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Abstract

Near infrared Q.{IR) hyperspectral imaging (HSI) is a powerful non-destructive tool for

the chemical analysis of heterogeneous samples. The advantages of the technique over

others rely on its speed and cost. However, one of the main disadvantages of NIR HSI is

that, the technique suffers from problems related to the instrumentation. In general, the

imaging instrumentation is affected by the spatial nonuniform response in the focal plane

array (FPA), the spectral variance, the time drift and the dark current noise. Another

problem is that the camera needs to be calibrated into units that are more meaningful to

the analyst.

The scope of this research is limited to signal processing techniques for the correction

and calibration of reflectance NIR HSI systems consisting electronically tunable wave-

length filters. The thesis presents a method where parameter estimates for the response

and calibration of the system are obtained using a linear model. The parameters of the

model are calculated using a calibration reference method that considers the time drift in

the system. Sensors are classified using the Æ-means algorithm into sensitive and insensi-

tive. The results show that the parameters of the linear response and calibration model

considering time drift are accurate estimates of the actual response and calibration func-

tions. The performance of the method was assessed using the root mean squared error on

a per sensor and wavelength basis. The rnethod used is better than those previously de-

veloped in the literature for this type of systems.
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Chapter 1

Introd uction

Near infrared Q.{IR) hyperspectral imaging (HSI) has established itself as a powerful tool

for the chemical analysis of heterogeneous samples. The technique has gained wide-

spread acceptance in a variety of applications such as food and agrochemical quality and

safety inspection (Wang and Paliwal2007), pharmaceutics and medicine (Ciurczak and

Drennen 2002), textile production, combustion research, etc. The NIR HSI technique of-

fers many benefits such as increased speed, cost and applicability over conventional

techniques. Moreover, the technique enables the non-invasive analysis of multiple chemi-

cal constituents simultaneously. Unfortunately, the technique is not free from problems;

some of the typical issues in the technique are related to the instrumentation. In general,

the imaging instrumentation is affected by the spatial non-uniform response of the focal

plane array (FPA) including defective sensors and sensors limited by the aperture, the

spectral variance, the time drift and the dark current noise. Another problem is that the

output of the instrumentation is in terms of A/D counts. This measure needs to be cali-

brated into units more meaningful to the analyst.
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1.1 Basics of l{IR HSI

The fundamental concept behind the NIR HSI technique dates back to the early disr

covery of vibrational spectroscopy that each molecular species provides a unique vibra-

tional spectral f,rngerprint. Later on, this concept was developed by recognizing that

smaller shifts within the expected group frequency represents detailed information about

the chemical structure and environment of a molecule within the group. Currently, there

are an extensive number of library sources containing the characteristic spectral finger-

prints for many compounds. For example, the ASTER spectral library vl.2 provides a

collection of over 2300 spectra of a wide variety of materials covering the wavelength

range 0.4 - 15.4 pm (Baldridge et al. 2008).

The characteristic molecular signatures occurring in the NIR spectral region gained

interest due to the development of both low cost instrumentation with high signal to noise

ratio (SNR) and chemometrics. The NIR light spectrum covers the wavelength interval of

750 to 2500 nm in the electromagnetic spectrum. The energy of light in this region con-

sists of overtones and combination bands of the fundamental molecular absorptions that

occur in the mid-infrared region (Mark and Workman2003). The molecular bonds with

predominant overtone vibrations in this region include methyl C-H, methylene C-H,

methoxy C-H, aromatic C-H, O-H, carbonyl associated C-H, N-H from primary, secon-

dary and tertiary amines and N-H from amine salts stretching vibrations. These bonds

form the basis for many important components such as proteins, carbohydtates, fats, wa-

ter, etc.
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A typical sampling method used to capture the spectral content of materials is HSI or

spectroscopic imaging which combines both conventional imaging and spectroscopy. The

technique is used to convert radiance (reflected and/or emitted) into a HS cube of digital

images at contiguous spectral bands. Each of these images represents the spatial distribu-

tion of radiance at a wavelength band. While HSI information can be used to extract the

chemical content of a sample (Geladi 2003); the technique has been widely used for re-

mote sensing. Fortunately, reduction of instrument size has made this technique available

for laboratory use.

The advent of chemometrics enhanced the capability to extract the chemical constitu-

ents of a sample based on a sample's spectra. Typically, chemical extraction can be a

problern because the data collected is correlated with the instrument response and the

physical and chemical characteristics of the sample. Chemometrics uses multivariate

methods of data analysis to extract the sample's main chemical constituents (Mark and

V/orkman 2007).In general, the technique is based on using mathematics, statistics and

computer science for finding correlations between the raw spectra and known molecular

frngerprints for sample characterization.

r.2 NIIR HSI instrumentation

In general, the instrumentation used to capture the chemical information of an object is

composed of an illumination source, filter, optics and a focal plane anay (FPA) of sen-

sors. There are a wide variety of component options one can choose depending on the ap-
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plication requirements. This section presents a brief description of the main components

of a NIR HSI system and some typical system configurations.

The illumination source serves as a source of NIR electromagnetic radiation. The

purpose for using an illumination source in the system is to increase the oveftone vibra-

tion of the molecules in the object under study. Typically, every object at room tempera-

ture emits light in the NIR region. However, the emission is so low that it would require

extremely powerful sensors for detecting the reflected light. Sensors of this kind are not

feasible because of cost and availability. Thus, to increase the emission of NIR light

caused by molecular vibration oveftones, the illumination source is often used as an exci-

tation source. Typical NIR illumination sources are divided into two categories, broad-

band (thermal) sources and narrow band (non-thermal) sources (Osborne et al. 1993).

Broadband sources are commonly used in HSI systems. These sources produce radiation

spanning a continuous spectral region. Tungsten halogen lamps are the most commonly

used broadband illumination sources because of their extended lifetime and stability.

(McClure 2001). Narrow band sources, on the other hand, emit radiation within a narrow

spectral band. The advantages of these sources include increased power efficiency and

specif,rc emission wavelengths. Typical sources in this category are light emitting diodes,

laser diodes and lasers.

The filters in the system are used to separate polychromatic light into a set of nanow

bands. The two main methods used to separate polychromatic light are optical interfer-

ence filters and electronically tunable filters. Optical interference filters separate light

based on specific transmission characteristics of the material and design. These are in-

stalled in a f,ilter wheel to produce light at multiple predefined wavelengths. Common f,tl-
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ters of this type are Fabry-Perot dielectric filters (O'Shea 1985). The advantages of inter-

ference filters lie in their low cost and simple design. However, they are limited by the

wavelength selection wheel method. In contrast, the electronic tunable filters control the

spectral transmission by applying a voltage, current or an acoustic signal (Gat 2000). The

most common filters of this type are liquid crystal tunable filters (LCTFs) and acousto-

optical tunable filters (AOTFs). An AOTF consists of a crystal in which broadband light

is isolated into monochromatic light using radio frequency (RF) acoustic waves. In other

words, a wavelength is selected as a function of the frequency RF wave applied to the

crystal. In contrast, LCTF is built using a stack of polarizers and tunable retardation liq-

uid crystal plates. The spectral resolution or pass band of the filter is typically in the order

of several nanometers. This is sufficient for most reflectance/transmittance analysis and

even Raman measurements (Gat 2000). Some of the advantages of LCTF over its coun-

terparts is that it is compact, digitally controlled, has no moving parls and allows instant

access to random wavelengths. These features establish it as a powerful device for the

quantitative and qualitative analysis of samples.

The goal of the lens is to converge or diverge the transmitted light. The optical char-

acteristics of a lens can be modified by altering the material, surface coating and design

(Pedrotti ef al. 2007). Silica glass has very high homogeneity and 90 percent or better

transmission in the visible and NIR bands making it ideal for lenses suited for these spec-

tral ranges (Wilson 2005). Silica glass lenses designed for visible light are often used for

NIR imaging by applying surface coatings to minimize reflection of the visible light. This

process often reduces the transmission of NIR light at longer wavelength bands. Thus, a

lens designed for visible light should contain as few surface coating layers as possible
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when used in the NIR region. The design of the lens deals with the shape and number of

pieces. Often, a combination of three or more pieces is used to minimize various image

aberrations (Ren 2000). However, the optimal combination for one wavelength does not

guarantee the same performance at other wavelengths. In general, the image quality pro-

duced by specialized NIR lenses is better than standard and high quality lenses designed

for visible light (Alexay 2008).

A detector or sensor of the photodetector is a device that measures the light energy

incident at the detector surface to convert it into electrical energy. Detectors are available

for the full electromagnetic spectrum. However, each detector is designed specifically to

detect certain portions of the spectrum. Indium-Gallium-Arsenide (InGaAs) is a prefer-

able choice of material for detecting NIR light ranging from 1000 to 1700 nm (Olsen and

Ban 1987). This is because of the characteristic property of this material alloy to absorb

light in this spectral range and its low dark current noise. Another factor that has made

InGaAs the detector of choice for NIR imaging is the maturity of the fabrication technol-

ogy. The detector materials used for the shorter 700 to 1000 nm wavelengths are silicon

based materials (Rogalski 2003). The bulk of devices in the silicon market are charge-

coupled devices (CCDs). CCD technology has achieved the largest size formats with

numbers approaching 108 sensors Q.Jorton 2003). Lead sulphide (PbS) materials are

common for the longer 1000 to 1700 nm wavelengths. The advantages of this material

are mainly its cost.

Detectors are typically configured into arrays when imaging applications are in-

tended. These are more often known as focal plane array (FPA) or staring arrays. The

most common configurations are: 320 x 240,640 x 480 and 640 x 512 detector alrays.
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However, for CCDs configurations of up to 1024 x 1024,2048 x 2048 and 4080 x 4080

have been achieved.

Currently, two approaches exist to obtain HSI data: a time resolved spatial data ac-

quisition or a time resolved wavelength data acquisition. In time resolved spatial data ac-

quisition, a full spectrum is obtained from a subspace of the object. The whole object

space can be obtained using a point-by-point spectral scan in a spatial grid pattern (i.e. as

with Raman imaging) or a line-by-line scan (i.e., pushbroom method). In the latter

method, naffow line scans are imaged into a row of detectors within the FPA. Informa-

tion across the whole object space can be readily obtained by moving the sample, spec-

trograph or camera using a controlled motor. The collection of spectral lines generates a

data cube containing information about the full wavelength range and object space. For

time resolved wavelength acquisition, an entire spatial image of both dimensions is col-

lected sequentially at single wavelengths. The collection of images of successive wave-

lengths generates a data cube. With this method images at specific discrete wavelength

bands can be obtained using a filter. Common filters for this acquisition approach are in-

terference filters such as AOTF and LCTF.

1.3 Instrumentation problems

This thesis addresses some of the issues encountered by NIR HSI sampling instru-

mentation. The main problems related to the instrumentation arise due to the spatial non-

uniform response of the system (Schulz and Caldwell 1995), the spectral variance (Geladi

et aL.2004) and the time drift in the sensors within the FPA. Also, some sensors within
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the FPA can be defective showing saturation or no response at all. Identification of these

types of sensors and differences between sensor response (i.e. sensors limited by the ap-

erture) as a function of location and spectra is desirable for proper sample analysis. These

problems together with the factthat the raw data obtained from the system does not look

as real spectra need to be resolved before using the data for chemical analysis (Mark and

Workman 2003).

Geladi et al. (2004) proposed three models for the calibration and correction of some

of the problems in NIR HSI systems. These are one-point, linear and quadratic calibra-

tions. The parameters of the models are obtained using HS images of reflectance stan-

dards of known properties. The three techniques take into account the spatial and spectral

non-uniformities in the system by considering each sensor and wavelength as independ-

ent. In other words, a model is determined for each sensor and wavelength. The first

problem with these techniques is that the models are not validated. Moreover, there is no

time drift considered in the study. These issues reduce the reliability on the accuracy of

the parameter estimates obtained for each model. Furthermore, Geladi's procedures do

not take into account the effects produced by defective sensors or sensors limited by the

optics in the system.

The main objective of this thesis is to develop a methodology for the calibration and

corection of laboratory NIR HSI systems. This objective is subdivided into four pafts.

The first part deals with obtaining a model with proper validation to describe the charac-

teristic response of the system at each spatial location and spectral wavelength. The sec-

ond part is to identify the features of the defective sensors andlor sensors limited by the

aperture. The third sub-objective deals with the classification of sensors based upon their
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response. Finally, the calibration of the system is achieved based on the inverse of the

system response. This calibration is applied only to sensors that are neither defective nor

limited by the aperture of the system.

The problems in the system are treated using signal processing. The methodology

consists in obtaining a linear model for the response and calibration of each sensor within

the system and wavelength. Parameter estimates of the model are obtained using relation-

ships between the characteristics of a known input and the output of the imaging system.

The criterion used to obtain the estimates is the minimum sum of squared errors (SSE).

