oxygen in red blood cells. The gene is found in chromosome 11. The HYALI and
HYAL?2 genes, which involve glycosaminoglycan catabolism and cell migration, are

located in chromosome 3.

Chromosomes can be seen under a light microscope. Stained with certain dyes, the
chromosomes demonstrate a pattern of light and dark bands reflecting regional variations
in the amounts of A-T and G-C. Differences in size and banding pattern allow the chromo-
somes to be distinguished from one another with a karyotype technique, a tool in the diag-

nosis of genetic diseases (Fig. 2.4).

Every chromosome contains a single molecule of DNA with an average of 150
million bases. The DNA molecules in a human chromosome, when stretched out to their
full length, would be between 1.7 cm and 8.5 cm long, depending on the specific chromo-
some. But the diameter of the DNA molecules are less than a millionth of a centimetre
across. If such a long, thin DNA molecule floats free in a cell, it could easily be broken up
or tangled up with itself. To deal with this, the DNA molecules are folded into an orderly,
compact shape in a cell by winding around protein spools and fastening into the loops,

coils, and fibres of other proteins.

-12-
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Fig. 2.4, Human karyotype and chromosome banding. (a) Microscopic examina-

tion of chromosome size and banding patterns allows medical laboratories
to identify and arrange each of the 24 human different chromosomes (22
pairs of autosomes and one pair of sex chromosomes} into a karyotype,
which then serves as a tool in the diagnosis of the genetic diseases. The
particular individual in this case is a male because there is one X and one
Y chromosome. Experimental data have shown that chromosome 22 has a
higher density of genes and chromosome 21 has a lower density of genes.
(b) Typical properties of bands. Light bands usually have a higher GC
content (GC rich) than that of dark bands. The GC rich regions in a
genome usually have a greater density of genes. Certain light bands,
located adjacent to telomeres, are extremely rich in genes and have an
unusually high GC content (after [NHGIO1]).

In its most tightly condensed situation, a chromosome, which contains several cen-

timetres of DNA, is only a few ten-thousandths of a centimetre long. In general, chromo-

somes are fully condensed only in preparation for cell division. Otherwise, some of the

loops and coils are unfastened so that the DNA molecule can perform some biological

13-
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In higher organisms, chromosomal DNA molecules are usually linear. As shown in
Fig. 2.5, linear chromosomal DNA molecules have at least three functional units. Telom-
eres are specialized structures at the ends of the chromosome. Telomeres provide a mech-
anism by which the ends of the linear chromosomes can be replicated. They also stabilize
the ends of the chromosomes. Centromeres are DNA regions necessary for precise segre-
gation of chromosomes to daughter cells during cell division. They are the binding site for
proteins that make up the skeleton, which in turn serves as the attachment site for microtu-
bules, the cellular organelles that pull the chromosomes apart during cell division. Repli-
cation origins are the locations of the start of DNA synthesis. A replicating chromosome
may have many active replication origins. The presence of multiple replication origins, for

example, allows for complete replication of the entire human genome in only eight hours.

ori ori

- - - >
E 7\ \ ;
Telomere \—/ Centromere M Telomere

Fig. 2.5. Basic functional elements in chromosomes of higher organisms.
ori, replication origin.

2.1.3.2 Genome Structure

The size of genomes vary widely. For example, the genome sizes of bacterium E.
coli, yeast, fly, human, and some amphibians is 4.6 x 1()6 , 12X 107T , 1.OX 108,

3.0x10°, and 8.0x 10" bp, respectively. In humans, less than 2% of the genome are

coding regions, and more than 64% of the genome are filled by intergenic DNA

-14-
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[VAMLO1]. The genome size does not correlate well with organismal complexity. The
human genome, for instance, is 200 times larger than that of the yeast S. cerevisiae, but
200 times smaller than that of Amoeba dubia [GrHe99). This is because genomes also

contain a large quantity of repetitive sequence [Hart00] [{GrHe%9].

The genes in mammalian genomes are not uniformly distributed over the various
chromosomes. There are gene-rich and gene-poor regions in their genomes. About 20% of
the entire human genome are composed of large gene-poor regions or desert. These
regions have a length longer than 500 kb without a gene. The lack of genes in the gene-

poor regions does not mean that they are devoid of biological function [VAMLOL1].

In higher organisms, the GC content distribution is not even throughout the entire
genomes. There are higher GC content (GC-rich) and lower GC content (GC-poor)
regions. In humans, the GC content is from about 30% to over 65% with a window size of
20 kb. The GC content of the entire human genome is 38%. It has been confirmed that
there are strong correlations between GC content regions and gene density. The density of
genes is greater in the GC-rich regions than in the GC-poor regions. Why do GC-rich
regions correlate with high gene density? One possible explanation is that a considerable
fraction of the nucleotide G and C contribute to coding regions and regulatory elements

[CaSm99].

For a stained metaphase chromosome, a distinct pattern of banding can be seen
under microscope (Fig. 2.4). In general, dark bands correspond to the GC-poor regions
and light bands are related with the GC-rich regions. It is not clear how these base compo-

sition differences can yield physically such dramatic staining differences. However, as dis-

-15-



Characterization of DNA Sequences Chapter 2: Background on Genomics

cussed above, GC content correlates strongly with the gene density. In humans,
chromosomes 17, 19, and 22, which have more light bands than the others, had the highest
gene density. Conversely, chromosomes X, 4, 13, 18, and Y, which correspond to the few
light bands, had the lowest gene density. Certain light bands, located adjacent to telom-
eres, are extremely rich in genes and have an unusually high GC content. An example is
the Huntington’s disease region at the tip of the short arm of human chromosome 4

[HGPO1] [VAMLOI].

2.1.4 DNA Organization

As shown previously, the DNA molecules in higher organisms are very thin, about
2 nm in diameter (Fig. 2.1), but are very long in length. Human genome, if lined up, is
nearly 1 m long. Hence, the cell faces an enormous packaging problem. The DNA mole-
cules not only have to fit into the cell but must be packaged properly so the information

contained in the DNA molecules can be accessed efficiently by other biological molecules.

In higher organisms, only a small portion of a genome is associated with some
ongoing biological processes and therefore, are unpacked. In humans, over 50% of the
genome are repetitive sequences, called “junk” DNA, which contain no functional infor-
mation and do not relate with the biological processing in the cells. Moreover, in a multi-
cellular organism with complex developmental regulatory schemes, there are large
portions of genetic information that are not used in particular cell types. Certain genes
may be utilized only within one short period during development. Hence, eukaryotic cells
have mechanisms for packaging regions of their chromosomes into configurations that do

not become involved in other biological process in cells.

-16-
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Fig. 2.6. The packaging of DNA in eukaryotic cells. (a) short region of DNA
double helix; () section of 11-nm filament composed of nucleosomes;
(¢) section of a 30-nm fiber of packed nucleosomes, and (d) section of
chromosome loops anchored to a protein scaffold. The scaffold is not
straight. The attachment region called SAR.

In eukaryotic cells, the first order of DNA packing in chromosomes is the forma-
tion of a string of nuclcosomes along the DNA. A nucleosome is a coiled structure of
about 145 bp long DNA wrapped into two left-handed coils around a histone octamer (Fig.
2.6). DNA is not randomly wrapped into nucleosomes. Only some regions of the DNA
helix are associated with nucleosomes [ArMo93]. Nucleosomes organize themselves
together to form a filament of about 11 nm in diameter. The 11-nm filament is coiled upon
itself to make a thicker solenoidal structure of fiber with a diameter of 30 nm. Stretches of
solenoid containing on an average of 50-100 kb long DNA are attached to a protein scaf-
fold. About 200 bp long with the repeats of the sequence AATATATTT, the specific AT-

rich regions of DNA are associated with the regions in the nuclear matrix, called SAR

(scaffold attachment region). The highest order of chromosome packing occurs in met-
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aphase. During this period, the metaphase chromosomes appear to consist of stacks of

packed 30-nm fiber loops (Fig. 2.7) [Sind94].

Chromasome

. e b
Qi}{gpgﬁ}!d hrosrualid ——

Tatarnen

Fig. 2.7. The hierarchy of chromosomal structure in the metaphase {(from
[NHGIO1]).

-18.-



Characterization of DNA Sequences Chapter 2; Background on Genomics

The higher-order structures of chromosomes pose an extraordinary challenge for
structural biology society because they are so complex and the structures are so large. It
would greatly benefit our life if we cémpletely uncover the complicated structure and the
sophisticated mechanisms that allow DNA packing and unpacking to be used to modulate

DNA function.

2.2  Functional Genomics

For its survival, an organism must encode and store all the instructions needed to
build, operate, maintain, and reproduce itself and to respond to varied environmental con-
ditions. The organism also has to read out the instructions of its genome in the proper
order, time, and amount for each gene product. The overall aim of functional genomics is

to understand how an organism deals with these issues.

2.2.1 RNA

RNA (ribonucleic acid) is the direct molecular instruction for the synthesis of a
specific protein. It is a single-stranded polynucleotide molecule and is made by transcrip-
tion from a DNA template. Like DNA, RNA consists of three parts: a sugar residue, a
nitrogenous base, and a phosphate group. The RNA molecules are composed of adenine,
guanine, cytosine, and uracif (U) instead of thymine. Most of the organisms have DNA as
their genetic materials. However, some bacterial viruses, some animal viruses, and some

plant viruses have RNA as their genetic materials.

There are four major classes of RNA molecules or transcripts, messenger RNA

(mRNA), transfer RNA (tRNA), ribosomal RNA (rRNA), and small nuclear RNA

-19.




Characterization of DNA Sequences

Chapter 2: Background on Genomics

(snRNA). The mRNAs, tRNAs, and rRNAs are found in both prokaryotes and eukaryotes,
while snRNAs are found only in eukaryotes. The mRNA molecules carry the genetic
information out of the nucleus for protein synthesis (Fig 2.8). Together with the numerous
ribosomal proteins, the rRNA molecules are assembled to form the ribosomes. The ribos-
omes are cellular organelles involved in protein synthesis. The specific tRNA molecules
bring the specific amino acids to the ribosomes and recognize the specific encoded

sequences of the mRNAs to allow correct protein synthesis. The snRNAs are involved in

processing of mRNA precursor in eukaryotes.

Table 2.1. Genetic code and human codon usage.

First Second letter Third
letter U C A G letter
17.0 |ULU 14.8 lucu 1211 uau| 1100} UGU u
L2085 |uue Phe | 175 luce 158 vac| 77| 123| vac | [ ©
73 |uua 11.9 jucal 5| 07| vaa . 13| UGA | ston| A
O
12.5 | UUG 4.5 |lUCG 05| uac| 129 ucG | ™| G
128 {cuu |, | 173|ccu 105 | cAU| . 46| CGU U
cu S
c 19.3 |cuc 20,0 [ccC 14.9]| CAC 10.8 | cGcC Arg C
7.0{cua 16.71cca|f™ | 120] caa ol 63| CGA A
39.7{CUG 7.0 |CCG 345 | CAG 11.6 | caG G
15.8 | AUU 12.9 jACU 170 aau|, | 121 AGU | U
216|Aauc | ne | 193 |acc 198 | AAC 19.3| AGC C
A 7.2 | AUA Thr 240 A
14.9 JACA Ol AaA Lve 115 | AGA Arg
223 | AUG |Met| 6.3 |ACG 326 | AAG| 77| 113 | AGG G
10.9 | GUU 18.5 (GCU 224 GAU Asp 10.8 | GGU u
G |Ms|cuc| |283|GeC 26.1] Gac 227} 6GC | g, | €
70 |lcua | ¥ | 159 |gea|?® | 29.1| caa 16.4 | GGA A
28.8| UG 7.5 |Gea 402| cac| ™ | 164 | cGa G

The numbers represent the occurrence of specific codons per thousand codons (based on 12,8

16,923 codons, 27,143 coding DNA sequences).
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2.2.2 Protein

Proteins do most of the work in a cell. Instead of just four nucleotides, proteins are
the chains of 20 different amino acids held together. A linear chain of amino acids is called
a polypeptide. A protein is one or more propetly folded polypeptide complex. Every three-

base mRNA sequence (a triplet), called a codon, specifies an amino acid in a polypeptide

chain. As shown in Table 2.1, the codons are degenerate since there are 43 = 64 possible
codons encoding for only 20 amino acids and one stop signal. The genetic code (each
mRNA codon and its corresponding amino acid or stop signal) is nearly universal for all

forms of life.

2.2.3 Gene Expression

2.2.3.1 Transcription Process

Transcription is the mechanism by which a template strand of DNA is utilized by
specific proteins, called RNA polymerases, to generate an RNA chain. The process is ini-
tialized by an RNA polymerase, with the help of several proteins called initiation factors,
recognizes and binds to a specific region called promoter upstream of a gene on the DNA.
The double-stranded DNA then unwinds in the promoter region. For mRNA genes in par-
ticular, a number of regulatory proteins participate in initiation by indicating which pro-
tein-encoding genes are to be copied. Specific regulatory proteins are located at specific
regulatory elements in the DNA molecules. Of the unwounded double-stranded DNA,
only the one containing the correct promoter sequence acts as the template and the RNA
polymerase then synthesizes RNA by an orderly copying of the DNA template into a RNA

chain, using four nucleotides A, G, C, and U. The template is not always the same chain of
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the double-stranded DNA. Different genes may have their template chains on either chain
of the double-stranded DNA. However, for a given gene, the template chain remains the

same within the boundaries of a gene.

Unlike bacterial RNAs, the eukaryotic RNAs undergo post-transcriptional proc-
esses. After adding a 5° end cap and a 3’ end poly(A) tail to it, the resulting RNA chain is
called precusor mRNA (pre-mRNA). The sequences correlated with the intronic DNA
must be removed from the primary transcript prior to the RNAs being biologically active.
The process dealing with intron removal is called RNA splicing. The illustration of RNA

processing in eukayotes, using 3-globin gene as an example, is shown in Fig. 2.8.

As discussed earlier, 2 large number of nucleotides incorporated in the primary
transcript as introns are removed later in the splicing process. Energy is utilized in the syn-
thesis of the primary transcript and the splicing processing. At first glance, it seems that
the presence of introns in eukaryotic genes is an extreme waste of cellular energy. How-
ever, the presence of introns can protect the genetic damage by environmental influences.
Another function of introns is to allow alternative splicing to occur. By altering the pattern
of exon organization, from a single primary transcript, different proteins can arise from the
processed mRNA from a single gene. Therefore, this allows an increase in the number of

proteins without increasing the overall number of genes.

A mRNA is a template for a specific protein. Studies on the mRNA reveal the
amino acid information of a protein. In practice, scientists study the DNA copies, which
are the copies from the mRNAs, instead of the mRNAs itself, since the DNA copies are

more stable than the mRNAs. The DNA copies are called complementary DNA (¢cDNA).
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Fig. 2.8. Overview of RNA processing in eukaryotes, using B-globin gene as an
example. The B-globin gene contains three exons and two introns.
After addition of the 5’ cap and 3’ poly(A) tail, the introns are removed
during splicing process. The small numbers refer to positions in the
sequence of B-globin, which contains 147 amino acids. (a) B-globin
genomic DNA, (b) primary RNA transcript, (c) B-globin pre-mRNA,
(d) undergoing splicing, and (e) mature mRNA.

2.2.3.2 ‘Translation Process

Translations are the processes that produce proteins based on the information

embedded in mRNA sequences. Translation is carried out by ribosomes.

As described in Table 2.1, each three-base nucleotide sequence, or codon, in the
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mRNA encodes a specific amino acid. Because there are three nucleotides in each codon,
an mRNA can be translated in three different reading frames in each region (Fig. 2.9).
These reading frames shift forward or backward from one another by one base. Only a part
of one out of the three reading frames, called open reading frame (ORF), represents the

corresponding protein sequence.

A translation usually begins at a AUG initiator codon in an ORF, which serves as
the template for protein synthesis. Once translation has started, the ribosome, moves three
bases at a time along the mRNA. The translation is stopped when the ribosome reaches a

terminating codon, or stop codon.

mRNA R AUG I UG . I
5" cap L7 S . 3’ poly(A) tail
rd 7 ) N ~ ~
5’---ICU/JM;XCCJ(%CCﬁCC[IJAGCCCCCCUGACCCCCC--:3’

Reading Frame 1 Leu Thr Pro Pro Stop Pro Pro Stop FPro Pro

. L e JeeJe_Jr 11—
Reading Frame 2 Stop Pro Pro Pro Ser Pro Pro Asp Pro

. R 1 AN N TN 1 TN ) AU IS I S B
Reading Frame 3 ~Asn Pro Pro Leu Ala Pro Lew Thr Pro-~

AN TR /"

Polypeptide NH, - - COOH

Fig. 2.9. Reading frames and mRNA. There are three reading frames corre-
lated with an mRNA. They are inferred by shifting one base forward
or backward from the mRNA sequence. Only a portion of one of the
three reading frames represents the corresponding protein sequence.
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Figure 2.9 also shows a part of an open reading frame (ORF). An ORF represents a
potential amino acid sequence with an initiator codon and a chain terminating codon for a
possible protein-coding region in a DNA sequence. This sequence is not necessary in
nature but just a string of codons for amino acids that is not broken by stop codons. The
ORF is often used by computer programs for possible protein-coding region seeking,

homology searching, and restriction site locating.

