A GRAPH BASED
HEURISTIC CHANNEL ROUTER

by

Cheung-Lai Tse

A thesis
presented to the University of Manitoba
in partial fulfiliment of the
requirements of the degree of
Master of Science
in
Electrical Engineering

Winnipeg, Manitoba, Canada
©® Cheung-Lai Tse, 1887

Permission has been granted
to the National Library of
Canada to microfilm this
thesis and to lend or sell
copies of the film.

The author (copyright owner)
has reserved other
publication rights, and
neither the thesis nor
extensive extracts from it
may be printed or otherwise
reproduced without his/her
written permission.

L'autorisation a é&té accordée
a la Bibliothégque nationale
du Canada de microfilmer
cette thése et de préter ou-
de vendre des exemplaires du
film.

L'auteur (titulaire du droit
d'auteur) se réserve les
autres droits de publication;
ni la thése ni de 1longs
extraits de celle-ci ne
doivent &tre imprimés ou
autrement reproduits sans son
autorisation écrite.

ISBN 0-315-37294-x

A GRAPH BASED HEURISTIC CHANNEL ROUTER

BY

CHEUNG-LAI TSE

A thesis submitted to the Faculty of Graduate Studies of
the University of Manitoba in partial fulfillment of the requirements

of the degree of

MASTER OF SCIENCE

© 1987

Permission has been granted to the LIBRARY OF THE UNIVER-

SITY OF MANITOBA to lend or sell copies of this thesis. to
the NATIONAL LIBRARY OF CANADA to microfilm this
thesis and to lend or sell copies of the film, and UNIVERSITY

MICROFILMS to publish an abstract of this thesis.

The author reserves other publication rights, and neither the
thesis nor extensive extracts from it may be printed or other-

wise reproduced without the author’s written permission.

ABSTRACT

The VLSI channel routing problem is addressed in this thesis. First,
major classes of routing algorithms, including maze-running, line-search, and
channel routing algorithms, as well as other routing approaches, including
hardware routers, expert routers, and the simulated annealing technique are
described. Then, the development and implementation of a graph-based
heuristic (non-exhaustive search) non-dogleg channel routing algorithm is
described. The algorithm is capable of generating optimal or near optimal
solutions for an important class of channels that arises frequently in gate
array, standard cell, and building block layout designs. The efficiency of the
algorithm has been demonstrated through twelve examples obtained from
published literature. The algorithm produces optimal non-dogleg solutions
for nine of the twelve examples using a single set of parameters. In
particular, Deutsch's Difficult Example was routed in 28 tracks, which only a

related router of Yoshimuro and Kuh was able to obtain.

in order to produce routing solutions at or near channel densities (the
least lower bound on channel heights), and to cope with channels with
vertical constraint loops, the non-dogleg algorithm was extended to allow
doglegging at terminal positions. The extended algorithm routed nine of the
twelve examples in density, and Deutsch's Difficult Example in 20 tracks,
which is the same as the best published result from channel routers of the
same nature (dogleg at terminal positions only). In addition, the extended
algorithm is able to handle a large class of channels with vertical constraint

loops.

ii

ACKNOWLEDGEMENTS

I wish to express my sincere thanks to my advisor, Dr. W. Kinsner, for
his excellent guidance, endurable motivation and consistent support
throughout the course of this research, and for his suggestion of this research

topic.

| would also like to thank all the students and staff in the Industrial
Applications of Microelectronics Centre, Inc., winnipeg, Manitoba, Canada, for
their support throughout my stay in the Centre. In particular, | would like to
thank Joe Silva and Scott Handford for their help in using the Optimate PCB
layout design package on the Apollo workstation. In addition, | would like to

thank Dr. W. L. Kocay for his comment on NP-completeness.

Finally, the partial financial support from the University of Manitoba
Graduate Fellowship, the National Sciences and Engineering Research Council
(NSERC) of Canada and Manitoba Strategic Research Contract through
Dr. W. Kinsner's grants, and the Industrial Applications of Microelectronics

Centre, Inc, is gratefully acknowledged.

iii

TABLE OF CONTENTS

Page

ABSTRACT i
ACKNOWLEDGEMENTS ii
TABLE OF CONTENTS iv
LIST OF FIGURES vil
LiST OF TABLES X
DEFINITION OF TERMS Xi
R INTRODUCTION 1
t.1 VLS Layout Design 2

1.2 VLS| Layout Strategies 4

1.3 Placement 8

1.4 Routing 10

1.5 Motivation 11

1.6 Thesis Objectives 13

1.7 Thesis Structure 14

il. VLS!I ROUTING ALGORITHMS 15
2.1 Maze-Running and Line-Search Routing Algorithms 15

2.1.1 Maze-Running Routing Algorithms , 16

Lee Algorithm 16

Extensions of the Lee Algorithm 23

Storage Reduction Techniques 23

Speed-Up Techniques 26

Multi-Terminal Net Extension 29

Multi-Layer Extension 31

Summary 31

2.1.2 Line-Search Routing Algorithms 33

Hightower Algorithm 34

Line-Expansion Algorithm 43

Summary - 47

iv

2.2 Channel Routing Algorithms

2.2.1 Loose Routing

Channel Definition

Channel Assignment
Routing Order Determination

Optimization

2.2.2 Detailed Routing

Regular Channel Routing Algorithms

Line Packing/Left Edge Algorithm

Net Merging Algorithm

Dogleg Channel Router

Greedy Channel Router

YACR-1I

Rectilinear Channel Routing Algorithms _
Switchbox Routing

Detour

General Rectilinear Channel Routing _
MIGHTY

223 Summary
23 Other VLSI Routing Approaches

2.3.1 Hardware Routers

2.3.2 Expert Routers

23.3 Simulated Annealing

2.2.4 Summary

A NON-DOGLEG CHANNEL ROUTER

3.1 Definitions

3.1.1 Non-Dogieg Channel Routing Problem

3.1.2 Dogleg

3.1.3 Net List Representation of a Channel Routing Problem

3.1.4 Vertical Constraint Graph

3.1.5 Horizontal Constraint Graph

3.1.6 Density, Ordering, and Channel Height Lower
3.2 A Graph Based Heuristic Channel Router

Bounds ___

3.2.1 Mother Net Selection

49
49
50
53
55
95
95
60
61
61
63
65
67
68
70
72
72
75
76
76
80
82
87

88
88
89
91
91
94
95
97
98
100

3.3
34

3.5
36
3.7

3.22 Ready Net Set Creation

3.2.3 Maximal Subset Selection

3.24 Track Assignment and Graph Update

Implementation

Efficiency of the Non-Dogleg Routing Algorithm ____
3.41 Example 1

messees pnressrectsarssers

3.42 Example 2
3.43 Execution Time Versus Channel Compiexity
Experimental Results

Discussions

Summary

iV. DOGLEG EXTENSION

41
42

43
44
45
46

47

Motivation and Tradeoffs of Introducing Doglegs
Dogleg Detailed Channel Routing Algorithm

42.1 Basic Dogleg Channel Routing Algorithm

422 Net Ordering

423 Net and Terminal Selection

4.2.4 Complete Dogleg Channel Routing Algorithm
Implementation

erenesesesrensesersrorssaseses

Efficiency of the Dogleg Routing Algorithm

Experimental Results
Vertical Constraint Loop Handling

46.1 Applicability of the Algorithm
Summary

V. CONCLUSIONS AND RECOMMENDATIONS

REFERENCES

APPENDIX A DOGLEG ROUTER PROGRAM STRUCTURE _

APPENDIX B DOGLEG CHANNEL ROUTER PROGRAM LISTING

Vi

ssesvennsssronesase

102
103
104
104
107
107
110
112
116
118
130

131
131
135
136
137
140
141
141
142
143
135
160
162

163

167

176

179

LIST OF FIGURES

Elgure

oy
.

O O© N O U M WN

N o et e et et @ wt et ek e
S © ® 4 o O KR W o =~ o

Lee algorithm routing example

Storage reduction techniques

Speed up techniques

Multi-terminal net routing example

Multi-layer extension

An illustration of definitions used in the Hightower algorithm _

Hightower algorithm routing example

An illustration of the escape processes

Two path refinement techniques

Expansion of a line in the upward direction

Line expansion algorithm

Examples of channe!l definitions

Channel ordering

An illustration of the channel routing model

Channel routing illustrations

Switchbox routing

General rectilinear channel routing

Channel Representations

Constraint graphs for the channel in Figure 14

Reduced vertical constraint graphs for Example 1

vii

17
25
28
30
32
35
36
38

45

51
54
57
58
69
73
92
9%

108

21.
22.
23.
24
25.
26.
27.
28.
29.
30.
31.
32.
33.
34
35.
36.
37.
38.
39.

41.
42.

Realization of Example 1

Representation and vertical constraint graph of Example 2 ___

Realization of Example 2

CPU time vs. channel complexity

Non-dogleg realization of Example 1

Non-dogleg realization of Example 2

Non-dogleg realization of Example 3

Non-dogleg realization of Example 4

Non-dogleg realization of Example S

Non-dogleg realization of Example 6

Non-dogleg realization of Example 7

Non-dogleg realization of Example 8

Non-dogleg realization of Example 9

Non-dogleg realization of Example 10

Non-dogleg realization of Example 11

Non-dogleg realization of Example 12

An example illustrating the advantages of doglegs

An example unroutable without dogleg

Dogleg realization of Example 1

Dogleg realization of Example 2

Dogleg realization of Example 3

Dogleg realization of Example 4

Dogleg realization of Example 5

viii

108
111
114
115
119
119
120
120
121
122
123
124
125
126
127
128
133
134
145
145
146
146
147

3 3 3 & & R

Dogleg realization of Example 6

Dogleg realization of Example 7

Dogleg realization of Example 8

Dogleg realization of Example 9

Dogleg realization of Example 10

Dogleg realization of Example 11

Dogleg realization of Example 12

Dogleg realization of Example 13

Dogleg realization of Example 14

A channel unroutable by the new dogleg channel router

An illustration of constraining and unconstraining terminals

ix

148
149
150
151
152
153
154
158
159
161
161

LIST OF TABLES

Routing of Example 2
Characteristics and resulting channel heights of the Examples

Comparison of net ordering schemes

Results of the new dogleg channel routing algorithm

Results of the new dogleg channel router with no density check .

13
117
139
144
157

Algorithm

DEFINITION OF TERMS

An algorithm is a finite sequence of instructions, each of
which has a clear meaning and can be performed with a

finite amount of effort in a finite length of time [AHO83].

branch-and-bound An implicit exhaustive search that

greedy

heuristic

Building Block

Channel

. density

eliminates sets of suboptimal solutions by estimated
optimality upper bounds.

A greedy algorithm attempts to obtain the optimal
solution by selecting at each step the option that is

locally optimal. The solution is not necessarily optimal.

A heuristic algorithm utilizes rules or experience from
similar types of problems to quickly produce good but not

necessarily optimal solutions.

With the building block design method, circuit modules
are grouped into blocks. Placement and routing are

performed in the block level only.
A routing area formed between circuit modules.

The maximum number of wire traces that crosses a
vertical track in a channel. This is the least lower bound

on the channel height.

Xi

ordering The maximum ordering number in vertical constraint

graph of the channel. This is a lower bound on the
channel height.

rectilinear A general rectilinear channel is a channel that has a

regular

switchbox

Circuit Layout

Doglegging

Expert System

Gate Array

rectilinear boundary (not necessarily rectangular) and

terminals located on any or all sides.

A regular channel is a channel that has a rectangular
boundary and terminals located on two opposite sides

only.

A switchbox is a special rectilinear channel that has a
rectanguliar boundary and terminals located on any or all

four sides.

A circult tayout is the physical representation of the

corresponding structural representation of a circuit.
Doglegging is the bending of an otherwise straight wire.

An expert system is a computer program that embodies
the expertise of one or more experts in some domain and
applies this knowledge to make useful inferences for the
user of the system [HAY83].

Gate arrays consist of a matrix of identical components
or functional elements (cells) that has passed through all
the steps in the fabrication process except the final

interconnection stage (metalization).

Xii

Graph

directed

A graph consists of a set of points called vertices, and
lines connecting the points, called edges.

A directed graph, 6=(V,E), consists of a set of vertices V
and a set of edges E, where the edges are ordered pairs of

vertices (v,w) or vow.

undirected An undirected graph, G=(V,E), consists of a set of

vertices V and a set of edges E, where the edges are

unordered pair of vertices.

Horizontal Constraint 6raph An undirected graph representing the

horizontal constraint relationships between the nets in a

channel.

Layout Compactor A layout compactor spaces the circuit elements and

MIMD

Net

interconnections to pack the circuit element as tightly
as possible without violating constraints defined by the

user and the design rules.

Multiple Instruction Multiple Data. A mode of parallel
processing where each node processor follows its own

instruction stream.

A net consists of a set of terminals and connections that
makes the terminals electrically common and isolated
from other nets or circuit modules. A net is realized as
a collection of wire segments connecting the set of
specified terminals in the layout design process through

Xiii

Net List

the routing process. Net = ({terminals, connections)
[KINB6a].

A net list is the list of all the nets and their associated

terminals in a circuit.

NP-Completeness A decision problem is a problem with a yes or no

answer. A polynomial (P) problem is a decision problem
for which there is an algorithm which will solve (i.e,
answer yes or no) any instance of the problem in a
polynomial number of steps. A certificate for a decision
problem whose answer is yes is a character string which
demonstrates the answer (e.g., for the problem: Is there a
routing with channel height < 20, a certificate could be
the actual routing). A non-deterministic polynomial (NP)
problem is a decision problem such that for every
instance of the problem whose answer is yes, there is a
certificate which can be verified in a polynomial number
of steps. Every P problem is also an NP problem. A
problem is NP-complete if it is an NP problem and all NP
problem is polynomial-time reducible to it. The
algorithm for an NP-complete problem is universal, in
that all other NP problems can be solved using such an
algorithm. An NP-complete problem is very hard and
probably has no polynomial time algorithm [SHI86,
PAP82].

Xiv

Overflow

Placement

An overflow is a connection that cannot be routed under

the given routing constraints (specification) [KIN86a].

Placement is the process of arranging all the components
within a two-dimensional area such that the placement
configuration will facilitate the routing process
[KINB6a.

Pseudo Language A pseudo language is a combination of the constructs of

Routing

detailed

loose

a programming language together with informal English
statements [AHO83].

Routing is the process of converting the set of intended
connections into physical wires within the routing region
using one or more routing layers, provided that physical

and electrical constraints are satisfied [KIN86a].

Detailed routing is the last step of the complete routing
process. It defines the exact geometry of the wires in

terms of layer, via, and track assignments.

Loose routing (or global routing) is the preliminary step
of the complete routing process. It calls for a routing
plan in which each net is assigned to particular routing
regions without specifying the exact geometry of the

interconnecting wires.

Routing Algorithm A routing algorithm is a method of tracing wires on a

routing medium according to the specified constraints
[KINB6a.

Xv

maze-running A class of sequential methods of tracing wires along

an expanding area, from the starting point to the end
point. A path between the two points can always be
found if such a path exists. The method was first
introduced by Lee.

line-search A class of sequential methods of tracing wires along

channel

Router

expert

grid

gridiess

straight lines until a blockage is encountered. The

method was originally developed by Hightower.

A class of sequential methods of tracing wires along
channels formed by modules or components. The first
phase of the channel routing algorithm is a global
assignment of nets to channels, followed by the second
phase of local assignment of nets to tracks within the
channels. The method was first introduced by Hashimoto

and Stevens.

A router is the software or hardware implementation of

a routing algorithm.

An expert router utilizes an expert system to perform

routing. See also Expert System.

A grid router performs routing on a grid. Wire segments

are constrained to lay only on the grid.

A gridiess router performs routing without the

constraint of a grid.

XVvi

hardware A hardware router implements a routing algorithm in

Routing Void

SIMD

hardware.

A routing void is the area in the routing region where

traces cannot be placed.

Single Instruction Multiple Data. A mode of paraliel
processing where instructions are broadcasted to all
node processors. Thus each node processor executes the

same instruction but operates on different local data.

Simulated Annealing A multivariate optimization technique analogous

Standard Cell

Terminal

Trace

to the cooling of a fluid into a low energy state.

The standard cell design method is based on a library of
predesigned functional cells, each of which has been
fully characterized in both electrical and performance

terms.
A terminal is the endpoint of a connection [KIN86a].

A trace is the physical representation of a connection
that makes different points in a circuit electrically
common. A trace can only be defined on a single layer.
To connect traces on different layers vias are required.

Traces and vias together constitute wires [KIN86a].

Vertical Constraint Graph A directed graph representing the vertical

constraint relationships between the nets in a channel.

XVii

Vertical Constraint Loop A directed cycle in the vertical constraint

Via

Wire

graph. A channel with vertical constraint loops is

unroutable without doglegs.

A via is a feed-through or a contact where wire
segments on different layers are connected together. it

contributes to the creation of wires.

A wire is the physical realization of a net which makes
different points in a circuit electrically common. A wire
includes at least one trace and two terminals. If the
traces are located on different layers, the wire also
includes at least one via. Wire = {terminals, traces, vias)
[KINB6al.

xXviii

CHAPTER |
INTRODUCTION

The design of electronic circuits can, in general, be considered as the
transformation of a behavioural description of the circuit concepts into a
physical description for implementation. For complex systems such as very
large scale integrated circuits (VLSI), the transformation process is achieved
by a hierarchical decomposition from behavioural descriptions to structural

descriptions, then to physical descriptions.

A behavioural description is the textual or mathematical description of
a system. It gives a precise definition of the system behaviour with no
concern in its actual implementation. For example, the addition of two
multi-digit binary numbers A and B could be described behaviourally as A+B.
However, how the operation is actually implemented, for example, whether
sequentially with a one bit adder or simultaneously with a multi-bit parallel
adder, is not described. It is the structural description that defines the
translation of the behavioural description into interconnecting functional
blocks in the form of, for example, data-flow diagrams and structural charts.
A more detailed structural description could include circuit schematics for
the hardware, and software description language specifications for the
software and firmware. With the higher level descriptions specified, the
physical representation of a system is the final stage of the design by which
structures are translated into physical layouts. Many different form of layout
styles are possible. Common methods include the use of standard components

mounted on printed circuit boards (PCBs) or surface mount boards (SMBs), and

semi-custom or full-custom integrated circuits fabricated on silicon dies.

Continuing advances in integrated circuit technology are driving circuit
densities to higher and higher levels. This ever increasing circuit complexity
has rendered the already tedious, error-prone, and time-consuming layout
process almost impossible to be handled manually. Compounding the problem
is the requirement of very high quality layouts that must consider complex
physical constraints such as ringings, crosstalks [WEX85, POL86], current
surges and heat dissipations [KINB6c]. One typical example of manual layout
design was the Z8000 microprocessor. In its design, very little computer
aids were used. As a result, SO% of the whole design effort, or 6600

man-hours, was devoted to the layout design phase alone [RIC80].

As the design gets more complex, the design effort and turnaround time
increase at a higher rate, particularly in the layout design phase.
Consequently, a large amount of effort has been devoted to providing
computer aids to the human designer with the layout design problem. Such
layout design aids fall into the general category of computer-aided design

(CAD) and computer-aided engineering (CAE) tools.

1.1 VLSI Layout Design
The design of VLSI circuits, being a branch of electronic circuit design,

involves the process of transforming a given circuit behaviour into a circuit
laid out on a silicon die. The first phase of this transformation, as with any
electronic designs, is the behavioural design phase. It converts circuit
concepts into formally defined behavioural descriptions. The second phase of

the transformation is the structural design phase in which a network of

interconnecting components or modules is designed realizing the specified
behaviour. The modules may be large functional blocks such as ALUs or PLAs,
logic gates such as NAND or NOR gates, or even isolated transistors or
resistors. The interconnections, on the other hand, are usually specified as
nets connecting terminals of the modules. Note that at this stage of the
design, modules and interconnections are still conceptual units. It is in the
final physical or layout design phase that the network of functional blocks is
mapped onto the surface of a silicon die giving the precise geometry and

position of its constituent modules and interconnecting wires.

The VLSI layout problem can be described as follows: A number of
circuit modules are to be arranged in a given area such that there are no
overlaps between the modules, and all interconnecting terminals are to be
connected by mutually noninterfering wires laid out in designated routing
regions. More precisely, the modules of a given circuit are to be placed
within a two dimensional region in such a way that each module takes on a
unique area in the region and the arrangement of the modules is such that it
facilitates the routing of interconnections. Furthermore, for a given
interconnection list (net list) and module placement configuration, all
electrical connections must be converted into physical connections within
designated routing regions satisfying design constraints including electrical
constrains such as maximum signal delays and design rule constraints such as

minimum feature clearances.

The layout design problem, like many design automation problems such
as logic synthesis, testing, and partitioning, is widely known to be
NP-complete [UED8B6, KINB7]. The optimal solution to this problem requires

running times that grows exponentially with the size of the problem. It is

highly unlikely that an efficient polynomial time algorithm exists [BRE76].
With circuit complexities pushing into upwards of a million transistors per
die, the layout design problem has grown beyond the capability of today's
computers. For example, just arranging the modules of a 20,000 gate circuit
using the commercial placement program COSMIC [SCH83] requires over 300
CPU hours [UED86], a time approaching the mean time to failure of many
complex computing systems. Even the recent increases in computing power
coupled with efficient and reliable software still cannot guarantee that the
densest VLSI circuits can be laid out completely in a reasonable time and
storage [LUD83].

1.2 VLSI Layout Strategies
Various simplification methods have been used to reduce the VLSI layout

problem into more manageable sub-problems. Traditionally, the method of
partitioning is used to simplify the problem by dividing the layout design
process into two separate steps, namely placement and routing. In the
placement step circuit modules are assigned to physical locations on the die.
Then, in the routing step nets are realized as wire traces connecting the
terminals. Both of these subproblems, though simpler, are still NP-complete
[SHIB6]. But the overall reduction in complexity is significant enough to

allowed many previously unmanageable designs to be tackled.

Partitioning of the layout design problem into two separate and
disjoint steps has, however, necessitated the use of iterative processes
involving repeated application of the placement and routing steps. The reason

for this cyclic phenomenon is the intrinsic mutual dependency of the

placement and routing processes. If a placement configuration does not allow
a reasonable level of routing completion, it would be necessary to repeat the
placement process and then re-do the routing based on the new placement
configuration. This cycle must be repeated until an acceptable layout is

generated.

So far, most computer-aided layout systems have taken this separate
placement and routing approach. However, as both steps are so critically
dependent on each other, there are problems with such an iterative method,

particularly as the scale of the design extends more into the VLS| area:

1. Placing the modules with no knowledge of how the routing process will
route the interconnecting wires makes the placement process
particularly difficult to generate the optimum placement configuration.

2. Dividing the layout process into two disjoint steps with no
communication between the placement and the routing processes
unnecessarily increases the number of iterations required. The
inability for the routing process to provide feedbacks to the placement
process in exactly why routing was failed in case of an incompletion
essentially makes the placement process a blind process. The
placement process does not know what is required by the routing
process. When routing fails, it simple generates another placement
configuration and hope that it will find an acceptable solution in a

reasonable number of trials.

in light of these problems, attempts have been made to combine the
placement and routing process [LO079, SOU79, BURBS, SZE86]. However the
research is still in its infancy and no significant results have been reported.

The attempts reported so far have been primarily concerned with highly

regular structures such as gate arrays, and the improvements in the layout

were too small to justify the enormous running time [SOU79].

In addition to the above method of partitioning the VLSI layout design
process into placement and routing, another approach is to begin with a rough
placement of the circuit modules and routing of the interconnections, and
then perform a layout compaction to optimize the layout. The initial rough
layout could be the result of a symbolic (stick) layout design [MEABO] to be
translated into final mask layout, or the result of a placement/routing
process requiring a further optimization. In any case, once the initial design
is completed, a compaction process is applied to optimize the design. In this
approach, the initial rough placement configuration represents only the
topological arrangement of the modules, that is, the relative positions of the
modules only. The actual physical placement of the modules are determined
by the compactor according to the process design rules and user defined
constraints such predefined module locations. In the compaction process, the
interconnecting wires are considered as stretchable. That is, without
changing the topology of the routing, the compactor is free to shrink or

stretch any wire [LIA83].

Most compactors use minimum area or maximum density as their main
goal. In other words, their goal is to achieve the minimum die size for a
circuit given the design rules, the components, the interconnections, and the
user defined constraints. Although minimum area may not be the only
requirement, it well reflects many others, for example minimum signal

delays and maximum yield.

The general layout compaction problem has also been proven to be

NP-complete [SAT83, TAY84] A mathematical representation of the layout
compaction process is: minimize the product, Area = Max(x)Max(y), where x
and y are horizontal and vertical dimensions of the die. This formulation
results in a quadratic problem that is very difficult to solve [GAR79]. In fact,
for all but very small cases, its solution is unreasonable on today's
computers. To make the problem manageable, the following assumption is
made: minimization of the layout is achieved when the layout in each
dimension is minimized. The implication here is that the original two-
dimensional compaction problem can be decomposed into two one-dimensional
problems, each of which can be solved independently using simpler
algorithms. The new formulation results in a linear problem that minimizes
the vertical or horizontal dimension subject to the given constraints. But,
because the layout design problem is two-dimensional, and because linear
compactors minimize each dimension separately, the order in which
compaction is performed, that is, a horizontal compaction first or a vertical

compaction first, becomes important [TAY84].

Encouraging results have been reported with the compaction approach
to layout design [OHTB6). However, this layout style is still relatively new
and no significant results have been reported. Therefore, not until better
compaction algorithms, particularly two-dimensional compaction algorithms,

are developed, this method remains primarily as a research.

In this thesis, the common approach of partitioning the layout design
problem into placement and routing will be used. In the next two sections, a

brief overview of the placement and routing process will be presented.

1.3 Placement

In general, VLSI placement is the process of arranging all circuit modules
within the die area such that the resulting placement configuration will
facilitate the routing process [KIN86a). Although the modules are placed on
the die according to a number of constraints such as heat dissipations and
signal crosstalks, the main objective of the placement process is to generate
a placement configuration that would allow 100% routing within the given
area [SOUB1). Other constraints represent merely secondary objectives that
impose additional requirements on how some modules must be placed. For
example, due to heat dissipation considerations some modules may have to be
placed in certain fixed positions, or in order to reduce signal crosstalks some
modules may have to be placed next to some specific modules. But the
ultimate objective is still to generate a 100% routable placement
configuration that satisfies those constraints. Such an objective is, however,
not mathematically well defined. It is very difficult to predict whether 100%

routing can be achieved without performing the actual routing.

To access the quality of a placement configuration, pre-routing
(post-placement) analysis schemes and routability indicators have been
reported in literature [S073, FOS75, HEL77, KON86, SAS86]. Although they
usually do not require as much running time as the actual routing process, a
comprehensive analysis still requires an appreciable amount of time.
Therefore, such analyses are normally used to access the quality of the final
placement configuration only and not the intermediate configurations. In
particular, it is commonly used to choose between alternative placement
configurations, or to identify congested areas so that they can be avoided

early in the routing process.

In order to guide the placement process towards a final solution, a
simplified objective function is used. The assumption is that if the
simplified objective function is improved, the routability is also improved.
Various simplified objective functions have been proposed. The three most
representative ones are the total routing length, the maximum cut line, and

the maximum density [GOT86).

Regardless of the specific objective function selected, most of the
placement algorithms can be classified as either constructive or iterative
[HAN72, S0UB1, GOT86). Constructive algorithms produce a solution using
heuristic rules, often in a sequential and deterministic manner [GOT86].
Iterative algorithms, on the other hand, produce a solution by successive
modification of the initial solution. In most CAD/CAE layout design systems,
algorithms from both of these classes are employed. Usually an initial
solution is obtained using a constructive algorithm and the solution is

improved gradually with an iterative algorithm.

For constructive placement algorithms the placement configuration is
formed by adjoining unplaced modules to the set of placed modules. One by
one, the unplaced modules are selected and positioned in the partially formed
placement configuration. Once a module is positioned, it will not be moved
again. An example of constructive placement is the clustering algorithm: for
each unplaced module a measure of the expected number of interconnections
to the placed modules is computed and the one with the largest value is

selected for placement.

lterative placement algorithms, on the other hand, improve upon a

placement configuration by applying small local changes. Typically a subset

of modules is selected and deterministically repositioned until the best
configuration is found. A widely known algorithm is the force directed
placement method, where the connections between modules are interpreted as
springs that stretched out due to displacements between the modules.. The
placement configuration is then pulled together by successively reducing the
forces of connections between modules using techniques such as a pair-wise

exchange of modules.

