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Abstract

Gated radionuclide ventriculography is a procedure commonly used to assess

cardiac function, A time sequence of images representing the blood pool volume over a

single heart beat is acquired. These studies are then analysed to extract a quantitative

parameter ¡epresenting contraction efficiency ofthe left ventricle, termed 'ejection

fraction'.

Currently implemented automated left ventricle recognition techniques rely on

edge-detection methods. A more adaptable algorithm based on a double application of

the luzzy c-means clustering algorithm was developed. The fuzzy technique was

optimised using a set of ten test images, to yield a global set of parameters which were

tlen used to reanalyse the entire test group. The performance of the fuzzy method

conelated well (r = 0.90) with a manual method used by a human operator. A systematic

7.8% underestimation of ejection fraction by the fuzzy method was shown to be

attributable to the fact that the fuzzy c-means technique tends to use a tighter ieft

ventricle boundary identification than does a typical manual analysis.

A comprehensive list of possible error sources affecting ejection fraction

measurement was compiied. This prompted a preliminary investigation of the effects of

photon attenuation within the blood volume. A computer program was written to model

the attenuation effects and estimate the magnitude of attenuation effects on the measured

ejection fraction, A novel technique for correcting the ejection fraction estimate for

blood volume attenuation effects was deve.loped.
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Chapter One: BACKGROLI¡'ID TO CARDIAC EJECTION
FR.ACTION MEASUR.EMENT

1.0 Introduction

One of the primary uses of cardiac scintigraphy is the evaluation of left

ventricular function through quantitative analysis. Equilibrium gated blood pool imaging

permits visualization of the distributed blood volume within the heart chambers as a

function of time within a representative cardiac cycle. The technique generates both

qualitative and quantitative data; ventricular wall motion is visualized and analysis ofthe

same images provides parameters for the assessment of ventricular function, The most

important quantitative parameter for left ventricle (LV) assessment is the ejection

fraction (EF). This is defined as the ratio of blood volume ejected from the LV to

maximum blood volume of the LV.

Estimation of LV EF requires the delineation ofthe LV contour from the

sequence of two-dimensional images taken throughout the ca¡diac cycle, as well as an

appropriate background subtraction, The quantification of the EF parameter from the

gated blood pool images involves two major assumptions (Green, 1978):

(i) the externally measured LV count rate at the gamma camera is absolutely

proportional to the LV volume, and

(2) all cardiac cycles during the image acquisition period are mechanically identical.

The first assumption is violated due to attenuation of radioactivity by intervening tissue,

including the LV blood volume itself. Due to naturally occuring heart rate fluctuations,



the second assumption is also violated. The contravention ofthese assumptions and the

effects on EF estimation are further discussed in chapter two.

Manual methods offinding LV EF are characterized by relatively large inter- and

intra-observer variations, which hamper the assessment of effects of interventions on EF

(Okada, 1980; Burow, 1977). To reduce this variability, several semi-automatic and

fully automatic methods for calculating LV EF f¡om gated blood pool studies have been

developed since the introduction of this imaging technique. These approaches include

several variations ofedge detection such as fìrst derivative (Douglas, 1978), second

derivative (Christian, 1985), combination first and second derivative (Links, 1982),

ellipsoidally restricted edge detection (Maclntyre, 1982), second derivative combined

with minimal cost contouring (Reiber, 1985, 1983), second derivative combined with

thresholding (Slutsky, 1980), interpolative schemes (Almasi, 1982), non-linear edge

operators (Chang, 1980), best-fit edge detection (Chang, 1980), bidirectional scanning

combined with functional criteria (Goris, 1978), and Gram-Schmidt processing combined

with edge following (Jouan, 1990). Virtually all previous methods of LV identification

have been highly dependent on edge detection.

At the Heaith Sciences Centre (HSC) in Winnipeg, approximarely 10- 15

equilibrium gated blood pool sh:dies are performed each week. These studies are

analysed by a manual method as well as a semi-automated routine, and saved (via film

hardcopy) in the patient's permanent records. A fully automated analysis available in the

software is not utilized due to unreliable performance. TheLVROI's identified by the



automated algorithms are derived through the thresholding and second derivative process

as described by Slutsky (1980).

It was felt that exploration of an automated approach to LV ROI recognition

which involved less edge detection than classical methods might lead to a mo¡e reliable

algorithm. Fuzzy clustering is a well explored topic and generally applicable in the

research areas of pattern recognition and artificial intelligence, and thus a logical choice

for application to LV boundary identification. Arguments justifying this choice are

presented in section 1 ,3.1.

This work has several objectives:

(1) Develop a working computer program capable of identifying, through the application

of fuzzy clustering techniques, the LV in an equilibrium gated blood pool scan ofa

normal patient. This is described in chapter three.

(2) By automating the background activity correction process, the ejection fraction

parameter may be quantified without manual intervention. This particular process is

discussed furthe¡ in section 3.5. A comparison between the automated and manual

methods of background activity estimation is given in section 5.2.

(3) Another aim is to compile a detailed list ofpossible eror sources affecting the

absolute uncertainty of any single measurement of ejection fraction. This comprises the

entirety of chapter two.

(4) A novel and simple method of correcting ejection fraction estimates for blood

volume self-attenuation is developed and presented in chapter four.



The results of the fuzzy cluster.ing based automated algorithm applied to a timited

number ofclinical images are presented in chapter five. A brief overview ofthe

equilibrium gated blood pool imaging process and the mathematical basis offuzzy

clustering is supplied below.



l.l Gated Blood Pool Imaging

1 t.1 Red Blood Cell Labeling

In order to be imaged, the red blood cells must first be 'labeled' with a

radioactive compound and then observed with a properly tuned scintillation or ,gamma,

camera (Sharp, 1989; Palmer, 1991, Cardiac Imaging, 1991). Red blood cell labeling

generally employs a radiopharmaceutical which remains within the intravascular space.

The standard radioactive compound used for this type of imaging is Technetium-99m,

which emits photons of energy 140 KeV. There are several procedures for tagging the

red blood cells: in vivo, modified in vivo, and in vitro.

The i¡ vivo process involves intravenous administration of approximately l0-

20 ¡-rg of stannous ion per kg body weight, followed after 20 minutes by about 740 Mbq

(20 mci) of ee-Tcoo-, 
During the 20 minute intewal, the stannous ion (Sn2n) ente¡s the

red blood cells and excess ion clears f¡om the plasma. Immediately upon inj ection,

"'T"O.- diffuses into the red blood cells, where it is reduced by the stannous ion and

binds to the beta chain of hemoglobin, Some of the 
ee-TcOo- 

diffuses into the

extracellular fluid, and some labels plasma elements in addition to red blood cells. The

modified in vivo technique is similar to the in vivo, but after the 20 minute interval, a

small quantity of blood (2-5 mL) is withdrawn into a syringe containing about ?40 Mbq

(20 mci) of ee^Tcoo-. 
The cells incubate in the syringe at room temperature for 10 to l5

minutes before reinjection. This modification of the in vivo method results in a

reduction in diffusion of ee'TcOo- into extracellular space at the cost of increased time.

The in vitro labeling process is entirely carried out external to the patient. The

procedure involves stannous reduction ofa small amount ofpatient's blood in a syringe.

The red cells are separated from plasma elements by centrifugation and then labeled with
t'^Tcoo-. 

The.in vitro method results in the best signal-to-noise ratio of the three



labeling methods. However, the in vivo method is the easiest to perform and requires the

shortest amount of time to complete, at a cost of a reduced signal-to-noise ¡atio. The

nuclear medicine department at the HSC utilizes in vivo labeling.

1 l.2 Dosimetry

The dosimetry ofgated blood pool imaging depends in part upon the efficiency of

the red blood cell labeling. For the in vivo method of labeling, a binding efficiency of

15o/o is typical. An estimation of absorbed dose for several organs is given in Table 1.1.

Structures containing blood, such as the heart, receive about 10 mGy per 750 MBq dose.

Shortly after injection, loosely bound Tcee- is excreted in the urine. Dose to the bladder

may be reduced if the patient voids frequently.

Organ Absorbed Dose lmGv/750 MBo)

Spleen
Bladde¡ wall

Testes

Ovaries
Blood

Whole bodv

J.O

24.0
2.4
4.6
10.4

Table 1.1: Estimated absorbed radiation dose from labeted red blood cells [source:
Palmer, eLøL,l99ll.



1.1.3 ImageAcquisition

1.1.3.1P¡otocol

After injection of the 750 MBq dose an interval of 5 minutes is allowed for the

activity in the blood to achieve equilibrium before the image acquisition is begun.

Otherwise, a slow ¡ise and fall of activity will be observed corresponding to the passing

of the injection bolus. standard protocol decrees that studies at three views be obtained.

This enables one to observe, as far as possible, the complete anatomy ofboth ventricles

and the separation of both ventricles with the septum end-on in at least one view. These

views include a left lateral, an anterior, and a left anterior oblique (LAO) view, as

depicted in Figure 1 1 . At HSC the LAO view is taken as the best septal view (ie, where

the left and right ventricles are readily distinguished), This view is found through

manual adjustment of the gamma camera position while the technician examines the real-

time image of the heart. The anterior view is attained at minus 40o rotation with respect

to the LAO view about the head-foot axis of the patient (counter-clockwise as viewed

from the feet) , while the ieft lateral view is taken at plus 30.. The LAO view is

collected for 600 s, while the other two views are collected for 300 s each. The LAO

view is acquired with better statistics (due to the longer imaging time), since it is

involved in several quantitative analyses ofheart function, and therefore needs to be as

accurate as reasonably possible. Approximately 8 x 106 counts are collected during a

600 s imaging time.
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Position I - Anterior vie\\,
Position 2 - Bost septal view
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Figure 1.1: Cross sectional diagram of camera-patient geometry for three standard
gated blood pool scans as viewed along patient axis from feet direction.

1.1.3.2 Gating

The amount of ¡adioactivity uniformly distributed throughout the blood volume is

much too small for a useful image to be acquired over a single cardiac cycle. However,

by summing the activity measured over several hundred cardiac cycles, an image with

adequate statistics may be attained. A¡ electrocardiogram (ECG) serves as the gate for

the purpose of defining the beginning of each cardiac contraction, and hence

differentiating successive heart beats for imaging purposes. The image acquisition for

each ca¡diac cycle is initiated by the strong R wave electrical pulse of the heart. This

pulse initiates the depolarization of the ventricular walls from endocardium toward



epicardium (ie. ventricular contraction) Contraction ofthe ventricle chambers is termed

ventricular sys/o/¿, and is followed by a time period where the chambers are relaxed,

lermed diastole. The R wave of the ECG identifies the onset of mechanical systole as the

reference point for the imaging. At HSC a four electrode configuration is used to obtain

the ECG signal for the patient, but these positions may be modified to ensure a strong R-

wave triggering signal.

Figure 1,2: Normal output of an electrocardiogram lead, demonstrating a strong
R-wave pulse from which the gated image acquisition is triggered.
Vertical lines are 65 ms apart, R-wave pulse height is approximately I
mV. [adapted from Patton, eløI,1989]

1 . 1.3.3 Frame Time

Generally the cardiac cycle is divided into i6 to 32 frames and varies between

institutions. At HSC the cycle is separated into 24 frames. Thus, the iength of time each

frame represents is:

lime of one hearl beal
lrme Der lrame = --------------- 

-

' z+f'antes per hearl beøt

60

24 x hearl rate (bpm)

where bpm represents the heart rate as measured in beats per minute. Ideally, a frame

time of 0.025 to 0.030 s should be used, since end systole may last as little as 0.050 s.



This is simple application of the Shannon-Whittaker sampling theorem. If frame times

of longer length are employed, it may be possible that no single frame will occupy end

systole, resulting in an overestimation of minimum ventricular volume. Consequently,

ejection fraction will be underestimated also. This error is rendered negligible if the

frame time is kept below 0.050 s. The equation above yields a minimum heart ¡ate of 50

bpm if the frame time is to be kept below 0.050 s. Any heart rate above this will

decrease the time per frame. The impact of frame time choice upon reproduction of an

accurate volume activity curve is further discussed in section 2. L2. 1.

i . L3.4 Beat Rejection

During the course of the image acquisition, the heart rate will normally vary.

However, in certain situations (such as arrythmia), the patient may experience a highly

fluctuating heart rate. Premature heart beats are identified as those cardiac cycles v/hose

R-R interval are much shorter than the average R-R interval as measured over the

duration of the acquisition. The beat following an abnormal beat is also abnormal due to

the abnormal filling and emptying of cardiac chambers during the bad beat. If the

premature beats (PB) are frequent, the gating process will result in an image consisting of

a superposition of normal, PB's, and post PB's. In this situation the evaluation of ca¡diac

function with respect to nomal beats will in eror. To circumvent this problem,

abnormal beats must be detected and rejected.

By defining a beat length window before the acquisition, the user can specify the

limits for rejection or acceptance of a heart beat. At HSC, a i5% window is used to

allow fo¡ the normal variation in R-R interval lengths. A running average of cycle length

is kept during image acquisition. Only those beats which are within the window

contribute to the running average. A 15% beat window is thus deflrned as:

(o,85xtineR-R)< limeR-R < Q]5 x rinten-n) . A beat is identified as abnomal if its R-R

10



interval lies outside this predefined window. The method of rejecting the bad beat or

subsequent beats varies with the acquisition mode, as discussed in the following section.

1. 1.3.5 Acquisition Modes

There exist several methods of processing the count data acquired in gated blood

pool imaging. The two most common are frame mode and list mode.

In frame mode, the data are summed into the study frames as they are acquired in

real time. Any data detected during a specific time segment are stored in a corresponding

frame on the terminal screen. The presence of a bad beat will not be recognized until all

the data from that cardiac cycle have been stored in each of the frames. Hence, it is not

possible to reject the data for the bad beat itself. only subsequent beat(s) following the

abnormal one may be rejected. when the R-R interval varies, data collected from short

beats are terminated by the arrival of the next R wave. Thus a short cycle will contribute

no data to the flinal f¡ames of a study. Therefore studies in patients with irregular heart

beats result in an observable decrease in counts in the flrnal frames. This problem is

known as count drop-off. The summation of cardiac cycles tends to blur the data, since

the frames f¡om the different cycles do not conespond properly.

In list mode, data for each cycle are acquired into a temporary memory buffer.

The data are not included in a study until after the R-R interval length has been accepted.

Ifa bad beat is detected, the data within the temporary buffe¡ are ignored, Thus, the

abnormal beat may be rejected, as well as subsequent beats. The count drop-off problem

is partially circumvented in this manner. complete elimination of the count drop-off

problem is achieved by acquiring data in the phase mode, which is a variation ofthe list

mode. The phase mode subdivides each cardiac cycle into a preset fixed numbe¡ of

frames, whose individual time lengths vary between cycles corresponding to the length of

heart beat. Hence short cycles are stretched and long cycles are compressed to flrt the

same numbe¡ of frames fo¡ each ca¡diac cycle. In this manne¡ the drop-off effect is

ll



eliminated. Beats falling outside the beat window are still rejected. Studies performed at

the HSC employ the phase mode.

1.1.3.6 Preprocessing

Two types of smoothing are performed on the raw image data at HSC by the

acquisition computer prior to digital storage. A temporal smoothing is performed which

smoothes the data along the time axis. Each pixel in each frame is averaged with the

corresponding pixels in the previous frame and the following frame. The24 ftame

smoothed image set is reformatted into l6 frames, in order to fit a three view study into a

single 512x512 pixel image (containing the three 16 frame data sets of size 256x256). A

spatial smoothing is also performed, which involves replacing the pixel of inte¡est with a

weighted average ofthe surounding 3x3 group of pixels \¡/ithin the frame to be

smoothed. The weighting of the pixels is dependent on their position, with the

convolution mask configured as:

Linear FilÍer Mask

2l\
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1.2 Current Techniques of FindinrEjeeldon-Eraetdon

1,2,1 Introduction

The software curently in use at the HSC provides three methods of analysing

gated blood pool images for the ejection fraction parameter. A manual, semi, and fully

automated analysis of the left ventricle is available. The manual and semi-automated

routines require subjective judgment on the part of the user thus suffering from i¡ter- and

intra-observer variabilities. While the fully automated routi¡e removes these inter- and

intra-observer subjectivities, there still exists a built in bias in the analysis dependent on

the exact particulars of the method employed. The software documentation suggests the

fully automated analysis should be reviewed by a trained observer. At the HSC, both the

manual and the semi-automated routines are applied to each test, and the results ofthese

analyses are saved on films which are included in the patient's permanent records. The

acquired images are stored in an archive, and may be accessed at any future time for

review. The fully automated method fails on approximately 15% of studies performed at

this sìte, according to an informal survey of several Nuclear Medicine Department staff

members.

It should be noted that the techniques for image acquisition and analysis will vary

somewhat between hospitals.



1,2.2 Definition of Ejection Fraction

Left ventriclular ejection fraction is defined as the ratio of the volume ofblood

discharged from the left ventricle during one contraction to the volume ofthe left

ventricle at end-diastole. If one knows the LV volumes at end-diastole and end-systole,

then the ejection fraction (EF) is:

EDV _ ESVhh --
ItD v

(1 1)

where EDV = end-diastolic volume, and

ESZ: end-systolic volume,

It is one of the most important parameters used to evaluate left ventricle performance

(Cardioiogy, 1991).

Gated blood pool scanning is a noninvasive test which is frequently used to

estimate LV ejection fraction. By assuming the counts collected in the gamma camera

are proportional to the blood volume, conclusions regarding the 3D volume ofblood il
the LV may be drawn, despite using only planar images. The equation for calculating EF

from these ìmages is modified to:

"r_(EDC-neo'BG)-(ESC-ne".BG) 
/.r ,\

(EDC - nro.BG) \'''l

where EDC = sum of counts in LV region of interest (ROI) in end-diastolic view,

ESC = sum of counts in LV ROI in end-systolic view,

BG = background activity estimate per pixel

n- = number of pixels in end-diastolic LV ROI



r?Es: number of pixels in end-systolic LV ROI

This fo¡mula employs a LV ROI which varies from frame to frame (generally described

as a'variable ROI' method). In addition, a time independent, spatially uniform

background correction is performed

1.2.3 Manual Method

The image data are smoothed temporally and spatially in order to reduce the

effects of statistical uncertainty in the data. The temporal smoothing is accomplished by

averaging each pixel in each frame with the corresponding pixels in the preceding frame

and the next frame. The spatial smoothing is performed by convoluting a weighted 3 x3

matrix over each image frame. The smoothing process has been previously described in

section 1.1.3.6, where the kemel is also given explicitly.

The user then manually draws a region of interest (ROI) around the left ventricle

of the end-diastolic (ED) image. This ROI is applied to all the image frames to generate

a preliminary time activity cuwe (TAC) in order to find the end-systolic (ES) frame.