2.3 Codon Usage

The unequal usage of codons in the coding regions appears to be a universal fea-
ture of the genomes across species. The bias is mainly due to the uneven usage of the
amino acids in the existing proteins and the uneven usage of synonymous codons

[GGGP8O].

Codon usage can be strongly biased in different species. For example, six different
codons specify the amino acid leucine (UUA, UUG, CUU, CUC, CUA, and CUG), but 60
percent of the leucine codons in bacteria are CUG, and 80 percent are UUC in yeast
[CUTGO1]. Table 2.1 shows the human codon usage based on the human coding
sequences (12,816,923 codons, 27,143 DNA coding sequences) published before June

2001 [CUTGO1].

The bias of codon usage is associated with a wide variety of factors including
{RNA abundance [Ikem85] [Bulm87], gene expression level [Holm86], local composi-
tional biased [KaMr96], protein composition and structure [DMAB91] [GMBGO00], trans-

lation optimization [Xia98], gene length [Eyre96), and mRNA secondary structure
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[HuKH92]. Studies have also shown that the genome GC content is correlated with cross-
species differences in frequencies of codons [OOYU88] and amino acids [Lobr97]
[WiVa99]. Further research by Knight et a. [KnFLO1] demonstrates that it is the genome
GC content which drives codon usage. These studies suggest that genes and genomes at
mutation/selection equilibrium reproduce a unique relationship between nucleic acid and
protein composition or in other words the structure of the genome determines the codon

usage in the organism [KnFLO1].

2.4 Computational Analysis of DNA Sequences

Biological computing has a long history in structural molecular biology. The
recent boom is mainly a consequence of the sequencing of the human and other genomes.
These projects yield an enormous amount of DNA and protein sequence data with an
exponential growing rate. It has been estimated that, for example, new sequences of
approximately 11 billion DNA bases were published in 2000, three times as many as that
in 1999 [NCBIO!]. This amount of data is shifting research in molecular biology and
genetics from a purely experimental approach to the one in which experiments can be
planned in front of a computer. Bioinformatics is the field as a consequence of dealing

with this by the combination of information science and biology.

One of the most active areas in bioinformatics involves the analysis of DNA
sequence information. The interests of DNA analysis are mainly in gene prediction in the

various organisms and characterization of the higher structure of the genomes.
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2.4.1 Gene Prediction

Gene prediction faces a number of challenges. First of all, genes of the most
eukaryotic organisms are neither continuous nor contiguous. They are separated by a large
size of the intergenic DNAs. Their exons are further interrupted by introns. Second, the
coding regions of a higher organism occupy only a small fraction of its entire genome. The
length of the exons varies widely and sometimes is even as small as 10 to 20 bp. As a
result of this, a trivial exon signal may be submerged into the non-coding pool of a
genome. Third, the arrangement of genes in a genome makes things even more compli-
cated by some exceptions. There are examples of genes nested within each other, such as
one gene located in an intron of another gene or overlapping genes on the same or oppo-

site DNA strands [DSRC99].

Two classes of computational approach are used commonly for gene prediction in
genomic sequences. Sequence similarity search, such as the BLAST family of programs,
is a well-established computational approach for gene prediction which has been used
extensively with considerable success [Fick96]. It is used to detect sequence similarity
between an uncharacterized sequence of interest and the known sequences of the genes,
the proteins, or the mRNAs. It suggests that they are homologous and share common evo-
lutionary origin if there is a significant similarity shown between them. Therefore, the
information from the known sequences can be used to infer a gene structure or function of

the uncharacterized sequence.

The approach of sequence similarity search has limitations although it has been

proven useful in many cases. It has been shown that only a fraction of newly discovered
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sequences have identifiable homologies in the current databases [Clav97] [WAAB94]
[DSRC99]. Therefore, this approach will give little or no useful information for the

uncharacterized sequences which have no homology with the known genes.

The other computational approach, called ab initio prediction, integrates coding
statistics and sequence signal detection into one framework. Coding statistics are different
between coding and non-coding regions. A number of measures, including codon
[StMc82], hexamer [CISB90], amino acid usage [FiTu92], position asymmetry [FiTu92],
codon preference [GrDB84], dependence between nucleotide positions [BoMc93], mutual
information [HeGr95], entropy [SnSt93], and Fourier analysis [TRBR97], have been
introduced to coding statistics [Clav97]. Most of gene prediction programs integrate the

output of a number of coding statistics.

Sequence signal detection methods attempt to recognize the genes by following
the interaction of the gene expression machinery with the nucleic acid. Sequence signals,
usually only several base-long subsequences, are recognized by the cell machinery and are
the signals for certain processes. The signals that are modeled by current gene prediction

programs are promoter elements, start and stop codons, splice sites, and poly(A) tail sites.

Many pattern recognition techniques are used for detecting sequence signals and
integrating several coding statistics. For example, the popular GrailEXP program uses a
neural network [UbMu91]. FGENEH program uses linear discriminant analysis
[SoSL94]. Dong and Searls [DoSe94] in GENLANG use linguistic methods. Decision tree
is used in SORFIND [HuHa92] and dynamic programming is used in GENEPARSER

[SnSt93]. Currently more powerful programs are entirely built with hidden Markov mod-

-28.




Characterization of DNA Sequences Chapter 2: Background on Genomics

els (GENSCAN [BuKa97], GENIE [KHRE96], GENEMARK.HMM [LuBo98],
HMMGENE [Krog97], and VEIL [HeSF97]). Both codon statistics and signal detection

models need to be trained by training sets.

Although they have a remarkable success for exon prediction, the accuracy of the
current gene prediction programs remains rather low when facing the large anonymous
sequences generated by HGP. For instance, only 20% of annotated genes have all exons
predicted exactly for the human chromosome 22 [DSRC99]. The predicting accuracy of
exon prediction is also dependent on the length of the exons. The accuracy decreased for
the exons longer than 200 bp or shorter than 70 bp. It still remains a problem for nested
and overlapping genes or alternative splicing. Most of the programs can 1ot deal with the

case of multiple genes or partial gene in a sequence [YeLBO1].

There are fundamental limitations for this class of approaches. First of all, high
accuracy prediction should not only predict genes positively where there are genes, but
predict genes negatively where there is no gene. The current data of training sets are origi-
naily from the public databases. These sequences are characterized by anomalously high
gene density, since the regions containing the genes have been preferentially sequenced
and published [Guig97]. The gene density of the popular ALLSEQ data set, for example,
is 15%, while the gene density of the human genome is less than 1.5% averagely. Most of
the programs even give a positive prediction for 12-36% of random generated DNA
sequences, although they demonstrated a good success on the known sequences in the

public databases [Guig97].

The second limitation is that these programs introduce a bias in favor of the detec-
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tion of genes similar to those known sequences [Clav00]. Hence, these programs, which
are developed based on the atypical gene sample available in current databases, may not
perform as well on genes more typical of the biological universe as a whole. In other
words, these programs may not predict successfully for the sequences containing the
genes that are not similar or have no similar property to the known genes. The typical
example of this is that these programs fail in prediction of non-protein coding genes (such

as Xist and H19) [Clav00].

2.4.2 Complexity Analysis of DNA Sequence

In the past decade or so the search for the statistical features of the genomic DNA
sequences is an area with rapid growth in the amount of the obtained results as well as in
the range of their functional and evolutionary implications for organisms. The develop-
ment of this area is directly influenced by the exponential growth of the data in DNA and

protein sequences.

During the past few years, there has been intense discussion about the existence
and the nature of long-range correlations in DNA sequences. The correlation properties of
DNA sequences was first studied by Peng et al. [PGHS92] in 1992. In their publication,
they have demonstrated a long-range correlation in the non-coding regions but not in the
coding regions of higher eukaryotic DNA sequences, using the Lévy walk method to map
the DNA alphabet sequences into numerical sequences. These conclusions were supported
by examining the size distribution of purine and pyrimidine clusters in pure coding and
non-coding regions of different organisms [MBGS95] [PrAl97]. Others have reported that

both coding and non-coding regions of the DNA sequences present long-range correlation
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[ChLa93] [PrC192]. Voss [Voss92], based on the self-similar characteristics in DNA
sequences, showed that DNA sequences exhibit a power-law relationship with 1/f (pink)
noise behaviour in DNA sequences. The author also noted a strong periodicity at a fre-
quency of three bp in DNA sequences. Yu et al. [YaAW01] [YuAnO1] proposed a time
series model based on the global structure of the complete genome, and have shown long-
range correlations in the bacteria DNA sequences. Further studies by Audit et al.
[ATVAO1] suggested that the long-range correlations, observed in both coding and non-
coding regions, are the signature of the higher-order structural organization of chromatin.
The presence of small-scale correlations only in eukaryotic genomes are related to the

machinery underlying the wrapping of DNA in the nucleosomal structure.

A major problem of these analysis algorithms applied to DNA sequences is that
errors are introduced by giving artificial values to the sequence at each base pair position.
When mapping DNA alphabet sequences to numerical sequences, most of the algorithms
published use the Lévy walk or modified Lévy walk models [PBGS92]. Briefly, to map a
DNA sequence using the Lévy walk model, a walker either descends or rises one step at
the position i along a DNA sequence chain if a pyrimidine (C/T) or a purine (A/G) occurs,

respectively.

To avoid this and the critical limitation of “prior training” problems, entropy and
mutual information algorithms are used for measuring the complexity of DNA sequences.
Ebeling ef al. [EMKS00] reported that correlations on many scales, including those of
long range, are found in the DNA sequences. Using the average mutual information

(AMI), Grosse et al. [GHBS00] showed that the probability distribution functions of the
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AMI are significantly different in coding and non-coding regions of DNA sequences and
there are persistent period-three oscillations of AMI functions for the coding sequences.
By calculating Rényi dimension through Rényi entropy, Rifaat proved that the genomic

DNA sequences demonstrate species independent multifractality [Rifa98].

2.5 Summary

This chapter presented the background of the molecular biology and genomics
involved in this thesis. Codon statistics was discussed. The bioinformatics techniques and
analysis methods for DNA sequences were outlined. The next chapter will provide a back-
ground on fractal and chaos since the goal of this thesis is characterization of DNA

sequences through multifractal analysis.
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CHAPTER 111
BACKGROUND ON FRACTALS AND CHAOS

This chapter presents the background on fractals and chaos involved in this thesis.
The basic concepts of fractal, fractal dimensions, as well as some typical fractal sets and
their properties are first described. Multifractal and multifractal dimensions are discussed
with more detail. Chaotic dynamics and strange attractor are then introduced. In the last

part, the methods of attractor reconstruction are described.

3.1 Fractals

3.1.1 Fractal Sets

The concept of fractals was first introduced by Mandelbrot for describing complex
objects which are difficult to deal with by topological geometry. Since then, fractals have
been studied extensively in physics and mathematics. A fractal object is self-similar,
which means that its parts are similar, in some extent, to itself as a whole. In other words,

a fractal has self-similarity in the structure and complexity at all scales.

The Cantor set [Cant83] is one of the mathematically self-similar fractals. It is
composed of an infinite set of points. These points distribute uncontiguously on a one-
dimensional line. As illustrated in Fig. 3.1, the Cantor set is built by beginning with a
straight line as an initiator. The middle one third segment of the initiator is then elimi-
nated, resulting in the generator. The process is repeated on each truncated line segments.
As the process iterated infinitely, a set of infinite points but not line segments are left. The

set of these infinite points is called the Cantor set. Clearly, as we can see, the Cantor set is
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not a line segment although the points of the set can fill up a line. It is an object with a self-

similar structure at any scale.

Length of Number of
Segment Segment

Initiator L 1
Ggileegaltor: 'L )
Step 2 (1 /3)2L 92
Step 3 — - _ — - — — — WL 23
Step 4 — - — - — - I § V<) s 94

Fig. 3.1. Generation of the Cantor set. L is the length of the initiator.

3.1.2 Fractal Dimensions

Fractal dimensions measure the degree of complexity (or roughness, brokenness,
and irregularity) of an object. The introduction of fractal dimension is motivated by the
fact that it is not sufficient to describe the complexity of fractal objects with the use of tra-
ditional geometry. That the fractal dimension strictly exceeds the topological dimension is

the essential feature for all fractals [Mand83].

Let’s consider again the example of the Cantor set in Fig. 3.1. The length of the
each line segment, in the unit of the original initiator, at each iterated step is (1/3)1, (1/3)2,
(1/3)%, and (1/3)" (at step n), respectively. The number of the line segments is 21, 22, 23,

and 2" (at step n), respectively. Hence, the total length of the Cantor set at each iteration in
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the unit of the original initiator is (2/3)1, (2/3)2, (2/3)3, and (2/3)" (at step n). When the
generation of the Cantor set continues to infinite iteration, the total length of the Cantor set
is (2/3)~ = 0 and the total number of the line segments, with a length of 0, is 27 =co. It is
clear that the Cantor set can not be measured with the traditional dimension since it is not
a line, a point, or any other curves which can be described in normal one, two, or three

dimensions.

However, fractal dimensions, which take into account the relationship between the
scale and some measurements, can be used to describe such complex objects. As shown in
Fig. 3.1, the length of each self-similar line segment, 7, and the number, N, of self-similar
segments are (1/3)" and 2" at iteration n, respectively. The D;, called self-similarity dimen-

sion, is

_log) _ 1082 _10g(2) _ g e300 3.1)

s Tog(i/r)  logisas3y)  log(3)

Thus the D, of Cantor set is approximately 0.63 and is invariant no matter how many iter-
ations have passed. This also shows that the notion of traditional integer dimensions needs

to be expanded to fractal dimensions to describe fractal objects such as the Cantor set.

There are many distinct definitions of fractal dimensions in order to reflect the dif-
ferent properties of the self-similar and self-affine objects. The fractal dimensions can be
catalogued into four basic classes: morphological, entropy, spectral, and variance dimen-

sions [Kins94].
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The Hausdorff dimension, Dy, is widely used since it is easy to understand and
compute. Briefly, the object to be measured is covered by a set of volume elements (vels)
with a vel size of r (called scale factor). The number of vels, N(x), which covers the object

completely is taken as the measurement for the power-law relationship,

D
N ~r H (3.2)
Thus, the hausdorff dimension becomes

D, - lim JBNG)

N g (1/7) 3-3)

The Hausdorff dimension is one of morphological dimensions [Kins94]. The limi-
tation of this dimension is that it does not provide detailed information related to the non-

uniform property of a fractal but an estimation of the outline complexity of the fractal.

The information dimension, D;, avoids this problem by taking into account the
information contained in a fractal object as well as the geometrical properties of the

object.

The well known Shannon entropy is the amount of the information for specifying a

state of a system at a certain resolution r. It is defined as

Hg = -3, pilogp; 34)
i =
where N(r) is the number of vels and r is the vels size, a scale factor. The p; is the relative

frequency »; with which the object intersects the ith vel of the total number N of intersects

of the fractal with all the vels
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.

= lim -
p; = A}Tm N (3.5)
where
N(r)
N= Y n (3.6)
i=1

Hence, the information dimension, Dy, is defined as

N(r)
-2, pilogp,

D, = lim =L — 3.7
r= i et @.7)

A time series can be transformed into its power spectrum, using Fourier, wavelet,
or other spectral analysis techniques [Kins91]. The power spectrum P(f) of the relative fre-
quency interval f between successive notes (seminotes) can be approximated by a homo-

geneous power function with an exponent [3 [Kins94], i.e.

P(f) = cf® (3.8)

where c is a constant value and white noise has a [ value of 0, pink noise has a {3 value of

-1, brown noise has a B value of -2, and for black noise, B is -3.

The spectral dimension, Dp, is then defined as
Dy =E+ 3-B (.9)

where E is embedding Euclidean dimension. The spectral dimension analysis of a com-

plex physiological signal, such as the heart rate (ECG), brain waves (EEG), muscle waves
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(EMG), blood pressure, and gastric noises, may reveal a better understanding of the under-

lying process responsible for the signal.

The self-similarity, Hausdorff, information, and spectral dimensions are single
dimension. There has been an argument that a single dimension only reflects an aspect ofa
fractal object [Chen97]. A multifractal spectrum is more appropriate for describing fractal

objects since it reveals more information of a fractal object [Kins94].

3.2 Multifractal Dimensions

3.2.1 Rényi Generalized Entropy and Dimension Spectrum

Kﬁowing the limitation of the Shannon entropy for describing the non-uniform
distribution in the fractal sets, Alfréd Rényi introduced the concept of the Rényi entropy in
1955. Rényi entropy, H,, is a generalized form of the Shannon entropy [Rény55]. It is

defined as
H = q_l log ¥, pf o< g < oo (3.10)

where g is the moment-order. Hence, according to the Eq. 3.7, the Rényi dimension, D,, is

given by

N(r)
D, =1 L

im —I-= lim
9 ,50log(r) rSo0g-1  log(r)

(3.11)
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Dy 4 Multifractal Object f(ay) A
/ Single Fractal Object
{Cantor Set)
Multifractal
. Object
Single Fractal Object Db — ——
Dyp = ————— {Cantor Set)
Dip — — — — — — \
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Fig. 3.2. The illustration of multifractal spectrum for a single fractal,
the Cantor set, and a multifractal object. (a) Rényi dimension

spectrum, (b) Mandelbrot dimension spectrum.