Using whichever technique, once the modules are placed, the next step
in the layout design process is to route the interconnections. In the next

section, a brief overview of the routing process will be presented.

1.4 Routing
Routing is the process of converting interconnections into wires within the

designated routing regions according to constraints such as maximum wire
lengths [KINB5). The interconnections of module terminals, usually specified
in the form of a net list, are made through one or more routing layers in the
designated routing regions. Generally, two routing layers are used with
vertical and horizontal traces on alternate layers. A physical wire changes
direction by means of a via at the intersection of a horizontal trace and a

vertical trace.

Many routing algorithms have been developed in the past three decades.
The first recognized algorithm was developed by Lee in 1961 [LEE61]. The Lee
algorithm is actually the shortest path algorithm by Moore [MO059] applied to
a grid structure representing the wiring space. Since Lee's original paper, a

large number of extensions and variations have been published. These

10

algorithms are often referred to as grid expansion or maze-running
algorithms due to their similarity to finding an entrance-to-exit path in a

grid-structured maze.

Even though maze-running algorithms were created before the
integrated circuits era and has been applied primarily to printed circuit board
design, it is still used in many current VLSI layout design systems. This is
due to the generality of the algorithm and the guarantee of f inding a path if
one exists. The main disadvantages of the Lee type maze-running algorithms
lie in their large demand on memory and running time, and their inherent
sequential nature of routing one net at a time. Such inherent negative
features of the maze-running algorithms have given rise to other classes of
routing algorithms. In the next chapter, a more detailed description of

maze-running, line-search, and channel routing algorithms will be presented.

1.5 HMotivation

The size of the resulting layout has always been a major concern in VLSI

design. Smaller layouts are less expensive and may exhibit better

performance. An over-sized die has several adverse effects on both the cost
and the performance of an integrated circuit:

1. A larger die with modules placed farther apart requires longer
interconnecting wires. As gate delays are becoming shorter, especially
in very high speed integrated (VHSI) circuits using such technologies as
emitter coupled logic (ECL) and Gallium Arsenide (GaAs), signal delays
due to excessively long interconnecting wires is becoming an

increasingly significant factor.

LR

2. With a larger die size the number of circuits that can be fabricated on a
wafer is reduced. Hence, the cost per die is increased.

3. As the number of functioning circuits per wafer decreases
exponentially as the die size increases [GOT86], a larger die size
implies a lower probability of a circuit functioning, a lower yield, and
hence a higher cost.

It is, therefore, obvious that the larger the die size the poorer the

performance and the higher the manufacturing cost.

In order to make efficient use of the available die area, modules of
active devices and interconnecting wires compete with each other for space
on the die surface. it has been observed that wiring can occupy more than
half of the die area. Moreover, dead space containing no usable devices or
wirings due to improper module placement and interconnection routing
represents a major waste of precious die area. Therefore, in order to
minimize the die size both the routing space and the dead space must be

minimized.

Currently available CAD/CAE tools for VLSI layout design tend to use
more die area than actually needed. In other words, they necessarily waste
die space. Automatic layouts still cannot compete with manual layouts as far
as the die size is concerned. This is because an experienced designer can
understand the given design and find a more compact layout using his
knowledge and intuitions. However, due to the extreme complexity of VLSI
designs and a world shortage of skilled designers, in order to complete a
design in a reasonable time and cost, CAD/CAE tools are indispensable despite
their present inadequacies. In fact, it is widely recognized that the greatest

impediment to the successful use of VLSI technology is the lack of adequate

12

CAD/CAE tools to support VLSI circuit design [LOS80].

In this thesis the VLSI routing problem, in particular, the channel
routing problem, will be addressed. The main reason why routing remains
such a difficult problem is its global nature: the way one interconnection is
routed influences the potential solution for other interconnections. Any
fragmentation of the routing task into smaller domains may affect this global
aspect and hence the quality of the routing results [LUD83]. However, the
probiem of routing is simply too complex to be considered globally without
subdividing it into smaller, more manageable, domains. As will be discussed
in the next chapter on routing algorithms, the method of channel routing

represents a simple yet effective approach to the VLSI routing problem.

1.6 Thesis Objectives
The objectives of this research work are:

1. To identify areas that can be improved in existing detailed routing
algorithms through a survey of published results.

2. To improve the existing channel routing algorithms through the
development of a detailed routing algorithm for regular channels in an
attempt to obtain optimum or near optimum results for at least one
class of channel routing problems.

3. To improve the detailed routing algorithm for regular channels by
extending it to allow doglegs and hence relaxing the restriction on one

horizontal track per net.

13

1.7 Thesis Structure

This thesis addresses the VLS| channel routing problem. The concept of
channel routing, although introduced over a decade ago, is still the most
popular routing strategy for LSI and VLSI layout designs. The next chapter
describes on the major classes of routing algorithms, including maze-running,
line-search, and channel routing algorithms, as well as other routing
approaches, including hardware routers, expert routers, and the simulated
annealing technique. It is then followed by Chapter il on the introduction of
a non-dogleg detailed routing algorithm for regular channels. In Chapter IV,
the extension of the non-dogleg algorithm to allow doglegs is described along
with the implementation and the experimental results. Finally, conclusions
for both the non-dogleg and the dogleg channel routing problems are drawn
and recommendations for further research are given in the last chapter of

this thesis.

14

CHAPTER 11
VLSI ROUTING ALGORITHMS

Since the first routing algorithm was introduced by Lee in 1961
[LEE61], numerous routing algorithms have been developed. Many of those
algorithms were very innovative and provided much understanding into the
complex problem of routing. It is essential that those developments be
understood before any fruitful research can be attempted. This chapter
describes the three most important classes of routing algorithms that formed
the basis of most computer-aided layout design systems today, namely,
maze-running, tine-search, and channel routing algorithms. In addition, other
routing approaches, inciuding hardware routers, expert routers and the

simulated annealing technique are described.

2.1 aze-Runnin ine-Search R lgor S

The maze-running and line-search algorithms are the most well known
routing algorithms. The maze-running algorithms find a path between two

| points on a grid similar to finding an entrance-to-exit route in a

grid-structured maze. The line-search algorithms, on the other hand, search

for a path as a sequence of line segments. In the following two sections

these two classes of algorithms will be described in detail.

15

2.1.1 Maze-Running Routing Algorithms

Maze-running or grid-expansion algorithms are grid based algorithms that
find a connecting path between two terminals of a net on the grid similar to
finding an entrance-to-exit path in a grid-structured maze. Algorithms in
this class assume the use of a uniform rectangular grid. The spacing between
the grid points is such that for wires less than a certain width routing on the
grid points will automatically provide the proper clearance between the
wires. Although the use of such a grid eliminates the possibility of curved or
diagonal traces typically seen in manual layouts, this loss of generality
substantially simplifies the routing problem, thus allowing more complex
problems to be tackled. This concept of grid based routing has in fact given
rise to the entire class of maze-running algorithms, and the use of CAD/CAE

systems in layout designs.

Lee Algorithm
The first maze-running algorithm that aimed at automated wire routing was

developed by Lee in 1961 [LEE61] and is commonly called the Lee algorithm. It
was originally developed for single layer routing on a planar rectangular grid.
The objective is to find the shortest path, if such a path exists, on the grid
connecting the two terminals of a net. Before a more precise definition of
the algorithm, it would be best to begin with a simple example illustrating

the algorithm.

Assume a small routing region as shown in Fig. 1a. For a better
illustration, the grid points are represented by rectangular cells. The

numbers inside the cells are labels used in the algorithm, and the blackened

16

(a)

TERMINAL oA 2

0BSTRUCTION 7 I I Y

CELL —

(b)

RETRACE PATH

S Yo

] -
(N
2
i

LABEL ———%¢

~J
—
N
W

: 14 e
g {10[11]12]13]14E <~

WD~ jon b |G |
DIV AN [WIN] =N jn

(c)

~./

(70 VL S e
FINAL PATH P75

Fig. 1. Lee algorithm routing example. (a) Routing grid;
(b) Cell expansion and retracing (note that B is labelled 14);

(c) Final path between terminals A and B.

17

cells represent obstructions, such as routing voids or traces of routed nets.

The cells labelled A and B are the two terminals of the net to be connected

using the Lee algorithm. The goal is to find the shortest path between the

two cells while avoiding the blackened obstruction cells.

The algorithm can be decomposed into two separate phases: the cell

expansion phase and the retracing phase.

1.

Cell Expansion (or wave propagation): The algorithm begins by selecting
one of the two terminals as the source cell and the other terminal as
the target cell. In theory, either terminal can be chosen as the source
terminal. In practice, however, one terminal may be more desirable
than the other, as will be seen later. Here, terminal A is selected as
the source and terminal B as the target. With the source and target
cells chosen, a label of 1 is entered into every empty cell immediately
adjacent to the source cell. Since no diagonal traces are allowed, the
adjacent cells are the north, west, south, and east cells. Next, a label
of 2 is entered into every empty cell immediately adjacent to the cells
labelled 1, and so on; increasing the label by one in every expansion
step. This process continues until either (i) there are no empty cells
adjacent to the labelled cells meaning that no path exists connecting
the cells A and B on the grid and the algorithm terminates, or (ii) the
target cell B is reached meaning that a path has been found and the

algorithm proceeds to the next retracing phase. The key purpose of this

‘cell expansion phase is in the labelling of the cells, where the numbers

represent the Manhattan distance of the cells from the source cell
This process can also be viewed as a breadth-first-search in graph

theory as the cells closer to the source cell are searched first.

18

2. Retracing: After the cell expansion phase, there exists at least one path
connecting the source cell and the target cell among the expanded cells,
However, the exact optimal path has not been determined. The main
purpose of this retracing phase is to trace out the exact optimal path
from the target cell back to the source cell. As shown in Fig. 1b the
target cell B has been reached in the 14th expansion step. It follows
that there must be a cell with a label of 13 adjacent to B. Similarly,
for a cell with a label of 13 there must be a cell with a label of 12
adjacent to it, and so on. Therefore, by tracing the labelled cells in
descending order from the target cell back to the source cell, the
desired shortest path can be identified. In the retracing process, there
are often more than one adjacent cell with the correct 1abel. In theory,
any one of those cells can be chosen and they will all yield paths having
the shortest length. In practice, however, the celis not leading to a
change in the path direction will normally be chosen to minimize the
number of corners in the wire. For example, in Fig. 1b, the cell 1abelled
9 on the retracing path has two adjacent cells labelled 8. In such a
case, the one to the left is chosen instead of the one above to avoid a
change in the path direction. Once a path is selected, all the cells along
the path are labelled as occupied and become obstructions for
subsequent interconnections while the rest of the expanded cells are
relabelled as empty and remain available for subsequent routing.

The result of these two steps are shown in Fig. 1c. The final optimal path is

indicated by shaded cells in the diagram.

From the above example, it can be seen that the Lee algorithm is fairly

simple. But the most important properties of the Lee algorithm are that: (i) it

19

guarantees to find a path if one exists, and (ii) it guarantees to find the
optimal path if more than one path exist. As in the above example, the final

path of length 14 is the shortest possible path connecting the cells A and B.

With the basic principles of the Lee algorithm illustrated in the above
example, a more precise definition of the algorithm in pseudo-codes would
help to clarify the details. First, a few definitions are required. Assume that
the routing area is divided into a finite number, N, of subareas called cells
labelled C;. The cells representing obstructions such as routing voids or
routed wires are labelled as occupied and are not available for routing. The
remaining cells are labelled as free and can be used to form a path. Moreover,
a cell C; has associated with it a cost, f(C,), and a path p consisting of the
starting cell 5 and a set of cells C,, C,, Cy, .., C, each adjacent to the

previous cell forming an (n+1)cell path of
p=1{s,C,C,0GCy, .., C}
has a path cost of, F(p), where
n
F(p) = X 1(C,).
1=
In the original Lee path finding algorithm, the cost of a cell is the
Manhattan distance between that cell and the source cell. However, path cost
function can be generalized to any monotonic function or set of monotonic
functions represented by a vector F = [Fy, F,, ..., F.l A path cost function is

monotonic if for every path p and any of its subpath p;, the following

inequality holds.

F(p;) < F(p)

20

With the above definitions in order, the Lee algorithm can be described
more precisely in pseudo-code. Instead of showing the exact algorithm as
presented by Lee, the algorithm is restated here to show just the essence of
the algorithm; in particular, the cell expansion and retracing phases. The

pseudo-codes used are similar to the Pascal language, and the syntax should

be self-explanatory.

[Lee (maze-running) Routing Algorithm]:

Lee(cell_map);
cell_map: an ordered /ist of cells
The list includes:
1) the location or obstruction cells,
2) the location of the source and larget cells;
J) the definition of cell neighbourhood;
) the path cost function

£ach ingiviaual cell is a structure which Includes:
1) a cell igentification frela: iq-
2)acell label rielad J/abel

The individual frelds are referenced as cell id and cell label
respectively.

(Variable Definitions)

source: the source cell;
target: the target celi;
cell: variable holding a celi;

path_cell: warvable holding a cell in the retrace phase,
neighbour: var/able holding a neighbour cell;

label: current label in the cell expansion phase,

found: boolean variable used to terminate cell expansion,

21

begin

linitialization/

label := source.label := 0;
found := false;

{lcell expansion/
while not found and number of empty cells in cell_map > 1 do
begin
for all empty cell in cell_map do
if cell.label = label then
for neighbour in the neighbourhood set of cell do
if neighbour.label = empty then
neighbour.label := label + 1;
else if neighbour.id = target.id then
{target cell is reached terminate cell expansion/
found := true;
label := label + 1;
end;

(retrace/
if found then
begin
path_cell := target;
repeat
output path_cell.id;
for neighbour in the neighbourhood set of path_cell do
if neighbour.label = path_cell.label - 1 then
path_cell = neighbour;
until path_cell.id = source.id
end
else
(all cells have been examined and no path is found)
output "no path is found.”
end.

22

From the above description of the algorithm it can be seen that the Lee
algorithm requires at least N2 memory for an NxN routing region, and O(N2)
running time in the worst case, or O(L?) for a path of length L in the cell
expansion phase and O(L) in the retracing phase. Obviously, for a large routing
region, the memory required to store the cell labels and the running time
required to find a path through the grid are the two major drawbacks of the
algorithm. In light of these storage and speed problems, a large number of
variations and extensions to the original Lee algorithm have been developed
[AKE67, GEY71, RUB74, HOE76, KOR82].

Extensions of the Lee Algorithm

There are a large number of variations on the original Lee algorithm. Among
the various extensions, several of the important ones are described in this
section and they are organized into storage reduction techniques, speed up

techniques, multi-terminal net extensions, and multi-layer extensions.

Storage Reduction Techniques

The huge storage requirement of the Lee algorithm represents a very serious
drawback, especially for large scale or dense layouts. For example, a double
layer 1000x1000grid would have two million cells. Wire lengths as long as
1000 could be expected in such a grid. Thus, during the cell expansions
process, labels as large as 1000 would be used requiring at least 10 bits of
storage per cell. If double-byte words are used, a total of over 3.8
mega-bytes must be allocated to store the grid. However, as can be seen from

the example in Fig. 1, the minimum amount of information that must be

23

present includes only (i) a means of distinguishing between occupied cells and
empty cells, and (ii) a means of distinguish between the predecessor cells
from the successor cells in the retracing process. Based on this observation,
a number of labelling scheme have been devised to encode the necessary

information using fewer number of bits per label.

1. Direction Labelling Scheme: At each cell expansion step the adjacent
cells are given direction labels of north, west, south, or east indicating
the directions of expansion as shown in Fig. 2a. If a cell can be reached
from more than one direction, one direction label is entered. Using the
four direction labels, together with the empty cell and the occupied
cell labels, there are a total of six distinct labels. Hence, three bits of
storage is required per cell. This labelling scheme, however, has one
drawback. Since only one of the cell expansion direction is entered,
only one path can be found even if more than one exist. Thus the choice
of selecting the path with fewer number of corners is sacrificed for
the reduced storage.

2. 1-2-3 Labelling Scheme: Instead of storing the directions of expansion,
a sequence of 1,2,3,1,2,3,... is used for labelling as shown in Fig. 2b. In
the retracing phase, the reverse sequence is traced. This labelling
scheme uses a total of five distinct labels, and thus still requires
three bits of storage per cell. However, this technique aliows multiple
paths to be identified and the one with fewest corners to be selected.

3. 1-1-2-2 Labelling Scheme: This labelling scheme is similar to the
1-2-3 labelling scheme, except that a 1,1,2,2,1,1,2,2,.. sequence is
used as shown in Fig. 2c. Note that in the example the target cell B is

reached with a 1 preceded by another 1. Therefore the retrace sequence

24

1

o~ Mmile—lo N — N~
DR RN ey DO B R
- wld RS wiled SOROEN
25 SIS = 3 / £ D o
” " N R |l N A
A A
- y o~ NN o~ oo~ B -
- 1 R 1 W N
N v
L N M| - —t - - g
w RN AN & RN SN S
- Ry, 1 o~ PR o o~ m — Reypwshwied — o~
& % o & " < &8 oS
% LRSI 2 RSN 2 o
- - 2 -l N o~ -
? /,w»
% /04.
1 1 1 T ™] - A w3 |~ o~ %/, -l o -—
ﬂﬂ.ﬂ o~ —lNl ™ Nmn N Lol Rl K3 | o™~
1) L) - - r) Njm) - - lov o - —ln] oy o~
J 4 - e - M-~ N o~ oy NN - o~
~~ o~ P
© fo) Q
S’ o’ e

Fig. 2. Storage reduction techniques. (a) Direction labelling;

(b) 1-2-3 1abelling; (c) 1-1-2-2 1abelling.

25

should be 1,1,2,2,1,1,.. The biggest advantage of this labelling scheme is that
only two labels are used in the sequence. Together with the occupied cell and
the empty cell labels, a total of four distinct labels are required. Hence, only
two bits of storage are required per cell instead of three as in the previous
two schemes [AKE67].

All of the above labelling schemes are designed to reduced the amount
of storage per cell. However, in practical routers, the selection of labelling
schemes must be made according to the tradeoff between storage and
efficiency [OHT86). For example, aithough the 1-1-2-2 scheme requires only
two bits per cell, the final label clearance process may be as involved as the
cell expansion phase. Thus, additional bits are often used to simplify the

processing.

Speed-Up Technigues

Several speed up techniques are also possible. Most of such techniques are
focused on the cell expansion phase. The objective is to reduce the number of
cells that must be examined to find a connection path. However, in some
speed up techniques such as double framing, the resulting path may not
always be the optimum. The use of such techniques would thus involve a
tradeoff between speed and optimality. The common approach is to find a
solution quickly with a speed up technique, and if the resulting solution is
unacceptable, the parameters are modified or a complete search is performed
again. One point should be noted here is that, while the speed up techniques
tend to reduce the average processing time, the worst case computational

complexity remains unchanged.

26

Starting Point Selection: For a given pair of terminals, it is more
desirable to start the cell expansion process from the terminal closer
to the boundary of the routing region since the number of cells that
need to be examined are fewer (Fig. 3a).

Double Fanout: Cell expansion is performed from both terminals
simultaneously until a point of contact is reached (Fig. 3b). This
technique reduces the number of cells that need to be examined but
requires a more complex scheme to keep track of the two simultaneous
cell expansion processes.

Framing: An artificial rectangular frame is imposed around the
terminal pair and no cell expansions are allowed outside this boundary
(Fig. 3c). Typically, the frame is about 10-20% larger than the
rectangle defined by the terminal pair and may be expanded or removed
if a path cannot be found within this frame. The reason behind this
technique is that, it has been observed that in most cases the shortest
path between two cells is within the rectangle defined by the
terminals. Therefore, by restricting the search area the probability of
finding a path is still high while a considerable speed up is possible. A
further extension to this framing technique is double framing, where a
second, smaller frame is imposed inside the rectangle defined by the
terminals to further reduce the search area. The use of this interior
frame may prevent the algorithm from finding the shortest path.
However, this technique is commonly used to quickly identify simple

paths.

27

/,////
Y A :

7
7

(a)

111111

74 / s / oy e
o .

- L
e T
e

Vo /l//’/ LA t,’[///r_. R %
B 79
. g

(c)

Fig. 3. Speed up techniques. (a) Starting point selection;

2

(b) Double fanout; (c) Single and double framing.

28

Multi-Terminal Net Extension

In the original Lee aigorithm, only the connection of two terminal nets are
considered. When a net with three or more terminals (multi-terminal net) is
to be routed, a direct application of the algorithm is not possible. One
solution to this problem is to begin by using one of the terminals as the
source and the rest of the terminals as the targets, and find a path between
the source and the first target reached. Once a path is found, all the cells in
the two terminal path become source cells and all the other terminals remain
as target cells, and the path finding process is repeated. Then all the celis in
the resulting three terminal path become source cells and the other terminals
remain as target cells, and so on, until all the terminals are connected.

Figure 4a shows the routing of a S-terminal net.

The interconnecting path obtained by this process is not always the
optimum. In fact, this multi-terminal net routing problem is equivalent to
the Minimum Steiner Tree problem in graph theory, which is known to be an
NP-problem [GAR79]. The possibility of finding the optimal solution in
polynomial time is unlikely. There is, however, one simple technique that is
often able to improve the resulting path. The idea is to break the resulting
multi-terminal path into two sub-paths. Then, one of the sub-paths can be
used as the source and the other as the target. If the resulting path is better
than the original path, the new path is kept and a better overall path is found.
Applying this technique to the example in Fig. 4a, a shorter path is found as
shown in Fig. 4b. This technique clearly requires longer running time, but it

does often allow better paths to be found.

29

(b)

Fig. 4 Multi-terminal net routing example.

B 14243¢8B
A D Al1]2 4 D
1]2]3
234
c 3lalc
E 4 E
%Y/ NBBE T
SONDE Aft 72340
1{2]2]2]3 11{;’%12345
23%34 21f?§§f;12345
3lajc|a 2{1fci1|2]3]als
4 E slafr|2]3]als]
7.8/ 7.8/
5k Z/; BERE D, A 7/}4 '.}'f,"
Vg |2]2]2]1 %%
21]|2]s]3]2] 7
2|1fcirf2]3]4a]3 13
312(1{2]3]4 E L E
(a)
B
AL i AD
7 7
% 7

(a) Multi-terminal routing using terminal A as the first source cell;

(b) A shorter path found by rerouting sub-paths.

30

Multi-l ayer Extension
One of the most important variations to the original Lee algorithm is the

extension to multi-layer regions with interconnecting vias. One way to model
the three dimensional routing problem on a grid is to consider a three
dimensional array of regular cubes as shown in Fig. 5a, where a double layer
case is illustrated. Note that the grid points are now represented by cubic
cells. As before, a pair of terminal cells are given, and the goal is to find the

shortest path connecting the terminal pair.

The three dimensional Lee algorithm is very similar to the two
dimensional case, except that the cells adjacent to a given cell now consist
of not only the four planar cells in the north, west, south and east positions,
but also the cells in the top and bottom positions. Using similar cell
expansion and retracing processes as in the two dimensional case would lead
to a path connecting the terminal pair with the minimum number of cells. It
is assumed that an inter-layer connection through a via has the same cost as

a unit length wire. The result of the example in Fig. 5a is shown in Fig. Sb.

summary
Maze-running algorithms are capable of finding the optimal path between two

terminals with respect to any monotonic cost functions, provided that such a
path exists. Numerous variations and extensions have been published to
enhance the original maze-running algorithm developed by Lee. Some of the
most important ones are the storage reduction techniques, the speed up
techniques, the multi-terminal net extension, and the multi-iayer extension.

But, even with these enhancements maze-running algorithms still require

31

(a)

A A4

Z
VAV EYAy4
A

(b)

Fig. 5. Multi-layer extension. (a) Double layer routing problem;

TOP
LAYER

BOTTOM
LAYER

TOP
LAYER

BOTTOM
LAYER

(b) Routing result.

32

R

Njiiajlnion|v|lo|lw

= NIV D

7
6
5
4
3

AN~ |0

10

N [N IO

—-M]NAU!O'\IO

substantial amount of storage and running time. To address these drawbacks,
the class of line-search algorithm have thus been developed. In the next

section, the line-search routing algorithms will be described.

2.1.2 Line-Search Routing Algorithms

The class of line-search routing algorithms was first proposed by Hightower

[HIG69] to reduce the storage requirement and to speed up the running time of

the maze-running algorithms. Basically, paths are found by constructing

sequences of connected line segments starting from the terminal points until
they intersect. There are three major differences between the line-search
algorithms and the maze-running algorithms.

1. The line-search algorithms also proceed to find a path by running on a
grid. But, unlike the maze-running algorithms in which a unit of
memory is allocated for each grid point, the routing space is considered
as a continuous plane and paths are represented by a set of line
segments. In this sense, the line-search algorithms can be viewed as
proceeding on an virtual grid.

2. The line-search algorithms process and store line segments rather than
cell maps. Thus, in most cases the amount of storage required, and the
running time is substantially reduced.

3. The line-search algorithms, although usually able to find a path, cannot
guarantee that a path be found even if one exists. Furthermore, the
optimality of the resulting path cannot be guaranteed. However, the
small storage requirement and the fast running time still make this

class of algorithms very attractive.

33

Hightower Algorithm

The most representative and best known line-search routing algorithm is due
to Hightower [HIG69]. In this section, the Hightower algorithm will be

described.

First a few definitions are required before the algorithm cannot be
explained.

1. A cover of a point p is a line segment a such that a perpendicular to a

passes through p.

2. A horizontal (vertical) cover of p is a cover in the horizontal (vertical)

direction such that no other covers of p exist between it and p.

3. A horizontal (vertical) escape line is a horizontal (vertical) line

segment through p bounded by the vertical (horizontal) covers of p.

4 An escape point e is a point on the horizontal (vertical) escape line of p
which is not covered by both horizontal (vertical) cover of p, or any
other horizontal (vertical) line segments between p and the cover.

S. The object point is the escape point currently being processed.

6. The target point is the point to be reached from the object point.

7. A unit is the minimum spacing between wires. It defines the grid
spacing.

An illustration of the above definitions is given in Fig. 6.

With the terms defined, consider now the example in Fig. 7. It is
required to connect the terminal points A and B in the given routing region
with blockage wires a, b, ¢, d and e. First the escape lines a, and a, are
constructed through the object point A (Fig. 7a). Notice that there are no
escape points along the horizontal escape line a, since the horizontal covers

of A are the top and bottom boundaries. Alonga,, on the other hand, the point

34

NSO oM W

b
a
c ;
K L7
- ® 4 s
€ €5 P: €4
g h seq

Covers of point p: b, ¢, d, h, i, g

Horizontal covers: c, h.
Verical covers: g, d.

Horizontal escape line o

f p: k.

Vertical escape line of p: m

Horizontal escape points: eg and eg, but not e,.

Vertical escape points: e,, e, and e 4, but not e5.

Fig. 6. An illustration of definitions used in the Hightower algorithm.

35

oy
8
d
%0 l,
]
ty
(a)
B‘. t 3.
| o,
)
(c)

(b)

(e)

(d)

Fig. 7. Hightower algorithm routing example.

(a-d) Escape processes; (e) Final route.

36

t,, which is one unit below the bottom end of blockage a is an escape point.
Turn now to the other terminal point B, and in a similar fashion the escape
point t5 is found (Fig. 7b). Next, returning to escape point t,, escape line a, is
constructed (Fig. 7c). There are, however, no escape points along a, since the
horizontal covers of t,are the top and bottom boundaries. Thus, returning to
t;, the escape line a; is constructed, and the escape point t, for ty with
respect to blockage d is identified. Continuing, the escape line a, is
constructed which intersects escape line @, at t5, and a path is found (Fig.
7d).

