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ABSTRACT

The problem of scattering by a perfectly conducting multi-slotted circular cylin-
der excited by a z-polarized T'M incident plane wave is presented. The solution is
carried out using two methods of analysis. In the first method the problem is ana-
lyzed using the boundary value method. Field components inside and outside the
cylinder are obtained in terms of the aperture fields. Then Galerkin’s method is em-
ployed to solve for the unknown aperture fields. In the second method the unknown
aperture fields are obtained using the aperture field integral equation method. Upon
application of the boundary condition, N-integral equations are obtained. The re-
sulting integral equations are solved using the method of moments. Results for
the surface tangential electric electric fields, the far scattered field and the bistatic

scattering width are obtained and compared using the two proposed methods.
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CHAPTER 1

INTRODUCTION

The scattering of electromagnetic waves from an infinite axial, perfectly conduct-
ing circular cylinder with a single or multi-slot, situated in free space and excited
by a plane wave or an electric/magnetic line source is a well known problem in
electromagnetic field theory. Recently the circular slotted cylinder filled with a di-
electric material has become the subject of extensive study due to its engineering
applications in devices such as microstrip transmission lines, microstrip antennas
and composite missiles.

This problem can be classified into two categories according to the excitation,
i.e. the H-polarization transverse electric TE, and E-polarization transverse mag-
netic T'M, waves. The H-polarization case has received a detailed treatment as
an antenna problem [1]. Olte [2] studied the radiation of an elementary cylinder
antenna through a slotted enclosure, where he reduced the problem to a Fredholm
integral equation of the first kind, and then solved for a narrow slot as a special case.
Richmond and Gilreath [3] studied a flush-mounted dielectric-loaded axial slot on
a circular cylindrical antenna. The analysis was carried out using the boundary
value method and then Galerkin’s method was introduced to complete the solution.

Simultaneous linear equations were generated in which the unknown quantities were



the coeflicients in a Fourier series expansion for the electric field in the outer aper-
ture. Johnson and Ziolkowski [4] used the generalized dual solution to solve for
the scattering of an H-polarized plane wave from an axial slotted infinite cylinder.
This solution was introduced by Ziolkowski [5] to solve the mixed boundary prob-
lem of the electromagnetic aperture coupling type. The diffraction problem for a
narrow slot was treated by Rhodes [6] and by Morse and Feshback [7]. Beren [§]
made a comparison study between three methods of solution. In one method, the
aperture field integral equation method was used, while in the other two methods
(E-field integral equation and H-field integral equation) the fields were determined
from an equivelant surface current. Although the H-field integral equation method
gives good results under some conditions, the solution becomes inaccurate under
two other conditions which have to do with the interior resonance phenomenon [9]
in which nonunique solutions are obtained. However, the other two methods were
in a very good agreement and gave accurate results.

The E-polarization case has received some attention in the literature where
various techniques were employed. It was investigated with an integral equation
approach by Senior [10] and with approximate analytical approaches by Libelo {11].
Shestopalov et al. [12] have examined the problem with limiting cases of its dual se-
ries solution. Sinclair [13] has investigated the scattering from a perfectly conducting
notched cylinder by using the reciprocity theorem, and his solution has been gener-

alized to include other geometries such as the conducting cylindrical wedge, ribbon



and strip. Yatom [14] extended the solution of the conducting notched cylinder to
the coated notched cylinder and the reciprocity theorem was used in conjunction
with the boundary value method. The problem of a single slot was also studied
in detail by Hussein [15]. Kishk [16] used the surface integral equation technique
to characterize the electromagnetic scattering from a surface impedance three di-
mensional object partially coated with dielectric material. The resulting integral
equations are solved for bodies of revolution using the method of moments.

The problem of a multi-slot conducting cylinder did not receive great deal of
attention in the literature. Hussein [17] studied in detail the multi-slot problem.
However the geometry was utilized in the same manner as other structures such as
the coupling between waveguide in infinite arrays [18] and coupling between double
step discontinuities in waveguide [19].

The main objective of this thesis is to present an analytical study of the fields
in and around the cylinder for single and multi-slots with various values of slot
parameters. The study is carried out using two methods of analysis. In the first
method, the boundary value technique is employed, while in the second method the
aperture field integral equation is used with the final computation carried out using
the method of moments.

