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Abstract

Gated radionuclide ventriculography is a procedure commonly used to assess
cardiac function. A time sequence of images representing the blood pool volume over a
single heart beat is acquired. These studies are then analysed to extract a quantitative
par.ameter representing contraction efficiency of the left ventricle, termed ‘ejection
fraction’.

Currently implemented automated left ventricle recognition techniques rely on
edge-detection methods. A more adaptable algorithm based on a double application of
the fuzzy c-means clustering algorithm was developed. The fuzzy technique was
optimised using a set of ten test images, to yield a global set of parameters which were
then used to reanalyse the entire test group. The performance of the fuzzy method
correlated well ( = 0.90) with a manual method used by a human operator. A systematic
7.8% underestimation of ejection fraction by the fuzzy method was shown to be
attributable to the fact that the fuzzy c-means technique tends to use a tighter left
ventricle boundary identification than does a typical manual analysis.

A comprehensive list of possible error sources affecting ejection fraction
measurement was compiled. This prompted a preliminary investigation of the effects of
photon attenuation within the blood volume. A computer program was written to model
the attenuation effects and estimate the magnitude of attenuation effects on the measured
ejection fraction. A novel technique for correcting the ejection fraction estimate for

blood volume attenuation effects was developed.
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Chapter One: BACKGROUND TO CARDIAC EJECTION
FRACTION MEASUREMENT

1.0 Introduction

One of the primary uses of cardiac scintigraphy is the evaluation of left
ventricular function through quantitative analysis. Equilibrium gated blood pool imaging
permits visualization of the distributed blood volume within the heart chambers as a
function of time within a representative cardiac cycle. The technique generates both
qualitative and quantitative data; ventricular wall motion is visualized and analysis of the
same images provides parameters for the assessment of ventricular function. The most
important quantitative parameter for left ventricle (L'V) assessment is the ejection
fraction (EF). This is defined as the ratio of blood volume ejected from the LV to
maximum blood volume of the LV.

Estimation of LV EF requires the delineation of the LV contour from the
sequence of two-dimensional images taken throughout the cardiac cycle, as well as an
appropriate background subtraction. The quantification of the EF parameter from the
gated blood pool images involves two major assumptions (Green, 1978):

(1) the externally measured L'V count rate at the gamma camera is absolutely
proportional to the LV volume, and
(2) all cardiac cycles during the image acquisition period are mechanically identical.
The first assumption is violated due to attenuation of radioactivity by intervening tissue,

including the L'V blood volume itself. Due to naturally occurring heart rate fluctuations,



the second assumption is also violated. The contravention of these assumptions and the
effects on EF estimation are further discussed in chapter two.

Manual methods of finding L'V EF are characterized by relatively large inter- and
intra-observer variations, which hamper the assessment of effects of interventions on EF
(Okada, 1980; Burow, 1977). To reduce this variability, several semi-automatic and
fully automatic methods for calculating LV EF from gated blood pool studies have been
developed since the introduction of this imaging technique. These approaches include
several variations of edge detection such as first derivative (Douglas, 1978), second
derivative (Christian, 1985), combination first and second derivative (Links, 1982),
ellipsoidally restricted edge detection (Maclntyre, 1982), second derivative combined
with minimal cost contouring (Reiber, 1985, 1983), second derivative combined with
thresholding (Slutsky, 1980), interpolative schemes (Almasi, 1982), non-linear edge
operators (Chang, 1980), best-fit edge detection (Chang, 1980), bidirectional scanning
combined with functional criteria (Goris, 1978), and Gram-Schmidt processing combined
with edge following (Jouan, 1990). Virtually all previous methods of L'V identification
have been highly dependent on edge detection.

At the Health Sciences Centre (HSC) in Winnipeg, approximately 10-15
equilibrium gated blood pool studies are performed each week. These studies are
analysed by a manual method as well as a semi-automated routine, and saved (via film
hardcopy) in the patient’s permanent records. A fully automated analysis available in the

software is not utilized due to unreliable performance. The LV ROI’s identified by the



automated algorithms are derived through the thresholding and second derivative process
as described by Slutsky (1980).

It was felt that exploration of an automated approach to LV ROI recognition
which involved less edge detection than classical methods might lead to a more reliable
algorithm. Fuzzy clustering is a well explored topic and generally applicable in the
research areas of pattern recognition and artificial intelligence, and thus a logical choice
for application to LV boundary identification. Arguments justifying this choice are
presented in section 1.3.1.

This work has several objectives:

(1) Develop a working computer program capable of identifying, through the application
of fuzzy clustering techniques, the LV in an equilibrium gated blood pool scan of a
normal patient. This is described in chapter three.

(2) By automating the background activity correction process, the ejection fraction
parameter may be quantified without manual intervention. This particular process is
discussed further in section 3.5. A comparison between the automated and manual
methods of background activity estimation is given in section 5.2.

(3) Another aim is to compile a detailed list of possible error sources affecting the
absolute uncertainty of any single measurement of ejection fraction. This comprises the
entirety of chapter two.

(4) A novel and simple method of correcting ejection fraction estimates for blood

volume self-attenuation is developed and presented in chapter four.



The results of the fuzzy clustering based automated algorithm applied to a limited
number of clinical images are presented in chapter five. A brief overview of the
equilibrium gated blood pool imaging process and the mathematical basis of fuzzy

clustering is supplied below.



1.1 Gated Blood Pool Imaging

1.1.1 Red Blood Cell Labeling

In order to be imaged, the red blood cells must first be ‘labeled’ with a
radioactive compound and then observed with a properly tuned scintillation or ‘gamma’
camera (Sharp, 1989; Palmer, 1991; Cardiac Imaging, 1991). Red blood cell labeling
generally employs a radiopharmaceutical which remains within the intravascular space.
The standard radioactive compound used for this type of imaging is Technetium-99m,
which emits photons of energy 140 KeV. There are several procedures for tagging the
red blood cells: in vivo, modified in vivo, and in vitro.

The in vivo process involves intravenous administration of approximately 10-
20 pg of stannous ion per kg body weight, followed after 20 minutes by about 740 Mbq
(20 mCi) of 99””{004_. During the 20 minute interval, the stannous ion (Sn2+) enters the
red blood cells and excess ion clears from the plasma. Immediately upon injection,
99’“'1‘004- diffuses into the red blood cells, where it is reduced by the stannous ion and
binds to the beta chain of hemoglobin. Some of the gngcO4- diffuses into the
extracellular fluid, and some labels plasma elements in addition to red blood cells. The
modified in vivo technique is similar to the in vivo, but after the 20 minute interval, a
small quantity of blood (2-5 mL) is withdrawn into a syringe containing about 740 Mbq
(20 mCi) of 9ngcO4-. The cells incubate in the syringe at room temperature for 10 to 15
minutes before reinjection. This modification of the in vivo method results in a
reduction in diffusion of > TcO, into extracellular space at the cost of increased time.

The in vitro labeling process is entirely carried out external to the patient. The
procedure involves stannous reduction of a small amount of patient’s blood in a syringe.
The red cells are separated from plasma elements by centrifugation and then labeled with

*TcOy4 . The in vitro method results in the best signal-to-noise ratio of the three



labeling methods. However, the in vivo method is the easiest to perform and requires the
shortest amount of time to complete, at a cost of a reduced signal-to-noise ratio. The

nuclear medicine department at the HSC utilizes in vivo labeling.

1.1.2 Dosimetry

The dosimetry of gated blood pool imaging depends in part upon the efficiency of
the red blood cell labeling. For the in vivo method of labeling, a binding efficiency of
75% 1s typical. An estimation of absorbed dose for several organs is given in Table 1.1.
Structures containing blood, such as the heart, receive about 10 mGy per 750 MBq dose.
Shortly after injection, loosely bound Tc”™™ is excreted in the urine. Dose to the bladder

may be reduced if the patient voids frequently.

Organ Absorbed Dose (mGy/750 MBq)
Spleen 3.6
Bladder wall 24.0
Testes 2.4
Ovaries 4.6
Blood 10.4
Whole body 3.2

Table 1.1: Estimated absorbed radiation dose from labeled red blood cells [source:
Palmer, et.al., 1991].



1.1.3 Image Acquisition

1.1.3.1 Protocol

After injection of the 750 MBq dose an interval of 5 minutes is allowed for the
activity in the blood to achieve equilibrium before the image acquisition is begun.
Otherwise, a slow rise and fall of activity will be observed corresponding to the passing
of the injection bolus. Standard protocol decrees that studies at three views be obtained.
This enables one to observe, as far as possible, the complete anatomy of both ventricles
and the separation of both ventricles with the septum end-on in at least one view. These
views include a left lateral, an anterior, and a left anterior oblique (LAO) view, as
depicted in Figure 1.1. At HSC the LAO view is taken as the best septal view (ie. where
the left and right ventricles are readily distinguished). This view is found through
manual adjustment of the gamma camera position while the technician examines the real-
time image of the heart. The anterior view is attained at minus 40° rotation with respect
to the LAO view about the head-foot axis of the patient (counter-clockwise as viewed
from the feet) , while the left lateral view is taken at plus 30°. The LAO view is
collected for 600 s, while the other two views are collected for 300 s each. The LAO
view is acquired with better statistics (due to the longer imaging time), since it is
involved in several quantitative analyses of heart function, and therefore needs to be as
accurate as reasonably possible. Approximately 8 x 10° counts are collected during a

600 s imaging time.
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Figure 1.1: Cross sectional diagram of camera-patient geometry for three standard
gated blood pool scans as viewed along patient axis from feet direction.

1.1.3.2 Gating

The amount of radioactivity uniformly distributed throughout the blood volume is
much too small for a useful image to be acquired over a single cardiac cycle. However,
by summing the activity measured over several hundred cardiac cycles, an image with
adequate statistics may be attained. An electrocardiogram (ECG) serves as the gate for
the purpose of defining the beginning of each cardiac contraction, and hence
differentiating successive heart beats for imaging purposes. The image acquisition for
each cardiac cycle is initiated by the strong R wave electrical pulse of the heart. This

pulse initiates the depolarization of the ventricular walls from endocardium toward



epicardium (ie. ventricular contraction) Contraction of the ventricle chambers is termed
ventricular systole, and is followed by a time period where the chambers are relaxed,
termed diastole. The R wave of the ECG identifies the onset of mechanical systole as the
reference point for the imaging. At HSC a four electrode configuration is used to obtain
the ECG signal for the patient, but these positions may be modified to ensure a strong R-

wave triggering signal.

Figure 1.2: Normal output of an electrocardiogram lead, demonstrating a strong
R-wave pulse from which the gated image acquisition is triggered.
Vertical lines are 65 ms apart, R-wave pulse height is approximately 1
mV. jadapted from Patton, et.al., 1989]

1.1.3.3 Frame Time
Generally the cardiac cycle is divided into 16 to 32 frames and varies between
institutions. At HSC the cycle is separated into 24 frames. Thus, the length of time each

frame represents is:

timeof oneheartbeat 60
24 frames per heartbeat 24 * heart rate (bpm)

time per frame =

where bpm represents the heart rate as measured in beats per minute. Ideally, a frame

time of 0.025 to 0.030 s should be used, since end systole may last as little as 0.050 s.



This 1s simple application of the Shannon-Whittaker sampling theorem. If frame times
of longer length are employed, it may be possible that no single frame will occupy end
systole, resulting in an overestimation of minimum ventricular volume. Consequently,
ejection fraction will be underestimated also. This error is rendered negligible if the
frame time is kept below 0.050 s. The equation above yields a minimum heart rate of 50
bpm if the frame time is to be kept below 0.050 s. Any heart rate above this will
decrease the time per frame. The impact of frame time choice upon reproduction of an

accurate volume activity curve is further discussed in section 2.1.2.1.

1.1.3.4 Beat Rejection

During the course of the image acquisition, the heart rate will normally vary.
However, in certain situations (such as arrythmia), the patient may experience a highly
fluctuating heart rate. Premature heart beats are identified as those cardiac cycles whose
R-R interval are much shorter than the average R-R interval as measured over the
duration of the acquisition. The beat following an abnormal beat is also abnormal due to
the abnormal filling and emptying of cardiac chambers during the bad beat. If the
premature beats (PB) are frequent, the gating process will result in an image consisting of
a superposition of normal, PB's, and post PB's. In this situation the evaluation of cardiac
function with respect to normal beats will in error. To circumvent this problem,
abnormal beats must be detected and rejected.

By defining a beat length window before the acquisition, the user can specify the
limits for rejection or acceptance of a heart beat. At HSC, a 15% window is used to
allow for the normal variation in R-R interval lengths. A running average of cycle length
is kept during image acquisition. Only those beats which are within the window
contribute to the running average. A 15% beat window is thus defined as:

(085 x timer-z) < time,_, < (115 x timez_r). A beat is identified as abnormal if its R-R
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interval lies outside this predefined window. The method of rejecting the bad beat or

subsequent beats varies with the acquisition mode, as discussed in the following section.

1.1.3.5 Acquisition Modes

There exist several methods of processing the count data acquired in gated blood
pool imaging. The two most common are frame mode and list mode.

In frame mode, the data are summed into the study frames as they are acquired in
real time. Any data detected during a specific time segment are stored in a corresponding
frame on the terminal screen. The presence of a bad beat will not be recognized until all
the data from that cardiac cycle have been stored in each of the frames. Hence, it is not
possible to reject the data for the bad beat itself. Only subsequent beat(s) following the
abnormal one may be rejected. When the R-R interval varies, data collected from short
beats are terminated by the arrival of the next R wave. Thus a short cycle will contribute
no data to the final frames of a study. Therefore studies in patients with irregular heart
beats result in an observable decrease in counts in the final frames. This problem is
known as count drop-off. The summation of cardiac cycles tends to blur the data, since
the frames from the different cycles do not correspond properly.

In list mode, data for each cycle are acquired into a temporary memory buffer.
The data are not included in a study until after the R-R interval length has been accepted.
If a bad beat is detected, the data within the temporary buffer are ignored. Thus, the
abnormal beat may be rejected, as well as subsequent beats. The count drop-off problem
is partially circumvented in this manner. Complete elimination of the count drop-off
problem is achieved by acquiring data in the phase mode, which is a variation of the list
mode. The phase mode subdivides each cardiac cycle into a preset fixed number of
frames, whose individual time lengths vary between cycles corresponding to the length of
heart beat. Hence short cycles are stretched and long cycles are compressed to fit the

same number of frames for each cardiac cycle. In this manner, the drop-off effect is

11



eliminated. Beats falling outside the beat window are still rejected. Studies performed at

the HSC employ the phase mode.

1.1.3.6 Preprocessing

Two types of smoothing are performed on the raw image data at HSC by the
acquisition computer prior to digital storage. A temporal smoothing is performed which
smoothes the data along the time axis. Each pixel in each frame is averaged with the
corresponding pixels in the previous frame and the following frame. The 24 frame
smoothed image set is reformatted into 16 frames, in order to fit a three view study into a
single 512x512 pixel image (containing the three 16 frame data sets of size 256x256). A
spatial smoothing is also performed, which involves replacing the pixel of interest with a
weighted average of the surrounding 3x3 group of pixels within the frame to be
smoothed. The weighting of the pixels is dependent on their position, with the

convolution mask configured as;

1 2 1
Linear Filter Mask = ilg 2 4 2
1 2 1
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1.2 Current Technigues of Finding Ejection Fraction

1.2.1 Introduction

The software currently in use at the HSC provides three methods of analysing
gated blood pool images for the ejection fraction parameter. A manual, semi, and fully
automated analysis of the left ventricle is available. The manual and semi-automated
routines require subjective judgment on the part of the user thus suffering from inter- and
intra-observer variabilities. While the fully automated routine removes these inter- and
intra-observer subjectivities, there still exists a built in bias in the analysis dependent on
the exact particulars of the method employed. The software documentation suggests the
fully automated analysis should be reviewed by a trained observer. At the HSC, both the
manual and the semi-automated routines are applied to each test, and the results of these
analyses are saved on films which are included in the patient’s permanent records. The
acquired images are stored in an archive, and may be accessed at any future time for
review. The fully automated method fails on approximately 15% of studies performed at
this site, according to an informal survey of several Nuclear Medicine Department staff
members.

It should be noted that the techniques for image acquisition and analysis will vary

somewhat between hospitals.
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1.2.2 Definition of Ejection Fraction

Left ventriclular ejection fraction is defined as the ratio of the volume of blood
discharged from the left ventricle during one contraction to the volume of the left
veniricle at end-diastole. If one knows the LV volumes at end-diastole and end-systole,
then the ejection fraction (EF) is:

_ EDV - ESV
EDV

EF (1.1)

where EDV = end-diastolic volume, and

LSV = end-systolic volume.

It is one of the most important parameters used to evaluate left ventricle performance
(Cardiology, 1991).

Gated blood pool scanning is a noninvasive test which is frequently used to
estimate LV ejection fraction. By assuming the counts collected in the gamma camera
are proportional to the blood volume, conclusions regarding the 3D volume of blood in
the L'V may be drawn, despite using only planar images. The equation for calculating EF

from these images is modified to:

o= (EDC = gy - BG) = (ESC - s - BG)
(EDC = nyy, - BG)

(1.2)
where EDC = sum of counts in L'V region of interest (ROI) in end-diastolic view,
ESC = sum of counts in LV ROI in end-systolic view,

BG = background activity estimate per pixel

ngp = number of pixels in end-diastolic LV ROI

14



ngs = number of pixels in end-systolic LV ROI
This formula employs a LV ROI which varies from frame to frame (generally described
as a ‘variable ROI” method). In addition, a time independent, spatially uniform

background correction is performed

1.2.3 Manual Method

The image data are smoothed temporally and spatially in order to reduce the
effects of statistical uncertainty in the data. The temporal smoothing is accomplished by
averaging each pixel in each frame with the corresponding pixels in the preceding frame
and the next frame. The spatial smoothing is performed by convoluting a weighted 3x3
matrix over each image frame. The smoothing process has been previously described in
section 1.1.3.6, where the kernel is also given explicitly.

The user then manually draws a region of interest (ROI) around the left ventricle
of the end-diastolic (ED) image. This ROI is applied to all the image frames to generate
a preliminary time activity curve (TAC) in order to find the end-systolic (ES) frame.

The TAC is generated by summing all the counts lying within the ROI of each image
frame, and when registered counts are assumed proportional to blood volume, the TAC is
proportional to the time-volume curve. The ES frame is identified as the frame with the
lowest activity in the generated TAC. The user then draws a region of interest around the
left ventricle (L'V) of this frame, and another TAC is generated from this ROI. The user

defines a crescent shaped background region by defining the starting and ending angles
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(relative to the geometric centre of mass of the LV), the width of the crescent, and the
spacing between the crescent and the L'V boundary as in Figure 1.3. The background
activity per pixel is found and subtracted from each pixel in each ROI for both TAC’s. A
new left ventricular TAC is produced through linear interpolation of the two initial
TAC’s which were generated from the fixed ED and ES regions of interest. This
interpolation is performed in order to approximate the left ventricular TAC which would
be generated from a variable left ventricular ROI. Finally, the ejection fraction is

calculated and the analysis is printed out onto film as well as saved to disk.
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SA -Starting angle

EA - Ending angle

w - width, in pixels, of BG ROI

s - spacing, in pixels, from the L'V ROI
GCM - geometrical centre of mass

LV ROI - left ventricle region of interest
BG ROI - background region of interest

Figure 1.3: Parameters involved in background region of interest selection in
manual method of ejection fraction calculation jadapted from APEX
SP-1 Operation Manual].
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i.2.4 Semi-Automated Method

The image set is smoothed both temporally and spatially, as in the manual
technique. A master ROl is created which encompasses the left ventricle in all image
frames. This ROI is defined by the software and is based on the phase image (a single
image conveying the relative time of contraction of each pixel, mathematically defined to
be the first harmonic resulting from Fourier analysis, as described in section 3.1.1), the
amplitude image (a single image in which each pixel represents the maximum change in
measured counts over the entire cardiac cycle), and the average grayscale image of the
entire sequence of frames. The master ROI simply defines the image area to which the
edge detection algorithm will be applied in every frame of the study. The user is given
the opportunity to redraw this master ROI. An edge detector is then applied to the master
ROI in each image frame, in order to create an LV boundary on each frame. The edge
detection is based on a second derivative technique with predefined thresholds. The
thresholds are defined for each of the eight main cardinal directions and applied to the
second derivative information along ray traces outwards from the LV grayscale
maximum, to generate L'V edge points. The user may redraw the LV boundary in any of
the image frames. A low pass filter is applied to the LV TAC to decrease noise. A
background ROI is automatically created in the ES frame and consists of a crescent
shaped region 3 pixels in width, 1 pixel outside the LV boundary, extending from 90 to
180 degrees relative to the L'V centre. The user may redefine this background ROI. The

background activity is subtracted in the same manner as in the manual method, and the
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LV TAC analysed for ejection fraction. The analysis is printed out on film, and saved to

disk.

