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ABSTRACT

This dissertation presents new techniques for load-flow and
outage studies of very large power systems.

A new technique for the load-flow calculations of integrated
multi-terminal dc/ac systems is developed. This technique is fast,
efficient and reliable and is therefore an improvement over known pro-
cedures. The representation of dc system is such that it leads to simple
and efficient calculations and saving in storage requirement and yet
it is so general that a multi-terminal dc network of any configuration
and control strategies can be easily simulated.

A new method for outage studies is developed. This method is
very fast and suited for single or multiple outages. It provides
voltages and active and reactive power flows in the post-contingency
state with acceptable accuracy.

For these new techniques the fast-decoupled method has been
chosen because of its inherent superiority in terms of speed of
calculation, storage requirement, reliability and simplicity in
addition to noticing its wide-spread acceptance by power industry.

Also, sparsity is fully exploited by using Zollenkopf's method and other
sparsity techniques.

This.thesis also describes two new diakoptical techniques for
load-flow solution of very large scale power systems (2,000 or more buses)
using the bus-admittance matrix and the fast decoupled methods. These
new diakoptical techniques enlarge the scope of the load-flow and outage
studies presented in this thesis by removing the restriction imposed by

the core storage of computers on the size of a system that can be solved.



The proposed four new techniques have been tested on a number of

power SYys
systems a

methods.

tems. Solution algorithms are presented in details and sample

re solved to show the correctness and working of the proposed
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CHAPTER I

INTRODUCTION
1.1 Background: (63 - 76)

There are a number of features of HVDC transmission that have been
recognized for having the potential to reduce costs, improve the flexi-
bility and reliability of HVDC and also improve the performance of the
connected ac systems.

All existing HVDC systems transfer energy between two points
with a single rectifier station supplying a single inverter station ,
the main differences between systems being the length and type of line
between the stations, the size and number of poles and the nature of
the connected ac systems. However, the interest in multi-terminal
operation, and dc line tapping has increased recently and some systems
are already planning to include such features.

Multi-terminal operation is an attractive alternative to several
two-terminal HVDC links for the following reasons:

(a) The net installed capacity of converters is less than that

required for several two-terminal HVDC links

(b) The losses in the transmission lines and in the converter

stations are lower.

(¢) The inherent overload capability of overhead lines can be

used advantageously for a more flexible mode of operation.

The potential applications of multi-terminal HVDC systems would

seem to be the following:



(a) ac network interconnections ;

(b) bulk power transmission ; and

(¢} 7zreinforcement of highly loaded ac networks.

The possible configurations of multi-terminal HVDC systems are
series, mesh and radial or (tee) connections.

In the case of series connected stations, the direct current is
common to all stations and is controlled by one station. All the other
stations control the power by varying the inverter voltage by firing angle
control or transformer tap changer control. Operation is essentially at
constant current equal to full-rated current, or some optimum value
depending upon the variations in load demand at each station. In
comparison to parallel-connected stations, power reversal can be carried
out by means of firing control in a very short time. The series-
connected multi-terminal system is grounded at one location only, whereas
both station neutrals in the point to point link are usually grounded.
This actually subdivides the system into two independent subsystems and
is a prerequisite for using two current controllers.

Series connection of converter stations admittedly has a number
of characteristics that should make it attractive to system planners.
These have to be weighed against such drawback as reduced flexibility to
future extension and higher losses during partial load. It is therefore
felt that the main application of series connected converter stations
would be the tapping of bulk power d.c. transmission lines where the
power tapped off in one or more places is only a fraction of the total

1ink capacity.



The parallel connection of converter stations results in an
interconnected system similar to those presently used with ac. Such
a system clearly promises the highest degree of versatility. The
common variable here is the system voltage, any number of substations
can easily be added. Looking at the control aspect, transmission
voltage would be governed by one station, all other stations control
the power via their direct current. Parallel connection of converter
stations would seem to be the most likely alternative to be chosen
for a multi-terminal HVDC system. For power reversal in one station
only, polarity reversal switches are necessary with switching performed
at current zero in conjunction with the converter controls.

In most practical situations fast power reversal is not a
necessity due to other system considerations and slow speed switching
would be adequate. If required, fast power reversal can be obtained
using suitable dc circuit breakers.

Two configuations can be used, radial and mesh connections.

Their major differences are in breaker requirements and transmission

line costs. For the radiallyconnected system, if any line is to be

taken out of service for maintenance, no breakers are required; converter
control can be used to reduce line current to zero and disconnect switches
can isolate the lines. Of course, secure telecommunication channels for
interlocking and control setting are required during this procedure. -

With the meshed system however, as a rule this is not possible.
Here, a breaker capable of switching load currents is therefore required
in any case. It can be operated without using telecommunication channels.
As far as transmission line cost is concerned, at a first glance, the

star connected system seems to be more attractive. However, both



alternatives should be compared on an equal basis, which is transmission
security.

Based on the current state of HVDC development and keeping in
mind the requirements of some new systems being planned, one can, with
reasonable confidence, say that multi-terminal HVDC transmission systems
will form subsystems of power transmission network in the near future.
The requirement, therefore, is that we must have digital computer
programs which are flexible and which can efficiently handle a multi-
terminal HVDC/aé¢ system for load-flow and stability studies. Hence, one
part of the research work described” in this thesis is devoted to a
detailed development of a technique for load-flow solution of integrated
multi-terminal HVDC/ac systems. The technique is superior in a number
of ways as compared to all known procedures.

A power system continuously experiences changes in its operating
condition. These changes can either be due to load demand variations,
planned rescheduling of power generation, disconnecting lines and
transformers for maintenance or as a consequence of system faults.

The effect of these disturbances is investigated both during system
planning and operation. Transient and dynamic stability of power systems,
considering that faults are experienced at different locations, is
investigated to provide acceptable quality of service to the consumers.
Quite often, a faulty element is automatically disconnected from the
system by the protective devices. The system configuration, therefore,
changes. Even before the dynamic and transient performance is investi-
gated, it is advantageous to know whether {or not) the modified system
would be stable from the steady state considerations alone. Also before

lines and transformers are removed from the system for maintenance and



repairs, it is essential to ensure that the modified system would be
stable. 1In addition, line outage studies are a desirable part of a
comprehensive system security monitoring process. The effect of load
changes and generation rescheduling can be easily evaluated but the outage
simulation of a line or transformer is more complex because these
contingencies change the system configuration. One of the obvious
solutions is the use of the well known load-flow techniques. The use
of ac power flow solutions are too cumbersome and expensive for contin-
gency analysis. A fast and approximate technique may be sufficient in
most cases. Therefore, another phase of the research presented in this
thesis is devoted to the development of a very fast, although approximate
technique to provide the post contingency load-flow in the event of a
single or multiple element outages. The technique requires one iteration
starting from the load flow data of the base system and identification
of outages.

The ever increasing size of present day power systems imposes
great burdens on analytical methods now in use. This is the result
of the large quantities of core storage and high computation times
required for very large power systems. These circumstances not only
apply to the load-flow problem but to all power system problems. In
recent years, a number of papers have appeared involving piecewise
solution of large scale electrical networks. Systems are torn up into
isolated subdivisions. Each subdivision is handled independently for the
partial solution of the problem. Then, the so called intersection model
is constructed and solved for the full solution of the problem.

Known piecewise load-flow solution methods were first applied to

Z and Y matrix routines. It has been demonstrated that tearing is an



effective method for overcoming the size of problems that are encountered.
Most of these techniques suffer from certain disadvantages as will be
discussed later. Hence, the author finds it necessary to devise a
new diakoptical technique for Y matrix load-flow solution of very
large size networks that combines all the advantages and avoids
disadvantages of already known procedures.

On the other hand, two piecewise algorithms using Newton-Raphson
(N-R) load-flow method have been developed, the first by tearing the
power system and the second by mathematically tearing the Jacobian
matrix rather than the system itself. Also in these methods there
are certain limitations and some drawbacks that should be encountered.
Therefore, a part of the research work described in this thesis is
devoted to a diakoptical fast-decoupled load-flow solution of very large
scale networks which combines many of the advantages of the existing
good methods for both power system load-flow solutions and numerical

techniques. It also eliminates the drawbacks of other known techniques.

1.2 Contributions:

The research work described in this thesis makes at least four
contributions:
(1) A new technique for load-flow calculations of integrated

multi-terminal dc/ac systems.

(2) A very fast technique for post contingency load-flow in the

event of a single or multiple element outages.

(3) An algorithm for piecewise load-flow solution of very large

size power systems using the bus-admittance matrix.



(4) A new, exact, diakoptical fast decoupled load-flow solution

of very large scale electrical networks.

The contributions are claimed to be distinct advancement in the

current state of art.

1.3 Development of Chapters:

Chapter 2 is a brief review of known techniques for load-flow
solution of ac power systems.

Chapter 3 details the development of a new load-flow technique for
an integrated multi-terminal dc/ac system.

Chapter 4 presents known methods and the proposed technique for
outage studies in power system planning and operation.

Chapter 5 presents a brief review of known piecewise load-flow
solutions and describes development of two new diakoptical techniques
for load-flow solution of very large size power systems.

Chapter 6 presents the major contributions and suggestions for

future work.



CHAPTER II

LOAD-FLOW METHODS FOR AC SYSTEMS

2.1 Introduction (1},(2)

Load-flow calculations provide power flows and voltages for a
specified power system subject to the regulating capability of generators,
condensers and on-load tap changing transformers, as well as specified
net interchange between individual operating systems. This information
is essential for the continuous evaluation of the current performance of
a power system and for analyzing the effectiveness of alternative ﬁlans
for systems expansion to meet increased load demand. These analyses
require the calculation of numerous load-flows for both normal and
emergency operating conditions.

~ The load-flow problem consists of the calculation of power flows
and voltages of a network for specified terminal or bus conditions. A
single-phase representation is adequate since power systems are usually
balanced.

Associated with each bus are four quantities: the real and reactive
power, the voltage magnitude and the phase angle. Three types of buses
are represented in a load-flow calculation: A PQ bus, at which the
total injected power is specified. A PV bus, at which the total injected
active power is specified and the voltage magnitude is maintained at a
specified value by reactive power injection. A system slack (or swing)
bus is selected to provide the additional real and reactive power to
supply the transmission losses, since these are unknowﬁ until the final
solution is obtained. At this bus the voltage magnitude and phase angle

are specified.



The overall load-flow problem can be divided into the following
subproblems:

1. The formulation of a suitable mathematical network model.
The model must describe adequately the relationships between
voltages and powers in the interconnected system.

2. A specification of the power and voltage constraints that must
apply to the various buses of the network.

3. Numerical computation of the load-flow equations subject to the
above constraints. These computations should give us, with
sufficient accuracy, the values of all bus voltages.

4. When all bus voltages have thus been determined, we must,

finally, compute the actual load flows in all transmission lines.

2.2 Power System Equations: (1,2)

Network Performance Equations

The equation describing the performance of the network of a power
system in impedance form is

(E bus)=(Z bus) (I bus) (2.1)
or in admittance form is

(I bus) =(Y bus) (E bus) (2.2)
The elements of Y bus matrix are calculated as follows:

The diagonal element Yii is obtained as the algebraic sum of all
admittances incident upon node 1i.

The off—diagonal elements Yi. = in are obtained as the negative

J
of the admittance connecting nodes i and j.
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Bus Mismatches and Solution Accuracy Criteria

The power at bus 1 1is

. * * n
Pi - JQi = Ei Ii = Ei z Yik Ek (2.3)
k=1
ae * Y
Since E. =V, eJel s E. = V. e Joi (*means conjugate)
i i i i
and Yik = the (i,k)th element of the bus admittance matrix

= Gik + Bik’ the real and imaginary components of

power at bus 1 are

P. =V, z  (G.

_ (Gyy cos Oy + B
kei »

ik Sim 850 Vg

Qi = Vi kii (Gik sin eik - Bik cos eik) Vk

where eik = Bi - Gk

and kei denotes a bus k (including k = i) directly connected to
bus 1.

Active and reactive power mismatches APi and AQi are

APi = Pi (scheduled) - Pi (2.4)

AQ.

i = Qi (scheduled) - Qi (2.5)

The most common convergence c<riterion used in practice is

APi'S Cp for all PQ ‘and PV buses
AQiS Cq for all PQ buses

where Cp and Cq are tolerances chosen typically in the range
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.01 to 10 MW/MVAR. Bus voltage-change tests are often used for load -
flow algorithms in which mismatches are not readily available. Such
tests are sensitive to the convergence rate of the solution process and
are usually used as initial stopping criteria, after which the mismatches

are computed and tested.

Line Flow Equations

After the iterative solution of bus voltages is completed, line
flows can be calculated. The current at bus i in the line connecting
bus i to k is

L= By - B vyt By yiy/?

where Yik line admittance

;ﬁk total line charging admittance

The power flow, real and reactive, is

*
Pixk JQ = By 15y

* *
- - 2
By (By - Edyyp * By By yyy /2 (2.6]

where at bus 1 the real power flow from bus i to bus k is Pik and

the reactive power is Qg -

Similarly at bus k, the power flow from k to i is

* *
Pri =3 Qg = B (B - B9 ygy By By ygy/2 (2.7

The power loss in line i - k is the algebraic sum of the power flows
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determined from eqs. 2.6 and 2.7.

2.3 Solution Techniques of AC Load-Flow Problem

2.3.1 Gauss Iterative Method Using Y bus: (1)

The solution of a load-flow problem is initiated by assuming
voltages for all buses except the slack bus. Then, currents are calculated

for all buses except the slack bus ''s" from the bus loading equation

I, = (P, -3Q)/ Ez i=1,2,....,n (2.8)
i#s

where n is the number of buses in the network. The performance of the

network can be obtained from the equation I bus =Y bus E bus. Select-

ing the ground as the reference bus, a set of (n - 1) simultaneous

equations can be written in the form

m
n
~
—
I
M ™M 3
<
tr

The bus currents calculated from eq. 2.8 , the slack bus voltage,
and the estimated bus voltages are substituted into eq. 2.9 to obtain
a new set of bus voltages. These new voltages are used in eq. 2.8 to
recalculate bus currents for a subsequent solution of eq. 2.9. The
process is continued until changes in all bus voltages are negligible.
After the voltage solution has been obtained, the power at the slack bus

and line flows are calculated.

2.3.2 Gauss Iterative Method Using Z bus: (1)

Selecting an intital set of bus voltages, bus currents arec calculated
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from

*
I. = (Pi - JQi) / E, - yiEi i=1,2, ...., n (2.10)
where Y5 is the total shunt admittance at bus i and the shunt connec-
tions are treated as current sources.

A new estimate of voltages is then obtained from the bus impedance

network equation

E bus = Z bus I bus + E (2.11)

R

where ER is the vector whose elements are all equal to the voltage of
the slack bus and the bus impedance matrix, formed by using the slack
bus as reference, is of dimension (n - 1) x (n - 1). Eq. (2.11)

can be expressed as follows

n

Eim+1=ES+ 5 zikx’;; i=12.....n
k=1
k#s i#s

where Zik = the (i,k) th element of the bus impedance matrix.

m _ . %k
L = (P - JQ)/(B) -y, By
and .m is an iteration counter.

2.3.3 Gauss-Seidel Iterative Method Using Y bus: (1,3)

The bus voltage eq. 2.9 can also be solved by the Gauss-Seidel
iterative method. 1In this method, the new calculated voltage E?+l immediately

m . s . :
replaces E; and is used in the solution of the subseauent equations,
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92.3.4 Gauss-Seidel Iterative Method Using Z bus (1,4,5)

The bus voltage eqs. 2.11 are solved one at a time in the
order established by the bus coding. After each equation is solved to
obtaine a new estimate of bus voltage, the corresponding bus current is

recalculated. Then, the load-flow equations are given by

i-1 n

R LT ! Doz, Iy (2.12)
k=1 k=1 i=1,2, 5!
k#s k#s ifs

. 1.*
where I§+ = (P -] Qk)/(Ekm+ )T vk Ekm+1

A similar approach by applying Gauss-Seidel to load-flow problems
using bus impedance matrix, is found in [ 5]. In this method, unlike [ 4],
ground is selected as reference bus and each load is reduced into a tie
impedance to ground. The technique of referencel 4] is simpler and
converges in the same number of iterations as [ 5] for similar-sized

systems.

2.3.5 Newton-Raphson Method: (6,7,8)

The generalized Newton-Raphson method is an iterative algorithm
for solving a set of simultaneous nonlinear equations in an equal
number of unknowns F (X) = 0 . At a given iteration point, each
function fi(X) is approximated by its tangent hyperplane. This

linearized problem is constructed as the Jacobian matrix equation
FX) = -d A (2.13)

which is then solved for the correction AX . The square Jacobian
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matrix J is defined by Jik = Bfi/axk, and represents the slopes of the
tangent hyperplanes. Matrix J is highly sparse in the load-flow appli-
cations and eq. 2.13 is solved directly and rapidly by using sparsity
techniques.

The Newton method's convergence is sensitive to the behavior of
the functions F(X) and hence to their formulation. The more linear
they are, the more rapidly and reliably Newton's method converges.
Nonsmoothness, i.e., humps in any function fi(X) in the region of
interest can cause convergence delays, total failure, or misdirection
to a nonuseful solution.

Since the chosen load-flow functions F(X) tend not to be too non-
linear and reasonably good initial estimates are available, these
difficulties are encountered infrequently. 1In fact, applied to the vast
majority of practical load-flow problems, Newton's method is very reliable
and extremely fast in convergence.

The Newton load-flow formulations adopted to date use for F(X) the
bus power or current mismatch expressions and designate the unknown bus
voltages as the problem variables (X). Mathematically speaking, the
complex load-flow equations are nonanalytic and cannot be differentiated
in complex form. In order to apply Newton's method, the problem is
separated into real equations and variables. Rectangular or polar co-
ordinates may be used for the bus voltages.

The polar power-mismatch version is the most widely used of all
formulations, whose Jacobian matrix eq. 2.13 can be written for

convenience of presentation in the partitioned form
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AP H N AB

- (2.14)

AQ M L | AV

Slack bus mismatches and voltage corrections are not included in 2.14
and likewise AQi and AVi for each PV bus are absent. The submatrices
H, N, M and L represent the negated partial derivatives of 2.4 and

2.5 with respect to the relevant 6's and V's, e.g., IIik = -9 APi/Bek.
If buses i and Kk are not directly connected, their '"mutual' terms in
the J matrix are zero, and J is thus highly sparse, with positional

but not numerical symmetry.

The polar power mismatch version converges to high accuracy, nearly
always in 2 to 5 iterations, from a flat start ( V = 1 per unit and
8 = 0) independent of a system sizé. The accepted formulation 2.14
can be improved by a minor modification which very often reduces the
number of iterations by one and can avoid divergence in some extreme
cases. Noting that the performance of Newton's method is closely
associated with the degree of problem nonlinearity, the best left-hand
defining functions are the most linear ones.

If eq. 2.5 is divided throughout by Vi’ only one term OQi
scheduled /Vi) on the right-hand side of this equation is not linear in
V. Moreover, for practical values of Qi scheduled and Vi’ this non-
linear term is numerically relatively small. It is therefore preferable

to use a problem defining function AQ/V on the left-hand side of 2.14
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in place of AQ. Dividing AP by V can also be helpful, but has a
relatively small effect, since the active power component of the
problem is not strongly coupled with voltage magnitudes.

A number of schemes are available for attempting to improve the
performance of Newton's method. One of the simplest of these is to
impose limits on the permissible sizes of the voltage corrections at
each iteration, thereby helping to negotiate humps in the defining
functions. With its quadratic convergence, Newton's method takes maximal
advantage of good initial voltage estimates. Some programs perform one
or two Gauss-Seidel iterations before the Newton process [6].- This is
beneficial provided that the relatively weak Gauss-Seidel method does
not diverge when faced with a difficult problem. A most rapid and
reliable Newton program can be created by calculating good initial
angular estimates using the dc 1load flow and also good voltage magni-
tude estimates by a similar technique [7].

The computing time per iteration of Newton's method rises,on an average,
little more than linearly with the number of buses in the system. Since

the number of iterations is size-invarient,the superiority of Newton's

method increases rapidly speedwise over previous methods as the size of
the system to be solved increases. For typical large systems, the comput-
ing time for one Newton iteration is roughly equivalent to seven Gauss-

Seidel iterations [6].

2.3.6 Decoupled Methods (8,9)

The Decoupling Principle:

An inherent characteristic of any practical electric power
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transmission system operating in the steady-state is the strong inter-
dependence between active powers and bus voltage angles, and between

reactive powers and voltage magnitudes. Correspondingly, the coupling
between these '"P-6" and "Q-V'" components of the problem is relatively
weak. Applied numerical methods are génerally at their most efficient
when they are able to take advantage of the physical properties of the
system being solved. In the load-flow problem there has been a recent
trend towards this objective by 'decoupling" (solving separately) the

"P-0" and "Q-V'" problems.

Decoupled Newton Method (10)

In 2.14 the elements to be neglected are those contained in
submatrices [N] and [M]. Eq. 2.14 1is then separated into two smaller

matrix equations,viz., the P-0 and Q-V problems and are

AP/V = A AB (2.15a)
AQ/V = C AV (2.15b)

where A and C are negated Jacobian matrices. In this method dividing
AQ by V is important, since it substantially reduces the nonlinearity of
the Q - V problem.