In Chapter 2 the case of a single slot with an arbitrary slot angle is considered.
The cylinder is taken to be perfectly conducting, situated in free space, filled with

a dielectric material, and excited by a z-polarized transverse magnetic TM, plane



wave. The analysis is carried out using two methods as stated before. Both methods
require the technique of separation of variables to start with [20], where the fields in
and around the cylinder are found using Maxwell’s equations. In the first method,
the unknown aperture field is expressed in terms of a complete set of continuous
and orthogonal functions defined on their respective domains. Application of the
boundary conditions requires the use of the boundary value technique along with
Galerkin’s method. Simultaneous linear equations are generated in which the un-
known quantities are the coefficients in a Fourier series expansion for the aperture
electricfield. In the second method, the unknown aperture field is expressed in terms
of a discrete set of functions with unknown expansion coefficients defined only at
discrete points on the aperture. The method of moments is used in conjunction with
the aperture field integral equation technique to solve for the unknown expausion
coefficients.

Chapter 3 presents the general solution for the case of a multi-slot cylinder. The
cylinder is taken to be the same as the one specified in Chapter 2 except that it has
N-arbitrary slots. The analysis used here is similar to the one used in Chapter 2,
with the exception that there are N-coupled equations according to the number of
slots. Moreover, the unknown aperture fields are expressed in terms of a contin-
uous orthogonal functions, each defined in its respective domain. The boundary
value technique requires the use of Galerkin’s method N-times in order to generate

N-coupled equations which contain the information on the aperture fields. Simi-



larly, there should be N-coupled aperture field integral equations which also contain
the information that specifies the behavior of the aperture fields. The method of
moments is then employed to solve the N-integral equations simultaneously.
Chapters 4 and 5 present numerical results for the single-slot case and the multi-
slot case,respectivily. The results are classified into three parts. The first is used
to examine the accuracy of the solution over the boundary region and to verify the
validity of the solution for the complete conducting case. The second part discusses
the results for the far scattered field with an arbitrary slots angle. The third part
presents results and discussions for the bistatic scattering width. Conclusions and

recommendations for future work are presented in Chapter 6.




CHAPTER 2

ANALYSIS OF SCATTERING BY A PERFECTLY
CONDUCTING SINGLE-SLOTTED CIRCULAR

CYLINDER

The problem of scattering by a perfectly conducting infinite cylinder with a
single axial slot is presented in this chapter. Two methods of analysis are used
to analyze the problem under consideration. Using Maxwell’s equations and the
technique of separation of variables, field components in and around the cylinder
are found with unknown complex expansion coeflicients. An unknown tangential
electric field is assumed at the aperture. In the first method, application of the
boundary conditions require continuity of the tangential electric field components in
and around the cylinder with the aperture electric field. Continuity of the tangential
magnetic field components across the aperture using the boundary value technique
employs Galerkin’s method, upon which the fields in and around the cylinder are
found in terms of the aperture field. On the other hand, the second method employs
the continuity of the tangential magnetic field components across the aperture to
yield an integral equation in terms of the unknown aperture field. In order to solve

this integral equation, the method of moments is employed [21]. The unknown



aperture field is expressed as an infinite series with a linear combination of the
expansion function. The expansion function is substituted into the integral equation,
then a weighting (testing) function is defined and used to test the integral equation

at different points.



2.1 Boundary Value Method

The boundary value method is used to solve problems for which the field in a
given region of space is determined from a knowledge of the field over the boundary
of the region [20].

Consider a perfectly conducting circular cylinder of radius a, with an infinite
axial slot along the z-axis of angular width ¢ = 3 — « + 27. The inner region of
the cylinder is assumed filled with dielectric material of permittivity e; and perme-
ability g1, and the outer region is taken to be free space. The cylinder is excited
by a z-polarized transverse magnetic 7'M, plane wave, with an incidence angle ¢;
measured from the positive z-axis, as shown in Fig. 2.1. Since the source and the
structure are independent of z, the field produced by this source can have only a
z-component of the electric field that does not vary with z. Therefore, Maxwell’s

equations lead to the following tangintial wave equations.

(Viqs +EHE, =0 (2.1)
and
1 dE
H, = —"% .
6= Son dp (2.2)

where the time dependence €/ is understood.




4y

incident plane

wave
9;

Figure 2.1: Geometry of the single slot problem.