As illustrated in Fig. 3.2, the Rényi dimension is a monotonic and nonincreasing
function of the moment order g. For the case of g = 0, the Rényi dimension is equivalent to
the Hausdorff dimension Dy, and for g = 1, the Rényi dimension reduces to information
dimension D;. Thus, the Rényi dimension covers the Hausdorff dimension, the informa-

tion dimension, and many other fractal dimensions as special cases.

For strictly self-similar fractal objects such as the Cantor set, the fractal dimension
is single-valued (0.63 for Cantor set) for all values of ¢ and is called single fractal. If there
are multiple corresponding values of Rényi dimension for an object, the fractal object is
called multifractal. The multiple-value of the Rényi dimension is mainly due to the non-
uniform distribution of the multifractals. The difference between dimensions of different
order ¢ measures the degree of inhomogeneity of a multifractal in the sense of whether its

different subsets are visited with equal frequency. The Rényi dimension is a multifractal
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dimension measure. The spread of the Rényi dimension spectrum indicates the complexity
of the fractal. The multifractal dimension measure is a very useful tool for complex fractal
objects since it provides an infinite number of different (and relevant) dimensions for

describing a fractal object.

3.2.2 Mandelbrot Spectrum

Another multifractal dimension measure is the Mandelbrot dimension. In single
fractal dimension measure, a power-law relationship

p~ rD (3.12)

can be obtained between the distribution of the probabilities p with a single vels covering

and the size » for a homologous fractal.

For a fractal with an inhomogenous probabilities p;, it is useful o consider a nonu-
niform set of vels with size 7;. The local power-law relationship between the p; in Jjth vel
and the »; follows

. o
pirp~r; (3.13)

where o; (=1, 2, -, N() is a noninteger, called the Holder exponent [Kins94]. The
Holder exponent depends on the selected region of the measure. For a particular nonuni-
form fractal object with inhomogenous measures, the Holder exponent varies within a lim-

ited range O € [Olym Omar) - The value of the range represents the complexity of

" nonuniformity.

A power-law relationship exists between the number of the vels Ny(+) and a partic-

ular ¢ as follow
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N (r)~r T (3.14)

where f () is the Mandelbrot dimension at the specific o subset.

It has been shown [HIKS86] [AtSV88] [Kins94] that the Mandelbrot dimension

£ (0.) and the Holder exponent ¢, are related with the Rényi dimension D, by

, = Flg=1D,] (3.15)

and

fla,) = q0,~(g- 1D, (3.16)

The Mandelbrot dimension f (@), also called Dy, provides an object with an
alternative perspective view of multifractality. An example of Mandelbrot, i.e. f (o) ver-
sus 0., is shown in Fig. 3.2. It is noticed that a single fractal object such as the Cantor set
reduces to a point in the Mandelbrot spectrum since it has single-value of fractal dimen-

sion for all values of g.

3.3 Chaos and Strange Attractors

3.3.1 Chaotic Dynamical Systems

Most natural phenomena can be categorized as nonlinear dynamical systems. Non-
linear dynamical systems can be summed up into three classes: stable, unstable, and cha-
otic [JoSm87]. Stable dynamical systems settle either into a periodic motion or a steady
state after some transient period. Unstable dynamical systems are aperiodic and

unbounded.
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However, the chaotic systems are neither stable nor unstable but appear as random
behaviour [Kins95]. They are extremely sensitive to the initial conditions and thus are
unpredictable on their long-term behaviour. On the other hand, the chaotic systems are

deterministic and their behaviour has a sense of order and pattern with limited boundary.

As far back as in the nineteenth century, the aspect of sensitivity to initial condi-
tions and long-term unpredictability in chaos had been studied [HuYo093]. The keen inter-
est in this area is largely due to the Lorenz’s works in weather prediction [Lore63]. The
concept of chaos in regard to deterministic nonlinear behaviour was first introduced by Li

and Yorke [LiYo75]. Since then, chaos theory has dramatically developed.

20
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[ { |
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Fig.3.3. The one dimensional trajectory of the Lorenz system for

o = 10, n = 8/3, and y = 28 with the initial values at
x(0)=0, y(0) =1, and z(0) = 0.
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3.3.2 Strange Attractors

First let us consider the example of Lorenz dynamical system. The system is gov-

erned by the Lorenz equations

-

x(t) = ~olx(®)-»(1)]

< %y(;) = —x(1)z(t) + (1) — y(2)
(.17)

570 = Oy =m0

The critical parameter is y. It determines the stability of the solutions. The range of
y € [27.74, 100.5] determines that the equations exhibit a chaotic behaviour. Here, the
values of the parameters are selected as ¢ = 10,1 = 8/3, and y= 28. The initial values are

x(0) = z(0) = 0 and y(0) = 1. Figure 3.3 shows the x-component, y-component, and the z-

40

20

-40 -10

Fig. 3.4. The strange attractor of the Lorenz system displayed at low resolution.
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component of the system versus time £, respectively. Figure 3.4 exhibits the three-dimen-

sional phase space of a chaotic solution to the Lorenz system.

For a dynamical system, the set of all dependent variables constitutes a phase
space, i.e. a Buclidean space whose coordinates are these variables. In the case of the
Lorenz system, the phase space is three-dimensional. Each point in this phase space repre-
sents a possible instantaneous state of the Lorenz system. A solution of the Lorenz equa-
tions is represented by a particle travelling along an orbit or trajectory in this phase space.
As exhibited in Figs. 3.3 and 3.4, the trajectory of the Lo;enz system in phase space dem-
onstrates the existence of a bounded object, although the time waveform shows the ran-
dom or unpredictable behaviour. This trajectory is called strange atiractor. The name of
strange attractor refers to its unusual properties of sensitivity to initial conditions. It is
noticed that a single point in the phase space determines the entire future trajectory since
such a point represents a complete set of initial conditions for the Lorenz equations. This
means that a trajectory in its phase space can never cross. However, a trajectory may inter-

sect if the projective space has fewer dimensions than the embedding dimension.

Chaos and fractals are different fields. Chaos deals with time evolution and its
underlying or distinguishing characteristics, while fractals deal with geometric patterns
and quantitative ways of characterizing those patterns. However, chaos and fractals are
closely intertwined and often occur together. Most chaotic attractors, for example, have a
fractal striated texture [PeJS92]. Because of their close relationships, studies in one field

may help in the other.
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Modelling a natural nonlinear chaotic phenomenon is extremely difficult due to the
chaotic features of sensitivity to initial condition and unpredictability. One way to charac-
terize the phenomenon is through multifractal analysis, using the multifractal features of
its strange attractor, if there is a strange attractor for this natural nonlinear chaotic system.
In order to do so, it has to be determined whether the underlying system is a deterministic
or a stochastic system and more important, to have the strange attractor. But in practice, it
is difficult to obtain enough information on all variables of the underlying system and usu-
ally we can only access the trajectory of one measured variable due to technical limita-
tions. This leads to the issue, to be discussed in the following section, reconstructing its

strange attractor using one component variable of the all variables in a chaotic system.

3.3.3 Characterization of Dynamical Systems

For a dynamical system characterization, the majority difficulty is that we usually
have only incomplete information of the system. The measured time series does not typi-
cally cover all the degrees of freedom of the system. However, a time series of a single
variable can carry the information about the dynamics of the entire multivariable system
and this allows the attractor of the chaotic system to be reconstructed [PCDS80]. Several
techniques for attractor reconstruction are currently employed, such as time delay
[Take81], derivative coordinates [PCDS80], and singular-value decomposition [BrKi86].
The method of time delay is the most widespread approach since it is the most straightfor-

ward and the noise level is constant for each delay component.
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3.3.3.1 Time Delay Approach
Basically, delay coordinates are used to form M-dimensional state-space vectorg,
X;. That is, the reconstructed trajectory, X, is given by
X =[X,X,X; X, 1 (3.18)
For a single-value time series, {x,, xy, x5, -+, xy1}, the reconstructed state of the m-
dimensional system at each discrete time i is

Xi = [x; %40 Xppq o xi+(m—l)T}
i=1,23 - N-(m-1)t

(3.19)

where m is the embedding dimension, N is the length of the time series, and T is called the

lag of the time series.

According to Takens’ theorem, a faithful reconstruction is guaranteed as long as
the relationship of the embedding dimension m and the topological dimension # are

m>2n (3.20)

In theory, the time delay T can be chosen arbitrarily if an infinite amount of noise-
free data is used [Take81]. However, the quality of the analysis depends on the value cho-
sen for T if only a limited amount of noisy data is available. In practice, if a value of lag is
too small, then there is little information between the successive delay coordinates and the
constructed trajectory becomes compressed along the main diagonal of the embedding
space. On the other hand, large values of 7 usually results in contiguous delay coordinates
becoming uncorrelated. The reconstruction is no longer representative of the true dynam-

ics.
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Fig. 3.5. Lorenz attractor reconstructed from the x component trajectory.
o= 10,1 =8/3, and y= 18, x(0) = 2(0) = 0, »(0) = 1, embedding
dimension is 2 and 3000 points are used for the reconstruction.
(@)t=2,(b)T=8,(c)T=17, and (d) T=100.

Figure 3.5 shows the reconstructed Lorenz attractor based on the x-variable trajec-
tory of the Lorenz system with a lag 7 of 2, 8, 17, and 100. As can be seen, the recon-
structed Lorenz attractor shares the basic dynamical properties with the original Lorenz

attractor for the low lag values. For large lag values, the aftractor starts to lose its structure.
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3.3.3.2 Mutual Information Method for Choosing Lag

There are two methods of choosing the best lag. The autocorrelation function
measures the linear dependence of the points in an attractor, while the mutual information
measures the general dependence of the points. Therefore, it is expected that using the
mutual information method would give a better measure of the shift from redundancy to

irrelevance [FrSw86].

The mutual information is defined as

N—-t(m-1)
Z P[x,', Xitp ""xi+1:(m—!)}
P 3.21)
xlog( Plxy Xisp 5 Xivggm-1) )
P{x,‘]P[x;‘+t]"'P[xii-‘c(m—l)]

where P(x;) is the probability of the occurrence of the time series variable x;,
PlxpXjso o Xt qm- I)] is the joint probability of occurrence of the attractor coordi-
nates X; = [x; X;4¢ X007 = Xin(m- 1)1] , and m is the embedding dimension. M isa
measure of the general statistical dependence of the reconstruction variables on each other.

If the coordinates are independent statistically, such as white noise, then

Plxp Xjpp o X q(m— E)] = P[x,-]P[x,-H]...P[x,-H(m_})] (3.22)

In this case, M = 0. Therefore, the mutual information of white noise is zero.

In practice, the coordinate at the first local minimum of the mutual information is
selected as the lag value. For a special case of a two-dimensional reconstruction of an

attractor in x; and x;, planes, the mutual information, M, is deduced as
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Fig. 3.6. The mutual information function of the (a) white noise and (b) Lorenz
attractor. The lag value corresponding to the first local minimum of
the mutual information function is selected as the best lag. For the
white noise, the value of mutual information is very small due to the
fact that there is no correlation among the points. For Lorenz attractor,
a lag of 17 at the first local minimum mutual information is chosen.
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N, N, _
M, = Y Py k)log[]—%.;ﬁ%] (3.23)
j=1 k=1

where N, and N, are the number of vels along a row and a column, respectively. P(j) and
P(k) are the probability of the occurrence of the attractor in column j and row k respec-
tively. P(j, k) is the joint probability of the attractor in the column j and row k& vel. The rela-
tionship of M, versus, using Lorenz aftractor as an example, is plotted in Fig. 3.6. As

shown in the figure, the best lag is selected as the first minimum of M.

It is noted that, as can be seen in Fig. 3.6, the mutual information of the stochastic
system such as white noise is significantly small and varies in a very trivial range, indicat-

ing there is no correlation in general among these points.

3.3.3.3 False Nearest Neighbourhood Method for Choosing

Embedding Dimension

There are mainly two methods to determine the dimensionality of a dynamical sys-
tem. Correlation dimension analysis is the most often used method. The usual problem
associated with this method is that often the dimensionality of a system is too high to find

a clear indication of a finite dimension.

Another method of determining the dimensionality of a system proposed by Ken-
nel et al. [KeBA92] is to estimate the percentage of the false nearest neighbours. The main
idea is that for a deterministic system, the closed points that are true neighbours in the n-
dimensional embedding space stay close in the n+1 embedding dimension space. On the

other hand, the points may appear as close neighbours by the projection effects in the n-
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dimension space, if » is too small. These points are mapped randomly onto the entire

attractor in the n+1 dimensions space.

—
Based on this idea, for a point x; of an aftractor reconstructed from the time series

¥ in n dimensions, the Euclidean distance, Ri(i, r}, between the point and its rth nearest

—_—

r)

neighbour, x; ° is given by
5 n-1 5
Ry = Y (% =Xkl (3.24)
k=0

where T is the lag.

In n+1 dimensions, the Euclidean distance is

2 , 2., 2
Rn+ I(I’ I‘) = Rn(l’ I‘) + {xi+nt—x§:-)nt] (325)

Thus, the first Kennel’s criterion for false neighbours is given by

2 . 2., 1/2
R, - B ] i)
7. = 7 >Ry (3.26)
R, (i, r) R,(i,7)

where R,,; is a threshold for the criterion. The value of Ry, is selected experimentally by
checking the sensitivity on different values of Ry, In general, it is enough to consider the
nearest neighbour, i.e. r = 1.

This criterion by itself is not sufficient for judgment because it is unnecessarily
close to E\i, even though J—CE-—}\) is the nearest neighbour of J_C: So the additional criterion,
which discards those nearest neighbours located on the boundary of the attractor, given by

Kennel ef al. is
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R”(i’ r)

> A (3.27)

tol
A

where A, is a threshold for the second criterion and R is the standard deviation of the
data and represents the attractor size. Therefore, a nearest neighbour is declared as false if

either criterion test fails.

Figure 3.7 shows the percentage of calculated false nearest neighbours for Lorenz
attractor with A,,; = 2 and Ry, from 0.5 to 30. As can be seen, the percentage of nearest
neighbours falls to zero when the embedding dimensions are not less than three, indicating
that the Lorenz attractor has a low embedding dimension structure. This method can also
be used to distinguish between deterministic chaos and a stochastic system. As shown in
Fig. 3.8, the ratio of false nearest neighbours does not drop to zero for a white noise as the
embedding dimension increases. This suggests that white noise has a higher dimensional

structure and, therefore, is not a low-dimensional deterministic chaotic system.
3.3.3.4 Distinguishing Stochastic System From Deterministic Chaos

Tt is noticed that distinguishing deterministic chaos from noise is also an important
issue. A good algorithm is able not only to characterize chaotic systems accurately but to
identify between noise and chaos. In this section, a further utility of our approach is estab-
lished by comparing the performance of the approach on white noise with deterministic

chaos.
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Fig. 3.7. The percentage of false nearest neighbourhoods for the Lorenz
attractor. The values on the curves represent the different Ry,;.
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Fig. 3.8. The percentage of false nearest neighbourhoods for white noise.
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As shown in Fig. 3.6 (), the values of the mutual information of the white noise
are small in comparison to a deterministic chaos, Lorenz system (Fig. 3.6 (b)), indicating
that there is no dependency between the points in the white noise system. Further charac-
terization of white noise, as shown in Fig. 3.8, using false nearest neighbourhood method
exhibits that the ratio of false nearest neighbours do not fall to zero as the embedding
dimension increases. This suggests that white noise has a higher dimensional structure.
The results also demonstrate that the method of the false nearest neighbourhood is able to
distinguish high-dimensional systems from low-dimensional chaos. In general, a high-

dimensional system is considered as random noise.

The reconstructed white noise is shown in Fig. 3.9. As can be seen, a high-dimen-

sional noise distributes in the entire phase space without any boundary since there is no

correlation between the points.

. ,_."-'l.- LI

. . .o
T R PR A 1

Fig. 3.9. The reconstructed white noise system
with a lag of 1 for (a) and 10 for (b).
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3.4 Summary

In this chapter, the background knowledge about fractal and chaos are provided.
The algorithms of fractal and multifractal analysis are described. Strange attractors and
their reconstruction are reviewed. The methods for determining appropriated embedding
dimension and lag for reconstruction are discussed. Our approach of distinguishing
between the high-dimensional noise and the low-dimensional deterministic chaos is fur-
ther explained. In the next chapter, we will present the methods and experimental design

for characterizing DNA sequences
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CHAPTER IV
CHARACTERIZATION OF DNA SEQUENCES

Fractals are used mainly to model the highly nonstationary signals. In general,
fractal-dimension calculations result in the signal’s topology dimension, thus the fractal
modelling does not exhibit much advantage. However, this approach gives good perfor-
mance for nonstationary signals. Signals can be considered as measures. If the measure
has self-similarity, fractal dimensions can be applied. This chapter introduces a novel
approach for compositional complexity measure of DNA sequences, which has been
developed for this thesis. The approach is based on the fact that the outlines of most natu-
ral objects are multifractals. In this thesis, a DNA sequence will be considered as a one-
dimensional strange attractor. Hence, the measure of the complexity of DNA sequences is
not on a point by point basis, but, instead to consider the DNA sequence as a whole object.
Before applying multifractal analysis to DNA sequences, the problems of how to map the
DNA alphabet sequences to numerical sequences and how to define the measure for points
of a numerical sequence which are used in the multifractal analysis for strange attractor

have to be solved.