1.2.,5 Fully Automated Method

This technique is essentially the same as the semi-automated procedure, except
that the user is not given opportunities to redefine the LV ROI’s nor the background
ROIL. The software documentation recommends careful review of the results, and
possible verification using the manual method. The fully automated technique is not
currently used at the HSC for several reasons:

1) The sensitivity of the edge detection algorithm employed in the automated (and
semi-automated) routine is very cumbersome to modify in situations where the
automatically identified edges are in disagreement with the physician’s estimate.

2) The correlation between the automated results and the previous method of EF
measurement was measured at the time of installation of the current equipment and
software. The automated results correlated poorly with the results of the previous
method (relative to the manual analysis), and hence has been unused in favour of the

manual analysis.
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1.3 Fuzzy Clustering

1.3.1 Motivation for Using Fuzzy Set Theory

Fuzzy set theory is a generalization of abstract set theory. Since abstract set
theory is simply a special case of fuzzy set theory any definition, theorem, proof, etc., of
fuzzy set theory will always hold for abstract sets. Fuzzy set theory has a wider scope of
applicability than abstract set theory because of this generalization, especially in solving
problems requiring subjective evaluation (such as left ventricle boundary identification).

Inexactness may take several different forms: (1) generality: that a concept may
apply in a variety of situations, (2) ambiguity: that a situation may be described by more
than one distinguishable concept, and (3) vagueness: that boundaries are not defined
precisely. The fuzzy set is a mathematical representation of all these forms of
inexactness. Manifestations of inexactness that are contained in the nuclear medicine
image set being analysed include low resolution, noise from scatter and background
sources, relatively poor statistics, and overlapping of anatomical features (2-D view of a
volume source). The resulting images are of generally poor resolution and contrast as
compared with images from other modern modalities, with the anatomical features being
blurred and indistinct. This high degree of inexactness which characterizes gated blood
pool images make them an excellent candidate on which to apply fuzzy set theory.
Furthermore, the physician makes several subjective decisions when analysing an image
set for an ejection fraction. Thus, an analysis based on fuzzy set theory approach as
opposed to abstract set theory seems most logical. Previous applications of fuzzy set
theory in the medicine field are numerous [Adlassnig, 1986; Maiers, 1985; Tazaki, 1986;
Zaifu, 1986].
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1.3.2 Non-Mathematical Discussion of Fuzzy Clustering

Fuzzy classes of objects are often encountered in the real world (as opposed to an
ideal mathematical construct). For example, 4 may be the set of beautiful women in a
city W, or 4 may be the set of tall trees in city /. Traditionally, the grade of
membership 1.00 is assigned to those objects that fully and completely belong to 4, while
0.00 1s assigned to objects which do not belong to A at all. This form of membership
assignment presents problems when applied to the examples given above. How tall does
a tree have to be to be classified as a ‘tall tree’, and similarily, how beautiful a woman to
be classified as belonging to the set of ‘beautiful woman’. This lack of a precisely
defined criteria of membership is commonly encountered in the real physical world. In
situations such as these, an object does not necessarily need to either belong or not
belong to a class. There exists the possibility of assigning intermediate grades of
membership. This is the concept of a fuzzy set, consisting of a class with a continuum of
grades of membership. Applied to a single frame of a gated radionuclide
ventriculography study, each pixel may be assigned a membership grade determining its
association with a particular anatomical feature. For instance, the membership grades for
a cross-section of pixel intensities in such an image may be thought of as belonging to
the right ventricle, left ventricle, septum, or descending aorta, as depicted in Figure 1.4.
The fuzzy set memberships consist of smoothly varying functions (in this case gaussian
form was chosen for illustrative purposes), while the non-fuzzy set memberships are

composed of step functions.
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Figure 1.4: (a) Profile of pixel intensity across row 34 of end-diastolic image frame,
(b) possible fuzzy memberships of pixels according to anatomical
representation, and (c) possible non-fuzzy or ‘hard’ memberships.
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Classification is the process of assigning an item (or observation) to its proper
place; the problem of cluster analysis is frequently stated as one of finding the ‘natural
groups’ within a set of data. The essence of cluster analysis may be viewed as
identifying homogeneous and well-separated structures within a given data set (Kandel,
1982). Applied to the problem at hand, this could translate into the identification of a set
of pixels representative of the left ventricle, where all the member pixels possess
homogeneous properties (such as similar phase and intensity), yet significantly different
properties when compared to other groups of pixels such as those belonging to the right
ventricle, descending aorta, or background.

Most cluster analysis methods require some measure of similarity to be defined
for every pairwise combination of the data to be clustered. When clustering data, the
proximity of individual data points is usually expressed as a distance. This implies that
clusters are generally shaped in a spherical manner.

An object is characterized by assigning to it the values of a finite set of
parameters considered relevant to the object (ie. features of the object or data set). These
input features are generally defined by the data acquired by a sensory device. In this
case, the sensory device is a standard nuclear medicine gamma camera. Some features
used in applying fuzzy clustering in this work include the first harmonic phase (section
3.1.1), isolation value (section 3.1.2), grayscale intensity (section 3.4), x-, and y-
coordinates (sections 3.1 & 3.4).

It should be emphasized that cluster analysis is a device for suggesting

hypotheses. The classification of data, or variables obtained from a cluster analysis
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procedure, has no inherent validity. The worth of a particular classification and its
underlying explanatory structure is to be justified by its consistency with known facts.
It is hoped that this non-mathematical discussion of fuzzy set theory and fuzzy
clustering has been useful in quickly illustrating some of the main ideas and principles
involved in this broad field. The following few sections will delve more deeply into the
mathematics of fuzzy clustering, and eventually present the fuzzy clustering algorithm

which has been employed in this work.

1.3.3 Fuzzy Set Theory

The theory of fuzzy sets deals with some subset C of the universe (or collection
of objects) ¥, where the transition between no membership and full membership in the
subset is gradual and continuous, rather than a discrete change. The fuzzy subset C has
no well defined boundaries while the universe ¥ covers a definite range of objects. The
membership grade of 1 is assigned to those objects which fully and completely belong to
C, while 0 is assigned to objects which do not belong to C; the more representative of C
an object is, the closer to 1 is its membership grade. In nonfuzzy (or abstract) set theory,
membership is either 0 or 1, with no intermediate classifications.

If ¥ = {y} denotes a collection of objects, then a fuzzy set C in ¥ is a set of

ordered pairs defined as;

C: {(y> uC(y))}> Y EY: uC E[Oal]

where u¢ 1s the grade of membership of y in C. This membership grade lies between 0

and 1 as discussed previously. The grades of membership reflect an ordering of the
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objects in the universe, produced by the association of attributes of C. The membership
grade u¢ (y) of an object y in C can be alternatively interpreted as the degree of

compatibility of the attributes associated with C and the object y.

1.3.4 Cluster Analysis

The cluster analysis problem is generally stated as one of finding the 'natural
groups' within a data set. The objective is to sort the data set into categories (or clusters)
such that the degree of association is high among members of the same cluster, but low
between members of different clusters. In other words, homogenous and well-separated
clusters are desired.

Generally cluster analysis requires some measure of similarity to be defined for
every pairwise combination of data points to be clustered. A common similarity measure
is the proximity of individual data points, usually expressed as a distance. Clusters are
defined through the application of the similarity measure (also known as the clustering
criterion). Many different similarity measures for clustering have been proposed and
used, but the most popular and well studied method to date is the generalized least-
squared errors criterion. This criterion is used in the present analysis, and will be
described in detail in a following section.

Outlier data points ideally fall into a category reserved for 'unclassifiable' points.
Conventional methods of clustering (based on abstract set theory) possess no natural
mechanism for assimilating the effects of indistinctive or deviant data. However, fuzzy
set theory alters the basic axioms underlying clustering in order to accommodate this
requirement. In fuzzy clustering, a data point may belong entirely to a single cluster, but
generally retains partial membership in several clusters thereby removing (or at least

reducing) the effect of a potential outlier.
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An example adapted from Bezdek (1981) illustrates how a simple array of
geometric points is assigned memberships within two clusters. This is the classic
Butterfly example, and is illustrated in Figure 1.5, and Table 1.2. The set of input
vectors used by the fuzzy clustering routine simply consists of the x- and y-coordinate
data of each point. The clustering routine has been set to find two clusters within the
given set of data. Each data point has partial membership to both clusters. Due to the
mirror symmetry about the eighth data point, the membership functions for the two

clusters are also symmetric about this point, as observed in Table 1.2.
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Figure 1.5: Dlustration of fuzzy clustering (set to identify two clusters) applied to a
simple data set of Cartesian points [adapted from Bezdek, 1981].

Sample Input Data Membership  Functions
k Yx iy Uz,
1 0,0 0.86 0.14
2 (0,2) 0.97 0.03
3 (0, 4) 0.86 0.14
4 (1, ) 0.94 0.06
5 @2 0.99 0.01
6 13 0.94 0.06
7 2,2) 0.88 0.12
8 3,2) 0.50 0.50
9 {4,2) 0.12 0.88
10 ;5,1 0.06 0.94
1l (5,2) 0.01 0.99
12 (5, 3) 0.06 0.94
13 (6, 0) 0.14 0.86
14 (6,2) 0.03 0.97
15 (6, 4) 0.14 0.86

Table 1.2: Cartesian data points input into fuzzy clustering routine (identifying two
clusters) and resulting membership functions.
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1.3.5 Fuzzy c-Means Algorithm

In this section, the mathematical basis for the fuzzy c-means algorithm will be
developed. Due to the abstract nature of the mathematics involved, analogies to the
Butterfly example from the previous section will be drawn at every opportunity. Once
the background description is complete, the steps of the fuzzy c-means algorithm will be
described. The algorithm is aptly named (ie. ‘c-means’) since the calculation of the
mean data value of each of ¢ clusters is required for each iteration of the algorithm.

Let Y= {y), »,, ..., ¥v} be a sample of N observations in R (n-dimensional
Euclidean space), where y, is the A-th feature vector and y,,the j-th feature of y,. A
feature vector is composed of all the information or ‘features’ associated with each given
observation in Y. In the adapted example in the previous section, k=1, ..., 15 (number
of data points), j = 1, 2 (the two features are the x- and y-coordinate data), and ¥ = the
entire set of data points. Define an integer ¢, where 2 < ¢ < n, as the number of clusters
(or partitions) within a set of data ¥. The c-partition of ¥ is a c-tuple (¥}, Y5, ..., ¥,) of

subsets of Y satisfying:

- membership of each feature vector lies in the
(a) u,(y, ) = uy €[0,1] interval [0, 1]

- sum of memberships in a certain cluster ¢, must

N
(b) ;u& >0 forall be greater than 0

- sum of a feature vectors membership in all

(c) Ziuﬂf =1 forallk clusters must be 1

The symbol U represents a real exN matrix (U = [u;]), representing the partition {¥;} and

i is the partition index number (ie. cluster number). U is referred to as a fuzzy c-partition
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of ¥ when the elements of U are real numbers in the unit interval [0,1] which continue to
satisfy conditions (b) and (c) above. Examining our Butterfly example, we see that U is
a 2x15 matrix since there are 2 clusters specified and 15 feature vectors (ie. data points)
used. Note that these membership functions satisfy conditions (a) - (¢} above (on page
24). Condition (a) is satisfied since all #; and uy,; lie in the interval [0,1]. Condition (b)
is satisfied since both the sum of u;; over all £, and the sum of u,; over all & (that is,
summing the membership functions for a particular cluster over all data 15 data points) is
greater than zero. Condition (c) is satisfied since the sum (u,; + u,;) equals 1.00 for each
feature vector (that is, for each of the 15 data points).

Several clustering criteria have been suggested for identifying optimal fuzzy c-
partitions of ¥. In general, this involves a pair-wise comparison of feature vectors to
cluster centres as calculated via a centre-of-mass approach . As mentioned earlier, the
most popular and best studied criterion is associated with the generalized least squares

functional:

TUW =Y ()"

k=1 i=1]

2
Vi _Vi”A (13)
where ¥ = {yl,y ; ...,yN} R’ = the data to be clustered,

¢ =number of clusters in ¥; 2 < ¢ <n,

m = weighting exponent; 1 < m < o0; see description below,

U= fuzzy c-partition of ¥; U € M’fc; M}c = the set of all fuzzy c-partitions of ¥,
v={ Vi Vo e vc) = vectors of centres,

vi=( v

. v!_”) = centre of cluster 7,

| |l 4 = induced A-norm on R”,

A = positive definite (17 x 1) weight matrix, see description below.

29



In the above equation, the squared distance between Y, and v, is calculated in the

A-norm as:
d; =y, =il = 3 =v) Ay -v,)

Each squared error is weighted by the mth power of y,’s membership in cluster 7 [(w)"].

The set of vectors {v;} are the cluster centres, essentially the centres of mass of the

partitioning subsets, and may be calculated by:

> )",
> ()"

In the Butterfly example, the final cluster centres are illustrated in Figure 1.4, with the

V.

(1.4)

exact values of:

v; = (0.85, 2.00) and  v,=(5.14, 2.00)
These values satisfy the centre of mass equation (1.4 above) for the membership
functions given in Table 1.2.

The elements of the membership function are determined by (Bezdek, 1984):

~1

e (g )&
w[3[%) 05
Jk

i=1

Other variables in J which require further explanation are the fuzzy weighting exponent

m and weighting matrix 4.

The exponent m controls the relative weights placed on each of the squared errors

a’,-kz. As m—1, the c-partitions which minimize Jm become increasingly hard. By

increasingly hard, it is meant the clustering approaches that which would occur if
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classical set theory were employed. Considering m = 1, it may be shown that J
minimizes only at hard c-partitions, and the corresponding vs are simply the geometric

centroids of the ¥;s. As m—o0, the membership of the optimal I/ matrix for J 1s

degraded towards the fuzziest state, where each element approaches a value of (1/¢).
Holding all other parameters constant, each choice of # defines one fuzzy c-means
algorithm. There exists no theoretical method of choosing an optimal m, but Bezdek
(1984) suggests the best strategy is an optimization approach through processing of the
experimental data. This is incorporated in the overall parameter optimisation as
described in section 4.1. The Butterfly example employed a value of m = 2.00, which is
similar to that used in the fuzzy clustering application to gated radionuclide
ventriculography.

The weight matrix 4 controls the shape which optimal clusters assume in R?.
While an infinite number of 4-norms is available for use, the choice of 4 = I (the identity
matrix) directs J,, to identify hyperspherical clusters. Since left ventricle boundary shape
in the LAO view of a healthy subject is circular or elliptical, this decision is justified.
Geometrically, we say the choice of matrix 4 induces a topology upon the data set
(Bezdek, 1981). The Butterfly example also defined A = 7, thus inclining spherically
shaped clusters to be identified. This effect can be readily observed since only geometric
data (x- and y-coordinates) were used as input. Thus, the membership function values
for data points around the cluster centre generally vary in a spherically symmetric
manner (or in this case, a circularly symmetric manner due to the data set being two
dimensional). Examining the membership values of #,; in relation to v, in Figure 1.4,
this effect is apparent.

Explanation of the basic elements of J,, in equation 1.3 are:

dﬁc = squared 4-distance from point y;, to centre of mass v;.
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(uik )m di =squared A-error obtained when representing y; by v; weighted by a power

of the membership of y, in cluster i.

c
Z (u,.k ) di =sum of squared 4-errors due to y;’s partial replacement by all ¢ of the
i=1
centres {v;}.
N ¢

S ()™ d,-%( =overall weighted sum of generalized 4-errors due to replacing ¥ by v.
k=li=1

With a discussion of relevant background material complete, the fuzzy c-means

algorithm may now be presented as a four step process.

(1) Fix c,m, A, €. Initialize membershi matrix U(O) randomly. Then at ste l, {= 0J
P P
1, 2, Sege

2 Calculate the ¢ fuzzy cluster centres {vfm} using equation (1.4), and U

(3)  Compute an updated membership matrix v using equation (1.5) and {v,-m}. This
is equivalent to constructing a new set of ¢ partitions.

4 Compare U to U™ in a convenient matrix norm; if || utl g | <e stop,
otherwise return to (2).

Note the parameter g;, has been introduced in the algorithm above. This is a threshold
value set to control the convergence of the calculation. The theoretical convergence of
the sequence {Uﬂ) =0, I, 2, ...} generated by this algorithm has been previously
studied (Bezdek, 1981), and convergence is generally achieved within 10-25 iterations.
Once convergence is attained, the data points are classified by their membership
functions as being a member of cluster 7, a non-member of cluster 7, or a non-classifiable

point (a non-member of all clusters, i = 1 through ¢). The divisions are based on
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properties of the generalized least-squared functional. The lower boundary below which
a data point is definitely not a member of cluster , is defined as (1/¢). This choice is
based on the fact that a properly convergent set of #;’s for J,, approach (1/¢) as m —> oo
(Bezdek, 1984). Consequently, this implies that membership in the fuzziest state reduces
to (1/c). The upper boundary, above which a point is definitely a member of cluster i, is
defined as ((1+c)/2c). This boundary is chosen because it lies exactly half the distance
between (1/c) and 1. Considering the set of conditions (a) - (c), we see this choice
ensures that simultaneous full membership of a single data point to more than one cluster

is not possible (a logical restriction).
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Chapter Two: UNCERTAINTY IN EJECTION FRACTION
MEASUREMENT

2.0 Introduction

The measurement of ejection fraction through equilibrium gated blood pool
imaging may be affected by several sources of uncertainty. These sources can be
categorized into three main groups: 1) patient factors, 2) acquisition procedure
conditions, and 3) analysis techniques.

Patient factors are those dependent upon the physiological condition and
anatomicél structure of the patient being imaged. Uncertainties due to acquisition
procedure conditions include any error introduced by the equipment used to gather the
images, or by the physical nature of the pharmaceuticals involved. Analysis techniques
encompass all analytic methods applied to the extraction of EF measurements from gated
blood pool images, excluding the parameter optimisation of our developed technique
which has been described in section 4.1.

In this chapter, all factors introducing uncertainty into the measurement of EF via
equilibrium gated blood pool imaging will be discussed, within the three main categories
as mentioned above. Finally, the effect of these uncertainties on EF measurement will be

considered.
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2.1 Ejection Fraction Uncertainties

2.1.1 Physiological Uncertainties

2.1.1.1 Phase Variations

Due to beat-to-beat variation in the shape of the TAC, the resulting superposition
of several hundred of such curves will result in an overall TAC which does not
accurately represent LV volume variations. For example, if two LV volume curves are
summed, each possessing identical EF and end-diastolic volume but with different
systolic time periods, the resultant curve will demonstrate a reduced EF. Since patients
exhibit fluctuations in their heart rate, even in a ‘steady’ state, it is reasonable to assume
that most LV volume curves will vary in length with each beat. In a study performed by
Green ef.al. (1978) to investigate the effects of this variation of phase on calculated
gjection fraction, it was found that in a statistical sense, the beat length fluctuations did
not introduce a significant error. However, the possiblity still exists that these
fluctuations may introduce significant errors into the measured EF in patients with

extremely low heart rates, due to the distortion introduced into the TAC of such patients.