The incident electric field of unit intensity due to a z-polarized plane wave is

given by
E; — p—ikpocos{d—b:) (2.3)

Using the wave transformation [20], (2.3) can be expanded in terms of cylindrical

wave functions as

E; = Zj"Ean(kop) COs n(qB — &) (2.4)
n=0
The ¢ component of the incident field can be found using (2.2) to be

H;b = —J% zannJ;(kop) cos n(¢ — ¢;) (2.5)

n=0
Since the inner and outer regions of the cylinder are assumed to be continuous,
smooth and of a circular geometry, the expressions for the total electric field com-

ponents in both regions become

El = Zj“snAan(klp) cos ng p<a {2.6)
n=0

B2 = Y i [Bal? (kop) + Ju(kap)] cos n(d — ) p>a. (2.7)
n=0

The total ¢ components of the corresponding magnetic field can readily be found

from (2.2)as

H‘;}) = —jn Zj“aﬂAnJ;(klp) cos ng p<a (2.8)
n=0

Hy = =jyo ) j"n [Bal,®(kop) + Jo(kop)| cos n(¢ — ) p>a. (2.9)
n=0

10



Here J, is the cylindrical Bessel function of order n, H(? is the cylindrical Hankel
function of the second kind and order n, the prime superscript denotes differentiation
with respect to the total argument, y, and y; are the intrinsic admittance of free
space and dielectric material, respectively, while A, are the unknown transmitted
field coeflicients and B, are the unknown scattered field coefficients.

To solve for the unknown transmitting and scattering coefficients A, and B,,

respectively, we have to satisfy the following boundary conditions:

. | E(@) a<é<p
EZ — at p=a, (210)

4] otherwise

E(g) a<éd<p
E? = at  p=a, (2.11)

0 otherwise

and

Hj = H} at p=a (2.12)

Continuity of the tangential electric fields can be accomplished by expanding
the unknown aperture field E(¢) in terms of a complete set of orthogonal functions
defined on their respective domains. The expansion function has to be of ¢ depen-
dence only and z-directed. Also, it needs to be chosen to conform with the edge
conditions at p = a, ¢ = o and ¢ = 3. Moreover, the choice has to be appropriate

and such that the integrals involved in the formulation are possible.

11



Therefore the continuity of the tangential electric field at p = a gives

© E(¢) a<¢<p
Zj”enAan(kja) cos ng = { , (2.13)
n=0 0 otherwise
and
0 E(¢) a<é<p
> en [ BaH (o) + Ju(kot)] cos n(g — ;) = { (2.14)
n=0 0 otherwise
E(¢) is the unknown aperture field and can be chosen as
E(@) = a,siny(¢ — a) (2.15)
g=1

where v = m¢/(f — @) and 3 # «.
Substituting back into (2.13) and (2.14) and making use of the orthogonality

property of the trigonometric functions, the transmitting coefficients are be given

by
A= 1 S (2.16)
n 7o, Jn(kla) pr g L'gn .
where
A
Fon = / siny(¢ — &) cos ng dé. (2.17)

and the scattered field coefficients become

1 [ A
where
‘3 .
Gon = / siny(¢ — o) cos n(¢ — ¢;) do. (2.19)

12




The integrals in (2.17) and (2.19) can be evaluated analytically and can be
written in closed forms.
Similarly, application of the continuity of the tangential magnetic field compo-

nents gives

n Z annAn!];(koa) CcOos TL¢ =
n=0

Yo ) i"n [BRH koa) + J, (K, a)] cos n{¢ — ¢;) (2.20)

n=0

Substituting {2.16) and (2.18) into (2.20), and making use of the Wronskian deter-

minant

; ' ) 27
Tl P ) = B (2} Jn(2) = =, (2:21)
TE
one obhtains
(2)( ko)

Zaqz k ;Fqncos ng —

g=1 n=0

) Gfi‘n COos n(QS - Qé:) =

) (ka

23 o~ _ J"En
————— cos n(¢ — ¢;) (2.22)
koft ng[) H'r(t?)(koa) ( (

In order for (2.22) to be evaluated for the unknown expansion coefficients a,
Galerkin’s technique has to be introduced, to enforce the continuity of the tangential
magnetic field components across the aperture. Multiplying both sides of (2.22) by
siny' (¢ — @), where v = wp/(8 — a), and integrating over the aperture, i.e. from

¢ = o to ¢ = 3, the resulting equation can be written in a matrix form as follows.