4.1 Numerical Mapping of DNA Sequences

For most analysis methods applied to DNA sequences, the first problem is how to
map DNA alphabet sequences into numerical sequences. Currently, the DNA walk repre-
sentation, or so called Lévy walk model [PBGS92], is mainly used in the DNA complexity
analysis. The Lévy walk model, which maps a DNA alphabet sequence to a one-dimen-

stonal numerical sequence, defined in [PBGS92] is that the walker steps “down” when a
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purine (A or G) occurs at position i, while the walker steps “up” when a pyrimidine (C or
T) occurs at position i. Two-dimensional Lévy walk models have been also reported

[ZhKi98].

The disadvantage of this model is that the artificial relationships between purine
and pyrimidine are introduced by walking “up” a step for a purine and “down” a step for a
pyrimidine at position /. Therefore, an analysis of the resulting numerical DNA sequence

may have interference due to the artificial information.

With the success of the HGP, 96% of the entire human genome has been sequenced
and published. Within the human genome, over twenty six thousand genes, or more than
65% of the entire human genes, have been annotated before the early part of in 2001.
Therefore, it is possible to estimate the human codon usage using these large data sets. An
example of human codon usage, which is a statistical result from a data set of approxi-
mately 12.8 million codons, available at web site (ref. [CUTGO1]), is shown as Table 2.1

in Section 2.2.1 and will be used through this thesis.

To use multifractal techniques to measure the DNA alphabet sequence, we have
first to map a DNA alphabet sequence into a numerical series. In order to do so, acodon, a
three-base sequence, is considered to be the smallest unit in the DNA sequence instead of
a base pair. Each point in the numerical sequence represents a codon in the DNA symbolic
sequence. A measure of each point is assigned based on the statistical usage of the corre-
sponding codon in the DNA alphabet sequence. Thus, a relationship between the values of

the points are established by the statistical codon usage of the organism.
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Since a DNA sequence represents three frames, a numerical mapping of the DNA
sequence will result in three DNA numerical series. Only one series of a coding DNA

sequence represents the actual amino acid sequence.

4.2 The Size of a Point of an Object in Multifractal Analysis

As discussed in Section 3.1, a particular measure is used for each fractal dimen-
sion. For example, the measure of the Hausdorff dimension is the number of vels N(¥),
which cover the entire fractal object, and the Shannon entropy H, is the measure for the
information dimension. The fractal dimensions actually reflect the rate of change of the

measures as the vel sizes are changed [Chen97].

Prior to applying multifractal analysis to an object, there are two basic questions
that have to be solved. How to measure a *“point” and how to determine the size of a
“point” of a fractal object. In general, a “point” in a m-dimensional space is defined as the
smallest and undividable unit in the m-dimensional space. Chen [Chen97] proposed that
the measure of a pixel, the smallest unit of an image, is the amount of the grey level of the
pixel. According to the theory of the Rényi dimension, it is, therefore, deduced by Chen
that the size of a pixel in the fractal analysis is the inverse of the image size. The limitation

of this model is that it is suitable only for the square images.

Therefore, we extend Chen’s idea to a m-dimensional fractal object. Consider a
“point” of a fractal object as a uniformed unit block of the m-dimension. The value of the
“point” can be represented by the amount of “mass” of the unit block or the density of the

block in the m-dimensional space. Thus, in order to apply multifractal analysis to measure
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a fractal object, a measure is assigned to each “point” in the m-dimensional space, i.e., the

measure of a point of a fractal object is the value of the point in the m-dimensional space.

(a)
r=1 r=1/2 r=1/3
N=1 N=4 N=9
Q)]
r=1 r=1/2 r=1/3
N=1 N=8 N=27

Fig. 4.1. The illustration of fractal dimensions of a plane and a cube.
(a) The dimension of a plane is 2. (b) The dimension of a
cube is 3.

To determine the size of a m-dimensional point, let’s consider the uniformed regu-
lar geometric objects. According to the definition of the fractal dimension (Fig. 4.1), we
know that the dimension values of a plane and a cube are 2 and 3, respectively. If consider-
ing a uniformed cube in the three-dimensional space, each point in the cube has the same
value. When applying the multifractal measure to the uniformed cube, the values of the

Rényi dimension should be 3 no matter what the value of g is.
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Suppose the value of each point in a uniformed cube, which has a size of
§) X s, X85, is C. The measure of each point then is denoted by ;= C (=1, 2, ..,
§1 X 83X 83 ). The sum Nof n;is s X5, X 53 X C. If we define the size of each point is 7,
the total number of non-overlapping vels NM(r) for covering the object is s, X5, X s;.
Then based on the definition of the Rényi dimension (Eq. (3.11})), the estimation of D, for

the object can be obtained by

51 X853 X5,

q
1 log 2 (ﬁj)
D = L=
7 g-1 logr @.1)
Therefore, # is represented by
A3 XSZ X33
1A
log Z (}\Jf)
F = exp =l (4.2)
Dy(qg-1)

Since Dq =3, N =5, Xs5xXs5;xC ,andnj=C,thus

5| X853 X353

g
log 2 (s1><s2><s3><C) 3

1/3

Now we consider the case of an object of 5, X 5, uniformed plane in the three-
dimensional space. Only the points on the plane have the value C and others have the
value of zero. It is noted that Dy = 2, N = 81X 5% C, and n;= C in this case. In the

same way as discussed above, the size of each point is given by
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51 X5
nNg
lo (—j)
gg‘l N 2 IN2
r = exp| —L=———| = (;) (4.4)
Dig-1) | =1k

If we extend to the m-dimensional space, similarly we can obtain that

S REX .. XS

C
log Z "
/= ¢ H Sk m

L/
r = exp k=1 = (—1-) " 4.5
m(qg—1) k=1

where 54, (k= 1, 2, ..., m), 1s the topological size of the object along the 4-th axis.

As in the special cases, the size of a point in the three-dimensional space is

ry =( 1 )”3 (4.6)

815283

where 5/, 5, 53 are the topological size of the fractal object in the three-dimensional space.
In a two-dimensional space, the size of a point of a fractal object is given by

py = @.7)

AS152
where s, and s, are the size of a two-dimensional object. As a special case of a square

image, s| = 5. Hence, the size of a pixel is r, = -1-, which is the case discussed by Chen

tn

[Chen97]. For an one-dimensional line, the size of a point in the line is given by
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(4.8)

¥y =

Lo | r—

where s is the length of the line object.

Eq. (4.8) suggests that the size of a point in a numerical series or a sequence is the

inverse of the length of the series in the fractal analysis.

4.3 Multifractal Model of Numerical Series

First for a numerical series, we define that the length of the series is s if the series
is composed of s points. As described in Chapter 3, the scaling issue, or in other words,
vels and how to choose the vel size, is the critical issue when applying multifractal mea-
sures. Based on the discussion in Section 4.1 and 4.2, a measure of a point, in an one-
dimensional series is related to the value of the point, i.e.

n, = C, J= 1,28 (4.9)

where 11; is the measure value, or “mass” of the j-th point, C; is the value of the j-th point,

and s is the length of the series. Therefore, the total “mass” of the fractal object is

N=YC( (4.10)

It has been discussed that for a numerical series with a length of s, the size of each

point in the series is

(@.11)

~
I
| —
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Based on this, the multifractal measures of the numerical series are approximately

as follows.

4.3.1 Approximations of the Multifractal Measures on the Numerical Series

According to Eq. (3.11), an estimation of the Rényi dimension, D, for a numeri-

cal series is given by

(4.12)

An estimation of the Holder exponent qu for a numerical series, based on Eq.

(3.15), is

Z cj.’[iogcj—iog(i Cj)]

o, = i _ V= (4.13)

From Eq. (3.16), an approximation of the Mandelbrot dimension of a numerical

series, f (o), is

S, closC)- 3

C?Iog[ 2 C;I]
Sy = =] 21 el
1
(log;)

(4.14)

s

2 ¢

F=1
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4.3.2 Multifractal Measures on the Single Fractal Numerical Series

To exam the model described above, let us calculate the single fractal Cantor set
with our model. As explained in Chapter 3, the Cantor set is a single fractal and the theo-
retical value of it is log(2)/log(3). First, we construct a numerical series which has the
properties of the Cantor set. An example of the Cantor numerical series looks like this

888000888000000000888000888 --- - -+

The series is composed of two types of points with values of 0 and 8, respectively.

For a Cantor numerical series of above example with a length of M, as described in
Fig. 3.1, there are 2k segments and each segment has a size of m after  iterations. Hence,
the total “mass” of the series is m - 2%. 8 and the length of the series is M = m - 3* S0

the estimated Rényi dimension is

q
log z (-—-———-8 k) log[mZk(——i—),-f)q] X
i 8em 27 m2 _. log(m2”)

(q—l)IOg(%) _ (q—l)log(m—l—f) log (m3%) (4.15)

Because we can not iterate the process infinitely for a finite numerical series, the
segments have to contain at least one point or m 2 1, which is the maximum possible

number of iterations. Therefore, for m = I, the final estimated Rényi dimension is

p, = 2&0) (4.16)

which equals to the theoretical value of the Cantor set.

.64 -



Characterization of DNA Sequences Chapter IV: Characterization of DNA Sequences

a7 T T T T T T T Y T

QEo N

e X::] n

[ F:14 o b

one -

9.63 =

aezpk -

o811 -

os 1 I 1 1 1 1
-25 ~20 -15 -18 ~5 [+] 5 14 15 20 25

q

Fig. 4.2. The Rényi dimension spectrum of the Cantor numerical series.

o7 T T 1 T T T T T T

oerr -
088l .
D Man
o107 of -
(I -
o83 Y -
062l -

o8 -

ok om oe ok af  os o0& G808 o7
o
Fig. 4.3. The Mandelbrot spectrum of the Cantor numerical series.
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The estimations of the Rényi dimension spectrum and the Mandelbrot spectrum
are shown in Fig. 4.2 and 4.3, respectively. The Cantor numerical series used for estimat-
ing the spectra contains 2000 points. The experimental estimations of the multifractal
dimensions are slightly smaller than the theoretical value (about 0.6309) because the pop-
ulation or the experimental series is not long enough. Since both the Mandelbrot dimen-
sion and the Hoélder exponent are constant, the Mandelbrot spectrum of the Cantor

numerical series is reduced to a single point.

4.3.3 Multifractal Measures on the Multifractal Numerical Series

Now we apply our model to the Lorenz system. As discussed in Chapter 3, the
Lorenz system is a deterministic chaotic system and a multifractal. Figures 4.4 and 4.5
show the Rényi dimension spectra and the Mandeibr.ot spectra for the x-variable trajectory
of the Lorenz system, respectively. It is noted that the multifractal measures shown in Fig.
4.4 and 4.5 are not the multifractal measure of the strange attractor of the Lorenz system
but rather the measures of the trajectory for the x-variable time series shown Fig. 3.3. To
measure the multifractality of the whole Lorenz system, we have to calculate its strange
attractor in the three-dimensional space. The results of multifractal measure of the whole

Lorenz system are shown in Figs. 4.6 and 4.7.

As can be seen in Figs. 4.4. 4.5, 4.6, and 4.7, although they arc completely differ-
ent objects (ref. Figs. 3.3 and 3.4), the multifractal spectra of the x-variable trajectory of
the Lorenz system and the Lorenz strange attractor have a common multifractality struc-
ture. The differences of the multifractal dimension values of them reflect the space struc-

ture difference since the former is a one-dimensional fractal object and the latter is a three-
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dimensional object. This result further supports the discussion in Section 3.3.3 that a time
series of a single variable carries the information about the dynamics of the entire multi-
variable system and therefore, the attractor of the system can be reconstructed based only

on the information provided by a single variable measure.

Fig. 4.4. The Rényi dimension spectrum of the x-variable trajectory of
the Lorenz system.
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Fig. 4.5. The Mandelbrot spectrum of the x-variable trajectory of
the Lorenz system.
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Fig. 4.6. The Rényi dimension spectrum of the Lorenz system.
The calculation is based on 25,000 points of the system.
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Fig. 4.7. The Mandelbrot spectrum of the Lorenz system.
The calculation is based on 25,000 points of the
system.

4.4 Local Rényi Dimensions of the DNA Signals

In practice, a signal or a time series can be composed of several highly self-similar
and nonself-similar regions. A multifractal measure of the series as a whole may not
reveal the location information of these regions. For example, a DNA signal may contain
both coding and non-coding regions. In many cases, we are interested in finding the loca-
tions of the coding regions, which have a higher self-similarity structure than the non-cod-
ing regions due to the codon usage. Therefore, local fractal dimensions may be a more
realistic way in practice. Local dimension refers to the fact that the values of dimension
are calculated based on the limited local data. A value of the fractal dimension is assigned

to a point in the signal.
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Our approach of local fractal dimension analysis first specifies a point of interest
in a DNA signal or a DNA numerical sequence. A sliding window then masks the segment
of the data sequence with the point located at a specific position of the segment. A dimen-
sion calculation is carried out on the masked data and the resulting value is assigned to the
point. The computation is repeated for the other points by moving the window throughout

the sequence.

4.4.1 Window Size

The selection of the sliding window size is a critical issue. If it is too large, the esti-
mated local dimensions may be interfered with other fractals in the signal. Another prob-
lem associated with a large window size is that a coding region which has a size less than
the window size may not be distinguished from the non-coding background. However a
smaller window size may result in a miscalculation due to the insufficient population of

data for measuring.

As discussed in Chapter 2, the genomic DNA sequences of higher organisms are
very complicated. The genes are scattered by large intergenic sequences and the coding
regions of a gene are further separated by the large non-coding regions. The length of a
gene or a coding region varies dramatically. To deal with that, different resolutions associ-
ated with different sliding window sizes are applied to the genomic DNA sequences. In
practice, a window size of 122 bp is used for locating coding regions within a gene and a
size between 200 and 300 bp is used for locating the genes within a genomic DNA

sequence.
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4.4.2 Sliding Step

Another key factor of local dimension analysis is to determine the sliding step. The
sliding step is the length of the sliding window moved each time and should be in multi-
ples of three since a codon has a size of three bp. A large sliding step may result in missing

a small exon. In practice, we choose a length of nine bp as the size of the sliding step.

4.5 Summary

This chapter further describes the multifractal measures of the DNA sequences. A
translation method which maps the DNA symbolic sequences into the DNA signals is dis-
cussed. The measure of a point in a m-dimensional fractal object is defined and the size of
a point in a m-dimensional fractal object is determined for multifractal analysis. Based on
this, a multifractal analysis model for numerical series is proposed. Some examples of sin-
gle fractal and multifractal are calculated with this model. In the next chapter, the human

DNA sequences are analyzed, using this model.
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CHAPTER V
EXPERIMENT DESIGN

This chapter provides the experimental design for the characterization of the DNA
sequences through multifractal analysis. As modeled in Chapter 4, the analysis of the
DNA sequences includes four parts, ¢€.g. numerical mapping, chaotic property, feature
extraction, and “on-line” analysis. The specific design and detailed parameter setting are

presented in the following sections.

5.1 The Experimental DNA Sequences

Two types of DNA sequences are used in this thesis. Generated DNA sequences
including the random DNA sequences and the Cantor DNA sequences serve as standard
sequences for system testing. The human DNA sequences including genomic, cDNA,

exon and intron sequences are selected from GenBank.

51.1 The Generated Random and Cantor DNA Sequences

The random DNA sequences are generated from a uniform white noise source.
Statistically, the four letters, A, T, C, and G have the same occurrence of 25% in the result-
ing random sequence. In practice, a random DNA sequence with forty thousand bp long is

used for testing.

The generated Cantor DNA sequence has a property of the Cantor set (ref. Fig.
3.1). The symbolic Cantor DNA sequence contains only two characters. The points
located at the line segments are filled with one character. The points located where no line

segment appears are filled with the other character. A generated Cantor DNA sequence
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looks like: AAACCCAAACCCCCCCCCAAACCCAAA. It is noted that the size of a
generated Cantor DNA sequence should be a multiple of three since the size of a “point”,
which represents a codon, is three bp long. An example of the generated Cantor DNA
sequence is shown in Appendix A. For the thesis experiments, a generated Cantor DNA

sequence with a length of 20 kb was used.

5.1.2 The Human DNA Sequences

For real human sequences, genomic DNA, ¢cDNA, exon, intron, flank region se-
quences have been obtained from GenBank, and are used in this thesis. Briefly, ph-20, a hu-
man genomic DNA sequence, is located on human chromosome 3 and contains the HYAL?2
gene and the exon 1 of the HYAL] gene. HUMBHBB, a human genomic DNA sequence, is
located on human chromosome 11 and contains a cluster of human B-globin genes includ-
ing €, Gy, Ay, 8, and P globin genes. A pseudogene B-1 is located between the Ay and 8
genes. The five B-like globin genes encode the B chain of the hemoglobin. The human NEB
gene, located at chromosome 2, encodes a muscle protein involved in maintaining thé struc-
tural integrity of sarcomeres and the membrance system associated with the myofibrils. The
human HD gene, located at chromosome 4, plays a role in microtubule-mediated transport
or vesicle function. The HYAL] and HYAL2 genes, both related with the hyaluronoglu-
cosaminidase activity, are located at Chromosome 3. The ¢cDNA sequences of the HYALI,
HYAL2, H19, NEB, and HD genes are used for the experiments. The 5’ end and the 3’ end
of the non-coding regions of the cDNA were removed prior to testing. The exon and intron
sequences of the HYAL1 and HYAL2 genes are isolated and used as test samples. Approx-

imately 1-3 kb flank regions of the HYAL1 and HYAL2 genes, including 5° flank and 3’
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flank regions, are selected for this thesis. The detail information of these sequences is

shown in Table 5.1.