The object under the lens of the camera is a set of calibration standards of known and

varying radiance, and uniform physical characteristics. A reference data set containing

repeated measurements of the different reflectance standards is used instead of a single

reference as described in Geladi et al. (2004) to account for the time drift and noise in the

system.

The classification of sensors into sensitive or insensitive regions is based on the pa-

rameters of the system response. A feature vector is constructed using the slope coeffr-

cients and classified accordingly based on the patterns of each region. The algorithm used

to perform the classification is the Æ-means classifier with k:2.

Model validation is assessed in the results and analysis section using a comparison

between the SSE and the prediction error sum of squares (PRESS) as described in Kutner

et al. (2005). Moreover, a hierarchical F test is included in the discussion section to check

whether a higher order term polynomial provides significant refinement to the model. Fi-

nally, the performance of our method is compared with others developed in the literature

using the validated root mean squared enor (RMSE) per sensor and wavelength, and the

9
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average RMSE over all spatial locations classifìed as sensitive as a function of wave-

length.

Subsequent chapters in this thesis arc organized as follows: a literature review chap-

ter, materials and methods, results and analysis, discussion and finally a conclusion chap-

ter. In the literature review the main problems encountered in the instrumentation are re-

viewed. Also, mathematical model approximations of the actual response and calibration

of the system are described. In materials and methods, details about the system, configu-

ration and setup are given. Furthermore, a methodology for the calibration and correction

of the system is briefly described. In the results and analysis chapter, a characterizafion

for the system response and calibration is designed and the resulting elrors from the im-

plementation are shown. Using the parameters of this model as descriptors, a classifica-

tion of sensors based upon their Íesponse is obtained to correct for any insensitivities. In

the discussion, the performance and significance of our procedure is compared with those

available in the literature. Finally, the conclusion summarizes the objectives accom-

plished in this thesis and gives suggestions for future research.



Chapter 2

Literature Review

Hyperspectral imaging is a technique used to convert radiance (reflected and/or emitted)

into a HS cube of digital images at contiguous spectral bands. Here, each image repre-

sents the spatial distribution of radiance at a wavelength band. An example of a common

HS image cube of l pixel rows, .r pixel columns and K wavelengths is shown in figure L

Typical HSI cubes are available in formats of 256 x 320 x K, 5I2 x 614 x K and 640 x

480 x K. Here, K is the number of sampled wavelength bands which varies depending on

the spectral resolution of the system, the bandwidth and intended application. Typically,

this K value is in the range of tens to hundreds of wavelengths.

k1+'+ j

Figure l,: Hyperspectral image of ,Irows, ,,/columns and K wavelengths
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2.t HSI Systems

In general, the process by which an HSI system using the wavelength tuning with filters

method convert radiation into a cube of digital images can be modeled by the generic sys-

tem shown in f,rgure 2. The configured order of some of the components can be varied

depending on the intended application and component specifications with no significant

effect. For example, the spectral filter component can be moved after the imaging optics

without changing the overall response of the system.

Sample
under studV

HSI camera

Figure 2: A generic hyperspectral imaging system

The components in figure 2 contain problems that affect the performance of the system.

For example, the output of the illumination source is light that varies in spatial location,

wavelength, and time. This problem results in spatial and spectral non-uniformity as well

as time drift of the overall system. The spectral filters or dispersion elements and the

physical characteristics of the imaging optics may present problems. For example, these

components can introduce geometric distortions and bluning of the imaged scene (Gat

2000 and Ren 2003). The sensors in the calnera are also, not free from problems. Typi-

cally, the response of a sensor in a FPA varies with spatial location (Schulz and Caldwell

1995), spectral band (Geladi et al. 2004) and time. Time variation of the detector's re-

sponse is caused by thermal noise and the quantum efficiency of the detector. Generally,
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the problems in the detector exist because of fabrication variation, detector design and the

quantum nature of current carriers in semiconductor materials (Rogalski 2003).

2.2 System Response

The system response is a mathematical representation of the relation between an input

and output of the system. This relationship is used to approximate the unknown effects

introduced by the bulk of components conforming the system (Proakis and Manolakis

2007). The only way to interact with the system is by using its input and output terminals

(i.e., the system is assumed to be a black box by the user). For HSI systems this input and

output relationship needs to be established as a function of spectral wavelength, spatial

location and in some situations time.

Before getting into the system response equations a few important definitions about

the system parameters need to be defined. We begin with definitions for the parameters in

the imaging optics block in figure 2. The most impodant parameters of the optics are the

diameter of the aperture D and the focal lengthl The aperture of the system is the physi-

cal opening that determines the cone angle of a bundle of rays that come to a focus in the

image plane. In other words, the aperture limits the amount of light that reaches the im-

age plane. The focal length is a measure of the strength to which light is focused or dif-

fused. A system with a shorter focal length contains fewer capabilities of focusing light.

The two parameters are shown in figure 3.
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------------->

------------*

-._-_----->

---->

Figure 3: Optical focal length

'l>
<---_------+

lens: Aperture and

For HSI systems the spectral transmittance of the optics is also important. The

optical transmittance determines the portion of rays that makes it through the imaging op-

tics as a function of wavelength. Another important definition is the bandwidth. The

bandwidth of a system is defined as the difference between the upper and lower cutoff

wavelengths. Here, a wavelength corresponds to the distance between repeating units of a

propagating light wave of a given frequency.

All the equations in the following subsections are obtained from Schowengerdt

(1997). The author explains the response for a remote sensing HSI system. However, the

equations explained by the author also apply to the laboratory based NIR HSI systems.

The reason is that the components used in the instrumentation for remote sensing imaging

are of similar characteristics as the components used in laboratory NIR HSI systems. The

only modification added here is to account for the spatial non-uniform response of sen-

sors within the FPA. The equations can also be found in Perry and Dereniak (1993) with

different variable notation for infrared imaging systems. In Perry and Dereniak's study,

the infrared (IR) source, sensor constants and spatial non-uniformities in the FPA imager

are considered.
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2.2.I Spectral Response

The spectral response describes the sensitivity of the system to radiation of different

wavelengths. For systems using the components described in figure 2, this response de-

pends on the spectral filter transmittance, the detector spectral sensitivity and on the spec-

tral response of the optics in the system. To model the spectral response of the system

first, Slater (1980) related the irradiance on a detector located on the optical axis at the

image plane to the scene radiance L;(u,u) at the object plane by the camera equation

E¡,(u,ù = #17(u,v) (l)

where N is the optics f-number given by the focal length divided by the apefture stop di-

ameter and'ro(2) is the optics transmittance without considering the spectral filters. The

optical transmittance is often high for most optical systems and spectrally flat. The ¿¿ and

y coordinates in equation 1 remain unchanged for simplicity, assuming a magnification of

unity between the object and the image plane. Therefore, the spectral input and output re-

lationship of the system in band å is defined as

sø(u,ù = t:,ï Ry(7)ry(u,v)87(u,u)dÀ (2)

In equation 2 the input and output is related by the spectral response Rø(1) of the op-

tics and the filter multiplied by the spectral responsivity r¡,(u,u) of the detector. Here, the

responsivity of the detector is included as a function of the spatial coordinate u and v.

This term is added to account for the spatial non-uniform responsivity in the sensors

within the FPA (Perry and Dereniak 1993). The limits in the integration depend on the

full width half maximum (FWHM) pass-band of the filter and on band å. The FWHM

pass-band is given by the two extreme values of wavelength at which the transmittance of
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the filter is equal to half of its maximum value. We refer to band á as the integrated

wavelength over the limits in equation 2.

2.2.2 Spatial Response

The spatial response describes the sensitivity of the system to incoming radiation from

different directions. For NIR HSI systems using the wavelength tuning with filters

method, the spatial response depends on the characteristic focusing of the optics at band

b,the reflective properties of the scene at the specif,red band, and the detectors' spatial re-

sponses at the given band. In general, the system affects the spatial characteristics ofthe

scene radiance being imaged with geometric distortions and blurring. This effect can be

modeled using the two-dimensional spatial convolution given by

e6(u,v) : I::,i $:,T sø(a, ß) PSF,et(u - &,v - ß)dßdu (3)

Here, the limits of the integration define the spatial extent of the point spread function

(PSF) about the coordinates u and v. The PSF is the response of an imaging system to a

point source of light. The PSF in equation 3 determines the spatial response of the entire

system (Gonzales 2001). Assuming system linearity, the net PSF is obtained with the

two-dimensional spatial convolution, denoted by *, between the optics and detector

PSF's as given by:

PSFn"¿(u,u) = PSFoot(u,v) * PSF¿rt(u,v) (4)

where PSFoo¿(u,v) and PSF¿r¡(u,v) are often given by equations

PSForr(u,v) -

PSF¿r¡(u,u):

-uz -uz

zftpq

rect(L) .rect(L)

(5)

(6)
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The optical PSF in equation 5 is modeled by a two-dimensional Gaussian function in

which the parameterc p and q determine the width of the optics PSF in the horizontal and

vertical directions, respectively. These parameters determine the amount of blurring in-

troduced by the optical system. This blurring depends on many factors, including optical

diffraction, aberrations and mechanical assembly quality of the optical system (Ren

2003).In equation 6, the function rect) is the rectangle function and the variableps is the

value representing the size of the detector or sensor. Note ps can become a variable ac-

cordingly in equation 6 depending on the detector sizes in the u and v directions.

2.2.3 Time drift

Each of the sensors or detectors within the FPA component introduces noise to the final

output HS image of the system. This noise is present even in the absence of light. This

type ofnoise is referred to as dark current noise. The dark current in a sensor is a conse-

quence of thermally agitated carriers and other carrier generation processes. The noise

mechanisms that depend on temperature are diffusion and generation-recombination

(Forrest 1981). Also, the tunnelling of cariers is another source of noise. However, this is

not correlated with temperature.

The dark current noise varies from sensor to sensor location within the FPA (Rogalski

2003). Also, this noise varies depending on the time of acquisition and exposure time.

These characteristics result in a time drift effect that affects the output of the system. This

effect is illustrated by the equation:

wl(u,ù : Ël.t' ,r(u,v)dt + I::.t'r¡t(u,v)d.t (7)
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Here, the limits of the integral define the starting time of the acquisition t6 and the

exposure time setting t" of the camera. The first term corresponds to the signal integrated

over the exposure time. The second term in the right side of equation 7 is the integration

overthe time exposure of the spatially integrated dark current nt(u,v) attime instance /

introduced by the detector.

2.2.4 Signal Amplification

The amplifrcation employed by the system on the signal wl(u,u) in band å is determined

at the sensor design stage to provide sufficient signal level to the analog to digital (A/D)

converler for quantization, without incurring saturation. Here, saturation describes the

limit to the amount of current that can flow through the system electronics. The purpose

of signal amplification is to increase the resolution of the A/D converter. A high resolu-

tion is desired in the system to increase contrast in the image output. The resolution of the

A,/D converter is given as overall voltage or current range divided by the number of A/D

levels of the A"/D converter.

For imaging systems, the amplification function is performed at the electronics com-

ponent stage in figure 2. This amplification is determined by setting a gain and offset

value to each band å to yield a full digital level range and band replicate out of the A/D

converter. The amplification of the system is given for band å by

al(u,v) - g6wl(u,v) * of f set6 (8)

where g6 and of f set6 represent the gain and offset applied by the electronics component

at band å, respectively.
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2.2.5 Sampling and Quantization

The amplified signal is then sampled and digitized by the A/D convefter. Common A/D

converters are linear quantizers that convert the analog signal level to the nearest integer.

The function performed by this component is given as

ll¡u = intl ar6(u,u) I (9)

Here, the function int[J converts the signal level into the nearest integer. Note here

that continuous spatial coordinates u, v, spectral band b and time z have been sampled and

discretized to coordinates i, j,kandz. The output ll¡pis a digital number at discrete spa-

tial coordinates i, j, wavelength band k and time instance r.

2.2.6 Co-additions

Some HSI systems use co-added images to increase the signal to noise ratio (SNR). The

signal to noise ratio is defined as the ratio of the signal power to the noise power corrupt-

ing the signal. A high SNR is desired to increase the detecting ability of the system

(Shaw and Mantsch 1999). This is because the performance of the system is degraded

with a low SNR. For example, in low SNR values (i.e., close to one), the signal becomes

unidentifiable from noise.