[Zral [ag] = V3] (2.23)

13



where

= 1 Jnlbra) 1, (k,a)
Lpg = — ni'pn — Tov, . YTgn'Tpn 24
f2' T;) yo Jn(kla) q » H,(lz)(koa) Gq Gp (2 2 )
and
2] = j"n

P ko 25 HP (kya)
aq in (2.23) represents the unknown field expansion coefficients
In matching Hj across the aperture, a selection of the weighting function
siny (¢ — a) was made to be the same as the basis function in (2.15). This is
a distinctive feature of Galerkin’s method.
The matrix equation in (2.23) can be solved to obtain numerical values for «,,

while (2.16) and (2.18} are employed to determine the unknown coefficients A,, and

B, respectively.

2.2 Aperture Field Integral Equation

The same structure used in Section 2.1 will be used in this section to formulate
the problem using the aperture field integral equation method. The electric and
maguetic components in both regions will have the same expansion form as given
by (2.6-2.9). Application of the boundary conditions (2.10-2.11), and making use
of the orthogonality property of the trigonometric functions, the transmitting and

scattering field coefficients can be obtained in an integral form as follows.

. j—n 1 A ! ' g4
A = T ]a E($') cos nd'dd’, (2.26)

14




1 jTr R , , )
Bu = — [mn /a E(¢) cos n(¢p — ¢:)dé' — Julkoa)| . (2.27)
Now, making use of the remaining boundary condition given by (2.12), and sub-

stituting for A, and B, as given above by (2.26) and (2.27), respectively, one gets

the following integral equation.

18 [y T (ki) o HPYk,a) o
2::0/ [y_an(kla) €05 C0s = Ly gy O O T B cos nld = 6| B9 de
25 .
- LJ Z Hé)(‘“‘k )cos n(é—¢;). (2.28)

I . . . .
where ¢ is a dummy variable of integration.

2.2.1 Method of Moments Algorithm

Equation(2.28) represents the aperture field integral equation, this equation is of a
little use unless it can be evaluated analytically or can be computed numerically.
Since the analytical approach has already been discussed in Section 2.1, the analysis
will be carried out using a numerical technique. The method of moments [21] has
proven to be one of the most efficient approximate method for obtaining results of
acceptable accuracy. The results of the application of this approach to scattering
problems is essentially a transformation of the original integral equation into a set of
N linear equations in N unknowns. A linear combination of the N unknowns forms

an approximation to the original unknown quantity appearing in the associated

15



integral equation. The above procedure may be written in a matrix equation of the

following form

(2] [B] = [V], (2.29)

where [Z] is the coefficient matrix, [B] is the unknown quantity, and [V] is the
known quantity of the matrix equation. The accuracy of the solution largely de-
pends on the number of sampling points N and the approximate method used for
evaluating the elements of the matrix [Z]. However, since the determination of [Z]
requires approximate evaluation of the sub-integral over N, better accuracy would
require more accurate approximation techniques. Therefore, it seems advantageous
to keep the number of sampling points, N, as low as possible and use more accurate
techniques for evaluating [Z]. Morcover, there is a limit on N beyond which the
accuracy of the solution would greatly be impaired. Andreasen [22] has shown that
for a smooth portion of the scatterer, the distance between two adjacent sampling
points must not exceed A/4. Furthermore, for regions close to the sharp edges,

additional sampling points are needed.

2.2.2 Numerical Solution of the Integral Equation

To apply the method of moments to ( 2.28), the aperture field, E(¢) at p = «

and ¢ = a to ¢ = 3, will be expanded in terms of basis functions and unknown
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expansion coeflicients as follows.

E(¢) = ibq M,, (2.30)

where b, are the unknown complex coeflicients to be evaluated, and M, are known
basis functions. The above summation is limited to a finite number of terms Q. The
choice of the basis functions, A, has no mathematical restrictions.

Equation (2.30) is substituted into (2.28) using pulse functions as basis func-

tions.i.e.

1 = Pq
My =68(d— o) = { e : (2.31)

0 otherwise
A simple way to obtain an approximate solution is to require that equation
(2.30) be satisfied at discrete points in the corresponding aperture. This procedure
is called the point-matching method. Thus, selecting a set of testing functions, W,

as

1 =%
Wp=5(¢—¢p)={ = ; (2.32)

0 otherwise

and defining an inner product as in [21]
<W,G>:fW-Gds, (2.33)

where s is the aperture width. We see that equation (2.28) can finally be written in

a matrix form as follows

(2] 10 = [v,] (2:34)




where

J;(kl CL)

;& n H® ()
Ly = nE::O ;Jn(kla) COS N, COS NP, —

H (kya)

ccos n(¢y — ¢i)]  (2.35)

cos (g, — 6:)

and

1 2] e j”en
V., = —————cos n(¢, — &;). 2.36
T;]Hég)(koa) ( r ) ( )

The matrix equation (2.34) can be solved to obtain numerical values for b,, while
(2.26) and (2.27) are employed to determine the unknown coefficients A, and B,,

respectively.
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CHAPTER 3

ANALYSIS OF SCATTERING BY A PERFECTLY
CONDUCTING MULTI-SLOTTED CIRCULAR

CYLINDER

In this chapter, the problem of scattering by a perfectly conducting circular
cylinder with multi-slots is presented. The analysis developed in Chapter 2 for a
single-slot cylinder is extended to solve for the problem of a multi-slot conducting
cylinder.