The TAC is generated by summing all the counts lying within the ROI of each image

frame, and when registered counts are assumed proportional to blood volume, the TAC is

proportional to the time-volume curve. The ES frame is identified as the frame with the

lowest activity in the generated TAC. The user then draws a region of interest around the

left ventricle (LÐ of this frame, and another TAC is generated from this ROI. The user

defines a crescent shaped background region by defining the starting and ending angles



(relative to the geometric centre of mass of the LV), the width of the crescent, and the

spacing between the crescent and the LV boundary as in Figure 1.3. The background

activity per pixel is found and subtracted from each pixel in each ROI for both TAC's. A

new left ventricular TAC is produced through linear interpolation ofthe two initial

TAC's which were generated from the fixed ED and ES regions of interest. This

interpolation is performed in order to approximate the left ventricular TAC which would

be generated from a variable left ventricular ROI. Finally, the ejection fraction is

calculated and the analysis is pr.inted out onto film as well as saved to disk.
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SA -Starting angle
EA - Ending angle
w - width, in pixels, of BG ROI
s - spacing, in pixels, fiom the LV ROI
GCM - geometrical centre of mass
LV ROI - left ventricle region of interest
BG ROI - background region ofinterest

Figure 1.3: Parameters involved in background region of interest selection in
manual method of ejection fraction calculation [adapted from APEX
SP-1 Operation Manuall.



1.2,4 Semi-ÄutomatedMethod

The image set is smoothed both temporally and spatially, as in the manual

technique. A master ROI is created which encompasses the left ventricle in all image

frames. This ROI is defined by the software and is based on the phase image (a single

image conveying the relative time of contraction of each pixel, mathematically defined to

be the first harmonic resulting f¡om Fourier analysis, as described in section 3.1.1), the

amplitude image (a single image in which each pixel represents the maximum change in

measured counts over the entire cardiac cycle), and the average grayscale image ofthe

enti-re sequence of frames. The master ROI simply defines the image area to which the

edge detection algorithm will be applied in every frame of the study. The user is given

the opportunity to redraw this master ROL An edge detector is then applied to the master

ROI in each image frame, in order to create an LV boundary on each f¡ame. The edge

detection is based on a second derivative technique with predefined thresholds. The

thresholds are defìned for each ofthe eight main cardinal directions and applied to the

second derivative information along ray traces outwards from the LV grayscale

maximum, to generate LV edge points. The user may redraw the LV boundary in any of

the image frames. A low pass filter is applied to the LV TAC to decrease noise, A

background ROI is automatically created in the ES frame and consists ofa crescent

shaped region 3 pixels in width, 1 pixel outside the LV boundary, extending from 90 to

1 80 degrees relative to the LV centre, The user may redefine this background ROL The

background activity is subtracted in the same manner as in the manual method, and the



LV TAC analysed for ejection fraction. The analysis is printed out on fìlm, and saved to

disk.

1.2.5 Fully Automated Method

This technique is essentially the same as the semi-automated procedure, except

that the user is not given opportunities to redefine the LV ROI's nor the background

ROI. The software documentation recommends careful review of the results, and

possible verification using the manual method. The fully automated technique is not

cur¡ently used at the HSC for several reasons:

1) The sensitivity ofthe edge detection algorithm employed in the automated (and

semi-automated) routine is very cumbersome to modify in situations where the

automatically identified edges are in disagreement with the physician's estimate.

2) The correlation between the automated results and the previous method ofEF

measurement was measured at the time of installation of t¡e current equipment and

software. The automated results co¡¡elated poorly with the results of the previous

method (relative to the manual analysis), and hence has been unused in favour of the

manual analysis.
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1.3 Fuzzy Clustering

1.3.1 Motivation for Using Fuzzy Set Theory

Fuzzy set theory is a generalization of abstract set theory. Since abstract set

theory is simply a special case of fuzzy set theory any definition, theorem, proof, etc., of

fuzzy set theory will always hold for abstract sets. Fuzzy set theory has a wider scope of

appiicability than abstract set theory because of this generalization, especially in solving

problems requiring subjective evaluation (such as left ventricle boundary identification).

Inexactness may take several different forms: (1) generality: that a concept may

apply in a variety of situations, (2) ambiguity: that a situation may be described by more

than one distinguishable concept, and (3) vagueness: that boundaries are not defined

precisely. The fuzzy set is a mathematical representation of all these forms of

inexactness. Manifestations of inexactness that are contained in the nuclear medicine

image set being analysed include low ¡esolution, noise from scatter and background

sources, relatively poor statistics, and overlapping of anatomical features (2-D view of a

volume source), The resulting images are of generally poor resolution and contrast as

compared with images from other modem modalities, with the anatomical features being

biurred and indistinct. This high degree of inexactness which characterizes gated blood

pool images make them an excellent candidate on which to apply fvzzy set theory.

Furthermore, the physician makes several subjective decisions when analysing an image

set for an ej ection fraction. Thus, an analysis based on fi)zzy set theory approach as

opposed to abstract set theory seems most logical. Previous applications of fuzzy set

theory in the medicine field are numerous [Adlassnig, 1986; Maiers, 1985; Tazaki, 1986,

Zaifu, 19861.
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1,3,2 Non-Mathematical Discussion of Fuzzy Clustering

Fuzzy classes ofobjects are often encountered in the real world (as opposed to an

ideal mathematical construct). For example, A may be the set of beautiful women in a

city 14, or A may be the set of tall trees in city Il. Traditionally, the grade of

membership 1 .00 is assigned to those obj ects that fully and completely belong to l, while

0.00 is assigned to objects which do not belong Io A aT all. This form of membership

assignment presents problems when applied to the examples given above. How tall does

a tree have to be to be classified as a 'tall tree', and similarily, how beautiful a woman to

be classiflred as belonging to the set of 'beautiful woman'. This lack ofa precisely

defined criteria of membership is commonly encountered in the real physical world. In

situations such as these, an object does not necessarily need to either beiong or not

belong to a class. There exists the possibility of assigning intermediate grades of

membership. This is the concept of a fuzzy set, consisting of a class with a continuum of

grades of membership. Applied to a single frame of a gated radionuclide

ventriculography study, each pixel may be assigned a membership grade determining its

association with a particular anatomical feature. For instance, the membership grades for

a cross-section of pixel intensities in such an image may be thought of as belonging to

the right ventricle, left ventricle, septum, or descending aorta, as depicted in Figure 1.4.

The fuzzy set memberships consist of smoothly varying functions (in this case gaussian

form was chosen for illustrative purposes), while the non-fuzzy set memberships are

composed of step functions.
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Figure 1.4: (a) Profile of pixel intensity across row 34 of end-diastolic image frame,
(b) possible fuzzy memberships of pixels according to anatomical
representation, and (c) possible non-fuzzy or 'hard' memberships.



Classification is the process of assigning an item (or observation) to its proper

place; the problem of cluster analysis is frequently stated as one offlrnding the 'natural

groups' within a set of data. The essence of cluster analysis may be viewed as

identifying homogeneous and well-separated structures within a given data set (Kandel,

1982), Applied to the problem at hand, this could translate into the identification of a set

of pixels representative ofthe left ventricle, where all the member pixels possess

homogeneous properties (such as similar phase and intensity), yet significantly different

properties when compared to other groups of pixels such as those belonging to the right

ventricle, descending aorta, or background.

Most cluster analysis methods require some measure of similarity to be defined

for every pairwise combination of the data to be clustered. When clustering data, the

proximity of individual data points is usually expressed as a distance. This implies that

clusters are generally shaped in a spherical manner.

An object is characte¡ized by assigning to it the values of a finite set of

parameters considered relevant to the object (ie.latures of Íhe object or data set). These

input feafures are generally defined by the data acquired by a sensory device. In this

case, ttre sensory device is a standard nuclear medicine gamma camera. Some features

used in applying fuzzy clustering in this work include the first harmonic phase (section

3. 1. I ), isolation value (section 3, I .2), grayscale intensity (section 3.4), x-, and y-

coo¡dinates (sections 3.1 &.3.4).

It should be emphasized that cluster analysis is a device for suggesting

hypotheses. The classification of data, or variables obtained from a cluster analysis



procedure, has no inherent validity. The worth of a particular classification and its

underlying explanatory structure is to bejustifìed by its consistency with known facts.

It is hoped that this non-mathematical discussion of fuzzy set theory and fuzzy

clustering has been useful in quickly illustrating some of the main ideas and principles

involved in this broad field. The following few sections will delve mo¡e deeply into the

mathematics of fuzzy cluster.ing, and eventually present the fuzzy clustering algorithm

which has been employed in this work,

1.3,3 Fuzzy Set Theory

The theory of fuzzy sets deals with some subset C ofthe universe (or collection

of objects) { where the transition between no membership and full membership in the

subset is gradual and continuous, rather than a discrete change. The fuzzy subset C has

no well defined boundaries while the universe y covers a definite range ofobjects. The

membership grade of 1 is assigned to those objects which fully and completely belong to

Ç while 0 is assigned to objects which do not belong to C; the more representative of C

an object is, the closer to 1 is its membe¡ship grade. In nonfuzzy (or abstract) set theory,

membership is either 0 or 1, with no intermediate classifications,

If Y = {J) denotes a collection of objects, then a fuzzy set C in Iz is a set of

ordered pairs defined as:

c - {(y, ur(y))}, y eY, uc e[0,1]

where er¿ is the grade of membership ofy in C. This membership grade lies between 0

and 1 as discussed previously. The grades of membership reflect an ordering ofthe



objects in the universe, produced by the association of attributes ofC. The membership

grade u¿ þ) of an objecty in C can be alternatively interpreted as the degree of

compatibility of the attributes associated with C and the objecty.

1.3,4 Cluster Analysis

The cluster analysis problem is generally stated as one of finding the'natural

groups'within a data set, The objective is to sort the data set into categories (or clusters)

such that the degree of association is high among members of the same cluster, but low

between membe¡s of different clusters. In other words, homogenous and well-separated

cluste¡s are desired.

Generally cluster analysis requires some measure of similarity to be defined for

every pairwise combination of data points to be clustered. A common similarity measure

is the proximity of individual data points, usually expressed as a distance. Clusters are

defined through the application of the similarity measure (also known as the clustering

criterion). Many different similarity measures for clustering have been proposed and

used, but the most popular and well studied method to date is the generalized least-

squared errors criterion. This c¡iterion is used in the present analysis, and will be

described in detail in a following section.

Outlier data points ideally fall into a category reserved for 'unclassifliable' points,

Conventional methods of clustering (based on abstract set theory) possess no natural

mechanism for assimilating the effects of indistinctive or deviant data. However, fuzzy

set theory alters the basic axioms underlying clustering in order to accommodate this

requirement. In fuzzy clustering, a data point may belong entirely to a single cluste¡, but

generally retains partial membership in several clusters thereby remov.ing (or at least

reducing) the effect of a potential outlier.
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An example adapted from Bezdek (1981) illustrates how a simple array of

geometric points is assigned memberships within two clusters. This is the classic

Butterfly example, and is illustrated in Figure 1,5, and Table 1.2. The set of input

vectors used by the fuzzy clustering routine simply consists of the x- and y-coordinate

data of each point. The clustering routine has been set to find two clusters within the

given set of data. Each data point has partial membership to both clusters. Due to the

mirror symmetry about the eighth data point, the membership functions fo¡ the two

cluste¡s are also symmetric about this point, as observed in Table 1.2.

¿o
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Figure 1.5: Illustration of fuzzy clustering (set to identify two clusters) applied to a
simple data set of Cartesian points [adapted from Bezdek, 1981],

Table 1.2: Cartesian data points input into fuzzy clustering routine (identifying two
clusters) and resulting membership functions,
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1.3.5 Fuzzy c-Means Algorithm

In this section, the mathematical basis for the fu zzy c-means algorithm wìll be

developed. Due to the abstract nature of the mathematics involved, analogies to the

Butterfly example from the previous section will be drawn at every opportunity. Once

the background description is complete, the steps of fhe fuzzy c-means algorithm will be

described. The algorithm is aptly named (ie. 'c-means') since the calculation ofthe

mean data value of each of c clusters is required for each iteration of the algorithm.

Let Y = fit ¡, y2,,.y,v] be a sample of .|y' observations in d' (z-dimensional

Euclidean space), wherey¡is the fr+h feature vecto¡ and y¡¡the j-th feature ofy¿. A

feature vector is composed of all the information or 'features' associated with each given

observation in )¿ In the adapted example in the previous section, ¿= 1, ..., 15 (number

of data points),j = 1,2 (the two features are the x- and y-coordinate data), and I,: the

entire set of data points. Define an integer c, whe¡e 2 < c < n, as the number of clusters

(or partitions) within a set of data)¿ The c-partition of f is ac-tuple (Y,,Y2,...,Y")of

subsets of )z satisfying:

(a) u,(Yt) = a,o e [0,1]
membership of each feature vector lies in the
interval [0, 1]

(b)

(c)

Zu*'o

Lu* =t

for all I

for all Æ

- sum of membe¡ships in a certain cluster c,

be greater than 0

- sum of a feature vectors membership in all
clusters must be I

The symbol U represents a real cxly'matrix (U = [u ¡¡]), representing the partition {li} -d
I is the partition index number (ie. cluster number). U is referred to as a fuzzy c-partition



of Iwhen the elements of U are real numbers in the unit interval [0,1] which continue to

satisfy conditions (b) and (c) above. Examining our Butterfly example, we see that Uis

a 2x15 matrix since there are 2 clusters specified and 15 feature vectors (ie. data points)

used. Note that these membership functions satisfy conditions (a) - (c) above (on page

24). Condition (a) is satisfied since all ur¡and u2¡lie in the interval [0,1]. Condition (b)

is satisfied since both the sum of zr1¡ over all ( and the sum of u2¡ over all /r (that is,

summing the membership functions for a particular cluster over all data 15 data points) is

greater than ze¡o. Condition (c) is satisfied since the sum (a,¡ + zr¡) equals L00 for each

feature vector (that is, for each of the I 5 data points).

Several clustering criteria have been suggested for identifying optimal fuzzy c-

partitions of ). In general, this involves a pair-wise comparison of feature vectors to

cluster centres as calculated via a centre-of-mass approach . As mentioned earlier, the

most popular and best studied criterion is associated with the generalized least squares

functional:

r,(u, v) = f> ø.¡. lly t -u,ll1, (r.3)

where I= {/r,1", ,!*} cR =the data to be clustered,

c : number of clusters in Y;2 < c < n,

m = weighting exponent; 1 < m < æ; see description below,

U = luzzy c-partition of Y; U e M¡", M¡"= the set of all fuzzy c-parlitions of Y,

v = (vr, vr,..., u") =vectors of centres,

vi = (v 
ì1, 

u,r, , ,,,) = centre of cluster i,

ll ll¡ : induced l-norm on R",

I = positive deflrnite (r x r) weight matrix, see description below.
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In the above equation, the squared distance betweenyo and v. is calculated in the

l-no¡m as:

d?o =llyo -r,ll'n= (yo -r,)' A(yo -v,)

Each squared error is weighted by the nth power ofy¿'s membership in cluster i [(u,)"'J

The set ofvectors {v¡} are the cluster centres, essentially the centres of mass of the

partitioning subsets, and may be calculated by:

Ìv

l(u*)''to
v¡ = E*- (1.4)

l(u*)''

In the Butterfly example, the final cluster centres are illustrated in Figure 1.4, with the

exact values of:

vr= (0.85, 2.00) and vr= (5.14,2,O0)

These values satisfy the centre of mass equation (1.4 above) for the membership

functions given in Tabie 1.2.

The elements of the membership function are dete¡mined by @ezdek, 1984):

/ ' \-lI / \fnì,.=lfl+l I (r s)
(;=: \ ør*./ 

,)

Other va¡iables in -/,, which require further explanation are the fuzzy weighting exponent

zr and weighting matrix A.

The exponent iz controls the relative weights placed on each ofthe squared errors

d*2 . As m-+1, the c-partitions which minimize ./ become increasingly hard. By

increasingly hard, it is meant the clustering approaches that which would occur if



classical set theory were employed, Considering rr = i, it may be shown that J,,

minimizes only at hard c-partitions, and the corresponding v.s are simply the geometric

centroids of the )z,s. As n->"o, the membership of the optimal U matrix for-/, is

degraded towards the fuzziest state, where each element approaches a value of(l/c).

Holding all other parameters constant, each choice ofn¡ defines one fuzzy c-means

algorithm. There exists no theoretical method of choosing an optimal m, but Bezdek

(1984) suggests the best strategy is an optimization approach through processing of the

experimental data. This is incorporated in the overall parameter optimisation as

described in section4.1, The Butterfly example employed avalte of m =2,00,whichis

simila¡ to that used in the fuzzy clustering application to gated radionuclide

ventriculography,

The weight matrix I controls the shape which optimal clusters assume in Ru.

While an infinite number of l-no¡ms is available for use, the choice of I = 1(the identity

matrix) directs J, to identify hyperspherical clusters. Since left ventricle boundary shape

in the LAO view of a healthy subject is circular or elfiptical, this decision is justifred.

Geometrically, we say the choice of matrix I induces a topology upon the data set

@ezdek, 1981), The Butterfly example also defined I = 1, thus inclining spherically

shaped clusters to be identifred. This effect can be readily observed since only geometric

data (x- and y-coordinates) were used as input. Thus, the membership function values

for data points around the cluste¡ centre generally vary in a spherically symmetric

manner (or i¡ this case, a circularly symmetric manner due to the data set being two

dimensional). Examining the membership values of a¡¡ in relation to v¡ in Figure 1.4,

this effect is apparent,

Explanation ofthe basic elements ofJ,, in equation 1.3 are:

d?t = squur"d A-distance from pointy¿ to centre of mass vr.



(u*)"' d?o =squared l-error obtained when representing y¡ by v, weighted by a power

of the membership of y¡ in cluster i.

c

Z@*)'' d,i =sum of squared l-errors due toy¡'s partial replacement by all c of the
i=1

centres {v,}.

ZZ@Ð'' d?u =overall weighted sum of generalized l-errors due to replacing I by u.

With a discussion of relevant background mater.ial complete, the fuzzy c-means

algorithm may now be presented as a four step process.

(1) Fix c, m, A, ey. Initialize membership matrix Llo)randomly. Then at step | / = 0,
1,2,...,.

Calculate the c fuzzy cluster centres {v¡ll} using equation e.l, and l-fl.

Compute an updated membership matrix (f) using equation (i.5) and 1v,ú/¡. This
is equivalent to constructing a new set of c partitions.

Compare (f) ß U('*t) in a convenient matrix norm; if lluþt) - L/,ll < ," stop,
otherwise return to (2).

Note the parameter e¡ has been introduced in the algorithm above. This is a threshold

value set to control the convergence of the calculation. The theoretical convergence of

the sequence {Ú) , uo , I = o, 1, 2,.,. } generated by this algorithm has been previously

studied (Bezdek, 1981), and convergence is generally achieved within 10-25 iterations.

Once convergence is attained, the data points are classified by their membership

functions as being a member of cluster i, a non-member of cluster i, or a non-classifiable

point (a non-member of all clusters, i = 1 through c). The divisions are based on

(2)

(3)

(4)



properties of the generalized least-squared functional. The lower boundary below which

a data point is defrnitely not a member of cluste¡ l, is defined as (1/c). This choice is

based on the fact that a properly convergent set of lr¿'s for -/,, approach (llc) as n -+ æ

(Bezdek, 1984). Consequently, this implies that membership in the fuzziest state reduces

to (1/c). The upper boundary, above which a point is definitely a member of cluster i, is

defrned as ((1+c)/2c). This boundary is chosen because it lies exactly half the distance

between (1, /c) and 1. Considering the set of conditions (a) - (c), we see this choice

ensures that simultaneous full membership of a single data point to more than one clustef

is not possible (a logical restriction).

JJ
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Chapter Two: fINCERTAINTY IN EJECTION FRACTION
ME,dSUREMENT

2.0 Introduction

The measurement of ejection fraction through equilibrium gated blood pool

imaging may be affected by several sources ofuncertainty. These sources can be

categorized into three main groups: 1) patient factors, 2) acquisition procedure

conditions, and 3) analysis techniques.

