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ABSTRACT

This dissertation presents new techniques for load-flow and

outage studies of very large power systerns.

A new technique for the load-flow calculations of integrated

nulti-terminal ðc/ac systems is developed. This technique is fast,

efficient and reliable and is therefore an improvement over known pïo-

cedures. The representation of dc systen is such that it leads to simple

and efficient calculations and saving in storage requiTement and yet

it is so general that a rnulti-terminal dc network of any configuration

and control strategies can be easily sinulated.

A new method for outage studies is developed. This inethod is

very fast and suited for single or multiple outages. It provides

voltages and active and reactive povrer flows in the post-contingency

state with acceptable accuracy.

For these new techniques the fast-decoupled nethod has been

chosen because of its inherent superiority in terms of speed of

calculation, storage requirement, reliability and simplicity in

addition to noticing its wide-spread acceptance by poh¡er industry.

Also, sparsity is ful1y exploited by using Zollenkopf's method and other

sparsity techniques.

This thesis also describes tuio ner^r diakoptical techniques for

load-flow solution of very large scale power systerns (2,000 or more buses)

using the bus-admittance matrix and the fast decoupled nethods. These

new diakoptical techniques enlarge the scope of the load-flow and outage

studies presented in this thesis by renoving the restriction imposed by

the core storage of conputers on the si ze of a system that can be solved.
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Theproposedfournewtechniqueshavebeentestedonanurnberof

power systens. Solution algorithms are presented in details and sarnple

systems are solved to show the correctness and working of the proposed

methods.
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CHAPTER I

INTRODUCTION

1.1 Background : (63 - 76)

There aTe a number of features of FIVDC transmission that have been

recognized for having the potential to reduce costs, improve the flexi-

bility and reliability of HVDC and also irnprove the performance of the

connected ac sYStems.

AllexistingHVDCsysternstransferenergybetweentwopoints

with a single rectifier station supplying a single inverter station '

the maln differences between systems being the length and type of line

between the stations, the size and number of poles and the nature of

the connected ac systems. However, the interest in nulti-terminal

operation, and dc line tapping has increased recently and sorne systens

are already planning to include such features '

Multi-terminal operation is an attractive alternative to several

two-terminal HVDC links for the following reasons:

(a)Thenetinstalledcapacityofconveltersislessthanthat

required for several two-terminal IIVDC links

(b)Thelossesinthetransmissionlinesandintheconverter

stations are lower.

(c)Theinherentoverloadcapabilityofoverheadlinescanbe

usedadvantageouslyforamoreflexiblenodeofoperation.

The potential applications of nulti-terninal HVDC systems rvould

seen to be the following:



(a) &c network interconnections .

(b) bulk power transmission ; and

(c) reinforcement of highly loaded ac networks.

The possible configurations of multi-terminal HVDC systems are

series, mesh and radial or (tee) connections.

In the case of series connected stations, the direct current ís

conmon to all stations and is controlled by one station. All the other

stations control the power by varying the inverter voltage by firing angle

control or transformer tap changer control. Operation is essentíally at

constant current equal to fu11-rated current, or some optirnum value

depending upon the variations in load demand at each station. In

comparison to paral1e1-connected stations, power reversal can be carried

out by rneans of firing control in a very short time. The series-

connected nulti-terminal system is grounded at one location only, whereas

both station neutrals in the point to point link are usually grounded.

This actually subdivides the system into two independent subsystems and

is a prerequisite for using two current controllers.

Series connection of converter stations admittedly has a nunber

of characteristics that should make it attractive to system planners.

These have to be weighed against such drawback as reduced flexibility to

future extension and higher losses during partial load. It is therefore

felt that the nain application of series connected converter stations

would be the tapping of bulk power d.c. transmission lines where the

power tapped off in one or rnore places is only a fraction of the total

link capacity.



The paralleI connection of converter stations results in an

interconnected system sirnilar to those presently used with ac. Such

a systen clearly promises the highest degree of versatility. The

common variable here is the system voltage, ãîy number of substations

can easily be added. Looking at the control aspect, transrnission

voltage would be governed by one station, all other stations control

the power via their direct current. Para11e1 connection of converter

stations would seen to be the most like1y alternative to be chosen

for a nulti-terminal FIVDC system. For power reversal in one station

on1y, polarity reversal switches are necessary with switching performed

at current zero in coniunction with the converter controls.

In most practical situations fast poT¡rer reversal is not a

necessity due to other system consideratìons and slow speed switching

would be adequate. If required, fast power reversal can be obtained

using suitable dc circuit breakers.

TWo configuations can be used, radial and mesh connections.

Their major differences are in breaker requirements and transmission

line costs. Firr the radiallyconnected systern, if any line is to be

taken out of service for naintenance, no breakers are requirecl; converter

control can be used to reduce line current to zero and disconnect switches

can isolate the lines. Of course, secure telecommunication channels for

interlocking and control setting are required during this procedure.

With the neshed system however, as a rule this is not possible.

Here, a breaker capable of switching load currents is therefore required

in any case. ft can be operated without using teleconmunication channels.

As far as transmission line cost is concerned, at a first glance, the

star connected systen seems to be more attractive. However, both



alternativesshould be compared on an equal basis, which is transmission

security.

Based on the current state of HVDC developrnent and keeping in

mind the requirements of sone nev/ systems being planned, one can, with

reasonable confidence, say that multi-terminal FIVDC transmission systems

will fonn subsystems of power transmission network in the near future.

The requirernent, therefore, is that h¡e must have digital computer

programs which are flexible and which can efficiently handle a nulti-

terminal FIVDC/ac systen for load-flow and stability studies. Hence, one

part of the research work descri:béd' in this thesis is devoted to a

detailed developnent of a technique for load-f1ow solution of integrated

multi-terminal HVDC/ac systems. The technique is superior in a number

of ways as conpared to all known procedures.

Apor^rcr system continuously experiences changes in its operating

condition. These changes can either Ï-re due to load denand variations,

planned rescheduling of povler generation, disconnecting lines and

transformers for maintenance or as a consequence of system faults.

The effect of these disturbances is investigated both during systern

planning and operation. Transient and dynarnic stability of power systems,

considering that faults are experienced at different locations, is

investigated to provide acceptable qualíty of service to the consumers.

Quite often, a fauLty element is autornatically disconnected from the

system by the protective devices. The systeln configuration, therefore,

changes. Even before the dynamic and transient performance is investi-

gated, it is advantageous to know whether {or not) the nodified system

would be stable from tne- steady state considerations alone. Also before

lines and transformers alre renoved fron the systen for maintenance and



repairs, it is essential to ensure that the nodified system would be

stable. In addition, line outage studies are a desirable part of a

comprehensive system security monitoring process. The effect of load

changes and generation rescheduling can be easily evaluated but the outage

simulation of a line or transformer is more complex because these

contingencies change the system configuration. One of the obvious

solutions is the use of the well known load-flow techniques. The use

of ac power flow solutions are too cumbersome and expensive for contin-

gency analysis. A fast and approximate technique may be sufficient in

most cases. Therefore, another phase of the research presented in this

thesis is devoted to the development of averyfast, although approxinate

technique to provide the post contingency load-flow in the event of a

single or multiple element outages. The technique requires one iteration

starting from the load flow data of the base system and identification

of outages.

The ever increasing size of present day power systems imposes

great burdens on analytical methods now in use. This is the result

of the large quantities of core storage and high computation times

required for very large povler systems. These circunstances not only

apply to the load-flow problem but to all power system problems. In

recent years, a number of papershave appeared involving piecewise

solution of large scale electrical networks. Systems are torn up into

isolated subdivisions. Each subdivision is handled independently for the

partial solution of the problem. Then, the so called intersection model

is constructed and solved for the full solution of the problem.

Known piecewise load-flow solution methods were first applied

Z anð Y matrix routines. It has been dornonstrated that tearine is

to

an



effective nethod for overcoming the size of problems that are encountered

Most of these techniques suffer from certain disadvantages as will be

discussed later. Hence, the author finds it necessary to devise a

new diakoptical technique for Y matrix load-flow solution of very

large size networks that combines all the advantages and avoids

disadvantages of already known procedures.

On the other hand, two piecewise algorithrns using Newton-Raphson

(N-R) load-flow nethod have been developed, the first by tearing the

power system and the second by nathematically tearing the Jacobian

matrix rather than the system itself. Also in these methods there

are certain limitations and sorne drawbacks that should be encountered.

Therefore, a part of the research work described in this thesis is

devoted to a diakoptical fast-decoupled load-flow solution of very large

scale networks r+hich combines many of the advantages of the existing

good nethods for both power system load-flow solutions and nurneriical

techniques. It also eliminates the drawbacks of other known techniques.

1.2 Contributions:

The research work described in this thesis rnakes at least four

contributions:

(1) A new technique for load-flow calculations of integrated

multi-terminal dc/ ac systens.

(2) A very fast technique for post contingency load-flow in the

event of a single pr rnultiple element outages.

(3) An algorithn for piecewise load-f1ow solution of very large

size power systems using the bus-adnittance rnatrix.



i4)Anew,exact,diakopticalfastdecoupledload-flowsolution

of very large seale electrical networks '

The contributions are claimed to be distinct advancement in the

current state of art.

I.3 ÐeveloPment of Chapters:

Chapter2isabriefreviewofknowntechniquesforload-flow

solution of ac Power systems.

ChapterSdetailsthedevelopmentofanewload-flowtechniquefor

an integrated nulti-tenninal dc/ ac systen'

Chapter4presentsknownnethodsandtheproposedtechniquefor

outage studies in power system planning and operation'

Chapter5presentsabriefreviewofknownpiecewiseload-f1ow

solutions and describes developnent of two new diakoptical techniques

for load-flow solution of very large size pouler systems '

Chapter6presentsthernajorcontributionsandsuggestionsfor

future work.
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CHAPTER

LOAD-FLOI^] T{ETHODS

Introduction (lJ , [2)

Load-flow calculations provide power flows and voltages for a

specified power system subject to the regulating capability of generators,

condensers and on-1oad tap changing transformers, as well as specified

net interchange between individual operating systems. This information

is essential for the continuous evaluation of the current performance of

a power system and for artaLyzing the effectiveness of alternative plans

for systems expansion to meet increased load demand. These analyses

require the calculation of numerous load-flows for both normal and

emergency operating conditions.

The load-flow problem consists of the calculation of power flor^'s

and voltages of a netrr'ork for specified terminal or bus conditions. A

single-phase representation is adequate since power systems are usually

balanced.

Associated with each bus are four quantities: the real and reactive

power, the voltage rnagnitucie and the phase ang1e. Three tlpes of buses

are represented in a load-flow calculation: A PQ bus, at which the

total injected power is specified. A PV bus, at which the total in-iected

active power is specified and the voltage magnitude is maintained at a

specified value by reactive power injection. A system slack (or swing)

bus is selected to provide the additional real and reactive potr'er to

supply the transmission losses, since these are unknown until the final

solution is obtained. At this bus the voltage magnitude and phase angle

are sDecified.

II

FOR AC SYSTEIvíS



The overall load-flow problen can be divided into the following

subproblems:

1. The fornulation of a suitable nathematical network nodel.

The rnodel must describe adequately the relationships between

voltages and powers in the interconnected system.

2. A specification of the power and voltage constraints that must

apply to the various buses of the network.

3. Nunerical conputation of the load-flow equations subject to the

above constraints. These cornputations should give us, with

sufficient accuracy, the values of all bus voltages.

4. When all bus voltages have thus been determined, we must'

final1y, compute the actual load flows in all transrnission lj-nes.

2.2 Power System Equations: (I,2)

Network Perforna¡rce Equations

The equation describing the performance of the network of a power

system in impedance form is

(E bus;= (Z bus) (I bus)

or in adrnittance form is

(2.r)

(I bus) = (Y bus) (E bus) Q.2)

The elements of Y bus natrix are calculated as follows:

The diagonal element Yi. is obtained as the algebraic sum of all

admittances incident upon node i.

The off-diagonal elements Y.. = Yji are obtained as the negatíve

of the adnittance connecting nodes i and j.
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Bus Misnatches and Solution Accuracy Criteria

The power at bus i is

**noi - jQi = Ei ri = Ei 
ol, 

tru tn G.3)

E. = i¡. "joi pl = V. "-jol11-Ll_ (*means conjugate)

Y.U = the (i,k)th elenent of the bus admittance rnatrix

= Gik * j Bik, the real and inaginary components of

power at bus i are

Since

and

P. = V= I (G., r. cos 0= ,- * B,,_ sin 0r,_) Vr_r_ 1 kei 
- ]-K ]-K l_K l_K' K

0. = \/. I lG.. sin 0.. - 8.. cos 0.. ) V.'1 t k.i 
t IK 1K 1K l_K', k

where 0., = Q. - 0,]-K1K

and kei denotes a bus k (including k = i) directly connected to

bus i.

Active and reactäve power misnatches AP, and ¡Qi are

AP, = P. (scheduled) - P.11 ]-

AQ. = Q* (scheduled) - a.-1

The nost common convergence criterion used in practice is

APi -< an for all PQ and PV buses

AQ. -( C^ for all PQ buses'1 q

where C_ and C_ are tolerances chosen typically in the rangepq

(2 .4)

(2.s)
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.01 to 10 MW/MVAR. Bus voltage-change tests are often used for load -
flow algorithms in which mismatches are not readily available. Such

tests are sensitive to the convergence rate of the solution process and

are usually used as initial stopping criteria, after which the misnatches

are computed and tested.

Line Flow Equations

After the iterative solution of bus voltages

flows can be calculated. The current at bus i

busitokis

a5

1n

completed, line

the line connectins

;-
1K

where y-,
'lK

(Ei Et) yit * F

1 Y¡t/2

line admittance

yiL = total line charging admittance

The power flow, real and reactive, is

Pit -i QL

Pr.i-jQti=

fE. - E.) v.. +-1K'/lK

*
E.

l_

*
E.

1

iit

Ei) rik * Er. Et y¡t/2

(2.6)

is P. U and

(2 .7)

fl ows

*
FF

11 ytu /2

where at bus i the real power flow fron bus i to

the reactive power is Qit

Similarly at bus k, the power flow from k to i is

bus

*
tr

K
rE.

A

l ineThe power loss in i - k is the algebraic sum of the power
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determined fron eqs. 2.6 and 2 '7 '

2.3 Solution Techniques of AC Load-F1ow Problen

2.3.1 Gauss Iterative Method Using Y bus: (1)

The solution of a load-flow problem is initiated by assuming

voltages for all buses except the slack bus. Then, currents are calculated

for all buses except the slack bus'ts" from the bus loading equation

ri - (Pi-jQr)/e. i = 1,2r,..., n

ils

(2.8)

where n is the number of buses in the network. The performance of the

network can be obtained from the equation I bus = Y bus E bus ' Select-

ing the ground as the reference bus, a set of (n - 1) sirnultaneous

equations can be written in the form

ñ

Ei = +ctr-.i. yir. Et) i=1,2,....,n (2.9)
Y. . K=l11 kli ils

The bus currents calculated from eq. 2.8 , the slack bus voltage,

and the estimated bus voltages are substituted into eq. 2.9 to obtain

a ner.{ set of bus voltages. These new voltages aTe used in eq. 2.8 to

recalculate bus currents for a subsequent solution of eq . 2.9 ' The

process is continued until changes in all bus voltages are negligible.

After the voltage solution has been obtained, the power at the slack bus

and line flows are calculated.

2.3.2 Gauss Iterative Method Usitg--l bur: (1)

Selecting air intital set of blrs voltages, bus curreÌìts are calculated
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from

I. = (P= - jQ.) / E*, - y.E. i = I,2,...., n (2.10)
1 ' 1 - -r- 1 '1 L

íl s

where yi is the Lotal shunt admittance at bus i and the shunt connec-

tions are treated as current sources.

A new estimate of voltages is then obtained from the bus inpedance

network equation

Ebus=ZbusIbus+ER (2.11)

where E^ is the vector whose elements are all equal to the voltage of
K

the slack bus and the bus inpedance matrix, formed by using the slack

bus as reference, is of dimension (n - 1) x (n - 1). Eq. (2.11)

can be expressed as follows

E.m*1 =E. i 2., rÏ i=l-,2,....,n
lSIKK

1!- r
kls ils

where 2,,- = the (i,k) th elernent of the bus inpedance matrix.
1K

rT = (Px - jak)/({)* - yr. 4
and ,.m is an iteration counter

2.3.3 Gauss-Seidel lterative Method Using Y bus: (1,3)

The bus voltage eq. 2.9 can also be solved by the Gauss-seidel

iterative methodl In this method, tite new calculated voltage ET*l ium"diatel¡'
-*nreplaces El' and is used in the solution of the subseouenl equations,
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2.3.4 Gauss-Seidel Iterative Method Using Z bus (1,4,5)

The bus voltage eqs. 2.I7 are solved one at a tjme in the

order established by the bus coding. After each equation is solved to

obtaine a new estimate of bus voltage, the corresponding bus cuffent is

recalculated. Then, the load-flow equations are given by

E.**1 = ,^ * 
tit 

2.,. tl*r * l, ,r, ,l e.rz)"i -s t=r 1K k k=i 1K n i=r,zr....,n
kls kls ils

where tft = (Pr i Ak)/(tu*t)* - ,o \*t

A similar approach by applying Gauss-Seidel to load-flow problerns

using bris inpedance matrix, is found in [ 5]. In this method, unlike [4],

ground is selected as reference bus and each l-oad is reduced into a tie

impedance to gropnd. The technique of reference I 4 I is sjrnpler and

converges in the same number of iterations as I S ] for similar-sized

systerns.

2.3.5 Newton-Raphson Method: (6 ,7,8)

The generaLized. Newton-Raphson rnethod is an iterative algorithm

for solving a set of sinnrltaneous nonl-inear equations in a¡ equal

number of unlmowns F (X) - O At a given iteration point, each

function fi(X) is approximated by its tangent hyperplane. This

Tinearízed problem is constructed as the Jacobian matrix equation

F(X) = -J AX (2.13)

which is then solved for the correction AX The square Jacobian
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rnatrix J is defined by Jik = âfi/âa, and represents the slopes of the

tangent hyperplanes. Matrix J is highly sparse j¡ the load-flow appli-

cations and eq. 2.I3 is solved directly and rapidly by using sparsity

techniques.

The Newton nethod's convergence Ís sensitive to the behavior of

the functions F(X) and hence to their fornulation. The rncre linear

they are, the rn¡re rapidly and reliably Newbon's rnethod converges.

Nonsnnothness, i.e., rhumps i¡ any function fj-(X) in the region of

interest can caïse convergence delays, total faih:re, or misdirection

to a nomrseful- solution.

Since the chosen load-flow functions F(X) tend not to be too non-

linear and reasonably gpod j¡itial estimates are available, these

difficulties are encountered irrfrequently. In faet, applied to the vast

majority of practical load-f1ow problens, Newton's nethod is very reliable

and exfrernely fast in convergence.

Ttre Newbon load-flow fornmlations adopted to date use for F(X) the

bus power or current misnatch expressions and designate the unlcrown bus

voltages as the problern variables (X). Ivlathernatically speaking, the

corplex load-flow equations a-re nonanàlytic and carurot be differentiated

in ennplex form. In order to apply Nev¡ton's nethod, the probløn is

separated into real equations and variables. Rectangulâr or polar co-

ordinates may be used for the bus voltages.

Ttre polar power-misnatch version is the rncst widely used of al-1

fornn-rlations, whose Jacobian matrix eq. 2.I3 can be written for

convenj-ence of presentation in the partitionéd form
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(2.r4)

Slack bus mismatches and voltage corrections are not included in 2.I4

and likewise ¡Qi and AVi_ for each PV bus are absent. The submatrices

H, N, M and L represent the negated partial derivatives of 2.4 and

2.5 with respect to the relevant 0's and V's, €.8., llik = -A APi/ðOk.

If buses i and k are not directly connected, their "rrlutual" tems in

the J matrix are zero, a:rd J is thus highly sparse, with positional

but not nunerical s¡rnmetry.

The polar po\.ver rnis¡atch version converges to high acclJracy, nearly

always in 2to 5 iterations, fromaflat start ( V= lperunitand

0 = 0) independent of a systøn size. The accepted forrrmlation 2.I4

can be improved by a minor modification which very often reduces the

nr¡mber of iterations by one and ca¡ avoid divergence in sone extrene

cases. Noting that the performance of Newlon's rnethod is closely

associated with the degree of problsn nonlinearity, the best left-hand

defining functions are the nnst linear ones.

If eq. 2.5 is divided. throughout bV V' only one terrn (Q.

scheduled /Vr) on the right*hand side of this equation is not linear in

V. Moreover, for practical values of Q, scheduled and V' this non-

linear term is nunerically relatively snall. It is therefore preferable

to use a problsn defining function AQ/V on the left-hand side of 2.74
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in place of 
^Q. 

Dividing AP by V can also be helpful, but has a

relatively sna11 effect, since the active power cornponent of the

problen is not strongly coupled with voltage nagnitudes.

A number of schemes are available for attempting to inprove the

perforrnance of Newton's method. One of the simplest of these is to

impose linits on the permissible sizes of the voltage corrections at

each iteration, thereby helping to negotiate hunps in the defining

functions. With its quadratic convergence, Newtonrs nethod takes maximal

advantage of good initial voltage estirnates. Some prograns perform one

or two Gauss-Seidel iterations before the Newton process 16]. This is

beneficial provided that the relatively weak Gauss-Seidel nethod does

not diverge when faced with a difficult problen. A nost rapid and

reliable Newton program can be created by calculating good initial

angular estirnates using the dc load flow and also good voltage magni-

tude estimates by a similar technique [7] .

The computing tine per iteration of Newton's nethod risesron an average,

little more than linearly with the number of buses in the system. Since

the nunber of iterations is size-invarient,the superiority of Newtonrs

nethod increases rapídly speedwise over previous methods as the size of

the systen to be solved increases. For typical large systens, the comput-

ing time for one Newton iteration is roughly equivalent to seven Gauss-

Seidel iterations [0].

2.3.6 Decoupled Methods (8,9)

The Decoupling PrinciPle:

An inherent characteristic of any practical electric power
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transrnission system operating in the steady-state is the strong inter-

dependence between active poweTs and bus voltage angles, and between

reactive powers and voltage nagnitudes. Correspondingly, the coupling

between these rtP-Orr and'rQ-V" components of the problem is relatively

weak. Applied numerical methods are gener aIIy at their nost efficient

when they are able to take advantage of the physicat properties of the

system being solved. In the load-flow problem there has been a recent

trend towards this objective by 'tdecoupling" (solving separately) the

ItP-0tr and rtQ-V, problems.