The cylinder is assumed to have N-slots, each of an arbitrary slot width. Simi-
lar to the analysis used in Chapter 2, two methods are used to analize the problem
under consideration. Starting with Maxwell’s equations and the technique of sep-
aration of variables, the transmitted and scattered field unknown coeflicients are
found in terms of the assumed tangential aperture electric field. Continuity of the
tangential magnetic field components across the N-apertures using the boundary
value technique leads to the use of Galerkin’s method. N-coupled equations con-
taining the information of the N-slots are generated and solved simultaneously for
the unknown aperture fields. In the second method, the continuity of the tangential

magnetic field components across the apertures yields N-integral equations in terms
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of the unknown aperture fields. The method of moments is introduced in order to
solve these integral equations, where the unknown aperture fields are expressed in
terms of an infinite series with a linear combination of the expansion functions. The
expansion functions are then substituted into the integral equations, then weighting

functions are defined and used to test each integral equation at different points.
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3.1 Boundary Value Method

Consider a perfectly conducting circular cylinder of radius ¢, with N-axial slots
along the z-axis, each of angular width A¢; = 3; — «;, where the subscript j
denotes the aperture index. The inner region of the cylinder is assumed filled with
a dielectric material of permittivity &y and permeability 1, and the outer region is
taken to be free space. The cylinder is excited by a z-polarized transverse magnetic
TM, plane wave, with incidence angel ¢; measured from the positive z-axis, as
shown in Fig. 3.1. Since the source and structure are independent of z, the fields
produced by this source can only have z-component of the electric field that do not
vary with z. Using Maxwell’s equations and following the formulation in Chapter 2,

the total electric field components in both regions are given by

Bl = Zj”eﬂAan(k}p) cos ng p<a (3.1)
n=0

E? = Z e, [BanLz)(kop) + Jﬂ(kop)] cos n{¢ — ¢;) p>a (3.2)
n=0

The total ¢ components of the corresponding magnetic field can readily be found

from (2.2).

HY = —jpu S 5™enAnd.(kyp) cos ne p<a (33)

n=0
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Figure 3.1: Geometry of the multi-slot problem.
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HY = —jyo 3 i"n [BaHy D (kop) + T (kop)| cos n(d — ¢:)  p>a (3.4)

n=0

Here, J, is the cylindrical Bessel function of order n, H(? is the cylindrical Hankel

function of the second kind and order n. The prime superscript denotes differenti-

ation with respect to the total argument, y, and y; are the intrinsic admittance of

free space and dielectric material, respectively, while A, are the transmitted field
coeflicients and B, are the scattered field coefficients.

To solve for the unknown transmitting and scattering field coeflicients A, and

B, respectively, the following boundary conditions have to be satisfied.

EI { EJ(gﬁ) a; < glj) < ﬁj j = 1,2,...,1’\! ; (3 5)
;z — a pP=da .
0 otherwise
2 {Ei(é) oy <¢<ﬁ;’ j:112)"':j\"r ¢ (3 6)
_ at p=a )
0 otherwise
and
Hy = H; 0<¢<2r at p=a (3.7

Continuity of the tangential electric fields can be accomplished by expanding
the unknown aperture fields £;(¢) in terms of a complete set of orthogonal func-
tions defined on their respective domains. The expansion function has to be of ¢
dependence only and z-directed. Also, it needs to be chosen so as to conform with

the edge conditions at p = a, ¢ = ; and ¢ = B;. Moreover, the choice has to be
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appropriate in a way to make the integrals involved in the formulation possible to
evaluate.

