
Å 6RApå-å mASEm

E-IEUR8 5Tå C Cñ.IAruN-¡E&- RTIJTFR

Cheung-Lai Tse

A thesis
presented to the Univensity of llanitoba

in partial fulf illment of the
nequir'ements of the degree of

llasten o.f Science
tn

Electrical Engineening

Winnipeg, llanitoba, Canada

@ Cheung-Lai Tse, 1987

by

Permission has been granted
to the National Library of
Canada to microfilm thi-s
thesis and to lend or sell
copies of the film.

The author (copyright owner)
has reserved other
publicat ion rights, and
neither the thesis nor
ext.ensive extracts from it.
may be printed or otherwise
reproduced without his/her
written permission.

L'autorisation a êtê accordée
à la Bibliothèque national-e
du Canada de microfilmer
cette thèse et de prêter ou.
de vendre des exemplaires du
f itm.

L'auteur (titulaire du droit
d.' auteur) se réserve les
autres droits de publication;
ni la thèse ni de longs
extraits de ceIIe-ci ne
doivent être imprimês ou
autrement reproduits sans son
autorisation écrite.

ïFBN 0_31-5_3?294_x

A GRAPH BASED HEURISTIC CHANNEL ROUTER

BY

CHEUNG-LAI TSE

A thesis submitted to the Faculty of Craduate Studies of
the university of Manitoba in partial fullillment of the requirements

of the degree of

MASTER OF SCIENCE

@ L9B7

Permission has been g:ranted to the LIBRARY OF THE UNTVER-

SITY OF MANITOBA to lend or sell copies of this thesis. to

the NATIONAL LIBRARY OF CANADA to microfitnr this

thesis and to lend or sell copies of the lilm, and UNIVERSITY
MICROFILMS to publish an abstract of this thesis.

The author reserves other publication rights, and neither the

thesis nor extensive extracts from it may be printed or ottrer-
wise reproduced without the author's writte¡r pernrission.

ABSTRATT

The VLSI channel routing problem is addressed in this thesis. First,

major classes of routing algorithms, including maze-running, line-search, and

channel routing aìgorithms, as well as other routing approaches, including

hardware routers, expert routers, and the simuìated annealing technique are

described. Then, the development and implementation of a graph-based

heuristic (non-exhaustive search) non-dogleg channel routing algorithm is

described. The algorithm is capable of generating optimal or near optimal

solutions for an important elass of channels that arises frequently in gate

array, standard cell, and building block layout designs. The eff iciency of the

algorithm has been demonstrated through twelve examples obtained from

published literature. The algorithm produces optimal non-dogleg solutions

for nine of the twelve examples using a single set of parameters. ln

particular, Deutsch's Diff icult Example was routed in 2E tracks, which only a

related nouter of Yoshimuro and Kuh was able to obtain.

ln onder to produce routing solutions at on nean channel densities (the

least lowen bound on channel heights), and to cope with channels with

vertical constraint loops, the non-dogleg algorithm was extended to allow

cloglegging at terminal positions. The extended algonithm routed nine of the

twelve examples in density, and Deutsch's Difficult Example in 20 tracks,

which is the same as the best published nesult from channel noutens of the

same nature (clogleg at terminal positions only). ln addition, the extended

algorithm is able to handle a lange class of channels with vertical constraint

loops.

lt

ACK[l{OWLFDGEMETrS

I wish to express my sincere thanks to my advisor, Dr. W. Kinsner, for

his excellent guidance, endurable motivation and consistent support

throughout the course of this research, and for his suggestion of this research

topic.

I would also like to thank all the students and staff in the lndustrial

Applications of Microelectronics Centre, lnc., Winnipeg, tlanitoba, Canada, for

their support throughout my stay in the Centre. ln particular, I would like to
thank Joe Silva and Scott Handford for their help in using the Optimate pCB

layout design package on the Apollo workstation. ln addition, I would like to
thank Dr. W. L. Kocay for his comment on Np-completeness.

Finally, the partial financial support from the Univensity of llanitoba

Graduate Fellowship, the Nationaì Sciences and Engineering Reseanch Council

(NSERC) of Canada and llanitoba Strategic Research Contract thnough

Dr. W. Kinsner's grants, and the lndustrial Applications of tlicroelectronics

Centre, lnc., is gratefully acknowledged.

ill

TÅffiLE OF CTþdTFruTs

AESTRACT'

ACKhMWLEIIGE}TEE{Ts

TABLE OF CONTEHTS

¡_tsT OF F|GURES

I-IST OF TAELES

DEFINITION OF TERfIS

!. NñITRODUCT¡ON

l.l Vl-Sl l-ayout Design

1.2 VLSI Layout Strategles
1.3 Placement _.___._-

L4 Routing

1.5 llotlvation
1.6 Thesis ObJectives

1.7 Thesls Structure

ll. vt-s¡ RouTr$tg ALBoRtTlf{s
2.1 llaze-Runnlng and Llne-Search Routlng Algorlthms

2.1.1 llaze-Runnlng Routhg Algorlthms
Lee Algorlthm
Extensions of the Lee Algorlthm

Storage Reductlon Techniques

Sæed-Up Technlques

It¡lti-Terminal Net Extension

f4ul t i -Layer Extensi on

Swnmary

2.1.2 Llne-Search Routlng Algorlthms
Hightower Algorithm
l-ine-Expansion Al gori thm

Fage
ii
iii
lv

vll
X

xi

l

2

4
E

t0
il
t3
l4

r5
r5
t6
t6
23

23

26

29

3r
3t
53

34
43

475ummary

lv

2.2 Channel Routing Algorithms
2.2.1 Loose Routing

Channel Definltlon
Channel Assionment

Routing Order Determination
Optimization

2.?.? Detailed Routing

48

49

49

50
53

55
55
55
60
6t
6t
63

65

67
6E

70
72

72
75
76
76

80
E2

E7

Regular Channel Routlng Algorlthms
Line Packing/Left Edge Algorithrn
Net llerging Algorithm
Dogleg Channel Router

Greedy Channel Router

YACR- I I

Rectilinear Channel Routing Algorithms
Switchbox Routing

Detour

General Rectil inear Channel Routing
I"IIGHTY

2.2.3

2.3 Other

2.3.1

2.3.2

2.3.3

2.2.4

lng Appnoaches

Hardware Routers

Swnmary

VLSI Rout

Summary

Epert Routers

Simulated Annealing

!¡¡. A M}N-DO6LE6 CITASI}IEL ROUTER

3.1 Definltlons

3.2 A Graph Based Heuristlc Channel Router
3.2.1 ttther Net Selection

88
EE

E9

9r
9r
94

3.1.1 hþn-Dogleg Channel Routlng Problem

3.1.2 Dogleg

3.1.3 Net List Representation of a Channel Routing Problem .

3.1.4 Vertlcal Constralnt 6raph

3.1.5 Horlzontal Constralnt 6raph _.,

3.1.6 Density, Orderlng, and Channeì Height Lower Bounds __..

9s
97
98

t00

v

5.3

3.4

3.5

3.6

3.7

4.3

4.4

4.5

4.6

3.2.2 Ready Net Set Creation

3.2.3 Flaximal Subset Selection

3.?.4 Track Assignment and 6raph Update

lmplementation
Efficiency of the

3.4.1 Example I

3.4.2 Example 2

Non-Dogleg Routing Algorithm

5.4.3 Executlon Tlme
Experimental Results

Versus Channel Complexlty

Discussions

Summary

t02
t03
104

104
t07
t07
il0
lt2
I t6
il8
t30

t3l
t?ttJt

r35
t36
137

t40
l4t
l4l
142

143

r55
t60
162

r63

t67

176

179

8V. m6LE6 EXTE}¡5|ON

4.1 Motivation and Tradeoffs of lntr0ducing Doglegs

4.2 Dogleg Detalled Channel Routlng Algorlthm......._

4.?.1 Baslc Dogleg

4.2.2 Net Orclering

Channel Routlng Algorlthm

4.2.3 Net and Terminal Selection
42.4 Complete

lmplementatlon
Dogleg Channel Routing Algorithm

Efficiency
Experimen

of the Dogleg Routing Algorithm
tal Results

Vertical Constraint Loop Handì ing *_.___..._.__

4.6.1 Appllcablllty of the Algorlthm
4.7 Summary

w- coNcLusro?{s AsrD REcættEHDATtohrS

REFERE¡ICEs

APPENDIX A

APPEHDIX B

f}O6I-86 ROUTER PROGRATî STRUCTURE

DOSLEG C¡{A}INE¡- ROUTER PRO6RAf{ I.IST¡¡{6

vi

å.85T'&F Få6[.3R85

Flgure

l. Lee algorithm routlng eNample *
2. Storage reductlon technlques

3. Speed up techniques

4. llulti-terminal net routing example

5. llultl-layer extenslon............._..........

6. An illustration of definitions used in the Hightower algorithm

7. Hlghtower algorithm routing example

8. An lllustratlon of the escape processes....__.

9. Twopathrefinementtechntques..._..._._._*..

10. Expanslon of a line ln the upward directlon

I l. Line expansion algorithm

12. Examples of channel definltions

13. Channel orderlng

14. An illustration of the channel

15. Channel routlng lllustrations

routing model

16. Swltchþox routlng

17. General rectlllnear channeì routing

lE. ChannelRepresentations

19. Constraint graphs for the channel in Figure l4

20. Reduced vertical constraint graphs for Example I

Fage

l7

25

28

30

32

35

36

38

4
45

Æ

5t

54

57

58

69

73

92

96

r08

vii

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

3r.

32.

33.

34.

35.

36.

37.

38.

39.

&.

41.

42.

,43.

Realization of Example I

Representation and vertical constraint graph of Example 2

Realization of Example 2

CPU time vs. channel complexity

Non-dogleg reaìization of Example I

Non-dogleg realization of Example 2

Non-dogleg realization of Example 3

Non-clogleg reallzatlon of Example 4

Non-dogleg realization of Example 5

Non-dogleg realization of Example 6

Non-dogleg reallzatlon of Example 7

Non-dogleg realization of Example I
Non-dogleg reallzation of Example 9

Non-dogleg realization of Example l0

Non-dogleg realization of Example I I

Non-clogleg reallzatlon of Example 12

An example illustrating the advantages of cloglegs

An example unroutable without dogleg

Dogleg reallzatlon of Example I

Dogleg realìzation of Example 2

Dogleg realization of Example 3

Dogleg realization of Example 4

Dogleg realization of Example 5

t08

ilt
n4

il5

il9
lt9

120

120

t2t

122

123

124

125

126

127

t2E

r33

134

t45

t45

t6
lÆ

147

vlii

tlogleg realization of Example 6

Dogleg realization of Example 7

Dogleg reallzatlon of Example E

Dogleg realization of Example 9

Dogleg realization of Example l0

Dogleg realization of Example I I

Dogleg realization of Example l2

Dogleg reallzatlon of Example l3

Dogleg realization of Example l4

A channel unroutable by the new dogleg channel router

An lllustratlon of constralnlng and unconstralnlng termlnals

t48

t49

t50

t5t

152

t53

t54

r5E

t59

t6l

t6l

lx

&_85r ÕF TÅmLFS

Routing of ENample 2 ____...._

Characteristics and resulting channel treights of the Examples

Comparison of net ordering schemes

Rezults of the new dogleg channel routing algorithm l4
Results of the new clogleg channel router wlth no denslty check 157

fage

il3

ll7
t39

x

MEFåruüTåüru OF TFRMS

Algorithnr An algorithm is a finite sequence of instructions, each of

which has a clean meaning and can be perfonmed with a

finite amount of effort in a finite length of time [4H083].

branch-and-bound An impìicit exhaustive search that

ellminates sets of subopilmaì soluilons by esilmated

optimal lty upper bounds.

Ã-^ ^ ,¡.,gr ËËut/ A greedy alEorithm attempts to obtain the optimal

solution by selecting at each step the option that is

locally optimal. The solution is not necessarily optimal.

A heunistic algorithm utìlizes rules or experience fnom

similan types of problems to quickly produce good but not

necessari ly optimal soìutions.

heurlstlc

Building Bloclt With the building block design method, circuit modules

are grouped into blocks. Placement and nouting ane

penfonmed in the block level only.

Channel

. density

A routlng area formed between clrcuit modules.

The maximum number of wire traces that crosses a

vertical track in a channel. This is the least lower bound

on the channel height.

XI

ordertn$ The maxlmum orderlng number ln vertlcal constralnt

graph 0f the channel. Thls ls a lower bound 0n the

channel helght.

nectiTinean A genenal rectilinear channeì is a channel that has a

rectilinean boundary (not necessarily rectangular) and

terminals located on any or all sides.

negular A regular channel is a channel that has a rectangulan

boundary and termlnals located on two opposlte stdes

only.

switchbox A switchbox is a special rectilinear channel that has a

rectangular boundary and tenminals located on any on all

foun sides.

Clrcult Layout A clrcult layout ls the physlcal representailon ot' the

corresponding structuraì representation of a circuit.

Doglegging Doglegging is the bending of an othenwise straight wire.

Expert System An expert system is a computer program that embodies

the expertise of one or more experts in some domain and

applles this knowledge to make useful lnferences for the

user of the system [HAYB3].

6ate Array Gate amays consist of a matrix of identical components

or functional elements (cells) that has passed through all

the steps in the fabnication process except the final

interconnection stage (metal ization).

xil

6naph A graph conslsts of a set of polnts called vertices, and

llnes connectlng the polnts, called eclges.

di¡'ected A directed gnaph, G=(v,E), consists of a set of vertices v

and a set of edges E, where the edges are ordened pairs of

vertices (v,w) oF V-rw.

undlrected An undirected graph, 6=(v,E), consists of a set of

vertices V and a set of edges E, where the edges are

unondered pair of ventlces.

Florizontal Constraint 6raph An undirected graph representing the

horizontal constraint relationships between the nets in a

channel.

Layout Compactor A layout compactor spaces the circuit elements and

interconnections to pack the circuit eìement as tighily

as possibìe without violating constraints clefined by the

user and the clesign rules.

MIHD l4ultiple lnstruction l"lultiple Data. A mode of parallel

processing where each node pr.ocessot follows its own

instnuction stream.

A net conslsts of a set of tenmlnals and connecilons that

mal<es the terminaìs electrically common and isolated

from other nets or circult modules. A net ls realized as

a collectlon of wlre segments connecting the set of

speclf ied tenmlnals ln the layout design process through

0det

xilt

the routlng process. Net = [termlnals, connections]

IKrNE6a].

ñüet LÌst A net list is the list of all the nets and thein associated

terminals in a circuit.

NP-Completeness A decision problem ls a problem with a yes or n0

answer. A polynomlal (P) pnoblem ls a declsion problem

for which there is an algorithm which will solve (i.e.,

answer yes or no) any lnstance of the problem in a

polynomial number of steps. A certif icate for a decision

problem whose answer ls yes is a chanacter string which

demonstrates the answer (e.9., for the problem: ls there a

routing with channel height (20, a certificate could be

the actual routing). A non-deterministic polynomial (NP)

problem ls a decisïon problem such that for every

instance of the problem whose answer is yes, there is a

certlf icate whlch can be verif ied ln a polynomlal number

of steps. Every P problem is also an NP problem. A

problem is NP-complete if it ls an NP problem and all NP

problem is polynomial-time reclucible to it. The

algorithm for an NP-complete pnoblem is universal, in

that all othen NP problems can þe solved using such an

algorithm. An NP-complete problem ls very hard and

probably has n0 polynomial time algorithm ISHl86,

PAPE2].

xtv

tverf low An overflow is a connectlon that cannot be routed unden

the given routing constraints (spectf icatlon) [KtNE6a].

Placement is the process of arranging all the components

within a two-dimensional area such that the placement

conf iguration wi ll faci litate the routing process

lKlNE6al

Flacernent

Fseudo l-anguage A pseudo language ls a comblnailon of the constructs of

a programmlng ìanguage together with informal Engtish

statements IAHOE3].

Routing Routing is the process of converting the set of intended

connections into physical wires within the routing negion

using one or more routing layers, provided that physical

and electrical constraints are satisfied [KlN86a].

detailed Detailed routing is the last step of the complete routing

process. lt defines the exact geometry of the wires in

terms of layer, via, and track assîgnments.

loose Loose routing (or global nouting) is the preliminary step

of the complete routing process. lt calls for a routing

plan in which each net is assigned to particuìar routing

regions without specifying the exact geometry of the

interconnecting w ires.

Routlng Algortthm A routlng algorithm is a method of traclng wires on a

routlng medlum accordlng to the speclfled constmtnts

[KlNE6a].

xv

Router

ffiåaze-8"r¡nntng A class of sequenilal methocls of traclng wlres along

an expandlng area, from the starilng polnt t0 the end

polnt. A path between the two polnts can always be

found lf such a path exlsts. The method was flrst
lntnoduced by Lee.

Nine-search A class of sequential methods of tracing wires along

straight lines until a blockage is encountered. The

method was originally developed by Hightower..

channel A class of sequential methods ol' tnaclng wires along

channels formed by rnoduies 0r eomponents. The flrst
phase of the channel routing algorithm is a gìobal

asslgnment of nets to channels, followed by the second

Þhase of local assignment of nets to traclcs within the

channels. The method was first introduced by Hashimoto

and Stevens.

A router is the software or hardwane implementation of

a routing algorithm.

An expert router utilizes an expert system to perform

routing. See also Expert System.

A grid router performs routing on a grid. Wire segments

are constnained to ìay only on the grid.

A grlclless router performs rouilng wlthout the

constraint of a grid.

grid

xvi

grldless

[¡ardware

Routing Woid

5trîD

Terminal

Trace

A hardware router lmplements a routing aìgorlthm ln

hardware.

A routing void is the area in the routing region where

traces cannot be placed.

Slngle lnstnuction llultlple Data. A mocle of parallel

processing where lnstructions are broadcasted to all

node processors. Thus each nocle processor executes the

same instruction but operates on different local data.

Simulated Annealing A multivariate optimization technique analogous

to the cooling of a fluid into a low enengy state.

Standard Ce!l The standand cell clesign method is based on a library of

precleslgned functlonal cells, each of which has been

fully characterized in both electrical and perfor'mance

terms.

A terminal is the endpoint of a connection [KlN86a].

A trace is the physical representation of a connection

that makes different points ln a circuit electrically

common. A trace can only be defined on a single layen.

To connect tnaces on different layers vias ane requined.

Traces ancl vias together constitute wires [KlNE6a].

Vertical Constraint Graph A directed graph representing the vertical

constraint relationships between the nets in a channel.

xvil

VerËlcal Constnalr¡t [-oop A dlrected cycle ln the vertlcal constraint

graph. A channel wlth vertlcal constralnt l00ps ls

unroutable w'l thout cloglegs.

Via A via is a feed-through or a contact where wire

segments on different layers ane connected together. lt

contributes to the creation of wires.

A wine is the physical realization of a net which makes

dlfferent poìnts ln a clrcult eìectnlcally common. A wire

includes at least one trace and two terminals. lf the

traces are located on cllf'ferent layers, the wire also

includes at least one via. Wire = [terminals, traces, viasJ

lKlNE6al.

Wire

xviii

CS{APTFR å

8ruTRODUCT8Oru

The clesign of electronic circults can, ln general, be considered as the

transformation of a behavioural clescription of the cincuit concepts into a

physical desmiption for lmplementation. For complex systems such as very

large scale integrated circuits (VLSI), the transformation process is achieved

by a hierarchical decomposition from Þehavioul'al clescriptions to structural

desmiptions, then to physical descriptions.

A behaviounaì description is the textual or mathematical description of

a system. lt gives a precise definition of the system behaviour with no

concern in its actual implementation. For example, the addition of two

multi-clìgit binary numbens A and B could be desmibed behaviounally as A+8.

However, how the operation is actually implemented, for example, whether

sequentially with a one bit adder on simultaneously with a multi-bit parallel

adder, is not described. lt is the structural desmiption that defines the

translation of the behavioural description into interconnecting functionaì

blocks in the form of, for example, data-f low diagrams and structural charts.

A more detailed structural descniption could include circuit schematics for

the handware, and softwane description language specifications for the

software and firmware. With the higher level descniptions specified, the

physical representation of a system is the final stage of the design by which

structures are translated into physical layouts. Plany different form of layout

styles are possible. Common methods include the use of standard components

mounted on printed circuit boards (PCBs) or surface mount boands (Sl"lBs), and

semi-custom or full-custom integnated circuits fabricated on siìicon dies.

Continuing advances in integrated circuit technology are driving circuit

densities to higher and higher levels. This ever increasing circuit complexity

has rendered the already tedious, error-prone, and time-consuming layout

pFocess almost impossible to be handled manually. Compounding the problem

is the reguirement of very high quality layouts that must consider complex

physical constraints such as ringings, crosstalks [WEXES, POLE6], current

surges and heat dissipations [KlN86c]. One typical example of manual layout

design was the 28000 microprocessor. ln its design, very little computer

aids were used. As a result, 50?6 sf the whole design effort, or 6600

man-hours, was devoted to the layout design phase alone [RlcsO].

As the design gets more complex, the design effort and turnaround time

increase at a higher rate, particulanly in the layout design phase.

Consequently, a lange amount of effort has been devoted to pnoviding

computer aids to the human designer with the layout design pnoblem. Such

layout design aids fall into the general category of computer-aided design

(CAD) and computen-aided engineering (CAE) tools.

l.¡ VLSI Layout Desion

-

The design of VLSI circuits, being a branch of electronic circuit design,

involves the process of transfonming a given circuit behaviour into a circuit

laid out on a silicon die. The first phase of this t¡'ansfonmation, as with any

electronic designs, is the behavioural design phase. ¡t convents circuit

concepts into formally defined behavioural descriptions. The second phase of

the transformation is the structural design phase in which a netwonk of

2

lnterconnecting components or modules is designed realizing the specified

behaviour. The modules may be lange functional blocks such as ALUs or PLAs,

logic gates such as NAND or NOR gates, or even isolated transistors or

resistors. The interconnections, on the other hand, are usually specified as

nets connecting tenminals of the modules. Note that at this stage of the

design, modules and interconnections are stiìl conceptual units. lt is in the

final physical or layout design phase that the netwonk of functional blocks is

mapped onto the surface of a silicon die giving the precise geometry and

position of its constituent modules and interconnecting wires.

The VLSI layout problem can be described as follows: A number of

circuit modules are to be arranged in a given area such that there are no

overlaps between the modules, and all interconnecting terminals are to be

connected by mutually noninterfering wires laid out in designated routing

regions. Hore precisely, the modules of a given circuit are to be placed

within a two dimensional region in such a way that each module takes on a

unique area in the region and the arrangement of the modules is such that it
facilitates the routing of interconnections. Furthermore, for a given

interconnection list (net list) and module placement configuration, all

electrical connections must be converted into physical connections within

designated routing regions satisfying design constraints including electrical

constrains such as maximum signal delays and design rule constraints such as

minimum feature cleanances.

The layout design probìem, like many design automation pnoblems such

as logic synthesis, testing, and partitioning, is widely known to be

$,lP-complete [UED86, KlN87]. The optimal solution to this problem requires

running times that grows exponentially with the size of the pnobìem. lt is

3

highly unlikely that an efficient polynomial time algorithm exists [BRE76].

With circuit complexities pushing into upwards of a million tnansistors per

die, the layout design problem has grown beyond the capability of today's

computens. For example, just arnanging the modules of a 20,000 gate cincuit

using the commercial placement program C0SHIC [SCH83] requires oven 300

CPU hours [UED86], a time appnoaching the mean time to failure of many

complex computing systems. Even the recent inmeases in computing power

coupled with efficient and neliable software still cannot guanantee that the

densest VLSI circuits can be ìaid out completely in a reasonable time and

storage tLUD83l.

l-2 VLSI Lavout Strateoies

Various simplification methods have been used to reduce the VLSI layout

problem into mone manageable sub-problems. Traditionally, the method of

partitioning is used to simplify the problem by dividing the layout design

process into two separate steps, namely placement and routing. ln the

placement step circuit modules are assigned to physical locations on the die.

Then, in the routing step nets are realized as wire traces connecting the

terminaìs. Both of these subprobìems, though simpler, are still NP-complete

[SHl86]. But the overall reduction in complexity is significant enough to

allowed many previously unmanageable designs to be tackled.

Partitioning of the layout design problem into two separate and

tlisjoint steps has, however, necessitated the use of itenative processes

involving repeated application of the placement and r'outing steps. The reason

for this cyclic phenomenon is the intrinsic mutual dependency of the

4

placement and routing processes. lf a placement conf iguration does not aìlow

a reasonable level of routing completion, it would be necessary to repeat the

placement process and then re-do the routing based on the new placement

configuration. This cycle must be nepeated until an acceptable layout is

genenated.

So far, most computer-aìded layout systems have taken this separate

placement and routing approach. However, as both steps ar'e so criticaììy

dependent on each other, there are probìems with such an iterative method,

particularly as the scale of the design extends more into the VLSI area:

l. Placing the modules with no knowleclge of how the routing process will
route the interconnecting wires makes the placement process

particuìarly difficult to generate the optimum placement conf iguration.

2. Divicling the layout pnocess into two disjoint steps with no

communication between the placement and the nouting pr'ocesses

unnecessanily increases the number of itenations nequired. The

inability for the routing process to provide feedbacks to the placement

process in exactly why routing was failed in case of an incompletion

essentially makes the placement pnocess a blind process. The

placement process does not know what is required by the routing

process. When routing fails, it simple generates another placement

configuration and hope that it will find an acceptable solution in a

reasonable number of trials.

ln light 0f these problems, attempts have been made to combine the

placement and routing process [10079, sou79, BUR85, SzE86]. However the

research is still in its infancy and no significant nesuìts have been reported.

The attempts reported so far have been primarily concerned with highly

5

regular structures such as gate arrays, and the improvements in the layout

were too small to justify the enormous running time [S0U7g].

ln addition to the above method of partitioning the VLSI layout design

process into placement and routing, another approach is to begin with a rough

placement of the circuit modules and routing of the interconnections, and

then perform a layout compaction to optimize the layout. The initial rough

layout could be the result of a symbolic (stick) layout design [|1EABO] to be

translated into final masl< layout, or the result of a placement/routing

process requiring a further optimization. ln any case, once the initial design

is completed, a compaction process is applied to optimize the design. ln this

appnoach, the initial rough placement configuration represents only the

topological arrangement of the modules, that is, the relative positions of the

modules only. The actual physical placement of the modules are determined

by the compactor according to the process design rules and user defined

constraints such predefined module locations. ln the compaction process, the

interconnecting wires are considered as stretchable. That is, without

changing the topology of the routing, the compactor is free to shrink or

stretch any wire [LlAES].

Host compactors use minimum area or maximum density as their main

goal. ln other words, thein goal is to achieve the minimum die size for a

circuit given the clesign rules, the components, the intenconnections, and the

user defined constraints. Although minimum area may not be the only

requirement, it well reflects many othens, for example minimum signal

delays and maximum yield.

The general layout compaction problem has also been proven to be

6

$'lP-complete [SAT83, TAY84]. A mathematical representation of the layout

compaction process is: minimize the product, Area = tlax(xþ1ax(y), where x

and y are horizontal and vertical dimensions of the die. This formulation

results in a quadratic problem that is very difficult to solve [GAR79]. ln fact,

for all but very smaìl cases, its solution is unreasonable on today's

computers. To make the problem manageable, the following assumption is

made: minimization of the layout is achieved when the layout in each

dimension is minimized. The impìication here is that the original two-

dimensional compaction problem can be decomposed into two one-dimensional

problems, each of which can be soìved independenily using simpler

algorithms. The new formulation results in a linear problem that minimizes

the vertical or horizontal dimension subject to the given constraints. But,

because the layout design problem is two-dimensional, and because linear

compactors minimize each dimension separately, the order in which

compaction is performed, that is, a horizontaì compaction first or a vertical

compaction first, becomes important [TAyg4].

Encouraging results have been reported with the compaction approach

to layout design [0HTE6]. However, this layout styìe is still relatively new

and no significant results have been reponted. Therefore, not until better

compaction algorithms, particularly two-dimensional compaction algorithms,

are developed, this method remains primarily as a research.

ln this thesis, the common approach of partitioning the layout design

problem into placement and routing will be used. In the next two sections, a

brief overview of the placement and routing process will be presented.

7

¡.5 Flacement

ln general, VLSI placement is the process of arranging all circuit moduìes

within the die area such that the resulting placement configuration will

facilitate the routing process [KlN86a]. Although the modules are placed on

the die according to a number of constraints such as heat dissipations and

signal crosstalks, the main objective of the placement process is to generate

a placement configuration that would allow IOO% routing within the given

area ISOUBI]. 0ther constraints represent merely secondary objectives that

impose additional requirements on how some modules must be placed. For

example, due to heat dissipation considerations some moduìes may have to be

placed in ce¡'tain fixed positions, or in order to reduce signal crosstalks some

modules may have to be placed next to some specific modules. But the

ultimate objective is still to generate a lO0"Ã routable placement

configuration that satisfies those constraints. Such an objective ìs, however,

not mathematically well defined. lt is very difficult to predict whether 100%

routing can be achieved without performing the actual routing.

To access the quaìity of a placement configuration, pre-routing

(post-pìacement) analysis schemes and routability indicators have been

reported in literature [s073, F0s75, HEL77, KoN86, SASE6]. Although they

usually do not require as much running time as the actual routing process, a

comprehensive analysis still requires an appreciable amount of time.

Therefore, such analyses aFe normally used to access the quality of the final

placement configuration only and not the intermediate configurations. ln

particular, it is commonly used to choose between alternative placement

configurations, or to identify congested areas so that they can be avoided

early in the routing process.

I

ln order to guide the placement process towards a final solution, a

simplif ied objective function is used. The assumption is that if the

simplified objective function is improved, the routability is also improved.

Various simplifiecl objective functions have been proposed. The thnee most

representative ones are the total nouting length, the maximum cut line, and

the maximum density tC0T86l.

Regardless of the specific objective function selected, most of the

placement algorithms can be classified as either constructive or iterative

[HAN72, SOUEI, 60T86]. Constructive algorithms produce a solution using

heuristic rules, often in a sequential and deterministic manner [G0TE6].

Iterative algorithms, on the other hand, produce a solution by successive

modif ication of the initial solution. ln most CAD/CAE layout design systems,

algorithms from both of these classes are employed. Usually an initial

solution is obtained using a constructive algorithm and the solution is

improved gradually with an iterative algorithm.

For constructive placement algorithms the placement conf iguration is

formed by acljoining unplaced modules to the set of placed modules. One by

one, the unplaced modules are selected and positioned in the partially formed

placement configuration. Once a module is positioned, it will not be moved

again. An example of constructive placement is the clustering algorithm: for

each unplaced module a measure of the expected number of interconnections

to the placed modules is computed and the one with the largest value is

selected for placement.

Iterative placement algorithms, on the other hand, improve upon a

placement configuration by applyìng small locaì changes. Typically a subset

I

of modules is selected and deterministically repositioned until the best

configuration is found. A widely known algorithm is the force directed

placement method, where the connections between modules are interpreted as

springs that stretched out due to displacements between the modules. The

placement configuration is then pulled together by successively reducing the

forces of connections between modules using techniques such as a pair-wise

exchange of modules.

Using whichever technique, once the modules are placed, the next step

in the layout design process is to route the interconnections. ln the next

section, a brief overview of the routing process will be presented.

1.4 Routing

Routing is the process of converting interconnections into wires within the

designated routing regions according to constraints such as maximum wire

lengths [KlNEs]. The interconnections of module terminals, usually specified

in the form of a net list, are made through one or more routing layers in the

designated routing regions. Generally, two routing layers are used with

vertical and horizontal traces on alternate layens. A physical wire changes

direction by means of a via at the intersection of a horizontal trace and a

vertical trace.

l"lany routing algorithms have been developed in the past three decades.