Co-additions are helpful especially at some bands å where the sensitivity of the detec-

tors is low. The function of co-adding atotal of N, images is given by the summation

ll¡n = D!:rYffu (lo)

Here, the input yff¡, and output !Ï¡n preserve the same notation for simplicity.
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2.2.7 Response model rearrangement

Equation 9 represents the digital output of the system after integration over the exposure

time of the scene radiance inputLT(u,v)that arrives atthe camera. The scene radiance is

dependent upon the output radiance of the illumination source and the physical and

chemical characteristics of the sample under study for laboratory based systems. Forboth

a chemical analyst and the system's generic user, it is more useful to express equation 9

in terms of the sample or input object. This relationship can be established by defining

the input scene radiance as

L¡(u,v) = I¡"(u,u) * xt(u,u) (11)

where the operator * denotes the two-dimensional convolution between the illumination

source signal I¡(u,v)and the response of the sample xy(u,v) in spatial coordinates u and

v and wavelength A. Here, the response of the sample characterizes its physical and

chemical characteristics through its reflectivity and/or emmitance. Equation 11 can be in-

troduced into equation 1 to establish the relationship between the output and input object

instead of in the output and scene radiance. In the former relationship, the illumination

source is considered as part ofthe system response.

2.2.8 Simplified Model

Equation 9 contains four integrations, one over the system spectral response 2 in equation

2, two over the system spatial response in equation 3 and one over the exposure time in

equation 7. Also, one summation is used in equation 10 to co-add images for increase of

the detector's effective sensitivity. In practice simplifications to equation 9 or 10 are used
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to estimate the overall response of the system. The first simplification made is through

notation by letting

gain¡(u,u) = gø.Rø(1) . r¡.(u,ù !#. (lt(u,v) * PSFr"r(u,u)) (12)

and

biasf,(u,v) : gø I::.t" r¡t(u,v)d'r + of f set¡ (13)

this results in the simplified notation equation

ll¡rc = tntl i[ II *^@, B)gatnr(u - d,u - ß) dld7dadt + btasf(u,v)l Qa)

Here the gain¡(u,z) represents the amplified spectral and spatial response of the

overall system. Note that the gain coefficient does not depend on time. The btas[(u,u)

represents the summation of two terms: an amplified and time integrated dark current

noise plus an offset at time instance r.

The following simplifications of equation 14 are based on Schowengerdt (1997)

and Perry and Dereniak (1993). The spectral response of the system can be simplified by

assuming Rø(7), ry(u,v), ro(7) and l¡(u,u) are average constants over the effective

spectral band b at their corresponding spatial location. In a similar fashion a simplifica-

tion can be made on the spatial response of the system assuming that PSFr"¿ and the il-

lumination source l¡(u,v) are constant over the limits of the space integrations. The inte-

gration over time can be simplified by assuming independence of the illumination source

output and sensor responsivity on time. Finally, the non-linear operation inr[J introduced

by the A./D converler can be ignored for high signal levels because the quantization enor

is a small percentage of the total signal. These simplifications result in the band, space

and time integrated discrete sampled equation
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ll¡n = gain¿¡¡r' x¿in * biasltu Q5)

Here, fhe gain¡¡¡, represents the time independent gain and the bi.as!¡¡, represents the

time dependent bias at sensor location i and j and wavelength k. Both coefficients repre-

sent parameters for the system response function.

2.2.9 Response model estimation

The linear model just mentioned is commonly used by the infrared community for correc-

tion of the non-uniformity in FPAs (Peny and Dereniak 1993; Torres andHayat,2003).

The systems used by them are different than ours in that they look into photons emitted

by the temperature of objects. Also, their systems obtain a single image instead of HS

images. However, the principles and concepts are the same.

The problem in obtaining the system response is based on the estimation accuracy of

the model parameters. Common approaches are based on obtaining estimates using in-

formation from the output images given an input. The problem of estimation arises, be-

cause the noise in the system corrupts the output image. This results in model parameter

estimates corrupted by the noise in the system.

To account for these noise sources different methods have been proposed in the infra-

red community. These can be categorized into calibration based (Perry and Dereniak

1993) and scene based techniques (Torres and Hayat 2003). For HSI involving data cubes

of large size, scene based techniques are not feasible because of memory and time com-

plexity constraints. The only method available in the literature for laboratory HSI was

developed by Geladi et al. (2004). This method is based on calibration techniques. In Ge-
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ladi's study the model parameters are obtained through the inverse relationship of the

system response more often known as system calibration.

2.3 System Calibration

2.3.I Model

In equation 15, the space, band and time integrated reflectance of the input object is

transformed by the system to an A/D count level. This forward relationship is useful for

the system engineer to determine the overall performance of the system. However, an in-

verse relationship is often used in practice by the user of the data to determine the charac-

teristics of the sample based on the data obtained (Brown 1993). In the following section,

different calibration techniques based on this inverse relationship are explained. These

techniques use different assumptions to simpliff the system's response model.

2.3.2 Techniques

To our knowledge the only published research paper developed for calibration and cor-

rection of laboratory NIR HSI systems using the time resolved wavelength data acquisi-

tion method was developed by Geladi et al. (2004). The method is based in using calibra-

tion standards of homogeneous reflectance along their surface and over the NiR region.

This is to obtain reference output values at each spatial location and spectral band given a

known input. These reference values are then used to obtain coefficient estimates of cali-

23



Svstem Calibration

bration curves. In their research, Geladi et al. (2004) studied one point, linear and quad-

ratic calibrations.

The two point calibration technique maps the digital output of a sensor to a reflec-

tance percentage using two references of known reflectance. These references are'. an ac-

quisition with the lights off and covered lens to obtain a dark current reference, and an

acquisition imaging a white reflectance standard (i.e., 99 percent). The model used by the

two point calibration is given by

x¿jk=ss';ffi- ffirru¡
where i, j and Ë are indices for row, column and wavelength respectively, x¡¡¡, is the cali-

brated value in percent reflectance, !qrc is the system measurement to be calibrated in

digital level units, y?fu i, the 99 percent reference measurement and !?¡p is the dark cur-

rent measurement in digital level units. The calibration can be adjusted to any other two

reflectance standards. The only requirement is two standards of distinct reflectance and

the corresponding equation adjustment. The biggest problem with two point is that it as-

sumes that the measurement of the two reference standards completely represent the time

drift in the system.

Linear and quadratic calibrations consist in using mean square (MS) regression esti-

mate to obtain the best line or quadratic curve fit of a set of reference points. Geladi et al.

(2004) used four references are used namely 2,50,75 and 99 percent reflectance stan-

dards. The reference standard set is imaged to obtain a corresponding system output set.

This information is then used to f,rnd coeff,rcient estimates of the models. Two coeffi-

cients, the slope ô.¡¡¡ç andthe ofßet Ê¿¡¡l are obtained for linear model. For the quadratic

24
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calibration model three coefficient estimates are obtained. These are a curvature ô¿¡¡r, a

slope â¿r.¡ and an offset û¿¡¡r. Each of the coefficients is obtained for each sensor index l,

j and k.

To obtain accurate model parameter estimates, the coefficients that minimize the MS

errors given by

€ijt< = E{l*r¡o - (ãt¡nyr¡o + br¡u)]'} 0r)

€tjk = E{lxi1 - (\¡uy¿¡t Tr¡r, * ã¿jt rijt + 6¿jk)]2} (1s)

for the linear and quadratic models, respectively, are selected as the calibration model es-

timates. Here, x¿¡¡' is the vector with elements xf¡u indicating the real percent reflectance

of index standard s, ! ijt is the vector with elements lf ¡rc of the measurement of index

standard s and E{} is the expected value. The obtained coefficients can now be used to

calibrate hyperspectral images )/ with elements Ii;r using any of the matrix linear or

quadratic calibration functions

X:AY+B(19)

X=CYY+AY+B(20)

accordingly. In this matrix form A is the matrix of slope coeff,rcients with elements â¿;¡ ,

B is the matrix of offset coefficients with elements ûrju, C is the matrix of the curvature

coeff,rcients with elements ê¿¡¡a andXwith elements x.¿¡¡ris the calibration of Í.

This thesis proposes that the problem in using only four measurements for calculating

the coeff,rcients in equation 17 and 18 for the linear and quadratic calibrations is that it as-

sumes this data is sufficient to describe the noise sources and time drift. Moreover, quad-

ratic calibration assumes that the responsivity and the illumination source are not linear in



System Calibration 26

nature. Rather, they have some curvature. In the case of using four reference measure-

ments, quadratic coefficient estimation contains only one degree of freedom which is

problematic for model validation.

In Geladi's study the quadratic calibration model is the best approximation to the true

values from the linear and two point calibrations. This measure is assessed using the er-

ror between a prediction and a measurement. The problem with this measurement is that

the improved fit may have been produced by the noise in the system. In this situation, the

curvature might be providing refinement to the data fit by reducing the least squares crite-

rion using noisy data. To assess this problem, more information about system noise and

time drift is required.



Chapter 3

Materials and Methods

In this chapter, we explain in detail the NIR HSI system specifications, conhguration and

setup used throughout the experiments. The main components of the NIR HSI system un-

der study include two halogen illumination sources, two LCTFs, a lens and the FPA. In

general, the two illumination sources are used to increase the contrast (i.e. signal to noise

ratio) in the sampled input. The NIR filters are used to band limit signals to the NIR spec-

fial range and the lens to bring transmitted light into focus. Finally, the FPA together with

the A/D converter in the system serves as the imaging device.

We also describe the procedure followed for the calibration and correction of the sys-

tem. In general, a set of reference standards is imaged to model the response and calibra-

tion functions of the system throughout the whole reflectance range. For this purpose, a

total of four reference standards with nominal uniform diffuse reflectance of 2,50,75 and

99 percent were used. Each of these standards is imaged in twelve consecutive acquisi-

tions to address the problem of time drift affecting the performance of the system. The

data acquired is then projected into linear curves to model the response and calibration

functions. The parameters obtained from the linear response projections are later used for
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the classification of each sensor within the FPA based on its characteristic response using

the k-means classifier.

3.1 System Specifications

The NIR HSI system considered in this study is composed of two incandescent illumina-

tion sources, a LCTF, a silica-glass lens and an infrared camera with an InGaAs FPA.

These components are commonly used in these systems because of their good perform-

ance in the NIR region and low cost (Gat 2000; Alexay 2008 and Olsen and Ban 1987).

The illumination sources used in this camera are halogen incandescent lamps (model

M40189) from Bencher USA operating at 300 watts. These sources contain halogen

bulbs that emit light in the visible to near infrared light (400 to 2500 nm wavelengths).

The lens used in the camera is model L25F0.95 from Electrophysics. The lens is charac-

terized by a maximum aperture ratio of F0.9 and a focal length of 25 mm. This lens is

equipped with antireflective coatings made of MgFz material. The electronic filters are

two automatic LCTF obtained from VariSpec. Both filters are characterized by a physical

aperture of 20 mm and a full width half maximum (FWHM) transmission bandwidth of

10 nm. One of the filters operates in the short NIR region: 650 to 1100 nm and the second

operates in the long NIR region: 850 to 1800 nm. The InGaAs FPA used in the camera is

from Goodrich Sensors Unlimited, Inc. The FPA consists of 640 x 480 rows and columns

of detectors respectively with each detector having dimensions of 27 x 27 pm. The FPA

is designed to operate in the 900 to 1700 nm wavelength region at room temperature.

This FPA is equipped with an integrated temperature circuitry that stabilizes it to 18" Cel-
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sius. The camera is equipped with a power supply, cables and a PCI data acquisition

board with 12-bit resolution. Finally, the camera is controlled using a desktop computer.

The controlling computer is a Dell Optiplex GX280, with an Intel Pentium 4 processor

with 3GHz and 1.00 GB of RAM.

3.2 System Configuration

The InGaAs camera, the filters and the two illumination sources are mounted on a copy-

stand with the configuration shown in figure 4. In this configuration the lens of the cam-

era is ananged in between the InGaAs FPA and filters as shown in the figure. Under this

configuration, the limiting aperture of the camera is defined by the aperture of the filter.

This is because the physical aperture of the filter (20 mm) is smaller than that of the lens

(25 mm). The copy-stand provides light source mounts on each side of the camera. Each

mount has the capacity to adjust the incident angle of the illumination source. The illumi-

nation sources are located at an angle of 45" with respect to the normal of the copy-stand

platform. The copy-stand also contains three positions to mount the camera and adjust the

tilt angle and for the vertical and horizontal distance from the camera to the copy-stand

platform. A vertical distance from the platform to the aperture of the filter of 22 mm was

maintained throughout the experiments. The horizontal distance is of 17 mm as measured

from the camera mounting to the camera. Finally, the tilt angle of the camera measured as

the angle between the normal of the platform and the normal of the camera aperture is of

approximately 0".