Patient factors are those dependent upon the physiological condition and

anatomical structure of the patient being imaged. Uncertainties due to acquisition

procedure conditions include any error introduced by the equipment used to gather the

images, or by the physical nature of the pharmaceuticals involved. Analysis techniques

encompass all analytic methods applied to tåe extraction of EF measurements from gated

blood pool images, excluding the parameter optimisation of our developed technique

which has been described in section 4. 1.

In this chapter, all factors introducing uncertainty into the measurement ofEF via

equilibrium gated blood pool imaging will be discussed, within the three main categories

as mentioned above. Finally, the effect of these uncertainties on EF measurement will be

considered.



2.1 Ejecfion Fraction Uncertainties

2.1.1 Physiological Uncertainties

2. 1. 1.1 Phase Variations

Due to beat-to-beat variation in the shape ofthe TAC, the resulting superposition

of several hundred ofsuch curves will result in an overall TAC which does not

accurately represent LV volume variations, For example, if two LV volume cuwes are

summed, each possessing identical EF and end-diastolic volume but with different

systolic time periods, the resultant curve will demonstrate a reduced EF. Since patients

exhibit fluctuations in their heart rate, even in a 'steady' state, it is reasonable to assume

that most LV volume curves will vary in lenglh with each beat. In a study performed by

Green et.al. (1978) to investigate the effects of this variation ofphase on calculated

ejection fraction, it was found that in a statistical sense, the beat length fluctuations did

not introduce a significant error. However, the possiblity still exists that these

fluctuations may introduce significant errors into the measured EF in patients with

extremely low heart rates, due to the distortion introduced into the TAC ofsuch patients.

2.1. 1.2 Attenuation

In addition to the effects ofblood volume self-attenuation on EF as discussed in

section 4.2, physical variation within the patient will also contribute uncertainty to any

method attempting to correct for attenuation. The variety of tissue types, volumes, and
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geometrical configuration ofthese different tissues contribute to form a source of

uncertainty in any estimate of attenuation. Tissue involved in photon attenuation \ryill

possess widely varying attenuation coefficients, and may include lung [3.874 m-r], skin

116.241 rf,'tl,heart [15.645 -''1, fat [13.800 m-'], blood [15.794 m'r], and bone [48.375

-'t1 with attenuation coefflrcients enclosed in square brackets (ICRU 44).

2.1. L3 Post Meal Effects

The effect of a standa¡dized meal on LV EF using gated blood pool imaging has

been studied by Brown el.al. (1983). LV EF was determined in a fasting state, as well as

15, 30, and 45 minutes after a meal. It was concluded that significant increases in EF

(above normal EF variation) may occur after meals in normal patients and those with

moderate LV dysfunction, but not seve¡e LV dysfunction. Brown suggested that the

mechanism by which this occurs may be a decrease in systematic vascular resistance

resulting in LV unloading. Furthermore in patients with more severe LV dysfunction, it

was speculated that chronically increased sympathetic nervous system tone may resuit in

bluntilg of the usual physiologic responses to a meal, and these patients are less sensitive

to the mild degree of afterload ¡eduction induced by food intake due to continued high

preload conditions. Therefore equilibrium radionuclide ventriculography studies which

are not standardized for patients' mealtimes may introduce an important unmeasured

variable that will affect the validity of data in se¡ial studies of left ventricular function.



2. l. L4 Patients With Aneurysm

Cases of LV aneurysm (distended blood vessel or heart walls) are faüy common,

with an incidence estimated in the range 4-30% (Onik er.al.,1980). In gated blood pool

studies, they are generally identiflred as a late-contracting zone in the left ventricle region.

To accurateiy calculate the EF, the activity contribution from this region must be

accounted for (Boudraa e/.a|., 1993). Schicha et.al. (1985) demonstrated that gated

blood pool studies in cases of anterio¡ LV aneurysm underestimated the LV EF by a

mean of 6.2Yo as compared to biplane cineangiography. Individual cases \ryere

underestimated by as much as a factor of two. It is thought that due to the differences in

photon attenuation, the proportion of smalle¡ cyclic changes of the count rate originating

ir the blood within the aneurysm is ove¡estimated, while that of the blood in the posterior

portion of the LV is underestimated. Consequently, LV EF of patients with aneurysm of

the anterior wall is underestimated.

2. 1. 1.5 Normal Variation

The intrinsic variability and accuracy of calculating LV EF via gated blood pool

studies may be evaluated by performing serial studies on patients. Wackers et.al. (1979)

found that the mean variability of absolute EF for repeat studies in normal patients was

significantly greater than in abnormal patients. This differential var.iability should be

considered in interpreting sequential changes in LV EF. It was concluded that in order to

be attributed to nonrandom physiological alterations, the absolute EF change (ie. in

absolute EF units) should be 100/o or more in normal patients and 5% or mo¡e in
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abnormal patients. This diffe¡ence may be a reflection ofa pathophysiologic

phenomenon. In patients with no¡mal LV performance, there is a greater ventricular

reserve and hence an increased chance of responding to a variety of stimuli with

augmentation of cardiac pump function.

2,1.2 Uncertainties in Acquistion ProtocolÆquipment

2. 1.2. 1 Nonuniformity of Gamma Camera

Nonuniformity of the gamma camera is the result of both variations in sensitvity

across the camera face, and spatial distortions. A trvo part study was performed by

Busemann-Sokole et.al. (1985) on a cardiac phantom to study the impact ofa

nonuniform camera upon ejection fraction. The first part of the study investigated the

sffect on ejection fraction values when camera uniformity was degraded by improper

analyzer wildow positioning, The pulse height analyser allows the operator to select

oniy the signals from those gamma rays in which the photon energy lies within a certain

range of values (ie. a 'window' of values). When the pulse height analyser window was

improperly set (by varying levels from 5.2%o to 22.1% in terms of differential

uniformity), the EF displayed a small variation, within +/- 3% of the expected conectly

collected EF. The nonuniformity obtained was analysed by application of the NEMA

Q.,lational Electrical Manufacturers Association) standards protocol in order to obtain

parameters for the differential uniformity present.



The second part ofthe study determined the effect on ejection fraction values ofa

nonfunctioning photomultiplier tube. When a selected photomultiplier tube was

successively detuned by altering the tube gain, variation in EF became noticeable,

especially at low nominal EF values. It was concluded that a reasonable degree of

confidence (maximum EF deviation of 5o/o) may be placed in ejection fraction

measurements even when differential camera nonuniformitv is as much as l0%.

2.1.2.2 Gatrng Delays

Most electrocardiograph gating devices have an intrinsic delay between the time

tåat the R-wave is sensed and the time the gating signal is sent (Powers, et.ø\, l9B2). The

effects of gating delays between 0 and 50 msec on the EF estimate were simuiated, while

actual measured delay times for clinically attainable heart rates possessed a much smalle¡

range, varying between 0 and 9 msec (Powers, et.al.,l9B2). Delay between the actual

electrical event and its detection by the computer will result in a shift ofthe perceived R-

wave f¡om its actual location, If no fitting of the time activity curve is performed, the

maximum counts in the LV will then be artifìcially decreased (since the fìrst data frame

counts will be ¡educed due to missing the acquisition ofthat data), resulting in a lower

tlan expected EF. This results from the software restricting the search for a count

maximum to the first two thirds of the TAC. Intuitively, the magnitude of the EF

underestimation depends directly on the speed of the left ventricle emptying. Powers

e|al., 1982, dete¡mined that gating delay effects will be most pronounced at higher heart
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rates, and that the greatest artificial EF reduction will occur in patients with normal (as

opposed to poor) ventricular function.

2.1.2.3 Frame Rate Requirements

The ej ection fraction may be influenced by the sampling rate and sampling period

employed when the TAC data are collected (Bacharach et.al., 1979; Hamillon et.al.,

1978). Hamilton er.al. (1978) examined rest-exercise TAC's of two patients using

modern sampling theory. Fourier analyis of the TAC's ¡evealed +hat 95%o of the

frequency content lies below 7 FIz for a high ejection fraction and heart rate, and below

4.5 Hz fot a normal EF and heart rate. The Nyquist sampling criterion states that a signal

must be sampled at twice the frequency (or more) for an accurate ¡econstruction. Thus,

sampling rates of 14Hz and 9 ÉIz for the high and normal heart rates respectively, are

required. A sampling rate of 14Hz coresponds to a frame rate of 10.5 llz for a patient

with a heart rate of 80 bpm. At frame rates above the minimum for correct

reconstruction, calculated EF will decrease slightly as frame rate is reduced towards the

minimum, due to loss ofhigh frequency response oaused by the lengthening ofthe

sample period. Hamilton suggests using a frame rate about 25 FIz, since the

underestimation ofEF due to aliasing errors will be negligible (due to this rate satisfying

the Nyquist sampling criterion).

In a study of32 patients, Bacharach et.al. (1979) duplicated the effects of

performing a study with decreasing temporal resolution. This was done by condensing

the original TAC data collected at l0 ms/point into TAC's representing 20, 30, 40 and 50
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ms/point by adding consecutive l0 ms/point data together. It was observed that EF did

not vary signihcantly for time frames up to 50 ms. The conclusion indicated that frame

lengths of 50 ms (corresponding to a frame rate of 20 Hz) should be sufficient to

optimally reduce eÍors in calculated EF.

At HSC, individual gated blood pool studies are not performed at the same frame

rate, but rather the patient's cardiac cycle is divided into a constant numbe¡ of frames.

The numbe¡ of frames used is set through software, with a default value of 24 (resulting

in a sampling frequency of 32Hz for a patient with a heart rate of 80bpm). As the heart

rate of the patient decreases, each frame will represent a longer and longer time period,

while the frequency content of the TAC is also decreasing (Hamilton et.al., 1978). these

two effects (increasing frame time length vs. decreasing frequency content) are

offsetting, hence by dividing every cardiac cycle into 24 frames as opposed to simply

setting a constant frame rate, the TAC should be accurately reconstructed for all heart

rates.

As mentioned previously (section 1.1.3.6), the 24 image frames are compressed

i¡to 16 frames for display and storage purposes. Linear interpolation is applied to the 24

frame processed data set to construct the non-coincident (in time) images ofthe 16 frame

data set. This compression of data results in an increase in the minimum heart rate which

can be reconstructed without worry of possible undersampling erors (as discussed in

section 1.1.3,3). The minimum heart rate for a i6 frame study to keep time intervals fo¡

each frame below 0.050 seconds is 75 bpm. Data collected at heart rates below this may

cause errols in the TAC fit due to unde¡sampling. In the 10 test group, only two patients



exhibited heart rates below 75 bpm at the time of image acquisition. Both the manual

and semi-automated analysis of the TAC revealed that in these two cases, the TAC did

not exhibit a steep fall off at ES. That is, the TAC curve did not drop from ED volume

to ES volume within a 0.050 second time interval (if this did happen, the TAC would be

improperly represented by the 16 frame compressed data). Therefore, the compression

of 24 frames into l6 frames does not signifrcantly affect the results of the fuzzy

technique of estimating EF, for the l0 test studies chosen. Future analyses may avoid

this potential problem altogether by performing the analysis on the original 24 frame

data.

2.1.2.4 Decay of Activity

The duration of imaging acquisition for the best septal view ofthe heart is 600

seconds (10 min) using the HSC protocol. This is generally the procedural time interval

allowed by most centres to achieve an image with good statistics, while minimizing

patient discomfort. The decay of the source within the patient will result h the LV

volume curves being composed of fewer and fewer counts as time elapses. The EF may

¡emain the same, but the amplitude will decay at close to the same rate as the

radioisotope (not exactly the same rate, due to simultaneous biological ¡emoval of the

Tcee-). If one calculates the percentage radioactive decay the source suffers during the

imaging time interval ff = 
"-o'sstr't'*-* 

) I using a t¡,or.¡y" of 360 minutes for Tcee-, the

signal intensity will decay by -\.9 %o.



However, if it is assumed that the shape of the LV volume curve does not vary

over the image acquisition period, the effect of this amplitude decay will not be observed

in the calculated EF, This is a result ofthe nature ofthe EF parameter (a ratio of heights

on the TAC), and the fact that when curves of identical shape but varying amplitude are

averaged together, the shape is preserved. Hence, relative heights (such as the EF) are

also preserved.

2.1,3 Uncertainties in Analysis

2. 1.3. 1 Fourier Curve Fitting

The LV TAC may be fitted with a truncated Fourier series in order to improve

statistical precision, Othe¡ methods of TAC fitting such as third degree polynomials

have been explored, but the Fourier series approximation has been shown to be superior

(Zatta, 1985). The EF parameter may then be calculated from the smooth Fourier fit, as

opposed to the'noisy' original TAC. Much work has been performed to find an optimal

number of harmonics to fit TAC's (Bacharach, 1983; Halama, 1983; Mukai, 1983). Two

sources of e¡ror, both dependent on the number of harmonics used in the fit, influence

this calculation, First, if the image has poor statistics the truncated Fourier series may

not adequately describe the shape of the TAC, due to a large number of harmonics being

required for a good reconstruction. Second, due to the noise caused by counting

fluctuations, TAC's acquired from the same subject under identical circumstances will

fluctuate, thus causing the Fourier fitted curves to fluctuate. Since these two error



sources decrease and increase, respectively, with the number of harmonics used in the

Fourier fit, a harmonic which minimizes both effects is suggested (Bacharach, 1983).

Bacharach (1983) found that for the EF parameter, two harmonics are optimum

over a wide range of signal-to-noise ratios. FoTTAC's with large fluctuations (dueto

counting statistics), increased eror is introduced by fitting with fewer than or more than

two harmonics. \ryith TAC's containing a greater number of counts, increasing the

number of harmonics above two changes the total error only negligibly.

For these reasons, only two harmonics are used in fitting the TAC resulting from

the fuzzy clustering LV identification.

2. 1.3.2 Fixed vs. Variable LV ROI

A variable LV ROI is an ROI whose boundary changes between end-diastolic and

end-systolic image frames. A fixed LV ROI is defined by a single contour drawn in the

end-diastolic frame and applied to all other frames of the image. It has been

demonstrated (Sorensen er.al., 1979,1981,Burow et.al., 1977) that a fixed LV ROI,

when compared with a variable LV ROI, does not correlate as well with angiography

results. Sorenson (1979) and Burow (1977), performed both gated radionuclide

equilibrium studies and conventional contrast angiography (an invasive method of

finding EF) on patients, thus a'gold standard' was available to which the radionuclide

equilibrium studies could be compared. Results indicated that the fixed LV ROI method

of analysing the ¡adionuclide equilibrium studies significantly underestimated the EF,

while the varying LV ROI method gave an improved comelation and very little EF
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underestimation (compared to contrast angiography data), Sorenson (1979) explained

this phenomenon in the following manner. An LV ROI defined at end-diastole and

remaining flrxed during systole will record counts which do not originate from the LV

during systole, and the end-systolic count rate would be overestimated. This

overestimation at end-systole would result in a reduction ofthe calculated EF. Thus, a

varying LV ROI method has been incorporate d into the fuzzy technique.

2. 1 .3.3 Algorithmic Dependence

There are many nuclear medicine computer systems avaiiable for performing and

analysing gated blood pool studies, and the different manufacturerers will employ

various approaches to this end. Chang ef.al. (1980) present an overview ofleft

ventricular edge detection techniques, while Reiber (1985) offers an examination of

computer methods available for quantitative analysis of left ventricular function from

equilibrium gated blood pool scans. A comparison ofEF resuls between computer

systems was performed by Makler et.al. (1985). That experiment involved the use ofa

cardiac phantom to provide as closely identical images as possible to the various

hospitals concerned, Their results suggested that different computer systems yielded

somewhat varying EF values (trp to _4.7%o in terms of absolute EF for a high EF

measurement), although this source ofvariability is less than the potential physiologic

variation in an individual patient (see section 2. 1.2 above).



2.1.3.4 Choice of Background ROI

Several different methods of selecting the background ROI have been described

previously in section 2.5.2. Grove et.al. (1956) examined the sensitivity of LV EF to the

background co¡rection through analysis ofa simple cardiac model, Themodelwasa

simple design; the LV was assumed to be spherical in shape, and the background to be

completely beneath the hea4 instead of a volume distribution. Clinical data did confirm

the usefulness of this simplistic model, It was concluded that for varying LV ROI

algorithms, when the background corection value is overestimated, the error in the EF

can be very large. In contrast, when the background is underestimated, the error is

relatively small and insensitive to the value of the background conection. Therefore it

would be advantageous to estimate background conservatively, when designing an

automated background ROI search routine.

2,1,4 Effects ofErrors on Ejection Fraction Determination

2.l.4.1Introduction

Examining the definition of EF in equation i.l, it is possible to estimate the

deviation of the EF from its true value when errors are made in EDC, ESC, or both, This

may be accomplished by application of error propagation theory on equation 1. L

Generally error sources may be classified as systematic or statistical. Statistical

uncertainty in the EF will dec¡eæe as the number of counts acquired inc¡eases. In



contrast, systematic errors such as incorrect identification of the LV contours are more

difficult to tackle, since they cannot be reduced by acquiring more data,

In order to examine the effects of er¡or in the EDC or ESC, error propagation

assuming Poisson statistics for all variables involved has been performed by Williams

ef.al. (1918) The fractional uncertainty in the EF as a function ofEF and EDC was

derìved to be:

(oEF)_t /(t-EF)(2-EF)
EF 

_ EFl EDC

This equation, and simple reaffangements thereof, may be examined to explore the

relationship between the error in EF, and the EDC and ESC estimates.

2.7 .4.2 Oulcome

It was found that statistical variations are mo¡e severe at low EFs, requiring

approximately ten times the number of counts at a low EF (of say,20%) than a normal

EF C60%) to achieve the same statistical accuracy (Williams et.al., 1978).

Measurement of a low EF is a problem of estimating a small mean difference between

two noisy quantities (EDC and ESC).

Overestimation of EDC results in an inc¡ease in EF, while underestimation of

EDC produces a decrease in EF. The effect of enor in EDC alone is nonJinear, and

most prominent at lower EFs as demonstrated in Figure 2.1 (a),
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The effect of error in the ESC estimation is linear with resulting EF, and more

pronounced at lower EFs. An over- or underestimation of ESC produces an under- or

overestimation ofEF respectively as illustrated in Figure 2.1 (b).

In the situation where a systematic error of the same magnitude is made in both

the EDC and ESC, the effect on EF is maximal when the true EF is high, and minimal

when the true EF is low. This nonJinear relationship is described for various EF values

in Figure 2,I (c). Errors in both EDC and ESC of the same absolute amount are a major

problem in radionuclide studies. This is generally due to inclusion of counts originating

from adjacent non-LV structures, via over- or undercorrection ofEDC and ESC through

a background estimate.