The first recognized algorithm was developed by Lee in l96l [LEE6l]. The Lee

algorithm is actually the shortest path algorithm by Hoore tl10059l applied to

a gricl structure representing the wiring space. Since Lee's original paper', a

large number of extensions and variations have been published. These

t0

algorithms are often referred to as grid expansion or maze-running

algorithms due to their similarity to fincting an entrance-to-exit path in a

grid-structured maze.

Even though maze-running algorithms were created before the

integrated circuits era and has been applied primariìy to printed circuit board

design, it is still used in many current VLSI layout design systems. This is

due to the generaìity of the algorithm and the guarantee of finding a path if
one exists. The main disadvantages of the Lee type maze-running algorithms

lie in their large demand 0n memory and running time, and their inherent

sequential nature of routing one net at a time. Such inherent negative

features of the maze-running algorithms have given rise to other classes of

routing algorithms. ln the next chapter, a more detailed description of

maze-running, line-search, and channel routing aìgorithms will be presented.

¡.5 flotivation

The size of the resulting layout has always been a major concern in VLSI

design. Smaller layouts are less expensive and may exhibit better
performance. An over-sized die has severaì adverse effects on both the cost

and the performance of an integrated circuit:

l - A larger die wìth modules placed farther apart requìres longer

interconnecting wires. As gate delays are becoming shorter, especially

in very high speed integrated (VHSI) circuits using such technologies as

emitter coupled logic (ECL) and 6allium Arsenide (6aAs), signal delays

due to excessively long interconnecting wires is becoming an

increasingly signif icant factor.

il

2. With a larger die size the number of circuits that can be fabricated on a

wafer is reduced. Hence, the cost pen die is increased.

3. As the number of functioning circuits per wafer decreases

exponentially as the die size increases [æT86], a larger die size

implies a lower probability of a circuit functioning, a lower yield, and

hence a higher cost.

It is, therefore, obvious that the larger the die size the pooren the

performance and the higher the manufacturing cost.

ln order to make efficient use of the available die atea, moduìes of

active devices and interconnecting wires compete with each other for space

on the die surface. lt has been observed that wiring can occupy more than

half of the die area. lloreover, dead space containing no usable devices or

wirings due to improper module placement and interconnection routing

represents a major waste of precious die area. Therefore, in order to

minimize the die size both the routing space and the dead space must be

minimized.

Currently available CAD/CAE tools for VLSI layout design tend to use

more die area than actually needed. ln other words, they necessarily waste

die space. Automatic layouts still cannot compete with manual ìayouts as far

as the die size is concerned. This is because an experienced designen can

understand the given design and fincl a more compact layout using his

knowledge and intuitions. However, due to the extreme complexity of VLSI

designs and a world shortage of skilled ctesigners, in order to complete a

design in a reasonable time and cost, CAD/CAE tools ane indispensable despite

their present inadequacies. ln fact, it is widely recognized that the greatest

impediment to the successful use of VLSI technology is the lack of adequate

l2

CAD/CAE tools to support VLSI circuit design [L0SB0].

ln this thesis the VLSI routing problem, in particular, the channel

routing problem, will be addressed. The main reason why routing remains

such a difficult problem is its global nature: the way one interconnection is

r0uted influences the potential solution for other interconnections. Any

fragmentation of the routing task into smaller domains may affect this global

aspect and hence the quality of the routing results [LUDE3]. However, the

problem of routing is simply too complex to be considered globally without

subdividing it into smaller, more manageable, domains. As will be discussed

in the next chapter on routing algorithms, the method of channel routing

represents a simple yet effective approach to the VLSI routing problem.

1.6 Thesis Objectives

The objectives of this research wonk are:

l. To identify areas that can be improved in existìng detailed routing

algorithms through a survey of published nesuìts.

To improve the existing channel routing algorithms through the

development of a detailed routing algorithm for regular channels in an

attempt to obtain optimum or near optimum results for at least one

class of channel routìng problems.

To improve the detailed routing algorithm for regular channels by

extending it to allow doglegs and hence relaxing the restriction on one

horizontal track per net.

2.

3.

t3

ß.7 Thesis Stnucture

This thesis addresses the VLSI channel routing problem. The concept of

channel routing, although introduced over a decade ago, is still the most

popular routing strategy for LSI and VLSI layout designs. The next chapter

describes on the major classes of routing algorithms, including maze-running,

line-search, and channel routing algorithms, as well as other routing

approaches, including hardware routers, expert routers, and the simulated

annealing technique. lt is then followed by Chapter lll on the introduction of

a non-dogleg detailed routing algorithm for regular channels. ln Chapter lV,

the extension of the non-dogleg algorithm to allow dogìegs is desmibed along

with the implementation and the experimental resuìts. Finally, conclusions

for both the non-dogleg and the dogleg channel routing problems are drawn

and recommendations for further research are given in the last chapter of

this thesis.

14

Tå.IAPTFR åI

WLSå ROUTIruG AL6TRåTHMS

Since the f irst routing algorlthm was introcluced by Lee in l96 t

[LEE6ll, numerous routing algorithms have been developed. l'lany of those

algorithms were very innovative and provided much understanding into the

complex probìem of routlng. lt ls essential that those developments be

understood before any fruitful research can be attempted. This chapter

desfflbes the three most lmportant classes of rouilng algorlthms that formed

the Þasis of most computer-aicled layout ctesign systems today, namely,

maze-Funning, line-search, and channel routing algorithms. ln adclition, other

routing approaches, including hardware routers, expert routens and the

simulated annealing technique are clesmibed.

2.1

The maze-runnlng and llne-seanch algorlthms are the most well known

routing algorithms. The maze-running algorithms find a path between two
points on a grid similar to f inding an entrance-to-exit route in a

gricl-structurecl maze. The line-search algorithms, on the other hand, search

for a path as a sequence of llne segments. ln the followlng two sections

these two classes of algorlthms wlìl be descrlbed tn cletail.

t5

3.ß -1 ffiaze-RunninS Routing Algorithms

l1aze-running or grid-expansion algorithms are grid based algorithms that

find a connecting path between two terminals of a net on the grid similar to
finding an entrance-to-exit path in a gr'id-structured maze. Algorithms in

this class assume the use of a uniform rectangular grid. The spacing between

the grid points is such that for wires less than a certain width routing on the

grid points will automatically provide the proper clearance between the

wires. Although the use of such a grid eliminates the possibility of curved or

diagonal traces typically seen in manual layouts, this loss of generality

substantially simplifies the routing problem, thus allowing more complex

problems to be tackled. This concept of grid based routing has in fact given

rise to the entire class of maze-running algorithms, and the use of CAD/CAE

systems in layout designs.

Lee Aloorithm

The first maze-running algorithm that aimed at automated wire routing was

developed by Lee in lg6l [LEE6lland is commonly called the Lee algorithm. tt
was originally developed for single layer routing on a planar rectangular grid.

The objective is to find the shortest path, if such a path exists, on the grid

connecting the two terminals of a net. Before a more precise definition of

the algorithm, it would be best to begin with a simple example illustrating

the algorithm.

Assume a small routing region as shown in Fig. la. For a better

llìustration, the grid points are represented by rectangular ceìls. The

numbers inside the cells are labels used in the algorithm, and the blackened

t6

(a)

TIRI{IML

OESTRUCTION

CELL

(b)

RETRACE PATH

LABEL

(c)
FIML PATH '?|,7í!;,ifriit:#Í!j

A

tJl/f -/t'r'. .// /I.'' /.
:: ,: ¿¡.I/ Jt.f ¿t

$F¡tr*¡¡r

B t:t't
ffiffi

Flg. l. Lee algorlthm rouung example. (a) Rouilng grtct;

(b) Cell expansion and retracing (note that E is labelled l4);

(c) Final path between terminals A and B.

¡ A

B

Þ

4 5 2 3 4 5 6 7 E I t0 il
3 2 I 2. 3' 4 5 6 7 E 9 t0

2 I Å rffii I

5 6 7 E

3 2 I 2 6 7 E, $r to il t2

5 4 3 4 l4 B t3 t4

6 5 r5 l4 l4
7 6 7 il l2 t3 t4
E 7 E I r0 il l2 t3 14

9 E 9 t0 il 12 t3 l4

l7

cells represent obstructions, such as routing voids or traces of routed nets.

The cells labelled A and B are the two terminals of the net to be connected

using the Lee algorithm. The goal is to find the shor'test path between the

two cells while avoiding the blackened obstruction cells.

The algorithm can be decomposed into two separate phases: the cell

expansion phase and the retracing phase.

l. Cell Expansion (or wave propagation): The algorithm begins by selecting

one of the two terminaìs as the sounce cell and the other terminal as

the target cell. ln theory, either terminal can be chosen as the source

terminal. ln practice, however, one terminal may be more desinable

than the other, as will be seen later. Here, terminal A is selected as

the source and terminal B as the target. With the source and target

cells chosen, a label of I is entened into every empty cell immediateìy

adjacent to the source cell. Since no diagonal traces are allowed, the

adjacent cells are the nonth, west, south, and east cells. Next, a label

of 2 is entered into every empty cell immediateìy adjacent to the ceìls

labelled l, and so on; increasing the label by one in every expansion

step. This process continues until either (i) there are no empty cells

adjacent to the labelled cells meaning that no path exists connecting

the cells A and E on the grid and the algorithm terminates, or (ii) the

target cell B is reached meaning that a path has been found and the

algorithm proceeds to the next retracing phase. The key purpose of this

cell expansion phase is in the labelling of the cells, whene the numbers

represent the Hanhattan distance of the cells from the source cell.

This process can also be viewed as a breaclth-first-search in graph

theory as the cells closer to the source cell are searched first.

t8

2. Retracing: After the cell expansion phase, there exists at least one path

connecting the source cell and the target cell among the expanded cells.

However, the exact optimal path has not been determined. The main

purpose of this retracing phase is to trace out the exact optimal path

from the target cell back to the source cell. As shown in Fig. lb the

target cell B has been reached in the l4th expansion step. lt foìlows

that thene must be a cell with a label of l3 adjacent to B. Similarly,

for a cell with a label of 13 there must be a cell with a label oî l2
adjacent to it, and so on. Therefore, by tracing the labelled cells in

descending order from the target cell back to the source cell, the

desined shortest path can be identified. In the retracing process, there

are often more than one adjacent cell with the correct label. ln theony,

any one of those cells can be chosen and they will all yield paths having

the shortest length. ln practice, however, the cells not leading to a

change in the path direction will normalìy be chosen to minimize the

number of corners in the wine. For example, in Fig. lb, the celì labelled

9 on the retracing path has two adjacent cells labelled 8. ln such a

case, the one to the left is chosen instead of the one above to avoid a

change in the path direction. Once a path is selected, all the cells along

the path are labelled as occupied and become obstructions for

subsequent interconnections while the nest of the expanded cells are

relabelled as empty and remain available for subsequent r'outing.

The result of these two steps are shown in Fig. lc. The final optimal path is

indicated by shaded cells in the diagram.

From the above example, it can be seen that the Lee algorithm is fairly

simple. Eut the most impontant properties of the Lee algorithm are that: (i) it

t9

guarantees to find a path if one exists, and (ii) it guarantees to find the

optimal path if more than one path exist. As in the above example, the final

path of length l4 is the shontest possible path connecting the cells Aand B.

With the basic principles of the Lee algorithm illustrated in the above

example, a more precise definition of the algorithm in pseudo-codes would

help to clarify the details. First, a few definitions are requined. Assume that

the routing area is divided into a finite number, N, of subareas caìled cells

labelled C,. The cells representing obstructions such as routing voids or

routed wires are labelled as occupied and are not available for routing. The

remaining cells are labelled as free and can be used to form a path. l-loreover,

a cell C' has associated with it a cost, f(Ci), and a path p consisting of the

starting cell 5 and a set of cells C1, C2, C3, ..., Cn each adjacent to the

previous cell forming an (n* I)cell path of

Þ = tS, C1,C2, Ca, ..., Cn)

has a path cost of, F(p), where

F(p) = Ë, t,.,,.

ln the original Lee path finding algorithm, the cost of a cell is the

llanhattan distance between that cell and the soul'ce cell. However, path cost

function can be genenalized to any monotonic function or set of monotonic

functions represented by a vector F = [F¡, F2,..., Fnl. A path cost function is

monotonic if for every path p and any of its subpa,¡ pi,the following

inequality holds.

F(0,) < F(o)

20

With the above def initions in order, the Lee algorithm can be descnibed

more precisely in pseudo-code. lnstead of showing the exact algorithm as

presented by Lee, the algorithm is restated here to show just the essence of

the algorithm; in particular, the cell expansion and retracing phases. The

pseudo-codes used are similar to the Pascal language, and the syntax should

be self-explanatony.

[!-ee (rnaze-running] Routing Algorithrnl:

Lee(cell-rnap);

cell-rnap â/7 ordered /tst of ce//s.

The ltst ncludes..

'i,' #' :::,", ;'|,iff [i,!!! #J'f;,r' t c e,,s,
J) tfie deftnttton of cell neighÞourhoof,

4 the path cost functton.

Each ndttttdual ce// is a structure whtch ncludes..
l) a ce// tdentificatron field: ie
2) a ce// /aþe/ fteld: /abe/,.

The mdtvidual fields are refercnced as ce//.td and cell.label
respective/1t

fl/ar taþ le Oe /'in i t ionsJ

source: the source cel/,'
target: the target ce//;
cell: vanaþle holdtng a ce//,.
pattucell yartàþle holding a ce// n the retrace phase,.

neighbour: variable holdrng a nerghÞour cell-
label: currnt laþel n the cell expansion phasq
found: þoolean vartaþle used to terminate ce// expansio4.

2l

begin
[nitta/uattonJ
label := source.label := 0;

found :* false;

[cetl expanstonJ

while not found and number of empty cells in cell_rnap > I do
begin
for all empty cell in cell-rnap do

tf cell.label = label then
for neighbour in the neighbourhood set of ceìl do

if neighbour.label = empty then
neighbour.label := label + l;

else lf neighbour.id = target.id then
{target cell ts reacheQ' termtnate ce// expansionl
found:= tnue;

label := label + l;
end;

[retraceJ
if found then

begln
patlucell := target;
repeat

output patlucell.id;
for neighbour in the neighbourhood set of paffr_cell do

lf neighbour.label =patlucell.label - Ithen
patlucell = neighbour;

until patluceìl.id = source.id

end
else

[all cells have þeen examined and no path is foundJ
output 'no path is found."

end. n

22

From the above description of the algonithm it can be seen that the Lee

algorithm requires at least I'F memory for an NxN routing region, and O(N?)

running time in the worst case, or 0(12) for a path of length L in the cell

expansion phase and 0(L) in the retracing phase. Obviously, for a large routing

region, the memory required to store the cell labels and the running time

required to find a path through the grid are the two major drawbacks of the

algorithm. ln light of these stonage and speed problems, a large number of

variations and extensions to the original Lee algorithm have been developed

[AKE67, GEY7I, RUB74, HOE76, KOR82].

Extensions of the Lee Algorithm

There are a large number of variations on the oniginal Lee algorithm. Among

the various extensions, several of the impontant ones are described in this

section and they are organized into storage reduction techniques, speed up

techni gues, mul ti -term i nal net extensi ons, and mul ti -layen extensi ons.

Storage Reduction Technioues

The huge storage requinement of the Lee algorithm represents a very serious

drawback, especially for large scale or dense layouts. For example, a double

layer l000xl000grid would have two million cells. Wire lengths as long as

1000,could be expected in such a grid. Thus, during the cell expansions

process, labels as large as 1000 would be used requiring at least l0 bits of

storage per cell. lf double-byte words are used, a total of over- 3.8

mega-bytes must be allocated to store the gnid. Howeven, as can be seen from

the example in Fig. l, the minimum amount of information that must be

23

t.

present includes only (i) a means of distinguishing between occupied cells and

empty cells, and (ii) a means of distinguish between the predecessor cells

from the successor cells in the retracing process. Based on this observation,

a number of labelling scheme have been devised to encode the necessary

information using fewen number of bits per label.

Direction Labelling Scheme: At each cell expansion step the adjacent

cells are given direction labels of north, west, south, or east indicating

the directions of expansion as shown in Fig.2a. lf a cell can be reached

from more than one direction, one direction label is entered. Using the

four direction labels, together with the empty cell and the occupied

cell labels, there ane a totaì of six distinct labels. Hence, three bits of

storage is required per cell. This labelling scheme, however, has one

drawback. Since only one of the cell expansion direction is entered,

only one path can be found even if more than one exist. Thus the choice

of selecting the path with fewer number of corners is sacrificed for

the reduced storage.

l-2-3 Labelling Scheme: lnstead of stoning the directions of expansion,

a sequence of I ,2,3,1,2,3,...is used for labelling as shown in Fig. 2b. ln

the retracing phase, the reverse sequence is traced. This labelling

scheme uses a total of five distinct labels, and thus still requires

three bits of storage per cell. However, this technique allows multiple

paths to be identified and the one with fewest corners to be selected.

l-1-2-2 Labelling Scheme: This labelling scheme is similar to the

l-2-3 labelling scheme, except that a 1,1,2,2,1,1,2,2,... sequence is

used as shown in Fig. 2c. Note that in the example the target cell B is

reached with a I pneceded by another l. Therefore the retrace sequence

3.

24

(a)

(b)

a- ë I 1 I I I I I I I

'/i {
È '1..L1. ¡

I
I

¿ ¿ W#.Mr ¡7

;.t4¿ ¡
¡ ¿

T
1 'Ð, /, {

¿ 1 1 ¿

t ¿ ffPr¡ 1 I 1 1

¡ ¿ { { {
¿ ¡

I 3 2 ls M 5 I 2 3 I 2

3 2 ffi# 2 3 2 3 I

2 I A I 3 I 2E
5 2 I

.) a
.J

W
t,ffl.it2 I 3 I 2 2

5 2 ffiqffiffitr I 2 2

I 3 I 2 3 I 2

2 I 2 3 I 2 3 I 2

3 2 3 I 2 3 I 2

(c) 2 2 IÐg 2 I I 2 2 I I 2

2 I &'4
I I 2 2 I I

I I '!r) I ?tltu
'fl,

I 2 2
rû¡¡a

Aì4
.$,t'.

#.
i?.:-'.

Ë
22 I I I 'þ*.

ry

itrfit ,rh
(#
xRd
&x
?.áI 2 2 2 I

I I I I I

2 I 2 2 2 I t

2 2 2 I I 2 2 I I

2 I I 2 2 I I

Fig. 2. Storage neduction techniques (a) Direction labelling;

(b) l-2-3 labelling; (c) l-l-2-2labelling.

25

should be 1,1,2,2,1,1,... The biggest advantage of this labelling scheme is that

only two labels are used in the sequence. Togethen with the occupied cell and

the empty cell labels, a total of four distinct labels are required. Hence, only

two bits of stonage ane requined per cell instead of three as in the previous

two schemes [AKE67J.

Alì of the above labelling schemes are designed to reduced the amount

of storage per cell. However, in practical routers, the selection of labelling

schemes must be made according to the tradeoff between storage and

efficiency [0HT86]. For example, although the l-l-2-2 scheme requires onìy

two bits per celì, the final label cleanance process may be as involved as the

cell expansion phase. Thus, additional bits are often used to simplify the

processing.

Soeed-Up Techniques

Several speed up techniques are also possible. llost of such techniques are

focused on the cell expansion phase. The objective is to reduce the number of

cells that must be examined to find a connection path. However, in some

speed up techniques such as double framing, the resulting path may not

always be the optimum. The use of such techniques would thus involve a

tradeoff between speed and optimalìty. The common approach is to find a

solution quickly with a speed up technìque, and if the resulting solution is

unacceptable, the parameters are modified or a complete search is performed

again. One point should be noted here is that, while the speed up techniques

tend to reduce the average processing time, the wonst case computational

complexi ty remains unchanged.

26

t.

2.

Starting Point Seìection: For a given pair of terminaìs, it is more

desirable to start the cell expansion process from the terminal closer

to the boundary of the routing region since the number of cells that

need to be examined are fewen (Fig. 3a).

Double Fanout: cell expansion is performed from both terminars

simultaneously until a point of contact is reachecl (Fig. 3b). This

technique reduces the number of cells that need to be examined but

requires a more complex scheme to keep track of the two simultaneous

cell expansion processes.

Framing: An artificial rectangular frame is imposed around the

terrninal pair and no cell expansions are allowed outside this boundary

(Fig. 3c). Typically, the frame is about ro-zoy, ranger than the

rectangle defined by the terminal pair and may be expanded or removed

if a path cannot be found within this frame. The reason behind this

technique is that, it has been observed that in most cases the shortest

path between two cells is within the rectangle defined by the

terminals. Therefore, by restricting the search area the probability of

finding a path is still high while a considerable speed up is possibìe. A

further extension to this framìng technique is double framing, where a

second, smaller frame is imposed inside the rectangìe defined by the

terminals to further reduce the search area. The use of this interior

frame may prevent the algorithm from finding the shortest path.

However, this technique is commonly used to quickly identify simple

paths.

3.

27

(c)

Fig. 3. Speed up techniques. (a) Starting point selection;

(b) Double fanout; (c) Single and double framing.

28

ffiulti-Tern¡inal Net Extension

ln the original Lee algorithm, only the connection of two terminal nets are

considered. When a net with three 0r more terminals (multi-terminal net) is

to be routed, a direct application of the algorithm is not possible. one

solution to this problem is to begin by using one of the tenminals as the

source and the rest of the terminals as the tangets, and f ind a path between

the source and the first target reached. Once a path is found, all the cells in

the two terminal path become source cells and all the other terminals remain

as target cells, and the path finding process is repeated. Then all the cells in

the resulting three terminal path become source cells and the other terminals

remain as target cells, and so on, unti! all the tenrninals are connected.

Figune 4a shows the routing of a S-terminal net.

The interconnecting path obtained by this process is not always the

optimum. ln fact, this multi-terminal net routing problem is equivalent to

the llinimum Steiner Tree problem in graph theory, which is known to be an

NP-problem [64R79]. The possibility of finding the optimal solution in

polynomial time is unlikely. There is, however,one simple technique that is

often able to improve the resulting path. The idea is to break the resuìting

multi-terminaì path into two sub-paths. Then, one of the sub-paths can be

used as the source and the other as the target. lf the resulting path is better

than the original path, the new path is kept and a better overall path is found.

App'lying this technique to the example in Fig. 4a, a shorter path is found as

shown in Fig. 4b. This technique clearìy requires longer running time, but it
does often aìlow better paths to be found.

29

B

A D

c

E

I 2 3 '8

A I 2 3 4 D

I 2 3 4

2 3 4

3 4 c

4 E

'li.#6,1ffi B I 2 3 4

A I I I 2 3 4 D

I 2 2 2 5 4

2 3 3 3 4

3 4 c 4

4 E

"rffiiíhli B l 2 3 4

A I I 2 3 4 D

I I I 2 3 4 5

2 I I 2 3 4 E
!,

2 I c I 2 3 4 5

3 2 I 2 3 4 5 E

B

A I I I I D

I I 2 2 2 I

2 I // /, I 2 3 5 ?

2 c I 2 3 4 3

3 2 I 2 3 4 E

B V,frl;#/i;frí/i,
A D

c

E

(a)

B

A r/#i;rtíí#íä.*i:tfr¡í+ D

7/t
w.'/JZ

,./-/./,

'#

c '///.

E

(b)

Fig. 4. llulti-terminal net routing example.

(a) Multi-terminal routing using tenminal A as the f irst source cell

(b) A shorter path found by nerouting sub-paths.

Hul t i -l-aver ExtensI on

trte of the most important variations to the original Lee algorithm is the

extension to multi-layer regions with interconnecting vias. One way to model

the three dimensional nouting problem on a grid is to consider a thnee

dimensional amay of regular cubes as shown in Fig. 5a, where a double layer

case is illustrated. Note that the grid points are now represented by cubic

cells. As before, a pair of terminal cells are given, and the goal is to find the

shortest path connecting the terminaì pair.

The three dimensional Lee algorithm is very similar to the two

dimensìonal case, except that the celìs adjacent to a given celì now consist

of not only the four planar cells in the north, west, south and east positions,

but also the cells in the top and bottom positions. Using similar cell

expansion and retracing processes as in the two dimensional case would lead

to a path connecting the terminal pair with the minimum number of cells. lt
is assumed that an inter-layer connection through a via has the same cost as

a unit length wire. The result of the example in Fig. 5a is shown in Fig. 5b.

Summarlr

l'laze-running aìgorithms are capable of finding the optimal path between two

terminals with respect to any monotonic cost functions, provided that such a

path exists. Numerous variations and extensions have been pubìished to

enhance the original maze-running aìgorithm developed by Lee. Some of the

most important ones are the storage reduction techniques, the speed up

techniques, the multi-terminal net extension, and the multi-layer extension.

But, even with these enhancements maze-running algorithms still require

5r

(a)

TOP

LAYER

(b)

BOTTffl
LAYER

TOP

LAYER

BOTÏOù1

LAYTR

Fig. 5. llulti-layer extension. (a) Doubìe layer routing problem;

(b) Routing result.

B

A

9 E 9 l0
B 7 E 9 B

7 6 t0

6 sW 7 E 9 t0

5 4 6 7 E 9 t0
4 3 påi E 6 7 E I
3 2 4 5 6 7 E

2 I 2 3 4 5 6 7

E 9 t0
7 I I t0

6 7 a I l0
5 6 7 E I t0

4 5 6 7 E I t0
3 I r0

2 I 2 t0

A I

32

substantial amount of storage and running time. To addr'ess these drawbacks,

the class of line-search algorithm have thus been developed. ln the next

section, the line-search routing algor'ithms will be described.

3,-l -Z Line-Search Routing Atgorithns

The class of line-search routing algonithms was first proposed by Hightower

[HlG69] to reduce the storage requirement and to speed up the running time of

the maze-running algorithms. Basically, paths are found by constructing

sequences of connected line segments stanting from the tenminal points until

they intersect. There are three majon differences between the line-search

algorithms and the maze-running algor'ithms.

l. The line-search algorithms also proceed to find a path by running on a

grid. But, unlike the maze-running algorithms in which a unit of

memory is allocated for each grid point, the routing space is considered

es a continuous plane and paths ane repnesented by a set of line

segments. ln this sense, the line-seanch algorithms can be viewed as

proceeding on an virtual grid,

2. The line-seanch algorithms process and store line segments rathen than

cell maps. Thus, in most cases the amount of storage required, and the

running time is substantially reduced.

3. The line-search algorithms, although usually able to find a path, cannot

guarantee that a path be found even if one exists. Furthermone, the

optimality of the resulting path cannot be guaranteed. However, the

srnall strrye requirement and the fast running time still make this

class of algorithms very attractive.

33

Fliohtower Aloorithrn

The most representative and best known line-search routing algorithm is due

to Hightower [HlG69]. ln this section, the Hightower algorithm wiìl be

described.

First a few definitions are required before the algorithm cannot be

explained.

l. A cover of a point p is a line segment u such that a penpendicular to a

passes through p.

2. Ahorizontal (verticaì) cover of p is a cover in the horizontaì (vertical)

direction such that no other covers of p exist between it and p.

3. A horizontal (vertical) escaoe line is a horizontal (vertical) line

segment through p bounded by the vertical (horizontal) covers of p.

4. An escaoe point e is a point on the horizontal (vertical) escape line of p

which is not covered by both horizontal (verticaì) cover of p,0r any

other horizontal (verticaì) line segments between p and the cover.

5. ïhe object ooint is the escape point currently being processed.

6. The target ooint is the point to be reached from the object point.

7. A unit is the minimum spacing between wires. lt defines the grid

spacing.

An illustration of the above definitions is given in Fig. 6.

With the terms defined, consider now the example in Fig. 7. lt is

required to connect the tenminal points A and B in the given routing region

with blockage wires a, b, c, d and e. First the escape lines q and ûr are

constructed through the object point A (Fig. 7a). Notice that there are no

escape polnts along the horizontal escape line q since the horizontal covers

of A are the top and bottom boundaries. Along et, on the othen hand, the point

l.

2

3

4.

5.

6

7.

Covens of point p: b, c, d, h, i, g.

Horizontal covers: c, h.

Verical covpr s: g, d.

Horizontal escape line of p: k.

Vertlcal escape llne of p: m

Horizontal escape points: e, and eu, but not er.

Ventical escape points: e | , €2 and eo, but not e..

illustration of def initions used in theFig. 6. An

35

Hightower algorithm.

(a) (b)

A
I

L2

(c)

HIT

Ai

itt
(d)

(e)

Fig. 7. Hightower algorithm routing example.

(a-d) Escape pnocesses; (e) Final route.

t2, which is one unit beìow the bottom end of blockage a is an escape point.

Tu¡'n now to the other terminal point B, and in a similar fashion the escape

point t, is found (Fig. 7b). Next, returning to escape point t2, êscâÞê lineou is

constructed (Fig. 7c). There ane, however, no escape points along c, since the

horizontal covers of t, are the top and bottom boundaries. Thus, returning to

tr, the escape line o, is constructed, and the escape point to for t, with

respect to blockage d is identìfied. Continuing, the escape line ao is

constructed which intersects escape line a, at tr, and a path is found (Fig.

7d).

From the above example, it can be seen that the novel part of the

Hightower algorithm is in the path finding process; which invoìves two

escape processes caìled the escape process I and the escape process I l. An

illustration of the escape process I is shown in Fig. 8a. This escape process

searches for escape points one unit away from the endpoints of the covers.

When more than one escape point is available, the process returns the first
one found. ln Fig. Ea, points e, and ez are valid escape points around blockage

a, and er and e4 are valid escape points anound blockage d. But, there are no

valid escape points around blockage b or c.

Figure 8b illustnates the escape pr'ocess ll, which is used if escape

process I fails to find a valid escape point. ln this case the pnocedure

searches points, each one unit apart along an escape line through p, stanting

from a horizontal cover and moving towards p. Thnough each point an escape

line is constnucted. Then an escape point is sought along the new escape line

using escape process l. lf a valid escape point is found the process is

completed, otherwise another point is tried until p is reached, in which case

no escape from p is possible. ln Fig. 8b, first the escape lines q and or are

37

l,

4€-
:" ¡

o 1,,
lo

ito

(a)

(b)

Fig. 8. An illustration of the escape processes.

(a) Escape process l; (b) Escape process ll.

38

constructed, and no escape points can be found using escape process l. Then,

the escape line % is constructed through r, and again no escape points can be

found. Finally, the escape line a, is constructed through r, and the escape

point e is found.

The escape processes aìternates between escaping from a point on a

path from A and escaping from a point on a path from B. lf any escape lines

associated with a path from A intersects one associated with B, by tracing

backward from this point to the preceding points a path will be established.

Once a path is found refinement procedunes can be invoked to improve

the shape of the path. One refinement is to delete all escape points not on the

corneFs of the path between A and B. This is necessary because the

algorithm, lacking knowledge of the ovenall problem, tends to generate more

escape points than ane necessar'y for a path. Thus, the purpose of this

refinement process is to discand those points that are superfluous. After the

first refinement process, every point represents a corner' in the path.

However, there may still be part of the path that is redundant. As an example,

consider Fig. 9a. The path shown is much longer than it need to be. A
perpendiculan to segment (pr,Þr) and segment (pa,p5), which ane part of the

same path, would shorten the path. Figure 9b illustrates another example,

where by extending segment (p5,Þa) to meet (p¡,p2), Þ4, k, and p, can be

replaced with the intersection of (pr,Oo) and (p1,Þ2), and a shonter path would

result.

The following is the main procedures of the Hightower line-search

aìgorithm defined in pseudo-code.

39

p4

Ps#
94

p5

(a)

(b)

*

Fig. 9. Two path refinement techniques.

