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Abstract

This study tested two popuìar statistical downscaling models, the Long Ashton Research

Station Weather Generator (LARS-WG) and the Statistical DownScaling Model (SDSM),

for their ability to simulate daily time series of local precipitation and temperature for

sites in central Canada. The two models were specifically evaluated for their ability to

accurately reproduce observed local daily precipitation and temperature means and

variability (extremes). Results of the evaluation using available data in central Canada

indicated that both models were able to describe the basic statistical properties of daily

minimum and maximum temperatures at local sites. However, SDSM could not simulate

the extremes of precipitation well while LARS-WG demonstrated more skill at

simulating the means and extremes of precipitation- The skill of SDSM with predictors

fi'om CGCM3 was degraded lelative to NCEP predictors suggesting the presence of bias

in the CGCM3 predictors. A trend analysis in the study area showed an increasing

temperature trend. Future downscaled climate change scenarios using SDSM and LARS-

WG for the 2050s and 2090s were generated.
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Chapter 1

lntroduction

1.1 General

Within the scientific community there is a strong agreement that climate change is taking

place. The summary of the Fourth Assessment Report (AR4) released in February of

2007 by the Intergovernmental Panel on Climate Change (IPCC) confirmed that the

"warming of the climate system is unequivocal, as is now evident from observations of

increases in global average ail and ocean temperatures, widespread melting of snow and

ice, and rising global average sea level" (IPCC 2007, pg 5). The IPCC (2001, pg 5)

further stated that the 100 year linear trend (1906-2005) has increased from their previous

assessment (1906-2000) of +0.6'C to +0.74'C and that a global warming of about +0.2"C

per decade is anticipated over the next twenty years with future temperature increases

beyond this period dependent upon the future global greenhouse gas emission patterns

(IPCC 2007 , pg 12). These temperature changes will likely impact the world's resources,

through an increase in precipitation and evaporation. Resource managers must therefore

develop a comprehensive understanding of the scope, magnitude, and timing of these

impacts by examining climate scenarios to determine the best management techniques to

address future climate change.
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1,1.1 Weather, Climate, and Glimate Change

'Weather is defined as the day to day variations in temperature, rainfall, snowfalì, wind,

clouds, and other weather elements. It is the fluctuating state of the atmosphere around

us and is the result of developing and decaying weather systems (Baede et al. 2001, pg

87).

Climate is the average weather in terms of its mean and variability in a specific

area over a specified time span. Climate will vary depending on the latitude, presence or

absence of mountains, distance to the sea and other geographical factors, as well as on a

time scale from season to season, or decade to decade. Atmospheric circulation patterns

and their interactions with large scale ocean currents and land, including factors which

influence the radiative balance (i.e. greenhouse gases), determine climate and make up

the "climate system". Any changes to the climate system, either natural or

anthropogenic, can have an influence on the way it functions. Climate change is

therefore defined as variations in the mean state or variability of the climate which persist

for decades or longer (Baede et al. 2001, pg 87).

1.1.2 The Greenhouse Effect

Naturally, in this 'climate system' the earth releases back into space as much energy as it

receives from the sun in a self-balancing system. The atmosphere generally lets visible

light through without absorbing much of it. However, greenhouse gases (which consist

of only about 1 percent of the earth's atmosphere), absorb infrared radiation. It is these
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greenhouse gases (i.e. water vapor, carbon dioxide, methane, nitrous oxide, ozone and

various chlorine, fluorine, and bromine-containing molectrles) which absor-b more

outgoing infrared radiation and retain it longer before eventually radiating it back into

space. The absorption of infrared radiation by greenhouse gases in the atmosphere results

in the temperature of the lower atmosphere becoming warmer than it would be if it did

not contain them. This is what is called the 'greenhouse effect' and it is an entirely

natural process. However, various human activities are increasing the atmospheric

concentrations of these greenhouse gases through fossil fuel combustion and other

activities and as a result are influencing the earth's climate (Baede et al. 2001, pg89-9a).

1.1.3 Human lnfluences on the Climate System

Scientists are now confident that the current inclease in the average global temperature is

very likely (> 90Vo probability) due to the increase in anthropogenic greenhouse gas

concentrations which are affecting the radiative balance of the climate system (IPCC

2007, pg 10). Since the mid 20th century, the earth has experienced a continual rise in

the average global temperature and that increase in temperature is classified as the cunent

climate change. It is understood that the earth's climate has change in the past; however,

the cause of the current climate change differs from the past. The current change in

climate over the past fifty yeals is attributed to anthropogenic activities, while changes

previous to the last fifty years were due to natural origins (IPCC 2007 , pg I2).
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1.1.4 Future Projections of Climate

In order for policymakers and resource nanagers to understand the magnitude and timing

of these climate change impacts and their effect on local and regional resources, they

must be able to study climate scenarios of key climate variables for future time periods.

There are three main classes of climate change scenarios which are used to develop

climate scenarios: synthetic scenarios, analogue scenarios, and scenarios based on outputs

from general circulation models also known as global climate models (GCMs) (Carter et

al. 2001). Of these three classes of climate change scenarios, those based on GCM

outputs are currently the most reliable for deriving climate change scenarios and

estimating climate change impacts for the future. The public often questions the ability

of scientists to project climate fifty years into the future when weather cannot be

accurately predicted two weeks ahead. However, projecting changes in long term

weather (i.e. climate) due to atmospheric composition changes or other factors is very

different and much more manageable than predicting weather which has a chaotic

behavior (Le Treut et al.200'7, pg 96).

1.2 Problem Statement

Climate change impact studies at local sites usually require daily time series of surface

weather variables, such as precipitation and temperature, for future climate scenarios.

GCMs have recently been widely used to simulate the past, present, and future climate.

GCMs are numerical models that represent the large-scale physical processes of the
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earth-atmosphere-ocean system. They are able to project future climate under a lange of

scenarios including those forced by greenhouse gases and aerosols. They are, however,

restdcted in their usefulness for local impact studies due to their inability to resolve

important sub-grid scale features such as topography and mesoscale atmospheric

processes due to their coarse spatial resolution (von Storch et al. 1993; Wilby and

Dawson 2004; Wilby and Wigley 2000). Specifically, hydro-meteorological outputs

from GCMs are unreliable for individual grid points as their spatial resolution is too

coarse to resolve important.ut.h-"n,-scale processes (Hostetler 2005;Xu 1999).

In order to bridge the gap and scale down the information between the coarse

GCM resolution and the sub-grid process required by impact modelers, downscaling

techniques have been developed. There are two main types of downscaling techniques:

dynamical downscaling and statistical downscaling (Dibike and Coulibaly 2007; Wilby et

al. 2000).

. Dynamical downscaling techniques use GCM information as the boundary

conditions to drive a regional climate model (RCM) which is able to simulate

finer-scale physical processes, typically at a grid resolution of 20-50 km (Giorgi

and Mearns 7999;Mearns et al. 2003; Wilby and Dawson2004: Xu 1999).

o Statistical downscaling techniques involve establishing empirical relations

between features reliably simulated by the GCM (such as upper atmospheric

circulation variables) and surface predictands (such as temperature) (Wilby et

at.1999)..
5
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To date there have been several downscaling techniques proposed in the scientific

Iiterature, each having its own advantages and shortcomings. It is not cleal- which

downscaling technique provides the most reliabìe simulation of climatic variables since

there are factors such as the topography of a region which can influence the performance

of a downscaling model. Therefore, a rigorous evaluation of the various downscaling

techniques must be performed to identify the most robust method(s) for a given location.

1.3 Research Objectives

The main objective of this study is to test two popular statistical downscaling models, the

Statistical DownScaling Model (SDSM) and the Long Ashton Research Station Weather'

Generator (LARS-WG), for their ability to simulate daily time series of local

precipitation and temperature at meteorological stations located in central Canada. Six

stations have been selected for this resea¡ch: two in northern Manitoba (Thompson and

The Pas), two in southern Manitoba (Winnipeg and Brandon), and two in northwestern

Ontario (Kenora and Sioux Lookout). The evaluation of these models will consist of

examining their ability to simulate means and extremes indices.

The other objectives of this study are to:

ø Evaluate historical trends in temperature and precipitation.

o Generate missing solar ¡adiation data.

o Generate future downscaled climate change scenarios using SDSM and

LARS-WG with the Third Generation Canadian Global Climate Model (T4l)
6
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using three future emission scenarios for two future decadal periods.

1.4 Thesis Organization

Chapter 2 presents background information relevant to this research. It introduces

common terminology used in climate impact studies as well as provides a general

introduction to downscaling, highlighting the best practices to statistical downscaling.

Detailed descriptions of SDSM and LARS-WG along with an overview of the various

studies where these models have been tested and applied are also presented.

Chapter 3 provides a description of the data sources and study area. It describes

the current climate at the meteorological stations in the study area.

Chapter 4 describes the evaluation of the solar radiation model, Climatic Data

Generator. This model was utilized to simulate historical solar radiation at the

meteorological stations where solar radiation was not available.

Chapter 5 summarizes the methodology used to determine historical climate

trends, select predictors, evaluate SDSM and LARS-WG, and develop future climate

change scenarios.

Chapter 6 provides details regarding historical climate trends, the evaluations of

SDSM and LARS-WG, and climate change scenarios at the meteorological stations.

Chapter 7 provides conclusions that were drawn from the research and

recommendations for future study.



Ghapter 2
Literature Review

2.1 lntroduction

This chapter provides a summary of the literature related to the development of climate

scenarios for climate impact studies. An overview of GCMs is presented, outlining their

deficiencies for use in climate impact studies along with their associated uncertainties. A

general overview of downscaling techniques is given along with some best practices

recommended by the IPCC for statistical downscaling. This chapter also describes

details of the SDSM and LARS-WG models and summarizes the models' application in

the literature.

2.2 Construction of Climate Scenarios

A comprehensive analysis of current climate (also referred to as baseline climate),

including any changes in variability, must be conducted at the beginning of any climate

impact study. This is required to understand the current climate system and the

significance of the projected future changes (Barrow and Lee 2000). The average climate

over a 3O-year period is commonly used to define the baseline climate to smooth out any

year-to-year variations. This 3O-year period is also intended to capture the inter-annual

and shon time scale variability in climate that may be relevant in a climate impact study.

The period 1961-1990 has been recommended to be used as the baseline climate by the
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IPCC (Mearns et al. 2001 , pg 149) since it generally has good observed data and it

represents the recent climate that many present-day human or natural systems have grown

accustomed and adapted to.

There are many terms to describe future climate. To ensure that the terminology

in this report is consistent with the scientific literature, the terms recommended by the

IPCC will be used throughout this report (Mearns et al. 2001, pg743):

c Climate projection: A description of the response of the climate system to a

scenario of greenhouse gas and aerosol emissions as simulated by a global

climate model. Projections alone can rarely provide sufficient information to

examine future impacts since the outputs must be manipulated and combined

with observed climate to be used in a climate impact study.

o Climate change scenario: This is an interim step towards constructing a climate

scenario and should be strictly referred to as the difference between some

plausible future and current climate, usually represented by GCMs. In

statistical downscaling, a climate change scenario represents the difference

between a set of values simulated for future climate and the values simulated

for current climate by the statistical downscaling model.

" Climate scenalio: Represents a plausible future which is consistent with

assumptions of future greenhouse gas emissions and the effects of their

composition in the atmosphere. It consists of combining the climate change
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scenano with baseline climate observations. This method is commonly used

when raw GCM outputs are used in an impact model. In general, when

statistical downscaling techniques are employed the baseline climate

observations al'e used in the development of the future climate scenarios and

therefore do not require the simulated datasets to be added to the original

baseline climate.

As described in Chapter 1, there are several types of climate change scenarios

used to develop climate scenarios: synthetic scenarios, analogue scenarios, and scenarios

based on outputs from GCMs (details in Carter et al. 2007). Climate change scenarios

based on GCM outputs are cuûently the most credible tool for developing future climate

scenarios (Barrow and Lee 2000; Carter et al. 2007). This is because GCMs meet the

following criteria established by the IPCC for the development of climate change

scenarios (Carter eL al.2007):

o Consistency with global projections: The scenarios should fall within a wide

range of climate change projections based on increased atmospheric

concentrations of greenhouse gases.

Physical plausibility: The scenarios should be consistent with the physical laws

that govern climate. Changes in one region should be consistent with those in

other regions.

n Applicability in impact assessments: The scenarios should describe changes in a

10
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large number of climate variables (spatially and temporally) that allow for

cìimate impact assessments.