Decoupled Newton Method (10)

In 2.I4 the elements to be neglected are those contained in

submatrices INI and tMl. Eq. 2.I4 is then separated into two srnaller

matrix equations,viz., the P-0 and Q-V problems and are

LP /V

AQ/v

l¿

(2

AA0

CAV

15 a)

isb)

where A and C are negated Jacobian matrices. In this method dividing

AQ by V is impcrtant, since it substantially reduces the nonlinearity of

the Q-Vproblen.

Eqs. 2.ISa and 2.15b can be constructed and solved simultan-

eously with each other at each iteration. First solve 2.ISa for A0

and use the updated 0 in constructing and then solving 2.15b for AV.

The first calculated values of 0 are accurate to within a few degrees,

even when starting from 0 = 0. The first solution of 2.15b then

usually gives remarkably good values for V, within say, 0.3 per cent of

the final solution. The decoupled nethod converges at least as reliably
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as the formal Newton version.

For convergence to practical accuracies, it usually takes a

similar number of iterations. The computation tine per iteration is 10

to 20 per cent less than for the formal Newton nethod.

Fast - Decoupled Method (9)

The first step in applying the decoupling principle is to neglect

the coupling subnatrices tNl and IMI in eq. 2.I4 , giving two separated

eouations

¡APJ = [H] tA01

tAQl = [L] iAV/Vl

(2.16)

(2.17)

(2.18)

(2 . le)

Hkk = -lun vfl - Ou and Lkk = - tuu u'u * Qt

In practical power systems the following assumptions are almost always

val id :

cos 0* = l , Gkm sin 0*

So that good approximations to 2'16 and 2'I7 are:

where Hk, = Lk, = VnV* (Gn* sin okm - B* cos 0m) for m I k

tAPl = [V. B' V] tA0l

tAQl = [V. B" V] tAV/Vl

At this stage of the derivation, the elements of the matrices [B'] and

lB"l are strictly elements of t-Bl
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The decoupling process and final forms are now conpleteci by:

(a) omitting from [Bt] the representation of those network elements

that predominantly affect lvfVAR flows, i.e. Shunt reactances and off-

noninal in-phase transformer taps.

(b) onitting fron IB"] the angle-shifting effects of phase shifters.

(c) taking the left-hand V terrns in 2.I8 and 2.I9 on to the left-

hand sides of the equations and in 2.78 renoving the influence of

MVAR flows on the calculation of t^01 by setting all the right-hand

V terms to I per unit. Note that the V terms on the left-hand side of

2.IB and 2.Ig affect the behaviors of the defining functions and not

the coupling.

(d) neglecting series resistances in calculating the elements of [Br],

which then becomes the dc approximation load-flow rnatrix. This is of

rninor importance, but it is found experimentally to give slightly

irnÞroved results.

With the above nodifications the final fast-decoupled load-flow

equations become

tAP/vl

tAQ/vl

lB' I t^el

¡BnJ tAVl

(2.20)

(2.2r)

Both [Bt] and [8"] are roal, sparse and have the structure of tHl and

tll respectively. Since they contain only network admittances they are

constant and need to be factorized once only at the beginning of the

study. [8"] is symrnetrical and if phase shifters are absent or accounted

for by alternative means tBtl is also symnetrical.

The inmediate appeal of 2.20 and 2.2L is that very fast

repeat solution for tA0l and t^Vl can be obtained using the consÈant
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factors of [8,] and. [8,,]. These sofutions may be iterated with each

other in some defined manner towards the exact sol-ution, i.e' when

ILP/vl and t\Q/vl are zeto.

The nethod converges very reliably, usually in 2 to 5 iterations

for practical accuracy on large systems. The method has the decoupled

property of giving a very good approximate solution after the first one

or two iterations. Provided that the tAP/Vl and iAQ/Vl functions are

calculated efficiently, the speed per iteration is roughly 5 tines that

of the formal Newton method and two-thirds that of the Gauss-Seidel

nethods. The stolage requirements of the fast decoupled nethod are about

40 9o less than those of Newtonrs method.

The fast decoupled method offers a uniquely attractíve combination

of advantages oveï the established methods, including Newtonrs, in terms

of speed, reliability, simplicity and storage, for conventional load-

flow solutions. It ís therefore chosen as the method for solving the ac

system load flow equations in the thesis.
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CHAPTER III

A NEtt LOAD.FLOW SOLUTION TECHNIQUE OF INTEGRATED

MULTI-TERMINAL DC/AC SYSTEMS

3.1 Introduction

The increasing interest in the operational feasibility and potential

applications of multiterninal HVDC systems leaves a need for investigat-

ing load-flow nethods suitable for including the dc system in an overall

ac/dc load-flow solution. The size of ac system invariably greatty

gxceeds the size of even a most extensive nultitenninal HVDC systen,

so the component of computing time used by the dc system is expected to

be relatively short.

A dc system when viewed from the ac side of the converter appeaïs

either as a 1oad, at a rectifier terminal, or as a source, at an inverter

terminal, of active power. Reactive power is however, absorbed at both

kinds of converter terrninals. The amount of active and reactive power

flow depends on a number of variables in the ac and dc systens.

Historically, as the requirement of inclusion of dc links in a power

system load-flow pïograJn appeared, several papers described sequential

solution methods. 11-16 In a sequential approach, the dc system load-

flow solution including terninal constraints is forrnulated separately

so that the terminal conditions can be imposed on the interconnection

buses in an ac load-flow progran. Each ac solution establishes the

terminal ac bus voltages for the dc solution and then accepts the sub-

sequent P (active power) and Q (reactive power) converter loading from

the dc solution.

The general principle of the sequential solution nethod is to alter-
nate between ac and dc load-flows until all the variables converge to
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the required accuracy. There are 3 basic trpes of convergence tests: 26
(a) misnatch tolera¡ces in the HVDC 10ad-f10w

(b) nisnatch tolerances in the ac load_flow, and

(c) convergence of the interface quantities for which the
tolerances are smaller than those in (a) and (b) by a factor of 10.
A number of alternative iterative sequences could be applied:
(i) converging the dc load-flow accuratery before each ac iteration;
(ii) achieving a rough convergence of the dc load-flow and successively
increasing the accuracy after each ac iteïation.;
(iii) alternating between accurately converged dc and ac sorutions: and
(iv) alternating between single ac and dc sorutions,
A typical nurnber of dc iterations lies in the range 4_g, with schene

(i) requiríng the highest and (iv) the lowest. Due to the short time
required to perform a dc iteration as conpaïed to an ac iteration, the
differences between the different approaches aïe not crucial. Nevertheless,
it is evident from the literature that the sequential solution is inherently
inefficient 17-27 

, although it is attractive because it utilizes existing
programs for ac systems with ninimum nodifications and by virtue of a
separate dc system solution a greater flexibility in its modelling exists.

As the need for ac/dc system studies surged upwards, an eaïnest effort
to devise the best procedure of computation with however 1itt1e ímprovement
over the sequential technique became paramount. unified 10ad_f10w
solutions 17-2r 

have been developed to take into account the interdependence
between the ac and dc systems by solving sinultaneously at each iteration
the complete set of dc and ac systems equations within one load-flow program,
A potent new techniqu" 22 is developed by the author which incorporates
multi-terninal FIVDC systems within fast decoupled road-f1ow programs as an
integral part of the ac iterative procedure. Inclusion of a conventional
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2-terninal HVDC network for:uts only a special case and is solved readily
by the new technique. rn this technique, the representation of dc

systerE is such that it leads to simplifications in calculations and

savings in storage requirernents and yet it is so geneTal that a multi-
terminal dc system of any configuration and control characteristics
can be easily sinulated. This technique is fast, efficient and relíable
and is therefore art inprovement over known procedures.

The unified approach is nore efficient and gives faster and more

reliable convergence than the sequential approach, but requires complex

progranrning.

3,2 Mathenatical Formulation of HVDC Load_Flow uat ions

3.2.1 Representation of HVDC Terminal

For efficient programming the dc link model should contain the

ninirnum possible number of equations and variables. This would normally
restrict the dc repre.centation to plant components between, and including,
the converter transformers in order to alter the tap-ratios without the
need for recalcurating the ac network admittance matrix.

Fig' 3.1 shows the basic converter model used in the analysis.

series and/ot paral1e1 connection of the converters nay be necessary

to achieve the desired dc voltage or current. Fig. s,2 illust'ates a

multiple bridge converter mode1. For this model, the transformer reacrance
is assurned to be the same for all transforners and transformer tap-ratíos
are also assurned to be equal.

The equivalent circuit of a single bridge HVDC converter model with
its transformer represented by an equivalent n eircuit is shorr,n in Fig. 3,5.

rn this nodelr'a'is the transformer turns-ratio, tyt is the transformer

adnittance, "Vt is the converter ac busbar voltage, tVdt is direct voltage

and fld' is direct current.
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I.,

¡ ¿Éi J.¡ Single-bridge converter rnodel

3.2 ltlultiple-bridge converter model

Fig, 3.3 Equivalent-circuit for single-bridge converter nìodel
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3.2.2 Choice of the per-Unit Sysren

In order to mesh the ac and dc equations directly in a load-flow
program, the dc equations must be expressed in a per-unit systen that is
conpatible with the ac per-unit system. conputational simplicity is
achieved by using conmon power and voltage base paramete's for both ac

and dc systems. Both ac and dc per-unit systems aïe risted beroir,.

AC Per-Unit System

(VA base)"" = WA (3-phase power)

(V base)". = EL (Line to line) kV

Therefore (I base) 
". 

= (MVA x 10r) / ,/f EL A

and (Z base) 
". 

= [ (V bas .) 
^./ 

,Æ (rbase),.] x I03
1

=E /WA A
L

DC Per-Unit Systen

(VA base).. = MVA

(V base)dc = EL = (V base)u.

Therefore (I base)0.= (titVA x tO31/ n,

and (Z base)0.= (V base)0./ (I base)0.

-2= tr/ 
MVo

Hence (I base) O.= ,ß (I base) 
".and (Z base)0.= (Z base)r.

3.2. 3 Converter Equations

The following basic assumptions are made in the derivation of the

equations representing an ac/dc converter 23,24 
:

1) All harnonics of voltage and current produced by a converteï

are filtered conpletely and the dc current is free of ripple.
2) The ac voltages and currents at the interface bus are balanced

KV

A

0
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and are sinusoidal waveforms of constant frequency.

3) The conveTter transformer has no resistance and requires no

exciting current.

4) The valves of the converter have no forward voltage drop.

The equivalent circuit of Fig. 3.3 has been redrawn in Fig. 3.4

for a general single bridge conveïter terminal, for including the system

variables and their reference directions. The reference of analysis is
chosen to be the interrace ac/ð.c bus as shown in Fig. s.s. In these

figures,

I /- fih+,hì'/ \y'y) is the (r.m.s.) fundamental component of the transformer

secondary current,

el- rp is the transformer secondary voltage,

0 is the power factor angle, and

0 is the control angle - either c (firing angle) for a rectifier
terminal or ô (extinction angle) for an inverter terminal.

Applying Kirchoffts current Law at node ,mr of Fig. 3.4 rr,e have

aY (v I 0 - E Lg) = srGN r /- (ì1,.0) + (1_a) y E/_ U (3.1)

where SIGN = 1 for a ïectifier terminal

and - - 1 for an inverter terrninal

substituting Y by jB, where B is the transforner susceptance and _j =f,T
eq. 3.1 in its complex form could be separated into the followins two

equations :

SIGN I sin(r.f.r+6) = B E cosry' - a B V

0 = SIGN I cos(ú*þ) + B E simf

I is related to Id by the expression

I =(,6/ù rd

(3 .2)

(3 .4)
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Id --

I /- (',r*o)

l¡--eìV (1-a)Y
"l Y

==
Fig. 3.4 Equivalent-circuit for an H\¡DC terninal

tr/ n

E l-tl
I

Fig. 3.5 Phasor diagran of a terminal
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anolel = 0o. but w'ili r-h ìs frrre pi¡þv , vuç,

and only I.I% for y < 30o ¡the normal

tI/id) with overlap angle is negligible

. The relation 3.4 is expressed in

(3.s)

3.3 and writing in per-unit

(3 .6)

(3.7)

equals dc power (Pd). For

where

Pac

i.e.Æ I E cosg

Vd

where Ke

Kd Id

sE/t¡

Pd

Id Vd

= KeEcosQ

= Gö/r) NB

I

Kd

substituting from eq. 3.5 into eqs. 3.2 and

€n¡m r¡rÃ ßêf¡v¿¡¡r,

SIGN Kd Id sin (Ü*0) = B E costþ - a B V

0 = SIGN Kd Id cos (rI,*0) + B E sin p

Neglecting losses, active ac power (Pac)

a single-bridge converter terminal

(3.8)

(3.s)

Substituting from eq. 3.4 into eq. 3.9, we have

Vd = 1s'E/r) EcosÖ (3.10)

In case of NB bridges, connected in series, Per pole, for a terminal we

have
Pac = 2 NB 'Æ IE cos ó

Pd = I Id Vd/pole, therefore Vd/pole is given by

vd = Gn/Ð NB E cos q

In general, the direct voltage per pole, of a terrninal, is expressed in

per-unit as

(3.1 1)
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A1so, the direct voltage of a single-bridge converter terminal is

Vd = ßE/r) E cos 0 - Id (3/r) xc (3.12)

where Xc is the bridge connutation reactance. In case of NB bridges

per pole, the direct voltage per pole in per-unit is expressed by

Vd ! G/7/t¡) NB E cos O - Id (3/r) Xc(equivalent)

where Xc (equivalent) is the equivalent (series-para1le1 combination of

tl're individual bridges) commutation reactance of the terrninal.

Alternatively, the direct voltage per pole, of a terminal, is expressed

in per-unit as

Vd = Ke E cos 0 - Kc Xc(equivalent) Id (3.13)

where Kc = 3/T1

In summary, each terminal has the fo11or^ring converter equations:

SiGN Kd Id sin (tI*Q) = B C cosip - a B V

0 = SIGN Kd Id cos tú*0) + B E sin tJ.t

Vd=KeE cosS

Vd = Ke E cos0- Kc Id Xc (equivalent)

3.2.4 Network Equations

A linear formulation of network equations is used for the three

possible network connections as follows:

(a) Mesh System

A single line diagram of n-termj-nal mesh connected system is shor''n

in Fig. 3.6, for the case of n = 6.

The nodal currents - Idt , Idz IdO - are positive for rectifiers

and negative for inverters.

The relation between the nodal dc currents and the dc bus voltages,

in per-unit, could be written in the following matrix form



Fig, 3.6 6-Terminal rnesh connected svsteTn
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Elz
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Table 3.1 Netuork equations for the 6-terminal nesh systenr.

YdI

vd2

Yd.
J

Vdo

)

Vd,
o



[ra¡ = ic] [vd] t3. 14)

where[Id] is the injected current vector,

lvdl is the dc voltage vector, and

IGI is the conductance matrix, which is sfmnetrical and its

elements are calculated as follows:

G.. = | e..
r_ 1 -LJj eÍ -J (S. 15)

G,, = G,= = -g:., (jei neans node j directly connected to node i)1J I r- -rJ

i,i = L r2,3. . . . 'n (n is the number of terninals)

The network equations of the system shown in Fíg. 3.6 are written

in matrix forn in table 3.1.

(b) Radial Syston

A single line diagram of an n-terminal radial connected systen

with n-tap-buses is shown in Fig, 3.7. For this system n=6 and m=4

fT-. T^. T- and r l-'-1', -z', -3 --- L4)'

The conductance natrix of the system including the tap-buses is

calculated by

G.. = f, s..11 -r-1
lel

G.. = G.. = -9..r_t J r- "L)

irj = I1213r,..., n+m

(3. 16)

The network equations of the system of Fig, 3,7 are written in a

rnatrix form in table 3,2,

The current injected at tap-buses T, , T2, T, and TO are zero

(Idr = Id.r = fdr = Idr - 0). Tap-buses should be assigned numbers
L¿J+

larger than the nurnber of terninals in the system, as shown in Fig. 3.7,
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STATION 2

t¡d Tl

vd T"

STATION 3

STATION 1

'-l
vd T4

8 Tz

\/d T2

- 
vd-

los 5

STATIO}i 4

vdt

STATION 6 STATiON 5

Fig. 3.7 6-Terminal radial systen with 4-tap-buses
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x = Non-zero elenent n+m

n

n
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Fig. 3,8 Reduced conductance rnatrix for the

radial connected system.
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therefore they appear in the bottorn rows and. columns as shown in tabre s.2,
The tap-bus voltages cvdr- , vd' vdr and \idr ) are irrerevant to the^1 '2 '3 '4
conversion pTocess. They should be elininated to reduce the nurnber of
equations to be solved, which leads to increased program efficíency.

Elimination of the tap-buses is achieved by a variant of Gauss

column elimination, starting with the element Gñ_r,ñ , where ñ=n+m.

This means that after rn pivoting eliminations the hatched part in the
matrix gets completely ful1 of zeïos as sholvn in Fig. 3.g. Due to the
fact that the converter dc bus voltages are independent of the tap_bus

voltages, only the upper left hand (nxn) matrix is relevant to the load-
flow solution which is conveniently stored.

(c) Series System

In series connected system with (n-1) terminals on power control,
the nth terminal accommodates losses.

The common loop current is determined fronr

I Vd. + Id R = 01 -- (3.I7)

3.2.5 Control Equations (16, 26, 73_75)

At a rectifier, the tap changer maintains the firing angre within
typically 14o -< o -< 16" for a rninimum control angle of 5 - 7o. It
ensures a margin of current contror beyond o 

minimum so trrat small
fluctuations of ac voltage do not result in frequent changes in control
allocations.

For a nominal firing angle of 15o, the margin is

ÁVd = Vdo (cos 5o - cos l5o) =.03 Vdo

= .03 x idear no load voltage and is applicabre for an¡.va1ue
of rd or xc. rn practice tap-changer control is made according to



38

o. - measurelnents. For the program, the dc bus voltage is forrnulated

by allowing a 3% change in Vdo

Vd = .97 Ke E cos 0 - KcXc Id (3.18)m1n.

Alternatively, allowing a 3% change in Vd

Vd = .97 (Ke E cos 0 - KcXc Idl-min, '*) (3. 1s)

results in a dc voltage larger, in theory, by 0.3eo, assuming that

Kcxc Id is 10% of vdo but is negligible, in practice, due to expected

dead-band in the tap-changer control. The selection of either eq. 3.Ig
or 3.19 is arbitrary. Both equations provide a realistic solution to

the voltage nargin problen imposed by the multi-terninal application.

To determine the preferred inverter extinction ang1e, a strategy

similar to that used for rectifiers can be used. That is, a voltage

margin can be incorporated to serve the same purpose as in rectifiers
on constant power (current) control. The same aVd can be introduced

for the inverter as determined previously. For Trr,. typically
16o .< 6 .< 18o, a preferred ô is about 2I-22".

At the voltage controlling station, the tap-changer keeps the

voltage at the desired value Vd = Vd specified.

The tap-changer equation for a station on c.)nstânr nnwcr fc,rrrrenr'ì

control is Vd = .97 (Ke E .or 0*ir,.-KcXc Id).

The system dc voltage is determined by one terminal with converters

operating with either their mininum è.elay angle (u min.) if a rectifier,
or their rninimum extinction angle (ô min.) if an inverter. For this
terminal, the control equations are:

Vd = Vd sp.

cos0=cos0
Inln.

other terminals operate with constant power (current) control

(3.20)

(3.2i)
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In reference L74l the principles and characteristics of 3 different

control nethods are shown: the current margin nethod, the voltage limit-

ing nethod, and the operation to a current voltage characteristic.

The rnost suitable control nethods are the current margin and voltage

limiting methods. However, the author, and as is clear from rnany publications,

supports the current nargin nethod.

For both current nargin and voltage limiting control nethods, the dc

voltage is detennined by one terminal with converters operating with their

ninimun control ang1e. Other terminals are operating with current/power

controls. Tap-changing control accommodates the desired dc voltage at the

voltage controlling station and the preferred values of o and 6 at stations on

current (power) control.

Equations 3,20 Eo 3,23 tepresent control equations for the current

margin nethod.

However, for voltage limiting control methods equations 3.20 to 3,22

apply and the tap-changer equation for terrninals controlling current

(power) is given by

Vd = .95 Vd limit

= .95 Ke E cos 0rir, - .95 Kc Xc Id.
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one

each terminal, two

from each group

equations describe the converter controls.

Group 1. fd=Id ct'l-r.

Pd=Pd sp.

Group 2. Vd = .97 Ke E cos ornin.

Vd = .97 Ke E cos ômln.

3,2,6 Converter Active and Reactive power

Us ing

given by

Pdc =

Qdc =

Substituting from eq. 3.5 into eqs. 3.24a and

Pdc=KdIdEcosó

Qdc = Kd Id E sin ó + Kd2 Xc ldz

3,25a we have

a1

.97

Kc Xc Id

Kc Xc Id

(3 .22)

lr. ¿5 )

the converter

(3.24)

(3.2s)

(3.24a)

(s.25a)

(3.26)

(3 .27)

either absorbs active

terminal or absorbs

inverter terminal.

The active and reactive power at the prirnary side of

transformer of a terminal are

pdc=¡fr¡Icosþ

Qdc = F e r sin Q+ ee/Trz) Xc rð2

the per-unit system, discussed before, Pdc and Qdc are

cos Q

-,2sin S + (18/n-) Xc Id

EI

EI

A dc converter is represented by a load which

power (Pdc) and reactive power (Qdc) at a rectifier
active power (-Pdc) and reactiye power (Qdc) at an

3.2.7 Filter Representation

Filters are capacitive at power frequency and located at the

interface buses.

They can be either represented in the forrnulation of the bus admittance



40

matrix as shunt elements, at the respective buses as shown in Fig. 3,g

or their effect can be simulated by subtracting the reactive power

they supply [Qc = v2 Bf , Bf is filter susceptance) fron the reactive

power denand of the dc terminal (Qd) to give a net reactive power loading

(Qd - Qc), which is used to modify the injected reactive power at the

interface (ac/dc) bus as shown in Fig. 3.10.

Both nethods of filter representation are reliab1e.