Egs. 2.15a and 2.15b can be constructed and solved simultan-
eously with each other at each iteration. First solve 2.15a for AB
and use the updated 6 in constructing and then solving 2.15b  for AV.
The first calculated values of B are accurate to within a few degrees,
even when starting from 6 = 0. The first solution of 2.15b  then

usually gives remarkably good values for V, within say, 0.3 per cent of

the final solution. The decoupled method converges at least as reliably
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as the formal Newton version.
For convergence to practical accuracies, it usually takes a
similar number of iterations. The computation time per iteration is 10

to 20 per cent less than for the formal Newton method.

Fast - Decoupled Method (9)

The first step in applying the decoupling principle is to neglect

the coupling submatrices [N] and [M] in eq. 2.14 , giving two separated

equations
[AP] = [H] [A8] (2.16)
[AQ1 = [L] [AV/V] (2.17)
where Hkm = Lkm = Vka (ka sin ekm - BkIn cos ekm) for m# k
H = -B V2 and L = B V2 +
kk - Bk Vi T Qo @ Lyx T 7 Pk Yk Q

In practical power systems the following assumptions are almost always

valid:
cos 6, =1 G sin 6 << B Q, < <B V2
km ’ km km km ’ Tk kk "k
So that good approximations to 2.16 and 2.17 are:
[AP] = [V.B'. V] [AB] (2.18)
[AQ1 = [V.B" . V] [AV/V] (2.19)

At this stage of the derivation, the elements of the matrices [B'] and

[B"] are strictly elements of [-B]
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ivThe decoupling process and final forms are now completed by:
(a) omitting from [B'] the representation of those network elements
that predominantly affect MVAR flows, i.e. Shunt reactances and off-
nominal in-phase transformer taps.
(b) omitting from [B"] the angle-shifting effects of phase shifters.
(¢) taking the left-hand V terms in 2.18 and 2.19 on to the left-
hand sides of the equations and in 2.18 removing the influence of
MVAR flows on the calculation of [AB] by setting all the right-hand
V terms to 1 per unit. Note that the V terms on the left-hand side of
2,18 and 2.19 affect the behaviors of the defining functions and not
the coupling.
(d) neglecting series resistances in calculating the elements of [B'],

which then becomes the dc approximation load-flow matrix. This is of

minor importance, but it is found experimentally to give slightly
improved results,
With the above modifications the final fast-decoupled load-flow

equations become

[AP/V] [B'] [A8] (2.20)

[B"] [AV] (2.21)

[AQ/V1]

Both [B'] and [B"] are real, sparse and have the structure of [H] and
[L] respectively. Since they contain only network admittances they are
constant and need to be factorized once only at the beginning of the
study. [B"] is symmetrical and if phase shifters are absent or accounted
for by alternative means [B'] is also symmetrical.

The immediate appeal of 2.20 and 2,21 1is that very fast

repeat solution for {A0] and [AV] can be obtained using the constant
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factors of [B'] and [B"]. These soiutions may be iterated with each
other in some defined manner towards the exact solution, i.e. when
[AP/V] and [AQ/V] are zero.

The method converges very reliably, usually in 2 to 5 iterations
for practical accuracy on large systems. The method has the decoupled
property of giving a very good approximate solution after the first one
or two iterations. Provided that the [AP/V] and [AQ/V] functions are
calculated efficiently, the speed per iteration is roughly 5 times that
of the formal Newton method and two-thirds that of the Gauss-Seidel
methods. The storage requirements of the fast decoupled method are about
40 % less than those of Newton's method.

The fast decoupled method offers a uniquely attractive combination
of advantages over the established methods, including Newton's, in terms
of speed, reliability, simplicity and storage, for conventional load-
flow solutions. It is therefore chosen as the method for solving the ac

system load flow equations in the thesis.
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CHAPTER III
A NEW LOAD-FLOW SOLUTION TECHNIQUE OF INTEGRATED

MULTI-TERMINAL DC/AC SYSTEMS

3.1 Introduction

The increasing interest in the operational feasibility and potential
applications of multiterminal HVDC systems leaves a need for investigat-
ing load-flow methods suitable for including the dc system in an overall
ac/dc load-flow solution. The size of ac system invariably greatly
gxceeds the size of even a most extensive multiterminal HVDC system,
so the component of computing time used by the dc system is expected to
be relatively short.

A dc system when viewed from the ac side of the converter appears
either as a load, at a rectifier terminal, or as a source, at an inverter
terminal, of active power. Reactive power is however, absorbed at both
kinds of converter terminals. The amount of active and reactive power
flow depends on a number of variables in the ac and dc systems.

Historically, as the requirement of inclusion of dc links in a power
system load-flow program appeared, several papers described sequential

solution methods. 11716

In a sequential approach, the dc system load-
flow solution including terminal constraints is formulated separately
so that the terminal conditions can be imposed on the interconnection
buses in an ac load-flow program. Each ac solution establishes the
terminal ac bus voltages for the dc solution and then accepts the sub-
sequent P (active power) and Q (reactive power) converter loading from
the dc solution.

The general principle of the sequential solution method is to alter-

nate between ac and dc load-flows until all the variables converge to
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the required accuracy. There are 3 basic types of convergence tests: 26

(a) mismatch tolerances in the HVDC load-flow

(b) mismatch tolerances in the ac load-flow, and

(c) convergence of the interface quantities for which the

tolerances are smaller than those in (a) and (b) by a factor of 10.

A number of alternative iterative sequences could be applied:

(i) converging the dc load-flow accurately before each ac iteration;

(11) achieving a rough convergence of the dc load-flow and successively

increasing the accuracy after each ac iteration.

(iii) alternating between accurately converged dc and ac solutions; and

(iv) alternating between single ac and dc solutions,

A typical number of dc iterations lies in the range 4-8, with scheme
(i) requiring the highest and (iv) the lowest. Due to the short time
required to perform a dc iteration as compared to an ac iteration, the
differences between the different approaches are not crucial. Nevertheless,
it is evident from the literature that the sequential solutiom is inherently
inefficient 17-21 » although it is attractive because it ytilizes existing
programs for ac systems with minimum modifications and by virtue of a
separate dc system solution a greater flexibility in its modelling exists,

As the need for ac/dc system studies surged upwards, an earnest effort
to devise the best procedure of computation with however little improvement
over the sequential technique became paramount. Unified load-flow
solutions 17-21 have been developed to take into account the interdependence
between the ac and dc systems by solving simultaneously at each iteration
the complete set of dc and ac systems equations within one load-flow program,
A potent new technique 22 is developed by the author which incorporates

multi-terminal HVDC systems within fast decoupled Ioad-flow programs as an

integral part of the ac iterative procedure. Inclusion of a conventional
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2-terminal HVDC network forms only a special case and is solved readily
by the new technique. 1In this technique, the representation of dc
systems is such that it leads to simplifications in calculations and
savings in storage requirements and yet it is so general that a multi-
terminal dc system of any configuration and control characteristics
can be easily simulated. This technique is fast, efficient and reliable
and is therefore an improvement over known procedures.

The unified approach is more efficient and gives faster and more
reliable convergence than the sequential approach, but requires complex

programming.

3.2 Mathematical Formulation of HVDC Load-Flow Equations

3.2.1 Representation of HVDC Terminal

For efficient programming the dc link model should contain the
minimum possible number of equations and variables. This would normally
restrict the dc representation to plant components between, and including,
the converter transformers in order to alter the tap-ratios without the
need for recalculating the ac network admittance matrix.

Fig. 3.1 shows the basic converter model used in the analysis,

Series and/or parallel connection of the converters may be necessary
to achieve the desired dc voltage or current. Fig. 3.2 illustrates a
multiple bridge converter model. For this model, the transformer reactance
is assumed to be the same for all transformers and transformer tap-ratios
are also assumed to be equal.

The equivalent circuit of a single bridge HVDC converter model with
its transformer represented by an equivalent 7 ecivcuit is shewn in Fig, 3.3,
In this model, 'a' is the transformer turns-ratio, 'Y' is the transformer
admittance, V' is the converter ac busbar voltage, 'Vd' is direct voltage

and 'Id' is direct current.
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3.2.2 Choice of the Per-Unit System

In order to mesh the ac and dc equations directly in a load-flow
program, the dc equations must be expressed in a per-unit system that is
compatible with the ac per-unit system. Computational simplicity is
achieved by using common power and voltage base parameters for both ac
and dc systems. Both ac and dc per-unit systems are listed below.

AC Per-Unit System

(VA base)ac = MVA (3-phase power)
v base)ac = EL (Line to 1line) kV
Therefore (I base) = (MVA x 10%)/ /& E, A

and (Z base)ac [ (v base)ac/ /3 (Ibase)ac] X 103

= E2 / MvA Q
L
DC Per-Unit System
(VA base)dC = MVA
(v base)dc = EL = (Vv base)ac kv
Therefore (I base)dc= (MVA x 103)/ EL A

and (Z base)dc= (v base)dc/ (I base)dC

- g2
L/ MVA Q
Hence (1 base)dc= 3 (I base)aC
and (Z base)dc= (Z base)aC

3.2.3 Converter Equations

The following basic assumptions are made in the derivation of the
. . 23,24

€quations representing an ac/dc converter

1) All harmonics of voltage and current produced by a converter

are filtered completely and the dc current is free of ripple.

2) The ac voltages and currents at the interface bus are balanced
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and are sinusoidal waveforms of constant frequency.

3) The converter transformer has no resistance and requires no
exciting current.

4) The valves of the converter have no forward voltage drop.

The equivalent circuit of Fig. 3.3 has been redrawn in Fig. 3.4

for a general single bridge converter terminal, for including the system

variables and their reference directions. The reference of analysis is

chosen to be the interface ac/dc bus as shown in Fig. 3.5. 1In these

figur

es,
I/- ®+) is the (r.m.s.) fundamental component of the transformer
secondary current,

E/- ¢ is the transformer secondary voltage,

¢ 1s the power factor angle, and

6 1is the control angle - either a (firing angle) for a rectifier

where

and
Subst
eq. 3

equat

terminal or § (extinction angle) for an inverter terminal.
Applying Kirchoff's Current Law at node 'm" of Fig. 3.4 we have

ay ( V'le_ = E /-9) =SIGNTI /- @+) + (l-a) Y E [ - 1 (3.1)
SIGN

1 for a rectifier terminal
= -1 for an inverter terminal

ituting Y by jB, where B is the transformer susceptance and j =/-1

+1 in its complex form could be separated into the following two
ions:

SIGN I sin(y+¢p) = BE cos - a BV (3.2)
0 = SIGN I cos(y+p) + B E siny (3.3)

I is related to Id by the expression

I =(/6/7) 1d (3.4)
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which is exact only if vy (overlap angle) = 0°, but, which is true with

a maximum error of 4.3% at Yy = 60° and only 1.1% for vy g 30° (the normal
operating range). The variation of (I/Id) with overlap angle is negligible
for normal operating conditions 25 . The relation 3.4 1is expressed in
per-unit as

I

Kd Id (3.5)

where Kd 32 /T

fl

substituting from eq. 3.5 into eqs. 3.2 and 3.3 and writing in per-unit

form, we get

SIGN Kd Id sin (y+¢) = B E cosy - a BV (3.6)
0 = SIGN Kd Id cos {(y+9) + B E sin ¢ (3.7)
Neglecting losses, active ac power (Pac) equals dc power (Pd). For
a single-bridge converter terminal
Pac = Pd (3.8)

i.e.V3IE cos¢

Id vd : (3.9)

Substituting from eq. 3.4 into eq. 3.9, we have
Vé = (3/2 /1) E cos ¢ (3.10)

In case of NB bridges, connected in series, per pole, for a terminal we

have
Pac = 2 NB /3 TE cos ¢ ,
Pd = 2 1Id Vd/pole, therefore Vd/pole is given by
vd = (3/2/m) NB E cos ¢

In general, the direct voltage per pole, of a terminal, is expressed in
per-unit as

vd

Ke E cos ¢ (3.11)

(3/2/m) NB

where Ke
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Also, the direct voltage of a single-bridge converter terminal is

Vd = (3v/2/m) E cos 6 - Id (3/m) Xc (3.12)
where Xc is the bridge commutation reactance. In case of NB bridges
per pole, the direct voltage per pole in per-unit is expressed by

Vd = (3/2/m) NB E cos 6 - Id (3/m) Xc(equivalent)
where Xc (equivalent) is the equivalent (series-parallel combination of
the individual bridges) commutation reactance of the terminal.
Alternatively, the direct voltage per pole, of a terminal, is expressed
in per-unit as

vd

Ke E cos 6 - Kc Xc(equivalent) Id (3.13)

where Kc 3/m

In summary, each terminal has the following converter equations:

SIGN Kd Id sin (Yy+¢) = B C cosy - a B V

0 = SIGN Kd Id cos (U+9) + B E sin ¢
Vd = Ke E cos ¢
Vd = Ke E cosO- Kc Id Xc (equivalent)

3.2.4 Network Equations

A linear formulation of network equations is used for the three
possible network connections as follows:
(a) Mesh System

A single line diagram of n-terminal mesh connected system is shown
in Fig. 3.6, for the case of n = 6.

Id, - are positive for rectifiers

The nodal currents - Idl’ Id2 e 6

and negative for inverters.
The relation between the nodal dc currents and the dc bus voltages,

in per-unit, could be written in the following matrix form



31

I 2
Td
. 2
G P
€12
vd,
14,
e
Bse

A
.

Fig. 3.6 6-Terminal mesh

YA\

|

(2

845

m
IdS

connected system



T + :Z et " 216 vy
Id, T2 |, :z - Bz v,
1d, - 853 +g23 - vd,
_ E34
1, ey, fz:s e v,
Id5 - 85 +g:6 - 85 \'dS
Idg - 8 " 856 +g16 Vg
Ese
Table 3.1 Network equations for the 6-terminal mesh syvstem.

32



33

[1d] = [G][vd] (3.14)
where[Id]  is the injected current vector,

[vd] 1is the dc voltagé vector, and

[G] is the conductance matrix, which is symmetrical and its

elements are calculated as follows:

G.. =  g..
ii .. ij
jei (3.15)
Gij = Gji = _gij (jei means node j directly connected to node 1)
i,j = 1,2,3....,n (n is the number of terminals)

The network equations of the system shown in Fig. 3.6 are written

in matrix form in table 3.1.

(b) Radial System

A single line diagram of an n-terminal radial connected system
with m-tap-buses is shown in Fig. 3.7. For this system n=6 and m=4

(T,; T,, T, and T,).

2’3

The conductance matrix of the system including the tap-buses is

1°

calculated by

G.., = z g. .

ii .. ij
jed
(3.16)
G.. =G,. = -g..
13 j1 1]
i,j =1,2,3,,..., n+m

The network equations of the system of Fig. 3.7 are written in a
matrix form in table 3.2.

The current injected at tap-buses Tl’ T2, T3 and T4 are zero

(Id.. =1d, = 1d, = Id.. = 0). Tap-buses should be assigned numbers
T1 T2 T3 T4

larger than the number of terminals in the system, as shown in Fig. 3.7,
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therefore they appear in the bottom rows and columns as shown in table 3.2.

The tap-bus voltages (Vd s, Vd , Vd and Vd., ) are irrelevant to the
T T T T
1 2 3 4

conversion process. They should be eliminated to reduce the number of
equations to be solved, which leads to increased program efficiency.

Elimination of the tap-buses is achieved by a variant of Gauss
column elimination, starting with the element Gﬁ 1.5 ° where fi=n+n.

)

This means that after m pivoting eliminations the hatched part in the
matrix gets completely full of zeros as shown in Fig. 3.8. Due to the
fact that the converter dc bus voltages are independent of the tap-bus

voltages, only the upper left hand (nxn) matrix is relevant to the load-

flow solution which is conveniently stored.

(c) Series System

In series connected system with (n-1) terminals on power control,
the nth terminal accommodates losses.,
The common loop current is determined from

z Vdi + Id R=0 (3.17)

3.2,5 Control Equations (16, 26, 73-75)

At a rectifier, the tap changer maintains the firing angle within
typically 14° € o < 16° for a minimum control angle of 5 - 7°, It
ensures a margin of current control beyond o . . so that small

minimum
fluctuations of ac voltage do not result in frequent changes in control

allocations.

For a nominal firing angle of 15°, the margin is

Avd

Vdo (cos 5° - cos 15°) = .03 Vdo

.03 x ideal no load voltage and is applicable for any value

of Id or Xc. In practice tap-changer control is made according to
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o - measurements. For the program, the dc bus voltage is formulated
by allowing a 3% change in Vdo

i.e, Vd = .97 Ke E cos emin.- KeXe Id (3.18)
Alternatively, allowing a 3% change in Vd |

Vd = .97 (Ke E cos emin.— KeXe 1d) (3.19)
results in a dc voltage larger, in theory, by 0.3%, assuming that
KeXe Id is 10% of Vdo but is negligible, in practice, due to expected
dead-band in the tap-changer control. The selection of either eq. 3.18
or 3.19 is arbitrary. Both equations provide a realistic solution to
the voltage margin problem imposed by the multi-terminal application.

To determine the preferred inverter extinction angle, a strategy
similar to that used for rectifiers can be used. That is, a voltage
margin can be incorporated to serve the same purpose as in rectifiers
on constant power (current) control. The same AVd can be introduced
for the inverter as determined previously. For ﬁnih. typically
16° < § < 18°, a preferred § is about 21-22°.

At the voltage controlling station, the tap-changer keeps the
voltage at the desired value Vd = Vd specified.

The tap-changer equation for a station on constant power (current)
control is Vd = .97 (Ke E cos emin.-chc I1d).

The system dc voltage is determined by one terminal with converters
operating with either their minimum éelay angle (o min.) if a rectifier,
or their minimum extinction angle (6 min.) if an inverter. For this
terminal, the control equations are:

vd

vd sp. (3.20)

cos O cos 6 . (3.21)

min

Other terminals operate with constant power (current) control.
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In reference [74] the principles and characteristics of 3 different
control methods are shown: the current margin method, the voltage limit-
ing method, and the operation to a current voltage characteristic.

The most suitable control methods are the current margin and voltage
limiting methods. However, the author, and as is clear from many publications,
supports the current margin method.

For both current margin and voltage limiting control methods, the dc
voltage is determined by one terminal with converters operating with their
minimum control angle. Other terminals are operating with current/power
controls, Tap-changing control accommodates the desired dc voltage at the
voltage controlling station and the preferred values of o and § at stations on
current (power) control.

Equations 3.20 t© 3,23 represent control equations for the current
margin method.

However, for voltage limiting control methods equations 3.20 to 3.22
apply and the tap-changer equation for terminals controlling current

(power) is given by

vd .95 Vd limit

.95 Ke E cos 6 . - .95 Kc Xc Id.
min
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For each terminal, two equations describe the converter controls,

one from each group

Group 1. Id = 1d
SP- (3.22)
Pd = Pdsp.
Group 2. Vd = .97 Ke E cos Oin. " .97 Xc Xc Id
) (3.23)
vd =

.97 Ke E cos 6 . - .97 Kc Xc Id
min.

3.2.6 Converter Active and Reactive Power

The active and reactive power at the primary side of the converter

transformer of a terminal are

Pdc = {3 E I cos ¢ (3.24)

Qdc = V3 E I'sin ¢+ (18/1%) Xc 1d° (3.25)

Using the per-unit system, discussed before, Pdc and Qdc are

given by
Pde = E I cos ¢ (3.24a)
Qdc = E I sin ¢ + (18/ﬂ2) Xc Id2 (3.25a)

Substituting from eq. 3.5 into eqs. 3.24a and 3.25a we have

Pdc

i

Kd Id E cos ¢ (3.26)

Qdc = Kd Id E sin ¢ + kd% Xc 1d° (3.27)

A dc converter is represented by a load which either absorbs active
power (Pdc) and reactive power (Qdc) at a rectifier terminal or absorbs

active power (-Pdc) and reactive power (Qdc) at an inverter terminal.

3.2,7 Filter Representation

Filters are capacitive at power frequency and located at the
interface buses.

They can be either represented in the formulation of the bus admittance
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matrix as shunt elements, at the respective buses as shown in Fig. 3.9

or their effect can be simulated by subtracting the reactive power

they supply (Qc = V2 Bf , Bf is filter susceptance) from the reactive
power demand of the dc terminal (Qd) to give a net reactive power loading
(Qd - Qc), which is used to modify the injected reactive power at the
interface (ac/dc) bus as shown in Fig. 3.10.

Both methods of filter representation are reliable.

3.2.8 Effect of Ground Current

Refer to ‘Fig. 3.11.

It applies for a parallel connection only, since Vg = 0, in a
series systems because there is only one ground point.

Normally, the grounding resistance at a terminal and the imbalance
between pole-currents are small so that the voltage across the grounding
resistance is negligible. Vg is given by

Vg = Rg ( Idp - Idn) (3.28)
where Rg is~the grounding resistance and Idp and Idn are the positive
and negative pole currents respectively.