2.1.1.2 Attenuation
In addition to the effects of blood volume self-attenuation on EF as discussed in
section 4.2, physical variation within the patient will also contribute uncertainty to any

method attempting to correct for attenuation. The variety of tissue types, volumes, and
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geometrical configuration of these different tissues contribute to form a source of
uncertainty in any estimate of attenuation. Tissue involved in photon attenuation will
possess widely varying attenuation coefficients, and may include lung [3.874 m™'}, skin
[16.241 m™'], heart [15.645 m™"], fat [13.800 m™'], blood [15.794 m'], and bone [48.375

m’'] with attenuation coefficients enclosed in square brackets (ICRU 44).

2.1.1.3 Post Meal Effects

The effect of a standardized meal on LV EF using gated blood pool imaging has
been studied by Brown et.a/. (1983). LV EF was determined in a fasting state, as well as
15, 30, and 45 minutes after a meal. It was concluded that significant increases in EF
(above normal EF variation) may occur after meals in normal patients and those with
moderate L'V dysfunction, but not severe L'V dysfunction. Brown suggested that the
mechanism by which this occurs may be a decrease in systematic vascular resistance
resulting in LV unloading. Furthermore in patients with more severe LV dysfunction, it
was speculated that chronically increased sympathetic nervous system tone may result in
blunting of the usual physiologic responses to a meal, and these patients are less sensitive
to the mild degree of afterload reduction induced by food intake due to continued high
preload conditions. Therefore equilibrium radionuclide ventriculography studies which
are not standardized for patients’ mealtimes may introduce an important unmeasured

variable that will affect the validity of data in serial studies of left ventricular function.
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2.1.1.4 Patients With Aneurysm

Cases of LV aneurysm (distended blood vessel or heart walls) are fairly common,
with an incidence estimated in the range 4-30% (Onik et.al., 1980). In gated blood pool
studies, they are generally identified as a late-contracting zone in the left ventricle region.
To accurately calculate the EF, the activity contribution from this region must be
accounted for (Boudraa er.al., 1993). Schicha ef.al. (1985) demonstrated that gated
blood pool studies in cases of anterior LV aneurysm underestimated the LV EF by a
mean of 6.2% as compared to biplane cineangiography. Individual cases were
underestimated by as much as a factor of two. It is thought that due to the differences in
photon attenuation, the proportion of smaller cyclic changes of the count rate originating
in the blood within the aneurysm is overestimated, while that of the blood in the posterior
portion of the LV is underestimated. Consequently, LV EF of patients with aneurysm of

the anterior wall is underestimated.

2.1.1.5 Normal Variation

The intrinsic variability and accuracy of calculating LV EF via gated blood pool
studies may be evaluated by performing serial studies on patients. Wackers et.al. (1979)
found that the mean variability of absolute EF for repeat studies in normal patients was
significantly greater than in abnormal patients. This differential variability should be
considered in interpreting sequential changes in L'V EF. It was concluded that in order to
be attributed to nonrandom physiological alterations, the absolute EF change (ie. in

absolute EF units) should be 10% or more in normal patients and 5% or more in
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abnormal patients. This difference may be a reflection of a pathophysiologic
phenomenon. In patients with normal LV performance, there is a greater ventricular
reserve and hence an increased chance of responding to a variety of stimuli with

augmentation of cardiac pump function.

2.1.2 Uncertainties in Acquistion Protocol/Equipment

2.1.2.1 Nonuniformity of Gamma Camera

Nonuniformity of the gamma camera is the result of both variations in sensitvity
across the camera face, and spatial distortions. A two part study was performed by
Busemann-Sokole ez.al. (1985) on a cardiac phantom to study the impact of a
nonuniform camera upon ejection fraction. The first part of the study investigated the
effect on ejection fraction values when camera uniformity was degraded by improper
analyzer window positioning. The pulse height analyser allows the operator to select
only the signals from those gamma rays in which the photon energy lies within a certain
range of values (ie. a ‘window’ of values). When the pulse height analyser window was
improperly set (by varying levels from 5.2% to 22.7% in terms of differential
uniformity), the EF displayed a small variation, within +/- 3% of the expected correctly
collected EF. The nonuniformity obtained was analysed by application of the NEMA
(National Electrical Manufacturers Association) standards protocol in order to obtain

parameters for the differential uniformity present.
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The second part of the study determined the effect on ejection fraction values of a
nonfunctioning photomultiplier tube. When a selected photomultiplier tube was
successively detuned by altering the tube gain, variation in EF became noticeable,
especially at low nominal EF values. It was concluded that a reasonable degree of
confidence (maximum EF deviation of 5%) may be placed in ejection fraction

measurements even when differential camera nonuniformity is as much as 10%.

2.1.2.2 Gating Delays

Most electrocardiograph gating devices have an intrinsic delay between the time
that the R-wave is sensed and the time the gating signal is sent (Powers, et.al, 1982). The
effects of gating delays between 0 and 50 msec on the EF estimate were simulated, while
actual measured delay times for clinically attainable heart rates possessed a much smaller
range, varying between 0 and 9 msec (Powers, et.al., 1982). Delay between the actual
electrical event and its detection by the computer will result in a shift of the perceived R-
wave from its actual location. If no fitting of the time activity curve is performed, the
maximum counts in the L'V will then be artificially decreased (since the first data frame
counts will be reduced due to missing the acquisition of that data), resulting in a lower
than expected EF. This results from the software restricting the search for a count
maximum to the first two thirds of the TAC. Intuitively, the magnitude of the EF
underestimation depends directly on the speed of the left ventricle emptying. Powers

et.al., 1982, determined that gating delay effects will be most pronounced at higher heart
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rates, and that the greatest artificial EF reduction will occur in patients with normal (as

opposed to poor) ventricular function.

2.1.2.3 Frame Rate Requirements

The ejection fraction may be influenced by the sampling rate and sampling period
employed when the TAC data are collected (Bacharach ef.a/., 1979; Hamilton et.al.,
1978). Hamilton et.al. (1978) examined rest-exercise TAC’s of two patients using
modern sampling theory. Fourier analyis of the TAC’s revealed that 95% of the
frequency content lies below 7 Hz for a high ejection fraction and heart rate, and below
4.5 Hz for a normal EF and heart rate. The Nyquist sampling criterion states that a signal
must be sampled at twice the frequency (or more) for an accurate reconstruction. Thus,
sampling rates of 14 Hz and 9 Hz for the high and normal heart rates respectively, are
required. A sampling rate of 14 Hz corresponds to a frame rate of 10.5 Hz for a patient
with a heart rate of 80 bpm. At frame rates above the minimum for correct
reconstruction, calculated EF will decrease slightly as frame rate is reduced towards the
minimum, due to loss of high frequency response caused by the lengthening of the
sample period. Hamilton suggests using a frame rate about 25 Hz, since the
underestimation of EF due to aliasing errors will be negligible (due to this rate satisfying
the Nyquist sampling criterion).

In a study of 32 patients, Bacharach er.al. (1979) duplicated the effects of
performing a study with decreasing temporal resolution. This was done by condensing

the original TAC data collected at 10 ms/point into TAC’s representing 20, 30, 40 and 50

45



ms/point by adding consecutive 10 ms/point data together. It was observed that EF did
not vary significantly for time frames up to 50 ms. The conclusion indicated that frame
lengths of 50 ms (corresponding to a frame rate of 20 Hz) should be sufficient to
optimally reduce errors in calculated EF.

At HSC, individual gated blood pool studies are not performed at the same frame
rate, but rather the patient’s cardiac cycle is divided into a constant number of frames.
The number of frames used is set through software, with a default value of 24 (resulting
in a sampling frequency of 32 Hz for a patient with a heart rate of 80 bpm). As the heart
rate of the patient decreases, each frame will represent a longer and longer time period,
while the frequency content of the TAC is also decreasing (Hamilton e.al., 1978). These
two effects (increasing frame time length vs. decreasing frequency content) are
offsetting, hence by dividing every cardiac cycle into 24 frames as opposed to simply
setting a constant frame rate, the TAC should be accurately reconstructed for all heart
rates.

As mentioned previously (section 1.1.3.6), the 24 image frames are compressed
into 16 frames for display and storage purposes. Linear interpolation is applied to the 24
frame processed data set to construct the non-coincident (in time) images of the 16 frame
data set. This compression of data results in an increase in the minimum heart rate which
can be reconstructed without worry of possible undersampling errors (as discussed in
section 1.1.3.3). The minimum heart rate for a 16 frame study to keep time intervals for
each frame below 0.050 seconds is 75 bpm. Data collected at heart rates below this may

cause errors in the TAC fit due to undersampling. In the 10 test group, only two patients
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exhibited heart rates below 75 bpm at the time of image acquisition. Both the manual
and semi-automated analysis of the TAC revealed that in these two cases, the TAC did
not exhibit a steep fall off at ES. That is, the TAC curve did not drop from ED volume
to ES volume within a 0.050 second time interval (if this did happen, the TAC would be
improperly represented by the 16 frame compressed data). Therefore, the compression
of 24 frames into 16 frames does not significantly affect the results of the fuzzy
technique of estimating EF, for the 10 test studies chosen. Future analyses may avoid
this potential problem altogether by performing the analysis on the original 24 frame

data.

2.1.2.4 Decay of Activity

The duration of imaging acquisition for the best septal view of the heart is 600
seconds (10 min) using the HSC protocol. This is generally the procedural time interval
allowed by most centres to achieve an image with good statistics, while minimizing
patient discomfort. The decay of the source within the patient will result in the LV
volume curves being composed of fewer and fewer counts as time elapses. The EF may
remain the same, but the amplitude will decay at close to the same rate as the
radioisotope (not exactly the same rate, due to simultaneous biclogical removal of the

Tcggm). If one calculates the percentage radioactive decay the source suffers during the

~0.693(H tyzyr i) >om

imaging time interval [f=e ] using a £, of 360 minutes for Te™™, the

signal intensity will decay by ~1.9 %.
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However, if it is assumed that the shape of the LV volume curve does not vary
over the image acquisition period, the effect of this amplitude decay will not be observed
in the calculated EF. This is a result of the nature of the EF parameter (a ratio of heights
on the TAC), and the fact that when curves of identical shape but varying amplitude are
averaged together, the shape is preserved. Hence, relative heights (such as the EF) are

also preserved.

2.1.3 Uncertainties in Analysis

2.1.3.1 Fourier Curve Fitting

The LV TAC may be fitted with a truncated Fourier series in order to improve
statistical precision. Other methods of TAC fitting such as third degree polynomials
have been explored, but the Fourier series approximation has been shown to be superior
(Zatta, 1985). The EF parameter may then be calculated from the smooth Fourier fit, as
opposed to the ‘noisy’ original TAC. Much work has been performed to find an optimal
number of harmonics to fit TAC’s (Bacharach, 1983; Halama, 1983; Mukai, 1983). Two
sources of error, both dependent on the number of harmonics used in the fit, influence
this calculation. First, if the image has poor statistics the truncated Fourier series may
not adequately describe the shape of the TAC, due to a large number of harmonics being
required for a good reconstruction. Second, due to the noise caused by counting
fluctuations, TAC’s acquired from the same subject under identical circumstances will

fluctuate, thus causing the Fourier fitted curves to fluctuate. Since these two error
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sources decrease and increase, respectively, with the number of harmonics used in the
Fourier fit, a harmonic which minimizes both effects is suggested (Bacharach, 1983).

Bacharach (1983) found that for the EF parameter, two harmonics are optimum
over a wide range of signal-to-noise ratios. For TAC’s with large fluctuations (due to
counting statistics), increased error is introduced by fitting with fewer than or more than
two harmonics. With TAC’s containing a greater number of counts, increasing the
number of harmonics above two changes the total error only negligibly.

For these reasons, only two harmonics are used in fitting the TAC resulting from

the fuzzy clustering L'V identification.

2.1.3.2 Fixed vs. Variable LV ROI

A variable LV ROI is an ROI whose boundary changes between end-diastolic and
end-systolic image frames. A fixed LV ROI is defined by a single contour drawn in the
end-diastolic frame and applied to all other frames of the image. It has been
demonstrated (Sorensen et.al.,, 1979, 1981, Burow ef.al., 1977) that a fixed LV ROI,
when compared with a variable LV ROI, does not correlate as well with angiography
results. Sorenson (1979) and Burow (1977), performed both gated radionuclide
equilibrium studies and conventional contrast angiography (an invasive method of
finding EF) on patients, thus a ‘gold standard’ was available to which the radionuclide
equilibrium studies could be compared. Results indicated that the fixed LV ROI method
of analysing the radionuclide equilibrium studies significantly underestimated the EF,

while the varying LV ROI method gave an improved correlation and very little EF
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underestimation (compared to contrast angiography data). Sorenson (1979} explained
this phenomenon in the following manner. An LV ROI defined at end-diastole and
remaining fixed during systole will record counts which do not originate from the LV
during systole, and the end-systolic count rate would be overestimated. This
overestimation at end-systole would result in a reduction of the calculated EF. Thus, a

varying LV ROI method has been incorporated into the fuzzy technique.

2.1.3.3 Algorithmic Dependence

There are many nuclear medicine computer systems available for performing and
analysing gated blood pool studies, and the different manufacturerers will employ
various approaches to this end. Chang et.al. (1980) present an overview of left
ventricular edge detection techniques, while Reiber (1985) offers an examination of
computer methods available for quantitative analysis of left ventricular function from
equilibrium gated biood pool scans. A comparison of EF results between computer
systems was performed by Makler er.al. (1985). That experiment involved the use of a
cardiac phantom to provide as closely identical images as possible to the various
hospitals concerned. Their results suggested that different computer systems yielded
somewhat varying EF values (up to +4.7% in terms of absolute EF for a high EF
measurement), although this source of variability is less than the potential physiologic

variation in an individual patient (see section 2,1.2 above).
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2.1.3.4 Choice of Background ROI

Several different methods of selecting the background ROI have been described
previously in section 2.5.2. Grove et.al. (1986) examined the sensitivity of LV EF to the
background correction through analysis of a simple cardiac model. The model was a
simple design; the LV was assumed to be spherical in shape, and the background to be
completely beneath the heart, instead of a volume distribution. Clinical data did confirm
the usefulness of this simplistic model. It was concluded that for varying LV ROI
algorithms, when the background correction value is overestimated, the error in the EF
can be very large. In contrast, when the background is underestimated, the error is
relatively small and insensitive to the value of the background correction. Therefore it
would be advantageous to estimate background conservatively, when designing an

automated background ROI search routine.

2.1.4 Effects of Errors on Ejection Fraction Determination

2.1.4.1 Introduction
Examining the definition of EF in equation 1.1, it is possible to estimate the
deviation of the EF from its true value when errors are made in EDC, ESC, or both. This
may be accomplished by application of error propagation theory on equation 1.1,
Generally error sources may be classified as systematic or statistical. Statistical

uncertainty in the EF will decrease as the number of counts acquired increases. In
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contrast, systematic errors such as incorrect identification of the L'V contours are more
difficult to tackle, since they cannot be reduced by acquiring more data.

In order to examine the effects of error in the EDC or ESC, error propagation
assuming Poisson statistics for all variables involved has been performed by Williams
ef.al (1978). The fractional uncertainty in the EF as a function of EF and EDC was

derived to be:

(cEF) 1 \/(I—EF)(Z—EF)
EF EF EDC

This equation, and simple rearrangements thereof, may be examined to explore the

relationship between the error in EF, and the EDC and ESC estimates.

2.1.4.2 Outcome

It was found that statistical variations are more severe at low EFs, requiring
approximately ten times the number of counts at a low EF (of say, 20%) than a normal
EF (~60%) to achieve the same statistical accuracy (Williams er.al., 1978).
Measurement of a low EF is a problem of estimating a small mean difference between
two noisy quantities (EDC and ESC).

Overestimation of EDC results in an increase in EF, while underestimation of
EDC produces a decrease in EF. The effect of error in EDC alone is non-linear, and

most prominent at lower EFs as demonstrated in Figure 2.1 (a).
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The effect of error in the ESC estimation is linear with resulting EF, and more
pronounced at lower EFs. An over- or underestimation of ESC produces an under- or
overestimation of EF respectively as illustrated in Figure 2.1 (b).

In the situation where a systematic error of the same magnitude is made in both
the EDC and ESC, the effect on EF is maximal when the true EF is high, and minimal
when the true EF is low. This non-linear relationship is described for various EF values
in Figure 2.1 (c). Errors in both EDC and ESC of the same absolute amount are a major
problem in radionuclide studies. This is generally due to inclusion of counts originating
from adjacent non-LV structures, via over- or undercorrection of EDC and ESC through

a background estimate.

2.1.4.3 Summary of Error Effect

The magnitude and direction of change in EF is highly dependent upon the true
EF value and the particular type of error considered. At a normal or high EF, the most
likely error is due to an equal error in both EDC and ESC (Williams, 1978). The next
most likely is attributable to error in ESC alone. The effects of statistical error and error
due to EDC estimation alone on the measured EF is expected to be minimal. However,
when the EF is low, the statistical error is likely to make the dominant contribution to

error in EF.
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Figure 2.1: (a) The effect of systematic error in end-diastolic counts alone, (b) the
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of systematic errors (of the same magnitude) in both end-diastolic and
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Chapter Three: DESCRIPTION OF METHOD

3.0 Introduction

This chapter will describe the algorithm developed to calculate left ventricle
gjection fractions. This algorithm automatically identifies the L'V region in each frame
of an equilibrium gated blood pool study, determines a background correction estimate,
and calculates the corresponding ejection fraction. Each major processing step is
described, in the order of application upon the image set. An accompanying flow chart is
provided in Figure 3.1, listing the processing steps and the numbers of the corresponding
sections which contain detailed descriptions of the steps.

A general description of the algorithm is useful at this point. The fuzzy c-means
clustering routine, as described in section 1.3.5, is applied twice in this algorithm. The
first application is used to extract the ventricles from primarily phase information.
Additional processing, in the form of a simple edge detection, is applied in each image
frame. Finally, a second application of the fuzzy clustering routine is performed on each
individual image frame, using primarily grayscale information, to extract the LV ROI for
that particular frame. The remainder of this section presents a more detailed description
of the algorithm.

After the sequence of 16 2D image frames for the LAO view of the heart are
loaded, two images are calculated which summarize the temporal information contained
in the sequence. The first is the phase image, and contains the normalised estimation of
the first harmonic of each pixels’ TAC as computed by Fourier analysis. The second
image is a pixel-by-pixel estimate of noise in the phase image. Each pixel represents an
estimate of the similarity of its corresponding phase value as compared with surrounding

phase pixels. These processing routines are illustrated in sections 3.1.1 and 3.1.2.
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These two images are combined with the x- and y-coordinate data for each pixel
to form a set of 4-tuple input vectors. This set of vectors (one mput vector for each
image pixel) is then passed into the fuzzy clustering subroutine. The input vectors are
normalized to account for patient to patient variability, and adjusted by multiplicative
weighting factors to emphasize the more distinguishing features, as described in sections
3.1.3 and 3.1.4. The results of the initial clustering are examined, and the cluster which
contains the ventricles is identified for further processing.

The approximate geometric centre of the LV is identified through modification of
a standard technique involving row-column signature analysis. To achieve a better
estimate of the LV centre, a maximum gradient search routine is employed which
identifies the maximum grayscale pixel within the L'V, and this pixel is used as the new
LV centre. This method uses the results of the row-column signature analysis as a
starting point, and is discussed in further detail in section 3.1.5.

Once the L'V grayscale centre is identified, a simple edge detection routine is
employed on the L'V portion which lies beside the right ventricle. A minimum is found
along radial rays traced outwards from the L'V centre. These minimum pixels represent
the intraventricular septum, which is an easily recognizable valley of low counts
separating the LV from the RV. These septal pixels are joined by linear interpolation,
then the LV image information is isolated by stripping off the RV. The septum
identification routine is explained in greater detail in section 3.3. Both the LV centre
identification and the septum detection process are applied on each image frame of the
study.