2. L4.3 Summary of Eror Effect

The magnitude and direction of change in EF is highly dependent upon the true

EF value and the particular type of eror considered, At a no¡mal or high EF, the most

likely eror is due to an equal error in both EDC and ESC (Williams, 1978). The next

most likely is attributable to erro¡ in ESC alone, The effects ofstatistical error and error

due to EDC estimation alone on the measured EF is expected to be minimal. However,

when the EF is low, the statistical error is likely to make the dominant contribution to

erro¡ in EF.
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Figure 2,1: (a) The effect of systematic error in end-diastolic counts alone, (b) the
effect of systematic error in end-systolic counts alone, and (c) the effect
of systematic errors (of the same magnitude) in both end-diastolic and
end-systolic counts.
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Chapter Three: DESCRIPTION OF METHOD

3.0 Introduction

This chapter will describe the algorithm developed to calculate left ventricle

ejection fractions. This algorithm automatically identifìes the LV region in each frame

ofan equilibrium gated blood pool study, determines a background correction estimate,

and calculates the corresponding ejection fraction. Each major processing step is

described, in the orde¡ of application upon the image set. An accompanying flow chart is

provided in Figure 3.i, listing the processing steps and the numbers ofthe corresponding

sections which contain detailed descriptions ofthe steps.

A general description of the algorithm is useful at this point. The fuzzy c-means

clustering routine, as described in section 1.3.5, is applied twice in this algorithm. The

flust application is used to extract the ventricles from primarily phase information.

Additional processing, in the form ofa simple edge detection, is applied in each image

frame. Finally, a second application of the fuzzy clustering routine is performed on each

individuaf image frame, using primarily grayscale information, to extract the LV ROI for

that particular frame. The remainder of this section presents a more detailed description

of the algorithm.

Afte¡ the sequence of 16 2D image frames for the LAO view of the heart are

loaded, two images are calculated which summarize the temporal information contained

in the sequence. The first is the phase image, and contains the normalised estimation of

the fi¡st harmonic of each pixels' TAC as computed by Fourier analysis. The second

image is a pixel-by-pixel estimate of noise in the phase image. Each pixel represents an

estimate of the similarity of its coresponding phase value as compared with surrounding

phæe pixels. These processing routines are illustrated in sections 3. I . I and 3. 1 .2.



These two images are combined with the x- and y-coordinate data for each pixel

to form a set of 4-tuple input vectors. This set of vectors (one input vector for each

image pixel) is then passed into the fuzzy clustering subroutine. The input vectors are

normalized to account for patient to patient variability, and adjusted by multiplicative

weighting factors to emphasize the more distinguishing features, as described in sections

3. 1 .3 and 3. 1 .4. The results of the initial clustering are examined, and the cluster which

contairs the ventricles is identified for further processing.

The approximate geometric centre of the LV is identified through modification of

a standard technique involving row-column signature analysis. To achieve a better

estimate of tåe LV centre, a maximum gradient search routine is employed which

identifies the maximum grayscale pixel within the LV, and this pixel is used as the new

LV centre. This method uses the results of the row-column signature analysis as a

starting point, and is discussed in further detail in section 3.1.5.

Once the LV grayscale centre is identified, a simple edge detection routine is

employed on the LV portion which lies beside the right ventricle. A minimum is found

along radial rays traced outwards from the LV centre. These minimum pixels represent

the intraventricular septum, which is an easily recognizable valley of low counts

separating the LV from the RV. These septal pixels are joined by linear interpolation,

then the LV image information is isolated by stripping off the RV. The septum

identification routine is explained in greater detail in section 3.3. Both the LV centre

identification and the septum detection process are applied on each image frame ofthe

study.

The remaining image data comprise a region containing signal from the LV blood

volume, as well as pixels exhibiting temporal fluctuations in phase with the ventricles,

but of low amplitude. The grayscale pixel data, together with the x- and y-coordinate

data form the set of input vectors used in the second application of the fuzzy clustering

routine. For this clustering, each pixel in the image thus possesses a corresponding three
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Figure 3.1: Flowchart summarizing steps taken in automated ejection fraction
estimate through fuzzy clustering,

component input vector. Two clusters are identiflied in the remaining image, the LV and

non-LV (background, scatter, ventricle wall, etc.). The LV cluster is determined in this

way for each image frame as described in section 3.3, This cluster is taken as the LV

region-of-hterest (ROI) to be used in the calculation of an initial TAC, which is

i Ventricles region identification (3.1.5) i

Left ventricle ROI selection (3.4.2)

I Background correction estimate (3.5) i



uncorrected for background. The end-systolic frame is identified as the frame possessing

the lowest LV activity, as observed in the uncor¡ected TAC.

The end-systolic frame is used for the background correction estimate. The

process for identifying an ROI representative of background is fully automated, A

method which closely simulates the background estimation procedure in the manual

processing was developed. Radial rays separated by small angular increments are traced

outwards from the LV centre toward the bottom and right edges (with respect to the

image space). A region growing algorithm was applied for each ray, in combination with

geometric boundary conditions based on radial distance outside the LV contour. The

region exhibiting the smallest amplitude fluctuation over the cardiac cycle is defined as

the background ROL The background activity estimate is the counlpixel value within

this region on the end-systolic frame. This processing is presented in detail in section

3.5.

Fourier curve fitting using three harmonics is performed on the corected TAC,

From this best fit curve, the ejection fraction parameter is calculated via equation 1.2 as

described in section 1.2.2.

Throughout the development of this algorithm, it has been necessary to define o¡

choose many parameters. The value of each of these will have some effect on the

performance ofthe algorithm, but may have little influence on the flrnal ejection fraction

result. It is important to gauge these effects, and this is done through an optimisation

process described in section 4. i. The optimisation is performed on a select group of

parameters thought to have the most critical impact on the ejection fraction output.

However, there does exist the possibility of a non-optimised parameter having some

effect on the calculated ejection fraction.
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3.1 Initial Clustering

3.1.1 Fourier Phase Analysis

The phase image is utilized clinically in assessment of left ventricular function,

providing information related to the mechanical contractility of the heart and allowing

regional wall motion abnormalities to be diagnosed. The grayscale value of each pixel in

the phase image is derived from analysis of that pixel's time activity curve (TAC). The

TAC ofa pixel is formed by following the grayscale value ofa pixel throughout each

image frame. The TAC's of two pixels, one lying within the left atria and the other

within the left ventricle, are given in Figure 3.2. The length of this curve is the average

length ofthe cardiac cycle over the image acquisition period. In pixels which do not

comprise part ofa heart chamber, the TAC is virtually a horizontal line (with superposed

noise). Fourier analysis is performed on each pixel's TAC and results in an estimate of

that TAC's phase. This phase information is then normalized to form the'phase image'

as described below, The phase image derived from the pixel TAC's contains no

information regarding the amplitude of each TAC, but effectively describes the timing of

onset of contraction (relative to the R-wave).

In relation to the TAC, a pixel in the phase image shows the timing of the

minimum of this curve. The timing is measured assuming that a full cardiac cycle

contains 360', These values are normalized to 0 through 255 (corresponding to 0'and

360o respectively) for an 8 bit grayscale display in the phase image. Normal values of

the phase of the vent¡icles lie within the 140o-2 i 0o range. Since the phase image

summarizes the timing of contraction, the atria and ventricles will generally appear

approximately 180" out ofphase due to the normal sequence of cardiac contraction (see

Figure 3.2). This characteristic makes the phase image an important input feature to the

initial clustering process.
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Figure 3.2: Example of time activity curves for pixels lying within the left atria and
left ventricle.

Fourier analysis provides a powerful method of describing a TAC. A TAC may

be accurately represented as an infinite Fourier series expansion:

TAC(I) = ao +ia^ cos(2nmt - S ^)
n1=1

(31)

whe¡e a is the amplitude, z is the number of the harmonic (or term), / is the time (or

frame number), and $ is the phase value. The amplitude of the first harmonic term is

generally larger than that of subsequent terms. The second and third harmonic terms

become relatively more important in regions of aneurysm (Vallette, 1990). Thus, the

second and third harmonic phase images, while containing clinically useful information,

do not enhance the visualization of the ventricles region (Merrick, 1984). An

examination often image sets ¡evealed that the second and third harmonic phase images



did embody some structure, However, the quality of this structure for the purpose of

identifying the ventricles was insufficient to warrant using these.images as input features

for the initial clustering.

The fìrst harmonic phase image may be calculated by initially describing the TAC

ofa pixel by Fourier cosine and sine expansions (implicitly incorporating the $ phase

info¡mation from equation 3. 1):

.f"^(i,j)= fsin[ff(*- ùfx PQ,j,k)
k=l

Í..,(i, j)= ¡"o,[+{r - 1)f* P(i, j,k)
k=l

I "^"(i, i )= o"-' [-Â-GD- i' \ J...Q,J) )

(3 2)

(3 3)

whe¡e k is the frame number, å is the harmonic number, z is the number of frames

comprising one cycle, and P is the pixel grayscale value at coordinates (ij) n frame k.

The fi¡st harmonic phase image is found by setting å = 1 in the above and:

(3 4)

The choice ofz in the Fourie¡ series expansions above is taken to be less than the

total number of frames available. A typical rAC does not necessarily end at the same

graylevel at which it began because normal fluctuations in the R-R interval (that is, time

between measured R-wave pulses in the cardiac cycle) result in the later frames including

counts from fewer heartbeats than the earlier frames.

Two difficuities arise when using the phase image quantitatively, In a healthy

subject, the atrial contraction occurs at the beginning ofthe cardiac cycle, followed by

the contraction of the ventricles approximately 180' later. The no¡malized grayscale



values for these events in the phase image are 0 and 128 respectively. Due to the

inconsistency of the time lenglh ofheart cycles during an image acquisition, the timing

ofthe atr.ial and ventricle contractions as observed in each pixel's TAC will be the

resultant average over a large number of heart beats. Secondly, the phase analysis ofthe

cardiac cycle intrinsically defines a sharp beginning and end point at 0o and 360o

respectively. Since the calculated first harmonic phase values (ranging between 0' and

360") are normalized to completely frll a 256 grayscale spectrum, the values of 0' and

360'which essentially represent the same phase value, are represented by maximally

different grayscale values.

To reduce the effects of this 'wrap around' problem on the initial clustering a

'decay' process is applied to the phase image, named because ofthe effect it has on

certain pixels in the phase image. This process involves changing pixel grayscale values

lying 30o above fhe 245-255 range to a value of255. However, the pixel is only changed

if it is already touching a pixel of value 255 or 0, so the decay of isolated random noise is

minimized. The procedure is applied iteratively on the original phase image. It was

found that ten passes lryere sufficient to reach an equilibrium state. To summarize, this

decay process results in low grayscale pixels, which are in contact with maximum

intensity pixels, being redeflined as maximum intensity pixels. An original first harmonic

phase image and decayed phase image are displayed in Figure 3.3. These images

demonstrate that the decay process as described above accentuates the atrial chambers

and enhances the difference between the atria and ventricles along common edges.
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Figure 3.3: (a) Phase, and (b) decayed phase images.

3.1.2 Isolation Status

A method for estimating the noise of individual pixels as described by Itagaki

(1990) is applied to the phase image. This is a fast and simple technique for assessing

the similarity of a pixel to its surrounding neighbours. The eight pixels surounding the

pixel of interest are investigated. The number ofpixels which have an absolute grayscale

difference from the pixel of interest smaller than a preset limit ô is determined (this

numbe¡ is referred to as 1 from now on). 1 then varies between zero and eight, and is

te¡med the "isolation status" of the pixel of interest, A value of zero would indicate that

the pixel of interest is very different from all the surrounding pixels, since all were

outside the +ô range. A value of eight would indicate that the pixel of interest was quite

similar to all the surrounding pixels, with all lying inside the +ô range. For example,

examine the following pixel of interest with a normalized phase value of 145, and

surrounding neigbouring phase values of:



i- 1 i+ 1

i- I r52 162 t42
147 t45 I33

j+l 151 t39 134

If ô = 10, only 4 neighbouring pixels lie within the +ô range, so lwould be 4. Now if ô

= 15, then 7 neighbouring pixels would lie within the +ô range, yielding an I o1'7. It

should be noted that the value ofl is quite sensitive to choice ofô.

To view the isolation status image, l was normalized to fill the entire 0 - 255

grayscale spectrum. Regions of similarity in the phase image are shown as very bright in

the isolation image, while regions with a high amount of pixel to pixel variability are

dark. Hence, regions of similar phase, such as the ventricles or atria, are emphasized in

the isoiation image.

An attempt was made initially to chose ô as the standard deviation of the

grayscale phase values in a 3x3 matrix surounding the pixel of interest. This resulted in

an erosion of the edges of the ventricles region, due to the standard deviation ofedge

pixels being higher than that ofthe centre ofa region of similarity. Thus, the choice of

parameter ô is made through an optimization process described in detail in section 4. l.

A method of cleaning up the isolation image in areas ofnoisy data is applied.

This processing basically results in an almost binary representation of noise. That is, the

noisy pixel values are smeared and averaged, while regions of low noise are preserved.

This is not necessary to the functioning of the overall algorithm, but does simplify the

interpretation ofthe isolation component ofthe average cluster vectors.

Before being used as an input feature to the initial clustering, the isolation image

is slightly modified in the following manner. If an isolation image pixel grayscale value

lies below 160 (equivalent to an.¡ of 5), then it is replaced by the average ofthe



surrounding pixels. An example of the isolation image, as derived from the phase image

presented in Figure 3.3, and the processed isolation image are illustrated in Figure 3.4. It

may be observed that the processed isolation image displayed in Figure 3.4 has

essentially been smoothed, without losing any high grayscale (meaning non-noisy) pixel

data.

(a) (b)

Figure 3,4: (a) Isolation, and (b) processed isolation images.

3.1.3 FeatureNormalization

Images from different patients are usually not comparable due to interpatient

variability in the orientation and volume of the heart, even under similar acquisition

conditions, Acquired counts will vary between patients, despite the scaling of

administered dose to match patient weight. Counts per pixel per unit time are dependent

on the heart volume, concentration ofradioactive material used, and the background

radiation level. A normalization of features suppresses this interpatient variation

(Syrchra, 1989). The x- and y-coordinate data are normalized by dividing each by the
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median value. since each individual image frame is 60x58, the median values are 30 and

29 respectively. This ensures equal emphasis is placed on the ¡- and y-coordinate data,

even though the image frame is slightly elongated along the x-direction. The phase and

isolation data are also normalized through division by their median values.

3,1.4 Feature Weighting Factors

For the initial clustering, both the phase and isolation images are used as featu¡es,

as well as the x- and y-coordinate data for each pixel. By preweighting the features, thei¡

relative importance i¡ terms of discriminating classes may be established. Hence, more

weight can be given to those features which are more useful in distinguishing cfasses.

Previous experiments have indicated that features of high magnitude, yet possessing low

discriminatory power, will minimize the clustering criterion but give a misrecognition

[Boudraa, 1993]. A set of weighting factors is introduced to emphasize the more

powerfully discriminating features.

The weighting for the x- and y-coordinate data is restricted to be the same, This

is necessary si¡ce the inherent resolution ofthe gamma camera in both these directions is

the same. Since the isolation data is directly derived from the phase data (hence,

dependent variables), the weighting factors for the phase and isolation data are restricted

to be the same value. Therefore, onJy two weightings are needed: one for the phase and

isolation data, the other for the coordinate data. However, because these input

components are no¡malized by their median values (ie. the median value will be

represented by a 1.0 input), only one weighting need be used, and the other weighting

may be taken as 1.0. Hence the weighting is performed on the more important features,

the phase and isolation data, and the coordinate data is held after normalizaÍion at an

effective weighting of 1.0.



3.1.5 Ventricles Region Identification

3.1.5. 1 Use of Cluster Centre Data

The fìrst clustering application results in the division ofthe feature vectors into

five clusters. The number of clusters is an input parameter. Five clusters were chosen:

one to identify the atria, one to identify the ventricles, one to identify the resultant

movement ofthe great vessels (essentially a type of 'noise'), and two to identify noise in

the phase image. The reasoning for this is as follows. In the ideal phase image, the only

two distinct features which should exhibit the same phase are the atria and ventricles.

However, we may assume that these two features lie about 180o apart. Assuming the

most general case, on a frnite number line ranging from 0o to 360" insertion of two

features which are known to be separated will result in three inter-feature regions. One

region lies below the lower of the two known features, one region lies inbetween the two

known features, and one region lies above the higher of the two known features. For this

reason, the fuzzy clustering algorithm is set to identify 5 clusters using the phase data.

Granted, the atria contraction ideally should begin at 0o, thus restricting one ofthe two

known features to lie at one end ofthe degree number line, which could be described

adequately with 4 clusters. The use of 4 clusters was explo¡ed, but the impact on final

ejection fraction results compared to using 5 clusters was insignificant, hence the most

general case scenario was adopted. Figure 2.5 illustrates the resulting clusters afte¡ the

first clustering application, NotethatFigure3.5 (c) is the output of the fuzzy clustering

routine using the images in Figure 3,5 (a) and (b) as input. The clusters were randomly

assigned a grayscale value so as to maximize the contrast between the clusters. The

actual grayscale values of each cluster in Figure 3.5 (c) are meaningless to the algorithm

and chosen for visualization only.
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(c)

Figure 3,5: (a) Phase image, (b) isolation image, and (c) results of using (a) and (b)
together with x- and y-coordinate pixel data as input feature vectors to
the fuzzy clustering routine.

The cluster centre vector is utilized to assist in recognizing a particular cluster as

representing the ventricles. During any clustering application, fhe fuzzy clustering

sub¡outine keeps track of all cluster centres. Each cluster centre is defined as a vecto¡ in

the feah,¡re space, beginning at the origin and ending at the cluster centre coordinates,

which are simply each feature's average value in that particular cluster.
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The two features used to discriminate the ventricles cluster from the atria and

othe¡ clusters are the phase and isolation values. From the previous discussion ofthe

gating method, it is known that the fi¡st image frame is acquired when the left ventricle is

approximately at maximum volume and is about to begin contraction. Examination of a

typical ventricular volume versus ECG signal (Palmer,E.L., er. al, 1992) shows that the

ventricles will be at a volumetric minimum somewhere in the 100o to 210'range, as

demonstrated in Figure 3.6. The typical minima would occur at about 165' for a normal

heart. This range ofphase values is used to rule out clusters f¡om being ventricle

candidates, Any cluster centre whose phase centre coordinate does not lie within the

100o to 210o range (71 to i49 grayscale) is not considered further as a ventricles cluster

candidate. The remaining clusters which do satisfy this criterion are examined for their

isolation center coordinate. Of the remaining clusters, the one with the highest isolation

centre coo¡dinate is chosen as the ventricles cluster. This is the cluster whose average

isolation value is the highest, implying a high degree of similarity among its pixels. This

approach works very effectively, since only the atria and ventricles clusters will possess a

high isolation centre coordinate, and the atria will have been disposed of previously due

to the phase comparison. The average x- and y-coordinate values are not useful in

identifying the cluster representing the ventricles.
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Figure 3,6: Superposition of left ventricular volume-time curve and ECG signal for
a typical cardiac cycle (adapted from Palmer, etal., 1989).

3.5.1.2Defining a Clean Ventricle Cluster

The cluster identified as the ventricles is not a single, continuous shape, but is

generally comprised ofthe ventricles plus some background noise which has been

incorectly ciassiflred as belonging to this cluster. This background noise simply consists

ofpixels which happen to possess phase and isolation characteristics similar to the

ventr.icles due to random statistical fluctuation. Usually these pixels are separated in

Cartesian space from the true ventricles, as depicted in Figure 3,7 (a). A simple method

of eliminating these small isolated clumps of noise involves applying a growth

segmentation algorithm beginning atthe ventricles r- andy-coordinate centre point, A

growth segmentation algorithm is an image processing technique which, when given a

starting point, will expand a region surrounding this point based on some predefined



classifrcation criteria. This routine grows the given centre point of the ventricles cluster

(as identified by fhe fuzzy clustering algorithm in terms ofthe average x- and y-

coordinate ofthe cluster) outwards and the only restriction is that the region may not

grow into or across any zero pixel values. Since the only non-zero pixel values are those

belonging to the identifìed ventricles cluster, this growth segmentation algorithm

effectively eliminates any outlying clumps ofnoise from the main ventricles region.