3.2.8 Effect of Ground Current

Refer to :Fig. 3.11.

It applies for a parallel connection on1y, since Vg =

series systems because there is only one ground point.

Normal1y, the grounding resistance at a terninal a¡d

between pole-currents are smal1 so that the voltage across

resistance is negligible. Vg is given by

vg=Rg(Idp-Idn)

Vp=KeEcos6+

Vp=KeEcos0-

[ra1 = [e] [vp]

Vp = Vp specified

Vp = .97 (Ke E cos

XcId+Vg

0, in a

the imbalance

the grounding

(3 .28)

(3.11)

(3. 13)

l.J. 14_,,

(3.20)

(3 .23)

where Rg is the grounding resistance and Idp and Idn are the positive

and negative pole currents respectively.

rf Vg has to be taken into consíderation, the direct voltage

Vd has to be modified to Vp by adding Vg as follows

Vp=Vd+Vg

Therefore, êgs. 3.11 , 3.I5, 3.I4, 3.20 and 3.25 are modified

to be

Vg

Kc

0rin. - Kc Xc Id) + Vg
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FILTERS

T
I

Fig, 3. 9 Representation of filters on the ac side

(Qd-Qc)

--------Ð-
lu---------+

,t

Qcl

Qd
-----------Þ

T
Fig, 3,10 Representation of filters on the ¿q side
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For zero ground current

Idp = J¿n

FiVDC Load-Flow Solution

with non-negligible Rg,

J. J

3,3.1 Choice of Variables

The variables at each terrninal are chosen to be -

E, t, a, þ , Vd, Id and cos 0

To eliminate trigonometrical nonline4rity and avoid overflows

infeasible operation modes, cos 0 is used as a variable instead of
3.3.2 catculation of the rnitial conditions of the DC system

Two methods for the calculation of the initial conditions have

been investigated. The salient features of which are as follows;

Method 1:

At each station, the ideal no-1oad direct voltage is calculated

from

(3,2s)

with

(3. 30)

knowledge of the

(3.31)

tr. J¿_)

tr. rJJ

(3 .34)

Vdo = Ke E cos O*in.

The dc current is deduced from eq. 3.S0 and the

desired power interchange by

Idl = Pset/Vdo

A first estimate of the dc bus voltage is

Vd1 = Vdo - Id, Kc Xc

Better evaluation of the dc current and voltage are

Id2 = Pset/Vd,

Vd2 = Vdo - Id, Kc Xb

Method 2:

ti) An initial estinate of the

Idi = Pset i/r¡d set

where piet i = pohrer interchange

current can be calculated as

(3.3s)

at station nunber i

i = 1 ,2,3,



/t /1

and Vdset = desired dc voltage at the voltage controlling

station.

(ii) The dc bus voltages will be different from the set dc

voltage at the voltage controlling station by the transmission

line voltage drops which can be neglected for the purpose of

calculating the initial values

(rii) The control angles at the stations on power (current)

control are close to o, = 15o for rectifiers and 6 = 22o for

inverters assuming omin. = 7o antd ôrirr. = 18o

(iv) The initial value of the angle Q of 25o provides a

reasonable initial reactive power 1eve1. Also the angle rJ.r has

an initial value of zero.

(v) The tap-ratio a is chosen to be equal to llone) for all

converter tr'ansformers .

The two methods have been found to be re1iab1e. but the second

nethod results in better initial values.

3.3.3 I'léfhod of Soluti,on

Newtonrs method is used to solve the dc system equations in the

form

R=A 
^X 

(3.36)

where R is the residual vector

ÂX is the change in the dc variables,

AX = [AId AVd Acos0 ÂE 
^O 

A{r Aa]T

(T means transpose)

and matrix A is the dc Jacobian natrix = - 9R
ôX

The residual vector R is calculated as follows:



45

(a) Converter Equations

For each dc terminal we have the following four residuals:

Rr=Vd-KeEcos0+KcXcId G.37)

Rr=Vd-KeEcosS (3.S8)

R, = SIGN Kd Id cos (0*ü) + B E sin rþ (3.39)

RO = SIGN Kd Id sin(þ+r.!) - B E cos r! + a B V (S.40)

(b) Network Equations

Rg=GVd-Id (3.41)

for n-terminal dc systen, Rg has n elements.

(c) Control Equations

Constant Voltage Control :

Rc = cos 0 - cos 0 (7 l?\sp \v' ¡Êl

Rt=Vdsp-Vd

Constant Current Control :

Rc=Id -Idqn

Rt = .97 Ke E cos 0n.,irr. - .97 Kc Xc Id - \¡d ß.43)
Constant Power Control :

Rc=Pdsp-pd
(3 .44)

Rt = .97 Ke E cos O*ir, - .97 Kc Xc Id - Vd

The rows of eq, 3.36 are obtained as follows:

(a) Converter Equations

R, = Ke cos 0 AE - AVd - Kc Xc AId + Ke E Â cos 0

R, = Ke cos 0 ÂE - Ke E sinS A 0 - AVd

R3 = -B sin !.' AE + SIGN Kd Id sin(rf+@) Aô

+ [sIGN Kd Id sin(rf+Q) - B E cos rf] Aü - SIGN Kd cos(rf+(r) ald

R4 = B cos ú AE - SIGN Kd Id cos (qr*O)AO - ISIGN Kd Id

cos(rJ;+Q) + B E sin rfl Aì, - SIGN Kd sin(rf+ó) AId _ BV Aa
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(b) Network Equations

Rg=-G^Vd+ÂId

(c) Control Equations

Rc = Â.cos 0

or=AId

or=ÂPd=Id AVd+Vd 
^Id

Rt=AVd

or = Â Vd + .97 Kc Xc AId - .97 Ke.or 0 rir,. ^EFig. 3,72 irlustrates the Jacobian natrix A for a s-terninal
(terminals m, k and n) HVDC system, Terminal m is on dc voltage control
terninal k is on dc current control and terrninal n is on dc Dower

control.

As shown in Fig. 3,r2, some diagonal elements of the dc Jacobian

rnatríx can be very small or zero. To avoid complications arising from

these zero or near zero elenents, for the computation of Âx, we should

either use partial pivoting, in which case we have to use the full
Jacobian rnatrix, oï we can use the step-by-step solution 22 described

below, for which we rnust stoïe only the conductance matrix G which is
very sma1l and of dimensions n x n. For a s-terminal dc system, the
fu11 Jacobian, Fig. 3.72, is a 27 x 2I mattix, whereas the conductance

matrix is only 3 x 3. Therefore, in the step-by-step solution, srorage
requirement is only r/49th. If sparsity techniques are used for storins
the dc Jacobian rnatrix, the saving is less

Step-by-Step Solution

consider a 3-terminal (terminals m, k aad n) HVDC systen such that
m is on dc voltage control

k is on dc current control, and

n is on dc power control
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Calculation of
^Vdm 

, 
^Idn 

, AVdk , 
^Idk 

, AVdn and ATdn

Using control and network equations. we have

AVd =
m

AId, =
^

^Pd 
=n

or Vd 
^idn

i.e. 
^Id 

=n

Rt
m

Rtk

Rc
n

+Id AVd =Rcnnnn
Rc /Vd - fPd /\,d2 I 

^vrr
-'-n, ' *n q. *nr '*¡ ./ - u *n

AVdk and

(3.4s)

(3 .46)

(s .47)

(s .47)

(3.48)

AVd are
n

(3,4e)

(3 . a9a)

Network equations give -Rg = G 
^Vd 

- AId

8mk 8rn

8H. 8kn

8nk Br,rt

I [o'o'l I 
o'0,, 

J

I lï.;J | ^r.; l

[ *'-l [u"
l-otul =l *u*

L 
-'f 

Lu'*

Fron Eqs . S.4S

computed as follows:

to 3.48, the increments aIdm,

ôlo

AlrJ
tl

Avd
_t-

^rdm

AVO,
^

^vd
n

-1

0

0

-l

0

0

oomk

Ert
^^

p,
-nK

onn

o*Kn

a"nn

Rt
n

* Rtk

Rc /Vdn'n

-l

I

Ikl
I

InJ

Rt
m

+Rc
m

j

-RBn -g*

-Rgk -gkmRt

m
Bmk e,n,, ï [-*r, -r,.

tlB¡¡ Bkn | | -*ru -B¡, Rt

Bnk (e,,,,+Pd,,/ t.i 
]l [_-0r,,-rn,*r*

If terninal n ls on constant current control, êQ. 3.49 becones

- PBn - 8r-,rRtr+ Rc
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Calculation of A cos 0 and AE:

Acos0=Rc

From eq, 3.37 we have

-Rl = Rt - Ke E Rc - Ke cos 0 Ae + Kc Xc

The only unknown in this equation is AE whích is

AE = (Rl + Rt - Ke E Rc + Kc Xc AId)/ Ke cos

Ard

oi r¡en

0

(3. s0)

(3.s1)

bv

Conslant Current or Constant power Control

From Eq, 3,43, we have

ÂE = (-Rt + .97 Kc Xc

Then fron eq. 3.S7 we have

Acos0=(R,+[Vd-

AId + AVd)/ .97 Ke .or Orir,. (3 . s2)

Ke cos 0 ÂE + Kc Xc AId)/Ke E (3. s3)

Calculation of 40, Ar!, and Aa:

The following steps are applied for arl terrninals. From eq. i.3g
Â0 = (-Rz - Avd + Ke cos O 

^E)/Ke 
E sin Q (3.s4)

From eq. S.S9

Aü = [Rs * SIGN Kd cos(rp+þ) A]d + B sin rl.r

sin(i!+þ)Aþ l/ (SrGN Kd rd sin(rf+Q)

From Eq. 3.40

Aa = [-R - A1 AId * A, Le _ AS AO _ { SIC¡J

+ B E sin rl,,i 
^úllB 

V

where A, = SIGN Kd sin(ü"o)

A2=Bcosrf

and A, = SIGN Kd Id cos (rf+þ)

At the end of each dc iteration, however,

and lower linits of converter tTansforner taps

ext inct ion ang 1es ',0 
f tare correct ed .

AE - SIGN Kd Id

B E cos {.r)

Kd Id cos (rf +þ)

violations for the upper

"arr and firing or
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Eqs, 3.45 through 3.56 provide the elements of AX vector which

modify the values of dc variables and are used as initial values for

the next iteration.

3.4 Load-Flow Solution of Integrated Multi-terminal DC/AC Systens

In the previous sections, the formulation and analysis of a model

of multi-terminal HVDC system are discussed. A rer¡iew of load-flow

nethods for ac system is presented in chapter (2), This section pre-

sents a new technique used to incorporate multiterminal H\¡DC system

Jacobian equations within a fast-decoupled ac power system load-f1orr,

pïogram.

3.4.1 Combined Jacobian lr{atrix and Equations of an Integrated AC/DC System

Interdependence exists between real and reactive power residuals

of the ac system and the dc system variables, and also betrveen the dc

system residuals and the ac system variables. Thus, it is convenient

to combine the ac system and the dc systen Jacobian rnatrix equations,

and remove the necessity to solve and interface between the two netrr'orks.

For the ac system alone, using the fast-decoupled method, recalling

eqs. 2.20 and 2.27 and renaming [B'],[8"] by[AJr] and [M¿], respectively,

we have

tTl = [AJ1] t^ol

tfl=[Ð¿] t^vl

Integration of ac and dc system equations yields

.AP

_a-4.\¡

R

Ni

D

B

C

AJn
T

RV

PX

QX

A

A0

AV

AX

(3. s7)
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In eq,3.57 the submatrices of the combined Jacobian rnatrix are

derived in Appendix A. subnatrices AJ, , N4,c and D have the same

structure and values as in the ac systen ( C = 0 and D = 0).

submatrices PX, QX, B and RV consist nainry of zero elernents,

(B = 0), except for the elements associated with the ac/dc buses.

Hence, the load-f1ow equations of an integrated ac/dc systen are

nÞtll = [Ar1] he I + [PX] [A x] (3. s8)

^n[*u ] = [nJo] [nvJ * [QX] [Ax] (3.se)

t R I = [RV] hvl * [A] [Ax] (s.60)

Frorn eq. 3. 58

^ÞfËl - [PX] [¡ x] = lAJll [^o ] (3.61)
nÞor f-i.l rNr = [AJ1] [^0 ]

^P 
¡Þ

where tj-l rNr = I-i-f - [px] [Ax]

= ¡-43.. 1 - rål - Ipxlt^xlt V Jac t V I

, dc terminals

only n elements

Frorn eq. 3. 59

^nt-i=f - taxl [¿x] = [AJ4] [^v]
' A')-or fi=l rNr = [AJ4] [^v] (s.62)

- ^Ô- ^nrr'here [if rNr = t-i=l - IQXI tlxl
^ôn= [Ë]".- Iüf - [QX]t^xl

cic terminals

only n elernents



Substituting frorn eq. 5.62 into eq. j.60 we get

tRl = [RV]tAJ+l-t ,if: - tQxll^xl] + [A][ax]

= [RV] [.0]-t t$u I - tRVl [Ar4]-1¡qx¡ ¡nx1 + [A] [AX]

i.e. {lRl - tRVl¡n.roJ-tffl} = {[n] - tRVl¡n;rJ-tIQ*l] t¿xl

Let [^R] rrur = [RV] ¡n.roj 
-1t\ff

and [Ao] iN, = ¡nvl IÐ¿l - t tQ*l

Therefore, êQ. 3.63 becornes

{ [R] - [AR],*r] = { [nJ - [^A] rNr ] t^xl
or [o],*, = [A] l¡lr l^xl

where [R] lrur = [R] - [AR] rNr

and [A] rrur = [A] - [AA] irur

Eqs. 5.61, 3.62 and 3.66 are combined to sive

(3 . 63)

(s .64)

(3.6s)

(3 .67)

F;l
ru=
G¡

AJI

A'I¿

..TNT

In the above nanipulations and for storage, sparsity techniques

are fu1ly exploited.

3.4.2 Effect of the Integration of an AC/DC System on the Load_Flor+

Equations of Each system in the Absence of the other

In this section, comparison is made between road-frow equations

of an ac systen with and withoutdc terminals. Also between dc svstem

load-f1ow equations with and without integrating both ac and dc s¡,srems.



53

DC System:

As stated before in eq. 3.s6, Newton equations of dc system alone

aTe

lRl = [A] [^x]

But for an integrated ac/dc system, load-frow equations of the

dc systen are given by eq. 5.66 as

l-Rl - l-al I^Yl. ", INT ,,'r INT Lo/\J

Comparing eqs. 3.66 and 3.36, one can notice that

(1) n elements of the residual vector tR] should be nodified due

to the integration of both ac and dc systerns.

(2) n x in elements of the dc Jacobian natrix IA] should be

modified due to the integration technique.

AC System:

rt has been shown that fast-decoupled road-florr, equations of an

ac system in the absence of dc terminals are (eqs. 2.20 anò.2.2r)

r+r = [Ær] l^el

r+r = IAJ¿I [^vl

whereas the load-f1ow equations of an ac system in an integrate d, ac/dc

system are given by (eqs. j.61 and 3.62)

rflrNr = tAJrl t^el

r+r rNr = [AJ4] [^v]

comparison between eqs. 3.6r and 2.20 revears that
(i) n elements of the active power misrnatches vector r{ll of the

ac systen should be modified due to trre integration ,".t,niqu".
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(2) [Ðf] is exactly the sane for both cases.

Further by comparing eqs, 3.62 and 2.21, one observes that

(1) n elements of the reactive power mismatches vector t+Sf of

the ac system are nodified due to the integration of ac and dc

systems, and

(2) Unlike [i9] subrnatrix [AJ4] of an integrated ac/dc sysrem

remains exactly the same as in an ac systen in the absence of a

dc network.

3,4.3 Method of Solution

The following steps are taken; ( Flowchart- Appendix E )

1. Calculate the initial values for both ac and dc system variables.

2. Form and factoríze dJ, and AJo, using the Bi-factorization

method.

3. Calculate (^P/V)ac ,(AQ/V)". *d R.

4, Calculate RV, QX.and PX.

5. Calculate AX:

(a) Elements of Âx excluding aa are calculated as in the

normal case of dc systen using the step-by-step nethod as

outlined earlier.

(b) Residual vector Ro has to be modified due to integrating

ac and dc systems as follows

R. =R4-Â*r*,UINT

where, ÁRIN' = RV o -O-t " +g)

=RV.AVr

Zollenkopf's nethod is used to calculate ÂV, and then

by multiplying it by RV using a sparsity technique v¡e get aRl*t



(c) A technique is developed using;the same routines of Zollenkopf,

which can be used in the multiplication of two sparse matrices,
-1to calculate ÂAf¡¡f = RV . Æ4 QX. The only effect of

AAI*, is to nodify the value of Ar, A, and A, of eq. 3.56.

(d) Aa is computed fron eq. 3.56 using (R¿)l^t in place of Ro

and the modified values of A' A, and A, . This conpletes the

first dc iteration. Update X.

6. Modify n elements of [AP/V)'" given by step 3 and correspond-

ing to the ac/d,c bus bars to get (^P/V)INT and then use

Zollenkopfrs to solve for Â0according to eq. 3.61, update 0

7. Use the updated values of X and 0 in forrning (AQ/V) 
INT th"t

solve for ÂV according to eq. 3,62, update V.

This conpletes the first iteration of the integrated ac/dc system.

The pattern for subsequent iterations is the same except that we start

from step (3) , since matricer ul and ,{ro are constant and need to be

factorized only once at the beginning of the solution. convergence

tests are used for the integrated system with the criteria

r"*l^P l-. e
D

r"*l^Ql< e- fÉirall busesq

where maxllll and maxlaql a"" largest absolure elements of active

pohrer nismatches vector [^P] and reactive power mismatches vector [AQ],

respectively. e- and e^ are specified tolerances.
YY

3.5 Application of the Proposed Technique to sample systems

In the absence of

solution technique was

are based on the AEP -

any existing systems the proposed load-f1ow

tested on hypothetical systens. These systens

14 bus system described in [15]. The procedure



56

0.217
+1V,L¿l

0.4+j0.2313

j 0. s6r6

¡. ag+j 0. 058

.09/ -12.78o 1O

2 .32*j0.2284

1.06 / 0.0"

r.026 /-4 .72" 1.004 /-9.39"
0.076+,i0.016

j 0.4591

. . U,lb

SYNCHRONOUS

CONDENSER CO\\'ERTER

Fig, 3.13 Sample systen, including loads, generation
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Table 3.4

Data for 2 terninal dc system

Converter 1 Converter

Trans. reactance, p.u.

Conm. reactance, p.u.

Filter susceptance, p.u.

Resist. of dc line, p.u.

Const. dc current n.n.

Const. dc voltage, p.u.

Minimum ang1e, degrees

0. 10 0. 07

0. 10 0.07

0 .4902 0.630r

0.00334

0. 456

7"

r.284

1go

Table 3.5

(a) Data for 3 terminal mesh connected dc

Converter
MK

Transformer reactance , p. u. 0. 10 0 .07

Commutatign reaçfâncê n,, rì.10 0.07

Constant current, p.u. 0.4362

Constant voltage, p.u. L286

lrlinimum angle, degrees 7" 7"

Dc line resistances, p.u. 0.005 0.005

hr Rrru

ib) Data for 3 terminal radial connected dc

Sarne data given in (a) except

\¿ = .005 p.u.

RK = .005 p.u.

h = .005 p.u.

systen

N

0. 04

0. 04

0.916

lgo

0. 005

R"NN't

)})Ltriil
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Table 3.6

Line flows for the integrated ac/dc systern

Line SB EB Real Pov:er Reactive Pover Line SB EB Real þwer Reactive Power

I
¡

2

2
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q

q

6

6

8

8

9

9

10

i0
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I

z

I

-

2

5

A
L+

/1

'7

o

o

6

11

)

1

-

1

-

')

/l

1

/1

o

I

6

f

11

6

I2

I2

13

13

I4

I4

15

16

1ó

I7

T7

i8

18

19

19

20

20

8

7

9

9

10

I

T4

10

11

I2

tc

1^

13

8

7

9

7

10

9

74

9

11

10

13

T2

I4

13

1.5641
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0. 7559

-0 .727 6
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0. 0657

-0. 0646

0.1218

-0. 0493

0,1066

-0 ,042r
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-0.2375
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0. 0966

-0 .0942

0.0776

- 0. 0768

0. 1670
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0 .287 6
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0.0570

-0.0569

0 .092r

-0.0911
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0.0317

0.0143

-0 .0742
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-0. 0541

0. 0338

-0.0322
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-0.3246

0 .3420

0.0502

-0.0414

-0.0i80

0.0182

-0.0010

0. 0032

- 0. 0759

0 .077 r

0. 0163

-0.0162

0.0s72

- 0 .0552

6

T2

6

13

7

I2

6

3

2

DC TERMINALS
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2

À+

5
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l\

N

M

REAL POWER

0. 5609

-1 . 1720

0 .6147

REACTIVE POI{ER

0.224r

0. 6331

0.2s90
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BUS 5
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Bf=o ' 4902

Id= 0 . 4560+

Vd=1.2840

r

T
3.14 Dc paraneters of a 2-terninal systen

resulting from the ac-dc load-flou.
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v¡as tested on three systems. The first system had a two terminal dc

obtained by replacing ac line 4-5, the second systen had a three terminal

dc rnesh connection obtained by replacing lines 4-5 and 2-4 (Fig. 3.13) ,

and the third systen was the same as the second one, but with radial

connect ion .

Data for the ac system aïe sumnatized in table 3.3. Data for dc

systems are given in tables 3.4 and 3.5. The power setting on dc lines

was made equal to the active pol^rer carried by replaced ac 1ines.

Each system required 4 iterations. Table 3.6 provides the details

of the results obtained for the second systen which has a 3-terminal

rnesh connected dc system.

Details of the resulting dc parameters for both 2-terminal and

3-terrninal dc systems aïe given in Figs,3.I4,3.15 and 3.16'

Accuracy of the Solution

The program has a default accu1acy of.0005 per-unit for all ac

and dc variables. Tolerances of less than 0.5 IÍt{ and 5 }I\¡ARS mismatches

per bus are easily obtained. The dc residuals of zero values are also

obt ained.

Speed of the Solution

The proposed load-flow solution technique of integrated nultiterminal

dc/ac systems converges in 4-6 iterations irrespective of the nurnber of

terminals.