29
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Figure 4: NIR HSI system configuration

System setup

The system is located in a closed laboratory with no windows and two doors. The tem-

perature in the room was regulated from 20 to 26o Celsius for all experiments. The lights

in the room were on unless the camera was in acquisition mode. The system under test is

capable of obtaining images from 900 to 1700 nm wavelengths. However, some wave-

lengths especially near the edge of this range have sensitivity below a usable value. This

is due to the decrease in light caused by the filtering of the LCTF and the low spectral re-

sponse of the detector at those wavelengths. For this reason, the system was set to obtain

images from 960 fo 1670 nm (inclusive) in steps of 10 nm. This results in a i'rtal of 72

wavelength images for each HS data cube. For this system, the 960 and 1670 nm wave-

lengths give a sufficient contrast between the background noise in the system and a uni-

form two percent reflectance signal. This is under a multiple exposure of 64 rns and with

ten co-additions. This exposure time and number of co-additions has been used through-

out all data acquisitions obtained during this research. Preliminary testing indicated that

smaller exposure times and/or co-additions result in smaller insufficient signal to noise



ratios at the limiting wavelengths reducing the operating wavelength range. The system

was focused manually at the 1320 nrn (center) wavelength using the pocket USAF optical

test pattern developed by Edmund Optics. The test pattern was localized in the copy-

stand platform below the camera as shown in figure 5.

USAF tcst patlern

Figure 5: Focusing using the pocket USAF test pattern

After the test pattern was localized, the camera was set to video mode for alignment.

To set the camera to this mode and to control all other settings a graphical user interface

(GUI) developed in LabView in 2005 by the Institute for Biodiagnostics and Spectros-

copy of the National research Council (NRC) was used. This interface provides an option

referred to as ALIGN that sets the camera to video mode. Under this mode and with the

illumination sources on, the test pattern was manually arranged to cover the entire FOV

of the camera. After localization, the lens was manually focused until the instantaneous

image shown in the interface shows the lowest visual amount of blurring. This focus was

recorded using the markers on the lens. This focus was used throughout the whole data

acquisition procedure.
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3.4 Data

in this research, the purpose of acquiring data is to analyze the input and output relation-

ship of the system. This relationship helps in understanding the behaviour of the system

to establish a model for the system's response. To obtain accurate models for this re-

sponse attention must be given to the spatial, spectral and time variation of the system.

To analyse the spatial variance in the system, data obtained from imaging inputs covering

the whole FOV was used. Analysis of the spectral variance was obtained by looking into

the input and output relationship of the system across the whole usable wavelength range.

To obtain information about the time variance in the system, a series of acquisitions were

obtained for each reference input. In this study, a total of twelve HS images were ob-

tained for each reference input being imaged. This is because the time variance in the sys-

tem may vary depending on the input. The chemical characteristics of the inputs used for

this study are: spatially homogenous and spectrally flat along the NIR region. Also, the

inputs used vary in reflectance. The physical characteristics are: input references with a

flat surface and ofconsiderably large area.

3.5 Calibration standards specifications

The calibration reference standards used as inputs for system response estimation and

calibration in this study are non-dispersive, isotropic, homogeneous reflective media from

Labsphere. The company develops certified diffuse reflectance standards with known re-

flective factors and varying sizes. These reflectance standards are spectrally flat over the

VIS-NIR spectrum. The reflective areas of the standards are of 50.8 mm in diameter and
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of size 60.45 x 15.24 mm in diameter and height, respectively. To cover the dynamic

range of the system, we used nominal reflectance factors of 2,50,75 and 99 percent. Al-

though each reference standard is labelled with a reflectance factor, the true reflectance of

the reference at each wavelength is slightly different.

The true value of each reference standard was obtained from a calibration certificate

provided by the manufacturing company. The company obtained this real value from

measuring the true reflectance at an 8o hemispherical spectral reflectance for each of our

standards at each wavelength we are using. This certificate is traceable to the U.S. Na-

tional Institute of Standards and technology CIIST). The real reflectance was determined

using a Perkin-Elmer Lambda 1900 double beam ratio recording spectrophotometer

equipped with a Labsphere RSA-PE-l9 integrating sphere accessory. The laboratory

temperature at which the measurement was made was from 20 to 26'C. This temperature

\¡/as approximately the same for the room in which we made our acquisitions.

3.6 Data acquisition

After turning the instrument on and before acquiring data, the system was left for a hun-

dred minutes. This long time interval was left for filter initialization and temperature sta-

bilization inside the camera. The stabilization time of the camera depends on its charac-

teristics. For this system preliminary work showed that the stabilization time is approxi-

mately an hour. We note that in shorter acquisition times the noise levels in the system

are still varying with time and affecting the performance of the carnera. After a hundred

minutes have passed, the lights in the room were turned off and the doors in the room
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were closed to prevent light in from other rooms. At this point on time, the system was

used to begin acquiring data.

To obtain the zero reflectance input or "dark current" noise reference, the two illumi-

nation sources were off. Furthermore, a plastic board painted black was used to fully

covet the physical aperture of the camera during dark current acquisition. This reduces

the amount of light entering through the aperture of the system. The GUI in LabView de-

veloped to control the camera contains an option (DARKCOTINT) to collect the dark cur-

rent noise in the camera. Under this option the camera collects a single dark current im-

age using the number of co-additions determined in the settings section. A single meas-

urement of the dark current means that the system assumes a single frame of the dalk cur-

rent is representative for the dark cuffent noise at all individual wavelengths. The validity

of this assumption depends on the NIR emittance of the objects in the room, the plastic

cover and of the camera. The time required for a dark current acquisition was less than

one second.

To obtain images of the reflectance standards they were first localized within the

copy-stand platform. To localize these, we used line magnets as reference guides on the

metal platform of the copy-stand at the distances shown in figure 6. Each standard was

localized in the same position from acquisition to acquisition using these reference guides

and a label in the back of the reference standard. Following localization, the illumination

sources were turned on, and the LabView GUI acquisition setting was set to ACQUIRE-

DATA. Under this option the camera obtains HS images using the settings described in

section 3.3. The time lapse for each HS acquisition was of 2.5 minutes approximately.

Immediately after data acquisition the illumination sources were turned off. This was
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done to minimize overheating of the illumination sources; to regulate the increase in tem-

perature ofthe black copy-stand platform and ofthe input reference standards.

Magnetic guides

Figure 6: Calibration standard localization

To obtain the input and output relationship throughout the whole input range, the dark

current and the 2,50,75 and 99 percent reflectance standards were imaged. The proce-

dure followed to obtain this data, was imaging using the order of the sequence: dark cur-

Íent,2, 50, J5,99 percent. Each reference input in the sequence, was imaged during con-

secutive days.

To obtain information about the time drift of the system, atotal of twelve acquisitions

were obtained per reference input. These twelve acquisitions were obtained in a single

day. The time in between each acquisition was of five minutes. The procedure was re-

peated for a total of five consecutive days to sample all five reference inputs. A total of

sixty acquisitions or equivalently twelve samples (n: 12) for each reference standard and

the dark current were obtained.

In addition to the data collected for calibration, a set of 38 dark current frame acquisi-

tions were obtained. The purpose of this data set was to obtain information about the dark

current behaviour of the camera. The camera settings used for acquisitions of this set



were as described in the system setup section 3.3. The acquisitions were obtained on a

separate day from those previously described. Similar to the calibration set procedure for

acquisitions, the lights in the room were all turned off and the same directions in the pro-

cedure for acquiring the dark current frames already described were followed. The differ-

ence of this set lies on the fact that the acquisitions were started immediately after the

camera was turned on. The time lapse for acquisitions was of a total of 190 minutes with

a dark current frame acquisition every 5 minutes.

t1 t-,ó. t Data processing

3.7.I Analysis software

After data acquisition, the analysis, calibration and testing of the camera was performed

in a computer using Matlab version 7.01. The serial output data obtained from the camera

is in spc format. Under this format a heading including information about the system set-

tings is included together with the HS image data. This data is arranged into a single vec-

tor string. To rearange this file into HS data cubes, a small function written in Matlab is

used. After data transformation, the data is analyzed using the statistics, pattern recogni-

tion and image processing toolboxes in Matlab.

3.7.2 System response

The analysis of the system's response was made using the collected data. This was

achieved by looking into the characteristic spatial and spectral output and the noise given
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a known reference input. To analyze the spatial characteristic response of the system we

plotted the histogram of the HS image for each wavelength. The spectral response of the

system was then determined by looking into the outputs of sensors as a function of wave-

length throughout the whole range. The characteristic time variance in the system was

analyzed by plotting sensor outputs of input reference standards as a function of time

sliced at certain wavelengths. Finally, the output as a function input throughout the dy-

namic range was plotted for each sensor and wavelength (See section 4.5 for an exam-

ple). The parameters in the determined model of the system's response were obtained us-

ing the minimum sum of squared errors criterion. To validate the model, the sum of

squared errors (SSE) and the prediction sum of squared errors were obtained for each

sensor and wavelength. These two criterions were compared using histograms for all

wavelengths. The approach followed to validate the model is given in Kutner et al.

(2005). This approach is described more in depth in the section 4.7. In summary, the

model and the mean sum of squared errors (MSE) as an indicator of the predictive capa-

bility of the model are validated if the PRESS and SSE values are similar.

3.7.3 Sensor sensitivity classification

After obtaining the characteristic system response model, each sensor in the FPA has

been classified according to its sensitivity. The purpose of the classification is to identify

the sensor locations that are saturated, dead, severely corrupted by the optics. The term

sensitive region refers to sensors not affected by saturation, dead or severely conupted by

the optics. Insensitive regions was defined as saturated or dead sensors andlor severely

corrupted by ths optics sensor locations.
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The classification is based on first obtaining a feature vector that separates insensitive

from sensitive sensors. The feature vector was based on the model used to estimate the

system response in section 4.6.To obtain this feature vector, the differences between the

sensor responses in each of the regions is analyzed. Based on this analysis, descriptors for

the feature vector were chosen. After obtaining the feature vector, pattern vectors corre-

sponding to all sensors were plotted using a scatter plot. A classification algorithm was

selected based upon the characteristics ofeach group.

3.7.4 Calibration

The calibration of the system was performed only on the sensors classified as sensitive. A

mask of the sensitive sensor locations was used to remove all other sensors. This mask

was obtained using the classification of sensitive sensor locations described in section

3.7 .3. The calibration method consisted in using the inverse relationship of the system re-

sponse model. The coefficients in the model of the inverse relationship were obtained us-

ing the minimum squared error criterion. These coefficients were different than those ob-

tained in the forward relationship. The reason is that the forward relationship minimizes

the error with respect to A/D counts instead of percent reflectance.

The predictive capability of the model was assessed using the validated root mean

sum of squared errors (RMSE). To obtain this indicator the residuals between the fitted

values and measurements were obtained for each sensor and wavelength. A plot showing

the spatial and spectral distribution of these elrors is included (See figure 22). Also, an

average over all spatial coordinates RMSE is calculated within the sensitive region. The

result is plotted as a function of wavelength in figure 23. This figure aids in determining
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the predictive capability of the system as a function of wavelength. The procedures are

explained in more detail in the results and analysis section.



Chapter 4

Results and Analysis

This chapter begins by presenting essential details of the collected data including consis-

tent patterns in the responsivity of pixels (i.e., sensors). The second section presents an

analysis of the spatial response and the nonuniformity of the focal plane aîray. This is fol-

lowed by a presentation of the spectral response, time drift and dynamic range of sensors

in the sensitive and insensitive regions. After describing the sensor responses a model of

the system's response is developed for each location and wavelength and subsequently

verified. Finally the developed model is used to classify the type of sensor response and

performance of the calibration of the sensor is discussed.

4.r Hyperspectral Data Cubes

A total of 48 HS images and 12 dark current measurement frames were obtained using

the methods described in Section 3.6. Each of the resulting HS data cubes is a matrix of

size 477 x 640 x 72 corresponding to the number of rows, columns and wavelengths re-

spectively. The measured 12 dark current matrices are each of size 4ll x 640 and coffe-
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spond to the number of rows and columns respectively. The value in each entry of both

the HS data cubes and the dark current matrices ranges from 0 to 40,950 A/D counts.

This output range is the result of co-adding 10 images using an A/D converter having a

12-bit resolution. An example of the output obtained from imaging the 99 percent reflec-

tance sliced atthe 1360 nm band is shown in figure 7.

lmage of the 9970 reflectance standard at 1360nm
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Figure 7: Image of the 99 percent reflectance standard at 1360 nm

Note that the output of the system varies depending on the sensor location. In general,

the images obtained at all wavelengths contain the same white dots, black and gray pat-

terns at the same spatial locations. Furthermore, the images obtained using the2,50 and

fhe 75 percent reference standards have the same spatial patterns. The difference between

images from different standards lies only in the measured A/D counts (i.e., magnitude).

This difference depends on both the spectral response and the input reference being im-

aged. The white dots shown in figure 7 have the maximum A/D level and corespond to

saturated sensors. The black areas surrounding the gray circle in the center correspond to
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locations severely affected by the limiting aperture of the system, which in this case is the

aperture of the LCTF. Notice that inside this black region there are two rings around the

center gray circle. These two rings also change in A/D intensity as a function of the spec-

tral responsivity and input reference being imaged. The two rings are caused by diffrac-

tion at the limiting aperture of the system. The gray circular pattern in the image coffe-

sponds to the input reference signal. Its shape is given by the shape of the limiting aper-

ture of the system, which in this case is circular. Some dark pixels do appear inside the

gray circular region. These pixels correspond to sensors thaf arc insufficiently responsive

or are dead.