If Vg has to be taken into consideration, the direct voltage
Vd has to be modified to Vp by adding Vg as follows

Vp = Vd + Vg

Therefore, eqs. 3.11, 3.13, 3.14, 3.20 and 3.23 are modified

to be
Vp = Ke E cos ¢ + Vg (3.11)
Vp = Ke E cos 6 - Kc Xc Id + Vg (3.13)
[1d] = [6][¥p] (3.14)
Vp = Vp specified (3.20)
Vp = .97 (Ke E cos emin. - Ke Xc I1d) + Vg (3.23)
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For zero ground current with non-negligible Rg,
Idp = Idn (3.29)

3.3 HVDC Load=Flow Solution

3,3.1 Choice of Variables

The variables at each terminal are chosen to be -

E, ¥, a, ¢ , Vd, Id and cos ©

To eliminate trigonometrical nonlinearity and avoid overflows with
infeasible operation modes, cos 0O is used as a variable instead of 6.

3.3.2 Calculation of the Initial Conditions of the DC System

Two methods for the calculation of the initial conditions have
been investigated. The salient features of which are as follows:

Method 1:
At each station, the ideal no-load direct voltage is calculated
from

Vdo = Ke E cos emin_ (3.30)
The dc current is deduced from eq. 3.30 and the knowledge of the
desired power interchange by

Id1 = Pset/Vdo (3.31)
A first estimate of the dc bus voltage is

le = Vdo - Id1 Ke Xc (3.32)

Better evaluation of the dc current and voltage are

Id, = PSet/le (3.33)
Vd2 = Vdo - Id2 Ke Xe (3.34)
Method 2:
(1) An initial estimate of the current can be calculated as
Idi = Pset i/Vd set (3.35)

where Pset i = power interchange at station number i

i = 1,2,3,'-o-
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and Vdset = desired dc voltage at the voltage controlling
station,

{(ii) The dc bus voltages will be different from the set dc
voltage at the voltage controlling station by the transmission
line voltage drops which can be neglected for the purpose of
calculating the initial values.

{(iii) The control angles at the stations on power (current)

o

control are close to o = 15° for rectifiers and 8§ = 22° for

inverters assuming o . = 7° and & . = 18°

min. min.
(iv) The initial value of the angle ¢ of 25° provides a
reasonable initial reactive power level. Also the angley has
an initial value of zero.

(v) The tap-ratio a is chosen to be equal to 1(one) for all

converter transformers.

The two methods have been found to be reliable, but the second
method results in better initial values.

3.3.3 Méthod of Solution

Newton's method is used to solve the dc system equations in the
form

R=A AX (3.36)
where R is the residual vector

AX is the change in the dc variables,

AX = [AId AV Acosd AE A¢ AV Aa]l

(T means transpose)

and matrix A is the dc Jacobian matrix = - —

The residual vector R is calculated as follows:
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(a) Converter Equations

For each dc terminal we have the following four residuals:

R1 = Vd - Ke E cos 6 + Kc Xc Id (3.37)
R2 = Vd - Ke E cos ¢ (3.38)
R3 = SIGN Kd Id cos (¢+y) + B E sin v {3.39)
R4 = SIGN Kd Id sin(¢+y) - BE cos ¢ + a BV (3.40)

(b) Network Equations

Rg = G vd - 1Id (3.41)
for n-terminal dc system, Rg has n elements.

(¢} Control Equations

Constant Voltage Control:

Rc cos B - ¢cos 6 (3.42)
sp

Rt

Vd sp - Vd
Constant Current Control:

Rc = Id - 1Id
sp

Rt .97 Ke E cos 6 . - .97 Kc Xc Id - vd (3.43)
min.

Constant Power Control:

Rc

H

Pdsp - Pd
(3.44)
Rt

.97 Ke Ecos 6. . - .97 Kc Xc Id - vd
min

The rows of eq. 3.36 are obtained as follows:

(a) Converter Equations

R. = Ke cos 6§ AE - AVd - Kc Xc AId + Ke E A cos 8

1
R2 = Ke cos ¢ AE - Ke E sind A ¢ - AVd
R3 = -B sin Y AE + SIGN Kd Id sin(y+¢) Ad

+ [SIGN Kd Id sin(y+¢) - B E cos Y] Ay - SIGN Kd cos (Y+¢) AId
R, = B cos y AE - SIGN Kd Id cos (Y+¢)A¢ - [SIGN Kd Id

cos(y+¢) + B E sin y] Ay - SIGN Kd sin(y+4) AId - BV Aa
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(b) Network Equations

Rg = - G AVd + ATd

(c) Control Equations

Rc = A'cos 6

or = A Id

or = APd=1Id AVd + vd AId
Rt = A vd

or =

A Vd + .97 Kec Xe¢ AId - .97 Ke cos 8 min. AE

Fig. 3.12 illustrates the Jacobian matrix A for a 3-terminal
(terminals m, k and n) HVDC system. Terminal m is on dc voltage control,
terminal k is on dc current control and terminal n is on de power
control,

As shown in Fig. 3.12, some diagonal elements of the dc Jacobian
matrix can be very small or zero. To avoid complications arising from
these zero or near zero elements, for the computation of Ax, we should
either use partial pivoting, in which case we have to use the full
Jacobian matrix, or we can use the step-by-step solution 22 described
below, for which we must store only the conductance matrix G which is
very small and of dimensions n x n. For a 3-terminal dc system, the
full Jacobian, Fig. 3.12, is a 21 x 21 matrix, whereas the conductance
matrix is only 3 x 3. Therefore, in the step-by-step solution, storage
requirement is only 1/49th. If sparsity techniques are used for storing

the dc Jacobian matrix, the saving is less

Step-by-Step Solution

Consider a 3-terminal (terminals m, k and n) HVDC system such that
m is on dc voltage control
k 1is on dc current contfol, and

n is on dc power control
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Calculation of AVdm s AIdm s

Avd

k 3

AIdk s

AVd  and AId :
n n

Using control and network equations, we have

AVd = Rt
m m

AIdk = Rck

APd_ = Rc
n n

or vd Ald + Id Avd
n n n n

Rc
n

2
. _ i . X
i.e. AId = Re /Vd - (Pd /Vd) ) AVd_

Network equations give

i.e.,
_Rgm pgmm
Rey | =] gy
“Rey Enm

Emk

g

-Rg = G AVd - ATId

mn

8xk  Bxn

gnk

g

nn

.

Avd AId
m m

Ade - AIdk

Avd Ald
n n
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(3.45)
(3.46)

(3.47)

(3.47)

(3.48)

From Eqs. 3.45 to 3.48, the increments AIdm, Ade and AVdn are

computed as follows:

=1
r a1 r =
A -
Idm 1 gmk gmn
Bvdy =1 0 gy 8kn
2
AVdn 0 Enk (gnn+pdn/Vdn)

-
-Rg -
&n ~8.. Rt

~Rey “8ym Rty * Rey

—Rgn~gnmRtm + ch/Vdn

(3.49)

If terminal n is on constant current control, eq. 3.49 becomes

[A1d 7] T-1
m

Avd, 1= o

Avd 0

= n - -

Emk
Bk

gnk

=1

—

-Rgm _gmm Rtm W

Ry Rty RCy

Lngn ~gnmRtm+RCn__

(3.49a)



Calculation of A cos 6 and AE:

Constant Voltage Control

A cos 6 = Re

From eq. 3.37 we have

-R; = Rt - Ke E Rc - Ke cos 6 AE + K¢ Xc AId

1

The only unknown in this equation is AE which is given by

AE = (Rl + Rt - Ke E Rc + Kc Xc AId)/ Ke cos 6

Constant Current or Constant Power Control

From Eq. 3.43, we have
AE = (-Rt + .97 Kc Xc AId + AVd)/ .97 Ke

Then from eq. 3.37 we have

cos 6 .
min

A cos B = (Rl + AVd - Ke cos 8 AE + Kc Xc AId)/Ke E

Calculation of A¢, AP, and Aa:

The following steps are zpplied for all terminals. From eq.

Ap = (—R2 - AVd + Ke cos ¢ AE)/Ke E sin ¢

From eq. 3.39

&p = [R; + SIGN Kd cos(y+¢) AId + B sin ¢ AE - SIGN Kd Id

sin(Y+¢)Ad ]/ (SIGN Kd Id sin(Y+¢) - B E
From Eq. 3.40
Aa = [-R - Ap AId + A, AE - A B¢ - { SIGN kd

+ B E sin Y} AY]/B V

where A1 = SIGN Kd sin(y+¢)
A2 = B cos Y
and A3 = SIGN Kd Id cos(¥+¢)

cos )

Id cos(Y+¢)
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(3.50)

(3.51)

(3.52)

(3.53)

3.38

(3.54)

(3.55)

(3.56)

At the end of each dc iteration, however, violations for the upper

and lower limits of converter transformer taps "a'

extinction angles"8"are corrected.

and firing or
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Eqs. 3.45 through 3.56 provide the elements of AX vector which
modify the values of dc variables and are used as initial values for

the next iteration.

3.4 Load-Flow Solution of Integrated Multi-terminal DC/AC Systems

In the previous sections, the formulation and analysis of a model
of multi-terminal HVDC system are discussed. A review of load-flow
methods for ac system is presented in chapter (2). This section pre-
sents a new technique used to incorporate multiterminal HVDC System
Jacobian equations within a fasf-decoupled ac power system load-flow
program.

3.4.1 Combined Jacobian Matrix and Equations of an Integrated AC/DC System

Interdependence exists between real and reactive power residuals
of the ac system and the dc system variables, and also between the dc
system residuals and the ac system variables. Thus, it is convenient
to combine the ac system and the dc system Jacobian matrix equations,
and remove the necessity to solve and interface between the two networks.
For the ac system alone, using the fast-decoupled method, recalling
eqs. 2.20 and 2.21 and renaming [B'][B"] by[AJl] and [AJ4], respectively,

we have

]

[ 551 = [a3,] [26]

>
Y]

[

] = [A7,] [aV]

)

Integration of ac and dc system equations yields

(AP 1o
. AT, C PX AB

—%Q =| D AT, QX AV (3.57)
R | B RV A AX

L - o L .
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In eq. 3.57 the submatrices of the combined Jacobian matrix are
derived in Appendix A. Submatrices AJ1 s AJ4,C and D have the same
structure and values as in the ac system ( C = 0 and D = 0).

Submatrices PX, QX, B and RV consist mainly of zero elements,

(B = 0), except for the elements associated with the ac/dc buses.

Hence, the load-flow equations of an integrated ac/dc system are

85 = (A3 10e] + [PXI[aX] (3.58)
43 = (A, 10v] + [ BX] | (3.59)
[R]= [RVIRV] + [A][pX] (3.60)

From eq. 3.58

451 - [PX)1ax]

or [

[AJl][Ae] (3.61)

Ly p = 1A T

where [-2 ]INT = [ LF- [px] (4]

LR, - [51 - [PXIaX)

dc terminals l

L
only n elements
From eq. 3.59
43 - [ BX] = [A7,] (V]
or [—%Q]INT = [AJ,][AV] (3.62)
where e = Y - ey

A, - 181 - ung
dc terminals ’

only n elements



Substituting from eq. 3.62 into eq. 3.60 we get

n

[R] = [RvI[A7,170 {152 - [QxJ[ax]} + [A][AX]

(RvI[a7,170 (53 - [RvI[A7,17 (X1 [AX) + [A][6X)

ie. {[R] - [RVI[AZ,1TMAR0) = {[A] - [RV] [a7,17 QX))

Let [AR]

-14 Q
wr = [RVIIAT, T P15

-1
Therefore, eq. 3.63 becomes

{[R] - [AR]INT} = {[A] - [AA]INT} [AX]

or [AX]

[Rlpny = [Alpyr
where [R]INT = [R] - [AR]INT

and [A]INT = [A] - [AA]INT

Eqs. 3.61, 3.62 and 3.66 are combined to give

AP

) 1nt Ady A9

A Q =

O 1y AT, AV
RINT | ANt X
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(3.63)

(3.64)

(3.65)

(3.66)

(3.67)

In the above manipulations and for storage, sparsity techniques

are fully exploited.

3.4.2 Effect of the Integration of an AC/DC System on the Load-Flow

Equations of Each System in the Absence of the Other

In this section, comparison is made between load-flow equations

of an ac system with and without dc terminals. Also between dc system

load-flow equations with and without integrating both ac and dc systems.
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DC System:

As stated before in eq. 3.36, Newton equations of dc system alone
are

[R] = [A][AX]

But for an integrated ac/dc system, load-flow equations of the

de system are given by eq. 3.66 as

[Rljnp = [Alpgp [2X]

Comparing eqs. 3.66 and 3.36, one can notice that

(1) n elements of the residual vector [R] should be modified due
to the integration of both ac and dc systems,

(2) n x 3n elements of the dc Jacobian matrix [A] should be
modified due to the integration technique.

AC System:

It has been shown that fast-decoupled load-flow equations of an

ac system in the absence of dc terminals are (eqs. 2.20 and 2.21)

[A7,] [46]

—
ID
O
—
I

[A7,] [4V]

whereas the load-flow equations of an ac system in an integrated ac/dc

system are given by (eqs. 3.61 and 3.62)

1]

v iy (AT, ] [88]

b2

\' ]INT

[A3,] (V]

Comparison between eqs. 3.61 and 2.20 reveals that
(1) n elements of the active power mismatches vector [AVEJ of the

ac system should be modified due to the integration technique.
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2) [AJl] is exactly the same for both cases.

Further by comparing eqs. 3.62 and 2.21, one observes that

(1) n elements of the reactive power mismatches vector [évgﬂ of
the ac system are modified due to the integration of ac and dc
systems, and

(2) Unlike [19] submatrix [AJ4] of an integrated ac/dc system
remains exactly the same as in an ac system in the absence of a

dc network.

3.4.3 Method of Solution

The following steps are taken: ( Flowchart- Appendix E )

1, Calculate the initial values for both ac and dc system variables.
2. Form and factorize AJ1 and AJ4, using the Bi-factorization
method.

3. Calculate (AP/V)aC ,(AQ/V)ac and R.

4, Calculate RV, QX.and PX.

5. Calculate AX:
(a) Elements of AX excluding Aa are calculated as in the
normal case of dc system using the step-by-step method as
outlined earlier.
(b) Residual vector R4 has to be modified due to integrating
ac and dc systems as follows

R

4 Ry - ARINT

INT
.ot -1, AQ
where, ‘ARINT RV AJ4 =

RV - AV1
Zollenkopf's method is used to calculate AV1 and then

by multiplying it by RV using a sparsity technique we get ARINT .
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(c¢) A technique is developed using‘the same routines of Zollenkopf,

which can be used in the multiplication of two sparse matrices,

-1
N 4

AAINT is to modify the value of A

to calculate AAI T = RV < AJ e QX. The only effect of

1° A2 and A3 of eq. 3.56,

(d) Aa 1is computed from eq. 3.56 using (R in place of R

4)INT 4

and the modified values of Al’ A2 and A3 . This completes the
first dc iteration. Update X.

6. Modify n elements of (AP/V)ac given by step 3 and correspond-
ing to the ac/dc bus bars to get (AP/V)INT and then use
Zollenkopf's to solve for Abaccording to eq. 3.61, update 6

7. Use the updated values of X and 6 in forming (AQ/V then

)INT
solve for AV according to eq. 3.62, update V,
This completes the first iteration of the integrated ac/dc system.
The pattern for subsequent iterations is the same except that we start
from step (3), since matrices AJl and AJ4 are constant and need to be
factorized only once at the beginning of the solution. Convergence

tests are used for the integrated system with the criteria

maxlAP[S ep
mafole eq fér 'all buses

where maxIAP] and max|AQ| are largest absolute elements of active
power mismatches vector [AP] and reactive power mismatches vector [AQ],

respectively, Ep and Sq are specified tolerances,

3.5 Application of the Proposed Technique to Sample Systems

In the absence of any existing systems the proposed load-flow
solution technique was tested on hypothetical systems. These systems

are based on the AEP - 14 bus system described in [15]. The procedure
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+30.2513 1 1.06/0.0°
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0.942+30.19 0.478-30.039
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Fig., 3.13 Sample system, including loads, generation

and bus-voltages.



Table 3.3

Data for the ac lines

BUSBAR N . . TRANS -
LINE . . . | FORMER
SENDING | RECETVING] P~V p.u. p-u. TAP %
1 1 2 .01938 | .05917 | .0528
2 1 5 .05403 | .22304 | .0492
3 2 3 04699 | .19797 | .0438
4 2 4 05811 | .17632 | .0374
5 2 K 05695 | .17388 | .0340
6 3 4 .06701 | .17103 | .0346
7 4 5 01335 | .04211 | .0128
8 4 7 - .20912 - 2.2
9 4 9 - .55618 - -3.1
10 5 6 - . 25202 - -6.8
11 6 11 .09498 | .19890
12 6 12 12291 | .25581
13 6 13 06615 | .13027
14 7 8 - 17615
15 7 9 - .1101
16 9 10 .03181 | .08450
17 9 14 12711 | .27038
18 10 11 .08205 | .19207
19 12 13 .22092 | .19988
20 13 14 .17093 | .34802
21 9 9 - -5.26

*100 MVA base

R

= resistance

» X = reactance ,

B

= line charging
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Table 3.4

Data for 2 terminal dc system

Converter 1 Converter 2

Trans. reactance, p.u. 0.10 0.07
Comm. reactance, p.u. 0.10 0.07
Filter susceptance, p.u. 0.4902 0.6301
Resist. of dc 1line, p.u. 0.00334
Const. dc current, p.u. 0.456 —————
Const. dc voltage, p.u. -——- 1.284
Minimum angle, degrees 7° 18°
Table 3.5

(a) Data for 3 terminal mesh connected dc system

Converter

M K N
Transformer reactance, p.u. 0.10 0.07 0.04
Commutation reactance, p.u. 0.10 0.07 0.04
Constant current, p.u. -—- 0.4362 0.916
Constant voltage, p.u. 1.286  --- -
Minimum angle, degrees 7° 7° 18°
Dc line resistances, p.u. 0.005 0.005 0.005

RMK RKN RNM

(b} Data for 3 terminal radial connected dc system

Same data given in (a) except

RM = ,005 p.u.
RK = ,005 p.u.
Ry = -005 p.u.
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Table 3.6

Line flows for the integrated ac/dc system

Line SB EB Real Power Reactive Power Line SB EB Real Power Reactive Power
1 1 2 1.5641 0.1218 12 6 12 0.0776 0.0338
1 2 1 -1.5215 -0.0493 12 12 6 -0.0768 -0.0322
2 1 5 0.7559 0.1066 13 6 13 0.1670 0.1046
2 5 1 -0.7276 -0.0421 13 13 6 -0.1648 -0.1002
3 2 3 0.7298 -0.0588 14 7 8 0.0000 -0.3246
3 3 2 -0.7060 0.1137 14 8 7 0.0000 0.3420
5 2 5 0.4146 -0.0117 15 7 9 0.2876 0.0502
5 5 2 -0.4053 0.0050 15 9 7 -0.2876 -0.0414
6 3 4 -0.2401 0.2579 16 9 10 0.0570 -0.0180
6 4 3 0.2489 0.2698 16 10 9 ~0.0569 0.0182
8 4 7 0.2877 -0.2433 17 9 14 0.0921 -0.0010
8 7 4 -0.2877 0.2742 17 14 9 -0.0911 0.0032
9 4 9 0.1615 -0.0789 18 10 11 -0.0312 -0.0759
9 9 4 -0.1615 0.0976 18 11 10 0.0317 0.0771
B 10 5 6 0.4367 -0.2375 19 12 13 0.0143 0.0163
10 6 5 -0.4367 0.2992 19 13 12 -0.0142 ~0.0162
11 6 11 0.0657 0.0966 20 13 14 0.0551 0.0572
11 11 6  -0.0646 0.0942 20 14 13 -0.0541 -0.0552

DC TERMINALS

FROM TO REAL POWER REACTIVE POWER
2 ‘ K 0.5609 0.2241
4 N -1.1720 0.6331

5 M 0.6147 0.2590




BUS 5
1.046 /-9.21°

P=0.5862
—_—

Vd=1,2855
a=1.0174

1d=0.4560
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BUS 4

1.066/-13.81°

P=0.5855
a=0.9455

Vd=1.2840

1
L = Q=0.2931 '

_—_i:l— B.=0.4902

f

/
Q=0.2597 ~e————

ggCl

B,=0.6301——

Fig. 3.14 Dc parameters of a 2-terminal system

resulting from the ac-dc load-flow.
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Bus 2 1.0264/-4.72° 1.0048/-9.39° BUS 5
2=0.9990 a=1.0296
lP=O.5609 P=O.6147l
K 8=15.6° 6=12.5° \
Q=0.2241 Q=0.2590
lId=O.4362 Id=0.4798l
Vd=1.2858 Vd=1.2860

1=0.0146
1=0.4508 1=0.4652
Vd=1.2795
l 1d=0.9160
Q=0.6331
P=1.1720
N £=22.6°
\
a=1.0535
0.9810 /-8.71°
BUS 4
Fig. 3.15 0D parameters of a 3-terminal mesh connected

system resulting from the ac-dc load flow.



BUS 2 BUS 5

1.0263 /-4.75° 1.0047/-9.61°
a=.9987 a=1.0296
P=.5607 ‘ p=.6175
6=15.55° =12.5°
K Q=.2240 Q=. 2606 M
l 1d=.4362 1d=.4798
— Vd=1.2853 Vd=1.286 ———t———
RK RM
Ry
vd=1.2651
Id=.916l
. p=1.1588
Q=6275 = 22.59°
a=1.0413
BUS 4 .9813/-8.73°

Fig. 3.16 Dc parameters of a 3-terminal radially connected system

resulting from the ac-dc load-flow.
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was tested on three systems. The first system had a two terminal dc
obtained by replacing ac line 4-5, the second system had a three terminal
dc mesh connection obtained by replacing lines 4-5 and 2-4 (Fig. 3.13),
and the third system was the same as the second one, but with radial
connection.