The number of iterations may be increased in the fo11ot^'ing cases:

(i) If the transmission voltage is modified due to a tap-

limit violation. in this case at least one extra iteration is

required.

(ii) If the calculated tap-setting is not practically feasible

at more than one station , 2 additional iterations may be required.
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Ciii) If the transforrner turns-ratios have to be corrected

because we assume in the derivation of the dc equations that

the transformer turns-ratios are. continuously variable, whereas

actually transformers have discrete tap-steps.

(iv) If a practical solution for the operating conditions is

required, for example after each iteration a test has to be

made to ensure, that the voltage controlling station has the

lowest loaded voltage 1imit. If the test result is not

satisfactory, the program should assign voltage control to

the station with the lorvest loaded voltage linit. Each

reallocation of voltage control results in an extra iteration

before final conversence is achieved.

Conc lus i ons

This chapter presents a fast technique for load-f1ot" studies of

integrated ac/dc systems which embodies the follolving features:

(1) It employs fast decoupled load-f1ow techniques. It is found

that the reliability, computational speed and storage advantages

offered by the basic fast-decoupled algorithm 9 
"t" 

preserved as

far as the ac network is concerned.

(2) The dc system is forrnulated in a nost general tvay such that

any multi-terminal system of any configuration and control charac-

teristics are easily accornodated.

(3) The choice of the dc system variables and equations makes the

calculation procedure very simple. A considerable saving is evident

fron the requirenent of factorizing AJO only once.

(4) The step-by-step solution for dc systen is faster and requires

less storage as cornpared to other knotvn procedures.



65

(5) The overall efficiency of the proposed technique is grearly

improved by using Zollenkopfrs bi-factorization and other sparsity

techniques.

(6) rn sumrnary, the technique is fast, efficient a¡d reliable and

is therefore a distinct improvernent oveï known procedures.
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4.7

CHAPTER IV

A NEW METHOD FOR OUTAGE STUDTES

fntrocuction

The major objective of power transmission system planning and

operation engineers is to have a sound systen operating at its peak

efficiency. However, a good systen should be able to survive contin-
gencies, leading to system elements outages, and settle down to a near

optimal state without over-loading of and over-voltages at system

elenents' Tt is very important to have techniques which can determine

post contingent network voltages and power flows in a most economical

way. Generally, an experienced systems engineer, having identified
an efficient systen can guess at the crucial conponents which if
removed from the system may lead to oveï-voltages or over-10adings.

However, he also needs a tool to calculate the consequent system state
and verify his guess. since a number of cases must be examined., the

econony and speed of calculations are of paramount importance. An

absolute accuracy in calculations is of second.ary importance as the

results within engineering tolerances are generally sufficient. rt is
more so because all critical cases have to be analysed in greater details
anyway.

The analysis of this chapter is restricted to the outages of ac

elements of an integrated dc-ac system. consistent with the above-mentioned

requirernents for contingency/outage analysis this chapter pïesents a very
fast, although approxinate, techniq,r"3g to provide the post-contingency

load-flow in the event of a
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single or nultiple element outage The technique requires one iteration
starting from the lóad-f1ow data of the base system a¡rd identification of
outages. On accoult of the nature of technique it is safe to assert that
solutions consequent to charges in the generation or the 1oads can be

acconrnodated with the same speed. In principle the proposed method is
based on the use of fast decor-rpled load-flow technique and the concepr

of sinulating a line or transformer outage by injecting power equal to

that flowing into the outaged elernent at appropriate buses. This tech-

nique reverts the changed network configuration back to the original in
a mathernatical n'ndel. The usefulness of this technique has been illu-
strated very well by sachdev and rbrahim3S. By combining the outage

simulation technique with Éhe fast decoupled load-fIow technique a number of
advantages are gained. As compared to [S5] our method does not require

calculation of poweT injection nodification factors and reduces the

sensitivity matrix elements calculation effort to half. Since our rnethod

needs only one iteration and uses bi-factorization and sparse matrix

programning techniques it is, we believe, the fastest.

In this chapter the pïoposed nethod is outlined by considering the

outage of one ele¡rent. Later, the technique is generalized to take into
accor.nt nultiple outages.

In the following at first, some known techniques are discussed and

later details of the proposed technique are presented.

4.2 Review of Known Techniques for Outage Studies

Contingency analysis methods that do not npdel

ties of systen elements but rather sirnulate elenent

removal' are considered to be deterministic nethods.

the outage probabili-

outages, by actual

The use of ac power
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flow methods for outage analysis may be considered a deterministrc

approach, characterized by excellent accuracy but otherwise erpensive

computationally and excessively demanding of engineering time. Methods

appropriate for contingency analysis have been developed and are sum-

marizeð as follows

(27)
A. DC Power Flow Contingency Analysis:-

The sirrplest, but perhaps nnst inaccurate method for anaiyzing

the effects of not only single but also multiple contingencies, is

a method based on the dc power flow equations. These equations,

usually (N-1) in number, where N is the number of buses, model only

the real power flow and ignore the reactive power flot". In many

cases all line resistances are neglected and the line flol{s are

assumed to be considerably smaller than the steady state stabilitl'

linit of the 1ine. The result of all these assumptions is that

we obtain a linear nodel of the network to facilitate performing

rnultiple-contingency outages using the principle of superposition.

To develop the dc power flow equations, we must start with

the standard ac power flow equations

x Y.. E.l.: 1'l 1'
lJ

Y.. E.)lJ J'
Tj

P.
1

Qi

= Real (Ei

*
= - ImlE.

.L

(4.1)

(4.2)

i=I ,2,....rN

Assuming the voltage magnitudes rernain rnchanged and equai to their

base - case values, the N net injected reactive power equations

can be ignored, leaving only the N real power equations. Considering
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bus 1 is the s1ack, we have

P. = Real (E; E y* Er)1 ' J -J J

= Real (v. "-jo:- r 
y,. ejôij V, "joj)'1 j tJ )

= Rear t t v. v. y.. ej( 6ij * ej - oi)l
j r J 1l

, with the line resistances neglected, yi i = j Bi; alrd
-J

P. = I V. V. B., , sin(0., - 0.,)1 1 J tJ -1 
J

i=213r....rN

Under the assumption that

V. V, B=. sin (0, - 0,) .4 V. V. 8,. ,r- J IJ '1 J' 'i 'j -ij '

(0i - 0-¡) must be sufficiently small that the sine of the angleL)

difference can be replaced by the angle difference, thus

P. = Ì V, V. B'* (0. - e,)L J lJ - 1 JJ

i_1
= - | V. V. 8,,0= 4 0. I V. V. 8..j=1 r J tJ J t- jfl 1 J -ii

N

-I V.V.8..e.
. 1 I It 'l

1='t + |

Letting

K.. = | V. V. 8..11 :r, 1 J IJ
I fr-

anð ,,otj = -vi vj utj
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i=2r3r....rN

0r in matrix form

P=K0 (4.3)

Clearly, if for a fixed set of power injections P, a line or

lines are removed, both the K matrix and the 0 vector will

change from their base-case values Ko and 0t by an amount AK

and A0 such that

Po= (Ko * 
^t() 

(Os+ A0)

=Ko0s+AK0s+KoAO+AKA0

Neglecting AK Ae , then

We get
i-l N

ot = 
=1, 

*tj tj * Kii oi * r K" o'
)=L J J rr t j=i*t rJ )

p"lKo0s+AK0s*Ko^0

But Po= K" 0S (from 4.3) , hence eq,. 4.4 becomes

Q= K0s*K'40

Therefore

Eq. 4.5 provides the changes in the bus voltage angles due to

network changes.

Since the change in the power flow in line ij is

(4.4)

(4.s)

(4.6)oij= -*tj (Aei - 
^0j)

Where Â0., and Â0. are the i th a¡rd j th corponents of A0 , the1'l
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effects of line outages on line flows are readily available. It
is important to emphasize that (K')-1 n""d only be computed once,
namery at the beginning of the contingency studies. As 10ng as

the base case remains the sane, (X")-1 is valid.
using eq. 4.5 is a sinple natter in both cases of single a'd

double or higher order contingencies. Though this approach of
outage study is the sirplest, Ðd fastest, its accuracy is low
and it does not provide information regarding reactive power flow
in the systen elements.

(5, 27 , 29, 29)

z-matrix nethods, as the narne indicates, make use of the bus

irnpedance matrix associated with both the base-case system
(system having accurate load-frow solution) and the system

nodified by either line rernovals or line additions. The Z_natrix
for a system ca¡ be obtained in several ways. It can be obtained
directly by inverting the bus admittance rnatrix or it can be

constructed sequentially by using available algorithms.

The ft¡:rdarnental approach to contingency analysis using the
Z-matrix is to inject a fictitious curren! into one of the buses

associated with the element to be renoved, of such value that the
cu*ent f10w through the element equals the base-case f10w , arr
other bus currentso*eing set equal to zero. In effect, this proce_
dure creates throughout the system a curïent frow patterm that
will change in the sarne m¿rnneï as the current frow pattern in the
ac polrer f10w solution when the elenent in question is removed.

B.
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The requiïenent that the fictitious injected current creates the

s¿rme currlent f10w in theielement to be rennved as in the base_case

is considered a constraint.

rmplerenting the ideas discussed, assune that we want to
evaluate the effects of an outage of line krn, given that the base-

case system flows a¡d voltages are available. we may include all
MVA loads in the Z-matrix by first converting the MVA loads using

')*Z Load, = Vi / S.L -i ' -1 (4.7)

and applying any of the z-matrix building algorithms. Knowing rhe

Z-matríx, we nay write the bus voltage equation

Il

rz

:::
It¡

(4.8)

rkr=(Ek-Eì/Zlinekm

= (Zkk- Ztu) / Z tine km

Ztlt Zttt¡ -

since we do not yet know how much current to inject into bus k
to create the flow Ik, that equals the base_case flow ,irn ,

it is logical to start by letting Ik = 1,0 p.u., thus from

eq. 4.8, injecting a r.nit curïent into bus k gives

t-
I

I
I

t't'
I
IL

ïherefore

.-1

F-2

8,,
l\-

ztt ZtN

zzt zz*

I Er r*]t = [Ztk ,*]t

(4.s)
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need to calculateObrriously tn, I ti, the first time; therefore we

* 
"á¡ustment 

pararneter, d, where

uAtir/ry^

Multiplying d by the initial r.nit injection

injection, Ik = d, and new current flow

(4.10)

results in a new

rk* = (Eu - Eì / Z line krn = d (ZUU Zñ)/Z tine kn

= tk*

Due to the injection

other elernents are

Ik = d , the current flows in a1l the

(E; - Er) / Z Iine ij
L) all ij I kn

=d(Zik-ziù/Zríneíj (4 .12)

The next step is to rer¡rove line kn and cal cul ate the new curïent
flow pattern trj in the new systen.

Once the nerr/ cuïTents are availablç, current flow changes due to
renoving line km aïe

otrj = iij - trj for all ij U.r3)
0f courso, when ij = km , i,-'. = 0, therefore'Km

OtU, - - Iim , with this result the need for adjusting the
fictitious cuïrent ru to create a flow of lf_ ir, line km is seen

¡ \r1¡

to be crucial.

calculating the current flow pattern i... in the nodified
network Z, in which tine kn has been removed, requires only that
we inject current rv = d, as before, into the modified network.

r.. --lf
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The voltages that result from this injectíon can be used to

d-etermine the needed f lorvs: -

F-'|

;-)

;
"l\T

ztt Zt,u

77"2r "2N

7.-N1

0

0

d.

0

0

|-' 
;'-l

tl
¡ry|

I o ,rul
t-"1tl-tl
tl

I
t,-l

Lo 'Nq.J

(4 .r4)

(4.ls)

Z¡rt,t

There fore

Ib;-tr:)/Lt1ne1J

=a(ìru-i.,o) /zrineij
'- J"

':u/nere t. = u
KM

T-
I'ì

Further, substituting eqs. 4.15 and 4.I2 into eq. 4.13 , we get

T.. | ã.. --, .-,, - 7'ij z rrne tl - - lK ' ziì-(zik - z¡) l (4 '16)

The modified network ã *rrst be known before eqs. 4.14 through 4.16

can be used. Its formulation can be fould in 1271.

If double contingencies are to be considered, the same basic

procedure is used, except that two fictitious cuments must be

injected into the system, creating in the two lines to be renoved

a current flow equal to their base-case flow values. Further, the

z-matrix must be nrodified appropriately to reflect the removal of

the two lines. Upon injecting the two bus currents into the

original and nodified systems, the desired changes in current florr'

can be obtained.
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In

than the

resul ts

general, the accuracy of the Z-matrix

accuracy of the dc power flow rethod.

are comparable to those obtained using

method is far better

In fact, the

an ac power flow.

c. Peterson r¡.M. et al,(31)

J51] introduced an approach for the approximate iterative
solution of linearized a. c. poweï flow equations, that is
suited for the steady-state anarysis of both the real ard

reactive effects of a series of contingent line outages.

Their technique is based on the direct sorution of a

sparse systen of linear algebraic equations by ordered

triangular factorization and sparse rnatrix progranming

techniques. Also it is based on two synmetric rear matrices

which rernain constant for the conplete solution cy:re.

Therefore each rnatrix is triangularízed. only once and the

effect of a line outage is sinulated without changing the

rnat ri ce s .

starting with the equations of real and reactive power

injections at node k,

or=vl

au=-4 Bkk*

L
rt%%t*vL V,n (9., cos Ou,n * Bk* sin0*)

(4.I7a)

uu 
,n"1 

vr (%r sin our - Bkr cosour)
'--:k

(4.r7b)
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% is the set of branches connected to node k Noting that the

BUU tern can be separated into its coÍponents as follows:

Bkk = I (-ttn Bk, * BYkm) * uan
rnegL

where BO, is the transfer susceptance of branch knr

tU* is the tap ratio when branch km is a transforrner

(when it is a transmission 1ine, tU, = 1.0)

BYU, is the charging susceptance of the k 1eg of the

equivalent ?l' of the line km

and BC. is the susceptance of the shr¡nt capacitor or
K

Teactor at node k.

Also knowing that

sin0 = 0+(sin0_0)

cos0 = l+(cos0_1)

Substituting in 4.I7a we get

Vt-^: Bk'ok'=Pr-ví trr-vr r vn Gk,
rneO,k -- rr%

-uu 
*rl^ 

ur {%,n (cos 0u* -1) * Bk* (sin Ou,n - oLr)} (¿.is)
K

Noting that On,n = 0k - 0,n , the L.H.S. of eq. 4.lg can be

amanged in the form of a system of N linear equations with

(N) voltage phase angles as variables, i.e. it could be written in

matrix notation as tA] t0] , where t0] is a¡ (N) vector of node

voltage phase angles and [A] is an (NxN) matrix with elements
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PL = ou - ul Grr - uu 
--l 

v* Gk, G.2oa)
meo.k

r, o2 o3Pt =uo*^l vr (Gr*#* Bkr nb) (4-2ob)
meuk

The complete systen of eq,ations for real power can then be

written as

%,, is defined as fottows

%t = Vt I V* Bk, (4 " 19a)
rt%

%r = -Vk vr Bkt (4.1sb)

on the R.H.s. of eq. 4.I8 the first and second terms of the

Taylorts series expressions of the sine and cosine functions are

substituted. The R.H.S. can then be written in terms of new
I tl

symbols [Pt] and [Pt] , which are defined as follows

lAl[0]=[ tP]+[p] I f4.21)

similar analysi-s applied to the reactive poweT equations leads

to the following results

lcltvl=l ta]*[Q"] I t4.22)

where

iV] is an N' vector of node voltage nagnitudes,
I

N is number of pQ nodes

a¡rd IC] is an (Ntx Nt) matrix with elenents Ck,

defined as follows
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C,, =
KK

C,=
KM

LL,D,
KN KM

meq,,
K

-R €n--ok, ror m e

(4 .2sa)

Yr (4.2sb)

nodes connected to node k

(A )á.ç\

(4.2s)

all zeros except element k

-1

where \,- is the set of all
^

ta I and Ia I are defined as follows:-

PQ

^3 ^2
a;= -i v* {.u,(ru* :*ri*Bk,:flr G.24b)

In ec[l-
rr'here Úr.^ is the set of all PV nodes connected to node k.
The technique simulates the effect of a branch outage on the

solution without changing the triangularized matrix to reflect

the branch change. An outage of a line in branch km causes

four changes in matrix IA] as follows

AaOO=Âan* = -Ark, = -Aurk

The changes in IA] can be expressed in matrix notåtion as

lA I = [A] * a"k* t¡{Al IMAIT

nI \r.
Qr,= + *V,.
^"k^

where tM^ I is an N vector that-A-

which is +1 and elenent m which

The inverse of [n'] is given by

( r tk, BYkm+Bc)+ r vrBk,
rneok "k *eük

a)

is

32

ln'l-1 = [A]-1 - c tzAl tMAlt [o]-t (4.26)
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v/here

f, = ( +- + [Mn]r [z^] )-1
^okm f\ ¡t-

ancl.

lztl = tAl-1 tMal Ø.27)

For a branch outage eq. 4.ZI ca¡ be written as

I IAI * A%]n tMAl IMAIr I I tol + [ae] l

[ [P]*lPll
where [40] is the vector of the phase angle corrections to

account for the line outage.

A similar e;pression can be derived from eq. 4,22 for the

voltage correction [AV].

t tcl * ack, IMcl tMclr I t tvl + [av] l
= [ Ia]*[Q"]l

llere ACk* is the change in element km of tC] resulting

from the line outage, tMc] is an Nt vector that is ai1 zeros

except for element k which is +1 and element m which is _1.

[¡O] and [¿V] are then computed as follows:-

[ao1 = - ( ñ+ * z*k - r*)-t (0k - 0m) lzn] U.2B)
^*km

hv1 = - (;¡f * zck - ,.r)-t (vk - vm) Lzcl G.2s)a"km

where

[zc| = tc] 
-1 

IMcl (4.30)
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The scalars Z* and ZXn are elenents of LZnl

The scalars ZCf and ZC^ are elements of IZC].

0U and 0,n are elements of [0], the solution vector of eq. 4.2I

without the line outage, and VU and V,n are elenents of [V], the

solution vector of eq. 4.22 without the line outage. Thus, by

solving eq. 4.2r as a linear system to obtain the solution te]
the solution for [^0], the correction to account for a line
outage) can be obtained by first solving for lznl by a repeat

solution and then solving eq. 4.2g. A parallel statenent applies

for the voltage solution in eq . 4.2g .

Though this approach has good overall performance, it
requires some computational processing of the basic state data

before line outages can be simulated.

D. B. Stott and 0. Rtrr.(9)

l9]-hasapplied a technique similar to [31], based on the

decoupled load flow solution. As stated before, the fast
decoupled load-f1ow equations are given by

r+r = [B'] t^ol

^nlîf = [8"] [^v]

All outages must of course be reflected correctly in

calculation of f+f and t4'l , for rhe ourage of a

branch two non-sparse vectors [x'] and [X"] must be

each requiring one repeat solution using the factors

and [8"] respectively.

(2.20)

(2.21)

the

series

calculated,
I

of[B]
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After each solution of eq. 2.20, IAe] is corrected by

an amount

rtfT- c tx I lM l' [^e] Ø.3r)
where Ct is a scalar given by

c,= (L/b + ltul']T [x'])-1,

I I _t ttxl=[B]'[M],

[M'] = colunn vector which is null except for

ft
[Ml, =a. fUl =-1- -K ,m '

b = line or norninal transformer series adnittance ,

and a = off-nominal turns ratio referred to the bus

corresponding to row n , for a transformer

= 1.0 for a line

similarly, after each solution of eq. 2.2r, [Av] is corrected

by an amount

-c" [x"] [M"] 
T 

[^v] (4 .32)

where
tl

C is a scalar given by

= (L/b * [M"]t [*"] )-1

rr tt _l t?, [x]=[B]'[M]

and [t',1"] is formulated in a similar way like [U'].
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rt was ro.r'Jgìn"t the (10, Iv) iteration schene remains

the best in this application and it was confirmed that using

the base-case solution to start the outage calcurations is
on an aveîage distinctly better than using the normal flat
voltage start each time.

L. Sachdev and Ibrahin(35)

[35] has proposed that the outage of a line be simulated

using the sensitivity matrix (which is the inverse of the

Jacobian matrix) and the changes of power injected into the

system at the buses connected by this 1ine. Fig. 4.1 depicts

the simulation of an outage of a líne connecting load buses k

and m. The basic and final states of the system buses k and m

are shown in figs. 4.La and 4.1b respectively. The voltages

at these buses rvould not change, from that in the final system

state, if this transmission rine is ïeconnected and povrer equal

to that flowing in the line is injected into these buses.

Fig 4.1c, therefore, simulates the outage of this line without
physically changing the system configuration. power flow, in
the line connecting bus k and n, in the simulated final state
is given by

I
D-
^km -

I
t/

K

t)
-v. -

K

t
V.V

Ã

trrr,V* [Go, cos(ek -0m) * Bk, sin(Ou - 0n)]

(Gkm - ckn)

Qkr =
I

m [G* sin(0k - e
Itl

m) - Bk, cos(0U - 0r)l

tL {(r I

*.u;' (Bkn - B;) (4.33b)



tttt
fC. cosl0 - 0.1 + B. cosl0. - 0 )l- Km rn K- Kln 'K m-',

- e.l - B- sinlOl(' km

(c) simulatcd final svster¡ statc

outagc simulation of a I::tc conncctint
system buses k and n.

q,,

\/'m

(4.s3c)

(4.33d)

83
t

D-rr
MK

tt
VV.MK

l?-v-
m

I

^-\,v-v
r lll

MK

rG. -G. I' Km Km-

t

V. l-G. sin l0K 'Kln -m

*v'2 rB. - B.' )In - Km Km-

It _ e. llm K-"

t

K

PIk' 
^Qilr ^lt 

^I\/ l\,"k / ^

^nIK' 'YIK

(a) basic system state

(b) final systern state

t

Thc

the

Fig. 4.1
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Where

Gk, * j UU, = (k,m)th element of nodal admittance natrix

rrl
G, + ì B. = I (line charging admittance for line km)Km " Krn 2 ' -----è---

I

and V = ! *AVmmln
I

V, - V. +AV.KKK
I

Q = 0 +40mmm
IeeA0
kkk

(4.s4)

As is evident from Fig. 4.rc, the change of poler injected into

the buses k and m should equal the line flow in the final systern

JLdLC.

