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GATCCATCCGC CTCGGCCTCCCAÀAGTGCTGGGATTACAGGCGTGAGCCACCG

CGCCCGGCCCCCAÀCCTTGGGACATTTTCATCCATTCATTCATCCTTTTTTTT
TTTTTTTTTTTGAGACGGAGTCTTGCTCTGTCACCCAGGCTGGAGTGCAGGGG
CAAGATCTCAGCTCCTGCACCCTCCACCTTCCGGATTC.AÀGTGATTCTCCTGC
CTCAGCCTCCCAAGTÀGTTGGGATTACAGGCATGCCATCAÂCÀTGTCTGGCTA
ATTTTTGTATTTTTAGTAGAAATGGGGTTTCACCATGTTGGCCÀGGCTGGTCT
CGAACTCCTGACTTCAGGTGATCCTCCCACCTCAGCCTCCCAÀÀGTGCTGGGÀ
TTACAGGTATGAGCCACCGCGCCTGGCGCATGGGCACATCCATTGAGTGTGCA
CTTGGTGCCAAGTTCTGTGCCAGGCACAGGCAATTCAACATTTATTGGAATGA
TGTAGTCCCTGTCTGCATGGAATTCATAGGCTAGAGGAGGAAGCAGTTTGCCT
CTGGTCCCATGGCCAGAGCAGCCCCAGGTGÀAGGTTATGAATTATTTGTCCCA
TCTAÀTGGTGTTCCAGCAGTCTGCCACÀTGGTGGGAAGGAGGCCCCACAGAGC
TGTGCTGTCTCCTTCCCAGGATGAGCTGGAGCACAGCCTGGGGGAGAGTGCGG

t



ABSTRACT

This thesis presents a study of the chaotic property of DNA sequences and an

approach for characterization of DNA sequences based on multifractal techniques. The

DNA sequence analysis provided in the thesis is motivated by the possibility of identifuing

biological functionality using information contained within the DNA sequences'

Numerical mapping is the basis of DNA sequence analysis' Improper mapping

may introduce artifacts into the resulting DNA signals. To resolve this problem, a new

numerical mapping method based on the organism's codon usage is introduced. using

mutual information and false nearest neighbourhood analysis, it has been shown that there

is a strong correlation among the three bases within the codons, and that DNA sequences

have a high-dimensional structure. A novel model of multifractal measures for an ¡ø-

dimensional object is proposed in the thesis. With this model, it is shown that the three-

dimensional Lorenz attractor and the x-variable time series of the Lorenz system have a

similar structure ofthe Rényi dimension spectrum in general. Rather than using DNA sig-

nals, an approach based on frame signals for Rényi and Mandelbrot dimension spectra

analysis is developed. The experimental results ofRényi and Mandelbrot dimension spec-

tra demonstrate that there is a significant difference between the open reading frames and

the other non-coding reading frames. Fufhermore, local Rényi dimension analysis with

different resolution reveals the interior structure of the genes and the genomic DNA

sequences. Therefore, it opens up a possible way for coding prediction as well as for

extracting the higher order structure information stored in the genomic DNA sequences.
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Cn¿,prnn I
IutRonuctIoN

1.1 Problem Definition

Better understanding ofour life and other living systems may beneflt our society. It

may help to raise better plants and animals, create enhanced pharmaceuticals for our

health and improve living level, develop new sources of energy, as well as mitigate the

long-term impacts of climate change and clean up the environment. An ambitious pro-

gram, Genomes to Life, has been launched by the Department of Energy of the USA in

2001. The goals of this program are to achieve a fundamental, comprehensive, and sys-

tematic understanding of life [DOEOl].

Understanding genomes is a fundamental step to understanding life' A genome

stores a complete and complex set of instructions, which is embedded in the deoxyribonu-

cleic acid (DNA) sequence, necessary for building and maintaining the life of an organ-

ism. Found in many trillions of cells in our body, the human genome contains the

information for all cellular structures and lifetime activities of the cells in our bod¡ as

well as for body growth, development, and its functions. This information is mostly stored

in the genes. A gene is a piece ofDNA sequence which is composed ofexons and introns

in higher eukaryotic organisms. It has been long known that the exons, called coding

regions, ofthe genome carry information which instructs the cellular processes in the way

of leading the events from DNA sequences to amino acid sequences or proteins, while the

introns oflhe genes and the intergenic regions, which are called non-coding regions con-

-l-



Characterization of DNA Sequences Chapter I; Introduction

tains no information for making the proteins in the organism. The proteins in the organism

do essentially all the work of the cells.

Launched in 1986, the Human Genome Project (HGp) is currently being com_

pleted with a great success. It has recently published a draft sequence of the human

genome, which covers 96% of the human genome containing 3 x 109 base pairs ofDNA.

Howeveq obtaining the DNA sequences of the entire genomes of the human and other

organisms isjust the beginning ofunderstanding our and other organisms' genomes. The

immediate challenge is characterization of the genome structures, including the mapping

and packing structure ofthe total set ofgenes and their.regulatory elements.

A vast amount of genomic DNA sequences has been sequenced. to date with an

exponential grov/th rate due to the tremendous improvement ofthe sequencing techniques.

For example, new sequences averaging about 30 million DNA bases (which represents

approximately 105 genes and their respective proteins) were sequenced every day in 2000

INCBIOl] [uber0l]. However, the progress of chalacterizing genome structure and the

pace of gene discovery actuaìly is rather slow because of the limitations ofthe traditional

biological techniques.

so far; only a small fraction of genes that cause human genetic disease have been

identified. Each new gene revealed by genome sequence analysis has the potential to sig-

nificantly affect human health. within the human genome, it is estimated that total of

6,000 genes have a direct impact on the diagnosis and treatment of human genetic dis-

eases. The timely development of diagnostic techniques and treatment for these diseases

-2-
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has immeasurable value fo'the world. computational analysis is a key component that can

contribute significantly to the knowledge to effect such developments. In addition, new

computational methods will provide complementary information which can be of benefit

for gene prediction by the traditional experimental methods.

Most of the cunent research in deciphering the rneaning of DNA sequences is

approached from the low base-pair level. Its main objective is to search for pattems or cor-

relations existing in the DNA sequence related to codons, amino acids, and proteins. A

number of gene prediction systems have been developed in recent years. These systems

use a variety of sophisticated computational techniques, including neural network

IubMu9l]' dynamic programming ISnst93], rule-based methods [sosL94], decision trees

[HuHa92]' probabilitv reasoning [GKDS92] and hidden Markov chains [HeSF97]. Mosr

of these techniques rely on the statistical qualities of exons in the genome and, therefor.e,

the fundamental limitation of them is the use of a known gene data pool as a training set

for their classification. consequently, they are capable of finding only the genes that are

homologous with those in the tr.aining data set.

It has been demonstrated that fi'actal techniques [Kins94] can be useful in the clas-

sification of stationary and nonstationary signals such as speech, image, human finger-

prints, biological signals, and radio transmitter transients [Lang96] [chen97] [Shaw97]

lIans9Tl [GLie96] [Ehti99] [Dans0l].

1,2 Goal and Objectives

The general goal of this thesis is to develop techniques for structural characteriza-
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tion of DNA sequences, with the main interest in coding region prediction for genomic

DNAsequences.Morespecifically,thefollwingobjectiveshavetobeachieved:

(Ð A method of characterizing the chaotic property of DNA sequences;

(ii) A technique for extracting features from the structural information in DNA

sequences in order to be able to distinguish the coding regions from the non-

coding pool in a given genomic DNA sequence; and

(iii) A technique for on-line coding region prediction of genomic DNA

sequences.

To address these objectives, this thesis focuses mainly on fractal and multifractal

techniques [Kins94] for feature extraction. The established methods such as mutual infor-

mation criterion [Frsw86] are also used for chaotic characterization of the DNA

sequences.

1.3 ThesisOrganization

This thesis is organized in seven chapters. Chapter I states the motivation, objec-

tives and goal for this thesis. chapter 2 contains the background information on genomics.

Chapter 3 gives the background knowledge on fractal, multifractal, as well as chaos and

stranger attractors. The theoretical basis for reconstructing strange attractors from a single

variable time series and chaos characterizing criteria are also provided in this chapter. In

Chapter 4, expelimental algolithms for DNA sequences analysis are described. Chapter 5

provides experimental design and experimental parameter choosing. The experimental

-4
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results of characterization and classification ofthe DNA sequences are given in chapter 6'

Conclusions, recommendations and contributions are presented in Chapter 7'
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Cu¡,prpn II
BACKGROUND ON GBNOVTTCS

This chapter provides the basic concepts of molecular biology as well as an over-

view of the research in DNA sequence analysis and the techniques of gene prediction.

First, a background knowledge of DNA, gene, genome, as well as gene expression is pro-

vided. A briefreview ofcodon usage is then described. The chapter finishes by discussing

the problems and techniques of gene prediction and DNA sequence structural analysis

from the point ofview of bioinformatics.

2,1 StructuralGenomics

A genome contains a full set ofgenetic instructions for the organism and allows a

sharing of the knowledge with offspring, from simple bacteria to remarkably complex

human beings. A genome is made ofDNA (deoxyribonucleic acid). Understanding how a

genome functions tequires the knowledge of its structure and organization.

2.1.1 DNA Molecule

A DNI molecule is composed of smaller units called rutcleolìdes. Tens of thou-

sands of nucleotides link together in a polynucleotide chain. The upstream end ofa DNA

chain is called the 5' end ofthe chain and the downstream end is called the 3' end ofthe

chain. Two DNA chains wrap around each other to resemble a twisted helical ladder (Fig.

2.r).
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2nm

Fig. 2. I . The structure of a DNA molecule (after [NHGI0I])'

As shown in Fig. 2.1, a nucleotide consists of thIee parts: a deoxyribose sugar res-

idue, a phosphate grøup, and a nítrogenous base'The sugar ofone nucleotide links to the

phosphate group of the next. The sugar and phosphate are often called the "backbone" of

the DNA, The nitrogenous base is the part of the nucleotide that carries hereditary infor-

mation, so the words ..nucleotide" and "base" are often used interchangeably. There are

four main nitrogenous bases found in DNA: adenine, thymíne, cytosine, and guanine,

abbreviated as A, ! C, and G, respectively. Adenine and guanine are double-ringed

1
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purines. Thymine and c]4osine are single-ringed pyrimindines. The two polynucleotide

chains are held together by van der Walls forces, weak hydrogen bonds between the

nitrogenous bases on each chain, forming base pairs (bp). The hydrogen bonding between

complementary base pairs is such that the most energetically stabte DNA configuration is

achieved when adenine pairs with thymine and guanine pairs with cytosine. Although the

spatial requirements of DNA potentially allow four complementary base pairs to be

formed (i.e., G-T, G-C, A-! and A-C), only the G-C and A-T base pairs are normally

found in DNA. In other words, the order ofbases on one DNA strand, or a side ofthe lad-

der, determines the bases on the complementary DNA strand, or the other side ofthe lad-

der. Three hydrogen bonds stabilize G-C base pairs and two hydrogen bonds stabilize A-T

base pairs. Because hydrogen bonding between base pairs contributes to the stability of

the DNA double helix, base sequence affects the stability of DNA. This means that the

regions of the DNA with an abundance in G-C base pairs are more stable than A-T rich

regions of the DNA.

The helical structure, described in Fig. 2.1, is called B'Form DNA. It was found by

James D. Watson and Francis Crick in 1953. B-DNA is only one of several possible con-

figurations. Other DNA conformations use the same nucleotides and molecular bonds, but

the th¡ee-dimensional structure ofthe helix is different. At least six different DNA config-

urations (designated A, B, C, D, E, and Z) have been identified, but only the A, Z, and B

conformations are found in nature. B-Form DNA is the most common form of DNA found

in living organisms. It has an average diameter 2.0 nm and approximate l0.l to 10.6 bp

per tum. A-Forn DNA, which is present in RNA, has a diameter of 2.3 nm and l1 bp per

tum. Z-Fonn DNA has a diameter of 1.8 nm and t2 bp per turn, Unlike B-Form and A-

.8.



Characterization of DNA Sequences Chapter 2: Background on Genomics

Form DNA, Z-Form is a left-hand helix' Only a very restricted set of DNA sequences

appear able to adopt the Z-Form structure' The biological significance of the range of

structures accessible to particular DNA sequences is not fully understood [Sind94]'

Composed offour letters (4, T' C' and G), DNA sequences are often used to repre-

sent the order ofDNA nucleotides in DNA molecules since (l) only the nitrogenous bases

contain genetic information, (2) the sugar-phosphate backbone mainly maintains the same

structure along the DNA molecules, and (3) one DNA strand determines the complemen-

tary strand.

2,1,2 Gene

A gette is a specific small piece of DNA and is the basic physical and functional

unit of heredity. Roughly speaking, each gene carries a set of instructions required for the

constructing ofone specific p rotein' Ptoteítts are a diverse group of large' complex mole-

cules that determine, among other things, how the organism looks, how well its body

metabolizes food or fights infection, mediate much of the information flow within a cell,

and sometimes even how it behaves. Genes also contain the information that help to con-

trol where, when, and in what amount proteins are produced'

A gene is composed of several parts. As shown in Fig 2'2, in higher organisms' the

protein-making instructions are broken up into relatively short sections narned e¡ons. The

exons are separated by longer sections of "nonsense" DNA, called ìn¡ons, For genes in

higher organisms, the size of exons is small (on the average, 145 bp for humans) but long

in introns (some exceeding 10 kb) tHCPOll. A gene also contains regulatory sequences'

na:¡rled regulatory¡ elentents, Most of the regulatory elements ofa gene are located in the 5'

-9-
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flank region ofthe gene, while some may be located in the 3' flank region, or buried in the

middle ofthe gene.

The regulatory elements are crucial to how a living system works. with the binding

ofspecific proteins onto its regulatory elements, the gene is tumed on or off Most higher

organisms are composed of difrerent kinds ofcells, each tlpe ofcell performs a particular

function different from others. A liver cell, for example, does not have the same structure

and biochemical duties as a brain cell, but both of them contain the same set of genes'

Consequently, different groups of genes are turned on and ofl between the liver cell and

the brain cell to produce different sets of proteins which perform different biochemical

functions.

Genes vary widely in length. For human, the average size of a "typical" gene is

about 27 ,9 kb long and contains an average of 8.8 exons. The average length of a human

exon is 145 bp and 3365 bp for a human intron. To date, the largest human gene found has

a lengh of 2.4 Mb, the largest number of exons in a human gene is 178, and the longest

single human exon is approximately l7 kb [HGP0l] [VAML0l].

Regulatory Element

Exon

Fig. 2.2. The gene structure of eukaryotes.

-l'FññrRq¡=Ì'l
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2,1.3 Genome

A genome is all ofthe genetic material ofan organism. It is the entire set ofhered-

itary instructions for building, running, and maintaining the organism, as well as passing

life on to the next genefation. A genome consists ofgenes, which are packaged in ch¡oma-

somes and affect specific characteristics ofthe organism'

AsshowninFig.23,inmostorganisms,agenomeismadeofDNAandcomposed

of intergenic regions and genes. In general, the exons of genes are called the codittg

regions of the genome while the introns and the intergenic regions arc called the non-cod-

ing regiotts,

Fig. 2.3. The Strucrure ofa higher organism genome'

2,1,3.1 Chromosome

Genomes are organized into a number of physically separated pafs, called cåro-

mosones. composed of DNA and protein, ckomosomes are stored in the nucleus of cells.

It helps a cell to keep the large amount of genetic information neat, organized, and com-

pact. Chromosomes are the fundamental elements of inheritance, since they are passed

from parent cell to daughter cell, from parent to progeny.

The number of ch¡omosomes in an orgatrism varies with species. In a lower organ-

ism like bacteria, the entire genome is packaged into a single cfuomosome. A mosquito
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has six ch¡omosomes, a sunflower 34, a gotdfish 94, and a cat 38. A normal human being

has 46 ch¡omosomes, 22 pairs ofautosomes and one pair ofsex chromosomes.

Different chromosomes contain different genes. For example, in humans, the gene

HBB encodes the þglobin amino-acid polypeptide, a part of the haemoglobin protein that

carries oxygen in red blood cells. The gene is found in ch¡omosome I l. The HYALI and

HYAL2 genes, which involve glycosaminoglycan catabolism and cell migration, are

located in ch¡omosome 3.

Chromosomes can be seen under a light microscope. Stained with certain dyes, the

ch¡omosomes demonstrate a pattern oflight and dark bands reflecting regional variations

in the amounts of A-T and G-C. Differences in size and banding pattem allow the chromo-

somes to be distinguished from one another with a /ra ryotype teclnique, a tool in the diag-

nosis of genetic diseases (Fig.2,4).

Every chromosome contains a single molecule of DNA with an average of 150

million bases. The DNA molecules in a human chromosome, when stretched out to their

full length, would be between 1.7 cm and 8.5 cm long, depending on the specific chromo-

some. But the diameter of the DNA molecules are less than a millionth of a centimetre

across. Ifsuch a long, thin DNA molecule floats free in a cell, it could easily be broken up

or tangled up with itself. To deal with this, the DNA molecules are folded into an orderly,

compact shape in a cell by winding around protein spools and fastening into the loops,

coils, and fibres ofother proteins.

t2-
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Fig. 2.4. Human karyotlpe and ch¡omosome banding. (a) Microscopic exami¡a-
tion of chromosome size and banding pattems allows medical laboratories
to identify and arrange each ofthe 24 human different chromosomes (22
pairs of autosomes and one pair of sex chromosomes) into a karyotype,
which then serves as a tool in the diagnosis of the genetic diseases. The
particular individual in this case is a male because there is one X and one
Y ch¡omosome. Experimental data have shown that ckomosome 22 has a
higher density ofgenes and chromosome 21 has a lower density ofgenes.
(b) Typical properties of bands. Light bands usually have a higher GC
content (GC rich) than that of dark bands. The GC rich regions in a
genome usually have a greater density of genes. Certain light bands,
located adjacent to telomeres, are extremely rich in genes and have an
unusually high GC content (after [NHGIOl]).

In its most tightly condensed situation, a chromosome, which contains several cen-

timetres of DNA, is only a few ten-thousandths of a centimetre long. In general, chromo-

somes are fully condensed only in preparation for cell division. Otherwise, some of the

loops and coils are unfastened so that the DNA molecule can perform some biological

processes.
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In higher organisms, chromosomal DNA molecules are usually linear. As shown in

Fig,2'5,linear ch¡omosomal DNA molecules have at least th¡ee functional urut$ Telom-

eres arc specialized structures at the ends ofthe ch¡omosome. Telomeres provide a mech-

anism by which the ends of the linear chfomosomes can be replicated. They also stabilize

the ends of the chromosom es. Centromeres are DNA regions necessary for precise segre-

gation ofchromosomes to daughter cells during cell division. They are the binding site for

proteins that make up the skeleton, which in tum serves as the attachment site for microtu-

bules, the cellular organelles that pull the chromosomes apart during cell division. j?eplr'-

cation origins are the locations of the start of DNA synthesis. A replicating ch¡omosome

may have many active replication origins. The presence of multiple replication origins, for

example, allows for complete replication of the entire human genome in only eight hours.

Fig. 2.5. Basic functional elements in ch¡omosomes of higher organisms'

ori, replication origin.