N

[Flightower {line-search} Routing Algorithml:

Hightower;

{Vartaþle OefntttonsJ
stacka: stack of escape ponts assoctated wtth 4.
stackb: stack of escape points assoctated wtth 8,-

object: ob¡ect pont'
target: target pont'
A-path: flag controllrng whether to search from A or from fi'
intersect: tntetsecttanflag

begln
{initia/izationJ
push A into stacka;
push ts into stackb;

A-path := true;
intensect := false;

{man procedureJ

repeat
if no escape from ¡path then

if no escape from not A-path then
neturn no path is found;

else
begin
A-path:= rìot A-path;
continue;
end;

else
.begin
if A-path then

obJect := pop stacka;

else
object := pop stackb;

target := not A-path;

4l

call escape processes;

end
årntiÌ intersect;
call path determining pr.ocess;

call ref inement processes;

return path;

er¡d.

The memory requirement and tìme complexity of the Hightower

algorithm are unfortunately not described in the original papen [Hl66g], and

the data structures ane only ambiguously descnibed, However, using a linked

list data structure, 0htsuki [0HTB6] has analysed the memory requirement and

the time complexity of the Hightower algorithm. tn the linked list data

structure, escape lines and blockages ane stored as series of horizontal and

vertical line segments. Each line segment is defined by a 3-tuple specifying

the x and y coordinates of its two endpoints. For example, a horizontal line

segment is represented by (x,,gr,xz) where (ol,gr) is the coordinate of the

leftmost point on the segment, and x, is the x-coondinate of the rightmost

point on the segment, With this data structure it is clear that the nequined

memory space is proportional to the number of the escape lines, n. For an NxN

unit square routing negion, n could be as lar-ge as o(n2), but usually ncN2.

Thenefore, the line-search algonithms stilì companes favorably to

maze-running algorithms in tenms of memory nequirement.

ln terms of time complexity, aìthough the Hightower algorithm

generates only one escape llne ln each step of the line-seanching process,

many other lines could be investigated in order to choose an escape line.

Therefore, lt could requlre o(nz) ilme ln the worst case. However, the

algorithm is usually able to flnd a path with L llne segments in O(nL) time.

Thus, the Hightower aìgot'lthm runs ln tlme proportlonal to the number of

corners in a path. lf the routing region is not so congested, simpìe path with

small number of corners can usually be found making the line-search

algorithms f aster compared to maze-running algorithms. But, for'

complicated mazes, the line-seanch algorithms do not improve speed so much

in contrast to its memory saving.

Line-Exoansion Algoriihm

Although the Hightower line-search aìgorithm has been used extensively,

especially for the routing of PCBs, no major improvements in the algorithm

had been made until Heyns et al. [|{EYSO] combined t,he line-search algorithm

and the maze-running algorithm into a new algorithm ISOUBl, 0HT86]. The

Heyns routing aìgot'ithm expands from a line like the Hightower algonithm, but

it fills an area like the Lee algorithm. However, the expanded area is not kept

in memory; onìy its boundary segments are remembered as in the Hightower

algorithm. The characteristics of the resuìting path ane simiìar to the

Hightowen algorithm and, in most cases, have the minimum number of corners.

This algorithm has several advantages over the original line-search and

maze-running algorithms: (i) it finds a path, whenever a path exists; (ii) it is
based on a virtual grid that does not ¡'estrict the wine width and the path

location; (iii) it is fast and requines relatively little memony; (iv) it can use

penalty functions similar to those used in maze-running algonithms. lt is
thus very suitable for routing irregularly structuned layouts such as PCBs and

VLSI building block designs.

The Heyns algorithm is based on expanding a line in its perpendicular

direction. For every grid point (spaced one unit apar-t) of the line, it is

43

investigated for how far it can be expanded, that is, how Íar a perpendicular

line through this point can be extended before it is blocked by an obstruction.

The expansion zone is defined as the zone consisting of all the grid points

that can be reached by a line beginning on the expanded line and perpendicular

to it. The idea is that, instead of generating one escape line at a time as the

Hightower algorithm, the borders of the zone that can be reached by all

possible escape lines are generated. Figure l0 illustrates the expansion zone

of a line segment Í.. The algorithm searches for grid points in the expansion

zone using a modified maze-running algonithm. However, the grid points are

not kept in memory; only its boundany segments, called active lines, are

pushed onto a stack. The genenated active lines ane then expanded outside the

zone for further seanches.

The above procedure is initiated from both of the terminals by entering

them as starting ac'rive lines into the stack. From both of the terminals,

wave propagation processes similar to that of the Lee algorithm but advance

zone by zone are performed. Figure I la shows the active lines generated

during the search. A connection is found when an active line reaches the

wavefront advanced from the other terminal. ln Fig. I la, this occurs in the

shaded area, called the solution zone, in which the two wavefronts

intersected. The rest of the algorithm is to backtrace from the solution zone

towards the terminaìs, generating a finaì connecting path as shown in Fig.

llb. An important consideration in the line-expansion aìgorithm is to

generate a stop line when an active line meets the wavefront advanced from

the same terminal. The stop line is imposed to prevent duplicated search of a

zone. lt thus helps to speed up the algorithm.

,4

TXPANSION ZONE

ORID POINT

ACTIVI LINT

Fig. 10. Expansion of a line I in the upward dìrection.

The arrows indicate the direction in which

the active lines are being expanded.

45

'ffi. solution zone r,rr.r."r g[gp li¡g

(a)

Fig. I L Line expansion algorithm. (a) Active lines generated

during the search; (b) Final path between A and B.

The line-expansion algorithm compares favorabìy with the Hightower

line-search algorithm in that it guarantees a solution if one exists, and that

it can be readily extended to more general cases with multipìe tenminals,

source/target points, layers, etc. A minon drawback, however, is that it does

not always f ind the minimum bend path.

Sumrnarv

-

Line-search algorithms are very efficient techniques for finding a path

between two points on a plane with blockages. The main advantages are their

low storage and running time requirements. But unlike maze-runninE

algorithms, they cannot guarantee that a path be found, even if one exists, and

they cannot guarantee that the path found is the optimal. Although they

usually yield the path with the minimum number of corners, it is not always

the case. However, line-search algorithms still, in general, run faster and

require less storage than maze-running algonithms.

The line-expansion algorithm of Heyns et al. extended the Hightower

line-search algorithm by replacing escape lines with expansion zones and by

using amaze-running process to expand from zone to zone. lt is thus able to

find a path whenever a path exists and stiìl has the speed and storage

advantages of I ine-search algorithms.

.Aside from speed and storage considerations, both maze-running and

line-search algorithms are sequential algorithms that route one net at a time.

ln such algonithms, when a net is routed it becomes a blockage that may

prevent subsequent nets to be routed. Such fragmentation of the routing task

could result in poor routing patterns and excessive overflows. To address

47

this problem, channel routing algorithms have been developed. ln the next

section, channel routing algorithms will be described in detailed.

2.2 Channel Routing Algorlthms

Channel routing is a special case of the general routing problem where

interconnections are to be routed within channels. Channels are rectangulan

routing regions with no interior obstructions and with fixed terminals

located on two opposite sides. The interconnections may exit from the

channeì through floating terminaìs on the remaining two sides, but the exact

location is determined by the routen.

Channel routing was first proposed by Hashimoto and Stevens [HAS7l].

It was originaìly used in the design of the ILLIAC lV contnol unit boards.

Since then, channel routing has gained tremendous popularity, particularly in

gate anray and standard cells layout designs.

The most salient difference between channel routing algorithms and

othen routing algorithms is thein division of the routing process into loose

routing and detailed routing. Although simultaneous routing of all the nets is

still impossible, such a division of the routing task allows the routing of each

net to be influenced by all or part of the other nets. ln the following

discussion, the loose routing process will be bniefly descnibed, while the

emphasis will be on the detailed routing process.

Æ

2-?.1 l-oose Routing

Loose routing (also called global routing) is the preliminary step of the

complete routing process. lt calls for a routing plan ln whlch each net is

assigned to particular regions on the die reserved for routing. The goal is not

only to make 100% assignment of nets to regions for the detaiìed routing

process, but also to, for example, minimize wire lengths and die size, and to

control routing thnough narrow or critical channels by routing some nets

around to avoid bottlenecks.

After the placement process, the positions of the modules or blocks are

defined. Surroundìng each module is some extra space for routing. ln channeì

routing, such empty spaces are organized as routing channels. The task of the

loose routing process is to determine, for each net, the channels through

which the wire segments of a net will be traversing. The operation is calìed

loose routing because it only determines the channels to be traversed without

actually fixing the exact position of the wire segments in each channel. ln

general, the loose routing process consists of the following steps: (i) channeì

definition, (ii) channeì assignment, (ili) routing order determination, and (vi)

optimization.

Channel Definition

This step involves the definition of the routing channels. For gate arcay

layouts, since the dies are pre-fabricated up to the metalization stage, the

number, the size, and the shape of the channels ane all defined in the affay

architecture. For standard cell layouts, although the number and the size of

the routing channels ane variable, they are arranged in parallel rows or

49

columns. Thus, after placement, the channels for gate affay and standard cell

layouts are alneady defined. lt is for building block layouts that the channel

definition process plays the most important role.

Due to the irregular block geometry of building block layouts, the

routing regions are of irregular shapes. ln this case, channel routing can be

generalized to include, in addition to regular channels, other rectilinear

routing regions, such as L-shaped regions, with f ixed and/ or f loating

tenminals located on all sides. ln general, regular channels are considered the

most desirable because the regular channel routing problem is relatively well

understood and very eff icient algorithms have been reported. However, it is
often impossibìe to use onìy reguìar channels, and other rectilinear regions

are required.

ln general, the channel configuration must fit the algorithm for loose

routing and provide a fair representation of the routing region for the detaiìed

routing process. The definition of the routing region has a direct impact on

all parts of the layout: the adjustment of the placement configuration when

routing fails, the data onganization, and the algonithms of both loose and

detailed routing. Exampìes showing the resuìts of the channel definition

process are shown in Fig. 12.

Channel Assionment

After the channel definition step, the next step is to decide through which

channeìs the wires for each net will be traversing. This process is called

channel assignment. The main objective is to assign all the nets to the

channels without exceeding the channel capacities. Furthermore, the

50

(a)

(b)

Fig. 12. Examples of channel def initions. (a) Channels def ined by

dividing the routing negion into small rectangles using the shorter

of the two possible edges fon each corner (l'1lT pl System);

(b) Channels def ined by combining the small nectangìes into

langen regions (Bel I Labonatories).

5t

assignment should keep the wires as short as possible and evenly distributed.

The requirement for even wire distribution is important because finding

merely the shortest path connecting the terminals of a net tends to

overcrowd centain channels, especially those in the center of the die. The

overcrowded channels may become very clifficult on even impossible to be

routed by the detailed routen. This would result in excessive overflows and

poor layouts.

ln gate arrcy layouts, since the channel capacities ane fixed in the

arrcY architecture, if 100% assignment is not achievable the only solution is

to use a larger array. ln standard cell layouts, the channel width is
adjustable. lf higher capacity is required of a channel, the channel width can

be increased. Thus, l00te assignment is always achievable as long as the die

size is allowed to increase. The considerations in such cases would be in the

die size, the wire lengths, and the wire distributions. ln building block

layouts, the blocks and the channels are floating in the sense that their-

locations are not fixed. Each channeì has a certain initial capacity defined by

the placement conf iguration. When nets are assigned to the channels, it may

turn out that more space is nequired. ln this case the blocks are pushed apart

to make more room. lf, on the other hand, less space than originally reserved

is required, the blocks are brought closer so that there is no waste space.

Channel assignment can be accomplished by various methods. The

sequential method of assigning one net at a time based on the minimum

rectilinear Steiner tree is a popular approach. Usually a channel graph is used

to represent the loose routing region. For example, the routing anea can be

divided into a set of routing regions by extending each horizontal and vertical

line bounding a block until it intersects another block or the external

52

boundary. The routing region interfaces can be represented by vertices, and

the routing regions can be nepresented by edges. Routing conditions such as

congestion factors and channel lengths can be repnesented as edge weights.

With the channeì graph defined, net assignments can be performed using a

variety of algorithms. Since the minimum rectilinear Steiner tree problem is

NP-complete, heuristic algot'ithms are usually used.

Routino Order Determination

This step determines the order of the channels in which detaiìed routing

should be performed [KAJ83, KUH86]. As an example, eonsider the two

channels shown in Fig. l3a. Two nets are to be routed across the channels

through the temporary tenminals. However, the exact locations of the two

temporary terminals ane not known until channel 2 is nouted. Hence, channel

2 must be routed before channel l. ducn ondening constraints must be

determined and resolved before detailed routing can be performed. However,

it is possible for a cyclic ordering constraint to occur. For example, in Fig.

I 3b the channels 1, 2, 3 and 4 are so defined that every channel requines

another channel to be nouted first. ln order to resolve such cyclic

constraints, it may be necessary to redefine some of the channels or create

new channeìs. lt is aìso impontant that the number of compìex routing

regions be kept to the minimum. ln Fig. l3b, a new conf iguration is formed

where a new L-shaped region is defined to break the cycle.

53

TEI'lPORARY

ïtRHtMr

@-
CHANNEL 2

(a)

(b)

Fig. 13. Channel ondering. (a) An example of channel ondering.

Channel 2 must be nouted before channel l. (b) An example of

redefining a channel (channel 4) to break a cyclic channel

ordering constraint. The order should now be channel 1,2,3,4

54

0ptimization

Due to the sequential nature of most loose routing aìgorithms, after the

initial assignment an optimization process may be used to lmprove the

routing result. Usually an iterative technique is used with prognessive

penalties in critical channels and dynamic net ordening priorities.

The result of loose routing is a decomposition of the routing problem

into smaller detailed routing problems, one for each regular or rectilinear

channel. Loose routing is closely tied to both its predecessor, the placement

process, and its successor, the detailed routing process. The main objective

is to develop a good routing plan based on the given placement conf iguration

so that detailed routing can be completed efficiently. ln the next section, a

detailed discussion of the detailed routing pnocess will be presented.

2.2.2 Detailed Routing

As descrìbed previousìy, dependìng on the shape of the channel routing region

and the locations of the fixed terminals, the channeì routing regions can be

regular channels 0r general rectilinear channels. ln this section, the two

layer routing problems for these two type of channels will be defined, and for

each probìem several representative aìgorithms will be described.

Regular Channel Routing Algorithms

The regular channel routing problem can be def ined as foìlows:

l. A channel is an open-ended rectangular routing region. lf a horizontal

orientation is assumed, the fixed terminals are located on the top and

55

bottom boundaries of the channel while the left and right boundaries

are open and interconnections may exit. Furthermore, The channel

height (distance between the top and bottom boundaries) is indef initeìy

extendable.

2. The channeì has no initiaì interior obstructions, such as, pre-routed

wires or interior routing voids.

3. Routing is performed on a virtual rectilinear grid consisting of vertical

and horizontal grid lines called vertical and horizontal tnacks,

respectively. All wire traces must be routed inside the channel and on

the tracks, that is, no routing outside the channel and no diagonal

traces.

4. Two routing layens are available with vertical traces exclusiveìy on

one layer and horizontal traces exclusively on the other layer. Traces

located on different layens are connected by vias.

5. Net terminaìs are located on the intersections of the top and bottom

channel boundaries and the vertical tracks, and are accessible on at

least the vertical routing layer.

6. The objective is to route all the nets in minimum channeì height, or in

other words, in minimum number of horizontal tracks.

An illustration of the regular channel routing model is shown in Fig. 14.

It is worth mentioning that although the channel height is allowed to extend

indefinitely, certain channels are impossible to route. For exampìe, the

channel in Fig. l5a is unroutabìe even with an arbitrary channel height if no

free vertical tracks ane avaiìable. Ey adding one extna ventical track, the

channel can be routed as shown in Fig. l5b.

56

TOP

BOUNDARY

YTRTICAL

ÏRACK

HOTIZONTAL

TRACK

LTFÏ
BOUNDARY

BOTÏO11

BOUNDARY

TERI{IML
NUMBER

An iììustration of the channel routing modeì.

FIXTD

ïtRtltML

RIOHT

BOUNOARY

NIT
NUNBER

Fig. 14.

5/

h) (b)

(c)

Fig. I 5. channel routing illustrations. (a) An unroutabìe channeì;

(b) Addition of an extra vertical track; (c) A channel routing

problem with a unique solution.

58

Genenally, a channel routing solution must satisfy two basic routing

constraints: the horizontal and the vertical contraints. A horizontal

constraint requires that if two honizontal traces belonging to two different

nets lay on the same layen and have one or more ventical tracks in common,

they cannot overlap and must be assigned to different honizontal tracks. A
vertical constraint, on the other hand, requires that if two vertical traces

belonging to two different nets lay in the same ventical tnack, they cannot

overlap and the lower endpoint of the uppen ventical tnace must be placed in a

horizontal tnack above the upper endpoint of the lowen vertical trace.

Since the channel routing problems are trlP-complete [LAP60, SZYB2,

SHl86, KlN87l, no algorithm that can guarantee an optìmaì solution in
polynomiaì time has been found. The onìy way to produce a guaranteed

optimal solution is by enumenative methods such as branch-and-bound

techniques. For most but very small cases, enumerative methods require

unacceptably long running times. Consequently, a lange number of heuristics

have been deveìoped with the aim of producing good but not necessarily

optimal solutions. 0f particular interest is the class of generalized adaptive

heuristics describecl in [KlNE7].

To make the channel routing problem more manageabìe, some routing

algorithms further restrict the problem to allow only one horizontal track per

net [HA57l, KER73]. That is, no bending of the horizontaì traces (dogìegging)

is allowing. An important advantage with such a nestricted modeì is that the

number of vias used is always the minimum. ln this section, both algorithms

that allow only one horizontal track pen net (non-dogleg algorithms), and

algorithms that allow multiple horizontal track per net (dogleg algorithms)

will be described.

IEne Fackinq/l-eft Edqe Alqorithnr

lf no bending of the horizontal traces or doglegging is allowed, each net can

Occupy at most one horizontal track, and the wire tnaces of a net can be view

as consisting of one horizontal trace and two or more vertical traces

branching off to the terminals. Each net can thus be associated with a lower

bound and an upper bound according to the left and the right endpoints of its
horizontal trace. The routing problem is now to assign horizontal track

spaces to the horizontal traces such that the nets are all electrically isolated

and the number of horizontal tracks required is the minimum.

Hashimoto and Stevens described a Line Packing algorithm in [HAS7l].

For each horizontal track, the algorithm first searches the list of unrouted

nets for the one having the highest upper bound, assìgns ìt to the track, and

eliminates it from the list. Then the ìist is searched for the net having the

highest upper bound that is less than the lower bound of the previously routed

net. The selected net is assigned to the track and eliminated from the list.

The search continues until no net fuìlills the requirement. Then the entire

process is repeated for the next horizontal track until alì the nets are routed.

A more efficient implementation of the Line Packing algorithm is the

Left Edge algorithm tKER73l. lt first sonts all the nets in ascending order of

their left edges (lower bounds) and fills the horizontal tracks with nets that

fit closest to the left of the available track space. For a channel with n nets,

this algorithm requires 0(n log n) running time.

These algorithms assume that there are no vertical constraints in the

channel. When they are modified to observe the vertical constraints, they can

fail to find the optimal solution even for very simpìe problems.

60

Net f{eroinc Aloori thn'l

There are certain instances of the non-dogleg channel routing problem that

have obvious unique solutions. For example, the channel in Fig. l5c can onìy

be routed as shown. lloving any one of those nets would result in overìaps in

at least one vertical tnack. The vertical constnaints have thus dictated a

unique solution. This fact inspired the idea of reconstructing the or iginaì

problem so that a unique configunation can be identified. The Net Merging

algorithm by Yoshimura and Kuh [Y0S82] is one such algorithm. The algorithm

merges nets that occupy non-overlapping hor izontal tnack spaces together so

that their combined horizontal tracl< spaces corresponds to the situation

shown in Fig. l5c. Once such situation is established, the channeì can be

routed easiìy.

The Net llerging algorithm is usually capable of reducing the original

problem to a much smaller size and requires less running time. But if two

nets that are far apart were merged, the empty track space between the nets

would be wasted. Yoshimura [Y0SE2, Y05E4J suggested heuristics for merging

nets together so that the reduced problem would not create situations that

require more horizontaì tracks than the origìnaì problem. ln general, the net

rnerging algorithm is capable of producing very good solutions in much shorter

time than enumerative algorithms such as branch-and-bound searches.

tlogleg Ct¡annel Router

The Dogìeg Channeì Router of Deutsch [DEU76] was the fir-st routing algorìthm

that relaxes the restriction of only one horizontal track per net. Here the

nets are allowed to split between different horizontal tracks. Verticaì

6r

traces are used to connect the split horizontaì traces together. The bendìng

of an otherwise straight trace is callecl cloglegging, and the bend is called a

dogleg. The ìntroduction of doglegs may allow the channel to be routed in

fewer number of horizontal tracks. lloreover, situations as the one shown in

Figs. lSa,b would be unroutable without doglegs. However, an immediate

drawback of using doglegs is an increased number of vias. A more detailed

discussion of the advantages and tradeoffs of using cloglegs wilì be pnesented

in Chapter V on the development of a new dogleg channel routing algorithm.

The idea of the Dogleg Router is to split every net into two-termìnaì

subnets at terminal positions. lf a net E has n terminaìs t,, 12,..., Ç sorted in

ascending order of their vertical track numbers, E is split into (n-l)

two-terminal subnets E,, E2,..., En_, such that E, connects terminaìs t, and t,n,,,

for ì = 1,2,..., n-1. A modified Left Edge aìgorithm is then appìied to the

resulting set of subnets with one modif ication: a subnet E, and the next subnet

of the same net E¡*¡ cztrì be placed in the same horizontal track sharing a

common terminal. When all the subnets are routed, those subnets belonging to

same net but placed in different horizontal tracks are connected by doglegs.

The above described algorithm works reasonably well but often adds

many more cloglegs than it is necessary. Thus Deutsch intnoduced a contnol

panameten called range to reduce the number of undesirable doglegs. Range is

the minimum number of consecutive subnets that must be assigned to the

current horizontal track. As the range increases, fewer doglegs will be

introduced. But, a sequence of subnets shorter than the range will also be

accepted if this will complete the routing of the net. Without this additional

rule, two-terminal nets will never be routed.

62

The eff iciency of the Dogleg Channel Routen has been demonstrated in

[DEU76] 0n several examples, one of which has become a benchmark test case

for regular channel routing algorithms. ln most cases, the Dogleg Router is

capable of producing optimal, or near optimal solutions that ane onÌy a few

tracks above the theoretical optimum. ln fact, introduction of the Dogleg

Router by Deutsch was at the time the breakthrough achievement and inspired

further development of powerful heuristics for channel routing pnoblems

[BUR86].

Greedy Channel Router

The Greedy Channeì Router of Rivest and Fiduccia [RlV82] further relaxes the

Deutsch's Dogleg Router to allow rloglegging in any vertical tracks not

necessarily containing a net terminal. One interesting phenomenon of the

Dogleg Router is that, by splitting every net into subnets connecting every

two consecutive vertical tracks of the net span and applying the Left Edge

algorithm would result in a left-to-right vertical-track-by-vertical-track

scan of the entire channel [BURB6].

Using the above idea, the Greedy channel router scans the channel in a

left-to-right vertical-track-by-vertical-track manner, completing the

connections wìthin a given vertical track before proceeding to the next. ln
each vertical track the aìgorithm tries to maximize the utilization of the

track spaces in a greedy fashion. lt may place a net on more than one

horizontal track and have a vertical trace crossing more than one horizontal

trace of the same net. Usually, the Greedy router is able to complete the

routing within the channel, but sometimes it may requires vertical tracks be

63

added beyond the channel length to complete the pnoblem.

The algorithm begins with a channel height equals to the theoretical

minimum and adds more horizontal tracks when necessary. Following [RlV82J,

the Greedy Channel Router can be described as follows:

l. Ering the terminal connections from the top and bottom boundaries of

the channel into the first horizontal track that is either empty or

already contained a trace from the same net. lf bringing in the nets

would result in an overlap of their vertical traces, bring in just the one

with a shorter trace. lf the top and bottom terminals are from the

same net, simple connect them with a vertical trace. lf all the

horizontal tracks are occupied, nothing is done in this stage.

2. Free up as many horizontal tracks as possible by adding doglegs that

collapse nets occupying more than one horizontal track into one for the

next vertical track. An exhaustive search is performed to find the best

admìssible pattern. This step may extends the vertical traces in step I

from an intermediate empty horizontal track to a horizontaì track

containing the net.

3. Add doglegs to the remaining nets that are occupying mor e than one

horizontal track to reduce the distance between their horizontaì traces.

4. Add doglegs to move a net cìoser to the top ìf its next terminaì is on

the top of the channel, or closer to the bottom if its next terminaì is on

the bottom of the channel.

5. lf a terminal could not be brought into the channeì in step I because the

channel was full, widen the channel by inserting an additional

horizontal track in the center of the channel.

6. Extend the incomplete nets into the next ventical track. For each

64

connected piece of wire segment one horizontal tnace is extended into

the next vertical track. The above procedure is repeated fon each

vertical tnack until all the nets are routed.

The Greedy Router algorithm has been tested on numerous channels

from actual designs and computer generated test cases [RlV82]. ln most

cases, the algorithm completes the problem using no more than one horizontaì

track above the theoreticaì minimum. ln addition to this exceìlent

performance, the algorithm has a very flexible control structure that alìows

variations in the heuristics to achieve different routing effects.

YACR-! !

YACR-ll (Yet Another Channeì Router the Second) by Sangiovanni-Vincenteìli

[5ANS4] is aimed at minimizing not only the channel height but also the

number of vias reguired. YACR-Il is basically a double-layer, grid based

regular channel router. lt normally uses one of the routing layers for vertical

traces and the other for horizontal traces. But it also allows certain

horizontal traces to be routed on the vertical layer.

Similar to the Greedy Router, YACR-Il begins with a channel height

equals to the theonetical minimum and inserts additional tnacks when

necessary. The basic idea is to place first all the nets in the channel with no

doglegs, avoiding any honizontal overlaps while ignoring the vertical

constraints. Then maze-running routers are used to complete the routing by

connecting the terminals to the nets with doglegs. lf the maze-nunning

routers cannot connect some terminals, the number of horizontal tnacÍ<s is

increased by one and the entire process is repeated until all the nets are

65

2.

routed. The algorithm consists of the following four phases:

l. Scan the channel from left to right to find the first ventical track that

has the highest local density. The local density of a vertical tnack is

the number of nets crossing that vertical tnack. All the nets that

crossing that vertical track are then assigned to honizontal tracks so

that (i) horizontal constraints are satisfied, (ii) vertical constnaint

violations are minimized, and (iii) resulting net assignments would

faci I itate the maze-running routing pr'ocess.

llove to the right of the selected vertical track and assign the nets

having their left endpoints in this pant of the channel to horizontal

tracks. whilemoving to the right, onevertical tnack at a time, the nets

with their left endpoints in that vertical tracl< are collected. The

collected nets are assigned to horizontal tracks when (i) the number of

available honizontal tracks is equal to the number of nets collected, or

(ii) one of the nets collected at pnevious steps has its r ight endpoint in

the vertical track cumently pnocessing. The assignment is performed

according to the same criteria as in step l. This step terminates when

the end of the channel is reached.

This step pnocesses the nets to the left of the initial ventical track

selected, and is identical to step 2 except that the scanning is now

towards the left.

Connect the terminals to the routed horizontal traces. For verticaì

tracks with no vertical constraint violations, no doglegs are necessary

and the routìng is straightforward. For vertical tracks with vertical

constraint violations, a sequence of three maze-running routers are

used. They attempt to complete the routing using cloglegs with as few

bends and vias as possible. The first routen routes the terminal

3.

4.

connections using only the adjacent verticaì tracks and the verticaì

layer. lf the first router fails to complete the nouting, the second

router uses doglegs that span more than one verticaì track. lf the

second router also fails, the third router attempts to compìete the

routing using all available space.

Excellent results have been obtained by YACR-ll [SANE4, REEES]. ln

most cases, YACR-ll is able to route a channel in a height equals to the

minimum height attainable by classical routers. However, the YACR-ll

algorithm relaxed the cìassical channel routing model to allow horizontal

doglegging on the verticaì layer. This may results in wires running paraììel

on different layers, and the minimum channel height for the YACR-ll channel

routing model is no longer the same as that for the cìassical model.

Nevertheìess, since most technologies permit ìimited wire overlaps, YACR-ll

is a very fast and practical channel router.

Rectilinear Channel Routing Algorithrns

The rectilìnear channel routing problem can be defined as follows:

1. A rectiìinear channel is a rectilinear routing region with f ixed

terminals located 0n all boundaries and has no initial interion

obstructions such as pre-routed wires or interior routing voids.

Two routing layers are available with vertical traces exclusively on

one layer and horizontal traces exclusively on the othen. Traces

located on different layers are connected by vias.

Routing is performed on a virtual grid. All wire traces must be routed

inside the channel and on the grid lines. Net terminals are located on

2.

3.

67

the intersections of the channel boundaries and the grid lines, and are

accessible on both routing layers.

4. The objective is to route all the nets within the channel without

violating any electrical or physical constraints.

Since the routing area is fixed, not all channels are routable.

Pre-routing anaìysis sìmiìar to those used in PCts routing ane commonly used

to predict the routability of rectilinear channels. lf a low routability is

predicted, the routing are.a can be enlarged by modifying the placement

configuration.

A speciaì rectilinear channel that occurs very often in layout designs is

the switchbox. A switchbox is a rectangular region with fixed terminaìs

located on all four sides. lt is commonly used at the interfaces of regular

channels. Next to regular channels, switchboxes are the most desirable.

However, in building block layout designs, there are often cases where the

routing regions are so irregularly shaped that decomposing them into neguìar

channels and switchboxes may not be practical. A number of nouting

algorithm have been published to deal with such general rectilinear channels.

ln this section, both switchbox routing and general rectilinear channel routing

will be described.

Switchbox Routing

Figure 16 shows an exampìe of a switchbox used at the interface of four

regular channels and the routing of a switchbox. The switchbox routìng

pnoblem ìs in general more difficult than the reguìar channeì routing problem.

The main reason being that, it is not clear as what to do in case of failures.

Fig. 16. Switchbox routing. (a) A switchbox used at the interface

of negular channels; (b) An example of switchbox routing

(Burstein's Dif f icult switchbox problem).

tiiliilil

ïïïïïïïïï
(a)

,J-'
:T-

t_
I¡-

-¿- +r
+

Èi

ï
I

J H
T I Jï L I

t LL

il
F-

F
F
l-
È-

-¿r
TL

r-

I

I+
I{
tr
I

I

eÏ-
r¿

tt
(b)

69

Unlike regular channel routing where the channeì height can be increased, the

routing area of a switchbox is fixed and no additional routing tnacks can be

inserted. Although the switchbox routing problem has not been proven

NP-compìete, it is very likely that it is [BUR86]. A number of heuristic

algorithms have been developed for this problem. ln this sectìon the

switchbox router, Detour, will be described.

Detour

Detour [HAl184] is a switchbox routen based on the Greedy Channel Router of

[RlV82]. lt is capable of routing switchboxes and regular channels containing

interior obstructions. lt can dogleg nets anound multi-layer obstructions

such as vias, and noute nets over single layer obstructions such as pne-nouted

wire traces. This ability to handle interior obstnuctions is one of the most

remarlcable advantage of the Detoun switchbox nouten.

Like the original Greedy Router, Detour uses a heuristic based,

left-to-right verticaì track scan approach. ln order to route switchboxes,

Detour uses two strategies,one to allow nets to move into the tracks they

need to make terminal connections, and another to allow nets to splìt in order

to make multiple connections at the far edge of the switchbox. The basic

steps of the Detour switchbox router are as follows:

L As the first step in routing a vertical track, place a via in each

unobstructed horizontal track iî either the previous or the next vertical

track has an obstruction in the horizontal layer. The via serves one of

three purposes: (i) it switches the net from the horizontal layer to the

vertical layer before the net enters an obstnucted region, (ii) it

70

3.

switches the net from the vertical layer back to the horizontal layer

after the net leaves the obstructed region,0r (iii) it switches the net

to the vertical layer in preparation for doglegging the net to another

horizontal track.