The remaining image data comprise a region containing signal from the L'V blood
volume, as well as pixels exhibiting temporal fluctuations in phase with the ventricles,
but of low amplitude. The grayscale pixel data, together with the x- and y-coordinate
data form the set of input vectors used in the second application of the fuzzy clustering

routine. For this clustering, each pixel in the image thus possesses a corresponding three
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Figure 3.1: Flowchart summarizing steps taken in automated ejection fraction
estimate through fuzzy clustering.

component input vector. Two clusters are identified in the remaining image, the L'V and
non-LV (background, scatter, ventricle wall, etc.). The LV cluster is determined in this
way for each image frame as described in section 3.3. This cluster is taken as the LV

region-of-interest (ROI) to be used in the calculation of an initial TAC, which is
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uncorrected for background. The end-systolic frame is identified as the frame possessing
the lowest LV activity, as observed in the uncorrected TAC.

The end-systolic frame is used for the background correction estimate. The
process for identifying an ROI representative of background is fully automated. A
method which closely simulates the background estimation procedure in the manual
processing was developed. Radial rays separated by small angular increments are traced
outwards from the L'V centre toward the bottom and right edges (with respect to the
image space). A region growing algorithm was applied for each ray, in combination with
geometric boundary conditions based on radial distance outside the LV contour. The
region exhibiting the smallest amplitude fluctuation over the cardiac cycle is defined as
the background ROI. The background activity estimate is the count/pixel value within
this region on the end-systolic frame. This processing is presented in detail in section
3.5.

Fourier curve fitting using three harmonics is performed on the corrected TAC.
From this best fit curve, the ejection fraction parameter is calculated via equation 1.2 as
described in section 1.2.2.

Throughout the development of this algorithm, it has been necessary to define or
choose many parameters. The value of each of these will have some effect on the
performance of the algorithm, but may have little influence on the final ejection fraction
result. It is important to gauge these effects, and this is done through an optimisation
process described in section 4.1. The optimisation is performed on a select group of
parameters thought to have the most critical impact on the ejection fraction output.
However, there does exist the possibility of a non-optimised parameter having some

effect on the calculated ejection fraction.
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3.1 Initial Clustering

3.1.1 Fourier Phase Analysis

The phase image is utilized clinically in assessment of left ventricular function,
providing information related to the mechanical contractility of the heart and allowing
regional wall motion abnormalities to be diagnosed. The grayscale value of each pixel in
the phase image is derived from analysis of that pixel's time activity curve (TAC). The
TAC of a pixel is formed by following the grayscale value of a pixel throughout each
image frame. The TAC’s of two pixels, one lying within the left atria and the other
within the left ventricle, are given in Figure 3.2. The length of this curve is the average
length of the cardiac cycle over the image acquisition period. In pixels which do not
comprise part of a heart chamber, the TAC is virtually a horizontal line (with superposed
noise). Fourier analysis is performed on each pixel’s TAC and results in an estimate of
that TAC’s phase. This phase information is then normalized to form the ‘phase image’
as described below. The phase image derived from the pixel TAC’s contains no
information regarding the amplitude of each TAC, but effectively describes the timing of
onset of contraction (relative to the R-wave).

In relation to the TAC, a pixel in the phase image shows the timing of the
minimum of this curve. The timing is measured assuming that a full cardiac cycle
contains 360°. These values are normalized to 0 through 255 (corresponding to 0° and
360° respectively) for an 8 bit grayscale display in the phase image. Normal values of
the phase of the ventricles lie within the 140°-210° range. Since the phase image
summarizes the timing of contraction, the atria and ventricles will generally appear
approximately 180° out of phase due to the normal sequence of cardiac contraction (see
Figure 3.2). This characteristic makes the phase image an important input feature to the

initial clustering process.
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Figure 3.2: Example of time activity curves for pixels lying within the left atria and
left ventricle.

Fourier analysis provides a powerful method of describing a TAC. A TAC may

be accurately represented as an infinite Fourier series expansion:

TAC(t):ao+iam cos(Zmmit —¢,,) (3.1)

m=1

where a is the amplitude, m is the number of the harmonic (or term), # is the time (or
frame number), and ¢ is the phase value. The amplitude of the first harmonic term 1s
generally larger than that of subsequent terms. The second and third harmonic terms
become relatively more important in regions of aneurysm (Vallette, 1990). Thus, the
second and third harmonic phase images, while containing clinically useful information,
do not enhance the visualization of the ventricles region (Merrick, 1984). An

examination of ten image sets revealed that the second and third harmonic phase images
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did embody some structure. However, the quality of this structure for the purpose of
identifying the ventricles was insufficient to warrant using these images as input features
for the initial clustering.

The first harmonic phase image may be calculated by initially describing the TAC
of a pixel by Fourier cosine and sine expansions (implicitly incorporating the ¢ phase

information from equation 3.1);

Fun) = Y-sinfEh k= D] PG, ) 62
Funlid) = 3 cos[2 (k= D]< PG, ) 6.3

where k is the frame number, / is the harmonic number, # is the number of frames
comprising one cycle, and P is the pixel grayscale value at coordinates (7,f) in frame k.

The first harmonic phase image is found by setting # = 1 in the above and:

sy -1 "fsin(i,j)
S onase (5 J) = tan (-——f (i,j)] (3.4)

The choice of 7 in the Fourier series expansions above is taken to be less than the
total number of frames available. A typical TAC does not necessarily end at the same
graylevel at which it began because normal fluctuations in the R-R interval (that is, time
between measured R-wave pulses in the cardiac cycle) result in the later frames including
counts from fewer heartbeats than the earlier frames.

Two difficulties arise when using the phase image quantitatively. In a healthy
subject, the atrial contraction occurs at the beginning of the cardiac cycle, followed by

the contraction of the ventricles approximately 180° later. The normalized grayscale
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values for these events in the phase image are 0 and 128 respectively. Due to the
inconsistency of the time length of heart cycles during an image acquisition, the timing
of the atrial and ventricle contractions as observed in each pixel's TAC will be the
resultant average over a large number of heart beats. Secondly, the phase analysis of the
cardiac cycle intrinsically defines a sharp beginning and end point at 0° and 360°
respectively. Since the calculated first harmonic phase values (ranging between 0° and
360°) are normalized to completely fill a 256 grayscale spectrum, the values of 0° and
360° which essentially represent the same phase value, are represented by maximally
different grayscale values.

To reduce the effects of this ‘wrap around’ problem on the initial ciustering a
‘decay’ process is applied to the phase image, named because of the effect it has on
certain pixels in the phase image. This process involves changing pixel grayscale values
lying 30° above the 245-255 range to a value of 255. However, the pixel is only changed
if it is already touching a pixel of value 255 or 0, so the decay of isolated random noise is
minimized. The procedure is applied iteratively on the original phase image. It was
found that ten passes were sufficient to reach an equilibrium state. To summarize, this
decay process results in low grayscale pixels, which are in contact with maximum
intensity pixels, being redefined as maximum intensity pixels. An original first harmonic
phase image and decayed phase image are displayed in Figure 3.3. These images
demonstrate that the decay process as described above accentuates the atrial chambers

and enhances the difference between the atria and ventricles along common edges.
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(2) (b)

Figure 3.3:  (a) Phase, and (b) decayed phase images.

3.1.2 Isolation Status

A method for estimating the noise of individual pixels as described by Itagaki
(1990) is applied to the phase image. This is a fast and simple technique for assessing
the similarity of a pixel to its surrounding neighbours. The eight pixels surrounding the
pixel of interest are investigated. The number of pixels which have an absolute grayscale
difference from the pixel of interest smaller than a preset limit 8 is determined (this
number is referred to as / from now on). 7 then varies between zero and eight, and is
termed the “isolation status” of the pixel of interest. A value of zero would indicate that
the pixel of interest is very different from all the surrounding pixels, since all were
outside the +8 range. A value of eight would indicate that the pixel of interest was quite
similar to all the surrounding pixels, with all lying inside the +8 range. For example,
examine the following pixel of interest with a normalized phase value of 145, and

surrounding neigbouring phase values of:
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i+1

i1 152 162 142
i 147 145 133
j+1 157 139 134

If & = 10, only 4 neighbouring pixels lie within the 8 range, so / would be 4. Now if §
= 15, then 7 neighbouring pixels would lie within the 48 range, yielding an f of 7. It
should be noted that the value of / is quite sensitive to choice of 8.

To view the isolation status image, / was normalized to fill the entire 0 - 255
grayscale spectrum. Regions of similarity in the phase image are shown as very bright in
the isolation image, while regions with a high amount of pixel to pixel variability are
dark. Hence, regions of similar phase, such as the ventricles or atria, are emphasized in
the isolation image.

An attempt was made initially to chose § as the standard deviation of the
grayscale phase values in a 3x3 matrix surrounding the pixel of interest. This resulted in
an erosion of the edges of the ventricles region, due to the standard deviation of edge
pixels being higher than that of the centre of a region of similarity. Thus, the choice of
parameter 6 is made through an optimization process described in detail in section 4.1.

A method of cleaning up the isolation image in areas of noisy data is applied.
This processing basically results in an almost binary representation of noise. That is, the
noisy pixel values are smeared and averaged, while regions of low noise are preserved.
This is not necessary to the functioning of the overall algorithm, but does simplify the
interpretation of the isolation component of the average cluster vectors.

Before being used as an input feature to the initial clustering, the isolation image
is slightly modified in the following manner. If an isolation image pixel grayscale value

lies below 160 (equivalent to an 7 of 5), then it is replaced by the average of the
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surrounding pixels. An example of the isolation image, as derived from the phase image
presented in Figure 3.3, and the processed isolation image are illustrated in Figure 3.4. It
may be observed that the processed isolation image displayed in Figure 3.4 has

essentially been smoothed, without losing any high grayscale (meaning non-noisy) pixel

data.

(b)

Figure 3.4:  (a) Isolation, and (b) processed isolation images.

3.1.3 Feature Normalization

Images from different patients are usually not comparable due to interpatient
variability in the orientation and volume of the heart, even under similar acquisition
conditions. Acquired counts will vary between patients, despite the scaling of
administered dose to match patient weight. Counts per pixel per unit time are dependent
on the heart volume, concentration of radioactive material used, and the background
radiation level. A normalization of features suppresses this interpatient variation

(Syrchra, 1989). The x- and y-coordinate data are normalized by dividing each by the
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median value. Since each individual image frame is 60x58, the median values are 30 and
29 respectively. This ensures equal emphasis is placed on the x- and y-coordinate data,
even though the image frame is slightly elongated along the x-direction. The phase and

isolation data are also normalized through division by their median values.

3.1.4 Feature Weighting Factors

For the initial clustering, both the phase and isolation images are used as features,
as well as the x- and y-coordinate data for each pixel. By preweighting the features, their
relative importance in terms of discriminating classes may be established. Hence, more
weight can be given to those features which are more useful in distinguishing classes.
Previous experiments have indicated that features of high magnitude, yet possessing low
discriminatory power, will minimize the clustering criterion but give a misrecognition
[Boudraa, 1993]. A set of weighting factors is introduced to emphasize the more
powerfully discriminating features.

The weighting for the x- and y-coordinate data is restricted to be the same. This
is necessary since the inherent resolution of the gamma camera in both these directions is
the same. Since the isolation data is directly derived from the phase data (hence,
dependent variables), the weighting factors for the phase and isolation data are restricted
to be the same value. Therefore, only two weightings are needed: one for the phase and
isolation data, the other for the coordinate data. However, because these input
components are normalized by their median values (ie. the median value will be
represented by a 1.0 input), only one weighting need be used, and the other weighting
may be taken as 1.0. Hence the weighting is performed on the more important features,
the phase and isolation data, and the coordinate data is held after normalization at an

effective weighting of 1.0.
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3.1.5 Ventricles Region Identification

3.1.5.1 Use of Cluster Centre Data

The first clustering application results in the division of the feature vectors into
five clusters. The number of clusters is an input parameter. Five clusters were chosen:
one to identify the atria, one to identify the ventricles, one to identify the resultant
movement of the great vessels (essentially a type of ‘noise’), and two to identify noise in
the phase image. The reasoning for this is as follows. In the ideal phase image, the only
two distinct features which should exhibit the same phase are the atria and ventricles.
However, we may assume that these two features lie about 180° apart. Assuming the
most general case, on a finite number line ranging from 0° to 360° insertion of two
features which are known to be separated will result in three inter-feature regions. One
region lies below the lower of the two known features, one region lies inbetween the two
known features, and one region lies above the higher of the two known features. For this
reason, the fuzzy clustering algorithm is set to identify 5 clusters using the phase data.
Granted, the atria contraction ideally should begin at 0°, thus restricting one of the two
known features to lie at one end of the degree number line, which could be described
adequately with 4 clusters. The use of 4 clusters was explored, but the impact on final
ejection fraction resuits compared to using 5 clusters was insignificant, hence the most
general case scenario was adopted. Figure 2.5 illustrates the resulting clusters after the
first clustering application. Note that Figure 3.5 (c) is the output of the fuzzy clustering
routine using the images in Figure 3.5 (a) and (b) as input. The clusters were randomly
assigned a grayscale value so as to maximize the contrast between the clusters. The
actual grayscale values of each cluster in Figure 3.5 (c) are meaningless to the algorithm

and chosen for visualization only.
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(a) (b)

Figure 3.5: (a) Phase image, (b) isolation image, and (c) results of using (a) and (b)
together with x- and y-coordinate pixel data as input feature vectors to
the fuzzy clustering routine.

The cluster centre vector is utilized to assist in recognizing a particular cluster as
representing the ventricles. During any clustering application, the fuzzy clustering
subroutine keeps track of all cluster centres. Each cluster centre is defined as a vector in
the feature space, beginning at the origin and ending at the cluster centre coordinates,

which are simply each feature's average value in that particular cluster.
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The two features used to discriminate the ventricles cluster from the atria and
other clusters are the phase and isolation values. From the previous discussion of the
gating method, it is known that the first image frame is acquired when the left ventricle is
approximately at maximum volume and is about to begin contraction. Examination of a
typical ventricular volume versus ECG signal (Palmer,E.L., ef. a/, 1992) shows that the
ventricles will be at a volumetric minimum somewhere in the 100° to 210° range, as
demonstrated in Figure 3.6. The typical minima would occur at about 165° for a normal
heart. This range of phase values is used to rule out clusters from being ventricle
candidates. Any cluster centre whose phase centre coordinate does not lie within the
100° to 210° range (71 to 149 grayscale) is not considered further as a ventricles cluster
candidate. The remaining clusters which do satisfy this criterion are examined for their
isolation center coordinate. Of the remaining clusters, the one with the highest isolation
centre coordinate 1s chosen as the ventricles cluster. This is the cluster whose average
isolation value is the highest, implying a high degree of similarity among its pixels. This
approach works very effectively, since only the atria and ventricles clusters will possess a
high isolation centre coordinate, and the atria will have been disposed of previously due
to the phase comparison. The average x- and y-coordinate values are not useful in

identifying the cluster representing the ventricles,
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Figure 3.6: Superposition of left ventricular volume-time curve and ECG signal for
a typical cardiac cycle (adapted from Palmer, et.al., 1989).

3.5.1.2 Defining a Clean Ventricle Cluster

The cluster identified as the ventricles is not a single, continuous shape, but is
generally comprised of the ventricles plus some background noise which has been
incorrectly classified as belonging to this cluster. This background noise simply consists
of pixels which happen to possess phase and isolation characteristics similar to the
ventricles due to random statistical fluctuation. Usually these pixels are separated in
Cartesian space from the true ventricles, as depicted in Figure 3.7 (a). A simple method
of eliminating these small isolated clumps of noise involves applying a growth
segmentation algorithm beginning at the ventricles x- and y-coordinate centre point. A
growth segmentation algorithm is an image processing technique which, when given a

starting point, will expand a region surrounding this point based on some predefined
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classification criteria. This routine grows the given centre point of the ventricles cluster
(as identified by the fuzzy clustering algorithm in terms of the average x- and y-
coordinate of the cluster) outwards and the only restriction is that the region may not
grow into or across any zero pixel values. Since the only non-zero pixel values are those
belonging to the identified ventricles cluster, this growth segmentation algorithm
effectively eliminates any outlying clumps of noise from the main ventricles region.
Obviously it is essential that the initial coordinates fed into the growth algorithm do, in
fact, lie within the correct ventricles region of the cluster. Since the ventricles cluster
will contain relatively few noisy pixels, their contribution to the cluster centre
coordinates will not be significant enough to pull the centre outside of the main ventricles
region. In the clinical images processed, no problems have been observed with this
assumption, nor with the growth segmentation algorithm. This is a simple and effective
method of removing incorrectly identified noise pixels from the identified ventricles

cluster.

(a) (b)

Figure 3.7: These are binary spatial displays where gray represents an image pixel
within the identified ventricles cluster, and white represents image
pixels not classified within that cluster. Specifically, (a) Represents the
initially identified ventricles cluster, and (b) after application of region
growing algorithm to remove noise,
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3.1.5.3 Morphological Processing

Further processing of the ventricles cluster is performed by applying a closure to
the cluster. A closure is a morphological image processing technique which tends to
smooth sections of the boundary by fusing long thin gulfs, eliminating small holes, and
filling 1n boundary gaps (i.e. indentations). Since only the shape of the cluster is
modified here, the ventricles cluster is first converted to a binary image (pixel values
only 0 or 255). This is accomplished by leaving all pixels with a value of 0, while
converting all non-zero pixel values to a value of 255. A closure is defined as a dilation
followed by an erosion process as described below (Pratt, 1991).

The dilation is accomplished by using a 3x3 square structuring element as a
convolution mask. This mask is passed over the image, and if any part of the mask
overlaps a nonzero pixel, then the image underneath the entire mask is set to 255. The
erosion is performed in the same manner, except that if any part of the mask overlaps a
zero valued pixel, then the image underneath the entire mask is set to 0. The slight
enlargement of the cluster area resulting from the dilation process is countered by the
shrinking effect of the erosion. In this way, the ventricles cluster boundary is smoothed,
and any interior regions which were not clearly identified as belonging to the cluster are
now included. As illustrated in Figure 3.8 the identified ventricles cluster, displayed as a
binary image, engulfs a pixel of noise at the top of the septum, as well as a thin extension
at the bottom on the left ventricle side (resulting from phase values similar to the left
ventricle pixels). The morphological processing applied removes the noise pixel,
solidifies the small branch, and generally smooths the contour edge. A smooth contour

edge is desirable because in reality the heart is composed of smooth edges.
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(a) (b)

Figure 3.8: (a) Identified ventricles cluster, and (b) same cluster after
morphological processing.

The final shape of the ventricles cluster is applied as a mask to all frames of the
image set. Any pixels which lie within this mask are passed on for further processing,

while those lying outside the mask are no longer used.
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3.2 Left Ventricle Cenire Detection

3.2.1 Geometric Centre Calculation

3.2.1.1 Description of Method

The approximate geometric centre of the left ventricle is found by applying a
modification of a method presented by Reiber, ef. al, 1983. The original method
developed by Reiber sums the grayscales of all the columns and rows in the first frame of
the study. These row and column signatures are then smoothed with a five point
averaging operation. A provisional centre is found by searching the row and column
sums at the right lower corner of the image for the first (for reasons described in the
following paragraph) local maximum values above precalculated row and column
thresholds. These threshold values are defined through an empirically derived equation.
A 98% success rate of correctly identifying the approximate left ventricle centre was
attained by Reiber with this method. The remaining unsuccesful 2% identified points
outside the left ventricle.