2.1,3.2 GenomeStructure

The size of genomes vary widely. For example, the genome sizes of bacterium E

coli, yeast, fly, human, and some amphibians is 4.6x 106 , l.2x 107 , l.0x 108,

3.0x109, and 8.0x 10ll bp, respectively. In humans, less than 2Vo of the genome are

coding regions, and more than 64%o of the genome are filled by intergenic DNA

-14-
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[VAML0I]. The genome size does not correlate well with organismal complexity' The

human genome, for instance, is 200 times larger than that of the yeasl S' cerevisiae' bvt

200 times smaller than thal of Amoeba dubia l3rne99l. This is because genomes also

contain a large quantity ofrepetitive sequenca [Hart00] [GrHe99]'

Thegenesinmammaliangenomesarenotuniformlydistributedoverthevarious

chromosomes. There are gene-t'ich and gene-poor regions in their genomes' About 20% of

the entire human genome are composed of large gene-poor regions or desert' These

regions have a length longer than 500 kb without a gene' The lack of genes in the gene-

poor regions does not mean that they are devoid of biological function IVAMLo1]'

Inhigherorganisms'theGCcontentdistributionisnoteventhroughouttheentire

genomes. There are higher GC confenl (Gc-rich) and lower GC content (GC-poor)

regions.Inhumans,theGCcontentisfromabout30Totoover65Towithawindowsizeof

20 kb. The GC content of the entire human genome is 38%. It has been confirmed that

there are strong conelations between GC content regions and gene density' The density of

genes is greater in the GC-rich regions than in the GC-poor regions' Why do GC-rich

regions correlate with high gene density? one possible explanation is that a considerable

fraction of the nucleotide G and C contribute to coding regions and regulatory elements

ICaSm99].

For a stained metaphase chromosome, a distinct pattern of banding can be seen

under microscope (Fig. 2.4). In general, dark bands conespond to the GC-poor regions

and light bands are related with the GC-rich regions. It is not clear how these base compo-

sition differences can yield physically such dramatic staining differences. However, as dis-
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cussed above, GC content conelates strongly with the gene density. In humans,

chromosomes 17, 19, and 22, which have more light bands than the others, had the highest

gene density. Conversely, ch¡omosomes X,4, 13,18, and Y' which conespond to the few

light bands, had the lowest gene density. Certain light bands, located adjacent to telom-

eres, are extremely rich in genes and have an unusually high GC content. An example is

the Huntington's disease region at the tip of the short arm of human ch¡omosome 4

IHGPOll IVAML0l].

2.1.4 DNA Organization

As shown previousl% the DNA molecules in higher organisms are very thin, about

2 nm in diameter (Fig. 2.1), but are very long in length. Human genome, if lined up, is

nearly I m long. Hence, the cell faces an enoÍnous packaging problem. The DNA mole-

cules not only have to fit into the celt but must be packaged properly so the information

contained in the DNA molecules can be accessed efficiently by other biological molecules.

In higher organisms, only a small portion of a genome is associated with some

ongoing biological processes and therefore, are unpacked. In humans, over 50% of the

genome are repetilive seqrrcnces, called 'Junk" DNA, which contain no functional infor-

mation and do not relate with the biological processing in the cells. Moreove¡ in a multi-

cellular organism with complex developmental regulatory schemes, there are latge

portions of genetic information that are not used in particular cell types. Certain genes

may be utilized only within one short period during development. Hence, eukaryotic cells

have mechanisms for packaging regions of their chromosomes into configurations that do

not become involved in other biological process in cells.

16.
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Fig. 2.6. The packaging of DNA in eukaryotic cells' (a) short region of DNA

doubie helix; (å) section of I l-nm filament composed ofnucleosomes;

(c) section ofa 30-nm fiber ofpacked nucleosomes, and (d) section of
òhro*oto." loops anchored to a protein scaffold' The scaffold is not

straight. The attachment region called SAR'

In eukaryotic cells, the first order of DNA packing in chromosomes is the forma-

tion of a string of nucleosomes along the DNA. A nucleosome is a coiled structure of

about 145 bp long DNA wrapped into two left-handed coils around a histone octamer (Fig.

2.6). DNA is not randomly wrapped into nucleosomes. only some regions of the DNA

helix are associated with nucleosomes [ArMo93]. Nucleosomes organize themselves

together to form a filament of about I I nm in diameter. The I l-nm filament is coiled upon

itselfto make a thicker solenoidal structure offiber with a diameter of30 nm. stretches of

solenoid containing on an average of 50-100 kb long DNA are attached to a protein scaf-

fold. About 200 bp long with the repeats of the sequence AATATATTT, the specific AT-

rich regions of DNA are associated with the regions in the nuclear matrix, called sAR

(scafotd attachment region). The highest order of chromosome packing occurs in met-

(a)

-i-
30 nm

I
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aphase. During this period, the metaphase cbromosomes appeâr to consist of stacks of

packed 30-nm fiber loops (Fig, 2.7) [Sind94]'

Fig. 2.7. The hierarchy of chromosomal structure in the metaphase (from

iNHGIOtl).

Chrolnosome

. 18.
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Thehigher.orderstructuresofch¡omosomesposeanextraordinarychallengefor

structuralbiologysocietybecausetheyaresocomplexandthestructuresaresolarge.It

would greatly benefit our life if we completely uncover the complicated structure and the

sophisticated mechanisms that allow DNA packing and unpacking to be used to modulate

DNA function.

2.2 Functional Genomics

For its sulival, an organism must encode and store all the instructions needed to

build, operate, maintain, and reproduce itself and to respond to varied environmental con-

ditions. The organism also has to read out the instructions of its genome in the proper

order, time, and amount for each gene product. The overall aim of functional genomics is

to understand how an organism deals with these issues.

2.2.1 RNA

^Rlø (ribonucleic acid) is the direct molecular instn¡ction for the synthesis of a

specific protein. It is a single-stranded polynucleotide molecule and is made by transcrip-

tion from a DNA template. Like DNA, RNA consists of three pafs: a sugar residue, a

nitrogenous base, and a phosphate group. The RNA molecules are composed of adenine,

guanine, cytosine, and uracil (lJ) instead of thymine. Most of the organisms have DNA as

their genetic materials, However, some bacterial viruses, some animal viruses, and some

plant viruses have RNA as their genetic materials.

There are four major classes of RNA molecules or transcripts, messenger RNA

(mRNA), transfer RNA (tRNA), rlåosornal RNA (rRNA), and small nuclear RNA

l9-
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(snRNA). The mRNAs, tRNAs, and rRNAs are found in both prokaryotes and eukaryotes,

white snRNAs are found only in eukaryotes. The mRNA molecules carry the genetic

information out of the nucleus for protein synthesis (Fig 2.8). Together with the numerous

ribosomal proteins, the rRNA molecules are assembled to form the ribosomes. The ribos-

omes are cellular organelles involved in protein synthesis. The specific tRNA molecules

bring the specific amino acids to the ribosomes and recognize the specific encoded

sequences of the mRNAs to allow conect protein synthesis. The snRNAs are involved in

processing of mRNA precursor in eukaryotes.

Table 2. l. Genetic code and human codon usage.

First
letter

Second letter 'fhird
letter

U c G

U

t't.0
20.5

UUU
UUC

14.8
t7.5

I1.9
4.5

JCC

JCA
JCC

Ser

t2.l
15.8

UAU
UAC

Tvr 10.0

t2.3
UGU
r t..:¡l:

cys
U
c

t2.5

t2.8
19.3
'1.0

39.7

UUA
UUG

CUU
cuc
CUA
cuc

0;l
0.5 UAC

Stop
UGA StoI

t2.9 UGG Trp c

c
17.3

20.0

16.7
7.O

tcL
trcc

10.5
t4.9

CAU
cAc His

+.o

10.8

6.3

r 1.6

CGU
ccc
CGA
CGG

U
c

lcA
lcc

t2.0
34.5

CAA
CAG

cln
G

15.8
2t.6
't.2

AUU
A.UC lle

t2.9
r 9.3

14.9
6.3

{cc
{cé
AC(

Tlr¡

L't .0
19.8 AAC

t2.l
19.3

ACU
AGC

Ser
U
c

24.0

32.6 AAG Lys
ll.5
I t.3

Ä'GA'

AGG22.3 Ä.UC Mel G

G
10.9
t4.6
7.0

28.8

GUU
cuc
GUA
GUG

r 8.5
28.3

15.9

7.5

ccu
GCC
GCA
GCG

22.4
26.1

GAU
GAC

10.8

22.7

t6.4
t6.4

GGU
GCC
GGA
GGC

clv

U
c

29.t
40.2

GAr'
Glu G

The numbers represent the occurrence ofspecific codons per thousand codons (based on 12,8

16,923 codons,27,l43 coding DNA sequences).
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2,2.2 Protein

Proteinsdomostoftheworkinacell.Insteadofjustfournucleotides,proteinsare

the chains of20 different amino acids held together. A linear chain of amino acids is called

apolypeptìde. A protein is one or more properly folded polypeptide complex' Every three-

base mRNA sequence (a triplet)' called a codon, specifies an amino acid in a polypeptide

chain. As shown in Table 2.1, the codons are degenerate since there are 43 :64 possible

codons encoding for only 20 amino acids and one stop signal. The genetic code (each

mRNA codon and its conesponding amino acid or stop signal) is nearly universal for all

forms of life.

2.2.3 Gene Expression

2.2,3,1 Transcription Process

Transcription is the mechanism by which a template strand of DNA is utilized by

specific proteins, called RNA polynrcrases, to generate an RNA chain. The process is ini-

tialized by an RNA polymerase, with the help of several proteins called Ínitiation factors,

recognizes and binds to a specific region calledplcrttor¿r upstream of a gene on the DNA.

The double-stranded DNA then unwinds in the promoter region. For mRNA genes in par-

ticular, a number of regulatory proteins participate in initiation by indicating which pro-

tein-encoding genes are to be copied. Specific regulatory proleins are located at specific

regulatory elements in the DNA molecules. of the unwounded double-stranded DNA,

only the one containing the correct promoter sequence acts as the template and the RNA

polymerase then synthesizes RNA by an orderly copying of the DNA template into a RNA

chain, using four nucleotides A, G, C, and U. The template is not always the same chain of
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thedouble-strandedDNA.Differentgenesmayhavetheirtemplatgchainsoneitherchain

of the double-stranded DNA. However, for a given gene, the template chain remains the

same within the boundaries of a gene'

UnlikebacterialRNAs,theeukaryoticRNAsundergopost-lranscriptionalptoc-

esses. After adding a 5' end cap and a 3' end poly(A) tail to it, the resulting RNA chain is

called precusor niRNl (pre-mRNA). The sequences conelated with the intronic DNA

mustberemovedfromtheprimarytranscriptpriortotheRNAsbeingbiologicallyactive.

The process dealing with intron removal is called RNI splìcirtg. The illustration of RNA

processing in eukayotes, using B-globin gene as an example, is shown in Fig' 2'8'

Asdiscussedearlier,alargenumberofnucleotidesincorporatedintheprimary

transcript as introns are removed later in the splicing process. Energy is utilized in the syn-

thesis of the primary transcript and the splicing processing' At first glance' it seems that

the presence of introns in eukaryotic genes is an extreme waste of cellular energy. How-

ever, the presence of introns can protect the genetic damage by environmental influences'

Another function ofintrons is to allow altemative splicing to occur. By altering the pattem

ofexon organization, from a single primary transcript, different proteins can arise from the

processed mRNA from a single gene. Therefore, this allows an increase in the number of

proteins without increasing the overall number ofgenes'

AmRNAisatemplateforaspecitcprotein,studiesonthemRNArevealthe

amino acid information of a protein. In practice, scientists study the DNA copies, which

are the copies from the mRNAs, instead of the mRNAs itsell since the DNA copies are

more stable than the mRNAs. The DNA copies ate called complementary DNA (oDNA)'

n1
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Fig. 2.8. Overview of RNA processing in eukaryotes, using B-globin gene as an

example. The B-globin gene contains th¡ee exons and two introns'

After addition ofthe 5' cap and 3' poly(A) tail, the introns are removed

during splicing process. The small numbers refer to position-s in the

,"qu*"è of B-globin, which contains 147 amino acids (ø) p-globin

genomic DNA, (å) primary RNA transcript, (c) B-globin pre-mRNA,

(d) undergoing splicing, and (e) mature mRNA'

2.2.3.2 TranslationProcess

Ttanslations are the processes that produce proteins based on the information

embedded in mRNA sequences. Translation is carried out by ribosomes.

As described in Table 2.1, each th¡ee-base nucleotide sequence' or codon, in the

5' cap
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mRNAencodesaspecificaminoacid.Becausetherearethreenucleotidesineachcodon,

an mRNA can be translated in three different reading frames in each region (Fig. 2.9)'

These reading frames shift forward or backward from one another by one base' Only a part

ofone out of the th¡ee reading frames, called open rcading frame (ORF), represents the

conesponding Protein sequence.

AtranslationusuallybeginsataAUGinitiatorcodoninanoRF,whichservesas

the template for protein synthesis. once translation has started, the ribosome, moves tkee

bases at a time along the mRNA. The translation is stopped when the ribosome reaches a

terminating codon, or stoP codon.

Fig.2.9. Reading frames and mRNA, There are three reading frames corre-

lated with an mRNA. They are infened by shifting one base forward

or backward from the mRNA sequence. Only a portion ofone ofthe

three reading frames represents the conesponding protein sequence'

mRNA EI AUC
5' cap

uô¡--' 3' poly(A) tail

5'---
Reading Frame I

Reading Frame2

Reading Frame 3

r rl ll lLl l= ll=-ltll'l Ç-.1 L-
Stop- 

-Fro Tro -Pro Ser Pro Pro Asp Pro

I n | | ll= ll ILJL--jI-.
. Tsn' Tro -pro I-zu Àla Pro Leu Thr Pro- ' '

cooHPolypeptide NHz
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Figure 2.9 also shows a part of an open reading frame (ORF)' An ORF represents a

potentialaminoacidsequencewithaninitiatorcodonandachainterminatingcodonfora

possible protein-coding region in a DNA sequence' This sequence is not necessary in

nature butjust a string of codons for amino acids that is not broken by stop codons' The

ORF is oÍìen used by computer programs for possible protein-coding region seeking'

homology searching, and restriction site locating'

2.3 Codon Usage

The unequal usage of codons in the coding regions appears to be a universal fea-

ture of the genomes across species. The bias is mainly due to the uneven usage of the

amino acids in the existing proteins and the uneven usage of synonymous codons

lGGGP80l.

Codort ttsage canbe strongly biased in different species' For example' six different

codons specify the amino acid leucine (UUA, UUG, CUU, CUC, CUA' and CUG)' but 60

percent of the leucine codons in bacteria are CUG' and 80 percent are UUC in yeast

[CUTG0I]. Table 2.1 shows the human codon usage based on the human coding

sequences (12,516,923 codons, 27,143 DNA coding sequences) published before June

2001 [cuTGOl].

The bias of codon usage is associated with a wide variety of factors including

IRNA abundance [Ikem85] [Bulm87], gene expression level [Holm86], local composi-

tional biased [Kalvfr96], protein composition and structure IDMAB9ll [GMBG00]' trans-

lation optimization [Xia98], gene lenglh [Eyre96], and mRNA secondary structure
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[HuKH92]. Studies have also shown that the genome GC content is conelated with cross-

species differences in frequencies of codons [OOYUSS] and amino acids [Lobr97]

[wiva99].FurtherresearchbyKnighte/a/.[IkrFL0l]demonstratesthatitisthegenome

GC content which drives codon usage. These studies suggest that genes and genomes at

mutatior/selection equilibrium reproduce a unique relationship between nucleic acid and

protein composition or in other words the structure of the genome determines the codon

usage in the organism [KnFLO1]'

2.4 Computational Analysis of DNA Sequences

Biological computing has a long history in structural molecular biology' The

recent boom is mainly a consequence ofthe sequencing ofthe human and other genomes'

These projects yield an enornous amount of DNA and protein sequence data with an

exponential gtowing rate. It has been estimated that, for example' new sequences of

approximately I I billion DNA bases were published in 2000, three times as many as that

in 1999 [NCBIO[]. This amount of data is shifting research in molecular biology and

genetics from a purely expetimental approach to the one in which experiments can be

planned in front of a computer. Bioinformatìcs is the field as a consequence of dealing

with this by the combination of information science and biology'

one of the most active areas in bioinformatics involves the analysis of DNA

sequence information. The interests ofDNA analysis are mainly in gene prediction in the

various organisms and characterization ofthe higher structure ofthe genomes'
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2.4.1 Gene Prediction

Gene prediction faces a number of challenges, First of all, genes of the most

eukaryotic organisms are neither continuous nor contiguous. They are separated by a large

size ofthe intergenic DNAs, Their exons are further intemrpted by introns. Second, the

coding regions ofa higher organism occupy only a small fraction of its entire genome. The

length of the exons varies widely and sometimes is even as small as l0 to 20 bp. As a

result of this, a tlivial exon signal may be submerged into the non-coding pool of a

genome. Third, the arrangement of genes in a genome makes things even more compli-

cated by some exceptions. There are examples ofgenes nested within each other, such as

one gene located in an intron of another gene or overlapping genes on the same or oppo-

site DNA shands [DSRC99].

Two classes of computational approach are used commonly for gene prediction in

genomic sequences. Sequence similarity search, such as the BLAST family of programs'

is a well-established computational approach for gene prediction which has been used

extensively with considerable success [Fick96]. It is used to detect sequence similarity

between an uncharacterized sequence of interest and the known sequences of the genes,

the proteins, or the mRNAs. It suggests that they are homologous and share common evo-

lutionary origin if there is a significant similarity shown between them. Therefore, the

information from the known sequences can be used to infer a gene structure or function of

the uncharacterized sequence.

The approach of sequence similarity search has limitations although it has been

proven useful in many cases. It has been shown that only a fraction of newly discovered
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sequences have identifiable homologies in the current databases [Clav97l [WAAB94]

[DSRC99]. Therefore, this approach wilt give little or no useful information for the

uncharacterized sequences which have no homology with the known genes.

The other computational approach, called ab initio prediction, integrates coding

statistics and sequence signal detection into one framework. Coding statistics are different

between coding and non-coding regions. A number of measures, including codon

IStMc82], hexamer [ClSB90], amino acid usage [FiTu92], position asymmetry [FiTu92],

codon preference [GrDB84], dependence between nucleotide positions [BoMc93], mutual

information [HeGr95], entropy [SnSt93], and Fourier analysis [TRBR97], have been

inhoduced to coding statistics [Clav97]. Most of gene prediction programs integrate the

output of a number ofcoding statistics.

Sequence signal detection methods attempt to recognize the genes by following

the interaction ofthe gene expression machinery with the nucleic acid. Sequence signals,

usually only several base-long subsequences, are recognized by the cell machinery and are

the signals for certain processes. The signals that are modeled by current gene prediction

programs are promoter elements, start and stop codons, splice sites, and poly(A) tail sites.

Many pattern recognition techniques are used for detecting sequence signals and

integrating several coding statistics. For example, the popular GrailEXP program uses a

neural network [UbMu9l]. FGENEH program uses linear discriminant analysis

ISoSL94]. Dong and Searls [DoSe94] in GENLANG use linguistic methods. Decision tree

is used in SORFIND [HuHa92] and dynamic programming is used in GENEPARSER

[SnSt93]. Currently more powerful programs are entirely built with hidden Markov mod-

-28.



Châracter¡zation of DNA Sequences Chapter2: Background on Cenomics

els (GENSCAN [BuKa97], GENIE [KHRE96], GENEMARK HMM [LuBo98]'

HMMGENE[Krog97]'andVEIL[HeSF97]).Bothcodonstatisticsandsignaldetection

models need to be trained by training sets'

Atthough they have a remarkable success for exon prediction, the accuracy of the

current gene prediction programs remains rather low when facing the large anonymous

sequences generated by HGP. For instance, only 20%o of annotated genes have all exons

predicted exactly for the human ch¡omosome 22 [DSRCgg]' The predicting accuracy of

exon prediction is also dependent on the length ofthe exons. The accuracy decreased for

the exons longer than 200 bp or shorter than 70 bp. It still remains a problem for nested

and overlapping genes or altemative splicing. Most ofthe programs can not deal with the

case of multiple genes or partial gene in a sequence [YeLB0l]'

There are fundamental limitations for this class of approaches. First of all, high

accuracy prediction should not only predict genes positively where there are genes, but

predict genes negatively where there is no gene. The current data oftraining sets are origi-

nally from the public databases. These sequences are characterized by anomalously high

gene density, since the regions containing the genes have been preferentially sequenced

and published [Guig97]. The gene density ofthe popular ALLSEQ data set, for example,

is 15%, while the gene density of the human genome is less than 1.5% averagely. Most of

the progfams even give a positive prediction lor 12-36%o of random generated DNA

sequences, although they demonstrated a good success on the known sequences in the

public databases [Guig97].