I
AP =Þ-' Ik 'km

t

^Þ =Þlm mK

t

^^-aìatrl. - Yl--r^ ¡\ill

(4.3s)

Qir = %t

Since the outage of a line connecting two load buses k and n

is being simulated by the changes of power injected into buses

k and n on1y, eq. 4.36 is formulated using the -sensitìvity

matrix as follows
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cr.t tut

C,
MK lnm

ott Dkt

D
mk

D
mm

FF

KK l(m

LrLmK mm

FF
KK KM

r
mk

F
mm

(4.s6)

Eqs. 4.33 anð 4.36 and the equality constraint of eqs. 4.34

and 4.35 represent a nonlinear relationship between the changes

in real and reactive power injected into the buses k and m and

the nagnitudes and phase angles of the voltages at these buses.

Eqs. 4.33 and 4.36 can be solved using an iterative technique

(more than one iteration is required), the values of AprU , ApJm,

AQfk and AQr, thus calculated are used to solve for the changes

in the entire system state.

Assuming that the system loads and the real power output

of various generating plants renain unchanged, all except the

above four elernents of the controlling vectoï would be zero,

the elements of only four columns of the sensitivity matrix

are therefore required to be computed to evaluate the state

sirnulating the outage of a line connecting two load buses.

The changes of power injection required for sinrulating the

outage of a line (km) connecting different types of buses are

summarized ín table (4.1), for each calculated change of poler

the elenents of only one column of the sensitivity natrix arc

required to obtain the final system state.
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Table (4.1)

POIVER INJECTiONS REOUIRED

TO BE CALCULATED

Generator

Load bus

Generator

Load bus

Load bus

Swing bus

Swing bus

Generator

Generator

Load bus

^Þ
"'Ik

^p IK

^p-^ ik

^p IK

oPrk ' aQrk

AQ'.,.
l^

^p-' Im

A0_. AP_,-tK lm

bus

bus bus

bus
I

I

I,nl

I

The transformer outage is simulated in the same manner as

the rine outage in case the transformer is operating at noininal

tap settíng. If the transforner tap is connected to, sâY

bus k and off nominal tap setting , tk, , is being used,
I,

voltage VU in eq. 4.33 is replaced by Vl /ak,n Except

this change, the sinulation procedure remains the same.

AP_ A0lÌn'

t

the

for

The system solution obtained by the proposed technique

will be slightly different from that of the Newton-Raphson

approach because the elements of the sensitivity matrix are

calculated fron the pre-contingency bus voltages. This error

can be partly cornpensated by using power injection modification

factors (PIMF). Since each transmission element has a unique

effect on the system and this effect is likely to be sinilar at

different loading conditions, a single value of the pIMF may

be used for each transmission element. PIMF for a line connect-

ing buses k and m can be determined by conparing the real porver

PE OF BUSES CONNECTED BY THE LINE
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injections at buses k ard in calculated by this technique and

without the use of PIMF and those calculated from a load-florv

by the Newton-Raphson technique. Therefore, the values of

^P 
-AP .AQ-, and AQ- calculated fron eqs' 4'35 and 4'38"' Ik , -' Im , --Ik -'--- -In

should be modified by using PIMF before calculating the changes

in the entire system state.

Comparing rvith Stott method, the latter has a considerable

storage advantage but this technique requires the upper and

lower triangular factors of the complete Jacobian matrix.

4.3 Neru Method

In principle, a line or transformer outage causes a system

configuration change. An equivalent mathematical model i' tad" 35

which has the original configuration except that at the terminal buses

of the outaged element additional active and reactive poler, equal to

that which would flow if the line was plesent with the nodified system

voltages, are injected, as shown in fig.4.I. The maximum nunber of

ÂP-, AQ. variables for each element outage is 4' Hence, if these
II

are known, four columns of the sensitivity matrix are required for

obtaining the sYstem state.

4.3.1 Single Branch Outage: Mathematical Model

consider the outage of a line connecting buses k and m in

fig. 4.1. In the simulation, under final operating conditions,

the real and reactive powcr flows in the line km at the two buscs

are given by eq.4.33. Rewriting these, we have



ee

o,l,n = uu un., [Gn, cos Onn., * tu* sin o* ] -uu' {cu,n - cir)

r | | I I t) |

Qk* = vk v* [Gu* sin 0k* - tk* cos 0u, ] *Vt (tt* - ttr)

ttf
P" -V V.MKMK lC. cos 0 ,-KN MK

q,u = u,n uu [Gn* sin tru - uu, .or 0'u ] . u;'(Bkm - B;m)

fltt
where 0, =Q. -0 --0,

KMKMMK

I

As shown in Appendix B, Pk, is given by

t

P,-, = p, (basic stateJ + AP, - = P,-- + AP,-- (4.37)
KIN KM KM KMO KM

I

Similarlv p. =p. + Ap' mK mko mK

Qkr=Qkro* oQt*

and %r = %ro * A%t

Changes in line powers ( APm , APrk, AQk* , 
^%t) 

are

expressed in terrns of changes (corrections) in bus voltage nagnitudes

and angles ( Appendix B )

r r? |
+ B,__ sin 0_,- ] -V_- (G, _ - G, _)km mK- m -l(n Km

[ao]k,* = t,/vk \l lrs]r,* lao]u,,

1 ikewis e

(4 .38)

[^Q]k,n = t/\ql [t*]k,, [ou]n,, (4.3s)
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Therefore the

buses k and n

from eqs . 4.

changes of active and reactive

to simulate an outage of the 1

35, 4.37 , 4.38 and 4.39. These

nôr^Ìe? ini ecf ed intO the

ine km could be computed

changes are given as

,N.v oKM

0 'Æ, V-Ktn

[o.lI Kl
tl
¡Ae Ii'l

(4 .40)

(4.42)

(4.45)

'.4 .4r)

Assuming that the loads and real pol{er output of generating plants

remain unchanged and sincetheoutage of a line km connecting two load

buses k and m is being simulated by the changes in the power (active and

reactive) injected into buses k and m only based on the fast-decoupled

load-flow method,

ISul = [B'] [^o] or IAol = [sl] tqut

t;--l
I 

Ytmol

=ll+
tld

R-"5 Þ

kk km

R. R--J

B¡
I

B¡

kk km

B¡
I

B¡

l4Qul = [8"] [^v] or [Av] = [s2] [Agv] ,
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only two colunns of each sensitivity matrix [S1] and [S2] are

required. For other combinations of Generator/Swing and Load buses

as shown in table 4.I lesser columns are required. A nethod of

calculating a colunn of sensitivity nat¡ix is shown in Appendix B.

Therefore the corrections (40k, Aen, 
^Vk, ^Vm) 

are related to

the changes of active and reactive power injections (APrU, APrrn,

AQlk, 
^Qrm 

) by

q'l q'r"'kk "^km

q] ql
mK mm

(4.44)

(4.4s)
q? q?

KK KM

s) s?*-mk "-mm

Substituting fron eq,. 4.44 into eq,. 4.40, we get

t5 ['-q
þl þd

Eq,. 4.46 could be

[^Pi]k,n =

,/T--V- 0KM

0 ,Æ. -v-
KM

j-o
v,

K

0j-
uk

written in the form

loolk,, + t'qÇ [ts]r,'n

srtt s1k*

51 51MK INTN

tvl 
-1 

[^Pr]
k,m - k,il

Isl l. f vl;1 f 

^P-l 
.' 'K,il - 'KrD ' I- Krm

(4.46)
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Let

Sinc e

tsPl = t 'Æ;ql lBrlL,* [sl]r,,n tvl;,,o

,Æ.--V-l and tvl -I* are diagonal matrices, therefore'-k 'mr ' 'K,il

tvl-l r'Æ;qrI SP]

The product

I trl - [sP] l

Therefore APiL

= [Bs] k,* [S1l k,m

,ñ--7- u oMK

o /vV-mm

assumption that Ñ74; :

nagnitude of both ends of a

is given as

ISP] = [83]k,* [t1]t,*

Frorn eqs . 4.46 anð 4.47 we have

[^PI]k,il = [Po]k,,n * [sP] IAPI]k,m

l^Pr]k,il [sP] [APr]k,, = [oo]k,*

/T:-vKM

0

0

rr---¡l-
KM

tI] = unitY matrix, based on the

I.0, i.e. the square root of voltage

1 ine are approximately equa1, hence ISP]

rvril]n t,ffi1 =

[aPI]k,,n = [oo]k,*

and ÀPIrn are given bY

(4.47)

(4.48)

loorlr,, = [ tr] - [sP] l-t [oo]k,, (4.4s)
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similarrv [aQrJn.r= t tr] - IsQl l 
-1 

tQ^1" * (4 . s0)Ð'Krm

t4. sl)
where lsal = [84]k,tn ltr]k,,

Therefore the changes of

(ÂPrt , ÂPr, , aQIk ,

most tvJo columns of each

and charging admittances

(Po, Qo) .

the injected active and reactive power

AQr*) could be calculated in terms of at

sensitivity matrix (S1, 52) , the series

of the outaged line, and the basic load_flow

The catculated values of aort and aorn' are used in eq. 4.42
to obtain the solution for t^o] of the whore system. Also, the carcu_
lated values of ÂQrt and aQr,n are used in eq. 4.s0 to compute the
solution for [Av] of the whole systen. [a0] and tAv] , the co*ection
vectors to account for an outage of the rine km, are used to calcurate
the post-contingency state, [0'1 and [\r'], for the whole systen. K:rorvíng

the post-contingency system voltages, the post-contingency line flows can
therefore, be determined.

4.3.2 (Flowcharr_Appendix E)

consider outage of 1ines1, 2,..., n connected between 10ad

buses (a, b), (c, d), , (y, z) .

The changes in the injected power (^pi, AQI) into buses

(a, b), (c, d) , (y, z) are given by

znlA TNJECTI = 2n[pol{/ERo] =2nl^powERl (4 . s2)

where I A INJECT] are the changes in inj ected powers at the 2n buses

(a' b, c, z), {powERoJ are the precontingency por4rer flows in the
lines and r[ A poIdER] are changes in these poh/er flows due to outages.
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Eq. 4.52 applies for

The relations

magnitudes and angles

^^,.^+.:^-^sqlrd L IrJi15 .

apolrR .
AD

APOI{ER
rìâ

APOWER
ccl

APOIVER,
oc

APOWER

APOWER

yz

= [,Æv-]

or I A Pol{ER]

where for ÂPOI{,ER

Br=dsu
fR I- J-arD

both active and reactive pot{ers.

between I A POWER] and changes in

are expressed in a general form

the bus voltage

by the fol lorr'ing

[/vv] tBl t^xl

AP; AX = A0 and

(4.s5)

the nodal admittance

AD

1 ine

B.
AD

lmaglnary part of (a,b)th element of

matrix

= -series susceptance of Iine ab = B,
AD

or for A POWER = AQ; 
^X 

= AV and

I inc



OA

B = fB.l =à rD ' 4'a,b

B"b -2B"b -Bub

-Brb Bab -28'b

B.
AD -ab

1 ine
t

n -hD, -¿b-aD abwhere

Similarly with

I+
ab

B^ -r, ,ulu

I for calculating Ap

diagonal matrix given by

line charging susceptance
rlne ser1es susceptance

and B
Y'Z

Note that C -

and [,Æl is a

ll vvl =

,Ar v, 0ccl

o /v v.cd

2n
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AINJECT and 
^X 

are related by a

sensitivity matrix IFig. 4.2] as

snal1 portion

shor¡n bclow

S of the whole

b

,

Fig. 4.2

2n columns

to be conputed

Sensitivity Matrix

ahcriy

AINJECT /V

^ 
T \r TFr-'r /\/of rrv!v¡, / ¡rDD

d

b

AX
a

AL-b

l_l 
^ c

-d

^xr

z
Ax

AINJECTc/\/c

AiN.TFCT_/V.ocl
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i.e. t^xl = [s] f gYq 
I (4.s4)

From eqs . 4.53 and 4.54

I A rorveRl = l,Ñ-1 tB] tsl [v] 
-1 [ AINJECT]

= [B] [s] tÆ-l tvl 
-1 [ AINJECT]

= [BS] [ ^INJECTI 
{4 ' ss)

since yVV and IV]-1 are diagonal matrices,

t,ÆV-l [v]-i = [I] (unity matrix), since Ñr7\ = t

and tBSl = [s] [s]

Formulation of [BS] :

lr{atrix [BS] is formulated row by row

a = (c x row a of [S] -row b of [S] )x B"O

b=(c x row b of [S] -row a of [S])x BuO

Rowy=(c

Row z =(c

X TOW

x row

I

z

of [S] -row z of [S])x 8.,.
!L

of [S] -row y of [S] )x 8,,,
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Therefore we do not need to store [BS] , [B+] , lñ-V and lV] 
-' 

.

All that we need is tsl. Matrices [BS] and [B¿] are rnultiplied by

tsl {S may be either 51 or 52} implicity.

From eqs . 4.52 and 4.55 we have

I Att'l.lEcr1 = IPOIVER.] + [BS] [ 
^INJECT]

i.e. I ATNJECT] _ lnsi¡ ATNJECT] = [powERo]

t trl - [BS] I I ATNJECT] = IPOIIJERo]

I

Let IBS I = [I] - [BS] , then [ 
^INJECT] 

is given as

I arru.lEcr1 = [es']-1 IPOWERo] (4. s6)

Fron eq. 4.56 [ AINJECT] is calculted since [POWER^] is known'o"
from the precontingency load-fIow.

By knoirving the 2n columns of the sensitivity matrix shown

by the unhatched portion in F:-g.4.2 , A0 and AV, the corrections

due to lines outages, are calculated to update [O'] and [V'] of the

whole system in the post contingency condition. Post contingency

line flows are therefore determined.

In this technique we need just one iteration starting from the

basic state to calculate the changes in the systen state due to single

branch or nultiple branch outages.
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4.4

TeSt ReSultS

The aforementioned technique has been applied on AEp-14 bus

sample system for single and double line outages.

For single line outages, lines 7 (high roading)r 11 (nediun loading)
and 20 (1ight loading) are rernoved. one at a time, whereas for double

line contingencies, lines (16 and 17) and, (J and z0) are removed in
pairs.

For conparison' an exact load-flow solution is also obtained in
which the outage is simurated by physicalry removing the rine.

Table 4.2 summarizes the resurts for active por{er flows in
the case of single line outages. This table also shows the precontingency

flows in the system given by the fast_decoupled solution.

For the contingency of line 7 it also provides results obtained
by using z-matrix 28'29 

and Stott's 9 techniques (one iteration) to
show the accu'acy of the results on a conparative basis.

Table 4.3 shows a conparison between reactive power flo's on

lines obtained by futl load-flow solution and that by the proposed

technique due to the outages of line 7 (heavily 1oaded) and rine 20

(1ight1y loaded).

Table 4-4 provides the resurts of active porver florvs for
double line outases.



NO

LINE OUTAGE

LOAD-FLOI,ll

I
2

3

4

5

6

8

I
10

11

L2

13

74

15

16

I7

18

19

20

I54.07

79 .89

83 .08

38.64

46.51

14.10

64.07

24.97

14.06

49.50

r0.46

8.37

t9 .47

.00

24.97

2.28

7 .25

6.72

2.LB

7 .86

A conparison of the

exact and proposed

OUTAGE OF LINE 20
EXACT LOAD- PROPOSED

FLOW TECHNIOUE

156.54

76.28

72.83

56.I7

4L.37

23.66

63.47

29.52

16.61

42.36

11.39

6.s6

13.2I

.00

29.52

1 .40

15.22

7.60

.4r

.00

Table (4.2)

active power flow
techniques (single

1s3. s5

'70 Aa

83.29

47 .92

46 .0s

19.64

66.02

26.47

74.86

46.L9

13.72

6.66

12.95

.00

26.35

.87

13 .85

9 .81

.40

.00

OUTAGE OF LINE 11
EXACT I,OAD- PROPOSED

FLOW TECHNIOUE

calculated by the

line outages) (MW)

1s6.47

76.r5

72.96

56.31

47.23

23.55

64 .6s

30 .45

T7 .77

40. 91

.00

8.77

20.94

.00

30 .45

12.s8

5.47

3 .51

2.58

9.67

153.90

80.19

83.38

sI.92

49.49

L7 .86

60.80

26.L8

14.50

3B .98

.00

6.66

16.38

.00

25.69

10.53

8 .56

2.39

.55

4.76

OUTAGE OF LINE 7
EXACT LOAD- PROPOSED

FLOW TECHNIOUE

175.66

6r.79

L07.82

63.69

17 .r0
8 .66

.00

12.91

7.24

69 .30

22.53

9. 89

25.68

.00

72.91

9.23

.09

18.26

3 .68

15 .40

L66.62

64.03

101 .82

56 .78

23.78

7 .20

.00

L5.47

8.70

64 .86

18.11

9.50

23.3I

.00

L5.37

5 .45

.55

14.27

2.74

12.64

Z MATRIX B.STOTT'S
METHOD METHOD

r74.57

s8. 19

87.83

87 .78

T2.6I

9.I4
.00

18.30

r0.22

60.32

17 .76

I .37

23.I9

.00

18.11
'4.06

3.23

13.06

3.04

12.50

r75.02

58.15

88.43

88 .68

L2.69

B .37

.00

T7 .87

10.04

67.28

16.79

9.27

22.75

.00

17 .83

3 .60

3 .45

12.50

2.86

11 .69
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Tabl e (4 .s)

A comparison of reactive power flow calculated by the exact and

proposed techniques. (IWARS)

LINE
NO OUTAGE

LOAD FLOW

OUTAGE OF L]NE 7 OUTAGE OF LINII 20

EXACT PROPOSED EXACT PROPOSED

19.74 24.69 22.65 19.87 79.7I

2 2.40 3.62 r.70 2.I0 2.09
7 2.69 7.33 I .58 ¿.o+ 2.67
/1 5.r2 tr, ')^ 7 .43 s.44

5 7.54 3.32 3.84 7 .07 7 .08

6 2 .71 4.51 6.06 t .83 2.r0
7 8.02 .00 .00 6 lL 7.89

8 9.57 11.51 8.76 9 .61 10.09

9 .0106 /l '7 .39 .025 .020

10 12.65 18.84 22.75 13.29 13.25

11 9.44 6. 83 5.31 9.41 9 .89

I2 3.2r 2.77 2.6r 2.26 2.62

I3 r0.29 8. 08 q ¿R 7 .52

14 28.35 33.29 27 .8r ?t ¿.7 31 .68

15 17.35 ¿U . JJ 17 .s2 20.23

16 I .31 1.50 2.r7 1 .48 r.43
I7 .08 L.97 ?qo s. 00 3.04

18 7 .12 4 .37 3.56 7 .29

19 r.43 .90 .68 .55 1 .14

20 5. 35 3.04 2.75 .00 .00
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Table (4.4)

A conparison of the active power flow calculated by

proposed techniques (double line outages)

the exact

(N,rI{)

and

DOUBLE OUTAGE

3 and
OF LINES
20

DOUBLE OUTAGE OF LINES
16 and 17LINE

EXACT LOAD

FLOI{
PROPOSED

METHOD

EXACT LOAD PROPOSED

FLOI{ METHOD

I
2

7

4

r

6

7

8

9

10

11

72

73

I4

15

16

T7

18

19

20

742.5r

107.55

000. 00

72.32

84.97

94.14

r79.92

23.90

13.38

5r.62

20.65

6 .56

13.2r

00 .00

23.90

7 .4s

).o -4 /

4.10

00.00

749.3s

93 .60

00.00

69.46

//-+4

78.67

85 .43

24.99

14.07

49.62

18.64

B .30

76.23

00 .00

)A OA

5 .09

10.54

12.90

2.I0
.00

IsS.47

77 .46

7r.92
52.90

42.15

24.92

49.62

18.87

10 .63
qq qt

12.78

9.95

25.58

00 .00

18. 87

00. 00

00 .00

9.09

I5.32

Is4.07
76.82
70 tn

40.s0

45.37

18.23

s4. 08

24.97

14.06

53.78

10 .46

B .37

19.47

00.00

24.97

00. 00

00.00

6.80

2.r8
i0.86
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Solution Accuracy

The average and naximum errors for voltage magnitudes and angles

are less than (7u" and. 2%) and (3% and 5%) respectively. considering

the purpose of contingency analysis it is felt that the accuracy is

quite acceptable.

A cornparison of a line ftow given by the proposed technique

and the exact solution has been made in terms of a percentage of the

line rated capacity and not the line flow' This, to us' seems a

logical choice, because the nain puÏpose of the outage study, after

all, is to determine and detect if there aÛe any lines overloaded'

Also, we should not keep on changing the base for a line under

different loading conditions. An evaluation of results shows that

for single line outage, the average error is less than leo whereas

the maxinurn error is less than 6%. The corresponding figures for

double line outages a-te 2eo anð I0%'

IftheactualloadingoflineisusedaSthebasis,table4.5

conpares ouï errors with the errors of other accepted techniques, for

the outage of line 7. As it is clear from this table only four lines

(narked with *) have errors higher than those of z-matrix and B' stottrs

methods and the remaining sixteen lines have errors less than those

obtained by these accepted two techniques. cleatly, a Iine rvhich is

predicted to carÏy 0.55 MW power aS compared of .09 I,II{ should not

matter; because it is no way near its rating. I-lowever, if it is

said that the error in this situation is 51 t .1e" ít is bound to causc

conceï'n. For thjs case, the eÏrors with Z-natrix method and stottrs

nethod are 3488.9eo and 3733.3% respectively'
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Table (4.5)

eo Ettot based on the line flows for the outaqe of line 7

(Refer to the Last 4 columns of Tabl e 4.2)

LINE PROPOSED TECHNIQUE
Z MATRIX

METHOD

B. STOTT'S
METHOD

5.15* .655 .364

-3.625 5. 83 s .89

6.27 18.54 17.98

10.85 -37 .82 -39.24

-39.06* 26.26 25.79

16.86* -5. s4 3 .35

-1 9 .83 -4r.75 -38.42

-20.L6 -4r.16 -38.67

10 6.4r I ¿ -YO 11.57

11 79.62 23.83 25.48

I2 3.94 6.27

13 Y.¿5 9.70 11 .41

I4

l5 -19.05 -40.28 -38.1 I

16 40 .9s 56 .01 60. 99

17 511.1 3488.9 37 33 .3

18 21.85 28.48 31 .54

19 25.54* 77 .39 22.28

20 17 .92 2r.75 )A no

*Cases where

larger than these

the error by the

using the other

proposed technique is
two techniques.