Accessibility: The scenarios should be straightforward to obtain, interpret, and

apply.

This study develops climate change scenarios based on GCMs outputs.

2.3 Global Climate Models (GCMs)

Global climate models (GCMs) are numerical models that represent the large-scale

physical processes of the earth-atmosphere-ocean system. They have been designed to

simulate the past, present, and future climate. GCMs can represent the physical processes

in the atmosphere, ocean, land surface, and cryosphere by solving a series of equations

based on the conversation of mass, momentum, and energy. They are able to do this in

all three spatial directions: a horizontal resolution between 250 and 600 km, a vertical

resolution up into the atmosphere of between 10 and 20 layers, and up to 30 layers of

depth down into the ocean (Barrow and Lee 2000; Carter et aL.2007).

Currently, the most sophisticated types of GCMs available are the coupled

atmosphere-ocean general circulation models (AOGCM). These GCMs consist of an

atmospheric general circulation model (AGCM) coupled to an ocean general circulation

model (OGCM), along with sea-ice models and models of land surface processes

(McAvaney et al. 200I, pg q5). The AGCMs consist of a three-dimensional

1t



Chapter 2 Literature Review

Table 2.1: Global climate model descriptions

Model Atmosphere Cotnponent Ocean Component
HadCM3, United Kingdom

HadGEMl, United Krngdom

CGCM3, Canada

CSIRO Mk3, Australia

MICROC3, Japan

2.5" lat. X 3.75'long.
l9 venical ìayers

1.25" lat. X l.875"long.
38 vertical layers

18 vertical layers

-2.8" lat. X 2.8" ìong.

1.25" lat. X 1.25' long.
20 vertical layers

l" lat. X 0.333-l o long.
40 vertical layers

31 vertical Iayers
1.4" lat. X 0.56-1.4" long.

-3.75" lat. X 3.75" long. -1.85'lat. X 1.85" long.
3l vertical layers 29 vertical layers

- I .875" lat. X I .875" long. -0.84" Iat. X 1 .875" long.

20 vertical layers 43 vertical layers

representation of the atmosphere coupled to the land surface and cryosphere, and the

OGCM is a three-dimensional representation of the oceans and sea-ice (Saelthun and

Bark 2003). Since AOGCMs are able to model the entire earth-atmosphere-ocean

system, they are most suitable for projecting future climate.

There are many modeling centers around the world that have developed GCMs

based on their own unique algorithms and grid size. They are documented in the IPCC's

Third Assessment Report (Cubasch et al. 2001, pg 538-539). Table 2.1 lists a selection of

the GCMs available with their respective resolutions.

Since there are many GCMs available to the climate impact modeling community,

researchers have outlined the following criteria to guide the selection of GCMs (Barrow

and Lee 2000; Carter et aL.200'7 , Smith and Hulme 1998):

o Vintage: More recent GCMs are most likely more reliable than those of an early

vintage. This is because the most recent knowledge has been incorporated into

the processes and feedbacks of these GCMs.

12
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n Resolution: More recent GCMs have spatial resolution much finer than the

earlier GCMs. This allows for more spatial details including better defined land

and sea boundaries along with more complex topography to be incorporated.

" Validity: It is generally assumed that GCMs which simulate the present-day

climate most faithfully will ultimately provide the most reliable representation

of futule climate. The GCM performance depends critically on the size of the

region, the location, and the variables being analyzed. However, even if a

GCM simulates present day climate well, it does not necessarily imply that the

GCM will produce accurate simulations of climate change (McAvaney et al.

2001,pg473). For example, a GCM will not provide an accurate simulation of

climate change if the model does not contain a good representation of the

dominant feedback processes that will be initiated by radiative forcing (Mearns

et al.2001, pg 760).

o Representation of results: It is strongly recommended that more than one GCM

be used in any climate change impact study. The selected GCMs will illustrate

a range of values for the key climate variables such as precipitation and

temperature in the study region. When examining the outputs from various

GCMs at a regional level they can display large differences in their estimates of

climate variables and therefore it is imperative that the range is captured in any

climate impact study.

t3
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2.3.1 Emission Scenarios

It is necessary to construct scenarios of greenhouse gas and sulphate aerosol emissions of

the next 100 years and beyond to determine how the composition of the atmosphere, and

consequently climate, may change in the future. These emissions scenarios require

assumptions about how society will evolve into the future. Emissions scenarios are used

in GCMs to simulate the evolution of climate over time.

Until recently, most climate modeling centers used the IS92 scenarios, which are

detailed in Climate Change 1992: Supplementary Report to the IPCC Scientific

Assessment (Houghton et al. 1992). These scenarios consist of six emissions scenarios,

IS92 a-f, with IS92e and IS92c resulting in the highest and lowest atmospheric

greenhouse gas concentrations respectively. The IS92a scenario became known as the

'business-as-usual' scenario.

Prior to issuing its Third Assessment Report (IPCC 2001), the IPCC

commissioned a Special Report on Emissions Scenarios (SRES) (IPCC 2000). The

purpose of the SRES was to provide scientists with background information for use in

drafting the Third Assessment Report, which was released in 2001. The same scenarios

were used in 2007 for the Fourth Assessment Report. The SRES describes four principal,

yet different narrative'storylines' (AI, A2,81, B2) representing different demographic,

social, economic, technological, and environmental developments. Based on these

storylines, four 'scenario families' are identified and a total of 40 emissions scenarios

were developed.
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The associated storylines are as follows (IPCC 2000):

e A1 storyline: The Al storyline and scenario family looks into the future to a

world with a population peaking by 2050 and then declining with rapid

economic growth from new and efficient technologies being developed.

o AZ storyliner The A2 storyline and scenario family looks at a mixed world with

regional economic development, slow per capita growth, and slow fragmented

technological growth.

Bi storyline: The Bl storyline and scenario family looks at a convergent world

with world populations similar to 41, peaking by 2050 and subsequently

dropping. Howevet, in this world economic structures are quickly developing in

a service and information economy with less emphasis on material goods and

more emphasis on clean, efficient resources, and technologies.

82 storyline: The B2 storyline and scenario family is a world which stresses

home-made solutions to economic, social, and environmental sustainability.

This world has a steady population growth lower than A2 with median

economic development, and a slower much more diverse technological

development than scenario B1 and 41.

Of the forty SRES scenarios available, two have emerged to have particular

significance by the scientific community. These are the A2 scenario referred to as the

"business as usual" or "worse case" scenario, and theB2 scenario, referred to as the "best
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guess" or "most likely" scenario (Källén et al. 2001).

2.3.2 Uncertainties Associated with GCMs

When simulating climate change scenarios using GCMs there are many uncertainties to

be considered. There is a lack of understanding of certain scientific principles and

processes which govern the climate; therefore, incorporating these physical processes into

the simulations with computer based tools is difficult. Furthermore, there aïe

uncertainties in the projections of future climate which rely on emission scenarios

involving assumptions based on population growth, economic growth, and energy use.

The IPCC-TGCIA (1999) has identified the following main sources of

uncertainties involved when applying scenarios from GCMs:

o Uncertainties in future greenhouse gas and aerosols emissions: There is a range

of responses in global mean temperature associated with the various emission

scenarios.

Uncertainties in global climate sensitivity: Each GCM simulates the physical

processes and feedback defining climate in different ways. Different models

produce different estimates of global warming for the same emission scenario.

Uncertainties in regional climate changes: The output from different GCMs at

the regional level indicates different response for the same mean global

warming.
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2.3,3 Mismatches Between GCMs ability and Climate lmpact Modelers Needs

It is apparent that most GCMs are reasonably accurate at representing the climate at the

continental and hemispheric spatial scales. However, they are inherently weak in

representing local sub-grid scale features and dynamics. This makes them unsuitable to

many impact modelers, particularly hydrologists interested in regional-scale hydrological

variability (Dibike and Coulibaly 2007;, Mearns et al. 2003) .

According to Xu (1999) there are three main mismatches between GCMs and the

needs of hydrological impact modelers:

r The spatial scale mismatch between GCM resolution and hydrological needs:

Hydrologic models typically are based on small sub-basin scale. GCMs prevent

explicit modeling of local geographic factors such as basin topography, land-

water distribution, and vegetation type.

o The vertical level mismatch between GCM resolution and hydrological needs:

GCMs are more adept in simulating the free troposphere climate than the

surface climate since the free troposphere is more spatially and temporally

homogenous than the eafth's surface. However, problems arise because

hydrologic modelers require accurate representation of the earth's surface

variables, which GCMs are not able to simulate weli.

c The mismatch between GCM accuracy and the hydrological importance of the

variables: The GCM outputs such as wind, temperature, and air pressure fields
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can be reasonably accurate since the GCMs were designed to simulate average

lalge-scale atmospheric circulation. On the other hand, variables such as

clouds, precipitation, runoff, soil moistuLe, and evapotranspiration are not well

represented by GCMs (Loaiciga et al. 1996). Basically, the GCM simulation

accuracy decreases from climate variables to hydrological variables while the

hydrological importance increases along the same direction. Precipitation,

which is a hydrological variable of great importance to hydrological modelers,

is not well represented by GCMs because many significant precipitation events

such as thunderstorms happen on a much smaller spatial scale than the GCM

glid size.

2.4 Downscal¡ng Techniques

Several downscaling techniques have been developed to counter the deficiency in GCMs

by "downscaling" the meteorological variables to a scale which is useful for climate

impact studies (i.e. Hewitson and Crane 1996; Murphy 1998; Wilby and Wigley 2000;

Wilby et al. 1998). There are two main branches of downscaling: dynamical downscaling

and statistical downscaling (Dibike and Coulibaly 2007).

2.4.1 Ðynamical Downscaling

Dynamical downscaling or regional climate modeling uses thé concept of limited area

modeling at a higher resolution to obtain regional details that the GCM can not achieve

due to its coarse scale in the area of interest. The basic concept in this type of
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downscaling is to let the GCM provide the lateraì and initial boundary conditions for a

regional climate model (RCM). The RCM allows for a more accurate description of the

regional topography, lakes, and coastlines since the grid resolution is much higher,

typically between 25-50 km (Jones et al. 1995).

RCM simulation can be computationally demanding depending on the size of the

domain being modeled and therefore may be limited in the length of the experiment.

Also, since RCMs simulate on a scale between 25 km to 50 km, there may be times when

this scale is still larger than what is required by impact modelers and therefore direct

application is not possible. In such cases, statistical downscaling techniques may be

required to downscale the RCM to a more suitable scale (i.e. station level). A more

problematic consideration in the use of RCMs is that their results are strongly influenced

by the selection of the GCM and any deficiencies in the GCM can propagate back to the

RCM-

2.4.2 Statistical Downscaling

In the literature statistical downscaling techniques are grouped into three categories

(Wilby and Dawson 2004):

1) Transfer function models or regression-based models: Transfer function methods,

also referred to as regression based methods, rely on a direct quantitative

relationship between variables containing the large scale information (predictors)

and the local scale climate variables (predictands) through a regression function
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(Dibike and Coulibaly 2007; Wigley et al. 1990). This method uses statistically

based models to determine the relationship between the predictor and predictands

for current climate and then applies similar predictors from GCM simulations in

the statistical models to project future climate (Wilby et aL.2004). There are many

types of mathematical transfer functions that have been used successfully in

statistical downscaling including multiple regression, canonical correlation

analysis, and artificial neural networks (Girogi et al.2001 ,pg617; Wilby et al.

2004). When applying the transfer function methods there are some implicit

assumptions (Girogi et al. 2001, pg 616; Wilby et aL.2004; Wilby and Wigley

2000):

o The predictors fully represent the climate change signal.

. The predictors are variables of relevance and are realistically modeled by

the GCM.

o The relationship is valid also under an altered climate condition.

o The predictors are physically linked to the appropriate local predictand.

The main advantage of transfer function methods is that they are relatively

straightforward to apply and are computationally less demanding in comparison to

other downscaling methods. However, they are limited in their application to

areas where accurate predictor-predictand relationships can be found (Wilby et al.

2004; Wilby and Dawson2004).
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2) Stochastic weather generators: Stochastic weather generators can be described as

statistical models of observed sequences of weather variables or complex random

number generators in which the outputs represent daily or sub-daily weather data

at a particular site of interest (Wilks and Wilby 1999). The output of the weather

generator is usually in the form of precipitation occurrence and intensity,

maximum and minimum temperature, and solar radiation. Generally, the

parameters in the weather generators are conditioned on relationships between

large-scale parameters sets and local-scale parameters (Wilks and Wilby 1999), or

by perturbing the parameters based on GCM simulated changes in the statistics of

some climate variables (Semenov and Barrow 1991). The main advantage of

stochastic weather generators is that they can reproduce many observed climate

statistics. A disadvantage is that the adjustment of the parameters of the future

climate are somewhat subjective (Wilby et al.2004).