The revised method employs the same basic technique, that of examining the row
and column signatures. However, this is done only after the ventricles cluster is applied
as a mask to each of the 16 frames of the study. Each frame now contains only data
which corresponds to the ventricles mask. The rest of the grayscale data in each frame
are not processed any further. The column and row sums are found, and these are
divided by the number of pixels contributing to each sum. This normalization process
renders the individual column and row signatures independent of column or row length.
This step is unnecessary in the original method since the signatures are taken from a
square matrix. Use of the irregular shaped ventricles cluster as a mask makes the
normalization step essential to the successful performance of this routine. Only columns

or rows containing more than seven pixels are allowed to contribute to the signatures, so
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as to remove those columns and rows which lie on the edge of the ventricles cluster. No
smoothing is performed on the column and row signatures. The column signature is
scanned from right to left, and the column coordinate of the first local maxima found is
defined as the x-coordinate of the initial LV centre. The first local maxima is used when
scanning the column signature because a normal heart should exhibit a lateral separation
of the left and right ventricles, with the septum in between. The row signature is
searched for the global maximum, which is defined as the y-coordinate of the initial LV
centre. The global maximum is used here since the left and right ventricles should be at
approximately the same vertical height within the image. The approximate geometric

LV centre is found in every image frame.
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Figure 3.9: Demonstration of column/row signature method as adapted from
Reiber, et.al., 1983. Approximate geometric centre for this image is
identified as (40, 35) and labeled as ‘A’. The grayscale maximum of the
left ventricle (see section 3.2.2) is labeled as ‘M,

3.2.1.2 Enhancing Robustness

The centre identification process as described above may be made much more
robust by imposing a few logical restrictions on the choice of the approximate geometric

centre. Furthermore, incorporation of the ventricles cluster centre information results in a

more powerful and flexible algorithm.

Firstly, in certain situations, such as when the top of the RV displays much higher

radioactivity than the LV, the geometric centre may be skewed erroneously upwards, due
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to a shifting of the global maxima of the row signature. To correct for this and other
similar situations where parts of the RV dominate the LV, a restriction is imposed on the
y-coordinate of the geometric centre. If this coordinate is identified within three rows of
either the top or bottom of the cluster, then redefine it three units towards the ventricles
cluster centre y-coordinate. This is a somewhat arbitrary choice, but would actually be
used only in a worst-case scenario. The correction simply ensures the approximate LV
centre will lie between the mitral valve and apex. In conjunction with application of the
algorithm described in the next section (3.2.2), this simple correction is adequate to
handle the aforementioned situations.

Secondly, a major problem which can occur with this algorithm, is the lack of an
LV local maximum in the column signature. That is, there is no decrease observed in the
column signature due to the lower activity within the septum, as one moves from the LV
columns into the RV columns. This difficulty will result in failure using the original
method. By checking the first local maxima found in the right-to-left scan of the column
signature and comparing it to the ventricles cluster centre x-coordinate, images in which
this problem occurs may be identified. If the first local maxima is found to lie to the left
of the ventricles cluster centre, then this problem has occurred. Once this situation is
recognized, the ventricles cluster centre coordinates are used to roughly estimate an x-
coordinate for the L'V geometric centre. This x-coordinate is redefined as the coordinate
lying halfway between the ventricles cluster centre x-coordinate and the rightmost edge
of the ventricles cluster, within the row coinciding with the previously identified LV
geometric centre y-coordinate. This solution has been successful in all encountered

situations (1 image set to date) of a missing local column signature LV maximum.
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3.2.2 Grayscale Local Maximum Petection

This algorithm uses the approximate LV geometric centre coordinates as
described in the previous section as the initial starting point. At this point, the grayscale
gradients between the pixel of interest and the surrounding eight neighbours are
calculated (a positive value indicating a neighbour with a larger grayscale value). The
point possessing the highest gradient value is labeled as the new pixel of interest. The
gradient process is then repeated, and eventually the pixel of interest migrates to the
maximum grayscale pixel of the local maxima region encompassing the original starting
point.

In situations where there are more than one surrounding gradient of highest value,
the algorithm chooses randomly between the alternatives. If the pixel of interest is found
to be at the same graylevel as one or more surrounding pixels, and if there are no pixels
higher (eg. a case of joined multiple pixel grayscale maxima), than the pixel of interest
simply slides randomly to one of these neighbouring pixels. The graylevels of the two
previously identified pixels of interest are stored. If these two values match the current
graylevel, then the gradient searching is stopped. This signifies discovery of multiple
pixel grayscale maxima. Of course, if a unique maximum grayscale value is found, the
gradient search will also stop.

A 9x9 square matrix surrounding the pixel of interest is examined. Any pixel
possessing a grayscale in that matrix which is the same as the pixel of interest will be
identified as contributing to the LV grayscale maximum. The average of all of these
pixel's x- and y-coordinates will be the LV graylevel maximum centre coordinates.
However, if a higher grayscale value is found and lies within a four unit radius of the
original identified centre, this new point is redefined as the maximum grayscale centre.
The maximum grayscale centre in relation to the approximate geometric LV centre of a

sample image frame is illustrated in Figure 3.9.
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Only one problem has been encountered so far using this process. If the initial
geometric centre coordinates do not lie within the local region of the L'V, then the LV
grayscale maximum centre pixel will be erroneously identified. The most probable
situation will be a migration towards the RV grayscale maximum. By comparing the
grayscale maximum pixel coordinates with the ventricles cluster centre coordinates, this
situation may be recognized if the x-coordinate of the former is less than the x-coordinate
of the latter. Situations where this may occur are characterized by an initial y-coordinate
being too low, resulting in a starting pixel of interest lying too high on the L'V. Thus the
gradient may be slightly stronger towards the RV as compared to the LV. This type of
condition may be identified through comparison of the grayscale maximum x-coordinate
with the ventricles cluster centre x-coordinate. The situation may be corrected easily
enough by modifying the initial pixel of interest coordinates and repeating the maximum
grayscale pixel search. The modified initial x-coordinate is defined as the cluster centre
x-coordinate plus one third of the distance to the right side of the ventricles cluster. The
modified initial y-coordinate is defined as halfway between the previous initial pixel of
interest y-coordinate and the cluster centre y-coordinate.

Additionally, for false early local maxima encountered in the column signature
scan (such as that demonstrated in Figure 3.9) the gradient search routine will still be
able to correctly identify the L'V grayscale max. By applying this gradient search
routine, the initial guess of LV geometric centre need only fall within the local region of

the LV. The maximum grayscale pixel of the L'V is found in each frame of the study.
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3.3 Septum Identification

3.3.1 Introduction

The tissue wall separating the left ventricle from the right ventricle is known as
the intraventricular septum. This wall is approximately 1 cm thick and is divided into
two major zones. The outer two-thirds relative to the LV is composed of compact
muscle, while the inner third is a trabeculated zone (ie. strands of connective support
tissue). In the radionuclide images, the septum is an area of low intensity since it does
not contain any continuous blood volume, but is perfused to some extent with blood due
to the active muscle tissue. This area of low intensity separates two areas of high
intensity, the left and right ventricles. The septum is a major anatomical landmark
visible in all normal LAO view gated blood pool cardiac studies. For this reason, a
straight-forward grayscale edge detection algorithm should be the simplest and most
reliable approach of identifying this feature. Three different algorithms for identifying
the septum were examined, all of which are based on simple edge detection methods.

For each method, the pixel identified as ‘the septum’ is not included as part of the
LV. It may be demonstrated that the inclusion of these ‘septum’ pixels in the LV has
little effect on the final ejection fraction calculation. Applying the adopted septum
identification technique on a sample image set illustrates the magnitude of the effect.
The calculated EF without including the septum pixels is 35.3%, and including the

septum pixels 15 34.4%. The difference of 0.9% (in absolute EF units) is insignificant.
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3.3.2 Techniques Explored

3.3.2.1 First Derivative Method

This routine identifies the septum by examining the first derivative of the
grayscale data on rays traced radially outwards from the previously identified grayscale
maximum of the left ventricle. These radial rays are drawn at 10 degree intervals
between 180 and 360 degrees. The previously described (section 1.1.3.6) spatial and
temporal filtering reduces noise in the images. The derivative is calculated by
subtraction of grayscale values of successive points along the radial line. The derivative
will initially have a negative value as the grayscale drops off from the LV maximum, but
will rise again once the grayscale values begin increasing, for example when the ray
enters the RV. The pixel associated with the first minimum value of the derivative is
identified as the septal point for that particular ray. If the edge of the ventricles region is
encountered before a clear minimum is found (for example, at the top of the LV), then
the pixel lying just outside the ventricles region along the ray is defined as the septal
point for that ray. Once this process is repeated for all the rays, the identified septal
points are joined by linear interpolation. The right ventricle is then stripped away from

the image. The results of this routine on a sample image set are contained in Figure 3.10.
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13 14 15 16

Figure 3.10: Results of first derivative septum identification routine on a 16 frame
example image set.

3.3.2.2 First Minimum Method
This procedure examines radial rays traced outwards from the identified left
ventricle grayscale maximum, and defines the first grayscale minimum encountered as

the septal point for that ray. The radial rays are separated by 10 degree increments and
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are spread out between 180 and 360 degrees relative to the L'V grayscale maximum.

Consecutive pixels along the ray are examined, and the pixel which demonstrates an
increase in intensity relative to the previously examined pixel 1s identified as a septal
pixel. The application of this septum search method is illustrated in Figure 3.11.

In addition to the noise reduction achieved through the preprocessing, two
conditions are placed on the search for the minimum in order to increase the robustness
of the algorithm. The first condition compares the grayscale value of the pixel of interest
with the grayscale maximum of the LV, and does not allow a pixel to be identifed as the
septum point if the difference is within +5 grayscale levels. This accounts for a possible
small error in identifying the L'V grayscale maximum which is described as follows. If
the LV grayscale maximum is defined by averaging the x- and y-coordinates of multiple
maximum values (ie. in the event of a tie for highest grayscale), the defined point may in
fact lie between the multiple maxima and thus when radial rays are examine, a false
minimum is encountered when the radial ray passes over a true maximum. An example

of this scenario lies in Table 3.1 below.
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y-coordinate x-coordinate
30 31 32 33 34
28 227 231 229 230 229
29 229 235 234 235 231
30 227 230 233 235 231
31 225 228 230 229 228
32 220 224 226 223 220

Table 3.1: Sample grayscale values to illustrate a ‘false’ minimum situation.

As may be observed, there are three grayscale values tied for the maximum at 235. By
taking the average of the x- and y-coordinates of these pixels, the LV centre would be
defined at (32, 29), which has a grayscale value of 234. Thus, when a ray is traced
outwards from the LV centre to the ‘left’ along row 29, the applied condition corrects the
algorithm from misidentifying the minimum as point (32, 29). The second condition
attempts to account for a slight increase in pixel intensity along a ray, en route to the real
septal minimum. This is simply a pixel with a high amount of noise. Occasionally, a
small increase of one grayscale level may be observed while tracing a ray towards a true
minimum. For example, the sequence of grayscale values along a single ray may look

like:

Pixel I 2 3 4 5 6 7 8 9 10

Grayscale | 235 | 230 | 228 | 229 | 220 | 209 | 200 | 195 | 200 | 206
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Obviously a clear minimum is located at position 8, but a false minimum at position 3
also exists (due to the slight increase in grayscale of pixel 4). However, if the algorithm
is suspicious of any minima whose succeeding pixel grayscale value increases by only 3
units or less, these false minima may be identified. When a pixel is labeled as suspicious,
the next pixel in the ray is examined and compared with the previous pixel grayscale
value. If an increase over the previous value is found, then the minima being examined
will be correctly identified as the septal point, otherwise it will be passed over in search
of a more definite minimum.

When minima for all rays have been identified, linear interpolation is used to join

the points into a solid boundary. The right ventricle is then stripped off of the image.
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Figure 3,11: Results of first minimum septum identification routine on a 16 frame
example image set.
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3.3.2.3 Minimum/Horizontal Scan Method

This method combines the minimum method as described above with a horizontal
scanning process. Noise is smoothed by the preprocessing and robustness routines
previously described (section 3.3.2.2). The routine utilizes the minimum method to
identify the top portion of the septum, between 270 and 360 degrees relative to the LV
centre. For the bottom portion of the septum, the image matrix is scanned horizontally
from right to left, by row. The starting x-coordinate for each row scan is the LV centre
x-coordinate. The starting y-coordinate is one below the LV centre y-coordinate. The
first minimum encountered along each row is identified as the septal point for that row.
Due to the anatomy of the heart, the shape of the normal patient’s septum will exhibit
some curving in below the LV. This means that the points identified as minima in the
row scans will generally move closer and closer towards the LV centre x-coordinate, as
the rows farther towards the bottom of the heart are scanned. Once a row is reached
where there is no clearly defined minimum (ie. a minimum identified at, or within 2
pixels of the LV centre x-coordinate), the horizontal scanning is stopped. Using the
identified septal point from the previous row scan as a starting point, an artificial septum
is traced out as a straight line at a 20 degree angle to the vertical, and moving down and
to the right. Since the starting point of this line is the last clearly identified septal pixel,
the artificial line lies underneath the LV proper, and hence the actual angle of the
artificial line is not of critical importance. This artificially defined portion of the septum
will consist of only a few pixels. The septal points identified using the minimum method

are joined by linear interpolation. The rest of the defined septal points are present for
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each row, thus linear interpolation is unnecessary. Finally, the right ventricle is stripped
from the image. Figure 3.12 displays the results of this routine on a sample image set.
The horizontal scanning approach is used on a portion of the septum which may
not exhibit a distinct circular shape around the identified LV grayscale maximum, and
therefore first minimum technique (as described in the previous section) would not
operate exactly as desired. For instance, the first minimum technique located minima in
the lower portions of the septum which did not satisfactorily correspond with manual

definitions.
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Figure 3.12: Results of minimum/horizontal scan septum identification routine on a
16 frame example image set.
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3.3.3 Results

All three methods were employed on a set of ten studies (each study from a
different patient). Figures 3.10, 3.11, and 3.12 illustrate the three methods applied to the
same image set. It may be observed that the first derivative technique defines a very
‘tight’ L'V boundary, that is, close to the LV centre. The first minimum method works
well for the septum region directly between the LV and RV and gives a relatively
‘looser’ fit compared to the first derivative, the boundary tends to become lax at the
bottom of the L'V, possibly overlapping the RV in some instances (unwanted). The
minimum/horizontal scan method results in a loose fitting contour at the top of the
septum, as well as a loose contour at the bottom of the L'V, but not overlapping the RV
region. The loose fitting contour at the bottom of the LV generally allows for a better
LV contour fit, based on this visual examination and comparison to the contours defined
in the manual analysis. Therefore, the minimum/horizontal scan method has been

incorporated into the fuzzy clustering LV detection algorithm.
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3.4 Second Clustering

3.4.1 Features Used

The clustering algorithm is applied a second time on each of the 16 individual
image frames, as opposed to the first application which was applied only to the phase
image for ventricles identification. Only data from the remaining ventricles region,
following the removal of the right ventricle as described previously, is utilized in this
second clustering. The input vector for each pixel now consists of three features. The
prime component is the grayscale value of the pixel, while the second and third
components are the x- and y-coordinates of the pixel. If only grayscale data were used in
the clustering routine, the result would be a thresholded image. Utilization of the
geometric information induces a spherical shape (perfectly spherical never occurs, but
generally a slight ellipse is produced) on the clustered data, which corresponds to the
expected profile shape of the LV in the LAO view.

The features are normalized in a manner similar to that performed in the initial
clustering. The x- and y-coordinate data, as well as the grayscale data, are normalized by
their median values. Weighting factors for the x- and y-coordinate data are restricted to
be the same, and are chosen to be 1.0, for reasons described previously described in
section 3.1.4. The weighting for the grayscale data is found through an optimization

process, described in detail in section 4.1.
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3.4.2 Left Ventricle Region of Interest

The second clustering application results in the given image frame data being
grouped into two separate clusters, as demonstrated in Figure 3.13. In the normal heart
image, one of these clusters corresponds well with the LV, while the other cluster forms
a narrow band of pixel data surrounding the L'V cluster in a crescent shape along the
right and lower edges (in the image). This crescent shaped area is assumed to be signal
originating from blood volume external to the heart. There also exists a small territory of
unclassifiable pixels which lie between the two identified clusters. This thin region is
generally 1-2 pixels in width, where the membership function is considered to be
borderline between the two clusters. These pixels are not considered to be a part of
either identified cluster.

To distinguish which data cluster corresponds to the desired L'V region of
interest, the cluster centre vectors are examined. The discriminating feature is the
grayscale component of the cluster centres. The LV ROI’s cluster centre will possess a
higher value for the grayscale component than the external cardiac region. Identification
of the LV ROI becomes a matter of choosing the cluster with the highest grayscale
component in the cluster centre vector.

The identified LV boundary may not be a smooth convex curve. A
morphological closing is performed on the LV ROI with a 2x2 structuring element to

smooth the LV boundary. Essentially this processing removes contour protuberances
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consisting of single pixels. In this fashion, a smooth LV ROI is defined in each image

frame, based on the results of the second application of the clustering algorithm.

(b) (©)

(e) (f)

Figure 3.13: (a) End-diastolic frame of example image set, (b) corresponding input
image for second clustering application, (c) resulting clusters, (d) end-
systolic frame of example image set, (e) corresponding input image for
second clustering application, and (f) resulting clusters.
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3.4.3 Calculation of Ejection Fraction

After identifying a LV ROI in each image frame, the pixel grayscale values
within each ROI may be summed to yield a time activity curve. Multiplying the
background activity per pixel by the number of pixels populating each LV ROI produces
the appropriate background correction required for each point in the TAC. Subtracting
these correction values from the original TAC results in a background-corrected TAC
from which the ejection fraction may be calculated.

A smooth curve is fitted to the TAC before the ejection fraction calculation
proceeds. This is done because statistical fluctuations limit the accuracy of quantities
derived directly from the cardiac TAC. This may not be obvious in this work, due to the
use of spatially and temporally smoothed data, but should definitely be a concern when
using unfiltered data sets. A common method of fitting the TAC is with a truncated
Fourier series. Work by Bacharach et.a/. (1983) and Mukai (1983) indicate that the
optimal number of Fourier harmonics to fit to the TAC is 2 (for low end-diastolic counts)
or 3 (for high end-diastolic counts). Recalling equation 3.1 and limiting the expansion to

3 harmonics:

TAC(k)zao+iah -cos{%i—d}h} (3.5)

h=1 max

3 sin[%} TAC(R)

where ¢, = TAN | --= e
i Sin[ 2mh(k — 1)

k=1

, phase value of harmonic (3.6)
J- TAC(k)

‘max
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kmax
a, = ——i——Z TAC(k), zeroth amplitude term 3.7

‘max k=1
[ _

a, =2y co % +d)h] TAC(k), amplitude of harmonic term (3.8)
k=1 max

and /= harmonic number
k = frame number

Kmax = total number of frames.

Therefore the TAC curve for the LV is fitted by expansion of equation 3.5, with the
terms derived through equations 3.6-3.8 above. From this fitted TAC, the ejection
fraction may be calculated by equtaion 5.2. A comparison of the original TAC to the
fitted TAC for a sample image set is given in Figure 3.14.

This method of smoothing the TAC by Fourier curve fitting is not performed by
the manual technique used at the Health Sciences Centre. The manual technique applies
a linear interpolation routine between two TAC’s (the manually drawn end-diastolic and
end-systolic ROI’s each giving one TAC) to give a final estimate of the left ventricle
TAC. However, this procedure does not accomplish a curve fitting of the data. The
semi-automated technique does employ a Fourier curve fitting of the TAC, retaining the
first six harmonics with weightings of 1.0, 1.0, 1.0, 0.75, 0.50, and 0.25 respectively.

This is equivalent to a low pass filter.
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Figure 3.14: Original and Fourier fitted time activity curves for example image set
(which has already been spatially and temporally filtered).
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3.5 Backeground Esfimation

3.5.1 Introduction

The time activity curve of an LV is composed of two main components: 1)
activity originating from within the L'V volume, and 2) activity observed within the LV
region but actually originating external to the LV volume. The second component is
known as background activity. The TAC of the LV must therefore be corrected for the
background before calculation of the ejection fraction.