From the above example, it can be seen that the novel part of the
Hightower algorithm is in the path finding process; which invoives two
escape processes called the escape process | and the escape process Il. An
illustration of the escape process | is shown in Fig. 8a. This escape process
searches for escape points one unit away from the endpoints of the covers.
When more than one escape point is available, the process returns the first
one found. InFig. 8a, points e, and e, are valid escape points around blockage
a, and e5 and e,4 are valid escape points around blockage d. But, there are no

valid escape points around blockage b or c.

Figure 8b illustrates the escape process Il, which is used if escape
process | fails to find a valid escape point. In this case the procedure
searches points, each one unit apart along an escape line through p, starting
from a horizontal cover and moving towards p. Through each point an escape
line is constructed. Then an escape point is sought along the new escape line
using escape process |. If a valid escape point is found the process is
completed, otherwise another point is tried until p is reached, in which case

no escape from p is possible. In Fig. 8b, first the escape lines a, and a, are

37

%m
L
e
Q

(a)

e

(b)

Fig. 8. Anillustration of the escape processes.

(a) Escape process I; (b) Escape process |l

38

constructed, and no escape points can be found using escape process |. Then,
the escape line a, is constructed through ry and again no escape points can be
found. Finally, the escape line a is constructed through r, and the escape

point e is found.

The escape processes alternates between escaping from a point on a
path from A and escaping from a point on a path from B. If any escape lines
associated with a path from A intersects one associated with B, by tracing

backward from this point to the preceding points a path will be established.

Once a path is found refinement procedures can be invoked to improve
the shape of the path. One refinement is to delete all escape points not on the
corners of the path between A and B. This is necessary because the
algorithm, lacking knowledge of the overall problem, tends to generate more
escape points than are necessary for a path. Thus, the purpose of this
refinement process is to discard those points that are superfluous. After the
first refinement process, every point represents a corner in the path.
However, there may still be part of the path that is redundant. As an example,
consider Fig. 9a. The path shown is much longer than it need to be. A
perpendicular to segment (p,,p5) and segment (p,,ps), which are part of the
same path, would shorten the path. Figure 9b illustrates another example,
where by extending segment (ps,p,) to meet (p,,p,), py, Ps, and p, can be
replaced with the intersection of (ps,p4) and (p,,p,), and a shorter path would

result.

The following is the main procedures of the Hightower line-search

algorithm defined in pseudo-code.

39

ps & E D4 p5 i Pa
IDZ P, D I P, P,
Py Py
(a)
Ps P Pe Pe
@ ovammasarsavesrond) @ st
— —
p
L e] [A ——
P, P, P, P,

(b)

Fig. 9. Two path refinement techniques.

[Hightower (line-search) Routing Algorithm]:

Hightower,;
[Variable Definitions]
stacka: Slack of escape points associated with A,
stackb: stack of escape points associated with B;
object: object point,
target: larget point,
A_path: rlag controlling whether to search from A or from B,

intersect: intersection flag,

begin
finitialization/
push A into stacka;
push B into stackb;
A_path = true;
intersect := false;

(main procedure/
repeat
if no escape from A_path then
if no escape from not A_path then
return no path is found;
else
begin
A_path := not A_path;
continue;
end;
else
begin
if A_path then
object := pop stacka;
else
object := pop stackb;
target .= not A_path;

41

call escape processes;
end
until intersect;
call path determining process;
call refinement processes;
return path;
end. O

The memory requirement and time complexity of the Hightower
algorithm are unfortunately not described in the original paper [HIG69], and
the data structures are only ambiguously described. However, using a linked
list data structure, Ohtsuki [OHT86] has analysed the memory requirement and
the time complexity of the Hightower algorithm. In the linked list data
structure, escape lines and blockages are stored as series of horizontal and
vertical line segments. Each line segment is defined by a 3-tuple specifying
the x and y coordinates of its two endpoints. For example, a horizontal line
segment is represented by (x;,y;,x,) where (x;,y,) is the coordinate of the
leftmost point on the segment, and X, is the x-coordinate of the rightmost
point on the segment. With this data structure it is clear that the required
memory space is proportional to the number of the escape lines, n. For an NxN
unit square routing region, n could be as large as 0(n2), but usually n«NZ2.
Therefore, the line-search algorithms still compares favorably to

maze-running algorithms in terms of memory requirement.

In terms of time complexity, although the Hightower algorithm
generates only one escape line in each step of the line-searching process,
many other lines could be investigated in order to choose an escape line.
Therefore, it could require O(n2) time in the worst case. However, the
algorithm is usually able to find a path with L line segments in O(nL) time.
Thus, the Hightower algorithm runs in time proportional to the number of

42

corners in a path. If the routing region is not so congested, simple path with
small number of corners can usually be found making the line-search
algorithms faster compared to maze-running algorithms. But, for
complicated mazes, the line-search algorithms do not improve speed so much

in contrast to its memory saving.

Line-Expansion Algorithm
Although the Hightower line-search algorithm has been used extensively,

especially for the routing of PCBs, no major improvements in the algorithm
had been made until Heyns et al. [HEYBO] combined the line-search algorithm
and the maze-running algorithm into a new algorithm [SOU8B1, OHT86]. The
Heyns routing algorithm expands from a line like the Hightower algorithm, but
it fills an area like the Lee algorithm. However, the expanded area is not kept
in memory; only its boundary segments are remembered as in the Hightower
algorithm. The characteristics of the resulting path are similar to the
Hightower algorithm and, in most cases, have the minimum number of corners.
This algorithm has several advantages over the original line-search and
maze-running algorithms: (i) it finds a path, whenever a path exists; (ii) it is
based on a virtual grid that does not restrict the wire width and the path
location; (iii) it is fast and requires relatively little memory; (iv) it can use
penalty functions similar to those used in maze-running algorithms. It is
thus very suitable for routing irregularly structured layouts such as PCBs and
VLSI building block designs.

The Heyns algorithm is based on expanding a line in its perpendicular

direction. For every grid point (spaced one unit apart) of the line, it is

43

investigated for how far it can be expanded, that is, how far a perpendicular
line through this point can be extended before it is blocked by an obstruction.
The expansion zone is defined as the zone consisting of all the grid points
that can be reached by a line beginning on the expanded line and perpendicular
to it. The idea is that, instead of generating one escape line at a time as the
Hightower algorithm, the borders of the zone that can be reached by all
possible escape lines are generated. Figure 10 illustrates the expansion zone
of a line segment £. The algorithm searches for grid points in the expansion
zone using a modified maze-running algorithm. However, the grid points are
not kept in memory; only its boundary segments, called active lines, are
pushed onto a stack. The generated active lines are then expanded outside the

zone for further searches.

The above procedure is initiated from both of the terminals by entering
them as starting active lines into the stack. From both of the terminals,
wave propagation processes similar to that of the Lee algorithm but advance
zone by zone are performed. Figure 11a shows the active lines generated
during the search. A connection is found when an active line reaches the
wavefront advanced from the other terminal. In Fig. 11a, this occurs in the
shaded area, called the solution zone, in which the two wavefronts
intersected. The rest of the algorithm is to backtrace from the solution zone
towards the terminals, generating a final connecting path as shown in Fig.
11b. An important consideration in the line-expansion algorithm is to
generate a stop line when an active line meets the wavefront advanced from
the same terminal. The stop line is imposed to prevent duplicated search of a

zone. |t thus helps to speed up the algorithm.

Y et

BLOCKAGES

EXPANSION ZONE ACTIVE LINE
GRID POINT

Fig. 10. Expansion of a line § in the upward direction.
The arrows indicate the direction in which

the active lines are being expanded.

45

7/ solution zone oo StOp line
(a)

(b)

Fig. 11. Line expansion algorithm. (a) Active lines generated

during the search; (b) Final path between A and B.

46

The line-expansion algorithm compares favorably with the Hightower
line-search algorithm in that it guarantees a solution if one exists, and that
it can be readily extended to more general cases with multiple terminals,
source/target points, layers, etc. A minor drawback, however, is that it does

not always find the minimum bend path.

summary
Line-search algorithms are very efficient techniques for finding a path

between two points on a plane with blockages. The main advantages are their
low storage and running time requirements. But unlike maze-running
algorithms, they cannot guarantee that a path be found, even if one exists, and
they cannot guarantee that the path found is the optimal. Although they
usually yield the path with the minimum number of corners, it is not always
the case. However, line-search algorithms still, in general, run faster and

require less storage than maze-running algorithms.

The line-expansion algorithm of Heyns et al. extended the Hightower
line-search algorithm by replacing escape lines with expansion zones and by
using a maze-running process to expand from zone to zone. It is thué able to
find a path whenever a path exists and still has the speed and storage

advantages of line-search algorithms.

.Aside from speed and storage considerations, both maze-running and
line-search algorithms are sequential algorithms that route one net at a time.
In such algorithms, when a net is routed it becomes a blockage that may
prevent subsequent nets to be routed. Such fragmentation of the routing task

could result in poor routing patterns and excessive overflows. To address

47

this problem, channel routing algorithms have been developed. In the next

section, channel routing algorithms will be described in detailed.

2.2 Channel Routing Algorithms

Channel routing is a special case of the general routing problem where
interconnections are to be routed within channels. Channels are rectangular
routing regions with no interior obstructions and with fixed terminals
located on two opposite sides. The interconnections may exit from the
channel through floating terminals on the remaining two sides, but the exact

location is determined by the router.

Channel routing was first proposed by Hashimoto and Stevens [HAS71].
It was originally used in the design of the ILLIAC IV control unit boards.
Since then, channel routing has gained tremendous popularity, particularly in

gate array and standard cells layout designs.

The most salient difference between channe! routing algorithms and
other routing algorithms is their division of the routing process into loose
routing and detailed routing. Although simultaneous routing of all the nets is
still impossible, such a division of the routing task allows the routing of each
net to be influenced by all or part of the other nets. In the following
discussion, the loose routing process will be briefly described, while the

emphasis will be on the detailed routing process.

2.2.1 Loose Routing
Loose routing (also called global routing) is the preliminary step of the

complete routing process. It calls for a routing plan in which each net is
assigned to particular regions on the die reserved for routing. The goal is not
only to make 100% assignment of nets to regions for the detailed routing
process, but also to, for example, minimize wire lengths and die size, and to
control routing through narrow or critical channels by routing some nets

around to avoid bottlenecks.

After the placement process, the positions of the modules or blocks are
defined. Surrounding each module is some extra space for routing. In channel
routing, such empty spaces are organized as routing channels. The task of the
loose routing process is to determine, for each net, the channels through
which the wire segments of a net will be traversing. The operation is called
loose routing because it only determines the channels to be traversed without
actually fixing the exact position of the wire segments in each channel. In
general, the loose routing process consists of the following steps: (i) channel
definition, (ii) channel assignment, (iii) routing order determination, and (vi)

optimization.

Channel Definition

This step involves the definition of the routing channels. For gate array
Iayouis, since the dies are pre-fabricated up to the metalization stage, the
number, the size, and the shape of the channels are all defined in the array
architecture. For standard cell layouts, although the number and the size of

the routing channels are variable, they are arranged in parallel rows or

49

columns. Thus, after placement, the channels for gate array and standard cell
layouts are already defined. It is for building block layouts that the channel

definition process plays the most important role.

Due to the irregular block geometry of building block layouts, the
routing regions are of irregular shapes. In this case, channel routing can be
generalized to include, in addition to regular channels, other rectilinear
routing regions, such as L-shaped regions, with fixed and/or floating
terminals located on all sides. In general, regular channels are considered the
most desirable because the regular channel routing problem is relatively well
understood and very efficient algorithms have been reported. However, it is
often impossible to use only regular channels, and other rectilinear regions

are required.

In general, the channel configuration must fit the algorithm for loose
routing and provide a fair representation of the routing region for the detailed
routing process. The definition of the routing region has a direct impact on
all parts of the layout: the adjustment of the placement configuration when
routing fails, the data organization, and the algorithms of both loose and
detailed routing. Examples showing the results of the channel definition

process are shown in Fig. 12.

Channel Assignment
After the channel definition step, the next step is to decide through which

channels the wires for each net will be traversing. This process is called
channel assignment. The main objective is to assign all the nets to the

channels without exceeding the channel capacities. Furthermore, the

50

casrvsenssrstsesace dmm

(b)

Fig. 12. Examples of channel definitions. (a) Channels defined by
dividing the routing region into small rectangles using the shorter
of the two possible edges for each corner (MIT Pl System);

(b) Channels defined by combining the small rectangles into

larger regions (Bell Laboratories).

51

assignment should keep the wires as short as possible and evenly distributed.
The requirement for even wire distribution is important because finding
merely the shortest path connecting the terminals of a net tends to
overcrowd certain channels, especially those in the center of the die. The
overcrowded channels may become very difficult or even impossible to be
routed by the detailed router. This would result in excessive overflows and

poor layouts.

In gate array layouts, since the channel capacities are fixed in the
array architecture, if 100% assignment is not achievable the only solution is
to use a larger array. In standard cell layouts, the channel width is
adjustable. If higher capacity is required of a channel, the channel width can
be increased. Thus, 100% assignment is always achievable as long as the die
size is allowed to increase. The considerations in such cases would be in the
die size, the wire lengths, and the wire distributions. In building block
layouts, the blocks and the channels are floating in the sense that their
locations are not fixed. Each channel has a certain initial capacity defined by
the placement configuration. When nets are assigned to the channels, it may
turn out that more space is required. In this case the blocks are pushed apart
to make more room. If, on the other hand, less space than originally reserved

is required, the blocks are brought closer so that there is no waste space.

Channel assignment can be accomplished by various methods. The
sequential method of assigning one net at a time based on the minimum
rectilinear Steiner tree is a popular approach. Usually a channel graph is used
to represent the loose routing region. For example, the routing area can be
divided into a set of routing regions by extending each horizontal and vertical

line bounding a block until it intersects another block or the external

52

boundary. The routing region interfaces can be represented by vertices, and
the routing regions can be represented by edges. Routing conditions such as
congestion factors and channel lengths can be represented as edge weights.
with the channel graph defined, net assignments can be performed using a
variety of aigorithms. Since the minimum rectilinear Steiner tree problem is

NP-complete, heuristic algorithms are usually used.

Routing Order Determination
This step determines the order of the channels in which detailed routing

should be performed [KAJB3, KUHB86] As an example, consider the two
channels shown in Fig. 13a. Two nets are to be routed across the channels
through the temporary terminals. However, the exact locations of the two
temporary terminals are not known until channel 2 is routed. Hence, channel
2 must be routed before channel 1. Such ordering constraints must be
determined and resolved before detailed routing can be performed. However,
it is possible for a cyclic ordering constraint to occur. For example, in Fig.
13b the channels 1, 2, 3 and 4 are so defined that every channel requires
another channel to be routed first. In order to resolve such cyclic
constraints, it may be necessary to redefine some of the channels or create
new channels. It is also important that the number of complex routing
regions be kept to the minimum. In Fig. 13b, a2 new configuration is formed

where a new L-shaped region is defined to break the cycle.

53

TEMPORARY
TERMINAL

CHANNEL 1

<o
CHANNEL 2

(a)

CHANNEL 2~ 14~ CHANNEL 2

CHANNEL 5 B

CHANNEL 1

<@ CHANNEL 3 B>

@ | TINNYHD

(b)

Fig 13. Channel ordering. (a) An example of channel ordering.
Channel 2 must be routed before channel 1. (b) An example of
redefining a channel (channel 4) to break a cyclic channel

ordering constraint. The order should now be channel 1, 2, 3, 4.

24

Optimization

Due to the sequential nature of most loose routing algorithms, after the
initial assignment an optimization process may be used to imprbve the
routing result. Usually an iterative technique is used with progressive

penalties in critical channels and dynamic net ordering priorities.

The result of loose routing is a decomposition of the routing problem
into smaller detailed routing problems, one for each regular or rectilinear
channel. Loose routing is closely tied to both its predecessor, the placement
process, and its successor, the detailed routing process. The main ob jective
is to develop a good routing plan based on the given placement configuration
so that detailed routing can be completed eff iciently. In the next section, a

detailed discussion of the detailed routing process will be presented.

2.2.2 Detailed Routing
As described previously, depending on the shape of the channel routing region

and the locations of the fixed terminals, the channel routing regions can be
regular channels or general rectilinear channels. In this section, the two
layer routing problems for these two type of channels will be defined, and for

each problem several representative algorithms will be described.

Regular Channel Routing Algorithms

The regular channel routing problem can be defined as follows:

1. A channel is an open-ended rectangular routing region. If a horizontal

orientation is assumed, the fixed terminals are located on the top and

95

bottom boundaries of the channel while the left and right boundaries
are open and interconnections may exit. Furthermore, The channel
height (distance between the top and bottom boundaries) is indefinitely
extendable.

2. The channel has no initial interior obstructions, such as, pre-routed
wires or interior routing voids.

3. Routing is performed on a virtual rectilinear grid consisting of vertical
and horizontal grid lines called vertical and horizontal tracks,
respectively. All wire traces must be routed inside the channel and on
the tracks, that is, no routing outside the channel and no diagonal
traces.

4 Two routing layers are available with vertical traces exclusively on
one layer and horizontal traces exclusively on the other layer. Traces
located on different layers are connected by vias.

S. Net terminals are located on the intersections of the top and bottom
channel boundaries and the vertical tracks, and are accessible on at
least the vertical routing layer.

6. The objective is to route all the nets in minimum channel height, or in

other words, in minimum number of horizontal tracks.

An illustration of the regular channel routing model is shown in Fig. 14.
It is worth mentioning that aithough the channel height is allowed to extend
indefinitely, certain channels are impossible to route. For example, the
channel in Fig. 15a is unroutable even with an arbitrary channel height if no
free vertical tracks are available. By adding one extra vertical track, the

channel can be routed as shown in Fig. 15b.

56

TOP
BOUNDARY

TERMINAL
NUMBER

_____ N~ FIXED

VERTICAL ——

TRACK,

v TERMINAL

HOTIZONTAL
TRACK

} - — RIGHT

LEFT —

BOUNDARY

BOUNDARY

BOTTOM
BOUNDARY

......

L 10 —f— NET
- NUMBER

Fig. 14. An illustration of the channel routing model.

S5/

(c)

Fig. 15. Channel routing illustrations. (a) An unroutable channel
(b) Addition of an extra vertical track; () A channel routing

problem with a unique solution.

58

3

Generally, a channel routing solution must satisfy two basic routing
constraints: the horizontal and the vertical contraints. A horizontal
constraint requires that if two horizontal traces belonging to two different
nets lay on the same layer and have one or more vertical tracks in common,
they cannot overlap and must be assigned to different horizontal tracks. A
vertical constraint, on the other hand, requires that if two vertical traces
belonging to two different nets lay in the same vertical track, they cannot
overlap and the lower endpoint of the upper vertical trace must be placed in a

horizontal track above the upper endpoint of the lower vertical trace.

Since the channel routing problems are NP-complete [LAPBO, SZY82,
SHI86, KINB7], no algorithm that can guarantee an optimal solution in
polynomial time has been found. The only way to produce a guaranteed
optimal solution is by enumerative methods such as branch-and-bound
techniques. For most but very small cases, enumerative methods require
unacceptably long running times. Consequently, a large number of heuristics
have been developed with the aim of producing good but not necessarily
optimal solutions. Of particular interest is the class of generalized adaptive

heuristics described in [KINB7].

To make the channel routing problem more manageable, some routing
algorithms further restrict the problem to allow only one horizontal track per
net [HAS71, KER73]. That is, no bending of the horizontal traces (doglegging)
is allowing. An important advantage with such a restricted model is that the
number of vias used is always the minimum. In this section, both algorithms
that allow only one horizontal track per net (non-dogleg algorithms), and
algorithms that allow multiple horizontal track per net (dogleg algorithms)

will be described.

o9

Line Packing/Left Edge Algorithm

If no bending of the horizontal traces or doglegging is allowed, each net can
occupy at most one horizontal track, and the wire traces of a net can be view
as consisting of one horizontal trace and two or more vertical traces
branching off to the terminals. Each net can thus be associated with a lower
bound and an upper bound according to the left and the right endpoints of its
horizontal trace. The routing problem is now to assign horizontal track
spaces to the horizontal traces such that the nets are all electrically isolated

and the number of horizontal tracks required is the minimum.

Hashimoto and Stevens described a Line Packing algorithm in [HAS71].
For each horizontal track, the algorithm first searches the list of unrouted
nets for the one having the highest upper bound, assigns it to the track, and
eliminates it from the list. Then the list is searched for the net having the
highest upper bound that is less than the lower bound of the previously routed
net. The selected net is assigned to the track and eliminated from the list.
The search continues until no net fulfills the requirement. Then the entire

process is repeated for the next horizontal track until all the nets are routed.

A more efficient implementation of the Line Packing algorithm is the
Left Edge algorithm [KER73]. It first sorts all the nets in ascending order of
their left edges (lower bounds) and fills the horizontal tracks with nets that
fit closest to the left of the available track space. For a channel with n nets,

this algorithm requires O(n log n) running time.

These algorithms assume that there are no vertical constraints in the
channel. When they are modified to observe the vertical constraints, they can

fail to find the optimal solution even for very simple problems.

60

Net Merging Algorithm
There are certain instances of the non-dogleg channel routing problem that

have obvious unique solutions. For example, the channel in Fig. 15¢ can only
be routed as shown. Moving any one of those nets would result in overlaps in
at least one vertical track. The vertical constraints have thus dictated a
unique solution. This fact inspired the idea of reconstructing the original
problem so that a unique configuration can be identified. The Net Merging
algorithm by Yoshimura and Kuh [YOS82] is one such algorithm. The algorithm
merges nets that occupy non-overlapping horizontal track spaces together so
that their combined horizontal track spaces corresponds to the situation
shown in Fig. 15c. Once such situation is established, the channel can be

routed easily.

The Net Merging algorithm is usually capable of reducing the original
problem to a much smaller size and requires less running time. But if two
nets that are far apart were merged, the empty track space between the nets
would be wasted. Yoshimura [YOS82, YOS84] suggested heuristics for merging
nets together so that the reduced problem would not create situations that
require more horizontal tracks than the original problem. In general, the net
merging algorithm is capable of producing very good solutions in much shorter

time than enumerative algorithms such as branch-and-bound searches.

Dogleg Channel Router
The Dogleg Channel Router of Deutsch [DEU76] was the first routing algorithm

that relaxes the restriction of only one horizontal track per net. Here the

nets are allowed to split between different horizontal tracks. Vertical

61

traces are used to connect the split horizontal traces together. The bending
of an otherwise straight trace is called doglegging, and the bend is called a
dogleg. The introduction of doglegs may allow the channel to be routed in
fewer number of horizontal tracks. Moreover, situations as the one shown in
Figs. 15a,b would be unroutable without doglegs. However, an immediate
drawback of using doglegs is an increased number of vias. A more detailed
discussion of the advantages and tradeoffs of using doglegs will be presented

in Chapter V on the development of a new dogleg channel routing algorithm.

The idea of the Dogleg Router is to split every net into two-terminal
subnets at terminal positions. If a net E has n terminals ty, t,, .., t, sorted in
ascending order of their vertical track numbers, E is split into (n-1)
two-terminal subnets E,, E,, ..., E,_; such that E; connects terminals t; and t;,;,
fori=1,2, ., n-1. A modified Left Edge algorithm is then applied to the
resulting set of subnets with one modification: a subnet E; and the next subnet
of the same net E;,, can be placed in the same horizontal track sharing a
common terminal. When all the subnets are routed, those subnets belonging to

same net but placed in different horizontal tracks are connected by doglegs.

The above described algorithm works reasonably well but often adds
many more doglegs than it is necessary. Thus Deutsch introduced a control
parameter called range to reduce the number of undesirable doglegs. Range is
the minimum number of consecutive subnets that must be assigned to the
current horizontal track. As the range increases, fewer doglegs will be
introduced. But, a sequence of subnets shorter than the range will also be
accepted if this will complete the routing of the net. Without this additional

rule, two-terminal nets will never be routed.

62

The efficiency of the Dogleg Channel Router has been demonstrated in
[DEU76] on several examples, one of which has become a benchmark test case
for regular channel routing algorithms. In most cases, the Dogleg Router is
capable of producing optimal, or near optimal solutions that are only a few
tracks above the theoretical optimum. In fact, introduction of the Dogleg
Router by Deutsch was at the time the breakthrough achievement and inspired
further development of powerful heuristics for channel routing problems
[BURSE].

Greedy Channel Router
The Greedy Channel Router of Rivest and Fiduccia [RIV82] further relaxes the

Deutsch’s Dogleg Router to allow doglegging in any vertical tracks not
necessarily containing a net terminal. One interesting phenomenon of the
Dogleg Router is that, by splitting every net into subnets connecting every
two consecutive vertical tracks of the net span and applying the Left Edge
algorithm would result in a left-to-right vertical-track-by-vertical-track

scan of the entire channel [BUR86].

Using the above idea, the Greedy channel router scans the channel in a
left-to-right vertical-track-by-vertical-track manner, completing the
connections within a given vertical track before proceeding to the next. In
each vertical track the algorithm tries to maximize the utilization of the
track 'spaces in a greedy fashion. It may place a net on more than one
horizontal track and have a vertical trace crossing more than one horizontal
trace of the same net. Usually, the Greedy router is able to complete the

routing within the channel, but sometimes it may requires vertical tracks be

63

added beyond the channel length to complete the problem.

The algorithm begins with a channel height equals to the theoretical

minimum and adds more horizontal tracks when necessary. Following [RIV82],

the Greedy Channel Router can be described as follows:

1.

Bring the terminal connections from the top and bottom boundaries of
the channel into the first horizontal track that is either empty or
already contained a trace from the same net. If bringing in the nets
would result in an overlap of their vertical traces, bring in just the one
with a shorter trace. If the top and bottom terminals are from the
same net, simple connect them with a vertical trace. If all the
horizontal tracks are occupied, nothing is done in this stage.

Free up as many horizontal tracks as possible by adding doglegs that
collapse nets occupying more than one horizontal track into one for the
next vertical track. An exhaustive search is performed to find the best
admissible pattern. This step may extends the vertical traces in step 1
from an intermediate empty horizontal track to a horizontal track
containing the net.

Add doglegs to the remaining nets that are occupying more than one
horizontal track to reduce the distance between their horizontal traces.
Add doglegs to move a net closer to the top if its next terminal is on
the top of the channel, or closer to the bottom if its next terminal is on
the bottom of the channel.

If a terminal could not be brought into the channel in step 1 because the
channel was full, widen the channel by inserting an additional
horizontal track in the center of the channel.

Extend the incomplete nets into the next vertical track. For each

64

connected piece of wire segment one horizontal trace is extended into
the next vertical track. The above procedure is repeated for each

vertical track until all the nets are routed.

The Greedy Router algorithm has been tested on numerous channels
from actual designs and computer generated test cases [RIV82] In most
cases, the algorithm completes the problem using no more than one horizontal
track above the theoretical minimum. In addition to this excellent
performance, the algorithm has a very flexible control structure that allows

variations in the heuristics to achieve different routing effects.

YACR-1I

YACR-11 (Yet Another Channel Router the Second) by Sangiovanni-Vincentelli
[SANB4] is aimed at minimizing not only the channel height but also the
number of vias required. YACR-I! is basically a double-layer, grid based
regular channel router. it normally uses one of the routing layers for vertical
traces and the other for horizontal traces. But it also allows certain

horizontal traces to be routed on the vertical layer.

Similar to the Greedy Router, YACR-II begins with a channel height
equals to the theoretical minimum and inserts additional tracks when
necessary. The basic idea is to place first all the nets in the channel with no
doglegs, avoiding any horizontal overlaps while ignoring the vertical
constraints. Then maze-running routers are used to complete the routing by
connecting the terminals. to the nets with doglegs. If the maze-running
routers cannot connect some terminals, the number of horizontal tracks is

increased by one and the entire process is repeated until all the nets are

65

routed. The aigorithm consists of the following four phases:

l.

Scan the channel from left to right to find the first vertical track that
has the highest local density. The local density of a vertical track is
the number of nets crossing that vertical track. All the nets that
crossing that vertical track are then assigned to horizontal tracks so
that (i) horizontal constraints are satisfied, (ii) vertical constraint
violations are minimized, and (iii) resulting net assignments would
facilitate the maze-running routing process.