4.2 Spatial response

Analyzing the image of the 99 percent reflectance standard at 1360 nm (see figure 7)

yields one of the histograms given in figure 8. The histogram illustrates the intensity

variations of an image at one frequency. This figure also includes the histograms result-

ing from imaging the dark cunent, the 2,50 and the 75 percent references sampled at the

1360 nm wavelength.

42
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Figure 8: Spatial response variation a) Histogram, b) Zoomed histogram

In figure 8a, the image histograms of the five reference standards illustrate the varia-

tion in the spatial response of the system. This variation is introduced by the spatial non-

uniformity of the sensors in the FPA, the optical system and the spatial inhomogeneous

illumination in the light sources. The impulse located at approximately the maximum

A/D level (40,950) in the horizontal axis of the histogram in figure 9a corresponds to the
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very bright pixels shown in f,rgure 7. These pixels represent the response of saturated sen-

sors. The two percent reflectance graph shown in green in figure 8 is also similar to the

dark current shown in blue. This similarity is emphasized in the enlarged histogram

shown in figure 8b. The low variation between the dark current and the two percent re-

flectance standard occurs because the signal induced by the light entering the camera is

considerably small in comparison to dark current signal.

In figure 8b, the histograms for the 50,75 and 99 percent reference standards each

contain two significant peaks. The left peak in the histogram varies little with input re-

flectance for the 50,l5 and 99 percent reflectance inputs. This variation indicates that the

sensors corresponding to the left peak are receiving some signal level. This signal is

caused by airy patterns created by the diffraction of light at the limiting circular aperture

of the system. In general, this airy pattern consists of a series of concentric rings around

the corresponding image of a uniformly illuminated circular aperture (airy disk) as illus-

trated in figure 7. It is expected that the left peaks in each histogram correspond to the

dark areas in the images. The right most peaks in figure 8b corresponding to the 50,75

and 99 percent reflectance show significant variation between them. It is expected that

these peaks corespond to the input reflectance reference signal.

4.3 Spectral Response

Image histograms corresponding to other wavelength slices (See Appendix A figures

4.1-16) have a similar shape to figure 8 and their corresponding images are also similar

to figure 7. However, image histograms corresponding to other wavelengths differ in the

44
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mean A/D level, which depends on the characteristic spectral response of the sensor and

the spectral output of the illumination source. Figure 9a displays, the output of the system

at a single sensor located inside the gray circular area (row and column 300) as a function

of wavelenglh for all input references. Notice the differences for A/D values between in-

put references are smaller at the minimum and maximum wavelengths than at the wave-

lengths in the center. This indicates a lower sensitivity at wavelengths near the limits

(<1000 nm and >1650 nm) and a higher sensitivity at the middle wavelengths especially

around the 1360 and the 1560 nm wavelengths. All other sensors corresponding to loca-

tions inside the gray circular region in figure 7 present a similar spectral response pattern

(see Appendix A figures A.17-34).

Sensors corresponding to the locations outside the gray circular region are signifi-

cantly lower in A/D counts level. Also, the difference in output between reference stan-

dards is significantly smaller. An example of the spectral variation of a sensor located in

the dark region (row and column 100) is shown in figure 9b. Notice, the A/D counts cor-

responding to the 75 and 99 percent reflectance standards are above the dark current level

at all wavelengths. This indicates that light is incident to these sensors. However, this

output signal is affected by diffraction at the aperture of the system and other noise

sources. The A/D count corresponding to the 2 percent reference at this sensor location is

below the dark current at all wavelengths. Other sensor response types such as those cor-

responding to saturation look spectrally flat at the maximum A/D level for all reference

inputs.
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Figure 9: Spectral response variation at a single sensor, a) in sensitive region, b) in dark

reglon

4.4 Time drift

The time drift pattern in the system is illustrated by showing the output of a single sensor

as a function of time. The plot is shown in figure i0 for all reference reflectance inputs

for the sensor located at row and column 300 sliced at the 1360 nm wavelength. The fig-
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ure shows an output drift from measurement to measurement. This drift is as large as 229

A"/D counts (i.e., 0.56 percent) for the 99 percent reflectance input and varies depending

on the reference input. For example, the maximum observed difference for the 75 percent

reference was 767 A/D counts (i.e., 0.41 percent), for the 50 percent reference was 224

A"/D counts (i.e., 0.55 percent), for the 2 percent reference was 139 A/D counts (i.e., 0.34

percent) and finally, a maximum observed difference of 25 ND counts (i.e., 0.06 percent)

for the dark current input. These values are calculated from the difference between the

maximum and minimum A/D counts in the output for the twelve measurements of each

reference input (see legend in figure 10). The small percentage differences after 100

minutes indicate a lack of a non-zero trend.

Time variance
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. 2o/o min = 7189 max = 7328

. 50% min = 12803 max = 13027
o 75o/o m¡n = 13027 max = 15452
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Figure 10: Time response variation at a single sensor

An example of the time drift occurring for acquisitions obtained before a hundred

minutes is shown in hgure I 1. This figure is an example of the time variance in the dark

current noise for the sensor located in row and column 300. The procedure followed to

x10

c
=oo
ôì

¡.o

1.5

1.4

1.3

1.2

1.1

1

0.9

0.8

o7



Time drift 48

obtain this data is described at the end of the data acquisition section 3.6. Most notable

about this figure is the large change in output of the system right after the camera is

turned on. It is also worth noting that the noise time variance of the sensor is minimal for

acquisitions obtained after the camera has been on for some period of time. Figures l0

and l1 together indicate that the dark current temporal noise is significantly reduced by

taking acquisitions after the noise has become stable. For this study, the time lapse for

starting acquisitions was chosen to be one hundred minutes. This time lapse was chosen

by visual inspection of the dark current behaviour. However, other time lapses can also

be chosen depending on the particular stabilization time of the system, user preferences

and intended applications.

Dark curent VS time
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Figure 11: Time variation of noise at a sensor

In general, there is little to no drift occurring in the system after a hundred minutes

and the overall characteristic spatial and spectral responses of the system generally le-

mains unaffected. The hgures shown for these responses are sufficient to illustrate the
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spatial and spectral behaviour of the system (see Appendix A figures 4.1- l6 and A.l7 -34

for the intensity variations along space and the spectral variations for various sensors, re-

spectively).

4.5 Dynamic range

The dynamic range of sensors is examined here by displaying the input vs. output rela-

tionship of the system. Figure 12 shows plots of the outputs for each acquisition of the

corresponding input for two sensors at the 1360 nm wavelength. Figure I2a shows the

dynamic range for a sensor located at row and column 300 and figure I2b for a sensor lo-

cated at row and column 100. Note that these sensors are located inside and outside the

gray circle in figure 7, respectively.

x 1 Oo lnput vs Output for the I 360nm wl of sensor (r300,c300)

!

100min acqu¡s¡t¡on

105min acquisition

1 l0min acqu¡s¡tion

115min acquisition
120min acquis¡tion

125m¡n acqu¡s¡t¡on

130min acquisition

135min acqu¡sition
140mìn acquisition

145min acquisition

150m¡n acquisition
155m¡n acquisition

30 40 50 60 70

lnput ìn percent reflectance

1.8

1.6

c
a
oo
o
ì t.z
.ç

=o
fo1

0.8



Dvnamic ranee 50

lnput \,s Output for the 1360nm wl of sensor (r100,c100)
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Figure 12: Output as a function of reference input: a) Sensitive region b) Dark region

Note that the response for both sensors is approximately linear. However, the nonlin-

earities occurring in the sensor of figure l2b are significantly higher when compared to

those in figure 12a. These nonlinearities are caused by the lower signal to noise ratio al

the regions where light is stopped by the aperture of the system. Also note that the A/D

counts range in figure 12b is less than that of figure 12a.

In general, this behaviour is linear at most sensors in the focal plane array. However,

some exceptions occur at regions significantly affected by the optics and/or the response

of the sensor. Examples of these exceptions are given in figure 13 atthe 1360 nm wave-

length for acquisitions obtained at a hundred minutes after the camera was switched on.
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Figure 13: Examples of sensor exceptions from linear response: a) Corrupted by optics
and/or sensor response b) Saturated sensor.

Figure 13a shows the sensor located at row 6 and column 4 fhat corresponds to a re-

gion significantly corrupted by the optics and/or the electronics. Note that the nonlinear-

ity of the sensor looks higher than figure 12b. Figure 13b shows an example of a satu-

rated sensor located at row 244 and column 270. Also, note that the response for this sen-

sor is saturated for all measurements. In general, the responses of sensors located inside
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the gray circular region appear similar to those shown in figure 12a. Similarly, the re-

sponses of sensors located outside the gray circular region appear similar to those in fig-

ure l2b. This generality can be confirmed with the aid of figures 8 and 9 and figures 4.1-

16 and A.11-34 included in appendix A Q'{ote, that the real reflectance value is different

than the nominal 2,50,75 and 99 percent reflectance factor values).

4.6 System Response Model

Given the characteristics of the system response we adopt the simplified linear response

model for each sensor location and specifrc wavelength as explained in the literature re-

view section. This linear model is given as in equation 15 by

ll¡rc = gatn¿¡¡r' xun * btas!¡u

Here, gaini;r is the slope parameter estimate of the linear model. This slope parame-

ter has units ofA/D counts per percent reflectance and represents the gain ofthe sensor at

the location specified by indices i for i: {I,2...,477}, j forj: {1,2,.,640l¡, and wave-

length k for k : {I,2,...,72). The bi"as{¡¡, is the offset parameter estimate of the linear

model. This offset parameter has units of A/D counts and represents the thermal noise or

dark current in the sensor at the location and wavelength specified by the indices. The

x.¿¡¡l represents the input reference response in percent reflectance and /f,'r represents the

corresponding output in A/D counts.

The slope and offset parameter estimates are obtained by minimizing the MS errors in

terms of A/D counts for each sensor location and wavelength. This minimization is ob-

tained by setting the problem in terms of matrices and using the Moore-Penrose pseudo-



inverse for the overdetermined case (Moore 1920; Penrose 1955). The solution to this

problem is found by minimizing the squared norm

Y(p¡¡t): lly¡¡t- Q4r, eii*l' Qt)

given Q¡jr e Rj'"' and y¡¡¡ e R-'. In this case, the vectors !¡¡r and eij* and the matrix Øyr

involved in the norm are constructed by setting (Kutner et al. 2005)

ei¡n =l#:A, e,it :1.*'r;;"nu"'u 
i]

! t ¡ r, 
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" 
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where gûnijk andlÃ¿¡¡- are estimates for the slope and offset coefficients respectively,

xs ¿¡¡, rcpresents the input reflectance in percent, s for s : {dark current, 2yo, 50yo,75o/o,

gg%\ is a reference index and y|'t ,,u is the /tl' measurement (for t: {1,2...,12) ) in A/D

counts of reference standard s at indices i, j and k In this case the squared norm is mini-

mized by computing e,¡o: (Ø¡¡¡rØ¡*¡-IØ¡rrlur: Øqr*!ii* where Q¡¡¡,r is the transpose of

Ø4* and Qq** is referred to as the pseudoinverse of Q¡¡¡. The builçin Matlab function for

computing the pseudoinverse was used to ensure correctness of the result. Adding more

measurements y|'t ,,uto compute gi¡r in the least squares problem was used to address the

issue of time drift in each sensor within the FPA. The result of the regression is split into

two HS data cubes with dimensions equal to the HS images: one corresponding to the

slope coefficients and one to the offset coefficients.

4.6.I Slope coefficients

The histograms for the resulting slope coefficients are shown in figure 74 for wave-

lengths across the whole range in steps of 100 nm. The horizontal axis coresponds to the
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slope value in terms of A/D counts per percent reflectance and the vertical axis corre-

sponds to the number of sensors with the value specified in the horizontal axis.

Histogram of slopes
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Figure 14: Histograms of slope coefficients

In figure 14, the slope values for each wavelength are mainly distributed into two

groups: one close to the zero slopes and the second around a higher slope value that de-

pends on the wavelength. At each wavelength, the group with slope values equal to and

close to zero correspond (in the image) to saturated sensors and dark regions surrounding

the gray centered circle (see fìgure 7). Specifically, the slope values equal to zero corre-

spond to sensors under saturation or dead sensors. The other small peaks in the group

close to and equal to zero conespond to each of the airy disks formed by diffraction at the

aperture of the system. The fuilhet away from the center an airy disk is on the corre-

sponding image the lower its peak will be in the histogram of slopes plot (see figures 15a

and b).
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Figure 15: Image of slopes for each sensor a) 960 nm b) 1360 nm

Figures 15a and 15b show images of the slope parameters for the 960 and 1360 nm

wavelengths, respectively. The bar in the right of each image indicates the gray scale and

the corresponding value for each gray level. Note in the histograms shown in figure 14

that the value of the slopes on the Ieft do not vary by much as a function of wavelength.

lmage of slopes at the 1360nm wa\,elength
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This and the low slope values in this group indicate a low sensitivity for the sensors in

these regions.