Continuity of the tangential electric fields at p = a leads to

o0 Ei(¢) oy <é<p;
Zj”snAan(kla) cos ng = { ! ’ ! (3.8)
n=0 0 otherwise
and
o Eid) a;<d<pf;
Z jhen [BnH,(f)(koa) + Jn(koa)] cos n(¢ — ¢;) = { ! ! ! . (3.9)
n=0 0 otherwise
Next, we choose
= Y g sin (¢ — o)) (3.10)

g;=1
where F;(¢) is the j th ynknown aperture field, a,, are the unknown complex ex-

th aperture, and +; = 7q;/(8; — ay)

pansion coefficients of the 7
Substituting (3.10) into (3.8) and (3.9) and making use of the orthogonality

property of the trigonometric function, one obtains the iransmitted field coefficients

as follows.

g1
A = Fyn 3.11
— Jn(kl f: q}z—l GQJ q; ( )
where
Bj
Fon = f sin (¢ — a;) cos ne de. (3.12)

aj

The scattered field coefficients become

H(Z)(k ) T 7=1g;=1

1 -n N oo
[ D 2 4;Gpn — Ju(kot) (3.13)
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where

Gyn = /ﬁj siny;(¢ — o) cos n(¢ — ¢;:) dg. (3.14)

aj
Similarly, application of the continuity of the tangential magnetic field compo-

nents (3.7) leads to the following equation.

¥ Z; endndy (kia) cos ng =y, 3 j"en [ BuH (ko) + J, (koa)]

n=0

-cos n(¢p—¢;)  (3.15)

Substituting (3.11) and (3.13) into (3.15) and making use of the Wronskian deter-

minant

TL(@)HO(2) — HO(@)J() = 2L (3.16)
T
one obtains
N oo oo ! r
y1 Jn(kra) H P (koa) ,
j;q}-Z:i g; n;) E Jn(kla) qu'n COos n¢ - (2)(k ) GqJ'n €os n(qs - ¢t)
J"€n
Z HO () cos n{¢ — ¢;).(3.17)

In order for (3.17) to be evaluated for the unknown expansion coefficients g;s
Galerkin’s technique has to be employed. Multiplying both sides of (3.17) by the
corresponding weighting function of each aperture and integrating over each aperture

independently, gives

y1 Jp(kra) H, ) (k,a) 2] & g,
a FynFp — -2 Y | = _Jten
ZZ o 2 [ g P IO R B WP D%viorram
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N oo co 4 1(2) - oo n
y1 J,(kia) H ) (k,a) 27 J"en
dg: == FonF, n —e—( jnG n = T D v n
;;gjzzl fhnz:% Yo Jn(kla) g;m " P2 JHT(lz)(}.%a) q D2 koa — H£2)(koa) P2
(3.18)
N oo oo e 12) :
v Julka) H ) (kya) 2; ey
a F ‘nF Mmoo n—_G 'nG 7N = f g2
J:lg; ’“g Yo Ju(kra) " g B gy P ?;3]{ ko) o

In matching Hy across the aperture, a selection of the weighting functions was

made to be the same as the basis function in (3.10). Where siny; (¢ — «) is the

th

weighting function of the j*" aperture, and v, = mp; /(8 — a;/) and §' represents

th th

the index of the 7" weighting function which corresponds to the 7' aperture. Now,

(3.19) can be written in a matrix form as follows

N N

2 ) o] = 2 [Vy] (3.19)

i'=1 =1

aq; in (3.19) represent the unknown fields expansion coefficients of the j th aperture

where

y1 . (kra) H A (k,a)
Z .= R S * n . LA i) n -
i 5 [ ) o~ iy oy -
_ 2} — _ J"n
E 1(12) % a) p}rn (321)

The matrix equation in (3.19) can be solved to obtain numerical values for g,
while (3.11) and (3.13) are employed to determine the unknown coefficients 4, and
B,, respectively.
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3.2 Aperture Field Integral Equation

Following the same analysis discussed in Section 3.1, the electric and magnetic
field components in both regions will have the same expansion forms as given by
(2.6-2.9). By enforcing the continuity of the tangential electric field (3.5-3.6), and
making use of the orthogonality property of the trigonometric functions, we obtain

the transmitting and scattering field coefficients in an integral form as follows

1 ML s ,
A, = J E; $) cos ng dd’ 3.22
TEn Jn(k1a) ; faj- () e (3-22)
]. j—n JV ﬁ-’ ! ! i
B, = TP | Z}/ﬂ Ej(8') cos n(¢' — ¢:)dd' — Ju(koa)| (3.23)

Now, applying the remaining boundary condition (3.7) and substituting for A,

and B, into (3.15) one gets an integral equation as follows

o N 185 [y J, (kra) ) H'(z)(k ) , }
= T cos né cos ng — ——22" cos nléd — ¢t_ cos T qS _ &
nzzg)gfaj [yg Jn(k1a) ¢ ¢ HT(Lz)(koCL) (¢ ) ( &:)

[o.¢]

oo 29 K2
CEi(¢)do = Kzgmcos n(¢— ¢:). (3.24)

where ¢’ is a dummy variable of integration.