Move to the right of the selected vertical track and assign the nets
having their left endpoints in this part of the channel to horizontal
tracks. While moving to the right, one vertical track at a time, the nets
with their left endpoints in that vertical track are collected. The
collected nets are assigned to horizontal tracks when (i) the number of
available horizontal tracks is equal to the number of nets collected, or
(ii) one of the nets collected at previous steps has its right endpoint in
the vertical track currently processing. The assignment is performed
according to the same criteria as in step 1. This step terminates when
the end of the channel is reached.

This step processes the nets to the left of the initial vertical track
selected, and is identical to step 2 except that the scanning is now
towards the left.

Connect the terminals to the routed horizontal traces. For vertical
tracks with no vertical constraint violations, no doglegs are necessary
and the routing is straightforward. For vertical tracks with vertical
constraint violations, a sequence of three maze-running routers are
used. They attempt to complete the routing using doglegs with as few

bends and vias as possible. The first router routes the terminal

66

connections using only the adjacent vertical tracks and the vertical
layer. If the first router fails to complete the routing, the second
router uses doglegs that span more than one vertical track. If the
second router also fails, the third router attempts to complete the

routing using all available space.

Excellent results have been obtained by YACR-11 [SANB4, REE85]. In
most cases, YACR-II is able to route a channel in a height equals to the
minimum height attainable by classical routers. However, the YACR-I
algorithm relaxed the classical channel routing mode! to allow horizonta!
doglegging on the vertical layer. This may results in wires running parallel
on different layers, and the minimum channel height for the YACR-11 channel
routing model is no longer the same as that for the classical model.
Nevertheless, since most technologies permit limited wire overlaps, YACR-1!

is a very fast and practical channel router.

Rectilinear Channel Routing Algorithms

The rectilinear channel routing problem can be defined as follows:

1. A rectilinear channel is a rectilinear routing region with fixed
terminals located on all boundaries and has no initial interior
obstructions such as pre-routed wires or interior routing voids.

2. Two routing layers are available with vertical traces exclusively on
one layer and horizontal traces exclusively on the other. Traces
located on different layers are connected by vias.

3. Routing is performed on a virtual grid. All wire traces must be routed

inside the channel and on the grid lines. Net terminals are located on

67

the intersections of the channel boundaries and the grid lines, and are
accessible on both routing layers.
4 The objective is to route all the nets within the channel without

violating any electrical or physical constraints.

Since the routing area is fixed, not all channels are routable.
Pre-routing analysis similar to those used in PCB routing are commonly used
to predict the routability of rectilinear channels. If a low routability is
predicted, the routing area can be enlarged by modifying the placement

configuration.

A special rectilinear channel that occurs very often in layout designs is
the switchbox. A switchbox is a rectangular region with fixed terminals
located on all four sides. It is commonly used at the interfaces of regular
channels. Next to reguiar channels, switchboxes are the most desirable.
However, in building block layout designs, there are often cases where the
routing regions are so irregularly shaped that decomposing them into reguiar
channels and switchboxes may not be practical. A number of routing
algorithm have been published to deal with such general rectilinear channels.
In this section, both switchbox routing and general rectilinear channel routing

will be described.

switchbox Routing

Figure 16 shows an example of a switchbox used at the interface of four
regular channels and the routing of a switchbox. The switchbox routing
problem is in general more difficult than the regular channel routing problem.

The main reason being that, it is not clear as what to do in case of failures.

68

(a)

B —&2 B
&
&
3 &
o B
] &
8 g8 -3
—@ &8 B
—& ea g & B
_.-
= T—--I—I e [
T4
(b)

Fig. 16. Switchbox routing. (a) A switchbox used at the interface
of regular channels; (b) An example of switchbox routing

(Burstein's Difficult switchbox problem).

69

Unlike regular channel routing where the channel height can be increased, the
routing area of a switchbox is fixed and no additional routing tracks can be
inserted. Although the switchbox routing problem has not been proven
NP-complete, it is very likely that it is [BUR86]. A number of heuristic
algorithms have been developed for this problem. In this section the

switchbox router, Detour, will be described.

Detour

Detour [HAMB4] is a switchbox router based on the Greedy Channel Router of
[RIVB2]. It is capable of routing switchboxes and regular channels containing
interior obstructions. It can dogleg nets around multi-layer obstructions
such as vias, and route nets over single layer obstructions such as pre-routed
wire traces. This ability to handie interior obstructions is one of the most

remarkable advantage of the Detour switchbox router.

Like the original Greedy Router, Detour uses a heuristic based,
left-to-right vertical track scan approach. In order to route switchboxes,
Detour uses two strategies, one to allow nets to move into the tracks they
need to make terminal connections, and another to allow nets to split in order
to make multiple connections at the far edge of the switchbox. The basic
steps of the Detour switchbox router are as follows:

1. As the first step in routing a vertical track, place a via in each
unobstructed horizontal track if either the previous or the next vertical
track has an obstruction in the horizontal layer. The via serves one of
three purposes: (i) it switches the net from the horizontal layer to the

vertical layer before the net enters an obstructed region, (ii) it

70

switches the net from the vertical layer back to the horizontal layer
after the net leaves the obstructed region, or (iii) it switches the net
to the vertical layer in preparation for doglegging the net to another
horizontal track.

Bring the terminal connections from the top and bottom boundaries of
the switchbox into the first horizontal track that is not blocked in the
next vertical track. If the net is brought into an obstructed horizontal
track, the next step will attempt to dogleg the net out of the
obstructed region.

Find horizontal traces in obstructed regions and dogleg them to the
nearest empty horizontal track while giving preference to doglegging
towards the next terminal.

Free up as many horizontal tracks as possible by adding doglegs that
collapse nets occupying more than one horizontal track into one for the
next vertical track.

Add doglegs to the remaining nets that are occupying more than one
horizontal track to reduce the distance between their horizontal traces.
Add doglegs to move a net closer to the top if its next terminal is on
the top of the switchbox, or closer to the bottom if its next terminal is
on the bottom of the switchbox. Do not move a net into an obstructed
horizontal track.

If the net is within a certain number of vertical tracks of the right
boundary, attempt to split the nets to make multiple terminal
connections.

Extend the incomplete nets into the next vertical track. For each
connected piece of wire segment one horizontal trace is extended into

the next vertical track. The above procedure is repeated for each

71

vertical track until all the nets are routed, or a net is prevented from
extending into the next vertical track by the presence of a multi-layer

obstruction, in which case the algorithm terminates with no solution.

The Detour has been considered to be one of the best practical
switchbox routers [BURB6]. Its performance in routing benchmark test cases,
though not the best, was satisfactory [HAM84] while its most distinctive
advantage is the ability to handle interior obstructions such as pre-routed
wires. This obstruction avoidance capability gives designers the option of
pre-routing special nets such as clock, power and ground lines, either

manually or using special purpose routers.

General Rectilinear Channel Routing
The general rectilinear channel routing problem arises commonly in building

block layout designs, where the routing regions are irregular in shape and
terminals are located on all sides of the regions. An example of general
rectilinear channels is shown in Fig. 17. The general rectilinear channel
routing problem is usually more difficult than the switchbox routing problem.
Like the switchbox routing problem, the general rectilinear channel routing
problem has not been proven NP-complete, but it is also very likely to be
[BURB6). In this section, the MIGHTY router will be described.

MIGHTY
The MIGHTY router of Shin and Sangiovanni-Vincentelli [SHIB6] is a general

rectilinear channel router that routes incrementally the nets in the channel,

72

Fig. 17. General rectilinear channel routing [HSU82].

73

and allows modification and rip-up of nets that may impede the routing of
other nets. It consists of four main parts: (i) a path finder that searches for
minimum cost paths among subnets, (ii) a path conformer that impiements a
path proposed by the path finder, (iii) a weak modifier that pushes existing
wire segments aside to make better connections, and (iv) a strong modifier

that removes subnets to allow the completion of a blocked net.

The algorithm begins by extending all the terminals on the boundaries
of the channel inside. The path finding phase then processes the nets in the
order they are entered. From each terminal of the net, a maze-running router
is used to search for the minimum cost path that connects two of the
terminals of the net while ignoring other nets. As soon as a path connecting
two terminals of the net is found the search is stopped, and the path is
recorded in an ordered list organized in increasing cost. When all the nets
have been processed by the path finder, the path conformer takes over. One by
one, the paths in the ordered list are examined. |f a path does not have any
conflicts with the existing paths, the path is implemented. Otherwise, the
path finder is invoked again to find a feasible minimum cost path between any
two unconnected terminals or subnets of the net. Note that in f inding this
path, the nets already routed are taken into consideration. When a path is
found, if its cost is within a certain prescribed range from the minimum cost
of the path found when no other nets are present in the region, the path is
entered into the ordered list. Otherwise, the modification phase is entered.
The weak modifier is first called to move other nets around to make a
feasible path that satisfies the prescribed cost range. If no solution is found,
the strong modifier is called to remove some routed wire segments. In both

modification phases, a variety of alternate paths are examined and the one

74

with the minimum cost is selected. If no path satisfying the prescribed cost
range is found, the search is terminated with no solution; otherwise the

process is repeated for the next net in the list.

The MIGHTY router has shown excellent results in a number of
benchmark test cases [SHIB6]. But, it generally requires much more running
time. For example, in one of the benchmark test case, the Detour switchbox
router took 3.9 seconds while MIGHTY required 176 seconds. However, the
versatility and performance of the MIGHTY router has made it one of the best

general rectilinear channel router today.

2.2.3 Summary
Routing of high-density chips and boards can be divided into two stages: loose

routing and detailed routing. The loose routing stage relies on a global
routing plan that partitions the routing problem into smaller detailed routing
problems. Then the detailed routing stage assigns locally the locations of the
wire traces inside the channels. This approach greatly simplifies the
complex routing problem into manageable SubAprobIems while maintaining a

very high level of global efficiency.

An extensive survey of channel routing algorithms from simple
non-dogleg regular channel routing algorithms to elaborate rip-up and
re-route general rectilinear channel routing algorithms has been presented in
this section to show the most important achievements in channel routing
theory and algorithms. An understanding of those developments is essential
to any further studies of the channel routing problem. In the next section,

other approaches to the VLSI routing problem will be described.

75

2.3 Other VLSI Routing Approaches

As noted in the previous discussions, the VLSI routing problems are known to
be NP-complete. The optimal solutions to these problems require running
times that could grow exponentially with the size of the problems. Practical
algorithms therefore use heuristic techniques with polynomial complexity
that lead to near optimal solutions. Unfortunately, to obtain even those
suboptimal solutions would still require tremendous computational effort.
With the extreme complexity of VLSI routing, it is not unusual that a small
number of overflows occurs. But, even 1% of overflows for a ten thousand
gate layout amounts to hundreds of interconnections. Manually editing
existing wires and routing overflows may takes days, weeks, or even months.
Iterative algorithms such as rip-up and re-route techniques require much
longer running time than conventional algorithms; still they may not be able
to eliminate overfiows. Many other techniques are thus studied with the aim
of more efficient routing techniques. In this section, hardware routers,

expert routers and the simulated annealing technique will be described.

2.3.1 Haf'dware Routers

Most hardware routers are parallel implementations of maze-running
algorithms. The processing elements are usually arranged in a mesh with one
element per cell. Basically, each element should be capable of performing the
following maze-running operations in parallel:

1. Receive wavefront tokens from neighbouring elements, if any.

2. Ignore the token if the cell is occupied or visited.

3. Mark the cell visited and mark the direction from which the token is

received.

76

4 If the cell is the target, signal completion; otherwise send wavefront

token to all four neighbouring elements simultaneously.

ClLearly, all cells in the wavefront during propagation can be processed
in parallel. This is true whether the source is a single cell or a set of cells in
a subnet. The routers are capable of processing an entire wavefront of
propagation simultaneously. Thus, the parallel propagation time is

proportional to the path length.

Breuer and Shamsa's L-machine [BREBO] is the first published design of
this nature. The L-machine consists of a control unit that communicates with
the host computer, and sequences the operations of the array of processing
elements, called L-cells. [t is designed specifically to implement the Lee
algorithm. The L-cells are fairly simple (about 75 gates), and many of them
can be laid out on a VLS| forming a subarray. The machine is capable of
performing the following tasks:

1. Initialization: This involves the loading of source, target, and blockage
information into the L-cells.

2 Parallel Propagation: This essentially implements the parallel cell
processing elements described earlier. In addition, a BUSY status
signal is sent by those L-cells that are active during an expansion step.
The control unit receives a wired-OR BUSY signal from all the L-cells.
Thus, the BUSY signal is high as long as some cells are active. If the
control unit detects that the BUSY signal goes low before the target is
reached, an overflow is indicated.

3. Backtrace: This process determines the path by following the stored
direction flags from an activated target back to the source. The

coordinates of each element on the path of the wire are output to the

77

host computer.
4 Clear: Cells along the backtraced path are marked as blockages for
subsequent routing. The internal status of all other L-cells are cleared

to an idle state.

Each L-cell communicates with its four neighbours through
bidirectional lines, one per neighbour. For double layer routing, each L-cell
would have five neighbours and five connection lines. These lines are used
during the propagation and the backtrace processes. In addition, there are

seven more signal lines and a clock input line per cell.

In general, for each routing layer of size NxN, it requires N2 L-cells,
each of which consists of about 75 gates. If the array were to be
implemented in VLSI chips, the total number of pins of the array including
two power lines and the row and column decoder and encoder is 4log;N + 8.
Thus a 64x64 array would require 300K gates and 32 pins, and a 256x256
array would require SM gates and 40 pins. Since the array size of the
L-machine must be as large as the routing region (multiplied by the number of
layers for multi-layer routing), for even a moderately sized layout the number
of L-cells required could still be prohibitively large. However, since the
L-cells are hardwired for the Lee algorithm, it takes only one clock cycle to
process one complete wavefront. In general, the L-machine is much faster
than conventional algorithmic routers; but, it is inflexible and limited to

finding the shortest path between two points only.

In addition to the L-machine, the SAM (Synchronous Active Memory)
machine proposed by Blank, Stefik and van Cleemput is also aimed at a

compact design suitable for subarray packing in a VLSI chip. One main

78

difference between this machine and the L-machine is that this was designed
with a somewhat broader range of applications in mind. The node processors
are called SAM-cells. They support 20 assembly level instructions operating
mainly on the data width of 1 bit. Each SAM-cell consists of a local control
unit, a 2-bit Boolean logic unit, a multiplexer feeding a 1-bit accumulator, a
neighbour masking unit, and sixteen 1-bit registers. One of the most
powerful SAM instructions is called NEIB. This instruction enables a fast

implementation of node processing for the Lee algorithm.

The SAM-machine is a SIMD (Single Instruction Multiple Data) paraliel
processing construct. The program control and storage can be provided either
by the host computer or by the SAM system depending on implementation.
Blank et al. proposed packaging a 16x16subarray of SAM-cells in a VLSI. To
process a 1000x1000grid, it would require about 4000 such ICs in the SAM
system. Unlike the L-machine where the L-cells are hardwired for the Lee
algorithm, the SAM-machine now takes many clock cycles to process one

wavefront.

Conceptually, the SAM machine can be used for general purpose
applications. However, the limited instruction set, small data width (1 bit),
and SIMD operation together restrict the effective range of applications to
bit-map problems arose in certain image processing, bit-vector operations,

and simple design rule checking.

In summary, hardware routers gain speed over conventional routers by
special purpose hardware and by use of parallel computation. High speed
routing in VL3I would allow fast feedback to the designers and even enable

the designer to interactively improve the design through a series of

79

applications. However, like other parallel processing systems, much of the
issues concerning data width, instruction capability, neighbour
communication, MIMD/SIMD, and local memory organization need further

research and development.

2.3.2 Expert Routers
In addition to straightforward parallel hardware implementation of

conventional routing algorithms, another approach to the VLSI routing
problem is through the use of expert systems. It has been observed that a
human layout expert can actually perform wire routing better than
conventional algorithmic routers. [t is because an experienced designer can
understand the design and find a solution using his knowledge and intuitions
while an algorithmic router with a small number of heuristics finds a
solution without a complete knowledge of the entire problem. A number of
expert routers have been proposed [MIT84, J0S85, JOO85], among which the
most successful one is the WEAVER channel/switchbox knowledge based
expert router by Joobbani and Siewiorek [JOO85]). In this section, the WEAVER

expert router will be briefly described.

WEAVER is a knowledge based channel/switchbox routing program that
considers several important routing criteria such as 100% completion,
minimum routing area, minimum wire length, and minimum number of vias
simultaneously. WEAVER is a grid based router that utilizes two routing
layers and can be extended to route regions of any shapes. It allows

pre-routed wires, and user interaction throughout the entire routing process.

80

WEAVER uses a set of knowledge based experts organized around a

communicating medium called a blackboard. Each expert decides, based on its

knowledge and metric criteria, what should be done next. A focus of attention

module decides which expert should be allowed to give advice at a given time.

The WEAVER experts consists of the following experts:

1.

Constraint Propagation Expert: This expert is the most frequently used
expert. It propagates the constraints resulted from the routing of the
current net to totally or partially adjust the routing of the other nets.
Wire Length Expert: This expert decides which nets should be routed
closer to which side of the channel based on the minimum wire length
criterion.

Vertical/Horizontal Constraint Expert: This expert decides the
ordering of the nets from bottom to top or from left to right of the
channel based on the vertical and horizontal constraints.

Merging Expert: This expert decides which nets can be routed on the
same row or column.

Congestion Expert: A congestion factor is defined for each row and
column in the channel which is equal to the number of nets crossing
that row or column. This expert restricts each net to cross the most
congested area of the channel at most once.

Common Sense Expert: This expert uses common rule of thumbs

employed by human experts when there are no clear best choice based

.on the advice of the other experts.

Focus of Attention Expert: This expert decides, based on the current
active expert and the decision arrived at by the active expert, which
expert should be activated next. It maintains a priority list for the

experts.

81

in general, WEAVER is a complex knowledge based expert system
utilizing a total of 436 rules. It usually requires much longer running times
than algorithmic routers. For example, the Burstein's switchbox benchmark
case required 3933 rule applications (rule firings) and 1390 seconds of
processing time. However, WEAVER has many advantages that are not easily
achieved with algorithmic routers: (i) WEAVER is fairly general and can be
easily extended to route regions of any shapes; (ii) while most conventional
routers consider only one or two routing criteria, WEAVER considers
simultaneously the routing area, the completion rate, the wire lengths, and
the number of vias; (iii) although WEAVER is a double-layer router, it uses
both routing layers for all directions, thus allowing critical nets to be routed
on a single layer avoiding the use of vias; and (iv) since human designers are
the best expert, WEAVER allows user interaction throughout the entire
routing process. The user can stop the program at any time, edit the wire

patterns and tell the system to continue.

As demonstrated by WEAVER, an expert system is a feasible routing
approach. But, the complexities of the experts and the huge demand on

computing resources make expert routers a rather expensive alternative.

2.3.3 Simulated Annealing
In many practical instances of VLSI routing, the problems can be viewed as

large scale optimization problems involving the routing of many nets. The
method of simulated annealing recently introduced by Kirkpatrick, Gelatt and
Vecchi [KIRB3] is especially suited in solving such problems. This method is

intended for problems with very many degrees of freedom and objective

82

functions that combine conflicting goals. The problems of finding the optimal
solution to such problems may be NP-complete; but in practice, one often
needs only a good solution and an assurance that there are no solutions

significantly better than the one found.

The simulated annealing technique makes use of the following
analogies between a muitivariate optimization problem and a hypothetical

fluid consisting of many interacting atoms:

Hypothetical Fluid Optimization Problem
internal energy objective function
atomic positions parameter values
cooling into a stable, finding a near optimal
low energy state configuration

To bring the fluid into a low energy state (for example, in growing
large single crystals), the most effective procedure is careful annealing.
First, one melts the fiuid, then lowers the temperature slowly, spending more
time at temperature near the freezing point to allow defects to anneal out of
the growing crystal, then cools the crystals more rapidly to bring the atoms
to rest. The same sequence can be followed in optimization by introducing a

pseudo-temperature as a control parameter.

In each step of the optimization process, a new feasible solution is
generated from the previous solution. The new solution is accepted with
probability 1 if AE<O, and with probability exp(-AE/T) if AE>0, where AE is
the change in energy and T is the pseudo-temperature. This probabilistic
measure of acceptance has the feature of allowing uphill moves in the

process of searching for a solution. In algorithms that do not allow uphill

83

moves, the search process may be trapped in a local minimum with no chance
of progressing towards a lower minimum. The annealing optimization process
produces a metastable state of the fluid, which is not necessarily the true
ground state or the globail optimum. But, as T decreases, it gets closer to the
optimum. In this section, the basic simulated annealing algorithm of the
TimberWolf Placement and Routing Package [SEC84] will be briefly described.

TimberWolf is an integrated set of placement and routing programs
developed at the University of California, Berkeley. It consists of a standard
cell placement program, a standard cell loose routing program, a generalized
gate array placement program, and a macro/custom cell placement program.
All these programs use the same basic simulated annealing algorithm to
arrive at a final solution, or improve upon an initial solution. The algorithm

can be stated in pseudo-codes as follows:

[TimberWolf Simulated Annealing Algorithml:

SimulatedAnnealing(state, temp);
initial_state: g/ven /nitial state
initial_temp: given initial temperature;

variable derinitions)

prev_state: previous state

new_state: new generated state,
prev_temp: préevious temperature;
new_temp: new generated temperature,

(subroutine definitions]

cost(); lgiven a state this function returns the cost valvel

accept(); {given the new state cost and the old state cost
adecides whether to accept or reject the new state/

84

begin
old_state := initial_state;
prev_temp := initial_temp;
while stopping criteria not satisfied
begin
generate new_temp < old_temp;
old_temp = new_temp;
while inner loop criterion not satisfied
begin
generate new_state;
evaluate the new_state cost c(new_state);
if accept(c(new_state),c(old_state),old_temp) then
new_state = old_state;
end;
end;
end.

subroutine accept(new_state_cost, old_state_cost, T)
new_state_cost: cost value or the new state,
old_state_cost: cost value or the old state;
T current temperature,

lvariable oerfinitions)
AC: change in cost,

[(subroutine aerinitions/
random() (returns a random number with uniform distribution)

begin
cost_change := new_state_cost - old_state_cost;
if Ac <O then
return true;
else
return random(0,1) <exp(- Ac / T);
end.

85

In the above algorithm, the most important part is the function accept.
Note that if the new state has a Ac < 0, the new state is always accepted.
However, if the new state has a Ac > O, then the parameter T plays a
fundamental role. If T is large, the random number generated is very likely to
be less than exp(-Ac/T) and the new state is almost always get accepted
regardless of Ac. If T is small (close to 0), then only new states with Ac
slightly greater than O have any chance of getting accepted. Thus, in general,
all states with Ac > 0 have smaller chances of getting accepted for smaller

values of T.

In addition, the "stopping criterion” used by the TimberWolf package is
based on the cost of the new state at the end of each annealing stage. If the
cost does not change for four consecutive stages, the "stopping criterion” is
met and the process terminates. The "inner loop criterion”, on the other hand,
specifies the number of new states generated for each annealing temperature.
Depending on the problem, this criterion is different. For example, for the
gate array placement and standard cell loose routing programs, 20 new states
are generated for each temperature. This is necessary because the
TimberWolf system does not continuously adjust its annealing temperature, it
generates a new temperature by multiplying the previous temperature with a
parameter a. For each temperature T, an a is specified to control the
temperature change or the annealing schedule. By generating, for example, 20
new states for each temperature effectively approximates a continuous

annealing schedule function by a staircase function.

As can be seen, the TimberWolf package is in fact fairly rudimentary.
Recent research on convergence and acceleration issues have provided much

more understanding on the simulated annealing technique as an adaptive

86

heuristic technique where parameters may be modified. Moreover, specialized
simulated annealing algorithms that tailored for specific classes of problems
have great promise in solving NP-complete problems while reducing the
massive computing resources usually required by general-purpose adaptive
heuristics [KIN87].

2.3.4 Summary
Hardware routers, expert routers and the simulating annealing technique have

been described in this section. Hardware routers are fast but the problem
size is usually limited by the system size. Expert routers are capable of
producing very good solutions while the simulated annealing technique is
capable of producing even the optimal solution. But both of these approaches

require massive computing resources.

This concludes the survey on VLSI routing techniques. Through the
development of routing techniques from early maze-running and line-search
algorithms that sequentially route one net at a time, to channel routing
algorithms that maintain a high level of global cohesiveness by dividing the
probiem into loose and detailed routing, to more recent research in hardware
routers, expert routers and the simulated annealing technique, the
complexities, considerations and tradeoffs in VL3I routing should be clear.
Applying the knowledge gained through this extensive survey, a channel
routin‘g algorithm is developed. In the next two chapters, the algorithm will

be introduced.

87

CHAPTER I
A NON-DOGLEG CHANNEL ROUTER

A large number of detailed routing algorithms have been developed
since the channel routing concept was introduced by Hashimoto and Stevens in
1971 [HAS71]. In order to cope with the complexity of the channel routing
problem, which is NP-complete, practical algorithms must employ heuristics.
The heuristics are embedded in @ mathematical model of the routing process.
Such models include graphs [YOS82] and probabilistic hill climbing [ROM84).
The graph-based model has been selected because of its relative simplicity
and fairly accurate representation of the routing process. In this chapter, the
development and implementation of a graph based heuristic non-dogleg

channel routing algorithm will be described.

3.1 Definitions

Before the algorithm can be described, the pertinent concepts and definitions
must be introduced. In this section, the following will be described: (i) the
definition of the channel routing problem considered, (ii) the definition of
doglegs, (iii) a net 1ist representation of the channel routing problem, (iv) the
definition and construction of a vertical constraint graph, (v) the definition
and construction of a horizontal constraint graph, and (vi) the definition of
channel density, channel ordering and channel height lower bounds.

88

3.1.1 Non-Dogleg Channel Routing Problem

The channel routing problem considered is basically the regular channel

routing problem described in Section 2.2.2. The definition is repeated here

with the minor modifications for the sake of completeness.

1.

A channel is an open-ended rectangular routing region. If a horizontal
orientation is assumed, two rows of fixed terminals are located at the
top and bottom boundaries, while the left and right boundaries are open
and interconnections may exit through floating terminals. The location
of the floating terminals are not specified but decided by the router.
The channel has no initial interior obstructions such as pre-routed
wires or interior routing voids.

Routing is performed on a virtual rectilinear grid consisting of vertical
and horizontal grid lines called vertical and horizontal tracks,
respectively. All wire traces are routed inside the channel and on the
tracks, that is, no routing outside the channel and no diagonal wire
traces. The track spacing are such that the proper clearance between
features is ensured.

Two routing layers are available with vertical wire traces exclusively
on one layer and horizontal wire traces exclusively on the other layer.
Wire traces located on different layers are connected by vias.

Net terminals are located on the intersections of the top and bottom
channel boundaries and the vertical tracks, and are accessible on at
least the vertical routing layer.

Each net is restricted to have at most one horizontal trace; that is, no
doglegs are allowed. This restriction will be relaxed to allow
doglegging at terminal positions as an extension to the algorithm.

The channel height is defined as the number of horizontal tracks

89

between the top and bottom boundaries. The channel height is assumed
to be indefinitely extendable. That is, the channel area can be made as
large as necessary.

8. The objective is to route all the nets in minimum channel height, and

hence minimum area.

in the above definition, the channel height is allowed to extend
indefinitely, thus guaranteeing 100% routing completion. However, in
practice, the allowable channel height (channel capacity) is determined by the
placement of modules. The question is whether the routing of nets could be

completed.

In such cases, it is up to the loose router to ensure that a channel must
not be assigned more nets than its capacity, and that the channel router would
be able to complete the final routing. the efficiency of the channel router,

therefore, has a very important impact on the entire layout process.

Note that if it is known to the loose router that the channel router can
complete the routing in the minimum theoretical channel height, the loose
router can assign the maximum number of nets to each channel so that the
placer can further compact the distribution of modules. If, however, the
channel router cannot complete the routing in the minimum theoretical
channel height, the loose routing process must be repeated to re-assign the
channels. If the channel router still cannot complete the routing with the
new channel assignment, the placement of modules must be modified to
increase the channel capacities. These three processes, placement, loose
routing, and chapnel routing, must be iterated until a complete layout is

produced. However, such an iterative process may be impractical.