The group distributed around a higher slope value at each wavelength in their corre-

sponding right most peak of figure 14 conesponds to the gray centered circle. This high

sensitivity is caused by the optics focusing more light near and into the optical axis of the

image. Also, note in figure 14 that the slope values of the peaks change significantly as a

function of wavelength. This confirms that the sensitivity of the sensor depends on the

operating wavelength, for which the highest sensitivities for the sensor occur near the

1360 and the 1560 nm wavelengths (see figure 8).

The slope values connecting both groups in figure 14 corespond to rings surrounding

the gray centered circle. The closer the slope value is to lower A/D counts per percent re-

flectance values, the further the ring is from the gray circle of hgure 15.

4.6.2 Offset coefficients

A histogram of the results for the offset coefficients obtained from the linear model is

shown in figure 16a for some wavelengths. The horizontal axis represents the offset value

from the regression in units of A/D counts. The vertical axis represents the number of

sensors at each wavelength with the value specified by the horizontal axis.
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Figure 16: Histograms of offset coeff,rcients a) Full output range b) Zoomed histogram

As shown in figure 16a, most of the data ranges between 5000 and 10,000 A/D

counts. This is because the offset represents the dark current noise due to the sensor plus

an offset introduced by the electronics. As previously shown in figure 7, the values of the

dark current and this electronics ofßet have the same range, which is in agreement with

our model. Also, note there is an impulse peak at the 40,950 A/D counts level in figure
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16a. This peak corresponds to the number of saturated sensors shown as very white pixels

in figure 7. The sensors corresponding to the offsets with values from 10,000 to less than

40,950 are responsive (i.e. slope value not equal to zero) and located along the whole

FPA. Figure 16b shows the offset histogram zoomed from the 0 to the 10,000 A/D

counts.

4.7 Model validation

This section validates the use of a linear model by determining the predictive ability of

the linear regression using a comparison between the prediction sum of squared effors

(PRESS) and the sum of squared errors (SSE) criterion. The importance of comparing

these two measures comes from the fact that a PRESS value reasonably close to the SSE

justifies model validity (Kutner et al. 2005). Here, the PRESS criterion represents the

sum over all references of errors between a model prediction leaving out the reference to

be predicted and an observation and the SSE corresponds to the sum of the squared re-

siduals between the observations and the fitted values by the model.

The PRESS criterion is obtained independently for each sensor location i, j and wave-

length Æ. The steps followed to obtain the PRESS criterion are as follows. First, five dis-

tinct sets of slope and offset linear model parameters are computed using the Moore-

Penrose pseudoinverse as described at the beginning of section 4.6. For each of the five

sets, the model parameters are obtained by leaving out all the acquired measurements cor-

responding to the reference to be predicted. Next, the prediction enor comesponding to

each of the references to be predicted is obtained by computing the erors between the
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model prediction of the omitted reference and the true measurement. Then, the resulting

estimation errors are squared and added over all of the twelve measurements. This is re-

peated for all references. Finally, the prediction squared errors corresponding to each of

the five references are added over all references to obtain a single measure referred to as

the PRESS criterion at each sensor location and wavelength.

For visualization, a plot of the SSE vs. PRESS criterions is shown in f,rgure 17 for all

the sensor locations at the 960 nm wavelength. Plots of other wavelengths are included in

Appendix A figures A.3542.
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Figure 17: SSE vs. PRESS at the 960nm wavelength a) Full domain and range b)
Zoomed plot

The comparison of SSE vs. PRESS is made through histograms of transformed

PRESS and SSE criterions for each sensor and wavelength. The transformation applied to

the PRESS and SSE criterions is for visualizationpurposes. The problem in showing ra\ i

PRESS and SSE is that the range of both is very large (i.e. 0 - 108) (see Appendix A fig-

ures 4.43-50). The transformation consisted in square rooting and dividingby a scaling

factor of sixty (i.e. the total number of acquisitions) for both SSE and PRESS measure-

ments of each sensor and wavelength. This transformation enables a comparison of how

close the PRESS and SSE values are. Examples of the results are shown in figure 18a

and 18b for the 960 and 1360 nm wavelengths respectively. Histograms for other wave-

lengths are included in Appendix A (see figures ,A..51-58).
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Figure 18: SSE and PRESS comparison a) 960nm b) l360nm

Note in figures 18a and 18b, that the distribution of the two criterions in both figures

have similar shape. Moreover, the resulting errors for both criterions are relatively close

to each other considering the output range. The maximum observed difference that occurs

at the 960 nm wavelength is of 48 A./D counts and of 9l A/D counts for the 1360 nm

wavelength. Similar values are observed throughout all other wavelengths (see Appendix
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A figures 4.51-58). This small difference between the SSE and PRESS criterions sup-

ports the validity of the htted linear model and of MSE as an indicator for the predictive

capability of the model (Kutner et al. 2005).

4.8 Sensor response classification

As shown in previous sections, pixels are divisible into two main sensor groups with sig-

nificant differences in their sensitivity. The first corresponds to a dark region surrounding

the gray centered circle and the second coresponds to the gray centered circle. For this

reason, the images obtained are classified into regions of data obtained from insensitive

and sensitive sensor locations.

This section defines and classifies an insensitive sensor location to be a sensor loca-

tion affected by saturation, dead sensors and/or very low sensitivity. The very low sensi-

tivity of a location in this system might be caused by the limiting apefture of the system,

limiting light and/or by the low responsivity of the sensor. Furthermore, the limiting aper-

ture causes diffraction which causes undesired light rays incident into sensors creating

airy disks in the resulting image. These airy disks are in general low in A/D intensity in

comparison to the gray centered circle in the image. Here, regions with low sensitivity are

defined as regions severely corrupted by the optics of the system. The sensitive sensor lo-

cation is defined here as the sensor location not affected by saturation, dead sensors

andlor with very low sensitivity across the whole wavelength range.
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4.8.I Feature vector

The feature vector used for the classification of sensitive and insensitive sensor locations

is based on the parameter estimates of the model described in section 4.6 and shown in

figures 14 and 16. Note that the information shown in figure 14 indicates that the slope

value parameter could be used as a discriminator to separate sensors based on their sensi-

tivity. Thus, the approach of this thesis is to use the slope coefficients obtained from the

linear model as the feature vector to classify the sensor locations. This is because the

characteristic slope values for each group are well separated from one another (see figure

74 as an example). The offset coefficients are not used in the feature vector. This is be-

cause these values are similar for every sensor in the FPA and wavelength, except for

those under saturation (see fìgure 14). Therefore, only the slope values are used to clas-

sify the sensor locations in the FPA. The slopes at all wavelengths are used as the feature

vector to ensure that each sensor location has a high sensitivity at all wavelengths and

therefore correspond to the sensitive locations. This results in the feature vector given by

lgffiíjrl,=l : 
I

l{atu¡xl

Here, each component, Çffiq6 represents the estimated slope of a sensor location I

and j at each wavelength k. AtotaI of K (K: 72 slices) descriptors are used for each sen-

sor location. In other words, the vector ø represents the sensitivity in all spectra for each

sensor location. This feature vector is used by a classification algorithm to discriminate

sensors into sensitive and insensitive sensor locations.



Sensor response classification 64

4.8.2 Classificationalgorithm

The classification algorithm used in this study is the k-means using 2 clusters. The k-

means algorithm separates data depending on some distance metric from the feature vec-

tor to the mean of each cluster (Jain 1999). A pattern vector is assigned to the group with

the minimum distance from its corresponding mean. Here, the distance metric used is the

Euclidean distance. The k-means algorithm is implemented in Matlab within the built-in

function kmeans0. The result of using the classification is an image of dimensions 477 x

640 pixels where each element takes the values zero or one for insensitive and sensitive

sensor locations respectively. The resulting image is shown in figure 19.
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Figure 19: Sensor location sensitivity classification

In figure 19, the sensor locations under saturation, dead, with low responsivity and af-

fected by diffraction are classified as part of insensitive sensor locations. Moreover, some

sensor locations inside the white circle are classihed as insensitive. These correspond to

sensors that have a low responsivity or are dead. Outside the white circle there are no

Sensor sens¡ti\.ity class¡fi cat¡on
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sensor locations classified as sensitive. This results in a total of l93,87land 1 I 1 ,409 sen-

sors in the insensitive and sensitive regions, respectively. Using this classification, the

slope coefficients were separated accordingly using the image in figure 19 as a mask. The

result of the slope values coffesponding to each group is shown in the histograms in fig-

ures 20a and 20b for insensitive and sensitive sensor locations, respectively.
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Figure 20: Histograms of sensor location sensitivity: a) Insensitive regions, b) Sensitive

regions

The two mean centroids resulting from the classification are shown in figure 2l as a

function of wavelength. These two curves represent the mean slope value at each wave-

length for each group. Note, that the mean slopes in each group are well separated even at

wavelengths with low sensitivity. The mean slope for insensitive sensor locations is low

at all wavelengths.
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4.9 Calibration

The calibration of the NIR HSI system is performed using the inverse relationship of the

system response. As mentioned in section2.3.l, the response model is referred to as the

forward relationship and defines a relationship between the input in percent reflectance

and the output of the system in A/D counts. In the inverse relationship, the output in

terms of percent reflectance and the input in A"/D counts is used to estimate the reflec-
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tance of the measured input. In this inverse relationship, a new set of linear coeff,rcients

must be obtained that differ from the obtained system response slope and offset coeffi-

cients. To determine the coefficients in the forward relationship the squared error in the

coefficient estimation is minimized in terms of A/D counts whereas the inverse relation-

ship minimizes the squared effors with respect to percent reflectance. Therefore, the in-

verse relationship gives better coeff,tcient estimates for calibration.

The linear model used for the system response is used as the model for calibration.

This calibration is applied only to the sensor locations classif,red as sensitive. The per-

formance of the model was assessed using the validated RMSE. As mentioned earlier, the

RMSE is an indicator of the predictive capability of the model. The resulting RMSE's for

all sensor locations and wavelengths are shown in the histograms of frgure 22.
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Figure 22: RMSE Histogram for each wavelength

Each curve represents a wavelength and each distribution represents the spatial distri-

bution of the RMSEs. Note that the RMSE distribution appears to approximate a Gaus-
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sian distribution for all wavelengths. Also note that there are some wavelengths with a

higher prediction error. To illustrate this, figure 23 contains the mean RMSEs over all

sensors in the sensitive region at each wavelength.
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Figure 23:Mean RMSE as a function of wavelength

Note here that in most wavelengths, the mean root mean squared error is below one

and half percent. The wavelengths with mean RMSE higher than one and a half are the

1670,960,1070 and the 980 nm wavelengths (arranged in descending order). This value

is an estimate of the standard deviation of the system noise in terms of percent reflectance

and an indicator of the goodness of f,rt of the linear model as the system response esti-

mate.

At the end of this chapter we presented the results and performance of the linear

model as the system response and calibration estimate. However, a few more compari-

sons and tests are required to indicate whether or not this model is the best estimate of the

response and calibration function of the system. For this purpose, we evaluate the good-
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ness of ht of models of higher degree (i.e., the quadratic model) as the system response

estimate and compare it with that of the linear model in the next chapter. The comparison

is made using a hierarchical test which uses the F statistic as described in the next chap-

ter. This comparison is used to evaluate the significance of the quadratic term in the

model. Also, we discuss some of the problems in validating the quadratic model using the

available input references. Finally, we discuss and illustrate the importance of the build-

ing model data set in the performance of the linear model.



Chapter 5

iscussion

Typical problems related to the instrumentation of NIR HSI systems are described in the

introduction and the literature review. The materials and methods chapter describes a

procedure using calibrated references to understand and address those problems. The re-

sults and analysis chapter addresses the main problems encountered in NIR HSI systems.

Finally, this section deals with the significance of the results by describing the effective-

ness of the procedure on solving the issues typically found in NIR HSI systems. In addi-

tion, the procedure is compared with others developed in the literature.