104

Solution Speed

Since the post-contingency results are always obtained in one

iteration starting from the pre-contingency load-flow the speed of

solution is undoubtedly very high.

4.5 Conclusions

1. The attractive feature of rnodified power injection technique

for the simulation of transmission systern elements has been

combined with fast-decoupled load-flow technique to provide

a new very fast contingency evaluation method.

2. The method provides final load-flow results of acceptable

accuracy.

3. The technique is generalizeð and is shown to be suitable for

nultipl e contingencies .

4. The chapter provides details of other outage sinulation

nethods for completeness of the subiect.
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CHAPTER V

PIECEWISE LOAD-FLOW SOLTNIONS OF YERY

I,,ARGE SIZE POWER SYSTE}4S

5.1 Introduction (44,60)

Diakoptics (known variously as the rethod of tearing or by civil
engineers as substructuring)40 

"", conceived and developed by Kror,.41

The basic idea of diakoptics is to anaryze a system by tearing it into
its desirable conponent parts, æd to solve each component part as if the

others did not exist. The solutions of the conponent parts are then corn-

bined and nodified to take the interconnections into consideration. The

results are as exact as if the system had never been torn apart.

Kron applíed his findings to the inversion of large rnatrices and

stated that by tearing the systen into I'n" subdivisions, inverting each

subdivision and reconstructing thern, the total time could be cut by a

factor of 2/n' .

The method of tearing is applicable to both electric and nonelectric,
physical as well as economic (operations research), linear or nonlinear

systems.

The original work by Kron was in the area of electric networks.

A most interesting account of Kronrs work is available in [42], this work

was extended and enlarged by Happ who presents a full account of diakoptics

and electricar network theory in his book [4s]. In his large number of
pubtications he has advanced the technique with particular reference to

electrical power distribution systerns. 44-48

Brameller has rnade use of the theory of ldiakoptics on a number of
problens [49, 50, 51].
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In control systen applications ideas sirniLar to diakoptics have

appeared r¡rder the general term frdecofiposition techniques'r. A very

useful introduction to diakoptics is given in [52].

Some of the inherent advantages of diakoptics are

1. Because -diakoptics allows a large systern to be torn into n smaller

sub-systems, a sma1l computer can be used to solve a large system which

othenvise cannot be handled.

2. A rnuch smaller recomputational effort, Ðd rebuilding effort of

nodels has to be nade as compared to conventional methods when ;

a) a change in any one subdivision occurs ;

b) a change in the interconnections of the sub-divisions is to

be considered; and

c) additional subdivisions are to be added.

There are certain inherent disadvantages in diakoptics also. Two major

disadvantages of diakoptics, as stated by Happ 144J, are that, first,

several steF are required to obtain a solution, as compared to only a

ZI operation in the conventional impedance rnatrix load-flow rnethod, and

second, that an intersubdivision natrix has to be formed.

Sections 5.2 anð.5.3 provide a summary of the known decompositíon

and piecewise methods used for load-flow studies. In sections 5.4 and

5.5 two new load-flow techniques based on diakoptics and enploying

efficient load-fIow techniques are presented.
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5,2 Decomposition Techniques

The piecewise solution of a very large system is obtained by tearing

the systen into rirlrr parts (4,8,...,N) , called subdivisions. There is

no limitation on the lines of tear (L) except that no mutuals should be

present between lines belonging to different subsystems. The total system

equations can be written as

BC NL

r
D

Fr-N

ITuL

I

7

zn
D

zc

Zl'¡

zt

-TA -TI AI +t

,TB,,Tl B
1 ?-t

,TC,,Trc
I 1.1

-TN -TI NI +_t

LI

(s. 1)

For each area. E is the voltage vector,

Z is the impedance matrix,
TI- is the external current source vector,
TI

I - is the current vector due to the interconnection

of the subdivisions,

-LI" and V, are branch currents and voltages across

the proposed removed branches, and

Zt is a diagonal matrix of the rernoved lines inpedances.
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I{ith the correct currents applied at the points of cut, the subdivisions

can be individually solved by any conventional rnethod, frorn which the solu-

tion of the total network is obtained. However, the values of injected
Trcurrents (I'I are generally not knorvn. Two piecewlse nethods are described

in Ref. I4S] for incorporating IT' in the solution procedure. The first

method (cal1ed boundary iteration rnethod) determines IT' by an iterative

method and in the second method (ca1led diakoptic nethod) IT' is determined

in a noniterative or steplise manner.

fn a boundary iteration method, and in the linear case wher" IT is

knoqryt, the voltages across the cut branches (Vf) can be calculated fron

the initial estimate of the voltages of the subdivisions. Then the current
T TrTTrI" and I' can be calculated. Knowing I' and I' , the voltages in the

subdivisions can be determined. With the new tie voltages available,

corrections in ITt can be made and the procedure repeated. In the non-

linear case, such as load-flow, it leads to an outer loop to satisfy the

boundary conditions.

In diakoptics, using the impedance natríx. eq. 5.2 is written.

In this equation, ZT consists of the impedance subnatrices of the torn

areas (4,8,C,.. .,N). ZZ , Z, and ZO are submatrices that reflect the

interconnection of the subdivisions. They can be constructed fron Z, as

explained in Ref. [48]. All voltages (Ef) are neasured with respect to

ground, all current (lT) represent the injected bus-to-gïound currents

and all currents (ic) represent the currents iniected at the points of

tear.
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(s .2)

The solution of (5.2) can be obtained as follows

ic = -zlr z, IT
+J

E = 7 rT* z 'cT-"Tr-o2t

When eliminating ic from

obtain

E -ta n --1 - . ,T"T _\oT _ 
"2 ,4 "l r (5.5)

with current iT known, a solution can be obtained by the trr,o-step
algorithm above or by the use of eq. s.s. Note that the sparsity in eq. s.2
is retained by the use of eqs. 5.3 and 5.4, but that it is not retained
in eq. 5.5.

A six-step piecewise algorithn was derived

completely equivalent to solving S.S and 5,4,

(s.3)

(s.4)

5 .4 by subst itut ing 5 . 3 into S . 4 h,e

in Ref. [48] which is

Its major features are



110

that it does not require the forrnation of the sub¡natrices Z^ an,l 7 o¡,1
¿ 

u L3 atru

is more f1exib1e.

The six-step piecewise algorithrn is as follows:

1. Obtain solution of torn subdivisions excluding tie currents to

other subdivisions

r" (o) - .7 ,T.\"T-"T',

2. Compute voltages across torn subdivisons given intersubdivision

(Cm) branch sign convention

("1 = u,(o)l'c L

3. Conpute the currents injected at the points of tear
_1 r(i. = Z4' ec)

4. Convert ic to injected tie currents Ities by assigning signs (IT)

5. Obtain voltage contributions in subdivisions due to tie currents

rT rp (1) = z rT.,,*\"T-T')

6. f'otal voltage solution is the sum of the voltages obtained in

steps (1) and (5)

rtr _F(o)*e(1)r\"T-"T "T r

The rodels used require only the individual subdivision models and Zn

as shown in 5.6

7

-:
7

L-

4
T

Z¡

(s. 6)
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The Z-natrices of the subdivisions, which explicitly TepTesent the

subdivision solutions, are not required to execute the algorithm above.

Step (1) can be accornplished by elinination nethods, triangular factori-

zation methods, by nodal iterative procedures using admittances, or by

other iterative procedures.

As a brief surnrnary of piecewise techniques, the boundary iteration

nethod requires an iterative procedure in the linear case, whereas the

diakoptic method requires no iterations. In nonlinear cases, 
(48) 

sueh as

network prograns, the interconnection of the torn subdivisions is expected

to increase the nurnber of iterations required in the boundary iteration

method, whereas this need not be the case in the diakoptic approach. The

advantage of the boundary iteration method is its simplicity.

An observation was rnade frorn a theoretical stand-point that ít appears

that piecewise methods allow different iteration procedures for solving

the load-flow or other sinilar non-linear applications.

Sasson [53] has classified decomposition techniques according to

whether branches are cut or whether nodes are cut. He and Carre [55] have

shown that the actual places chosen for cuts are of considerable importance

in relation to the speed of convergence. They have recommended that

partitioning should be nade at places where the weakest couplings exist.

In electrical systern, the bra¡ches with highest reactances or srnaller

susceptances can be chosen for interconnection. This may be true in case

of a boundary type iteration. But in diakoptics and as repoïted in

[45,46] the introduction of tearing retains the identical convergence

characteristics as the original untorn problen and is independent of the

lines torn.

Ïhe classification - diakoptics versus boundary iteration - is better
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becausetheworkin[45]couldreallybein'bothoftheSassonlscategories

The diakoptic theory that the prograrn in [a5] is based rpon decomposed

networks by cutting through branches and nodes as outlined further in [44].

This is reflected in the progïam which allows any branch to have zero

inpedance, which signifies decomposing by cutting nodes.

5.3 linown Piecewise load-Flow Methods

In load-flow methods such as bus impedance matrix and Newton-Raphson,

the number of iterations required to yield an accept.able result appears

to be independent of a system size. But the solution time and computer

storage requirenent vary with the number of buses. These obvious practical

limitations have restricted the application of these nethods for large

size systems. The division of systen into subsystems and ha¡rdling each

of them independently have oveïcome these barriers a¡d now the rnethods

nay be used for any system size. The following is a brief review of the

known piecewise load-f1ow nethods.

A. Happ et a1 [45, 46] have applied a decomposition technique based

on the theory ofa diakoptic method, especially designed for use with their

Z-matrix load flow methods. Their npthod was the first to appear in the

literature in which the load-flow problen is solved by decomposition

techniques to overcorne the size limitation inherent in Z-natrix methods.

It proposes that the system be decomposed into parts ( A, B, C...) by

cutting certain transrnission lines. The inpedance rnatrix of each part

(zA, zB' zC. ..) is formed independently, then for each part form zz

subnatrix (ZZ, ZZ, ZZ ,...). Next, a Z4 intersubdivision matrix is
ABC

constructed to transrnit effects between the parts, as shown in Fig' 5'1'
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CUT LINES

7-2t

Fi g. submatrices for piecewise Z-natrix road-flow method

zz

zn \.,\
\\

zs \"\

\\
zc

\ì

\
ZN R

Ð\^
\\
ù

X\
\\ NI \^\¿\

\ r.l+\
\*'\ \

Fi g. 5.2 Swing bus and voltage regulated buses vectors
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During the iterative solution the voltages at each bus are given by

E, = Zrrl II * Z*ZL2 * ...., with the cut J.ine buses serving as

sources of injection current. The rnagnitude of the injection current is

deternined fron the difference in voltage at the two ends of the cut line

and the apparent impedance acïoss the tear.

In the voltage iteration for the entire system, each area in turn

can then be treated independently using the Z-natrix only of the area

being considered.

If an injection

ing corurteradj ustnent

to hold the swing bus

E - r rl"s - "s1'

current adjustnent is rnade to a bus n, a correspond-

rnust be nade to the swing bus injection current fS

voltage E, at a fixed magnitude and angle,

_2* zszr'* Zsr, (ln + aIn) + ....

* ZSS (rS * ¡rS) + ....

The swing bus axis Zi of the i¡rterconnected (untorn) system must there-

fore be coÍputed. p]" vortage regurated buses a vectot zi is required

[Ffg. 5.2]. Reference should be made to the origi'nal publications for

corputational details [5, 45, 46f. The convergence characteristic of

the torn Z-matrix load-flow is identical to the r.rrtorn.46
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B. StrsorrsS has applied a decornposition technique to the nonlinear

progranrning load-flow method I54] which is based on the nininization of a

function made up of the stm of the squares of the load-flow equations.

In his nethod, branches are essentially cut twice, once on each of the

two terminal nodes of the branch, and not on the branch itself. only

the cut node on the far side of the i-nterconnection branch will acr as

a source. The near node will be a norrnal node of the section containing it.
Fig. 5.3 shows the decomposition technique that results in an over-

lapping of the subsystems. A decision is nade to cut through the branch

between nodes 7 a¡td 2. Normal1y, subsystem A contains node 1 a¡d subsystem B

contains node 2. In this schene, subsystem A contains node L and node 2,

node 1 appearing as a nor¡nal node while node 2 appears as a constant vortage

node. The reverse is true for subsysten B. When subsysten A is solved

initially, node 2 rernains constant at its initial value. When subsystern B

is solved, node I rernains at the value that it took when subsystem A was

solr¡ed and node 2 takes on a neh/ value. This value for node 2 is used as

a constant when A is solved again.

It is noted that the interconnection branch is part of both subsystens.

There is no, need for any additional computation apart from the load-flow

solution of each subsystem. The nethod thus proceeds iteratively from

subsystern to subsystem rntil all conditions are simultareously met.

In this decomposition nrethod and as discussed before, the inter-
connection branch on which convergence characteristics depend, should be

of snaller susceptance.
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Subsystem noie

J=

node 2 Subsystem
B

Fig. 5.3 Representation of a decomposition technique

J^

Jg

JN

Fig. 5.4 Piecewise N-R Jacobians
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C. Laughton56 ht. applied decomposition techniques to load flor^¡

analysis using the nodal irnpedance matrix. In his n¡ner- he re¡srted that
diakoptics is a special form of partitioning.

D. Happ and yor'g 47 have developed a piecewise algorithm using

Newton-Raphson (NR) load-f1ow rnethod. The NR load-f1ow as described in
reference 16] is based on a Jacobian which is a function of admittances,

voltage nagnitudes and angles. Instead of requiring a large Jacobian for
a systen, smaller Jacobians can be used which represent the torn subdivisions

similar to the area Zrs in the piecewise solution of the inpedance matrix

load-floru. The Jacobians of the subdivisions form a block diasonal forrn

(bdf) as short'n in Fig. 5 . 4.

The iteration procedure is as follows:

t1) since the initial voltages are knorr,n (either from a flat
voltage start, or from a previous case) , the initial tie floris
.rties, o1d., L^rtr ) Dettveen subdivisions may be computed by

f ì o +: ^I;:" = (E' - E.l Y:i'1J

where all quantities are complex numbers. This initial value of
tie current is stored in a special list. The voltage E. and E.

are the voltages that exist at this point in the solution at

each end of the tie tine admittanc" vli".1l
(2) The data for the first subdivision is loaded into nenory and

the Jacobian of the subdivision is formed for the first iteration.
The buses to which tie-lines are connected have been tagged

as special buses by input, and the total tie-rine current

entering such a bus can be found from the data in step (1).

The power and reactive power delivered to the bus is conputed

o. * jQi = (Ei)(r rli"l.
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the real and reactive power are treated as though the ties were

ïeplaced by an equivalent load during the formation of the

Jacobian. The residual error in active power and reactive

poÌ{er is then determined in the usual manner for each bus of the

subdivision. The required change in the voltage and angle of

each bus is determined. A new set of bus-voltages and angles in

the subdivision are now known (Ef).

(3) The admittance matrix for this subdivision is noh, formed and

stored in the region of rnemory previously occupied by the Jacobian.

The admittance matrix is next factorized and used together with

the tíe line currents to calculate the change in subdivision

voltages due to the presence of the tie currents. The components

are subtracted fron the voltages determined in step (2)

F(o) - F _ 7. ,ties,o1d"T "T -T'
(4) The procedure described in steps (2) and (3) is repeated

for each of the subdivisions. The factorized form of the

admittance matríx for each subdivision is retained in peripheral

storage for use in subsequent iterations.

(5) The intersubdivision impedance matrix (Zq) - which has

been formed by a separate subroutine - is now brought into

core (into the region previously occupied by a factorized

subdivision adnittance matrix). The matrix (Z) is factorized

and used with the voltages across the tie lines in order to

forrn the tie-currents :

F(o) = F(o) _ F(o)"L.. "Ti "Tì
1J

.c i .-l0lI = tLl bi'

-ties .new . cI-*-''"-" = i- (except for signs)
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The factorized matrix Gì-1 is stored in peripheral mernory

for future iterations.

t6) Each of the subdivision facto'rized adnittance matrices

(Zì along with the subdivision bus voltages ¡f{0)1 i=

brought into menory, and new bus voltages rt" .ut..rlated

t, = tfo) * zT Itíes ' new

This conpletes the first iteration. The pattern for subsequent

iterations is the same except that it is not necessary to refactori ze the

subdivision matrices (zÐ and the intersubdivision matrix (z+),

E. Roy [57] has developed a piecewise load-flow solution of large

electrical power systems by nodal admittance matrix, applying the principle

of superposition i t'The voltage at any node of a linear electrical network

due to a number of node currents is the algebraic sum of the voltages due

to each nodal current acting alone at a tine and othe:sbeing ignored".

This sirnple 1aw of linear circuits is applied to solve large scale electrical

networks when they are torn into subdivisions by cutting appropriate 1ines.

There are two tfpes of currents:

(a) Externally injected currents at the nodes, which are the same

as the node currents of the origitral untorn network tI].
(b) Injected cunents. due to tear or cut, this is the actual current

in the f.ines of tear ii) .

The voltage due to (a) is called apparent nodal voltage [Et) and

due to (b) is called correction voltage (e). The nodal voltages of the

original network are given by

E = Et * 
"

Reference should be made to the original publication for conputational details.
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Royrs technique peunits an average engineer to solve his large scale

practical problerns in pieces without having knowledge of terninology,

topology and diakoptics. rn his method there is the possibitity of

selecting a slack bus in each area (subdivision).

This method is similar to that of Brarneller et a1 I52]. Both methods

develop their solution nodels in nodal admittance rnatrix by using sinple

circuit laws' It is comparatively easy to write Bramellerts matrices

directly by inspection than to write equations involving these matrices

implicitly. The explicit use of these simple matrices supplemented by the

programning techniques of chapter seven makes Brarnellerfs method rnore

systenatic and its implenentation more straightforward.

In his paper, Roy, even if he r^ras not aware of it, has shown an

algebraíc equívalent to the diakoptic rnethod. The six-step procedure

introduced by Happ rese¡nbles Royrs approach almost point by point. rn

general, Roy has done díakoptics from network equations and algebra,

without the need of introducing new concepts and basíng hinself only on

the superposition theorern for linear systens

F. Kaustri and Potti [58] have developed an algorithm based on the

diakoptics equation for block diagonalizing and solving the Jacobian

rnatrix and hence the NR load-flow problem. Their method of partitioning
is sirnilar to the one suggested by Sassonls

They applied diakoptics directly to the Jacobian natrix, rather than to
the power system itself or its admittance natrix as r{as previously done,

without approxinations, with the result that the nethod has the same con-

vergence property as the one piece solution. In their method, there is a

limitation due to extra storage required for the additional .right hand side

vectors. This may become excessive if nany tie lines aïe to be cut.
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5.4 A New Diakoptie Techriique Foi l¡¿d:FIoW Solution of

Very Large PoWef SySteÍs Using Bus:Admittance Matrix

In this section an exact diakoptic technique 61 fot load-flow

studies based on bus adnittance matrix is described in which ful1

advantage of Zollenkopfrs bi-factorizationzs und other sparsity tech-

niques is taken. Since the technique is exact, it produces the same

final result and retains the convergence property of the original untorrr

systen. The nethod provides for a reference bus in each torn subdivision

by selecting a nurnber of temporary buses (TB). The voltages and angles

of these temporary buses are not assigned, but instead are calculated

in each iteration.

The selection of tenporary reference buses avoids singularity and

a need of converting loads to equivalent inpedances, reduces the size of

subdivision np.trix by one and leads to rapid convergence of subdivision

equations.

The proposed technique is sinpler to tmderstand and implenent.

For comparison, the example solved in Ref. [52], pp. (L70), is resolved

in Appendix (C), using the proposed technique.

5.4.1 Admittance Matrices of the Torn Systen

A given large network is torn into N subdivisions (4,B,C,...N) by

cutting the appropríate lines. subdivision is generally guided by the

need to linit the size of each subdivision and is generally performed to

separate identifiable power systens e.g. territories of utilities, provinces,

etc. The only restriction on the lines, which shoul<l be cut for subdivision,

is that no mutual coupling must exist between subdivisions.
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In addition to a slack bus, selected for the r.ntorn system, a nuùber of
temllorary buses (TB) are selected to provide each subdivision with a reference
bus (TB or slack) . This procedure elininates singutarity and makes the bus admit-
tance matrix well-conditioned. For computational sinplicity, a temporary bus
should not be connected to a line to be cut for subdivision. An N subdivision
system, therefore has ô = (N_1) temporary buses.

The bus adnittance matrix [Y] for each subdivision is formed in the
usual manner, using its selected reference (slack or TB) bus.

An additional diagonal rnatrix [Yre] of dirnensions (6,6) is formed for
the temporary buses (TBts) of all subdivisions. An element of lyrgl represents
the algebraic surn of the adnittances of all lines incídent on to a terpoïary
bus' By combining the admittance rnatrices [y] of all, N, subdivisions with
[trt] a block diagonal admittance matrix [y(bdf)], as shown in s.7, of the
torn systen is obtained.

N TBfs

C

lY(bdf)l = o

N

TBts

t5. /_,
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5.4.2 Adnittance Matrix of the Untorn Systen

The bus adnittance natrix [Y] of the untorn system is represented as

lyl=lyrl+[y2J
where [yi] = [y(bdf)] + tcl Iul-ilclt

[Y (bdf)] - is given in eq. 5.7

lC] - is a subset of the tie line - bus connection

rq Rl

(s.e)

matrix of dinensions (o,ü),

o - total number of buses in the network

ùr - number of lines cut for N subdivisions

It has +1 and -1 as the non-zero elements and is formed bv

inspection, by using the procedure outlined in Ref. [S2].

-1IM] is a diagonal matrix of dimension (qr,ú) rchere

each element represents the admittance of a

cut 1ine.

and lvzl = [F] [r] [K]t + tKl lil tFlt (s. ro)

Lyì is a very sparse matrix, containing very ferç elements

corresponding to the buses connected to the TB's in

the systen. The formulation and form of matrices [F]

and tKl are given in Appendix (C) and tIl is a unity

matrix.

The relationship of eq. 5.8 is better understood when one exarnines

the example given in Appendix (C).