Obviously it is essential that the initial coordinates fed into the growth algorithm do, in

fact, lie within the correct ventricles region of the cluster. Since the ventricles cluster

will contain relatively few noisy pixels, their contribution to the cluster centre

coo¡dinates will not be significant enough to pull the centre outside ofthe main ventricles

region. In the clinical images processed, no problems have been observed with this

assumption, nor with the growth segmentation algorithm. This is a simple and effective

method of removing incorectly identif¡ed noise pixels from the identified ventricles

cluster.

(b)(a)

Figure 3.7: These are binary spatial displays where gray represents an image pixel
within the identified ventricles cluster, and white represents image
pixels not classified within that cluster. Specifically, (a) Represents the
initially identified ventricles cluster, and (b) after application of region
growing algorithm to remove noise,



3, 1.5.3 Morphological Processing

Further processing of the ventricles cluster is performed by applying a closure to

the cluster. A closure is a morphological image processing technique which tends to

smooth sections ofthe boundary by fusing long thin gulfs, eliminating small holes, and

filling in boundary gaps (i.e. indentations). Since only the shape ofthe cluster is

modified here, the ventricles cluster is fìrst converted to a binary image (pixel values

only 0 or 255). This is accomplished by leaving all pixels with a value of 0, while

converting all non-zero pixel values to a value of 255. A closure is defined as a dilation

followed by an erosion process as described below (Pratt, 1991).

The dilation is accomplished by using a 3x3 square structuring element as a

convolution mask, This mask is passed over the image, and if any part of the mask

overlaps a nonzero pixel, then the image underneath the entire mask is set to 25 5, The

e¡osion is performed in the same manner, except that if any part of the mask overlaps a

zero valued pixel, then the image underneath the entire mask is set to 0. The slight

enlargement of the cluster area resulting from the dilation process is countered by the

shrirking effect ofthe e¡osion. In this way, the ventricles cluster boundary is smoothed,

and any interior regions which were not clearly identified as belonging to the cluster are

now included. As illustrated in Figure 3.8 the identified ventricles cluster, displayed as a

binary image, engulfs a pixel ofnoise at the top ofthe septum, as well as a thin extension

at the bottom on the left ventricle side (resulting from phase values similar to the left

ventricle pixels). The morphological processing applied removes the noise pixel,

solidifies the small branch, and generally smooths the contour edge. A smooth contour

edge is desirable because in reality the heart is composed of smooth edges.
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(b)(a)

Figure 3.8: (a) Identified ventricles cluster, and (b) same cluster after
morphological processing.

The final shape of the ventricles cluster is applied as a mask to all frames of the

image set. Any pixels which lie within this mask are passed on for further processing,

while those lying outside the mask are no longer used.



3.2 Left Ventricle Centre Detecfion

3.2.1 GeometricCentre Calculation

3.2,1.I Description of Method

The approximate geometric centre of the left ventricle is found by applying a

modification of a method presented by Reiber, et. al, 1983. The original method

developed by Reiber sums the grayscales of all the columns and rows in the flrst frame of

the study. These row and column signatures are then smoothed with a five point

averaging operation. A provisional centre is found by searching the row and column

sums at the right lower corner ofthe image for the first (for reasons described in the

following paragraph) local maximum values above precalculated row and coiumn

thresholds. These threshold values are defined through an empirically derived equation.

A 980% success rate of corectly identifying the approximate left ventricle centre was

attained by Reiber with this method. The remaining unsuccesful 2% identified points

outside the left ventricle.

The revised method employs the same basic technique, that of examining the row

and column signatures. However, this is done only after the ventricles cluster is applied

as amask to each ofthe i6 frames of the study. Each frame now contains only data

which conesponds to the ventricles mask. The rest of the grayscale data in each frame

are not processed any further. The column and row sums are found, and these are

divided by the number of pixels contributing to each sum. This normalization process

renders the individual column and row signatures independent of column or row length.

This step is unnecessary in the original method since the signatures are taken from a

square matrix, Use of the iregular shaped ventricles cluster as a mask makes the

normalization step essential to the successful performance of this routine. Only columns

or rows contai¡ing more than seven pixels are allowed to contribute to the signatures, so



as to remove those columns and rows which lie on the edge of the ventricles cluster. No

smoothing is performed on the column and row signatures. The column signature is

scanned from right to left, and the column coordinate of the first local maxima found is

defined as the x-coordinate of the initial LV centre. The first local maxima is used when

scanning the column signature because a normal heart should exhibit a lateral separation

of the left and right ventricles, with the septum in between, The row signature is

searched for the global maximum, which is defined as they-coordinate of the initial LV

centre. The global maximum is used here since the left and right ventricles should be at

approxìmately the same vertical height within the image, The approximate geometric

LV centre is found in every image frame.
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Figure 3.9: Demonstration of column/row signature method as adapted from
Reiber, ef,a/., 1983. Approximate geometric centre for this image is
identified as (40,35) and labeled as'A', The grayscale maximum of the
left ventricle (see section 3.2,2) is labeled as 'M'.

3.2.1 .2 Enhancing Robustness

The centre identification process as described above may be made much more

robust by imposing a few logical restrictions on the choice of the approximate geometric

centre. Furthermore, incorporation of the ventricles cluster centre information results in a

more powerful and flexible algorithm.

Firstly, in certain situations, such as when the top ofthe RV displays much higher

radioactivity than the LV, the geometric centre may be skewed erroneously upwards, due



to a shifting of the global maxima of the row signature, To correct for this and othe¡

similar situations where parts of the RV dominate the LV, a restriction is imposed on the

y-coordinate of the geometric centre, If this coordinate is identifred within three rows of

either the top or bottom ofthe cluster, then redefine it three units towards the ventricles

cluster centre /-coordinate. This is a somewhat arbitrary choice, but would actually be

used only in a worst-case scenario. The correction simply ensures the approximate LV

centre will lie between the mitral valve and apex. In conjunction with application of the

algorithm described in the next section (3.2.2), this simple correction is adequate to

handle the aforementioned situations.

Secondly, a major problem which can occur with this algorithm, is the lack of an

LV local maximum in the column signature. That is, there is no decrease observed in the

column signature due to the lower activity within the septum, as one moves from the LV

columns into the RV columns. This difficulty will result in failure using the original

method. By checking the first local maxima found in the right-to-left scan of the column

signature and comparing it to the ventricles cluster centre ¡-coordinate, images in which

this problem occurs may be identified. If the first local maxima is found to lie to the left

of the ventr.icles cluster centre, then this problem has occured. Once this situation is

recognized, the ventricies cluster centre coordinates are used to roughly estimate an y-

coordinate for the LV geometric centre. This r-coordinate is redefined as the coordinate

lying halfway between the ventricles cluster centre ¡-coordinate and the rightmost edge

of the ventricles cluster, within the row coinciding with the previously identified LV

geometric centre y-coordinate. This solution has been successful in all encountered

situations (1 image set to date) of a missing local coiumn signature LV maximum.
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3.2.2 Grayscale Local Maximum Detection

This algorithm uses the approximate LV geometric centre coordinates as

described in the previous section as the initial starting point. At this point, the grayscale

gradients between the pixel of interest and the surounding eight neighbours are

calculated (a positive value indicating a neighbour with a larger grayscale value). The

point possessing the highest gradient value is labeled as the new pixel of interest. The

gradient process is then repeated, and eventually the pixel of interest migrates to the

maximum grayscale pixel of the local maxima region encompassing the original starting

point.

In situations where there are more than one surounding gradient ofhighest value,

the algorithm chooses randomly between the alternatives. If the pixel of interest is found

to be at the same graylevel as one or mo¡e surrounding pixels, and if there are no pixels

bigher (eg. a case ofjoined multiple pixel grayscale maxima), than the pixel of inte¡est

simply slides randomly to one of these neighbouring pixels. The graylevels of the two

previously identified pixels of interest are stored. Ifthese two values match the current

graylevel, then the gradient searching is stopped. This signifies discovery of multiple

pixel grayscale maxima. Of course, if a unique maximum grayscale value is found, the

gradient search will also stop,

A 9x9 square matrix surrounding the pixel of interest is examined. Any pixel

possessing a grayscale in that matrix which is the same as the pixel of interest will be

identified as contributing to the LV grayscale maximum. The average of all of these

pixel's x- and y-coordinates will be the LV graylevel maximum centre coordinates.

However, if a higher grayscale value is found and lies within a four unit ¡adius ofthe

original identified centre, this new point is redefined as the maximum grayscale centre.

The maximum grayscale centre in relation to the approximate geometric LV centre of a

sample image fiame is illustrated in Figure 3.9.
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Only one problem has been encountered so far using this process. If the initial

geometric centre coordinates do not lie within the local region of the LV, then the LV

grayscale maximum centre pixel will be erroneously identified. The most probable

situation will be a migration towards the RV grayscale maximum. By comparing the

grayscale maximum pixel coordinates with the ventricles cluster centre coordinates, this

situation may be recognized if the x-coo¡dinate of the former is less than the x-coordinate

of the latter. Situations where this may occur are characterized by an initial y-coo¡dinate

being too low, resulting in a starting pixel of interest lying too high on the LV. Thus the

gradient may be slightly stronger towards the RV as compared to the LV, This type of

condition may be identified through comparison of the grayscale maximum x-coordinate

with the ventricles cluster centre x-coordinate. The situation may be corrected easily

enough by modifying the initial pixel of interest coordinates and repeating the maximum

grayscale pixel search. The modified initiat x-coordinate is dehned as the cluster centre

x-coordinate plus one third of the distance to the right side of the ventricles cluster. The

modified iritial y-coordinate is deflined as halfway between the previous initial pixel of

interest y-coordinate and the cluster centre y-coordinate.

Additionatly, fo¡ false early local maxima encountered in the column signature

scan (such as that demonstrated in Figure 3.9) the gradient search routine will still be

able to correctly identify the LV grayscale max. By applying this gradient search

routine, the initial guess ofLV geometric centre need only fall within the local region of

the LV. The maximum grayscale pixel of the LV is found in each frame of the study.
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3.3 Septum Identificafion

3,3.1 Introduction

The tissue wall separating the left ventricle from the right ventricle is known as

the intraventricular septum. This wall is approximately 1 cm thick and is divided into

two major zones. The outer two-thirds ¡elative to the LV is composed of compact

muscle, while the inner third is a trabeculated zone (ie. strands of connective support

tissue). In the radionuclide images, the septum is an area of low intensity since it does

not contain any continuous blood volume, but is perfused to some extent with blood due

to the active muscle tissue. This area of low intensity separates two areas ofhigh

intensity, the left and right ventricles. The septum is a major anatomical landmark

visible in all no¡mal LAO view gated blood pool cardiac studies. For this reason, a

straight-fon',/ard grayscale edge detection algorithm should be the simplest and most

reliable approach of identifying this feature. Three different algorithms for identifying

the septum were examined, all of which are based on simple edge detection methods.

For each method, the pixel identified as 'the septum' is not included as part ofthe

LV. It may be demonstrated that the inclusion of these'septum' pixels in the LV has

little effect on the final ejection fraction calculation. Applying the adopted septum

identiflrcation technique on a sample image set illustrates the magnitude ofthe effect.

The calculated EF without including the septum pixels is35.3%, and including the

septum pixels is 34.4%. The difference of 0.9% (in absolute EF units) is insignificant.



3.3,2 TechniquesExplored

3.3.2. 1 Fi¡st Derivative Method

This routine identifies the septum by examining the first derivative ofthe

grayscale data on rays traced radially outwards from the previously identiflred grayscale

maximum of the left ventricle. These radial rays are drawn at 10 degree intervals

between 180 and 360 degrees. The previously described (section 1.1.3.6) spatial and

temporal filtering reduces noise in the images. The derivative is calculated by

subtraction of grayscale values of successive points along the radial line. The derivative

will initially have a negative value as the grayscale drops off from the LV maximum, but

will rise again once the grayscale values begin increasing, for example when the ray

enters the RV. The pixel associated with the first minimum value of the derivative is

identified as the septal point for that particular ray. If the edge of the ventricles region is

encounte¡ed before a clear minimum is found (for example, at the top of the L$, then

the pixel iying just outside the ventricles region along the ray is defined as the septal

point for that ray. Once this process is repeated for all the rays, the identified septal

points arejoined by linear interpolation, The right ventricle is then stripped away from

the image- The ¡esults of this routine on a sample image set are contained in Figure 3.10.
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Figure 3.10: Results offirst derivative septum identification routine on a 16 frame
example image set,

3.3.2,2 Fi¡st Minimum Method

This procedure examines radial rays traced outwards from the identifred left

ventricle grayscale maximum, and defìnes the first grayscale minimum encountered as

the septal point for that ray. The radial rays are separated by 10 degree inc¡ements and



are spread out between 180 and 360 degrees relative to the LV grayscale maximum.

Consecutive pixels along the ray are examined, and the pixel which demonstrates an

increase in intensity relative to the previously examined pixel is identiflred as a septal

pixel, The application of this septum search method is illustrated in Figure 3,I 1,

In addition to the noise reduction achieved through the preprocessing, two

conditions are placed on the sea¡ch for the minimum in order to increase the robustness

ofthe algorithm. The first condition compares the grayscale value of the pixel of interest

with the grayscale maximum of the LV, and does not allow a pixel to be identifed as the

septum point if the difference is within +5 grayscale levels. This accounts for a possible

small error in identifying the LV grayscale maximum which is described as follows. If

the LV grayscale maximum is defined by averaging the r- and y-coordinates of multiple

maximum values (ie. in the event of a tie for highest grayscale), the deflrned point may in

fact lie between the multiple maxima and thus when radial rays are examine, a false

minimum is encountered when the radial ray passes over a true maximum. An example

of this scenario lies in Table 3.1 below.
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y-coordinate

28

29

30

31

iz

r-coordinate

JZ30 31 JJ 34

227 231 229 230 ))a

229 235 234 235 231

227 230 .L3.) 235 Lt I

225 228 230 229 228

220 224 226 223 220

Table 3.1: Sample grayscale values to illustrate a 'false' minimum situâtion.

As may be observed, there are three grayscale values tied for the maximum at235. By

taking the average ofthe x- and y-coordinates ofthese pixels, the LV centre would be

defined at (32,29), which has a grayscale value of 234. Thus, when a ray is traced

outwards f¡om the LV centre to the 'left' along row 29, the applied condition corrects the

algorithm from misidentifying the minimum as point (32, 29). The second condition

attempts to account for a slight increase in pixel intensity along a ray, en route to the real

septal minimum. This is simply a pixel with a high amount of noise. Occasionally, a

small increase of one grayscale level may be observed while tracing a ray towards a true

minimum. For example, the sequence of grayscale values along a single ray may look

like:

Pixel z 4 6 7 8 9 10

Grayscale 235 230 228 229 220 209 200 195 200 206



Obviously a clear minimum is located at position 8, but a false minimum at position 3

also exists (due to the slight increase in grayscale ofpixel 4). However, if the algorithm

is suspioious of any minima whose succeeding pixel grayscale value increases by only 3

units or less, these false minima may be identified. When a pixel is labeled as suspicious,

the next pixel in the ray is examined and compared with the previous pixel grayscale

value. If an increase over the previous value is found, then the minima being examined

will be corectly identified as the septal point, otherwise it will be passed over in search

of a more definite minimum.

When minima for all rays have been identified, linear interpolation is used to join

the points into a solid boundary. The right ventricle is then stripped off of the image.
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Figure 3.11: Results offirst minimum septum identification routine on a 16 frame
example image set.



3.3.2.3 Minimum lflorizontal Scan Method

This method combines the minimum method as described above wìth a horizontal

scanning process, Noise is smoothed by the preprocessing and ¡obustness routines

previously described (section 3.3.2.2). The routine utilizes the minimum method to

identify the top portion of the septum, between 270 and 360 degrees relative to the LV

centre. For the bottom portion of the septum, the image matrix is scanned horizontally

from right to left, by row. The starting x-coordinate for each rolv scan is the LV centre

x-coordinate. The starting y-coordinate is one below the LV centre y-coordinate. The

first minimum encountered along each row is identified as the septal point for that row.

Due to the anatomy of the heart, the shape of the normal patient's septum will exhibit

some curving in below the LV. This means that the points identified as minima in the

row scans will generally move closer and closer towards the LV centre x-coordinate, as

the rows farther towards the bottom of the heart are scanned. Once a ¡ow is reached

where the¡e is no clearly defined minimum (ie. a minimum identified at, or within 2

pixels of the LV centre x-coordinate), the horizontal scanning is stopped. Using the

identified septal point from the previous rolry scan as a starting point, an artificial septum

is traced out as a straight line at a20 degree angle to the vertical, and moving down and

to the right, Since the starting point of this line is the last clearly identified septal pixel,

the artificial line lies underneath the LV proper, and hence the ach:al angle of the

artificial line is not of critical importance. This artificially defined portion of the septum

will consist of only a few pixels. The septal points identified using the minimum method

arejoined by linear interpolation. The ¡est of the defined septal points are present for



each row, lhus linear interpolation is unnecessary. Finally, the right ventricle is stripped

from the image. Figure 3.12 displays the results of this routine on a sample image set.

The horizontal scanning approach is used on a portion ofthe septum which may

not exhibit a distinct circular shape around the identiflred LV grayscale maximum, and

therefore frrst minimum technique (as described in the previous section) would not

operate exactly as desired. For instance, the first minimum technique located minima in

the lower portions ofthe septum which did not satisfactorily correspond with manual

definitions.
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Figure 3.12: Results of minimum/horizontal scan septum identification routine on a
16 frame example image set,



3.3.3 Results

All three methods were employed on a set of ten sh:dies (each study from a

different patient). Figures 3.10,3.11, ar,d3.12 illustrate the three methods applied to the

same image set, It may be observed that the first derivative technique defines a very

'tight' LV boundary, that is, close to the LV centre. The first minimum method works

well for the septum region directly between the LV and RV and gives a relatively

'looser' fit compared to the first derivative, the boundary tends to become lax at the

bottom of the LV, possibly overlapping the RV in some instances (unwanted). The

mi¡imum/horizontal scan method results in a loose fitting contour at the top of the

septum, as well as a loose contour at the bottom ofthe LV, but not overlapping the RV

region. The loose fitting contour at the boüom of the LV generally allows for a better

LV contour fit, based on this visual examination and comparison to the contours defined

in the manual analysis, Therefore, the minimum/horizontal scan method has been

incorporated inTa the fuzzy clustering LV detection algorithm.
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3.4 Second Clustering

3,4.1 Features Used

The clustering algorithm is applied a second time on each of the 16 individual

image frames, as opposed to the first application which was applied only to the phase

image for ventricles identification. Only data from the remaining ventricles region,

following the removal of the right ventricle as described previously, is utilized in this

second clustering. The input vector for each pixel now consists of three features. The

prime component is the grayscale value ofthe pixel, while the second and third

components are the x- and y-coordinates of the pixel. If only grayscale data were used in

tåe clustering routine, the result would be a thresholded image. Utilization of the

geometric information induces a spherical shape (perfectly spherical never occurs, but

generally a slight ellipse is produced) on the clustered data, which corresponds to tÏe

expected profile shape of the LV in the LAO view.