Data for the ac system are summarized in table 3.3. Data for dc
systems are given in tables 3.4 and 3.5. ‘The power setting on dc lines
was made equal to the active power carried by replaced ac lines.

Each system required 4 iterations. Table 3.6 provides the details
of the results obtained for the second system which has a 3-terminal
mesh connected dc system,.

Details of the resulting dc parameters for both 2-terminal and
3-terminal dc systems are given in Figs. 3.14, 3.15 and 3.16.

Accuracy of the Solution

The program has a default accuracy of .0005 per-unit for all ac
and dc variables. Tolerances of less than 0.5 MW and 5 MVARS mismatches
per bus are easily obtained. The dc residuals of zero values are also
obtained.

Speed of the Solution

The proposed load-flow solution technique of integrated multiterminal
dc/ac systems converges in 4-6 iterations irrespective of the number of
terminals.

The number of iterations may be increased in the following cases:

(i) 1If the transmission voltage is modified due to a tap-
limit violation, in this case at least one extra iteration is
required.

(ii) If the calculated tap-setting is not practically feasible

at more than one station, 2 additional iterations may be required.
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(iii) 1If the transformer turns-ratios have to be corrected
because we assume in the derivation of the dc equations that
the transformer turns-ratios are.continuously variable, whereas
actually transformers have discrete tap-steps.

(iv) If a practical solution for the operating conditions is
required, for example after each iteration a test has to be
made to ensure that the voltage controlling station has the
lowest loaded voltage limit. If the test result is not
satisfactory, the program should assign voltage control to
the station with the lowest loaded voltage limit. Each
reallocation of voltage control results in an extra iteration

before final convergence is achieved.

3.6 Conclusions -
This chapter presents a fast technique for load-flow studies of
integrated ac/dc systems which embodies the following features:
(1) It employs fast decoupled load-flow techniques. It is found
that the reliability, computational speed and storage advantages
offered by the basic fast-decoupled algorithm ? are preserved as
far as the ac network is concerned.
(2) The dc system is formulated in a most general way such that
any multi-terminal system of any configuration and control charac-
teristics are easily accomodated.
(3) The choice of the dc system variables and equations makes the
calculation procedure very simple. A considerable saving is evident
from the requirement of factorizing AJ4 only once,
(4) The step-by-step solution for dc system is faster and requires

less storage as compared to other known procedures.



65

(5) The overall efficienty of the proposed technique is greatly
improved by using Zollenkopf's bi-factorization and other sparsity
techniques.

(6) In summary, the technique is fast, efficient and reliable and

is therefore a distinct improvement over known procedures.
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CHAPTER IV

A NEW METHOD FOR OUTAGE STUDIES

4.1 Introcuction

The major objective of power transmission system planning and
""" operation engineers is to have a sound system operating at its peak
efficiency. However, a good system should be able to survive contin-
gencies, leading to system elements outages, and settle down to a near

optimal state without over-loading of and over-voltages at system

elements. Tt is very important to have techniques which can determine

post contingent network voltages and power flows in a most economical
way. Generally, an experienced systems engineer, having identified

an efficient system can guess at the crucial components which if
removed from the system may lead to over-voltages or over-loadings.
However, he also needs a tool to calculate the consequent system state
and verify his guess. Since a number of cases must be examined, the
economy and speed of calculations are of paramount importance. An
absolute accuracy in calculations is of secondary importance as the
results within engineering tolerances are generally sufficient. It is
more so because all critical cases have to be analysed in greater details
anyway.

The analysis of this chapter is restricted to the outages of ac
elements of an integrated dc-ac system. Consistent with the above-mentioned
requirements for contingency/outage analysis this chapter presents a very
fast, although approximate, technique39 to provide the post-contingency

load-flow in the event of a
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single or multiple element outage . The technique requires one iteration
starting from the load-flow data of the base system and identification of
outages. On account of the nature of technique it is safe to assert that
solutions consequent to changes in the generation or the loads can be
accommodated with the same speed. In principle the proposed method is
based on the use of fast decoupled load-flow technique and the concept

of simulating a line or transformer outage by injecting power equal to
that flowing into the outaged element at appropriate buses. This tech-
nique reverts the changed network configuration back to the original in

a mathematical model. The usefulness of this technique has been illu-
strated very well by Sachdev and Ibrahimss. By combining the outage
simulation technique with the fast decoupled load-flow technique a number of
advantages are gained. As compared to [35] our method does not require
calculation of power injection modification factors and reduces the
sensitivity matrix elements calculation effort to half. Since our method
needs only one iteration and uses bi-factorization and sparse matrix
programming techniques it is, we believe, the fastest.

In this chapter the proposed method is outlined by considering the
outage of one element. Later, the technique is generalized to take into
account multiple outages.

In the following at first, some known techniques are discussed and

later details of the proposed technique are presented.

4.2 Review of Known Techniques for Outage Studies

Contingency analysis methods that do not model the outage probabili-
ties of system elements but rather simulate element outages, by actual

removal, are considered to be deterministic methods. The use of ac power
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flow methods for outage analysis may be considered a deterministic
approach, characterized by excellent accuracy but otherwise expensive
computationally and excessively demanding of engineering time. Methods
appropriate for contingency analysis have been developed and are sum-

marized as follows

27
A, DC Power Flow Contingency Analysis:-

The simplest, but perhaps most inaccurate method for analyzing
the effects of not only single but also multiple contingencies, is
a method based on the dc power flow equations. These equations,
usually (N-1) in number, where N is the number of buses, model only
the real power flow and ignore the reactive power flow. In many
cases all line resistances are neglected and the line flows are
assumed to be considerably smaller than the steady state stability
limit of the line. The result of all these assumptions is that
we obtain a linear model of the network to facilitate performing
multiple-contingency outages using the principle of superposition.

To develop the dc power flow equations, we must start with

the standard ac power flow equations

*
P, = Real (E, % Yis B (4.1)
*
Q = -Im(E, ? Yi5 B (4.2)
i=1,2,....,N

Assuming the voltage magnitudes remain unchanged and equal to their
base - case values, the N net injected reactive power equations

can be ignored, leaving only the N real power equations. Considering



bus 1 is the slack, we have

*
P. = Real (E. Z Y.,. E.)
i i3 7573
= Real (v, 7% 5 y . ISy o303,
i 3 ij j
=Real (I V, Vv, v, (015 + 85 -06i)
131 1)
J
» with the line resistances neglected, Yij = j Bij
P. =X V. V., B.. sin(8, - 6.)
i i’j ij i j
i=2,3,....,N

Under the assumption that

V. V. B.. sin (6, - 8.) << V. V. B..
1] 1] 1 J 1] 1)

3

(Oi - Sj) must be sufficiently small that the sine of the angle

difference can be replaced by the angle difference, thus

P, =2V, V. B. (o - ;)

iy 1) Tij
i-1
=-I V;V, B0 +6 I V.V B
ie1 i Cii%) i41 jiooij
N
-3 V.V, B8
5ei41 joTii
Letting
Ky = TV, Vi B
j#i J
and  _ Ly y

.. . V. B..
ij i) Tij



i-1 N
Pi = X K1 6. + Kii 6. + X K 8.
j=1 J ] j=i+l J ]
1=2,3, ,N
Or in matrix form
P=XKG©® (4.3)

Clearly, if for a fixed set of power injections P, a line or
lines are removed, both the K matrix and the 6 vector will
change from their base-case values K° and 6> by an amount AK

and A9 such that

P°= (K° + AK)(06°+ A8)
= K° 6%+ AK 6° + K° AB + AK A

Neglecting AK A® , then

P°Z K° 6° + AK 0% + K° A0 (4.4)
But P°= K° 6° (from 4.3), hence eq. 4.4 becomes

0= K 6% +K° A6
Therefore

S

re= -(k°)71 Ak 6 (4.5)

Eq. 4.5 provides the changes in the bus voltage angles due to
network changes.

Since the change in the power flow in line ij is

Piy= Kjj (46 - 48) (4.6)

Where Aei and Aej are the i th and j th components of A6 , the
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effects of line outages on line flows are readily available. It
is important to emphasize that (K°)_1 need only be computed once,
namely at the beginning of the contingency studies. As long as
the base case remains the same, (K°)—l is valid.

Using eq. 4.5 is a simple matter in both cases of single and
double or higher order contingencies. Though this approach of
outage study is the simplest, and fastest, its accuracy is low
and it does not provide information regarding reactive power flow

in the system elements.

B. Z-Matrix Method for Contingency Analysis (5, 27, 28, 29)

Z-matrix methods, as the name indicates, make use of the bus
impedance matrix associated with both the base-case system
(system having accurate load-flow solution) and the system
modified by either line removals or line additions. The Z-matrix
for a system can be obtained in several ways. It can be obtained
directly by inverting the bus admittance matrix or it can be
constructed sequentially by using available algorithms.

The fundamental approach to contingency analysis using the
Z-matrix is to inject a fictitious current, into one of the buses
associated with the element to be removed, of such value that the
current flow through the element equals the base-case flow, all
other bus currents being set equal to zero. In effect, this proce-
dure creates throughout the system a current flow pattern that
will change in the same manner as the current flow pattern in the

ac power flow solution when the element in question is removed.
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The requirement that the fictitious injected current creates the
same current flow in the;element to be removed as in the base-case
is considered a constraint.

Implementing the ideas discussed, assume that we want to
evaluate the effects of an outage of line km, given that the base-
case system flows and voltages are available. We may include all

MVA loads in the Z-matrix by first converting the MVA loads using

2 %
Z Loadi = Vi / Si (4.7)

and applying any of the Z-matrix building algorithms. Knowing the

Z-matrix, we may write the bus voltage equation

[ E, 2y eeeenn Z)x [ 1,
Ey |_ | Zyy eeenn Z,y i (4.8)
LBy Lz e Z |1 ]

Since we do not yet know how much current to inject into bus k
to create the flow Icn that equals the base-case flow Iim s
it is logical to start by letting Ik = 1,0 p.u., thus from

eq. 4.8, injecting a wnit current into bus k gives

T T
[ E1 ...... EN] [Z1k ...... ZNk]
Therefore
Ikm = (Ek - Em) / Z line km

= (Zkk- ka) / Z line km (4.9)
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Obviously Ikm # Iim the first time; therefore we need to calculate

an adjustment parameter, d, where

A

e (4.10)

s
Ikm / Ikm
Multiplying d by the initial wnit injection results in a new
injection, Ik = d, and new current flow

Ikm = (Ek - Em) / Z line km = d (Zkk - ka)/z line km

s
- Ikm

Due to the injection Ik = d , the current flows in all the

other elements are

Iij (Ei - Ej) / Z line ij all ij # km

d (Z;y - Z4) / 7 line ij (4.12)

The next step is to remove line km and calculate the new current
flow pattemrn Iij in the new system.
Once the new currents are available, current flow changes due to

removing line km are

AL, = 1., - I.. 15 .
Iij 113 IIJ for all ij (4.13)
Of course, when ij = km , Ikm = 0, therefore
AIkm = - Iim > With this result the need for adjusting the

fictitious current Ik to create a flow of Iim in line km is seen

to be crucial.
Calculating the current flow pattern.Iij in the modified
network Z, in which line km has been removed, requires only that

we inject current I, = d, as before, into the modified network.
J k



The voltages that result from this injection can be used to

determine the needed flows:-

El SIEEREERERRRERES ZlN 0 d Z1k
E2 221 .............. ZZN 0 d sz (4.14)
= d 1=
0 ~
i EN4 _ZNl .............. ZNI\L I 0 ] —d ZN](_
Therefore
Iij'z (Ei - Ej) / Z line 1ij
=d (Zik - ij) / Z line ij ' (4.15)
where Ikm =0

Further, substituting eqs. 4.15 and 4.12 into eq. 4.13 , we get

~

_ d p
L5 71me 1y b Gax ~ Z50- gy - 23] (4.16)

~

The modified network Z must be known before eqs. 4.14 through 4.16

can be used. Its formulation can be found in [27].

If double contingencies are to be considered, the same basic
procedure is used, except that two fictitious currents must be
injected into the system, creating in the two lines to be removed
a current flow equal to their base-case flow values. Further, the
Z-matrix must be modified appropriately to reflect the removal of
the two lines. Upon injecting the two bus currents into the
original and modified systems, the desired changes in current flow

can be obtained.
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In general, the accuracy of the Z-matrix method is far better
than the accuracy of the dc power flow method. In fact, the

results are comparable to those obtained using an ac power flow.

C. Peterson, N.M. et al,(SI)

1311 introduced an approach for the approximate iterative
solution of linearized a.c. power flow equations, that is
suited for the steady-state analysis of both the real and
reactive effects of a series of contingent line outages.

Their technique is based on the direct solution of a
sparse system of linear algebraic equations by ordered
triangular factorization and sparse matrix programming
techniques. Also it is based on two symmetric real matrices
which remain constant for the complete solution cy:le.
Therefore each matrix is triangularized only once and the
effect of a line outage is simulated without changing the
matrices.

Starting with the equations of real and reactive power

injections at node Kk,

2 .
o=V Gt Ve Z V(G cos B+ B sing, )

mEOi(

(4.17a)

=
1
'
o
o

+ Vk X Vm (ka sin ekm - Bkm cosekm)
meok

(4.17b)



0g is the set of branches connected to node k . Noting]that the

Bkk term can be separated into its components as follows:

B = I Oty By * BYy) * B
meo, k
k
where Bkm is the transfer susceptance of branch km

tem is the tap ratio when branch km is a transformer

(when it is a transmission line, tkm =1.0)
BYkm is the charging susceptance of the k leg of the

equivalent ® of the line km

and BC is the susceptance of the shunt capacitor or
k

reactor at node k.
Also knowing that
sin & = 6 + (sin 6 - 8)
cos 6 = 1 + (cos 6 - 1)

Substituting in 4.17a we get

2
Yk msz Bim %%m = Pk - Yk Gk - Y EZ Vo Sn
k e
Vi IV {ka (cos &, -1) + B, (sin Om " ekm)} (4.18)

meoy
Noting that ekm = Gk - em , the L.H.S. of eq. 4.18 can be
arranged in the form of a system of N linear equations with
(N) voltage phase angles as variables, i.e. it could be written in

matrix notation as [A][®] , where [6] is an (N) vector of node

voltage phase angles and [A] is an (NxN) matrix with elements
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akm is defined as follows

e =V IV OB ‘(4.19a)
l'l'lEZOLk
qm= Vi VOB (4.19b)

On the R.H.S. of eq. 4.18 the first and second terms of the
Taylor's series expressions of the sine and cosine functions are
substituted. The R.H.S. can then be written in terms of new

1"

1
symbols [Pk] and [Pk] , which are defined as follows

_ 2 _
P =P~ Vp Gy -V, I v G (4.202)
me Ol.k
" eZKm eSkm
P =V IV (6, KL+ B —dm (4.20b)
me OLk

The complete system of equations for real power can then be

written as
[Al[6] = [ [P']+ [P ] (4.21)

Similar analysis applied to the reactive power equations leads

to the following results

CIvi=1 [Q]+ Q7 1 (4.22)

where
]
[V] is an N vector of node voltage magnitudes,
!
N is number of PQ nodes

1 1
and [C] is an (N x N ) matrix with elements Chm

defined as follows
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Ckk = I tkm Bkm (4.23a)
juitale?
k

Ckm = —Bkm for m ¢ Yk (4.23b)

where Yy is the set of all PQ nodes connected to node k

1

1
[@Q 1 and [Q'] are defined as follows:-

' Q.
Q = v *+V (X2 . B +B.)+ I V B_ (4.242)
k meo, k mey
k k
" 63km 32km
Q= - r oWy GOy - =5 ) * By =5 (4.24b)

where wP is the set of all PV nodes connected to node k.

The technique simulates the effect of a branch outage on the
solution without changing the triangularized matrix to reflect
the branch change. An outage of a line in branch km causes

four changes in matrix [A] as follows
Aakk = Aamm = —Aakm = -Aamk
- The changes in [A] can be expressed in matrix notation as
! T
[A ] =[A] + Aakm [MA][MA] (4.25)

where [MA] is an N vector that is all zeros except element k
which is +1 and element m which is -1

t
The inverse of [A ] is given by 32

w1t =t - copzamg" g (4.26)



where

m
and
[2,] = [a17" ] (4.27)

For a branch outage eq. 4.21 can be written as

[ [A] + Aay, 4000 1 [ [6] + [a6] ]

1 "
=[ [Pl +1P1]
where [AB] is the vector of the phase angle corrections to
account for the line outage.
A similar expression can be derived from eq. 4.22 for the

voltage correction [AV].

[ [C] + A, DIMIT 1 [ V] + (V] ]

= [ Q1+ [KQ'7]

Here AC is the change in element km of [C] resulting

km
1
from the line outage, [MC] is an N vector that is all zeros

except for element k which is +1 and element m which is -1.

[A6] and [AV] are then computed as follows:-

1 -1
[a6] = - ( i Yoyt Zag) o (8 -8 [2,] (4.28)
1 -1 :
[AV] = - ( ic_ oo o Zeg) T W - VD) [z (4.29)
where
[2c] = 117" (] (4.30)
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The scalars ZAk and ZAm are elements of [Z

The scalars ZCk and ZCm are elements of [Z

ek and Gm are elements of [6], the solution vector of eq. 4.21

A]'

cl

without the line outage, and Vk and Vm are elements of [V], the
solution vector of eq. 4.22 without the line outage. Thus, by
solving eq. 4.21 as a linear system to obtain the solution [6]
the solution for [A6], the correction to account for a line
outage,can be obtained by first solving for [ZA] by a repeat
solution and then solving eq. 4.28. A parallel statement applies
for the voltage solution in eq. 4.29.

Though this approach has good overall performance, it
requires some computational processing of the basic state data

before line outages can be simulated.

D. B. Stott and 0. Alsac(g)

[Olhasapplied a technique similar to [31], based on the
decoupled load flow solution. As stated before, the fast

decoupled load-flow equations are given by

[A—\I; = [B'][46] (2.20)

(24 = 18" [av] (2.21)

All outages must of course be reflected correctly in the
. AP AQ .
calculation of [—vﬂ and [—v] » for the outage of a series
1 1"
branch two non-sparse vectors [X ]| and [X ] must be calculated,
1
each requiring one repeat solution using the factors of [B ]

and [B"] respectively.
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After each solution of eq. 2.20, [A6] is corrected by

an amount

¢ ox'imT e (4.31)

!
where C 1is a scalar given by

amb o+ M1t 'yt

Cl = ,
' LI | i
Xi=1[B]"M],
' -
[M ] = column vector which is null except for
! 1
Ml o=a, DI =-1,
b = line or nominal transformer series admittance ,
and a = off-nominal turns ratio referred to the bus

corresponding to row m , for a transformer

1.0 for a line

Similarly, after each solution of eq. 2.21, [AV] is corrected

by an amount

< X7 M7 [av] (4.32)

where

C is a scalar given by

b+ M1 [x'7 7!

1 o] 1"

> X1=1[B]1" M]

" 1
and [M ] is formulated in a similar way like [M ].
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It was founégghat the (16, 1V) iteration scheme remains
the best in this application and it was confirmed that using
the base-case solution to start the outage calculations is
on an average distinctly better than using the normal flat

voltage start each time.

E. Sachdev and Ibrahimcss)

[35] has proposed that the outage of a line be simulated

using the sensitivity matrix (which is the inverse of the
Jacobian matrix) and the changes of power injected into the
system at the buses connected by this line. Fig. 4.1 depicts
the simulation of an outage of a line connecting load buses k
and m. The basic and final states of the system buses k and m
are shown in figs. 4.1a and 4.1b respectively. The voltages
at these buses would not change, from that in the final system
state, if this transmission line is reconnected and power equal
to that flowing in the line is injected into these buses.
Fig 4.1C, therefore, simulates the outage of this line without
physically changing the system configuration. Power flow, in
the line connecting bus k and m, in the simulated final state
is given by

1] 1 1] t 1 1 1

Pkm = Vk Vm [ka cos(ek -em) + Bkm s:Ln(ek - em)]
'2 H
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' 1
pmk = Vm Vk [ka cos(em Gk) + Bkm
'2 1
- - 4.33¢c
v.© (G, - G) ( )
1 . 1 1 N e 1 e t
Q =V Vi Gy sin(® - 8,0 - B sin(6 - 6))]
mk
12 1
- 4.33d
+V, " (B, - B) ( )
lpk s Qk lpm ’ Qm
8
v, / - Vo L
k — _(ka ") Bkm)
1 1]
— ::“‘ka *J Bkm
(a) basic system state

|
!
|
!

(b) final system state

Iy
Pk’ Qk APIk’ QIk APIm’ AQIm Pm > Qm
' e}i , 1
Ve / k | vy, /
Y 2P 1 BQpy APrms 8Qp Y
RN S —r—

(c) simulated final svstem statc {

Fig. 4.1 The outage simulation of a linc connecting

the system buses k and m.