Equation (3.24) represents the aperture integral equation. This equation as dis-
cussed in Section 2.2.1, is of no use unless it can be evaluated for the unknown
quantity. One way to solve this integral equation is numerically. Method of mo-
ments [21] has proven to be the most efficient approximate method for obtaining
result of acceptable accuracy. The technique of method of moments is discussed in

Section 2.2.1.
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Now, in order to use the method of moments to solve the integral equation (3.24),
the aperture fields £;(¢) will be expanded as a series of basis functions and unknown

complex expansion coeflicients such as

Q
Ei(¢) =Y by, M, (3.25)
g;=1
where b, are the unknown complex coefficients of the jth aperture, and M, are

known basis functions of the corresponding aperture. Substituting (3.25) back into

(3.24) and choosing the jth basis functions as pulse functions such as

{ 1 Qé = gbq_j
M,, = 6(— ¢,,) = bu; € Ag; . (3.26)

0 otherwise

A simple way to obtain an approximate solution is to require that equation
(3.24) be satisfied at discrete points in the corresponding aperture. This procedure

is a part of the point-matching method. To achieve this, a set of testing functions

W, , correspond to the 3 th aperture are selected as follows
7
I ¢= 9{)?1.:
ijr = 6(‘7’3 - ¢ij) = (327)
0 otherwise
Next, define an inner product as in [21]
< W,G >:] W .G ds (3.28)

th

where s; is the j*" aperture width. Finally, Equation (3.24) can be written in a

matrix form as follows.

z 2,,] [t - ;; v.]. (3.29)




where

' Y1 J’(kla)
7 =3 | L
Byrds Z_: Yo Jn(kla)

n=>0

H,2) (kya)
HP (kya)

. cos n(qﬁpj, — gﬁi)] (3.30)

cos n(gy; — i)

COS Ny, COS Ny, , —
3

and

J, = Z (jz) en ) cos n(gﬁpj, — ). (3.31)

The matrix equation (3.29) can be solved to obtain numerical values for b,, while
(3.22} and (3.23) are employed to determine the unknown coefficients A, and B,,

respectively.
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CHAPTER 4

RESULTS AND DISCUSSION FOR THE SINGLE-SLOT

CASE

This chapter presents numerical results for the single-slot case. The results are
classified into three sections. The first is used to examine the accuracy of the solution
over the boundary region, and to check the validity of the solution for the complete
conducting case. The second section discusses the results for the far scattered field
of a single slot case with an arbitrary slot angle. Finally, the results for the bistatic
scattering width are discussed in the last section. Using (2.23) and (2.34) to solve
for «, and b, respectively, the transmitted and scattered field coeflicients can be

obtained as given in Chapter 2. The bistatic scattering width can be found as

2

£(p, $)
M (4.1)

T

o(¢) = Hm 2mp

p—o0

4.1 Comparison Results

To examine the accuracy of the solution over the boundary region, the tangen-
tial component of the total electric field (E]) and (£2) were computed using (2.6)
and (2.7),respectively with ¢; = 0°, while the cylinder is taken to have an electric

radius ke = 27, and relative permittivity €, = 1. The results for two different
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slot angles are shown in Fig. 4.1, where o = —5° and 3 = 5°, and Fig. 4.2 where
a = —25° and # = 25°. Both figures show a very good agreement between the two
proposed methods and confirm that the total tangential electric field vanishes at
the conducting surface. Moreover, both (2.6) and (2.7) gave the same results for
the surface tangential electric field. Fig. 4.3 shows the bistatic scattering width for
a complete conducting cylinder in comparison with a slotted cylinder of an infinite
relative permittivity and the realtive permeability approaching 0. The cylinder has
an electric radius ke = 27 and a slot angle of 50°. Similarly, Fig. 4.4 compares the
results of the bistatic scattering width of a complete conducting cylinder with a very
narrow-slot cylinder. It can be concluded that the proposed methods are in a very

good agreement with the exact solution of the complete conducting cylinder.
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Boundary Value Method
--6-— Method of Moments

, ¢ = —h°

Figure 4.1: Total tangential electric field with ke = 27, &, = 1, ¢; = 0°

and 3 = 5°.
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Boundary Value Method
--6-- Method of Moments