3) Synoptic weather typing: Synoptic weather typing relates weather classes to

regional or local climate variations by grouping days according to their synoptic

similarity into a finite number of discrete weather types or states (Girogi et al.

2007, pg 618; Wilby et aL.2004). ln order to estimate a change in climate, the

changes in the frequency of weather classes, derived by weighing the local

climate states with their relative frequencies of weather classes from current to

future climate, are compared (Girogi et al. 2001, pg 618). 'Weather typing

methods are versatile and therefore can be applied to a variety of different surface
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climates. However, a critical weakness is that they assume that the characterjstics

of the weather classes do not change in future climate (Wilby et aL.2004, Wilby

and Dawson2004).

Many studies which apply statistical downscaling focus on daily maximum

temperature and minimum temperature, as well as precipitation at a single site since it is

the most important input for many impact models (Wilby et al.2004). When statistical

downscaling techniques are employed, a sufficient amount of observed data is required in

the study area to calibrate the models.

The theoretical weaknesses of statistical downscaling is that it is not verifiable

(which also applies to the physical parameterization of regional climate models) and that

it assumes that the statistical relationship developed for the present day climate also holds

under the future climate (Wilby et al. 2004). However, despite these weaknesses

statistical downscaling has a number of advantages including being computationally

inexpensive which allows the methods to be applied using a variety of GCMs (Wilby et

at.2004).

2.5 Good Practise to Statistical Downscal¡ng

In order to gain confidence in statistical downscaling ciimate scenarios for climate impact

studies and to ensure that climate impact modellers adhere to best practises, the IPCC

established a "Guideline for Use of Climate Scenarios Developed from Statistical

Downscaling Methods" (Wilby et aL.2004). The following outlines some important
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practises recommended by these guidelines to be followed when applying statistical

downscaling:

. Specify appropriate model type: There aÍe a range of statistical downscaling

techniques available to the climate impact modeling community. The skill of the

chosen technique ultimately depends on the chosen application and study region.

The choice of the downscaling model will also reflect the availability of computer

models, the availability of data, and the time step of output required.

o Select appropriate predictor variables: The downscaled climate scenario is

ultimately governed by the choice of predictor variable, thereby making the

selection of predictors one the most important steps in many statistical

downscaling techniques. However, there are only a few studies which have

analysed the significance of different predictor variables. Expert judgement, local

knowledge, and sensible combinations of predictors should all be taken into

consideration in the selection process. Some key ideas when selecting predictors

are as follows:

o In the future, atmospheric moisture which currently has some control over

present day precipitation will have a greater significance (Hewitson 1999).

When downscaling precipitation, the inclusion of atmospheric moisture is

imperative as it may be critical in capturing the climate change signal and

has an impact on both the sign and magnitude of precipitation change in

the future (Hewitson 1999;Wilby et al. 2004).
23
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o In the future, changes in the radiative properties of the atmosphere may

dominate over circulation changes that curently control our present-day

sudace temperature (Schubert 1998). When downscaling temperature,

both circulation fields and surface temperature should be analyzed, since

utilizing predictors based solely on atmospherìc circulation could result in

potential cooling trends (Huth 1999).

o When selecting predictors, there is a risk of discarding predictor variables

which have a low explanatory power for present climate, but which are

critical for evaluating climate change. Therefore judgment should be used

when selecting predictors. Predictors which are only pertinent to present

day climate should not be used exclusively.

Assess the value of downscaling: After a series of climate change scenarios have

been developed, the value gained from using a statistical downscaling technique

beyond the use of raw GCM output should be evaluated. This is accomplished by

testing the downscaled outputs and the raw GCM outputs relative to observed

climatology under present climate conditions.

2.6 Statistical Downscal¡ng Software Packages

At the time of this study, there were four statistical downscaling software packages

developed or in the processes of being developed. Each of these software packages is

described in Table 2.2by the type of statistical downscaling technique employed.
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Table 2.2: Statistical downscaling software packages

Software Package
Available

to public?

Transfer

Function

Weather Weather

Generator Typing

Statistical DownScaling Model (SDSM)

Long Ashton Research Station Weather

Generator (LARS-WG)

'Weather Generator (WGEN)

Automated Statistical Downscaling

Model (ASDM)

yes

yes

yes

no

yes yes

no

yes

no

no

yes

yes

yes

The Weather Generator (WGEN) is similar to LARS-WG. However, due to

limitations of WGEN (described in Section 2.7), LARS-WG was selected for evaluation

rather than WGEN. SDSM is a hybrid of a regression based method and a weather

generator; therefore was also selected to be evaluated. The Automated Statistical

Downscaling Model (ASDM) was in the development stage at the time of study and

therefore was not available to be tested.

2,7 Long Ashton Research Station Weather Generator (LARS-WG)

The Long Ashton Research Station Weather Generator (LARS-WG) (Version 3.0) is a

stochastic weather generator used to simulate daily weather variables (maximum

temperature, minimum temperature, precipitation and solar radiation) at a single site

under both current and future climate (Semenov and Barrow 2002).

The simulation of daily weather variables from stochastic weather generators

generally involves one of the following methods: Richardson-type approach (Richardson
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1981) or serial approach (Rascko et al. l99l). Both of these methods employ the same

fundamental steps. The first step involves modeling the daily precipitation occurrence

and the second involves modeling additional variables such as maximum temperature,

minimum temperature, precipitation amount, and solal radiation.

The Richardson-type approach uses a Markov Chain model to describe the

occurrence of wet and dry days, and then models the amount of precipitation falling on

the wet days using an estimated distribution of precipitation depth. The remaining

variables are then modeled based on the wet or dry status of each day and their

correlations to each other. One of the main criticisms of this approach is its limited

memory of rare events and its inability to describe adequately the length of dry and wet

series (Rascko et al. 1991).

LARS-WG uses the "serial approach" to overcome the limitations of the Markov

Chain Model. This involves, as a first step, modeling the length of the dry and wet series

using semi-empirical distributions (Semenov et al. 1998). Then the amount of

precipitation, daily solar radiation, maximum temperature, and minimum temperature are

modeled conditioned on the precipitation status.

Precipitation occurrence is modeled as alternate wet and dry series where the

length of each series is chosen randomly from the wet or dry semi-empirical distribution

for the month at which the series stafis. The daily means and standard deviation of both

minimum and maximum temperatures are conditioned on the wet or dry status of the day

and are considered as stochastic processes. In order to account for the seasonal cycles in
26
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the ntean and standard deviation of temperature, a Fourier series is used to smooth the

data with the residuals approximated by a normal distribution. Solar radiation is modeled

independently of temperature, with separate semi-empirical distributions used to describe

solar radiation on wet and dry days.

One of the important features of LARS-WG is that it uses all the obsel'ved records

to generate the semi-empirical distributions, making it more flexible than parametric

distributions. Semenov et al. (i998) conducted a study to compare two weather

generators (WGEN and LARS-WG) for sites in Europe, USA, and Asia. They found that

because LARS-WG uses semi-empirical distributions, it was able to simulate climate data

with statistics much closer to the observed data at a variety of sites making it more

flexible than WGEN which is based on fixed distributions.

Details pertaining to the procedures in LARS-WG to generate time-series of daily

precipitation, tempelature, and solar radiation are presented in Semenov and Barrow

(2002). The general process is as follows:

Model calibration: Observed weather data for a specific meteorological site is

analyzed to create a parameter file (.wg). This parameter file is required to

generate synthetic weather data. Table 2.3 outlines the parameters stored and

used to develop the distributions.

Generation of synthetic weather data: The parameter file derived during

model calibration process is used to generate synthetic weather data having

the

the

2l
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Table 2.3: LARS-WG parameters

Paranteter Description

Series Monthly histogram intervals and frequency of events in these intervals for
wet and dry series length.

Precipitation Histogram intervals and frequency of events in these intervals for
precipitation amount by month.

Wet Min Fourier coefficients for the means and standard deviation of minimum
temperatures on wet days.

Wet Max Fourier coefficients for the means and standard deviation of maximum
temperatures on wet days.

Dry Min Fourier coefficients for the means and standard deviation of minimum
temperatures on dry days.

Dry Max Fourier coefficients for the means and standard deviation of maximum
temperatures on dry days.

Auto Min Average autocorrelation value for minimum temperature.

Auto Max Average autocorrelation value for maximum temperature.

Auto Rad Average autocorrelation value for solar radiation.

Wet Rad Monthly histogram interval values and frequency of events in each interval
for solar radiation amounts on wet days.

Dry Rad Monthly histogram interval values and frequency of events in each interval
for solar radiation amounts on dry days.

same statistical characteristics as the original observed data.

ø Climate scenarios: Future climate scenarios are derived by perturbing the

parameters using a scenario file. This scenario file is based on GCM simulated

changes in monthly precipitation, length of wet series, length of dry series,

minimum temperature, maximum temperature, standard deviation of

temperature, and mean solar radiation.
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2.8 Statistical DownScaling Model (SDSM)

The Statistical DownScaling Model (SDSM) (Version 3.1) is a hybrid between a transfer

function/regression based method and a stochastic weather generator since it uses

multiple linear regression techniques to derive relationships between large-scale

atmospheric variables (predictors) and local-scale variables (predictands) and then adjusts

the variance of the downscaled data using a stochastic process (Wilby et al.2002). The

variables modeled by SDSM include maximum temperature, minimum temperature and

plecipitation.

Details pertaining to the model structure and processes can be found in Wilby and

Dawson (2004). Generally, temperature and precipitation are modeled as follows:

o Temperature: Daily maximum (Tntax¡) and minimu m (Ttnirt¡)temperatures for a

given day are modeled using the following regression equations (Wilby et al

r9ee):

Tmax, = õ,, I õrTmax,-, + õrP, +...+ 6oP o+{,

Tmin, : T,, t yrTmin,-, + TrP, +..'+ õoP *+(,

F,q.2.7

F,q.2.2

where ä and y are parameters estimated by linear least squares regression,

( and ( are random or modeling errors and P¡ is a predictor variable.

Precipitation: Precipitation is downscaled with SDSM following a conditional

process consisting of two different steps (Wilby et al. 1999). The first step

involves developing a linear regression between large scale predictors and the
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probability of precipitation occuruence. Daily precipitation occurrence Q is

modeled using the following equation (Wilby et al. 1999):

O¡ = ü,, + ai_toi_,1 + dr4 +...+ d.kPk Eq. 2.3

where the parameters ai are estimated using linear least squares regression and

P¡ is a predictor variable. Then a stochastic process is used to determine

whether the day is wet or dry using a uniformly distributed random

number r (0 < r < 1) . There is an occurrence only if this number is less than or

equal to the simulated precipitation occurrence probability ( r ! O,) .

Assuming that precipitation occurs, the second step involves developing

another linear regression with large-scale predictors to specify the daily

precipitation amounts ( R, ). The following regression model is used since the

precipitation amounts are always greater than zero (Wilby et al. 1999):

R, =exp (þ"+ þ,P,+"'BoPo+e,) E,q. 2.4

where the B,'s are parameters estimated using linear least squares regression,

q is random or modeling error and P¡ is a predictor variable.

A detailed user guide for SDSM is provided in Wilby and Dawson (200Ð. The

general method is as follows (Figure 2.1):

. Data transformation: Transform predictands and/or predictors prior to model

calibration.
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Predictors (NECP)
Current

Predictors (GCM)
Current

Predictors (GCM)
Future

Current
Predictant

Current
Predictant

Future
Predictant

Figure 2.1: SDSM process

Screening of predictor variables: Select appropriate downscaling predictor

variables by identifying empirical relationships between predictors and

predictands.

Model calibration: With a selected predictand and a set of selected predictors

the parameters of the multiple linear regression equations are determined.

Weather generation: Generate an ensemble of synthetic daily weather series

given observed gridded (i.e. NCEP predictors) atmospheric predictor variables.

This allows the calibrated model to be verified with an independenfilata set and

current climate to be simulated.

3l

Station Data
(Predictant)

NCEP
(Predictors)

Model Structure

Calibrate Model

Scenerio Generator

I
Scenerio Generator
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r Scenario gener-ation: Generate an ensemble of synthetic daily weather senes

given GCM supplied atmospheric predictor variables for either current or future

climate.