Table 5.1. The information of the experimental human DNA sequence

Sequence GenBank Length Descrintion
Name Access Number (bp) P
Genomic DNA, containing the HYAL2
ph-20 AC002455 29314 gene and the exon 1 of the HYALI gene
- Genomic DNA, containing the cluster of
HUMHBB U01317 60000 the five B-globin gene and a pseudogene
¢DNA, in practice only the coding regions
HYALI U26078 1308 of the cDNA are used
¢DNA, in practice only the coding regions
HYAL2 u09577 1346 of the cDNA are used
NEB NM._ 004543 20839 Zl;l\zgé ;nly the coding regions of the cDNA
HD NM_002111 13672 ggl\llljsxé doraly the coding regions of the cDNA
HI19 BC004532 1001 ¢cDNA, non-protein coding gene
HYAL1-5flank 3960 A part sequence of ph—20,. the sequence is
located at the 5° flank region of the HYALL.
The first exon of the HYAL1 and a partial
HYALI-exonl 900 sequence of ph-20
HYAL1-intronl 979 The first intron of the HYAL1
A partial sequence of ph-20 and located at
HYAL2-5flank 1297 the 5’ flank region of the HYAL2
HYAL2-3flank 2160 Located at the 3* flank region of the HYAL2
HYALZ2-exonl 921 The first exon of the HYAL?2 gene
HYAL2-exon3 411 The third exon of the HYAL2 gene
HYALZ2-intron! 520 The first intron of the HYAL2 gene
HYALZ2-intron2 416 The second intron of the HYAL?2 gene
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5.2 Numerical Mapping of the DNA Symbolic Sequences

Prior to applying multifractal analysis, the DNA symbolic sequences have to be
translated to numerical series or DNA signals. As stated in Section 4.1, the numerical
mapping is based on the statistical codon usage of each codon in the DNA sequences. In
this thesis, the human codon usage is used to assign the values to the 64 individual codons
since we will analyze only human DNA sequences. A window with the size of three bp
covers a segment of the DNA symbolic sequence. A value, according to the human codon
usage, is assigned to the three-base sequence masked by the window. The window shifis
one base at a time along the entire DNA symbolic sequence, thus producing a trajectory.
This trajectory is called the DNA signal. As discussed in Chapter 2 and 4, a DNA
sequence can yield three frames due to the fact that three bases represent a codon. Only
one out of the three frames represents the actual amino acid sequence. Therefore, a DNA
signal results in three translated frame signals. The numerical mapping machinery is illus-

trated as Fig. 5.1.

DNA Sequence 5°---CTAACCCCCCCCTAGCCCCCCTGACCCCC---3’
L jt Je e JL L JLJL

Signal of Frame 1 ap a a3 @ 8 3 a7 3 A
T DL N RN R S | N (N R
Signal of Frame 2 by by by bs b5 by by by by
R N N N I Y N Tl
Signal of Frame 3 ¢ ¢ © € O G ¢ C O
DNA Signal a;b;CaybyCa3b3c3a4b4cqashscsaghsCaarh7CragbgcsagbyCo

Fig. 5.1. An illustration of numerical mapping of the DNA sequence.
ay...29, by...bg, and c...cq are the values for the specific codons.
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An amplification and quantization of the raw translated numerical series is subse-
quently carried out since the values of the raw translated numerical series, which represent
the 64 codons, are much less than 1. The amplification of the signals does not change the
results because the fractal dimensions measure the complexity of the object rather than the
values of the points in the object. In addition, fractal modelling achieves input data normal-
ization automatically. As a matter of fact, there are theoretical lower and upper bounds for
the values of the Rényi dimension regardless of the actual amplitude spread of the original
signal. In fact, the Rényi dimension of a one-dimensional signal has a lower bound of 1.0
and an upper bound of 2.0. However, the experimental results may exceed the bound slight-
ly because of the numerical artifacts introduced. The resulting DNA signals are used for

multifractal measures analysis and chaotic characterization.

5.3 Chaotic Characterization of the DNA Sequences

The methods of the mutual information and the false nearest neighborhood are
used for characterizing the chaotic properties of the DNA sequences. The white noise ran-
dom DNA sequence, as a higher dimensional noise, and the deterministic chaotic system,
Lorenz system, are served as standards for characterization. The DNA sequences are first
mapped into the corresponding DNA signals. The DNA signals are subsequently separated

into their frame signals. Both the DNA signals and the frame signals are used for analysis.

The mutual information is used to measure the general dependency of the signals

and to choose the best lag value for further characterization.

The method of the false nearest neighborhood is used to distinguish a low-dimen-

sional dynamical chaos from the high-dimensional noise systems and subsequently to
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indicate the best embedding dimension value for a deterministic chaotic system. In prac-

tice, the Ay value is set up to 2 for all experiments.

5.4 Feature Extraction of the DNA Signals

The feature extraction of the DNA signals is achieved by using multifractal mea-
sures, Rényi and Mandelbrot dimension spectra, for distinguishing the coding regions
from the non-coding regions of a DNA signal. Prior to application to multifractal analysis,
the DNA symbolic sequences are translated into the corresponding numerical sequences,
or DNA signals. The frame signals are then isolated from the DNA signals. There are
three frame signals related to a DNA signal since a codon is composed of three bases of a
DNA sequence. Only one frame signal of a coding DNA sequence associates with the

actual protein sequence.

5.5 Local Fractal Dimension Analysis

The local fractal dimension analysis is performed by calculating the local Rényi
dimension of the trajectory of the DNA signals. To reduce computational cost, we calcu-
late the local Rényi dimension with a moment order of ¢ = -10 since it gives the maximal

differences between coding and non-coding signals.

Various sliding windows are used for different resolutions. A higher resolution of
a DNA sequence is given with a smaller window size and therefore, provides more
detailed information about the DNA sequence. However, more error may be introduced
due to the smaller population used within a smaller window size. In practice, a sliding

window size of 400 bp of the DNA signal, e.g. 133 points long of the frame signal, is used
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for a gene along a large genomic DNA sequence. To distinguish the coding regions from
the non-coding regions within a gene, a window size of 122 bp, or 60 points long in the

frame signal, is applied.

5.6 Summary

The experiments performed for this thesis have been described in this chapter. The
experimental samples including the human DNA sequences and the generated DNA
sequences, such as random sequence and Cantor sequence, are discussed. The main con-
figuration parameters are provided. In the next chapter, the experiments are conducted and

results are presented along with the discussion.
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CHAPTER VI
EXPERIMENTAL RESULTS AND DISCUSSION

Rased on the theories and the experimental design discussed in Chapters 3, 4, and
5, the experimental work of the characterization of the DNA sequences is accordingly con-
ducted in this chapter. First the chaotic properties of the DNA sequences are addressed.
Section 6.2 focuses on the multifractality of the DNA sequences, using Rényi dimension
and Mandelbrot dimension spectra. In Section 6.3, local dimension analysis is subse-
quently discussed according to the feature extraction of the multifractality of a DNA

sequence to reveal local information along the DNA sequence.

6.1 Chaotic Property of the DNA Sequences

6.1.1 Mutual Information Analysis of the DNA Sequences

As described in Chapter 5, a random DNA sequence, which follows a uniform
white noise distribution, and the DNA sequences of human NEB and HD genes are first
translated into the corresponding DNA signals and frame signals. Mutual information
analysis is subsequently applied to the resulting signals. The results are plotted as Figs.

6.1, 6.2, and 6.3.

The results, shown in Fig. 6.1, show that there is no dependence between the points
along the DNA signal of the random sequence or the derived frame signals, indicating that
there is no correlation between the parts of the random DNA sequence. Bowever, as
shown in Fig. 6.2, the high dependency within a range of three bps in the DNA signals of

the NEB and HD genes indicates that there is a strong correlation between the bases which
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have the distances within three bps in the DNA sequences. Three is the size of a codon.

This suggests that there are strong correlations between the bases within a codon.

0.6 T T T T T T T T I
- DNA
— = Frame 1
+ Frame 2
<= Frame 3
o4 b
=
0.2 1
e hcoia # o 1 e e, e g PR T, T L T T s S T e L T I S A R s 5
0 ] 1 1 1 1 1 1 i 1
4] 3 6 9 12 15 18 21 24 27 30

lag

Fig. 6.1. The mutual information analysis of the DNA signal and frame
signals associated to a random generated white noise DNA
sequence with a size of 20 kb.

1.6 T T T T T T T T T
— DNA

— - Frame 1
~ee+ Frame 2
= Frams 3 [

..... I e R T A T TN T T

=]

Fig. 6.2. The mutual information analysis of the human HD gene cDNA
sequence.
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Fig. 6.3. The mutual information analysis of the human NEB gene cDNA
sequence.
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T
— DNA

Fig. 6.4. The mutual information analysis of x-variable trajectory of the

Lorenz system. The points of frame series is the collection of
points with a interval of two points in the x-variable time series.
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The results of the mutual information analysis also show that there is little depen-
dency among the amino acids, suggesting that the DNA sequence as a whole has a statisti-

cal property similar as that of the white noise.

On the contrary, the result of the mutual information analysis of the x-component
time series, shown in Fig. 6.4, exhibits that the points along the time series are highly cor-
related. The points of the frame signal are the collection of the points which have an inter-
val of two bps in the associated x-variable time series of the Lorenz system. As can be
seen, the time series signal and the frame signals have a similar dependency as the lag

value increased.

6.1.2 False Nearest Neighbourhood Analysis of the DNA sequences

The percentage of the false nearest neighbours of the human HD and NEB gene
cDNA sequences were calculated. The experimental results are exhibited in Fig. 6.5 and
6.6. As can be seen, the percentage of the false nearest neighbours do not drop below 30%

with an increasing of the embedding dimension for both cDNA sequences.

In Section 3.3.3.4, we described that a deterministic chaotic system, such as
Lorenz system, has a low-dimensional structure. Hence, the percentage of the false nearest
neighbours for the Lorenz system will drop to zero as the embedding dimension increases
(Fig 3.7). However, for a white noise, the percentage of the false nearest neighbours does
not drop to zero because it has a high-dimensional structure (Fig. 3.8). The results, shown
in Figs. 6.5 and 6.6, strongly suggest that like white noise, the DNA sequences have a

high-dimensional structure.

-82.




Characterization of DNA Sequences

Chapter VI: Experimental Results and Discussion

Percentage of False Nearest Neighours (%)

Percentage of False Nearest Neighbours (%)

100

80

70

60

50

40

30

20

10

10

15 - 30

0.5

[l L i [ 1

6 7 8 ] 10

Embedding Dimension

11

12

13

14

18

Fig. 6.5. The false nearest neighborhood analysis of the human HD gene

100

cDNA sequence.

20 15 - 30 -
101 =
0 I} ] 1 1 1 1 ] 1 1 1 1 1 L
1 2 3 4 5 6 7 8 =3 10 11 12 13 14
Embedding Dimension
Fig. 6.6. The false nearest neighbourhood analysis of the human NEB gene

cDNA sequence.
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The results presented in the last two sections indicate that the DNA sequences
exhibit chaos with high-dimensional properties. It should be noted, however, that no
attempt has been made in this thesis to separate the chaotic from the noisy nature of DNA
or its noisy representation. The advantage of this approach is, however, that the structure

of DNA is studied without any assumptions about either its chaotic or noisy nature.

6.2  Multifractal Dimension Analysis of the DNA Sequences

6.2.1 Rényi Dimension Spectrum of the DNA Sequences

As stated in the previous chapters, a coding DNA sequence stands for three frames
and only one frame, ORF, represents the actual amino acid sequence. To examine the mul-
tifractalities of the DNA sequences with our model, three frame signals were generated
from the DNA numerical sequences, the random DNA sequence and the Cantor DNA
sequence are first tested. The results are plotted in Figs. 6.7 and 6.8. Shown in Fig. 6.7, the
three frame signals of the random DNA sequence have a similar structures of the Rényi
dimension spectra, indicating that the three frames of the random DNA sequence have the
similar multifractality. On the other hand, the Rényi dimension spectra in Fig. 6.8 indicate
that Frame 1 of the Cantor dna sequence is almost a strict single fractal whose value is
very close to the theoretical value of log2/log3. On the other hand, Frames 2 and 3 exhibit
a slight multifractality (spread) due to the shift of one and two bases, respectively, that ren-

ders the sequence non-Cantorian.

Figures 6.9, 6.10, and 6.11 show the strong differences of Rényi dimension spectra
between the ORFs and the other reading frames. The differences are mainly due to the bias

codon usage in the ORFs but not in the other frames. The conclusion is further supported
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Fig. 6.7. The Rényi dimension spectra of the random DNA sequence. The
solid, dashed, and dot-dash lines represent the three frames,

respectively.
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Fig. 6.8. The Rényi dimension spectra of the Cantor DNA sequence.
The solid, dashed, and dot-dash lines represent the three
frames, respectively.
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Fig. 6.9. The Rényi dimension spectra of the HYAL2 c¢DNA coding sequence.
The solid curve represents the ORF, the dashed and the dot-dash

curves denote the other two reading frames.
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Fig. 6.10. The Rényi dimension spectra of the first exon of the HYALI gene.
The solid curve represents the ORF, the dashed and the dot-dash

curves denote the other frames.
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Fig. 6.11. The Rényi dimension spectra of the third exon of the HYAL2 gene.

The solid curve represents the ORF, the dashed and the dot-dash
curves denote the other frames.
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Fig. 6.12. The Rényi dimension spectra of the first intron of the HYAL2
gene. The solid, dashed, and dot-dash lines represent the three
frames, respectively.
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Fig. 6.13. The Rényi dimension spectra of the 5’ flank region of the HYAL2
gene. The solid, dashed, and dot-dash lines represent the three
frames, respectively.
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Fig. 6.14. The Rényi dimension spectra of the 3’ flank region of the HYAL2
gene. The solid, dashed, and dot-dash lines represent the three
frames, respectively.
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Fig. 6.15. The Rényi dimension spectra of the ph-20, a human genomic
DNA sequence which contains the entire HYAL?Z2 gene and the 5’
flank region, the first exon and intron of the HYAII gene. The
solid, dashed, and dot-dash lines represent the three frames,
respectively.
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Fig. 6.16. The Rényi dimension spectra of the H19 gene. The solid, dashed
and dot-dash lines represent the three frames, respectively.

-80.



Characterization of DNA Sequences Chapter VI: Experimental Resuits and Discussion

by the fact, shown in Figs. 6.12, 6.13, and 6.14, that there are no significant difference of

the Rényi dimension spectra among the three frames of non-coding sequences.

Although the ph-20, a human genomic DNA sequence, contains the whole HYAL?2
gene and the 5° flank region, the first exon, and the first intron sequences of the HYALI
gene, the result shows that it shares a common multifractal feature with the non-coding
sequences and the random DNA sequence (Fig. 6.15). The reason for this is due to the fact
that the total coding regions are less than 2000 bp or approximately 5% of the entire ph-20
sequence. Therefore, the sequence as a whole exhibits the statistical properties of a non-

coding sequence.

The non-protein coding genes are also examined with our model. The expressed
product of H19 gene, for example, is only unfranslated mRNA and function as an RNA
rather than a protein. Figures 6.16 shows the Rényi dimension spectra of the HI9 cDNA
sequence. As can be seen, the three frames of the gene have similar multifractality, sug-
gesting none of them is a coding frame. Therefore, our established model is not able to
distinguish the non-protein coding gene from non-coding background since the model is

based on the bias usage of codons in a specie.

6.2.2 Mandelbrot Dimension Spectrum of the DNA Sequences

Figure 6.17 shows the Mandelbrot spectra of the generated random DNA
sequences. The three frames of the random DNA sequence have a similar spectrum struc-
ture indicating that they have the same multifractality. In Fig. 6.18, the result shows that
out of the three frames of the single fractal Cantor DNA sequence, the frame with a strict

Cantor set property demonstrates a single fractal structure. The Mandelbrot dimension and
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the Hoélder exponent of the frame are constant and therefore, its Mandelbrot spectrum is
degraded to a single point. The other frames show a slight multifractality since they are

strictly not the Cantor set.
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Fig. 6.17. The Mandelbrot spectra of the random DNA sequence. The solid,
dashed, and dot-dash curves represent the three frames, respectively.
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spectra of the Cantor DNA sequence. The solid,
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Figures 6.19 to 6.21 show the Mandelbrot spectra of the coding sequences. As
shown in the pictures, the ORFs exhibit the significant different multifractality in compar-
ison to the non-coding frames. However, for the non-coding sequences (shown in Figs.
6.22 to 6.24), there is no significant difference of the multifractalities among the three

frames further proving an even codon usage in the non-coding frames.