S. 4, 3 Solution procedure

The load-flow equations of an n-bus systen with bus no. I as the
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slack bus are

*
S,n

t l- - Y.l Vl ) - [ Y.= V, (S.11)
V, rr r- 

)=2 
IJ )

l_

i = 2, 3, ..., n

or, in a matrix form,

IJI = IYI Ivl
where [y] is the bus adnittance matrix 

t5.12)
iJl is the system bus injected current vector

and tvl is the required bus voltage vector.
For the untorn system the exact voltage vector is ca1cul ated by

lJl = tyl lvl exacr

= [Yr] [V]""u.t * [Yz] [V]"*".t
Hence,

lul 
"*"., 

= [AY] 
-t tvl (s. 13)

where tvl = lyr]-ttrl (s.14)

and [^y] = Irl * [yi]-i[vz] (s.rs)

From the above equations, at first, tv] is calculated, without actually
inverting the matrix [Yr], and then t^y] is calculated to give [v]"*".,
For all these calculations sparsity techniques are utilized to the fullest
extent.

5.4,4 Procedure for Obtaining [yf]

IYrl 1 i, obtained by using Householde, formula59 as

lYrl = [y(bdr)]-i - {y(bdr)J-} tcl tt¡rl * [c]t [yþdr)]-1 tcl l-1

Iclt [YþdÐ]-1 (s' 16)
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Defining lZ.J of dimensions (ú,ú) as the intersubdivision rnatrix by

lzrf = [u] + Icl 
t 

[vtbdf)] -t I.l (s.17)

equation 5.16 is rewritten as

Ivr¡-1 = [y(bdr)]-1- ly(bdr)l-1 lcj [2"]-1 [c]t [y(bdÐ]-t (s.18)

The conponent natrices of eq. s.1g have already been defined. It
should be noted that for eq. 5.18 no matrix ínversion is required

and sparsity techniques are used to a maximum extent.

The intersubdivision rnatrix lzrJ, defined by eq. s.17, is easily

constructed by using elements of 'tM] and very few elements from very few

columns of rnatrix tY]-1 of each subdivision corresponding to its buses

connected to the cut lines in a simirar way as that of Ref. ts2l.
To compute the ith column of a matrix tY]-1, 1et a column vector [ei]

be defined as a zero vector except its ith element which is unity.
therefore,

lyl tyl 
-t ["t] = [r] [ei]

or [Y] [Zi] = [ei]
where Lzil is the ith column of [y]-1 and is calculated by solving the

factorized natrix ty] and Iei] by Zollenkopf bi- factorization diïect
solution subroutine.

5.4.5 Calculation of [V]

[v] defined in eq. s.14 is obtained by substituting for [y,]-1
f

fron eq. 5.18, i.e.

[V] = [y(bdr)]-tl,¡l - [y(bdf)]-1 [c]Izcl-1 [c]tlv(bdr)l-1t.rl (s.re)

= IVrl - [vz1 (s.20)
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where lvrl = IYtbdf)l-tltl, bus voltages in the subdivisions
and lvzl = [y(bdr)]-1lcl Lzrl t [.]t ¡vrJ (s.2i)

= correction in bus voltages due to tearins.

5,4.6 Steps for Solution

1. Form and factorize the bus admittance natrix tro] for the first
subdivision by using Zollenkopfts bi -factorization and other
sparsity techniques.

2' using the subdivision bus injected current vector IJAJ, and [yn]
solve for the bus vortage vectoï [vlo] for the first subdivision.

lYAl [vlA] = [Jn]

Note that no explicit natrix inversion is needed.

3' Repeat steps (1) and (2) for each subdivision to obtain [v.,] for
the subdivided system.

4. For the determination of correction voltage vectoï Lv), due to
tearing, proceed to calculate

(i) Cut tine voltages tEll = [C] 
t 

¡tr, J

(ii) Cut tine currents [r.] = V.l 1 
[Er]

(iii) Injecred tie currenrs Ii.i"] = [C] [rc]
and (iv) finally Lvzl = [y(bdf)]-1[r.i"] (s.22)

Fron eq . 5.22 for each subdivision we can rvrire

IYAllv2Al = IIti" Rl (s.23)

since IYol is arready factorized in step (1), Ivznr is easir'
obtained without inversion. similarly, the comprete bus correction
voltage vector [V"]is formed.
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r The solution [V] = IVil - lVZl is therefore obtained.

The step t5) excludes temporary buses for which

I\/ l = IY r-1 LT lt "TBr - L'TBl I"TBr

Since, temporary buses are chosen such that they are not connected

to lines to be cut for subdivision [V, ,rJ = 0

i . e. Ivrsl = l\tt rgl (5 .24)

7. Obtain [V] 
"*".t 

fror tvl by using eqs. 5.13 and

This section presents

of very large power systens

5. i5. Sparsity

Steps (1) to (7)

voltage vector

-inn r¡anfn- f TlL" I .

an exact diakoptic technique for the load-f1or*'

employing bus adnittance matrix. The proposed

techniques are fu11y exploíted for this procedure.

complete the first iteration for obtaining the bus

tvl^-.^^- starting from the known bus current inject- - exacf

In the event[J] is not given and instead power (S) is given, eQ. 5.11

is used and the iterative solution is continued until convergence

is obtained satisfying a chosen tolerance criterion.

5.4.7 Results

The proposed technique has been applíed to a number of poler systems.

The results obtained by applying the above described technique are exactly

the same and show the sane convergence when the untorn system is soh¡ed as

a whole. In order to illustrate the working and showing the exactness of

the proposed solution technique, a sample systen of Ref. 1,52] is taken up

in Appendix (C).

5.4.8 Conclusions
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technique has the following attractive features.

1. It makes a full use of bi-factorization and other sparsity techniques

and therefore makes the solution computationally efficient.

2. The solution technique is exact and hence produces the same solution

and has the same convergence property as the untorn system'

S. By virtue of the selection of a tenporary bus as reference in each

subdivision (excepting one which contains the slack bus) the

singularity of bus adnittance matrices is avoided and instead they

are well-conditioned. The nethod can therefore be freely applied

to low voltage power systems which have little or no shunt adnit-

tance in their network representations.

4. The nethod does not impose any restriction on the irnpedance of

lines to be cut for subdivision.

5. The method is easier to understand and implement than some other

known techniques.
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5.5 A NeW, DiakoÞtic, Fast:Decor¡pled Load-Flow Method

For Very Lâfge Poûef Systems

A new diakoptic technique for load-flow solution using a bus-

admittance rnatrix has been presented in section (5.4) . This technique is

exact, reliable and easier to rnderstand and implernent thaa any other

known technique employing adnittance (or impedance) matrices. It should

be applied at some utilities who have a¡r adrnittance (or impedance) matiix

load-flow program.

This section presents a¡rother nev/ diakoptic technique for load-flow
62 .9problems -- based on the fast-decoupled nethod.

For this technique the author has chosen the fast-decoupled load-

flow technique because of its inherent superioríty in terms of speed of

calculation, storage requirement, reliability and simplicity in addition

to noticing its wide-spread acceptance by power industry. This load-flow

method forms the basic block for the development of a new diakoptic

technique which e:iploits sparsity and uses Zollenkopfrs bi-factorization

technique. The proposed technique is exact and therefore provides

accurate solution and retains the same convergence characteristics as

the r¡ntorn systen if itwere to be solved as a whole. As corpared to

many known methods the proposed technique does not inpose tearing restric-

tions, make approximations a¡d rur the risk of computational breakdown

due to singularity of the adnittance rnatrix.
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5.5.1 Formation of Subdivision Matríces

A given large network is torn into n subdivision (4, B, C, ...N)

by cutting connecting lines with only one restriction that no mutual coupling

should exist between lines of different subdivisions. Generally, an

objective guide for tearing is to separate networks of different utilities,

identifiable power pools, etc. A restrictionsS on the inpedance of the

lines to be cut is unnecessary for this technique. In addition to the

slack bus of the original system which would lie in one subdivision, a

temporary bus (TB) is selected for reference in each of the remaining

subdivisíons for avoiding singularity and ensuring that all subdivision

matrices are well conditioned. Thus, ô = (n-1) tenporary buses are

required for the system. For simplj-city no TB should be connected to the

lines to be cut for subdividing the systen. The voltage and angle of

each TB is not specified but calculated in each iteration.

Submatrices [B' ] a¡rd [8"] , as required for Fast-decoupled Load- ff or';?

are established for each subdivision, with respect to its reference - a

slack bus or a TB. In addition, diagonal matrices [B'fS] and [B"rUl of

dímensions (6,ô) representing TB's of the system are obtained rvhere a

diagonal element of [B'1gJ ir the algebraic su]n of (i/X) of all lines

incident on the bus (TB) and that of [B"tg] is the algebraic sum of (-B)

of the i-ncident lines on the bus. Conbinations of [B'] of all subdivisions

with IB'ruJ and IB"l of :r11 sr¡-odivisions with IB"t¡] give block-diagonai-

form (bdf) rnatrices, f B' (bdf ) ] and [8" (bdf ) ] , ¡s shorvn in eqs. 5.25 and 5.2(r '
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(s .2s)

(s.26)
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5,5,2 lr{atrices of the Untorn System

The matrices [B'] and [8"] of the untorn systen are expressed as

IB'l=[Bi]+lBål

and IB"l = [Bi] + IBäl

where IBil = lB,tbdf) I + [c] [u'1-1 tc]t

and tBål [F'] [I] tKlt * [K] []l [F'] 
t

(s.27)

(s. 28)

(s .2e)

(s.30)

The natrices IB"t] and [8"2] are expressed similarly by replacing

primed matrices by double primed e. g. [M' ] 
-1 by [trt", -1 etc.

In eq. 5.29: [B'(bdf)] is already known, [C] is a. subset of bus

connection matrix of dimensions (cl ,rþ), where c¿- number of buses in the

system and p- number of lines cut for subdivision. It is constructed

by inspection and has only +1 or -1 for non-zero elements. As in Ref. [52]

the element C_, (row a, column j) of [C] is given as
a1

C = +1 , if the line i ìs directed towards bus a
dl- 

- -1, if the lÍne j is directed ar+ay fron bus a

= 0, if bus a does not include line j or is the

slack bus.

For convenience, in programming, the connection rnatrix is condensed

into a two column table as shown in Appendix (D).

rr¡rr-1 :- ^ r:^----i _ -L,-: 1 -ttr I rs a di.agonal matrix of elements = i of the cut lines.

-1[M.'] 'is also a diagonal matrix of elements (-B) of the cut lines.
11

Both, [M']-' and lttt"r-' aïe of (U,U) dimensions.
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For eq. 5.30 matrices IFtj and lKl aîe. defined in Appendix (D)

and [I] is a unit rnatrix. The matrices IB)] and [B)J are very sparse.

They contain elements corresponding only to buses connected to the TBrs

as can be seen in Appendix tD).

5.5.3 Bus Angle Change Vector

In fast-decoupled load-florv pto.edrrrug

tî = [B'] tAelexact

= fB.rlf^el + fRrlfnnlr- lr !-vreXaCt L"2J t-rJeXaCt

by substituting from eq. S.Z7

or [a6]"*"., = IAB,]-1 t^el

where lne'1 = [i] * tBil-1 tBil

and t¿ol = tBil t8ul

(s.31)

(s .32)

(s.33)

5.5.4 Bus Voltage Change Vector

since, f+l = [8,,] [av]"*".t

By substituting for [8"] from eq. s.2g and rearranging we get

[au] 
"*"., 

= [aBrr1 
- I [nrr1 (s . s¿)

where [^8"] = [r] * tBïl-1 tBäl (s.ss)

and IAVI = [B'-'l-1 f$-l!- r '-Ll I-Vl 15.36)

In all above nanipulations sparsity techniques are used advantageously and

no explicit matrix inversions are perforned.
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s.s.s Derivation of luil-t ana tBil-1

The Householder forr*la59 gives

IBil = ilB' Cbdr)l * Icl IM'l'l Iclt l-1 (s '37)

= IB' Odf)l-1 - [B, [bdf)]-l tcl [[M'] * [c]t

lB r (bdf) I 
-1 

tcl I 
-t lcl 

t 
[e ' ¡baf) J 1

Let [ISD],!' I of riimensions (ú,ú) be defined as the intersubdivision

rnatrix given by

lrsDM,l = [],r'l * iclt [r,(bdf)]-l tcl (s. sa)

rhen eo 5.3'7 e.an be rewritten as

tBil = [8,(bdÐ]-1 - [B'(bdr)]-1 [c] IISDM'l-1lclt

lB' (bdÐl-l (s.se)

Sinil arly

IBil = IB"(bdÐl-1 - [8,,(bdÐ]-1 [c] lrsl¡r'1-1 [c]t

lB" (bdf) I I (s .40)

where [rsDM"] = [M,,] * [C]t ¡s"¡Uaf) J 
-1 tcl (s.41)

In the above, no natrix inversion is required, instead sparsity is

ful1y exploited by using Zollenkopf's method and other sparsity techniques.

5.5.6 Forrnulation of Intersubdivision Matrices IISDM'] attd [ISD]{']

The procedure for both IISDMT] and [ISD]f'] is the same, exceptinq

that for IISDMT], IB'] and [M'] are replaceflr.'byIB"l and [l'f '] respectively.

Rewriting eq. 5.38, we have

lrsDM,I = IM' I + ICl 
t 

Iu' (bdÐ I 
-1 Icl
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[Mr] is the inverse of diagonal rnatrix IMt]-1 and hence is easily obtained.

An e>çlicit inversion of IBt Cbdf)] is not needed because all we need

is to calculate only a few elements from very few colunns of the subdivision
1

matrices [B']-'corresponding to the buses connected to the cut lines.

For calculating the ith colurnn of a rnatrix ¡nt1-1 1et [e.] be a zero

vector excepting its r:nity ith elenent therefore

lB, I [B, ] 
-' ["i] = lIl [e11

or [B'][si] = I"il

where ISi] is the ith colunm of the matrix [B']-1. It is calculated by

solving the factorized Jacobian matrix [B'] and [e.] by Zollenkopf's

Bi-factorization direct solution subroutine.

l'lain diagonal elements :

The diagonal element ISDML. of IISDMT] coresponds to the cut

line i between bus k of area A and bus m of area B.

It is given as

ISDIIT.. = Mr.. + S',, + St11 l- t- KK tiln

where Sr.. is the kth element of IS',1 of area A
l(K ' K-

and S' is the rnth element of [S' I of area Bnm'm-

when one end of a cut line is connected to a slack bus, its corresponding

element is zero.

Off diagonal elements:

Consider elernent ISDM'.. corresponding to cut lines i and j rr'hen

line i connected between ¡.rr", k in area A and n in area B and 1i:re j is

connected between buses 1 in area A and n in area B.
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ISDIJ'.. = Sr-, larea A) + St- [area B)--- ij - lK nfn

where St,,- is the lth element of tcl I
ll\ 

ç I u¡r uf e¡i¡vrr L vr t" kl

and St is the nth element of [S'-lnln - m-

When both cut line i and j do not terminate in the sarne aTea' its

corresponding elernent is zero.

When the assumed directions of lines i and j are dis-similar the

sign of the calculated element is reversed.

5.5.7 Determination of [À0]

Substituting for IBil I fot "q. 5.39 in eq. 5.33, we get,

[¡o] = [8, (bdf)]-1 t+f - [8,(bdÐ]-1 [c] [tsot'l'1-1 [c]t

-1 ^DlB' (bdf)l ^ [aJ-V

-1 -1 .^rt r ^^ l= [ 
^01] 

- [B' (bdf)] - [c] lrsDrf' ] - LCI 
- l" A01l

4 [ nerl - [ lorl G.42)

where [ 40.' ] is the independently calculated incrernent in bus angles of- r-
the torn subdivision.

and I AO.] is correction in the bus angles incrernent due to tear.-z-

5.5.8 Deternination of [AV]

fn a manner similar to above

IAyl4tavll-lav2l (s.43)
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-1 ^n[AVl] = fB"(bdf)] ^ [-V], is the independently calculated incrernent

in bus voltages of the torn subdir¡isions

-'t -1 +and [^Y2] = [8" (bdf)] ^ Icl [rsDMrl [c]'[AVl] (s .44)

is correction in the bus voltage increment due to tear

5.5.9 Procedural steps For solution C Flov¡charr- Appendix E)

1. Calculate flows on the ties between subdivisions

It = (E¡ - Er) Yk, = (Ek - En) / ZX^ (5.45)

where \(Vt L%) and En' (Vm / em) are voltage (conplex)

that exist at this point in the solution at the ends of tie

line i *d Yk, is the tie line adrnittance.

2. Forn [Bt] for the subdivision A, factorize it by using sparsity

and Zollenkopf Bi-factorization nethod.

^Þ3. Form [sJ vector for subdivision A by considering tie lines as

loads r, ,n" connecting buses. Net active power flow in the

tie lines connected to bus k is given by

Pu = Re (1 ,i"rrir,", ti) (s'46)

Solve the factorízeð natrix [B'] from step (2) and

^Þ[s-v] to obtain [l0rJ frorn

Ie'll¡ql = t+l (s .47)

Note that no matrix inversion is needed and sparsity is

fully exploited.

4. Repeat steps (2) and (3) for all n torn subdivisions

and obtain [n0.. I for the whole system.
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5. Compute I A92l .

(a) Form lCltl nOrl = I A0C1l - sinple algebraic surunation

using the condensed notation for storing the connection

matrix.

(b) Obtain and factorize IISDMT] a¡d then obtain

I A0c2] = [lslr',,r'i-1 [ Aocl]

(c) Forn [ 
^0C3] 

= [c] [ A0C2]

(d) Conpute I A02l = [8,(bdf)]-1 [ A0C3] by rewriting the

relation as

lB'(bdf)ll Ao2l = [ 
^ecs]

or [B'][ A0rJ = [ AOCS] independently for each subdivision.

Then, by using the factorized rnatrix f¡nm <ren ()\ fnr s¿sþ

subdivision calcuLate its [ 402].

6. Solve for [40] = [ A0r] - [ ¿-'02]

7. For temporary buses excluded from the previous step

-1 
^DI aorJls = [s']rB Iîru

Since tenporary buses are not connected to cut lines

[ 
^e2]TB 

= 0

or [40 ]rs = [ Â0111s

B . l'{odi fy [49] to obtain [40] 
"*u.t 

by using eq. 5 . 31 .

9. Update bus angles [0] by

lo]new = lo]old + lao]exact

10. Repeat step (2) but for JBrtl.

(s.48)



11. Repeat step (3) but eor I$l

Net reactive power flow at bus k is given by

Jr

Q¡ = I:n (Ek ai"rrir.,", Ii)

For each subdivision obtain I A0r] fron

[n"] lavr1 = I&ul (s.so)

following the procedure of step (3).

12. Repeat steps (10) and (11) to obtain [AVl] for all subdivisions.

13. Repeat the procedure of step (5) to obtain [AV?] by using

appropriate rnatri ces frorn eq. 5 .44 .

14. obtain [AV] = [AVr] - lAV2l.

15 . lt{odi fy [AV] to IAVI 
"*".t 

by using eq. S .34 .

16. Update bus voltage [V] by using

[v]n"* = [V]otd * [v]"*".t

The above steps describe the first iteration.

In subsequent iterations we do not refactorize the matrices lB'(bdf)],

IB" (bdf) ] , IrsDM' ] and IrsD]f 'l .

A1so, we do not recalculate the submatrices used for obtaining [40]"*".a

and [AV]"*".t frorn [40] and [AV] respectively.

Iterations are continued rntil convergence is attained according

to a chosen tolerance criterion.

5.5.10 Results

The proposed diakoptical technique has been tested on a number of

power systems for obtaining their load-flow solution. The results of the

systen when torn or when solved as a whole are exactly the sarne and for a

139

(s.4s)
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given power rnismatch require equal number of iterations.

A simple exarr4rle ìs provided in Appendix (D) to verify the correct-

ness of the proposed technique.

S.5.11 Conclusions

This section presents a new diakoptical technique for load-flow

studies of a very large power system with the following attractive features:

1. It uses the fast-decoupled load-flow technique and combines it with

diakoptics. In the process of solving, it uses bi-factorization and

other sparsity techniques and therefore rninirnizes core storage and

saves execution tirne as compared with other known techniques.

2. There is no theoretical linrit on the size of the problem ivhich can

be solved by it.

3. No restrictions, such as inrpedances, on the lines to be cut are

]-mposeo.

4. The proposed technique is exact that is, the convergence property

and the final solutíon of a system are not altered due to tearing.

5. An exact representation of the tie lines is provided for both

rnatrices [Bt] and [8"] and for active a¡d reactive power mismatches

vectors.

6. No elements of the individual subdivision irnpedance rnatrices are

required in the calculation of the intersubdivision matrix which

saves significant computation time.

7. The selection of terfiDorary reference buses in subdivision eliminates

any singularities the type of which can upset some known procedures

when the technique is applied to low voltage networks which nay not

have equivalent shunt admittances.
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5.6 Summary

This chapter is devoted to the study of load-flow of very large

systems. At first a detailed review of the known techniques, namely

diakoptics, decomposition and piecewise solution is provided (sec' 5'1 to

5.3). The later half of the chapter (sec. 5.4 and 5.5) has been devoted

to the description of two new diakoptic techniques based on Bus-Admittance

and Fast-Decoupled load-flow solution nethods'

The new techniques have been tested on a numbet of power systems '

For corpleteness one example for each of the two techniques is presented

in appendices.

ThenewdiakoptictechniquesenlargetheScopeoftheload-f1ot^'

studíes presented in this thesis by removing the restriction on the size

of the Power-Systerns imposed by computers '
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2.

CHAPTER VI

N{AJOR CONTRIBUTIONS

The following major contributions are rnade in this thesis:

A fast, efficient, reliable technique for load-flow solution

of integrated dc/ac systems is developed' It accommodates all

configurationsandcontrolcharacteristicsofrnulti-terminal

HVD. networks. It is unquestionably an improvement over all

known techniques.

A very fast technique for outage studies is presented' This

technique is useful for the econolny of studying numelous cases

and the selection of critical cases which can be studied by

fu11 load-flow solution. The new techniqe can be used for

single or multiple outages' It provides the post-contingency

load-f1ow solution - both active and reactive power flows and

system voltages - with acceptable accuracy in just one iteration

starting from the pre-contingency load-flow'

Adiakopticalmethodforload-flowsolutionofverylarge

power systems using bus-admittance rnatrix is developed'

It provides the sarne solution and the sane convergence

characteristics as the untorn systen' It can be applied to

povrer systems with all voltage levels'

An exact diakoPtical fast

very large Power systems

known ac load-flow nethod

Jt saves core storage and

-decoupled load-flow technique for

is develoPed. It emPloYs tlie best

, diakoptics and sparsity techniques'

computational tine and is therefore
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superior to all other known techniques.