Q0

3.1.2 Dogleg
In the definition of the channel routing problem, the number of horizontal

traces per net is limited to one (point 6). However, there are situations
where dividing the horizontal traces into more than one horizontal segments
may allow the channel to be routed in lower channel height. The dividing of a
horizontal trace into two or more horizontal segments on different horizontal
tracks, or the bending of an otherwise straight wire trace is called
doglegging. A more detailed discussion on the advantages and tradeoffs of
doglegging will be presented in the next chapter on the dogleg extension of

the basic algorithm.

3.1.3 Net List Representation of a Channel Routing Problem

The channel routing problem can be represented graphically as shown in Fig.

14, For computational purposes, however, the problem would be more

conveniently represented as a matrix or a net list. In a matrix
representation, a matrix A=[aij] of dimension NxM is used to represent a
channel routing problem consisting of N nets and M terminals. For each

matrix element a;,

;= +1 if net i is connected to terminal j on the upper boundary;

a.=-1 if net i is connected to terminal j on the lower boundary;

a. = if net i crosses vertical track j but is not connected to
terminal j on either side of the channel,

a.=0 otherwise.

A matrix representation of the channel in Fig. 14 is shown in Fig. 18a. Note

that although the probiem does not call for any net numbering, in a matrix

91

HET HUMBER
9 B NG A DA WUN =

L)
(=

1 2
0 1
-1 2
0 -1
0 o0
0 o0
o o0
0 o
o o
0o o
0o o0
&
fad
@
£
—]
=
"
2
Fig. 18

TERMINAL NUMBER

3 4 8 6
2 2 1 o0
2 2 -1
2 -t 0 O
i 2 2 2
-1 i -1 0
o 0 o0 1
0o 0 0 O
0 0o o0 o
0o 0 o0 o
0O 0 o0 o0
i: +2 45
2: -1 -6
3: -2 -4
4: +3 +9
3: -3 +4
6: +6 -7
¥: 7 -1
8 4 -10
9 9 410

16: +11 +12

7

-'-ONOOO

O O O -

] g 6 11 12
0 0 0 0 0
0 0 0 0 0
© 0 0 0 0— NOCONNECTION
2 i 0 0 0
© 0 0 0 0,~ CONNECTTO
o o o o / LOWER TERMINAL
2 2 2 - o
2

.1 o o CONNECTTO
UPPER TERMINAL
0 -1 i 2 -

0 0 0 1\
CONTINUING NET

(a)
CONNECT TO UPPER
TERMINAL 5

-3
CONNECT TO LOWER
TERMINAL 7

-12
(b)

. Channel representations. (a) Matrix representation;

(b) Net list representation.

92

representation, a net is numbered according to its row number in the matrix.
However, the placement of the nets in the matrix is not unique and does not

necessarily represent any particular order of processing.

In addition to the above matrix representation, another possible
representation of the channel routing problem is a net list representation.
For each net in the channel, a set of terminal connections (t.} is specified,

such that

L=+] if the connection is to the j™ terminal on the
upper boundary;

ti=-j if the connection is to the jth terminal on the
lower boundary;

t.=0 if the net has a floating terminal on the left
end of the channel;

t; > channel length if the net has a floating terminal on the right

end of the channel.

A net list representation of the channel in Fig. 14 is shown in Fig. 18b. Here

the nets are numbered in the order they were entered.

Theoretically, both the matrix representation and the net list
representation are equivalent and complete. In practice, however, a net list
representation has several advantages over the matrix representation.

1. -A computer representation of the matrix would require NxM storage,
while the net list representation requires only T, where T is the total
number of terminal connections, and T « NxM.

2. Using a +1 to represent a terminal connection and a 2 to represent a net

continuation complicate the length and distance calculations. For

93

example, to calculate the length of a net in a matrix representation
would require a scan of the corresponding row in the matrix to find the
left and right endpoints of the net. A net list representation, on the
other hand, lends itself naturally to more efficient linked list data
structures. Using a pointer to the last terminal connection the length

and distance calculations become simple additions and subtractions.

3.1.4 Vertical Constraint Graph

Since wire traces are restricted to their respective routing layers only, if
two vertical wire traces belonging to two different nets must be placed in
the same vertical track, the lower endpoint of the upper vertical wire trace
must be placed in a horizontal track above the upper endpoint of the lower
vertical wire trace. This requirement is called a vertical constraint. In the
basic non-dogleg algorithm, each net is limited to at most one horizontal
wire trace. A vertical constraint thus requires that the horizontal wire trace
of the upper net be routed above the horizontal wire trace of the lower net.
This is not necessarily true if doglegs are allowed, since some nets may have

more than one horizontal wire trace.

The vertical constraints can be represented by a directed graph G,(E, V),
where a vertex veV corresponds to a net, and a directed edge e€E emanating
from vertex a to vertex b indicates a vertical constraint and that net a must
be placed above net b. Vertex a is said to be an ancestor of vertex b (vertex b
is a descendent of vertex a), if there is a directed edge from a to b in G (E,V).
Also, each vertex is assigned an ordering number according to the following

recursive equation:

94

1 ifUu=¢

ord(v)=
max ord(u) + 1 ifu=z¢
uely

where U € V is the set of descendent vertices of vertex v. Note that a cyclic
constraint occurred if there is a directed cycle in G,(E,V). In this case,
ordering numbers cannot be defined on the vertical constraint graph, and the
channel is unroutable, since each net in the cycle requires another net to be
routed above it. Doglegs would be required to break such cyclic constraints.
On the other hand, if the vertical constraint graph is acyclic, ordering
numbers can always be defined and the routing specification is always
realizable even without dogleg. The vertical constraint graph for the channel

inFig. 14 is shown in Fig. 19a.

3.1.5 Horizontal Constraint Graph

If two horizontal wire traces belonging to two different nets lay on the same
horizontal track and have one or more vertical tracks in common, they cannot
overlap and must be assigned to different horizontal tracks. This requirement
is called a horizontal constraint. The distance between two nets i and j,
denoted as d;;,
nets must be moved to overlap. For example, in Fig. 14, d,g=dg=1, dy,=d5,=0,
dyg=dgy=4, and dg,=d,4=0.

is defined as the minimum number of horizontal grid spaces the

The horizontal constraints can be represented as a weighted undirected
graph G,(V,E), where a vertex veV corresponds to a net, and an undirected edge
e between vertices a and b exists if and only if the nets a and b do not

overiap. An edge weight dab is assigned to the edge e representing the

85

NET NUMBER

ORDERING NUMBER

/_‘— NET NUMBER

Fig. 19. Constraint graphs for the channel shown in Fig. 14.

(a) Vertical constraint graph; (b) Horizontal constraint graph.

96

distance between the vertices a and b. The horizontal constraint graph for

the channel in Fig. 14 is shown in Fig. 19b.

3.1.6 Density, Ordering, and Channel Height Lower Bounds

The number of horizontal traces that crosses a vertical track is the local
density of that vertical track. The maximum local density in the channel is
the density of the channel. For example, for the channe! in Fig. 14, the local
density of vertical track 1 is 2, vertical track 2 is 3, vertical track 3 is 5,

and so on, and the channel density is 5 (occurred at vertical tracks 3 and 4).

Moreover, the highest ordering number defined in the vertical
constraint graph of a channel is the ordering of the channel. From the vertical

constraint graph shown in Fig. 19a, the ordering of the channel in Fig. 14 is 4.

For the channel routing problem defined in Section 3.1.1, the lower
bound on the channel height is determined by at least two factors: the channel
density and the channel ordering. Without providing any detailed discussion
on this topic here, it can be observed that the channel density is an obvious
lower bound on the channel height, since every horizontal trace crossing the
vertical track where the maximum local density occurs requires one
horizontal track. In fact, the channel density is the least lower bound on the
channel height. As long as horizontal traces are restricted to one routing

layer, no channel can be routed in fewer horizontal tracks than its density.

If each net in a channel is limited to have at most one horizontal trace,
that is, if doglegging is not allowed, another lower bound on the channel

height is the channel ordering, which is the length of the longest constraint

97

chain in the vertical constraint graph. Since the horizontal trace of each net
in the constraint chain must be routed in a different horizontal track, the

channel height must be at least equals to the channel ordering.

Though effort has been devoted to finding the greatest lower bound in
channel height (necessary and sufficient channel height) [GAM81, RIC84], no
such lower bounds have been find for general channel routing problems.
Without any further discussion on the subject of the necessary and sufficient
channel height, the channel density and the channel ordering are noted here as

two of the lower bounds.

3.2 A Graph Based Heuristic Channel Router
The algorithm routes the channel one horizontal track at a time starting from

the top of the channel. For each horizontal track, it examines the nets that
can be routed on that track using the vertical constraint graph. Those nets
with no vertical constraints that require other nets to be routed first are
selected and assigned Mother net priorities. The one with the highest priority
is selected as the Mother net and routed in the track. Then among the
unrouted nets, a Ready net set is formed consisting of nets that (i) do not
require other nets to be routed first (not vertically constrained), and (ii) are
not in horizontal conflict with the Mother net. Each of the nets in the Ready
net set is assigned a net priority with respect to the Mother net. At this
point, any one of those Ready nets can be routed with the Mother net in the
same track without any vertical or horizontal constraint violations. To
maximize the utilization of the track, however, a subset of the Ready net set

is found such that, (i) there are no horizontal conflicts between all the nets

98

in the subset, (ii) the combined priority of all the nets in the subset is the
maximum. Since the finding of such a subset is NP-complete, a heuristic
algorithm is used (discussed later). Once the subset is determined, the nets
in the subset are routed with the Mother net. The channel height is then
increased by one horizontal track and the above process is repeated until all
the nets are routed. A more precise definition of the algorithm is given in the

following pseudo-code.
[Non-dogleg Channel Routing Algorithm]:
NonDoglegChannelRouter,

{Variable Definitions)

So: set of nets to be routed;

Sy set of nets assigned to the current horizontal track;
Spy set of candidates for the mother net;

G, vertical constraint graph;

TrackNumber: current horizontal track number;

ReadyNetSet: set of nets that can be routed with the MotherNet;
Begin

1. {initialization)
Sp = unrouted nets;
Sl = ¢,
TrackNumber := O;

{main loop)
repeat
2. {process next horizontal track}
TrackNumber := TrackNumber + 1;

3. {(Mother net selection}
S, == nets in 5, with no ancestors in G;
MotherNet := net in 5, with maximum Mother net priority;

99

4 {Ready net set creation)

ReadyNet3et := all nets in S, with no ancestors in G, and have
non-zero distances with MotherNet;

S. {(Maximal subset S, selection}
choose a subset 5, of nets in ReadyNetSet such that
(i) all the nets in S, have no overlaps
(ii) the combined priority for nets in 3, is the maximum;

6. {Track assignment)
assign MotherNet and S, to TrackNumber;

7. {Graph update]
delete MotherNet and 5, from 3,
delete vertices corresponding to MotherNet and nets in S, from G, ;

8. [Repeat until all nets are routed)
until S, = ¢;

end; {NonDoglegChannelRouter} a

3.2.1 Mother Net Selection

The first condition for any net to be considered as a potential Mother net is
that its routing must not require other nets to be routed first. In other
words, the net must not be vertically constrained by any other nets. This
implies that the net must have no ancestors in the vertical constraint graph.
A Mother net candidate set S, is thus constructed consisting of unrouted nets
that have no ancestors in the vertical constraint graph. A Mother net priority
function is used to give a quantitative measure on the goodness of a candidate
as the Mother net. The net with the highest priority is selected as the Mother
net.

100

After experimented with a number of Mother net priority functions, two
factors, the length and the ordering number of a net, are identified to give a
fair measure of the goodness of a potential Mother net. Functions of various
forms have been tested, and the following is the final Mother net priority

function selected.

fm(Mother) = M, # Length(Mother)/MaxMotherLength +
ChannelOrder/ChannelDensity = M
Order{Mother)/MaxMotherOrder

.
ordering

where f_ is the Mother net priority function, Mother is the Mother net
candidate, Length() gives the length of a net, Order() gives the ordering
number of a net, MaxMotherLength is the maximum net length among all the
Mother net candidates, ChannelOrder is the order of the channel,
ChannelDensity is the density of the channel, MaxMotherOrder is the maximum
ordering number among all the Mother net candidates, and Mg, aNd Myrgering

are the weighting factors for the length and the ordering terms, respectively.

Basically, the above function is a linear combination of the length and
the ordering of the Mother net candidate. Both of those terms are normalized,
so that the relative emphasis on the length and the ordering can be controlled
by the weighting factors, and the influence by the absolute values of the
terms are reduced. Since the net lengths various considerably in different
channels, in order to have an algorithm that is capable of routing channels

with diverse characteristics, the normalization is necessary.

Moreover, experiments have shown that for channels with a relatively
high density, a higher M., usually produce better resuits, and for channels

with a relatively high ordering, a higher Mordering USUally produces better

101

results. In light of this observation, and with the aim of developing an
algorithm that can produce good solutions for the general class of channel
routing problems described, an adaptive factor, ChannelOrder/ChannelDensity,
was included in the Mother net priority function. This allows the algorithm to

adapt to the density and ordering of the channel automatically.

3.2.2 Ready Net Set Creation

After a Mother net is selected, a Ready net set is form with respect to the
selected Mother net. The basic condition that a net must not have any
ancestors in the vertical constraint graph is still required. In addition,
among the nets with no ancestors, a Ready net must have a non-zero distance
with the Mother net. This latter condition corresponds to having an edge
connecting the potential Ready net and the Mother net in the horizontal

constraint graph.

Once the Ready net set is formed, each net in the set is given a priority
with respect to the selected Mother net. After experimented with a number
of priority functions, the following function is chosen as the net priority

function, f:

fa(Mother,Net) = Ny oning * Order(Net) / MaxReadyNetOrder +
Nigngtn * Length(Net) / MaxReadyNetLength +
Ngistance * (MaxReadyNetDistance-Distance(Mother,Net)) /
MaxReadyNetDistance

where Mother is the Mother net, Net is the Ready net, MaxReadyNetOrder is the

maximum net ordering among the Ready nets, MaxReadyNetLength is the

102

maximum net length among the Ready nets, and MaxReadyNetDistance is the
maximum distance between the Mother net and the Ready nets, Order() gives
the ordering number of a net, Length() gives the length of a net, Distance()
gives the horizontal distance between two nets, Nordering' Miength @Nd Nyistance
are the weighting factors for the ordering, length and distance terms,

respectively.

Similar to the Mother net priority function, terms in the net priority
function are also normalized to reduce the effect of diverse channel
Characteristics. In addition to the length and ordering terms, another term is
included here, namely the distance between the Ready net and the Mother net.
It was found that the closer the Ready net to the mother net, the better the

track utilization.

J.2.3 Maximal Subset Selection

With the above Ready net set, any one net in the set can be routed with the
Mother net without any vertical or horizontal conflicts. But since there may
be horizontal conflicts between the Ready nets themselves, not all of them
can be assigned to the same horizontal track. The problem is now to find a
subset of nets from the Ready net set so that (i) the subset of nets can all be
routed with the Mother net in the same horizontal without conflicts, (ii) the

resulting assignment will result in an optimal or near optimal solution.

Using the described net priority function f, the best subset can be
considered as the one that has the maximum combined net priority among all
subsets that satisfy the subset requirements. This maximal subset selection

problem is equivalent to finding the maximal subset in the weighted

103

horizontal constraint graph. Such a maximal subset problem is known to be

NP-complete. Thus, a heuristic technique is used here.

First, the Ready net set is ordered in descending order of net priorities.
Then, a small number of test subsets are created (for example, five), and each
test subset is initialized to contain one of the highest priority nets. Then
each test subset is expanded by adding as many nets as possible from the
Ready net set in descending ordering of priorities provided that the addition
would not create any horizontal conflicts among the nets already in the test
subset. When all the nets are examined and none of the test subsets can be
further expanded, the nets in the test subset with the highest combined net

priority are selected to be routed with the Mother net.

3.2.4 Track Assignment and Graph Update
After the maximal subset is found, all the nets in that subset are routed in

the same horizontal track with the Mother net. The vertical constraint graph
is then updated by deleting those vertices corresponding to the routed nets.
If the set of remaining unrouted nets is not empty, the channel height is
increased by one horizontal track and the routing process is repeated until all

the nets are routed.

3.3 I[mplementation
The above algorithm has been implemented in Domain C Revision 3.12 on an

Apollo Domain DN660 workstation under the Aegis operating system Version

8.0. Structured charts and program listing of the channel router with the

104

dogleg extension are included in Appendices A and B. As shown in the
structured chart of the main program, DOGLEG.C, in Appendix A, Fig. Al, the
program is consisted of three main sections: (i) Filer, (ii) Doglegger, and (iii)
Non-Dogleg Router. The first section, Filer, performs basic input error
checking and creates a linked list data structure for the input netlist. The
second section, Doglegger, modifies the input netlist so that dogleg routing
can be achieved using the described non-dogleg routing algorithm. Finally, the
third section, Non-Dogleg Router, performs the described non-dogleg routing.
For the non-dogleg algorithm, only the Filer and the Non-Dogleg Router
sections are used. Since the Doglegger section is independent of the other
two sections and pertinent only to the dogleg algorithm, its description is
postponed until the next chapter on the dogleg extension of the algorithm.

Here, the Filer and the Non-Dogleg Router scclions will be described.

when the program is invoked, the Filer section reads in the specified
weighting factors and netlist files. The weighting factors are stored in a set
of global variables accessible by the priority functions. A list representation
of the netlist as described in Section 3.1.3 is then created. The head nodes of
the nets are arranged in an array for more efficient reference by net numbers.
Each head node contains: (i) two pointers, FIRST_TERM and LAST_TERM,
pointing to the first and last nodes of a linked list of terminal connections,
and (ii) two integers, LEFT and RIGHT, containing the vertical track numbers

of the left and right endpoints of the net.

After the netlist data structure is created, the Non-Dogleg Router
takes over. It first creates the vertical and horizontal constraint graphs for
the netlist. The vertical constraint graph is represented as an adjacency list

embedded in the netlist structure. Each head node in the netlist structure

105

contains: (i) a pointer, FIRST_SON, pointing to a linked list of descendent
nodes of the net in the vertical constraint graph, (ii) an integer, ORD_NUM,
containing the ordering number of the net, and (iii) an integer, PARENT,
containing the number of ancestor nodes the net has. After the structure of
the vertical constraint graph is created, a recursive procedure is called to
calculate the ordering numbers of the nodes. Then the horizontal constraint
graph is created. The horizontal constraint graph is represented as an
adjacency matrix for more efficient access to distances and horizontal

conflicts between nets.

With the graphs created, the Non-Dogleg Router proceeds to perform
non-dogleg track assignments. As described in the pseudo-codes of the
algorithm, the track assignment process consists of four major steps: (i)
Mother net selection, (ii) Ready net set creation, (iii) maximal subset
selection, and (vi) graph update. All of these steps have been implemented as

they were described in Sections 3.2.1 to 3.2.4.

The program listing of the channel router with the dogleg extension,
Doglegger, is included in Appendix B. By removing the procedure call to the
subroutine Doglegger, the program would perform non-dogleg channel routing
on the input netlist. Such a modular approach would allow the user to
conveniently select between dogleg and non-dogleg routing using a simple

command line switch.

The program listing in Appendix B was transferred directly from the
Apollo workstation to a Macintosh microcomputer, where the program was
printed with page numbering. Correctness of the program has been verified by

comparing the partial results of several examples generated by the program

106

and by manual traces of the algorithm.

3.4 Efficiency of the Non-Dogleg Routing Algorithm

In this section, efficiency of the non-dogleg algorithm will be illustrated
through detailed traces of two examples and through an analysis of the CPU
times required versus the complexity of the channels. First, partial results

generated at each major step of the algorithm are shown for two examples.

3.4.1 Example 1
Consider the channel routing problem shown in Fig. 14. The channel is 12

terminals long, and consists of 10 nets. The vertical constraint graph and the
horizontal constraint graph of the channel are shown in Fig. 19. From the
graphs, the channel density is 5 and the channel ordering is 4. Thus, the

minimum channel height is 5.

A step by step illustration of the algorithm is presented here. At each
stage of the routing process, reduced vertical constraint graphs are used to
show the progress made in each step (Fig. 20). The weighting factors used in
the Mother net priority function fp, are Mg,,=10 and Mygenin=40. The

weighting factors used in the net priority function f, are Nygering=15,

N\engi.h= 10 and Ndislance=5'

Step 1: §,=1(1,2,3,45,6,7,8,9,10]
Si=¢
TrackNumber = 0

Step 22 TrackNumber = 1

107

(a) (b)

(c) (d)

Fig. 20. Reduced vertical constraint graphs for Example 1.

l

eyl el el
e R I e T s rd o s sty

Fig. 21. Realization of Example 1.

108

Step 3:

Step 4
Step S:
Step 6:
Step 7:

Step 8:
Step 2:
Step 3:

Step 4:
Step 5
Step 6:
Step 7:

Step 8:
Step 2:
Step 3:

Step 4
Step 5:
Step 6:
Step 7

Step 8:
Step 2:

S = (1,4,10}; 1, (1) = 29, f_(4) = 34, fm(10) = 33
MotherNet = 4

ReadyNetSet = {10]; f, (10) = 25

S, ={10}

Assign net 4 and 10 to track |

Delete net 4and 10 from S; S, = {1,2,3,5,6,7,8,9)
Delete vertices 4 and 10 from G, (Fig. 20a)
Sp* ¢repeat from step 2

TrackNumber = 2

Sp = 11,7,9); 1,,(1) =39, f_(7) = 42, fm(9) = 28
MotherNet = 7

ReadyNetSet = {1]; f (1) =25

s, = (1) '

Assignnet 1 and 7 to track 2

Delete net 1 and 7 from S; S, = (2,3,5,6,8,9)
Delete vertices 1 and 7 from G, (Fig. 20b)

Sp = ¢repeat from step 2

TrackNumber = 3

S = (5,6,9]; 1(5) = 38, f_(6) = 35, fm(9) = 42
MotherNet = 9

ReadyNetSet = {5,6); f(5) = 25, f (6)=22

S, = (5,6}

Assignnet 5, 6 and 9 to track 3

Delete net 5, 6 and 9 from S; S, = (2,3,8)
Delete vertices 5, 6 and 9 from G, (Fig. 20c)
Sp * ¢ repeat from step 2

TrackNumber = 4

109

Step 3:

Step 4
Step 5:
Step 6:

Step 7:

Step 8:
Step 2:
Step 3

Step 4
Step 5
Step 6:
Step 7:

Step 8:

The final track assignment is shown in Fig. 21. A total of 5 horizontal tracks
were used in the realization. This channel although small in size, has a fairly
high ordering (4) compared to the density (5). However, the algorithm was

still able to complete the routing in minimum channel height.

Sm = (2,3,8]; 1,(2) = 42, f_(3) = 36, fm(8) = 36
MotherNet = 2

ReadyNetSet = (8}; f (8) = 25

S, =(8}

Assign net 2 and 8 to track 4

Delete net 2 and 8 from S,; S, = (3)
Delete vertices 2 and 8 from G, (Fig. 20d)
Sp = ¢ repeat from step 2

TrackNumber = 5

S =(3); f,(3) =42

MotherNet = 3

ReadyNetSet = ¢

S,=¢

Assign net 3 to track 5

Delete net 3 from Sy; Sy = ¢

Delete vertex 3 from G; G, = ¢

S = ¢; Stop. Routing completed.

3.4.2 Example 2
A second example is the channel shown in Fig 22a

terminals long and consists of 35 nets. As can be seen from the graphical

110

The channel is 35

4 é 4 4 5 &
4 v 6 A
Y YY 9 v
10 11 v v A 12 v
4 14 A
15 16 A
17 v Vv 4 VA 4 1] vV Vv 18
v 19
4 20 \
v 21
v v v
(a)

ORDERING

NUMBER P :

',] y: -
() :

3

()
(b)
Fig 22 Representation and vertical constraint graph of Example 2.

(a) Graphical channel representation of example 2;

(b) Vertical constraint graph of example 2.

111

representation of the channel in Fig. 22a, the channel density is 12. The
vertical constraint graph of the channel is shown in Fig. 22b. From the graph,
the order of the channel is 7. The lower bound on the channel height is
therefore 12. The weighting factors for the Mother net priority function and

the net priority function are the same as those used in Example 1.

Table 1 shows the track by track routing of the channel. For each track,
the Mother net candidates are listed in the second column. The Mother net
priorities are listed in parenthesis after the net numbers. The Mother net
selected is shown in bold. The Ready nets with respect to the selected Mother
net are listed in the last column and the Ready net priorities are listed in
parenthesis. The Ready nets selected are shown in bold. A total of 12
horizontal tracks are used in the realization as shown in Fig. 23. The channel

height is again equals to the minimum.

3.4.3 Execution Time Versus Channel Complexity

The current implementation of the algorithm, as a study of the algorithm, was
designed for clarity rather than speed. The program is highly modularized
utilizing over 35 modules, including 16 diagnostic and messaging subroutines.
By optimizing the data structures and coding of the algorithm higher speed is

achievable.

Since the algorithm operates on units of nets, the number of nets in the
channel gives a fairly good measure of the channel complexity. A plot of the
CPU time required on the Apollo workstation versus the number of nets for
twelve examples is shown in Fig. 24. The curve labelled NON-DOGLEG shows

the CPU time required by the non-dogleg router. The other two curves

112

(££)S1 A}

(gg€)le (62)51 i

iz (ge)oe (62)S1 ot

(52)91 (1202 (P29 (SZIP L 6

(£g)6l (P2)9L (92! 8

(g6l (LIWI(ELIEL A

(Z1)2L (il (1261 (L)L (P (IC)CL 9

(LD gLkl (G)LE (2)oL (6Bl (Sl @Lwl Bl (901 (kE)E S
(1)1 (S1)8 (£1)2 (6Bl (ZPL (901 (0£)6 (218 (01 (P2)E 14
gyst whe (i (el @bel (0l (11)B (8 (02) (92)e (6)l £
(F)6L (88l (Bl (18 (8) (££)9 (02) (S22 (9 A

(£&)s (sig (9helL (olel (Bl (638 (L (925 (Lew (Lbhe @Dz @) l

sjau Apeey EIBPIPUB) JON JaYlol] L]

'z 9|dwex3 jo bujnoy ‘| a|qey

113

'z 9|dwex] Jo uojjezieay ¢z by

9l pl
61

£l
Zl Ll
gl (3 ol

8l A l

P v O e N i A A PR) L D D e D Pt A 10 ”
Y o o R ST S S A T s - e A A P S A A A o
P S A L I O I S L S S B o e Y N O I I I B VY Gl

114

CcPU
TIME
(SEC)

3.0

25

2.0

1.5

1.0

0.5

CPU TIME VS. CHANNEL COMPLEXITY

-+ DOGLEG!
DOGLEG2
(including net
/ splits in net count)
NON-DOGLEG
0 20 40 60 80 100 120 140

NUMBER OF NETS

Fig. 24. CPU time vs. channel complexity for the Dogleg and

Non-Dogleg channel routers.

1S

labelled DOGLEG! and DOGLEG2 are CPU times for the dogleg router, which

will be discussed in the next chapter on the dogleg extension of the algorithm.

From the curve NON-DOGLEG, it can be seen that the CPU time required
by the non-dogleg router is almost linear, increasing only gradually with the
number of nets. In particular, the routing of a 72-net channe! (Deutsch's

Example) required only about 1.3 seconds.

3.5 Experimental Results
A total of twelve examples have been obtained from previously published

papers. The collection of examples covered a wide range of channel types
from relatively small channels consisting of about 10 nets and 10 terminals
to fairly complex channels consisting of 72 nets and 174 terminals. As
discussed, the lower bound on the channel height depends on both the channel
ordering and the channel density. The selected examples covered channels
with ordering numbers lower than density numbers, and channels with
ordering numbers higher than density numbers. The twelve examples thus

represent a fairly good mix of practical channel routing problems.