2.9 Studies us¡ng SDSM and LARS-WG

SDSM and LARS-WG have been applied to a host of geographical environments

including Europe, South Asia, and North America, but with limited application in Canada

(Hassan et al. 1998; Haylock et al. 2006; Wilby et al. 1999). These models have also

been applied to hydrological and environmental assessment studies (Wilby et al. 2002).

With respect to environmental assessments studies, in a research project supported by the

Canadian Environmental Assessment Agency, Barrow and Lee (2000) rccommended that

SDSM and LARS-WG be used for the downscaling of GCMs in the Canadian

Environmental Assessment process to derive finer resolution information to assess the

impacts of future climate on a project.

SDSM and LARS-WG have not yet been rigorously evaluated over the range of

climatic conditions in Canada. Existing studies have focused mainly on areas in eastern

Canada. For example, Gachon et al. (2005) compared these models on their ability to

downscale extreme indices over regions in eastern Canada. They found that SDSM

performed better for temperature than precipitation. Both models were able to capture

the precipitation occurrence better than wet day amounts and/or extremes. They also

found that LARS-WG precipitation and temperature variability and persistence tended to
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be overestimated. In the same study area of eastern Canada, Hessami et al. (2008) found

that SDSM shows strength in the simulation of temperature, but had less success for

precipitation. Nguyen et al. (2006) evaluated SDSM and LARS-WG for their ability to

generate precipitation and temperature extremes in the Greater Montreal region. They

found that both models were able to accurately describe the basic statistical ploperties of

daily maxìmum and minimum temperature at the sites with neither of the models able to

simulate well the statistical properties of the daily precipitation process. However,

LARS-WG was able to produce statistics of daily precipitation closer to the observed

than SDSM.

A study to evaluate SDSM in a highly heterogeneous coastline area of northern

Canada was undertaken by Dibike et al. (2007). Their study concluded that the models

were able to represent local climate conditions when supplied with accurate GCM

predictors. In the Saguenay watershed in Northern Quebec, Mohammad et al. (2006)

demonstrated the effects of using GCM predictors from two different generations of the

same GCM (CGCM1 and CGCMZ) and found that there was a significant variation in

estimates of means and variances on a month by month basis, emphasizing the need for

accurate predictors from GCMs and that any bias present in the GCM predictors can

propagate into the downscaling model. SDSM was also used in a study by Gachon et al.

(2005) in the Quebec region that concluded that SDSM provides reasonable downscaled

data when using predictors representing the observed cunent climate (NCEP), but its skill

degraded when using GCM predictors. This study again emphasized the need for

JJ
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accurate predictor variables supplied by the GCMs.

Some studies have used these downscaling models to develop climate scenarios

for particular study regions. For example, Dibike and Coulibaly (2007) used both SDSM

and LARS-WG to generate possible future scenarios of local meteorological variables.

These variables were inputted into a hydrological model to simulate the corresponding

streamflow in the Serpent River. AIso, Lines and Pancura (200Ð used SDSM to develop

climate scenarios in Atlantic Canada by examining changes in maximum temperature,

minimum temperature, and precipitation. Another impact study used SDSM and LARS-

WG to examine the climate change impacts on groundwater recharge in the Guìf Islands

south-east of Vancouver Island (Appiah-Adjei 2006). In their study, SDSM and LARS-

'WG were used to supply local meteorological variables into a groundwater model to

simulate groundwater recharge in the region for future time periods.
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Ghapter 3
Study Area and Data Description

3.1 Study Area

The study region encompasses central Canada (defined as 49'N to 56oN, and 92'W to

101"W). Six meteorological stations were selected with four meteorological stations

located in Manitoba and two stations in Northwestern Ontario (Figure 3.1). The latitude

and longitude coordinates along with the elevations of the meteorological stations are

presented in Table 3.1. These meteorological stations were selected to ensure that a

broad range of climatic zones were analyzed. The baseline climate (1961-1990) at these

meteorological stations is characterized as follows:

o In the southern Manitoba region (Brandon and Winnipeg), the climate is

classified as having a total monthly precipitation ranging from +21 mm

during the driest months to +89 mm in the wettest months, and a

maximum temperature ranging from -12'C in the winter months to +26"C

in the summer months, and a minimum temperature ranging from -25oC

in the winter months to +12'C in the summer months (Figure 3.2).

o In the noÍhwestern Ontario region (Kenora and Sioux Lookout) the

climate is classified as having a total monthly precipitation ranging from
35
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Table 3.1: Meteorological station information

Statíott Name Station # Prov. Lat. ('N) Long. "W ('E) Elev. Qn)

Winnipeg Int'l Airport

Brandon Airport

Thompson Airport

The Pas Airport

Sioux Lookout Airpon

Kenora Airport

5062922

5023222

5052880

5052880

603111 5

6034015

49.92

49.81

5s.80

53.97

50.12

49.18

Mb.

Mb.

Mb.

Mb.

Ont.

Ont.

-91.23 (262.11)

-99.98 (260.02)

-91.81 (262.13)

-10r.r0 (258.90)

-9 r .90 (268.10)

-94.31 (26s.63)

239

363

222

210

390

406

+32 mm during the driest months to +106 mm in the wettest months, and a

maximum temperature ranging from -14"C in the coldest months to

+25"C in the warmest months, and a minimum temperature ranging from

-24"C in the coldest months to +13'C in the warmest months (Figure 3.3).

o In the northern Manitoba region (Thompson and The Pas) the climate is

classified as having a total monthly precipitation ranging from +21 mm

during the driest months to +90 mm in the wettest months, and a

maximum temperature ranging from -20"C in the winter months to +23oC

in the summer months, and a minimum temperature ranging from -31"C

in the winter months to +72"C in the summer months (Figure 3.4).

In general, the Northwestern Ontario region is the wettest region, the northern

Manitoba region is the coldest region, and the southern Manitoba region is the warmest.
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Figure 3.2: Baseline climate (1961-1990) for Winnipeg and Brandon (error bars represent
standard deviation)
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Figure 3.3: Baseline climate (1961-1990) for Sioux Lookout and Kenora Brandon (error
bars represent standard deviation)
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3.2 Data

For the stations selected, three types of daily data were compiìed for the purpose of

statistical downscaling: (l) observed station data, (2) NCEP reanalysis data; and (3)

GCM simulations of cument and future climate.

3,2.1 Meteorological Data

The Environment Canada meteorological dataset for daily homogenized maximum and

minimum temperature (hereafter called Tmax and Tmin) prepared by Vincent et al.

(2002) and the daily adjusted total precipitation dataset prepared by Mekis and Hogg

(1999) were used in this study. Due to the different behavior of climate variables,

different approaches were applied for homogenization of temperature and precipitation.

For temperature, a statistical technique was first applied to identify all of the potential

inhomogeneities. The associated cause of each of the inhomogeneities was then

identified by retrieving the information through the historical reports. For precipitation,

since the Canadian network density of precipitation gauges is so sparse, there is

insufficient information to allow widespread use of surrounding station data to identify

and adjust inhomogeneities. Therefore, in the case of precipitation the objective was to

correct the measurements such as instrument changes, snow density differences, gauge

under-catch, and trace measurements for all known inhomogeneities. These data sets

were selected in order to minimize the risk of introducing additional uncertainty from the

relocation of stations and from changes in climate monitoring practices.
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Table 3.2: Predictor variables

No. Predictor Natne No. Predictor Name

I

2

J

4

5

6

7

8

9

10

11

12

l3

Surface airfl ow strength

Surface zonal velocity

Surface meridional velocity

Surface vorticity

Surface wind direction

Surface divergence

500hpa airflow strength

500hpa zonal velocity

500hpa meridional velocity

500hpa vorticity

500hpa wind direction

500hpa divergence

85Ohpa airflow strength

850hpa zonal velocity

850hpa meridional velocity

850hpa vorticity

85Ohpa wind direction

850hpa divergence

Mean sea level pressure

500 hpa geopotential height

85Ohpa geopotential height

Specific humidity at 500hpa

Specific humidity at 850hpa

Near surface specific humidity

Mean temperature at 2m

14

l5

16

11

l8

r9

20

21

22

23

24

25

3.2,2 National Center for Environmental Prediction (NCEP)

Climate predictors were derived from the National Center for Environmental Prediction

(NCEP/NCAR) (hereafter called NCEP) reanalysis data set (Kalnay et al. 1996). Twenty

five potential downscaling predictor variables were extracted or derived from the daily

grid point output of the NCEP reanalysis (Table 3.2).

Mean sea level pressure (mslp), 500 hPa, and 850 hPa geopotential heights (2500

2850), mean daily temperatures 2 m above the land surface (Temp2m), specific humidity

at the surface, 500hPa, and 850 hPa (RH, RH500, RH850), were extracted from the daily

grid point output of the NCEP reanalysis for the grid point closest to a station.

Six upper-atmosphere variables were derived from 2500 and 2850: zonal and

42



Chapter 3 Study Area and Data Description

meridional velocity components, strength of the resultant flow, vorticity, and divergence.

Five surface variables were derived from mslp: zonal and meridional components of

airflow velocity, strength of the resultant flow, vorticity, and divergence (Choux 2005;

Gachon et al. 2008- see Appendix A).

AII variables were re-gridded from the NCEP grid (2.5" latitude by 2.5"

longitude) to the CGCM3 T47 grid (approx. 3.75'latitude by 3.75"longitude) (Section

3.2.3) and then standardized. The re-gridding was required since the grid spacing of the

NCEP dataset used for the statistical downscaling calibration does not correspond to the

grid spacing of the GCM output (Figure 3.1). The standardization which consisted of

subtracting the monthly mean and dividing by the monthly standard deviation for a

predefined baseline period (1961-1990) was used to reduce biases in the mean and

variances of the atmospheric fields relative to observations (Wilby et al.2004).

3.2.3 Third Generation Canadian Global Climate Model (CGCM3)

The Canadian Center for Climate Modeling and Analysis (CCCma)

(http://www.cccma.bc.ec.gç.cal) provides GCM daily data for a number of surface and

atmospheric variables for the CGCM3 T47 version which has a horizontal resolution of

roughly 3.75" latitude by 3.75' longitude and a vertical resolution of 31 levels. CGCM3

is the third version of the CCCma Coupled Global Climate Model which makes use of a

significantly updated atmospheric component AGCM3 and uses the same ocean

component as in CGCM2 (http://www.cccma.ec. gc.calmodels/cgcm3.shtml).
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Data was obtained for CGCM3 clìmate of the 20th Century (20CM3) experiments

and the IPCC Special Report on Emission Scenarios (SRES) AlB, A2 and Bl scenarios

fortwo future decadal periods (Figure 5.1). The SRES series are characterized as (IPCC

2000):

o SRESAIB: The AIB scenario (A1B) is a subset of the A1 family in which the

technological emphasis is a balance between all energy sources (fossil-fuels

and non-fossil energy sources). The A1 family is characterized by rapid

economic growth, the quick spread of new and efficient technoÌogies and a

global population, which peaks by 2050 and declines after.

. SRESBI: The Bl storyline (81) and scenario family has the same global

population as the Al storyline which peaks by 2050 and then declines.

However, it has a rapid change towards an information and service economy

with the introduction of clean and resource-efficient technologies and a

reduction in material intensity. There is an emphasis towards global solutions

to social, economic, and environmental sustainability.

o SRESAZ: The A2 storyline and scenario family (42) is a more divided world

with self-reliant nations and a continuously increasing global population. The

economic development is regionally oriented and there are slower, more

fragmented technological changes and per capita economic growth.

Tmax, Tmin, and precipitation were extracted from the daily grid point output of
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the CGCM3 for the grid point closest to each station. In addition, the same predictor

variables as those obtained from NCEP were extracted and derived except in this case no

re-gridding of the data was required. CGCM3 predictor variables were standardized with

respect to their 1961-1990 monthly mean and monthly standard deviation for both the

current and future periods.
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Ghapter 4
Solar Radiation

4.1 lntroduction

Historical meteorological data sets often have missing records. This poses a problem for

models that require inputs of missing variabÌes. For example, many sites across central

Canada have not recorded solar radiation which is an input for LARS-WG and is often

used in hydrologic models. In order to fill the gaps in missing records, certain weather

generators have been developed to derive the missing variables based on the ones that are

readily available at the sites.

Climatic Data Generator (ClimGen) is a weather generator that is capable of

generating solar radiation data, along with many other meteorological variables, based on

variables which are already recorded (Tmax, Tmin, and precipitation) (Nelson 2001).

This weather generator has been selected to simulate solar radiation at a series of sites in

central Canada.