The features a¡e normalized in a manner similar to that performed in the initial

clustering. The x- and y-coo¡dinate data, as well as the grayscale data, are normalized by

their median values. Weighting factors for the v- and y-coordinate data are ¡estricted to

be the same, and are chosen to be 1.0, for reasons described previously described in

section 3. 1 .4. The weighting for the grayscale data is found through an optimization

process, described in detail in section 4.1.
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3.4,2 LeftYentricle Region of Interest

The second clustering application results in the given image frame data being

grouped into two separate clusters, as demonstrated in Figure 3. I3. In the normal heart

image, one of these clusters corresponds well with the LV, while the other cluster forms

a na¡row band of pixel data surrounding the LV cluster in a crescent shape along the

right and lower edges (in the image). This crescent shaped area is assumed to be signal

originating from blood volume external to the heart. There also exists a small territory of

unclassifiable pixels which lie between the two identifted clusters. This thin region is

generally 1-2 pixels in width, where the membership function is considered to be

borderline between the two clusters. These pixels are not considered to be a part of

either identiflred cluster.

To distinguish which data cluster coresponds to the desired LV region of

iÍterest, the cluster centre vectors are examined. The discriminating feature is the

grayscale component of the cluster centres. The LV ROI's cluster centre will possess a

higher value for the grayscale component than the external cardiac region. Identification

of the LV ROI becomes a matter of choosing the cluster with the highest grayscale

component in the cluster centfe vectof.

The identiflred LV boundary may not be a smooth convex curve. A

morphological closing is performed on the LV ROI wtth a2x2 structuring element to

smooth the LV boundary, Essentially this processing removes contour protuberances

9'7



consisting of single pixels. In this fashion, a smooth LV ROI is defined in each image

frame, based on the results ofthe second application ofthe clustering algorithm.

Figure 3.13: (a) End-diastolic frame of example image set, (b) corresponding input
image for second clustering application, (c) resulting clusters, (d) end-
systolic frame of example image set, (e) corresponding input image for
second clustering application, and (f) resulting clusters,



3,4.3 Calculation of Ejection Fraction

After identifying a LV ROI in each image frame, the pixel grayscale values

within each ROI may be summed to yield a time activity curve. Multiplying the

background activity per pixel by the number of pixels populating each LV ROI produces

the appropriate background correction required for each point in the TAC. Subtracting

these corection values from the original TAC results in a background-corected TAC

from which the ejection fraction may be calculated.

A smooth curve is fitted to the TAC before the ejection fraction calculation

proceeds. This is done because statistical fluctuations limit the accuracy of quantities

derived directly from the cardiac TAC. This may not be obvious in this work, due to the

use of spatially and temporally smoothed data, but should definitely be a concern when

using unfiltered data sets. A common method of fitting the TAC is with a truncated

Fourie¡ series. Work by Bacharach et.al. (1983) and Mukai (1983) indicate that the

optimal number of Fourier harmonics to fit to the TAC is 2 (for low end-diastolic counts)

or 3 (for high end-diastolic counts). Recalling equation 3.1 and limiting the expansion to

3 harmonics:

rAC(k) = oo*f o,,.orf44(L: tl *r,l
r¡=r L r** I

(3 5)

[ 9,,n['"'to )1 ,nr,^]
where g, =r 'l "#+-!Y-l--l,phus"ualueof harmonic (3 6)

I rsinl znh(k -r) l.rn*orl"tfr L k".* I "l



(3'1)

o,=2yrod4!g)*6,].ruat¡,amplitudeorharmonicrerm (3 8)" uo=' L ¿.* "l

and å = harmonic number

fr: frame number

1,,,,u" = total number of frames.

Therefore the TAC curve for the LV is fitted by expansion of equation 3.5, with the

terms derived through equations 3.6-3.8 above. From this fitted TAC, the ejection

fraction may be calculated by equtaion 5.2. A comparison ofthe originat TAC to the

fitted TAC for a sample image set is given in Figure 3.14.

This method of smoothing the TAC by Fourier curve fitting is not performed by

the manual technique used at the Health Sciences Centre, The manual technique applies

a linear hterpolation routine behveen two TAC's (the manually drawn end-diastolic and

end-systolic ROI's each giving one TAC) to give a final estimate of the left ventricle

TAC. However, this procedure does not accomplish a curve fitting of the data. The

semi-automated technique does employ a Fourier curve frtting of the TAC, retaining the

first six harmonics with weightings of 1.0, 1.0, 1.0, 0.75, 0.50, and 0.25 respectively.

This is equivalent to a low pass filter.

4^ = =- t TAC(k) , zeroth amplitude termL,l
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(which has already been spâtially and temporally filtered).



3.5 Background Estimation

3.5.1 Introduction

The time activity curve of an LV is composed of two main components: i)

activity originating from within the LV volume, and 2) activity observed within the LV

region but actually originating exte¡nal to the LV volume. The second component is

known as background activity. The TAC of the LV must therefore be corrected for the

background before calculation ofthe ejection fraction.

Several factors contribute to the background activityr (a) vasculature lying in

front of and behind the LV will contribute to the counts observed in the LV, (b) scattered

photons originating externally to the LV may be observed to emanate from within the LV

region, and (c) there is also the concept of'virtual' background introduced by Green et.

al. (1978). This concept was developed to describe background sources which arise not

from radioactivity extemal to the LV, but which can be attributed to violations of the tr.vo

major assumptions of gated blood pool imaging as discussed on page 1. These are: 1)

the externally observed LV count rate is absolutely proportional to LV volume, and 2)

all cardiac cycles are mechanically identical. The first assumption is violated due to the

effects of attenuation ofthe signal originating in the LV, and the second is violated due

to natural variation ofthe cardiac cycle. Both ofthese violations result in a decrease in

measured EF, which is equivalent to an increase in the 'virtual' background activity.

t02



The background originating entirely outside the LV may, in principle, be

corrected for by subtracting a suitably estimated background from each pixel within all

LV regions-of-interest. The virtual background sources cannot be corrected for so easily,

but the magnitude of their effect is much less than the external background sources

(Green et, al., 1978).

3.5.2 Methods of Estimating Background Activity

Several techniques for estimating background activity have been proposed in the

literature. All ofthese techniques assume that the background activity is spatially

invariant (which is not true), due to the extreme difficulty in developing a spatially

variant model. A list of proposed techniques in the literature follows:

(u) 50% of the counts in the ventr.icular region of interest at end-systole (Slutsky, e/.a/.,
1980),

the counts in the systolic frame in the region lying between the end diastolic and
end systolic outlines (Slutsky et. al., 1980),

the average activity ofthe pixels along the inferior and left sides ofa rectangle
defined to encompass both ventricles (Merick, 1984),

a vertically oriented rectangle (3 pixels wide by 15 high) lying immediately
adjacent to the LV region of interest in the end systolic frame (Taylor et. al., 1980),

a crescent shaped region 3 pixels wide, lying 2 pixels outside the LV contour on the
end systolic frame, between 3 and 6 o'clock relative to the LV centre (Reiber et. al.
1e83),

selecting an 'optimal' background region from six automatically generated regions
in the directions of 1 through 6 o'clock with respect to the LV centre on the basis of
minimal variance in the background TAC and lowest mean activity level (Reiber,
1e85),

(b)

(c)

(d)

(e)
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(g) a manually defrned crescent shaped region 2-3 pixels wide in the end systolic
frame, generally chosen in a region of low activity 2 pixels outside the LV region of
interest (HSC technique).

3,5.3 Anatomical Landmarks in Background ROI's

With any background correction technique where a region of interest is defined,

care must be taken not to include anatomical features unrepresentative of the true

background. The descending aorta is generally visible in an LAO gated blood pool scan

as a narrow region of ilcreased activity lying to the right of the left ventricle, extending

vertically through the image. Often the spleen may demonstrate higher activity due to

blood flow to that organ which is located below and to the right of the left ventricle in

the image. The inferior ven a càva nrLy be visible as a narrow region of increased activity

extending below the right ventricle chamber to the bottom edge of the image. Due to

anatomical variation between patients, the position of this vein may lie underneath the

septal region, o¡ even tle left ventricle, Since this vessel is buried deeper than the

descending aorta, it is not as distinct a feature. A choice of background region which

includes any or a portion ofthese features which display increased activity will result in

an ove¡estimate of background. This will also cause the ejection fraction to be

overestimated.

An area of lower than 'true' background activity may occur in cases where the

patient is exhibiting stomach gas. The stomach is located slightly below and just to the

right of the left ventricle. Gas trapped in the top ofthe stomach may cause a region of
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decreased activity in the image due to the displacement of background blood containing

tissue by non-active gas. This is an uncommon situation. However if the defined

background region includes a portion ofthis feature, the background activity and

therefore the ejection fraction will be underestimated.

3.5.4 Automated Background ROI Selection

It was decided that the background estimation method employed should simulate

the manual technique used by the HSC, since the manual technique results would be

acting as the standard of comparison, The adopted algorithm traces rays at 5 degree

intervals from 0o to 225o with respect to the identiflred LV centre in the end-systole

image frame only (0' corresponds to 12 o'ciock position). The grayscale values of each

pixel are examined along every ray, and the minimum pixel lying outside the left

ventriole contour but within four pixels of this boundary is selected for further

processing. The minimum pixel as opposed to simply a set pixel number is used here to

ensure that the following region-growing algorithm is receiving at the very least a local

minimum. In this manner, 46 pixel coordinates are chosen (one for each ray traced) to be

passed to a region-growing routine, each pixel acting as a'seed' point, A region-

growing routine is an image processing technique which expands pixels or subregions

into larger regions. Each of the 46 'seed' points are used as inputto the algorithm and

from this 46 regions are grown. Growth of the regions occurs by appending to the seed

point those neighbour.ing pixels possessing similar properties. The property examined in
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this case is the grayscale value of the pixel. Neighbouring pixels are added to the region

if their grayscale is equal to or lower than the grayscale ofthe seed point. The algorithm

stops when the region size reaches 40 pixels. The region size is set as an input

parameter, and has been chosen to correspond approximately to the size of manually

chosen regions, If the region size fails to grow to 40, and there are no more

neighbouring pixels which are of equal or lower grayscale than the seed point, then this

limiting grayscale value is increased by one unit, and the growth initiated again. This

process is repeated until the region size equals or exceeds 40 pixels. The resulting region

is a local grayscale minimum adjacent to the given seed pixel. In order to simulate the

crescent shape ofthe manually chosen background regions, geometric boundary

restrictions were imposed during each application of the region-growing routine. These

limitations were defined in terms of radius from the left ventricle centre. The growing

regions were forced to lie between2 and 6 pixels outside the LV contour as measured

along the radial ray. These boundary conditions resulted in crescent shaped regions of

interest, as desired,

This processing results in 46 defrned background regions, one for each seed point.

For each region, the average activity per pixel is calculated by summing the grayscale

values and dividing by the number of pixels within the region. Neighbouring regions

exhibited significant overlap, and background activity calculated from neighbouring

regions is similar in magnitude. However, when viewed altogether, the regions varied

significantly depending on location (for example between 136 counts/pixel at 40' to 89



counts/pixel at 160). The region possessing the lowest average activity per pixel is

chosen as the estimate of the background activity (see Figure 3 , 15 below).

(a) (b)

Figure 3.15: (a) End-systolic frame, and (b) end-systolic frame with left ventricle
region of interest (LV ROI) and background region of interest (BG
ROI) defined.

This attempts to simulate the choice of a region of low activity in the HSC technique.

Due to the choice of the minimum activity per pixel, as well as the method by which the

bacþround regions are grown, it is feit that if the estimation differs from that of the HSC

technique, the difference will be an underestimation of the background. This is

advantageous when one considers the work of Grove, et.ql., 1986. They frnd, using ideal

geometrical models, that in situations where the background is overestimated, the error in

ejection fraction may be very large. However, when the background is underestimated,

the resulting error in ejection fraction is smaller (relative to an equal overestimation), as

illustrated in Figure 3.16. Thus, if the background estimate is not accurate, it is



preferable to make an underestimate since an error in that direction will have less impact

on the ejection fraction.

It is emphasized that this work is not advocating the use ofa zero background

correction, as suggested by others (Gandsman, 1982; Gandsman, 1990). The work by

Grove is interpreted here as merely suggesting that an underestimation ofbackground

will result in less error in the calculated EF than an overestimation. Idealizations in

Groves' work, such as a spherically shaped heart and correctly defined LV ROI's at both

ED and ES, make generalizations of absolute magnitudes (observed in Figure 3, I 6) to

clinical situations difficult.
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Figure 3.16: The effect of an error in background correction estimation on
calculated ejection fraction for four values of true ejection fraction
(EF = 20, 40,60, and 80%) with the true background defined as 0.50
of the maximum counts per pixel at end-diastole [adapted from Grove,
etol,,19861,
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The effect ofthe number of pixels defining the background region was explored

in a set of ten images, The number of pixels composing the background region was

increased from 10 to 80 in steps of 5, and the resulting ejection fraction examined, The

results are presented in Figure 3.17. It is shown that in all of the test cases, the larger the

background region, the higher the background activity estimate and therefore the higher

the ejection fraction. In most of the test cases, the ejection fraction is affected very little

by the size of the background region, demonstrating that the exact number of pixels

comprising the region is not crucial. The variation in the measured EF due to the choice

of the background region size is within +1.5%o as observed in the analysis of the ten

image test set i-n Figure 3. 17.
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Chapter Four: ANALYSIS

4.0 Introducfion

During the application of the fuz:zy clustering algorithm, many parameters must

be defined. These include the fuzzy exponent weighting values (see section 1,3.4) and

the input vector weighting factors (section 3. 1 .3 and section 3, I .4). In addition, the ô

factor in the isolation image calculation (section 3.1.2) and the decay value (section

3.1.1) must also be defined prior to calculation of the ejection fraction.

Ideally, these values should be set at the most stable operating points to reduce

the effects of these choices on the resulting EF value, An optimisation process for

identifying the most stable set ofoperating parameters for a test set of 10 studies is

described ir this chapter.

Self attenuation due to the blood volume itself is generally unaccounted fo¡ i¡ the

normal estimation of EF from gated blood pool images. The fact that the blood volume

is a distributed source which also acts as an attenuator results in a slight overestimation

ofEF unless a correction is made. A computer simulation has been created to estimate

the magnitude of this problem, and the results lead to a novel method of comecting an EF

estimate for self attenuation by the blood volume. This chapter also discusses the

computer simulation and results, in addition to the correction method devised.



4.1 Optimisation Process

4.1.1 Introduction

The fuzzy c-means algorithm as applied to left ventricle detection requires several

parameters to be specified during the course of execution (refer to sections 1.3,4, and

3.1-3.5). There appears to be no theoretical or computational evidence which

distinguishes optimal values of these parameters. The best strategy for selecting optimal

parameters seems to be based on an experimental approach (Bezdek, i984) This

consists of identifying the most stable operating point by examining output for a discrete

range of inputs for each parameter.

Many parameters have been defined throughout the algorithm developed in

Chapter Three. Some ofthese will have a greater effect than others, on the resulting EF.

The most important parameters in terms of effect on EF were selected for optimisation.

It is important to note that the optimisation process assumes these parameters are

independent, which may not necessarily be the case. The optimised parameters include:

1) decay parameter ofthe phase image

2) isolation parameter (ô)

3) fuzzy weighting exponent used for first clustering (n1)

4) feature weighting factor used on flrrst clustering input vectors (v,1)

5) fuzzy weighting exponent used for second clustering (22)

6) feature weighting factor used on second clustering input vectors (w2)



This section will discuss in further detail the method used to optimise these

parameters and the ¡esults of this optimisation process. A¡ estimate for the uncefainty

resulting from the use of a parameter set optimised for several images as opposed to a

parameter set optimised to a single image will be desc¡ibed in section 5.1.

4.1.2 OptimisationMethod

The choice ofa global set of optimised parameters has been performed in a two

step process. Given a test group of 10 normal heart studies, each image set was initially

analysed to achieve stable parameters for that particular study. The ten sets of

individually optimised parameters we¡e tåen analysed to yield a single, global set of

parameters optimised fo¡ all 10 studies. Thus, the optimisation process functions to

identify stable operating points, which may not necessarily be the most correct ones in

terms of output EF. Optimisation to achieve stability during operation is an attainable

goal whereas optimisation to achieve the coffect EF is virnrally impossible, since no

technique offering 100% accuracy curently exists.

An initial analysis during which the parameter values for all 10 shtdies were

investigated enabled the recognition of clinically useful ranges of the parameters

involved. By clinically useful, it is meant that the LV ROI identified via the algorithm

seems to coincide reasonably with the LV structure observed. Optimisation was then

concentrated within a liberal estimate of range values. The parameters were optimised
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one at a time, and in the same sequence they were input during the program execution.

Once identiflred, the value was fixed during optimisation of the subsequent variables,

Background correction was not employed during the entire optimisation process, since

only the relative stability of the resulting EF was examined, and not the absolute

magnitude. Exclusion of the background correction should increase the reliability ofthe

optimisation process, since it is not possible to optimise the background estimate in the

same sense as the previously mentioned parameters, This is because the background

activity is not determined through implementation of the fuzzy clustering algorithm,

while the optimised parameters are all involved in the direct execution of the fuzzy

ciustering algorithm. The subroutine determining the background activity estimate

merely utilizes the final clustering resuits ofthe LV contour definition in the end-systolic

frame (as described in section 3.5.4).

The parameter being optimised was stepped throughout the previously identiflred

useful clinical range in small increments, in order to identify local trends in the effect on

EF. At each step, the ej ection fraction was calculated via the fuzzy process. A graph of

EF as a function ofthe parameter value proved useful for determining the range ofvalues

over which the parameter exhibited stability. The range of stability was determined

visually from each graph ofEF versus parameter, and quantitatively consisted ofany

region which displayed less than a ITo variation in EF as compared to surounding

regions. To further ensure stability, the 'edge' points of each identified stable range were

not included in defining the stable range. Thus, the minimum stable region size consisted

ofthree adj acent points, of which only the centre point would be used in defining the
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region. A stable range was identified for every parameter described in section 4. 1. 1, and

for every image set, It was observed in several cases that a parameter could exhibit more

than just a single region of stability, so all regions were recorded. Figure 4. 1 displays the

variation of resulting EF as a function of the fuzzy weighting exponent used for the

second cluste¡ing application (n 2) on a test shldy. Note that three stable regions dehned

as above are evident from this graph, over the range examined. These regions would

include the values covering L65-I.80, 2.00-2.20, and2.35.

Figure 4,1: Variation of ejection fraction (uncorrected for background) with the
fuzzy rveighting exponent used for the second clustering application
(m) on a test study. Three regions ofstable operation are âpparent
from this graph: values of L65 - 1.80, 2.00 - 2,20, and 2.35 inclusive.
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The weighting factor effect on EF in both the first and second fuzzy cluster

applications results in a region ofhigh stability (essentially no variation in EF) when the

weighting factor reaches a certain magnitude. Once this plateau is reached, it signiflres

the weighted input parameter is dominant over the unweighted inputs. This does not

mean that the unweighted inputs are not affecting the output, The stability demonstrates

that the weighted parameter is the primary distinguishing feature in this range as

intuitively expected, and desired (recall section 3. I .3). An example of this type of stable

region for the grayscale weighting used in the second clustering application is given in

Figore 4.2.