The second limitation is that these programs i¡troduce a bias in favor of the detec-
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tion of genes similar to those known sequences [Clav0O] Hence, these programs' which

are developed based on the atypical gene sample available in current databases, may not

perform as well on genes more typical of the biological universe as a whole. In other

words, these programs may not predict successfirlly for the sequences containing the

genes that are not similar or have no similar property to the known genes. The typical

example ofthis is that these programs fail in prediction ofnon-protein coding genes (such

as Xist and Hl9) [Clav00].

2,4,2 Complexity Anatysis of DNA Sequence

In the past decade or so the search for the statistical features ofthe genomic DNA

sequences is an area with rapid growth in the amount ofthe obtained results as well as in

the range of their functional and evolutionary implications for organisms. The develop-

ment of this area is directly influenced by the exponential growth of the data in DNA and

protein sequences.

During the past few years, there has been intense discussion about the existence

and the nature of long-range conelations in DNA sequences. The conelation properties of

DNA sequences was first studied by Peng et al. [PGHS92] in 1992. In their publication,

they have demonstrated a long-range correlation in the non-coding regions but not in the

coding regions ofhigher eukaryotic DNA sequences, using the Lévy walk method to map

the DNA alphabet sequences into numerical sequences. These conclusions were supported

by examining the size distribution of purine and pyrimidine clusters in pure coding and

non-coding regions of different organisms [MBGS95] [PrAl97]. Others have reported that

both coding and non-coding regions of the DNA sequences present long-range conelation
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[ChLa93]tPrclg2].Voss[Voss92],basedontheself-similarcharacteristicsinDNA

sequences, showed that DNA sequences exhibit a power-law relationship with l/f þink)

noise behaviour in DNA sequences. The author also noted a strong periodicity at a ffe-

quency of three bp in DNA sequences. Yu et al' [YuAW0l] [YuAn0t] proposed a time

series model based on the global structure ofthe complete genome, and have shown long-

range correlations in the bacteria DNA sequences' Further studies by Audit et al'

tATvAOl]suggestedthatthelong-rangecorrelations,observedinbothcodingandnon.

coding regions, are the signature of the higher-order structural organization of chromatin,

The presence of small-scale conelations only in eukaryotic genomes are related to the

machinery underlying the wrapping of DNA in the nucleosomal structure'

AmajorproblemoftheseanalysisalgorithmsappliedtoDNAsequencesisthat

enors are introduced by giving a*ificial values to the sequence at each base pair position.

lvhen mapping DNA alphabet sequences to numerical sequences, most ofthe algorithms

published use the Lévy walk or modified Lévy walk models [PBGS92]. Briefly, to map a

DNA sequence using the Lévy walk model, a walker either descends or rises one step at

the position I along a DNA sequence chain if a pyrimidine (cÆ) or a purine (4"/G) occurs,

respectively.

To avoid this and the critical limitation of "prior training" problems, entropy and

mutual information algorithms are used for measuring the complexity of DNA sequences.

Ebeling et a/. [EMKSOO] reported that conelations on many scales, including those of

long range, are found in the DNA sequences. using the average mutual information

(AMI), Grosse e¡ a/. IGHBSoO] showed that the probability distribution functions of the
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AMI are significantly different in coding and non-coding regions of DNA sequences and

therearepersistentperiod+fueeoscillationsofAMlfunctionsforthecodingsequences.

By calculating Rényi dimension through Rényi entropy' Rifaat proved that the genomic

DNA sequences demonstrate species independent multifractality IRifa98]'

2,5 Summary

This chapter presented the background of the molecular biology and genomics

involved in this thesis. codon statistics was discussed. The bioinformatics techniques and

analysismethodsforDNAsequenceswereoutlined.Thenextchapterwillprovideaback.

groundonfractalandchaossincethegoalofthisthesisischaracterizationofDNA

sequences through multifractal analysis.
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CTTAPTBN III
B¿,crcnouND oN Fn¿,ct¿l,s AND CHAos

This chapter presents the background on fractals and chaos involved in this thesis.

The basic concepts of fractal, fractal dimensions, as well as some typical fractal sets and

their properties are first described. Multifractal and multifractal dimensions a¡e discussed

with more detail. Chaotic dynamics and strange attractor are then introduced. In the last

part, the methods of attractor reconstruction are described.

3.1 Fractals

3.1.1 Fractal Sets

The concept ofl'actals was first introduced by Mandelbrot for describing complex

objects which are difficult to deal with by topological geometry. Since then, fractals have

been studied extensively in physics and mathematics. A fractal object is self-simila¡

which means that its parts are similar, in some extent, to itself as a whole. In other words,

a fractal has self-similarity in the structure and complexity at all scales.

The Cantor set [Cant83] is one of the mathematically self-similar fractals. It is

composed of an infinite set of points. These points distribute uncontiguously on a one-

dimensional line. As illustrated in Fig. 3.1, the Cantor set is built by beginning with a

straight line as an initiator. The middle one third segment of the initiator is then elimi-

nated, resulting in the generator. The process is repeated on each truncated line segments.

As the process iterated infinitely, a set of infinite points but not line segments are left. The

set ofthese infinite points is called the Cantor set. Clearly, as we can see, the Cantor set is

-JJ-



Characterization of DNA Sequences ChapterIII: Background on Fractals and Chaos

notalinesegmentalthoughthepointsofthesetcanfillupaline.Itisanobjectwithaself.

similar structure at anY scale.

Fig. 3.1. Genelation ofthe Cantor set. ¿ is the length ofthe initiator'

3.1.2 FractalDimensions

Fractal dimensions measure the degree of complexity (or roughness, brokenness,

and inegularity) of an object. The introduction of fractal dimension is motivated by the

fact that it is not sufficient to describe the complexity offractal objects with the use oftra-

ditional geometry. That the fractal dimension strictly exceeds the topological dimension is

the essential feature for all fractals [Mand83]'

Let's consider again the example of the Cantor set in Fig' 3.1' The length of the

each line segment, in the unit ofthe original initiator, at each iterated step is (l/3)1, (l/3)2,

(1/3)3, and (l/3)" (at step n), respectively. The number of the line segments is2r,22,23,

and 2,'(at step n), respectively. Hence, the total length ofthe Cantor set at each iteration in

Length of Number of
Segment Segment

Initiator

Generator:
Step I

Step 2

Step 3

Step 4

(r/3)rl. 2t

0ß)2L 22

(l/3)3L 23

0ß)4L 24
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the unit of the original initiator is (2/3)1, (2ß)2, Qß)3, and (2ß)n (at step n) When the

generationoftheCantorsetcontinuestoinfiniteiteration,thetotallengthoftheCantorset

is (2/3)- = 0 and the total number ofthe line segments, with a length of0' is 2- = ""' It is

clear that the cantor set can not be measured with the traditional dimension since it is not

a line, a point, or any other curves which can be described in normal one' two' or three

dimensions.

However,fractaldimensions,whichtakeintoaccounttherelationshipbet.weenthe

scaleandsomemeasurements'canbeusedtodescribesuchcomplexobjects.Asshownin

Fig, 3.1, the length ofeach self-similar line segment, r, and the number' lr'' of self-simila¡

segments are (l/3),, and 2,'at iteration lt, respectively. The D", called self-similarity dimen-

sion, is

(3. 1)

ThustheD,ofCantorsetisapproximately0,63andisinvariantnomatterhowmanyiter-

ations have passed. This also shows that the notion oftraditional integer dimensions needs

to be expanded to fractal dimensions to describe fractal objects such as the cantor set.

There are many distinct definitions of fractal dimensions in order to reflect the dif-

ferent properties ofthe self-similar and selÊaffine objects. The fractal dimensions can be

catalogued into four basic classes: morphological, entropy, spectral, and variance dimen-

sions IKins94].

¡ = loe(r/) - tos(ztt) 
=194?=0.6309-s log(tz') log(r r1vtl") log(r)
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TheHausdorffdimension,D¡¡,iswidelyusedsinceitiseasytounderstandand

compute. Briefly, the object to be measured is covered by a set of volume elements (vels)

with a vel size ofr (called scale factor). The number ofvels, N(r), which covers the object

completely is taken as the measurement for the powerJaw relationship,

Nlr¡ - ¡"Dn

Thus, the hausdorff dimension becomes

ou = ,lrï.ffi

The Hausdorff dimension is one of morphological dimensions [Kins94]. The limi-

tation of this dimension is that it does not provide detailed information related to the non-

uniform property of a fractal but an estimation ofthe outline complexity ofthe fractal.

The infomation dimension, D¡ avoids this problem by taking into account the

information contained in a fractal object as well as the geometrical properties of the

object.

The well known Shannon enhopy is the amount of the information for specifuing a

state of a system at a certain resolution r. It is defined as

(3.2)

(3.3)

N(r)
Hr= -\ p,tocn. (3.4)

j: I

where N(r) is the number ofvels and r is the vels size, a scale factor. Thep¡ is the relative

frequency ,l¡ with which the object intersects the ith vel of the total number Nof intersects

ofthe fractal with all the vels

-36-



Characterization of DNA Sequences ChapterIII: Background on Fractals and Chaos

where

tl¡
p¡ : 

^lT- 
¡

N(r)
N: Zn¡

t:1

Hence, the information dimension, D¡, is defined as

-\'o,'oro'
¿r =,,rTo &úrl

(3.6)

(3.s)

(3.7)

A time series can be transformed into its power spectrum, using Fourier, wavelet,

or other spectral analysis techniques [Kinsgl]. The power spectrum P(/) ofthe relative fre-

quency interval / between successive notes (seminotes) can be approximated by a homo-

geneous power function with an exponent B [Kins94], i.e.

P(f) : 
"fþ

(3.8)

where c is a constant value and white noise has a B value of0, pink noise has a B value of

-1, brown noise has a B value of-2, and for black noise' B is -3.

The spectral dimension, Dp is then defined as

ou= n+3;þ (3.e)

where E is embedding Euclidean dimension. The spectral dimension analysis of a com-

plex physiological signal, such as the heart rate (ECG), brain waves (EEG), muscle waves

-3'.t -



Characterization of DNA Sequences Chapter III: Background onFractals and Chaos

(EMG), blood pressure, and gastric noises, may reveal a better understanding ofthe under-

lying process responsible for the signal.

The self-similarity, Hausdorff, information, and spectral dimensions are single

dimension. There has been an argument that a single dimension only reflects an aspect ofa

fractal object [chen97]. A multifractal spectrum is more appropriate for describing fractal

objects since it reveals more information of a fractal object [Kins94]'

3.2 MultifractalDimensions

3.2.1 Rényi Generalized Entropy and Dimension Spectrum

Knowing the limitation of the Sharuron entropy for describing the non-uniform

distribution in the fractal sets, Alfréd Rényi inhoduced the concept ofthe Rényi entropy in

1955. Rényi entropy, I1n, is a generalized form of the Shannon entropy [Rény55]' It is

defined as

where q is the moment-order. Hence, according to the Eq. 3.7, the Rényi dimension, Dn, is

given by

. N(r)

nn = )1r"clrrf -*<q<-

lN(r) \

H , "rl Iornl
D : lim ---!-= tim ' , \j=,1 , /
"q r.'-q log(r) ,l -'o q- I log(r)

(3. r0)

(3. r l)
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f (dq)

0.63 Clr¡ar

Fis.3.2. The illustration of multifractal spectrum for l single. fractal'- the Cantor set, and a multifractal object' (a) Renyl dlmensron

spectrum, (b) Mandelbrot dimension spectrum'

AsillustratedinFig.3.2,theRényidimensionisamonotonicandnonincreasing

functionofthemomentorder4.Forthecaseof4=0,theRényidimensionisequivalentto

theHausdorffdimensionD¿'andforq=1,theRényidimensionreducestoinformation

dimension D¡. Thus, the Rényi dimension covers the Hausdorff dimension' the informa-

tion dimension, and many other fractal dimensions as special cases'

For strictly self-similar fractal objects such as the cantor set, the fractal dimension

is single-valued (0.63 for cantor set) for all values ofq and is called single fractaL Ir therc

are multiple conesponding values of Rényi dimension for an object, the fractal object is

called multifractal. The multiple-value of the Rényi dimension is mainly due to the non-

uniform distribution of the multifractals. The difference between dimensions of different

order q measures the degree of inhomogeneity ofa multifractal in the sense of whether its

different subsets are visited with equal frequency. The Rényi dimension is a multifractal

(b)
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dimension measure. The spread of the Rényi dimension spectrum indicates the complexity

ofthe fractal. The multifractal dimension measure is a very useful tool for complex fractal

objects since it provides an infinite number of different (and relevant) dimensions for

describing a fractal object.

3.2.2 MandelbrotSPectrum

Another multifractal dimension measure is the Mandelbrot dimension. In single

fractal dimension measure, a power-law relationship

Dp-r (3.12)

can be obtained between the distribution ofthe probabilitiesp with a single vels covering

and the size r for a homologous fractal.

For a fractal with an inhomogenous probabilities p;, it is useful to consider a nonu-

niform set ofvels with size r1. The local power-law relationship between thepT inith vel

and the 1 follows

cf, ¡

PiQ') - r, ' (3.13)

where q (j=1,2, ..., N(r)) is a noninteger, called the Hölder exponent [Kins94]' The

Hölder exponent depends on the selected region of the measure. For a particular nonuni-

form fractal object with inhomogenous measures, the Hölder exponent varies within a lim-

ited range c, e [c',,¡", o.,,] . The value of the range represents the complexìty of

nonuniformity.

A power-law relationship exists between the number ofthe vels No(r) and a partic-

ular cr as follow
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No{r) - ,-/(")

where / (cr) is the Mandelbrot dimension at the specific cr subset'

(3.14)

(3. 1s)

(3.16)

Ithasbeenshown[HJKS86][AtsV88][Kins94]thattheMatdelbrotdimension

/ (a) and the Hölder exponent o are related \"ith the Rényi dimension D, by

an = ftuø-tonl

f (dq) = øan-G-l)Do

and

The Mandetbrot dimension /(cr), also called Dvon, provides an object with an

altemative perspective view of multifractality' An example of Mandelbrot' i'e' f (a) ver'

sus cr, is shown in Fig. 3.2. It is noticed that a single fractal object such as the Cantor set

reduces to a point in the Mandelbrot spectrum since it has single-value of fractal dimen-

sion for all values of4.

3.3 Chaos and Strange Attractors

3.3.1 Chaotic DYnamical SYstems

Mostnaturalphenomenacanbecategorizedasnonlineardynamicalsystems.Non-

linear dynamical systems can be summed up into three classes: stable, unstable' and cha-

otic [JoSm87]. Stable dynamical systems settle either into a periodic motion or a steady

state after some transient period. Unstable dynamical systems are aperiodic and

unbounded,
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However, the chaotic systems are neither stable nor unstable but appear as random

behaviour [Kins95]. They are extremely sensitive to the initial conditions and thus are

unpredictable on their long-term behaviour. On the other hand, the chaotic systems are

deterministic and their behaviour has a sense oforder and pattem with limited boundary.

As far back as in the nineteenth century the aspect of sensitivity to initial condi-

tions and long-term unpredictability in chaos had been studied [HuYo93]. The keen inter-

est in this area is largely due to the Lorenz's works in weather prediction [Lore63]. The

concept ofchaos in regard to deterministic nonlinear behaviour was fust introduced by Li

and Yorke [LiYo75]. Since then, chaos theory has dramatically developed.

x

v

Fig.3.3. The one dimensional trajectory ofthe Lorenz system fbr
o = 10, tl : 8/3, and y = 23 with the initial values at
.x(0) = 0, Y(0) = I 

' 
and z(0) = 0.
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3.3.2 StrangeAttractors

FirstletusconsidertheexampleofLorenzdynamicalsystem.Thesystemisgov-

emed by the Lorenz equations

I #,.u, = -otx(')-v(r)l

I l,ru, = -x(t)z(t)+^tx(t)-v(t)

I on"r, = x(t))'(t)-\z(t)

(3.17)

The critical parameter is T. It determines the stability of the solutions' The range of

ye|27.74,100.5]determinesthattheequationsexhibitachaoticbehaviour'Here,the

valuesoftheparametersargselectedaso=10,r]=8/3,andT=23.Theinitialvaluesare

x(0) = z(0) : 0 and y(0) = l. Figure 3.3 shows thg .r-component, y-component, and the z-

Fig, 3.4. The strange attractor of the Lorenz system displayed at low resolution'
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component ofthe system versus time f, respectively. Figure 3.4 exhibits the thfee-dimen-

sional phase space of a chaotic solution to the Lorenz system'

Foradynamicalsystem,thesetofalldependentvariablesconstitutesaPå4s¿

space, i.e, a Euclidean space whose coordinates are these variables. In the case of the

Lorenz system, the phase space is three-dimensional. Each point in this phase space repre-

sents a possible instantaneous state of the Lorenz system. A solution of the Lorenz equa-

tions is represented by a particle travelling along aîorbitof tmiectory in this phase space.

As exhibited in Figs. 3.3 and 3.4, the trajectory ofthe Lorenz system in phase space dem-

onstrates the existence of a bounded object, although the time waveform shows the ran-

dom or unpredictable behaviour. This trajectory is called strange attractor. The name of

strange attractor refers to its unusual properties of sensitivity to initial conditions. It is

noticed that a single point in the phase space determines the entire future trajectory since

such a point represents a complete set of initial conditions for the Lorenz equations. This

means that a trajectory in its phase space can never cross. However, a trajectory may inter-

sect if the projective space has fewer dimensions than the embedding dimension'

chaos and fractals are different fields. chaos deals with time evolution and its

underlying or distinguishing characteristics, while fractals deal with geometric pattems

and quantitative ways of characterizing those pattems. However, chaos and fractals are

closely intertwined and often occur together. Most chaotic attractors, for example, have a

fractal striated texture [PeJS92]. Because of their close relationships, studies in one field

may help in the other.
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Modelling a natural nonlinear chaotic phenomenon is extremely difficult due to the

chaotic features of sensitivity to initial condition and unpredictability' one way to charac-

terize the phenomenon is through multifractal analysis, using the multifractal features of

its strange attractor, ifthere is a strange attractor for this natural nonlinear chaotic system.

In order to do so, it has to be determined whether the underlying system is a deterministic

or a stochastic system and more important, to have the strange attractor. But in practice, it

is difficult to obtain enough information on all variables ofthe underlying system and usu-

ally we can only access the trajectory of one measured variable due to technical limita-

tions. This leads to the issue, to be discussed in the following section, reconstructing its

strange athactor using one component variable ofthe all variables in a chaotic system'

3.3.3 Characterization of Dynamical Systems

For a dynamical system characterization, the majority difficulty is that we usually

have only incomplete information of the system. The measured time series does not typi-

cally cover all the degrees of freedom of the system. However, a time series of a single

variable can carry the information about the dynamics of the entire multivariable system

and this allows the attractor ofthe chaotic system to be reconstructed [PCDS8o]. Several

techniques for attractor reconstruction are currently employed, such as time delay

[TakeSl], derivative coordinates [PCDS80], and singular-value decomposition [BrKi86].