4.2 Climatic Data Generator (ClimGen): Solar Radiation

Solar radiation is estimated from temperature in ClimGen, using the procedure described

by Bristow and Campbell (1984) and modified by Donatelli and Campbell (1998). In this

procedure, daily solar radiation (S) is estimated from the product of extraterrestrial solar
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radiation (S,,) and the daily total atmospheric transmittance (7,):

S, = 4 S, Eq. 4.1

where S,, is computed using the method described in Allen (1998), and Tt is given as a

function of the daily temperature amplitude (A I as:

T = Al, -,-a"'U'''-'t¿rr:'r1lr """ I
' L ] uq'4'2

where A represents clear sky transmissivity, B is a fitted-parameter computed using AZ,

and LT is the temperature amplitude computed as (Bristow and Campbell 1984):

AT =TtnQ.\ i

f-,n, + f-,n,-,
Bq. 4.3

where the subscript i is a daily index. The terms aclj7o,,s and adj7,,,¡,, are adjustment factors

that are functions of daily average and minimum temperatures, respectively. These are

given by Donatelli and Campbell (1998):

fì ¡517'rr! 
)adi ru,r= 0.01J e"

T
adjrn^= e+!-

1,,

Eq. 4.4

Eq. 4.5

The values of A, B, and 7,,, are determined from observed weather data. The clear-sky

transmissivity,A, isdeterminedastheaverage Sr/So, ratioforcleardaysinthedatabase.

Once the value of A is determined, the parameters T,r, and B are optimized to minimize

the error of estimated versus measured S, values.

4.3 Sites for Evaluation

Three sites were selected to evaluate ClimGen on its ability to generate solar radiation

(Table4.1). These sites have a sufficient amount of solar radiation datarecordedto
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Table 4.1:Sites for evaluation of ClimGEN

Statiotz Name Intifude ("N) Lotxgitude ("W) Elevation (m) Years of Record

The Pas A
Thompson A
Winnipeg A

53.91
55.80
49.92

-101.10
-91.81
-91.23

210
222
239

49
32
41

compare the observed records with the simulated values.

4.4 Methodology

The following statistical indices were used to evaluate the generated solar radiation data

against the observed values at the sites:

The root mean squared error (RMSE) calculated as:

RMSE = Eq. 4.6

where ¡z is the number of values, and O¡ and E¡ are the itl'observed and estimated values.

The lower limit of RMSE is 0, indicating perfect agreement between the observed values

and the generated values.

The relative error (RE):

RMSE
RE= Eq. 4.7

where O is the mean of the observed data. The lower limit of RE is 0, indicating perfect

agreement between generated and observed values.

The Willmott (1982) index of agreement (cl):

Ito, - E,)'
i=1
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ItE,-o,)'
.t t i=l

å(lt'l*l'"1)'

Eq. 4.8

where Ei =n, - O and Oi = O, - O. The index of agreement r/ranges between 0 and l,

where a value of 1 indicates perfect agreement.

The coefficient of determination (R2) of the regression between observed and

estimated values, with R2 < 0.85 considered as poor.

Box plots and bar charts were also developed to visually compare the generated

results with the observed data.

4.5 Results and Discussion

The statistics used to evaluate the simulated daily solar radiation with the observed values

for the three sites are shown in Table 4.2. Box plots which compare the simulated solar

radiation with the observed data on a monthly scale are shown in Figure 4.7. Bar plots of

the mean monthly solar radiation at the each site are shown in Figure 4.2 to Figure 4.4.

The values in Table 4.2 show that the observed mean over the 1961-1990 period

compares closely with the values generated from ClimGen. The RMSE and RE are close

to zero indicating good agreement between the simulated and observed values. Finally,

the Willmot index (d) and the R2 are both close to one, again indicating good model

agreement between the simulated and observed values at all three sites.

The box plots and bar plots for Thompson, The Pas, and Winnipeg (Figure 4.2 to
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Figure 4.1: ClimGen boxplots

Figure 4.2: ClimGen monthly bar plots at The Pas
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50



Chapter 4 Solar Radiation

Thompson

6
!
.E

c
o
.gþ
É
!
o

(/)

15

10

õ
!

E

Co
G
Eõ
É.

6õg)

Figure 4.3: ClimGen monthly bar plots at Thompson
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Figure 4.4: ClimGen monthly bar plots at Winnipeg

Winnipeg
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Table 4.2: Statistics from ClimGEN

Station Name Mean (Obs) Mean (Gen) RMSE RE R2

The Pas A
Thompson A
Winnipeg A

t2.0410
t1.4232
13.2853

10.1189
1 1.8568

13.4432

0.2351 0.0195
0.210'7 0.0237

0.2627 0.0198

0.9994 0.878 r

0.9868 0.9079
0.9536 0.89r 6

Figure 4.4), all show good agreement between the simulated solar radiation values from

ClimGen and the observed data.

4"6 Conclus¡ons

The results show that ClimGen is capabÌe of generating solar radiation data with values

similar to the observed records at the Thompson, The Pas, and Winnipeg stations. It can

be concluded that ClimGen is suitable to generate missing solar radiation at sites in

central Canada where values of Tmax, Tmin, and precipitation are recorded. Based on

this analysis, ClimGen is used in this study t'o generate solar radiation at the Kenora and

Sioux Lookout sites where solar radiation data was not recorded.

52



Ghapter 5
Methodology

5,1 Historical Trend Analysis

Recent changes in the mean and variance (climatic trends) of temperature and

precipitation can provide useful information for some impact and adaptation studies.

Climatic trends may be identified in historical climate records provided that the records

cover a long enough period of time (typically more than 100 years). In Canada much of

the observational network in the north was not established until the late 1940s and is very

sparse. In addition, the observational network has changes in station locations, in

instrumentation, and in observing practices that have caused heterogeneities in the

climate records. Reliable trend estimates cannot be made before these heterogeneities

issues are adequately resolved. A recently created database of temperature (Vincent and

Gullet, 1999) and precipitation (Mekis and Hogg, 1999) which attempts to remove these

heterogeneities was used in this study for the period of 1941-2000. The relatively short

time frame of observations in Canada interferes with the proper identification of

statistically significant trends. Nevertheless the data available can be used as a first

attempt to examine climatic trends.

First, the Mann-Kendall trend test is applied to determine the direction of any
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trend and its significance, and then the Sen Slope Estimator is used to assess the

magnitude of the observed rates. Details of these two methods are as follows:

The non-parametric Mann-Kendaìl test for trend has a null hypothesis that there

is no temporal trend in the data values (Ho: no trend). It is based on the statistic

S which is the difference between the numbers of pairwise slopes that are

positive minus the number that are negative. Each pair of observed values (yi,

yj), i > 7 of the random variables is inspected to determine the number P of

cases where )¡ ) )¡ and the number M of cases where yi < y I . Let S be defined

as .S = P - M, and the test stâtistics Z as:

(s-1)/ ø.

0

(S+l)/o',

ifs>0

ifS=0

ifs<0

Eq. 5.1

Eq. 5.2

Eq. 5.3

where

ar=

ß

o- = 
lt8 

t"@ -1)(2n+5)-lw o@, -7)(2w,,+5)l (ties occur)

where: g represents the number of tied groups, wp represents the number of

data points in the pth group, and n represents the sample size.
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When the sample size (rz) is greaterthan 10, the test statistics (.f approximately

follows the standard normal distribution. The hypothesis Ho (no trend) is rejected at a 5Vo

significance level against the alternatives:

o Ho: no trend

o H¡ : trend (with no sign) - reject H" if lzl ) zo.g.ts

o H2: (an upward trend) - reject Ho if Z ) zo.ss

o H3: (a downward trend) - reject Ho if Z ( Zo.os

" The non-parametric Sen Slope Estimator which is insensitive to outliers is

computed to quantify the magnitude of trend. The slope b¡ is first computed

between each possible pair of data points (xt, yi) and (x¡, y¡).

b,,=D" x¡-xj
Eq. 5.4

no

the

The trend estimate is the median of all the pairwise slopes. If there is

underlying trend, the median would be near zero indicating approximately

same number of negative and positive slopes (USEPA 2006).

5.2 Statistical Downscal¡ng

GCMs have uncertainties related to parameterization schemes and model structures as

described in Section 2.3.2. As a result of these uncertainties, GCMs vary in their

accuracy in reproducing observed atmospheric and surface variables across space and

time (Gachon et al. 2005). In a comprehensive climate impact study, the skill of any

downscaling model must be tested using a variety of climatic conditions as well as a
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range of GCMs. Three climatic regions in central Canada were selected for this study

and are described in Section 3.2.3. Dt¡e to limited GCM data availability, only one

climate model experiment CGCM3 was selected for evaluation.

A GCMs ability to simulate near surface variables (predictands) should be

performed at the start of climate impact studies to identify the potential value gained from

downscaling. Therefore, after a set of downscaling results have been developed, the

value added from downscaling relative to the raw GCM output should be evaluated.

Verification of the GCMs ability to simulate upper atmospheric variables

(predictors) is required prior to any downscaling using SDSM. The verification should

identify predictors that have a large bias when compared to NCEP and which should be

removed prior to downscaling. The choice of predictor variables is one of the most

significant steps in the development of the SDSM. In this study, the predictors were

selected as follows:

1) The explained variances of all predictors were derived in groups of approximately

six to eight at a time. In each group typically one to three predictors had the

highest explained variance and were set aside.

2) All the predictors set aside were then assessed to see how correlated they were

with each other. This was done since there were instances when predictors had a

high explained variance but were also highly correlated with other predictors. A

specific predictor will not necessarily add information if it is highly correlated
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with other predictors.

3) Scatterplots were developed between the predictors and predictands. This was a

visual inspection to indicate the nature of the relationship (i.e. linear) and whether

or not any transformations were required.

4) Typically no more than six predictors were selected since any additional ones

over this do not add to the model processes in a significant way.

5) The final selected predictors were a combination of moisture variables, circulation

variables, and surface temperatures as described in Section 2.5.

Prior to constructing climate change scenarios with SDSM and LARS-WG, the

models were evaluated by their ability to simulate mean observed climatic conditions as

well as extremes of both temperature and precipitation. According to Wilby et al. (2004),

statistical downscalìng methods are often calibrated in ways that are not particularly

designed to handle extreme events which are critical in some impact studies. Fourteen

indices were selected to evaluate SDSM and LARS-WG based on their ability to simulate

mean observed climate conditions and extreme events (Table 5.1). These were based on

indices used by the Expert Team on Climate Change Detection Monitoring and Indices

(http://cccma.seos.uvic.calETCCDMVsoftware.shtml) (RClimdex), in the European

Statistical and Regional Dynamical Downscaling of Extremes for European Regions

(http://www.cru.uea.ac.uk/proiects/stardex/) (STARDEX), and in various other studies

(Gachon et al.2005:. Mekis and Vincent 2005).
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Table 5.1: Evaluation indices

Precipitation Basic Variables
Mean Precip. (mean) Mean precipitation (mm/day)

Standard Precip.(std) Standard deviation of precipitation (mm/day)
Deviation

Pre cipitation Extreme I ndice s

Extremes Rx5 Greatest 5 days total rainfall
CDD Consecutive dry days

Rg5pTOT 95'h percentile of rainday amounts

Temp erature B asic Variable s
Mean Tmin (mean) Mean minimum temperature

Tmax (mean) Mean maximum temperature
Standard Tmin (std) Standard deviation of minimum temperature
Deviation

Tmax (std) Standard deviation of maximum temperature

Te m p e ratu re Extreme I n di c e s

Daily variability DTR Average diurnal temperature range
Cold extremes TminlOpb 10'h percentile of daily min temperature

TmaxlOpb 10'h percentile of daily max temperature

Warm extremes TmingOpb 90'h percentile of daily min temperature

TmaxgOpb 90'h percentile of daily max temperature

For LARS-WG, data from 1961-1990 was used for the calibration of the model

and to establish the parameter file. One hundred series of synthetic values were then

generated for verification to compare with observed climate data indices (Table 5.1).

For the calibration of SDSM, predictors from NCEP (1961-1990), interpolated

onto the CGCM3 grid, were used. After the model was calibrated, predictors from the

calibration period were used to generate 100 ensembles of synthetic daily values for

verification purposes and these simulations were compared with observed climate using

the indices described in Table 5.1. To ensure consistency with LARS-'WG, 100 series of

synthetic ensembles was generated by SDSM and the ensemble with the highest
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correlation to the overall ensemble median was selected. Once SDSM was calibrated

using NCEP predictors, similar ensembles of synthetic variables using predictors frorn

CGCM3 were generated.