Where
G, + 3j B = (k,m)th element of nodal admittance matrix
km km
! . 1 . . . .
ka + Bkm = 5 (1ine charging admittance for line km)
1
and V = V_ + Ay
m m m
Al
Vk = Vk + AVk
' (4.34)
3 = 06 + A8
m m m
o' 6 46
= +
k k k

As is evident from Fig. 4.lc, the change of power injected into

the buses k and m should equal the line flow in the final system

state,
1
BPpy = P
1]
APIm B Pmk
. (4.35)
Ry = Qe
t
ﬂ%mz %m

Since the outage of a line connecting two load buses k and m
is being simulated by the changes of power injected into buses
k and m only, eq. 4.36 is formulated using the sensitivity

matrix as follows
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G Ckm Pk Pkm | %P1k A%y
ka Cmm Dmk Dmm APIm Aem
- (4.36)
Ekk Ekm 1:kk ka AQIk Avk
Emk Emm ka me AQIm AVm

Eqs. 4.33 and 4.36 and the equality constraint of eqs. 4.34

and 4.35 represent a nonlinear relationship between the changes
in real and reactive power injected into the buses k and m and

the magnitudes and phase angles of the voltages at these buses.

Eqs. 4.33 and 4.36 can be solved using an iterative technique
(more than one iteration is required), the values of APIk s APIm,
AQIk and AQIm thus calculated are used to solve for the changes
in the entire system state.

Assuming that the system loads and the real power output
of various generating plants remain unchanged, all except the
above four elements of @he controlling vector would be zero,
the elements of only four columns of the sensitivity matrix
are therefore required to be computed to evaluate the state
simulating the outage of a line connecting two load buses.

The changes of power injection required for simulating the
outage of a line (km) connecting different types of buses are
summarized in table (4.1), for each calculated change of power
the elements of only one column of the sensitivitf matrix are

required to obtain the final system state.
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Table (4.1)

TYPE OF BUSES CONNECTED BY THE LINE POWER INJECTIONS REQUIREDI
BUS k BUS m TO BE CALCULATED
Generator bus Swing bus APIk
Load bus Swing bus APIk R AQIk
Generator bus Generator bus AP , AP
Ik Im
Load bus Generator bus APIk s AQIk s APIm
Load bus Load bus APIk , AQIk , ApIm’ AQIm

The transformer outage is simulated in the same manner as
the line outage in case the transformer is operating at nominal
tap setting. If the transformer tap is connected to, say,

bus k and off nominal tap setting , t , 1s being used, the

km
voltage V; in eq. 4.33 is replaced by V];/tkm . Except for
this change, the simulation procedure remains the same.

The system solution obtained by the proposed technique
will be slightly different from that of the Newton-Raphson
approach because the elements of the sensitivity matrix are
calculated from the pre-contingency bus voltages. This error
can be partly compensated by using power injection modification
factors (PIMF). Since each transmission element has a unique
effect on the system and this effect is likely to be similar at
different loading conditions, a single value of the PIMF may

be used for each transmission element. PIMF for a line connect-

ing buses k and m can be determined by comparing the real power



injections at buses k and m calculated by this technique and
without the use of PIMF and those calculated from a load-flow
by the Newton-Raphson technique. Therefore, the values of

A AP ’AQIk and AQIm calculated from eqs. 4.35 and 4.38

PIk > Im

should be modified by using PIMF before calculating the changes
in the entire system state.

Comparing with Stott method, the latter has a considerable

storage advantage but this technique requires the upper and

lower triangular factors of the complete Jacobian matrix.
4.3 New Method

In principle, a line or transformer outage causes a system
configuration change. An equivalent mathematical model is made 35
which has the original configuration except that at the terminal buses
of the outaged element additional active and reactive power, equal to
that which would flow if the line was present with the modified system
voltages, are injected, as shown in fig. 4.1. The maximum number of
API, AQI variables for each element outage is 4. Hence, if these
are known, four columns of the sensitivity matrix are required for

obtaining the system state.

4.3.1 Single Branch Outage: Mathematical Model

Consider the outage of a line connecting buses k and m in
fig. 4.1. In the simulation, under final operating conditions,
the real and reactive power flows in the line km at the two buses

are given by eq. 4.33. Rewriting these, we have
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1 1 1 ' 1 12 1

Pem = Yk VY [Gyp €08 8 + By sin 8 1 -Vim (G - Gyp)
1 1 1] . e' el '2 1]
QUp = Vi Vm [y sin Oy - By cos 8 TV m (B - Brp)
1 1 1 e' . e' 72 ]
Pmk B Vﬁ Vk [ka €0s Skt Bkm S0 Sk ] —Vm (ka - ka)
4 1] 1 . e' 1 '2 ]
Qi = Vm Vi[O 50 Oy = By cos B T+ Vim (B - Byp)
1 1 ] 1]
where ekm = ek - em = - emk
' -
As shown in Appendix B, Pkm is given by
1
Pkm = Pkm (basic state) + Apkm = Pkmo + Apkm (4.37)
1
Similarly Pmk = Pmko + APmk
1
UYn = Umo * Ay
1]
and R R

Changes in line powers ( APkm s Apmk’ Aka s Aka) are

expressed in terms of changes (corrections) in bus voltage magnitudes

and angles ( Appendix B)

[AP]k,m = [V Vk Vm][BS]k,m [Ae]k’m (4.38)
likewise
[(8Q)y = /Y V 10B,1, V] (4.39)



Therefore the changes of active and reactive power injected into the
buses k and m to simulate an outage of the line km could be computed

from eqs. 4.35, 4.37, 4.38 and 4.39. These changes are given as

ApIk Pkmo Apkm
= +
APIm Pmko APmk
_ N kk km (4.40)
Pmko 0 VVk Vm Bz B+ Aem
mk mm
AQIk kao Aka

My, Uiko Ak

J
kao VUk Vm 0 By By A\k
= + koo km '4.41)
Uko 0 k vm Bq B4 B
mk mm

Assuming that the loads and real power output of generating plants
remain unchanged and since the outage of a line km connecting two load
buses k and m is being simulated by the changes in the power (active and
reactive) injected into buses k and m only based on the fast-decoupled

load-flow method,

[S1] (/] (4.42)

(29 =[8'1 (28] or [46] e

29 (8" (V) or [V = (5212 , a5
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only two columns of each sensitivity matrix [S1] and [S2] are
required. For other combinations of Generator/Swing and Load buses

as shown in table 4.1 lesser columns are required. A method of

calculating a column of sensitivity matyix is shown in Appendix B.

Therefore the corrections (Aek, Aem, AVk, AVm) are related to

the changes of active and reactive power injections (APIk, APIm,
Aek Slkk Slkm APIk / Vk
= (4.44)
AGm Slmk Slmm APIm / Vrn
AV S2 S2 A, /v
ki _ kk km Ik k (4.45)
AVm szmk Sme AQIm / Vm
Substituting from eq. 4.44 into eq. 4.40, we get
il 1P| |V O] |Bs B | | Sha St | %Pnc/ i
kk km
= +
AP 1 Pko O MYy B3 B3 Sl Shim!| [%Pm / Vi
mk mm
(4.46)
BP_ [V 21 0 | |ap
Ik k Vk Ik -1
But = = [V] [AP_]
APV 0 L1 | ap mo Ukom
Im m Vk Im

Eq. 4.46 could be written in the form

. V) |
[API]k,m - [Po]k m w0 k Vm [B3]k,m [Sl]k,m [V]k,m [Apl]k,m

E
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Let  [SP] = [ /¥, V1[B, . [S1]y | [V]i{m
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Since [ /Vk Vm] and [V]ilm are diagonal matrices, therefore

-1
[sP) = [Bgly (810, o V17 [/ V]

k
-1 _
The product [V]k,m [ ng Vm] = 1 0 NV 0
Vk k m
1
0 v 0 /Vk Vm
k
/Vm / Vk 0
= = [I] = unity matrix, based on the
0 AV
m m
assumption that VVk/ Vm Z 1.0, i.e. the square root of voltage

magnitude of both ends of a line are approximately equal, hence [SP]

is given as
[sP] = [Bgly o [SM]y q
From eqs. 4.46 and 4.47 we have
[8P 11y = Poli,m * [SPRIOPLY
(AP 1y = [SPRLPLY o= [Poly
[ 111 - 18P ) [ePily o= (P)y

Therefore API and APIm are given by

k

-1
LR B I CL I R L

(4.47)

(4.48)

(4.49)
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Stmilarly Bofly = [ 011 - 159 17 Q) (4.50)

(4.51)

where [SQ] [B

4]k,m [Sz]k,m

Therefore the changes of the injected active and reactive power

(AP AP

Ik ° Im ° AQIk ?

most two columns of each sensitivity matrix (SI, S2)} , the series

AQIm) could be calculated in terms of at

and charging admittances of the outaged line, and the basic load-flow
(Po, Qo).

The calculated values of APIk and APIm are used in eq. 4.42
to obtain the solution for [48]  of the whole systen. Also, the calcu-
lated values of AQIk and AQIm- are used in eq. 4.50 to compute the
solution for [AV] of the whole system. [A6] and [AV] , the correction
vectors to account for an outage of the line km, are used to calculate
the post-contingency state, [6'] and [V'], for the whole system. Knowing

the post-contingency system voltages, the post-contingency line flows can,
therefore, be determined.

4.3.2 Generalization for Multiple Branch Outages (Flowchart-Appendix E)

Consider outage of linesl, 2, ..., n connected between load
buses (a, b), (c, d), ... s (v, z).
The changes in the injected power (API, AQI) into buses

(a8, b), (¢, d) ... , (y, z) are given by
2n[ A INJECT] = 2n[POWERO] = 2n[ A POWER] (4.52)
where [ A INJECT] are the changes in injected powers at the 2n buses

(a, b, ¢, ...., z),[POWERO] are the precontingency power flows in the

lines and [ A POWER] are changes in these power flows due to outages.



Eq. 4.52 applies for both active and reactive powers.

The relations between [ A POWER] and changes in the bus voltage

magnitudes and angles are expressed in a general form by the following

equations.
A
POWERab : ) A Xa
, a A
APOWERba Xb
! AX
APOWER _ ) c
Bcd AX
APOWERdC d
| |
i AN ‘
| N :
l \ t
! \ ‘
o N f
| =[/AW]. N !
[ N f
| f
| h '
[ AN t
N ;
{ . |
APOWER _ AX
Yz B Yy
z
APOWER Y AX
zy z
or [ A POWER] = [WvV] [B] [AX] (4.53)
where for APOWER = AP; AX = A8 and
_ 1 -1 I 1
Ba,b = [BS]a,b B Bab N _Bab
-1 1 line |-1 1
Bab = imaginary part of (a,b)th element of the nodal admittance

or for A POWER

matrix

-series susceptance of line

= AQ; AX = AV and

ab =

93



!
Bab "%Bap “Bab
Ba,b - [B4]a,b - .
Bap Bap 2By,
B Bab
1
B .. -2B . .
N ab ab _ line charging susceptance
where C = ——=2 = 1 4+ 2 :
Bab line series susceptance
Similarly with B_ ., ..., and B
c,d V,Z

Note that C =1 for calculating AP

and [VVV ]is a diagonal matrix given by

[V v] = AR 0

0 /VaVb

Wy 0
Yy 2z

0 Wy

2n
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AINJECT and AX are related by a small portion § of the whole

sensitivity matrix [Fig. 4.2] as shown bclow

2n columns

to be computed

Fig. 4.2 Sensitivity Matrix

a h c d v 7

AXy a AINJECT_/V_
A i ’
X b AINJECT, /V,
AX., c AINJECT /V,_
INJE /

Axd d A FCTa/\d

_ S

AX . ,
y y AINJECT, /Y.,

\ AN 7

BX, , ATNJECT /v
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ie.  [AX] = [S] I éﬂf%?ﬁzl ] (4.54)

From eqs. 4.53 and 4.54

[ A POWER] = [V ] [B][S][V1™ [ AINJECT]

[B][s] [/W 1[v1™} [ AINJECT]

[BS] [ AINJECT] (4.55)

since VYVV and [V]—l are diagonal matrices,

[V ][V]_l [I] (unity matrix), since VVi / Vj ~ 1

and [BS] [B1[S]

Formulation of [BS]

Matrix [BS] is formulated row by row

Rowa=(c x row a of [S] -row b of [S])x B b
a

Row b =(c x row b of [S] -row a of [S])x B b
a

Rowy =(c x row y of [S] -row z of [S])x B
yz

Row z=(c x row z of [S] -row y of [S])x Byz




Therefore we do not need to store [BS]’ [B4] , [YVV] and [V]_l.
All that we need is [S]. Matrices [BS] and [B4] are multiplied by
[S] {S may be either SI or S2} implicity.

From eqs. 4.52 and 4.55 we have

It

[ AINJECT] = [POWER ] + [BS][ AINJECT]

i.e. [ AINJECT] - [BS][ AINJECT] = [POWER _]

[ [1] - [BS] ] [ AINJECT] = [POWER ]

|
Let [BS ] = [I] - [BS] , then [ AINJECT] is given as

[ AINJECT] = [BS']™" [POWER ] (4.56)

From eq. 4.56 [ AINJECT] is calculted since [POWERO] is known
from the precontingency load-flow.

By knowing the 2n columns of the sensitivity matrix shown
by the unhatched portion in Fig. 4.2 , A6 and AV , the corrections
due to lines outages, are calculated to update [6'] and [V'] of the
whole system in the post contingency condition. Post contingency
line flows are therefore determined.

In this technique we need just one iteration starting from the
basic state to calculate the changes in the system state due to single

branch or multiple branch outages.
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4.4 Application of the Proposed Technique to a Sample System

Test Results

The aforementioned technique has been applied on AEP-14 bus
sample system for single and double line outages.

For single line outages, lines 7 (high loading), 11 (medium loading)
and 20 (light loading) are removed one at a time, whereas for double
line contingencies, lines (16 and 17) and (3 and 20) are removed in
pairs.

For comparison, an exact load-flow solution is also obtained in
which the outage is simulated by physically removing the line.

Table 4.2 summarizes the results for active power flows in
the case of single line outages. This table also shows tﬁe precontingency
flows in the system given by the fast-decoupled solution.

For the contingency of line 7 it also provides results obtained

28,29 and Stott's 9 techniques (one iteration) to

by using Z-matrix
show the accuracy of the results on a comparative basis.

Table 4.3 shows a comparison between reactive power flows on
lines obtained by full load-flow solution and that by the proposed
technique due to the outages of line 7 (heavily loaded) and line 20
(lightly loaded).

Table 4.4 provides the results of active power flows for

double line outages.



Table (4.2)

A comparison of the active power flow calculated by the

exact and proposed techniques (single line outages) (MW)

NO OUTAGE OF LINE 20 OUTAGE OF LINE 11 OUTAGE OF LINE 7

LINE OUTAGE EXACT LOAD- PROPOSED EXACT LOAD- PROPOSED EXACT LOAD- PROPOSED  Z MATRIX B.STOTT'S
LOAD-FLOW FLOW TECHNIQUE FLOW TECHNIQUE FLOW TECHNIQUE METHOD METHOD
1 154.07 156.34 153.93 156.47 153.90 175.66 166.62 174.51 175.02
2 79.89 76.28 79.42 76.15 80.19 61.79 64.03 58.19 58.15
3 83.08 72.83 83.29 72.96 83.38 107.82 101.82 87.83 88.43
4 38.64 56.17 47.92 . 56.31 51.92 63.69 56.78 87.78 88.68
5 46.51 41.37 46.05 41.23 49.49 17.10 23.78 12.61 12.69
6 14.10 23.66 19.64 23.55 17.86 8.66 7.20 9.14 8.37
7 64.01 63.47 66.02 64.65 60.80 .00 .00 .00 .00
8 24.97 29.52 26.47 30.45 26.18 12.91 15.47 18.30 17.87
9 14.06 16.61 14.86 17.11 14.50 7.24 8.70 10.22 10.04
10 49.50 42.36 46.19 40.91 38.98 69.30 64.86 60.32 61.28
11 10.46 11.39 ~13.72 .00 .00 22.53 18.11 17.16 16.79
12 8.37 6.56 6.66 8.77 6.66 9.89 9.50 9.37 9.27
13 19.47 13.21 12.95 20.94 16.38 25.68 23.31 23.19 22.75
14 .00 .00 .00 .00 .00 .00 .00 .00 .00
15 24.97 29.52 26.35 30.45 25.69 12.91 15.37 18.11 17.83
16 2.28 1.40 .87 12.58 10.53 9.23 5.45 4.06 3.60
17 7.25 15.22 13.85 5.47 8.56 .09 .55 3.23 3.45
18 6.72 7.60 . 9.81 3.51 2.39 18.26 14.27 13.06 12.50
19 2.18 .41 .40 2.58 .55 3.68 2.74 3.04 2.86
20 7.86 .00 .00 9.67 4.76 15.40 12.64 12.50 11.69

0
o]



A comparison of reactive power flow calculated by the exact and

Table (4.3)

proposed techniques. (MVARS)

LINE ggAgUgégﬁ OUTAGE OF LINE 7 | OUTAGE OF LINE 20
EXACT | PROPOSED | EXACT | PROPOSED
1 19.74 24.69 22.65 19.87 19.71
2 2.40 3.62 1.70 2.10 2.09
3 2.69 1.33 1.58 2.64 2.67
4 5.12 5.26 7.43 5.44 5.72
5 7.54 3.32 3.84 7.07 7.08
6 2.71 4.51 6.06 1.83 2.10
7 8.02 .00 .00 6.74 7.89
8 9.57 11.51 8.76 9.61 10.09
9 .0106 .47 .39 .025 .020
10 12.65 18.84 22.75 13.29 13.25
11 9.44 6.83 5.31 9.41 9.89
12 3.21 2.77 2.61 2.26 2.62
13 10.29 8.75 8.08 5.48 7.52
14 28.35 33.29 27.81 31.43 31.68
15 17.35 20.53 17.32 20.57 20.23
16 1.31 1.50 2.17 1.48 1.43
17 .08 1.97 2.59 5.00 3.04
18 7.12 4.37 3.56 7.29 7.33
19 1.43 .90 .68 .55 1.14
20 5.35 3.04 2.75 .00 .00
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A comparison of the active power flow calculated by the exact and

Table (4.4)

proposed techniques (double line outages) (MW)

DOUBLE OUTAGE OF LINES

DOUBLE OUTAGE OF LINES

LINE 3 and 20 16 and 17 _
EXACT LOAD  PROPOSED EXACT LOAD  PROPOSED
FLOW METHOD FLOW METHOD
1 142.51 149.33 155.47 154.07
2 107.55 93.60 77.46 76.82
3 000.00 00.00 71.92 79.10
4 72.32 69.46 52.90 40.30
5 84.97 77 .44 42.15 45.37
6 94.14 78.67 24.92 18.23
7 119.92 85.43 49.62 54.08
8 23.90 24,99 18.87 24.97
9 13.38 14.07 10.63 14.06
10 51.62 49.62 59.51 53.78
11 20.65 18.64 12.78 10.46
12 6.56 8.30 9.95 8.37
13 13.21 16.23 25.58 19.47
14 00.00 00.00 00.00 00.00
15 23.90 24.96 18.87 24,97
16 7.45 5.09 00.00 00.00
17 15.23 10.54 00.00 00.00
18 16.47 12.90 9.09 6.80
19 4.10 2.10 3.73 2.18
20 00.00 .00 15.32 10.86
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Solution Accuracy

The average and maximum errors for voltage magnitudes and angles
are less than (1% and 2%) and (3% and 5%) respectively. Considering
the purpose of contingency analysis it is felt that the accuracy is
quite acceptable.

A comparison of a line flow given by the proposed technique
and the exact solution has been made in terms of a percentage of the
line rated capacity and not the line flow. This, to us, seems &
logical choice, because the main purpose of the outage study, after
all, is to determine and detect if there are any lines overloaded.
Also, we should not keep on changing the base for a line under
different loading conditions. An evaluation of results shows that
for single line outage, the average error is less than 1% whereas
the maximum error is less than 6%. The corresponding figures for
double line outages are 2% and 10%.

1f the actual loading of line is used as the basis, table 4.5

compares our errors with the errors of other accepted techniques, for

the outage of line 7. As it is clear from this table only four lines
(marked with *) have errors higher than those of Z-matrix and B. Stott's
methods and the remaining sixteen lines have errors less than those
obtained by these accepted two techniques. Clearly, a line which is
predicted to carry 0.55 MW power as compared of .09 MW should not
matter; because it 1s no way near its rating. However, if it is

said that the error in this situation is 511.1% it is bound to cause
concern. For this case, the errors with Z-matrix method and Stott's

method are 3488.9% and 3733.3% respectively.
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Table (4.5)

% Error based on the line flows for the outage of line 7

(Refer to the last 4 columns of Table 4.2)

1
LINE PROPOSED TECHNIQUE 2 MATRIX — B. STOTT'S

METHOD METHOD

1 5.15% .655 . 364
2 -3.625 5.83 5.89
3 6.27 18.54 17.98
4 10.85 -37.82 -39.24
5 -39.06* 26.26 25.79
6 16.86* -5.54 3.35
7 0 0 0

8 -19.83 -41.75 -38.42
9 -20.16 -41.16 -38.67
10 6.41 12.96 11.57
11 19.62 23.83 25.48
12 3.94 5.26 6.27
13 9.23 9.70 11.41
14 0 0 0
15 -19.05 -40.28 -38.11
16 40.95 56.01 60.99
17 511.1 3488.9 3733.3
18 21.85 28.48 31.54
19 25.54%* ' 17.39 22.28
20 17.92 21.75 24.09

*Cases where the error by the proposed technique is

larger than these using the other two techniques.