Bring the terminaì connections from the top and bottom boundaries of

the switchbox into the first horizontal track that is not blocked in the

next vertical track. lf the net is brought into an obstructed horizontal

track, the next step will attempt to dogleg the net out of the

obstructed negion.

Find horizontal traces in obstructed regions and dogleg them to the

nearest empty horizontal tnack while giving preference to doglegging

towands the next tenminal.

Free up as many horizontal tracks as possible by adding dogìegs that

colìapse nets occupying mone than one horizontaì track into one for the

next ventical track.

Add doglegs to the remaining nets that are occupying more than one

horizontal track to neduce the distance between their horizontal traces.

Add doglegs to move a net closer to the top if its next terminal is on

the top of the switchbox, or closer to the bottom if its next terminal is

on the bottom of the switchbox. Do not move a net into an obstnucted

horizontal track.

lf the net is within a certain number of vertical tracks of the right

boundary, attempt to split the nets to make multiple terminal

connections.

Extend the incomplete nets into the next vertical track. For each

connected piece of wire segment one horizontal trace is eNtended into

the next vertical track. The above procedure is repeated fon each

5.

7.

71

vertical track until all the nets are routed, or a net is prevented from

extending into the next vertical track by the presence of a multi-layer

obstruction, in which case the algorithm terminates with no solution.

The Detour has been considered to be one of the best practicaì

switchbox routers [BURB6]. lts performance in routing benchmark test cases,

though not the best, was satisfactory [HA|1E4] while its most distinctive

advantage is the ability to handle interior obstnuctions such as pre-routed

wires. This obstruction avoidance capabìlity gives designens the option of

pre-routing special nets such as clock, power and ground lines, eithen

manually or using special purpose routers.

General Rectilinear Channel Routing

The general rectilinear channel routing probìem arises commonìy in building

block layout designs, where the routing regions are irreguìar in shape and

termìnaìs are located on aìì sides of the regions. An exampìe of generaì

rectilinear channels is shown in Fig. 17. The general rectilinear channel

routing problem is usually more difficult than the switchbox routing problem.

Like the switchbox routing problem, the general rectilinear channel routing

problem has not been proven NP-complete, but it is also very likely to be

[BURS6]. ln this section, the lllGHTY router will be described.

MI6FITV

The lll6HTY router of Shin and Sangiovanni-Vincentelìi [SHlB6J is a generaì

rectilìnear channel router that routes incrementally the nets in the channeì,

72

'&
-

-t

I
A

-

ra_
;r-_¿

A
-

#

-Y

&
ü-

_A

&
-

-åtL

_¿

r
B

-

T

ÏT

ï

--å

"1

L

T
b-

I å--..
t--r

r-

+I

P
tt

_T

-]

L --6

_&

I
f

r

-r

,-+C
\¡

æ= gtTo)LùJ=
t

of-(l)LLG
'

cuf-fE(þc+
Jr)(¡)
t-G

'
(-(l)f-(l)

(.D

ñc7,

u-

r
r

rlre-

dt-,

T

T

F
1

and allows modification and rip-up of nets that may impede the routing of

other nets. lt consists of four main pants: (i) a path finder that searches for

minimum cost paths among subnets, (ii) a path conformer that implements a

path proposed by the path finder, (iii) a weak modifier that pushes existing

wire segments aside to make better connections, and (iv) a strong modifier

that removes subnets to allow the completion of a blocked net.

The algorithm begins by extending all the terminals on the boundaries

of the channel inside. The path finding phase then processes the nets in the

order they are entered. From each terminal of the net, a maze-running router

is used to seanch for the minimum cost path that connects two of the

terminals of the net while ignoring other nets. As soon as a path connecting

two terminals of the net is found the search is stopped, and the path is

recorded in an ordered list organized in increasing cost. When all the nets

have been processed by the path finder, the path conformer'takes over. One by

one, the paths in the ordered list are examined. lf a path does not have any

conflicts with the existing paths, the path is implemented. Otherwise, the

path linder is invoked agaìn to find a leasibìe minimum cost path between any

two unconnected terminaìs or subnets of the net. Note that in finding this

path, the nets already routed are taken into consideration. When a path is

found, if its cost is wìthin a certain prescribed range from the minimum cost

of the path found when no other nets are present in the region, the path is

entered into the ordered list. Otherwise, the modification phase is entered.

The weak modifier is first called to move other nets around to make a

feasible path that satisfies the prescribed cost range. lf no solution is found,

the strong modif ier is called to remove some routed wine segments. ln both

modification phases, a vaniety of alternate paths are examined and the one

74

with the minimum cost is selected, lf no path satisfying the prescribed cost

range is found, the search is terminated with no solution; otherwise the

process is repeated fon the next net in the list.

The lllGHTY router has shown excellent results in a number of

benchmark test cases [SHl86]. tsut, it generally requires much more running

time. For example, in one of the benchmark test case, the Detour switchbox

router took 3.9 seconds while lllGHTY required 176 seconds. Howeven, the

versatility and performance of the lll6HTY router has made it one of the best

general rectilinear channel router today.

2-2-S Sumrnary

Routing of high-tlensìty chips and boards can be divided into two stages: ìoose

routing and detailed routing. The loose routing stage relies on a globaì

routing pìan that partitions the routing problem into smaìler detailed routing

problems. Then the detaììed routing stage assigns locally the locations of the

wire traces insìde the channels. This approach greatly simpìifies the

complex routing probìem into manageable subproblems while maintaining a

very high level of global efficiency.

An extensive survey of channel routing algorithms from simpìe

non-dogleg regular channel routing algorithms to eìaborate rip-up and

re-route general rectilinear channel routing algorithms has been presented in

this section to show the most impontant achievements in channel routing

theony and algorithms. An undenstanding of those developments is essentiaì

to any further studies of the channel routing problem. ln the next section,

other approaches to the VLSI routing problem will be described.

2-S Other Wl-51 Routir¡g Anoroaches

As noted in the previous discussions, the VLSI routing problems ane known to

be l{P-complete. The optimal solutions to these pnoblems require running

times that could grow exponentially with the size of the problems. Practical

algonithms therefore use heuristic techniques with polynomial complexity

that lead to near optimal solutions. Unfortunately, to obtain even those

suboptimal solutions would still nequire tnemendous computational effort.

With the extreme complexity of VLSI routing, it is not unusual that a small

number of overf lows occurs. But, even l% of overf lows fon a ten thousand

gate layout amounts to hundneds of interconnections. llanually editing

existing wines and routing ovenf lows may takes days, weeks, or even months.

Iterative algorithms such as rip-up and re-route techniques require much

longer nunning time than conventional algonithms; still they may not be able

to eliminate overflows. Many othen techniques are thus studied with the aim

of more efficient routing techniques. ln this section, hardwane nouters,

expent routers and the simulated annealing technique will be described.

2-3.1 Hardware Routers

l"lost hardware routers are parallel implementations of maze-running

algorithms. The processing elements are usualìy arranged in a mesh with one

element per cell. Basicaìly, each element should be capabìe of perfonming the

following maze-running operations in panal leì:

l. Receive wavefront tokens fnom neighbouring elements, if any.

2. lgnore the token if the cell is occupied or visited.

3. llark the cell visited and mark the direction from which the token is

received.

76

4. lf the cell is the tanget, signal completion; otherwise send wavefront

token to all four neighbouring elements simultaneously.

Clearly, all cells in the wavefront during propagation can be processed

in paraìleì. This is true whether the source is a singìe ceìl or a set of cells in

a subnet. The router's are capable of processing an entÍre wavefront of

propagation simultaneously. Thus, the parallel pnopagation time is

proportional to the path length.

Breuer and Shamsa's L-machine IBREBO] is the first pubìished design of

this nature. The L-machine consists of a control unit that communicates with

the host computer, and sequences the openations of the aîrcy of processing

elements, called L-cells. lt is designed specifically to implement the Lee

algorithm. The L-celìs are fair'ly simple (about 75 gates), and many of them

can be laid out on a VLSI forming a subarray. The machine is capabìe of

penfonming the following tasks:

L lnitialization: This involves the loading of sounce, target, and bìockage

infonmation into the L-cells.

2. Paralìel Propagation: This essentially implements the parallel cell

processing eìements described earlier. ln addition, a BUSY status

signal is sent by those L-cells that are active during an expansion step.

The controì unit receives a wired-OR BUSY signal fnom all the L-celìs.

Thus, the BUSY signaì is high as long as some cells are active. lf the

controì unit detects that the BUSY signal goes low before the target is

reached, an overflow is indicated.

3. Backtrace: This process determines the path by following the stored

direction flags from an activated target back to the source. The

coordinates of each element on the path of the wire are output to the

host computer.

clear: cells along the backtraced path are marked as blockages for

subsequent routing. The internal status of all other L-cells ane cleared

to an idle state.

Each L-cell communicates with its f our neighbours through

bidinectional lines, one per neighbour. For double layer routing, each L-cell

would have five neighbours and five connection lines. These lines are used

during the propagation and the backtrace processes. ln addition, there are

seven more signaì lines and a cìock input line per cell.

ln genenal, for each nouting layer of size NxN, it requines N2 L-cells,

each of which consists of about 75 gates. lf the affay were to be

implemented in VLSI chips, the total numben of pins of the affay including

two power lines and the row and column decoder and encoder is 4logrN + 8.

Thus a 64x64 arrcy would requine 300K gates and 32 pins, and a 256x256

arcaY would requine 511 gates and 40 pins. Since the array size of the

L-machine must be as large as the nouting region (multiplied by the number of

layens fon multi-layer routing), for even a modenateìy sized layout the number

of L-cells nequired could still be prohibitively lange. However, since the

L-cells are hardwired for the Lee algorithm, it takes onìy one clock cycle to

process one complete wavefront. ln general, the L-machine is much faster

than conventional algorithmic routens; but, it is inflexible and limited to

f inding the shortest path between two points only.

ln addition to the L-machine, the 5Al1 (Synchronous Active llemory)

machine proposed by Blank, Stefik and van Cleemput is also aimed at a

compact design suitable for subarray packing in a vLSl chip. one main

7B

difference between this machine and the L-machine is that this was designed

with a somewhat broader nange of applications in mind. The node processots

are caììed SAll-cells. They support 20 assembly level instructions operating

mainly on the data width of I bit. Each SAll-celt consists of a locaì control

unit, a 2-bit Boolean logic unit, a multiplexer feeding a l-bit accumulator, a

neighbour masking unit, and sixteen l-bit registens. One of the most

powerful SAll instructions is callecl NEIB. This instruction enables a fast

implementation of node processing for the Lee algor-ithm.

The SAl1-machine is a SlllD (Single lnstruction llultiple Data) paralleì

pnocessing construct. The program controì and storage can be provided either

by the host computer or by the SAll system depending on implementation.

Blank et al. proposed packaging a l6xl6subarray of SAll-cells in a VLSI. To

process a l000xl000grid, it wouìd requine about 4000 such lCs in the SAl"1

system. Unlike the L-machine where the L-cells are hardwired for the Lee

algorithm, the SAl1-machine now takes many clock cycles to process one

wavefront.

conceptually, the sAll machine can be used for generaì purpose

appìications. However, the limited instruction set, small data width fi bit),

and Sll'1D operation togethen nestrict the effective range of applications to

bit-map problems anose in certain image processing, bit-vector operations,

and simple design rule checking.

ln summary, hardware routers gain speed oven conventionaì routers by

special purpose handware and by use of parallel computation. High speed

routing in VLSI wouìd alìow fast feedback to the designers and even enable

the designer to interactively improve the design through a series of

79

applications. However, like other paralleì processìng systems, much of the

issues concenning data width, instnuction capability, neighbour

communication, Mll'10/SlP1D, and local memory organization need further

research and development,

2-3-2 Expert Routers

ln addition to straightforward parallel hardware implementation of

conventional routing algorithms, another approach to the VLSI routing

problem is through the use of expent systems. lt has been observed that a

human layout expert can actually perform wire nouting better than

conventional algorithmic routers. lt is because an expenienced designer can

understand the design and find a solution using his knowledge and intuitions

while an algorithmic routen with a smaìì number of heuristics finds a

solution without a complete knowìedge of the entire problem. A number of

expert routers have been proposed [MlT84, JoSBs, J0085], among which the

most successful one is the WEAVER channel/switchbox knowledge based

expert routen by Joobbani and Siewiorek tJ00851, ln this section, the WEAVER

expert router will be briefly desmibed.

WEAVER is a knowledge based channel/switchbox routing program that

considens several important routing criteria such as 1}Ofð completion,

minimum routing aîea, minimum wire length, and minimum number of vias

simultaneously. WEAVER is a grid based router that utilizes two routing

layers and can be extended to route regions of any shapes. lt allows

pre-routed wires, and user interaction throughout the entire routing process.

80

WEAVER uses a set of knowledge based expents organized around a

communicating medium called a blackboard. Each expert decides, based on its

knowledge and metric criteria, what should be done next. A focus of attention

module decides which expert should be allowed to give advice at a given time.

The WEAVER expents consists of the following experts:

l. Constraint Propagation Expent: This expert is the most frequently used

expent. lt propagates the constraints resulted from the routing of the

current net to totally on partially adjust the routing of the other nets.

2. Wine Length Expert: This expert decides which nets should be routed

closer to which side of the channel based on the minimum wire length

criterion.

3. Vertical/Horizontal Constraint Expert: This expert decides the

ordering of the nets from bottom to top or from left to right of the

channeì based on the vertical and horizontal constraints.

4. ilerging Expert: This expert decides which nets can be routed on the

same row or column.

5. Congestion Expert: A congestion factor is defined for each row and

column in the channel which is equal to the number of nets mossing

that row or column. Thls expert restricts each net to cross the most

congested area of the channel at most once.

6. Common Sense Expert: This expert uses common ruìe of thumbs

employed by human experts when there ane no clear best choice based

.on the advice of the other experts.

7. Focus of Attention Expert: This expert decides, based on the cunrent

active expent and the decision arnived at by the active expent, which

expert shouìd be activated next. lt maintains a priority list for the

experts.

8l

ln general, WEAVER is a complex knowredge based expert system

utilizing a total of 436 rules. lt usually requires much longer running times

than aìgorithmic routers. For example, the Bunstein's switchbox benchmark

case required 3933 rule applications (rule firings) and 1390 seconds of

pnocessing time. However, WEAVER has many advantages that ane not easìly

achieved with algorithmic routers: (i) WEAVER is fair'ly general and can be

easily extended to route regions of any shapes; (ii) while most conventional

routens consider only one or two routing criteria, WTAVER considers

simultaneously the routing area, the completion rate, the wire lengths, and

the number of vias; (iii) although WEAVER is a double-layer router, it uses

both routing layers for all directions, thus allowing mitical nets to be routed

on a singìe ìayer avoiding the use of vias; and (iv) since human designers are

the best expert, WEAVER allows user interaction thnoughout the entire

routing process. The user can stop the pnogram at any time, edit the wire
pattenns and tell the system to continue.

As demonstrated by WEAVER, an expert system is a feasibìe routing

approach. But, the compìexities of the experts and the huge demand on

c0mputing r'esources make expert routers a rather expensive alternative.

2.3.3 Simulated ¡{nneal ing

ln many practìcaì instances of VLSI routing, the problems can be viewed as

large scale optimization problems invoìving the routing of many nets. The

method of simulated annealing recently introduced by Kirkpatrick, Gelatt and

Vecchi [KlRE3] is especially suited in solving such problems. This method is

intended for problems with very many degrees of fneedom and objective

82

functions that combine conflicting goals. The problems of finding the optimal

soìution to such probìems may be NP-complete; but in practice, one often

needs only a good solution and an assurance that there are no soìutions

significantly better than the one found.

The simulated annealing technique makes use of the following

analogies between a multivariate optimization probìem and a hypothetical

f ìuid consisting of many interacting atoms:

t-Ìvoothetical Fluid

ìnternal energy

atomic positions

cooling into a stabìe,
low energy state

Ootimization Probìem

objective function

parameten vaìues

finding a near optimal
configunation

To bring the fluid into a low energy state (for example, in growing

large single crystaìs), the most effective procedure is carefuì anneaìing

First, one melts the f luid, then lowers the temperature slowìy, spending more

time at temperature nean the freezing point to allow defects to anneal out of

the growing crystaì, then cools the crystals more rapidly to bring the atoms

to rest. The same sequence can be folìowed in optimization by introducing a

pseudo-temperatune as a contnol parameter.

ln each step of the optimization process, a new feasible solution is

generated from the previous soìution. The new solution is accepted with

probability I if AE(0, and with probability exp(-^E/T) if AE>O, where AE is

the change in energy and T is the pseudo-temperature. This probabìlistic

measure of acceptance has the feature of aìlowing uphilì moves in the

pnocess of searching for a solution. ln algorithms that do not allow uphill

83

moves, the search process may be trapped in a local minimum with no chance

of progressing towands a lowe¡'minimum. The annealing optimization pnocess

produces a metastable state of the fluid, which is not necessarily the tnue

ground state or the global optimum. But, as T decneases, it gets closer to the

optimum. ln this section, the basic simulated annealing algorithm of the

TimberWolf Placement and Routing Package [SEC84] will be brief ly described.

TimberWolf is an integrated set of placement and routing programs

developed at the University of California, Berkeley. lt consists of a standard

celì placement program, a standard cell loose nouting program, a generalized

gate array placement program, and a macro/custom cell placement program.

All these programs use the same basic simulated annealing algorithm to

arrive at a final solution, or improve upon an initial solution. The algorithm

can be stated in pseudo-codes as follows:

[Timber]folf Simulated Anneal ing Algorithml:

SimulatedAnneal ing(state, temp);

initial-state: grven tnitialstate,.
initiaì-temp: given nitial temperature,

fvar iab / e de f in i t t onsJ

prev-state: previous state,'
new-state: new generated state,'
prev-temp: prevtous temperature,'
new-temp: newgenerated temperaturq

fsuþrout tne de f n i t t onsl
costO; [given a state this functian returns the cost vaÌueJ
accept0; [grven the new state cost and the old state cost

&ctdes whether ta accept ar re¡ect the new stateJ

begin
old-state := lnltial_state;
pnev-temp := ini tial_temp;
wh!le stopping critenia not satisf ied

hegin
generate new_temp (old_temp;
oìd-temp = new-temp;
while inner loop critenion not satisf ied

begin
generate new_state;
evaìuate the new_state cost c(new_state);
tf accept(c(new-state),c(old_state),old_temp) then

new-state := old_state;
end;

end;

end.

suhroutlne accept(new-state_cost, old_state_cost, T)

new-state-cost: cost value of the new state,.
olcl state-cost: cast value of the old state,.
T: current temperature,

(vartab le defin t t tonsJ

Åc: change n cost,'

(suþrout ne de fn t t ionsJ

randomO [returns a random nuntþer with un¡form distrtþut¡onJ

hegin
cost-change := new-state_cost - old_state_cost;
lfac<0then

return true;
else

return random(0,1) (exp(- Lc / T);

end.

85

ln the above algorithm, the most important part is the function accept.

F{ote that if the new state has a Ac (0, the new state is always accepted.

However, if the new state has a Ac > 0, then the parameter T plays a

fundamental role. lf T is large, the random number generated is very likely to

be less than exp(-Ac/T) and the new state is almost always get accepted

regandless of Ac. lf T is small (close to 0), then only new states with Âc

slightly greater than 0 have any chance of getting accepted. Thus, in generaì,

alì states with Ac > 0 have smaller chances of getting accepted for smalìer

values of T.

ln addition, the "stopping criterion" used by the TimberWolf package is

based on the cost of the new state at the end of each anneaìing stage. lf the

cost does not change for four consecutive stages, the "stopping criterion" is

met and the process terminates. The "inner loop criterion", on the other hand,

specifies the number of new states generated for each annealing temperature.

Depending on the problem, this criterion is different. For example, for the

gate array pìacement and standard ceìl 'loose routing programs, 20 new states

are generated for each temperature. This is necessary because the

TimberWolf system does not continuously adjust its annealing temperature, it
generates a new temperatune by multìplyìng the previous tempenature with a

parameter o. For each temperature T, an e is specified to control the

temperature change or the annealing scheduìe. By generating, for example, 20

new states for each temperature effectively approximates a continuous

annealing schedule function by a staircase function.

As can be seen, the TimberWolf package is in fact fairly rudimentary.

Recent reseanch on convergence and acceleration issues have provided much

mor'e understanding on the simulated annealing technique as an adaptive

heuristic technique where panameters may be modified. l4oreover, specialized

simulated annealing algot'ithms that taiìored fon specif ic classes of problems

have gneat promise in solving NP-compìete problems while reducing the

massive computing resources usually required by general-punpose adaptive

heuristics [KlN87].

2.3.4 Summary

Hardware nouters, expert routers and the simulating anneaìing technique have

been described in this section. Hardware routens are fast but the problem

size is usually limited by the system size. Expert routers are capabìe of'

producing very good solutions while the simulated anneaìing technique is

capable of producing even the optimal solution. But both of these approaches

require massive computing nesounces.

This concludes the survey on VLSI routing techniques. Through the

deveìopment of routing techniques from early maze-running and line-search

algorithms that sequentiaììy route one net at a time, to channeì routing

algorithms that maintain a high level of global cohesiveness by dividing the

probìem into ìoose and detaiìed routing, to more recent research in hardware

routers, expert routens and the simulated annealing technique, the

complexities, considerations and tradeoffs in VLSI routing shouìd be cìear.

Applying the knowledge gained through this extensive survey, a channeì

routing algorithm is developed. ln the next two chapters, the algorithm will

be introduced.

87

Cå-åAPTFR åßg

A ru0ru-MffitFffi C$.åAruruFL RffiUTER

A large numþer of detalìed routlng algorlthms have been developed

slnce the channel routing concept was lntroduced by Hashlmoto and Stevens ln

l97l [HA57l]. ln order to cope with the compìexlty of the channel r^outing

probìem, whlch ls NP-complete, pnactlcal alg0rlthms must employ heurlsilcs.

The heuristics ane embedded ln a mathematical modeì of the routing process.

Such models include gnaphs [Y0SB2] and probabilistic hill climbing [R0l1B4].

The graph-based model has been selected because of its relative simplicity

and fainly accunate representation of the routing process. ln this chapter, the

development and implementation of a graph based heuristic non-dogìeg

channel routing algorithm will be desmibed.

3.1 Ðef initlons

Eefore the aìgot'lthm can be descrlbed, the pertlnent concepts and definltions

must be lntroduced. ln thls sectlon, the foììowlng wlll be desrlbed: (l) the

deflnltlon of the channeì routlng problem consldered, (ll) the deflnlilon of

tloglegs, (iii) a net llst representation of the channeì r'outing problem, (iv) the

deflnltlon and constructlon of a vertlcal constralnt graph, (v) the deflnlilon

and constnuctlon of a horlzontal constraint gnaph, and (vi) the definition of

channel denslty, channel or'derlng and channel height lower þounds.

88

3.f.9 Won-Ðogleg Channel Routing Fnohlem

The channel routing problem considered is basicaìly the regular channel

routing problem desribed in Section 2.2.2. The definition is nepeated here

with the minor modif ications for the sake of completeness.

L A channel is an open-ended nectangular routing region. lf a horizontaì

orientation is assumed, two nows of fixed tenminals are located at the

top and bottom boundaries, while the left and right boundaries ane open

and interconnections may exit through f loating tenminals. The location

of the f loating terminals are not specif ied but decided by the router.

2. The channel has no initial intenior obstructions such as pre-routed

wines or interior nouting voids.

3. Routing is perfonmed on a virtual rectilinear grid consisting of vertical

and horizontaì gnid lines called vertical and horizontal tracks,

respectively. All wine traces are routed inside the channel and on the

tracks, that is, no routing outside the channel and no diagonal wire

traces. The tnack spacing ane such that the proper'cleanance between

leatures is ensured.

4. Two routing layers are availabìe with vertical wire traces excìusiveìy

on one layer and horizontal wire traces exclusively on the other layer,

Wire traces located on different layers are connected by vias.

5. Net tenminals are located on the intersections of the top and bottom

channel boundaries and the verticaì tracks, and ane accessible on at

least the vertical routing layer.

6. tach net is restricted to have at most one horizontal trace; that is, no

doglegs are allowed. This restriction will be relaxed to alìow

doglegging at terminal positions as an extension to the algorithm.

7. The channel height is defined as the number of horizontal tracks

between the top and bottom boundaries. The channel height is assumed

to be indefiniteìy extendable. That is, the channel area can be made as

large as necessary.

8. The objective is to route all the nets in minimum channel height, and

hence minimum anea.

ln the above definition, the channeì height is allowed to extend

indef initely, thus guaranteeing 100?ã routing completion. However, in

pnactice, the allowable channel height (channel capacity) is determined by the

placement of modules. The question is whether the routing of nets could be

completed.

ln such cases, it is up to the ìoose routen to ensure that a channel must

not be assigned more nets than its capacity, and that the channel router would

be able to complete the final nouting. the efficiency of the channel nouten,

thenefore, has a very important impact on the entine layout process.

Note that if it is known to the loose router that the channel router can

complete the routing in the minimum theor etical channel height, the loose

router can assign the maximum number of nets to each channel so that the

placen can further compact the distribution of modules. lf, however, the

channel router cannot complete the routing in the minimum theoretical

channel height, the loose routing process must be repeated to ne-assign the

channels. lf the channel router still cannot complete the routing with the

new channel assignment, the placement of modules must be modified to

increase the channel capacities. These thnee processes, placement, loose

routing, and channel routing, must be iterated until a complete ìayout is

produced. However, such an itenative process may be impractical.

90

3.9.3. ÐosTes...æ

ln the definition of the channel routing problem, the number of horizontaì

traces per net is limited to one (point 6). However, there are situations

where dividing the horizontal tnaces into more than one horizontaì segments

may allow the channel to be routed in lower channel height. The dividing of a

horizontal tnace into two or more horizontal segments on different horizontal

tracks, or the bending of an otherwise straight wire trace is caììed

doglegging. A more detaiìed discussion on the advantages and tradeoffs of

cloglegging will be pnesented in the next chapter on the dogleg extension of

the basic algorithm.

3.1.3 Net l-ist Reoresentation of a channer Routing problem

The channel routing problem can be repnesented gnaphically as shown in Fig.

14. For computational purposes, however, the problem would be more

conveniently represented as a matrix ot a net list. ln a matrix

representation, a matrix A=[a,rì of dimension NxM is used to represent a

channel routing problem consisting of N nets and 11 terminals. For each

matrix element a,r,

4j = * I if net i is connected to terminal j on the upper boundary;

aij I if net i is connected to terminal j on the lower boundary;

aij= if net i crosses vertical track j but is not connected to

terminal j on either side of the channel;

u,j = otherwise.

A matrix representation of the channel in Fig. l4 is shown in Fig. l8a. Note

that although the problem does not calì for any net numbering, in a matrix

9t

TERMEMT M['ffi&ER
8?$456ø@g?@8992,

8012?10000000
?,-t2?2?-r000000

w S 0 -¡ 2 -l 0 0 0 0 0 0 0 0-Mffi{NECTIB'|
t*t@4 0 0 I 2 2 2 2 2 1 0 0 0g
a 5 0 0 -r r -r 0 0 0 0 0 0 0- g.\llllcllo
þ 6 o o o 0 0 I -t 0 o o o '/o LOTVERTERN¡I{AL
l¡J ,/8'î o o o o o o r z z z -r-o

I o o o o o o o -l 2 -l o o '/ffi{NECTÏo/ UPPER TTRNIMLI 0 0 0 0 0 0 0 0 -t I ?\-l
80 0 0 0 0 0 o 0 0 0 0 t\

\- ggr¡1¡¡utmNEI

(a)

-12

+S

-6

-4

+9

+4

-7

-l I

-t0
+10

+12

E:

?:

s5:
H4:
EE.
-¡ d-g
Þþ:
¡.¡as:

8:
o.

8&:

+?

-l
-2

+3

-5

+6

+7

{
-9

+ll

O$,|NTCT TO UPPTR

TERIIIML 5

ffi{NECT TO LOtrTR
ÏERHIMI 7

(b)

Fig. 18. Channel representations. (a) F4atrix representation;

(b) Net list representation.

92

representation, a net is numbered according to its row number in the matrix.

However, the placement of the nets in the matrix is not unique and does not

necessarily represent any panticular order of processing.

ln addition to the above matrix representation, another possible

repnesentation of the channel routing pnoblem is a net list representation.

For each net in the channel, a set of terminal connections [t¡] is specif ied,

such that

t¡ = oj if the connection is to the jh terminal on the

upper boundany;

t¡ = -j if the connection is to the jh terminal on the

lower boundary;

t¡ = 0 if the net has a f loating terminal on the left

end of the channel;

tl) channel length if the net has a f loating terminal on the r ight

end of the channel.

A net list representation of the channel in Fig. l4 is shown in Fig. lEb. Hene

the nets are numbered in the orden they were entered.

Theoretically, both the matrix representation and the net list
representation ane equivalent and complete. ln pnactice, however, a net ìist

repnesentation has several advantages over the matrix repnesentation.

l. .A computer representation of the matnix would requine NxfY storage,

while the net list representation requires only T, whene T is the total

number of terminal connections, and T < Nxl1.

2. Using a t I to represent a tenminal connection and a 2 to represent a net

continuation complicate the length and distance calculations. For

example, to calculate the length of a net in a matrix repnesentation

would require a scan of the corresponding row in the matrix to f ind the

left and right endpoints of the net. A net list repnesentation, on the

other hand, lends itself naturally to more efficient linked list data

structunes. Using a pointer to the last terminal connection the length

and distance calculations become simple additions and subtr'actions.

3.1.4 Vertical Constraint Graph

Since wire traces are restnicted to their respective routing layers only, if
two ventical wire traces belonging to two diffenent nets must be placed in

the same vertical track, the lower endpoint of the upper vertical wine trace

must be placed in a horizontal track above the upper endpoint of the lowen

vertical wire tnace. This requinement is called a vertical constnaint. ln the

basic non-dogleg algot'ithm, each net is limited to at most one horizontal

wire trace. A vertical constraint thus requines that the horizontal wire trace

of the upper net be routed above the honizontal wine tnace of the lowen net.

ïhis is not necessarily tnue if doglegs are allowed, since some nets may have

more than one horizontal wire tnace.

The verticaì constraints can be represented by a directed graph Gv(E,V),

where a vertex veV corresponds to a net, and a directed edge eeE emanating

from vertex a to vertex b indicates a vertical constraint and that net a must

be placed above net b. Vertex a is said to be an ancestor of vertex b (vertex b

is a descendent of vertex a), if there is a directed edge from a to b in 6u(E,V).

Also, each vertex is assigned an ordering number according to the following

recursive equation:

94

Ir
ord(v)= I

I max ord(u) + I

I ueU

ifU=ó

IfUES

where U e V is the set of descendent vertices of vertex v. Note that a cycìic

constraint occurred if there is a dinected cycle in Q(E,v). ln this case,

ondering numbens cannot be defined on the vertical constraint graph, and the

channel is unnoutable, since each net in the cycle nequines anothen net to be

routed above it. Doglegs would be required to break such cyclic constraints.

0n the other hand, if the vertical constraint graph is acyclic, ondering

numbens can always be defined and the routing specification is always

neaìizable even without dogleg. The ventical constraint graph for the channel

in Fig. l4 is shown in Fig. l9a.

3.1.5 Florizontal Constraint Graph

lf two horizontal wine traces belonging to two different nets lay on the same

horizontal track and have one or more vertical tracks in common, they cannot

overlap and must be assigned to different horizontal tnacks. This requirement

is calìed a horizontal constraint. The distance between two nets i and j,

denoted as d,r, is def ined as the minimum number of horizontal grid spaces the

nets must be moved to overlap. For example, in Fig. 14, d16=d61=1, d12=d2t=0,

dtg*dgt -4, and d67-d76=0.