It is interesting to note that the results shown in Figs. 6.13 and 6.22, suggest an
even codon usage in the 5’ flank region of the HYALZ2 too. Similar results are also shown
in the 5° flank regions of other genes. As mentioned in Chapter 2, the 5’ flank regions of
genes are GC-rich regions due to the presence of the multiple clusters of regulatory ele-
ments and promoter region. These results suggest that the GC-content is not the primary

factor resulting in a bias codon usage in a sequence.
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Fig. 6.20. The Mandelbrot Spectra of the third exon of the HYAL2 gene. The
solid curve represents the ORF. The dashed and dot-dash curves
represent the other frames.
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Fig. 6.21. The Mandelbrot Spectra of the first exon of the HYALI gene. The
solid curve represents the ORF. The dashed and dot-dash curves
represent the other frames.
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Fig. 6.22. The Mandelbrot Spectra of the 5° flank sequence of the HYAL2
gene. The solid curve represents the ORF. The dashed and
dot-dash curves represent the other frames.
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Fig. 6.23. The Mandelbrot Spectra of the first intron sequence of the HYAL2
gene. The solid curve represents the ORF. The dashed and dot-dash
curves represent the other frames.
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Fig. 6.24. The Mandelbrot Spectra of the 3° flank sequence of the HYAL2
gene. The solid curve represents the ORF. The dashed and
dot-dash curves represent the other frames.
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For the same reason as explained in previous section, the genomic DNA sequence,
ph-20, exhibits a similar multifractal property of non-coding sequences although it con-

tains the entire HYAL2 gene and the first exon of the HYAL1 gene (Fig. 6.25).
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Fig. 6.25. The Mandelbrot Spectra of the genomic DNA sequence, ph-20.
The solid, dashed, and dot-dash curves represent the three frames.

6.3 Local Rényi dimension Analysis of the DNA sequences

6.3.1 Analysis With High Resolution Reveals Gene Structures

For the higher resolution local Rényi dimension analysis, a sliding window size of
122 bp is applied, as described in Sec. 4.4. The challenge of local Rényi dimension analy-
sis of DNA sequences is that the coding regions of a gene does not always stay in the same

reading frame. As described in Sec. 6.2, the experimental results show that Rényi dimen-
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sion values of non-coding reading frames are significantly higher than that of the coding
reading frame and there is no significant difference of the Rényi dimension values
between two non-coding reading frames. Therefore, According to the experimental results

shown in Sec. 6.2, a composite dimension, D*, is computed based on

D*=(Dy; + Dyz)2 - Dy, (6.1)

where Dy,; and Dy, correspond to the highest local Rényi dimension values corresponding
to two non-coding frames. The Dy,,, corresponds to the smallest value of the third reading
frame which may be related to a coding frame. In practice, the human B-globin gene
sequence is used as the test sample. The actual location of the exons in the gene and the

corresponding composite dimension, D*, based on the local fractal dimension analysis,

T T T T T T H
1.2} -
1k M\ A |
A
g 08 _]
g7
=
o
E osf i
o
o
)
B oal i
Q
£
o 02 i
” M
or -] [ ] -
Exonl Exon2 Exon3
-0.2 1 1 1 I 1 1 t
¢} 500 1000 1500 2000 2500 3000 3500 4000

Position n

Fig. 6.26. Higher resolution local fractal dimension analysis of the 3-globin
gene. A sliding window size of 122 bp is used.
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are plotted in Fig. 6.26. The position, #, represents the position of the first point of the

sliding window in the DNA sequence.

As can be seen, the high value regions of D* closely match the actual exon posi-
tions of the p-globin gene. Since the value of the nth point represents the fractality of a
region with a window size of 122 bp located around the position n, the actual predicted
coding regions should outspread 122 bp from the edge of the high computed value regions.
If to do so, the predicted coding regions will cover the entire three exon regions of the B-

globin gene.

6.3.2 Analysis With Low Resolution Reveals Genomic DNA Structures

To minimize the effect of noise and the interference of non-local fractals, a lower
resolution with a window size of 400 bp is applied to the larger genomic DNA sequences.
Figure 6.27 shows a local fractal dimension analysis of a 73 kb long human genomic DNA
sequence, which contains the five globin genes and one pseudogene. There are several
anomalies which are clearly visible from this diagram. First of all, the regions of all the
genes are associated with the highly positive regions of the local fractal analysis. Sec-
ondly, there are several positive regions of the local fractal analysis which are not associ-
ated with the coding regions. Most of these positive regions appear in periods. For
example, indicated as the dashed rectangle regions in Fig. 6.27, the non-coding positive
regions are distributed with an interval of 2-2.5 kb in the genomic DNA sequence. The
nature of these regions are not known. It may relate with the higher-order packing struc-

ture of chromosomes.
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6.4 Summary

This chapter presented the results of the DNA sequence analysis. The mutual
information and false nearest neighbourhood analysis provided a powerful tool for the
chaotic characterization of DNA sequences. Like white noise, DNA sequences have a
high-dimensional structure. There is a strong dependence within three bases in the DNA

sequences, indicating a high correlation of among the three bases in a codon.

It is shown that the ORFs have a significant feature different from that of the non-
coding reading frames, using Rényi dimension and Mandelbrot dimension spectra analy-
sis. Local Rényi dimension analysis with different resolution is possible for the chromo-

some structure analysis and coding regions prediction.
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CHAPTER VIIL
CONCLUSIONS

7.1 Conclusions

This thesis has presented (i) a review of the multifractal measures on the m-dimen-
sional chaotic dynamical systems, and (ii) a development of the DNA sequences charac-
terization based on multifractal techniques. A novel method of DNA symbolic sequence
numerical mapping is established. The chaotic property of the DNA sequences are studied.
A multifractal measure of the time series is formulated to extract the features of the DNA
sequences. Finally, based on the above theory, an approach of the coding DNA sequence

prediction was modelled and developed.

The experimental results indicate that there is a strong correlation within the three
bases of the codons. The high-dimensional chaotic properties of the DNA sequences
exhibited with the experiments suggests that DNA sequences have a high-dimensional

structure.

1t is shown in Chapter 6 that the multifractal spectrum of the DNA sequences can
be used to distinguish the ORFs from the other non-coding reading frames. The experi-
mental results demonstrate that for the DNA sequeﬁces, only the ORFs have the signifi-
cant different multifractalities in comparison to the non-coding reading frames. All the

non-coding frames have a similar multifractal property.

Using the local fractal dimension analysis, the multifractal features of the ORFs

and the non-coding frames can be applied for characterization of the chromosomes and
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coding prediction. Our experimental results of local fractal dimension analysis further

exhibit that the interior structure of a gene can be revealed with a high resolution while a

higher order structure of the genomic DNA sequences may be revealed in a low resolution.

7.2

Contributions

This thesis has provided the following contributions:

The development of a new method for DNA symbolic sequences numerical
mapping.

A study of the chaotic property of the DNA sequences.

A new and novel approach to characterization of the DNA sequences through
frame sequence analysis, using multifractal techniques.

A framework for modelling non-stationary m-dimensional signals as strange
aftractors.

A study of multifractal measures for m-dimensional signals, especially for one-
dimensional time series.

The development of an approach for characterization of genomic DNA
sequences and coding prediction.

An application of the Rényi dimension spectrum for DNA sequence feature
extraction and local structure analysis.

A study of the relationship between the different resolutions and the structures

of DNA sequences.
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7.3 Recommendations

Based on the work of this thesis, the following recommendations are suggested for

further research on this topic:

Development of a systematic theory of the approximation of multifractal meas-
ures.

Development of a systematic multifractal theory for measuring an m-dimen-
sional signal.

Further research in local fractal dimension analysis to reveal the correlation
between the non-coding positive regions and the higher order packing structure
of the chromosome.

Further development of the approach for DNA coding prediction based on neu-
ral-network techniques.

Development of an application for local DNA analysis, using the extracted fea-

tures from the Mandelbrot spectrum.
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APPENDICES

A. Generated Sample Sequences

A.l  An example of the random DNA sequence
TAGGAAITAGGGGAAAAGAGTGGAAAGGGGGTGGGGAGAAAGATAGGAAAGGAGAAA
GTAKHKH%ITGTGGGAGGTGAGGGTGGTAAGTTGAGTTGATTTGAAAJHTAGGATGTT
TTGATAGAGGGGTAGAAGAGAAGGGGTAGGGTGﬁﬂ%IGAATGGTGAATGTGG
(HAAGTGTGTGTGAGGGAATUGGAITGTGGTTGAGDﬂTGGAGTGGAGGAAAGGTGTA
GGGAAGGTGGAAGTTH%GAGGAGTGﬂﬂTTTTUﬂAGGTGTAAAAAGGGAAGAGGGTA
GTAGGGGGGAJTGGGGTGGGGTGAGGAGGTAGGTAGTGTAGAAGGTAAGTGGGGGAG
GGGGGTGGTTGGTGTAGAGGAIGGTGAGTAAGGGGGGTAGTGGGAGATTAGAGGGGG
GGGGATTGGTGGGAAGGAGGGGTTTGTGGGGGGGTGGGTAGGDUTKKH%TD“AGAIA
AGGTGGGATGGGAGGTTGAATGGTGGAGGAGGTTGTGGTGAGGGGTTGTTGTAAGGTA
GTAGGTTGGGGTGTTGAGGGGAGGGGGGGGGGGGAAGGAATGGGATGAGGAGGTTAG
AGGTGGGTAGTAAGATAGGTAGGGGGATTAGGAIGGAITGGAIGGGGGTATGGGGGGTG
GGAGTGTGAITGTAGGTGGGAAGGGTGGGTTGGAGGTGGGTGAGTAGTTGTGTAGGGA
ATGTAAGGTTGTTGTAGAGGAGGGTAGGGGATGAAAGTGGJATGTGGGGATGTGAGGG
AGGGGGAGATGTAGGGTTAGGGAAGGATTGGGAAGAGGTGGGGAIAAAGGGG
GGGTGTAGGGAAGGGGGGTTGGGGGAGTGGTGATTGAGTGAGTAAAITAAGTGGTGGT
GAAITAGTGGGGGAGTGTGAGAATTGGGTAGAAGKUKH%IGTAGGGAGATTGGGGGG
TGAGGGAGTTTGGGTTGAGTGGGAGTGAITTTGGTGTGTGGGTTUHTGAGGTGTGAGT
TDGWTKHAAAADUTAAAGGATGGAAATGGAIGAGATGATGAGTGGGGTTGGAGAGTA
GGTGAGAGGGTGTGGTGGTAGAGGGGTGAAAAAGTTGTTAGTTGGTTGGTTTGAAGGG
AGGGTGGATGATGGGGGTTGGTGGGTAAGTGTGAIAAAITGTAGGTGGGGGGGTGGAG
GTGGGAGGAAGTTTGGGATGAGAATTGAGGAGGAGAGGGTAGGKUHGTGTGGTGATG
AGATGGAGTTGTTGGGATGGTTGTGTGGGAGGGTGTAATAGAAITAGAGGGATTGAGGG
GGAATGGTGGTAAGAAAGGGGTGAGTGGAGGGAIAAGAAIAAATGTGAGGGGGGGGG

A.2 The Cantor DNA sequence
AAACCCAAACCCCCCCCCAAACCCAAACCCCCCCCCCCCCCCCCCCCCCCCCCCAAAC
CCAAACCCCCCCCCAAACCCAAACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCAAACCCAAACCC
CCCCCCAAACCCAAACCCCCCCCCCCCCCCCCCCCCCCCCCCAAACCCAAACCCCCCC
CCAAACCCAAACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCAAACCCAAACCCCCCCCCAAACCCAAACCCCCCCCCCCC
CCCCCCCCCCCCCCCAAACCCAAACCCCCCCCCAAACCCAAACCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCAAACCCAAACCCCCCCCCAAACCCAAACCCCCCCCCCCCCCCCCCCCCCCCC
CCAAACCCAAACCCCCCCCCAAACCCAAACCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCAAACCCAA
ACCCCCCCCCAAACCCAAACCCCCCCCCCCCCCCCCCCCCCCCCCCAAACCCAAACCC
CCCCCCAAACCCAAACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCAAACCCAAACCCCCCCCCAA
ACCCAAACCCCCCCCCCCCCCCCCCCCCCCCCCCAAACCCAAACCCCCCCCCAAACCC
AAACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCAAACCCAAACCCCCCCCCAAACCCAAACCCCCCCCCCCCC
CCCCCCCCCCCCCCAAACCCAAACCCCCCCCCAAACCCAAACCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCAAACCCAAACCCCCCCCCAAACCCAAACCCCCCCCCCCCCCCCCCCCCCCCCC
CAAACCCAAACCCCCCCCCAAACCCAAA
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B. Source Code

/ *W##%#WWWWWWW
LorenzGen.c

Discription:  This program gencrates Lorenz-1I attractor of x, ro y, or z variable
time series. The length of the time series is inputs.

Author: Hong Zhang

Version: 1.0
Last Update: May 2, 200!

#####################################################################*l

#include <math.h>
#include <stdio.h>

#include <stdlib.h>

#define VARIABLEI fit-x, 2-y, 3-z
#define B 4

#define A 0.25

#define F 8

#define G 1

#define X_INITIAL 12

#define Y_INITIAL 12

#define Z_INITIAL 34

const int iB =B;

const int iF = F;

const int iG = G;

const double fA = A;

const double fTimeStep = 0.05;

void Lorenz(double, double, double);

long iLen;
double *fNewData;

int main()

H
int i;
double x, v, z;
FILE *fw,

printf("Enter the sequence length your want to be generated: ");
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#if

#Helif

#else

#endif

}

scanf("%d", &iLen);

x = X_INITIAL;
y=Y_INITIAL;
z=7_INITIAL;

if( (fw = fopen("Lorenz.txt", "w") ) == NULL}
{
printf("Error of open the file\n");
exit(0);
H

fNewData = (double *)malloc(4*sizeof(double));
if(fNewData==NULL)
{

printf("Error for space malloc of {N ewData.\n");

exit{0);
}
fprintf(fw, "%d%d\n", iLen, 0);

Jhwrite out the 1st line which describes the length of the time series

for{i=0; i<iLen, i++)

{

Lorenz(x,y,z);

x = fNewData[0];

y = fNewData{1];

z = fNewData[2];
VARIABLE==

fprintf(fw, "%d%fn", i+1, x);
VARIABLE==

fprintf(fw, "%d%fn", i+1, y);
VARIABLE==1

fprintf(fw, "%d%fn", i+1, z);
}

felose(fw);
return 0;

void Lorenz{double x, double y, double z)

{

double dt, xt, yt, zt;

dt = fTimeStep;

xt =X + iSigma*(y-x)*dt;
yt =y + (iR*x - x*z - y)*dt;
zt = z + (x*y - fEita*z)*dt;
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fNewData[0] = xt;

fNewData[1] = yi;

fNewData[2] = zt;
}

I*W###W##ﬁ#######ﬂ########mw##ﬁ#%
contourGenerate.c

Discription:  Contour set generator. Generate Contour set in DNA charactor
sequence the smaliest unit is depented on the user input.