Several factors contribute to the background activity: (a) vasculature lying in
front of and behind the LV will contribute to the counts observed in the L'V, (b) scattered
photons originating externally to the LV may be observed to emanate from within the LV
region, and (c) there is also the concept of ‘virtual’ background introduced by Green et.
al. (1978). This concept was developed to describe background sources which arise not
from radioactivity external to the LV, but which can be attributed to violations of the two
major assumptions of gated blood pool imaging as discussed on page 1. These are: 1)
the externally observed L'V count rate is absolutely proportional to LV volume, and 2)
all cardiac cycles are mechanically identical. The first assumption is violated due to the
effects of attenuation of the signal originating in the L'V, and the second is violated due
to natural variation of the cardiac cycle. Both of these violations result in a decrease in

measured EF, which is equivalent to an increase in the ‘virtual’ background activity.
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The background originating entirely outside the LV may, in principle, be

corrected for by subtracting a suitably estimated background from each pixel within all

LV regions-of-interest. The virtual background sources cannot be corrected for so easily,

but the magnitude of their effect is much less than the external background sources

(Green et. al., 1978).

3.5.2 Methods of Estimating Background Activity

Several techniques for estimating background activity have been proposed in the

literature. All of these techniques assume that the background activity is spatially

invariant (which is not true), due to the extreme difficulty in developing a spatially

variant model. A list of proposed techniques in the literature follows:

(a)

(b)

(©

(d)

(e)

®

50% of the counts in the ventricular region of interest at end-systole (Slutsky, et.al.,
1980),

the counts in the systolic frame in the region lying between the end diastolic and
end systolic outlines (Slutsky et. al., 1980),

the average activity of the pixels along the inferior and left sides of a rectangle
defined to encompass both ventricles (Merrick, 1984),

a vertically oriented rectangle (3 pixels wide by 15 high) lying immediately
adjacent to the LV region of interest in the end systolic frame (Taylor et. al., 1980),

a crescent shaped region 3 pixels wide, lying 2 pixels outside the L'V contour on the
end systolic frame, between 3 and 6 o’clock relative to the L'V centre (Reiber et. al.
1983),

selecting an ‘optimal’ background region from six automatically generated regions
in the directions of 1 through 6 o’clock with respect to the L'V centre on the basis of
minimal variance in the background TAC and lowest mean activity level (Reiber,
1985),
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(g)  amanually defined crescent shaped region 2-3 pixels wide in the end systolic
frame, generally chosen in a region of low activity 2 pixels outside the LV region of
interest (HSC technique).

3.5.3 Anatomical Landmarks in Background ROI’s

With any background correction technique where a region of interest is defined,
care must be taken not to include anatomical features unrepresentative of the true
background. The descending aorta is generally visible in an LAO gated blood pool scan
as a narrow region of increased activity lying to the right of the left ventricle, extending
vertically through the image. Often the spleen may demonstrate higher activity due to
blood flow to that organ which is located below and to the right of the left ventricle in
the image. The inferior vena cava may be visible as a narrow region of increased activity
extending below the right ventricle chamber to the bottom edge of the image. Due to
anatomical variation between patients, the position of this vein may lie underneath the
septal region, or even the left ventricle. Since this vessel is buried deeper than the
descending aorta, it is not as distinct a feature. A choice of background region which
includes any or a portion of these features which display increased activity will result in
an overestimate of background. This will also cause the ejection fraction to be
overestimated.

An area of lower than ‘true’ background activity may occur in cases where the
patient is exhibiting stomach gas. The stomach is located slightly below and just to the

right of the left ventricle. Gas trapped in the top of the stomach may cause a region of
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decreased activity in the image due to the displacement of background blood containing
tissue by non-active gas. This is an uncommon situation. However if the defined
background region includes a portion of this feature, the background activity and

therefore the ejection fraction will be underestimated.

3.5.4 Automated Background ROI Selection

It was decided that the background estimation method employed should simulate
the manual technique used by the HSC, since the manual technique results would be
acting as the standard of comparison. The adopted algorithm traces rays at 5 degree
intervals from 0° to 225° with respect to the identified L'V centre in the end-systole
image frame only (0° corresponds to 12 o’clock position). The grayscale values of each
pixel are examined along every ray, and the minimum pixel lying outside the left
ventricle contour but within four pixels of this boundary is selected for further
processing. The minimum pixel as opposed to simply a set pixel number is used here to
ensure that the following region-growing algorithm is receiving at the very least a local
minimum. In this manner, 46 pixel coordinates are chosen (one for each ray traced) to be
passed to a region-growing routine, each pixel acting as a ‘seed’ point. A region-
growing routine is an image processing technique which expands pixels or subregions
into larger regions. Each of the 46 ‘seed’ points are used as input to the algorithm and
from this 46 regions are grown. Growth of the regions occurs by appending to the seed

point those neighbouring pixels possessing similar properties. The property examined in
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this case is the grayscale value of the pixel. Neighbouring pixels are added to the region
if their grayscale is equal to or lower than the grayscale of the seed point. The algorithm
stops when the region size reaches 40 pixels. The region size is set as an input
parameter, and has been chosen to correspond approximately to the size of manually
chosen regions. If the region size fails to grow to 40, and there are no more
neighbouring pixels which are of equal or lower grayscale than the seed point, then this
limiting grayscale value is increased by one unit, and the growth initiated again. This
process is repeated until the region size equals or exceeds 40 pixels. The resulting region
is a local grayscale minimum adjacent to the given seed pixel. In order to simulate the
crescent shape of the manually chosen background regions, geometric boundary
restrictions were imposed during each application of the region-growing routine. These
limitations were defined in terms of radius from the left ventricle centre. The growing
regions were forced to lie between 2 and 6 pixels outside the LV contour as measured
along the radial ray. These boundary conditions resulted in crescent shaped regions of
interest, as desired.

This processing results in 46 defined background regions, one for each seed point.
For each region, the average activity per pixel is calculated by summing the grayscale
values and dividing by the number of pixels within the region. Neighbouring regions
exhibited significant overlap, and background activity calculated from neighbouring
regions is similar in magnitude. However, when viewed altogether, the regions varied

significantly depending on location {for example between 136 counts/pixel at 40° to 89
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counts/pixel at 160°). The region possessing the lowest average activity per pixel is

chosen as the estimate of the background activity (see Figure 3.15 below).

(2) (b)
Figure 3.15: (a) End-systolic frame, and (b) end-systolic frame with left ventricle

region of interest (LV ROI) and background region of interest (BG
ROI) defined.

This attempts to simulate the choice of a region of low activity in the HSC technique.
Due to the choice of the minimum activity per pixel, as well as the method by which the
background regions are grown, it is felt that if the estimation differs from that of the HSC
technique, the difference will be an underestimation of the background. This is
advantageous when one considers the work of Grove, ef.al., 1986. They find, using ideal
geometrical models, that in situations where the background is overestimated, the error in
gjection fraction may be very large. However, when the background is underestimated,
the resulting error in ejection fraction is smaller (relative to an equal overestimation), as

illustrated in Figure 3.16. Thus, if the background estimate is not accurate, it is
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preferable to make an underestimate since an error in that direction will have less impact
on the ejection fraction.

It 1s emphasized that this work is not advocating the use of a zero background
correction, as suggested by others (Gandsman, 1982; Gandsman, 1990). The work by
Grove is interpreted here as merely suggesting that an underestimation of background
will result in less error in the calculated EF than an overestimation. Idealizations in
Groves’ work, such as a spherically shaped heart and correctly defined LV ROI’s at both
ED and ES, make generalizations of absolute magnitudes (observed in Figure 3.16) to

clinical situations difficult.
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Figure 3.16: The effect of an error in background correction estimation on
calculated ejection fraction for four values of true ejection fraction
(EF = 20, 40, 60, and 80%) with the true background defined as 0.50
of the maximum counts per pixel at end-diastole [adapted from Grove,
et.al., 1986].
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The effect of the number of pixels defining the background region was explored
in a set of ten images. The number of pixels composing the background region was
increased from 10 to 80 in steps of 5, and the resulting ejection fraction examined. The
results are presented in Figure 3.17. It is shown that in all of the test cases, the larger the
background region, the higher the background activity estimate and therefore the higher
the ejection fraction. In most of the test cases, the ejection fraction is affected very little
by the size of the background region, demonstrating that the exact number of pixels
comprising the region is not crucial. The variation in the measured EF due to the choice
of the background region size is within 21.5% as observed in the analysis of the ten

image test set in Figure 3.17.
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Chapter Four: ANALYSIS

4.0 Introduction

During the application of the fuzzy clustering algorithm, many parameters must
be defined. These include the fuzzy exponent weighting values (see section 1.3.4) and
the input vector weighting factors (section 3.1.3 and section 3.1.4). In addition, the
factor in the isolation image calculation (section 3.1.2) and the decay value (section
3.1.1) must also be defined prior to calculation of the ejection fraction.

Ideally, these values should be set at the most stable operating points to reduce
the effects of these choices on the resulting EF value. An optimisation process for
identifying the most stable set of operating parameters for a test set of 10 studies is
described in this chapter.

Self attenuation due to the blood volume itself is generally unaccounted for in the
normal estimation of EF from gated blood pool images. The fact that the blood volume
is a distributed source which also acts as an attenuator results in a slight overestimation
of EF unless a correction is made. A computer simulation has been created to estimate
the magnitude of this problem, and the results lead to a novel method of correcting an EF
estimate for self attenuation by the blood volume. This chapter also discusses the

computer simulation and results, in addition to the correction method devised.
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4.1 Optimisation Process

4.1.1 Introduction

The fuzzy c-means algorithm as applied to left ventricle detection requires several
parameters to be specified during the course of execution (refer to sections 1.3 4, and
3.1-3.5). There appears to be no theoretical or computational evidence which
distinguishes optimal values of these parameters. The best strategy for selecting optimal
parameters seems to be based on an experimental approach (Bezdek, 1984). This
consists of identifying the most stable operating point by examining output for a discrete
range of inputs for each parameter.

Many parameters have been defined throughout the algorithm developed in
Chapter Three. Some of these will have a greater effect than others, on the resulting EF.
The most important parameters in terms of effect on EF were selected for optimisation.
It is important to note that the optimisation process assumes these parameters are
independent, which may not necessarily be the case. The optimised parameters include:
1) decay parameter of the phase image
2) isolation parameter (8)

3) fuzzy weighting exponent used for first clustering (m,)
4) feature weighting factor used on first clustering input vectors (w,)
5) fuzzy weighting exponent used for second clustering (#1,)

6) feature weighting factor used on second clustering input vectors (w,)
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This section will discuss in further detail the method used to optimise these
parameters and the results of this optimisation process. An estimate for the uncertainty
resulting from the use of a parameter set optimised for several images as opposed to a

parameter set optimised to a single image will be described in section 5.1.

4,1.2 Optimisation Method

The choice of a global set of optimised parameters has been performed in a two
step process. Given a test group of 10 normal heart studies, each image set was initially
analysed to achieve stable parameters for that particular study. The ten sets of
individually optimised parameters were then analysed to yield a single, global set of
parameters optimised for all 10 studies. Thus, the optimisation process functions to
identify stable operating points, which may not necessarily be the most correct ones in
terms of output EF. Optimisation to achieve stability during operation is an attainable
goal whereas optimisation to achieve the correct EF is virtually impossible, since no
technique offering 100% accuracy currently exists.

An initial analysis during which the parameter values for all 10 studies were
investigated enabled the recognition of clinically useful ranges of the parameters
involved. By clinically useful, it is meant that the LV ROI identified via the algorithm
seems to comncide reasonably with the LV structure observed. Optimisation was then

concentrated within a liberal estimate of range values. The parameters were optimised
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one at a time, and in the same sequence they were input during the program execution.
Once identified, the value was fixed during optimisation of the subsequent variables.
Background correction was not employed during the entire optimisation process, since
only the relative stability of the resulting EF was examined, and not the absolute
magnitude. Exclusion of the background correction should increase the reliability of the
optimisation process, since it is not possible to optimise the background estimate in the
same sense as the previously mentioned parameters. This is because the background
activity is not determined through implementation of the fuzzy clustering algorithm,
while the optimised parameters are all involved in the direct execution of the fuzzy
clustering algorithm. The subroutine determining the background activity estimate
merely utilizes the final clustering results of the LV contour definition in the end-systolic
frame (as described in section 3.5.4).

The parameter being optimised was stepped throughout the previously identified
useful clinical range in small increments, in order to identify local trends in the effect on
EF. At each step, the ejection fraction was calculated via the fuzzy process. A graph of
EF as a function of the parameter value proved useful for determining the range of values
over which the parameter exhibited stability. The range of stability was determined
visually from each graph of EF versus parameter, and quantitatively consisted of any
region which displayed less than a 1% variation in EF as compared to surrounding
regions. To further ensure stability, the ‘edge’ points of each identified stable range were
not included in defining the stable range. Thus, the minimum stable region size consisted

of three adjacent points, of which only the centre point would be used in defining the
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region. A stable range was identified for every parameter described in section 4.1.1, and
for every image set. It was observed in several cases that a parameter could exhibit more
than just a single region of stability, so all regions were recorded. Figure 4.1 displays the
variation of resulting EF as a function of the fuzzy weighting exponent used for the
second clustering application (#2,) on a test study. Note that three stable regions defined
as above are evident from this graph, over the range examined. These regions would

include the values covering 1.65-1.80, 2.00-2.20, and 2.35.
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Figure 4.1: Variation of ejection fraction (uncorrected for background) with the
fuzzy weighting exponent used for the second clustering application
(r,) on a test study. Three regions of stable operation are apparent
from this graph: values of 1.65 - 1.80, 2,00 - 2,20, and 2.35 inclusive.
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The weighting factor effect on EF in both the first and second fuzzy cluster
applications results in a region of high stability (essentially no variation in EF) when the
weighting factor reaches a certain magnitude. Once this plateau is reached, it signifies
the weighted input parameter is dominant over the unweighted inputs. This does not
mean that the unweighted inputs are not affecting the output. The stability demonstrates
that the weighted parameter is the primary distinguishing feature in this range as
intuitively expected, and desired (recall section 3.1.3). An example of this type of stable
region for the grayscale weighting used in the second clustering application is given in

Figure 4.2.
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Figure 4.2: Variation of ejection fraction (uncorrected for background) with the
grayscale weighting factor used for the second clustering application
(w,) on a test study. A single distinct region of stable operation is
apparent from this graph: values of 2.0 and upwards.
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The second step of the optimisation process entailed analysing the parameter
ranges determined during the first step. The frequency of occurrence of each discrete
parameter point over a region of stability was registered for all 10 image sets. These data
could then be viewed in histogram format, for easy analysis (see Figure 4.3 for an
example of the first fuzzy weighting exponent, m2,). The frequency of stable occurrences
versus the actual value of the parameter yielded a useful summary of data from which the
globally optimum parameter may be selected. The selection process consisted of
choosing the most frequently occurring stable value of each parameter. If two
neighbouring parameter points had equal frequencies of occurrence, the average
parameter value would be designated as optimal. When two non-neighbouring parameter
points had equal frequencies of occurrence, the value with the higher nearest neighbour
stable frequencies was chosen as the optimal parameter. It should be noted that this
technique is based on a ‘modal’ approach as opposed to an ‘average’ approach. This
method was utilized because an average optimised value may not occur frequently in
individual image sets, and thus provide stable values for fewer image sets than a

parameter choice based on frequency of occurrence,
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Figure 4.3: Histogram of stable occurrences of the fuzzy weighting exponent used
for the first clustering (#1,), as compiled for 10 image sets. The most
frequently occurring value is the 2.00-2.10 bin, thus 2.05 is taken as the
optimal value.

The histograms for each optimised parameter are presented in Appendix A, and
are discussed now. The decay parameter has a wide range of stable values, with an

average value over the four highest bins of 32.5. The raw data suggests that the decay
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parameter value has little effect on EF. The isolation 6 parameter demonstrats two
dominant bins, those of 30 and 35. The average of these two is taken as the optimal
value, at 32.5. The fuzzy weighting exponent for the first clustering, mz;, displays a
single dominant bin with a value of 2.05 (since the bin width is 2.0 - 2.1, the
representative value is 2.05). Examination of the phase and isolation weighting factor,
Wi, reveals the minimum stable operating value to be 3.2. This histogram must be
interpreted carefully. It demonstrates that the output EF of six study sets are stable for
values of 2.1 and higher, seven study sets are stable for values of 2.3 and higher, eight
study sets are stable for values of 2.5 and higher, nine study sets are stable for values of
3.0 and higher, and all ten study sets are stable for values of 3.2 and higher. Thus the
value of 3.2 is chosen to ensure a stable region over a// sample study sets. The fact that
3.2 is greater than the minimum value stable value necessary in nine of the study sets is
inconsequential, since the EF output does not fluctuate once the minimum plateau value
is reached (as demonstrated in Figure 4.2). However, an arbitrarily large value should
not be chosen since it would make the contribution from the unweighted inputs
negligible. A similar argument may be utilized for the grayscale weighting factor, w,,
with the optimal value chosen as 3.2. The histogram describing the second fuzzy
weighting parameter, m1,, possess a bimodal distribution. That is, there are two regions
of frequent stable occurrences, one around 1.6, and the other around 2.1. Due to the
greater magnitude of stable occurences, as well as the wider range of stability (higher
surrounding bins), the 2.1 bin was selected. Thus, the global m, parameter representing

all ten study sets was chosen to be 2.15 (since the bin covers values 2.10-2.20).

123



Therefore, through the above processing steps a set of globally optimised
parameters has been found. This set of parameters is representative of the 10 image sets
employed in the optimisation procedure, not just a single image set. The globally
optimised set of parameters has been used to reanalyse each of the 10 image sets, as

described in 5.1.1. The results of the optimisation process are presented below in tabular

format:
Parameter Description Optimised Value
(for 10 image sets)

decay parameter 33
1solation parameter (5) 35

fuzzy weighting exponent () 2.05

phase and isolation weighting factor (w,) 32

fuzzy weighting exponent (m,) 2.15
grayscale weighting factor {w,) 3.2

Table 4.1: Results of parameter optimisation employing data collected from ten
studies.
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4.2 Attenuation Effects

4.2,1 Introduction

A basic assumption in radionuclide ventriculography is that the external count
rate observed in the L'V by the gamma camera is absolutely proportional to the LV
volume. However, due to photon attenuation (and scatter) by the various tissues lying
inbetween the source activity and the gamma camera, this relationship is non-linear
(Dell’Italia, 1985; Links, 1982; Nickoloff, 1983; Rabinovitch, 1984). The LV blood
volume itself also constitutes an attenuation and scattering medium. Hence, source
points lying further away from the camera will suffer more attenuation due to the larger
amount of intermediate material. Therefore a gradient of detection sensitivity exists
along the line of sight of the gamma camera through the LV (Green ef.al., 1978). This
implies that the observed L'V in gated blood pool scans is anteriorly weighted in the
camera viewing direction (ie. voxels closer to the camera contribute relatively more
signal than voxels further away). To illustrate the effect the attenuation will have on the
detected signal, consider two point sources of equal activity, one at the apex of the LV,
and the other in the back of the LV at the mitral valve, each point lying along the same
line of view with respect to the gamma camera. If average cardiac dimensions of 7.5 cm
long axis, 6.4 cm short axis for end-diastole and 5.5 cm long axis, 3.4 cm short axis for

end-systole (Cardiac Imaging: a companion to Braunwald’s Heart Disease, 1991) and an

attenuation coefficient equal to the broad beam value for 140.5 keV photons in water
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[0.12 em™] (Gandesman, 1990) are assumed, the point source at the heart apex will
register only ~62 % of the counts emitted by this source if it were located at the skin
surface. The point source lying at the mitral valve would register about ~30 % of the
skin surface activity. This example illustrates that detection sensitivity may vary by a
factor of 2 from the ‘front’ to the ‘back’ of the LV,

Cardiac phantom studies were performed by Green et.a/. (1978) for the purpose
of assessing the non-linearity of the counts vs. volume relationship. It was suggested that
this relationship depended on viewing angle, absolute end-diastolic volume and EF, and
LV shape. Yeh (1981) investigated the attenuation effects within an ellipsoid model and
predicted a ~4.5% underestimate of EF. Gandesman (1990) examined the effects of self-
attenuation of the blood volume on the calculated EF using spherical and cylindrical
models and calculated an apparent underestimation of EF by 2-5%. Although a minor
concern in healthy hearts, this effect could give rise to a chronic underestimation of the
true EF in dilated and failing ventricles (Green, 1978). These effects are further
investigated via computer simulation in this analysis as described in section 4.2.2 below.
The work by Green also indicated that the loss of photons originally moving toward the
detector may be partially compensated by the detection of photons not initially moving
toward the detector but scattered by intervening material into the detector. Owing to this
effect, count-volume linearity may be improved in patients over results indicated by in-

air phantom studies.
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4,2.2 Computer Simulation

In order to achieve a more accurate estimate of the effects of photon attenuation
upon EF, a computer model was developed. This simulation allows varying L'V contours
to be examined, and varying gamma camera angles with respect to the LV long axis. An
LV contour shape is defined by an input file containing a set of discrete points
representing one-half of the LV contour along the long axis. The computer program then
generates the full LV shape by assuming rotational symmetry about the long axis of the
LV. Linear interpolation is used to fill in the boundary shape between defined contour
points. The coordinate system used is Cartesian, with the x-axis defined as the LV long
axis, the y-axis defined as the L'V short axis, and the z-axis defined to retain
orthogonality (see Figure 4.4). The gamma camera viewing angle and voxel size are set
as input values. The voxel size indicates the volume element size which will be
examined in the simulation; the smaller the voxel size, the more accurate the simulation
results at a cost of increased computing time. The gamma camera angle is converted to a
direction vector with length 0.1 mm.