The horizontal constnaints can be represented as a weighted undirected

graph 6h(V,E), where a vertex v€V corresponds to a net, and an undlrected edge

e between vertices a and b exists lf and only if the nets a and b do not

overlap. An eclge weight d"o ls asslgned to the edge e representing the

I{IT NUIIBER

ORDERINO NUNBER

2

(a)

I NET NUMBER

I O
,-

DISTANOE

ñ

6
(b)

Fig. I 9. Constraint graphs for the channel shown in Fig. I 4.

(a) Vertical constraint gnaph; (b) Horizontal constnaint graph.

96

distance between the vertices a and b. The horizontal constraint graph for

the channel in Fig. l4 is shown in Fig. t9b.

3.¡.6 Ðensity. ondering. and channel Fleight Lower tsounds

The numben of honizontal traces that crosses a vertical track is the local

density of that vertical tnack. The maximum local density in the channel is

the density of the channel. For example, fon the channel in Fig. 14, the local

density of vertical track I is 2, vertical tracl< 2 is 3, vertical tnack J is 5,

and so 0n, and the channel density is 5 (occur'¡'ed at vertical tnacks 3 and 4).

lloreover, the highest ordering number def ined in the vertical

constraint graph of a channel is the ordering of the channel. From the verticaì

constraint gnaph shown in Fig. l9a, the ordering of the channel in Fig. l4 is 4.

For the channel routing problem def ined in Section 3. l. l, the lower

bound on the channel height is determined by at least two factors: the channel

density and the channel ordering. Without providing any detailed discussion

on this topic here, it can be observed that the channel density is an obvious

lower bound on the channel height, since every horizontal trace crossing the

ventical tnack whene the maximum locaì density occuns requines one

honizontal track. ln fact, the channel density is the least lower bound on the

channel height. As long as horizontal traces are restricted to one routing

layer, no channel can be routed in fewer horizontal tnacks than its density.

lf each net in a channel is limited to have at most one horizontal trace,

that is, if doglegging is not allowed, another lower bound on the channel

height is the channeì ordering, which is the length of the longest constraìnt

97

chain in the vertical constraint graph. Since the horizontal trace of each net

in the constnaint chain must be routed in a different horizontal track, the

channel height must be at least equals to the channel ordering.

Though effort has been devoted to finding the greatest lower bound in

channel height (necessary and sufficient channel height) [CAI.1Bl, RlC84], no

such lower bounds have been find for generaì channel routing problems.

Without any further discussion on the subject of the necessary and sufficient

channel height, the channel density and the channel or^dening are noted here as

two of the lower bounds.

3.7 A 6raph Based Fleuristic Channel Router

The algorithm routes the channel one horizontal track at a time starting from

the top of the channel. For each horizontal track, it examines the nets that

can be routed on that track using the vertical constraint graph. Those nets

with no vertical constraints that require other nets to be routed first are

selected and assigned llothen net priorities. The one with the highest priority

is selected as the llother net and routed in the track. Then among the

unrouted nets, a Ready net set is formed consisting of nets that (i) do not

require other nets to be routed first (not vertically constrained), and (ii) are

not in horizontal conflict with the llother net. Each of the nets in the Ready

net set is assigned a net priority with respect to the llother net. At this

point, any one of those Ready nets can be routed with the llother net ìn the

same track without any vertical or honizontal constraint vioìations. To

maximize the utilization of the track, however, a subset of the Ready net set

is found such that, (i) thene are no horizontal conflicts between all the nets

98

in the subset, (ii) the combined pniority of all the nets in the subset is the

maximum. Since the finding of such a subset is NP-complete, a heunistic

algorithm is used (discussed later). Once the subset is determined, the nets

in the subset are routed with the llother net. The channel height is then

increased by one horizontal track and the above pr'ocess is repeated until all

the nets ane routed. A more pnecise def inition of the algorithm is given in the

fol low ing pseudo-code.

[Þ{on-clogleE Channet RouttnE Atgorithml:

NonDog I egChanne I Router;

IVariable Def initionsJ
So, set of nets to be routed;
S¡' set of nets assigned to the cunnent honizontal track;
5n.,: set of candidates for the mothen net;
Gr: vertlcal constraint gnaph;

TrackNumber: current horizontal track number;

ReadyNetSet: set of nets that can be routed with the llotherNet;

Begin
I . Iinitialization]

59 := urìr'outed nets;

5t := 0;

TrackNumber:= 0;

[main loop]

ngpeat
2. [process next horizontaì track]

TrackNumber := TrackNumber + l;

3. [llother net selectionJ
5n.,t= nets in 5o with no ancestors in 6";
llotheNet := nêt in S, with maximum llother net pniority;

4. [Ready net set cneationJ

ReadyNetSet:= aìl nets in So with no ancestor s in G" and have

non-zero distances wlth llotherNet;

5. fl'laximal subset S, selection]
choose a subset 5, of nets in ReadyNet5et such that

(i) all the nets in 5, have no overlaps
(ii) the combined priority for nets in S, is the maximum;

6. [Track assignment]

assign llothenNet and 5, to TrackNumber;

7. [Graph update)

delete llotherNet and 5.' from Ss;

deìete vertices cortesponding to llothenNet and nets in 5, from Gu;

8. [Repeat until all nets are noutedJ

until 5o = 0;

end; [NonDogl egChanne I RouterJ

3.2.1 Hother Net Selection

The first condition for any net to be considened as a potential llother net is

that its routing must not requine other nets to be routed finst. ln other

w0rds, the net must not be vertlcaììy constralned by any other nets. Thls

implies that the net must have no ancestors ln the ventical constralnt graph.

A llother net candldate set S,n ls thus constructed conslsilng of unrouted nets

that have no ancestors in the verticaì constraint graph. A llother net priority

functlon ls used to give a quantitative measure on the goodness of a candidate

as the llothen net. The net with the highest pr'iority is selected as the tlother

net.

100

After experimented with a number of llother net priority functions, two

factors, the length and the ordering number of a net, are identified to give a

fair measure of the goodness of a potentiaì Mother net. Functions of various

forms have been tested, and the following is the final l'lother net priority

function selected.

fr(l"1other) = H¡rnsr¡ s Length(tlother)/llaxllotherlensth +

Channel0rder/ChannelDensity s Ho"d""ins s

Order(11o ther)/llaxllotherOrder

where fm is the llother net pniority function, llother is the llother net

candidate, Length0 gives the length of a net, Order0 gives the ondering

number of a net, llaxl'lothenlength is the maximum net length among alì the

Mother net candidates, ChannelOrder is the order of the channel,

ChannelDensity is the density of the channel, llaxllother0rder is the maximum

ordering number among all the Mothen net candidates, andl"lrng* and Horderins

ane the weighting factons for the length and the ondening terms, respectively.

Basically, the above function is a linear combination of the length and

the ordening of the llothernet candidate. Eoth of those terms are normalized,

so that the relatìve emphasis on the length and the ordering can be controlled

by the weighting factors, and the influence by the absolute vaìues of the

terms are reduced. Since the net lengths various considerabìy in different

channels, in order to have an algorithm that is capable of routing channeìs

with diverse characteristics, the normalization is necessary.

l"loreover, experiments have shown that fon channels with a relatively

high density, a higher Ntensu, usually produce better nesults, and for channels

with a relatively high ordering, a higher Horoerins usually pnoduces better

t0t

results. ln light of this observation, and with the aim of developing an

algorithm that can produce good solutions for the generaì class of channel

routing problems described, an adaptive factor, Channel0rder/ChannelDensity,

was included in thellothernet priority function. This allows the aìgorithm to

adapt to the density and ordering of the channel automatically.

3-2.2 Ready ålet Set Creation

Aften a l'lother net is selected, a Ready net set is form with respect to the

selected l'lother net. The basic condition that a net must not have any

ancestors in the vertical constraint graph is still required. ln addition,

amOng the nets with no ancestors, a Ready net must have a non-zero distance

with the l{othen net. This latten condition cornesponds to having an edge

connecting the potential Ready net and the llother net in the honizontal

constraint graph.

Once the Ready net set is formed, each net in the set is given a priority

with respect to the selected llother net. After experimented with a number

of priority functions, the following function is chosen as the net priority

function, fn:

fn(Mother,Net) = Nordertns s Order(Net) / MaxReadyNetgnder +

Nrrnsrh s Length(Net) / tlaxReadyNetlength +

Noirt-., s (f"laxReacfyh,letD i stance- D i stance(Mot her, Net)) /
f"laxReadyNetD i stance

where llother is the llother net, Net is the Ready net, llaxReadyNet0rder is the

maximum net orderìng among the Ready nets, tlaxReadyNetlength is the

102

maximum net length among the Ready nets, and l'{axReadyNetDistance is the

maximum distance between the Í'lother net and the Ready nets, Order0 gives

the ordering number of a net, Length0 gives the length of a net, Distance$

gives the horizontaì distance between two nets, \rderrrrg, Nrengu, ?ñd lrlorrt n.,

are the weighting factors for the ordering, length and distance terms,

respectively,

Similar to the llother net prìority function, terms in the net priority

function are also normalized to reduce the effect of diverse channel

characteristics. ln addition to the length and ordering terms, another term is

incìuded here, namely the distance between the Ready net and the Ì"1other net.

It was found that the closer the Ready net to the mother net, the better the

track utilization.

3.2.3 Fîaximal Subset Selection

With the above Ready net set, any one net in the set can be routed with the

llother net wìthout any vertìcal or horìzontaì conf'licts. But sìnce there may

be horizontal confìicts between the Ready nets themseìves, not alì of them

can be assigned to the same horizontal track. The problem is now to f ind a

subset of nets lrom the Ready net set so that (i) the subset of nets can all be

routed with the llother net in the same horizontal without conflicts, (ii) the

resulting assignment will result in an optimal 0r near optimaì solutìon.

Usìng the described net priority function fn the best subset can be

considered as the one that has the maximum combined net priority among aìì

subsets that satisfy the subset nequirements. This maximal subset seìection

problem is equivalent to finding the maximal subset in the weighted

t03

horizontal constraint graph. Such a maximal subset problem is known to be

h{P-complete. Thus, a heuristic technique is used here.

First, the Ready net set is ordered in descending order of net prìorities.

Then, a smalì number of test subsets are created (for example, f ive), and each

test subset is initialized to contain one of the highest prior ity nets. Then

each test subset is expandecl by adding as many nets as possible from the

Ready net set in descending ordering of pr'iorities provided that the addition

w0uld not create any horizontal conflicts among the nets atready in the test

subset. When all the nets are examined and none of the test subsets can be

further expanded, the nets in the test subset with the highest combined net

priority are selected to be routed with the llother net.

3.2-4 Track Assignment and 6raph Uodate

After the maximal subset is found, all the nets in that subset are routed in

the same horizontal track with the llother net. The vertical constraint graph

is then updated by deleting those vertices corresponding to the routed nets.

lf the set of remaining unrouted nets is not empty, the channel height is

increased by one horizontal traclc and the routing process is repeated until all

the nets are routed.

3,3 lmolementation

The above aìgorithm has been implemented in Domain C Revision 3.l2 on an

Apolìo Domain DN660 workstation under the Aegis operating system Version

8.0. Structured charts and program listing of the channel router with the

t04

dogleg extension are included in Appendices A and B. As shown in the

structured chart of the main program, ffiGLEG.C, in Appendix A, Fig. Al, the

program is consisted of thnee main sections: (i) Filer, (ii) Doglegger, and (iii)

Non-Dogleg Router. The first section, Filer, performs basic input enror

checking and creates a linlced list data structure for the input netlist. The

second section, Doglegger, modifies the input netlist so that dogleg routing

can be achieved using the described non-dogleg routing algorithm. Finally, the

third section, Non-Dogleg Routen, performs the descnibed non-dogleg routing.

Fon the non-dogleg algorithm, only the Filer and the Non-Dogìeg Router

sections are used. Since the Dogleggen section is independent of the other

two sections and pertinent only to the dogleg algorithm, its descniption is

postponed until the next chapter on the dogleg extension of the algorithm.

Here, the Filer and the Non-Dogleg Router secLions will be described.

When the program is invoked, the Filer section reads in the specified

weighting factors and netìist îiles. The we'ighting factors ane stored in a set

of gìobal variables accessible by the priority functions. A list representation

of the netìist as described ìn Section 3.1.3 is then created. The head nodes of

the nets are arranged in an array for more efficient reference by net numbers.

Each head node contains: (i) two pointers, FIRST-TERN and LAST-TERI'1,

pointing to the first and last nodes of a linked list of terminal connections,

and (ii) two integers, LEFT and Rl6HT, containing the vertical track numbers

of the left and right endpoints of the net.

After the netlist data structure is created, the Non-Dogleg Router

takes over. lt first creates the vertical and horizontal constraint graphs for

the netlist. The verticaì constnaint graph is represented as an adjacency ìist

embedded in the netlist structune. Each head node in the netlist structure

r05

contains: (i) a pointer, FIRSTJ0N, pointing to a linked list of descendent

nodes of the net in the vertical constraint graph, (ii) an integer,oRDJrlUll,

containing the ordering number of the net, and (iii) an integer, PARENT,

containing the number of ancestor nodes the net has. After the structure of

the vertical constraint graph is created, a recursive pnocedure is called to

calculate the ordering numbers of the nodes. Then the horizontal constraint

graph is created. The horizontal constraint gr-aph is nepresented as an

adjacency matrix for more efficient access to distances and horizontaì

conf licts between nets.

With the graphs created, the Non-Dogleg Router pnoceeds to perform

non-dogleg track assignments. As described in the pseudo-codes of the

algorithm, the track assignment process consìsts of four major steps: (i)

llother net selection, (ii) Ready net set creation, (iii) maximal subset

selection, and (vi) graph update. All of these steps have been implemented as

they were described in Sections3.2.l to3.2.4.

The program listing of the channeì router with the dogleg extension,

Dogìegger, is included in Appendix B. By removing the procedure call to the

subroutine Doglegger, the prognam would perform non-dogleg channeì routing

on the input netlist. Such a modular appnoach would aìlow the user to

conveniently select between dogleg and non-dogleg nouting using a simpìe

command ìine switch.

The program listing in Appendix B was transferred dìrectly from the

Apollo workstatìon to a llacintosh microcomputer, where the program was

printed with page numbering. Correctness of the program has been verif ied by

comparing the partial results of several examples generated by the program

r06

and by manual traces of the algorithm.

3-4 Eff iciency of the Non-Dogleg Routing Algorithn¡

ln this section, efficiency of the non-dogleg algor ithm will be illustnated

through detailed traces of two examples and through an analysis of the CPU

times requined versus the complexity of the channels. Finst, par'tial results

generated at each majon step of the algorithm are shown for two exampìes.

3.4. ¡ Examnle l

Consider the channeì routing probìem shown in Fig. 14. The channel is l2
terminals long, and consists of l0 nets. The vertìcal constraint gnaph and the

horizontal constraint graph of the channel are shown in Fig. I 9. From the

graphs, the channel density is 5 and the channel ordering is 4. Thus, the

minimum channel height is 5.

A step by step ilìustration of the algorithm is presented here. At each

stage of the routing process, reduced verticaì constraint graphs are used to

show the progress made in each step (Fig. 20). The weighting factors used in

the llother net priority function f,n are nrnsu.,= l0 and lXrdertns=4O. The

weighting factors used in the net priority lunction fn are l\rd.rins=15,

Í$engtt= l0 and Ndirlrn.r=S.

Step l, So = f1,2,3,4,5,6,7,8,9,10J

St =Ô

Tnackt{umber = 0

Step 2: TrackNumber = I

t07

ffi
åffi
åó

(a)

ffi
ó

(b)

ffi
(d)

ffiffiffi

ffi
å

(c)

Fig 20. Reduced verticaì constraint graphs for Exampìe I

Fig.21. Reaìization of Example l.

/.. ¿/ /.-/ t.;/.t//ì/t..i.if -/!/,'

t08

Step 3: 5, = [1,4,10]; fm(1) = 29, fm(4) = 34, fm(l0) = 33

f'lothenNeT- = 4

Step 4: ReadyNetSet = [10]; fn(10) = 25

Step 5: S, = [10]

Step 6: Assign net 4 and I 0 to track I

Step 7: Delete net 4 and l0 from Se; Se = [I ,2,3,5,6,7,8,9]

Delete ventices 4 and I 0 from Gu (Fig. 20a)

Step 8: So- $repeat from step 2

Step 2: TrackNumber = 2

Step 3: Sn.. = [1,7,9J; fm(l) = 39, fm(7) = 42, fm(g) = 28

f'lotherNet = 7

Step 4: ReadyNetSet = [I]; fn(1) = 25

Step 5: S, = [l]
Step 6: Assign net I and 7 to track 2

Step 7: Delete net I andT from So; Ss = [2,3,5,6,8,9]

Delete vertices I and 7 from G" (Fig. 20b)

Step B: 50" $repeat from step 2

Step 2: TrackNumber = 3

Step 3: S* = [5,6,9]; fr(5) = 38, fm(6) = 35, f n(9) = 42

llotherNet = 9

Step 4: ReadyNetSet = [5,6J; 1n(5) = 25, f n(6)=22

Step 5: S, = {5,6}

Step 6: Assign net 5, 6 and 9 to track 3

Step 7: Deìete net 5, 6 and 9 from Ss; Ss = [2,3,8]

Deìete vertices 5, 6 and 9 from G" (Fig. 20c)

Step 8: So" @repeat from step 2

Step 2: TrackNumber = 4

t09

Step 3: S,n = [2,3,8J; fr(2) = 42, fm(3) = J6, fm(B) = i6
llotherNet = 2

Step 4: ReadyNetSet = [B]; fn(B) = 25

SteP 5: S, = [B]

Step 6: Assign net 2 and I to track 4

Step 7: Delete net 2 and B from Ss; Se = [3)

Delete vertices Z and I from Gu (Fig. 20d)

Step 8: So* ônepeat fnom step 2

Step 2: TrackNumben = 5

Step 3: 5, = [3]; fr(3) = 42

llothenNet = 3

Step 4: ReadyNetSet = 0

Step 5: Sl = 0

Step 6: Assign net 3 to track 5

Step 7: Delete net 3 fnom Ss; Se = g

Delete vertex 3 from G"; Gu = $

Step 8: So = $;Stop. Routing compìeted.

The f inal track assignment is shown in Fig. 21. A total of 5 horizontal tnacks

were used in the realization. This channel although small in size, has a fair ly

high ordering (4) companed to the density (5). However, the algorithm was

still able to complete the routing in minimum channel height.

3-4-? Examnle 2

A second exampìe is the channel shown in Fig. 22a. The channe'l is 35

terminals long and consists of 35 nets. As can be seen from the graphical

il0

&l-3 ô-qé s 6
ro'

-- tr-3 ru rsro&
rr W-tu

VAro t9

,o

(a)

a
ó

0
ó

ûs
(b)

Fig 22, Representation and vertjcal constratnt graph of Exampìe 2

(a) 6raph'ical channel nepresentation of exampìe 2;

(b) Verticaì constraint graph of example 2

a

ORDERlN0 -.NUTIBER \s

ilt

nepresentation of the channel in Fig. 22a, the channel density is 12. The

vertical constraint graph of the channel is shown in Fig.22b. From the gnaph,

the orden of the channel is 7. The lower bound on the channel height is

therefone 12. The weighting factors for the llother net prior'ity function and

the net priority function ane the same as those used in Example l.

Table I shows the track by track routing of the channel. For each track,

the llother net candidates are listed in the second column. The llother net

priorities are listed in parenthesis after the net numbers. The llother net

selected is shown in bold. The Ready nets with respect to the selected llother

net are listed in the last coìumn and the Ready net prior-ities are listed in
parenthesis. The Ready nets selected are shown in bold. A total of 12

horizontaì tracks are used in the realizatìon as shown ìn Fig. 23. The channel

height is again equals to the minimum.

3-4.3 Execution Time Versus Channel Complexity

The current implementation of the algorithm, as a study of the algorithm, was

desiqned for clarity rather than speed. The proqram is highly modulanized

utilizing over 55 modules, Íncluding l6 diagnostic and messaging subroutines.

Ey optimizing the data structures and coding of the algorithm higher speed is

achievable.

Since the algorithm operates on unìts of nets, the numben of nets in the

channel gives a fairly good measure of the channeì complexity. A plot of the

CPU time required on the Apollo workstation vensus the number of nets for

twelve examples is shown in Fig.24. The cunve labelled NON-DOGLEG shows

the CPU time required by the non-dogleg routen. The other two cunves

ll2

T
no

ck

r 2

r(
6)

 2
Q

Ð
 3

(1
7)

 4
(.

27
1

s(
26

)
?Q

)
8(

9)

u¡

s

r(
8)

 2
Q

Ð
 3

(2
0)

 6
(3

5)
 7

(8
)

4

t(
e)

2l

..2
6,

 3
(2

0)
 7

(8
)

c l.8

s%
q

7f
i0

)
8(

13
)
9(

50
Ì

t0
(6

)
14

{t
Ð

 l9
(1

9)

T
ab

le
 l.

 R
ou

tln
g

of
 E

xa
m

pl
e

2.

6

3(
24

)
l0

(6
)

lt(
9)

 t
4{

1Ð
 t

7(
15

)
t9

(t
9)

F
lo

th
er

 $
{o

t,
C

sn
dl

d¡
te

s

?

ß
2{

26
}1

4r
J4

 1
7U

7)
 1

9Q
1)

E

33
(3

5)
 1

4{
17

)
t9

(2
5)

I

14
{2

û
16

Q
Ð

 !
9(

ã5
}

to

8(
1

r)

E
4{

2s
}

16
(.

¿
4)

 2
0.

¿
1)

8(
1

r
)

14
1Ð

 1
8(

B
)

19
(

t
4)

3r

r5
(2

9)
 2

0(
55

)
21

ß
2)

r4
fl0

)
r8

fi0
)

19
fi7

)

r2

r5
(2

9)
 2

!(
55

)

r4
{9

)
1B

(1
0)

 1
gf

i6
)

35
(3

3)

3(
15

)
5{

27
}

R
.e

ad
y

m
et

s

r(
r
{}

 5
fi4

)
8E

(3
6}

7(
î3

Þ
 8

{3
5}

 1
0(

t3
)

30
(7

)
T

 3
(r

s)
 t4

(1
3)

 1
7(

7)

r4
fiõ

)
!7

(€
73

r6
(2

5)

.\

F
lg

.
23

.
R

ea
llz

at
lo

n
of

 E
xa

m
pl

e
2,

CPU

TIME
(SEC)

CPU TIME V5. CHAruNEL CO¡'IPLEX¡TV

DOGLEG I

DOGLEG2

(including net
spliLs in nel count)

60 E0

NUIIIBER S NETS

Fig.24. CPU time vs. channel compìexity for the Dogleg and
Non-Dogìeg channel routens.

il5

labelled DOGLEGI and D0GLEGZ are CPU times fon the dogleg router, which

will be discussed in the next chapter on the dogleg extension of the algorithm.

From the curve N0N-NGLE6, it can be seen that the CPU time required

by the non-dogleg router is almost linear, increasing only gradually with the

number of nets. ln particular, the routing of a 72-net channel (Deutsch's

Example) required only about 1.3 seconds.

3.5 Experimental Results

A total of twelve examples have been obtained from previously published

papers. The collection of examples covered a wide range of channel types

from relatively small channels consisting of about l0 nets and l0 terminals

to fairly complex channels consisting of 72 nets and 174 terminals. As

discussed, the lowen bound on the channel height depends on both the channel

ordering and the channel density. The selected examples covened channels

with orderìng numbers lower than density numbers, and channels with

ordering numbens higher than density numbers. The twelve exampìes thus

represent a fairìy good mix of practical channeì routing probìems.

Table 2 lists the chanacteristics of the twelve examples and the

resulting channel heights obtained with the non-dogìeg routing algorithm.

Columns two and three (Nets and Terms) are the numben of nets and number of

terminals in the channel, respectively. Columns foun and five (Density and

Order) are the density number and ordering number of the channeì,

respectiveìy. Column six (Ord/Den) is the ratio of the ondering number to the

density number. This ratio is used in the Mother net pnionity function, f* to

adapt the algorithm to channels of different chanactenistics. The last two

I t6

E
N

am
pl

 e

T
ab

ìe
 2

,
C

ha
ra

ct
er

is
tic

s
an

d
re

su
lti

ng
 c

ha
nn

eì
 h

ei
gh

ts
 o

f
th

e
E

xa
m

pl
es

,

{

I 2

N
et

s

5 4

t0

5

6

T
er

m
s

6

7

C
ha

ra
ct

er
is

ti
cs

7

r0

t2

B

54

7

9

D
en

si
t

72

t7

l0

60

t8

il

5

20

v

79

t2

4

54

17
4

O
rd

en

3

21

ll9

5

45

4

35

r8

47

2

r1
9

O
rd

/D
en

l9

3

55

20

5

0,
80

63

12

0.
50

6

63

C
ha

nn
eB

 F
fe

tq
F

¡t

t7

O
pt

i m
aï

23

1,
00

12

3

1.
00

15

5

0.
33

7

17

4

t3

1,
21

R
es

q¡
B

 t

3

0,
 l5

7

5

0.
58

4

5

IB

9

07
6

4

28

0.
58

3

20

o.
27

5

12

0.
53

t9

t7

28

12

20

t5

t2

17

t8 l2 r5 r8

columns (Optimaì and Result) are the optimaì channel height and resuìting

channel height obtained by the algorithm, respectively. Realizations of the

tweìve examples ane shown in Figs. 25-36.

3.6 Ðiscussions

As discussed in Section 3.1.6, the ìower bound on the channel height is

determined by both the ordering and the density of the channel. ln the twelve

examples, ordering to density ratios (Or'd/Den) from as low as 0.15 to as high

as 1.21 are covened (column 6 of Table 2). For channels with high orderings,

nets with high ordering numbers should be routed as earìy as possibìe, since

the maximum ordering in the vertical constraìnt graph at any one time

determines the minimum number of additionaì tracks nequired. For channels

with high densities, routing the longer nets at the beginning usually results in

reaìizations requiring fewer tracks. Since the goal was to develop a

non-dogleg channel nouting algorithm for the entire class of pr-oblems def ined

in Section 3.1.1, the algorithm is judged on its performance in the routing of

all twelve exampìes.

As can be seen from Tabìe 2and Figs. 25-36, the algorithm was able to

route all twelve examples in no more than one horizontal track above the

optimal channel heights. Furthermore, 758 (nine out of twelve) of the

examples were routed in their minimum channel height, and the remaining

258 (three out of twelve) wene routed in one tnack above their minimum

channel height. These results were obtained using a singìe set of weighting

factors. By adjusting the weighting factors slightly, aìl twelve examples

were routed in thein minimum channel height.

il8

Fig 25. Non-dogleg realìzation of Example I (channel height: 5)

Fig.26. Non-dogleg nealizatìon of Exampìe 2 (channel height: 4)

r r9

Fig 27. Non-dogìeg reaìization of Example f (channel height: 3)

Fig 28 Non-dogìeg realization of Example 4 (channel heiclht: 5)

120

-l

L

I I

f- T

I

L_

L
I L

r_l

t-I I +I

t-
I

L

J

-"t

L

#-I

J __l

I _J

I J
lr__

1
¡-,
Co,
a)
C
;
C
C(\l
.c_
(J

tfl
I
o_
Eñ
><

t-!-l

O
C.I

L;'
rT.\

.5
t\t
4Jt-
I-F¡

v
rT)
O

I

C.()
Z.

o\
C{

EII,

I'

121

N
'

N
)

F
ig

,
30

 lJ
on

-d
og

le
g

re
al

iz
at

ic
rn

 o
f

tx
am

pl
e

6
(c

ha
nn

eì
 h

ei
gh

t:
2B

),

N
) (¡

F
1g

 3
 I
.

N
on

-d
og

le
q

rÊ
al

1¡
at

io
n

of
 tx

am
pl

e
7

ic
ha

nn
el

 h
et

gh
t:

20
),

N -\

JL
_

F
ig

.3
2,

 N
on

-d
og

le
g

re
al

tz
ai

lo
n

of
 E

xa
m

pl
e

I {
ch

an
ne

l h
el

gh
t:

l2
)

tl

'l
l'

ñ U
I

tt
L

-J

J tt
I

J

I

L

L

T

-J

J

iL

J

r

F
ig

,3
3.

 N
on

-d
oq

le
q

re
al

lz
at

ir-
r¡

 e
¡

E
xa

nr
F

le
 9

 ic
ha

nn
eì

 h
ei

gh
t:

18
),

T
-

L

L

t-

_-
1

L

I
_l

'

I

r
L

I J

r

I I

I

-l

-J
J

I rÇ
t-

L

I
--

rT
-

--
-l

I

rl

r

T
_-

I
l

o.J

P
_c
CJ¡

a)

O.)cË
G]
E(i

a)
CLrc
(g
X
L!
T-o
C.
O

]J
(\l

I
(E
(Þ(-
Cr¡
{-t

õ)
OÐ
I

Co
z.
.f
tl
r=,

t!

126

-.
1_

L
JL

N
) {

J tt

L

F
ig

.3
5.

 l{
on

-d
og

le
g

re
at

iz
ar

io
n

of
 E

xa
m

pl
e

I
I

(c
ha

nn
el

 h
ei

gh
t:

l5
),I

r

T

ñ @

ll
L

JI

tttI

I

L

tt

F
ig

 3
6.

 N
on

-d
og

lÊ
g

rÊ
al

1¡
at

lo
n

of
 E

xa
m

pl
e

tz
 (c

ha
nn

el
 h

el
gh

t:
r8

),

L

r

L

-.
l

-l

I

¡

L

_.
l

-l

T

_-
l

I

I r

tt

T
_l

r

--
l

rL

I

-l

T

Among the twelve examples, Example 6 is commonly known as

Deutsch's Difficult Fxample [DEU76] and has been widely used in literature as

a benchmark test case for channel routing. Although Deutsch's Difficult

Example contains fewer than the typical number of nets (72 vs. about 100), it
is difficult because of its severe ventical constraints. lt has a channel

ordening of 23, while the channel density is only lg. Furthermore, the

minimum non-dogleg channel height was found to be 28 tnacks, which is far

above the ondening and density of the channel. The 28-tnack minimum

non-dogleg nealization was first obtained by Deutsch using a branch-and-

bound technique [KER73] after four hours of computation on an Hp2l00

minicomputer [DEU76]. But, the new algorithm was able to noute this

difficult example in minimum channel height in less than l.J seconds

(including the reading of the net list and the writing of the nouting results).

Ïhe 28-track non-dogleg solution has only been obtained by one other routing

algonithm [Y0582] that does not require an explicit or implicit exhaustive

search (bnanch-and-bound techniques are considered as implicit exhaustive

searches).

lloneover, since the aìgorithm is able to adapt the priority function

according to the charactenistics of the channels, the algor-ithm is reìativeìy

insensitive to the vaìues of the weighting factors. For exampìe, varying the

weighting factor Ndirt"n.. from 2 to l0 has no effect on the routing resuìts.

This feature allows the aìgorithm to noute different channels without user

intervention.

129

3.-F Surnrnarv+

Experimentaì results presented in this chapten have shown that the

non-dogleg channeì routing algorithm has very good performance. Since the

algorithm adapts itself acconding to the characteristics of the channel, the

algorithm is able to produce optimal 0r very near optimal results for a wide

range of practical channel nouting problems. ln alì twelve examples tested,

the algorithm was able to route the channels in no more than one tnack above

the optimal channel heights. Furthermone, the algorithm penforms equalìy

well for channels with ondering above or below density, and is fairìy

insensitive to the values of the weighting factors. A comprehensive

description of the algorithm and the cornesponding results is provided in

lTSKsTal

130

TS-åAPTFR åW

Mffiå-Fffi FXTFruSåüru

ln Chapter lll, the non-dogìeg channeì routing aìgorithm was introduced.

ln the definition of the channel routing problem in Section j.l.l, each net in
the channel is limited to have at most one horizontal trace, and hence occupy

at most one horizontal track. Very often, howeven, such nequirement is too

restrictive. ln this chapter, an extension to the non-dogleg algorithm will be

described. The extension nelaxes the nestniction to all0w doglegging of the

honizontal traces at terminal positions. A net is thus allowed to span several

horizontal tracl<s. ln the following sections, the motivations and tradeoffs of

introducing doglegs, the development and implementati0n of the dogleg

channel nouting algot'ithm, ancl the expenimental nesults will be described.