The method of time delay is the most widespread approach since it is the most straightfor-

ward and the noise level is constant for each delay component.
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3.3.3,1 Time Delay Approach

Basically, delay coordinates are used to form M-dimensional state-space vectors,

X¡. That is, the reconstructed trajectory X, is given by

x : ÍXtx2x3,..xMfr (3.18)

For a single-value time series, {xpx2,x3, '..,x¡r,}, the reconstructed state of the ll?-

dimensional system at each discrete time i is

X,= |x¡ xí+r xir2t "'J¡+(rr-t)r]
i : 1,2,3, ..., N- (n - 1)t

(3.1e)

where ¡n is the embedding dimension, Nis the length of the time series, and t is called the

/ag of the time series.

According to Takens' theorem, a faithful reconstruction is guaranteed as long as

the relationship ofthe embedding dimension rn and the topological dimension n are

nt>2n (3.20)

In theory the time delay t can be chosen arbitrarily if an infinite amount ofnoise-

free data is used [Take8l]. However, the quality ofthe analysis depends on the value cho-

sen for T ifonly a limited amount ofnoisy data is available. In practice, if a value of lag is

too small, then there is little information between the successive delay coordirates and the

constructed trajectory becomes compressed along the main diagonal of the embedding

space. On the other hand, large values oft usually results in contiguous delay coordinates

becoming uncorrelated. The reconstruction is no longer representative of the tnre dynam-

ics.
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(b)

*;åti+'r¡"ø

.¿

- 
_=-J

Fig. 3.5. Lorenz attractor reconstructed from the x component trajectory'

o= 10,î=8/3,andY= 18, x(0) = z(0) = 0, v(0) = l, embedding

¿imenéion is 2 and 3000 points are used for the reconstruction'

(a) ¡ = 2,(b) I = 8, (c) r : l7,and (d) t = 100.

Figure 3,5 shows the reconstructed Lorenz attractor based on the r-variable trajec-

tory of the Lorenz system with a lag t of 2, 8, 17, and 100. As can be seen, the recon-

structed Lorerø attractor shafes the basic dynamical properties with the original Lorenz

attractor for the low lag values. For large lag valuss, the attractor starts to lose its structure.
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3,3,3,2 Mutual Information Method for Choosing Lag

Therearetwomethodsofchoosingthebestlag.lheautocorrelat¡onfunctíon

measures the linear dependence of the points in an attractor, wltile the mutual ìnformatíon

measuresthegeneraldependenceofthepoints.Therefore,itisexpeotedthatusingthe

mutual information method would give a better measure of the shift from redundancy to

inelevance [FrSw86].

The mutual information is defined as

|UI -
(3.21)

¡V - t(r¡ - l)

t Pfx,, x¡¡ r,..., r;+¡(¿¡ - r)]

. ( Plxpf¡¡1, ...r ri*.r{rn_ t¡l ¡x'oe [Ft'JFI';;:æt';;, J )] /

where P(x) is the probability of the occurTence of the time series variable x¡,

Pfx,, x¡*r, "'' x¡+,(t,t-t¡J is the joint probability of occunence of the attractor coordi-

nates X, : I x, .t¡+t x¡+2¡ "' ri+1,- r¡rì , and m is the embedding dimension' M is a

measure ofthe general statistical dependence ofthe reconstruction variables on each other'

If the coordinates are independent statistically, such as white noise, then

Plxpx¡+1, "',xi+r(nt-r¡J : P[x¡JP[x, *.] ' "P[x¡ + rlrn - t )] Q '22)

In this case, M = 0. Therefore, the mutual information of white noise is zero'

In practice, the coordinate at the first local minimum of the mutual information is

selected as the lag value. For a special case of a two-dimensional reconstruction of an

attractor in x¡ and .ri+r planes, the mutual information, Mz, is deduced as
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Fig. 3.6. The mutual information function of the (a) white noise and (b) Lorenz

attractor. The lag value conesponding to the first local minimum of

the mutual information function is selected as the best lag' For the

white noise, the value of mutual information is very small due to the

fact that there is no correlation among the points. For Lorenz attractor,

a lag of 17 at the first local minimum mutual information is chosen'
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(3.23)

wherey'trcandNl.arethenumberofvelsalongarowandacolumn,respectively.P(7)and

P(fr)aretheprobabilityoftheoccurrenceoftheattractorincolumnjandrow&respec-

tive|y.P(j,k)isthejointprobabilityoftheattractorinthecolumnjandrowÈvel'Therela-

tionship of M2 versus, using Lorenz attractor as an example, is plotted in Fig' 3'6' As

shown in the figure, the best lag is selected as the first minimum of M2'

It is noted that, as can be seen in Fig. 3.6, the mutual information ofthe stochastic

system such as white noise is significantly small and varies in a very trivial range, indicat-

ing there is no conelation in general among these points.

3.3.3,3 False Nearest Neighbourhood Method for Choosing

Embedding Dimension

There are mainly two methods to determine the dimensionality of a dynamical sys-

tem. Conelation dimension analysis is the most often used method. The usual problem

associated with this method is that often the dimensionality ofa system is too high to find

a clear indication of a finite dimension.

Another method of determining the dimensionality of a system proposed by Ken-

nel et al. [KeBA92] is to estimate the percentage of the false nearest neíghåours. The main

idea is that for a deterministic system, the closed points that are true neighbours in the n-

dimensional embedding space stay close in the ¡r+l embedding dimension space. on the

other hand, the points may appear as close neighbours by the projection effects in the n-

N. N'

ur= Z )r1;,t¡tog
j =l k=l

t P(i,k) 1

Lp-t"¡lpøl
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dimension space, if r¡ is too small These points are mapped randomly onto the entire

attractor in the ,l+ I dimensions space.

Based on this idea, for a point i ofan attractor reconstructed from the time series

¡ in n dimensions, the Euclidean distance, nl,1i, r) , between the point and its Éh nearest

--l
neighbour, .r)') is given bY

nl¡i,,) =

n-lt (r\ -2
lx,*¡rr-xji¡rl (3.24)

where t is the lag.

In r¡+l dimensions, the Euclidean distance is

nl *,{i, r) = nl¡i, r) + ¡*,,,,., -,(,!,,)'

Thus, the first Kennel's criterion for false neighbours is given by

L nÍt¡, 'l J R;,(i, r)
(3.26)

where R,o¡ is a th¡eshold for the criterion. The value of À¡r¡ is selected experimentally by

checking the sensitivity on different values of R,o¡' In general, it is enough to consider the

nearest neighbour, ì.e. r= l.

This criterion by itself is not sufrcient for judgment because it is unnecessarily

-^A

close to x-,, even though r!') is the nearest neighbour of ir. So the additional criterion,

which discards those nearest neighbours located on the boundary of the attractor, given by

Kennel ef ø/. is

(3.2s)
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R,(ì,r) , A.-, (3.21)
RÀ

where A,o¡is a th¡eshold for the second criterion and rR'a is the sta¡rdard deviation of the

data and represents the attractor size' Therefore' a nearest neighbour is declared as false if

either criterion test fails.

Figure3.TshowsthepercentageofcalculatedfalsenearestneighboursforLorenz

atlractor wilh A,o¡:2 and R¡o¡from 0'5 to 30' As can be seen' the percentage of nearest

neighboursfallstozerowhentheembeddingdimensionsarenotlessthanth¡ee,indicating

thattheLorenzattractorhasalowembeddingdimensionstructure.Thismethodcanalso

beusedtodistinguishbetweendeterministicchaosandastochasticsystem'Asshownin

Fig. 3.8, the ratio offalse nearest neighbours does not drop to zero for a white noise as the

embedding dimension increases. This suggests that white noise has a higher dimensional

structure and, therefore, is not a low-dimensional deterministic chaotic system'

3.3.3,4 Distinguishing Stochastic System From Deterministic Chaos

Itisnoticedthatdistinguishingdeterministicchaosfromnoiseisalsoanimportant

issue. A good algorithm is able not only to characterize chaotic systems accurately but to

identifubetweennoiseandchaos.Inthissection,afurtherutilityofourapproachisestab-

lished by comparing the performance of the approach on white noise with deterministic

chaos,
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Fig. 3.7. The percentage of false nearest neighbourhoods for the Lorenz

attraitor. The values on the curves represent the different Aro¡'
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Fig. 3.8. The percentage of false nearest neighbourhoods for white noise'

The value on each curve represents the rRrol value.
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As shown in Fig. 3.6 (a), the values of the mutual information of the white noise

are small in comparison to a deterministic chaos, Lorenz system (Fig. 3'6 (b)), indicating

that there is no dependency between the points in the white noise system. Further charac-

terization of white noise, as shown in Fig. 3.8, using false nearest neighbourhood method

exhibits that the ratio of false nearest neighbours do not fall to zero as the embedding

dimension increases. This suggests that white noise has a higher dimensional structure.

The results also demonstrate that the method ofthe false nearest neighbourhood is able to

distinguish high-dimensional systems from low-dimensional chaos. In general, a high-

dimensional system is considered as random noise.

ThereconstructedwhitenoiseisshowninFig.3.g.Ascanbeseen,ahigh-dimen-

sional noise distributes in the entire phase space without any boundary since there is no

correlation between the points.

Fig. 3.9. The reconstructed white noise system- with a lag of I for (a) and l0 for (b).
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Summary

In this chapter, the background knowledge about fractal and chaos are provided.

The algorithms of fractal and multifractal analysis are described. Strange attractors and

their reconstruction are reviewed. The methods for determining appropriated embedding

dimension and lag for reconstruction are discussed. Our approach of distinguishing

between the high-dimensional noise and the low-dimensional deterministic chaos is fur-

ther explained, In the next chapter, we will present the methods and experimental design

for characterizing DNA sequences
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Cmprrn IV
Csan¡crnRrzATroN oF DNA SnqunNcrs

Fractals are used mainly to model the highly nonstationary signals. In general,

fractal-dimension calculations result in the signal's topology dimension, thus the fractal

modelling does not exhibit much advantage. Howeve¡ this approach gives good perfor-

mance for nonstationary signals. Signals can be considered as measures. If the measure

has self-similarity, fractal dimensions can be applied. This chapter introduces a novel

approach for compositional complexíty measure of DNA sequences, which has been

developed for this thesis. The approach is based on the fact that the outlines of most natu-

ral objects are multifractals. In this thesis, a DNA sequence will be considered as a one-

dimensional strange attractor. Hence, the measure ofthe complexity ofDNA sequences is

not on a point by point basis, but, instead to consider the DNA sequence as a whole object.

Before applying multiÍìactal analysis to DNA sequences, the problems ofhow to map the

DNA alphabet sequences to numerical sequences and how to define the measure for points

of a numerical sequence which are used in the multifractal analysis for strange attractor

have to be solved.

4,1 Numerical Mapping of DNA Sequences

For most analysis methods applied to DNA sequences, the first problem is how to

map DNA alphabet sequences into numerical sequences, Cunently, the DNA walk repre-

sentation, or so called Lévy walk model [PBGS92], is mainly used in the DNA complexity

analysis. The Lévy walk model, which maps a DNA alphabet sequence to a one-dimen-

sional numerical sequence, defined in [PBGS92] is that the walker steps "down" when a
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purine (A or G) occurs at position i, while the walker steps "up" when a pyrimidine (C or

T)occursatpositionj.Two.dimensionalLévywalkmodelshavebeenalsoreported

lzhKig8l.

The disadvantage of this model is that the artificial relationships between purine

and pyrimidine are introduced by walking "up" a step for a purine and "down' a step for a

pyrimidine at position i. Therefore, an analysis of the resulting numerical DNA sequence

may have interference due to the arlificial information'

with the success ofthe HGB 96% ofthe entire human genome has been sequenced

and published. within the human genome, over twenty six thousand genes, or more than

65% of the entire human genes, have been annotated before the early part of in 2001'

Therefore, it is possible to estimate the human codon usage using these large data sets. An

example of human codon usage, which is a statistical result from a data set of approxi-

mately 12.8 million codons, available at web site (ref. [cuTG0l]), is shown as Table 2.1

in Section 2.2.1 and will be used through this thesis'

To use multifractal techniques to measure the DNA alphabet sequence, we have

first to map a DNA alphabet sequence into a numerical series. In order to do so, a codon, a

three-base sequence, is considered to be the smallest unit in the DNA sequence instead of

a base pair. Each point in the numerical sequence represents a codon in the DNA symbolic

sequence. A measure of each point is assigned based on the statistical usage of the cone-

sponding codon in the DNA alphabet sequence. Thus, a relationship between the values of

the points are established by the statistical codon usage of the organism.
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Since a DNA sequence represents three frames' a numerical mapping of the DNA

sequencewillresultinthreeDNAnumericalseries.onlyoneseriesofacodingDNA

sequence represents the actual amino acid sequence'

4.2 The Size of a Point of an Object in Multifractal Analysis

As discussed in Section 3.1, a particular measure is used for each fractal dimen-

sion.Forexample,themeasureoftheHausdorffdimensionisthenumberofvelsNlr)'

which cover the entire fractal object, and the Shannon entropy ¡/s is the measure for the

information dimension. The fractal dimensions actually reflect the rate of change of the

measures as the vel sizes are changed [Chen97]'

Prior to applying multifractal analysis to an object' there are two basic questions

that have to be solved. How to measure a "point" and how to determine the size of a

"point" ofa fractal object. In general, a "point" in a n¡-dimensional space is defined as the

smallest and undividable unit in the rn-dimensional space. chen [chen9?] proposed that

the measure of a pixel, the smallest unit of an image, is the amount of the grey level of the

pixel.AccordingtothetheoryoftheRényidimension,itis,therefore'deducedbyChen

thatthesizeofapixelinthefractalanalysisistheinverseoftheimagesize.Thelimitation

of this model is that it is suitable only for the square images'

Therefore,weextendChen'sideatoarn-dimensionalfractalobject'Considera

"point" ofa fractal object as a uniformed unit block ofthe m-dimension The value ofthe

"point" can be represented by the amount of "mass" ofthe unit block or the density of the

block in the rn-dimensional space. Thus, in order to apply multifractal analysis to measure
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afractalobject,ameasureisassignedtoeach..point''inthen¡.dimensioîa|space,¡,e',lhe

measure ofa point of a fractal obiect is the value of the poínt ín the m-dimensional space'

(a)

r= |
N=l

r= ll2 r= ll3
lú= 9

(å)

r= |
N=l

r= l/2
N=8

r= ll3
N=27

Fig. 4. 1. The illustration of fractal dimensions of a plane and a cube'
" (a) The dimension ofa plane is 2. (å) The dimension ofa

cube is 3.

To determine the size of a n¡-dimensional point, let's consider the uniformed regu-

lar geometric objects. According to the definition of the fractal dimension (Fig 4'l)' we

know that the dimension values of a plane and a cube are 2 and 3, respectively. Ifconsider-

ing a uniformed cube in the th¡ee-dimensional space, each point in the cube has the same

value. when applying the multifractal measure to the uniformed cube, the values of the

Rényi dimension should be 3 no matter what the value of q is.
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Suppose the value of each point in a uniformed cube, which has a size of

srxs2xs3, is C. The measure of each point then is denoted by n¡: C A:1,2, ...,

sr xs2xs3). ThesumNof ryis sr xsrxs3xC.If we define the size of eachpointisr,

the total number of non-overlapping vels ¡r'(,") for covering the object is s, x s, x s, .

Then based on the defirition of the Rényi dimension (Eq. (3.11)), the estimation ofDn for

the object can be obtained by

s, xs. xr,
r." 

' t 'rlln
L¿ \1V /D : ' ¡=tq q-l logr

Therefore, r is represented by

.r"'ï"(?)'
Dn@ - t)

/=exp

(4.t)

(4.2)

Since Dø : 3, N = s, x s, x s, x C , and n; = C, thus

(4.3)

Now we consider the case of an object of s, x s, uniformed plane in the three-

dimensional space. Only the points on the plane have the value C and others have the

value ofzero. Itisnoted that Dq = 2, ¡y': slxs2x C,andn¡: C in this case. In the

same way as discussed above, the size ofeach point is given by
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þ,1!)"'

If we extend to the ,r-dimensional space, similarly we can obtain that

where s¿, (k: 1,2, ..., rr), is the topological size of the object along the k-th axis.

As in the special cases, the size ofa point in the three-dimensional space is

/ I \r/3t = l.","r",,1

'*"i'(i)'l
Dn@-t) 

I

)

(4.4)

/ \q,

_ ", 
*", 

"... 
tr.l . lllos ) l-l Iezrlr¡llj=' l.II'*l I' *=r ' l= ¡lll''"'

m(q- t) 
| 

o- ''"*'

)

(4.s)

(4.6)

where s,¿, s2, sj are the topological size ofthe fractal object in the three-dimensional space.

In a two-dimensional space, the size ofa point ofa fractal object is given by

I (4.7)'¿ 
^Át"'

where s¡ and s2 are the size of a two-dimensional object. As a special case of a square

image,s¡:s2.Hence,thesizeofapixelisr, = I , which is the case discussed by Chen

[Chen97]. For an one-dimensional line, the size ofa point in the line is given by
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(4.8)

where s is the length ofthe line object.

Eq. (a,8) suggests that the size ofa point in a nunterícal series or a seEtence is the

ínverse of the length of the series in thefi'actal analysis.

4.3 Multifractal Model of Numerical Series

First for a numerical series, we defrne that the length ofthe series is s if the series

is composed ofs points. As described in Chapter 3, the scaling issue, or in other words,

vels and how to choose the vel size, is the critical issue when applying multifractal mea-

sures. Based on the discussion in Section 4.1 and 4.2, a measure of a point, in an one-

dimensional series is ¡elated to the value of the point, Le.

n., = c., j = 1,2' ...' s (4.e)

where 11 is the measure value, or "mass" ofthej-th point, C; is the value ofthej-th point,

and s is the length ofthe series. Therefore, the total "mass" ofthe fractal object is

I
's

N: ZC¡ (4. l0)

It has been discussed that for a numerical series with a lenglh ofs, the size ofeach

point in the series is

I
s
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Based on this, the multifractal measures ofthe numerical series are approximately

as follows.

4,3.1 Approximations of the Multifractal Measures on the Numerical Series

According to Eq. (3.1 l), an estimation of the Rényi dimension, ón, fo, u nu-".i-

cal series is given by

roe-i, c,n - roe[È, 
",)'

(4.12)

An estimation of the Hölder exponent cîo for u numerical series, based on Eq.

(3.1s), is

(4.l3)

;"=J,,t q_l .l
log -

s

an:
.,)]tåclftog c, - tog,L

J

,= I

('*i)i,";

From Eq. (3.16), an approximation of the Mandelbrot dimension of a numerical

series, /(cr), is

('"'l)i.;

-i,.ít.r.rl - j,.Í.r[å, 
"í)

"f 
(d) = (4.14)
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4.3.2 Multifractal Measures on the Single Fractal Numerical Series

To exam the model described above, let us calculate the single fractal cantor set

with our model. As explained in Chapter 3, the Cantor set is a single fractal and the theo-

retical value of it is log(2)/log(3). First, we construct a numerical series which has the

properties ofthe cantor set. An example ofthe cantor numerical series looks like this

888000888000000000888000888'.. "'

The series is composed of two types ofpoints with values of 0 and 8, respectively.