In brief, the procedure developed in the realm of this thesis begins by acquiring data

used to describe the system's dynamic range, and its variances spectrally, spatially and

temporally. To achieve this, a set of five standards of distinct reflectance were imaged

separately in twelve repeated acquisitions at specific times. The next step constructs a

linear model based on the data acquired for each of the sensors within the FPA and oper-

ating wavelength of the system. The constructed models consider the response of each

sensor individually on a wavelength-by-wavelength basis which allows for correction of

the spatial and spectral nonuniformity (Geladi et aL.2004) and of the dark current varia-
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tion of each sensor. The next step consists of using the slope parameter of the developed

model as a descriptor of its sensitivity to classify their individual response. This interpre-

tation can be understood by noting that the slope coefficient is the only parameter of the

model changing as a function of input (figures 14 and 16). In other words, the slope pa-

rameter contains sufhcient information to describe the responsivity of each individual

sensor (e.g., defective: dead or saturated, low sensitivity, etc.). Additionally, this interpre-

tation also allows a modelling of the characteristic dark current by means of the offset pa-

rameter from the linear model (described in section 2.2.8). This is conf,irmed with the his-

togram of sensor offsets (hgure 16), which shows that the parameter does not change as a

function of input nor wavelength.

A Æ-means classifier, with lcZ, was also implemented for classification of sensors

across the whole FPA based upon their sensitivity. This allows for the identification of

the sensors significantly affected by the aperture of the system, defective: dead or satu-

rated, and in general sensors presenting a small slope (i.e., low sensitivity). Finally a lin-

ear calibration function was determined and implemented only on the sensors classified

as sensitive as described in section 4.9. Note that the calibration function was not ob-

tained using the inverse of the forward relationship (i.e., the response function) rather; it

was obtained by minimizing the squared enor of percent reflectance. This calibration

procedure addresses the problem of data in units that are not meaningful to the chemical

analyst.

Two main observations described by Geladi ef al. (2004) differ from the procedure of

calibration and correction proposed in this thesis. The first observation is that the number

of reference standards needs to be increased to improve the response and calibration ap-
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proximation of the model. Unfortunately, increasing the number of reference standards is

limited by their high cost. In general, fabrication of reference standards for the NIR re-

gion requires sophisticated processes to preserve the purity of the reflective material,

thus, increasing the cost of manufacturing. Also, the number of references required for

accurate estimation of the noise drift statistics is significantly high if only one measure-

ment per reference is obtained. The second observation is that the response of the sensor

is slightly nonlinear thus requiring a higher order model to obtain a more accurate re-

sponse approximation. The following section is dedicated to discussing and evaluating

the refinement provided by a second order term in the model using a hierarchical F test.

The end of the discussion chapter focuses on assessing the performance of the pro-

posed linear calibration using the complete (i.e., the 60 HS measurements) reference data

set in comparison to the model obtained using a single HS measurement for each of the

references. The performance is assessed using the previously validated RMSE as the

measure.

5.1 Second Order Regression Model

5.1.1 Diagnostics

This section uses the results of this thesis to discuss the first observation of Geladi et al.

(2004) that the quadratic model better approximates the true response function of the sys-

tem. Their main suggestion is that the response of the sensors is slightly nonlinear. How-

ever a few problems are associated with using a quadratic term in the model. Data diag-
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nostics are presented in this section to determine whether or not the second order term is

significant in improving the model's approximation. The suggested second order model

is given by

DNtju : c¿¡¡rPSFsz t g¿¡¡rP.SFs¿;¡ -l btas¿¡¡, (22)

Here, the variable c¡rcorresponds to the quadratic effect coefficient at sensor location 1,7

and wavelength k. The other parameters and variables represent the gain and offset as in

the linear response model. To check whether the second order term c¡¡¡ provides signifi-

cant refinements to the model, the hypothesis test

H¡: c¡¡ : 0

Hu: c¡¡ l0

was used. Here, He and Hu represent the null and the alternative hypothesis respectively.

The null hypothesis states that the second order term in the model is not significant. The

alternative hypothesis states the opposite. To obtain the coefficients of the second order

term model, the quadratic function that better fits the input reference data points was ob-

tained. The method used to obtain the quadratic model coefficients (see section 4.6) was

the Moore-Penrose pseudoinverse for the overdetermined case (Moore 1920; Penrose

1955). However, the matrix setup was modified to include the second order term compo-

nent as follows

e¡jtt =lÆ,,r1,e¿jk :l*o'u 
",n' 

" -u 
xd'k''1" tit' 

1l,r Lt^ 
lt;æiì 

L'ß 
I *nn*,,u' *nno'o,iu 1l
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r' r',rr rî)', rr]

Where Çk, gfu¡n andbni¿¡¡, are estimates for the curvature, slope and offset coeff,r-

cients, respectively, xt ijt represents the input reflectance in percent, s for s : {dark cur-
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rent,2o/o, 50Yo, 7 5yo, 99%) is a reference index and yl't ,,u is the /th measurement (for / :

{1,2...,I2} ) in A/D counts of reference standard s at indices i, j and Æ. The squared norm

Y(tput): llyur- Øi¡r e,ir,lt Ql)

was minimized in the same way as described in section 4.6. The resulting elements

eqx were separated and rearranged into three HS data cubes comesponding each to

quadratic effect term, the gain and the bias coefficients.

To test the two hypotheses, the residuals between the observation and the fitted value

were obtained for each reference, sensor location, wavelength and model. For each

model, sensor location and wavelength, their corresponding residuals are squared and

added to obtain a HS data matrix containing the SSE at each entry. This is done only for

the region previously classified as sensitive. After obtaining the SSE for each sensor loca-

tion and wavelength, the hypothesis alternatives were tested using a hierarchical test de-

scribed in Kutner et al. (2005). The test consists in using the partial F test statistic given

by

of

the

r* usn(xzlx)
MSE

(24)

Here, the MSE in the denominator represents the mean sum of squared effors obtained

from the model including the second order term. The numerator MSR(x'lx) represents

the mean regression sum of squares of adding x2 giventhaf x was already included in the

model. In short, the numerator is given by (Kutner et al. 2005)

MSR(Px2lx) =ssE(x)-lsE(r2'x) Q5)
7

Note that the degree of freedom for the numerator is one. This is obtained by subtract-

ing the degree of freedom of S.SE(x) from the degree of freedom in SSE (x2 ,x) that is 58
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and 57, respectively. The degree of freedom in the denominator corresponds to the SSE

of the second order model. Once all the SSEs where obtained, the F* statistic ratio is ob-

tained for the sensitive region. The resulting HS data cube contains entries where each

entry represents the F* statistic value at the respective sensor location and wavelength.

The F* statistics HS cube values were then checked against the percentiles of the F

distribution. Here, the confidence level or coefficient u was chosen as 0.01. This strin-

gent value was chosen such that only large deviations from the linear fitted value are con-

sidered as the alternative hypothesis. Thus, the F distribution threshold is given by the

critical value F(0.99, 1,2) :98.5. F* statistic values higher than the critical value are

considered as sensors requiring the refinement introduced by the second order term. With

F* values lower than the critical value, the second order term in the response of the sen-

sor at the wavelength under test are considered as insignificant. The F* statistics HS data

cube was classified in Matlab using the critical value as a threshold. The result was an HS

matrix with values one and zero and dimensions equal to the specified settings for HS

images (i.e. 477 x 640 x 72). Sensor locations with a value of one correspond to sensors

with a signifìcant second order term. Values of zero correspond to the null hypothesis. An

example is shown in figure 24 sliced at the 1360 nm wavelength.
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Figure 24: Localization of sensors with a significant second power term at 1360 nm

In figure 24,fhe sensors with a significant curvature at the 1360 nm wavelength are

located all along the sensitive region with some clustered around the center of the image.

The total number of sensors within the sensitive region with a significant second order re-

fìnement is 5461 out of 11I,409 (i.e., 4.9 percent). For other wavelengths, the density and

location of sensors with a signif,rcant second order refinement varies randomly. To illus-

trate how these sensors vary in density, the total number of sensors with a significant sec-

ond order term were counted and plotted as a function of wavelength. The resulting plot

is given in figure 25.



Second Order Reeression Model 77

1200 1300 1400

Wa\elength in nm

Figure 25: Percentage of sensors with a signifrcant quadratic term, o, : 0.01.

Here, the verlical axis represents the percentage of sensors with a significant second

order term. The normalization was carried out by dividing the total number of sensors in

the sensitive region with a significant second order term by the total number of sensors in

the whole sensitive region. Note in f,rgure 25 that the number of sensors with a significant

second order term appears to have some correlation with the corresponding sensitivity of

the wavelength. The higher number of sensors with a significant second order term oc-

curs around wavelengths with high spectral sensitivity (e.g., 1360 nm, 1560 nm). This

can be confirmed by comparing figure 25 with figure 9. Note, in figure 25, that the num-

ber of sensors with a significant second order response is low in general.

In figures 24 and25,the reason that the second order term provides a refinement to

the fit of the data has two possible reasons. First, the response of the system may contain

areal curvature effect. The second possibility is that the nonlinearities are caused by the

random nature of sensor noise. This noise could be amplified thereby corrupting the sig-

Pefcentage of sensors with a sign¡ficant quadratìc tem
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nal by an amount larger than in other sensors. The noise may also be misclassified by the

test as curvature due to the conf,rdence level used. To clarify this, a plot of the dynamic

range is shown in figure 26alogether with the linear and quadratic fits. The plot shows a

single sensor with one of the highest F* numbers at the 1360 nm wavelength (F* :

497.49).
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In figure 26a, note that the data points are located along a line. Also note that both the

first order model and second order model are very near to each other. The refinement

provided by the second order model is to curve the line closer to all reference measure-

ments. Figure 26b shows the residuals between the two models and the reference stan-

dards for the same sensor and wavelength. It is clear why the second order term provides

ref,rnements to htting. The SSE of the linea¡ model is significantly larger than the SSE of

the quadratic model because of the residual level. However, the errors are not high con-

sidering the range of the output level in A/D counts. In fact, the RMSE of the linear

model in this case is of I25.95 A/D counts per percent reflectance. Considering that the

slope of the sensor is of 105.27.The error introduced by the linear model is of approxi-

mately 1.19 percent reflectance. The reason why a significant second order refinement

was detected by the test involves the statistical problem of the sensitivity and reference

set sample size.

5.7.2 Linear and Quadratic Validation Comparison

In the previous section, an F statistics test on the residuals showed that some sensors pre-

sent a significant second order refinement at specific wavelengths. However, the applica-

tion of a second order term model for the response and calibration of the system requires

proper model validation. In our case this is a problem since the number of reference stan-

dards we have available is five. Typically, problems arise in the extrapolation of higher

degree polynomials especially at edges. For this reason, the PRESS criterion previously

used for model validation is higher in comparison to the PRESS of the linear model. To

illustrate this, the transformed SSE and PRESS comparison (the transformation consists



Second Order Regression Model B0

of dividing by sixty and square rooting the data individually for each sensor location and

wavelength) between the linear and quadratic model is shown in figure 27 for the 1260

nm wavelength.

- 

TSSE
.-.... TPRESS

-'IPRESS 

- TSSE

C
a
oo
õ
,4
L

c
=oo
õ
.x
È

300 400 500 600

AJD counts

Figure 27:Model validation comparison a) Linear model b) Quadratic model

Figure 27a and 27b corresponds to the SSE and PRESS comparison using the linear

and quadratic models respectively. In the linear case, the PRESS distribution is very close

Transformed SSE and PRESS comparison at l260nm

-,):r----,r-,, - -r- --

A/D counts

Transformed SSE and PRESS comparison at 'l260nm



Second Order Regression Model 81

to the SSE distribution. This, similarity serves as the criterion for both model validation

and the use of the MSE as an indicator of the predictive capability of the model. The SSE

in figure 27b is more skewed towards lower transformed errors than in the linear model.

This is because a model with a higher order term and fewer degrees of freedom will al-

ways fit the data better. This might indicate that a second order term model would de-

scribe more accurately the system response. However, note that the PRESS distribution in

figure 28b is spread over a higher range of transformed errors in comparison to that of the

linear model. Moreover, the differences between the PRESS and SSE in the second order

term model are much higher than those for the linear model. This means that the validity

of the linear model describing the response of the system is higher than that for the quad-

ratic model.

In general, the use of the second order term model to characterize the response of sen-

sors is problematic. One of the problems in using the quadratic model is that the model is

not well validated. Proper validation of the model requires the use of more reference

standards to increase the degrees of freedom. Another problem is that the refinement pro-

vided by the quadratic model on the sensors with significant second order terms might be

just a better fit to the noise included in the reference measurements. Moreover, the num-

ber of sensors with a signif,rcant second order term shown in f,rgure 25 is very low in

comparison to all other sensors accurately described by the linear model. Finally, a quad-

ratic model involves estimation of three parameters: the curvature, slope and offset. This

results in three HS data cubes corresponding to each of the coefficients. Considering the

size of HS images, this compromises the memory space required to store the coefficients

of the model.
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5.2 Building Model Data Set

In the last chapter, the response and calibration of the system was approximated with a

linear model. This model was obtained using a data set consisting of a set of twelve

measurements for each of the five available inputreferences (i.e., the 0,2,50,75 and99

percent reflectance standards). Certainly, acquiring, managing and storing this data set

are tedious tasks which in turn result in important limitations. However, these limitations

are necessary to obtain a more accurate model of the response and calibration functions

of the system. This is important because the accuracy of the model directly impacts the

quality of the subsequent chemical analysis of the sample under study.