Figure 4.2: Variation ofejection fraction (uncorrected for background) with the
grâyscale ì eighting factor used for the second clustering applicâtion
(1,2) on a test study. A single distinct region of stable operation is
appârent from this grâph: values of 2,0 and uprvârds.
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The second step of the optimisation process entailed analysing the parameter

ranges determined during the first step. The frequency of occurrence of each discrete

parameter point over a region of stability was registered for all 10 image sets. These data

could then be viewed in histogram format, for easy analysis (see Figure 4.3 for an

example of the first fuzzy weighting exponent, rn,). The frequency of stable occumences

versus ttre actual value of the parameter yielded a useful summary of data from which the

globally optimum parameter may be selected. The selection process consisted of

choosing the most frequently occuring stable value of each parameter. If two

neighbouring parameter points had equal frequencies ofoccurence, the average

parameter value would be designated as optimal. When two non-neighbouring parameter

points had equal frequencies ofoccurrence, the value with the higher nearest neighbour

stable frequencies was chosen as the optimal parameter. It should be noted that this

technique is based on a'modal' approach as opposed to an'average' approach, This

method was utilized because an average optimised value may not occur frequently in

individual image sets, and thus provide stable values for fewer image sets than a

parameter choice based on frequency of occurrence,



\.s 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3

Fuzzy Weighting Exponent Used
For First Clustering (2,)

Figure 4.3: Histogram of stable occurrences of the fuzzy weighting exponent used
for the first clustering (zr¡), as compiled for 10 image sets. The most
frequently occurring value is the 2.00-2.10 bin, thus 2,05 is taken as the
optimal value.

The histograms for each optimised parameter are presented in Appendix A, and

are discussed now. The decay parameter has a wide range of stable values, with an

average value over the four highest bins of 32.5. The raw data suggests that the decay



parameter value has little effect on EF, The isolation ô parameter demonstrats two

dominant bins, those of 3 0 and 3 5. The average of these two is taken as the optimal

value, at 3 2.5. The fuzzy weighting exponent for the first clustering, iø,, displays a

single dominant bin with a value of 2.05 (since the bin width is 2.0 - 2.1, the

representative value is 2.05). Examination of the phase and isolation weighting factor,

v,, reveals the minimum stable operating value to be 3.2. This histogram must be

interpreted carefully. It demonstrates that the output EF of six study sets a¡e stable for

values of2.1 and higher, seven study sets are stable for values of 2.3 and higher, eight

study sets a¡e stable fo¡ values of 2.5 and higher, nine study sets are stable for values of

3.0 and higher, and all ten study sets are stable for values of 3.2 and higher. Thus the

value of 3,2 is chosen to ensure a stable region over a// sample study sets. The fact that

3.2 is greater than the minimum value stable value necessary in nine of the study sets is

inconsequential, since the EF output does not fluctuate once the minimum plateau value

is reached (as demonstrated in Figure 4.2). However, an arbitrarily large value should

not be chosen since it would make the contribution from the unweighted inputs

negligible. A similar argument may be utilized for the grayscale weighting factor, u,r,

with the optimal value chosen as 3.2. The histogram describing the second fuzzy

weighting parameter, m2, possess a bimodal distribution. That is, there are two regions

of frequent stable occurences, one around I .6, and the other around 2. 1 . Due to the

greater magnitude of stable occurences, as well as the wider range of stability (higher

sur¡ounding bins), the 2.1 bin was selected. Thus, the global iz2 parameter rep¡esenting

all ten study sets tvas chosen to be 2, 15 (since the bin covers values 2. 10-2.20).



Therefore, through the above processing steps a set of globally optimised

parameters has been found. This set of parameters is representative of the t0 image sets

employed in the optimisation procedure, notjust a single image set. The globally

optimised set of parameters has been used to reanalyse each of the l0 image sets, as

described in 5. 1 . 1 . The results of the optimisation process are presented below in tabular

format:

Parameter Description Optimised Value
(for 10 image sets)

decay parameter 11

isolation parameter (ð) 35

luzzv wershtlns exoonent (m, ) 2.05
phase and isolation weighting factor (w1) J.Z
fuzzy weighting exponent (22) 2.15
gravscale weishtine factor (1r,) 3.2

Table 4,1: Results of parameter optimisation employing data collected from ten
studies.



4.2 Attenuafion Effects

4.2,1 Introduction

A basic assumption in radionuclide ventriculography is that the extemal count

¡ate observed in the LV by the gamma camera is absolutely proportional to the LV

volume. However, due to photon attenuation (and scatter) by the various tissues lying

inbetween the source activify and the gamma camera, this relationship is non-linear

(Dell'Italia, 1985; Links, 1982; Nickoloff, 1983; Rabinovitch, 1984). The LV blood

volume itseif also constitutes an attenuation and scattering medium. Hence, source

points lying further away from the camera will suffer more attenuation due to the larger

amount of intermediate material. Therefo¡e a gradient of detection sensitivity exists

along the line of sight of the gamma camera through the LV (Green er.al.,1978). This

impiies that the observed LV in gated blood pool scans is anteriorly weighted in the

camera viewing direction (ie. voxels closer to the camera contribute relatively more

signal than voxels further away). To illustrate the effect the attenuation will have on the

detected signal, consider two point sources of equal activity, one at the apex of the LV,

and the other in the back ofthe LV at the mitral valve, each point lying along the same

line of view with respect to the gamma camera. If average cardiac dimensions of 7.5 cm

long axis, 6.4 cm short axis for end-diastole and 5.5 cm long axis,3.4 cm short axis for

end-systole (Cardiac Imaging: a companion to Braunwald's Heart Disease, 1991) and an

attenuation coefficient equal to the broad beam value for 140.5 keV photons in water
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[0.12 cm-t] (Gandesman, 1990) are assumed, the point source at the heart apex will

register only -62 T:o of the counts emitted by this source if it were located at the skin

surface, The point source lying at the mitral valve would register about -30 %o of the

skin surface activity. This example illustrates that detection sensitivity may vary by a

factor of 2 from the 'fronf' to the 'back' of the LV.

Cardiac phantom studies were performed by Green et.al. (i978) for the purpose

of assessing the nonJinearity of the counts vs. volume relationship. It was suggested that

this relationship depended on viewing angle, absolute end-diastolic volume and EF, and

LV shape. Yeh (1981) investigated the attenuation effects within an ellipsoid model and

predicted a *4.5yo underestimate ofEF, Gandesman (i990) examined the effects of self-

attenuation of the blood volume on the calculated EF using spherical and cylindrical

models and calculated an apparent underestimation of EF by 2-5%. Although a minor

concern in healthy hearts, this effect could give rise to a chronic underestimation of the

true EF in dilated and failing ventricles (Green, 1978). These effects are further

investigated via computer simulation in this analysis as desc¡ibed in section 4.2.2below.

The work by Green also indicated that the loss of photons originally moving toward the

detector may be partially compensated by the detection ofphotons not initially moving

toward the detector but scattered by intervening material into the detector, Owing to this

effec! count-volume linearity may be improved in patients over ¡esults indicated by in-

air phantom studies.



4.2.2 Computer Simulation

In order to achieve a more accurate estimate ofthe effects ofphoton attenuation

upon EF, a computer model was developed. This simulation allows varying LV contours

to be examined, and varying gamma camera angles with respect to the LV long axis. An

LV contour shape is defined by an input file containing a set of discrete points

representing one-half of the LV contour along the long axis. The computer program then

generates the full LV shape by assuming rotational symmetry about the long axis ofthe

LV. Linear interpolation is used to fill in the boundary shape between defined contour

points. The coordinate system used is Cartesian, with the x-axis defined as the LV long

axis, they-axis defined as the LV short axis, and the z-axis defined to retain

orthogonality (see Figure 4.4). The gamma camera viewing angle and voxel size are set

as input values. The voxel size indicates the volume element size which will be

examined in the simulation; the smaller the voxel size, the more accurate the simulation

results at a cost of increased computing time. The gamma camera angle is converted to a

di¡ection vector with length 0. 1 mm.

Planar contours ofthe LV are generated by taking slices in the x-y plane at

increments along the z-axis defined by the voxel size. For each slice of LV data, a

rectangular region just encapsulating the LV contour is analysed. The x- and y-

coordinates are stepped through by increments of the voxel size. Each point is examined

to discover if it lies within the defined LV boundary in that plane, If the point is found to

be inside the LV, then the length from the point to the LV contour in the direction of the



gamma camera is calculated. This length is used to flrnd the attenuated signal reaching

the LV surface from the voxel being examined, For example, considering the attenuation

coefficient to be 0.12 cm'l as before, a 5 cm interval of tissue would cause a

[1-exp(0.12*5)] ¡v 4502 reduction of signal. All voxels in the rectangular region

encompassing the LV boundary are inspected. Therefore by summing only points lying

within the LV and multiplying by the voxel volume, an estimate of the true volume of

that LV contour may be achieved. Summing the attenuated signal from all those points

within the LV contour and multiplying by the voxel volume will yield an estimate of the

effective volume measured at the gamma camera resulting from attenuation of the

radioactivity originating in the LV. Figtre 4.4 portrays a schematic representation of this

computer model.



Lenslh ofbloodvolum€
âuenuÂtion for example voxel

iriiriÌiiliii

.r-coordinate

LEGEND:

Outside left venhicle conlour

lnside left vent¡icle contou¡

Direction of gamma camera face:

Figure 4.4: Illustration of computer simulation geometry for left ventricle cross
section through z = 0. User defined input parameters: voxel size =
2x2x2 mm3, angle of gamma camera line of sight to left ventricle long
axis = 30". The array of voxels is scanned by incrementing down they-
coordinate for an entire column, and repeating this columnar scan for
each x-coordinate value (moving in the negative x direction).

By using realistic LV dimensions for both end-diastole and end-systole (ealdlêç

Imaging: a companion to Braunwald's Heart Disease, 1991) in this computer simulation,

the true and apparènt LV volumes may be calculated for any orientation of gamma

camera angle. In this way, the effect on EF due to attenuation alone may be estimated.

Results ofthe computer simulation on a spherical test contour verify that the model

functions properly, through convergence to the true volume of 1 13.097 cm3, as

demonstrated in Figure 4.5. The slight underestimation (by 3.2%) is expected due to the
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linear interpolation between curved surface points resulting in a 'connect-the-dots' style

of contour lying within the true elliptical shape.
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Figure 4.5: Convergence of calculated volume ofcomputer simulation for an ideal
spherical input of radius 3.0 cm. Ideal geometric volume is 4zt (3,0)3/3 al

113.1 cm'. Computer simulation results in a catcutated volume
convering to 109,5 ".t. Th" slight underestimation (by 3,2o/') is

expected due to the linear interpolation between spherical surface
points resulting in a (connect-the-dots' style of contour lying within the
true spherical shape.



4,2,3 Estimate of Magnitude

To assess the magnitude ofthe self-attenuation by the blood volume, computer

simulation is utilized. End-diastolic and end-systolic contours with dimension and shape

based on standard textbook information (Car¿iac Imæing: a co

Heart Disease, 1991) are used in this simulation, with the long axis of the LV defined as

lying at 40" to the gamma camera face surface. Due to the larger volume of the LV at

end-diastole (compared with end-systole), the end-diastolic volume should result in a

greater attenuation of signal. Avoxelsizeof 0.09cmpersideis employed to yield the

following results:

As predicted, the magnitude of self-attenuation demonstrated by the end-diastolic model

is greater than the end-systolic model. In the end-diastole situation, 22,3%á of the

original signal produced in the LV has been attenuated by the LV blood volume itself,

while only 14.7Yo aftenuation occurs in the end-systole model. This results in a mild

underestimation in tle true EF of 2.6% for these chosen heart dimensions. This value

compares well to the results -4.50lo by Yeh (1981) and 2-5Yo by Gandesman (1990).

Note that this underestimate will increase for a dilated ventricle situation.

bnd-dlastollc
model

tlnd-systollc
model

Kesultlng þ¡
(%)

True Volume (cm') 112.66 30.51 72.9

-btf ective Attenuated Volume
(",n')

ót.Jz 26.01

t31



The magnitude of this effect is large, and \ryarrants correction, The following

section discusses a novel method for correcting a measured ejection fraction for the self-

attenuation due to the LV blood volume.

4.2.4 CorrectionMethod

Several methods have been proposed to correct for photon attenuation in

radionuclide ventriculography. These involve geometric modeling (Clements, I 98 1;

Dell'Italia, 1985), chest wall thickness estimates (Parrish, 1982), imaging of patient

blood samples (Links, 1982), simultaneous imaging of an added source (Kronenberg,

1985; Nickoloff, 1983; Rabinovitch, 1984), and measuring LV length through an

alternate modality such as 2D echocardiography (Thomsen, 1984).

A relatively simple method for corecting the EF for the self-attenuation of the

blood volume may be implemented with a minimal amount of manual intervention and

use of two look-up tables summarizing the results found by the computer simulation.

The look-up tables consist of a set of multiplicative co¡rection values for effective LV

lengths versus measured angles ofthe gamma camera (with respect to the LV long axis)

A table for each ofthe end-diastolic and end-systolic portions ofthe heart cycle may be

found in Appendix B. By estimating the long axis length of the LV at both end-diastole

and end-systoie, and assuming similar heart shape to that used in the computer model

(which was based on clinical data), multiplicative corection factors for the ED and ES
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volumes may be found, and together these may be interpreted as a single multiplicative

co¡¡ection factor for the EF.

The long axis lenglh estimates may be obtained from the gated sequence of

images collected in the anterior view, Recall this is one of the three standard views of

the heart acquired under the HSC equilibrium gated blood pool imaging protocol (refer

to Figure 1. 1). A simple manual measurement of the width (in x-dimension) and height

(iny-dimension) of the LV long axis may be performed directly from the image, These

values in pixel units may be converted to SI units with knowledge of the spatial

resolution of the image which may be procured from the ratio of (width of freld of

view):(number of pixels across image), Fo¡ the camera used to acquire all studies in this

analysis, the freld of view is 1 1 .0 inches (27 .9 cm) and the image width is 64x64 pixels.

Hence each pixel in the image represents a0.44xO.44 cm'area. The manual LV width

and height estimates must be modiflred as below, due to the geometry of the anterior

camera angle view with respect to the best septal view (see Figure 4.5 below),
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Measùred:

^x 
= 13 pixels

Ây = 16 pixels

Calculated:
L = 25.79 pixels = 11.26 cm

I = 50.1"

in Cartesian coordinates may be used

L=J@'f +( yf +( "f

Measùed:

^x 
= 10 pixels

ÂY = 13 Pixels

Cålculated:
L = 20.27 pixels = 8.85 cm
I = sl.7"

(a) (b)

Figure 4.5: Manual measurements of Âx and Ây parameters from the anterior view
study, with resulting câlculated values of left ventricle long axis length
(Z) and angle to the vertical (B) as found using equations 4.2 and 4,4,

(a) End-diastolic image frame, and (b) end-systolic image frame.

The values of the length of the LV long axis (Z) and the angle of this axis to the

vertical (p) are solved below, using Figure 4.6 to illustrate the geometry and parameters

involved. To determine the length of the LV long axis, the equation for length of a line

(4.1)



Since the angular relationship between the anterior view and the best septal view is

known to be 40o, then

Ax

tan(40")

So equation (4.1) becomes:

|----__
¿= J(^rç)'?(l+cor'?(40'))+(^/)' (42)

Now, the angle of the LV long axis to the vertical (p) may be found by rearranging

tan(B) = (4.3)

for B, as follows:

,(^x)
ß =tan-'l ----= - I Ø4)' \Ây sin(40")/

Hence, the manually measured values ofÂx and Ây as described above in Figure 4.5 are

utilized in equations (4.2) and (4.4) to generate the LV long ax.is length and angle to the

veriical.

@
(^v)



LEGEND:

I - longth ofLV long axjs in ânterior vier!
L - lengh ofLV long axis in best septÂl view
cr - angle ofLV Iong axis to venical, in anteriorvie\\
p - angle ofLV long axis to veritcåI, in best septâl vie$,

^x- 
¡'component ofLV long a.xis

Áy -y-component ofLV long a<is
Àz - z-component ofLV long a.xis

Figure 4.6: Illustration of the geometry and parâmeters involved when using the Åx
and 

^y 
manually determined parâmeters to calculate values for the

long axis length and the angle ofthe long axis to the vertical,

The values ofZ and p are then used to find a multiplicative correction factor in

the look-up table appropriate for heart shape (eg. end-diastolic or end-systolic table),

The values of I and p as measured in the end-diastolic image frame will yield a

correction factor of C¡¡, and similarly for the end-systolic image, a coffection factor C¿s.

The unco¡¡ected ejection fraction is found using,

, ESC
EF =1- -"" . (4.s)

EDC'

while the coffected ejection fracfion (EFg) is found as:



ff" =7-
ESC x C,,
EDC x C"o

(4 6)

Rearranging equation (4.5) and substituting into equation (4.6) yields an expression for a

corrected ejection fraction in terms ofknown values:

*"=r-r-*{?) (4.7)

The corection factors are the ratio ofthe true LV volume to the effective attenuated LV

volume, as calculated by computer simulation. Direct substitution of this definition into

equation 4.7 ¡esults in the correct expression for the true ejection fraction.

For the example image set given in Figure 4.5, tÏe Z and B values correspond to

correction factors C¡5 and C¿p of 7.2904 and 1.4913 respectively (using the appropriate

look-up tables in Appendix B). Using equation 4.7 for a measuredEF of 37.4%o (fuzzy

method), these values yield a corrected ejection fraction of 45.8o/o. Thus, assuming the

simulated heart shape is similar to the measured heart, self-attenuation due to the blood

volume in this test case results in an underestimate of EF of approximately 8.4%:" (in

absolute EF).

This underestimate is quite large compared with the underestimate of 2.6% using

textbook cardiac dimensions discussed previously. This is a consequence of the large

long axis dimensions (1 1.26 cm for ED, 8.85 cm for ES) estimated for the example

image relative to tle average axis dimensions (7.0 cm for ED, 5.5 cm for ES) used in the

ideal case. The difference may be attributed to the test case being a heart of signifrcantly

above average dimension, A more accurate estimate of the length dimension would be

achieved by an experienced technician.
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4.2,5 Effeú of Error in Long Axis Length Estimate

A simple eruor analysis is performed in this section. The error in Áx and Ây

estimates above is assumed to be equal in magnitude, ôp pixels, Thus we have from

equation (4.2):

(4 8)

Applying simple error propagation rules to this equation, we may solve fo¡ the error in Z

(named ôZ), in terms of õp, and after some math we achieve:

s, _ ôp(a'cot'1e0"¡+ay) _ ap(axcof(40')+ Ly""-.ÆffiF= L
(4 e)

The ideal estimate of ôp is +0.5 pixels, for the case when the shape of the LV is well

defined (that is, half of the smallest division). Unfortunately a clear boundary is not

available, hence the er¡o¡ estimate ôp must also incorporate the uncertainty in LV

boundary location (again assuming that this error will be the same in the x andy

directions). Taking a rough estimate of ôp including this LV boundary uncertainty to be

12.5 pixels, and using the values of Âx, Ây, and Z from Figure 4.6 (a), we may make an

estimate of õZ using equation (4.9):



(2.5lfl3cot'?l4o" ) + l6l
ô¿: ' '\ *-:- ' /= 3.34 pixels = 1.46 cm

25;79

Thus, using the measurements from Figure 4,6 (a), and assuming an error in Âx and Áy

of 12.5 pixels, an uncertainty of +1.5 cm in length (or 13%) results. The range ofZ for

this case becomes 9.8 cm - 12.'l cm. Consulting the ED correction look-up table in

Appendix B, we see that the range of C¡o values is 1.42 - 1.54 (or approximately

L49 + 0.06) Similar analysis of datainFigure4.ó (b) yields an estimated range of C¡5

values of 1.24-1.34 (or approximately 1.29 +0.05). Combining the two estimates of

error and applying simple eror analysis techniques to equation (4.7) yields:

'"4=[H.Y)Eu-*, (4. 10)

By using ôC^ = 6.¡t and ôC¿¡ = 0.06, the uncertainty in the co¡rected EF due to

uncertainty in the lengths of the two long axis estimates alone is 4.3%o (absolute EF

units). From this example it is concluded that the estimate of long axis length is critical

to the overall accuracy of this attenuation coffection method.
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Chapter Five: RESULTS

5.0 Introduction

When developing any new technique, the results must be objectively evaluated

This may be achieved in part through quantitative comparison with a previous technique

in which confidence is placed, the so called 'gold standard'. In this chapter, the fuzzy

clustering method of identifying the left ventricle and calculating ejection fraction is

compared to the manual technique used at the HSC,

In addition, the error in fhe fuzzy method due to the choice of a single set of

operating parameters over individually optimised parameter sets is estimated.