After the calibration and evaluation of SDSM and LARS-'WG over the 1961-1990

period both models were validated on an independent time period from 1991-2000. For

SDSM, a set of predictor variables over the 1991-2000 period were inputted into the

model and the predictands were generated. For LARS-WG, the observed station data

over the 1991-2000 time period was used to develop a parameter file to capture any

climatic characteristics unique to the 1991-2000 period. The difference between this

parameter file and the parameter file over the baseline period (1961-1990) was then used

to develop a 1991-2000 scenario file which was used to generate climate data.

5.2.1 Criteria to Evaluate Statistical Downscaling

The predictands (Tmax, Tmin, and precipitation) were analyzed by comparing

simulations from SDSM and LARS-WG with observed station data, focusing

simulated monthly/seasonal means and selected extreme indices (Table 5.1).

The bias is computed by comparing the observed and simulated values as follows:

the

on

B=O-S Eq. 5.5

where: B is the bias, O is the monthly or seasonal mean of the observed variable, and

O is the monthly or seasonal mean of the simulated variable.
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Graphical techniques (Q-Q plot, probability density function plots, and box plots)

were also used to evaluate the downscaling results:

Probability density function plots (PDFs) were used to determine the overall fit

of SDSM-NCEP, SDSM-CGCM3, LARS-WG and the raw CGCM3 data

compared to the observed data.

Quantile-quantile (Q-Q) plots were used to compare the modeled distribution

wìth the distribution of observed data. Q-Q plots were developed for Tmax,

Tmin, and precipitation at all the stations in order t"o analyze the fit of the

modeled distributions from SDSM-NCEP, SDSM-CGCM3, and LARS-WG.

In addition, raw CGCM3 outputs were plotted to demonstrate the GCM's

skill at simulating current climate and the added value from downscaling.

'When constructing a Q-Q plot, the quantiles of one dataset are plotted against

the quantiles of another data set. A 45 degree reference line is plotted along

with the quantiles. In theory, if the data sets come from the same

distributions, points should fall approximately along this reference line.

Box plots were used to assess the agreement of distributions modeled by

SDSM-NCEP, SDSM-CGCM3, and LARS-WG with the observed

distribution of Tmax, Tmin, and precipitation as well as all the extreme

indices. In addition, box plots with raw CGCM3 outputs for Tmax, Tmin,

and precipitation were plotted to evaluate the GCM's skill and the value

gained from downscaling. A box plot illustrates the spread of a data around
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SRESAlB SRESA2 SRESBl

Figure 5.1: CGCM3 emission scenarios and time periods

the median value. If simulated box plot range values fall outside the range of

the box plot constructed for the observed values, it indicates that the model is

underestimating or overestimating the true values.

5,3 Climate Change Scenarios

Once it has been confirmed that SDSM and LARS-WG were capable of simulating

current climate with some degree of skill, they could be used to construct climate change

scenarios. Using the data available from CGCM3, three future emissions scenarios

(SRESAIB, SRESA1, SRESBl) at each of the sites in the study area aÍe applied for two

future time periods (2050s and 2090s) to construct climate change scenarios (Figure 5.1).

This allows for an ensemble of climate change scenarios at each site for use in an impact

model.

In order to construct climate change scenarios with LARS-WG, the parameter file
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established for current climate must be perturbed according to the specific SRES and

time period. The methodology to perturb this file can be found in Section 2.7. The

model is then able to simulate future climate change scenarios at the site. Constructing

climate change scenarios using SDSM involves applying GCM predictors from one of the

SRES/time periods to the calibrated SDSM.
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Results and Discussion

6.1 Historical Trend Analysis

6.1.1 Temperature

The seasonal mean temperature trend analysis over 1941-2000 concluded that trends vary

for different regions and for different seasons. The number of stations with statistically

significant trends in Tmax, Tmin, and Tmean are presented in Table 6.1. Strong warming

is the main characteristic of the mean seasonal Tmax, Tmin, and Tmean as there were no

negative trends found. Among the four seasons, spring showed the greatest warming in

the south for Tmax, Tmin, and Tmean (approximately +1 .97"C for Tmean). V/hile in the

north the winter season showed the greatest warming for Tmax, Tmin, and Tmean

(approximately +2.04"C for Tmean). In all regions no significant trends were found for

the autumn season. For the standard deviations in each region, no general conclusions

can be drawn regarding trends. These results are consistent with those found by Zhang et

al. (2000) who studied trends across Canada. They found that spring showed the greatest

warming, with winter also showing a warming.

6.1.2 Precipitation

Statistically significant trends of mean precipitation and standard deviation are shown in
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Table 6.1: Number of sites and direction of statistically significant temperature trends (+ is
a positive trend - is a negative trend). SE: Southeast region- Kenora and Sioux Lookout,
SW: Southwest region- Winnipeg and Brandon, NE: Northeast region- Thompson and The
Pas.

Winter Spring Summer Autumn

Tmax

Tmean

Tmin

Tmax
(STD)
Tmean
(srD)
Tmin
(STD)

SW NE

00
00
00
00

00

00

SW NB SE SW

+2+1 00
+2 +l +2 +l

+20+2+l
0000

000+2

-1 0+2+1

SE SW

00
+1 0

+20
00

00

00

NE

+2

+l

+2

-1

0

0

SE

+2

+2

+2

0

0

0

NE SE

+l 0

00
00
00

0+1

0+1

Table 6.2: Number of sites and direction of statistically significant precipitation trends (+ is
a positive trend - is a negative trend). SE: Southeast region- Kenora and Sioux Lookout,
SW: Southwest region- Winnipeg and Brandon, NB: Northeast region- Thompson and The
Pas.

Winter Spring Sumtner Autumn

Frecip.

Precip.
(STD)

SE SW NE

000
+10+l

SB SW NE SE SW

00000
00000

SB SW

-1 0

00

NE

-1

+1

NE

0

+l

Table 6.2. With the exception of two stations which had statistically significant

downward trends in precipitation (one in the southeast and one in the northeast) no other

sites showed statistically significant trends.

6.2 Third Generation Canadian Global Climate Model Analysis

6.2.1 Predictand Analysis

CGCM3s ability to simulate current climate was evaluated at all six stations by
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Jan Feb l\4ar Apr May Jun Jul Aug Sep Oct Nov Dec

EWinnipeg WlBrandon DThompson trThe Pas WSioux Lookout EKenora

Figure 6.1: CGCM3 simulation monthly bias over the 1961-1990 period

comparison with historical station data over the 1961-1990 time period. The

precipitation, Tmax, and Tmin monthly mean and standard deviation bias of CGCM3 is

shown in Figure 6.1. With a few exceptions CGCM3 underestimates the monthly mean
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precipitation at all stations. On an annual basis, the mean precipitation bias was

underestimated by -17Vo (ranging from -7Vo at Winnipegto -28Vo at Thompson). On a

monthly basis the average bias was -0.32 mnr/day (-0.15 mm/day to -0.50 mm/day)

with August and September having the largest monthly mean bias of -0.68 mm/day. The

standard deviation of precipitation was consistently underestimated with an average bias

of -3.15 mm/day. June, July, August, and September reported the highest

underestimations of the standard deviation bias with an average of -5.06 mm/day. These

months are primarily comprised of convective thunderstorms which may not be captured

in the GCM simulation due to its coarse spatial scale.

On average the monthly mean of the Tmin and Tmax are over- and under-

estimated by approximately +0.66'C (Tmin) and -0.68'C (Tmax). For Tmin, the most

significant bias occurs in January, November, and December with an average bias of

+3.JZ"C, and April and May with an average bias of -2.61oC. The standard deviation for

Tmin and Tmax is underestimated by an average bias of -2.86"C (Tmin) and -2.99"C

(Tmax) with the winter months having the largest bias of -4.59"C for Tmin and for Tmax

-3.98'C.

CGCM3 clearly produces poor simulations of the surface variables Tmax, Tmin,

and precipitation at all the stations in the study area. The bias is most prominent when

examining the monthly standard deviations at each station. This indicates that CGCM3

has too little variability. CGCM3 has poor skill at simulating climate at the individual

stations because its grid values represent averages over a large area (approximately
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500hpa Geopotential Height

IFM.A.NÍJJASOND
Months

Figure 6.2: 850hpa zonal velocity predictor

300km by 300km) and therefore can not capture much of the variability of the individual

stations.

6.2,2Predictors Analysis for SDSM

As suggested by Wilby et al. (2004), predictors have to be selected based both on their

relevance to the downscaled predictands and their ability to be accurately represented by

the GCMs. The most favorable predictors must be strongly correlated with the

predictand, be physically sensible, and have the ability to capture the climate change

signal.

The monthly averages of the standardized CGCM3 and NCEP 500hpa

geopotential height predictor are shown in Figure 6.2. Despite the standardization of the

GCM predictors, anomalies continue to be exhibited when compared to the

corresponding NCEP predictors.
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Table 6.2: Selected predictors and R2 values

Station Ttnax
Predictors

Ttnin
Predictors

Precipitation
Predictors

R2R2R2

Winnipeg

Brandon

Thompson

The Pas

Kenora

Sioux Lookout

20,23,24,25

3,20,19,23,25

)(\ )) )7 )4
25

2,20,23,24

20,21,24,25

20,23

20,23

9,20,19,22,
)a )\

)(\ )) )? )4

20,19,22,24

20,23,24,25

20,22

0.78

0.78

0.11

0.16

0.1"1

0.66

0.69 12,19,20,22, 0.20
23

0.78 12,19,20,22, 0.1r
23

0.11 2,9,18,22 0.14

0.11 10,22,24 0.1I

0.83 4,12,19,20, 0.22
)) )a

0.62 4,12,19,22,23 0.24

Table 3.2 outlines the list of all candidate predictor variables. The selected

predictors for each predictand along with the explained variance are shown in Table 6.2.

The explained variance ranges between 0.62 and 0.83 for Tmax and Tmin and between

0.11 and 0.24for precipitation for all stations. The relatively low explained variance for

precipitation underlines the more stochastic nature of precipitation occurrence and

magnitude, and the difficulty in capturing the characteristics of the variability of

precipitation in the downscaling processes (compared to temperature), as suggested by

other studies (Dibike et al.2007: Gachon et al. 2005).

The predictors chosen for this study were based on a combination of moisture

variables, circulation variables, and surface temperatures. This combination was selected

to ensure that projected future temperature and precipitation scenarios are realistic by

taking into account the processes which may dominate in the future (Section 2.5). This is

in agreement with other studies such as Gachon et al. (2005) and Huth (2004), which

have shown that the use of categories of predictors is superior to that of predictors from
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q6s

260 265 270 275 280

Longitude (degree East)

Figure 6.3: Correlation map (Tmin & 500hpa) at Winnipeg

a single category for downscaling temperature and precipitation.

Correlation maps were constructed to determine the optimum location for

selection of predictors (Gachon 2001), Figure 6.3 illustrates the predictor variable

"500hpa geopotential height" and its correlation with Tmin at the Winnipeg station. This

correlation map indicates that the maximum corelation between the predictor and

predictand was the grid cell closest to the predictand. Some stations indicate a maximum

correlation a few grid points away from the predictands. The difference between the

correlation value at this grid point and the one closer to the predictand was too small to

produce a significant difference in the performance of the downscaling model. Since the
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majority of the maximum correlated grid points were closest to the station of interest, the

predictors closest to the grid point of the stations were used for downscaling.

6.3 Downscal¡ng Results

SDSM and LARS-WG were used to generate climate data for six stations described in

Section 3.1 (Winnipeg, Brandon, Sioux Lookout, Kenora, Thompson and The Pas). The

model outputs (SDSM-CGCM3, SDSM-NCEP, and LARS-WG) were compared with the

statistics of observed data of Tmax, Tmin, and precipitation for the calibration period

(1961-1990) and the validation period (1991-2000). Evaluation statistics are the means,

standard deviations, the selected percentiles (the 95th percentile of rain day amounts, the

1Oth and 90th percentile of Tmax and Tmin), the maximum number of consecutive dry

days, the greatest five day total rainfall, and the average diurnal temperature. In the

model evaluation both SDSM-NCEP and SDSM-CGCM3 were tested. Although SDSM-

NCEP can not be used for climate change simulations, it is useful to understand how well

SDSM performs when provided with NCEP input as opposed to GCM input. This would

demonstrate if the simulations degraded when predictors are taken from the GCM rather

than NCEP and would highlight potential deficiencies in the GCM predictors which are

propagating to SDSM. All the stations in the study area exhibited similar evaluation

results and therefore The Pas was used as a representative station. Only evaluation

statistics that are significantly different are noted.
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Figure 6.4: Quantile-quantile plots for precipitation (in mm/day) at The Pas (1961-1990)

6.3.1 Calibrat¡on Period (1961-1990)

6.3.1.1 Precipitation

A quantile-quantile (Q-Q) plot for observed daily precipitation and raw CGCM3, SDSM-

NCEP, SDSM-CGCM3 and LARS-WG output at The Pas is shown in Figure 6.4. The

downscaled models (SDSM and LARS-WG) have vastly improved the frequency

distribution over the raw CGCM3 model by reducing the underestimation of all

percentiles and especially the upper quantiles of daily precipitation. SDSM using

CGCM3 predictors generally underestimated the precipitation more than SDSM using

NCEP predictors or LARS-WG. Results were similar for the remaining five climate

stations (not shown).