Solution Speed

Since the post-contingency results are always obtained in one
iteration starting from the pre-contingency load-flow the speed of

solution is undoubtedly very high.

4.5 Conclusions
1. The attractive feature of modified power injection technique

for the simulation of transmission system elements has been
combined with fast-decoupled load-flow technique to provide

a new very fast contingency evaluation method.

2. The method provides final load-flow results of acceptable
accuracy.
3. The technique is generalized and is shown to be suitable for

multiple contingencies.

4. The chapter provides details of other outage simulation

methods for completeness of the subject.
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CHAPTER V

PIECEWISE LOAD-FLOW SOLUTIONS OF VERY

LARGE SIZE POWER SYSTEMS

5.1 Introduction (44,60)

Diakoptics (known variously as the method of tearing or by civil
engineers as substructuring)4o was conceived and developed by Kron.41
The basic idea of diakoptics is to analyze a system by tearing it into
its desirable component parts, and to solve each component part as if the
others did not exist. The solutions of the component parts are then com-
bined and modified to take the interconnections into consideration. The
results are as exact as if the system had never been torn apart.

Kron applied his findings to the inversion of large matrices and
stated that by tearing the system into 'm" subdivisions, inverting each
subdivision and reconstructing them, the total time could be cut by a
factor of 2/n2.

The method of tearing is applicable to both electric and nonelectric,
physical as well as economic (operations research), linear or nonlinear
systems.

The original work by Kron was in the area of electric networks.

A most interesting account of Kron's work is available in [42], this work
was extended and enlarged by Happ who presents a full account of diakoptics
and electrical network theory in his book [43]. In his large number of
publications he has advanced the technique with particular reference to
electrical power distribution systems. 44-48

Brameller has made use of the theory of .diakoptics on a number of

problems [49, 50, 51].



106

In control system applications ideas similar to diakoptics have
appeared under the general term '"decomposition techniques". A very
useful introduction to diakoptics is given in [52].

Some of the inherent advantages of diakoptics are
1. Because diakoptics allows a large system to be torn into n smaller
sub-systems, a small computer can be used to solve a large system which
otherwise cannot be handled.

2. A much smaller recomputational effort, and rebuilding effort of
models has to be made as compared to conventional methods when :

a) a change in any one subdivision occurs ;

b) a change in the interconnections of the sub-divisions is to

be considered; and

c) additional subdivisions are to be added.

There are certain inherent disadvantages in diakoptics also. Two major
disadvantages of diakoptics, as stated by Happ [44], are that, first,
several steps are required to obtain a solution, as compared to only a
Z1 operation in the conventional impedance matrix load-flow method, and

second, that an intersubdivision matrix has to be formed.

Sections 5.2 and 5.3 provide a summary of the known decomposition
and piecewise methods used for load-flow studies. In sections 5.4 and
5.5 two new load-flow techniques based on diakoptics and employing

efficient load-flow techniques are presented.
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Decomposition Techniques
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The piecewise solution of a very large system is obtained by tearing

the system into !'n"

no limitation on the lines of tear

present between lines belonging to different subsystems.

parts

equations can be written as

(A,B,...,N), called subdivisions.

There is

(L) except that no mutuals should be

The total system

A B C N L
1
EA A ZA ITA+IT A
1
EB B ZB ITB+IT B
E C
C Z
. C ITC+IT'C
(5.1
1
EN N ZN ITN+IT N
Vv L
L ZL IL
For each area: E 1s the voltage vector,
Z 1is the impedance matrix,
T .
I is the external current source vector,
T*,
I is the current vector due to the interconnection
of the subdivisions,
L

I” and V, are branch currents and voltages across

the proposed removed branches, and

ZL is a diagonal matrix of the removed lines impedances.
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With the correct currents applied at the points of cut, the subdivisions
can be individually solved by any conventional method, from which the solu-
tion of the total network is obtained. However, the values of injected
currents (IT') are generally not known, Two piecewise methods are described
in Ref. [48] for incorporating IT' in the solution procedure. The first
method (called boundary iteration method) determines IT' by an iterative
method and in the second method (called diakoptic method) IT' is determined
in a noniterative or stepwise manner.

In a boundary iteration method, and in the linear case where IT is
known, the voltages across the cut branches (VL) can be calculated from
the initial estimate of the voltages of the subdivisions. Then the current
IL and IT' can be calculated. Knowing IT and IT’ , the voltages in the
subdivisions can be determined. With the new tie voltages available,
corrections in IT' can be made and the procedure repeated. In the non-
linear case, such as load-flow, it leads to an outer loop to satisfy the
boundary conditions.

In diakoptics, using the impedance matrix. eq. 5.2 is written.

In this equation: ZT consists of the impedance submatrices of the torn

areas (A,B,C,...,N). Z2 , 23 and Z4 are submatrices that reflect the

interconnection of the subdivisions. They can be constructed from Z. as

T
explained in Ref. [48]. All voltages (ET) are measured with respect to
ground, all current (IT) represent the injected bus-to-ground currents

and all currents (ic) represent the currents injected at the points of

tear.



109

A B C N L
A ZA
B N
ZB /
C *7/2
E. |_ | C Z, i (5.2)
T =
N ZN
T
L
The solution of (5.2) can be obtained as follows
.C _ -1 T
i~ = -Z4 Z3 I (5.3)
_ T .C
Bp = ZpI'+ Z, i (5.4)
When eliminating i© from 5.4 by substituting 5.3 into 5.4 we
obtain
_ -1 T
ET —(ZT - 22 Z4 23) I (5.5)

With current IT known, a solution can be obtained by the two-step
algorithm above or by the use of eq. 5.5. Note that the sparsity in eq. 5.2
is retained by the use of €qs. 5.3 and 5.4, but that it is not retained
in eq. 5.5.

A six-step piecewise algorithm was derived iﬁ Ref. [48] which is

completely equivalent to solving 5.3 and 5.4. Its major features are
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that it does not require the formation of the submatrices 22 and Z3 and
is more flexible.
The six-step piecewise algorithm is as follows:
1. Obtain solution of torn subdivisions excluding tie currents to
other subdivisions
e - Zp 17)

2. Compute voltages across torn subdivisons given intersubdivision

(CUT) branch sign convention

"o (0

(eC = EL )
3. Compute the currents injected at the points of tear

. -1 ¢t

(1C = 24 ec)
4. Convert i° to injected tie currents pties by assigning signs (IT)
5. Obtain voltage contributions in subdivisions due to tie currents

T (1) _ T

I (ET = ZT 1)
6. Total voltage solution is the sum of the voltages obtained in

steps (1) and (5)

- (0) (1)
(ET = ET + ET )
The models used require only the individual subdivision models and Zy
as shown in 5.6
ZA /}7
ZB
ra
\
N\ (5.6)
N
N
AN
\
\
T O\
N
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The Z-matrices of the subdivisions, which explicitly represent the
subdivision solutions, are not required to execute the algorithm above.
Step (1) can be accomplished by elimination methods, triangular factori-
zation methods, by nodal iterative procedures using admittances, or by
other iterative procedures.

As a brief summary of piecewise techniques, the boundary iteration
method requires an iterative procedure in the linear case, whereas the
diakoptic method requires no iterations. In nonlinear cases,(48) sueh as
network programs, the interconnection of the torn subdivisions is expected
to increase the number of iterations required in the boundary iteration
method, whereas this need not be the case in the diakoptic approach. The
advantage of the boundary iteration method is its simplicity.

An observation was made from a theoretical stand-point that it appears
that piecewise methods allow different iteration procedures for solving
the load-flow or other similar non-linear applications.

Sasson [53] has classified decomposition techniques according to
whether branches are cut or whether nodes are cut. He and Carre [55] have
shown that the actual places chosen for cuts are of considerable importance
in relation to the speed of convergence. They have recommended that
partitioning should be made at places where the weakest couplings exist.
In electrical system, the branches with highest reactances or smaller
susceptances can be chosen for interconnection. This may be true in case
of a boundary type iteration. But in diakoptics and as reported in
[45,46] the introduction of tearing retains the identical convergence
characteristics as the original untorn problem and is independent of the

lines torn.

The classification - diakoptics versus boundary iteration - is better
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because the work in [45] could really be in both of the Sasson's categories.
The diakoptic theory that the program in [45] is based upon decomposed
networks by cutting through branches and nodes as outlined further in [44].
This is reflected in the program which allows any branch to have zero

impedance, which signifies decomposing by cutting nodes.

5.3 Known Piecewise Load-Flow Methods

In load-flow methods such as bus impedance matrix and Newton-Raphson,
the number of iterations required to yield an acceptable result appears
to be independent of a system size. But the solution time and computer
storage requirement vary with the number of buses. These obvious practical
limitations have restricted the application of these methods for large
size systems. The division of system into subsystems and handling each
of them independently have overcome these barriers and now the methods
may be used for any system size. The following is a brief review of the
known piecewise load-flow methods.

A. Happ et al [45, 46] have applied a decomposition technique based
on the theory afadiakoptic method, especially designed for use with their
Z-matrix load flow methods. Their method was the first to appear in the
literature in which the load-flow problem is solved by decomposition
techniques to overcome the size limitation inherent in Z-matrix methods.

It proposes that the system be decomposed into parts (A, B, C...) by
cutting certain transmission lines. The impedance matrix of each part
(ZA, ZB, ZC...) is formed independently, then for each part form 22

submatrix (Z2, Z2, Z ,...). Next, a Z, intersubdivision matrix is
A B C

constructed to transmit effects between the parts, as shown in Fig. 5.1.
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A B C N CUT LINES
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Fig. 5.1 Submatrices for piecewise Z-matrix load-flow method
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Fig. 5.2 Swing bus and voltage regulated buses vectors
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During the iterative solution the voltages at each bus are given by

2

E = anll I % ...., with the cut line buses serving as

n * Zn2

sources of injection éurrent. The magnitude of the injection current is
determined from the difference in voltage at the two ends of the cut line
and the apparent impedance across the tear.

In the voltage iteration for the entire system, each area in turn
can then be treated independently using the Z-matrix only of the area
being considered.

If.an injection current adjustment is made to a bus n, a correspond-
ing counteradjustment must be made to the swing bus injection current I

to hold the swing bus voltage ES at a fixed magnitude and angle,

_ n n
ES = ZSlI + ZSZI + ZSn (I + AT) + ...,

S S
+ ZSS (I" + ATI7) + ..

1
The swing bus axis ZS of the interconnected (untorn) system must there-

1
fore be computed. For voltage regulated buses a vector ZD is required

[Fig. 5.2]. Reference should be made to the original publications for
computational details [5, 45, 46]. The convergence characteristic of

the torn Z-matrix load-flow is identical to the untorn.46



115

B. SassonS:5 has applied a decomposition technique to the nonlinear
programming load-flow method [54] which is based on the minimization of a
function made up of the sum of the squares of the load-flow equations.

‘In his method, branches are essentially cut twice, once on each of the
two terminal nodes of the branch, and not on the branch itself. Only
the cut node on the far side of the interconnection branch will act as
a source. The near node will be a normal node of the section containing it,

Fig, 5.3 shows the decomposition technique that results in an over-
lapping of the subsystems. A decision is made to cut through the branch
between nodes 1 and 2. Normally, subsystem A contains node 1 and subsystem B
contains node 2. In this scheme, subsystem A contains node 1 and node 2,
node 1 appearing as a normal node while node 2 appears as a constant voltage
node. The reverse is true for subsystem B. When subsystem A is solved
initially, node 2 remains constant at its initial wvalue. When subsystem B
is solved, node 1 remains at the value that it took when subsystem A was
solved and node 2 takes on a new value. This value for node 2 is used as
a constant when A is soiVed again.

It is noted that the interconnection branch is part of both subsystems.
There is no'need for any additional computation apart from the load-flow
solution of each subsystem. The method thus proceeds iteratively from
subsystem to subsystem until all conditions are simultaneously met.

In this decomposition method and as discussed before, the inter-
connection branch on which convergence characteristics depend, should be

of smaller susceptance.
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Interconnection branch node 2 Subsystem
B

Subsystem noce 1

Fig. 5.3 Representation of a decomposition technique

A B N
A
Ia
B JB
N
J = N
AN
\
N
AN
AN
N
AN
N JN

Fig. 5.4 Piecewise N-R Jacobians
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C. Laughton56 has applied decomposition techniques to load flow
analysis using the nodal impedance matrix. In his paper, he reported that
diakoptics is a special form of partitioning.

D. Happ and Young 47 have developed a piecewise algorithm using
Newton-Raphson (NR) load-flow method. The NR load-flow as described in
reference [6] is based on a Jacobian which is a function of admittances,
voltage magnitudes and angles. Instead of requiring a large Jacobian for
a system, smaller Jacobians can be used which represent the torn subdivisions
similar to the area Z's in the piecewise solution of the impedance matrix
load-flow. The Jacobians of the subdivisions form a block diagonal form
(bdf) as shown in Fig. 5.4.

The iteration procedure is as follows:

(1) Since the initial voltages are known {either from a flat

voltage start, or from a previous case), the initial tie flows

(Itles, Old) between subdivisions may be computed by
193¢ = (&, - B YHE
J 1 ] 1)

where all quantities are complex numbers. This initial value of
tie current is stored in a special list. The voltage Ei and Ej
are the voltages that exist at this point in the solution at
each end of the tie line admittance nge.

(2) The data for the first subdivision is loaded into memory and
the Jacobian of the subdivision is formed for the first iteration.
The buses to which tie-lines are connected have been tagged

as special buses by input, and the total tie-line current

entering such a bus can be found from the data in step (1).

The power and reactive power delivered to the bus is computed
tie

Py +JQ = (D Iij

)*
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the real and reactive power are treated as though the ties were
replaced by an equivalent load during the formation of the
Jacobian. The residual error in active power and reactive

power is then determined in the usual manner for each bus of the
subdivision. The required change in the voltage and angle of
each bus is determined. A new set of bus-voltages and angles in
the subdivision are now known (ET).

(3) The admittance matrix for this subdivision is now formed and
stored in the region of memory previously occupied by the Jacobian.
The admittance matrix is next factorized and used together with
the tie line currents to calculate the change in subdivision
voltages due to the presence of the tie currents. The components
are subtracted from the voltages determined in step (2)

ties,old

(0) _ i}
Ep @ = Ep-Zp1

(4) The procedure described in steps (2) and (3) is repeated
for each of the subdivisions. The factorized form of the
admittance matrix for each subdivision is retained in peripheral

storage for use in subsequent iterationms.

(5) The intersubdivision impedance matrix (24) - which has
been formed by a separate subroutine - is now brought into
core (into the region previously occupied by a factorized
subdivision admittance matrix). The matrix (24) is factorized
and used with the voltages across the tie lines in order to

form the tie-currents:
£0) | (0 L

Lij T Tj
.C_ -1 _{0)
i = (24) EL
ties,new

I i¢ (except for signs)
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The factorized matrix (24)-1 is stored in peripheral memory
for future iterations,

(6) Each of the subdivision factorized admittance matrices
(ZT) along with the subdivision bus voltages (Eéo)) is
brought into memory, and new bus voltages are calculated
ties, new

- g0
Ep = Ep © + 271

This completes the first iteration. The pattern for subsequent
iterations is the same except that it is not necessary to refactorize the
subdivision matrices (ZT) and the intersubdivision matrix (24).

E. Roy [57] has developed a piecewise load-flow solution of large
electrical power systems by nodal admittance matrix, applying the principle
of superposition : "The voltage at any node of a linear electrical network
due to a number of node currents is the algebraic sum of the voltages due
to each nodal current acting alone at a time and othersbeing ignored".

This simple law of linear circuits is applied to solve large scale electrical
networks when they are torn into subdivisions by cutting appropriate lines.

There are two types of currents:

(2) Externally injected currents at the nodes, which are the same

as the node currents of the original untorn network [I].
(b) Injected current; due to tear or cut, this is the actual current
in the lines of tear (i).
The voltage due to (a) is called apparent nodal voltage (E') and
due to (b) is called correction voltage (e). The nodal voltages of the
original network are given by
E=E'+¢

Reference should be made to the original publication for computational details.
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Roy's technique permits an average engineer to solve his large scale
practical problems in pieces without having knowledge of terminology,
topology and diakoptics. In his method there is the possibility of
selecting a slack bus in each area (subdivision).

This method is similar to that of Brameller et al [52]. Both methods
develop their solution models in nodal admittance matrix by using simple
circuit laws. It is comparatively easy to write Brameller's matrices
directly by inspection than to write equations involving these matrices
implicitly. The explicit use of these simple matrices supplemented by the
programming techniques of chapter seven makes Brameller's method more
systematic and its implementation more straightforward,

In his paper, Roy, even if he was not aware of it, has shown an
algebraic equivalent to the diakoptic method. The six-step procedure
introduced by Happ resembles Roy's approach almost point by point. 1In
general, Roy has done diakoptics from network equations and algebra,
without the need of introducing new concepts and basing himself,only on
the superposition theorem for linear systems.

F. Kaustri and Potti [58] have developed an algorithm based on the

diakoptics equation for block diagonalizing and solving the Jacobian
matrix and hence the NR load-flow problem. Their method of partitioning
is similar to the one suggested by Sasson?3

They applied diakoptics directly to the Jacobian matrix, rather than to
the power system itself or its admittance matrix as was previously done,
without approximations, with the result that the method has the same con-
vergence property as the one piece solution. In their method, there is a
limitation due to extra storage required for the additional ‘right hand side

vectors. This may become excessive if many tie lines are to be cut.



121

5.4 A New Diagkoptic Technique For Load-Flow Solution of

Very Large Power Systems Using Bus-Admittance 'Ma‘ti‘iJU(

In this section an exact diakoptic technique 61 for load-flow
studies based on bus admittance matrix is described in which full
advantage of Zollenkopf's bi-factorization25 and other sparsity tech-
niques is taken. Since the technique is exact, it produces the same
final result and retains the convergence property of the original untorn
system. The method provides for a reference bus in each torn subdivision
by selecting a number of temporary buses (TB). The voltages and angles
of these temporary buses are not assigned, but instead are calculated
in each iteration.

The selection of temporary reference buses avoids singularity and
a need of converting loads to equivalent impedances, reduces the size of
subdivision matrix by one and leads to rapid convergence of subdivision
equations.

The proposed technique is simpler to understand and implement.

For comparison, the example solved in Ref. [52], pp. (170), is resolved

in Appendix (C), using the proposed technique.

5.4.1 Admittance Matrices of the Torn System

A given large network is torn into N subdivisions (A,B,C,...N) by
cutting the appropriate lines. Subdivision is generally guided by the
need to limit the size of each subdivision and is generally performed to
separate identifiable power systems e.g. territories of utilities, provinces,
etc. The only restriction on the lines, which should be cut for subdivision

b

is that no mutual coupling must exist between subdivisions.
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In addition to a slack bus, selected for the untorn system, a number of
temporary buses (TB) are selected to provide each subdivision with a reference
bus (TB or slack). This procedure eliminates singularity and makes the bus admit-
tance matrix well-conditioned. For computational simplicity, a temporary bus
should not be connected to a line to be cut for subdivision. An N subdivision
system, therefore has § = (N-1) temporary buses.

The bus admittance matrix [Y] for each subdivision is formed in the
usual manner, using its selected reference (slack or TB) bus.

An additional diagonal matrix [YTB] of dimensions (6§,8) is formed for
the temporary buses (TB's) of all subdivisions. An element of [YTB] represents
the algebraic sum of the admittances of all lines incident on to a temporary
bus. By combining the admittance matrices [Y] of all, N, subdivisions with
[YTB] a block diagonal admittance matrix [Y(bdf)], as shown in 5.7, of the

torn system is obtained.

A B C D N TB's

C C

[Y(bdH)] = | v (5.7)

TB's Yrp
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5.4.2 Admittance Matrix of the Untorn System

The bus admittance matrix [Y] of the untorn system is represented as

[Y]

where [Yl]

Y] + 1Y) (5.8)

[Y (bdf)] + [C] IM] P[cT® (5.9

I

[Y (bdf)] - is given in eq. 5.7

[C] - is a subset of the tie line - bus connection
matrix of dimensions (a,V¥),
o - total number of buses in the network
Yy - number of lines cut for N subdivisions

It has +1 and -1 as the non-zero elements and is formed by

inspection, by using the procedure outlined in Ref. [52].

-1 . . . . .
[M] - is a diagonal matrix of dimension (¥,¥) where
each element represents the admittance of a

cut line.

1%+ [KI[T][F

and [Y,] = [F][1][X ik (5.10)

[Y2] is a very sparse matrix, containing very few elements

corresponding to the buses connected to the TB's in
the system. The formulation and form of matrices [F]
and [K] are given in Appendix (C) and [I] is a unity
matrix. |

The relationship of eq. 5.8 is better understood when one examines

the example given in Appendix (cy.

5.4.3 Solution procedure

The load-flow equations of an n-bus system with bus no. 1 as the
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slack bus are

S; n
(—— - Y., V. ) = % Y.. V. (5.11)
Vf il '1 522 ij
i
i=2, 3, , I
or, in a matrix form,
[71 = [¥1Iv]

where [Y] is the bus admittance matrix

(5.12)
{J] is the system bus injected current vector

and [v] is the required bus voltage vector.