Thís technique does not irnpose restrictions on

- the size and the voltage 1eve1 of a system

- the impedance of the cut lines.

It retains the sane convergence property and the same final solution

as the untorn system.
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Suggestions for Future Work

l.Expansionandimprovernentoftheload-flowprogramofintegrated

multi-terminaldc/acsysternstobeincludedindc/actransient

stabilitY studY Programs'

2.Modificationoftheoutagesinulationprogramtoinvestigate

outagestudiesofintegrateddc/acpohrersystems'Theprogram

shouldbeabletostudyoutagesineitheroneoftheacordc

systems , or in both '

3. Expansion of the diakoptical load-flow plograrns to produce

load-ftow, outage simulation and stability studies of verl' large

scale ac andfor integïated multi-terminal ðc/ac pol{eÏ systems'
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APPENDIX A

Submatrices of the Jacoþian lr{atrix of an Integrated AC/DC System

Subnatrix AJ,

The real power at a busbar connected to a converter terminal is

P = P(ac) + P(dc)

where P(dc) = Kd E Id cos ö

The partía1 differentials for the Jacobian elenents are

^ 
r _ ðP r,, _ AP (ac),, âP (dc),,

^^/ 
t I a 

^ 
I vj-dodudu

Àv | àF I"' \*-'l\/ = o since P(dc) is not function of Oâ0
4P,., ðPlacl,..
a0' ' â0

Hence, submatrix AJ, is exactly the same as for the ac systern in

the absence of any dc terminals, i.e. constant and symmetrical in value

and position. This means we have to factorize it only once before the

iterative solution of the integrated ac/dc system.

Submatrix C

*t/u=#Gelv.#ßelv
i#"tlv = 0 , by the decoupling principle.

$Slu=0, since P(dc) is not function of V.

Therefore subnatrix c continues to be a null matrix as in an ac

system. The choice of expression for P(dc) elininates the confusíon

of having to reconcile that ul-,(rotlu = o as needed in the formulation
ôV

adopted by Arrillaga [19].



Submatrix PX

Subnatrix PX is defined as

,-,., _ âP (dc),,r^ - -ãT-/ v

âP lacì
-F= us ince

PX turns out to be a very sparse

contained in n rows. Each row with

can be subdivided into submatrices A,

as shown in Fig. 4.1 where N1 is the

of dc variables = 7xn.

The non-zero elernents of A, , Bz

l-40

matrix, Its non-zero elements are

only three non-zero elements. It

, B. , Cn and a null matrix pX' ¿ ¿ -" "'0'
size of AJ, and ND is the number

l-

and C, are stored in r¡ectors

= -Kd Id E sinþ /V

= Kd E cosQ /V

Ar,
o

n=3

x - non-
zero elenents

Submatrix D

o, = j#€)v 
= Kd id cos S /V

Þ _ âP (dc.),,
D) - --Ãñ-/ v_"Y

t¡ _ ôp (dc),,
"2 - -T-ll-/ u

AE 
^ó

Fig. A. 1

The reactive power at a busbar connected to a converter terminal is
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Q = Q(ac) + Q(dc)

where Q(dc) = Kd E Id sin ô * f¿2 Xc td2

Fr/u=lffi)v. nSáo')u

âq (ac),--ffi/\r = 0 , by the decoupling principle

âQ (dc),
A0 , I = 0 , since Q(dc) is not function of O

Therefore, submatrix D continues to be a null natrix as in an

ac system.

Submatrix AJO

Ar4= !Qr7u = -!qË)v. --aaá+.)v

ffi)u = o , since Q(dc) is not function of V.

Hence, N4 stays exactly the same as in an ac system without the

dc terminals. since the elernents of AJo do not change it has to be

factotized only once before iteration starts and in this rr,ay it leads

to saving in computer time as compared to Arril1aga [19] where on

account of changes in the diagonal elenents associated with the dc

terminals, AJ4 must be factorized in each iteration. This is a note_

worthy sinplification offered by the nethod. It is estimated that in
our nethod 75% to 80eo of the AJ, factorization time is saved.

Subnatrix QX

Submatrix QX is defined as

ax = l#)v
since â3f at-) = o
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QX

e1 enent s

of A1' 81

Subrnatrix B

DC systen

renains a nul1

n, = 4Szv = Kd rd sin Q /r7

u, = SáÐ /Y = Kd E rd cos Q /V

cr = j{!90 )/v = (Kd E sin þ * 2Kd2 xc rd) /v

like PX is a very sparse matrix

shown in Fig. 4.2 where N4 is the

and C. are calculated as follows
l-

Fi g. A.2

containing only 3n non-zero

size of AJ, The eleinents
4

n

, hence, submatrix Bresiduals are not function of 0

rnat ri x.



1/O

Submatrix RV

Only residuals R4 of the dc system are function of V, therefore

-âR4RV= -# = -aB

Hence, RV is a very sparse rnatrix with only n elenents as shown

in Fig. 4.3. These elernents are stored in a vector forrn.

N4

n=3
R4

ND

Fig. 4.3



APPENDIX B

B.1 ressions of Active and Reactive Power Flows in a

Sirnulated Outased Branch

With specific reference to Fig, 4.I
an outage of a line connecting load buses

knowing that

150

that depicts the simulation of

k and m, eqs. 4.33 and 4.54. and

1' vk, Vrr0u and 0,, are elements of the road flow solution without
line outage (basic state).

2. AVk, AVm, aOu and a0* are corrections to account for the line
outage, we have

o;r= (Vt * 
^vk) 

(Vm + AV*) [G¡, cos (CIk,n * Aetr)

* Bk, sin(ou, + ao¡r)J - (vk * Avk)2(Gkm (8. 1)

where 0k* = 0k - 0r, AOk, = AOk - 40,

Assuming that

KIn'

^vk ^v
_2, avk-

=Q

=Q

A0U* is sufficiently smalt that

sin (A0tr)=Â0k,

cos rAe, )=1- Km-

avt Âor.r = Q

AV, AOk,n = Q
and



Therefore lj._ is given by
KM

Pil.* = vLv, (Gt cos ê¡, * Bk sin 0ur) - vi(Gkrn- GÈn)

151

(8.2)

(8. 3)

Pht = RrU(b.s.) * APrk

Q'L* = Q¡, (b. s. ) * AQkrn

Çu = Q*u (b. s. ) + aQmk

Applying the equality constraints 4.55, we have

^PIk=RUr(b.s.)* 
APk,

APL=PrU(b.s.)* Âpmk

ÂQrk=Qnr(b.s.)* AQkn

* [V,n ( GL, cos 0u, * Bk, sin 0¡r) - 2 vy (GL, Gin) ] Avk

Vk (Gn' .ot 0k, * Bk* sin OUr) Âu,

* VkV, (-Gu* sin 0k, * Bu, cos Ot,n) ( 
^0k _ AOm)

i . e. Pl = p" lbasic st-ateì + Ap fdue rn t i neKm km \u@r¿v rvqçw) - -.km OUtage)

= Pk* [b.s.) * AIU*

0f course ÂPk, = 0 at normal conditions and the basic porder pu* flows

ín the line kn.

By similar analys.is we have

AQr, = Çu (u. s. ) * A%r

(B. 4)
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outageC line

40, and Ae IKm'

8,2 A lication the Decoup 1 in Principle for Calculatin

the Chanses Line Active and Reactive Power Flows 136_?R)

-

The changes in the active and reactive power flows

could be expressed in terms of the corrections (AV'- ,

foI1ows.

The line flow equations as discussed before are

Pk, = Vk \,, [G¡, cos ¡0u-0r) * Bk, sin(Ou_Or)J

v'zk {co, - cir)

In an

tll

km

Qk, = Vk V* [Gn, sin(Ok-Om) _ tk, cos(0u_0n)]

. v| (Bkm - Bi(m)

where Yk* = Gk, * j Bt, = (k,n)th element of nodal admittance natrix.

The changes in 1íne power flows are expï.essed in terms of partial
derivatives of line flows with respect to busbar voltage nagnitude and

angle as follows

l- 
^^ 

ìtar,, | _ f-AO -lI ^'l r_ -l l"-ql
L 

ooo,_.J 
= L'u' - d L ++l (B s)

rt should be noted that each row of Jk, _ o 
has only four non-zero

elements' colresponding to 
^0k, ^om, 

Âvt and avr. The line frorr,
Jacobian matrix Jk, _ o i, composed of four submatrices

r'o'-f H{ r Þ Á.ì



Applying the decoupling principle, i.e. neglecting the coupling

matrices U and T we get

[^pkm] = [R] I^oql

I^Qmt = [s] taFr
Elernents of [R] and IS] can be derived from the partial derivatives

of line flows with the assumptions

cos ¡0U-0*) = 1.0

and GU,, sin (ek-em).. Bk,

Therefore, the chan

in terms of the changes

( A\t ^\/ ^ 
A and Ae.-'k r u vn, owk 

m

[::

and

Assuming ,f-v7f; = 1. 0 , i. e.

nagnitude of both ends of a line are

equations become

Ð
KN

voltages magnitude

ê
K

V,V B.KMKM

153

(8. 7)

(B. 8)

A0.l
ÌnK',

(B. e)

,AQkrn,AP*Uand

nd phase angle

I
l

tA

:d

A

ows

/ïv.,[ï ,j [. :J [:j

f1

ma

,l

er

g5

R,IlK

pov/e

tage

vkvtvr.
^

ñê1i

iJ

m

m

in

u5tr

tìK

R
n"k

5-t

bu

are

KM

,KM

ges

of

)a

\/
K

;
K A0

mËt I

. . (8.10)
the square root of voltage

approximately equa1, the above

[no-,] [:vr.v,nrn,*zvl 
(Bkm-Blm) -vkvrBk, I

fU-J 
= 

|._uuu,tu* 
-vnv,Bu,+2v2 cru,-{,]l

t'#l
tql

. (8.11)



l-^r*l [u* - ,u¿,

[^".J 
= r,rym-t t*,

'*l [n
-,'i,J L'

l+t
L+j

Eq. 8.10 could be rewritten in the form

I^P 1ir"lk,,n = t{V-r1 [Bs]L,, Ivlt,, IÂ01k,,

Also eq. B.1l could be rewritten in the form

TVI.- -Krfi[AQ line]u,,n = t{f-; [B¿]t.,

¡r rìlv I and l,/V. V I are diagonal matricesKn-

[Bs] and IB.J are

BJ-*=84-m
kn kn

The decoupling process is completed by

- 
'mitting 

from [BrJ the reDresentation of these network

elements that predominantly affect reactive power f1ow,

e. g. shtu-rt reactances .

- Onitting frorn IBOJ the angle shifting effect
- Setting all elements of [V] to 1.0 per unit,

IaP rinelk,n = ï/V& I B:1r,, IaoJk,,

IÂQ linelk,n = fmf I B¿]t,, [AV]k,,,

of phase shifters.

then we have

1<A

R"krn

(8.12)

(B. 1 3)

r Âvr
' V Jk,m

l{here

calculated as follows

--B
krn

81 - k =
Ën

BA-ft=
It

B

knr

B -2BI
kn km

(8.14)

(B . 1s)

n
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8.3

sirm:lation of a lìne outage by the proposed technique uses the
elements of at nost two colr¡rn'ls of a sensitivity matrix. To cornpute the
ith colu¡m of a sensitivity matrix

Let a colr¡m vector [erJ be defined such that its ith elernent is
one and all others are zeTo, therefore

[.r] [s] [erl = [i] [e, J

lJl [si] = ["ij (8"16)

where [si] is the ith colun¡'r of the sensitivity matrix ts] , and is
calculated by solving the factorized Jacobian rnatrix tJ] and e. by

Zollenkopf Bi-factorízation nethod by calling the direct solution subroutine.
Our technique is based on the decoupled load-florv method equations

AD
[:v] = [B'] [Ae]

[4u] = [B,,] [^v]

The sensitivity matrices corresponding to the fast-decoupled rnatrices

[B'] and [B'r] are given by

ISll = ¡n'1-1

ls2l = ¡g"1 
-1 (8. I 7)



APPENDIX C

Consider a sample systen as shown in Fig. C.1. Bus R is the

systen slack (slving) bus. The systern is torn into three subdivisions

1, 2 and 3 by cutting lines j, k and 1. Buses g and h are selected

as teÍIporary reference buses (TB?s) in subdivisions 1 attd 2 respectively.

For computational sinrplicity, assume that aI1 line admittances are one

per unit.

The current injection vector tJ] is given by

f

156

f rl -LUJ -

C.1 Proof of Equation (5. 8) :

[y] natrix of the untorn system is given by C.1

lYl =

u'Itorn
system

(c.1)

-1 -1 -1

-1 3 -1 --t

-1 3 -i -1

-1 -1 q -1 --t

2 -1

-i -1 3

-1 -1
a¿

-1 -1
2

In the following analysis and for storage, sparsity techniques are fully exploited.
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lY (bdf) I is

lY (bdf) I =

The connection

d

b

tcl=d
e

ç,

h

given by c-2

b

matri x

'1

IC] and rnatrix

K1

U'l] are given by

jk

(c.2)

(TBt s )

TL. J]

J

[M]=L

1

Matrix [C] is stored
in the condensed

forrn as fol lows

)

k

1

-1

-i

1

I -1

1

ZEROS

FROM TO
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The producr ICI [M]-1 [c]t is

",b"defgh

An element Fi,g it given by (-adnittance) of the line connecting bus i a¡d
TB g, [F] is given as:

(c.4)

(c.s)

b

c

frl u,Tt =L- J

U

f
çô

h

gh
-1

-1

-I

-i

ZEROS

1 -1

l
I -l

-1 I

-1 -1

-1 I
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Define a rnatrix IK]

lxl =

as fol lows

oh
ò r¡

ZEROS

b

d

E

ç

L
4--Llnity Matrix

The produce ( IFI [i] [K] 
t + tKl trl telt ) therefore, given by

r1 4.\

Let IYr] = tFl lrl [x]t * IKI trl IFlt (c.7)
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From C.2, C.4 and C.7 , the sunmation

[Y (bdf) ] + tcl [Nr] 
-1 [c]t * [y.,] is given by

(c.8)

Fron C.1 and C.8

lY] untorn system

or [yl

where lyi ]

lY(bdf)l + tcl IMI-1

[Yr] * lyz]

[Y (bdf) ] + tcl tMl 
-1

lclt * lyzl

tcl 
t
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d

1

e

r.) System Solution

-

lY (bdf) I 
-' is

For this example [y(bdf)]-1 i, catcutated expl

technique no matrix inversion is required a¡rd

by Zollenkopf's rnethod. The intersubdivision

ì ^i+1.' L,,+ruruly, uuL

sparsity is

natrix lZ 1- c-

I

in the proposed

fu11y exploited

is

n7-c3

7 ¿ -1

¿ 7 a

-1 -2 7
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lvr I =å

räl

, f-_ ssdlrrclç l-lgll
L 158
abcdef

IEL] =å

lvzl=

Therefore [V] = [Vf] - lVZl , is given by

b

L

ã
frrl
lvl = =

e

I

ò

h

abcdefgh

11 A -18 -18 4 -1 0

828 666 -966 -942 138 ¿lo 0 0
l

5X9b

2.3750

- t.JJt5

-8.1876

2;5625

-3.8750

0

1 3.50
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-t
The product Yt Yz is conputed using sparsity techniques and is

[^Y] = trl * [Y1l-1 LYz]

[AY] [v] 
"*".t 

= [v] , using

and is given as

sparsity techniques IV]exact is calculated

D

a

d

r
ç

h

7

5

4

3

2

1

6

8

fvl =' 'exact
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APPENDI X

consider a sample system as shown in Fig. c.1. Bus R is the system

slack (swing) bus. The system is torn into three subdivisions I,2 and 3

by cutting lines j, k and 1. Buses g and h are selected as ternporary

reference buses (TB's) in subdivisions 1 and 2 respectively. For colnpu-

tational simplicity, assulne that all line reactances are 0.2 per r¡-rit.

D.1

[B'] matrix of the r.mtorn systen is given by 0.1

[B'] =

trttorn
sys tern

b

d

f
o

h

(D.1)

In the following analysis and for storage, sparsity

techniques are fully exploited.

[B' (bdf)] is given by D.2,

abc

lB' (bdf)l =

a

b

d

e

f
g

h
(TBr s )

15 -5 -5 -5

-5
-5 15 -5 -5

-5 -ç 20 -5 -5

10 -5

-5 -5 15

-5 -5 10

-5 r 10

10 -5

-5 10

IU -)

-5 r0

10 -5

-5 i0
i0

i0

The connection rnatrix lCl and matrix [Mt] are giyen by 0.3.

(D.2)



166

tcl =

j
1,
^
1
l_

a

b

c

d

e

f
oè

h

l-v,l -1-
L" I

j kl

H (D.3)

(0.4)

(D.s)

Ir4atrix tCl is Stored

FROM

condensed form as follows

)

k

I

The product IC] [M' ] 
-1 

[c] 
t

abcd

An element F!lrg given by -I/ X of the line connecting buses i and s

[F']=

1n

TO

a5

aF-L é ¡r

a

b

d

e

f
g

h

'lc

h

b d

d f

q -5

5 -
È

-J 5

-5 10 -5

-5

b

c

d

e

f
çlol
hl



Define a matrix IK] as

b

[x]=¿

o

n

follows
h

ZEROS

1

1

II] unit matrix

J.O /

The product ( [F'] [I] [K] 
t + IKI tIl IF'] 

t) is, therefore, given by

b

c

d

e

f

o

h

Let [B' z] = [F'] [I] [K]t + tKl tIl [F']t

(D.6)

(0. 7)

From D.2, D.4 and D.7,

[B' (bdf) ] + [c] [M']-1 [c]'

the sunnation

* [Bå] is given hv

h

d

b

d

e

f
g
Þ

h

lF'lt

15 -5 -5

-5 15 -5 -5

-5 15 -5 -5

-5 -5 )ñ -5 -5

10 -5

-5 F
-J 15

-5 -5 10

-5 10

(D. 8)
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From 0.1 and D.8

[B,] uÌtorn system = [B' (bdf)] + [C] [M']-1lclt * [B'2J (D.9)

or [B'] = tBil * lB)l

where [Bi] = [B'(bdf)] + [c] Uq'l-1 tclt (0.10)

D.2 System Solution

To r¡lderstand the proposed technique, 1et us consider the

calculation of one iteration using the [B'] of the rntorn system and

then by using the proposed diakoptical technique

For corputational simpli city, assume (+) "f the sytem is

given by

^p[-v] =

htd a E

.06 -ïUI -. 06 -.06 .03 -.02 0 ôq

b c

.0700 .0500 .0400 .0300 . 0200 0i 00 .0600 .0800

t{e have [8U] = [B'][40], using [B'] as given in (D.1), the solution

[40]"*".t is given bY

[40] 
"*u.t 

= L/ 5

(D. 11)

Using the proposed diakoptical technique the following steps are

taken:

(a) Ca1 cultt+gn p€__[40.]

[Ae] vector is conputed using eq. 5.42'

For this exanple [B'(bdf)]-1 i, calculated exp1icitly but

in the proposed technique no matrix inversion is required and sparsity

is ful1y exploited by Zollenkopfrs nethod'



d

b

c

U

aL 1

1 ¿

2T

I¿

3/2
7l)
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lB ' (bdf) l -1 1=-1q

TBr s

r^a 'r- l-t"1 j-lSÓî' 11 t4 t-18 t-18 4 -1 0 f 13.s0

J

K

1

j
k

1

[Ao^ -l =- L5- 330 168 -330 -306 0 158 0 0 96 00

, r---?----Þ--c d e f s \t
t¡o^l=/frsooxg6lf 828 666 -966 -942 r3B 276 0 0 |- ¿' t'

Therefore, [Ae] = [Ael] - [402]

ab
1S

c

f^ocll = lc]tt^oll = ßh- m
L ''J

Intersubdivision matrix is given by
jk1

IISDI'{' ] = 1/ts

[40C2] = 1/9600

7

¿

a1

7-2

given by

.0079 -_0098 -.0265 -.0273 -.085 -.0129 0.0 .0458lA0l = 175

(D.12)



[ABt ] is computed and

abc
.:-t5

d

given

e

770

(D .13)

(that store

i.e. 16 elements)

d5

fø Þ

faa' 1 =

b

d

ç

f
o

h

I -.6458 -.¿JL /
1 -. oJ54 -.2708

1 .302 - .604
I -.¿ou4 -.5208

1 - . ru4¿

I - l nA) - .2084
-.5 -.5 I

-q
I

t^el ;[^oJexactls calculated using sparsity techniques _

only the nonzero elements excepting ones on the diagonal,
and [Ae] given by D.l2 according to the equation

[AB'][40]"*".. = [Ae]

[40]"*r.t = I/5

which is exactly the sane as D.1l
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CHANGE CONTROL EQUATIONS

YES

DATA INPUT

FORM & FACTORIZE AJl AND AJA

CALCULATE DC INITIAL CONDTTIONS

SOLVEFOR AEi.G UPDATE o

SOLVE FOR A V UPDATE V

CALCUL"A,TE 
^p ^n-v)". , îL" , R, RV

,PX, QX

CONVERGED
EASIBL

DC
LUTION

SOLVEFOR A X &, UPDATE X

fl rNr

Fig. E.1 Sinplified flow-chart of ac/dc load-flow
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IDENTIFY OUTAGED ELEMENTS

Fig. 8.2 Simplified flow-chart of outage sinulation.

KNOWN BASIC SYSTEM SATE IPOWER] O

CoMPUTE COLUMNS oF [S1] q [S2]

CALCULATE IBS]

CALCULATE I^INJECT ]

CALCULATE
SYSTEM

AX
BUSES 

_ ( 
^v,Ao 

) FOR ALL

UPDATE V' & 0'

FOR ALL SYSTEM BUSES

CALCULATE ACTIVE

& REACTIVE POWER

FLOWS
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ÏDENTIFY SUB_SYSTEMS (N)

LINES.

& CUT LINES &BUSES CONNECTED TO CUT

K0=0,K1=0,Kv:0

Kl=Kl* I
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=lTOß}.I&fACTORIZE BI'

TJPDATE V

Fig' E.3 Siuplified flowchart of díakoptícal fast-decoupled load-flor+.
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