Probability density functions (PDFs) are used to compare CGCM3 and the
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Figure 6.5: Precipitation probability density functions (Gamma Fit) at The Pas (1961-1990)

downscaled precipitation with the observed statistical distribution at The Pas. The PDFs

in Figure 6.5 represent the gamma fit distribution to the observed as well as raw CGCM3,

SDSM-NCEP, SDSM-CGCM3 and LARS-WG precipitation. The plots show that the

downscaled model results all are closer to the observed data than raw CGCM3.

Seasonal daily box plots of precipitation for the calibration and validation periods

at Winnipeg, Brandon, Kenora, Sioux Lookout, Thompson, and The Pas were constructed

to compare the seasonal mean simulated values with the observed mean. The Pas is

presented as a representative station in Figure 6.6. In general, the downscaling results for

daily precipitation at each of the six stations reproduce the observed values well. The

plots show that LARS-WG, SDSM-NCEP and SDSM-CGCM3 were generally in better

agreement with the observed values both for the median, the inter-quartile-range (IQR)
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values and number of outliers than CGCM3. The downscaled information appears to be

an improvement over CGCM3 in all seasons and for all stations. The underestimation of

the IQR range and extremes from CGCM3 was significantly reduced by downscaling.

The IQR and extremes were generally better reproduced on average by LARS-WG,

followed by SDSM-NCEP and then SDSM-CGCM3 with no obvious advantage in either

of the latter two downscaling techniques. Similar results were obtained on a monthly

scale (not shown).
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Figure 6.7 z Bar plots of bias for seåsonal meâns and standard deviations of precipitation (in
mm/day) at The Pas.

The seasonal bar charts of the mean and standard deviation of precipitation at The

Pas are presented as a representative sample in Figure 6.7. This figure shows that the

precipitation simulated by CGCM3 has a strong bias in most seasons, as CGCM3

underestimates the precipitation for mosi of the year. Both downscaling models (LARS-

WG and SDSM-NCEP) are much closer to the observed values with smaller, generally

positive, biases. SDSM with CGCM3 predictors exhibits a larger bias in the summer and

autumn. SDSM-NCEP and SDSM-CGCM3 generally underestimate the standard

deviation for precipitation. Generally LARS-WG results are closer to the observed

values for the standard deviation than SDSM using CGCM3 or NCEP predictors. The

results in Figure 6.7 also demonstrate that the statistical downscaling has improved

the overall results from CGCM3 by reducing the biases observed in the seasonal

mean and standard deviations. Based on the means, there are no significant differences
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between the SDSM-NCEP and LARS-WG precipitation results. Similar results were

observed on a monthly basis (not shown).

The statistical downscaling performances for precipitation at the six stations

in this study are summarized in Figure 6.8. This figure illustrates the relative biases for

precipitation, on a seasonal basis, for each station. The results demonstrate that the

downscaled data from LARS-WG and SDSM-NCEP give the best performance. Results

from SDSM-CGCM3 also have smaller biases than CGCM3 in most of the cases,

although there are occasional overestimation of precipitation in autumn and winter and

underestimation in the summer. The precipitation from CGCM3 shows significant biases

for most of the stations and for most seasons except spring and winter. The results show

that SDSM-NCEP and LARS-WG biases are relatively small, while SDSM-CGCM3

biases are usually Iarger. Generally, there does not appear to be any major difference in

the precipitation downscaling performances between stations or seasons or any systemic

bias between seasons or models.

Seasonal bar plots are used to compare the raw CGCM3 and downscaled

precipitation indices for the 95th percentile, five day total rainfall, and consecutive dry

days (CDD) wìth the observed statistical distribution (Figure 6.9):

o For the 95'h percentile indices, CGCM3 generally shows a negative bias while the

two downscaled models both show a general moderate positive bias for this index,

with the exception of the spring and summer season for SDSM-NCEP. The other

five stations reported similar seasonal results for the 95tl' percentile with
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Figure 6.9: Seasonal biases of precipitation indices (5 day total rainfall, 95th percentile
precipitation, and CDD) at The Pas for the calibration period.

LARS-WG generally producing the smallest bias range for all the stations.

SDSM using NCEP predictors produced a bias range of -18.39 mm to +18.18 mm

while SDSM using CGCM3 predictors gave a slightly smaller bias range of

-9.59 mm to +11.59 mm. Overall, LARS-WG had the best agreement with

observed values.

For the five day total rainfall, the results at The Pas generally show that the

downscaled model results are closer to the observed data than the raw CGCM3

data, with all models generally having negative bias. LARS-WG generally has a
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smaller bias than SDSM using NCEP and CGCM3 predictors, and SDSM using

NCEP predictors generally had a smaller bias than SDSM using CGCM3

predictors. Overall, LARS-WG produced the best overall results, with a bias

between -6.6 mm and +3.4 mm for all stations.

For CCD, the results at The Pas show that generally the downscaled model results

are closer to the observed values than the raw CGCM3 values, with all models

generally having a negative bias. LARS-WG generally had a smaller bias than

SDSM using NCEP and CGCM3 predictors. SDSM using CGCM3 predictors

generally has a smaller bias than SDSM using NCEP predictors. While SDSM-

CGCM3 produced a generally smaller bias for The Pas, LARS-WG again

produced the best results for the remaining five stations, with a bias less than

-3.39 days and +3.30 days for all stations, while SDSM using both NCEP and

CGCM3 predictors had a bias range of -5.41 days to +2.13 days and -5.83 days

to +1.23 days, respectively.

6,3.1.2 Temperature

Probability density functions (PDFs) are used to compare CGCM3 and the two

downscaling models (LARS-WG and SDSM) with the observed statistical distribution of

Tmax and Tmin. The results are shown in Figure 6.10 for The Pas. These PDFs

demonstrate the probÌems associated with the distributìon of raw temperature data from

CGCM3, especially in simulating variability and extreme at all stations. These plots also

illustrate how well the downscaled data reproduce the statistical distribution of the
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Figure 6.11: Quantile-quantile plots for Tmin and Tmax at The Pas (1961-1990)

observed data including the extremes and confirm that the downscaled data have

improved the simulated distribution of Tmax and Tmin when compared to CGCM3. The

results show that downscaling has vastly improved the simulated distribution of Tmax
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and Tmin. Similar 
, 

results were obtained for the remaining five climate stations.

Generally, simulations are better with NCEP predictors than with CGCM3 predictors.

The quantile-quantile (a-a) plot for Tmax and Tmin at The Pas obtained with

CGCM3, SDSM-NCEP, SDSM-CGCM3, and LARS-WG are shown in Figure 6.11.

Generally, CGCM3 is overestimating the lower extreme values and under-estimating the

upper extreme values. The downscaled models vastly improve the frequency distribution

over CGCM3 by reducing the over- and underestimation of the lower quantiles of Tmin

and Tmax. Results were very similar for the remaining five stations (not shown).

Seasonal box plots of the daily Tmin and Tmax at the Winnipeg, Brandon,

Kenora, Sioux Lookout, Thompson, and The Pas stations were prepared to compare the

seasonal mean values with the observed and simulated results over the calibration and

validation periods. Generally, the downscaling results for daily Tmin and Tmax at each

of the six stations reproduce the observed values well. The Pas station is presented in

Figure 6.6 as representative box plots of the seasonal mean values of temperature. These

plots show that the performance of LARS-WG, SDSM using NCEP predictors (SDSM-

NCEP) and SDSM using CGCM3 predictors (SDSM-CGCM3) were generally in better

agreement with the observed values both for the median and the IQR values than the

CGCM3. The downscaled information appears to be an improvement over CGCM3 in all

seasons and for all stations. The underestimation of the IQR and the maximum and

minimum extremes (extremes) of the Tmin and Tmax distribution range are significantly

reduced by downscaling, and the over- and underestimations of the median values are
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Figure 6.12: Seasonal biases of Tmin and Tmax at The Pas (1961-1990).

also reduced. Generally, LARS-WG and SDSM-CGCM3 tend to overestimate the

median, Tmin and Tmax in the spring season and underestimate them in the autumn

seasons. Overall, SDSM-NCEP has a better ability to reproduce the IQR, the extremes of

the Tmin and Tmax distribution range, and the median values for all stations in all

seasons than SDSM-CGCM3 and LARS-V/G. Similar results were obtained on a

monthly scale (not shown).

Bar plots of biases in the seasonal mean and standard deviation of Tmax and

Tmin associated with both CGCM3 and the downscaled models at each of the six climate
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stations have been plotted. Since the results for the stations are very similar, a bar plot of

a representative sample (The Pas) is presented in Figure 6.12. This figure demonstrates

that Tmin and Tmax data simulated by raw CGCM3 have strong biases (in terms of

seasonal mean and standard deviation) for most of the seasons. CGCM3 data shows a

warm mean bias for the winter and summer season while the rest of the seasons have a

cold mean bias, similar to the results suggested by the seasonal PDFs. For the winter and

summer seasons, the mean seasonal temperature bias for CGCM3 is higher than those

corresponding to the downscaled models. The downscaled data from SDSM using

CGCM3 predictors contain negative biases in the spring season and positive biases in the

autumn season. The bias of SDSM-CGCM3 is larger than SDSM-NCEP. SDSM-NCEP

did not show any large bias in any season, while LARS-WG showed a negative bias

during the spring and summer season and a positive bias in the winter season. The

seasonal bias in standard deviation between the observed and simulated values shown in

Figure 6.12 suggest that the CGCM3 systemically underestimates the temperature

variability for all seasons, while the downscaled models show considerably less bias with

minor over- and underestimation of the variability. As noted in the PDF curves, Figure

6.12 also shows that SDSM-CGCM3 reduces the temperature biases compared to the raw

CGCM3, in terms of both seasonal mean and standard deviation values. In general, while

the downscaling performed with the NCEP predictors gives the best agreement with

the observed data in terms of mean seasonal temperature and their standard deviations,
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the downscaling from LARS-WG also gave very good results. Similar results were

obtained on a monthly scale (not shown).

Over all the six climate stations, CGCM3's seasonal temperature biases range

between -4.2"C and +4.5'C (with the highest biases being in spring season at Brandon

and the lowest bias being in the summer season at Kenora) while that of downscaled

models biases are smaller in the order of -2.0"C and +1.5'C suggesting a more

systematic problem with the surface processes representation in the CGCM3 model

compared to the downscaled models (Figure 6.6).

Seasonal bar plots are also used to compare the raw CGCM3 and downscaled

temperature indices for the diurnal temperature range (DTR), the 1Oth and 90th percentile

of Tmax (Tmax10 and Tmax90) and the 10'r'and 90th percentile of Tmin (Tmin10 and

Tmin90) with the observed statistical distribution. These seasonal indices are shown in

Figure 6.13 for The Pas with observed values as well as raw CGCM3, and SDSM-NCEP,

SDSM-CGCM3, and LARS-WG. The plots show that generally the downscaled model

results are closer to the observed values than the CGCM3:

o For the DTR indices, CGCM3 generally shows a negative bias while the two

downscaling models generally show a moderate positive and negative bias for

this index. The other five stations yield similar results for the DTR with LARS-

'WG generally showing the smallest bias range (-0.15'C to +0.41"C). SDSM

using NCEP predictors had a bias range of -0.46'C to +0.40'C while SDSM
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using CGCM3 predictors had a slightly larger bias range of -0.48"C to +0.59'L.

Overall, both downscaling models have similar results.