4.1 mot¡yailon and Tradeoffs of lntroducing Dogtegs

As desffibed in Section 3.1.2, a dogleg splits the horizontal trace of a net

int0 two 0r more horizontal segments on diffenent horizontal tracks. The

motivation of introducing doglegs is twofold. First, since the lower bound on

the channel height is determined by both the channel density and the channeì

ordering, a long constraint chain in the vertical constraint graph may pnevent

the channel from being nouted at or near optimat channel he.lght, lntroducing

dogìegs would allow those long vertical constnaint chaìns to be broken. This

is partlcularly important in channels where the orderlng ìs higher than the

density.

r3t

Consider the channel shown in Fig. 37a. Without doglegs the 3-track

realization shown in Fig. 37b is already the optimal, because the channel

ordering of 3 is higher than the channeì density ol 2, which bounded the

minimum channeì height at 3 tracks. However, when doglegs are used, the

same channel can be routed in 2 tracks as shown in Fig. 37c, where the

channel ordering is reduced to 2, and the lower bound on the channeì height is

determined by the channeì density of 2.

Another motivation of using dogìegs is that, dogìegs would enable

routing of channels with verticaì constraint loops, which would otherwise be

unroutable. ln Fig. 3Ba, each net in the channel requires the othen net to be

routed above and beìow it at the same time. Thìs situation conresponds to a

directed cycìe in the vertical constraint graph. Without dogìegs, this channeì

would be unroutable. Using doglegs, the directed cycle in the vertical

constraint graph can be broken, and the channel is nouted as shown in Fig. 3Bb.

The advantages of introducing doglegs are thus fairly clear. Dogìegs

enable us to (i) reduce long verticaì constraint chains, and (ii) break vertical

constraint loops. However, the use of doglegs aìso involves tradeoffs that

must be considered. First, without doglegs, the channel realization aìways

uses the minimum number of vias, whiìe the introduction of each dogleg

would add one or two additional vias. Since vias incnease the interconnection

resistance and capacitance, and reduce the circuit reliabiìity, the number of

vias, and hence, the number of doglegs, should be as few as possible.

Another tradeoff involved in the use of doglegs is that, each dogleg

increases the local density of the channel by one at the vertical track where

the dogleg is placed. Since the routing process depends not only on the

t32

:'"#'!i:'':w;
g#

5

6--&

Çe2
öö

(c)

Fig. 37. An example illustrating the advantage of doglegs.

(a) Gnaphical representation; (b) Non-dogleg real ization;

(c) Dogleg real izatlon.

133

(a)

(b)

Fig. 38. An example unroutable without dogleg.

(a) A channel with a constriant toop; (b) Realization and

vertical constniant graph of the channel using doglegs.

134

maximum density of the channel, but also on the local densities and the span

(the number of vertical tracl<s having a local density equals to the channeì

density), increasing the local densities could complicate the routing process

and result in sub-optimal realizations. Therefone, although doglegs could

produce better solutions for certain channels and even allow channels with

constraint loops to be routed, they should be used only when necessary.

4.2 Dogleg Channel Routing Algorithm

ln light of the above considenations, the new dogleg channel routing aìgonithm

doglegs only at the terminal positions of a net. That is, the algorithm would

not dogleg a net unless there is alneady a via. This way, the number of vias is

limited to at most 2T vias, whene T is the total number of tenminal

connections in the channel, excluding the endpoint connections. l'loreover, the

algot'ithm would not extend a net beyond its original endpoints or penmit its
horizontal segments on diffenent tracks to overlap. Such routing style can

only increase the local densities of the channel. While sometimes beneficial,

the incidence of such situations does not justify the complication of the

routing process.

ln general, doglegging at terminal

advantages: (i) it eliminates the need of

doglegs, (ii) the resulting horizontal trace

avoids such cases as nouting off the ends

Channel Router [Rl VEz].

positions alone has the 1oììowing

additional vertical tracks for the

is always the shortest, and (iii) it
of the channel as with the Gneedy

r35

4.3.ß tsasic Dogle$ Channel Ror¡tin$ Algorithm¡
The following is the basic structure of the dogleg channel routing algorithm.

[tsasic Ðogleg Channel Routing Algorithm]:

tsasicDoglegRouter;

begin
order the nets to be split;
f'or each net meeting selection cniteria do

heEin
for each terminal in the net (excluding endpoints) do

!f terminal should be split then
split the net at the selected terminal position;

assign doglegging priority to the resulting subnets;
end;

non-dogleg channel router;
end; [BasicDogì egRouterJ

The basic idea of the above algorithm is to first spìit the nets into

subnets at selected terminaì positions where dogìegging may improve the

solution, then use the pneviously developed non-dogleg channel routing

algorithm to complete the routing. The main advantage of this approach is

that, rather than developing an entirely new algorithm from scratch, previous

research can be capitalized.

ln the above dogleg channel routing algorithm, the nets ar-e first
ordered. Then one by one the nets are examined to detenmine if doglegging the

net would reduce the ordering of the channel. lf so, each terminal in the net

(excluding the endpoints) is examined to decide whether the net shouìd be

spìit at that terminal position. This process continues until all the nets are

examined. The result is a modified netlist that is equìvaìent to the originaì

netìist but with certain nets divided into two or more subnets.

t36

After a net is split, doglegging priorities are assigned to the resulting

subnets as negative distance values. A negative value is used since the net

priority function contains a term MaxReadyNetdistance-Distance(Þlother,Net).

lVhen the distance vaìue between two subnets is large and negative, the

subnets wouìd have higher net priorities compared with the others. Thus, in

the net selection processes those subnets would be more likely to be routed

together, and be re-merged back into a longer subnet. This distance value is

therefore equivaìent to a priority factor for dogìegs. The more negative this

dogìegging pniority, the less doglegs would be used. When this vaìue become

very negative, the dogìeg algorìthm revents back to the non-dogleg algor ithm.

4.2.2 Net Ordering

As noted previously, each dogleg increases the local density of the vertical

tnack where the dogleg occurs by one. ln order to keep the minimum height of

the modified channel to no gneaten than that of the original channel,

dogìegging of a net is not allowed if the doglegging would increase the

channel density above the original channel densìty. Thus the number of

doglegs that can be placed in any vertical track is ìimìted to the channel

density minus the original ìocaì density of that verticaì track. Being ìimited

by the number of possible doglegs, the order the nets are doglegged becomes

important. lf the nets were dogìegged indiscriminately, the channeì density

could be reach easily, leaving some long vertical constraint chains unbroken.

Two net ordering schemes were tested in reducing the ordering of the

channeì. The first scheme arranges the nets in descending order of their

ordering numbers, so that nets with higher ordering numbers are dogìegged

137

first. The second scheme arranges the nets in descending order of their

number of ancestors in the vertical constraint graph. The reason is that,

doglegging a net resuìts in subnets having lower ordering numbers. The

reduced ondering numbers are then propagated to the ancestors of the subnets.

Thus, nets with more ancestors when reduced would result in more nets

having reduced ordering numbers. Using a simplified dogìeg router that

sequentially splits alì nets at alì terminal positions as long as the local

densities do not exceed the or iginal channeì density, the two net ordering

schemes were tested. The channel orderings and channel heights of the

twelve example channels wene compared. The results of no net ordering

(columns two and three), ondering by net ordering numbers (coìumns four and

five), and ordering by number of ancestors (column six and seven) are listed in

Table 3.

From the table, it can be seen that the channel orderings were different

with and without net ordering (columns two and four). lt thus showed a need

for net ordering. lloreover, although the channel orderings were the same

wìth no ordering (column 2) and with onder-ing by the number of ancestors

(column six), the resuìting channel heights were better in the latter case.

Thus, ordering by the number of ancestors showed supenior results. ln fact,

even with the simpìified algorithm using no net and terminal seìections, ten

of the twelve examples were routed in density, and the remaining two

examples were routed within two tracks of densities. ln panticular, the

Deutsch's Difficult Example (Example 6) was routed in 2l tracks, which is the

same as that of the Dogleg Channel Router of [DEU76], and showed a great

improvement over the 2E track optimal realization without doglegs.

t38

¿
t

9t¿
t

¿
t

¿
t

¿

0¡

Þ
,

tÐ

g

gt

g

Ë

g

LL

Ë
-

f

rfl

F

'l

¿
t

3qfr tðå-l

r::

g

s-¡ð¡sa3uw
 ,8 Jðqujnru R

t

t-rl
cft

Ë

¿
t

t_

f

ü¿

It

r

r¡

g

$ul-.lap-lg
ft

Ë
,t

ql

/t

I

t-5

tl
i-t

c¿
_

Ë

rt

É

Þ

lqfr 1äH

¿
t

g

I

sJðqlunru fiur-¡ap_lü fig

7_.1

E

'Ë
Ë

LU
är.lJ5 fiU

¡lap-rr.r luu Jr: uustJsdrucrf .t ãtqE
I

¿

ûr,

¿

Þ

Li

vL'

g

üu1"rap-lg

rll

t?

s

¿
t

I'J

I

,i

tt

¿

0t

'l

F

tqÛ
 laH

t

I

6

ç

cl

ûur-rap:¡ lrt{ 0hl t

I

L

r

I

fiug-rap-16

Þ

r'5Þa¿
-

¿

a [duJB
¡{3

O
l

t..l

4.2.3 Net and Term¡inaT Selection

As descnibed in the structune of the dogleg channel nouting aìgorithm in

Section 4.2.1, af ter the nets are ordered each nets is examined to determine

whether doglegging the net would likeìy to reduce the channel ordening, and if
so which tenminal should be doglegged. After experimented with several net

and terminal selection schemes the following scheme was chosen.

for each vertex in the vertical constraint graph do
if the vertex has at least one ancestor and one descendent then

for t, = t, to tn_, do

tf ti_r and t,*.' are connected to opposite boundaries and
Densìty(t¡) < ChanneìDensity then
split the net at termlnal posiilon t¡;

The above selection scheme examines the corresponding vertex of each

net in the vertical constraint graph. lf the net has at least one ancestor and

one descendent, the net is in a situation similar to that of net 2 in Fig. 37. Ey

splitting the net into subnets, the ordering numbers of the ancestors are

reduced by one. Furthermone, the dogleg should occur in a terminal position t,

where the previous terminal connection t,-, and the next terminal connection

t'*t are to opposite channel boundaries. Such a te¡'minal position sepanates

the portìon of the net that should be placed above the descendent net and the

portion that shouìd be placed below the anceston net. Dogìegging the net at

such tenminal positions would break the constraint chain into two disjoint

chains, and reduce the ordering.

t40

4.2-4 Cornplete Dogle$ Channel Routing Å,lgorith¡n

The complete dogìeg channeì routing algorithm including the net ordering

scheme, and the net and terminal selection scheme can be described in

pseudo-code as fol lows.

lComplete Dogleg Channel Routing AlEorithml:

Compl eteDogl egChanneì Router;

begin
order the nets in descending number of ancestors;
for each vertex in the vertical constraint graph tlo

if the vertex has at least one ancestor and one descendent then
begin
f'or t, = t2 to tn_' do

¡f ti_t and t,*' are connected to opposite boundaries and
Density(t,) < ChannelDensity then
split the net at terminal position t¡;

distance between all subnets in the same net = DogìegPriority;
end;

non-dogìeg channel router;
end; tCompleteDoglegChanneìRouterl n

4-S lmnlementation

As described, the onìy different between the dogleg routing aìgorithm and the

non-dogleg routing algorithm is in the Doglegger section. After the Filer read

in the input netlist, the Doglegger modifies the netìist splitting the nets into

subnets at selected terminal positions, then the Non-Dogleg Router takes the

modified netlist and penforms a non-dogleg routing. As shown in the

structured chart of the Doglegger in Appendix A, Fig. 42, the Doglegger is

consisted of four main processes. First, the Doglegger finds the local density

141

at each verticaì tnack to ensure that the net splits wouìd not increase the

channel density. Then, the vertical constraint graph is created to determine

the number of ancestors for each net and the input netlist is ordered by their

number of ancestors in the vertical constraint gnaph. After the netlist is

ordered, the net and terminaì selection process determines which nets shouìd

be split and at which terminaì positions. When a net is split, the subnets

created are appended to the end of the netlist structure. After all the nets

are examined and all the subnets are created, the modified netlist is passed

on to the Non-Dogleg Router section to complete the routing.

4.4 EfficiencE of the Dogleg Routing Algorithm

ln this section, the efficiency of the dogleg router wilì be discussed in terms

of the CPU time required versus the complexity of the channel. Two curves

labelìed D0GLEGI and D0GLEG2 were shown in Fig.24 along with the curve

NON-DOGLEG for the non-dogleg router. The curve labelled DOGLEGI showed

the CPU time required versus the number of nets in the origìnal netìist while

the curve labelled DOGLEG2 showed the CPU time required versus the number

of subnets in the modif ied netlist.

An analysis of the D0GLEGI curve showed that the complexity of the

algorithm is about 0(rÊ) to (ns), where n is the number of nets in the originaì

netlist. However, when doglegs are used, the complexity of a channeì depends

not only on the number of nets ìn the channel, but also on the number of

doglegs. The curve D06LE62 shows the CPU tìme required when the

complexity of the channel is measured by the number of subnets, which is

equal to the number of nets in the channel pìus the number of possible

142

dogìegs. As can beseen from Fig.24, the DOGLE62 curve isfairly linear. The

aìgorithm is thus able to handìe fairly complex channels with reasonable

running time.

4.5 Exnerimental Results

using mother net priorities of l'l,rnn*= l0 and Hordering=25, net priorities of

Norder=10,N¡rngt=15 and l',l¿irt n.r=10, and a dogleg priority of -20, the results

obtained by the new dogleg channeì routing aìgorithm are summarized in Table

4, and the channel realizations are shown in Figs. 39-50. ln Tabìe 4, columns

two and three are the densities and orderings of the original examples.

Column four is the reduced ondering numbers obtained from the simpìified

algorithm repeated here for comparison. The remaining columns are resuìts

obtained using the new implementation. Note that the ordering numbers were

further reduced using the new algorithm (examples s, g and l0). f'lore

importantly, the number of net splits and the number of dogìegs used were

greatly reduced. Since each dogleg requires an additional via, the reduced

number of doglegs showed that the net and terminaì selection schemes were

effective in determining where the doglegs should be placed.

From Table 4, the dogleg channel routing algorithm was able to route

75% (nìne out of tweìve) ol the examples in a channeì height equals to their

density, l7E (two out of twelve) in a channel height equals to one track above

their density, and EE (one out of twelve) in a channel height equals to two

tracks above their density. These results were obtained using a single set of

weighting factors. By adjusting the weighting factors slighily, eleven

examples were routing in a channel height equals to their density, while

t43

E
xa

m
pl

 e

À -\

T
ah

le
 4

. R
es

u'
lt'

;
nf

 t
he

 n
er

^¿
 d

nu
le

g
ch

an
ne

l r
nu

tin
q

¡lq
un

ilr
rr

.

C
Ir

ig
in

al
 S

ta
tis

tic
s

2

Ile
ns

i t

3 4

c .t

u

Ê J

4

tr
de

ri
ng

Ë

i

.? I

5

4

Ê

tlr
de

r
bg

A
nc

es
to

rr

1B

¿

s

1q

J

1
r'ì

?t
l

5

1l

4

12

6

12

2

l7

'1
7

H
ew

 û
rd

a

12

I

5

t5

F
in

al
 R

nu
tin

g
R

es
ul

ts

4

T

ñ

17

2

I
.jr

F
le

t
S

pl
i t

Ë

7 L)

-t I

3

5

tJ

t_
J

6

5

,l

r.
J

Ê
'

ñ

D
og

l
eg

r.
_J

ñ

tt

4

C
i

7

T

l[¡

0

E

Ë
'2

F
åe

i
gh

t

IJ

.-
_t ¿
-

û

,4

E .t

5

b

7

4

/'ì
 C

'
Lt

)

44

7

7 ._
)

T

5

t:,

.:r L

IE

ll

th

2t
J

T

tfr

L]

t2

o

1i
3

12 l7 17

Fig. 39. Dogleg realization of Example I (channel height: 5)

Fig. 40. Dogleg realization of Example 2 (channel height: 4).

145

Fig. 41. Dogleg realization of Example i (channel height: J).

Fig.42, Dogleg realization of Example 4 (channel height: 5).

146

'ig t :lllfitåt,l lÐ
uuprlJ) g Ð

tdue[] Jû uollp¡tteal ôatfiorl 'gr, 'h t¡

+

L

J

L

T

I

L

f

I

L

t-

r

L

r

L*

tT
-

4

tt

l

I

IIT

ft*Í

À o

F
ig

.
44

.
D

og
le

g
re

aì
iz

at
lo

n
of

 E
xa

rn
pl

e
6

(c
ha

nn
el

 h
ei

gh
t:

20
),

À \o

F
lg

 4
5.

 D
og

le
g

re
al

iz
ai

l
on

 o
f

E
xa

nr
pr

e
7

(c
ha

nn
el

 h
el

gh
t;

irJ
ì,

ul o

F
ig

.
46

,
D

og
le

g
re

al
lz

at
lo

n
of

 E
xa

m
pl

e
I (

ch
an

ne
l h

ei
gh

t:
12

),

I

U
I

L- r-
J

L
J

I

L

I

LI

L

r

illu

I
tt

I
tt

L

llI
t

il

L n
I lr-

I
t¡tt tt

F
Ig

.4
7.

 D
og

le
g

re
al

lz
at

lo
n

of
 E

xa
m

pl
e

9
(c

ha
nn

el
 h

ei
gh

t:
lg

).

il tt

I
L

I

J
I

il
r- r

J

L

--
l

rl

U
I

N
)

ll

F
lg

 4
B

 D
og

le
g

re
al

lz
at

lo
n

of
 E

xa
rn

pl
e

ltì
 (c

ha
nn

er
 h

el
gh

t:
r2

),

I

ul (J
J

F
lg

.
49

 D
og

le
g

re
al

lz
at

lo
n

af
 E

xa
m

pr
le

 I
I

(c
ha

nn
el

 h
el

gh
t:

t7
l.

(, À

I
IL

tt

-t

t-
rllllt

L- tt r

tt ll

-l

-f

F
ig

.
5c

r.
 [

ro
gl

eg
 r

ea
]i¡

at
-r

nn
 n

f
tx

am
pl

e
lt

(r
hn

ne
.l

he
ig

ht
:

rr
].

"-
l

I
!

I

r rl
I

¡L

I

JI c

-]
lr

llt

tr
lr

-t

ttt ttt
ltI

Deutsch's Difficult Example was routed in 20 track, only one tract< above the

minimum channel height. This result is comparable to any published dogleg

channeì routers of the same nature, that is, routers that dogìeg only at

terminal positions. Although it has not been proven, the 2O-track reaìization

may be the minimum channel height achievable by routers that place dogleg at

terminal positions only. lfone specificaìly, the Dogleg Channel Router of

lDEUT6l required 2l tracks, the Efficient Channel Router of [Y0SB4] required

20 tnacks, and the Greedy Channel Router of [RlVB2] also required 20 tracks

but it aìlows doglegging at all available verticaì tracks and routing off the

end of the channel. Thus, the performance of the new dogleg channel routing

algorithm is at ìeast as good âs, and in many cases better than, other

published algorithms of the same cìass.

4.6 Vertical Constraint Loop Handling

As discussed in Section 4.1, the use of doglegs wouìd enable us to route

channels with constraint loops that would otherwise be unroutabìe. ln the

new dogleg channeì routing algorithm described in Section 4.2.4, a net is split

only if the split would not incnease the channel density. For channeìs with

vertical constraint loops, however, it may be necessary to introduce doglegs

that would increase the channel density. For example, the channel shown in

Fig. 38 has density and ordering both equal to 2, but the minimum channeì

height is 3. Therefore, the requirement that a net split must not increase the

channel densìty needs to be dropped in order to cope with channels with

vertical constnaint loops.

r55

Two additionaì examples, Exampìe l3 and 14, have been obtained from

h1AT72l. Both exampìes contain a verticaì constraint loop that wouìd be

unroutable without doglegs. Using the new dogleg routing algorithm with the

density check (Density(t,)<ChannelDensity) dropped, l'lother net priorities of

N¡rnn*= l0 and \ror.ing=25, net priorities of No.or.= 10, N,rnnrn= l5 and

Ndirrrn.r=20, and a dogleg priority of -50, the two exampìes have been routed.

lloreover, Examples l-12 have also been re-routed without the density check

for comparison. The results are summarized in Tabìe 5 and the realizations

of Exampìe l3 and l4are shown in Figs. 5l and 52.

ln Tabìe 5, columns two and three are the original densities and

orderings of the channels; columns foun and five are the new densities and

orderings of the channels when dogìegs are introduced; column seven is the

number of net splìts, which determines the maximum number of doglegs that

can occur; column eight is the actual number of doglegs used; and column nine

is the resulting channel height. The difference between the number of net

spìits and the number oî dogìeg used is the number of subnet re-merges.

From the results shown in Table 5, it can be seen that the channel

densities for four of the fourteen examples were increased above the original

channel densities due to the relaxed tenminal selection scheme (dropping of

the density check). For channels with no vertical constraint ìoops (Example

1-12), the aìgorithm was abìe to re-merge the unnecessany net splits, and

only the channel height of the Deutsch's Difficult Example (Example 6) was

slightìy increased by one track. For channels with vertical constraint ìoops

(Example l3 and l4), Exampìe l3 was routed in lg tracks and Example l4 was

routed in l7 tracks.

r56

T
ah

le
 5

.
Ë

es
u'

lts
 n

f
th

e
tte

,¡
¡

do
gl

eg
 c

ha
rr

ne
l r

nu
t-

er
 iv

ith
 n

n
de

n:
:'i

1U
 c

:h
ec

þl

{E
xa

rn
pl

e
I
Í

nn
d

I
4

cr
:r

nt
-n

 jn
 v

er
t
jc

nl
 c

nn
st

-r
ai

nt
 l

oo
ps

i.

E
xa

m
pl

 e

LN \.1

I

D
rig

in
al

 S
tn

tis
tic

s

2

D
en

si
 tg

i ¿
l

E .-
t

E Lt

Lr

4

U
rd

er
i

nq

7 vl

7

.t

,Ï

lo IU

4

q

tq

2

Ir
l

f{
ew

 S
ta

ti
st

i c
s

D
en

si
 tg

'¿
t.)

ll

.)

l2

t2

E ._
t

t3

l7

ri

Ë .*
t

J'
lT ¿
,_

,

l2

l4

4

tlr
de

ri
ng

t5

l

t7

7

E ._
t

lÕ tL
l

4

t(
: IU

tl

2
r:

J

l7

T I

f,l
*t

 S
pl

 i
t

¿
 [_

J

4

ï

t2

E ._
t

rJ

tÐ I
t_

l

IJ

E ._
t

R
es

uÏ
 ts

It

Ë
'

rl

D
nq

l e
q

tc l.-
r

l

rl

lf5 I
'_

l

._
)

r.
_J

'¿
1.

.)

lt

Itl

É
'

hT

t7

LI

F
üe

i q
ht

C
l

.'-
1 ¿

4

Ê ._
t

I

t_
r

2ç
l

5

Ë
,

Ë
'

4r
l

4

4

l

,J

,l ¿

Ê
' t;:

5

2

tÊ
,

I
':1 IU

tË
,

2l

l2

¡l ¿

2(
l

.l

t2

c, l-t

lC
l

I
t_

l

'l

l2

,l

t7 t7 tç l7

Ln @

F
ig

.
5

I
.

D
ng

ì
eg

 r
en

li
¿

ar
.i

nn
 n

f
E

un
rr

pl
 e

 I
f,,

n
ch

nn
ne

l '
*'

ith
 il

 r
,r

Ê
rt

ir:
nl

 c
nn

çt
ra

ln
t-

 l
cr

nË
'
{c

ha
nn

el
 h

ei
gh

t:
l$

)

t- l I+
L

E ll
L-J_rtlr
I

_r
J

=I

t_

I L-J tt
I-

L

tLlIfJI
=-t

-1.

fl
--.----1

-:f\-
J
EIr
-c
&r
_r

-, (LtÌ-J r
E
ilt

{l-¡

=
ti

4
C
rrì =
''i

Et
u-l

Ì-r a-

!- (Er
È t-_

+' lat-i-, Lr! Cl

fi1
&, (Er¡ .,
æ':.
{a¡ L
rD i'cr¿

¡._t !-¡

.-c
f.:'{ =uJ :-
tfj

CL¡u-E
c
to
g
¡.J

L
CLr

-C
tr'
=F

r59

Comparing the results of Example l3 and l4obtained by the new dogleg

channel router with othen noutens, the channel router of llattison INRIZZ]

nouted the two examples in 23 and 20 tracks respectively, and the Dogleg

Channel Router [DEU76] requined I g and I 7 tracks, respectively. The new

algorithm has thus shown a signif icant impnovement over the channel router

of llattison and perfonmed as well as the Dogleg channel Router.

4.6.1 Anplicability of the Algorithm

The new dogleg channel routing algorithm is able to handle a large class of

channels with vertical constraint loops. However, thene are centain cases

that the algorithm cannot handle. The limitation is due to the fact that the

nets are doglegged at terminal positions only and are not aìlowed to be

extended beyond their original endpoints. This appnoach has its advantages as

discussed in Section 4.2, but as an example, the channel shown in Fig. sJ

would be unroutable because it requines an additional ventical track off the

night end of the channel, and nequines a net to be extended from vertical track

I to ventical tnack 3, then "tunn back" to ventical track 2, doglegging at

non-terminal positions and extending beyond its original endpoints.

ïhe class of channels handled can be defined more precisely as follows:

if a channel contains a vertical constraint loop of n nets, at least n-l of

those nets must each has at least one unconstraining terminal in between

every pair of constraining terminals. An unconstraining terminal is a

terminal that if removed would not alter the constraint loop. That is, the

constraint loop would still exist regardless of the unconstraining terminals.

t60

b)a)

Fig 53. A channel unroutable by the new channel

(a) A channel nol handled by the new Dogleg routing

(b) A realization requiring doglegs at non-terminal

nouter.

algor-lthm;

positions.

Fig. 54. An illustration of constraining

and unconstraining tenminaìs

l6t

ln Fig. 54 tenminals 2 and 4 of nets I and 2 ane constraining terminals,

removing any one of those terminaìs would disrupt the constnaint loop. The

rest of the tenminals, terminals l, 3, 5 and 6 of net 2, are unconstraining

terminals, removing them would have no effect on the constraint loop.

Furthermone, terminal 3 of net 2 is an unconstraining terminal in between

two constraining terminals (2 and 4). lf a dogìeg is inserted at this terminal

position, the constraint loop would be reduced into two disjoint constraint

chains. lt is such terminals that allow the channel to be routed with doglegs

at terminal positions alone.

4.7 Summarv+

The dogleg channel routing aìgorithm presented in this chapter is capable of

routing channeìs with no vertical constraint loops at or near optimal channel

heights. Floreover, the algorithm is able to handle a large class of channeìs

with verticaì constraint loops. Among aìl the exampìes tested, the algorithm

was able to complete the routing in no more than two tracks above the

minimum channeì height. ln particular, the Deutsch's Difficult Exampìe was

routed in 20 tracks, which is same as the best published result obtained by

routers of the same nature (dogleg at terminal positions only). The algorithm

has thus demonstrated the efficiency of a graph based heuristic approach to

the NP-complete channel routing problem. A desription of this algorithm and

the corresponding results is provided in ITSKBTb].

162

Cå-ßÅPTER W

CüNCLTJSåüruS ÅruM RECTMMFruDATåTF{S

Routing is a very challenging problem ìn VLSI layout design because of

its extreme complexìty and its tremendous influence 0n the quality and

performance o1'the resuìting circuit. Since over half of the die area can be

occupied by interconnections, and since the cost and perfonmance 0f the

circuit reìy heavìly 0n the die size and the interconnection ìength, an

eff ìcient router is crìtical to the success of the circuit.

l'1any routing aìgorìthms have been deveìoped for VLSI layout designs.

l'laze-running and line-search algorithms have been wideìy used in ìayout

desìgn systems, particularly in printed circuit boards (PCBs) design

workstations. Their populanity can be attributed to their generality and their

ability to find the optimaì interconnection path if such a path exists. These

aìgorithms, however, are not suitabìe for LSI and VLSI ìayout designs. They

are not only inefficient in both space and time, but their inherent sequential

nature of routing one net at a time may aìso resuìt ìn undesìrabìe routing

patterns or excessive overflows. Due to the regular shapes of moduìes used

in VLSI layout designs, particularly in gate aîray and standard celì designs,

channel routing algorithms are much preferred.

A number of channel routing aìgorithms have been deveìoped since the

channel routing concept was introduced by Hashimoto and Stevens [HAS7l].

To cope with the comp'lexity of the channeì routing problem, whìch is

NP-complete, practicaì aìgorithms must empìoy heuristics. The heuristics

are embedded in a mathematical model of the routing process. Such models

t65

include graphs [Y0SB2] and probabiìistic hill climbing [ROH84]. The

graph-based model has been selected because of its reìative simplicity and

fairly accurate representation of the routing process. An attempt has been

made in this thesis to develop a heunistic channel routing algorithm based on

the graph model. The algorithm was aimed at the routing of a general class of

channels that frequently arises in gate arnay, standard cell, and building block

layout designs.

As demonstrated in the previous chapters, this thesìs has contributed

to generaì and technical knowìedge by achievìng the foìlowìng nesults:

1. studied the vLSl layout design problem, in particular, the vLSl channel

routing problem and channel routing algorithms.

Deveìoped a non-dogleg channel routing aìgorithm that is capabìe of

finding near optimal solution for a generaì cìass of channels that

arises very often in gate array, standard ceì1, and buiìding block layout

designs. The algorithm is applìcable to channeìs with order^ing above or

below density. The heuristic used is fìexible and allow different

routing criteria to be incorporated.

Developed a dogleg channel routing aìgorithm that is capable of routing

regular channeìs at or near density using dogìegs. The dogìeg channeì

routìng algorithm is also capabìe of routing channeìs with a class of

vertical constraint loops that would be unroutable without doglegs.

The performance of both channel routing algorithms have been

demonstrated through f ourteen exampìes obtained f rom previously

published papers. The algorithms have been found to be better than or

3.

164

comparabìe with most published channel routing aìgorithms. lt has

thus demonstrated that the concept of a graph based heunistic channel

routing algorìthm can be used efficiently ìn solving the NP-compìete

VLSI channel routing problem.

5. The experimental results have shown that dogleg routing is not

universally better than non-dogleg routing. The pencentage of examples

routed in their minimum theorelical channel treigtrl \/5%) is Lhe same

with and without doglegs. l"1oreover, for those examples that did not

reach mìnimum channel heìght without doglegs, only those containing

severe verticaì constraints are routed in smaììer channel heights with

the use of doglegs. Therefore, whenever possÍble non-dogleg nouting

should be used because: (i) tt is simpler and requires shonter running

time than dogleg routing, and (ii) it may produces realizations that are

electrically superior to those produced with dogleg routing.

ïhe research done and the conclusions dnawn fnom it are important to

the theory and practice of CAD/CAE of VLSI ìayout designs. Thnough the study

and research, our understanding of the channel routing problem has increased

considerabìy. llany other important questÍons have been discovered through

out the course of the research, the following ar'eas ane recommended to

improve the research perfonmed and presented in this thesis:

l. Other routing critenia such as minimum number of vias and minimum

wire lengths could be incorporated into the heuristic to produce better

routìng patterns. Adaptìve heuristic techniques should be used to

reduce the sensitivity of the algorithm to channeì characteristics.