Table 2 lists the characteristics of the twelve examples and the
resulting channel heights obtained with the non-dogleg routing algorithm.
Columns two and three (Nets and Terms) are the number of nets and number of
terminals in the channel, respectively. Columns four and five (Density and
Order) aré the density number and ordering number of the channel,
respectively. Column six (Ord/Den) is the ratio of the ordering number to the
density number. This ratio is used in the Mother net priority function, fry L0

adapt the algorithm to channels of different characteristics. The last two

116

g1 L1 €50 6 L1 £9 Ly ¢l
Gl o LZ0 b Gl £9 % Ll
4 4\ 850 L 4 oy ¥4 Ol
81 L1 9.0 <l L1 611 2 6
Z| 4! 850 L zl G¢ 0Z 8
0z 02 G0 g 0z 611 09 L
82 82 121 £2 6l P ZL 9
61 8l £€0 9 8l 6L P S
S S 00'l S S 81 0l 4
£ g 00'1 g g L1 L g
t b 050 4 % L 9 4
S S 080 14 S A 0l _
JiNSay _NE_HQO uag/pJdo JopJo %u_m:mﬁ_ SulJaj S1aN o_nmeu
u:mmoz jauuey) S$31]1S143)2edey)

'sa|dwex3 au} jo syybiay [auueyo buiy(nsad pue sotisidalieleyy ‘Z alqel

117

columns (Optimal and Result) are the optimal channel height and resulting
channel height obtained by the algorithm, respectively. Realizations of the

twelve examples are shown in Figs. 25-36.

3.6 Discussions

As discussed in Section 3.1.6, the lower bound on the channel height is
determined by both the ordering and the density of the channel. In the twelve
examples, ordering to density ratios (Ord/Den) from as low as 0.15 to as high
as 1.21 are covered (column 6 of Table 2). For channels with high orderings,
nets with high ordering numbers should be routed as early as possible, since
the maximum ordering in the vertical constraint graph at any one time
determines the minimum number of additional tracks required. For channels
with high densities, routing the longer nets at the beginning usually results in
realizations requiring fewer tracks. Since the goal was to develop a
non-dogleg channel routing algorithm for the entire class of problems defined
in Section 3.1.1, the algorithm is judged on its performance in the routing of

all twelve examples.

As can be seen from Table 2 and Figs. 25-36, the algorithm was able to
route all twelve examples in no more than one horizontal track above the
optimal channel heights. Furthermore, 75% (nine out of twelve) of the
examples were routed in their minimum channel height, and the remaining
25% (three out of twelve) were routed in one track above their minimum
channel height. These results were obtained using a single set of weighting
factors. By adjusting the weighting factors slightly, all twelve examples

were routed in their minimum channel height.

118

Fig. 25. Non-dogleg realization of Example 1 (channel height: 5).

Fig. 26. Non-dogleg realization of Example 2 (channel height: 4).

119

Fig. 27. Non-dogleg realization of Example 3 (channel height: 3).

Fig. 28. Non-dogleg realization of Example 4 (channel height: 5).

120

(61 ublay [auueyd) ¢ aldwex3 Jo uoliez||ead Ba|bop-uoN 6z B4

121

(92 ‘ublay 1auueyd) g e|dwex3 Jo UoLeZ||ead Balbop-uopN 05 B4

122

(0 134blay |suueyay £ alduwex Jo uoljez||ead bajbop-uoN ‘| ¢ B4

123

(21 ublay |auueyd) g aidwexd Jo uoiez||ead bebop-uoN ‘zg B4

124

o
1

g1 3ublay (euueyd) § ajdwex3 Jo uoljez|ead baibop-uoN ¢¢ ‘B4

125

(21 1blay 1auueyd) o) a|dwexd 4o uoljeziead 6abop-uoN ¢ ‘Big

126

(Gl 3ubray [auueyd) | | a|dwex] Jo uoiiezi|ead bajBop-uoN ‘g¢ B4

127

(81 ‘blay [suueya) 7| s|dwex] Jo uoliez||ead babop-uoN ‘9¢ B4

128

Among the twelve examples, Example 6 is commonly known as
Deutsch’s Difficult Example [DEU76] and has been widely used in literature as
a benchmark test case for channel routing. Although Deutsch's Difficult
Example contains fewer than the typical number of nets (72 vs. about 100), it
is difficult because of its severe vertical constraints. It has a channel
ordering of 23, while the channel density is only 19. Furthermore, the
minimum non-dogleg channel height was found to be 28 tracks, which is far
above the ordering and density of the channel. The 28-track minimum
non-dogleg realization was first obtained by Deutsch using a branch-and-
bound technique [KER73] after four hours of computation on an HP2100
minicomputer [DEU76]. But, the new algorithm was able to route this
difficult example in minimum channel height in less than 1.3 seconds
(including the reading of the net list and the writing of the routing results).
The 28-track non-dogleg solution has only been obtained by one other routing
algorithm [YOSB2] that does not require an explicit or implicit exhaustive
search (branch-and-bound techniques are considered as implicit exhaustive

searches).

Moreover, since the algorithm is able to adapt the priority function
according to the characteristics of the channels, the algorithm is relatively
insensitive to the values of the weighting factors. For example, varying the
weighting factor Ny from 2 to 10 has no effect on the routing results.
This feature allows the algorithm to route different channels without user

intervention.

129

3.7 Summary
Experimental results presented in this chapter have shown that the

non-dogleg channel routing algorithm has very good performance. Since the
algorithm adapts itself according to the characteristics of the channel, the
algorithm is able to produce optimal or very near optimal results for a wide
range of practical channel routing problems. In all twelve examples tested,
the algorithm was able to route the channels in no more than one track above
the optimal channel heights. Furthermore, the algorithm performs equally
well for channels with ordering above or below density, and is fairly
insensitive to the values of the weighting factors. A comprehensive
description of the algorithm and the corresponding results is provided in
[TSK87a]

130

CHAPTER Iv
DOGLEG EXTENSION

in Chapter 111, the non-dogleg channel routing algorithm was introduced.
In the definition of the channel routing problem in Section 3.1.1, each net in
the channel is limited to have at most one horizontal trace, and hence occupy
at most one horizontal track. Very often, however, such requirement is too
restrictive. In this chapter, an extension to the non-dogleg algorithm will be
described. The extension relaxes the restriction to allow doglegging of the
horizontal traces at terminal positions. A net is thus allowed to span several
horizontal tracks. In the following sections, the motivations and tradeoffs of
introducing doglegs, the development and implementation of the dogleg

channel routing algorithm, and the experimental results will be described.

4.1 Motivation and Tradeoffs of Introducing Doglegs

As described in Section 3.1.2, a dogleg splits the horizontal trace of a net
into two or more horizontal segments on different horizontal tracks. The
motivation of introducing doglegs is twofold. First, since the lower bound on
the channel height is determined by both the channel density and the channel
ordering, a long constraint chain in the vertical constraint graph may prevent
the channel from being routed at or near optimal channel height. Introducing
doglegs would allow those long vertical constraint chains to be broken. This
is particularly important in channels where the ordering is higher than the
density.

131

Consider the channel shown in Fig. 37a. Without doglegs the 3-track
realization shown in Fig. 37b is already the optimal, because the channel
ordering of 3 is higher than the channel density of 2, which bounded the
minimum channel height at 3 tracks. However, when doglegs are used, the
same channel can be routed in 2 tracks as shown in Fig. 37c, where the
channel ordering is reduced to 2, and the lower bound on the channel height is

determined by the channel density of 2.

Another motivation of using doglegs is that, doglegs would enable
routing of channels with vertical constraint loops, which would otherwise be
unroutable. In Fig. 38a, each net in the channel requires the other net to be
routed above and below it at the same time. This situation corresponds to a
directed cycle in the vertical constraint graph. Without doglegs, this channel
would be unroutable. Using doglegs, the directed cycle in the vertical

constraint graph can be broken, and the channel is routed as shown in Fig. 38b.

The advantages of introducing doglegs are thus fairly clear. Doglegs
enable us to (i) reduce long vertical constraint chains, and (ii) break vertical
constraint loops. However, the use of doglegs also involves tradeoffs that
must be considered. First, without doglegs, the channel realization always
uses the minimum number of vias, while the introduction of each dogleg
would add one or two additional vias. Since vias increase the interconnection
resistance and capacitance, and reduce the circuit reliability, the number of

vias, and hence, the number of doglegs, should be as few as possible.

Another tradeoff involved in the use of doglegs is that, each dogleg
increases the local density of the channel by one at the vertical track where

the dogleg is placed. Since the routing process depends not only on the

132

(c)

Fig. 37. Anexample illustrating the advantage of doglegs.
(a) Graphical representation; (b) Non-dogleg realization;

(c) Dogleg realization.

133

(a)

.....................................

..
...

(b)

Fig. 38. An example unroutable without dogieg.
(a) A channel with a constriant loop; (b) Realization and

vertical constriant graph of the channel using doglegs.

134

maximum density of the channel, but also on the local densities and the span
(the number of vertical tracks having a local density equals to the channel
density), increasing the local densities could complicate the routing process
and result in sub-optimal realizations. Therefore, although doglegs could
produce better solutions for certain channels and even allow channels with

constraint loops to be routed, they should be used only when necessary.

4.2 Dogleg Channel Routing Algorithm

In light of the above considerations, the new dogleg channel routing algorithm
doglegs only at the terminal positions of a net. That is, the algorithm would
not dogleg a net unless there is already a via. This way, the number of vias is
limited to at most 2T vias, where T is the total number of terminal
connections in the channel, excluding the endpoint connections. Moreover, the
algorithm would not extend a net beyond its original endpoints or permit its
horizontal segments on different tracks to overlap. Such routing style can
only increase the local densities of the channel. While sometimes beneficial,
the incidence of such situations does not justify the complication of the

routing process.

In general, doglegging at terminal positions alone has the following
advantages: (i) it eliminates the need of additional vertical tracks for the
doglegs, (ii) the resulting horizontal trace is always the shortest, and (iii) it
avoids such cases as routing off the ends of the channel as with the Greedy
Channel Router [RIV82].

135

4.2.1 Basic Dogleg Channel Routing Algorithm
The following is the basic structure of the dogleg channel routing algorithm.

[Basic Dogleg Channel Routing Algorithm]:

BasicDoglegRouter;
begin
order the nets to be split;
for each net meeting selection criteria do
begin
for each terminal in the net (excluding endpoints) do
if terminal should be split then
split the net at the selected terminal position;
assign doglegging priority to the resulting subnets;
end;
non-dogleg channel router;
end; {BasicDoglegRouter) O

The basic idea of the above algorithm is to first split the nets into
subnets at selected terminal positions where doglegging may improve the
solution, then use the previously developed non-dogleg channel routing
algorithm to complete the routing. The main advantage of this approach is
that, rather than developing an entirely new algorithm from scratch, previous

research can be capitalized.

In the above dogleg channel routing algorithm, the nets are first
ordered. Then one by one the nets are examined to determine if doglegging the
net would reduce the ordering of the channel. If so, each terminal in the net
(excluding the endpoints) is examined to decide whether the net should be
split at that terminal position. This process continues until all the nets are
examined. The result is a modified netlist that is equivalent to the original

netlist but with certain nets divided into two or more subnets.

136

After a net is split, doglegging priorities are assigned to the resulting
subnets as negative distance values. A negative value is used since the net
priority function contains a term MaxReadyNetdistance-Distance(Mother Net).
When the distance value between two subne»ts is large and negative, the
subnets would have higher net priorities compared with the others. Thus, in
the net selection processes those subnets would be more likely to be routed
together, and be re-merged back into a longer subnet. This distance value is
therefore equivalent to a priority factor for doglegs. The more negative this
doglegging priority, the less doglegs would be used. When this value become

very negative, the dogleg algorithm reverts back to the non-dogleg algorithm.

4.2.2 Net Ordering

As noted previously, each dogleg increases the local density of the vertical
track where the dogleg occurs by one. In order to keep the minimum height of
the modified channel to no greater than that of the original channel,
doglegging of a net is not allowed if the doglegging would increase the
channel density above the original channel density. Thus the number of
doglegs that can be placed in any vertical track is limited to the channel
density minus the original local density of that vertical track. Being limited
by the number of possible doglegs, the order the nets are doglegged becomes
important. If the nets were doglegged indiscriminately, the channel density

could be reach easily, leaving some long vertical constraint chains unbroken.

Two net ordering schemes were tested in reducing the ordering of the
channel. The first scheme arranges the nets in descending order of their

ordering numbers, so that nets with higher ordering numbers are doglegged

137

first. The second scheme arranges the nets in descending order of their
number of ancestors in the vertical constraint graph. The reason is that,
doglegging a net results in subnets having lower ordering numbers. The
reduced ordering numbers are then propagated to the ancestors of the subnets.
Thus, nets with more ancestors when reduced would result in more nets
having reduced ordering numbers. Using a simplified dogleg router that
sequentially splits all nets at all terminal positions as long as the local
densities do not exceed the original channel density, the two net ordering
schemes were tested. The channel orderings and channel heights of the
twelve example channels were compared. The results of no net ordering
(columns two and three), ordering by net ordering numbers (columns four and
five), and ordering by number of ancestors (column six and seven) are listed in

Table 3.

From the table, it can be seen that the channel orderings were different
with and without net ordering (columns two and four). It thus showed a need
for net ordering. Moreover, although the channel orderings were the same
with no ordering (column 2) and with ordering by the number of ancestors
(column six), the resulting channel heights were better in the latter case.
Thus, ordering by the number of ancestors showed superior results. In fact,
even with the simplified algorithm using no net and terminal selections, ten
of the twelve examples were routed in density, and the remaining two
examples were routed within two tracks of densities. In particular, the
Deutsch’s Difficult Example (Example 6) was routed in 21 tracks, which is the
same as that of the Dogleg Channel Router of [DEU76], and showed a great

improvement over the 28 track optimal realization without doglegs.

138

2 L Ll L Ll L zl
91 tr = 17 L t bl
¢l 9 ol g =l 9 Ol
Ll = 1 G £l g 6
ol 9 a g &l 9 e
0Z £ 0z ¢ 0Z £ .
L& H s g & o 9
g1 G u o 21 9 G
= 5 5 = 5 5 4
£ £ £ £ £ £ £
3 z P z 4 z ¢
g te 5 P g t {
1ybray Buiiapug wbiay Buisapig 1ybraH bBuiiapuag
ajdwexy

5481580uy Jo Jaquny fig

sdaquny buiagapag Ag

Guiaapip 189N ON

'58LUEYIs bultaplo 18U o uoswedwor ¢ 81qe

oL

139

4.2.3 Net and Terminal Selection

As described in the structure of the dogleg channel routing algorithm in
Section 42.1, after the nets are ordered each nets is examined to determine
whether doglegging the net would likely to reduce the channel ordering, and if
so which terminal should be doglegged. After experimented with several net

and terminal selection schemes the following scheme was chosen.

for each vertex in the vertical constraint graph do
if the vertex has at least one ancestor and one descendent then
fort;=t,tot _,do
if t;_; and t;,, are connected to opposite boundaries and
Density(t;) < ChannelDensity then
split the net at terminal position t;;

The above selection scheme examines the corresponding vertex of each
net in the vertical constraint graph. If the net has at least one ancestor and
one descendent, the net is in a situation similar to that of net 2 in Fig. 37. By
splitting the net into subnets, the ordering numbers of the ancestors are
reduced by one. Furthermore, the dogleg should occur in a terminal position t;
where the previous terminal connection t,_; and the next terminal connection
t;,; are to opposite channel boundaries. Such a terminal position separates
the portion of the net that should be placed above the descendent net and the
portion that should be placed below the ancestor net. Doglegging the net at
such terminal positions would break the constraint chain into two disjoint

chains, and reduce the ordering.

140

42.4 Complete Dogleg Channel Routing Algorithm

The complete dogleg channel routing algorithm including the net ordering
scheme, and the net and terminal selection scheme can be described in

pseudo-code as follows.

[Complete Dogleg Channel Routing Algorithm]:

CompleteDoglegChannelRouter;
begin
order the nets in descending number of ancestors;
for each vertex in the vertical constraint graph do
if the vertex has at least one ancestor and one descendent then
begin
fort, =t tot _,do
if {,_, and t,,, are connected to opposite boundaries and
Density(t;) < ChannelDensity then
split the net at terminal position t;;
distance between all subnets in the same net = DoglegPriority;
end;
non-dogleg channel router;
end; {CompleteDoglegChannelRouter) a

43 Implementation
As described, the only different between the dogleg routing algorithm and the

non-dogleg routing algorithm is in the Doglegger section. After the Filer read
in the input netlist, the Doglegger modifies the netlist splitting the nets into
subnets at selected terminal positions, then the Non-Dogleg Router takes the
modified netlist and performs a non-dogleg routing. As shown in the
structured chart of the Doglegger in Appendix A, Fig. A2, the Doglegger is

consisted of four main processes. First, the Doglegger finds the local density

141

at each vertical track to ensure that the net splits would not increase the
channel density. Then, the vertical constraint graph is created to determine
the number of ancestors for each net and the input netlist is ordered by their
number of ancestors in the vertical constraint graph. After the netlist is
ordered, the net and terminal selection process determines which nets should
be split and at which terminal positions. When a net is split, the subnets
created are appended to the end of the netlist structure. After all the nets
are examined and all the subnets are created, the modified netlist is passed

on to the Non-Dogleg Router section to complete the routing.

4.4 Efficiency of the Dogleg Routing Algorithm

In this section, the efficiency of the dogleg router will be discussed in terms
of the CPU time required versus the complexity of the channel. Two curves
labelled DOGLEG1 and DOGLEG2 were shown in Fig. 24 along with the curve
NON-DOGLEG for the non-dogleg router. The curve labelled DOGLEG! showed
the CPU time required versus the number of nets in the original netlist while
the curve labelled DOGLEG2Z showed the CPU time required versus the number

of subnets in the modified netlist.

An analysis of the DOGLEG1 curve showed that the complexity of the
algorithm is about O(n?) to (n3), where n is the number of nets in the original
netlist. However, when doglegs are used, the complexity of a channel depends
not only on the number of nets in the channel, but also on the number of
doglegs. The curve DOGLEG2Z shows the CPU time required when the
complexity of the channel is measured by the number of subnets, which is

equal to the number of nets in the channel plus the number of possible

142

doglegs. As can be seen from Fig. 24, the DOGLEG2 curve is fairly linear. The
algorithm is thus able to handle fairly complex channels with reasonable

running time.

45 Experimental Results

Using mother net priorities of Mg,,,=10 and Mordering=22, Net priorities of
Norder=10, Nigngin=15 and Nygynce=10, @nd a dogleg priority of -20, the results
obtained by the new dogleg channel routing algorithm are summarized in Table
4, and the channel realizations are shown in Figs. 39-50. In Table 4, columns
two and three are the densities and orderings of the original examples.
Column four is the reduced ordering numbers obtained from the simplified
algorithm repeated here for comparison. The remaining columns are results
obtained using the new implementation. Note that the ordering numbers were
further reduced using the new algorithm (examples 5, 8 and 10). More
importantly, the number of net splits and the number of doglegs used were
greatly reduced. Since each dogleg requires an additional via, the reduced
number of doglegs showed that the net and terminal selection schemes were

effective in determining where the doglegs should be placed.

From Table 4, the dogleg channel routing algorithm was able to route
75% (nine out of twelve) of the examples in a channel height equals to their
density, 17% (two out of twelve) in a channel height equals to one track above
their density, and 8% (one out of twelve) in a channel height equals to two
tracks above their density. These results were obtained using a single set of
weighting factors. By adjusting the weighting factors slightly, eleven

examples were routing in a channel height equals to their density, while

143

Ll 8 o £ £ i L cl
Ll < 9 7 154 14] Ll
Al z < g g 4 Al Ol
gl 9| oz g g <l Ll i
Zl z g < g L Zl L
0g z z z g g 0Z L
0z i 7L 9 g oy 61 g
gl g 0l g g 9 gl G
5 0 0 5 G 5 G t
¢ 0 0 < < < < <
4 0 0 Z z z 14 ¢
= 0 0 5 2 4 5 ;
wbien | Baiboa |111dS 18N | P10 MBN | 0ysa0uy Butiapao | Rlisuag 51 dWEX
siinsay Buinoy eury fig 4ap40 [sa13s1301% 1RUiblag

wiiinbie Bulynog tauueyo baifiop mau ayy Jo s1nsey b 8lge)

144

Fig. 39. Dogleg realization of Example 1 (channel height: 5).

Fig. 40. Dogleg realization of Example 2 (channel height: 4),

145

Fig. 41. Dogleg realization of Example 3 (channel height: 3).

Fig. 42. Dogleg realization of Example 4 (channel height: 5).

146

147

'(0Z Iublay |auueyd) g ajdwexy Jo uojeziead baibog -

bt B4

148

e

(0T 3ubray |suuey) £ adwexy Jo Uo|1RZ||Ba batbog ¢t 614

149

‘(21 3ybray [suuey2) g ajdwex3 Jo uoieziiead bajbog ‘g Bi4

150

(g1 yblay (suueyd) g a1dwex3 Jo uojiez|esd 6sbog /b b4

151

(Z1 3ublay (suueya) 0| aldwex3 Jo uolieziead Balbog ‘gr Bi4

152

'[£1 3ubBlay (suueyd) || o|dwex3 Jo uoliez)esd Bajboq

-

8!

~

D14

153

i

&
i

| jybiiay (sugy

a

)

7| 8ldwex] L0 UoL1BZL|EEd

i

a8

Rilsly

<

b

'j._l

154

Deutsch's Difficult Example was routed in 20 track, only one track above the
minimum channel height. This result is comparable to any published dogleg
channel routers of the same nature, that is, routers that dogleg only at
terminal positions. Although it has not been proven, the 20-track realization
may be the minimum channel height achievable by routers that place dogleg at
terminal positions only. More specifically, the Dogleg Channel Router of
[DEU76] required 21 tracks, the Efficient Channel Router of [YOS84] required
20 tracks, and the Greedy Channel Router of [RIV82] also required 20 tracks
but it allows doglegging at all available vertical tracks and routing off the
end of the channel. Thus, the performance of the new dogleg channel routing
algorithm is at least as good as, and in many cases better than, other

published algorithms of the same class.

46 Vertical Constraint Loop Handling

As discussed in Section 4.1, the use of doglegs would enable us to route
channels with constraint loops that would otherwise be unroutable. In the
new dogleg channel routing algorithm described in Section 4.2.4, a net is split
only if the split would not increase the channel density. For channels with
vertical constraint loops, however, it may be necessary to introduce doglegs
that would increase the channel density. For example, the channel shown in
Fig. 38 has density and ordering both equal to 2, but the minimum channel
height is 3. Therefore, the requirement that a net split must not increase the
channel density needs to be dropped in order to cope with channels with

vertical constraint loops.

155

Two additional examples, Example 13 and 14, have been obtained from
[MAT72]. Both examples contain a vertical constraint loop that would be
unroutable without doglegs. Using the new dogleg routing algorithm with the
density check (Density(t;)<ChannelDensity) dropped, Mother net priorities of
Nigngtn=10 and Ny 40ing=25, net priorities of Ny.4.=10, Nigngtn=15 and
Ngistance=20, @nd a dogleg priority of -50, the two examples have been routed,
Moreover, Examples 1-12 have also been re-routed without the density check
for comparison. The results are summarized in Table 5 and the realizations

of Example 13 and 14 are shown in Figs. 51 and 52.

In Table 5, columns two and three are the original densities and
orderings of the channels; columns four and five are the new densities and
orderings of the channels when doglegs are introduced; column seven is the
number of net splits, which determines'the maximum number of doglegs that
can occur; column eight is the actual number of doglegs used; and column nine
is the resulting channel height. The difference between the number of net

splits and the number of dogleg used is the number of subnet re-merges.

From the results shown in Table 5, it can be seen that the channel
densities for four of the fourteen examples were increased above the original
channel densities due to the relaxed terminal selection scheme (dropping of
the density check). For channels with no vertical constraint loops (Example
1-12), the algorithm was able to re-merge the unnecessary net splits, and
only the channel height of the Deutsch's Difficult Example (Example 6) was
slightly increased by one track. For channels with vertical constraint loops
(Example 13 and 14), Example 13 was routed in 19 tracks and Example 14 was

routed in 17 tracks.

156

| W] & 15 A - A Id!
61 & ol o s - @ el
L 2 & L & & 21 Zl
Ll = o t G |5 Sl Il
¢l & 3 e & £ &l ol
=3 =N B g 2 ©l Al]
a & S © ¢l & 4 P
Q& & & © ok = g 3
| & oF Lg = O e ol 3
gl g o) = = g =g 5
5 0 0 5 5 5 5 t
< 0 o & ¥ « e 3
4 0 0 & t & % z
5 0 4] 7 5 73 5 |
ybrap bajbog |111ds yan|bulsapag | yisuag |Buraapag | Ajtsuaq
51insay SALYSLIE1S Mol 5311511015 1eulbiiig olduex3

{5A00] JULEIIBUDD [BILII8A ULBIUOD | pue ¢| a|dwexrd)

Hasyd fijisusp ou yila Jdenod (auueys BojBop seu syl Jo s1insay 'S &lqe

157

—
(ng

YDLeY [BuLRYD) dOO] JULBAISUOD |BI1IJE8A B UTLA (BULEYD B

‘o] sldwex] jo uotyeziesd bafiog |g By

158

(41 30ULBY |Buley) dO0| JULRIISUCD [BIL48A B YL [BUURYD J8YI0UE

"t 1 aldwexy jouoyeziesd Gafoqg 75 Biyg

159

Comparing the results of Example 13 and 14 obtained by the new dogleg
channel router with other routers, the channel router of Mattison [MAT72]
routed the two examples in 23 and 20 tracks respectively, and the Dogleg
Channel Router [DEU76] required 19 and 17 tracks, respectively. The new
algorithm has thus shown a significant improvement over the channel router

of Mattison and performed as well as the Dogleg Channel Router.

4.6.1 Applicability of the Algorithm

The new dogleg channel routing algorithm is able to handle a large class of
channels with vertical constraint loops. However, there are certain cases
that the algorithm cannot handle. The limitation is due to the fact that the
nets are doglegged at terminal positions only and are not allowed to be
extended beyond their original endpoints. This approach has its advantages as
discussed in Section 4.2, but as an example, the channel shown in Fig. 53
would be unroutable because it requires an additional vertical track off the
right end of the channel, and requires a net to be extended from vertical track
I to vertical track 3, then "turn back” to vertical track 2, doglegging at

non-terminal positions and extending beyond its original endpoints.

The class of channels handled can be defined more precisely as follows:
if a channel contains a vertical constraint loop of n nets, at least n-1 of
those nets must each has at least one unconstraining terminal in between
every pair of constraining terminals. An unconstraining terminal is a
terminal that if removed would not alter the constraint loop. That is, the

constraint loop would still exist regardless of the unconstraining terminals.

160

..
...

Fig. 53. Achannel unroutable by the new channel router.
(a) A channel not handled by the new Dogleg routing algorithm;

(b) A realization requiring doglegs at non-terminal positions.

Fig. 54. An illustration of constraining

and unconstraining terminals.

161

InFig. 54, terminals 2 and 4 of nets 1 and 2 are constraining terminals,
removing any one of those terminals would disrupt the constraint loop. The
rest of the terminals, terminals 1, 3, S and 6 of net 2, are unconstraining
terminals, removing them would have no effect on the constraint loop.
Furthermore, terminal 3 of net 2 is an unconstraining terminal in between
two constraining terminals (2 and 4). If a dogleg is inserted at this terminal
position, the constraint loop would be reduced into two disjoint constraint
chains. It is such terminals that allow the channel to be routed with doglegs

at terminal positions alone.

47 Summary
The dogleg channel routing algorithm presented in this chapter is capable of

routing channels with no vertical constraint loops at or near optimal channel
heights. Moreover, the algorithm is able to handle a large class of channels
with vertical constraint loops. Among all the examples tested, the algorithm
was able to complete the routing in no more than two tracks above the
minimum channel height. In particular, the Deutsch's Difficult Example was
routed in 20 tracks, which is same as the best published result obtained by
routers of the same nature (dogleg at terminal positions only). The algorithm
has thus demonstrated the efficiency of a graph based heuristic approach to
the NP-complete channel routing problem. A description of this algorithm and

the corresponding results is provided in [TSK87b].