For a cantor numerical series of above example with a length ofM, as described in

Fig. 3.1, there are 2k segments and each segment has a size ofn¡ after,lr iterations. Hence,

the total "mass" of the series is nt '2k ' 8 and the length of the series is M = t ' 3¡ So

the estimated Rényi dimension is

* ,orÈ,(;fuI øcl^zr(fi)') 
_bs(m,k)

"':1urrr.reÀ = A').ffi -;t@Ã (4.1s)

(4.16)

Because we can not iterate the process infinitely for a finite numerical series, the

segments have to contain at least one point or rn 2 I , which is the maximum possible

number ofiterations. Therefore, for m = l, the final estimated Rényi dimension is

Dn=

which equals to the theoretical value ofthe Cantor set,
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Fig. 4.2. The Rényi dimension spectrum of the Cantor numerical series'

Fig. 4.3. The Mandelbrot spectrum of the Cantor numerical series'
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The estimations of the Rényi dimension spectrum and the Mandelbrot spectn¡m

areshowninFig'4.2and4.3,respectively.TheCantornumericalseriesusedforestimat.

ingthespectracontains2000points.Theexperimentalestimationsofthemultifractal

dimensions are slightly smaller than the theoretical value (about 0'6309) because the pop-

ulationoitheexperimentalseriesisnotlongenough.SinceboththeMandelbrotdimen.

sion and the Hölder exponent are constant, the Mandelbrot spectrum of the Cantor

numerical series is reduced to a single point'

4,3,3 Multifractal Measures on the Multifractal Numerical Series

Now we apply our model to the Lorenz system' As discussed in Chapter 3' the

Lorenz system is a deterministic chaotic system and a multifractal Figures 4'4 and 4'5

showtheRényidimensionspectraandtheMandelbrotspectraforthel-variabletrajectory

ofthe Lorenz system, respectively. It is noted that the multifractal measufes shown in Fig'

4.4 and 4.5 are not the multifractal measure of the strange attractor of the Lorenz system

but rather the measures of the trajectory for the x-variable time series shown Fig' 3.3. To

measufe the multifractality of the whole Lorenz system, we have to calculate its strange

attractor in the three-dimensional space. The results of multifractal measure of the whole

Lorenz system are shown in Figs. 4'6 and 4.7 .

AscanbeseeninFigs.4'4'4'5,4.6,and4.T,althoughtheyarecompletelydiffer-

ent objects (ref. Figs. 3.3 and 3.4), the multifractal spectra of the x-variable trajectory of

the Lorenz system and the Lorenz strange attractor have a common multifractality struc-

ture. The differences of the multifractal dimension values of them reflect the space struc-

ture difference since the former is a one-dimensional fractal object and the latter is a three-
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dimensional object This result further supports the discussion in Section 3 3'3 that a time

series ofa single variable carries the information about the dynamics of the entire multi-

variablesystemandtherefore'theattractorofthesystemcanbereconstn¡ctedbasedonly

on the information provided by a single variable measure'

Fig. 4.4. The Rényi dimension spectrum of the x-variable trajectory of
the Lorenz system.
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õffi0.e¡ 1 l.o5 I'l

Fig. 4.5. The Mandelbrot spectrum of the x-variable trajectory of
the Lorenz system.

+o -ts -lo -s o 6 lo 15 ãt
q

Fig. 4.6. The Rényi dimension spectrum of the Lorenz system'

The calculation is based on 25,000 points ofthe system'
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4.4

Fig. 4.7. The Mandelbrot spectrum of the Lorenz system'

The calculation is based on 25,000 points ofthe
sYstem.

Local Rényi Dimensions of the DNA Signals

Inpractice,asignaloratimeseriescanbecomposedofseveralhighlyself-similar

and nonself-similar regions. A multifractal measure of the series as a whole may not

reveal the location information of these regions. For example, a DNA signal may contain

bothcodingandnon.codingregions.Inmanycases,weareinterestedinfindingtheloca-

tions ofthe coding regions, which have a higher self-similarity structure than the non-cod-

ing regions due to the codon usage. Therefore, local fractal dimensions may be a more

realistic way in practice. Local dimension refers to the fact that the values of dimension

are calculated based on the limited local data. A value ofthe fractal dimension is assigned

to a point in the signal.
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our approach of local fractal dimension analysis first specifies a point of interest

in a DNA signal or a DNA numerical sequence. A slìding window then masks the segment

ofthe data sequence with the point located at a specific position ofthe segment. A dimen-

sion calculation is carried out on the masked data and the resulting value is assigned to the

point. The computation is repeated for the other points by moving the window throughout

th9 sequence.

4.4.1 Windorv Size

The selection ofthe sliding window size is a critical issue. Ifit is too large, the esti-

mated local dimensions may be interfered with other fractals in the signal. Another prob-

lem associated with a large window size is that a coding region which has a size less than

the window size may not be distinguished from the non-coding background. However a

smaller window size may result in a miscalculation due to the insufficient population of

data for measuring.

As discussed in Chapter 2, the genomic DNA sequences of higher organisms are

very complicated. The genes are scattered by large intergenic sequences and the coding

regions of a gene are further separated by the large non-coding regions. The lengfh of a

gene or a coding region varies dramatically. To deal with that, different resolutions associ-

ated with different sliding window sizes a¡e applied to the genomic DNA sequences. In

practice, a window size of 122 bp is used for locating coding regions within a gene and a

size between 200 and 300 bp is used for locating the genes within a genomic DNA

sequence.
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4.4.2 Sliding SteP

Another key factor oflocal dimension analysis is to determine the sliding step' The

sliding step is the length of the sliding window moved each time and should be in multi-

ples ofthree since a codon has a size ofthree bp A large sliding step may result in missing

asmallexon.Inpractice,wechoosealengthofninebpasthesizeoftheslidingstep'

4.5 SummarY

This chapter further describes the multifractal measures of the DNA sequences' A

translation method which maps the DNA symbolic sequences into the DNA signals is dis-

cussed. The measure ofa point in a nr-dimensional fractal object is defined and the size of

a point in a ¡n-dimensional fractal object is determined for multifractal analysis. Based on

this, a multifractal analysis model for numerical series is proposed' Some examples of sin-

gle fractal and multifractal are calculated with this model. In the next chapte¡ the human

DNA sequences are analyzed, using this model.
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Cn¡.prpn V
EXPBNTN¡BNT DESIGN

ThischapterprovidestheexperimentaldesignforthecharacterizationoftheDNA

sequences through multifractal analysis. As modeled in Chapter 4' the analysis of the

DNA sequences includes four parts, e.g. numerical mapping' chaotic property' feature

extraction, and ,.on-line" analysis. The specific design and detailed parameter setting are

presented in the following sections.

5.1 The Experimental DNA Sequences

TwotypesofDNAsequencesæeusedinthisthesis.GeneratedDNAsequences

including the random DNA sequences and the cantor DNA sequences serve as standafd

sequences for system testing. The human DNA sequences including genomic' cDNA'

exon and intron sequences are selected from GenBank'

5,1.1 The Generated Random and Cantor DNA Sequences

The random DNA sequences are generated from a uniform white noise source.

Statistically, the four letters, A, ! C, and G have the same occurrence of25% in the ¡esult-

ing random sequence. In practice, a random DNA sequence with fofy thousand bp long is

used for testing.

The generated Cantor DNA sequence has a property of the Cantor set (ref' Fig'

3.1). The symbolic cantor DNA sequence contains only two characters. The points

located at the line segments are filled with one character. The points located where no line

segment appears are filled with the other cha¡acter. A generated Cantor DNA sequence
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looksliks:Aú4,r{CcCAMcCcccccCcAAAcccAAA.Itisnotedthatthesizeofa

generated Cantor DNA sequence should be a multiple of three since the size of a 
..point',,

which represents a codon, is three bp long' An example of the generated Cantor DNA

sequenceisshowninAppendixA.Forthethesisexperiments,ageneratedCantorDNA

sequence with a length of20 kb was used'

5.1.2 The Human DNA Sequences

For real human sequences' genomic DNA, oDNA, exon, intron' flank region se-

quences have been obtained from Genllank, and are used in this thesis. Briefly' ph-20' a hu-

man genomic DNA sequence, is located on human ch¡omosome 3 and contains the HYAL2

gene and the exon I of the HYALI gene. HUMHBB, a human genomic DNA sequence' is

located on human chromosome I I and contains a cluster of human p-globin genes includ-

ing e, Gy, 41, ô, and p globin genes. A pseudogene B-1 is located between the Al and ô

genes. The five B-tike globin genes encode the p chain ofthe hemoglobin. The human NEB

gene, located at chromosome 2, encodes a muscle protein involved in maintaining the struc-

tural integrity ofsarcomeres and the membrance system associated with the myofibrils' The

human HD gene, located at ch,romosome 4, plays a role in microtubule-mediated transpoft

or vesicle function. The HYALI and HYAL2 genes, both related with the hyaluronóglu-

cosaminidase activity, are located at ChLromosome 3. The cDNA sequences of the HYALI'

HYAL2, Hl9' NEB, and HD genes are used for the experiments. The 5' end and the 3, end

ofthe non-coding regions ofthe oDNA were removed prior to testing. The exon and intron

sequences of the HYALI ancl HYAL2 genes are isolated and used as test samples. Approx'

imately l-3 kb flank regions of the HYALI and HYAL2 genes, including 5' flank and 3'
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flank regions, are selected for this thesis. The detail information of these sequences is

shown in Table 5.1 .

Table 5.1. The information of the experimental human DNA sequence

Sequence
Name

GenBank
\ccess Number

Length
(bp)

Description

ph-20

HUMHBB

rryALI

HYAL2

NEB

HD

H19

FIYALI-5flank

HYALI -exonl

FIYALI-intronl

HYAL2-5flank

IIYAL2-3flank

IIYAL2-exonl

IIYAL2-exon3

IIYAL2-intronl

HYAL2-intron2

AC0024s5

u0l3l7

u96078

u09577

NM_004543

NM_0021I I

B,C004532

29314

60000

1308

1346

20839

13672

1001

3960

900

979

t297

2100

921

4ll
520

416

c€nomic DNA, containing the HYAL2
gene and the exon I of the HYALI gene

Genomic DNA, containing the cluster of
the five p-globin gene and a pseudogene

CDNA, in practice only the coding regions

ofthe CDNA are used

cDNA, in practice only the coding regions

ofthe cDNA are used

cDNA, only the coding regions ofthe CDNA
are used

cDNA, only the coding regions ofthe cDNA
are used

cDNA, non-protein coding gene

A part sequence ofph-20, the sequence is

located at the 5' flank region ofthe HYALI,

The first exon ofthe HYALI and a partial

sequence ofph-20

The first intron ofthe HYALI

A partial sequence ofph-20 and located at

the 5'flank region ofthe HYAL2

Located at the 3' flank region ofthe HYAL2

The first exon oflhe HYAL2 gene

The third exon ofthe HYAL2 gene

The 6rst intron ofthe HYAL2 gene

The second intron ofthe HYAL2 gene
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5,2 Numerical Mapping of the DNA Symbolic Sequences

Prior to applying multifractal analysis, the DNA symbolic sequences have to be

translated to numerical series or DNA signals. As stated in Section 4'1, the numerical

mapping is based on the statistical codon usage of each codon in the DNA sequences ln

this thesis, the human codon usage is used to assign the values to the 64 individual codons

since we will analyze only human DNA sequences. A window with the size of three bp

covers a segment of the DNA symbolic sequence A value, according to the human codon

usage,isassignedtotheth¡ee-basesequencemaskedbythewindowThewindowshifts

one base at a time along the entire DNA symbolic sequence, thus producing a trajectory'

ThistrajectoryiscalledtheDNAsigrral.AsdiscussedinChapter2and4,aDNA

sequence can yield thfee frames due to the fact that th¡ee bases represent a codon, only

one out ofthe th¡ee frames represents the actual amino acid sequence. Therefore, a DNA

signal results in three translated frame signals. The numerical mapping machinery is illus-

trated as Fig. 5. l.

DNA Sequence

Signal of Frame I

Signal of Frame 2

Signal of Frame 3

DNA Signal

5' ---CTAACCCCCCCCTAGCCCCCCTGACCCCC---3'
I ll ll ll ll ll ll ll ll I

at a2 a3 a4 aS a6 a7 a8 a9

rltlllllllllllllll
bl b2 b3 b4 b5 be br b8 b9

I ll ll ll ll ll ll ll ll I

qc2cac4c5c6CTcBca

a 1b p ¡a2b 2c2a3b'¡caa4b4c4a5b5c5 a 6b 6c 6a7b 7c7agb3caa9b9c9

Fis. 5.1, An illustration of numerical mapping of the DNA sequence'- ar..a9, b1...b9, and c1...c9 are thè values for the specific codons'
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An amplification and quantization of the raw translated numerical series is subse-

quently carried out since the values of the raw translated numerical series, which represent

the 64 codons, are much less than l. The amplification ofthe signals does not change the

results because the fractal dimensions measure the complexity ofthe object rather than the

values ofthe points in the object, In addition, fractal modelling achieves input data normal-

ization automatically. As a matter offact, there are theoretical lower and upper bounds for

the values ofthe Rényi dimension regardless ofthe actual amplitude spread ofthe original

signal. In fact, the Rényi dimension of a one-dimensional signal has a lower bound of 1.0

and an upper bound of2.0. However, the experimental results may exceed the bound slight-

ly because of the numerical artifacts introduced. The resulting DNA signals are used for

multifractal measures analysis and chaotic characterization.

5.3 Chaotic Characterization of the DNA Sequences

The methods of the mutual information and the false nearest neighborhood are

used for characterizing the chaotic properties ofthe DNA sequences. The white noise ran-

dom DNA sequence, as a higher dimensional noise, and the deterministic chaotic system,

Lorenz system, are served as standards for characterization. The DNA sequences are fust

mapped into the corresponding DNA signals. The DNA signals are subsequently separated

into their frame signals. Both the DNA signals and the frame signals are used for analysis.

The mutual information is used to measure the general dependency of the signals

and to choose the best lag value for further characterization.

The method ofthe false nearest neighborhood is used to distinguish a low-dimen-

sional dynamical chaos from the high-dimensional noise systems and subsequently to
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indicate the best embedding dimension value for a deterministic chaotic system. In prac-

tice, the A,o¡ value is set up to 2 for all experiments.

5.4 Feature Extraction of the DNA Signals

The feature extraction of the DNA signals is achieved by using multifractal mea-

sures, Rényi and Mandelbrot dimension spectra, for distinguishing the coding regions

from the non-coding regions ofa DNA signal. Prior to application to multifractal analysis,

the DNA symbolic sequences are translated into the corresponding numerical sequences,

or DNA signals. The frame signals are then isolated from the DNA signals. There are

three frame signals related to a DNA signal since a codon is composed of three bases ofa

DNA sequence. Only one frame signal of a coding DNA sequence associates with the

actual protein sequence.

5.5 Local Fractal Dimension Analysis

The local fractal dimension analysis is performed by calculating the local Rényi

dimension of the trajectory ofthe DNA signals. To reduce computational cost, we calcu-

late the local Rényi dimension with a moment order of q = -19 since it gives the maximal

differences between coding and non-coding signals.

Various sliding windows are used for different resolutions. A higher resolution of

a DNA sequence is given with a smaller window size and therefore, provides more

detailed information about the DNA sequence. However, more enor may be introduced

due to the smaller population used within a smaller window size. In practice, a sliding

window size of400 bp ofthe DNA signal, e.g. 133 points long ofthe frame signal, is used
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for a gene along a large genomic DNA sequence To distinguish the coding regions from

the non-coding regions within a gene' a window size of 122 bp' or 60 points long in the

frame signal, is aPPlied.

5.6 SummarY

Theexperimentsperformedforthisthesishavebeendescribedinthischapter.The

experimental samples including the human DNA sequences and the generated DNA

sequences, such as random sequence and Cantor sequence, are discussed. The main con-

frguration parameters are provided. In the next chapter, the experiments are conducted and

results are presented along with the discussion.
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CHA,PTBN VI
ExpBnrnlBNTAL RESULTS AND DISCUSSIoN

Based on the theories and the experimental design discussed in Chapters 3' 4' and

5, the experimental work ofthe characterization ofthe DNA sequences is accordingly con-

ducted in this chapter. First the chaotic properties of the DNA sequences are addressed'

section 6.2 focuses on the multifractality ofthe DNA sequences, using Rényi dimension

andMandelbrotdimensionspectra'lnSection6'3,localdimensionanalysisissubse-

quently discussed according to the feature extraction of the multifractality of a DNA

sequence to reveal local information along the DNA sequence'

6.1 Chaotic Property ofthe DNA Sequences

6.1.1 Mutual Information Analysis of the DNA Sequences

As described in Chapter 5, a random DNA sequence, which follows a uniform

white noise distribution, and the DNA sequences of human NEB and HD genes are first

translated into the conesponding DNA signals and frame signals. Mutual information

analysis is subsequently applied to the resulting signals' The results are plotted as Figs'

6.1,6.2, and 6.3.

The results, shown in Fig' 6.1, show that there is no dependence between the points

along the DNA signal ofthe random sequence or the derived frame signals, indicating that

there is no correlation between the parts of the random DNA sequence. However, as

shown in Fig. 6.2, the high dependency within a range of three bps in the DNA signals of

the NEB and HD genes indicates that there is a strong conelation between the bases which
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havethedistanceswithinthreebpsintheDNAsequences'Th¡eeisthesizeofacodon.

This suggests that there are strong conelations between the bases within a codon'

ooffis 16 21 24 27

Fie. 6. l. The mutrlal information analysis of the DNA signal and frame
' : - - .i*ui. ãssociated to a randorir generated white noise DNA

seluence with a size of 20 kb

Fig. 6.2. The mutual information analysis of the human HD gene cDNA
sequence.

rì¡---:':r.= -5 ::-a.-.: =.:. 
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1

o.6

o.4

o,2

Fig. 6.3. The mutual information analysis of the human NEB gene oDNA
sequence.

Fig. 6.4. The mutual information analysis ofx-variable trajectory ofthe
Lorenz system. The points of frame series is the collection of
points with a interval of two points in the x-variable time series.

las
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Theresultsofthemutualinformationanalysisalsoshowthatthereislittledepen-

dency among the amino acids, suggesting that the DNA sequence as a whole has a statisti-

cal property similar as that of the white noise'

On the contrary the result of the mutual information analysis ofthe x-component

timeseries,showninFig.6'4,exhibitsthatthepointsalongthetimeseriesarehighlycor-

related. The points of the frame signal are the collection ofthe points which have an inter-

val of two bps in the associated x-variable time series of the Lorenz system' As can be

seen, the time series signal and the frame signals have a similar dependency as the lag

value increased.

6.1.2 Fatse Nearest Neighbourhood Analysis of the DNA sequences

The percentage of the false nearest neighbours of the human HD and NEB gene

CDNAsequenceswerecalculated.TheexperimentalresultsareexhibitedinFig.6.5and

6.6. As can be seen, the percentage of the false nearest neighbours do not drop below 30%

with an increasing of the embedding dimension for both oDNA sequences'

In Section 3.3.3.4, we described that a deterministic chaotic system' such as

Lorenz system, has a low-dimensional structure' Hence, the percentage ofthe false nearest

neighbours for the Lorenz system will drop to zero as the embedding dimension increases

(Fig 3.7). However, for a white noise, the percentage ofthe false nearest neighbours does

not drop to zero because it has a high-dimensional structure (Fig' 3'8)' The results' shown

in Figs. 6.5 and 6.6, strongly suggsst that like white noise, the DNA sequences have a

high-dimensional structure.
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Enìbedd¡ng Dimension

Fig. 6.5. The false nearest neighborhood analysis of the human HD gene

oDNA sequence.

Fig. 6.6. The false nearest neighbourhood analysis ofthe human NEB gene

cDNA sequence.

Ernbedding Dimension
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The results presented in the last two sections indicate that the DNA sequences

exhibit chaos with high-dimensional properties. It should be noted, however, that no

attempt has been made in this thesis to separate the chaotic from the noisy nature ofDNA

or its noisy representation. The advantage of this approach is, howeve¡ that the structure

ofDNA is studied without any assumptions about either.its chaotic or noisy nature.