Planar contours of the LV are generated by taking slices in the x-y plane at
increments along the z-axis defined by the voxel size. For each slice of LV data, a
rectangular region just encapsulating the LV contour is analysed. The x- and y-
coordinates are stepped through by increments of the voxel size. Each point is examined
to discover if it lies within the defined LV boundary in that plane. If the point is found to

be inside the LV, then the length from the point to the LV contour in the direction of the
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gamma camera is calculated. This length is used to find the attenuated signal reaching
the LV surface from the voxel being examined. For example, considering the attenuation
coefficient to be 0.12 cm™ as before, a 5 cm interval of tissue would cause a
[1-exp(-0.12*5)] ~ 45% reduction of signal. All voxels in the rectangular region
encompassing the LV boundary are inspected. Therefore by summing only points lying
within the L'V and multiplying by the voxel volume, an estimate of the true volume of
that LV contour may be achieved. Summing the attenuated signal from all those points
within the LV contour and multiplying by the voxel volume will yield an estimate of the
effective volume measured at the gamma camera resulting from attenuation of the
radioactivity originating in the LV, Figure 4.4 portrays a schematic representation of this

computer model.
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To gamma camera

Example voxel
[centee at (5.9, 4.9)]

y-coordinate

Left ventricle contour
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attenuation for example voxel
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LEGEND:
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Figure 4.4: Illustration of computer simulation geometry for left ventricle cross
section through z=0. User defined input parameters: voxel size =
2x2x2 mm®, angle of gamma camera line of sight to left ventricle long
axis = 30°. The array of voxels is scanned by incrementing down the y-
coordinate for an entire column, and repeating this columnar scan for
each x-coordinate value (moving in the negative x direction).

By using realistic L'V dimensions for both end-diastole and end-systole (Cardiac

Imaging: a companion to Braunwald’s Heart Disease, 1991) in this computer simulation,

the true and apparent L'V volumes may be calculated for any orientation of gamma

camera angle. In this way, the effect on EF due to attenuation alone may be estimated.

Results of the computer simulation on a spherical test contour verify that the model

functions properly, through convergence to the true volume of 113.097 cm’, as

demonstrated in Figure 4.5. The slight underestimation (by 3.2%) is expected due to the
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linear interpolation between curved surface points resulting in a ‘connect-the-dots’ style

of contour lying within the true elliptical shape.
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Figure 4.5: Convergence of calculated volume of computer simulation for an ideal

spherical input of radius 3.0 cm. Ideal geometric volume is 47(3.0)°/3 ~
113.1 em’, Computer simulation results in a calculated volume
convering to 109.5 cm’. The slight underestimation (by 3.2%) is
expected due to the linear interpolation between spherical surface
points resulting in a ‘connect-the-dots’ style of contour lying within the

true spherical shape.
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4.2.3 Estimate of Magnitude

To assess the magnitude of the self-attenuation by the blood volume, computer
simulation is utilized. End-diastolic and end-systolic contours with dimension and shape

based on standard textbook information (Cardiac Imaging: a companion to Braunwald’s

Heart Disease, 1991) are used in this simulation, with the long axis of the LV defined as
lying at 40° to the gamma camera face surface. Due to the larger volume of the LV at
end-diastole (compared with end-systole), the end-diastolic volume should result in a
greater attenuation of signal. A voxel size of 0.09 cm per side is employed to yield the

following results:

End-diastolic | End-systolic | Resulting EF
model model (%)
True Volume (cm”) 112.66 30.51 72.9
Effective Attenuated Volume 87.52 26.01 70.3
(cm’)

As predicted, the magnitude of self-attenuation demonstrated by the end-diastolic model

is greater than the end-systolic model. In the end-diastole situation, 22.3% of the

original signal produced in the L'V has been attenuated by the LV blood volume itself,

while only 14.7% attenuation occurs in the end-systole model. This results in a mild

underestimation in the true EF of 2.6% for these chosen heart dimensions. This value

compares well to the results ~4.5% by Yeh (1981) and 2-5% by Gandesman (1990).

Note that this underestimate will increase for a dilated ventricle situation.
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The magnitude of this effect is large, and warrants correction. The following
section discusses a novel method for correcting a measured ejection fraction for the self-

attenuation due to the LV blood volume.

4,2.4 Correction Method

Several methods have been proposed to correct for photon attenuation in
radionuclide ventriculography. These involve geometric modeling (Clements, 1981;
Dell’Italia, 1985), chest wall thickness estimates (Parrish, 1982), imaging of patient
blood samples (Links, 1982), simultaneous imaging of an added source (Kronenberg,
1985; Nickoloff, 1983; Rabinovitch, 1984), and measuring L'V length through an
alternate modality such as 2D echocardiography (Thomsen, 1984).

A relatively simple method for correcting the EF for the self-attenuation of the
blood volume may be implemented with a minimal amount of manual intervention and
use of two look-up tables summarizing the results found by the computer simulation.
The look-up tables consist of a set of multiplicative correction values for effective LV
lengths versus measured angles of the gamma camera (with respect to the LV long axis).
A table for each of the end-diastolic and end-systolic portions of the heart cycle may be
found in Appendix B. By estimating the long axis length of the LV at both end-diastole
and end-systole, and assuming similar heart shape to that used in the computer model

(which was based on clinical data), multiplicative correction factors for the ED and ES
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volumes may be found, and together these may be interpreted as a single multiplicative
correction factor for the EF.

The long axis length estimates may be obtained from the gated sequence of
images collected in the anterior view. Recall this is one of the three standard views of
the heart acquired under the HSC equilibrium gated blood pool imaging protocol (refer
to Figure 1.1). A simple manual measurement of the width (in x-dimension) and height
(in y-dimension) of the LV long axis may be performed directly from the image. These
values in pixel units may be converted to SI units with knowledge of the spatial
resolution of the image which may be procured from the ratio of (width of field of
view):(number of pixels across image). For the camera used to acquire all studies in this
analysis, the field of view is 11.0 inches (27.9 ¢cm) and the image width is 64x64 pixels.
Hence each pixel in the image represents a 0.44x0.44 ¢cm” area. The manual LV width
and height estimates must be modified as below, due to the geometry of the anterior

camera angle view with respect to the best septal view (see Figure 4.5 below).
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Measured: Measured:

Ax =13 pixels Ax = 10 pixels
Ay = 16 pixels Ay = 13 pixels
Calculated: Calculated:
L =25.79 pixels=11.26 cm L =20.27 pixels=8.85cm
B=50.1° p=517
©) ®)

Figure 4.5: Manual measurements of Ax and Ay parameters from the anterior view
study, with resulting calculated values of left ventricle long axis length
(L) and angle to the vertical () as found using equations 4.2 and 4.4,
(a) End-diastolic image frame, and (b) end-systolic image frame.

The values of the length of the L'V long axis (L) and the angle of this axis to the
vertical (B) are solved below, using Figure 4.6 to illustrate the geometry and parameters
involved. To determine the length of the LV long axis, the equation for length of a line

in Cartesian coordinates may be used:

L=J(Ax) +(Ay)* +(A2)" (4.1)
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Since the angular relationship between the anterior view and the best septal view is
known to be 40° then

. Ax
tan(40")

So equation (4.1) becomes:

L = J(Ax)* (1 + cot*(40°)) + (Ay)? (4.2)

Now, the angle of the LV long axis to the vertical (B) may be found by rearranging

(Ax)
tan(B) = %—“;; (4.3)

for [3, as follows:

— tan-] Ax
p=tan (Ay . sin(40°)] *4)

Hence, the manually measured values of Ax and Ay as described above in Figure 4.5 are
utilized in equations (4.2) and (4.4) to generate the L'V long axis length and angle to the

vertical.
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LEGEND:

1- length of LV long axis in anterior view

L - length of LV long axis in best septal view

e - angle of L'V long axis to vertical, in antertor view

B - angle of LV long axis to veritcal, in best septal view
Ax - x-component of LV long axis

Ay - y-component of LV long axis

Az - z-component of LV long axis

Ay

AX

&

Normal to camera face

z (BEST SEPTAL VIEW)

Normal to camera face
(ANTERIOR VIEW)

Figure 4.6: Hlustration of the geometry and parameters involved when using the Ax
and Ay manually determined parameters to calculate values for the
long axis length and the angle of the long axis to the vertical.

The values of L and B are then used to find a multiplicative correction factor in
the look-up table appropriate for heart shape (eg. end-diastolic or end-systolic table).
The values of L and 3 as measured in the end-diastolic image frame will yield a
correction factor of Cgp, and similarly for the end-systolic image, a correction factor Cyg.

The uncorrected gjection fraction is found using,
EF=1--22 (4.5)
EDC

while the corrected ejection fraction (EF) is found as:
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ESC % Cyq

(4.6)
EDC x Cy,

EF, =1-

Rearranging equation (4.5) and substituting into equation (4.6) yields an expression for a

corrected ejection fraction in terms of known values:
CES

EF, =1-(1-EF) =% (4.7)
Cep

The correction factors are the ratio of the true LV volume to the effective attenuated LV
volume, as calculated by computer simulation. Direct substitution of this definition into
equation 4.7 results in the correct expression for the true ejection fraction.

For the example image set given in Figure 4.5, the L and 3 values correspond to
correction factors Cpg and Cpy, of 1.2904 and 1.4913 respectively (using the appropriate
look-up tables in Appendix B). Using equation 4.7 for a measured EF of 37.4% (fuzzy
method), these values yield a corrected ejection fraction of 45.8%. Thus, assuming the
simulated heart shape is similar to the measured heart, self-attenuation due to the blood
volume in this test case results in an underestimate of EF of approximately 8.4% (in
absolute EF).

This underestimate is quite large compared with the underestimate of 2.6% using
textbook cardiac dimensions discussed previously. This is a consequence of the large
long axis dimensions (11.26 cm for ED, 8.85 cm for ES) estimated for the example
image relative to the average axis dimensions (7.0 cm for ED, 5.5 cm for ES) used in the
ideal case. The difference may be attributed to the test case being a heart of significantly
above average dimension. A more accurate estimate of the length dimension would be

achieved by an experienced technician.
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4.2.5 Effect of Error in Long Axis Length Estimate

A simple error analysis is performed in this section. The error in Ax and Ay
estimates above is assumed to be equal in magnitude, 8p pixels. Thus we have from

equation (4.2):

L = /(Ax £8p) cot?(40°) + (Ay +5p)* (4.8)

Applying simple error propagation rules to this equation, we may solve for the error in L

(named 8L), in terms of Op, and after some math we achieve:

2 fs) 2 e}
5 8p(Axcot? (40°) + Ay) _ 8p(Axcot® (40°) + Ay
J(Ax)cot? (40°) + (AyY: L

(4.9)
The ideal estimate of &p is +0.5 pixels, for the case when the shape of the LV is well
defined (that is, half of the smallest division). Unfortunately a clear boundary is not
available, hence the error estimate §p must also incorporate the uncertainty in LV
boundary location (again assuming that this error will be the same in the x and y
directions). Taking a rough estimate of §p including this L'V boundary uncertainty to be
12.5 pixels, and using the values of Ax, Ay, and L from Figure 4.6 (a), we may make an

estimate of 8L using equation (4.9):
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2.5)(13cot?(40°) +16
L=( )( (40°) ):3.34 pixels = 1.46 cm
25.79

Thus, using the measurements from Figure 4.6 (a), and assuming an error in Ax and Ay
of £2.5 pixels, an uncertainty of £1.5 cm in length (or 13%) results. The range of L for
this case becomes 9.8 cm - 12.7 cm. Consulting the ED correction look-up table in
Appendix B, we see that the range of Cyy, values is 1.42 - 1.54 (or approximately

1.49 £ 0.06). Similar analysis of data in Figure 4.6 (b) yields an estimated range of Cyy
values of 1.24 - 1.34 (or approximately 1.29 + 0.05). Combining the two estimates of

error and applying simple error analysis techniques to equation (4.7) yields:

6EF - [SCES + 8C'E})j] gES (1—EF) (410)

¢
CES CED ED

By using 8Cpg = 0.05 and 8Cpy, = 0.06, the uncertainty in the corrected EF due to
uncertainty in the lengths of the two long axis estimates alone is 4.3% (absolute EF
units). From this example it is concluded that the estimate of long axis length is critical

to the overall accuracy of this attenuation correction method.
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Chapter Five: RESULTS

5.0 Introduction

When developing any new technique, the results must be objectively evaluated.
This may be achieved in part through quantitative comparison with a previous technique
in which confidence is placed, the so called ‘gold standard’. In this chapter, the fuzzy
clustering method of identifying the left ventricle and calculating ejection fraction is
compared to the manual technique used at the HSC.

In addition, the error in the fuzzy method due to the choice of a single set of

operating parameters over individually optimised parameter sets is estimated.

5.1 Comparison to Standard Technique

5.1.1 Fuzzy Versus Manual Method

The automated method of left ventricular detection and ejection fraction
calculation as described in Chapter Three of this thesis has been applied to a test set of 10
images. The test images were chosen at random from the patient data base at HSC. The
only characteristic necessary for inclusion in the test group was that the phase image of
the heart be normal. That is, it was required that the phase images of the test group data

sets exhibit no regions of noticeable dyskinetic motion. With the first clustering
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application using the phase image (first harmonic phase, x- and y-coordinates) and the
1solation image (a derivative of the phase image) as input, it is obvious that the results
will be significantly dependent upon the phase image. Since the aim of this thesis is to
develop an automated left ventricle detection method for normal hearts, the requirement
that the phase images be normal is a rational limitation when selecting test images. It is
antictpated that the algorithm as developed in this work would not function properly on
studies demonstrating abnormal phase images. However, the possibility does exist for
modification of this technique to analyse studies exhibiting abnormal phase images.

The group of ten test images were selected at random from the patient database at
HSC. All the studies within this group were performed between January 2 and January 9
of 1995. The phase image for each study was generated. If the phase image displayed
any significant deviations from the norm (compared to standard literature examples), it
was not included in the test group.

The group of test images has been analysed with the manual and semi-automatic
methods, as described in sections 1.2.3 and 1.2.4 respectively. The fully automated
fuzzy technique was applied to each image set, after an optimum set of operating
parameters had been derived (as discussed in section 4.1). The results of all three

techniques on the test group are presented in Table 5.1,
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Study Ejection Fraction (%)
Number
Manual Semi- Fuzzy
automatic automated

1 47.2 41.4 37.8
2 54.6 59.4 493
3 52.6 50.0 41.0
4 359 30.9 237
5 62.7 59.0 52.0
6 383 41.7 324
7 41.4 36.4 32.0
8 573 58.7 54.2
9 53.4 55.9 50.6
10 64.8 60.8 472

Table 5.1: Results of three ejection fraction analysis techniques on a sample set of
10 test studies. Ejection fractions are given in percentages.

The manual technique is used as the ‘gold standard’ for comparison of the fuzzy
automated method. The correlation coefficient for the manual and fuzzy results is found
to be 0.90, and the fuzzy technique underestimates the EF on all test images, by 7.75 %
(in units of absolute EF) on average as illustrated in Figure 5.1. The slope of the best fit
line is 0.97, close to a value of 1.0 which would be expected for a perfect correlation
between the two methods, and indicates an excellent correlation between tﬁe two
methods. The significant underestimation is due to the fuzzy method identifying tighter
boundaries around the L'V, as compared to the manual technique, and is further described
in section 5.1.2.

The reasoning behind the liberal definition of LV contours in the manual method

1s explained with the help of Figure 2.1 (c) [page 54]: since an exact estimate of EF will
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generally be impossible, less error will be introduced by making an overestimation of the
LV contour rather than an underestimation. However, it should be noted that this
reasoning loses validity at higher true ejection fractions. This approach of identifying

‘looser’ LV boundaries is taken due to the lack of a more reliable method.

70 i I T I 1 I T f ¥
r=0.90 : '
n= 10
Best Fit Line: y = 0.973x - 7.75

60 -t - N S At /—

Fuzzy EF

Manual EF

Figure 5.1: Comparison of manual and fuzzy techniques for calculating ejection
fractions for a test group of ten images.

Error bars placed on the data points in Figure 5.1 have a magnitude of £3% for
the manual technique and £1.8% for the fuzzy method. The exact nature of the

information contained in these error bars is discussed in the remainder of this section.
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The uncertainty due to intra- and inter-observer variation using the manual
method has been previously reported by Kaul (1983) and Okada (1980) to range between
+3% and £6% under normal clinical conditions. The most optimistic estimate resulting
from these studies is taken as +3%. Uncertainty due to choice of an optimal set of
operating parameters for the whole test group (as opposed to individually optimised
parameter sets) using the fuzzy technique is estimated at +1.8% as calculated in section
5.3.

These estimates ignore other possible sources of uncertainty (as discussed in
chapter 4) which may effect the EF evaluation. However, since all other sources will
influence results from both techniques in a similar manner, the only difference in the
uncertainty between the two methods are those uncertainties discussed above. The fuzzy
technique, being fully automated, will not suffer any intra- or inter-observer variation
while the manual technique does not require any optimisation of parameters used.
Hence, the fuzzy method as developed here seems to reduce the overall statistical
uncertainty in the EF estimation, as compared to the most conservative estimate of error
in the manual technique.

All computer code for the fuzzy clustering technique is written in HP
FORTRAN-9000. Execution time takes approximately 150 seconds (it should be noted,
however, that this has not been streamlined for computational speed) on a HP 715/75

workstation.
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5.1.2 Underestimation of Ejection Fraction

The average underestimation by 7.75% of the fuzzy clustering EF results as
compared to the manual analysis is directly attributable to the relatively tight LV
boundaries identified by the fuzzy approach. By defining a wider or ‘looser’ boundary
around the LV especially in the ED frame, the manual method therefore results in a
larger number of counts being attributed to the ED frame as compared to the fuzzy
clustering method. This difference causes the EF calculated via the manual technique to
be higher than when computed with the fuzzy technique. To verify that this reasoning is
correct, the effects of loosening the identified (via the fuzzy method) LV boundary on a
single test study was analysed.