165

2. With a given routing atea, the more evenìy the wires are dìstnibuted the

more clearance the wires wouìd have. Thus, the routing algorithms

could be modified to produce more evenly distributed routing patterns.

This may be achieved by routing from both the top and the bottom of the

channel at the same time.

Aìthough the number of vìas should be kept to the minimum, the dogìeg

channel routing aìgorithm could be modified to allow doglegging at

non-terminal positions in cases where minimum routing area is the

m¡Ín objecf Íve.

The dogleg t:ltarrrreì routirrg algorithm should be modified to handÌe other

types of verticaì constraint loops. This probìem can be partially solved

by aìlowing doglegs at non-terminal positions. However, a more robust

approach would be to f ind the constraint ìoops in the verticaì

constraint graph and develop an aìgorithm to break the ìoops. The cycle

breaking algorithm should also try to keep the ìengths of the resulting

constraint chains to the minimum.

The channeì routing algorithms can now handle channels with reguìar

shapes onìy. However, the possibilìty of applying the concept of a

graph based heuristic aìgorìthm to general routing areas such as

switchboxes should be investigated.

The algorithms are now limited to two routing layers and the wire

traces on a layer are allowed to run in only one of two perpendicuìar

directions, The possìbiìity of extending the algorithms to alìow three

0r m0re routing ìayers and relaxing the restriction on wiring directions

should be investigated.

5

t66

IAHO83]

IAKE67]

IANDB5]

IBRE76]

[tsRE80]

IBRTBs]

I8UR85]

ltsURB6]

ICHAE6]

[CHEB6]

RFFFRFruCFs

A. V. Aho, J. E. Hopcroft and J. D. Ulìman, Data Structures and
Algorithms. Readlng, llassacnusetts: Addlson-Wesìey, I 983.

S. B. Aker, "A modìfication of Lee's path connectìon algorithm,"
IEEE Transactions on Eìectronic Comoutens, vol. EC- 16, January,
ir967, pp.97-98.

H. Andou, l. Yamamoto, Y. Koìl<e, K. Shoujì and K. Hirakawa,
"Automatic Routing Aìgorìthm for VLS|," 22nd Design Automation
Conference. 1985, pp. 785-788.

t1. A. Breuer, Design Automation of Dìgital Systems. Theony and

Technioues, voì. l. New York: Prentice-Haìì, 1976.

11. A. Breuer and K. Shamsa, "A hardware router," Journaì of Digital
Systems, vol. 4, n0. 4, Computer Scìence Press, 1980, pp. 393-408.

11. A. Breuer and A. Kumar, "A methodology for custom VLSI layout,"
IEEE Transactions on Systems. l1an. and Cybernetics, v0ì. 5l1C-13,
n0. 4, July/August 1983, pp. 470-475.

11. Burstein and N. N. Youssef, "Timing influenced layout design,"
22nd Design Automation Conference, 1985, pp. lZ4-130.

f'1. tsurstein, "Channeì routìn9," in Layout Design and Verif ication,
Advances in CAD for VLSI, vol. 4, ed. T. Ohtsuki. New york:

North-Holland, 1986. pp. 133-168.

K. C. Chang and H. C. Du, "A pneprocessor for the via minimization
problem," 23rd Design Automation Conf erence. I 986, pp.70Z-707.

H. H. Chen and E. 5. Kuh, "6ìitter: A gridìess variable-width channeì
router," IEEE Transactions on Comouter-Aided Desìgn. vol. CAD-S,
no. 4, October I 986.

5. Chowdhury and 11. A. Bneuer, "The construction of minimal area
power and ground nets for VLSI circuits," 22nd Design Automation

[CHOE5]

167

Conference. I 985, pp. 794-797.

[DEU76] D. N. Deutsch, "A dogleg channel router," lSth Design Automation
Conference, I 976, pp. 425-433.

[F0575] J. Foster, "Prerouting analysis pr'ograms," lZth Design Automation
Conference, I 975, pp. 306-3 I 0.

[GAt18l] A. 6amal and 7. Syed, "A stochastic model for interconnections in
custom integrated circuits," IEEE Transactions on Circuits and
Systems, vol. CAS-28, September 1981, pp. 888-894.

[GAR79] 11. R. Garey and D. 5. Johnson, Computers and intractability: A Guide
to the Theroy of NP-Comoleteness. Znd ed. San Francisco, CA: W. H.

Fneeman, 1979.

[6EY7l] J. 6eyer, "Connectìon routing aìgorìthm for printed circuit boards,"
IEEE Transactions on Cìrcuit Theory, voì. CT-lB, January 1971, pp.

95- I 00.

[60T86] 5. toto and T. l'latsuda, "Partitioning, assignment and pìacement,"
in Layout Design and Verification, Advances in CAD for VLSI, vol.
4, ed. T.0htsukì. New York: North-Holland, 1986. pp.55-98.

[HAl'184] 6. T. Hamachi and J. K. Ousterhout, "A switchbox router with
obstacìe avoidance,' 2lst Design Automation Conference, 1984, pp.

173-179.

[HAN66] [1. Hanan, "0n Steìner's problem with rectiììnear distance," SlAll
Journaì of Applied llathematics, 14, ['1arch 1966, pp. 255-265.

[HAN72] I'1. Hanan and J. l'1. Kurtzberg, "Pìacement techniques," ìn Design
Automation of Digital Systems: Theory and Technioues, vol. l, ed.
F1. A Breuer. New York: Prentice-Hall, 1972. pp. 213-ZBZ.

[HARB2] N. Harada, "A new average interconnection length prediction
method for mastersìice LSl," IEEE lnternational Symposium on
Circuits and Systerns, vol. 3, 1982, pp. 760-76i.

[HAS7I] A. Hashimoto and J. Stevens, "Wire routing by optimal channeì
assignment within large apertures," Bth Design Automation

r68

Workshop, 1972, pp. I 5- I 69.

IHASB2] J. E. Hassett, "Automated layout in ASHLAR: an appnoach to the
problem of 'general cell' layout for VLSl," lgth Design Automation
Conference, I 982, pp. 777-784.

IHAYBJJ F. Hayes-Roth, D. A. Waterman and D. B. Lenat, Building Expert
Systems. New York: Addison-Wesley, lgBJ. pp. 169.

IHELTTJ W. R. Heller, W. F. tlikhail and W. E. Donath, "Prediction of wiring
spacc rcquircmcnts for LSl,' l$!JlDcsign Autornation Confercnce-
1977, pp. 32-42.

IHEYBO] W. Heyns, W. Sansen, and H. Beke, "A line-expansìon aìgorithnr for
the general routing problem wìth a guaranteed soìutì0n," lTth
Design Automation Conference, I 980, pp. 243-249.

[H|CB3] P. J. Hìcks, ed., Semi-Custom lC Design and VLSI. London, UK:

Peter Peregrinus, I 983.

[Hl669] D. W. Hightower, "A solutìon to the ìine-routing probìems on the
continuous plane," 6th Design Automation Conference, 1969, pp.

1-24.

[H0E76] J. Hoeì, "Some variations of Lee's aìgorìthm," lEtE Transactions on
Computers, voì. C-25, January 1976, pp. 19-24.

IH0RBI] C. S. Horng & t1. Lie, "An automatic/interactìve layout planning
system for arbitrarìly-sized rectangular building blocks," lBth
Design Automation Conference, I 981, pp. 293-300.

UO085l R. Joobbani and D. Siewiorek, "WEAVER: a knowìedge-based routing
expert," 22nd Design Automation Conference, 1985, pp.266-272.

U05851 R. L. Joseph, "An expert systems approach to compìeting partiaììy
routed printed circuìt boards," 22nd Desion Automation
Conference, 1985, pp. 523-528.

[KA^J83] Y. Kajitanì, "Order of channeì for safe routìng and optimaì
compaction of routing area," IEEE Transactions on Comnuter-Aided
Design, vol. CAD-2, no.4,October 1983, pp.29i-i00.

169

IKAT85]

IKER73]

[KINBS]

lKlN86al

lKrNB6bl

lKlNB6cl

lKtNs6dl

lKlNs6el

lKrNETl

F. Kato and H. Shiraishi, "Efficient compactìon technique for LSI
layout," IEEE lnternationaì Conference on Comnuter Design, lgBS,
pp.646-649.

B. W. Kernighan, D. 6. Schweikert and 6. Persky, "An optimum
channeì-routing aìgorihtm for polyceìì ìayouts of integrated
circuits," lOth Design Automation Conference. 1973, pp.50-59.

W. Kinsner, Computer-Aided Engineering of Printed Cìrcuit Boards,
Course notes, l'1ìcroeìectronics Centre and University of l"lanitoba,
Winnipeg, l-lanitoba, Canada, July I 985, 300pp.

W. Kinsner, Computer-Aided Engineering of Eìectronic Circuits: An
lntroduction, MCB6-2, Plicroelectronìcs Centre and University of
Ilanitoba, Winnipeg, l'lanitoba, Canada, October 5, 1986, B2pp.

W. Kinsner and X. Kong, Schematìc Capture, Pìacement and Routing
of PCBs and SFIBs: Examples, I'4C86- I , l'licroelectronics Centre and
University of Manitoba, Winnipeg, llanitoba, Canada, August 20,
l986,80pp

W. Kinsner, Design Considenations in PCBs and Sl'18s, l1CB6-4,
Flicroeìectronics Centre and University of l'lanitoba, Winnipeg,
Manitoba, Canada, October 3, I 986, 66pp.

W. Kinsner and X. Kong, Geometry Extraction of Placed Nets and
Routed Wires in PCBs and Sl'18s, l*1C86-3, llicroelectronics Centre
and Unìversity of llanitoba, Winnipeg, l'lanitoba, Canada, September
4, 1986,44pp.

W. Kinsner, Semicustom lntegrated Circuit Design, Course notes,
l'licroelectronics Centre and University of Flanitoba, Winnipeg,
llanitoba, Canada, December, I 986.

W. Kinsner, "Soìution to NP-compìete probìems in VLSI placement
and routing," Mìconex Processings, lgB7, l0 pp

S. Kìrkpatrìck, C. D. 6elatt, Jr. and l'1. P. Vecchi, "Optimìzation by
Simulated Annealing," 5cience,vo1.220, n0.4598, lJ tlay lgBJ, pp.

67 I -680.

[KIR83]

170

IKONB6]

IKORB2]

IKUHB6]

ILAPBO]

[LEE6I]

lLt83l

tLrB4l

[LIAB3]

[1007e]

ILOSBO]

X. Kong, A Study of Routing Algorìthms for Printed Circuit Boards
and VLSI, l'1. 5c. Thesìs, University of l'1anìtoba, Winnìpeg,
I'lanitoba, Canada, I 986.

R. Korn, "An eff ìcìent variabìe-cost maze router," lgth Desìon
Automation Conference. 1982, pp. 425-431.

E. S. Kuh and 11. l'1arek-Sadowska, "6lobal routing," in Layout Design
and Verification. Advances'in CAD for VLSI, v0ì.4, ed. T.Ohtsukì.
New York: North-Holìand, 1986. pp. 169-l98

A. S. LaPaugh, "Algorìthms f or ìntegrated cìrcuìt ìayout: an
analytic approach," Technicaì Report l'1lT-LCS-TR-248, Ph, D.

Thesis, Dept. of tìectrical Engìneering and Computer Science, [11T,

Cambridge, l'14, 1980.

C. Y. Lee, "An algorìthm for path connections and its appìication,"
IRE Transaction on Electronic Computers, vol. EC-10, 1961, pp.

346-365

J. Li, "Aìgorithms for gate matrix layout," ltEE lnternational
Symposium on Circuìts and Systems, 1983, vol. 3, pp. l0l3- 1016.

J. T. Li, C. K. Cheng, l-1. Turner, t. 5. Kuh and M. llarek-Sadowska,
'Automatic layout of gate arrays," lEEt Custom lntegrated Cìr-cuits
Conference, 1984, pp. 518-521.

Y. Z. Liao and C. K. Wong, "An algorithm to compact a VLSI symboìic
layout wìth mixed constraints," 20th Design Automation
Conference. 1983, pp. 107-l 1 l.

K. J. Loosemore, "Automated layout of integrated circuits," IEEE

international Symoosìum on Circuits and Systems, lg7g, pp

665-668.

P. Losleben, "Computer aided design for VLSl," in Very Large Scale
lntegration: VLSI. ed. D. F. Barde. Berììn: Springer-Verlag, 1980.

lntroduction to Aoplication Specific lntegrated Circuits. Canada:

LSI Logìc Corporation of Canada,lnc., 1986.

171

ILSI86]

ILUDBSI J. A. Ludwig, P. Lowy and R. H. llccìug, "A hierachicaì approach to
VLSI chip design and verification," lnternationaì Symposium on
Circuits and Systems, vol. l, 1983, pp. l6- 19.

[¡'14T72] R. L. Mattison, "A hìgh quaìity, low cost router for l'10s/Lsl," gth
Design Automation Wonkshop, 1972,pp. 94- I 03.

h1EA80l C. l-{ead and L. Conway, lntroduction to VLSI Systems. Reading, tlA:
Addison-Wesìey, 1980.

[1-1EN84] IDEA System User's llanual. U.S.A.: llentor Graphics Corporatìon,
I 984.

[l'1lTB4] K. l'1ìtsumoto, H. llori, T. Fujita and s.6oto, "Al approach to vLSl
routing problem," IEEE lnternationaì Symposium on Circuits and
Systems." 1984, pp. 449-452.

[HLY86] D. A. I'llynski and c. H. sung, "Layout compaction" in Layout Design
and Verification, Advances in CAD for VLSI, vol. 4, ed. T. Ohtsukì.
New York: North-Holland, 1986. pp. 199-2j6.

[l'10059] E. F. Þ1oore, "The shortest path through a maze," Annaìs of the
Havard Computation Laboratory, vo'|.30, pt. ll, lg5g, pp. l85-292.

[NAKB3] K. Nakajima and l'1. Sun, "On gr-aph theorotìc modeìs for the circuit
layout probìem," IEEE lnternational Symposium on Circuits and
Systems, 1983, vol. 3, pp. l0ZZ- 1025.

IOHT86] T. Ohtsukì, "l'laze-running and line-search aìgorithm," in Layout
Desìgn and Verìfication. Advances in CAD for VLSI, v0ì.4, ed. T.
0htsukì. New York: North-Holland, l986. pp.99-132.

IPAPB2] C. H. Papadimetriou and K. Steigìitz, Combìnatoriaì Ootimization:
Algorithms and complexìty. ch. 15. Englewood clìffs, New york:

Prentice Halì, 1982. 496pp.

[P0186] J. Poìtz and A. Wexìer, "Transmission line analysis of PC boards,"
VLSI System Design, May 1986, pp. 38-4i.

tREEssl J. Reed, A. sangiovaÅnì-vincentelli and l'1. santomauro, "A new

172

symboìic channel router: YACRZ," IEEE Transactions on
Computer-Aìded Design, voì. CAD-4, n0. J, July 1985, pp. 208-219.

[RlC80] R. Rice, VLSI: The Coming Revolution in Applications and Design.
New York: IEEE Computer Society, 1980.

[RlCB4] D. Richards, "Compìexity of sìngìe-ìayer routìng," lEEt Transaction
on Computers, voì. c-33, l'larch 1984, pp. 286-288.

[RlV82] R. L. Rivest and C. l'1. Fiduccia. "A greedy channel router," lgth
Design Automation Conference. 1982, pp. 418-424.

[R0l'184] F. Romeo and A. Sangìovanni-Vincenteìli, "Probabiìistic hiìl
climbing algorithms: Propertìes and applications," in 1985 Chapel
Hilì Conference on VLSI, ed. F. Fuchs. Chappeì Hill: Computer
Science Press, I 985.

[Rtlll74] F. Rtrhin, "The lee path connectìon algorìthm," IFFF Transactions on
Computers, voì. C-23, September l9 /4, pp.907-914.

[54N84] A. Sangìovanni-Vincentelli, "A new gridless channel router: Yet
Another Channel Router the Second (YACR-ll)", IEEE lnternationaì
Conference on Computer-Aided Design, 1984, pp.72-75.

[5A586] S. Sastry and A. C. Parker, "stochastic models for wireabiìity
anaìysis of gate arrays," IEEE Transactions on Computer-Aided
Design, vol. CAD-S, no. 1, January 1 986.

ISATBSl S. Satry and A. Parker, "The complexìty of Two-Dìmensionaì
Compaction of VLSI Layout," Proc. IEEE lntrnationaì Conference on
Circuit Theory and Desìgn. I 983, pp. 263-265.

[SCHBSa] I'1. Schìag, Y. Z. Liao and C. K. Wong, "An algorithm for optìmal
two-dimensìonal compaction of VLSI ìayouts," INTEGRATI0N. VLSI
Journal l, I 983, pp. I 79-209.

[SCH83b] W. L. Schieìe, "lmproved compaction by minìmized length of wìres,"
20th Design Automation Conference. 1983, pp, l2l-125.

[SEC84] C, Sechen and A. Sangiovanni-Vancentelìi, "The TimberWoìf
Placement and Routing Package," IEEE Custom lntegrated Circuits

173

Conference. I 984, pp. 5ZZ-527.

lsHl861 11. T. shing and T. c. Hu, "computational complexity of layout
problems," in Layout Design and Verif ication, Advances in CAD for
VLSI, vol. 4, ed. T. 0htsuki. New york: North-Holland, l9g6. pp
267 -294.

[5073] H. C. So, "Pin assignment of cìrcuìt cards and the routabiìity of
muìtilayer printed circuit wiring backplanes," lOth Desiqn
Automation Conference, 1973, pp. i3-4j.

[S0U7B] J. Soukup, "Fast maze router," lSth Design Automation Conference,
I 978, pp. I 00- 1 02.

[50U79] J. Soukup, "6ìobaì router," l6th Design Automation Conference,
1979, pp. 484-484.

[s0u8 I] J. Soukup, "circuit layout," Proceedings of rEEE, vor. 69, pp.

l2B1-l 304, Octoben 1 981.

[SZE86] A. A. Szepìeniec, "lntegrated pìacement/routing ìn sìiced ìayouts,"
23rd Design Automation Conference, l986, pp. j00-j07.

lszYsz] T. 6. szymanski, 'Dogìeg channel routing is Np-compìete,"
unpubìished manuscript, Belì Laboratories, l'lurray Hiìì, 1982.

[TADB0] F. Tada, K. Yoshìmura, T. Kagata, and r. shirakawa, "A fast maze
router with iteratìve use of variabìe search space restriction,"
lTth Design Automation Conference, lgB0, pp. 250-254.

[TAYB4] 5. Taylor, "symbolic layout," VLSI Design Journaì, l'1arch 1984, pp.

34-42.

[TER85] H. Terai, l"l. Hayase and T. Kozawa, "A routing procedure for mixed
array of custom macros and standard celìs," 22nd Desìgn
Automation Conference, I 995, pp. 50J-508.

ITSKBTa] C. L. Tse and W. Kinsner, "A graph based heuristic channeì router."
Submitted for publìcation, August lgB7.

[TSK87b] C. L. Tse and W. Kinsner, "A graph based heuristic channeì router

174

IUED86]

IWEXB5]

IYOSB2]

IYOSB4]

IYOSB6]

wìth doglegs.' Submitted for pubìication, August 1987.

K. Ueda, R. Kasai and T. Sudo, "Layout strategy, standardization, and
CAD tooìs,' ìn Layout Design and Verification, Advances ìn CAD for
VLSI, vol. 4, ed. T. Ohtsuki. New York: North-Holìand, 1986. pp

I -54,

A. Wexìer, "6etting a handle on impedance, cross-taìk, time deìay,
and ringing," Printed Circuit Design, December 1985, pp. l4- 17.

T. Yoshimura and E. S. Kuh, "Efficient algorithms for channel
routing,' IEEE Transactions on CAD of lntegrated Circuits and
Systems. V. CAD-1, l, 1982, pp.25-35,

T. Yoshimura, "An eff icient channeì router," 2lst Design
Automation Conference, I 984, pp. 38- 44.

K. Yoshida, "Layout verification" in Layout Design and Verification,
Advances in CAD for VLSI, voì. 4, ed. T. Ohtsukì. New York:
North-Holland, I 986. pp. 237-267.

175

ÅppF8dmåx A

ffiffiffi1Effi R#LfTER PRffi6RAru STRUCTIJRE

ETT¡F'
tJt t€¡rtç
AM'LG ?

FtrtlutlEF g
å mr¡.rsr
A¡rlænc m-rrrn

$ f *t,",

Fig.41. Structure of the main program.

þrf tÊrfigÇ
nrr è $** Erilsl Onlr + f,*,",

ETTIST
ttÉÉi{lg
ruf,fæ f

rtrHr¡cg t
¿ Nfltlsf
I wtte*rsu tær¡ttE

Fig. 42. Structure of the Filer sectì0n

ænrsrf, f,*'tt cn rsr$ Í*-*r,
ETusrO
rmn¡m t f,*r.'.t

f,ITLTST O
msrrv {

t srursr
$orsurce

IffUËI
",,r#,* I f,*..'"' lErr 0

Er2¿ f,orsrrrce

rrus,$ å** ts*Æt{l

***l1 *o*rl åt*^"t

ffi.,,

'AT}[E
I

s¡rr f å*-*,,

Fig.43. Structure of the Dogìegger secti0n.

TE6EHD:

Access call

o-.+ Data coupling

TIAfH PROGRAH

DO6LEG.C

NOf'I-DOôLTG ROTJTER

176

n**.,1

ttß€rFll å'**t vûRáF,1 å*-*" ø.urstt

vsnAPlr Iwr-wrl 1m*tô
vffiÁFfi ê
wr-xø$

m:dnï

Fig. 44. Structure of the Non-Dogleg router sectì0n.

+üÆf,-fiAr-
$ ono-u*r t*t.,.tt I ¡ænen-lsr-

I cruoroeres
t{lTtER--ffT--.t
clmrorræ d

0 cúf,f-
$norre*-rer

ngrÆR-JEr-8
c¿rpro¡r¡s l f,

,'tt

ñqfl{ß.-Ef-ç
lå¡ÐrDA7rç t

fnax-nurmmrr- BsÌtcFrFr-cå¡ÐrDATte
ô ttrçrn iúEtcr{ls + $ o,mnt

Fig. 44. Structure of the llother net selection process.

å**t*t -,*A"ril S rs.ç¡
år¡¡-sE

i€rilsf -
vs*¡nr Y
orsr¡rw 0

åru*#ft

ASS I GN--t'¡ETS-TO-TR.ACK

HOTHER NEÏ
SELECTI0'l

FIND-}lOTHERNET-
CANDIDATTS

CALC-llOTHER_
CANDIDAÏE5

NETJR.IORITY

t77

&ETLIfiT Õ
orsrÁ€E + In^ow'rs m*nrrs$ f,oo'n*tt

f@TtEn_ErQ
REÁ8Y8€rs +

ne¿onsrs9
+

l neosrnsr.ô m¡rruns?t ["*r*.

f nax- nraonersg
ô DrFrAffiE f å"ffi triffil f, *'*'"

Fig, 46. Structure 0f the Ready net selection process.

tr"'-,rr$ 11Ë81 ,n

ôt* rEsr-s€r; î*t-ot .,r",--*r9
ot

IIAL
sff

Ì€tH5r
hsTrER-rEr Y

n¡rr¡sr-srr t f,
*r.,sr

frssr_r.r rrsr-srt Çô nreonm t
ô TnrÆ/

$r¿¡-sr

tlg, 47, Structure of the subset selecti0n pnocess.

{ nar
óresrssr

RÉAOTTETS

mñeP-J€r
DISTâ¡EE

PRIF{Ï-HEADER
PRINÏ-UÆI6HT5
PRINT-.T.IETLIST
PRINÏ-DENSITY
PRIHT-V6RAPH

PRINÏ-RFADYNETS
PRINÏ_TE5TSET5
PRII{T-TESTSET

PRINT-NFT
PRINIjENSITY
PRINTJTATISTICS

PRINÏ-CO{-UI'INIABEL
PR I N T-}lOTHERNE T-CAND I D A TE5

Fig. AB. List of diagnostic and messaging procedures.

READY NET

SELECÏIC${

NEÏ-FF.IORITY

SELECT SUBSET

frr,,_o, rrsr-sgr g
O nmvrrs{

TEST-SgT
RtA¡)Vt€f1r

FIND-fiAX_
TESTSET

ccs,¡FLlcT

DIAONO6TIC AND IlE55A6INO

lTtt

APPFruMåX M

MffiLFffi Cå-åAruNdFL RTUTFR PRÛffiRAffi å.å5Tåruü

/* hlq tbtoilad CtæN¡al Ra.¡tæ È|# Fila: @tq.h */
* def ine ffrXlFf
æ defir¡e ffrftEH{
æ def ir¡e lfrXl€lH{f* def iræ tnXUlH
e &fire bRrulESTÆl'

æ defiræ Eü€I
s &flre lfrËLEt*BTHI &f iræ IfiXSETSIZE

s &firË ffiStx)
s def ine SlGtt(x)
e rþf lr¡e lfiX(o,b)
a &f im lllN(o,b)

s def ire LEFT(u)
c define FlGtlT(o)
rc thf ire LETSTH(o)
* def ire fHÍXa)
s def ine PffiHT(a)

tgp+f
t
int

stnæt tes sinol-stnet

ru-eÞ;
'*¡ext;

mms
to
5

s
3A
Ð

strr.æt tera i rm I -stn lct
Ì Teneirut;

tffif stn^et wÉ-stnæt
{
stn¡ct wode-stnçet
int
) wroae;

tg*f stnæt æt--stnæt
t
Ts'ainol
int
thúe
int
int
) rct;

(((x)<0)?-(x): (x))
(((x)<0)?(-l):(l))
(((u)<(b))?(b): (o))
(((o)<(b))?(o): (b))

(r¡etl istt(oll. left)
(r¡et I i st t (o)l . r i ght)
(FlGlIT(oH-EFT(o))
(ret I istl(a)l . ord-n¡n)
(r¡et I istl (o)I .pæent)

*rext;
æt-"næ;

*f irst-tw,
left, night;
*f irst-sor¡;
ot{-Jx"e;
pæent;

+lost-tea;

tr4#f stnÆt cøÉ i dote--stn¡ct
{

179

int
int
int
I æøiøte;

tg#f stnæt tætset-strræt
{
int
int
int
) Tætset;

ret;
pnieitg;
egne€;

elæes¡tt ¡@XgTSlæ ¡'
size;
piæitg;

Het
int

Cødi&te
Csrd i&te
Testset

int
int

int
int

int
int
int
int

int
int
int
int
int

l* cfwsel stotistics */
int
int
int
int

/* æi$ttirq fæiæs *l
int
int
int
int
int

l* glcÉøl f i le ræs d
cfw
ch*r
úæ
chæ
clw

netl istt mxl€t I;
ossigrwrtt tHXlElEtlT I;

ætleræt-cørdi&test lSXl€T I ;
ne@*retst ÌfiIlET l;
testsett R*LIEST-SEÎ I;

tuis¡tgt ISXïEFIi l;
tçqÈìt lflXtËt ltrflXl€t l;

totr¡l-¡nç-tera = 0;
initiol-ntm-ret;

totol-ne-net = {l;
totol-nn-@lq = 0;
tn to I -rr.a_aotlmnet-.csd i do tes ;
to to I -rx^ø-reoú¡re ts ;

crJrr-mLs.dJT.æ;
cr^m-rctls-.ret;
w-ætl€rnet-lørgth;
MLr4ósl€t-lryth;
*d-den-rotio;

sø<-.&tsitg = 0;
ffi-(ndJu,& = 0;
mLd¡støc€;
e@Ltera = 0;

æther-øeight;
or#rirq-Eeight;
lerqth--æight;
distæ-æight;
sónet--distwrce;

f i le pointæs */
*rptlist-f ilæ;
*¡sg-f ilanæe;
*se¡ght-f ileræ;
tery-f ¡ lsæl t I = --try-f i tet-;
tesp-f ¡ le*æ2f I = --tesp-f ile?" ;

t80

F¡LE
F¡LE
FII-E
FILE
FILE

*rætlist-f i le;
*lw*f i le;
øweiEht-f ile;
stry-f ilel;
øLrry.-f i leZ;

t8t

WI
l*
@r 8f,sd Fkeistic rqleg lþtsiled ü'w,w¡el Hq¡ten.
P

kJ Cfs.w€-Loi Tse
ft&l

t

l&

el
el
&l
*l

s inelrÆ {std¡o.h}
æ irclr.& '@lq.h'

@ain(æ qa,ø qu)
int
cfiø

{
f ilæ(ægc,ægv);
iniuqrìWh();
build-hgPçh();
@lqBert); /"
rffi-eqleglq¡ter();
close-fi les();

)

fw/
/* FILER */
/{oþþk{aa**/

f iler(tngc, ægv)
int
chæ

{
init-f i les(ægc,æ^gv
pint-uersiwr();

set--æights();
print--neights();

rd-¡ætlist();
print-netl ist(' lrp¡¡t

l

init-f iles(ægc,øgv
int
eh@

ægÊ;
"tøgvll;

r\eea{Je fæ rel-@leg ro.ltirq *¡

@^gc;
*ta wt I;

');

ægc;
*ægvt I;

rH# of øgrærts.\n-);
8s r¡etlist øeight-s logf ileþ',øgvt0l

);

{
if (æEc (4)

{
pintf('Èhsq
pnintf('LSe:
exi t();
)

);

182

retlist-filsæ = crgr,¡f Il;
if ((retlist-file - fryr(ruetlist-filel'ræ,'r')): t€,.H_L)

I
pintf('\r€rron: cømt ryvr netlist file Ks.\n',reilist_filetæ);
exit();
)

wiEht-f ilmæ = æ!Êrtzt;
if (_ (æight-file = fryr(@idìt-f¡leræ,'r')) : l{-H_L)

{
pintf(-\rÊømt oFr æ¡srtirq fætors f lte 8s.\n',æight_flteæ);
exit();
)

log fileæ = øgn¿t3l;
¡f ((lq-file = fryr(l4-fitæ,'@")): tq.q_L)

t
pintf('\Ér.ror: cøvrot open log file Ss.\n',log,filenæe);
exi t();
I

try-filet = foper¡(tq-f ileræ|,"e')j
- tery-f ile2 = fopsr(try-filerce2,"@");
)

set-æights()
t

fscørf(æight-f i le, "sHd sHd $wd sHd sHd-,¬hen-eeight,
eorÈ I rq-ne i ght, & I *lg th-æ ¡ gñ t, &tt i s twe-æ i Eht, &sr^tue t-tt i s i.æce) ;l-

red-retl ist()
{

int c, left, right, ts&, vtrd,;
Tæaituf *terainol ;ì*et *net;

f* skip uræ ê@nts in tÌ¡e ræt list file &lieited ÈËJ $ */drile((c=getc(netlist-f ile)) != EF g& c!='$')
p,rtc(c, !og-f ile);

/* rd rH^@ of teraimls */
fsørf(tætl ist-f ile, -Sd',&totol-m^æ-tæm);

totol-rx^ø-¡æt = 0;
æt = retlist;
drile (fscø¡f(retlist-f ile,'Sd',&tw) != E{F)

t
left = tera;
total-nø-net ++;
ret ++;
ret->f ir=t-te*.a - net->læt_tw - t{.$_L;
æt->pev = ¡pf-)¡¿¡çt = 0;

t83

@
{
tswirpl - (Teøinul *Þûl læ(si¿æf(Twaiml));
twirul->ru.@ = ter6¡
irst-ts.airul (æt, tæøirnl);
night = tera;
fsemf(r¡etl ist-f i le,'8d',&tenø);
l *¡¡te (tæø != E$ET);

rËt->left = ffiS(left);
æt->ri$rt = m(right);
)

ini t iol --wæ-ret = toto l -ru.æ-ret;

close-fi les()
{

int

/ffis/
/* r€$ tr69¡ */
/Tqffi}{***+/

@leqgÊrt)
{

f ird-tursitg();

init-Wrd¡();
b,ri lùugnoph();
pint-ugrcpfi('tbigiml -);
or#--rets();
print-vgPçh('(Hered -);
@lete-vgrçh();