For the untorn system the exact voltage vector is calculated by

91 = IV,
= [Yl][vlexact * [Yz][v]exact )
Hence,
[V gxace = [8Y1711V] (5.13)
where [Vl = [v;] -1 [J] (5.14)
and [AY] = [I] + [ylj‘l[yz] (5.15)

From the above equations, at first, [V] is calculated, without actually
inverting the matrix [Yl], and then [AY] is calculated to give [V]exact .
For all these calculations sparsity techniques are utilized to the fullest

extent.

5.4.4 Procedure for Obtaining [Yl]—1

[Ylj-l is obtained by using Householder formula59 as
17t = ean 1™ - fymen 1Tt g ¢ [€F ean1 T [e] 17!

Ic1* Yani™ (5.16)
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Defining [ZC] of dimensions (Y,Y) as the intersubdivision matrix by

[z.3 = 1M + [c]° [Yba£)]™! [c] (5.17)

equation 5.16 is rewritten as

-1 -1 - - -
Y177 = YD [vwan 1™ [c] 12170 [€)F yewan]t (518
The component matrices of eq. - 5,18 have already been defined. It
should be noted that for eq. 5.18 no matrix inversion is required

and sparsity .techniques are used to a maximum extent.

The intersubdivision matrix [ZC], defined by eq. 5.17, is easily
constructed by using elements of '[M] and very few elements from very few
columns of matrix [Y]_1 of each subdivision corresponding to its buses
connected to the cut lines in a similar way as that of Ref. [52].

To compute the ith column of a matrix [Y]—l, let a column vector [ei]
be defined as a zero vector except its ith element which is unity,
therefore,

[Y][¥] ™" [ei]
or [Y1[Zi]

[1][ei]
[ei]

where [Zi] is the ith column of [Y]_1 and is calculated by solving the

factorized matrix [Y] and [ei] by Zollenkopf bi-factorization direct

solution subroutine.

5.4.5 Calculation of [V]

[V] defined in eq. 5.14 is obtained by substituting for [Yl]—l

from eq. 5.18, i.e.

V1 = [Yedn1 '] - yowae)] ™t a1z )7t [t v ] (5010

vq1 - Iv,] (5.20)
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[Y(bdf)]_l[JJ, bus voltages in the subdivisions

1]

where [Vlj

and [V,] = [¥(baf)] ' [c][z ]! [c1® v,] (5.21)

n

correction in bus voltages due to tearing.

n

5.4.6 Steps for Solution

1. Form and factorize the bus admittance matrix [YA] for the first
subdivision by using Zollenkopf's bi-factorization and other
sparsity techniques.

2. Using the subdivision bus injected current vector [JA], and [YA]

solve for the bus voltage vector [VlA] for the first subdivision.

Y JIvy,0 = [3,]
Note that no explicit matrix inversion is needed.
3. Repeat steps (1) and (2) for each subdivision to obtain [Vl] for
the subdivided systen.
4, For the determination of correction voltage vector [VZ], due to

tearing, proceed to calculate

(1% v, ]
-1

(1) Cut 1line voltages [EL]

(ii) Cut line currents [Ic] = [Z ] [E

c L]

(iii) Injected tie currents [Itie] = [C][IC]

and (iv) finally [v,] = [Y(bdf)]'l[xtie] (5.22)
From eq. 5.22 for each subdivision we can write

YT IVy, 0 = 1, ] (5.23)
since [YA] is already factorized in step (1), [V2A] is easily

obtained without inversion. Similarly, the complete bus correction

voltage vector [Vz]is formed.,
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5. The solution [V] = [Vlj - [V2] is therefore obtained.
6. The step (5) excludes temporary buses for which
-1

Since, temporary buses are chosen such that they are not connected

to lines to be cut for subdivision [V2 TB} = 0
i / = [V
i.e. [\TB] [\1 TB] {5.24)
7. Obtain [V]exact from [V] by using eqs. 5.13 and 5.15. Sparsity

techniques are fully exploited for this procedure. Steps (1) to (7)
complete the first iteration for obtaining the bus voltage vector

[v]

exact starting from the known bus current injection vector [J].

In the event[J] is not given and instead power (S) is given, eq. 5.11
is used and the iterative solution is continued until convergence

is obtained satisfying a chosen tolerance criterion.
5.4.7 Results

The proposed technique has been applied to a number of power systems.
The results obtained by applying the above described technique are exactly
the same and show the same convergence when the untorn system is solved as
a whole. 1In order to illustrate the working and showing the exactness of
the proposed solution technique, a sample system of Ref. [52] is taken up

in Appendix (C).
5.4.8 Conclusions

This section presents an exact diakoptic technique for the load-flow

of very large power systems employing bus admittance matrix. The proposed
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technique has the following attractive features.

1. It makes a full use of bi-factorization and other sparsity techniques
and therefore makes the solution computationally efficient.

2. The solution technique is exact and hence produces the same solution
and has the same convergence property as the untorn system.

3. By virtue of the selection of a temporary bus as reference in each
subdivision (excepting one which contains the slack bus) the
singularity of bus admittance matrices is avoided and instead they

are well-conditioned. The method can therefore be freely applied

to low voltage power systems which have little or no shunt admit-
tance in their network representations.

4. The method does not impose any restriction on the impedance of
lines to be cut for subdivision.

5. The method is easier to understand and implement than some other

known techniques.
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5.5 A New, Diakoptic¢, Fast-Decoupled Load~Flow Method

For Very Large Power Systems

A new diakoptic technique for load-flow solution using a bus-
admittance matrix has been presented in section (5.4). This technique is
exact, reliable and easier to understand and implement than any other
known technique employing admittance (or impedance) matrices. It should
be applied at some utilities who have an admittance (or impedance) matrix
load-flow program.

This section presents another new diakoptic technique for load-flow
problems 62 based on the fast-decoupled method.9

For this technique the author has chosen the fast-decoupled load-
flow technique because of its inherent superiority in terms of speed of
calculation, storage requirement, reliability and simplicity in addition
to noticing its wide-spread acceptance by power industry. This load-flow
method forms the basic block for the development of a new diakoptic
technique which exploits sparsity and uses Zollenkopf's bi-factorization
technique. The proposed technique is exact and therefore provides
accurate solution and retains the same convergence characteristics as
the untorn system if it were to be solved as a whole. As compared to
many known methods the proposed technique does not impose tearing restric-
tions, make approximations and run the risk of computational breakdown

due to singularity of the admittance matrix.
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5.5.1 Formation of Subdivision Matrices

A given large network is torn into n subdivision (A, B, C, ...N)
by cutting connecting lines with only one restriction that no mutual coupling
should exist between lines of different subdivisions. Generally, an
objective guide for tearing is to separate networks of different utilities,
identifiable power pools, etc. A restrictions3 on the impedance of the
lines to be cut is unnecessary for this technique. 1In addition to the
slack bus of the original system which would lie in one subdivision, a
temporary bus (TB) is selected for reference in each of the remaining
subdivisions for avoiding singularity and ensuring that all subdivision
matrices are well conditioned. Thus, 6 = (n-1)} temporary buses are
required for the system. For simplicity no TB should be connected to the
lines to be cut for subdividing the system. The voltage and angle of
each TB is not specified but calculated in each iteration.

Submatrices [B'] and [B"], as required for Fast-decoupled Load-flow?'
are established for each subdivision, with respect to its reference - a
slack bus or a TB. In addition, diagonal matrices [B'TB] and [B”TB] of
dimensions (6,6) representing TB's of the system are obtained where a
diagonal element of [B'TB] is the algebraic sum of (1/X) of all lines
incident on the bus (TB) and that of [B”TB] is the algebraic sum of (-B)
of the incident lines on the bus. Combinations of [B'] of all subdivisions
with [B'TB] and [B"] of all subdivisions with [B”TB] give block-diagonal-

form (bdf) matrices, [B'(bdf)] and [B"(bdf)], 2s shown in eqs. 5.25 and 5.26.



[B' (bdf)] =

TB's

[B'"(bdf)] =

TB's

A B TR!
1
B A
BY
Bl
B'
~T TB
A B N TB's
Bll
"
B
1t
BN
BI'
~“——TB

(5.25)

(5.26)

131
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5.5,2 Matrices of the Untorn System

The matrices [B'] and [B"] of the untorn system are expressed as

[8'] = [B]] + [B}] (5.27)

and  [B"] = [By] + [By] (5.28)
where [B1] = [B'(bdf)] + eyt et (5.29)
and (8] = (FIKS + KI(FE (5.50)

The matrices [B“l] and [B”z] are expressed similarly by replacing

1 by [M”]—1 etc.

primed matrices by double primed e.g. [M']~
In eq. 5.29: [B'(bdf)] is already known, [C] is a subset of bus

connection matrix of dimensions (v ,)), where ¢ - number of buses in the

system and - number of lines cut for subdivision. It is constructed

by inspection and has only +1 or -1 for non-zero elements. As in Ref. [52]

the element Caj (row a, column j) of [C] is given as

aj = +1 , if the line j 1is directed towards bus a
= -1, 1f the line j 1is directed away from bus a
= 0, if bus a does not include line j or is the

slack bus.

For convenience, in programming, the connection matrix is condensed
into a two column table as shown in Appendix (D).

[M']—1 is a diagonal matrix of elements = of the cut lines.

< |

[M"]-l is also a diagonal matrix of elements (-B) of the cut lines.

-1

Both, [M'] and [M”]'1 are of (¥,¥) dimensions.
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For eq. 5.30 matrices [F'] and [K] are: defined in Appendix (D)
and [I] is a unit matrix. The matrices [Bé] and [Bg] are very sparse.
They contain elements corresponding only to buses connected to the TB's

as can be seen in Appendix (D).

5.5.3 Bus Angle Change Vector

In fast-decoupled load-flow procedure9

"

[é%i [B'] [Ae}exact

[B;] 4] + [BY11A0] .

exact

by substituting from eq. 5.27

or [88] iper = (481" [n6] (5.31)
where [AB'] = [1] « [Bi]-l [83] (5.32)
and  [46] = 3170 A (5.33)

5.5.4 Bus Voltage Change Vector

Since, [ég] = [B"][AV]

\ exact

By substituting for [B"] from eq. 5.28 and rearranging we get

[BV]_, .., = [8B"]7% [av] (5.34)
where [AB"] = [1] + [By]"} [B5] (5.35)
and [AV] = [BY]—I [é%q (5.36)

In all above manipulations sparsity techniques are used advantageously and

no explicit matrix inversions are performed.
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5.5.5 Derivation of“IB{]ﬁl.andf[BY]“l

The Householder formula59 gives

-1 t 4-1

1317 = [I8' (ban)] + [ )" ] (5.37)
""""" - Brwan]t - [Brwan 1Tt CIlM] + [
[B' ban)] eyt 1% (B (bag) 1™
Let [ISDM'] of dimensions (y,)) be defined as the intersubdivision
matrix given by
""" [1soM'] = '] + [c]® B ban)1”t [c) (5.38)
then eq. 5.37 can be rewritten as
(817 = [B'(6an)]™" - [B'ban))™t [} (rso) T C)
[B'(bdf)]'1 (5.39)
Similarly
(35170 = [B"(ban)]™t - [Br(ban)] T [c]1sDM) T [C)"
[B" (bdf)] ™" (5.40)
where [1spMi] = [M] + [C1%[B"man) 1! [C) (5.41)

In the above, no matrix inversion is required, instead sparsity is

fully exploited by using Zollenkopf's method and other sparsity techniques.

5.5.6 Formulation of Intersubdivision Matrices [ISDM'] and [ISDM']

The procedure for both [ISDM'] and [ISDM"] is the same, excepting
that for [ISDM'], [B'] and [M'] are replaced.-by[B"] and [M'] respectively.

Rewriting eq. 5.38, we have

[1soMt] = Mt] + [C1% 1Bt man ]t 1c]
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-

[M'] is the inverse of diagonal matrix [M'] ~ and hence is easily obtained.
An explicit inversion of [B!'(bdf)] is not needed because all we need
is to calculate only a few elements from very few colums of the subdivision
matrices [B']"1 corresponding to the buses connected to the cut lines.
For calculating the ith columm of a matrix [B']—1 let [ei] be a zero

vector excepting its umity ith element therefore,

-1
[B']1[B'] ~ [e;] = [1][e;]
or [B'1[8{] = [e, ]
where [Si] is the ith colum of the matrix [B']il. It is calculated by

solving the factorized Jacobian matrix [B'] and [ei] by Zollenkopf's
Bi-factorization direct solution subroutine.
Main diagonal elements:

The diagonal element ISDM!:Li of [ISDM'] corresponds to the cut
line i between bus k of area A and bus m of area B.

It is given as

1 = M! 1 1
ISDM ii M ii + S Kk * S m

where S'kk is the kth element of [S'k] of area A

and S' is the mth element of [S'_] of area B
mm m

when one end of a cut line is connected to a slack bus, its corresponding
element is zero.
Off diagonal elements:

Consider element ISDM'ij corresponding to cut lines i and j when
line i connected between buses k in area A and m in area B and line j is

connected between buses 1 in area A and n in area B.
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Then

t — t t
ISDM ij " S 1k (area A) + S - (area B)

where S'lk is the 1th element of [S'k]

and S'__ is the nth element of [S'_]
nm ™
When both cut line i and j do not terminate in the same area, its

corresponding element is zero.

When the assumed directions of lines i and j are dis-similar the

sign of the calculated element is reversed.

5.5.7 Determination of [A8]

Substituting for [Bi]—1 for eq. 5.39 in eq. 5.33, we get,

[ne] = (8" (vaf)]™t 257 - [Brpaf)]™t [c3iTsoM 7t el
[ (ban)]1™" A
= [ 0] - [B'(0aH)]™ [CILIsDM' ] [C1° [ s8]
81 g1 - [ 16,] (5.42)
1 2

where [ Ael] is the independently calculated increment in bus angles of

the torn subdivision.

and [ Aez] is correction in the bus angles increment due to tear.

5.5.8 Determination of [AV]

In a manner similar to above

[av] & [av,] -1 av,] (5.43)
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[AVl] = [B"(bdf)]-1 [é%], is the independently calculated increment
in bus voltages of the torn subdivisions
_ -1
and [£V,] = [B"(bd£)]™" [C] [1SDM"] [c1°[av,] (5.44)

is correction in the bus voltage increment due to tear

5.5.9 Procedural Steps For Solution ( Flowchart- Appendix E)

1. Calculate flows on the ties between subdivisions
Ii = (Ek - Em) Ykm = (Ek - Em) / ka (5.45)
where Ek(Vk L_ﬁk) and Em (Vm L_Qm) are voltage (complex)
that exist at this point in the solution at the ends of tie

line i and Y is the tie line admittance.

km

2. Form [B'] for the subdivision A, factorize it by using sparsity
and Zollenkopf Bi-~factorization method.

3. Form [é%] vector for subdivision A by considering tie lines as
loads at the connecting buses. Net active power flow in the

tie lines connected to bus k is given by

*

1.) (5.46)

Py = Re (Ek tiezlines i

k

Solve the factorized matrix [B'] from step (2) and

Lé%] to obtain [Ael] from

[B'1[ag] = [A] (5.47)

Note that no matrix inversion is needed and sparsity is

fully exploited.

4. Repeat steps (2) and (3) for all n torn subdivisions

and obtain [Ael] for the whole system.
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5. Compute [ A92].

(a) Form IC]t[ Ael] =T AGCl] -~ simple algebraic summation
using the condensed notation for storing the connection
matrix.

(b) Obtain and factorize [ISDM'] and then obtain

-1
[ A0c,] = [1SDM']™" [ a6, T .

(c) Form [ A8,,] = [C][‘Aecz]

(d) Compute [ A48,] = [B'(bdf)]™" [ 46.,] by rewriting the

relation as

[B' (bdf)IT 86,1 = [ 86;]

It

or [B']] Aez] [ Aecg] independently for each subdivision.

Then, by using the factorized matrix from step (2) for each
subdivision calculate its [ Aez].

6. Solve for [AB] = [ AGl} - I AGZ]

7. For temporary buses excluded from the previous step

-1 (AP
[ 86y 1pp = [B']pp [ylpp

.Since temporary buses are not connected to cut lines

|
<

[ AeZ]TB -
or [AB ]TB = AeleB (5.48)

8. Modify [A8] to obtain [Af] by using eq. 5.31.

exact

9. Update bus angles [86] by

[e]new = [e]old * [Ae]exact

10. Repeat step (2) but for [B"].
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11. Repeat step (3) but for [é%]
Net reactive power flow at bus k is given by

*
k tiezlines Ii) (5.49)

Q = Im (E
For each subdivision obtain | Ael] from

[B"11av,] =[5 (5.50)
following the procedure of step (3).

12. Repeat steps (10) and (11) to obtain [AVl] for all subdivisions.

13. Repeat the procedure of step (5) to obtain [AV2] by using
appropriate matrices from eq. 5.44.

14. Obtain [AV] = [AVI] - [AV2].

15. Modify JAV] to [AV]e by using eq. 5.34.

Xact

16. Update bus voltage [V] by using

vl

new [V]old ¥ [V]exact

The above steps describe the first iteration.

In subsequent iterations we do not refactorize the matrices [B'(bdf)],
[B"(bdf)], [ISDM'] and [ISDM'].

Also, we do not recalculate the submatrices used for obtaining [Ae]eXact

and [AV] from [A@] and [AV] respectively.

exact
Iterations are continued until convergence is attained according

to a chosen tolerance criterion.
5.5.10 Results

The proposed diakoptical technique has been tested on a number of
power systems for obtaining their load-flow solution. The results of the

system when torn or when solved as a whole are exactly the same and for a




140

given power mismatch require equal number of iterations.
A simple example is provided in Appendix (D) to verify the correct-

ness of the proposed technique.

5.5.11 Conclusions

This section presents a new diakoptical technique for load-flow
studies of a very large power system with the following attractive features:
1. It uses the fast-decoupled load-flow technique and combines it with

diakoptics. In the process of solving, it uses bi-factorization and

other sparsity techniques and therefore minimizes core storage and
saves execution time as compared with other known techniques.
2. There is no theoretical 1limit on the size of the problem which can

be solved by it.

3. No restrictions, such as impedances, on the lines to be cut are
imposed.
4. The proposed technique is exact that is, the convergence property

and the final solution of a system are not altered due to tearing.

5. An exact representation of the tie lines is provided for both

matrices [B'] and [B"] and for active and reactive power mismatches
vectors.

6. No elements of the individual subdivision impedance matrices are
required in the calculation of the intersubdivision matrix which

saves significant computation time.

7. The selection of temporary reference buses in subdivision eliminates
any singularities the type of which can upset some known procedures
when the technique is applied to low voltage networks which may not

have equivalent shunt admittances.
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5.6  Summary

This chapter is devoted to the study of load-flow of very large
systems. At first a detailed review of the known techniques, namely
diakoptics, decomposition and piecewise solution is provided (sec. 5.1 to
5.3). The later half of the chapter (sec. 5.4 and 5.5) has been devoted
to the description of two new diakoptic techniques based on Bus-Admittance
and Fast-Decoupled load-flow solution methods. |

The new techniques have been tested on a number of power systems.
For completeness one example for each of the two techniques is presented
in appendices.

The new diakoptic techniques enlarge the scope of the load-flow
studies presented in this thesis by removing the restriction on the size

of the Power-Systems imposed by computers.
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CHAPTER V1

MAJOR CONTRIBUTIONS

The following major contributions are made in this thesis:

A fast, efficient, reliable technique for load-flow solution
of integrated dc/ac systems is developed. It accommodates all
configurations and control characteristics of multi-terminal
HVDC networks. It is unquestionably an improvement over all

known techniques.

A very fast technique for outage studies is presented. This
technique is useful for the economy of studying numerous cases
and the selection of critical cases which can be studied by

full load-flow solution. The new techniqe can be used for
single or multiple outages. It provides the post-contingency
load-flow solution - both active and reactive power flows and
system voltages - with acceptable accuracy in just one iteration

starting from the pre-contingency load-flow.

A diakoptical method for load-flow solution of very large
power systems using bus-admittance matrix is developed.

It provides the same solution and the same convergence
characteristics as the untorn system. It can be applied to

power systems with all voltage levels.

An exact diakoptical fast-decoupled load-flow technique for
very large power systems is developed. It employs the best
known ac load-flow method, diakoptics and sparsity techniques.

It saves core storage and computational time and is therefore
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superior to all other known techniques.

This technique does not impose restrictions on

the size and the voltage level of a system
- the impedance of the cut lines.
It retains the same convergence property and the same final solution

as the untorn system.
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Suggestions for Future Work

1.

Expansion and improvement of the load-flow program of integrated
multi-terminal dc/ac systems to be included in dc/ac transient

stability study programs.

Modification of the outage simulation program to investigate
outage studies of integrated dc/ac power systems. The program
should be able to study outages in either one of the ac or dc

systems , or in both.