Author: Hong Zhang

Version: 1.0
Last Update:  Jan. 23, 2001

R

#include <stdio.h>
#include <stdlib.h>
#include <mailoc.h>
#include <string.h>
#include <math.h>

#define LOWVALUE o

#define HIGHVALUE 154
#define LINELENGTH 70
#define UPCHAR A
#define LOWCHAR 'C’
#define OUTFILENAME "contour"

char *charSeq_generator(int,int);
int *intSeq_generator(int, int);

int main(}

{
int i, k, iUnit, iSeqLength, iLength, iTemp=0, iLine, iOrder, *iContourSeq;

char imfileC[25], imfilel{25], *FileName, *cContourSeq;
FILE *outChar, *outlnt;

iUnit =3;
iSeqLength = 20000;

* printf("Enter the number of bp for basic unit : ");
scanf("%d", &iUnit);
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*f

printf("Enter the roughly length of the sequence : ")
scanf("%d", &iSeqLength);

i=0;

while( iTemp<(int)(iSeqLength/iUnit) }
iTemp = (int)pow(3, i++);
iOrder=1-1;

/* generate characte sequence of Contour set*/
¢ContourSeq = charSeq_generator(iUnit, iOrder);

FileName = QUTFILENAME;
strepy(imfileC, FileName);
streat(imfileC, "_char");
if ((outChar = fopen(imfileC, "w"}) == NULL)
{
printf("write error for charactor sequence.”);
exit(0);
1
iLength = (int)pow(3, iOrder)*iUnit;
iLine = LINELENGTH,
iTemp = (int)floor((float)iLength/iLine);
for(i=0; i<iTemp; i++)

{
for(k=0; k<iLine; k++)
fprintf(outChar, "%c", cContourSeq[i*iLine+k]);
fprintf{outChar, "\n");

}

for(k=0; k<(int)(iLength%iLine); k++)
fprintfioutChar, "%c", cContourSeq(iTemp*iLine+k]),

free(cContourSeq);
felose(outChar);

/* generate time series sequence of Contour set*/
iContourSeq = intSeq_generator(iUnit, iOrder);

strepy(imfilel, FileName);

streat(imfilel, "_int");

if ((outInt = fopen(imfilel, "w") } == NULL)

{
printf("write error for the time series sequence.");
exit(0);

}

for (i=0; i<iLength; i++)

fprintf(outInt, "%d %d\n", i, iContourSeq(i]);
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}

free(iContourSeq);
fclose{outInt);

printf("The sequence fength = %din", (int)pow(3, iOrder)*iUnit);

return 0

char *charSeq_generator(int iNumUnitBase, int iGrade)

{

int 1, k, j, iLen, iBuffSize;
char *cTemp, *cSeq, cUpper, cLower, ch;

cUpper = UPCHAR;
cLower = LOWCHAR;
iLen = (int)pow(3, iGrade);
for(i=2; i<=iGrade; i++)

{

iBuffSize = (int)pow(3, i);
¢Temp = (char *)calloc(iBuffSize, sizeof{char));
if(cTemp==NULL)

{
printf("Failed to malloc space for cTemp buffer.\n");
exit(0);

}

iBuffSize = (int)pow(3, i-1);

if(i==2)

{

¢Seq = (char *)calloc(3, sizeof(chan));
¢Seq[0] = cUpper;
cSeq[l] = cLower;
¢Seq[2] = cUpper;

}
for(k=0; k<iBuffSize; k++)
{
ch = ¢Seq[k];
switch{ch)
{
case UPCHAR:
cTemp[k*3] = cUpper;
cTemp[k*3+1] = cLower;
cTemp[3*k+2] = cUpper;
break;
case LOWCHAR:

for(j=0; j<3; j++)
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cTemp[3*k+j] = cLower;

break;

}
free(cSeq);

iBuffSize = (int)pow(3, i);

cSeq = (char*)calloc({iBuffSize, sizeof{char));
if{cSeq=NULL)

{

printf("Failed to malloc space for cSeq buffer.\n");

exit(0);
}
for(k=0; k<iBuffSize; k++)
cSeqfk] = cTemp[k];
free(cTemp);

iBuffSize *= iNumUnitBase;
c¢Temp = {char¥*)calloc(iBuffSize, sizeof{char));
if(cTemp=NULL)

{
printf{"Failted to malloc space for ¢Temp bufferin");
exit(0);
}
for(i=0; i<(int)pow(3, iGrade); i++)
{
ch = cSeq[il;
switch(ch)
{
case UPCHAR:
for(k=0; k<iNumUnitBase; k++)
cTemp[i*iNumUnitBase+k] = cUpper;
break;
case LOWCHAR:
for(k=0; k<iNumUnitBase; k++)
cTemp[i*iNumUnitBaset+k] = cLower;
break;
}
}
free(cSeq);

return cTemp;

int *intSeq_generator(int iNumUnitBase, int iGrade)
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int i, k, j, iLen, iBuffSize;
int *iTemp, *iSeq, iUpper, iLower, ch;

iUpper = HIGHVALUE;
iLower = LOWVALUE;
iLen = (int)pow(3, iGrade};
for(i=2; i<=iGrade; i++)

{

iBuffSize = (int)pow(3, i);
iTemp = (int *)calloc(iBuffSize, sizeof(int));
if(iTemp==NULL)

{
printf("Failed to malloc space for iTemp buffer.\n");
exit(0);

}

iBuffSize = (int)pow(3, i-1);

if(i==2)

{

iSeq = (int *)calloc(3, sizeof(int));
iSeq[0] = iUpper;
iSeq{1] = iLower;
iSeq[2] = iUpper;

}
for(k=0; k<iBuffSize; k++)
{
ch=iSeq[k];
switch{ch)
{
case HIGHVALUE:
iTempk*3] = iUpper;
iTemp[k*3+1] = iLower;
iTemp[3*k+2] = iUpper;
break;
case LOWVALUE:
for(j=0; j<3; j++)
iTemp[3*k+j] = iLower;
break;
}
b
free(iSeq);

iBuffSize = {(int)pow(3, i);
iSeq = (int *)calloc(iBuffSize, sizeof{int));
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if(iSeq=NULL)

{
printf("Failed to malloc space for iSeq buffer.\n");
exit(0);

}

for(k=0; k<iBuffSize; k++)
iSeq(k] = iTemp[k];

free(iTemp);

i

iBuffSize *= iNumUnitBase;
iTemp = (int *)calloc(iBuffSize, sizeof(int})};
if(iTemp==NULL)

{
printf("Failed to malloc space for iTemp buffer\n");
exit(0);
3
for(i=0; i<(int)pow(3, iGrade); i++)
{
ch = iSeqfi];
switch{ch})
{
case HIGHVALUE:
for(k=0; k<iNumUnitBase; k++)
iTemp[i*iNumUnitBase+k] = iUpper;
break;
case LOWVALUE:
for(k=0; k<iNumUnitBase; k++)
iTemp[i*iNumUnitBase+k] = iLower;
break;
H
H
free(iSeq);

return iTemp;
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*“““””#””ﬂ”““HH””P”H“Hﬂ“HHH”HHH“#HHHHH”H”“HHPH“HHHHH”HH"”#HHHH”H“H"HH”H”"“HH””H”“H#HH
S R A A T R e A e

whiteNoiseGen.c

Discription:  This program generates uniform white noise time series and random
DNA sequence.

Author:  Hong Zhang
Version: 1.0
Last Update: May 2001

PG R A P L R TEISInIeIan] unuHﬁnuuunurr'n”lajrlliu;nuluf”'l”u”unu;”””lan”uruu”””‘a”nuu_l“”‘r:.luu*

AR n’h‘r‘h‘l’nrffurrf-‘ur'-'fl‘unnu‘uuu‘uuuu:Eunu‘hnuuuuun’r':‘u:‘ruuun FHHEHHHHBEAARRT R TR i

#include <math.h>
#include <stdio.h>
#include <stdlib.h>

#define TA 16807
#idefine IM 2147483647
#define AM (1.0/IM)
fidefine 1IQ 127773
#define IR 2836
#define NTAB 32

fidefine NDIV (1+(IM-1)/NTAB)
#define EPS 1.2e-7
#define RNMX (1.0-EPS)
#define CHAR_ARRAY 0

#idefine RANGE 402//402.19

float ranl (long*});
long iy=0, iv[NTAB], seqLen, *idum;
const int lineLenC = 80, lineLenl = 8;

int main()

{
inti, k, j;
float fTemp;
char ch;
FILE *fw;

printf("Enter the sequence length your want to be generated (has to be times of %d): ", lineLenC);
scanf("%d", &seqLen);

idum = (long *)malloc(1*sizeof(long));

*idum = -4;

k = seqlen/iinelLenC;

if( (fw = fopen("randomSeq.txt", "w") } 1= NULL)
{
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#if CHAR_ARRAY ==
for(j=0; j<k; j++)

{
for(i=0; i<lineLenC; i++)
{
fTemp = ranl(idum);
if{fTemp<0.25)
ch="A’;
else if((fTemp>=0.25)&&(fT emp<0.50))
ch="T%
else if((f'I‘cmp>=0.50)&&(fI‘emp<0.75))
ch="C%
else
ch="G’;
fprintf{fw, "%c", ch);
b
fprintf(fw, "n");
}
felse
fprintf(fw, "%d%d\n", seqLen, 0);//1st line
for(j=0; j<seqLen; j++)
{
fTemp = ranl(idum};
fprintf(fw, "%f%f\n", fTemp, RANGE*fTemp);
H
Hendif
H
fclose(fw);
return 0;
}
float ran1(long *idum)
{
int j;
long k;
fioat temp;

if(*idum <= 0| tiy)
{
if(-(*idum)<1)
*idum = |;
clse
*idum = -(*idum);
for(j=NTAB+7; >=0; j--)
{
k = *idum/IQ;
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*idum = JA*(*idum - k*IQ) - IR*k;
if(*idum<0)

*idum += IM;
if(j<NTAB)

iv[j] = *idum;

=iv{0];

H

k = (*idum)/IQ;

*idum = IA*(*idum - k*IQ) - IR*k;

if(*idum<0)
*idum += IM;
j=iy/NDIV,
=iv[j];

iv[j} = *idum;
temp=AM*iy;
if(temp > RNMX)
return RNMX;
else
return temp;

/*unluruuuu_l”””'lrrnu]n)uunuunuuuuuul”’lH,JIf!rilunu!;un IJ‘[;lil'llJ‘JIlllJff[ll.l,l‘f'lillllllllf‘llll!}fll“JIJIJ‘I"IIIIIII'JIr‘rlllJrlll.l.lJ;‘l;lillllllllf‘rlllJ!l’ll,l'l|l']”£I1{{_H
AT AR TR T R i T i I i i e i i s HHHH R AR AR AR AR R T R T T Ty

mi.c -

Discription:  This program calculate the average mutaual information of a time series.
This program uses only one grid size value and calculates all three frames.

Author:  Hong Zhang

Version: 1.0

Last Update: Feb. 2001

S R R R

#finclude <stdio.h>
#include <stdiib.h>
#include <malloc.h>
#include <string.h>
#include <math.h>

#define GRID_SIZE_FACTOR64
#define MAX_TLAG200

float *FileIO(char*, int);
static int iSeqLen;

static float fMax, fMin;
float *fMI, fGridSize;
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const float fGridSizeFactor = 1.0/(float)GRID_SIZE_FACTOR;

int main()
{
int i, k, j, u, v, s, t, iGridNum, iLag, iLen, iLenl, iLen2, iLen3;
int *iProb, *iProbl, *iColProb, *iColProbl, *iRowProb, *iRowProbl, *iProb2, *iProb3,
*ColProb2, *iColProb3, *iRowProb2, *iRowProb3;
char *cInFileName, *cOutFileName;
float fSum, *fTimeSeries, fTemp;

cInFileName = (char *)calloc{50, sizeof(char));
cOutFileName = (char *)calloc{50, sizeof(char));
if((cInFi]eName==NULL)|1(cOutFiEeName==NULL))
{
printf("Error for malloc space to cInFileName or cOutFileName.\n");
exit(0);
}
printf("\n Enter name of the data file: ");//get input file name
scanf("%s",cInFileName),
for(i=0; i<50; i++)//get output file name

{
if(cInFileName[i]!=".")
cOutFileNamefi] = cInFileName[i];
else
break;
J

streat{cOutFileName, "_2.mi");
fTimeSeries = FilelO(cInFileName, 0);//get time series

f/set up grid size and number
fGridSize = (fMax - fMin)*fGridSizeFactor;
fMI = (float *)calloc(MAX_LAG*4, sizeof(float));
if(fMI==NULL)
{

printf("Error of malloc space for fML\n");

exit(0);
¥
iGridNum = (int)((fMax-fMin)/fGridSize) + 1;
iColProb = (int ¥)malloc((iGridNum+1)*sizeof(int));
iRowProb = (int *)malloc((iGridNum+1)*sizeof(int));
iProb = (int *)malloc((iGridNum*iGridNum+1)*sizeof{(int)});
iColProbl = (int *)matloc((iGridNum+ 1)*sizeof(int)};
iRowProb1 = {int *)malloc{(iGridNum+1)*sizeof(int));
iProbl = (int *)malloc((iGridNum*iGridNum+1)*sizeof(int));
iColProb2 = (int *Ymalloc{(iGridNum+[)*sizeof{int});
iRowProb2 = {int *)malloc{(iGridNum+1)*sizeof(int)};
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iProb2 = (int *)malloc((iGridNum*iGridNum+1)*sizeof(int});

iColProb3 = (int *)malloc((iGridNum+1)*sizeof{int)};

iRowProb3 = (int *)malloc{(iGridNum+1)*sizeof{int));

iProb3 = (int *}malloc((iGridNum*iGridNum+1)*sizeof(int));

if(((iProb==NULL)||(iProb 1==NULL)(((iRowProb=NULL)||{iRowProb }==NULL)})||
((iColProb=NULL)||(iColProbl=NULL))))

printf("Error of mallic space for iProb, iProb!, iRowProb, iRowProbl, iColProbl, or
iColProb.\n");
exit(0);
}
if({(iProb2==NULL)||(iProb3=NULL))|{({{iRowProb2=NULL)]|
(iRowProb3==NULL))[|({iColProb2==NULL)||(iColProb3=NULL))))

{
printf{"Error of mallic space for iProb2, iProb3, iRowProb2, iRowProb3, iColProb2,
or iColProb3.\n");
exit(0);
}
for(iLag=1; iLag<=MAX_ L AG; iLag++)
{

iLen = iSeqlen - iLag;//do not consider frame
for(k=0; k<iGridNum; k-++)//clear up
{
iColProb[k] = 0;
iRowProb[k] = 0;
iColProbl[k] = 0;
iRowProbl[k] = 0;
iColProb2{k] = 0;
iRowProb2[k} = 0;
iColProb3{k] =0;
iRowProb3[k] = 0;
for(u=0; u<iGridNum; u++)
{
iProbfu*iGridNum+k] = 0;
iProbl[u*iGridNum+k] = 0;
iProb2[u*iGridNum+k] = 0;
iProb3[u*iGridNum+k] = 0;
1
}
for(k=iLag; k<iSeqLen; k++)//compute P(k,j) without concerning the frames” effects
{
for(u=0; u<iGridNum; u++}
i{(fTimeSeriesfk [>=(fMin+u*{GridSize))
&&(fTimeSeries[k]<(fMin+{u+1Y*{GridSize)))
break;
for(v=0; v<iGridNum; v++)

-Bl3-



Characterization of DNA Sequences Appendices

if((fTimeSeries[k-iLag]>=(v*fGridSize+fMin))&&
(fTi imeSeries[k-iLag]<((v+1)*{GridSize+{Min)))
break;
iProb[u*iGridNum+v]++;
H
//compute P(k,j) with concerning the codon frame’s effect
for(k=3*iLag, iLen1=0, iLen2=0, iLen3=0; k<iSeqlLen-2; k+=3)
{
for(u=0; u<iGridNum; u++)
if((fT imeSeries[k]>=(u*fGridSize+fMin)}&&
(fTimeSeries[k]<({u+1)*fGridSize+{Min)))
break;
for(v=0; v<iGridNum; v++)
if((fTimeSeries[k-3*iLag]>=(v*{GridSize+Min))&&
(fTimeSeries[k-3*{Lag)<((v+1)*{GridSize+fMin))}
break;
iLenl++;
iProbl [u*iGridNum+v]++;

for(u=0; u<iGridNum; u++)
if{(fTimeSeries[k+1]>=(u*{GridSize+fMin))&&
(fTimeSeries[k+1]<((u+1)*fGridSize +{Min)))
break;
for(v=0; v<iGridNum; v++)
if((fTimeSeries[k+1-3*iLag]>=(v*fGridSize+fMin))&&
{fTi imeSeries[k+1-3*Lag]<((v+1)*fGridSize+Min)))
break;
iLen2++;
iProb2{u*iGridNum+v]++;
for(u=0; u<iGridNum; u++)
if{(fTimeSeries[k+2]>=(u*fGridSize+fMin))&&
(fTimeSeries{k+2]<((ut+1)*fGridSize+fMin)))
break;
for(v=0; v<iGridNum; v++)
if((fTimeSeries[k+2-3*iLag]>=(v*{GridSize+Min))& &
(fTimeSeries[k+2-3*iLag]<((v+1)*fGridSize+{Min)))
break;
iLen3++;
iProb3{u*iGridNum+v]++;
}
for(u=0; u<iGridNum; u++)
{
for{v=0; v<iGridNum; v++)
{
iColProbfu] += iProb{u*iGridNum-+v];//compute P(k)
iRowProb[v] += iProb{u*iGridNum+v];//compute P(j)
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iColProbl[u] += iProbl{u*iGridNum+v};
/fcompute P(k) in the coding frame
iRowProbl[v] += iProbl[u*iGridNum+v];
/fcompute P(j) in the coding frame
iColProb2[u] += iProb2[u*iGridNum+v];
iRowProb2[v] += iProb2[u*iGridNum+v];
iColProb3[u] += iProb3[u*iGridNum+v];
iRowProb3fv] += iProb3[u*iGridNum+v};

}
H
for(u=0; u<iGridNum; u++)
{
if(iColProb[u]>0)
{
for(v=0; v<iGridNum; v++)
{
if((iRowProb[v]>0)&&(iProb[u*iGridNum+v]>0))
{
fSum =
(ﬁoat)(iProb[u*iGridNum+v]*iLen)/(iCo]Prob[u]*iRowProb[v]);
fMI[4*(iLag-1)]}+=
(Aoat)(iProb[u*iGridNum+v]*log(fSum)/iLen);
}
}
'
if{iColProbl1[u]>0)
{
for(v=0; v<iGridNum; v++)
{
if{(iRowProbl[v]>0)&&(iProbl [u*iGridNum+vj>0))
{
fSum=
(f!oat)iProbl[u*iGridNum+v]*iLenl/(iColProbl[u]*iRowProbl[v]);
MI[4*(iLag-1)+1}+=
(float)(iProbi [u*iGridNum+v] *log(fSum)/iLenl);
}
H
}
if(iColProb2[uj>0)
{

for{v=0; v<iGridNuny; v++)

{
if((iRowProbZ[v]>0)&&(i?rob2[u*iGridNum+v]>0))
{

fSum=
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}

float *FileIO(char *cFileName, int iNum)

{

(float)(iProb2 [u*iGridNum+v]*iLenZ)/(iCo!ProbZ[u}*iRowProbZ[v]);
fMI[4*(iLag-1)+2]+=
(ﬁoat)(iProbZ[u*iGridNum+v]*log(fSum)/iLen2);

H
}
}
if(iColProb3[u]>0)
{
for(v=0; v<iGridNum; v++)
{
if((iRowProb3[v}>0)&&(iProb3{u*iGridNum+v]>0))
{
fSum=
(ﬁoat)i?robB[u*iGridNum+v]*iLenS/(iCoIProb3[u}*iRowProb3[v]);
fMI[4*(iLag—1)+3}+=
(ﬂoat)(iProb3[u*iGridNum+v]*log(fSum)/iLen3);
}
i
t
H
free(iProb);
free(iColProb};
free(iRowProb);
free(iProbl);
free(iColProbl);
free(iRowProbl);
free(iProb2);
free(iColProb2);
free(iRowFrob2);
free(iProb3);
free(iColProb3);
free(iRowProb3);

FileIO(cOutFileName, 1);

return 1;

int i, k, iLen, iTemp;
float *fSeq;

fioat fTemp, fArray(8], ff;

char ch;

FILE *inFile, *outFile;

if(iNum==0)//open, read the input filecFileName
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if((inFile=fopen(cFileName, "r")) == NULL)
{
printf("\n Failed to open the input file\n");
exit(0);
}
fseek(inFile, 0, SEEK_END);
iLen = ftell(inFile);
rewind(inFile);
fSeq = (float*)calloc(ilLent1, sizeof{float));
if(fSeq=NULL)
{
printf("Error of malloc space for fSeq.\n");
exit(0);
¥
rewind(inFile);
while(ch!="\n")//discard the first line
ch = gete(inFile);
i=0;
fMin = 99999999.0;
fMax = 0.0;
while(fscanf(inFile, "%d%f", &iTemp, &fTemp)==2}
{
fSeq[i++] = fTemp;
if(fMax<fTemp)
fMax = fTemp;
ififfMin>fTemp)
fMin = fTemp;
}
fclose(inFile);
iSeqLen =1,
return fSeq;

else ffopen, write to the output file

if((outFile=fopen(cFileName, "w")) == NULL)
{
printf{"\n Failed to open the output file\n");
exit(0);
}
fprintf(outFile, "%d%%d%d%dwn", MAX_LAG, fGridSize, 1, 2, 3);
for(i=1; i<=MAX_LAG; i++)
fprintf(outFile, "%d% %% % An", i, MI[4*(i-1)], MI[4*(i-1)+1]),
MI[4*(i-1)+2], IMI[4*(-1)+3]);
fSeq = (float *)malloc(l*sizeof{fioat)};
fSeq[0] =-1.0;
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fclose(outFile);
return fSeq;

}

P R R R R R B
FNN.c

Discription:  This program calculate the percentage of the fase nearest neighbours of
a time series, using the Kennel method.