@ lq--retst);

c;

tq-f i lel * freoperr(tery-f i lenæel, "r", tq-f i lel);
ñile(tc=getc(tW-filel)) != EF)

prtc(c,log-f ile);
fcle(te4-f ilel);
w¡lird<(try-f ilwlel);

fprintf(log-f i le, -\n\n');
tÈaf-f ¡le2 = freær(teafr-f ileæ2,'r-,try-f ile2);
d¡ile((c=getc(tery-f ¡lez)) != E0F)

g¡tc(c, log f ile);
fclose(try-f ile2);
mlir*.(tq-f ilemeZ);

fpnintf(log-f ile,'\n\n');
fclose(æight-f ile);
fclose(retl ist-f i le);
fcloEe(lon f ile);

t84

f lrd-rÞsltg();
ryint-rætlist('r@lryd ');
p" i nt--cûens i tg();

@lq-rcts()
{

Tæiml ate¡ øinol r$reø-terøinol,aP"eu-tenaiml, eç¡¡tt-te'øiml ;tkt *lsstJæt, 4æI;
int i, j, lirst-g$*æt, ræt-rnæ;

initJtgref¡();
lost-net = ret¡¡st + totol-nm-net;
fæ (net=lost-ret,æt--ru.ætotal-næ-ret; tæt!=rptl ist; net-, ruet-ru.m-)

t
¡f (PffillT(ret-ru^æ) : O ll ret->first-wt : tf,..H-L)

curtiru.e;
first-s,fuet = totol-¡næ-ræt + l;
pr.r*t-traiml = æt->f irst-tæc;
ter.'ainoI = pner.r-tæai noI->next;
drile (ter.ainol != tæt->lost-tens)

t
¡f (&rE¡tgt ffi(terxirul->rx.eber) I < mudensitg &&

(pært-terainol->rx,M' tersinol->nÊxt->rxJeòer) < 0)
t
rp-terairpl = (Teraiml *}ælloc(sizæf(Terairnl));
rns-tera i m I ->rx.aber = tæo i no I ->ru.*s;
first-tereiml = læt-)f ¡pst-tse;
ræt->f inst-ter& = tæelnrl;
totol-rrie-ræt +r;
lost-ræt ++;
I ost-tæt-> f i rst-teø = I ost-r¡et-) I ast_tere = t{,&L;
last:ret->Feu = lost-ræt->ræxt = O;
ir¡sert-ternirsl (læt-r¡et, f ir:st-trairnl);
irst-ter¡ i ml (lost-ræt,tæa_te-a im I);
dens¡tgt ffi(tenairml->rx#) I ++;
fon (i=l; i<=totol-na-ræt; ¡++)

ls@¡ t toto l-næ-net I t i I = þn@r t i I ttoto l :u^øæt I = 0;
)

per;-tæaiml = teneirml ;
terøiræl = tæainol->ræxt;
l

fon (i=fir:st-s¡&ret; i<totol-næ--ræt; ¡++)
htrûFtrt¡¡t¡+II = hg¡ çhti+IItiI = eåræt--distome;

if (first--s.ùret != totol-n¡m-¡et+l)
tEñph t to to l -¡rus-ne t I Itæ t-rxs I = hry@ [r¡e tr¡{^@ I t tots I -¡{"ø-rË t IE s.ùrËt--distøce;

Ì

/* colcr¡lote left ød right sds of tl¡e rets s/
fs (ret=rËtlist+totol-nø-ræt; retl=ætlist; ret-)

{
nÊt->left = ËS(r¡et->f inst-tere->rx^aùen);
¡æt->r¡Eht = BS(r¡et->lost-tsr->rxæber);
)

185

P ølt:ttlate ruæþ^ of ptørtiol @]ry *l
toto ¡-mæ-@leg = totol --m.æ--ret - ini t i ol -ru.æ-net;

b.rildJçn@rt);

/
/S FffiIZOÐ{TR. TTBË'IEIB{T GffiI{ C{SËTH.ETIG,I */

r¡-R/

init-hg@r()
{

int i, J;

fø (i-l; ¡(4tìX€T' ¡++)
fæ (j=¡' ¡ç=ffiXlET; jon)

t€rçf¡tiltjl = }qr@rtjlt¡l = 0;
)

bui ldJç'Sr()
{

int i, j;

fon (i=l; i<=totol--rx.a-ræt; ¡*)
for (j=¡j j<*totol-nø-net; j++)

if{tql^4Èrt¡¡tjI:0)
hgrqht¡ttjl = tqr@rtjllil = distøee(i,j);

)

1
/* (TEHTICH_ C$FTm|NT 6æH CfFñ5TEÐT|${ s/

{o***{oloþlr*r¡(/

init-r4r@r()
{

int ¡r#x;
lÞt **gptj

fo* (ir&><=O,ret=ætlist; ¡r&x<fHXlET; ¡r&x+l,ret++)
t
ræt->f irstsr = l{,.E-L;
ræt-)pæstt = æt->ond-mæ = 0;
)

I

186

tui ld-tçn$r()
{

int terøinolsl4] lfffiXTERlI;
lnt fêtJu.@, tsø--ru.æ, s.à, vtræk, eold:et;
int i, j;
hkt *ret;
Twiml *tssiml;

fon (s.6=t; s,b<4; s¡"ù,f+)
fs (tera-¡x.æ=O; tæø-roæ(=totdl-J"æ-twe; tæø--ruæ++)

tenæinalsls"ôl ttera¡læI * 0;

fæ (ræt-mø=l,ræt=ætl ist+l; retsøt=totol-.m.ø-ret; ret-:u.wl-+,ræt++)
t
fq (teøiml=ret->f inst-te'e; teøiml!=Ìfl.H-L; te¡ aircl=twinol->r¡ext)

{
te'ø-¡næ = ffi(terainol->ru.M);
if (ts*-txæ >= I && tera-n¡e <= totol-rue-tera)

fon (s.ô=O; s&(4; s,ù++)
t
old-net = &(ts.airu I s ts-å I t tæa--ru.æl);
if(*oldJet:0)

t
o I d-¡et = (tæa i ru I ->rx,æùer<0)? -net-n¡ø : net-n*æ ;ffi<;
)

else if (sold*et) 0 S& terøirul->rx^# r 0)
i nsert-wæde(*o I dJæt, net--næ);

else if (*old-ræt r t! && tæairul->rx.ù > 0)
insert-w*(net--no,-(*o |d-ret));

)
)

l
l

insert-rmde(fotls,sm)
int fother, swr;

t
tlrìo& *neø-rrc&;
Þlet *fother-ræt;

fotle-ræt = retlist + fotlø;
rEsJ* = (t'lrrc& *)mlloc(siæf((M));
tægJ*->ræt-¡x.a = stilì;
if (fotfs-net->first-strr : l{.E-L)

t
fotfe-net-> f i nst-ssr = yew-rpde;
rìÊB-¡ode-)rot - l*.R-L;
)

else
t
rËeJ@-)rext = fotfe¡ -net->f irst--sm;
fothæ-ret->f irstsr = rw-rx]&;
Ì

((ret I i st.lss¡)->rcent) ++;
l

187

@/
/# IffiHH.EG FffiJTEH */wl
rw,¡-dogleg-rod¡te()
I

init-çryqf¡();
h¡ild-vgr@r();
f ird-wdsirq-ru6æs();
print-ugrdrt -tlogleqgd ');

æs i gn--nets-to-trock () ;
pr int--stot ist ics();

l

f ird-orkirq-rn#erst)
t

int nat-nnrn;

/* f ird thÊ æfuirE rxrabers */
ær-æd--n*s = 0;
for (net-næ=l; net-m.ø(=totalJT.e-net; mt-ruø++)

t
colc-.mþ irE-rx#(net-nnæ);
if (WXretJH^@) > øoled-nxu)

eûD<-ord-.ru^@ = OHl(r¡et-nræ);
)

)

colc--ü*der¡rqJn#(ret-rx.a)
int net--næ;

{
fþt *futl'Er. *son;
t,hode We;
fotler = netlist + ræt-nm;
if (fotls-)G-di.@ :0)

t
if (fqtlÊf,->f irst-sry¡ : lfl.E-L)

fotfs->ord-ruæ = l'
else

fæ (r¡od*=fstlw>f inst--son; rd€!=ffi.å-L; no&=node->next)
t
co le-æk irgJu.@b(rp'&->æt--n ø);
srt = rætlist + rp&-het-rx^m;
if (wr>ord-nn)= fotfe->ond-rxæ)

fotlnr->ord--ne = soæ>ord-mæ + l;
)

,
)

t88

oss i gn-rets-to-trd.()
I

int fudrrx@;

d-¡k¡-r.otio = (ættwæ¡Eht * w--w"d--mæ) /
pint-crlrør-ld€l (tq-f i lel);
pnint---colrøll&l(tq-f i le2);

trd'¡x.e = 0;
dtile (lru¡ll-gn@r{))

t
trd.-m.a +r'
fpintf(f{-fi le,'\nTræk &dþ-, træk-rnæ);

f i rd-crm--m'<-æd-rxra () ;

f i rd-aotlerne t-csd i dotæ ();
p i nt-mthernet--cw¡d i dotes();
select--mtle -æt();

f ird-rd3rets();
wk-red¡nets();
pint-reod¡æts();
selæt--s.d¡set();
)

fprintf(¡sg-file,'þTotol rxæùer of troclt r¡sed:
pnintf(- træks: S2d\n-,trock--nm);

)

m<-.&sitg;

Sd\n\n", trdcruæ);

w/
/* t€Tl€F lgr s€LEcTt$t */

f I rÉ-ætle'net-cæÉ i &tes ()
t

int net;

toto | -n a-aotlgr¡et-¿wd i ùtes = 0;
for (ræt=l; ræt<=tota!-ns-ræt; ret+r)

if ((ffi(æt) != 0 && PffiHT(ret) : 0)
sothei'iletld i dotes t toto I -nrø--mtfs ret-csd ¡ dotes++ I . ræt = net;

co I c-mti¡eræt-cs¡d i dstes-r i æ i tg();
)

co I c-eotÌ¡ertæt--ctsd i &tes-pr i æ i tg()
{

int i;
f i r¡d-muæ thernet--cw¡d i dote-l erqth();
fplntf(¡sg-f ile,-11æ< mtÌ¡err¡et lerqth:Sd Ík æærirE:Sd

sot-6r therræ t- I e*q th, cra r-aÐc¡rìd-Jì.@ ¡ rx.d-&r-¡o t i o) ;fm (i"û; i<totol-rlæ-ætferret-¿sdi&tes; ¡+l)
wtlsret-cørd i &tes t i I . p i ri tg

t89

(þdÆ}gr:Sd\n-,

= @tftr-Jet-g iaritg(ætfæret--cøÉi&test i I.ret);

f i rd-w-ætfønet-cø¡d i dote-l sq th()
{

lnt i;

ffi-ætherrùet-l angth = 0;
fæ (i=O; i(totol-næ--ætfwt¡et-eødi&tes; i#)

¡ f (LEh6Ïl{(mt}præt-¡wdi&test i I.net) > ffi-æt}Erret-lryth)
M-ætfsræt-l eçth = LEI6TH(æ tlerre t-cød i & tes t i I . re t) ;

)

int aot"l'srætgiæitg(øotlertæt)
int mthernet;

{
int piæitu;

pr i on i tg = (lû*lllËTH(eothrret))/eo<--ætlerret-l mgth +
(ord-cten-r-o t i o¡¡{ffi (m t}sr¡e t)) /ctrr--w-.sd-Ju^s ;

fp*"intf(log-fi le,-ltuther ret S-3d: lergth:S-3d æd:&-Zd priæitg:ß-3d\n-,
øotfeæ t, LEI6TH(m tfæret), ffi) (øotfwret), p i ø i tg) ;

retrrn priæiþ;
l

int select-wtle-ret()
t

int i;
int aanc-ætlsretgiritg;

eo<-mtfgn€t.f iæitg = -89S9;
for (i=O; l<totol¡r.æ-aotleret-cdl&tes; I+r)

if (notl¡erret-¡sdi&tesl ¡ I.piæitg > aælætltrret-Þriæitg)
t
m--ætls.rct+ i or i tU = mtter¡et-.cwd i &tes t i I . pr i æ i tg;
crm--mtlæræt = æthertæt-ørd i &tes t i I . tæt;
)

fprintf(log-f i le,'Fbtle ret selætd: Sd\n\n',cr^ãrr-mtfer--net);
l

190

/
/* EffirñËrrs sËLEcTlffi{ mfil ffixtÌ{s1 sEsET sELEcTtü,t */

/

f ind-rdSretst)
{

int @t, i;
totol-ru^wr#¡nets = 0;
fo* (ræt=l; ræt<=totol-ru-ø-ret; ræt+l)

if ({FlXret}!=O &-* PffiHT(ret}==O e& @rt¡ætllcrsr-æt]m-¡etl!4)
@retst totol--mø-reoú¡rvets# l.ret = net;

ca lc-r@nets-pr ioni tg();
l

calc-rd3retsgiæi tg()
{

int

f i rd-eæur@¡'e ts--m tluertæ t-d i s twae () ;
f i rd-w-reoù3net-l erqth();
fprintf(log-file,-lÈx r&nirq:Sd lkx reoú¡net lerqth:$d llox dist:Sdþ',

q¡¡ ¡ mæ* ervl nç,M_¡#Jrì€t_lqth,m<_distonce);
fon (i{; i<totol--rnør@pets; i++ }

rdgætst i I.p^ioritU = r¡et-riæitg(n@¡ætstil.ret);

f i rd--cr¡r-æx--d-rl-a ()
{

int ret;

ctÆr--EtnLædJüe = O;
for (¡æÍ=1; ret<=totol-nø-net; net+r)

if (OffiXret) r cm-soouæd-rx^er)
cls r--w-o{rd-Jt.e = fHD(ræt);

l

f ¡ rd-ao<-r@+Fe ts--m tlertæ t-d i s tørce ()
{

m<-distøtce = -SXEI!};
fæ (i=0; i<totol-næ-re@g¡ets; ¡+*)

i f { þr$rlcrm--æt}en-tretl fnead¡netst i l.netl > am<-distøre)
æ<-distøre = tqp @¡tcr.arr--aotfs-rætl tr@rretsf i I.ret!;

f ¡ rdæc-rd¡ret-l sqth ()
{

t;

int l;

l9t

int t;

@xreed¡net-l erqth = 0;
fæ (i4; i<totol-mærærfi¡æts; ¡#)

¡f (l-EÏ6THtr@¡etsf il.ret) > qæ¿ dJrþet-lægth)
t-løqth = LEI*GTH(r#¡retsl i I . ræt);

selæt-s.òset()
{

int &Ð(Æt, m-set-pioritg;int i, i;
/* clea oll sq.drseG to nul ! */
for (i=Ð; i<i{-Fi-IEST-SET; i++)

eaptgset(testset+i);

init-testsets();

/* elçryd s^ùsets */
fæ (i4; i(totol-rr.e-r.eodJræts; ¡+l)

fæ (j=Û; i(Iß31-TEST-SEI; i++ Iif (lcsrf I ict(testset+j,r#¡netst i I.ræt))
t¡dd_elesent(testset+i, i);

fpintf(læ file,-Erçørded g¡bsets:\n-);
pn int-testsets();

l* liø m<is¡ar test set */
æ<-set = 0;
aox-set-¡niæi tg = tætset tol .pior i tg;
fæ (j=l' j{|*R31-TESTJET; is)

if (testsettj I.prioritg ¡ max-et-nrioritg)
t
æ<_Eet = i;
m<--æt+iæi tg = tætsetlj I.piori tg;
)

fpnintf(lsg-fi le, "SrÈset selected: 8dþ',m<-set);

& | ete-net(crm-aother-æt);
fon (i=O; ictestsettmx-setl.size; ¡+r)

Èlete--ræt(tesGettaox--setl .elenentt i I);

pint-s$set(mx-set);
)

rytg-set(set)
Testset *set;

{
set->size = s6[-]piri tg = g.

)

t92

in i t-testsets()
{

int i;

/* init sËsets */
fø' (i=O; i<totol-rxm-red¡rets && i<hRgl-TEST-SET; i+Þ)

od--eleaÊnt(testset+i, ¡);
)

onder-rèodgnets()
{

int j, cq.r¡t;
Cordi&te rext;

fæ (j=l' j<totol-rnm-nædgets; i++)
{
next=rægpetstJ l;
ca.rrt= j - l;
d¡ile (cq.r¡t r- 0)

if (r¡ext.triæitg > r.eodgetstce¡'¡tl.pimitg)
t
r@rrets tcqmt+ I I = r#Jrets tccørt t;
cu.srt -')

else
br æk;

red¡rets tcq.mt+ 1 I = next;
)

)

int ret-qiæitg(æt)
int ret;

{
int piæitg;
priæitg = (orfuirg-æ¡ght * ffiì(r¡et)) / crm-m-.md-ne +

(lerqth-seight * LEIËTH(r¡et)) / ço<-rædUr¡et-langth +
(d i stø¡¿eæ i ght * (ffi-d ¡ st@Ee-tqr@r tcr¡rr-wotler-ræt I tr¡e t I))
/ m<-distaæe;

/
/* tilsc stFFffiTil.E ffiJTnES */

od-elwrt(set, i)
Tstset
int

fpnintf(lq file,'iÞt S-S: æd: S-Zd length: S-H ',
"dist: S-Zd pimitg: S-3d\n',ræt,(H(ret),LElffiTH(ret),
tçrçh tcr.nr-eot"t¡er-ræt I Inet I, pr i æ i tg);

rettrn priæitg;

*set;
i;

193

int elew¡tgiæitg;
set->el@ttt (Eet->size7++ I = re@fetst i l.ret;
set->p iæi tg += rd¡netst i I.priø.i fu;

int eonf lict(set,ræt)
Testset *set;
int æt;

t int i;

Íæ (i4; i<æt->size; i+t)
¡f (hg@r[set->elærtti lltr¡etl : 0)

retrrn l;
return 0;

l

f ird-¡listw¡ce()
{

lnt i, J;

/* culculote distwee ætrix */
fr (i=l; i<=totol-na-¡ætj ¡++)

fæ (j=i; j<=total-na-net; j+-r)
tqr@rt¡ttjl = |qrophtjllil = distme(¡,j);

l

f ird-cknsitg()
{

lnt ræt, vtrcck;

fæ (vtrdr=O; vtræk<t'HXTEFË1; vtrd(+l)
dæitgtvtrækl = 0;

mx-ktsitg * 0;
fæ (ret=l; net<=totol-mæ-¡ret; ræt++)

fæ (utrack{EFT(ret); vtroch<=Rl GHT(ret); vtreck++)
if ((+¡ktsitgtvtrockl) > m<-krsitg)

m<-dsts i tU = fuu ¡ tg tvtræk I ;
)

inssi-tenøirul (ret, tæøinol)
f'þt *ftet'
Tæøiml *teå¡ml;

{
if (net->f irst-tsa : l{.H-L }

rct->f inst-tm = mt->lost-tera = tæaiml;

194

else
t
net-) læt-tena-)ræxt * te¡ øiml j
æt-)last-tæe = tæsiml;
)

tsøirml->ræxt = H.ß-L;

èlete-rct(mt)
int ÏEt;

{ lå¡tr *pr4r. *mde;

ffiXret) = 0;
rde = rctl istlretl. f irst-sm;
d¡ile (nod€ != l{..B-L)

{
tæt I i st tr&->ræt-.ne I . pæant -;peu * node;
rde = rde->rÊxt;
free((6-ræ *Þ{ ev);
)

l

delete-vgrqh()
{

int ræt-nun;
t*t *æt;
lÀrtde qJr'p&, þrev;
fon (ret-tu.ø=l,ræt=ret l ist+ l; ræt--nø(=totol-mæ-ret; ret-ruæ*,net++)

t
m* = ræt->f inst-son;
*rile (

'.lrtode != lfl,.fl-L)
t
çnÈ' = $#;
wtode = w¡o&->lext;
free((d-m 8Þres.,);
I

)
l

æþ--r¡ets()
{

int j, cu^rrt;
tþt rext-ruet;

fæ < ¡=1' J<=totol--næ-ræt; j+r f
{
nextr'let = rætlisttj l;
cû.ãìt= j - l;
drile (cs¡rt >= 0)

t95

if (rext--ræt.ryert < Fffil{T(cqmt))
{
retl istlecsørt+l I = ætl isttcuørtl;
cuørt -;)

else
M.;

retl isttcoq.¡nt+l I = naxt-ræt;
l

int distææe(netl,netZ)
int netl, net2;

t
int d¡ff l, diffZ;

d¡ff I = Rlf*lT(retl) - LEFT(ret2);
daff? = LEFT(rætl) - Êlg{f(ret2);
,l (d'.f f lro & dtf t2<0 >

retmn 0;
else

{
d¡ffl = ËS(diffl);
d¡ff2 = ffi(diff2);
retrarn nlN(diffl,diff?);
)

l

rull-gnçh()
t

int ræt;

fæ (r¡et--l; tæt<=totol--na-ræt; ruet++)
if (ffiX¡ret) != 0)

reten 0;
retunn l;

)

d#t()
{

fintf('\rftæess teraimted. \n\n');
fprintf(log-f i le,'\r*ocess terair¡ated. \n\n-);
exi t();

l

sæt-left(w-set)
int w-set;

t
int j, cu.rrt;

r96

int rext;

f@ (j*1' j<testsettw-æl-l-size; i+ç)
{
æxt = testsetlmc--setl.elwtttj l;
csmt- j - l;
d¡ile (ctEsrt >= 0)

¡ f (LEFT(rext) < LEFT(testsettwo¡<-setl.elæsrttcq.ø¡tl))
t
testset tw--set I . e I wrt [cqs'¡t+ I I = testset tw--set I . e I wrt tcuørt I ;
c.o*ørt -;)

else
lrdr;

testsettao<--setl .elæntlcqmt+l I = rext;
)

print-trd,(m<-set)
int

t
lnt

fprintf(¡og-f ile,' l");
ptsn = 1;
fæ (irx*ex{; ir&xctestsettm-setl.size; ¡nèx+)

t
fæ (; posn<LEFT(testsettm<-setl.elwttt irdexl); pcsrr*)

pltc(' ',log-f ile);
ptte('+" lq-f ile);
pûsn +;
fon (; posr¡<R|GHT(testsettm-setl.elesrtt ¡rdex¡); posn++)

p;te('-',log-file);
prte('+', lq-f ¡ le);
FtSn +,
)

pltc('þ', log-f i le);

ff intf(loçr-f ile,' ');
pwr = l;
ftr (in¿e:x=O; ir#x<testsettm-setl.size; ¡76ig:(+)

t
fon (; posn(LEFT(testsettm<-setl.elæs¡tt ¡r&xt); psnt-t)

p,rtc(' ',14-f ile);
fprintf(log-f i le, -S-Sd-, testsetlaæ<-setl.elw¡tt irdexl);
Ft += 3;
fæ (; pffiit=filGtfT(testsettw-setl.elewttt¡r#xl); gr*)

p.rtc(' ',log-file);
l

fpintf(lq-f ila,"\n\n\n-);

print-.coltør-lóel(f ile)
FILE sf ¡le;

Box--æt;

ln&x, Fosn;

197

int l;

føintl(lile,- -);
{æ (i=l; i<=totsl-ruÆ-tse; ¡+ç)

fp'intf(f ile,'&ld',i%lt |;
trrtc('\n',file);

l

pint-ossiEn(m<-set)
int m--set;

t
static int t¡-ock = 0;
Ts'ainol *tere¡ml;
int ¡rÉ€x, ûtxutÊct, tæ, po.er;

fpa intf(try-f i lel, -S-ft-,+træ{<);
fæ (po.sæl, ir&r=g' ¡r&x(tests€ttw--setl .size; ¡r&x++)

I
terainol = r¡etl istttestsetlm<-setl.elwrtI ir&xl I. f inst-terø;
fon (; poËntæS(te*.airml->rr.mùer); posr++)

pttc(' ',tq-filel);
fæ (; te.aiml!=t{.ß-L; tereiml=tæeiml->r¡ext)

{
cû*Ëect = ter-e i m I ->rH.#;
tæa = ffi(eo*rret);
fr (; posn<tra; posrrr+)

p,rtc('-', tq-f i lel);
if (tæa: 0)

putc('<', tq-f i lel);
else if (tera > totol-na-tra)

p,rtc('>', tq-f i lel);
elæ if (posn: tera)

pltc((cstuæt<O)?'u' :'''rtmf'-f i lel);
else

{
totol-tr*^a-@leg -;cwrtine;
)

Po6n +;
l

l
fon (; gr<totol-txæ-terwrl0; psrt-r)

p;tc(' '.try-f ilel);
foe (irde¡=O; irdex<testsetteo<-setl.siee; ¡¡6¡¡++)

fpintf(tery-f i lel,'S-{d', testsetlno<-setl.elwrtt ¡r#xt);ptc('\,n', teøp-f i lel);
l

p^ int-ossi guødst m<-cat)
lnt e#J€t;

t
stotic int trd< = 0;
int ¡r#x, ræt--rr.m, pûsn;

t98

Fst = l;fyinlf (tesp-f ¡ le2,"WV-,+trock);
îw (ir#r+¡- ir#x<testsetlw-setl .size; ¡rÉe:{+l)

t
r€trd.e = tætsetlmc-setl .e I wrtl ir&xl ;
fæ (; Wr<LEFT(ret-mø); psrr¡t)

çx,rtc(' ', tery-f i le2);
if (Posn : LEFT(tEt--fr"@))

{
prtc('+', tery-f i leZ);

fæ (; Fsn{Rl&lT(ret-rnø); psrr* }
fn¡tc('-', t@-f i le2);

if (posr¡ (= totol-¡r*,m-tæa)
t
pltc('+"tq-f ile?);

l
fæ (; pr<totol-rn"e-tÉË10; psrrm)

g,ttc(", te4-f i le?);
foE^ (irda¡r=t; ir&xctectsetteo<--satl.siza; ¡¡6¿¡a++)

fp i ntf (t4-f i I e2, "S-4d', testset [eo<-set I . e I ewrt I i rdex I);
tr¡tc('\n', t@-f i le2);

pr i nt-vers i on()
t

fpintf(loq-fi le,'Hleg Ctw¡rel Rq¡ter\n\n');
fprintf(lo¡'-f i le,'lktl ist: Ss\rtlei$rtirq foctors: Ss\rú-og: $s\n\n',

netl ist-f i leræ,æigfrt-f i læ, lq-f ileræ);
l

printæi$rts()
{

fprintf(¡on file,-Lhights: øotÌ¡er: $-2d *#irq: S-Zd lerqth: S-?d -,
distsæ: 8-2d s.ù*æt: 8-2d\n\n",mtle-weigf¡t,oû &r¡rq-eei ght,
I e€th-æ i ght, d i s tøne-ee ¡ ght, sÈne t-d i s tørce);

pintf('*-l0s aotlcr: ß-2d onderirq: *-2d length: S-Zd ',
-disteæe: *-2d qåret: 8-Zd",netlist-f i leræ,mtfæ-æight,
ñ i rq--æ i gh t, I erq th-we i gh t, d i s tøre-æ i gfr tr s^Èræt-d i s tøæe) ;l

p i nt-stot i st i cs()
{

fpintf(lq-flle,'(Þlglrul rx.# of nets: Sd\n-,lnltio!-rxæ-ret);
fprintf(lsç-file,'Totol rx,fu of s&æts: Sd\n\n',totol-nø-ret);
fpintf(laguf ile,'Potentiol nder of ùglegs: 8dþ',

toto I -rxa-net-in i t i o l -næ-net);
fprintf(log-fi le,'ktr.tal ruaÞ of @leqs: Sd\n\n', totol-ruø-@leg);

pûsn
I

#;

pûsr¡
l

r99

fpintf(lq file,-Ì*.@ of tæøirmls: &dþ',totolsxm-tæ*);
ff intf(l4-file,-kiøæ w-fuirq rHM: &d\n',mc-æd-¡r-æ);
fpintf(lsr f ile.'ltrcoriw.ø densitg rH.#: &d\n\n',woocdensitg);

plnt-vgr@r(M)
cf@ *M;

{
lnt netJre, terø;
hþt xtæt;
t.@ *vn&;

fp intf(log-f i le,'Ssl.lent i co I Corctrq i nt Þ@¡ : þ',M);
fæ (net-¡xælrnetaetl ist+l; ret--¡r.a<=totol-ruø-r¡et; ret*æ+r,net++)

t
fpo intf(log-fi le,'lkt Kld: æderir€(S-2d) Fæer¡t($-Zd)",

tetsÆ¿ net->ot'd-næ, net->pægrt);
fæ (rrc&=r¡et->fit=t--sryt; r*!=lüjlL; r&=rþ&->ræxt)

fpintf(lq-f i le,'\t$-H-,rm&->net-rxæ);
prtc('þ',lq-f ile);
)

prtc('\n', lqlf i le);
)

f i nt-aotltrvtet-cørd i &tes()
{

int i;

fp intf(lsg-f ile,-lktlæ t{Êt Cød¡d{¡tes:\n' };
fon (i{; ¡{totolJTÆ-@ot}ertet-csdi&tæ; ¡#)

pint-rct(@ûttÞerræt.c@ìdi&tesl i l.ret);

pnint-red¡nets()
t

int

fpintf(log-f i le,'Reoå¡nets: \n');
for (i=0; i<totol-nø-recd¡nets; ¡+)

pint-net(re@¡eGI i l.æt);

print-net(ret)
int net;

{
wr.:

fprlntf(lqtflle,'#-?d l-,net);
fæ (psrrl; pm<LtrT(lel); posn++)

l;

int

200

prtc(' ',lq file);
Brtc('+', læ-f i le);
po*t ++;
fæ (; FsntHlSHT(ret); posrr¡E)

trrtc('-', lq-f i Ie);
fpintf(lqrf ile,'+9-);

F¡nt--sÞset(æ<--set)
int @ÐLset;

t
testset tw-set I. el wrt t (testsettm<-set !.s i¡e I¡-* I = crg^n--æotler-ræt;
sort-left(m<set);
print-trd(m-set)'
pint-ossi gn(m<--set);
pr i nt-oss i gn_erldst aæ<-set);

)

pnint-testsets()
t

int i;

fæ (i{l; i<Ì{.F{-TEST-.SËT; ¡++)
print-testset(i);

l

pint-tstset(set)
int æt;

t
int i;

lyintÍ(lon f i le,'Set ß-2d:- (8-.3d):',set, testsettsetl _priæitg);
fæ (i4; ¡(testsettsetl.size; i++)

fpintf(¡sg-fi le, "\t$-3d-, testsetfsetl.eleser¡tt i I);
Frtc('þ', logrf í le);

)

f int--retlist(leod)
ehæ *M;

t
int net--ru.e;
Tseinol +ts-airul;

fprintf(¡69-f i le,'$S{etl ist: þ",M);
fæ (net-næl; ræt-næ<=totol-¡u.æ-ræt; ræt--m.wm)

t
fp intf(log-file,'l*et 83d:'rræt-rx.æ);
fon (te'el¡¡61=¡ptlisttret--ruæl.f irst-te*"ø; terølml != l{.ß-L;

teraitpl= terairul ->rnxt)

201

fp lntf (l4-f i le, 'ffiid", tæø im l->rx.#);
prtc(' \n' , l4-f i le);
)

fplntf(læ-f lle,-þ\n-);
)

pint-tuitg()
{

int tæa;

fpn intf(log-file,'Teairml fuis¡tg rx,#s:\n');
fæ (te'a=l; tæø<=totol-¡r.m-tera; teø++)

{
fpintf(loç.-f i le,'Frl(S2d)', tere,daæitgttæøl);
if((tæaßlCI):0)

p.rtc(' \n' , logr-f i le);
l

fp intf(lq-f ile,'\n\n\n");
)

202