6.2 Multifractal Dimension Analysis of the DNA Sequences

6.2,1 Rényi Dimension Spectrum of the DNA Sequences

As stated in the previous chapters, a coding DNA sequence stands for th¡ee frames

and only one frame, ORF, represents the actual amino acid sequence. To examine the mul-

tifractalities of the DNA sequences with our model, three frame signals were generated

from the DNA numerical sequences, the random DNA sequence and the Cantor DNA

sequence are first tested. The results are plotted in Figs. 6.7 and 6.8. Shown in Fig. 6.7, the

three frame signals of the random DNA sequence have a similar structures of the Rényi

dimension spectra, indicating that the th¡ee frames ofthe random DNA sequence have the

sìmilal multifractality. on the other hand, the Rényi dimension spectra in Fig. 6.g indicate

'that 
Frame I of the cantor dna sequence is almost a strict single fractal whose value is

very close to the theoretical value oflog2/log3. on the other hand, Frames 2 and 3 exhibit

a slight multifi'actality (spread) due to the shift ofone and two bases, respectively, that ren-

ders the sequence non-Cantorian.

Figu'es 6.9, 6. 10, and 6. I I show the strong differences of Rényi dimension spectra

between the oRFs and the other reacling frames. The differences are mainly due to the bias

codon usage in the oRFs but not in the other frames. The conclusion is further supported
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1,2

Dq

1.1

-20 -15 -10 -5 0 5 10 15 20

Fig. 6.7. The Rényi dimension spectra ofthe random DNA sequence. The
solid, dashed, and dot-dash lines represent the three frames,
respectively.

Dq
_ _ _ I,3i_2_

Frame 3

Frame I

q
'--25 --20 -1s -10 -5 0 s 10 15 20 25

Fig. 6.8. The Rényi dimension spectra ofthe Cantor.DNA sequence.
The solid, dashed. and ilotdash Iines represent the tli.ee
frames, respectively.

q
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Fig. 6.9. The Rényi dimension spectra of the HYAL2 cDNA coding sequence'
" The solid cu.ve reptesents the ORF, the dashed and the dot-dash

curves denote the other two reading frames'

Fig.6.l0. The Rényi dimension spectra of the first exon of the HYALl-gene.- The soliå curve represeits the ORF, the dashed and the dot-dash
curves denote the other frames.
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D.

-$

\
\\\

i
ti

-.=*< t

'- -, g;E_EEìF. g-ä

q
-15 10

Fig. 6.1 I . The Rényi dimension spectra of the thi¡d exon of the IryAL2 gene.
The solid curve represents the ORF, the dashed and the dot-dash
curves denote the other frames.

Fig. 6.12. The Rényi dimension spectra ofthe first intron ofthe IIYAL2
gene. The solid, dashed, and dot-dash lines represent the three
frames, respectively.
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Fig. 6.13. The Rényi dimension spectra ofthe 5' flank region ofthe HYAL2
gene. The solid, dashed, and dot-dash lines represent the three
frames, respectively.

1

1

1

1

Dq
1

1 1

1

o

o

Fig. 6.14. The Rényi dimension spectra ofthe 3' flank region ofthe HYAL2
gene. The solid, dashed, and dot-dash lines represent the three
frames, respectively.

g
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Fig. 6.15. The Rényi dimension spectra ofthe ph-20, a human genomic
DNA sequence which contains the enthe [ryt{I.2 gene and the 5'
flank region, the first exon and intron ofthe HYAII gene. The
solid, dashed, and dot-dash lines represent the three frames,
respectively.

q

Fig. 6.16. The Rényi dimension spectra ofthe Hl9 gene. The solid, dashed
and dot-dash lines represent the three frames, respectively.

Dq

-89-



Characterization of DNA Sequences Chapter VI: Experimental Resuits and Discussion

by the fact, shown in Figs. 6.12, 6.13, and 6.14, that there are no significant difference of

the Rényi dimension spectra among the three frames ofnon-coding sequences.

Although the ph-20, a human genomic DNA sequence, contains the whole IIYAL2

gene and the 5' flank region, the first exon, and the first intron sequences of the HYAL I

gene, the result shows that it shares a common multifractal feature with the non-coding

sequences and the random DNA sequence (Fig. 6. l5). The reason for this is due to the fact

that the total coding regions are less than 2000 bp or approximately 5% ofthe entire ph-20

sequence. Therefore, the sequence as a whole exhibits the statistical properties of a non-

coding sequence.

The non-protein coding genes are also examined with our model. The expressed

product of Hl9 gene, for example, is only untranslated mRNA and fi:nction as an RNA

rather than a protein. Figures 6.16 shows the Rényi dimension spectra of the Hl9 oDNA

sequence. As can be seen, the th¡ee frames of the gene have similar multifractality, sug-

gesting none of them is a coding frame. Therefore, our established model is not able to

distinguish the non-protein coding gene from non-coding background since the model is

based on the bias usage ofcodons in a specie.

6,2,2 Mandelbrot Dimension Spectrum of the DNA Sequences

Figure 6.17 shows the Mandelbrot spectra of the generated random DNA

sequences. The three frames of the randorn DNA sequence have a similar spectrum struc-

ture indicating that they have the same multiñactality. In Fig. 6.18, the result shows that

out of the th¡ee frames of the single fractal Cantor DNA sequence, the frame with a skict

Cantor set property demonstrates a single fractal structure. The Mandelbrot dimension and
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theHölderexponentoftheframeareconstantandtherefore'itsMandetbrotspectn¡mis

degraded to a single point. The other frames show a slight multifractality since they are

strictly not the Cantor set.

D Mou

0 "offi 1.3 1.4

ct

Fis.6.17. The Mandelbrot spectra ofthe random DNA sequence' The solid'.¡ 16 v¡ r ' ' d;Ëildããoi-¡ätüðuÑãt iept.,"nt the th'ee frames, respectivelv'
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Fio 6 18. The Mandelbrot sþectra ofthe Cantor DNA sequence' The solid'

å;Ë:;;lã;t-¡ãth "u*., 
represent the three frames'.respectively'

äi'JJíi¿ 1,"*ã;¡ich iepresehts the frame following the strict

C;ú;;;t pt"pätty, a.auå.d to a point since both the D¡4o,andcr
are constant.

Fis. 6.i9. The Mandelbrot Spectra ofthe HYAL2 cDNA sequence' The solid
' '"' -' - - ' 

.*ieiãnti the ORÊ, The dashed and dot-dashed curves represent

the other frames.
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Figures 6.19 to 6.21 show the Mandelbrot spectra of the coding sequences As

shown in the pictures, the oRFs exhibit the significant different multifractality in compar-

isontothenon-codingframes.However,forthenon-codingsequences(showninFigs.

6.22to6.24),thereisnosignificantdifferenceofthemultifractalitiesamongthethree

frames further proving an even codon usage in the non-coding frames'

It is interesting to note that the results shown in Figs 6'13 and 6'22' suggest an

even codon usage in the 5' flank region ofthe HYAL2 too. Similar results are also shown

in the 5' flank regions of other genes. As mentioned in chapter 2, the 5' flank regions of

genes are GC-rich regions due to the presence of the multiple clusters of regulatory ele-

ments and promoter region. These results suggest that the GC-content is not the primary

factor resulting in a bias codon usage in a sequence'

Fig. 6.20. The Mandelbrot Spectra ofthe third exon ofthe HYAL2 gene. The- solid curve represênts the ORF. The dashed and dot-dash curves
represent the other frames.
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Fig. 6,21. The Mandelbrot Spectra of the first exon of the HYAL I €ene, The

solid curve represents the ORF The dashed and dot-dash curves
represent the other frames.

Fig.6.22. The Mandelbrot Spectra of the 5' flank sequence oT the HYAL2
gene. The solid curve represents the ORF. The dashed and
dot-dash curves represent the other frames.
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Fis. 6.23.The Mandelbrot Spectra of the first intron sgquence of the HYAL2
L Ló' v''J';;".'îh;;;liã;'*e 

iepresents the oRF Thè dashed and dot-dash

õurves represent the other frames'

Fis.6.24'The Mandelbrot Spectra of the 3' flank sequence of the HYAL2
gè"". ftté solid culrve represents the ORF The dashed and

dot-dash curves represent the other frames.
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For the same reason as explained in previous section, the genomic DNA sequence'

ph-20, exhibits a similar multifractal property of non-coding sequences although it con-

tains the entire HYAL2 gene and the first exon ofthe HYAL I gene (Fig' 6'25)'

Fig. 6.25. The Mandelbrot Spectra ofthe genomic DNA sequence, ph-20'
- The sotid, dashed, ãnd dot-dash curves represent the three frames'

6.3 Local Rényi dimension Analysis of the DNA sequences

6.3,1 Analysis With High Resotution Reveals Gene Structures

For the higher resolution local Rényi dimension analysis, a sliding window size of

122 bp is applied, as described in Sec.4.4. The challenge oflocal Rényi dimension analy-

sis ofDNA sequences is that the coding regions ofa gene does not always stay in the same

reading frame. As described in Sec. 6.2, the experimental results show that Rényi dimen-
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sion values of non-coding reading frames are signiflcantly higher than that of the coding

reading frame and there is no significant difference of the Rényi dimension values

between two non-coding reading frames. Therefore, According to the experimental results

shown in Sec. 6.2, a composite dimension, D*, is computed based on

D*=(D¡t+D¡)/2-D¡o,, (6.1)

where D¡,7 and D¡,2 coÍespond to the highest local Rényi dimension values corresponding

to two non-coding frames. The D/ol, corresponds to the smallest value of the third reading

frame which may be related to a coding frame. In practice, the human p-globin gene

sequence is used as the test sample. The actual location of the exons in the gene and the

corresponding composite dimension, D*, based on the local fractal dimension analysis,

Fi9.6.26. Higher resolution local fractal dimension analysis ofthe p-globin
gene. A sliding window size of 122 bp is used.
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are plotted in Fig. 6.26. The position, tt, represents the position of the first point of the

sliding window in the DNA sequence'

As can be seen, the high value regions ofD* closely match the actual exon posi-

tions of the B-gtobin gene. Since the value of the 
'¡th 

point represents the fractality of a

regionwithawindowsizeor|22bplocatedaroundthepositionn,theactualpredicted

coding regions should outspread 122 bp from the edge ofthe high computed value regions'

Iftodoso,thepredictedcodingregionswillcovertheentirethreeexonregionsofthep-

globin gene.

6.3.2 Analysis With Lorv Resotution Reveats Genomic DNA Structures

Tominimizetheeffectofnoiseandtheinterferenceofnon-localfractals,alower

resolution with a window size of400 bp is applied to the larger genomic DNA sequences'

Figore 6.27 shows a local fractal dimension analysis of a 73 kb long human genomic DNA

sequence, which contains the five globin genes and one pseudogene' There are several

anomalies which are clearly visible from this diagram. First of all, the regions of all the

genes are associated with the highly positive regions of the local fractal analysis Sec-

ondly,thereareseveralpositiveregionsofthelocalfractalanalysiswhicharenotassoci-

ated with the coding regions. Most of these positive regions appear in periods For

example, indicated as the dashed rectangle regions in Fig' 6'21' the non-coding positive

regions are distributed with an interval of 2-2'5 kb in the genomic DNA sequence' The

nature of these regions are not known. It may relate with the higher-order packing struc-

ture of ch¡omosomes.



a)l

6

o i,

a

Zl
>i(tt I

,o
o

a)
:t

EI

3

Ê.

o

r r r l:::l ¡ I ::::l
TIBG2 HBGI HBBP1 T{BD IIBB

5-566-577.5
x 104

Fig. 6.27. Lower-resolusional local fractal dimension analysis of the human genomic DNA sequence.
A sliding window size of 400 bp is used.

o.5 1 1.5 2 2.s 3 3.5 4 4.5 s

Position ¿

1.2

1

\l
3 0.8

0)

(l)

oÞ. o-4
E
(J

o-2

o

-o-2

I
HBEI

\o
\o



Characterization of DNA Sequences Chapter M: Experimental Results and Discussion

6.4 Summary

This chapter presented the results of the DNA sequence analysis. The mutual

information and false nearest neighbourhood analysis provided a powerful tool for the

chaotic characterization of DNA sequences. Like white noise, DNA sequences have a

high-dimensional structure. There is a shong dependence within three bases in the DNA

sequences, indicating a high correlation ofamong the three bases in a codon.

It is shown that the ORFs have a significant feature different from that ofthe non-

coding reading frames, using Rényi dimension and Mandelbrot dimension spectra analy-

sis. Local Rényi dimension analysis with different resolution is possible for the chromo-

some structure analysis and coding regions prediction.

- 100-



Characterization of DNA Sequences
Chapter VII: Conclusions

CUAPTBN VII
CoNcl,usroNs

7 .L Conclusions

This thesis has presented (i) a review of the multifractal measures on the ¡r-dimen-

sional chaotic dynamical systems' and (ii) a development of the DNA sequences charac-

terization based on multifractal techniques. A novel method of DNA symbolic sequence

numerical mapping is established' The chaotic property of the DNA sequences are studied'

A multifractal measure of the time series is formulated to extract the features of the DNA

sequences. Finally, based on the above theory an approach of the coding DNA sequence

prediction was modelled and developed'

The experimental results indicate that there is a strong correlation within the th'ree

bases of the codons The high-dimensional chaotic properties of the DNA sequences

exhibited with the experiments suggests that DNA sequences have a high-dimensional

structure.

It is shown in Chapter 6 that the multifractal spectrum of the DNA sequences can

be used to distinguish the oRFs from the other non-coding reading frames' The experi-

mental results demonstrate that for the DNA sequences' only the ORFs have the signifi-

cant different multifractalities in comparison to the non-coding reading f¡ames All the

non-coding frames have a similar multifractal property'

Using the local fractal dimension analysis' the multifractal features of the ORFs

and the non-coding frames can be applied for characterization of the chromosomes and
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coding prediction. Our experimental results of local fractal dimension analysis further

exhibit that the interior structure ofa gene can be revealed with a high resolution while a

higher order structure of the genomic DNA sequences may be revealed in a low resolution.

7.2 Contributions

This thesis has provided the following contributions:

. The development of a new method for DNA symbolic sequences numerical

mapping.

. A str¡dy ofthe chaotic properfy ofthe DNA sequences.

. A new and novel approach to characterization ofthe DNA sequences through

frame sequence analysis, using multifractal techniques.

. A framewo¡k for modelling non-stationary n-dimensional signals as strange

attractors.

. A study ofmultifractal measures for n-dimensional signals, especially for one-

dimensional time series.

. The development of an approach for characterization of genomic DNA

sequences and coding prediction.

. An application of the Rényi dimension spectrum for DNA sequence feature

extraction and local structure analysis.

. A study ofthe relationship between the different resolutions and the structures

ofDNA sequences.
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7.3 Recommendations

Based on the work ofthis thesis, the following recommendations are suggested for

further research on this topic:

. Development of a systematic theory of the approximation of multifractal meas-

ures,

. Development of a systematic multifractal theory for measuring an r¿-dimen-

sional signal.

. Further research in local fractal dimension analysis to reveal the conelation

between the non-coding positive regions and the higher order packing structure

of the chromosome.

. Fufher development ofthe approach for DNA coding prediction based on neu-

ral-network techniques.

. Development ofan application for local DNA analysis, using the extracted fea-

tures from the Mandelbrot spectrum.
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AppnNorcns

A. Generated SamPle Sequences

A.l An example ofthe random DNA sequence

TACGAArIAGGGGAAAAGAGTGGAAAG GGGGTGGGGAGAAAGATAGGAAAGCAGAAA

GTAATAGTATTGTGGGAGGTGAGG GTGGTAACTTGAGTTGATTTGAAAATTAGGATGTT

TTGATAGACGGGTACAAGAGAAG G CGTAGGGTGTATATGAATGCTGAATGTGG

GTAAGTGTGTGTGAGGGAAÎIATGATTGTGGTTGAGTATTGGAGTGGAGGAAAGGTGTA

GGCAAGGTG GAAGTTTTAGAG GAGTGTATTTTMATAG GTGTAAA AAGGG A¡ GAGGGTA

GTAGGGGGGAITC GGGTG GGGTGAGGAGCTAGGTAGTGTAGAAGGTAAGTGGGGGÀG

GGGG GTG GT'TCGTGTAGAG GATGGTGAGTAACG GGGGTAGTGGGAGATTAGAGG GGG

G GG GATTG GTGG GAAGGAG GGGTTTGTGG GGG GGTGG GTAGGTATGGGTATTATAGATA

AGGTGG GATG C GAGGTTGAATGGTGGAGGAGGTTCTG GTGAG GGGTTGTTGTAAGGTA

GTAGGTTCG G GTGTTGAGC GGAG G CCGG GGGCGGAAGGAATGGGATGAGGAGGTTAG

AGGTGGGTAGTAAGATAGGTAGGG GGAÍ IAGGATGGATTGGATGGGGGTATG GGG GGTG

CGAGTGTGATTGTAGGTGGGAAGGGTG GGTTGGAG GTGGGTGAGTAGTTGTGTAGGGA

ATGTAAGGTTGTTGTAGAGGAGG GTAG GCGATGAAAGTG GTA TGTGGGGATGTGAGGG

AGG GGCAGATGTAGGGTTACGGAAGGAITGGGAAGACGTGGGGATAAAGGGG

GGGTGTACGGAAGGGGGGTTGG GGGAGTGGTGATTGAGTGAGTAAATTAAGTGGTGGT

GAATTAGTGC GGGAGTGTGAGAAITG GGTACAAGATAGTATGTAGGGAGAITG GGGGG

TGAGGCAGTTTG GGTTGAGTGG GAGTCATTTTGCTGTGTG GGTTTAITCAG GTGTGAGT

TTATTC GTAAAATATTAAAGGATGGAAATGGATGAGATGATGAGTG GGGTTGGAGAGTA

GGTGAGAGG GTGTCGTG GTAGAG GGGTGAAAAAGTTGTTAGTIGGTTGGTTTGAAGGG

AGC GTC GATCATG GGG GTTGGTG GGTAAGTGTGATAAAITGTAGGTG GGGG GGTGGAG

GTGGGAGGAAGTTTGGGATGAGAATTGAGGAGGAGAGGGTAGGATAIGTGTGGTGATG

AGATG GAGTTGTTGGGATGGTTGTGTG GGAGGGTGTAATAGAAüAGAGGGA TGAGGG

GGAATGGTGGTAAGAAAGGGGTGAGTGGAGGGATAAGAATAAATGTGAGGGGGGGGG

A.2 The Cantor DNA sequence

AAACCCAAACCCCCCCCCAAACCCAAACCCCCCCCCCCCCCCCCCCCCCCCCCCAAAC

ccAAACCCCCCCCCAAACCCAAACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

ccccccccccccccccccccccccccccccccccccccccccccccAAACCCAAACCC
ccccccAAAcccAAAcccccccccccccccccccccccccccAAAcccAAAccccccc
ccAAAcccAAAccccccccccccccccccccccccccccccccccccccccccccccc
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
cccccccccccccccccccAAAcccAAAcccccccCCAAACCCAAACCCCCCCCCCCC
cccccccccccccccAAAcccAAACCCCCCCCCAAACCCAAACCCCCCCCCCCCCCCC
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ccccccAAAcccAAACCCCCCCCCAAACCCAAACCCCCCCCCCCCCCCCCCCCCCCCC
cCAAACCCA.AACCCCCCCCCAAACCCÄAACCCCCCCCCCCCCCCCCCCCCCCCCCCCC

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
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ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ccccccccccccccccccccccccccccccccccccccccccccccccccCAAACCCAA
ACCCCCCCCCAAACCCAAACCCCCCCCCCCCCCCCCCCCCCCCCCCAAACCCAAACCC

ccccccAAACCCAAACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

ccccccccccccccccccccccccccccccccccccccAAACCCAAACCCCCCCCCAA
ACCCAAACCCCCCCCCCCCCCCCCCCCCCCCCCCAAACCCAAACCCCCCCCCAAACCC

AAACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ccccccccccccccAAACCCAAACCCCCCCCCAAACCCAAACCCCCCCCCCCCC
ccccccccccccccAAACCCAAACCCCCCCCCAA-ACCCAAACCCCCCCCCCCCCCCCC
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
cccccAAACCCAAACCCCCCCCCAAACCCAAACCCCCCCCCCCCCCCCCCCCCCCCCC