Expansion of the diakoptical load-flow programs to produce
load-flow, outage simulation and stability studies of very large

scale ac and/or integrated multi-terminal dc/ac power systems.
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APPENDIX A

Submatrices of the Jacobian Matrix of an Integrated AC/DC System

Submatrix AJ1

The real power at a busbar connected to a converter terminal is

P

I

P(ac) + P(dc)

where P(dc)

i}

Kd E Id cos ¢

The partial differentials for the Jacobian elements are

AJl - BP BP(ac}V . BP(dc)
BP(dc}V =0 since P{dc) is not function of ¢
_ BP(ac)
§§/V = 7V

Hence, submatrix AJl is exactly the same as for the ac system in
the absence of any dc terminals, i.e. constant and symmetrical in value
and position. This means we have to factorize it only once before the

iterative solution of the integrated ac/dc system.

Submatrix C

%E/V - BP(ac}v BP(dc}v

\

BP(ac}v = 0 , by the decoupling principle.
BP(dc}V = 0 , since P(dc) is not function of V.

Therefore submatrix C continues to be a null matrix as in an ac

system. The choice of expression for P(dc) eliminates the confusion

BP(dc}v

of having to reconcile that as needed in the formulation

adopted by Arriliaga [19].
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_Submatrix PX

Submatrix PX is defined as

pY = 8P£dc N,
since §fi§£)= 0

X

PX turns out to be a very sparse matrix. Its non-zero elements are
contained in n rows. Each row with only three non-zero elements. It

2 B2 , C2 and a null matrix PXO,

as shown in Fig. A.1 where N1 is the size of AJ1 and ND is the number

can be subdivided into submatrices A

of dc variables = 7xn.

The non-zero elements of A2 , 82 and C2 are stored iwn vectors

oP(dc
A, = —-BEL_}V = kd Id cos ¢ /V
oP (dc .
B2 = ——gé——}v = -Kd Id E sin¢ /V
_ oP(dc),, _ /
CZ = '—-ﬁd—/v = Kd E COS¢ FaY
AE Ad AId
ND
A2 82 C2 PXO
null
X. h'd X n=3
. - - "X - non-
zero elements
N1
Fig. A.1

Submatrix D

The reactive power at a busbar connected to a converter terminal is
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Q(ac) + Q(de)

Kd E Id sin ¢ + Kd

Q

where Q(dc) 2

1]

Xc Id2

9Q v, - _9Q(ac) 3Q(dc)
3/V = s 7Vt g 7V
—égéﬁﬁ}v = 0 , by the decoupling principle
ao(dc}v = 0, since Q(dc) is not function of 6 .

Therefore, submatrix D continues to be a null matrix as in an

ac system.

Submatrix AJ4

_ 99, _ BO(ac) 3Q (dc)
My=m/V= A Al
BQ(dC}V = 0, since Q(dc) is not function of V.

Hence, AJ4 stays exactly the same as in an ac system without the
dc terminals. Since the elements of AJ4 do not change it has to be
factorized only once before iteration starts and in this way it leads
to saving in computer time as compared to Arrillaga [19] where on
account of changes in the diagonal elements associated with the dc
terminals, AJ4 must be factorized in each iteration. This is a note-

worthy simplification offered by the method. It is estimated that in

our method 75% to 80% of the AJ4 factorization time is saved.

Submatrix QX

Submatrix QX is defined as

ox - 2QUe),

. dQ(ac) _
since X 0
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QX like PX is a very sparse matrix containing only 3n non-zero
elements shown in Fig. A.2 where N4 is the size of AJ4 .  The elements

of Al’ B1 and C1 are calculated as follows

A = 8Q(dc)/v Kd 1d sin ¢ /V

B. = BQ(dc)/v = Kd E Id cos ¢ /V

1 L1
_ Q(dc) _ . 2
C1 = 74 = (Kd E sin ¢ + 2Kd” Xc 1d) /V
AE Ad AId
ND
Al Bl C1 QXO
null n=3
X X, X
N4
Fig. A.2

Submatrix B

DC system residuals are not function of 6 , hence, submatrix B

remains a null matrix.
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Submatrix RV

Only residuals R4 of the dc system are function of V, therefore

RV = —— = -aB

Hence, RV is a very sparse matrix with only n elements as shown

in Fig. A.3. These elements are stored in a vector form.

N4

R4

ND

Fig. A.3
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APPENDIX B

B.1 Expressions of Active and Reactive Power Flows in a

Simulated Outaged Branch

With specific reference to.Fig. 4.1 that depicts the simulation of
an outage of a line comnecting load buses k and m, eqs. 4.33 and 4.34, and
knowing that

1. Vk’ vm;ek and em are elements of the load flow solution without

line outage (basic state).

AVk, AVm, A6k and Aem are corrections to account for the line

2.
outage, we have
1
Pkm- (Vk + AVk)(Vm + AVm)[ka cos(ekm + Aekm)
. A 2 !
* Bkm Sln(ekm * Aekm)] - (Vk * Vk) (ka - ka) (B.1)
where ka = ek - Gm s Aekm = Aek - Aem

Assuming that

r =
A\k Avm 0
= 2
, AVk =0
s Aekm is sufficiently small that

, sin Aka) Aekm

, cos ( Aekm) =1
R AVk Aekm =0
and AVm Aekm = 0
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Therefore Pkm is given by

2 N
Pt - s - - *
km = ViVm Gy cos ka * By sin ka) Vi G i)

. ]
* IV, (G cos O+ By sin 8 ) - 2V (6 - G )] Ay

+ Vk (ka cos ekm + Bkm sin ekm) Avm

+ V.V (-G

Wn sin ekm * By, cos ekm)( Aek _ Aem)

km

ie. P, = Pkm (basic state) + APkm (due to line outage)

Pp, (b.s.) + 4P (B.2)

km
Of course Apkm = 0 at normal conditions and the basic power Pkm flows

in the line km.
By similar analysis we have

1
Pmk

Pmk(b.s.) + APmk

\

Q

{]

m = Qpes) +aQ (B.3)

' —
U = (b)) + Mk

Applying the equality constraints 4.35, we have
APIk = Pkm(b.s.) + APkm

ApIm = Pmk(b.s.) + APmk

(B.4)

it

My = Qpbes) + 2

Mgy = O (bes) + 10
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B.2 Application of the Decoupling Principle for Calculating

the Changes in Line Active and Reactive Power Flows (36-38)

The changes in the active and reactive power flows in an outaged line

km could be expressed in terms of the corrections (AVk ,AVm , Aek and Aem)

as follows,
The line flow equations as discussed before are

Pkm =V, Vm [ka cos(ek—ﬁm)+ Bkm s1n(6k—6m)]

2 '
-Vk (ka - ka)

ka = Vk Vm [ka 51n(6k—6m) - Bkm cos(@k-Gm)]

2 '
* Vk (Bkm B Bkm)
where Y = G +3j B = (k,m)th element of nodal admittance matrix.
km km km

The changes in line power flows are expressed in terms of partial

derivatives of line flows with respect to busbar voltage magnitude and

angle as follows

Ap AB
km g
= J B.5
" [km_(ﬂ g (B.5)
km Vq

It should be noted that each row of ka _ q has only four non-zero

elements, corresponding to Aek, Aem, AVk and Avm. The line flow

Jacobian matrix ka - q is composed of four submatrices

[n - o] = ‘—T (5.6)
T S
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Applying the decoupling principle, i.e. neglecting the coupling

matrices U and T we get

[aP, 1 = [R][A8q] (B.7)
[ = [S]Ié¥%—ﬂ (B.8)

Elements of [R] and [S] can be derived from the partial derivatives

of line flows with the assumptions
cos (Gk-em) = 1.0

and ka sin (ek-em)<< Bkm

Therefore, the changes in line power flows (APkm,Aka,APmkand Aka)

in terms of the changes of buses voltages magnitude and phase angle

(Avk, Avm, AGk and Aem) are
(4P, kavakm I -V VB Aek]
= _ (B.9)
- 7
Apmk VkaBkm , ‘kvakm Aem-J
- - L
- - 2 VK
A [ _p! )
and e KBtV o Ben) ViV B Vi
= 2 1
Aka _VkaBkm -kamBkm+2vm (Bkm-Bkm) é%m
- - — m
. (B.10)

Assuming v Vk/Vm = 1.0, i.e. the square root of voltage

magnitude of both ends of a line are approximately equal, the above

equations become

AP A8

km Bym Km v, o0 .

ana

APk “Byn Bim 0 4 A8

. (B.11)
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AVk
- ! -
Aka Bkm ZBkm Bkm Vk 0 Ve
e (B.12)
A - N, B B, -2B! o v ||&m
Uk B k™ B nd L,
Eq. B.10 could be rewritten in the form
[ap 11ne]k,m = [kaVm] [BSJk,m [V]k,m [Ae]k’m
Also eq. B.11 could be rewritten in the form
. - T AV
[AQ llne]k,m =1 1Vl [B4Jk,m [V]k,m [_V_]k,m
Where
[V] and [VVkaI are diagonal matrices
[BSJ and [B4] are calculated as follows
Bz - m = By - m= -B
km km km
B - k =B
3
Km km (B.13)
B4 -k=B -28
km km km

The decoupling process is completed by
- Omitting from [BSJ the representation of these network
elements that predominantly affect reactive power flow,

e.g. shunt reactances.

- Omitting from [B4] the angle shifting effect of phasé shifters.

- Setting all elements of [V] to 1.0 per unit, then we have

[AP 1ine]k,m [MVkaI I BS]k,m IAe]k,m (B.14)

[AQ line]k’m [VVka] [ B4]k,m [Av]k,m (B.15)
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B.3  Computation of a Colum of a Sensitivity Matrix

Simulation of a line outage by the proposed technique uses the
elements of at most two colums of a sensitivity matrix. To compute the
ith colum of a sensitivity matrix

Let a colum vector [ei] be defined such that its ith element is

one and all others are zero, therefore

[911811e;] = [1]]e,]

[e.] (B.16)

[I11s, ]
where [Si] is the ith colum of the sensitivity matrix [S] , and is
calculated by solving the factorized Jacobian matrix [J] and e; by

Zollenkopf Bi-factorization method by calling the direct solution subroutine.

Our technique is based on the decoupled load-flow method equations

577 = [B']1a6]

[B"] [AV]

2

The sensitivity matrices corresponding to the fast-decoupled matrices

[B'] and [B"] are given by

1

i

[s1] [B']

(B.17)

[s2] [g]~!
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Consider a sample system as shown in Fig. C.1. Bus R is the
system slack (swing) bus. The system is torn into three subdivisions
1, 2 and 3 by cutting lines j, k and 1. Buses g and h are selected
as temporary reference buses (TB's) in subdivisions 1 and 2 respectively.
For computational simplicity, assume that all line admittances are one

per unit.

The current injection vector [J] is given by
a_ b ¢ d e £ g nh t

01 ={ 6 -1 |-6 |-6 3 1-210109

C.1  Proof of Equation (5.8):

[Y] matrix of the untorn system is given by C.l.

a b c d e f g h
a 3 -1 -1 -1
b -1 3 -1 -1
=
c -1 3 -1 -1
[Y] =
d -1 -1 4 -1 -1
untorn (€.1)
system
2 -1
f -1 -1 3
r—
g -1 -1 2
h -1 -1 2

In the following analysis and for storage, sparsity techniques are fully exploited.
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snq Yoeys
Wo3SAS
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[Y(bdf)] is given by C.2

[Y(bdf)] =

[c] =

158

a h c d e f h
2 -1
-1 2
2 -1
-1 2
(C.2)
2 -1
-1 2
(TB's)
2
The connection matrix [C] and matrix [M] are given by
j k 1 j k
-1 il
-1
= 1
; M] = k (C.3)
1 -1 1
Matrix [C] is stored . FROM _TO
1 in the condensed Z <
form as follows b d
ZEROS
d f
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The product {C][M]_1 [C]t is

a b c d e f g h
a 1 -1
b 1 -1
c -1 1
d -1 2 -1
(C.4)
e
f -1 1
g
h
An element Fi g is given by (-admittance) of the line connecting bus i and
TB g, [F] is given as:
g h
a -1
bi -1
c -1
[F] = d -1 (C.5)
e
f
g ZEROS
h
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Define a matrix [K] as follows

g h

b

C

[K] = ZEROS (C-8)

d
€
;
g
. F—Unity Matrix

1

The produce ( [FI[T1[K]" + [KJ[11[F]® ) is, therefore, given by

a b c d e f g h

[F]

Let [Y)] = [FI[11[K]" + [K][1][F]" (€.
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From C.2, C.4 and C.7 , the summation

[Y(bdf)] + [c] M [c]F « [Y,] is given by
a b c d e £ g h
a 3 -1 -1 -1
bl -1 3 -1 -1
c -1 3 -1 -1
d -1 -1 4 -1 -1
(C.8)
e 2 -1
f -1 -1 3
g| -1 -1 2
h -1 -1 2
I

From C.1 and C.8

[Y] untorn system [Y(bdf)] + [C][M]-1 [C]t + [YZ]

or [Y] [Yl] + [Yz]

[Y(bdf)] + [c][M]7) [c3t

I}

where {Yl]
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C.2 System Solution

[Y (bdf)171 is

a b c d e £ g h

' 3
h 3

For this example [Y(bdf)]_1 is calculated explicitly, but in the proposed

technique no matrix inversion is required and sparsity is fully exploited

by Zollenkopf's method. The intersubdivision matrix [ZC] is

J k 1
j 7 2 -1
1
ZC = 3 k 2 7 -2
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a b c d e f g h
[vl]% 11 4 -18 -18 4 -1 0 13.5
. ~29
[E. =% -22
L3 17
. [F33
[1.1=s= -168
c16 138
a b c d e f g h
[v,]- | 828 666 | -966 -942 138 276 0 0

Therefore [V] = [Vl] - [Vz] , 1s given by

a 2.3750

bl -2.9375

c}-7.9375
1 d|-8.1876

vl = 3
e 2.5625
f]-3.8750
e
g 0
h 13.50

3x96
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-1

The product Y1 Y2 is computed using sparsity techniques and is

a b C d e £ g h
a -62 -28
b -61 -26
¢ -29 -28
d {| -25 -50
1 z E R 0 S L_;
96
€ -5 -10
f -10 -20
gl -48 -48 ZEROS
h -48 -48

(Y] = (1] + [v,170 v,]

[AY] [v] = [V], using sparsity techniques [V] is calculated

exact exact

and is given as

T o

exact

O O N | ]
[o TN o]

=09+ @




165

APPENDIX D

Consider a sample system as shown in Fig. C.1. Bus R is the system
slack (swing) bus. The system is torn into three subdivisions 1, 2 and 3
by cutting lines j, k and 1. Buses g and h are selected as temporary
reference buses (TB's) in subdivisions 1 and 2 respectively. For compu-

tational simplicity, assume that all line reactances are 0.2 per unit.

D.1 Proof of Equation (5.27)

[B'] matrix of the untorn system is given by D.1

aj 15 }-5 -5 -5
b -5 |15 -5 -5
c| -5 15 | -5 -5
[B'] = d -5 | -5 120 -5 -5 (D.1)
e 10| -5
untorn ¢ -5 |-s1s
system gl -5 | -5 10
h -5 1]-5 10
In the following analysis and for storage, sparsity
techniques are fully exploited.
[B' (bdf)] is given by D.?2,
a b c d e f g h
al 10 -5
bf{ -5 10
c 10 -5
d -5 10
' bdE)T = (D. 2)
[B' (bdf) ] o T
f -5 10
g 10
(TB's)
h 10

The connection matrix [C] and matrix [M'] are given by D.3.
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k 1
al-1
b -1 ik o1
¢l1 s (0.3)
d -1 k 5 )
[C] = 1 -1 3 [M'] =
e 5
f 1
€1 1ERO$
h
Matrix [C] is stored in condensed form as follows
FROM TO
a c
k] b d
d
- -1 t .
The product [C][M'] "[C]" is
a b c d e f g h
a 5 -5
b 5 -5
c}l -5 5
d -5 10 -5 (D .4)
e
f -5 5
g
h

An element Fi

[F']=

o o®

H 0O A0

= 0q

3

h
-5
-5
-5
-5
ZEROS

o is given by -1/Xof the line connecting buses i and g

(D.5)



Define a matrix [K]

(K]

as follows

g h
a
b
c
= d ZEROS
e
f
g‘ 1
h 1

“€— [I] unit matrix

The product ([F'][I][K]t + [K][I][F']t) is, therefore, given by

Let [B',] = [F'][I][K]" + [K][I][F"

From D.2, D

[B' (bdf)] + [CI[M']"

S 0 A0 Tom

.4 and D.7, the summation
1[C]t + [Bé] is given by
a b ¢ d e £f g h
15} -5 -5 1‘—5
-51]15 -5 -5
-5 15 | -5 -5
-5 {-5 | 20 -5 -5
104 -5
-5}1-5115
151 | | | [0
-5 1 -5 10

a b c d e f g h
T
-5
-5
[F']
-5
[F]°
-5 -5
-5 -5
t
]
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(D.6)

(D.7)

(D.8)
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From D.1 and D.§

[B'] untorn system = [B'(bdf)] + [C][M']_l[C]t + [B‘Z] (D.9)

or  [B'] = [B]] + [By]

where [Bi] = [B'(bdf)] + [C][M']-l

t

[C] (D.10)

D.2 System Solution

To understand the proposed technique, let us consider the
calculation of one iteration using the [B'] of the untorn system and
then by using the proposed diakoptical technique

For computational simplicity, assume (é%) of the sytem 1is

given by
a b c d e f g h t
[é%] = .06 -.01 -.06 -.06 .03 -.02 0 .09

We have [é%] = [B'][A6], using [B'] as given in (D.1), the solution

[Ae]exact is given by
a b c d e f g h .
[Ae]exact =1/5].0700 ] .0500] .0400{ .0300 | .0200} .0100 | .0600} .0800
(D.11)

Using the proposed diakoptical technique the following steps are
taken:

(a) Calculation of [AB]

[AB] vector is computed using eq. 5.42.
For this example [B'(bdf)]_1 is calculated explicitly but
in the proposed technique no matrix inversion is required and sparsity

is fully exploited by Zollenkopf's method.



a b c d e f g h
a 1
b 2
c 2 1
d 1 2
[B'(baf)]™! = L e 2 1
15
£ 1 2
g
h 3/2 TB's
3/2
a b c d e f g h "
1
Voo . - _ -
[Ae1 =155 11 {4 -18 ]-18} 4 |-110]13.50
-29
[86..7 = [C]P[A6.] = —- |-22
a1 1 1500
17
Intersubdivision matrix is given by
j k1
7 2 -1
[ISDM'] = 1/15 > 7 o
-1 -2 7
i 1-330
[AGCZ] = 1/9600 k {-168
138
a b c d e f g h 1
[A6C3]= 330 168 -330 -306 0 138 0 0 9600
a b C d e f g h
[A92]=b«1500X963 828 666 -966 -942 138 276 0 O
Therefore, [AB] = [Ael] - [A@z] is given by
a b c d e f g h
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[A6] =1/5

.0079 -.0098 -.0265 -.0273 -.085 -.0129 0.0 .0458

(D.12)
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[AB'] is computed and is given as

a b ¢ d e £ g h
al 1 -.6458 |-.2917
b 1 -.6354 |-.2708
c 1 -.302 |-.604
d 1 -.2604 |-.5208
[4B'] = 1 -.0521 |-.1042 (D.13)
£ 1 |-.1042 |-.2084
gl-.5 |-.5 1
) =5 |-.5 1

[Ae]exactis calculated using sparsity techniques - (that store
only the nonzero elements excepting ones on the diagonal, i.e. 16 elements)

and [AB] given by D.12 according to the equation

[AB'][A8] = [A0]

exact

a b c d e f g h ¢t
= 1/5 -0700 .0500 .0400 . 0300 .0200 .0100 .0600 .0800

tae]

exact

which is exactly the same as D.11.
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APPENDIX E

DATA INPUT

Y

FORM § FACTORIZE AJ1

AND  AJ4

\

CALCULATE DC INITIAL CONDITIONS

Y

CHANGE CONTROL EQUATIONS

CALCULATE

,PX, QX

YES
CONVERGED

?

NO

’ SOLVE FOR A X & , UPDATE X

OUT PUT 1
' AP
l ) INT
\%

’ SOLVE FOR A 6 & , UPDATE g

\Y

AQ
v ) INT
)

SOLVE FOR AV & UPDATE V ‘J

Fig. E.1 Simplified flow-chart of ac/dc load-flow



Fig. E.2 Simplified flow-chart of outage simulation.

DATA

INPUT

KNOWN BASIC SYSTEM

SATE  [POWER]

y

IDENTIFY OUTAGED  ELEMENTS

COMPUTE COLUMNS

OF [S1] & [S2]

!

- CALCULATE [BS]

CALCULATE [ A INJECT ]
CALCULATE AX
SYSTEQ pUsEs = ( AV,48 )  FOR  ALL

UPDATE V' g ¢

FOR ALL SYSTEM BUSES

\

CALCULATE ACTIVE

& REACTIVE POWER
FLOWS

PRINT
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START

DATA INPUT

IDENTIFY SUB-SYSTEMS(N) & CUT LINES &BUSES CONNECTED TO CUT
LINES.

W

{Ke=o,K1=o,Kv=o '

ISpM'

—

IC—

UPDATE © I

&
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= ]
. +
i |
| I ISpM" ]
! At?z
I'FORM&’FACTORIZE B" I *
? L Ay
Aq/v +
A il ] 1_ A VEXACTI
+ !UPDATE v l
K2=K2+ 1 I *
T =

— CONVERGED ?

YES

.

Fig. E.3 Simplified flowchart of diakoptical fast-decoupled load-flow.
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