The use of one measurement per available reference as described in the paper by Ge-

ladi et al. (2004) is insufficient due to the temporal noise affecting the system (see figure

l0). In his paper, Geladi et al. suggests using more references to improve the model ap-

proximation. Certainly, using a significant number of references allows for estimation of

the noise statistics. Unfortunately, reference reflectance standards of specific reflectance

are hard to manufacture and expensive to fabricate for the NIR region which imposes a

limitation on the available data. For this reason, using a set of repeated measurements of

the available references for model construction gives the capability to readily extract the

noise statistics for modeling.

To illustrate the possible magnitude of this issue, the performance of a linear model

obtained with a full reference data set is compared with that obtained using a single

measurement reference data set. The single reference set was obtained from the fourth

and fifth acquisitions in the sequence corresponding to the I 15 and 120 minute measure-
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ments. In this set, the dark current is obtained from the fourth acquisition, the 2 percent

reference from the fifth, the 50 percent from the fourth and so forth. These two acquisi-

tions were selected because the highest drift occurs in between these two batches and so

the RMSE reflects the worst possible calibration error of the whole data set. For this rea-

son the model building set is labelled as the worst single. The performance comparison of

the linear model using these two sets is made using the validated RMSE. The RMSE for

each method was obtained at each sensor and wavelength by summing all the squared re-

siduals between the observations and the fitted values. This summation was then root

squared and divided by the corresponding degree of freedom to obtain the RMSE at each

sensor and wavelength. The resulting calibration RMSE distributions are shown in fig-

ures 28a and29b for the 960 nm and 1360 nm wavelengths, respectively.
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In figure 28a the RMSE corresponding to the full data set building model is lower

than the two single sets. Here the differences relative to the RMSE of the full data set

model and the singles are approximately of one percent for the worst single. In f,rgure 28b

the RMSE corresponding to the full data set is also better than the single. However, the

difference is now smaller because the sensitivity at the 1360 nm is greater and noise drifts

are smaller.

To show the performance comparison of the two model building reference sets for all

wavelengths, the average of the RMSE was used. The average RMSE was obtained by

computing the average RMSE over all sensors inside the sensitive region af each individ-

ual wavelength. The average RMSE comparison is shown as a function of wavelength in

ftgure 29.
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Figure 29: Comparison of mean RMSE as a function of wavelength

Figure 29 shows that the performance of the full reference building model set is better

than the worst single at all wavelengths. The performance comparison shown in figures

28 and 29 implies that a better estimate of the coefficients was obtained by using the full

set of repeated reference measurements. In the case of the worst single, the noise drift be-

tween the fourth and fifth acquisitions is higher than in any other acquisition combina-

tion. This results in higher deviations from the fit resulting in a higher RMSE. This set

was chosen to show the impact of the building model data set in the accuracy of the

model approximation.

This thesis discusses the significance of the results in addressing and conecting some

of the issues present in NIR HSI systems. In particular, the problems addressed are defec-

tive sensors (saturated or dead), sensors with low sensitivity, spatial and spectral nonuni-

formities in the system, the time drift and dark current noise in the system and hnally

sensor calibration. These problems are addressed by constructing a linear model for each
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sensor location and wavelenglh of operation. Defective sensors and sensors with low sen-

sitivity where masked out using a classification based on the slope of the linear model (a

parameter like sensitivity). And finally the calibration is addressed using the inverse rela-

tionship of the response model (i.e., the linear model).

This chapter we discussed the significance of a higher order model for the response

and calibration of the system. It was found that the quadratic model does indeed provide

some refinement to the model of just a few sensors within the FPA with the data at hand.

However, the approximation resulting from the linear model is sufficient in average for

the actual response and calibration functions. Moreover, the linear model is a better esti-

mator when comparing the prediction accuracy of each model (i.e., the linear and quad-

ratic) by means of the PRESS criterion. The reason behind this result is that extrapolation

of polynomials of higher degree polynomials causes a larger error when predicting points

outside the training set.

Finally, this chapter discusses the issue of using a data set containing information re-

flecting the spatial and spectral nonuniformity as well as the time drift in the system. In

general, this information is helpful in order to obtain more accurate approximations of the

actual response and calibration functions. Although, obtaining this large data set is time

and space consuming, this thesis suggests that it is a sacrifice worth considering if accu-

rate measures are a priority. Moreover, the procedure described is not intended to be re-

peated every time the spectra of a sample are collected for analysis. Instead, the full data

set can be obtained once the characteristic noise drift and sensor sensitivity changes sig-

nificantly.



Chapter 6

Conclusion

Near infrared hyperspectral imaging has established as powerful non-destructive tool for

the chemical analysis of heterogeneous samples. This tool is capable of analyzing multi-

ple chemical constituents simultaneously without damaging the sample under study.

These and other benefits such as the fast acquisition of information from a sample and the

feasible cost of the instrumentation have in turn motivated its use in applications such as

food and agrochemical quality and safety inspection (Wang and Paliwal2007), pharma-

ceutics and medicine (Ciurczak and Drennen 2002), textile production, combustion re-

search, etc.

However, NIR HSI instrumentation is not free from problems. This thesis deals with

some of the problems attributed to the illumination source, electronic tunable filters, op-

tics and the FPA in a NIR HSI system. A review of literature revealed that the problems

commonly encountered in these types of systems are the spatial non-uniform response of

the system, the spectral variance, the time drift in the sensors within the FPA, defective

sensors showing saturation or no response at all. The factthat the acquired raw data needs
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to be converted into percent reflectance for subsequent chemical analysis poses additional

problems.

The methodology used in this thesis for the correction and calibration of NIR HSI is

based on image processing. The first step consisted of obtaining twelve repeated HS

measurements of a set of five references of known reflectance (i.e., 0, 2, 50,75 and 99

percent). This data set was then used to establish the input and output relationship of the

system and to illustrate the effects of the problems in the resulting HS images. The results

showed that the HS images are indeed corrupted by the spatial non-uniformity, the spec-

tral variance, the time drift, the presence of defective sensors in the FPA and the optics of

the system. For this reason, a technique that addresses each of the issues as sub-objectives

was proposed.

The first sub-objective was addressed by computing linear approximations for each of

the sensor's response at a wavelength independently. The advantage of this method is that

it allows for correction of spatial non-uniformities and spectral variances automatically.

The parameters of the linear model were obtained by setting the problem in terms of ma-

trices and solving the system of equations using the Moore-Penrose pseudoinverse. To

validate the model, the prediction ability of the model was verifted using a comparison

between the PRESS and SSE criterions. The results showed that the PRESS and SSE are

relatively close to each other which indicate that the linear model is a good estimator of

the system response.

For the second sub-objective, it was found that the parameters obtained from the lin-

ear model can be used as descriptors to characterize the response of each sensor at each

individual wavelength. Further analyses revealed that the offset parameter contains in-
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formation about the dark current noise in each sensor at a specific wavelength. It was also

found that this parameter does not change significantly as a function of input reference

and operating wavelength. In contrast, the slope parameter changes as a function of input

and wavelength. In other words, these parameters contain sufficient information about the

sensitivity of the sensor.

The third sub-objective was accomplished by using the slope parameters as features

to identify defective sensors and sensors limited by the aperture of the system. Each sen-

sor in the FPA was classified using a Ë-means algorithm with lç2 into a sensitive region

or to an insensitive region. The feature vector for each sensor consisted of a vector con-

taining entries for each slope corresponding to a wavelength. The final result is a mask

that can be used to spot the sensors of the system that are not working properly and to

mask out the regions of the HS image corresponding to areas in the FOV with insufficient

sensitivity.

For the last sub-objective, the calibration of the system was achieved by using the in-

verse relationship of the system response. To obtain the parameters of the calibration

model the same steps for obtaining the response model were followed with the only ex-

ception that the effor was now minimized in terms of percent reflectance. The perform-

ance of the calibration was shown using histograms of the validated RMSE for all sensors

and wavelengths. With this sub-objective accomplished the data could be accurately con-

verted to percent reflectance units.

The use of a quadratic model to describe the system response and calibration func-

tions was also explored. It was demonstrated that the second order term of a quadratic

model does indeed provide some refinement to the model. However, this refinement is
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significant only to a low portion of sensors within the sensitive region of the FPA. More-

over, the validation of this quadratic model presents the problem of extrapolation com-

monly encountered in higher order models. This problem results in a validation that is not

as good as the linear model. In other words, the RMSE corresponding to the linear model

is a better estimator of the true standard deviation than the RMSE estimator of the quad-

ratic model.

Finally, a performance comparison of the linear models constructed using two distinct

data sets was shown: the first one, our proposed set which includes information about the

time drift of the system versus a data set including a single measurement for each of the

available references. It was found using the RMSE that the performance of the linear

model constructed using our proposed set is much better than the second set mainly be-

cause it contains more information to account for the time drift occurring in the system.

This thesis proposes a method for the correction and calibration of NIR HSI systems.

In future research, calibration and comection methods that are more efficient in the use of

computer memory and computation time are expected. For example, finding correlations

between slopes corresponding to distinct wavelengths could aid in reducing the number

of slope parameters required for describing the whole wavelength range of the system

save computer memory and time. Moreover, we expect on seeing methods using more

input references to address the issue of validating higher order models. Finally, we expect

future scene based correction and calibration techniques exploring the spatial, spectral

and time of acquisition correlations.
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Figure A. 242 Spectral response of sensors at a) Row 261 , b) Row 27 1
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Figure A. 25: Spectral response of sensors at a) Row 281, , b) Row 29 I
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Figure A.262 Spectral response of sensors at a) Row 301, b) Row 3 1 I
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Figure A.27: Spectral response of sensors at a) Row 321,b) Row 331
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Figure A. 28: Spectral response of sensors at a) Row 341,b) Row 351
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Figure A.29: Spectral response of sensors at a) Row 361, b) Row 371
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Figure A. 30: Spectral response of sensors at a) Row 38i, b) Row 391
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Figure A. 31 : Spectral response of sensors at a) Row 40 1 , b) Row 41 I



Annendix A 105

Spectral resÞonse for se¡sors in row 421 Speclral ¡esponse for sensoß in row 431

oì

Figure A. 32: Spectral response of sensors at a) Row 421, b) Row 43 I
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Figure A. 33: Spectral response of sensors at a) Row 441,b) Row 451
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Figure 4.35: SSE vs. PRESS at the 960 nm wavelength a) Full domain and range b)
Zoomed plot
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Figure 4.36: SSE vs. PRESS atfhe 1060 nm wavelength a) Full domain and range b)
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Figure A.37: SSE vs. PRESS at the 1160 nm wavelength a) Full domain and range b)
Zoomed plot

0.8 1 1.2 1.4 1.6

PRESS B SSE at 960nm

fa



Annendix A 707

x 1oB PRESS E SSE al 1260nm

PRESS E SSE al 1460¡m

o 2 4 6 tttuto 12 14 turrolu o 1 2 3 o 
tJ' 

6 7 u trrolo

Figure 4.38: SSE vs. PRESS at the 1260 nm wavelength a) Full domain and range b)
Zoomed plot
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Figure A. 40: SSE vs. PRESS at the 1460 nm wavelength a) Full domain and range b)
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Figure A. 4lz SSE vs. PRESS at the 1560 nm wavelength a) Full domain and range b)
Zoomed plot
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Figure A. 43: SSE and PRESS comparison a) 960 nm b) 1010 nm
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Figure A.44: SSE and PRESS comparison a) 1060 nm b) 1110 nm
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Figure A. 45: SSE and PRESS comparison a) 1160 nm b) 1210 nm
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Figure A.46 SSE and PRESS comparison a) 1260 nm b) 1310 nm
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Figure A.472 SSE and PRESS comparison a) 1360 nm b) 1410 nm
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Figure A. 48: SSE and PRESS comparison a) 1460 nm b) 1510 nm



SSE and PRESS compadson at Mwle¡glh 1560nm SSE and PRESS companson at Mwlensth 16ronm

---- - ssE

- 

PRESS

- 

PRESS - SSE

À

i
r000 |
*of

I*'f
*oi
æofi

.5

o[_
0 12345

Eror
12345678

Eror
9 10

x 105

Figure A.49: SSE and PRESS comparison a) 1560 nm b) 1610 nm
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Figure A. 51: Transformed SSE and PRESS comparison a) 960 nm b) 1010 nm
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Figure A. 53: Transformed SSE and PRESS comparison a) 1160 nm b) 7270 nm
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Figure A. 54: Transformed SSE and PRESS comparison a) 1260 nm b) i310 nm
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Figure A. 55: Transformed SSE and PRESS comparison a) 1360 nm b) 1410 nm
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Figure A. 56: Transformed SSE and PRESS compadson a) 1460 nm b) 1510 nm
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