CAAACCCAAACCCCCCCCCAAACCCAAA
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B. Source Code

t * Hfl1####t*4###44fl ##4#4###H4###4H44#4####H###+####44ä#####HHH#44+#
LorenzGen.c

Discription: This program generates Lorenz-ll attractor ofx, ro y, or z variable

time series. The length ofthe time series is inputs'

Author: Hong Zhang

Version: 1.0

Last Update: MaY 2,2001

####4H#########HbH#HHH####flH##H#######H###########H#####H#######H####*l

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#define VARIABLEI lll-x'2'Y,3-z
#define B 4

#define A o'25

#define F 8

#define G I

#defineX-INITIAL 12

#defineY-INITIAL 12

#defineZ-INITIAL 34

const int iB = B;

const int iF = F;

const int iG = G;

const double fA = A;

const double fTimeStep = 0.05;

void Lorenz(double, double, double);

long iLen;

double *fNewData;

int main0

{
int i;

double x, y, z;

FILE *fw;

printf("Enter the sequence length your rvant to be generated: ");

-Bl -
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scanf("%d", &iLen);

x = X-IMTIAI;
Y = Y-INITIAL;
z = Z-INITIAL;

if( (fw = fopen("Lors¡2.¡¡lr', "rv") ) == NULL)

{

Printf("Eror of open the 6le \n");

exi(0);

)

fNewData : (double +)malloc(4*sizeo(double));

if(fNewData=:NULL)

{
printf("Error for space malloc of fNewData \n");

exit(0);

)
fprintf(fw, "%d%d\n", il-en, 0);

//write out the lst line which describes the length ofthe time series

for(i=0; i<ilen; i++)

{
Lotenz(x,Y,z);

x = fNewDatalo];

y = fNewDatall l;
z = fNewData[2];

#if VARIABLE==I
fPrintf(frv, "%d%f\n", i+l' x);

#elif VARIABLE==2
fPrintf(frv, "%d%fln"' i+l' Y);

#else VANABLE:3
fprintf(fw, "%d%f\n", i+l' z);

#endif

Ì
fclose(fw);

retum 0;

)

void Lorenz(double x, double y, double z)

{
double dt, xt, yt, zt;

dt = fTimestep;

¡¡= ¡ + iSigma*(y-x)*dt;

¡=y+(iR*x-x+z-y)*dt;
zt = z+ (x*y - fEita*z)*dt;

-B.2-



Characterization of DNA Sequences
Appendices

fNewData[0] = xt;

fNewData[l]: Yt;

fNewData[2] = zt;

)

t*##4+i44H##4*###
contoutG€nerate c

Discription: Contour set generator' Generate Contour set in DNA charactor

sequence the smallest unit is depented on the user input'

Author: Hong Zhang

Version: 1.0

LastUpdate: Jan.23,2001

d1#4#4##44#########H+####4###4##H#####Hltl11,lilfl#lflltlllltllltlltltl}l|l|llffiill1l

#include <stdio.h>

#include <stdlib.h>

#include <malloc.h>

#include <string.h>

#include <math.h>

#defineLOWVALUE 0

#deflneHIGHVALUE 154

#define LiNELENGTH 70

*ßefine UPCHAR 'A'

#defineLOWCHAR 'C'

#define OUTFILENAME "contout"

char *charSeq-generator(int,int);

int +intseq€enerator(int, int);

int main0

{
int i, k, iUnit, iSeqlength, iLength' iTemp=0' il-ine' iOrder' *iContourseqi

char imfileC[25], imfilel[25], *FileName, *cContourseq;

FILE *outchar, *outlnu

iunit = 3;

iSeqlength = 20000;

printf("Enter the number ofbp for basic unit : ");

scanf("%d", &iUnit);
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printf("Enter the roughly l€ngth ofthe sequence : ");

scanf("%d", &iSeqLength);

i=0;
while( iTemp<(int)(iSeql-ength/iUnit) )

iTemp = (int)pow(3, i++);

iOrder=i- l;

/* generate characte sequence ofContour set*/

cContourSeq = charSeq-generator(iUnit, iorder);

Fi leName = OUTFILENAME;

strcpy(imfi leC, FileName);

strcat(imfi leC, "-chal');
if ((outChar = fopen(imfrleC, "w") ) : NfiLL)

{
printf("write enor for charactor sequence ");

exit(0);

Ì
iLength = (int)pow(3, iOrder)*iunit:

iline = LINELENGTH;

iTemp = (int)fl oo((fl oat)iLength/iLine);

for(i=0; i<iTemP; i++)

{
for(k=0; k<iline; k++)

fprintf(outChar, "%c", cContourSeqIi*iLine+k]);

fpr¡ntf(outChar, "\l");

)
fo(k=0; k<(intXiLength%iLine); k++)

fprintf(outChar, "%c", cContourseqtiTemp*iLine+kl);

free(cContourSeq)i

fclose(outChar);

/+ generate time series sequence ofContour set*/

icontourseq : intSeqgenerator(iUnit, iorder);

strcpy(imfi leI, FileName);

strcat(imfi leI, "jnt");
if ((outlnt = fopen(imfileI, "w") ) =: NIJLL)

{
printf("write enor for the time series sequence.");

exit(0);

]
for (i=0; i<ilength; i++)

fprintf(outlnt, "%d %d\n", i, iContourSeq[i]);
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free(iContourSeq);

fclose(outlnt);

printf("The sequence length = %d\n", (int)pow(3, iOrdeÐ*iunit);

retum 0;

)

char *charSeqSenerator(int iNumunitBase' int iGrade)

{
int i, k, j, ilen, iBuffSize;

char *cTemp, *cseq, cUPPer, clower, ch;

cupper = UPCHAR;

clower = LO'TVCHAR;

iLen = (int)pow(3, iGrade);

for(i=2; i<=iGrade; i++)

{
iBufisize = (int)Pow(3, i);

cTemp : (char *)calloc(iBufiSize, sizeo(char));

i(cTemP==NIJLL)

{
print("Failed to malloc space for cTemp buffer'\n");

exi(0);

i

iBufISize = (int)pow(3, i-l);
if(i:2)
{

cseq : (char *)calloc(3, sizeof(chaÐ);

cSeq[0] = cUpPer;

cSeqfl] = clower;
cSeq[2] = cUpper;

)

fo(k=0; k<iBuffSize; k++)

{
ch = cSeqlkl;

switch(ch)

{
case UPCHAR:

cTemP[k*3]= cUPPer;

cTemP[k*3+l] = cLower;

cTemP[3*k+2] = cUPPer;

break;

case LO!y'CHAR:

for(=0; j<3;j++)
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cTemp[3*k+j] : clorver;
break;

)

Ì
free{cSeq);

iBufíSize = (int)pow(3, i);

cSeq = (char*)calloc(iBuffSize, sizeo(char));

i(cSeq:NIJLL)
{

printf("Failed to malloc space for cSeq buffer.\n");

exit(0);

)
for(k=0; k<iBufiSize; k++)

cSeq[k] = cTemp[k];

fre{cTemp);

)

iBufiSize *: iNumUnitBase;

cTemp = (char*)calloc(iBufiSize, sizeo(char));

i(cTemp:NULL)
{

print("Failed to malloc space for cTemp buffer\n");
exit(0);

ì

for(i=0; i<(int)pow(3, iGrade); i++)

{
ch : cSeq[i];

switch(ch)

{
case IJPCIIAR:

for(k=0; k<iNumUnitBase; k++)

cTempIi*iNumUnitBase+k] = cupper;

break;

case LOWCHAR:
for(k=0; k<iNumUnitBase; k+r)

cTempIi*iNumunitBassf k] = cl-ower;

break;

)

)
ñee(cSeq);

retum cTemp;

Ì

int +intSeqlenerator(int iNumunitBase, int iGrade)
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int i, k, j, ilen, iBufrSize;

int *iTemp, *iSeq, iUPPer, ilower, ch;

iUpper = HIGFIVALLIE;

iLower = LOWVALUE;

iLen : (int)pow(3, iGrade);

fo(i=2; i<=iGrade; i++)

{
iBufTSize = (int)pow(3, i);

iTemp = (int +)calloc(iBufiSize, sizeof(int));

if(iTemP:NULL)
{

print("Failed to malloc space for iTemp buffer\n");

exit(0);

Ì

iBufisize : (int)Porv(3, i-l);
¡f(i:2)
{

iSeq = (int *)calloc(3, sizeof(int));

iSeq[0] = iUPPer;

iSeq[] = iLower;

iSeq[2] = iUPPer;

)

for(k=0; k<iBuffSize; k++)

{
ch: iSeqlkl;

switch(ch)

{

case HICHVALUE:
iTemP[k*3] = iUPPer;

iTemP[k*3+l] = ilower;
iTemP[3*k+2] = iUPPer;

break;

case LOWVALUE:

fo(i=o;j<3; j++)

iTemp[3+k+j] = iLower;

break;

I
Ì
free(iSeq);

iBufiSize = (int)pow(3, i);

iseq = (int *)calloc(iBufISize, sizeof(int));
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if(iSeq:NULL)
{

printf("Failed to malloc space for iSeq bufier'\n");

exit(0);

)
for(k=0; k<iBuffSize; k++)

iSeq[k] = iTemP[k];

free(iTemP);

)

iBuffSize *= iNumunitBase;

iTemp = (int +)calloc(iBulTSize, sizeof(int));

if(iTemp==NULL)

{
printf("Failed to malloc space for iTemp buffer'\n");

exit(0);

l

fo(i=0; i<(int)pow(3, i6rade); i++)

{

ch = iSeq[i];

switch(ch)

{
case HICHVALUE:

for(k=0; k<iNumUnitBase; k#)
iTemPIi*iNumUnitBase+k] : iUPPer;

break;

case LOWVALUE:

for(k=o; k<iNumUnitBase; k++¡

iTempIi*iNumUnitBasel-k] = iLower;

break;

Ì
l
free(iSeq);

retum iTemp;
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t*H4#####9#H####4tt!111t1 111f!1t1t## fl1t1t 1tìtltltillllilllllllllllïtl|lltlltltltffitllttutllllllllttttÌ #féH##+#

whiteNoiseGen.c

Discription: This program generates uniform white noise time series and random

DNA sequence.

Author: Hong Zhang

Version: 1.0

Las! Update: MaY 2001

###i###tf ###+#444i## | t | | #' I ttttititttlt ttttttlt tt#tt iltt¡ilt M* I

#include <math h>

#include <stdio h>

#include <stdlib.h>

#define IA 16807

#define IM 214'1483647

*Édefine AM (1 0/IM)

#define IQ 127773

#deßne IR 2836

#defineNTAB 32

#define NDIV ([+(IM-I)NTAB)

tËefine EPS l.2e-7

#defineRNMX (1.0-EPS)

#define CHAR-ARRAY 0

#defineRANGE 402/1402.19

float ranl(long*);
long iy:0, ivINTAB], seqlen, *idum;

const int linelenc = 80, linelenl = 8;

int main0

{
int i, k, i;
float flemp;
char ch;

FILE *fw;

printf(''Entelthes€quencelengthyourwanttobegenerated(hastobetimesof%d):..,linelenC);

scanf("%d", &seqlen);

idurn = (long *)malloc( I *sizeof(long));

*idum = -4;

k = seqlen/linelenC;
if( (frv = fopen("randomSeq.txt", "w") ) != NIJLL)

{
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#if CHAR-ARRAY == I

for(j=o;j<k; j++)

{
for(i=O; i<linelenc; i++)

{
fTemp = ran 1(idum);

if(flemP<0 25)

ch = 'A';
else if((flemp>=0'25)&&(fTemp<0 50))

ch = 'T';
else if((fremp>=o 50)&&(fTemp<0 75))

ch = 'C';
else

ch = 'G';
fPrint(fw "%c"' ch)l

t
I

fPrintf(fw, "\n");

)

#else

fprintf(fq "%d%d\n", seqlen, 0);//l st line

for(j=0; j<seqlen' j++)

{

flemP = ranl(idum);

fprintf(fw, "%fÞlof\n", flemP' RANGE*fÎemp);

l
#endif

l
fclose(fw);

retum 0;

)

float ranl(long *idum)

{
int j;
long k;

float temP;

if(*idum <:0 ll !iY)

{
if(-(*idum)<l)

+idum = l;
else

+¡¿u¡1= _(+idum);

for(i=NTAB+7; j>=0; j-)
{

k = *idum/IQ;
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*idum = IA+(*idum - k+IQ) - IR*k;

if(*idum<0)
,ridum += IM;

if('<NTAB)
ivÛl = +idum;

I
iY = iv[O];

)
k = (+idum)ÂQ;
+idum = iA+(*idum - ktlQ)' IR*k;

if(*idum<0)
*¡¿um += IM;

j = iYlfJDM
iy = ivÜl;

ivfil = +¡¿ut'

temP=¡Y*¡t'
if(temp > RNMX)

retum RNMX;

else

retum temP;

l

I * H*H+H#####+H###+##############H+#####h4H######M
mi.c

Discription: This program calculate the average mutaual information of a time se es'

This program uses only one grid size value and calculates all three frames'

Author: Hong Zhang

Version: 1.0

Last Update: Feb.200l

#144+#ifl4#######i+#H4##*444#t###########44###w#HH#4+ I

#include <stdio.h>

#include <stdlib.h>

#include <malloc.h>

#include <string.h>

#include <math.h>

fdefi ne GRID-SIZE-FACTOR64

#define MAX-LAG200

fl oat *FilelO(char*, int);

static int iSeqlen;

static float fMax, fMin;

float *fMI, fGridSize;
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const float fcridSizeFactor = I O(float)GRID-SIZE-FACTOR'

int main0

{
int i, k,j, u, v, s, t, iGridNum, ilag, ilen, il-enl, ilen2, ilen3;

int*iProb,+iProbt,*iColProb,*iColProbl,*iRowProb,*iRowProbl'*iProb2'*iProb3'
*iColProb2, *iColProb3, +iRowProb2, *iRowProb3;

char *cInFileName, +cOutFileName;

float fSum, *fTimeSeries, fTemP;

clnFileName = (char +)calloc(50, sizeof(char));

cOutFileName = (char +)calloc(50, sizeof(char));

if((clnFileName==NIJLL)ll(cOutFi leName-NULL))

{
printf("Enor for malloc space to clnFileName or cOutFileName \n");

exi(0);

Ì
printf("\n Enter name ofthe data file: ");//get input filename

scanf("%s",cInFileName);

fo(i=0; i<50; i++)//get output file name

{
if(clnFileNameIil!="')

cOutFileName[i] = clnFileName[i];

else

break;

Ì
strcat(coutFi leName, "-2.mi");
fTimeSeries = FileIO(cInFileName, o);//get time series

//set up grid size and number

fGridsize = (fMax - fMin)*fGridSizeFactor;

fMI = (float *)calloc(MAX-LAG+4, sizeof(float));

if(fMI:NULL)
{

printf("Enor of malloc space for fMI.\n");

exit(o);

l
iGridNum = (int)((fMax-fMin)/fcridSize) + l;
iColProb : (int +)malloc((iGridNum+1 )*sizeof(int));
iRowProb = (int *)malloc((iGridNum+l)*sizeo(int));

iProb = (int *)malloc((iGridNum+iGridNum+l)*sizeo(int));
'ColProb I = (int *)malloc((iGridNum+ l)*sizeof(int));

iRowProb t = (int *)malloc((iGridNum+ l)*sizeo(int));
iProbl = (int +)malloc((iGridNum*iGrìdNum+l)+sizeo(int));

iColProb2 : (int *)malloc((iGridNum+ l)+sizeo(int));

iRowProb2 = (int *)malloc((iGridNum+ l)*sizeo(int));
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iProb2 = (int *)malloc((iGridNum*iGridNum+l)*sizeo(int));

iColProb3 = (int +)malloc((iGridNum+1)*sizeo(int));
'(svp¡eþl = (i¡¡ +)malloc((iGridNum+l)*sizeof(int));

iProb3 : (int *)malloc((iGridNum*iGridNum+l)*sizeo(int));

i(((iProb:Nt.lLL)ll(iProb l:NULL))ll((iRowProb:NULL)ll(iRowProbl:NULL))ll
((iColProb:NULL)ll(iColProb l:NULL))))

{
print("Enor of mallic space for iProb, iProbl, iRowProb, iRowProbl, iColProbl, or

iColProb.\n");

exit(0);

ì
i(((iProb2:NWL)ll(iProb3:NllLL))ll(((iRowProb2:NULL)ll

(iRowProb3:NULL))ll((iColProb2:NULL)ll(iColProb3:NULL))))

{
printf{"Enor of mallic space for iProb2, iProb3, iRowProb2, iRorvProb3, iColProb2,

or iColProb3.\n");

exit(0);

)
for(ila51 ; iLag<:MAX-LAG; iLag++)

{
iLen = iSeqlen - jLag;//do not consider Êame

for(k=O; k<iGridNum; k++)//clear up

{
iColProb[k] = 0;

iRowProb[k] : 0;

iColProbl [k] = 0;

iRowProbl[k] :0;
iColProb2[k] = 0;

iRowProb2[k] = 0;

iColProb3[k] :0;
iRowProb3[k] = 0;

for(u=0; u<iGridNum; u++)

{
iProbIu*iGridNum+k] - 0;

iProbl [u*iGridNum+k] = 0;

iProb2[u*iGridNum+k] = 0;

iProb3[u*iGridNum+k] = 0;

)

Ì
for(k:il-ag; k<iSeqlen; k#)//compute P(kj) without conceming the f¡ames' effects

{
for(u=0; u<iGridNum; u++)

i((fTimeSeriesIk]>=(fMin+uxfGrìdSize))

&&(fTimeSeriesIk]<(fMin+(u+ I )*fGridSize)))
break;

fo¡(\¡=O; v<icridNum ; Y++)
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i f((fTimeSeriesIk-iLag]>=(v*fGridSize+fMin))&&
(fTimeSeries[k'iLagl<((v+ I )*fGridSize+Min)))

break;

iProbIu*iGridNum+v]++;

)
//compute P(kj) with conceming the codon frame's effect

fo(k-3*iLag, iLent=0, iLen2=0, iIæn3=0; k<iSeqlen-2; k+=3)

{

for(u=0; u<iGridNum; u++)

if((fTimeSeriesIk]>=(u+fGridSizet-fMin))&&
(fTimeSeriesIk]<((u+ t )*fGridSize|fMin)))

break;

fo(v=0; v<iGridNumi v++)

if((fTimeSeriesIk-3 *iLag]>=(v*fGridSize+fMin))&&

(fTimeseriesIk-3 *iLag]<((v+ I )*fGridSizerfMin)))
break;

iLenl++;
iProb I Iu*iGridNum+v]++;

for(u=o; uciGridNum; u++)

if((mmeseriesIk+ I ]>=(u 
*fGridSize+fMin))&&

(fTimeSeriesIk+ t ]<((u+ I )*fGridSize+fMin)))
break;

fo(v=0; v<iGridNum; v++)

i f((fTimeSeriesIk+ I -3*iLag]>=(v*fGridSize+fMin))&&
(fi meSeries[k+ l-3*iLag]<((v+l)*fGridSizerfMin)))

break;

iLen2++;

iProb2[u+iGridNum+v]++;

fo(u=0; u<iCridNum; u++)

i((fTimeSeriesIk+2]>=(u+fGridSize+fMin))&&
(fTimeSeriesIk+2]<((u+ I )*fGridSize+fMin)))

break;

for(v=0; v<iGridNum; v++)

i f(fTimeSeriesIk+2-3*iLag]>=(v*fGridSizelfMin))&A
(fTimeseries[k+2-3 *iLag]<((v+ I )*fGridSize+fMin)))

break;

iLen3++;

iProb3[u*iGridNum+v]++;

)
for(u=o; u<¡GridNum; u++)

{
for(v=0; v<icridNum; v++)