For the Tminl0 and Tmin90 results, CGCM3 generally has a negative bias for

Tmin90 and a positive bias for Tmin10, while the downscaled model results all

generally have a closer relationship to the observed data than CGCM3 plots at

The Pas. SDSM-NCEP generally has the smallest bias for Tminl0 followed by

LARS-WG and then SDSM-CGCM3. For the remaining five stations, the results

were similar with LARS-WG yielding the smallest overall bias for Tmin10 and

SDSM-NCEP yielding the smallest overall bias for Tmin 90.

For the Tmax10 and Tmax90, CGCM3 tends to have a negative bias for Tmax90

and a positive bias for Tmaxl0 at The Pas. SDSM-CGCM3 tends to

underestimate Tmax10 and Tmax90 for the spring season and overestimate the

autumn season, while SDSM-NCEP generally has the smallest bias of the two

downscaling models, with LARS-WG having slightly higher bias than SDSM-

CGCM3. Similar results were obtained with the other five stations for Tmaxl0

and Tmax 90. LARS-WG generally has the smallest bias for TmaxlO and

Tmax9O followed by SDSM-NCEP and then SDSM-CGCM3.

6.3.2 Validation Period (1 991-2000)

Over the validation period (1991-2000), Tmax, Tmin, and precipitation values

downscaled from SDSM and LARS-WG were analyzed for their basic distribution, mean,

median values, and variability. Generally, the downscaling results for Tmin and Tmax at
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Table 6.3: Average of downscaled results for precipitation, Tmax, and Tmin for Winnipeg,
Brandon, Kenora, Sioux Lookout, The Pas and Thompson for all four seasons during the
calibration and validation periods. Where Ql and Q3 represent the 25th and 75th percentile
respectively.

Calibration Period
(1961-1990)

Validation Period
(1991-2000)

Qr
Median

Q3

Qr
Median

Q3

Qr
Median
Q3

-0.1 5

-0.02
+0.10

-0.08
+0.06
+0.1 3

+0.08
+0.10
+0.12

-0.53
-0.1 3

+0.36

SDSM. SDSM- LARS-
CGCM3 NCEP WG

Precipitation bias (mm/day)

SDSM- SDSM- LARS-
CGCM3 NCEP WG

Precipitation bias (mm/day)

-0.23 -0.14 +0.06

-0.03 +0.04 +0.12
+0.26 +0.10 +0.15

Tmax bias (oC/season)

-0.49 -0.59 -0.49
+0.19 -0.36 -0.22
+1.54 +0.10 +0.22

Tmin bias ("C/season)

-0.12 -0.16 -0.49
+0.80 +0.17 -0.07
+1.62 +0.35 +0.35

Tmax bias ('Clseason)

-0.70 -0.r0 -0.49
-0.21 +0.01 -0.26
+0.08 +0.04 +0.12

Tmin bias (oClseason)

-0.70 -0.07
-0.32 +0.00
+0.14 +0.05

each of the six stations reproduced the observed values well over the calibration and

validation periods. The Pas station is presented as representative sample with box plots

of the seasonal mean values of Tmax and Tmin shown in Figure 6.6. These plots show

that the performance of SDSM using NCEP and LARS-WG is very good and almost as

good over the validation period as it is over the calibration period. Results obtained for

the downscaled data at the other five stations (V/innipeg, Brandon, Kenora, Sioux

Lookout and Thompson) were similar (not shown here). Generally, over the validation

period SDSM using NCEP predictors and LARS-WG were able to reproduce the median

characteristics of seasonal mean precipitation reasonably well as shown in Figure 6.6

for The Pas. SDSM using CGCM3 predictors has difficulty reproducing the seasonal

mean, the IQR, and the outliers.
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The distribution of the seasonal median (50th quartile),25'l'quartile (Q1), and 75th

quartile (Q3), values averaged at all six stations over the validation and calibration

periods are shown in Table 6.3. The seasonal mean values of the observed and simulated

results for the calibration (1961-1990) and validation (1991-2000) periods were

compared. With a few exceptions, the downscaling results for Tmax, Tmin, and

precipitation values at each station reproduce the observed values reasonably well. For

precipitation, the performance of LARS-WG and SDSM using NCEP predictors is very

good and almost as good over the validation period as it is over the calibration period.

While SDSM using the CGCM3 shows little change in the median values over the

validation period, there is a noticeably increased bias in Q1 and Q3 over the validation

period. For Tmin and Tmax, the performance of LARS-WG is also very good and almost

as good over the validation period as it is over the calibration period. SDSM using NCEP

predictors has slightly more bias over the validation period than the calibration period

with an increased bias for the median values and the Qi and Q3 values. SDSM using

CGCM3 predictors does not perform as well as LARS-WG and SDSM-NCEP with

considerably more bias in the validation period compared to the calibration period. For

Tmax, the Q1 and Q3 values for SDSM-CGCM3 range from -0.70"C to +0.08'C (0.78"C

range) for the calibration period and increased to -0.49oC to +1 .54"C (2.03'C range) for

the validation period.
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6.3.3 Summary of Downscaling Results

In summary, it was found LARS-WG was able to produce daily precipitation statistics in

closer agreement with those of the observed data, while SDSM provided extreme

temperature statistics more accurate than the LARS-WG. The comparison between some

selected statistics of observed climate data and those of climate data generated by the two

models indicates that LARS-V/G yields precipitation statistics that are more comparable

to those of the observed data than the SDSM. In addition, SDSM-NCEP and SDSM-

CGCM3 demonstrated weakness in simulating the precipitation extreme indices. Since

confidence in future scenarios at a local scale to a large extent depends on the ability of

the downscaled model to reproduce the observed climate regimes, it would be difficult to

have great confidence in precipitation downscaled for future climate scenarios if the

impact model required accurate representation of precipitation extremes. In the selection

of predictors for precipitation in the SDSM process there was a relatively low explained

variance which resulted in the inability of SDSM to capture the characteristics of the

variability of precipitation.

With respect to temperature the comparison between some selected statistics of

observed climate data and those of climate data generated by the two models indicates

that SDSM and LARS-WG were able to describe adequately the observed statistics of

daily temperature extremes, and SDSM was found to be somewhat more accurate than

LARS-WG.
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In many instances, SDSM with CGCM3 predictors degraded the performances of

SDSM. This was due to a bias present in the predictor variables which propagated into

the downscaling model. Ideally, various GCM model predictors should be tested with

SDSM to determine if this was just a strong bias present in CGCM3 predictors or a

weakness of the downscaling model itself.

6.4 Climate Change Scenarios

SDSM and LARS-WG were used to simulate climate change scenarios for two future

time periods (2050s and 2090s) with SRESAIB, SRESA2, and SRESBl. Figures 6.14 to

6.15 illustrate the results by presenting the simulated increase or decrease in variables

between the current (1961-1990) and the future 2050s and 2090s time periods for each of

the downscaling methods.

The results show that both SDSM and LARS-WG project an increase in the mean

temperature values at all stations with the 2090s displaying slightly larger increases than

the 2050s. LARS-WG and CGCM3 project temperatures increase between +2.5'C to

+4.5"C for all stations with all SRES while SDSM projects slightly higher temperature

increases between +2.5"C to +7.5oC. Generally simulations for LARS-WG and CGCM3

are within 0.2"C of each other with LARS-WG projecting the higher temperature

increase of the two. The lowest temperature increases were simulated for the SRESBI

scenario, while the highest temperature increases are simulated for the SRESA2 scenario.

The SRESAIB scenario simulations \¡/ere generally higher than SRESBI and lower than

SRESA2.
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In general, all models project an increase in precipitation for the 2050s and 2090s

at all stations. LARS-WG projections for future precipitation regimes are generalìy

larger than SDSM for the 2050s and somewhat mimics CGCM3, due to the nature of how

the model develops future scenarios. There aÍe a few exceptions where SRESA2

simulations from SDSM are higher than LARS-WG at some stations especially for the

2090s. SRESBI projections of precipitation are the highest with SRESA2 being the

lowest. The lowest precipitation increases were simulated for the SRESBI scenario,

while the highest precipitation increases are simulated for the SRESA2 scenario. The

SRESA1B scenario simulations were generally higher than SRESBl and lower than

SRESA2.
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Ghapter 7
Conclusions

Historical trend analysis and future climate change studies have shown that past and

future temperatures in central Canada (and around the world) are and will continue to

rise. It is anticipated that these temperature changes will impact the world's resources,

through an increase in precipitation and evaporation. Therefore, resource managers must

have a comprehensive understanding of the scope, magnitude, and timing of these

potential impacts to address future climate change.

Global climate models (GCMs) are used to project future climate change.

However, due to their coarse spatial scale they have fundamental weaknesses at sub-grid

scales, which is a critical limitation for direct use in many impact models. This study has

shown that CGCM3 exhibits strong biases in terms of means and standard deviation for

both temperature and precipitation at local sites. In order to overcome these weaknesses,

downscaling techniques have been developed. Confidence in future climate change

scenarios at a local scale depends to a large extent on how these downscaling models can

re-construct the observed climate.

In this study, two popular statistical downscaling techniques (LARS-WG and

SDSM) were evaluated for simulating precipitation and temperature series for six stations
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in the central Canada. The evaluation of these models consisted of examining their

ability to simulate means and extreme indices.

The evaluation between selected statistics of observed climate data and those of

climate data generated by the two models indicates that LARS-WG can reproduce the

daily precipitation statistics of the observed data better than SDSM. However, both

models were unable to accurately reproduce all the observed statistics of precipitation.

SDSM and LARS-WG were both able to describe the observed statistics of daily mean

and extreme temperature, with SDSM-NCEP generally more accurate than LARS-WG.

The downscaling process in both cases improved the CGCM3 output by reducing the

biases found in the raw CGCM3 and improving the variability. Therefore, the added

value from the downscaled results confirms that downscaling methods are preferred to

using the raw CGCM3 outputs.

During the selection of predictor variables in the SDSM process, it was

determined that there was a relatively low explained variance for precipitation. This is

due to precipitation's stochastic nature and indicates a potential limitation for

downscaling precipitation with this model. There was also a bias present in the predictor

variables from CGCM3 which propagated into the SDSM process. This was noted when

SDSM's skill was degraded using CGCM3 predictors. Future studies must test a suite of

predictor variables from other GCMs to determine if this is a fundamental weakness of

SDSM or just a limitation from using predictors from CGCM3. Regional climate model

(RCM) predictors could also be tested to determine if they improve the performance of
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this model, since precipitation needs mesoscale forcing and feedbacks that are better

resolved in RCMs.

Climate change scenarios from both downscaling models indicated that

temperatures for the future will continue to increase. Generally, precipitation is projected

to increase in the future as well. A climate change scenario from LARS-WG relies

heavily on outputs from the GCM to develop the scenario file. However, these surface

variables are not well simulated by the GCM, therefore the reliability of future

simulations will only be as reliable as the GCM used. SDSM relies heavily on the

selection of predictor variables which will dominate in the future. If these predictors do

not capture accurately the climate change signal, the future projections will likely not be

accurate. Both models therefore demonstrate weakness for future projections.

Future studies are required to understand the influence of predictor variables for

this study region. Even though the selection of predictors was based on theories from

other studies that determined which processes will dominate in the future, these theories

must be confirmed for this region. RCM data should also be tested to develop the

scenario file in LARS-WG. The performance of these two models must be evaluated

using data from additional GCMs or RCMs to assess the reliability of generated future

climate scenarios at local sites. In addition it is recommended that one compare the

performance of SDSM and LARS-WG using data from other sites with different climatic

conditions

In general, this study presented one method of evaluating the added value of
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downscaling using both means and some extreme indices. It also presented future

climate change scenarios derived from these downscaling models. In order to understand

how these climate change scenarios can be used in impact models, future studies are

recommended to include an applied element (i.e. hydrological impacts). This should

consider how the results might allow resource managers to make more informed

decisions on resource management to adapt to future climate uncertainty.

In terms of practical application, calibration of LARS-V/G is much simpler than

SDSM, since the calibration of SDSM is based on a complex procedure in order to be

able to successfully establish the relationships between large-scale predictor variable and

the suface weather variables at a local site.
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Appendix A

Airflow lndices

The airflow predictor variables (wind, divergence and vorticity) are derived at the standard

pressure levels from the CGCM3 raw data as follows (Gachon et al. 2008):

c The geostrophic wind (zonal (ø) and meridonal (v) components)

pressure gradients and are computed by the following equations:

llð<p
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where q = - p is the geopotential height, R is the radius of the Earth , )" and rp
oô

longitude and ìatitude respectively and Ç) is the angular speed of the Earth (7 .21 x

The divergence ( V ) term is calculated from the following equation:
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The vorticity (( ) is computed from the pressure gradients using the following equation:
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