5.1 Comparison to Standard Technique

5.1.1 Fuzzy Versus Manual Method

The automated method of left ventricular detection and ejection fraction

calculation as described in Chapter Three of this thesis has been applied to a test set of 10

images. The test images we¡e chosen at random from the patient data base at HSC. The

only characteristic necessary for inclusion in the test group was that the phase image of

the heart be normal. That is, it was required that the phase images of the test group data

sets exhibit no regions of noticeable dyskinetic motion. With the first clustering



application using the phase image (first harmonic phase, r- and y-coordinates) and the

isolation image (a derivative of the phase image) as input, it is obvious that the results

will be significantly dependent upon the phase image. Since the aim of this thesis is to

develop an automated left ventricle detection method for normal hearts, the requirement

that the phase images be normal is a rational limitation when selecting test images. It is

anticipated that the algorithm as developed in this work would not function properly on

studies demonstrating abnormal phase images. However, the possibility does exist for

modification of this technique to analyse studies exhibiting abnormal phase images.

The group of ten test images were selected at random from the patient database at

HSC. All the studies within this group were performed between January 2 and January 9

of 1995. The phase image for each study \¡/as generated. If the phase image displayed

any significant deviations from the norm (compared to standard lite¡ature examples), it

was not included in the test group.

The group of test images has been analysed with the manual and semi-automatic

methods, as described in sections 1.2.3 and 1.2.4 respectively. The fully automated

fuzzy technique was applied to each image set, after an optimum set of operating

parameters had been derived (as discussed in section 4. 1). The results of all three

techniques on the test group are presented in Table 5. L
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Study
Number

Ejection Fractìon (%)

Manua sem l-
automatic

Fuzzy
automated

1

2

J

4
5

6

7
8

9

l0

47.2
54.6

52.6

35,9
62.7
3 8.3

41.4

57.3

53.4

64.8

41.4
s9.4
50.0
30.9
59.0
41.7
36.4
58.7
5 5.9
60.8

37.8
49.3

41.0
2J. I
52.0
32.4
32.0
54.2
50.6
47.2

Table 5.1: Results of three ejection fraction analysis techniques on a sample set of
10 test studies. Ejection fraetions are given in percentages.

The manual technique is used as the'gold standard'for comparison of the fuzzy

automated method. The cor¡elation coefficient for the manual and fvzzy ¡esults is found

to be 0.90, and the fuzzy technique underestimates the EF on all test images, by 7.75 %

(in units of absolute EF) on average as illustrated in Figure 5.1. The slope of the best fit

line is 0.97, close to a value of 1.0 which would be expected for a perfect corelation

between the two methods, and indicates an excellent correlation between the two

methods. The significant unde¡estimation is due to the fuzzy method identifying tighter

boundaries around the LV, as compared to the manual technique, and is further described

i¡ section 5. 1 .2.

The reasoning behind the liberal definition ofLV contours in the manual method

is explained with the help of Figure 2.1 (c) [page 54]: since an exact estimate of EF will



generally be impossible, less e¡ro¡ will be introduced by making an overestimation of the

LV contour rather than an underestimation. However, it should be noted that this

reasoning loses validity at higher true ejection fractions. This approach of identifying

'iooser' LV boundaries is taken due to the lack ofa more reliable method.

Figure 5,1: Comparison of manual and fuzzy techniques for calculating ejection
fractions for â test group of ten images.

Error bars placed on the data points in Figure 5.1 have a magnitude of+3% for

the manual technique and+1.8% for the fuzzy method. The exact nature of the

information contained in these eror bars is discussed in the remainder of this section.
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The uncertainty due to intra- and inter-observer variation using the manual

method has been previously reported by Kaul (1983) and Okada (1980) to range between

!3o/o and +6%o under normal clinical conditions. The most optimistic estimate resulting

from these studies is taken as +3Vo. Uncertainty due to choice of an optimal set of

operating parameters for the whole test group (as opposed to individually optimised

parameter sets) using the fuzzy technique is estimated al+l.8%o as calculated in section

5.3.

These estimates ignore other possible sources ofuncertainty (as discussed in

chapter 4) which may effect the EF evaluation. However, since all othe¡ sources will

influence results from both techniques in a similar manner, the only difference in the

uncertainty between the two methods are those uncertainties discussed above. The fuzzy

technique, being fully automated, will not suffer any intra- or inter-observer variation

while the manual technique does not require any optimisation of parameters used.

Hence, the fuzzy method as developed here seems to reduce the overall statistical

uncertahty in the EF estimation, as compared to the most conservative estimate of erfor

in the manual technique,

All computer code for the fuzzy clustering technique is w¡itten in I{P

FORTRAN-9000, Execution time takes approximately 150 seconds (it should be noted,

however, that this has not been streamlined for computational speed) on aIIP 715175

wo¡kstation.



5.1.2 Underestimation of Ejection Fraction

The average underestimation by 7 .7 5% of the fuzzy clustering EF results as

compared to the manual analysis is directly attributable to the relatively tight LV

boundaries identiflred by the fuzzy approach. By defining a wider or 'looser' boundary

around the LV especially in the ED f¡ame, the manual method therefore results in a

larger number of counts being attributed to the ED frame as compared to the fuzzy

clustering method, This difference causes the EF calculated via the manual technique to

be higher than when computed with the fuzzy technique. To verify that this reasoning is

coffect, the effects of loosening the identified (via the fuzzy method) LV boundary on a

single test study was analysed.

The LV boundary in the end-diastole frame was grown outwards by repeated

addition ofa single layer ofpixels along the 0o to 200" region ofthe boundary

(illustrated in Figure 5.2), so as to approach the manually defined boundary. The EF was

recalculated for each new end-diastole LV ROI, holding the end-systole LV ROI and

background estimate constant, and employing equation i.2. The LV boundary ofthe

end-systole frame was then expanded by a single pixel in a similar manner, and the EF

¡ecalculated for each ofthe increased end-diastole boundaries. The ¡esults are

summarized in Tables 5.2 and 5.3 . Ideally, it was expected that the EF would converge

as the boundary of the LV approaches the background activity level, While it was

expected that the end results will yield similar EF's, since the manual contours were used

as guides, the verification should be strengthened by examining the convergence to the
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manual EF. This tendency is observed to some extent, but the convergence is not as

rapid as expected due to the area of higher than background activity in the 0' to 60'

region of the LV boundary. This area is demonstrating activity which may originate

from the left atria, and hence will not fall away to background activity levels.

The data in Table 5.3 demonstrate that when holding the end-systolic LV ROI

constant, growth ofthe end-diastolic LV ROI leads to values in excess of the manual EF

estimate of 47.2Vo. If the end-systolic LV ROI is grown by one layer, then the growth of

the end-diastolic LV ROI more closely approaches the manual EF estimate. When the

end-systolic LV ROI is grown by two pixel layers, growth of the end-diastolic LV ROI

converges to a value much less than the manual EF estimate. This analysis indicates that

the underestimation of the EF estimate by the fuzzy technique results from the tightness

of LV ROI in the end-diastolic frame, as compared to that identified using the manual

method.
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Figure 5.2: The evolution of the LV ROI in the end-diastolic frame, for the
purposes of identifying the origin of the 7.75o/' on average
underestimation of EF by the fuzzy method as compâred to the
manual method, (a) The original end-diastolic image frame, (b) the
original fuzzy identified LV ROI, (c) +1 layer of pixels added to the
LV ROI, (d) +2 layer of pixels added to the LV ROI, (e) +3 layer of
pixels added to the LV ROI, and (f) +4 layer of pixels added to the LV
ROI.



Figure 5,3: The evolution of the LV ROI in the end-systolic frame, for the
purposes of identifying the origin ol the7,75Vo on average
underestimation of EF by the fuzzy method as compared to the
manual method. (a) The original end-systolic image frame, (b) the
original fuzzy identified LV ROI, (c) +1 layer of pixels added to the
LV ROI, (d) +2 layer of pixels ådded to the LV ROI.



Boundary
Grown

Number of Pixels
Added to LV

ROI

Average
Intensity of

Added Pixels

Average Added
Pixel Intensity
Corrected for
Background

lncrease in LV
ROI Counts

+l on ED
+2 on ED
+3 on ED
+4 on ED

24
25

24
21

60.83
44.32
22.61
ls.'11

70.90
54.39
32.68
25.78

1701.6
1359.',1

7 51.5

541.4

+1 on ES
+2 on ES

18

21

r44.61
t23.3ó

54.68
33.45

984.2
702.4

Table 5.2: Raw data obtained from adding on layers of single pixels to the LV
ROI boundaries in the region of 0o to 200", on both end'diastolic (ED)

and end-systolic (ES) frames.

Description of Added LV
ROI Boundaries

Resultant Ejection
Fraction

original ES, original ED
original ES, +1 ED
original ES, +2 ED
original ES, +3 ED
orieinal ES, +4 ED

3 5.3

42.7
47.5
49.9
51.4

+
+
+
+

ES, +1 ED
ES, +2 ED
ES, +3 ED
ES, +4 ED

36.1

41.5

44.2
45.8

+2 ES, +2 ED
+2 ES, +3 ED
+2 ES. +4 ED

37.1
40.1
41.8

Table 5.3: Resulting ejection fractions calculated using various combinations of
modified LV ROI's in both end-diastolic and end'systolic frames.



5.2 Comparison of Manual and Automated Background Selecfion

In this section, the background activity estimates made by the automated routine

(as described in section 3.5) are compared to those made during the manual analysis.

Unforn-rnately, the background activity estimated during the manual analysis is not saved

to disk, nor printed out on hardcopy. The only available relevant information is the

shape of the background ROI overlain on the end-systolic image frame, along with the

end-systolic LV ROI. This information was utilized by overlaying the background ROI

shape on the original image data. This was accomplished by digitizing the film image on

a Vision Ten Inc. film scanner and scaling the image size to match the original frame,

overlaying the background ROI shape on the original frame, then manually reading out

the background pixel grayscale information. This method was the best available to

recover the manual background activity estimates.

The automated background activity estimate compared well with the manual

background estimate, as summarized in Table 5.4. As expected, the automated method

rehrrns lowe¡ bacþround estimates than the manual, on average. However, this

underestimation is only -1,7 in units of number of grayscales of activity. It is important

to be able to assess the effect of this underestimation on the resultant EF. The magnitude

of effect is dependent upon the counts in the LV ROI in both ED and ES, as observed in

equation 1.2. Taking a hypothetical example, if one assumes EDC :20000, ESC :

12000, nB¡ = 120, n¡s = 80, and a BG of 100, then equation 1.2 yields an EF of 50.0%.

Aî unde¡estimation in BG by 5%0, takíngBG to a value of 95, will result in an EF of
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48.8%. Hence, for this hypothetical situation, an underestimation of BG by 5o% results in

an underestimation of EF by 1.zYo. Interestingly, an overestimation of BG by 5o% results

in an overestimation of EF by 1A% (similar to the observed effect in Figure 3 16). Only

two automated background estimates are outside of a+5yo range from the manual

method, Image set four was the most severely underestimated at -i1.3%, Image set

seven demonstrated an overestimate by the automated routine, this being attributable to

the relatively small size of BG ROI delineated by the manual method.

Table 5.4: Comparison of manual ând âutomated background activity estimates
for ten image sets,

A graphical comparison of the manual and automated background estimate

methods also verifies an excellent relationship.. Figure 5.4 demonstrates this, with a

linear best frt line possessing equation y = L01x - I .65, and a correlation coefficient of r

:0.93. The slope value is very close to the ideal identity of 1.0, while the intercept

Image Set

Number
Number of

Sampled Pixels
Manual BG

Estimate
(grayscales)

Automated IJU
Estimate

(grayscales)

Percentage
Difference

(%)

1

2

J

4
5

6

7

8

9

l0

16

16
lô

20
18

16

6

18

i8
18

91.8
705.7
95.5
110.6
81.8
88.8
129.2
113.3

52.1

100.8

89.8
102.2
99.2
98.1

85.3
87.6

13 8.3

108.6
50.9
99.7

-2.0
-5.5
+3.9
-1 1.3

+4.9
-1.4

+7.1

-4.2
-¿.5
-1,1

Is4



indicates an underestimation of L65 grayscales, on average, is to be expected. This

value may be slightly high due to the unusual circumstances of the +7 .1o/o overestimate

in image set seven as discussed above.

Therefore, the underestimation of background activity will result in only a minor

underestimation of EF, ontheorderof <1%. The more signifrcant underestimation

observed in image set four will result in a larger effect, compounded by the lower EF

magnitude. For this particular image set, the underestimation of background will be

more significantly responsible for the underestimation of fuzzy EF (23 .7%) vs manual

EF (35.9%), than in other image sets.

Figure 5.4: Automated versus manual background activity estimates' in units of
grayscales, for ten image sets.
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5.3 Estimated Uncertainty Due to Parameterization

The uncertainty due to selection ofa global set of optimal parameters to use for

all image sets is estimated. From previous analysis (see section 4.1), the stable operating

range of required input parameters has been established for each individual image set in

the test group. The scope of EF output for these stable operating ranges is found by

calculating the EF via the fuzzy clustering method for every discrete value within the

stable operating range, of all the optimised parameters. The maximum and minimum

values of the resulting list of ejection fractions define the size ofthe uncertainty range

(via subtraction of the minimum value from the maximum value) for that particular

image set. This processing has been performed on all image sets. Table 5.5 below

contains all the relevant data for this analysis.

lmage set
Number

uutput eJectron

fraction range using
stable parameters (o%)

Uncertainty in ejection
fraction (%)

1

z
J

4
5

6

7

8

9

t0

29.4 - 32.7
46.1 - 52.1

27.5 - 32.0
17.9 - 18.5

39.0 - 43 .4

24.0 - 26.5
22.7 - 27.9
51.5 - 54.2

35.6 - 39.6
35 8 - 37.8

J.J
6.0
4.5
0.6
4.4
2.5
5.2
t'7
4.0
3.0

Table 5.5: Range of ejection fraction values as evaluated over stable range of
operating parameters for each image set tested,
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The values in column three ofTable 5.5 above are averaged to yield a single uncertainty

estimate of +1.8%. This value represents the average uncertainty in the fuzzy technique

ejection fraction calculation due to selection ofa single set of parameters over

individually optimised sets.
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Chapter Six: SUMMARY

The primary objective of this thesis was to develop a fully automated computer

algorithm which would calculate ejection fraction from gated blood pool images ofthe

heart of a normal patient, A secondary goal of this thesis was to compile a

comprehensive index of sources of error or uncertainty which may affect the calculation

of ejection fraction using gated blood pool imaging. Furthermore, the error in ejection

fraction due to photon attenuation was explored in greater detail, and a novel and simple

cor¡ection method proposed.

A¡ automated left ventricle detection routine was developed. The use of edge

detection methods, curently the most popular automated approach to left ventricle

detection, was avoided in favor of a more adaptable type of algorithm, A method for

detecting the left ventricle based primarily on application of the fuzzy c-means clustering

algorithm was devised.

The technique developed in this thesis begins with a fuzzy clustering application

to phase info¡mation calculated from an entire LAO view image set, A subroutine which

identifies the septum based on simple edge detection techniques is applied. The second

application of the luzzy clustering algorithm on each processed image frame results in

delineation of the left ventricle in each image frame. By summing the counts in each

frame, a time activity curve (uncorrected for background counts) is produced for the

image set. An automated background estimation routine provides an estimate of

background activity which is applied to the uncorrected time activity curve in a spatially



uniform, time dependent manner. This corrected time activity curve is fitted using a

Fourier series expansion up to the second harmonic. The estimated ejection fraction is

calculated from this background corrected and Fourier fitted time activity curve.

The success of the fuzzy algorithm as developed in this work is primarily

dependant on the quality of the phase image. Regions of dyskinetic wall motion must be

absent from the phase image of the data sets to be analysed by the fuzzy technique. An

exciting possibility exists to modify this algorithm into one which will also be able to

analyse hearts which exhibit poor phase images,

Several parameters necessary to the functioning of the algorithm were optimised

to find a set of stable operating values which could be applied to the entire set of images,

and any new image set requiring analysis. The uncertainty in the ejection fraction as a

result of the selection of these parameters was evaluated as +1.8%.

Comparison of the fuzzy method to the manual method demonstrates a good

conelation (r = 0.90), but an underestimation of 'l.8Yo on average. This underestimation

is primarily a consequence of the manual method defining relatively loose contours,

especially in the end-diastolic image frame, thus emphasizing the diffe¡ence between

end-diastolic and end-systolic counts and increasing the resulting ejection fraction value.

The effects of photon attenuation in the blood volume were discussed. A

computer simulation gauging the magnitude of these effects was developed, Also, a

novel manual technique was advanced for correcting the ejection fraction estimate for

attenuation effects by using image data from the anterior view study combined with a

look-up table summarizing the computer simulation results.



An extensive inventory comprising sources of potential error or uncertainty was

compiled and discussed. Error/uncertainty was classified into three main categories:

physiological sources, acquisition procedure sources, and analysis sources. The effect of

er¡ors in the end-diastolic and end-systolic counts on ejection fraction were described.

The results of this work indicate that an automated method of calculating ejection

fraction based on fuzzy clustering shows great promise for use in the clinical evaluation

of normal patients, Furthermore, a simple method of correcting for photon attenuation in

the blood volume may be used to cor¡ect any ejection fraction estimate.



Glossary of Acronyms

BG - background

ED - end-diastolic

EDC - end-diastolic counts

EF - ejection fraction

ES - end-systolic

ESC - end-systolic counts

HSC - Health Sciences Centre, Winnipeg, Canada

LV - left ventricle

R-wave - strong cardiac electrical pulse signaling the onset of left ventricle contraction

ROI - region of interest

RV - right ventricie

TAC - time-activity curve



Appendix A: OPTIMISATION HISTOGRAMS
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Appendix B: CORRECTION FACTOR LOOK-UP TABLES
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I-,ook-up Table fo, nrrO-Syrtolic Correction Value (Crs)
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