162

CHAPTER V
CONCLUSIONS AND RECOMMENDATIONS

Routing is a very challenging problem in VLSI layout design because of
its extreme complexity and its tremendous influence on the quality and
performance of the resulting circuit. Since over half of the die area can be
occupied by interconnections, and since the cost and performance of the
circuit rely heavily on the die size and the interconnection length, an

efficient router is critical to the success of the circuit.

Many routing algorithms have been developed for VLS| layout designs.
Maze-running and line-search algorithms have been widely used in layout
design systems, particularly in printed circuit boards (PCBs) design
workstations. Their popularity can be attributed to their generality and their
ability to find the optimal interconnection path if such a path exists. These
algorithms, however, are not suitable for L3I and VLSI layout designs. They
are not only inefficient in both space and time, but their inherent sequential
nature of routing one net at a time may also result in undesirable routing
patterns or excessive overflows. Due to the regular shapes of modules used
in VL3I layout designs, particularly in gate array and standard cell designs,

channel routing algorithms are much preferred.

A number of channel routing algorithms have been developed since the
channel routing concept was introduced by Hashimoto and Stevens [HAS711]
To cope with the complexity of the channel routing problem, which is
NP-complete, practical algorithms must employ heuristics. The heuristics

are embedded in a mathematical model of the routing process. Such models

163

include graphs [YOS82] and probabilistic hill climbing [ROMB4]. The
graph-based model has been selected because of its relative simplicity and
fairly accurate representation of the routing process. An attempt has been
made in this thesis to develop a heuristic channel routing algorithm based on
the graph model. The algorithm was aimed at the routing of a general class of
channels that frequently arises in gate array, standard cell, and building block

layout designs.

As demonstrated in the previous chapters, this thesis has contributed

to general and technical knowledge by achieving the following results:

1. Studied the VLSI layout design problem, in particular, the VLSI channel

routing problem and channel routing algorithms.

2. Developed a non-dogleg channel routing algorithm that is capable of
finding near optimal solution for a general class of channels that
arises very often in gate array, standard cell, and building block layout
designs. The algorithm is applicable to channels with ordering above or
below density. The heuristic used is flexible and allow different

routing criteria to be incorporated.

3. Developed a dogleg channel routing algorithm that is capable of routing
regular channels at or near density using doglegs. The dogleg channel
routing algorithm is also capable of routing channels with a class of

vertical constraint loops that would be unroutable without doglegs.

4. The performance of both channel routing algorithms have been
demonstrated through fourteen examples obtained from previously

published papers. The algorithms have been found to be better than or

164

comparable with most published channel routing algorithms. It has
thus demonstrated that the concept of a graph based heuristic channel
routing algorithm can be used efficiently in solving the NP-complete

VLS! channel routing probiem.

. The experimental results have shown that dogleg routing is not
universally better than non-dogleg routing. The percentage of examples
routed in their minimum theoretical channel height (/5%) is the same
with and without doglegs. Moreover, for those examples that did not
reach minimum channel height without doglegs, only those containing
severe vertical constraints are routed in smaller channel heights with
the use of doglegs. Therefore, whenever possible non-dogleg routing
should be used because: (i) it is simpler and requires shorter running
time than dogleg routing, and (ii) it may produces realizations that are

electrically superior to those produced with dogleg routing.

The research done and the conclusions drawn from it are important to
the theory and practice of CAD/CAE of VLSI layout designs. Through the study
and research, our understanding of the channel routing probiem has increased
considerably. Many other important guestions have been discovered through
out the course of the research, the following areas are recommended to

improve the research performed and presented in this thesis:

1. Other routing criteria such as minimum number of vias and minimum
‘wire lengths could be incorporated into the heuristic to produce better
routing patterns. Adaptive heuristic techniques should be used to

reduce the sensitivity of the algorithm to channel characteristics.

165

With a given routing area, the more evenly the wires are distributed the
more clearance the wires would have. Thus, the routing algorithms
could be modified to produce more evenly distributed routing patterns.
This may be achieved by routing from both the top and the bottom of the

channel at the same time.

Although the number of vias should be kept to the minimum, the dogleg
channel routing algorithm could be modified to allow doglegging at
non-terminal positions in cases where minimum routing area is the

main objective.

The dogleg channel routing algorithm should be modified to handle other
types of vertical constraint loops. This problem can be partially solved
by allowing doglegs at non-terminal positions. However, a more robust
approach would be to find the constraint loops in the vertical
constraint graph and develop an algorithm to break the loops. The cycle
breaking algorithm should also try to keep the lengths of the resulting

constraint chains to the minimum.

The channel routing algorithms can now handle channels with regular
shapes only. However, the possibility of applying the concept of a
graph based heuristic algorithm to general routing areas such as

switchboxes should be investigated.

The algorithms are now limited to two routing layers and the wire
traces on a layer are allowed to run in only one of two perpendicular
directions. The possibility of extending the algorithms to allow three
or more routing layers and relaxing the restriction on wiring directions

should be investigated.

166

[AHO83]

[AKES7]

[ANDB5]

[BRE76]

[BRESO]

[BREB3]

[BUR8B5]

[BURB6]

[CHAB6]

[CHEB6]

[CHOB5]

REFERENCES

A. V. Aho, J. E. Hopcroft and J. D. Ullman, Data Structures and
Algorithms. Reading, Massachusetts: Addison-wesley, 1983.

S. B. Aker, "A modification of Lee's path connection algorithm,"

IEEE Transactions on Electronic Computers, vol. EC-16, January,
1967, pp. 97-98.

H. Andou, I. Yamamoto, Y. Koike, K Shouji and K. Hirakawa,
“Automatic Routing Algorithm for VLSI," 22nd Design Automation
Conference, 1985, pp. 785-788.

M. A Breuer, Design Automation of Digital Systems, Theory and
Techniques, vol. 1. New York: Prentice-Hall, 1976.

M. A Breuer and K. Shamsa, "A hardware router,” Journal of Digital
Systems, vol. 4, no. 4, Computer Science Press, 1980, pp. 393-408.

M. A Breuer and A. Kumar, "A methodology for custom VLSI layout,”

IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-13,
no. 4, July/August 1983, pp. 470-475.

M. Burstein and M. N. Youssef, "Timing influenced layout design,”
22nd Design Automation Conference, 1985, pp. 124-130.

M. Burstein, "Channel routing,” in Layout Design and Verification,
Advances in CAD for VL3I, vol. 4, ed. T. Ohtsuki. New York:

North-Holland, 1986. pp. 133-168.

K. C. Chang and H. C. Du, "A preprocessor for the via minimization
problem,” 23rd Design Automation Conference, 1986, pp. 702-707.

H. H. Chen and E. 5. Kuh, "Glitter: A gridless variable-width channel

router,” IEEE Transactions on Computer-Aided Design, vol. CAD-5,
no. 4, October 1986.

5. Chowdhury and M. A. Breuer, "The construction of minimal area
power and ground nets for VLS| circuits,” 22nd Design Automation

167

[DEU76]

[FOS75]

[GAM81]

[GAR79]

[GEY71]

[60T86]

[HAMB4]

[HANE6]

[HAN72]

[HARS82]

[HAS71]

Conference, 1985, pp. 794-797.

D. N. Deutsch, "A ‘dogleg channel router,” 13th Design Automation
Conference, 1976, pp. 425-433.

J. Foster, "Prerouting analysis programs,” 12th Design Automation
Conference, 1975, pp. 306-310.

A. Gamal and Z. Syed, "A stochastic model for interconnections in
custom integrated circuits,” IEEE Transactions on Circuits and
oystems, vol. CAS-28, September 1981, pp. 888-894.

M. R. Garey and D. S. Johnson, Computers and intractability: A Guide
to the Theroy of NP- Coleeteness 2nd ed. San Francisco, CA; W. H.
Freeman, !979

J. Geyer, "Connection routing algorithm for printed circuit boards,”
IEEE Transactions on Circuit Theory, vol. CT-18, January 1971, pp.
95-100.

o. Goto and T. Matsuda, "Partitioning, assignment and placement,”
in Layout Design and Verification, Advances in CAD for VLS|, vol.
4, ed. T. Ohtsuki. New York: North-Holland, 1986. pp. 55-98.

G. T. Hamachi and J. K. Ousterhout, "A switchbox router with
obstacle avoidance,” 21st Design Automation Conference, 1984, pp.
173-179.

M. Hanan, "On Steiner's problem with rectilinear distance,” SIAM
Journal of Applied Mathematics, 14, March 1966, pp. 255-265.

M. Hanan and J. M. Kurtzberg, "Placement techniques,” in Design
Automation of Digital Systems: Theory and Techniques, vol. 1, ed.
M. A. Breuer. New York: Prentice-Hall, 1972. pp. 213-282.

N. Harada, "A new average interconnection length prediction
method for masterslice LSI," |EEE International Symposium on
Circuits and Systems, vol. 3, 1982, pp. 760-763.

A. Hashimoto and J. Stevens, "Wire routing by optimal channel
assignment within large apertures,” 8th Design Automation

168

[HAS82]

[HAY83]

[HEL77]

[HEY80]

[HIC83]

[HIG69]

[HOE76]

[HOR81]

[J0085]

[J0S85]

[KAJB3]

Workshop, 1972, pp. 15-166.

J. E. Hassett, "Automated layout in ASHLAR: an approach to the
probiem of ‘general cell’ layout for VLSI,” 19th Design Automation
Conference, 1982, pp. 777-784.

F. Hayes-Roth, D. AL Waterman and D. B. Lenat, Building Expert
systems. New York: Addison-Wesley, 1983. pp. 169.

W. R Heller, W. F. Mikhail and W. E. Donath, "Prediction of wiring
space requirements for LSI,” 14th Design Automation Conference,
1977, pp. 32-42.

W. Heyns, W. 5ansen, and H. Beke, "A line-expansion algorithm for
the general routing problem with a guaranteed solution," 17th
Design Automation Conference, 1980, pp. 243-249.

P. J. Hicks, ed, Semi-Custom IC Design and VLSl London, UK:
Peter Peregrinus, 1983.

D. W. Hightower, "A solution to the line-routing problems on the
continuous plane,” 6th Design Automation Conference, 1969, pp.
1-24.

J. Hoel, "Some variations of Lee's algorithm,"” IEEE Transactions on
Computers, vol. C-25, January 1976, pp. 19-24.

C. 5. Horng & M. Lie, "An automatic/interactive layout planning
system for arbitrarily-sized rectangular building blocks,” 18th
Design Automation Conference, 1981, pp. 293-300.

R. Joobbani and D. Siewiorek, "WEAVER: a knowledge-based routing
expert,” 22nd Design Automation Conference, 1985, pp. 266-272.

R. L. Joseph, "An expert systems approach to completing partially
routed printed circuit boards,” 22nd Design Automation
Conference, 1985, pp. 523-528.

Y. Kajitani, "Order of channel for safe routing and optimal
compaction of routing area,” |EEE Transactions on Computer-Aided
Design, vol. CAD-2, no. 4, October 1983, pp. 293-300.

169

[KAT85]

[KER73]

[KIN85]

[KINB6a]

[KIN86D]

[KIN86C]

[KINB6d]

[KIN86e]

[KIN87]

[KIR83]

F. Kato and H. Shiraishi, "Efficient compaction technique for LS|
layout,” IEEE International Conference on Computer Design, 1985,
pp. 646-649.

B. W. Kernighan, D. G. Schweikert and G. Persky, "An optimum
channel-routing algorihtm for polycell layouts of integrated
circuits,” 10th Design Automation Conference, 1973, pp. 50-59.

W. Kinsner, Computer-Aided Engineering of Printed Circuit Boards,
Course notes, Microelectronics Centre and University of Manitoba,
Winnipeg, Manitoba, Canada, July 1985, 300pp.

W. Kinsner, Computer-Aided Engineering of Electronic Circuits: An
Introduction, MC86-2, Microelectronics Centre and University of
Manitoba, Winnipeg, Manitoba, Canada, October 5, 1986, 82pp.

W. Kinsner and X. Kong, Schematic Capture, Placement and Routing
of PCBs and SMBs: Examples, MC86-1, Microelectronics Centre and
University of Manitoba, Winnipeg, Manitoba, Canada, August 20,
1986, 80pp.

W. Kinsner, Design Considerations in PCBs and SMBs, MC86-4,
Microelectronics Centre and University of Manitoba, Winnipeg,
Manitoba, Canada, October 3, 1986, 66pp.

W. Kinsner and X. Kong, Geometry Extraction of Placed Nets and
Routed Wires in PCBs and SMBs, MC86-3, Microelectronics Centre
and University of Manitoba, Winnipeg, Manitoba, Canada, September
4, 1986, 44pp.

W. Kinsner, Semicustom integrated Circuit Design, Course notes,
Microelectronics Centre and University of Manitoba, Winnipeg,
Manitoba, Canada, December, 1986.

W. Kinsner, "Solution to NP-complete problems in VLSI placement
and routing,” Miconex Processings, 1987, 10 pp.

S. Kirkpatrick, C. D. Gelatt, Jr. and M. P. Vecchi, "Optimization by
Simulated Annealing,” Science, vol. 220, no. 4598, 13 May 1983, pp.
671-680.

170

[KONB6]

[KOR82]

[KUHB6]

[LAP8O]

[LEE61]

[LI83]

[L184]

[L1A83]

[LOO79]

[LOSBO]

[LS!I86]

X. Kong, A Study of Routing Algorithms for Printed Circuit Boards
and VLSI, M. Sc. Thesis, University of Manitoba, Winnipeg,
Manitoba, Canada, 1986.

R. Korn, "An efficient variable-cost maze router,” 19th Design
Automation Conference, 1982, pp. 425-431.

E. 5. Kuh and M. Marek-Sadowska, "Global routing,” in Layout Design
and Verification, Advances in CAD for VLSI, vol. 4, ed. T. Ohtsuki.
New York: North-Holland, 1986. pp. 169-198

A 5. LaPaugh, “"Algorithms for integrated circuit layout: an
analytic approach,” Technical Report MIT-LCS-TR-248, Ph. D.
Thesis, Dept. of Electrical Engineering and Computer Science, MiT,
Cambridge, MA, 1880.

C. Y. Lee, "An algorithm for path connections and its application,”
IRE Transaction on Electronic Computers, vol. EC-10, 1961, pp.
346-365.

J. Li, "Algorithms for gate matrix layout,” IEEE International
Symposium on Circuits and Systems, 1983, vol. 3, pp. 1013-1016.

J. T. Li, C. K Cheng, M. Turner, E. S. Kuh and M. Marek-Sadowska,
“Automatic layout of gate arrays,” IEEE Custom Integrated Circuits
Conference, 1984, pp. 518-521.

Y. Z. Liao and C. K. Wong, "An algorithm to compact a VL3I symbolic
layout with mixed constraints,” 20th Design Automation
Conference, 1983, pp. 107-111.

K. J. Loosemore, "Automated layout of integrated circuits,” JEEE

international Symposium on Circuits and Systems, 1979, pp.

665-668.

P. Losleben, "Computer aided design for VLSI," in Very Large Scale
Integration: VLS|, ed. D. F. Barde. Berlin: Springer-Verlag, 1980.

introduction to Application Specific Integrated Circuits. Canada:
L3I Logic Corporation of Canada, Inc., 1986.

171

[LUD83]

MAT72]

[MEASO]

[MENB4]

[MIT84]

(MLY86]

[M0059]

[NAK83]

[OHT86]

[PAP82]

[POLB6]

[REEB5]

J. A Ludwig, P. Lowy and R H. McClug, "A hierachical approach to
VL3I chip design and verification,” International Symposium on
Circuits and Systems, vol. 1, 1983, pp. 16-19.

R. L. Mattison, "A high quality, low cost router for MOS/LSI," Sth
Design Automation Workshop, 1972, pp. 94-103.

C. Mead and L. Conway, Introduction to VLS| Systems. Reading, MA:
Addison-Wesley, 1980.

IDEA System User's Manual. U.S.A: Mentor Graphics Corporation,
1984,

K. Mitsumoto, H. Mori, T. Fujita and S. Goto, "Al approach to VLS!
routing problem,” |IEEE International Symposium on Circuits and
Systems,” 1984, pp. 449-452.

D. A Mlynski and C. H. Sung, "Layout compaction” in Layout Design
and Verification, Advances in CAD for VLSI, vol. 4, ed. T. Ohtsuki.
New York: North-Holland, 1986. pp. 199-236.

E. F. Moore, "The shortest path through a maze," Annals of the
Havard Computation Laboratory, vol. 30, pt. I, 1959, pp. 185-292.

K. Nakajima and M. Sun, "On graph theorotic models for the circuit
fayout problem,” |EEE International Symposium on Circuits and
Systems, 1983, vol. 3, pp. 1022-1025.

T. Ohtsuki, "Maze-running and line-search algorithm,” in Layout
Design and Verification, Advances in CAD for VLSI, vol. 4, ed. T.
Ohtsuki. New York: North-Holland, 1986. pp. 99-132.

C. H. Papadimetriou and K. Steiglitz, Combinatorial Optimization:
Algorithms and Complexity. Ch. 15. Englewood Cliffs, New York:
Prentice Hall, 1982. 496pp.

J. Poltz and A. Wexler, "Transmission line analysis of PC boards,”
VLS| System Design, May 1986, pp. 38-43.

J. Reed, A Sangiovaﬁni—VincenteHi and M. Santomauro, "A new

172

[RIC80]

[RIC84]

[RIV82]

[ROMB4]

[RUF741

[SANB4]

[SAS86]

[SAT83]

[SCHB3al

[SCH83b]

[SEC84]

symbolic channel router: YACR2,” |EEE Transactions on
Computer-Aided Design, vol. CAD-4, no. 3, July 1985, pp. 208-219.

R. Rice, VLSI: The Coming Revolution in Applications and Design.
New York: IEEE Computer Society, 1980.

D. Richards, "Complexity of single-layer routing," IEEE Transaction
on Computers, vol. ¢-33, March 1984, pp. 286-288.

R. L. Rivest and C. M. Fiduccia. "A greedy channel router,” 19th
Design Automation Conference, 1982, pp. 418-424.

F. Romeo and A Sangiovanni-Vincentelli, “"Probabilistic hill
climbing algorithms: Properties and applications,” in 1985 Chapel
Hill Conference on VLSI, ed. F. Fuchs. Chappel Hill: Computer
Science Press, 1985.

F. Ruhin, "The | ee path connection algorithm," IFFF Transactions on
Computers, vol. C-23, September 19/4, pp. 907-914.

A. Sangiovanni-Vincentelli, "A new gridless channel router: Yet
Another Channel Router the Second (YACR-I1)", IEEE International
Conference on Computer-Aided Design, 1984, pp. 72-75.

5. Sastry and A C. Parker, "Stochastic models for wireability
analysis of gate arrays,” IEEE Transactions on Computer-Aided
Design, vol. CAD-5, no. 1, January 1986.

5. Satry and A. Parker, "The complexity of Two-Dimensional
Compaction of VLSI Layout,” Proc. IEEE Intrnational Conference on
Circuit Theory and Design, 1983, pp. 263-265.

M. Schlag, Y. Z. Liao and C. K Wong, "An algorithm for optimal
two-dimensional compaction of VLSI layouts,” INTEGRATION, VLSI
Journal 1, 1983, pp. 179-209.

W. L. Schiele, "Improved compaction by minimized length of wires,”
20th Design Automation Conference, 1983, pp. 121-125.

C. Sechen and A Sangiovanni-Vancentelli, "The TimberWolf
Placement and Routing Package,” IEEE Custom Integrated Circuits

173

[SHI86]

[S5073]

[S0U78]

[souU79]

[sousil]

[SZE86]

[S7Y82]

[TAD8O]

[TAY84]

[TERB5]

[TSK87al

[TSK87b]

Conference, 1984, pp. 522-527.

M. T. Shing and T. C. Hu, "Computational complexity of layout
problems,” in Layout Design and Verification, Advances in CAD for
VL3I, vol. 4, ed. T. Ohtsuki. New York: North-Holland, 1986. pp.
267-2%84

H. C. So, "Pin assignment of circuit cards and the routability of
multilayer printed circuit wiring backplanes,” 10th Design
Automation Conference, 1973, pp. 33-43.

J. Soukup, "Fast maze router,” 15th Design Automation Conference,
1978, pp. 100-102.

J. Soukup, "Global router,” 16th Design Automation Conference,
1979, pp. 484-484.

J. Soukup, "Circuit layout,” Proceedings of IEEE, vol. 69, pp.
1281-1304, October 1981.

A. A Szepieniec, "Integrated placement/routing in sliced layouts,”
23rd Design Automation Conference, 1986, pp. 300-307.

T. 6. Szymanski, “Dogleg channel routing is NP-complete,”
unpublished manuscript, Bell Laboratories, Murray Hill, 1982.

F. Tada, K Yoshimura, T. Kagata, and T. Shirakawa, "A fast maze
router with iterative use of variable search space restriction,”
17th Design Automation Conference, 1980, pp. 250-254.

S. Taylor, "Symbolic layout,” VLSI Design Journal, March 1984, pp.
34-42.

H. Terai, M. Hayase and T. Kozawa, "A routing procedure for mixed
array of custom macros and standard cells,” 22nd_Design
Automation Conference, 1985, pp. 503-508.

C. L. Tse and W. Kinsner, "A graph based heuristic channel router."
Submitted for publication, August 1987.

C. L. Tse and W. Kinsner, "A graph based heuristic channel router

174

[UEDB6]

[WEX85]

[Y0s582]

[Y0S84]

[Y0S86]

with doglegs.” Submitted for publication, August 1987.

K. Ueda, R. Kasai and T. Sudo, "Layout strategy, standardization, and
CAD tools,” in Layout Design and Verification, Advances in CAD for
VLSI, vol. 4, ed. T. Ohtsuki. New York: North-Holland, 1986. pp.
1-54.

A. Wexler, "Getting a handle on impedance, cross-talk, time delay,
and ringing,” Printed Circuit Design, December 1985, pp. 14-17.

T. Yoshimura and E. S. Kuh, "Efficient algorithms for channel
routing,” IEEE Transactions on CAD of Integrated Circuits and
Systems, V. CAD-1, 1, 1982, pp. 25-35.

T. Yoshimura, “An efficient channel router,” 21st Design
Automation Conference, 1984, pp. 38-44.

K. Yoshida, "Layout verification™ in Layout Design and Verification,
Advances in CAD for VLSI, vol. 4, ed T. Ohtsuki. New York
North-Holland, 1986. pp. 237-267.

175

APPENDIX A
DOGLEG ROUTER PROGRAM STRUCTURE

MAIN PROGRAM
DOGLEG.C

BILST

il RETLIST RETLIST

PRENAR gwuems RETLIST ? v g RETLIST WEIGHTS l

FILER DOGLEGGER NON-DOGLEG ROUTER
Fig. Al. Structure of the main program.
FILER
NETLIST |
WELHTS RETLIET NETLIST
. ‘ WEIGHTS KETLIST .
T l §yowrs e i’lé‘ﬁm i l&mm veiss ?l
INIT_FILES SET_WEIGHTS READ_NETLIST ' CLOSE_FILES
Fig. A2, Structure of the Filer section.
DOGLEGGER
i
nsrusr'i’l $oeusm m‘usr? l &Wﬂ "“-'5731 glETUST &m l og‘;ﬁcrs
FIND_DENSITY DETERMINE ORDER_NETS DOGLEG_NETS
VERTICAL , T ,
CONSTRAINTS 'tr'%m gmusr T ? gmsr.wcs
TERMINAL T2
RETLIST fl Jvenen mfl INSERT_TERMINAL DISTANCE
BUILD VGRAPH DELETE_VGRAPH
l
VERAPH VERAPH VBRAPH VERAPH
3' 2’ $$ g LEGEND:
INIT_VGRAPH BUILD_VGRAPH 1 Module
fA‘lI{E? gvs&wu — Access call
e o——= Data coupling
INSERT_VNODE

Fig. A3. Structure of the Doglegger section.

176

NON-DOGLEG ROUTER
l

NETLIST
DISTANCE ¥ ¢
GRAPH INIT ASSIGN_NETS_TO_TRACK
, |
voRasH gvewu mm? gvmmi mnsr? 2"‘"”“ HOTHERRET gnwwm VGRAPH$ TRUE/
i) MET pistance ¥ ¢ FALSE
BUILD VGRAPH FIND_ORDERING_ MOTHER NET READY NET NULL _GRAPH
NUMBERS SELECTION SELECTION
g | fomen
!
KET. M CALC_ORDERING_

NUMBER

o g

Fig. A4. Structure of the Non-Dogleg router section.

MOTHER NET

SELECTION
"E“'S'? lg 0RO _teH "“‘-‘9”? ! COATES FEADIDATES l MOTHER T
FIND_MAX_ FIND_MOTHERNET_ SELECT_MOTHER_
ORD_NUM CANDIDATES NET
mm.? l Smmm

CALC_MOTHER_.
CANDIDATES

NET_PRIORITY

"EAHATES l il l § oy
FIND_MAX_. MOTHER_NET..
MOTHER_NET. PRIORITY
LENGTH

Fig. A4 Structure of the Mother net selection process.

177

READY NET

SELECTION
st o | e somers woners] | $aners roneR et l § o
FIND_READYNETS ORDER_READYNETS SELECT SUBSET
READYRETS READYRETS READYENTS READYRETS
]t 71
CALC._READYNETS_ SORT_READYNETS_
PRIORITY PRIORITY
READYHETS HAX_
o) | $otis v | St saonerd | § o
FIND_MAX.. FIND_MAX_ NET_PRIORITY
READYNETS_ READYNET_
MOTHERNET_ LENGTH
DISTANCE
Fig. A6, Structure of the Ready net selection process.
SELECT SUBSET
Tisr_sai &Zﬁg TEST..SET? zTEST..GU TEST..SET gmr_sn TEST_S&.‘T$ gM’L mﬁ& g'iTUST
;! READYRETS § & $° ' macTestsr ¥ ¢
EMPTY. INIT_ EXPAND FIND_MAX_ DELETE..
SET TESTSETS SUBSET TESTSET NET
TEST..SET |
READYNET
TES‘T..ET$ 3 ?lg’&ﬂ-ﬂﬂ gl l Faise
ADD_ELEMENT CONFLICT
Fig. A7. Structure of the subset selection process.
DIAGNOSTIC AND MESSAGING
|
| PRINT_HEADER PRINT_READYNETS PRINT_ASSIGN PRINT_NET
PRINT_WEIGHTS PRINT_TESTSETS PRINT_ASSIGN_ENDS ~ PRINT_DENSITY
PRINT_NETLIST PRINT_TESTSET PRINT_TRACK PRINT_STATISTICS
PRINT_DENSITY PRINT_COLUMN_L ABEL
PRINT_VGRAPH PRINT_MOTHERNET_CANDIDATES

Fig. AB. List of diagnostic and messaging procedures.