Author:  Hong Zhang

Version: 1.0

Last Update: May 2001

S R R R R R AR

#include <stdio.h>

#include <stdlib.h>

#include <malloc.h>

#include <string.h>

#include <math.h>

#define NUM_FRAME 0//0-not frame, I-frame 1, 2-frame 2, 3-frame3
#define ABS(a) ((a)>=0) 7 (a} : (-(a))

float *FilelO{char*, int, float*, int);

const int iMaxA = 3; //IMAX_A_TOTAL;

const int iNumM = 10; /MAX_EMBEDDING _DIMENSION,;
const int iMaxR = 30; //MAX_R_TOTAL;

const float fFactorR = 0,.5000;//R_TOTAL_FACTOR;

const float fFactorA = (float)0.2000;//A_TOTAL_FACTOR;

static int iSeqLen, iNumRtol, iNumAtol, iLag;
float fR[50], fA[50], *{FNN;,

int main()
{
int i, k, m, u, 1, i, iStatus=0, iFalse;
float *fTimeSeries, *fMinD, *fNextD, *IND;
char *cInFileName, *cOutFileName;
float fTemp, fRa, fMean, fR_m, fStdDev, fMinDistance, fNextDist;

cInFileName = (char *)malloc(50*sizeof(char));
cOutFileName = (char *)malloc(50*sizeof{char));
if((cInFileName==NULL)]|(cOutFileName==NULL))
{

printf{("Error for matloc space to cInFileName or cOQutFileName.\n");
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exit(0);
H
printf("\n Enter name of the data file: ");//get input file name
scanf{"%s",cInFileName);
printf("\n Enter lag value for the data file: ");
scanf("%d", &iLag};

for(i=0; i<50; i++)/get output file name

{
if{(cInFileName[i]!=".")
cQutFileName[i] = cInFileNamel[i];
else
break;
}

streat{cOutFileName, ".funK"});
for(i=0, iNumRtol=0; ; i++)

{
if(i<2)
fR[i] = fFactorR*(1+i);
else
fR[i] = 10*fFactorR*(i-1);
if{fR[i]>iMaxR)
break;
iNumRtol++;
}
for(i=1, iNumAtol=0; ; i++)
{
if{i<6})
fA[i-]= fFactorA*i;
else
fA[i-1] = (float)0.5*(i-3);
if{fAli-1]>iMaxA)
break;
iNumAtol++;
}

fTimeSeries = FileIO{cInFileName, 0, fFNN, iStatus);//get time series
fENN = (float *)calloc(iNumRtol*iNumM*iNumAtol+1 sizeof(float));
fMinD = (float *)malloc((iSeqLen-iLag)*iINumM*sizeof(float)};
fNextD = (float *}malloc({(iSeqLen-iLag)*iNumM*sizeof(float));
Hf{(FNN=NULL))[(({MinD==NULL)||(fNextD==NULL)))
{
printf("Error of malloc space for fFNN, or fMinD, or fNextD.\n");
exit(0);
}
for(i=0, fRa=0.0; i<iSeqlen; i++)
fRa += fTimeSeriesfi];
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fMean = fRa/iSeqLen;
for(i=0, fRa=0.0; i<iSeqLen; i++)
fRa += (fTimeSeries[i]-fMean)*(fT imeSeries[i]-fMean);
fStdDev = (float)sqrt(fRa/iSegLen);//compute the standard deviation of the data
for(m=1; m<=iNumM; m++}
{
for(i=iLag*m, j=0; i<iSeqLen; i++)
{
fMinDistance = (float}99999999.0;
for(u=iLag*m; u<iSeqLen; u++)//find the nearest neighbour
{
if(il=u)
{
fR_m=10;
for(k=0; k<m; k++}
{
fTemp=
fTimeSeries[i-iLag*k}-fTimeSeries[u-iLag*k];
fR_m += fTemp*fTemp;
H
if{fMinDistance>fR_m)

{

fMinDistance = fR_m;
fNextDist =
fTimeSeries{i-iLag*m]-fTimeSeries[u-iLag*m];

h
}
MinD[iNumM*j+m-1] = (float)sgri(fMinDistance);
if(fNextDist<0)
fNextD[iNumM*j+m-1] = -fNextDist;
else
fNextD[iNumM*j+m-1] = fNextDist;
it
}
}
for(r=0; r<iNumRtol; r++)
{
for(j=0; j<iNumAtol; j++)
{
for{m=1; m<=iNumM; m++)
{
iFalse=0;
for(i=iLag*m, k=0; i<iSeqLen; i++)

{
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}

(e

}
}

if(fMinD[iNumM*k+m-1]1=0)//criteron I
{
fTemp =
ﬂ\lextD{iNumM*k+m-1]/fMinD[iNumM*k+m—1];
if(fTemp>{R[r])
iFalset+;
else {
fTemp =
(ﬂoat)sqrt(fNextD[iNumM*k+m-1]*fNextD[iNumM*k+m-l}+fMinD
[iNumM*k+m-1]*ﬂ\.4inD[iNumM*k+m-1]);
if((fTemp/fStdDev)>fA[j])/criteron II
iFalset+;

]
1]

else

if(fNextD[iNumM*k+m-1]!=0}
iFalset++;

kt+:

b

H
fENN[iNumM*(iNumAtol*r+j)+m-1] = (float)iFalse/(float)k;

FileIO(cOutFileName, 1, fFNN, 0);//output the result

free(fFNN),
return 1;

float *FileIO{char *cFileName, int iNum, float *fOutputData, int status)

{

inti, k, j, iLen, iTemp;
fioat *fSeq, fiemp;
FILE *inFile, *outFile;

if(iNum==0)//open, read the input filecFileName

{

if((inFile=fopen{cFileName, ")) == NULL)

{

printf("\n Failed to open the input filewn");

exit(0);

}

fseck(inFile, 0, SEEK_END};
iLen = fiell(inFile);

rewind(inFile);

fSeq = (float*)calloc(iLen+1, sizeof(float));
if(fSeq==NULL)
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{
printf("Errer of malloc space for fSeq.\n");
exit(0);

H

if(fscanf(inFile, "%d%d", &i, &iTemp)==2);
i=0;

while(fscanf(inFile, "%d%f", &iTemp, &fTemp)==2)
Seq[i++] = fTemp;

if(status>0)

{
for(k=0, j=0; k<i; k+=3}
fSeq[j++] = fSeq[k+status-1];
iSeqlen = j;

}

else
iSeqLen =1;

fclose(inFile);

return fSeq;

}

elsef/open, write to the output file
{
if((outFile=fopen(cFileName, "w")) == NULL)
{
printf("\n Failed to open the output file\n");
exit(0);
}
fprintf(outFile, "%d%d%d", iNumRtol, iNumM, iNumaAtol);
for(i=1; i<=iNumRtol-2; i++)
fprintf(outFile, "%d", 0);/first line
fprintf(outFile, "n");
for(i=0; i<iNumAtol; i++)

{
fprintf{outFile, "%.1f", fA[i]);
for(k=0; k<iNumRtol; k++)
fprintf(outFile, "%.1f", fR[k]);
fprintf(outFile, "n"});
for(j=0; j<iNumM; j++)
{ _
fprintf(outFile, "%d", j+1);
for(k=0; k<iNumRtol; k++)
fprintf(outFile, "%.2f", 100*fFNN
[INumM*(iNumAtol*k+i}+j]);
fprintf{outFile, "\n");
!
¥
//fOutputData0.005+
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fSeq = (float *)calloc(1, sizeof(float));
fSeq[0] =-1.0;

fclose(outFile);

return fSeq;

* P U R R R
codUgTimeSeriesReniMan.c

Discription:  Loads the data file, calculates the Renyi Dimension, singularity spectrum,
and Mandbort Dimension.

Author: Hong Zhang

Version: 1.0

Last Update: Jun. 2001

’]‘J{‘IIIJJH TNyl lIJ,J'!f’lllJJrlllljﬂ‘llll,}lt'lilllJi‘lllllfrllll];!l!lllljllf‘tllllil‘lljif[’l#']fltllllll‘“’”llJfll'l'J'!Il‘lll.lll'JlelIJ!JI'l’ll,JI!f’llllllH‘[)l'lllH'llJJJfll ll“’llllJfrlllJf}l!l'l'J'!flt!r‘l.lJJ,!{-‘g/

HAHHHHE HHH HAHHHH HHHHH HHH HH f HHHA R
nnununnuuuuurlnrrnnuuununuuulrnuuurruuunllnuunnurfnlnrnuuuuu R R R HA AR Rt

#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <string.h>
#include <math.h>

#ifdef CONTOUR_INT

fidefine CONTOUR
#endif
#define DELTA 0.01
#define RANGE 25

float* loadTimeSeries{char*};
void renyCalc(float*, char*);
long fileLength;

int main()

{
int i;
char imfile[80];
float *data;

printf{("\n Enter name of the data file: ");
scanf("%s",imfile);
]/**************************
#ifdef CONTOUR _INT
data = loadTimeSeries(imfile);
printf("Sequence length = %dn", fileLength);
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renyCalc{data, imfile};
return 0;
#endif

j/**************************

data = loadTimeSeries(imfile);
renyCalc{data, imfile);
return 0;

}

float* loadTimeSeries{char* fileName)
{

FILE *inFile;

int i=0, k, iTemp{2];

float *fSeq, fTemp[3];

if((inFile = fopen(fileName, "r")} == NULL)

{
printf("Failed to open the time series data file\n");
exit(0);

}

fseek (inFile, 0, SEEK_END);

fileLength = ftell(inFile),

rewind(inFile);

fSeq = (float *)calloc(fileLength+1, sizeof(float});

if(fSeq==NULL)

{
printf("Failed to malloc for the iSeq buffer\n");
exit(0);

1
i

while(fscanf(inFile, "%d% % %f", &iTemp[0],&fTemp[0],& fTemp[1],&fTemp[2])}=4)
fSeq[i++] = (float)fTemp{0];

fclose(inFile);

fileLength = i;

printf("fileLength = %d\n", fileLength);

return fSeq;

}

void renyCalc(float* signalSeq, char* imfile)
{
fioat *codeBook, *renyDim, *mandbort, *singuSpc;
float fQ[2], delta;
double dTmp, tem[2], logTemp[2], totalN[2], temp], temp2;
inti, i, k, q, len, temp, subQ, factor, x;
char outfile{50);
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FILE *out;

delta = DELTA;

fQ[0] =1 - delta;

fQ[1]=1 + delta;

singuSpc = (float *calloc((RANGE*2+7), sizeof{float));

mandbort = (float #)calloc((RANGE*2+7), sizeof{float));

renyDim = (float *)calloc((RANGE*2+7), sizeof(float});

if((renyDim == NULL)&&({singuSpc == NULL)&&(mandbort == NULL)Y)

{
printf("Error of not enough space for renyDim, singuSpc, or/and mandbort.\n");
exit(0);

}

else

{

len = fileLength;

totalN[0] = 0.0,

totalN[1] = 0.0;

for(i=0; i<len; i++)
if((temp=(int)ﬁoor(signa!Seq[i]+0.5))>0)

totalN[0] += (doublej}temp;
totalN[1] = log10(totalN{0]};
for(q=-RANGE; q<RANGE+1; qt+t)

{
if((q=-2la==-1))
factor=1,;
else
factor =0
for(subQ=0; subQ<3*factor+1; subQ++)
{
tem[0] = 0.0;
tem[1] = 0.0,
templ = 0.0;
temp2 = 0.0;
for(i=0; i<len; i++)
{
temp = (int)floor(signalSeq[i]+0.5);
if{temp>0)
{
if{(q==1)
{
tem[0] += pow(temp, fQIOD);
tem[1] += pow(temp, fQIL1);
}
else

tem[0] += pow{temp, (float)q+subQ*0.25);

-B25 -



Characterization of DNA Sequences Appendices

temp1+=pow((float)temp/100, (float)q+subQ*0.25);
temp2+=

(loglO(temp))*pow((ﬁoat)templl00, (float)q+subQ*0.25);

}

}
if(g==1)
{
tem[0] = log10(tem[0]) - fQ[0T*totalN{1];
tem[1] = log10(tem{1]) - fQI1]*totalN[ 1];
!
else

tem[0] = log10(tem[0]} - ((float)q+subQ*0.25)*totalN[1];
if(g==1)
{

logTemp{0] = (1-fQ[0]y*log10(len);

logTemp[l] = (1-fQ[1])*logiO(len);

1
L)

else
logTemp[0] = (1-(float)q-subQ*0.25)*log10(len);
if(q<-2)
{
renyDim[RANGE+q] = (float)(tem[0)log Temp(0]);
dTmp = temp2 - temp1*totalN[1];
singuSpc[RANGE+q]=
(ﬂoat)(dTmp/(logIO(I/(ﬁoat)len)*templ));
dTmp =q*dTmp - temp1*(log!0(templ) + 2*q - q*totalN[1]);
mandbort[RANGE+q]=
(ﬂoat)(dTmp/(log10(1/(ﬂoat)len)*templ));
}
else if((g>=-2)&8&(q<0))
{

renyDim[RANGE+q+(2+q)*3+subQ] =
(float)(tem{0)/logTemp[0]);

dTmp = temp2 - temp1*totalN[1];

singuSpc[RANGE+q+(2+q)*3+subQ] =
(ﬂoat)(dTmp/(log10(1/(ﬂoat)len)*temp1));

dTmp = (q+subQ*0.25)*dTmp - temp1*(log10(templ)

+ 2*((float)q+subQ*0.25) - ((float)q+subQ*0.25)*totalN[1]);
mandbort[RANGE+g+(2+q)*3+s5ubQ] =
(ﬁoat)(dTmp/(Iog10(1/(ﬁoat)ien)*temp1));

else

if{a==1)
renyDim[RANGE+q+6] =
(float)(tem[0)/logTemp[0] + tem[1]/logTemp{11)/2;
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renyDim[RANGE+q+6] = (float)(tem[0])/logTemp{0);

dTmp = temp2 - temp 1 *totalN[1];

singuSpc[RANGE+q+6] =
(ﬂoat)(d’i‘mpl(logl0(1/(ﬂoat)]en)*temp1));

dTmp = g*dTmp - temp1*(log10(templ) + 2%q - q*totalN{1]};

mandbort{RANGE+q+6] =
(ﬂoat)(dTmp/(log10(1/(ﬁoat)ien)*temp1));

h

!
strepy(outfile, imfile);

strcat{outfile, ".reni");

if ((out = fopen(outfile, "w") ) == NULL)

{
printf("write error");
exit(0);
}
for (k=0; k<56; k++)
{
fprintf(out, "%.4%.4{%.4\n", renyDim[k], singuSpc([k], mandbort[k]};
}

fprintf(out, "% .4{%.4f% 41", renyDim[k], singuSpc[k], mandbort[k]);
fclose(out);
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