{
iColProbIu] += iProb[u+iGridNum+v];//compute P(k)

iRowProb[v] += iProbtu*iCridNurn+vl;//compute P(i)
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iColProbl[u] += iProb t [u*icridNum+v];
//compute P(k) in the coding frame

iRowProbl[v] += iProb I [u+iGridNum+v];
//compute P(j) in the coding frame

iColProb2[u] += iProb2[u*iGridNum+v];

iRowProb2[v] += iProb2[u*iGridNum+v];

iColProb3[u] += iProb3[u*iGridNum+v];

iRowProb3lvl += iProb3[u*iGridNum+v];

ì

fo(u=0; u<iGridNum; u++)

{
i(iColProblul>0)

{
fo(v=0; v<iGr¡dNum; v++)

{
if((iRowProbIv]>0)&&(iProb[u*iGridNum+v]>0))

{

fSum =

(fl oat)(iProb[u*iGridNum+v]+iIæn)(iColProb[u] 
+iRowProb[v]);

fMI[4*(iLag-l)]+=
(fl oatXiProbIu*iG¡idNum+v]+log(fSum)/iLen);

ì
ì

l
i(iColProb t Iul>0)

{
for(v=o; v<iGridNum; v++)

{
if((iRowProb I Iv]>0)&&(iProb I Iu*iGridNum+v]>0))

{
fSum=

(fl oat)iProbl Iu+iGridNum+v]*iLenl(iColProbl [u]*iRowProb I Iv]);

fMI[4*(iLag'l)+ l]+=
(fl oat)(iProb I Iu*iGridNum+v] 

*log(fSum)/iLen I );

)

Ì

)
i(iColProb2[u]>0)

{
for(v:o; v<iGridNum; v++)

{
if((iRowProb2[v]>0)&&(iProb2[u+iGridNum+v]>0))

{
fSum=
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(fl oat)(iProb2[u*iGridNum+v]*¡Len2)(iColProb2[u]+iRowProb2[v]);
fMl[4*(iLag- l)+2]+=

(fl oatXiProb2[u*iGridNum+v]*log(fsum)/ilen2);

)

)

Ì
if(iColProb3[u]>0)

{
for(v=o; v<iGridNum; v++)

{
if((iRowProb3 [v]>0)&&(iProb3[u*iGridNum+v]>0))

{
fSum=

(fl oat)iProb3 [u*iGridNum+vl 
*iLen3/(iColProb3 [u]*iRowProb3[v]);

fMI[4*(iLag-l)+3]+=
(fl oatXiProb3 [u*iGridNurn+v] 

*log(fSum)/iLen3);

Ì
)

Ì

Ì

)
free(iProb);

free(iColProb);

free(iRorvProb);

free(iProb l);
free(iColProbl);

free(iRorvProb l);

free(iProb2);

free(iColProb2);

free(iRowProb2);

free(iProb3);

free(iColProb3);

free(iRowProb3);

FileIO(cOutFileName' l);
retum l;

l

float +FilelO(char *cFileName, int iNum)

{
int i, k, ilen, iTemP;

float *fseq;

float fÎemP, fAnay[8]' fi;
char ch;

FILE *inFile, *outFile;

if(iNum==0)//open, read the input fr lecFileName
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if((inFile=fopen(cFileName, "r")) : NULL)

{
printf("\n Failed to open the input file\n");

exit(0);

)
fseek(inFile, 0, SEEILEND);

iLen = ftell(inFile);

¡ewind(inFile);

fseq = (float*)calloc(iLen+ l, sizeof(float));

i(fSeq:¡'¡¡ ¡a¡¡
{

print("Enor of malloc space for fSeq \n");

exit(0);

l
rewind(inFile);

while(ch!='\n')//discard the fi rst line

ch = gerc(inFile);

i:0;
fMin - 99999999 0;

fMax - 0.0;

wh i I e(fscanf(i nFi I e, " 
o/od%oî', &iTemp, &f Temp):2)

{
fSeqIi++] = fTemP;

i f(fMax<fTemP)

fMax = fTemP;

if(fMin>ffemP)
fMin = fTemP;

)

fclose(inFile);

iSeqlen = i;

retum fSeq;

Ì
else //open, write to the output file

{
if((outFile=fopen(cFileName, "w")) : NULL)

{
printf("\n Failed to open the output frle\n");

exit(0);

l
fprintf(outFile, "%d%fþ¿d%d%d\rì', MAX-LAG, fGridSize' l' 2' 3);

fo(i=t ; i<=MAX-LAG; i++)

fprintf(outFile, "%do/oP/oP/of/of\n", i, fMl[4*(i' t)], fMI[4*(i-l)+l]'
fMr[4*(i-l)+2], fMI[4+(i- l)+3D;

fSeq = (float +)malloc(l *sizeo(ffoat));

ßeq[o] = -1 s'
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fclose(outFile);

retum fseq;

)

I + #H+#+# ###i+HH#+# ##fl +#######fl 44#4fl +fl i#+H##+#94######w
FNN.c

Discription: This program calculate the percentage ofthe fase nearest neighbours of
a time series, us¡ng the Kennel method,

Author: Hong Zhang

Version: 1.0

Last Update: May 2001

H#fl4###############H#4444#fl4######i#i#1+####w#444444+ I

#include <stdio.h>

#include <stdlib.h>

#include <malloc.h>

#include <string.h>

#include <math.h>

fHefine NUM_FRAME 0//0-not frame, l-frame l, 2-frame 2, 3-frame3

#define ABS(a) ((a)>=0) ? (a) : C(a))

float *FileIO(char+, ¡nt, float*, int);

const int iMaxA = 3; /lvfAx_AJOTAL;
const int iNumM = l0; //MAX-EMBEDDING-DIMENSION;
const int iMaxR : 30; //MAX-R-TOTAL;
const fl oat fFactorR : 0.5000;//R-TOTAL-FACTOR;

const fl oat fFactorA = (fl oat)0.2000;//A-TOTAL-FACTOR;

static int iSeqlen, iNumRtol, iNumAtol, iLag;

float fR[50], fA[50], *ÍFNN;

int main0

{
int i, k, m, u, r, j, istatus=o, iFalse;

float *fTimeSeries, *fMinD, +fNextD, *fND;

char *cInFileName, *cOutFileName;

float fTemp, fRa, fMean, fR_m, fStdDev, fMinDistance, fNextDist;

clnFileName = (char *)malloc(50*sizeo(char));

"Ou,a,.*ure 
= (char *)malloc(50+sizeo(char));

i f((cInFileName-NIJLL)ll(cOutFi leName:NIJLL))

{
printf("Error for malloc space to clnFileName or cOutFileName.\n");
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exit(0);

Ì
printf("\¡ Enter name ofthe data file: ");//get input file name

scanf("%s",cInFileName);

printf("\n Enter lag value for the data file: ");
scanf("%d", &iLag);

for(i=o; i<50; i++)//get output file name

{
if(clnFileNamelil !='.')

cOutFileNameIi] = clnFileNameIi];

else

break;

)
strcat(cOutFileName, ".fnnK");
fo¡(i=o, iNumRtol=o; ; i++)

{
i(i<2)

fR[i] : fFactorR*(l+i);
else

fR[i] = l0*fFactorR*(i-l);
i(fRIi]>iMaxR)

break;

iNumRtol++;

ì
for(i=1, iNumAtol=0; ; i++)

{
i(i<6)

fA[i-l l : fFactorA*i;

else

fA[i-1] = (fl oat)0.5*(i-3);

i(fAIi- I]>iMaxA)
break;

iNumAtol+;

)
fTimeSeries = FileIO(cInFileName, 0, ÍFNN, iStatus);//get time series

ÍFNN = (fl oat *)calloc(iNumRtol*iNumM*iNumAtol+ l,sizeof(fl oat));

fN4inD = (fl oat *)malloc((iSeql-en-iLag)*iNumM*sizeo(fl oat));

fNextD = (fl oat +)malloc((iSeqLen-iLag)*iNumM*sizeo(fl oat));

i(((ÍFNN:NULL))ll((fMinD:NIJLL)ll(fNexID:NULL)))
{

print("Enor of malloc space for ÍFNN, or fMinD, or fNextD.\n");

exit(0);

)
fo(i=O, fRa=O.0; i<iSeql-en; i++)

fRa += fTimeSeries[i];
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fMean = fRa/iSeqlen;

fo(i=o, fRa=0.0; i<iSeqlen; i++)

fRa += (fTimeseries[i]-fMean)*(fTimeSeriesIi]-fMean);

fstdDev = (float)sqrt(fRa/iSeqlen);//compute the standard deviation ofthe data

fo(m= l; m<=iNumM; m++)

{
for(i=iLag*m, j=0; i<iSeqlen; i++)

{
fMinDistance = (flo at)99999999 '0',

for(u=iLag+m; u<iSeqlen; u++)//find the nearest neighbour

{
if(i!=u)

{
f(-m = Q;

for(k=o; k<m; k++)

{
flemp=

fTimeSeries[i-iLag*k]-fTimeSeries[u'iLag*k];

fR_m += fTemp*fTemp;

)
if(fMinDistancèfR-m)

{

fMinDistance = fR-m;

fNextDist :
fTimeSeries[i-iLag*m]-fi meSeries[u-iLag*m] ;

)

Ì
)
fMinDIiNumM*j+m- l] = (fl oat)sqrt(fMinDistance);

if(fNextDist<0)
fNextD[iNumM*j+m-l ] = -fNextDist;

else

fNextDliNumM*j+m-11 = fNextDist;

j++;

l
)
fo(r=o; r<iNumRtol; r+r)

t
forc=0; j<iNumAtol; j++)

{
for(m=l; m<=iNumM; m#)
{

iFalse=0;

for(i=iLag*m, k=0; i<iSeqlen; i++)

{
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if(fMinDIiNumM*k+m- I ] !=0)//criteron I

{
flemP =

fNextDliNumM*k+m- I l/fMinDliNumM+k+m- I l;
if(fTemP>fR[r])

iFalsel+;

else {
flemp =

(fl oat)sqrt(fNextDliNumM*k+m- I I 
+fNextDIiNumM*k+m- I ]+fMinD

IiNumM*k+m-t]*fMinDIiNumM*k+m-l]);
if((fTemp/fStdDev)>fA[j])//criteron tr

iFalse=H;

Ì

if(fNextD[iNumM*k+m- t ] !=0)

iFalsel-+;

k++;

l
fFNN[iNumM*(iNut4¡o¡*¡+¡¡+m-ll = (fl oat)iFalse(float)k;

I
else

l
FileIO(cOutFileName, l, ÍFNN, 0);//output the result

free(fFNN);

return l;
l

float *Filelo(char *cFileName, int iNum' float *fOutputData, int status)

{
int i, k,j, ilen, iTémP;

float *fseq, flemp;

FILE *inFile, *outFile;

if(iNum:0)//open, read the input fi lecFileName

{
if((inFile=fopen(cFileName, "l')) : NULL)

{
print("\n Failed to open the input file\n");

exit(0);

)
fseek(inFile, 0, SEEK-END);

iLen = ftell(inFile);

rervind(inFile);

fseq : (float*)calloc(iLen+1, sizeof(float));

if(fSeq=-NULL)
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print("Enor of malloc space for fSeq \n");

exit(0);

)
if(fscanf(inFile, "%d%d", &i, &iTenp)-2);

i=0;
while(fscanf(inFile,''%do/ol', &iïemp, &tllemp):2¡

fseq[i++] = fTemp;

if(status>0)

{
fo(k=0'j=0; k<i; k+=3)

fSeqU++l = fSeqlk+status-l l;
iSeqlen = j;

Ì
else

iSeqlen - i;

fclose(inFile);

retum fseq;

)
else//open, rvrite to the output file

{
if((outFile=fopen(cFileName, "rv")) : NULL)

{
printf("\n Failed to open the output file\n");

exit(0);

Ì
fprintf(outFile, "%d%d%d", iNumRtol, iNumM, iNumAtol);

for(i= l; i<=iNumRtol-2; i++)

fprintf(outFile, "%d", O);//fr rst line

fprintf(outFile, "\n");
fo(i=o; i<iNumAtol; ¡++)

{
fPrint(outFile, "%. lf 

" 
fA[i]);

for(k=o; k<iNumRtol; k++)

fPrint(outFile, "%. 1 f 

" 

fR[k]);

fprintf(outFile"'\n");
for(i=0;j<iNumM;j++)

{
fprintf(outFile, "%d", j+l);
for(k=o; k<iNumRtol; k++)

fPrint(outFile, "% 2f', 100+fFNN

[iNumM*(iNumAtol*k+i)+j]);
fPrint(outFile, "\n");

Ì

)
//fOutputData0.005+
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fseq = (float +)calloc(1, sizeof(float));

fseq[o] = -1.0;

fclose(outFile);

retum fseq;

l

* #fl 4########444i# H4 #+fl 4#4
codUgTimeSeriesReniMan.c

Discription: Loads the data file, calculates the Renyi Dimension, singularity spectrum,

and Mandbort D¡mension.

Author: Hong Zhang

Version: 1.0

Last Update: Jun. 2001

##4##fl+*44#####4#H4#4###4#4fl+i##4##H####s44#444######s4###i4ä4444+###i+##H#H##+l

#include <stdio.h>

#include <stdlib.h>

#include <malloc.h>

#include <string.h>

#include <math.h>

#ifdef CONTOIJR-INT
#define CONTOUR

*Éendif

ftdefine DELTA 0.01

#defineRANGE 25

fl oat+ loadTimeSeries(char*);

void renyCalc(fl oat*, char*);

long ñleL€ngth;

int main0

{
int i;

char imfile[80];
float +data;

print("\,ri Enter name ofthe data file: ");
scanf("%s",imfile);

//+,¡ {. *:** *'r+*+ *+* *'*,t++,* +:li'*,*'} *

#ifdef CONTOUR-INT
data = loadTimeSeries(imfi le);

printf("Sequence length = %d\n", filelength);
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renyCalc(data, imfi le);

retum 0;

#endif
//++***,1.+*1.¡.+*++*,*'l'*+**+:¡*'t+

data = loadTimeSeries(imfi le);

renyCalc(data, imfi le);

rctum 0;

)

fl oat* IoadTimeseries(char* fi leName)

{
FILE *inFile;

int i=0, k, iTemp[2];

float *ßeq, fTemP[3];

if((inFile = fopen(fileName, "r")) == NULL)

{
printf("Failed to open the time series data file\n");

exit(0);

)
fseek (inFile, 0, SEEK-END);

fi leLength : ftell(inFile);

¡ewind(inFile);

fseq: (float *)calloc(filelength+ I , sizeof(float));

if(fSeq:NULL)
{

pr¡ntf("Failed to malloc for the iSeq buffer\n");

exit(0);

Ì

while(fscanf(inFile, '%d%F/"P/of', &iTemp[0],AflemplOl,&flempIt]'&fTemp[2]):4)

fseq[i++] = (fl oatxTemP[0];

fclose(inFile);

filelength = i;

printf("fi lel-ength = %d\n", fileIængth);

retum fSeq;

)

void renyCalc(float+ signalSeq, char+ imfile)

{
float *codeBook, *renyDim, *mandbort, *singuSpc;

float fQ[2], delta;

double dTmp, tem[2], logTemp[2], totalN[2], templ, temp2;

int i, j, k, q, len, temP, subQ, factor, x;

char outfile[50];
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FILE *out;

delta = DEtfA;
fQ[0] = I ' delta;

fQ[] = I + delta;

sinluSpc = lnoat *)calloc((RANGE*2+7), sizeof(float));

.un¿6ox = 1fl oat *)calloc((RANGE*2+?), sizeof(fl oat));

renyDim = (float *)calloc((RANGE+2+?), sizeo(float));

it((Lnyoirn == r'n¡-r-)&&(singuSpc : NULL)&&(mandbort =: NULL)))

{
printf("Error ofnot enough space for renyDim' singuspc' or/and mandbort \n");

exit(0);

I
else

{
len = filelength;

totalN[0] = 0.0;

totalN[l] = 0.0i

fo(i=o; i<len; i++)

i f((temp=(i nt)fl oor(signalSeqIi]+0'5))>0)

totalN[0] += (double)temp;

toralNI l] = loglo(totalN[0]);

fo(q=-RANGE; q<RANGE+ t; q++)

{
i((q:-2)lì(q==- t))

factor : l;
else

factor = 0;

fo(subQ=o; subQ<3*factor+ I ; subQ++)

{
temlo] = 0.0;

temll] = 0 0;

templ = 0'0;

temP2 = 0.0;

for(i=0; i<len; i++)

{
temp = (int)fl oor(signalSeqIi]+0.5);

if(temp>0)

{
if(q== 1)

{
tem[0] += Pow(temp, fQ[o]);

tem[1] += Pow(temP, fQIl]);

Ì
else

tem[o] += pow(temp' (floaÐq+subQ*0 25);
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)
else

else

temp I +=pow((fl oat)temp/l 00, (fl oat)q+subQ*0 25);

temP2+=

(logt0(temp))+pow((float)temp/l00, (fl oat)q+subQ*0 25);

)

l
if(q: I )
{

temlol = loglo(tem[0]) - fQ[0]+totalNlll;

temlll = logto(temIl]) - fQIl]*totalN[l];

tem[0] = loglo(temlol) - ((float)q+subQ*0 25)*totalNIl];

if(q=: I )

{
logTemp[0] = ( t-fQ[0])*log l0(len);

logTemplll = (l -fQ[ t ])*log lo(len);

logTemp[0] = ( I -(float)q-subQ+0 25)*loglO(len);

if(q<-2)

{
renyDimlRANGE+ql = (fl oat)(tem[o]/logTemp[0]);

dTmP = temP2 - templ +totalNtll;

singusPc[RANGE+q]=
(fl oatxdTmp/(log I 0( I (fl oat)len)*temp I ));

dTmp = q*dTmp - temp I *(log lo(templ) + 2+q - q*totalN[l]);

mandbortIRANGE+q]=
(fl oat)(dTmp(log l0(l/(fl oat)len)*temP I ));

l
else if((q>="2¡E¿&(q<0)

{
renyDimIRANGE+q+(2+q)*3+subQ] =

(fl oatxtem[0]/logTemP[0]);

dTmp = temp2 ' templ *totalNIl];

singusPcIRANGE+q+(2+q)*3+subQ] =

(fl oat)(dTmp/(log I 0( I /(fl oat)len)*temp l));

dTmp = (q+subQ*0 25)*dTmp - templt(loglo(templ)

+ 2+((fl oaÐq+subQ*0.25) - ((fl oat)q+subQ*0.2s)*totalNlll);

mandbort[RANGE+q+(2+q)*3+subQ] =
(fl oat)(dTmp/(log I 0( t (fl oat)len)*temp I ));

i(q==l)
renyDim[RANGE+q+6] =

(fl oat)(tem[o]/logTemp[0] + temlllnogTemplll)/2;

Ì
else

{
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renyDimIRANGE+q+6] = (fl oat)(tem[0]/logTemp[0]);

dTmp = temp2 - tempt*totalN[l];

singuspcIRANGE+q+6] =
(fl oatxdTmp(log t O( l/(fl oat)len)*templ));

drmp = q+dTmp' temP I *(loglo(templ) + 2*q - q*totalN[l]);

mandbort[RANGE+q+6] =
(fl oatxdTmp(log I 0(l (fl oat)len)*temp l));

)
strcpy(outfi le, imfi le);

strcat(outfi le, ".reni");

if((out = fopen(outfile, "w"¡ ¡ == ¡'IuL¡¡

{
pr¡ntf("write enor");

exit(0);

ì
for (k=0; k<56; k++)

{
fprintf(out, " %o.49/o'4P/o'4f\n", renyDim[k]' singuSpc[k]' mandbortlk]);

l
fprintf(out, "%.4fyo 4f¡lo.4f', renvDimIk], singuSpcIk], mandbort[k]);

fclose(out);