178

APPENDIX B

DOGLEG CHANNEL ROUTER PROGRAM LISTING

#* Dogleg Detailed Chonnel Router Heoder File: dogleg.h */

% define MAXNET

8 define HAXTERH

& define MAXHEIGHT
& define HWAWIA

€ define HNUELTEST_SET
2 define EONET

% dafine NAMELENGTH
€ dofine MRXSETSIZE
8 define RBS{X)

2 define SIGN(x)

& define HAX(a,b>
& define HIN(a,b)
& define LEFT(a)

& define RIGHTC(a)
2 define LENGTHCa)
& define ORDW)

% define PARARENT(a)

200
200
3B
10
5
999

32
50

L OI=Cx) (=)
e A= 12: 1N
CCaXX{br))?br):an
CClaX<<h))?<ad: b))

(netlisti¢alX]. teft)
(netlisti<all.right>
C(RIGHTC(a>LEFTCa»)
(netlistiCad].ord_mm?
(netlisti{a)] parent)

typedef struct terminal.struct
{

int
struct termingl_struct
} Terainal;

tuypedef struct vnode.struct
{
struct vnode struct
int
} Unode;

tupedef struct net struct
{

Terainal
int
Unode
int

int

} Net;

number ;
next;

Fnext;

*first_tera, *lost_tere;
left, right;

*first.son;

ord _num;

parent;

tgp?def struct condidote.struct

179

int
int
int
} Candidate;

typedef struct testset struct
{

int
int
int
} Testset;

Net
int

Condidate
Candidate
Testsat

int
int

int
int

int
int
int
int

int
int
int
int
int

% chonnel statistics #/
int
int
int
int

/* meighting factors %/
int
int
int
int
int

/* global file nomes and file

$9944

net;
priority;
degree;

element HAXSETSIZE 1;
size;
priority;

netlistl HAXNET I;
assigneentl MAXHEIGHT I;

eothernet.candidatesl HRXNET J;
readynets HAXNET 1;
testsetl MBLTEST.SET);

densityl MAXTERM 1;
hgraphl MAXNET 1[MAXNET 1;

total_rnm tera = Q;
initial_num _net;

total_mm net = 0;
total num. dogleg = O; '
total_num mothernet _condidates;
total _num_readunets;

Ccurr_Bax_ord_nus;
curr-sother net;
wax_mothernet_length;
sax_readunet_length;
ord_den_ratio;

pox.density = 0;
eax_ord nus = 0;
wax_distance;
Box._tera = 0,

eother_meight;
ordering meight;
length_meight;
distance_meight;
subnet.distence;

pointers */

netlist_filencme;

*¥log..filenome;

*geight_filenome;
temp_filenamell]l = “_temp_filel™;
teap_filename?l] = "_tesp file2";

180

FILE
FILE
FILE
FILE
FILE

*netlist fTile;
#log_file;
*geight_file;
*temp _filel;
*temp fileZ;

181

.*1

s
*
% Greph Bosed Hewristic Dogleg Detailed Chonnel Router. %/
= x/
7= by Cheung-lai Tse ®7
* */
7 s ettt s s 7
8 include <stdio.h>
2 include “dogleg.h”
eain{ orgc,agy)

int orgce;

chor *argull,;
{

filer(arge,orgy);

ini thgraph();

bui ld_hgraph(3;

doglegger(; * reaocve for non—dogleg routing */

non_dogleg_router();
close files();

Froicilcisiiok §
/¥ FILER */
Aokl f

filer{ arge, argy)
int

arge;
char *argul];

init.files(arge,argy J;
print_version();

set_meights();
printeeights(};

read_netlist();
printLnetlist("Input = J;

init_files(arge,argy ?
int argc;
char Fargell;
{
if Cage <4
{
printf{ “ltrong mumber of argueents. \n");
printf("Usage: 8s netlist seights logfile\n”,argulD] 3;
exit();

}

182

netlist_filenaee = argulil];
if ((netlist.file = fopen{ netlist filename, r" ») == NULL)
{
printf{ “\nError: connot open netlist file 8s.\n",netlist_filenme);
exit(};
}

weight_filenmme = arguvi2];
if ({ (eeight_file = fopen(eeight_filename,“r")) == NUL)

printf(“\nConnot open eeighting foctors file 8s.\n",weight_filenome);
axit();
}

log_filenme = argul3];
if ¢ Clog_file = fopen(log_filenome,"w")) == NULL)
{

printf{ “\nError: cannot open log file 8s5.\n", log_filename);
exjt(l;

teap_filel = fopen(temp_filencael, 8");
temp_file2 = fopen{ temp_filenome2, s");

set_meights()

{
fscanf(weight_file, "S¥s8d F*skd R*s8d R*s8d $*s8d",Emother_meight,

&orderingmeight,&length meight,&distonce_meight,&subnet_distence 2;

}

read _netlist()

{
int c, left, right, term, virack;
Terainal *terainal;
Net *net;

f* skip over comsents in the net list file delimited by § */
while((c=getc(netliist_file)) I= EOF && ci="$" >
putc(¢, log_file J;

f* read nuaber of terainals %/
fscanf(netlist_file, "8d",&total_ma_tera);

total_num_net = 0;

net = netlist;

ehile (fsconf(netlist_file,"8d",&tera) != EOF)
{

left = tera;

total_mm_net ++;

net ++;

net=>first tera = net->last_tera = NULL;
net->prev = net->next = 0;

183

{

terainal = (Terainal *Xealloc{ sizeof(Terainal) J;
terainal->nuaber = ters;
insert terainal (net,terainal J;
right = ters;
fscanf(netlist_file,"8d",&tera J;
} ehile (tera != EONET);
net->left = ABS(left J;
?et-wigwt = ABS(right >;

initigl_num_net = total _nua_net;
}

close files()
int c;

temp_fitel = freopen(temp_filenceel, r",temp_filel);
while((c=getc(teap _filel)) != EOF)
putel ¢, log_file J;
fclose(temp_filel J;
unlink(teap_filencme! J;

fprintf(log_file,"\n\n" J;
temp_file2 = freopen(tesp_filename2,"r", temp_file2);
while((c=getc(iemp _file2)) i= EOF >
pute{ ¢, log.file J;
fclose{ temp_file2);
unlink(teap_filename2);

fprintf(log_file,"\n\n");
fclose(weight_file J;
fclose! netlist_file J;
felose{ log_file)

Rt

#% DOGLEGGER #*/

e Wy

doglegger()

{
find_densi tyQ);
ini t_vgraph();
bui ld_vgraph();
print.vgraph(“Original “);
order_nets();
printvgraph(“Ordered ");
delete_vgraph();

doglegonets();

184

find density();

printnetlist(“Doglegged * J;
print.density(;

dogleg_nets(>
{
Terainal Zterainal , ¥ nea_terainal,
Treu_terainal, *first_terainal;
Het *lastnet, #*net;
int i, j, firstsubnet, net_rum;
ini t_hgroph();

lastnet = netlist + total_mum_net;

for (net=laostnet,net_rnua=total_numa _net; neti=netlist; net—,netrum— >
{

if ¢ PRRENT(net num} == 0 || net->first.son == NULL >
continue;

first.subnet = total_nua_net + 1;

prev_terainal = net->first_ters;

tereinal = prev_terainal->next;
while { terainal != net->last_tera)
{

if ¢ densityl ABS(lerainal->nuaber)] < mox_density &&
(prev_terainal—>nusber * terainal->next->number) < 0)

new_terminal = (Terainal *Xmalloc(sizeof(Terainal) J;

nes_terainal-*nupber = terainal->number;

first_terainal = net-*first_ters;

net->Tirst_tera = terainal;

total_nua_net ++;

last_net ++;

last_net—>first_tera = last net->last_tera = NULL;

last.net->prev = last net-next = 0O;

insert_terminal(last net, first_terainal »;

insert_terainal(last_net, nea_terainal J;

densityl ABS(terainal->mmber) | ++;

for € i=1; i<=total _num net; i+) '
haraphltotal_nue_netllil = hgraphlilltotal_mm netl = 0Q;

prev_terainal = terminal;
terainal = terminol-*next;
}
for ¢ i=first_subnet; i<total_mum_net; i++)
hgraphlilli+i] = hgrephli+1llil = subnet_distance;
if ¢ first subnet I= total_num_net+!)

hgraphltotal na_netlinet num] = horaphinet_nualitotal _nua_netl
= subnet._distance;
}

/* calculate left and right ends of the nets %/
for (net=retlist+total_nmm_net; netl=rnetlist; net—)

net->left = ABS(net—->first_tere—>number);
r}met—wig'nt = ABS(net->last_tere->number);

185

coleulate maber of potential doglegs %/
total_mm_dogleg = total_mm net - initial_wa net;

bui ld_hgraph();

; s e ettt et /
£% HORIZONTRL CONSTRIANT GRAPH CONSTRUCTION */
. et , - -y
i{nit_hwcmh()

int i, j;

for € i=1; i<=HAXNET; i++)
for ¢ j=i; j<=MAXNET; j++)
hgraphlillj1 = hgraph[j1lil = 0;

bui td_hgraph(>
{
int i, i;
for (i=1; i<=total_mm net; i++)
for j=i; j<=total_nua_net; j++ >

if ¢ hgraphlilljl == 0)
hgraphlillj1 = hgraphl[j1lil = distanceC i,j);

7 R SE——
7 VERTICRL CONSTRAINT GRAPH CONSTRUCTION */
etk ok ,

i{nit_vgr‘@l‘!()

int index;
Nat *net;

fer‘{(index=0,net=netlist; index<HAXNET; indext+,net++)

net->first_son = MULL ;
;et-)pw*mt = pet-dord_nua = 0;

186

bui ld_vgraph()

{
int terminalsl4] IMAXTERNM];
int netma, teranua, sub, vitrack, %old net;
int i, i;
Met et ;
Terainal *terainal;

for { sub=0; sub<4; sub++)
for (terame=0; tere mm<=total_rna_tera; tera e+t)
terainalsisubltera_mal = 0;

for { netwe=1,net=netlist+l; et numc=total_nua net; net_nuatt, natst)
{

for (terminal=net-*first ters; terainal!=NULL; terainal=terainal->next)

teranum = RBS(tereinal->nusber ;
if ¢ term_rum >= 1 && tera num <= total_mm tera)
for { sub=0; sub<4; sub++)

{
oldnet = &(terainalsisublitera ruml);
if (¥oldnet =10 >

{
*oldunet = (terainal->nueber<0)? —net rnua:net.rum;

break;
}

else if (*old_net > 0 &8 terainal->nusber < 0)
insert_unode(*old net, net_num J;

else if (*pld.net < 0 &8 terminal-*mumber > 0)
insert.wode(netnua,-Crold_net) J;

}

insert_vnode{ father,son)

int father, son;
{
Unode *new_node;
Net father_net;
father_net = naetlist + father;
new_node = (Unode *)malloc(sizeof(Unode? ;
new_node—>net_num = son;
if (father_net->first.son == NAL >
{
father_net->first_son = nes_node;
nee_node->next = NULL ;
}
else
{
nea_node—rnext = father_net->first.son;
father_net—>first_son = new_node;
}
({netlisttson)—>parent) ++;
}

187

¢ 4 7
% HON-DOGLEG ROUTER */

Ak AR /
non-dogleg_router()
{

ini tvgraph();

bui ld_vgraph();

f ind_order ing_numbers();
print_vgraph("Boglegged ");

assign_nets_to_track();
print_statistics();

?nd..ordering.ma&ers()

int net num;

% find the ordering numbers */

ea.ord rua = 0;

for{(netnur=1; netnuac=total _nua_net; netumtt)
calc_ordering number({ net_ma J;
if ¢ ORD(netnua) > mox_ord num)
, pax_ord num = ORD(net_num);

calt_:.nrda"ing.mnber(net.nua)

int retonum;

{
Het *father, *son;
Unode *node;

father = netlist + net_nua;
if ¢ father—>ord num == 0)
{
if (father—>first.son == NULL >
father—ordrnum = 1;
else
for{(node=father—>first_son; node!=NUL; node=ncde->next)

oolc_order ing.rumber(node-rnet_rnua);
son = netlist + node-*net_nua;

if ¢ son~>ord.rum >= father—>ord_num)
y father—ord.nua = son-dord_num + 1;

188

assignnets_to_treck()
{
int rock_nums;
ord.den.ratio = (mother_meight * max_ordrua) / mox density;

print_coluan_lchel(temp_filel);
print.coluan_lebel(temp _file2 J;

trock_nua = 0;
while 'null_greph() >
{
trock nua ++;
fprintf(log_file,"\nTrack &d\n", trock.nua J;

findcurr.eax_ord (),

find_mothernet_candidates();
print_eothernet_candidates();
select.mother_net();

find_readynets(?;
order_readunets();
printreadynets();
select.subset(),;
}
fprintf(log_file,"\nTotal nuaber of track used: &d\n\n", trock_ma);

printf(© trocks: 82dwn", trock_ma);

- SN—
."*HOTIERPETSELECTION *f
/ {

?nd.nothernet.cmrdidates(?
int net;

total num_mothernet_condidates = 0;
for (net=1; net<=total_nua_net; net++)
if (ORD(net) != 0 && PARENT(net) == 0)
eothernetl condidates(total_nm_mothernet rondidates++ l.net = net;

calcmothernet_condidates_priority();

calc_eothernet_condidates_priorityQ)
{

int i;

find_sox_mothernet condidate_length();

fprintfC log_file, "flax mothernet length & Hax ordering:8d Urdmen &d\n",
sax_mothernet_length, curr_max_ord_nue,ord_den_ratio);

for € i=0; |<total_mn_mtha~rret_candldates it 2
mthamt.cmdidotes[il.prioritg

189

= pother_net.priority sothernet_condidoteslil.net J;

find_eax_mothernet condidate_length()

{
int i;

eax_eothernet_length = 0;
for C i=0; i<total_rum_mothernet condidates; i+t D
if (LENGTH(mothernet_condidateslil. net) > sax mothernet_length)
pax_sothernet_length = LENGTH(mothernet_rcondidateslil.net);

int sother_net priority(mothernet 2
int mothernet;
{

int priority;

priority = (10 ENGTH(mothernet))/eax_mothernet_length +
(ord_den_ratio*0RD(mothernet) }/cwr.max. ordonum;
fprintf(log_file, “HMother net 8-3d: length:8-3d ord:%-2d priority:%3d\n",
eothernat, LENGTH(eothernet), ORD(eothernat),priority J;
return priority;

}

int select mother_net()
{
int i;
int rax_eothernet priority;

sax_mothernet priority = —90099;
for (i=0; i<total_nua mothernet condidates; i++)
if (mothernet_condidateslil.priority > eax_mothernet priority >
{

eax.mothernet priority = mothernet.condidatesiil.priority;
curr.eother.net = eothernet_condidateslil.net;

}
fprintf(log.file, "Hother net selected: &d\n\n",curr_mother_net J;

}

190

Fa s % /
7% RERDYNETS SELECTION AND MAXIMUNM SUBSET SELECTION #*/
Nt ey h oAbttt Ny

f{'ind_remts()

int m‘t} i;

total_num_readynets = 0;
for (net=1; net<=total_num net; net++)
if (ORD(net>!=0 &€& PARENT(net)>==0 && hgrophlnetlicwr mother.netli=0)
readynets! total_mm recdunets++ 1.net = net;
cale readynets_priori ty();

calc_recdynets_priority(>

{
int i;
find_ex_readynets_asothernet_distance();
find_pax. readynet_length()};

fprintfC log_file, NMax ordering:8d Max readynet length:8d Max dist:%dwn"~,
curr_ax_ord s, eax_recdynet_length,max_distonce);

for (i=0; i<total num_readynets; i+t)
readynetsl i l.priority = net priority(readynetslil.net J;

find.curr_eox_ord_nua{)
{

int _ net;

curr.max_ord_mm = 0;
for (net=1; net<=total_num_net; net++)
if (ORD(net) > curr_max.ord_rnua)
cwrr eax_ord.num = ORD(net 3;

find_mox_recdynets._mothernet distance()

{
int i;

sax.distence = ~-99999;
for i=0; i<total_num_readunets; i++ >
if ¢ hgraphlocurr_eother_netlireadynetslil.net] > max_distence)
pax.distance = hgrophlcurr_mother_netlireedynetsiil.net];

t{‘ind.max_r\eeckmet__length()

191

int i;

eox_recdynet_length = 0;
for ¢ i=0; i<total_rnum readynets; i++)
if (LENGTH(recdynetslil.net) > mox readynct_length >
mox_readynet_length = LENGTH(readynetslil.net);

?&I&Ctj&bset()

int suxset, max_sel priority;
int i, i;

/¥ clear all subsets to null */
for (i=0; i<MUBLTEST_SET; i++)
eapty set(testset+i J;

init_testsets();

/¥ expand subsets */
for ¢ i=0; i<total_num_readynets; i++)
for ¢ j=0; j<MALTEST_SET; j++ >
if ¢ lconflict{ testset+j,readynetslil.net) J
add_element{ testset+j,i J;
fprintf(log file, "Expanded subsets:\n™ J;
print_testsets();

& find moximum test set */
max_set = 0;
rax_set priority = testsetlO).priority;
for (j=1; j<NUM_TEST_SET; j++ >
if (testsetljl.priority > max_set priority
{
max.set = j;
mox.set_priority = testsetljl.priority;
}
fprintf(log_file, "Subset selected: &d\n",max_set);
delete net(curr_mother_net J;
for (i=0; i<testsetimox set].size; i++)
delete.net({ testsetimax setl.elementlil);

print_subset(max_set J;

espty set(set)
Testset *get;

{

set-rsize = set-priority = 0;

192

i{nit..testsets()
int i;
2% init subsets %/

for (i=0; i<total_num_reodynets && i<NUH_TEST_SET; i++)
add_element(testset+i,i J;

}
order_readynets()
{
int i, count;
Candidate next;
for C j=1; j<total_num readunets; j++)
{ ‘
next = readynetsl j 1; S
count = j - 1;
while (count »= 0 >
if (next.priority > readunetsicountl.priority ?
{
readunetsicount+1] = readynetsicountl;
count —;
}
else
break;
readynetsicount+1] = next;
}

int net_priorityl net >
int net;
{
int priority;

priority = (orderingmseight * ORD(net)) / curr_max.ord_nua +
(length_meight * LENGTH(net)) / max_readynet_length +
(distonce meight ¥ (eax_distence—hgrophlcurr_mother_netlinetl)
{ max_distonce;
fprintf(log_file, "Net &-3d: ord: 8-2d length: §-3d ",
“dist: g&-2d priority: &-3d\n",net,0RD{(net), LENGTH net),
horaphlcurr_eother_netlinet],priority J;
return priority;

¢ * /

£% HISC SUPPORTING ROUTINES */

{ /

add-element(set,i >
Testset *zet;
int i;

193

{
int element_priority;

set->efement] (set-’sizelXt+] = reodunetsliil.net;

sat-rpriority 4= readynetsiil.priority;
}

int confiict(set,net >

Testset *sat;

int nat;
.

int i;

for (i=0; i<set-’size; i++)
if ¢ hgraphiset->elementlililnet] == 0)
return 1;
return O;

}

find_distance(>
{
int i: j;
£% calculate distance matrix */
for (i=1; i<=total_rnum.net; i++)
for € j=i; je<=totalrum net; j++ O
i

hgraphlillj] = hgraphlj1Lil =

stonced i,} ;

;ind_densitg()
int net, vtrack;

for ¢ vtrack=0; vtrock<MAXTERM; vtrack++)
densitylvtrack] = 0;

max.density = 0;
for (net=1; net<=total.mm net; net++)

for (virack=LEFT(net); vitrack<=RiGHT(nel); virack++)

if ¢ (+HHdensitylvtrack]) > max_density
eax_density = densitylvtrack];

insert terainal (net,tersinal)
Net *net;
Terainal *terainal ;

if ¢ net->first_tera == NAL)
net->first.tera = net->last_tera = teraminal;

194

else

{

net-» last_tere—next = terainal;
nat-2last_tera = terainal;

terminal—rnext = NULL;

}

delete_net(net)

int net;

{
Unode ¥prev, *node;
ORD(net) = 0;

node = netlistinet].first_son;
shile ¢ node != NULL)

{

netl istincde-*net_num] porent —;
prev = node;

node = node~-rnext;

freel (char ¥)prev J;

}
}
delete_vgraph()
{
int net_num;
Net *net;
Unoade *ynode, *prev;
for (net_nua=1,net=netlist+l; netinum<=total nua_net; net_nuatt,net++)
{
viiode = net-*first_son;
while (vnode I= NULL >
{
prev = unode;
vnode = vnode—>next;
free((char ®)prev);
}
}
}
tzrder.nets()
int J, count;
Net next_net;

for (j=1; j<=total_mum net; j++ >
next_net = netlistljl;

count = j - 1;
ghile (count >= 0)

195

if ¢ nextunet.porent < PRRENT(count) 2
{

netlisticount+1] = netlisticount];

count —;
}
else
break;
retlistlicount+ 1] = nextnet;

}

int distonce(neti,net2 >

int netl, net2;
{
int diffi, diff2;
diffl = RIGHTC(net1)> - LEFT(net2>;, e
diff2 = LEFT(net1> - RIGHT(net2);
if (diff1>0 && diff2<0 >
return 0;
elss
{
diffl = RBS(iff1);
diff2 = ABS(diff2);
return BINC diffil,diff2 >;
}
nul | graph(>
{
int net;
for (net=1; net<=total_mua_net; net+t+)
if { ORKnet) 1= 0)
return 0;
return 1;
}
abort()
{

printf(“\nProcess terainated.\n\n");
fprintf(log_file,"\nProcess terainated.\n\n" J;
exit();

sort_left(agx_set)
int aox.set;
{

int j, count;

196

int next;
for { j=1; jitesisetlsax_setl.size; j++)

next = testsetimox setl.elementljl];
count = j - {;
ghile (count >= 0)
if (LEFT(next) ¢ LEFT(testsetimmisetl.elementicount]))

{
testsetleax._set] elementlicountti] = testsetismax._setl.elerenticount];
count —;
}
else

break;
testsetlaax set] . elementicount+1] = next;

print_trock{ mox_set >
int max.set;
{

int index, posn;

fprintf(log_file," 1®3;
posn = 1;
for (index=0; index<{tesisetlmax setl. size; index+t+ 3
{
for (; posn<LEFT(testsetlmax_set]. elermentlindexl); posnt+ 2
pute(* *,log_file J;
pute('+’ ,log_file J;
posn ++;
for (; posn<RIGHT{lestsetlmax_setl elementlindex]); posnt+)
pute("-",log_file J;
putc¢ '+, log_file J;
posn ++;

}
pute('\n’,log_file J;

fprintf(log_file,” D
posn = 1;
for{(index=0; index<testsetimax_setl]l.size; indext++)
for (; posn<LEFT{lestsetlmax set].elementlindex1); posnt+)
putc(* ' log_file J;
fprintf{ logfile,"%-3d", testsetlaax _set].elementlindex] J;
posn += 3;
for (; posn<=RIGHT(testsetimax_setl.elementiindexl]); posnt+
pute(' *,log-file >;

fprintf¢ log_file,"\n\n\n" J;

print_coluan_label{ file)
FILE #file;

197

int i;

fprintf(file,” .

for (i=1; i<«=total num_tera; i++)
fprintf(file,"%id”,i%10 J;

pute "W, file);

print_ossign(eax_set)

int max_set;
{
static int track = 0;
Terainal *terainal,;
int index, connect, teram, posn;

fprintf(temp_filel,"8-5d",++track);
for (posn=1, index=0; index<testsetImax_set].size; index++)
{
terainal = netlistitestsetimax_setl.elementlindex]].first_ters;
for (; posn<ABS(terainal->nuaber); posnt+)
pute(* ', temp_filel J;
for ¢ ; terminal!=NULL; terainal=terminal->next)

connect = terminal->number;
term = RABS(connect);
for (; posn<tera; posn++)
putc('’ temp_filel);
if (term =0
pute('<',teap_filel J;
else if (term > total_rnum_term ?
pute("2’ temp_filel 3;
else if (posn == tera)
pute((connect<0)? ‘v':'*", temp_filel);
else
{
totalwa_dogleg —;
gontime;
posn ++;
}
}
for ¢ ; posn<total_nmua_terat+i0; posni+)
pute * ' temp filel);
for (index=0; index<testsetlmax_setl.size; index++)
fprintf(teap_filel,"8-4d", testset(max_setl.elementlindex) J;
pute(‘\n’, temp_filel);

print_ossign_ends{ max_sat)

int eax_set;
static int track = 0;
int index, net_nua, posn;

168

posn = 1;
fprintf({ tesp_file2, “8-5d" ++track ;
for (index=0; index{testsetlmax setl.size; indext+)
{
net m = {estsetimox_setl.elementiindex];
for (; posn<LEFT(net_num>; posnit+)
pute(* ', temp_file2);
if i posn == LEFT(neta))

pute{ "+’ temp_file2 J;
posn ++;
} .
for (; posn<RIGHT(ret_rum); posnit)
putc(‘-’ teap_file2 J;
if { posn <= total.-rum _term

{

pute("+, temp_file2);
posn ++;

}

}
for { ; posn<total_mm_tereti0; posntt)

putc(' ' temp_file2 »;
for (index=0; index<testsetimax_cetl.size; index++)

fprintf(temap _file2, "R—4d", testsetimux.set] elementlindex] J;
putc(*\n',temp_file2 J;

print.version()

fprintf(log_file, "Dogleg Channe! Router\n\n");
fprintf{ log_file,"Netlist: &s\nlleighting factors: &s\nlog: &s\n\n",
netlist_filenoee,weight_filenome, log.filename J;

T‘int_meiwts()

fprintf(log file, "Heights: mother: 8-2d ordering: 8-2d length: &2d -,
distonce: 8-2d subnet: £-2d\n\n",mother_meight,ordering meight,
length_meight,distonce_meight, subnet_distence 2;

printf("8-10s mother: 82d ordering: %2d length: &2d *,
“distance: §-2d subnet: &-2d",netlist_filencme,mother_meight,
ordering.eeight, length_meight,distonce_meight, subnet distance);

;?"int_stutistics()

fprintfC logfile,"Griginal maber of nets: &d\n", initial_nua _net J;

fprintf(log_file, "Total muaber of subnets: Bd\n\n", total_ma net);

fprintf(log-file,"Potential muaber of doglegs: Bd\n°®,
total_nua_net-initial_na_net);

fprintf(log_file, "Rctual rumber of doglegs: 8d\n\n",total_rnum dogleg J;

199

fprintf(log_file, "Nusber of terainals: &\n", total_num_tera)J;

fprintf(log.file, "Hoxieum ordering nusber: &d\n" ,mox_ord.num J;

fprintf(log_file, "Haximua density nuaber: &8d\n\n",eax_density J;
}

print.vgreph(head >
char

{ *head;
int net_num, ters;
Net et
Unode *node;

fprintf(log_file, "qsVertical Constraint Graph:\n",head J;
for (netnue=1,net=netlistt1; retnumc=totel_nua net; netmuat, netss)

{

fprintf(log_file,"Net 83d: ordering(f-2d) porent(8-2d)",
netnua, net->ord_num, net->parent J;

for (nodesmet-*first_son; node!=NULL; node=node—>next)
fprintf{ log_file, "\t8-3d",node->net_mam);

;})utc(‘\n',log.file 2;

pute('\n',log_fite J;

print_mothernet_condidates()
{
int i;
fprintf(log_file, "Hother Net Candidates:\n" ;

for i=0; i<total_mm mothernet_condidates; i++)
print_net(mothernet_condidateslil.net J;

print_readynets()

{
int i;
fprintf(log_file, "Readynets:\n")J;

for (i=0; i<total_num readynets; i++)
printnet(readynetslil.net J;

print_net(net >
int net;
{

int posn;

fprintf(log_file,"8-3d |~,net J;
for (posre1; posn<LEFT(net); posnt+)

200

pute! * °,log_file J;

putc('+°,log_file J;

posn ++;

for ¢ ; posn<RIGHT(net); posnit
pute(*=* log file J;

forintf(log_file, +\n" J;

print_subset(mox_set ?
int rax_set;

{

testoetimax setl. element! (testsetimox_setl.sizeX+ 1 = curr_mother_net;
sort_left{ max_set)J;

print_track(max_set J;

print_assign(eax_set J;

print_ossign_ends{ max_set J;

print_testsets()
{
int i;

for (i=0; i<MBALTEST_SET; i++)
print_testset{ i);

print_testset(set ?

int set;
{

int i;

fprintf(logfile,"Set 8-2d: (8-3d):",set, testsetiset].priority J;
for ¢ i=0; i<testsetlset].size; i++)

fprintf(logfile, "\t8-3d", testsetset] elementli]);
puted "\n’,log_file J;

print.netlist(head)

char *head;

{ .
int net_num;
Terminal *terainal;

fprintf(log file, "&sNetlist:\n",head J;
for (net.mua=1; net nuac=totol_mua_net; net.muats)
{

fprintf(log_file, "Net 83d:" ,netnua);

for ¢ terminal=netlistinet.nual.first_teram; terainal = MULL;
terminal= terainal->next)

201

fprintf(log _file, "8£3d", terainal—>nusber J;
pute '\n',log_file);
}

fprintfC log_file,"\n\n");

;{wint.daxsitg()
int terms;

fprintf(log_file, "Terminal density mmbers:\n");
for (tere=1; term<=total_num_term; terat++)

fprintf(log.file, "85d(82d>", term,densi tylteral J;
if ((term 8 103 =10
pute{ *\n',leg_file J;

fprintfC log_file, "\n\n\n");
}

202