The LV boundary in the end-diastole frame was grown outwards by repeated
addition of a single layer of pixels along the 0° to 200° region of the boundary
(illustrated in Figure 5.2), so as to approach the manually defined boundary. The EF was
recalculated for each new end-diastole LV ROI, holding the end-systole LV ROI and
background estimate constant, and employing equation 1.2. The LV boundary of the
end-systole frame was then expanded by a single pixel in a similar manner, and the EF
recalculated for each of the increased end-diastole boundaries. The results are
summarized in Tables 5.2 and 5.3. Ideally, it was expected that the EF would converge
as the boundary of the L'V approaches the background activity level. While it was
expected that the end results will yield similar EF’s, since the manual contours were used

as guides, the verification should be strengthened by examining the convergence to the
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manual EF. This tendency is observed to some extent, but the convergence is not as
rapid as expected due to the area of higher than background activity in the 0° to 60°

region of the L'V boundary. This area is demonstrating activity which may originate
from the left atria, and hence will not fall away to background activity levels.

The data in Table 5.3 demonstrate that when holding the end-systolic LV ROI
constant, growth of the end-diastolic LV ROI leads to values in excess of the manual EF
estimate of 47.2%. If the end-systolic LV ROI is grown by one layer, then the growth of
the end-diastolic LV ROI more closely approaches the manual EF estimate. When the
end-systolic LV ROI is grown by two pixel layers, growth of the end-diastolic LV ROI
converges to a value much less than the manual EF estimate. This analysis indicates that
the underestimation of the EF estimate by the fuzzy technique results from the tightness
of LV ROI in the end-diastolic frame, as compared to that identified using the manual

method.
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The evolution of the LV ROI in the end-diastolic frame, for the
purposes of identifying the origin of the 7.75% on average
underestimation of EF by the fuzzy method as compared to the
manual method. (a) The original end-diastolic image frame, (b) the
original fuzzy identified LV ROI, (c) +1 layer of pixels added to the
LV ROI, (d) +2 layer of pixels added to the LV ROI, (e) +3 layer of
pixels added to the LV RO, and (f) +4 layer of pixels added to the LY
ROL
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Figure 5.3:

The evolution of the LV ROI in the end-systolic frame, for the
purposes of identifying the origin of the 7.75% on average
underestimation of EF by the fuzzy method as compared to the
manual method. (a) The original end-systolic image frame, (b) the
original fuzzy identified LV ROI, (c) +1 layer of pixels added to the
LV ROI, (d) +2 layer of pixels added to the LV ROI.
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Boundary | Number of Pixels Average Average Added Increase in LV
Grown Added to LV Intensity of Pixel Intensity ROI Counts
ROI Added Pixels Corrected for
Background

+1 on ED 24 160.83 70.90 1701.6
+2 on ED 25 14432 54.39 1359.7
+3 on ED 24 122.61 32.68 751.5
+4 on ED 21 115.71 25.78 5414
+1 on ES 18 144.61 54.68 984.2
+2 on ES 21 123.38 33.45 702.4
Table 5.2: Raw data obtained from adding on layers of single pixels to the LV

ROI boundaries in the region of 0° to 200°, on both end-diastolic (ED)
and end-systolic (ES) frames.

Description of Added LV Resultant Ejection
ROI Boundaries Fraction

original ES, original ED 353
original ES, +1 ED 427
original ES, +2 ED 47.5
original ES, +3 ED 49.9
original ES, +4 ED 514
+1 ES, +1 ED 36.1
+1 ES, +2 ED 415
+1 ES, +3 ED 44.2
+1 ES, +4 ED 45.8
+2 ES, +2 ED 37.1
+2 ES, +3 ED 40.1
+2 ES, +4 ED 41.8

Table 5.3: Resulting ejection fractions calculated using various combinations of
modified LV ROP’s in both end-diastolic and end-systolic frames.
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5.2 Comparison of Manual and Automated Background Selection

In this section, the background activity estimates made by the automated routine
(as described in section 3.5) are compared to those made during the manual analysis.
Unfortunately, the background activity estimated during the manual analysis is not saved
to disk, nor printed out on hardcopy. The only available relevant information is the
shape of the background ROI overlain on the end-systolic image frame, along with the
end-systolic LV ROI. This information was utilized by overlaying the background ROI
shape on the original image data. This was accomplished by digitizing the film image on
a Vision Ten Inc. film scanner and scaling the image size to match the original frame,
overlaying the background ROI shape on the original frame, then manually reading out
the background pixel grayscale information. This method was the best available to
recover the manual background activity estimates.

The automated background activity estimate compared well with the manual
background estimate, as summarized in Table 5.4. As expected, the automated method
returns lower background estimates than the manual, on average. However, this
underestimation is only ~1.7 in units of number of grayscales of activity. It is important
to be able to assess the effect of this underestimation on the resultant EF. The magnitude
of effect is dependent upon the counts in the LV ROI in both ED and ES, as observed in
equation 1.2. Taking a hypothetical example, if one assumes EDC = 20000, ESC =
12000, ngp = 120, ngg = 80, and a BG of 100, then equation 1.2 yields an EF of 50.0%.

An underestimation in BG by 5%, taking BG to a value of 95, will result in an EF of
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48.8%. Hence, for this hypothetical situation, an underestimation of BG by 5% results in
an underestimation of EF by 1.2%. Interestingly, an overestimation of BG by 5% results
in an overestimation of EF by 1.4% (similar to the observed effect in Figure 3.16). Only
two automated background estimates are outside of a +5% range from the manual
method. Image set four was the most severely underestimated at -11.3%. Image set
seven demonstrated an overestimate by the automated routine, this being attributable to

the relatively small size of BG ROI delineated by the manual method.

Image Set Number of Manual BG Automated BG Percentage
Number Sampled Pixels Estimate Estimate Difference

(grayscales) (grayscales) (%)

1 16 91.8 89.8 -2.0

2 16 105.7 102.2 -3.3

3 12 95.5 99.2 +3.9

4 20 110.6 98.1 -11.3

5 18 81.8 85.3 +4.9

6 16 88.8 87.6 -1.4

7 6 129.2 1383 +7.1

8 18 113.3 108.6 -4.2

9 18 52.1 50.9 -2.3

10 18 100.8 99.7 -1.1

Table 5.4: Comparison of manual and automated background activity estimates
for ten image sets.
A graphical comparison of the manual and automated background estimate
methods also verifies an excellent relationship.. Figure 5.4 demonstrates this, with a
linear best fit line possessing equation y = 1.01x - 1.65, and a correlation coefficient of r

= 0.93. The slope value 1s very close to the ideal identity of 1.0, while the intercept
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indicates an underestimation of 1.65 grayscales, on average, is to be expected. This
value may be slightly high due to the unusual circumstances of the +7.1% overestimate
in image set seven as discussed above.

Therefore, the underestimation of background activity will result in only a minor
underestimation of EF, on the order of <1%. The more significant underestimation
observed in image set four will result in a larger effect, compounded by the lower EF
magnitude. For this particular image set, the underestimation of background will be
more significantly responsible for the underestimation of fuzzy EF (23.7%) vs manual

EF (35.9%), than in other image sets.
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Figure 5.4: Automated versus manual background activity estimates, in units of
grayscales, for ten image sets.
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5.3 Estimated Uncertainty Due to Parameterization

The uncertainty due to selection of a global set of optimal parameters to use for
all image sets is estimated. From previous analysis (see section 4.1), the stable operating
range of required input parameters has been established for each individual image set in
the test group. The scope of EF output for these stable operating ranges is found by
calculating the EF via the fuzzy clustering method for every discrete value within the
stable operating range, of all the optimised parameters. The maximum and minimum
values of the resulting list of ejection fractions define the size of the uncertainty range
(via subtraction of the minimum value from the maximum value) for that particular

image set. This processing has been performed on all image sets. Table 5.5 below

contains all the relevant data for this analysis.

Image Set Output ejection Uncertainty in ejection
Number fraction range using fraction (%)
stable parameters (%)
1 294 -32.7 33
2 46.1-52.1 6.0
3 27.5-32.0 4.5
4 17.9-18.5 0.6
5 39.0-43.4 4.4
6 24.0-26.5 2.5
7 22.7-279 52
8 515-542 2.7
9 35.6-396 4.0
10 35.8-378 3.0

Table 5.5: Range of ejection fraction values as evaluated over stable range of

operating parameters for each image set tested.
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The values in column three of Table 5.5 above are averaged to yield a single uncertainty
estimate of £1.8%. This value represents the average uncertainty in the fuzzy technique
ejection fraction calculation due to selection of a single set of parameters over

individually optimised sets.
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Chapter Six: SUMMARY

The primary objective of this thesis was to develop a fully automated computer
algorithm which would calculate ejection fraction from gated blood pool images of the
heart of a normal patient. A secondary goal of this thesis was to compile a
comprehensive index of sources of error or uncertainty which may affect the calculation
of ejection fraction using gated blood pool imaging. Furthermore, the error in ejection
fraction due to photon attenuation was explored in greater detail, and a novel and simple
correction method proposed.

An automated left ventricle detection routine was developed. The use of edge
detection methods, currently the most popular automated approach to left ventricle
detection, was avoided in favor of a more adaptable type of algorithm. A method for
detecting the left ventricle based primarily on application of the fuzzy c-means clustering
algorithm was devised.

The technique developed in this thesis begins with a fuzzy clustering application
to phase information calculated from an entire LAO view image set. A subroutine which
identifies the septum based on simple edge detection techniques is applied. The second
application of the fuzzy clustering algorithm on each processed image frame results in
delineation of the left ventricle in each image frame. By summing the counts in each
frame, a time activity curve (uncorrected for background counts) is produced for the
image set. An automated background estimation routine provides an estimate of

background activity which is applied to the uncorrected time activity curve in a spatially
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uniform, time dependent manner. This corrected time activity curve is fitted using a
Fourier series expansion up to the second harmonic. The estimated ejection fraction is
calculated from this background corrected and Fourier fitted time activity curve.

The success of the fuzzy algorithm as developed in this work is primarily
dependant on the quality of the phase image. Regions of dyskinetic wall motion must be
absent from the phase image of the data sets to be analysed by the fuzzy technique. An
exciting possibility exists to modify this algorithm into one which will also be able to
analyse hearts which exhibit poor phase images.

Several parameters necessary to the functioning of the algorithm were optimised
to find a set of stable operating values which could be applied to the entire set of images,
and any new image set requiring analysis. The uncertainty in the ejection fraction as a
result of the selection of these parameters was evaluated as £1.8%.

Comparison of the fuzzy method to the manual method demonstrates a good
correlation (r = 0.90), but an underestimation of 7.8% on average. This underestimation
is primarily a consequence of the manual method defining relatively loose contours,
especially in the end-diastolic image frame, thus emphasizing the difference between
end-diastolic and end-systolic counts and increasing the resulting ejection fraction value.

The effects of photon attenuation in the blood volume were discussed. A
computer simulation gauging the magnitude of these effects was developed. Also, a
novel manual technique was advanced for correcting the ejection fraction estimate for
attenuation effects by using image data from the anterior view study combined with a

look-up table summarizing the computer simulation results.
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An extensive inventory comprising sources of potential error or uncertainty was
compiled and discussed. Error/uncertainty was classified into three main categories:
physiological sources, acquisition procedure sources, and analysis sources. The effect of
errors in the end-diastolic and end-systolic counts on ejection fraction were described.

The results of this work indicate that an automated method of calculating ejection
fraction based on fuzzy clustering shows great promise for use in the clinical evaluation
of normal patients. Furthermore, a simple method of correcting for photon attenuation in

the blood volume may be used to correct any ejection fraction estimate.
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Glossary of Acronvms

BG - background

ED - end-diastolic

EDC - end-diastolic counts

EF - ¢jection fraction

ES - end-systolic

ESC - end-systolic counts

HSC - Health Sciences Centre, Winnipeg, Canada
LV - left ventricle

R-wave - strong cardiac electrical pulse signaling the onset of left ventricle contraction

ROI - region of interest
RV - right ventricle
TAC - time-activity curve
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Appendix A: OPTIMISATION HISTOGRAMS
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Appendix B: CORRECTION FACTOR LOOK-UP TABLES
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891

L Value - Length of Left Ventricle (¢cm)

Look-up Table for End-Diastolic Correction Value (Cgp)

B Value - Angle of Cardiac Long Axis to Vertical (degrees)

20 25 30 35 40 45 50 55 60 65 70 75 80
4.0 1.1855 1.1767 1.1707 1.1665 1.1635 1.1613 1.1597 1.1586 1.1581 1.1579 1.1581 1.1585 1,1590
4.5 1.2096 1.1996 1.1928 1.1880 1.1847 1.1821 1.1803 1.1791 1.1784 1.1783 1.1785 1.1791 1.1797
5.0 1.2343 1.2230 1.2153 1.2099 1.2061 1.2033 1.2012 1.1998 1.1991 1.1989 1.1992 1.1998 1.2004
5.5 1.2594 1.2469 1.2382 1.2323 1.2280 1.2248 1.2225 1.2210 1.2203 1.2201 1.2204 1.2210 1.2217
6.0 1.2848 1.2710 1.2614 1.2548 1.2501 1.2466 1.2440 1.2424 1.2415 1.2413 1.2416 1.2423 1.2430
6.5 1.3102 1.2951 1.2846 1.2774 1.2722 1.2684 1.2656 1.2638 1.2628 1.2626 1.2630 1.2637 1.2645
7.0 1.3358 1.3194 1.3080 1.3002 1.2945 1.2903 1.2872 1.2853 1.2843 1.2842 1.2846 1.2853 1.2862
7.5 1.3617 1.3440 1.3317 1.3231 1.3170 1.3125 1.3092 1.3071 1.3060 1.3058 1.3063 1.3071 1.3081
8.0 1.3880 1.3689 1.3556 1.3463 1.3397 1.3349 1.3314 1.3291 1.3279 1.3277 1.3282 1.3291 1.3301
8.5 1.4146 1.3941 1.3798 1.3698 1.3628 1.3575 1.3537 1.3513 1.3501 1.3498 1.3503 1.3513 1.3524
9.0 1,4413 1.4194 1.4042 1.3935 1.3859 1.3803 1.3763 1.3737 1.3724 1.3721 1.3727 1.3737 1.3749
9.5 1.4684 1.4451 1.4288 1.4174 1.4052 1.4032 1.398% 1.3962 1.3948 1.3946 1.3952 1.3963 1.3975
10.0 1.4955 1.4708 1.4535 1.4413 1.4326 1.4263 1.4217 1.4188 1.4173 1.4171 1.4177 1.4189 1.4202
10.5 1.5231 1.4969 1.4785 1.4656 1.4564 1.4496 1.4448 1.4417 1.4402 1.4399 1.4406 1.4418 1.4432
11.0 1,5507 1,5231 1.5036 1.4899 1.4802 1.4731 1.4680 1.4647 1.4631 1.4629 1.4636 1.4649 1.4663
11.5 1.5787 1.5495 1.5290 1.5145 1.5042 1.4967 1.4913 1.4879 1.4862 1.4859 1.4867 1.4880 1.4893
12.0 1.6069 1.5762 1.5546 1.5393 1.5285 1.3205 1.514% 1.5113 1.5095 1.5093 1.5101 1.5115 1.5131
12.5 1.6352 1.6030 1.5803 1.5642 1.5528 1.5445 1.5386 1.5348 1.5330 1.5327 1.5336 1.5351 1.5367
13.0 1.6640 1.6302 1.6064 1.5895 1.5775 1.5687 1.5625 1.5586 1.5567 1.5564 1.5573 1.5589 1.5606
13.5 1.6926 1.6574 1.6324 1.6147 1.6021 1.5929 1.5864 1.5823 1,5804 1.5801 1.5810 1.5827 1.5844
14.0 1.7218 1.6849 1.6587 1.6402 1.6270 1.6174 1.6106 1.6063 1.6043 1.6040 1.6050 1.6067 1.6085
14.5 1.7510 1.7126 1.6853 1.6658 1.6521 1.6420 1.6349 1.6305 1.6283 1.6281 1.6291 1.6309 1.6328
15.0 1.7806 1.7405 1.7120 1.6917 1.6773 1.6668 1.6594 1.6548 1.6526 1.6524 1.6535 1.6553 1.6573




691

L Value - Length of Left Ventricle (cm)

Look-up Table for End-Systolic Correction Value (Cgy)

B Value - Angle of Cardiac Long Axis to Vertical (degrees)

20 25 30 35 40 45 50 35 60 65 70 75 80
2.0 1.0810 1.0762 1.0723 1.0688 1.0657 1.0632 1.0612 1.0556 1.0585 1.0578 1.0574 1.0574 1.0577
2.5 1.1020 1.0960 1.0908 1.0864 1.0826 1.0794 1.0768 1.0748 1.0734 1.0725 1.0720 1.0720 1.0723
3.0 1.1233 1.1159 1.1097 1.1044 1.0997 1.0959 1.0927 1.0903 1.0886 1.0875 1.0870 1.0870 1.0874
3.5 1.1445 1.1357 1.1285 1.1222 1.1167 1.1121 1.1085 1.1057 1.1036 1.1024 1.1017 1.1017 1.1022
4.0 1.1660 1.1559 1.1475 1.1403 1.1340 1.1288 1.1246 1.1213 1.1190 1.1175 1.1168 1.1168 1.1174
4.5 1.1878 1.1763 1.1668 1.1585 1.1514 1.1455 1.1407 1.1371 1.1344 1.1328 1.1320 1.1320 1.1326
5.0 1.2083 1.1964 1.1858 1.1766 1.1686 1.1620 1.1567 1.1526 1.1497 1.1478 1.1470 1.1470 1.1477
5.5 1.2314 1.2171 1.2053 1.1951 1.1863 1.1789 1.1731 1,1686 1.1653 1.3136 1.1623 1.1624 1.1631
6.0 1.2538 1.2380 1.2250 1.2138 1.2041 1.1961 1.1896 1.1847 1.1811 1.1789 1.1778 1.1779 1.1787
6.5 1.2762 1.2590 1.2448 1.2325 1.2220 1.2132 1.2062 1.2008 1.1970 1.1945 1.1934 1.1934 1.1943
7.0 1.2986 1.2799 1.2645 1.2512 1.2398 1.2303 1.2227 1.2169 1.2128 1.2101 1.2089 1.2089 1.2099
7.5 1.3215 1.3012 1.2845 1.2702 1.2579 1.2477 1.2395 1.2332 1.2287 1.2259 1.2246 1.2246 1.2257
8.0 1.3443 1.3225 1.3045 1.2891 1.2760 1.2650 1.2563 1.2495 1.2447 1.2417 1.2403 1.2403 1.2415
8.5 1.3675 1.3441 1.3249 1.3084 1.2943 1.2826 1.2733 1.2661 1.2610 1.2578 1.2563 1.2563 1.2576
9.0 1.3909 1.3659 1.3454 1.3278 13128 1.3004 1.2904 1.2828 1.2774 1.2739 1.2723 1.2724 1.2737
9.5 1.4146 1.3878 1.3660 1.3473 13314 1.3182 1.3076 1.2995 1.2938 1.2501 1.2885 1.2885 1.2899
10.0 | 1.4381 1.4097 1.3865 1.3667 1.3499 1.3359 1.3248 1.3163 13102 1.3063 1.3045 1.3046 1.3061
10.5 1.4619 1.4318 1.4073 1.3864 1.3687 1.3539 1.3422 1.3332 1.3268 1.3227 1.3209 1.3210 1.3226
11.0 | 1.4860 1.4543 1.4284 1.4064 1.3877 1.3722 1.3598 1.3504 1.3436 1.3394 1.3374 1.3375 1.3392
11.5 1.5099 1.4765 1.4493 1.4262 1.4065 1.3903 1.3773 1.3674 1.3603 1.3558 13538 1.3539 1.3557
12.0 | 1.5343 1.4992 1.4705 1.4462 1.4256 1.4086 1.3930 1.3846 1.3771 13723 1.3703 1.3705 1.3723
12.5 | 1.5588 1.5219 1.4918 1.4664 1.4448 1.4270 1.4127 1.4018 1.3941 1.3892 1.3870 1,3872 1.3891
13.0 | 1.5835 1.5447 1.5133 1.4866 1.4641 1.4455 1.4306 1.4193 1.4112 1.4061 1.4038 1.4040 1.4060