Figure 4.2: Total tangential electric field with ka = 27, &, = 1, ¢; = 0°, o = —25°

and f§ = 25°,
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Figure 4.3: Comparison of bistatic scattering width for a complete conducting cylin-

der with slotted cylinder, &, = oo, ¢; = 0°, @ = —5° and S = 5°.
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Figure 4.4: Comparison of bistatic scattering width for a complete conducting cylin-

der with a narrow slot cylinder, e, = 1, ¢; =0°, @ = —1/2° and § = 1/2°.
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4.2 Resulis for the Far Scattered Field

This section discusses the behavior of the far scattered field for the single slot
case. The results are plotted for an arbitrary slots angle and incidence angle. The
far scattered field can be obtained using (2.7).

Figs. 4.5-4.8 show the result of the far scattered field for a slot angle of 10°
ie. (@« = —5°, 8 = 5°) and an arbitrary incidence angle ¢; = 0°,90°,180°, 270°,
respectively. Fig. 4.9 and Fig. 4.10 show the far scaitered field for the same problem
where a = 175° and § = 185 and for incidence angles of ¢; = 0°,180° respectively.
It can be concluded that the maximum far scattered field occurs in the forward
direction, and the direction of the incident field aflects the strength of the maximum
scattered field and number of the oscillations. Fig. 4.12 shows the results of the back
scattering width using the two methods with slot angle of 10°, from which it can
be concluded that the maximum back scattering width takes place in the vicinity of
the slot, ( due to the edge effect), and it becomes almost constant as we move away

from the aperture.
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: : 5 —— Boundary Value Method
§ g : g -~&-=- Method of Moments

Figure 4.5: Far scattered field with ke =27, ¢, =1, ¢; = 0°, a = —5° and 8 = 5°.
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Figure 4.6: Far scattered field with ke = 27, ¢, = 1, ¢; = 90°, a« = —5° and 5 = 5°.
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g ——— Boundary Value Method
- § —--¢&— Method of Moments

Figure 4.7: Far scattered field with ke = 27, ¢, =1, ¢; = 180°, a = —5° and § = 5°.
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Figure 4.8: Far scattered field with ka = 2m,e, = 1, ¢; = 270°, o = —5° and § = 5°.
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Figure 4.9: Iar scattered field with ke = 27, ¢, = 1, ¢; = 0°, @ = 175° and § = 185°.
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Figure 4.10: Far scattered field with ke = 27, &, = 1, ¢; = 180°, o = 175° and

8 = 185°.
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Figure 4.11: Far scattered field with ke = 27, &, = 1, ¢; = 0°, @ = —25° and

B = 25°.
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Figure 4.12: Back scattering width with ke = 27, ¢, = 1, o« = —5° and 8 = 5°.
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4.3 Results for the Bistatic Scattering Width

The results for the bistatic scattering width for different slot angles and different
slot positions are given in Figs. 4.13-4.14, from which it can be concluded that if
the slot is in the opposite direction to the incident field, the bistatic scattering
width would be smoother and would have less oscillations. Furthermore, as the size
of the slot angle increases, the forward bistatic scattering width would decrease,
the back bistatic scattering width would increase and the number of oscillations
would increase also. The effect of loading the inner region of a slotted cylinder by
a dielectric material of relative permittivity £, = 3,7,11 and a slot size of 50° are
shown in Figs. 4.15-4.17 respectively, it can be concluded that as the permittivity
increases the response of the bistatic scattering width becomes smoother. Finally,
Fig. 4.18 shows the results for the back scattering width with respect to the electrical
radius ka of a cylinder with a 10° slot i.e. (o = —5° and 8 = 5°), &, = 1 and ¢; = 0°,
from which it is clear that as ka increases the back scattering width increases.Finally
we can conclude that as the size of the slot or the radius of the cylinder increases
more terms are required in order for the solution to converge. For example, for
a cylinder of ke = 27 and a slot angle of 10°, 5 terms are needed in order for
the boundary value solution to converge, while the aperture field integral equation
solution requires 40 segments as a minimum in order for the solution to converge.

Moreover, more sampling points are needed near the edges of the slot.

45



o(9)/A

35_ ......................... MR .

— Boundary Value Method
--o~~ Method of Moments

Figure 4.13: Bistatic scattering width with ke = 27, &, = 1, ¢; = 0°, & = —5° and

B =5
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Figure 4.14: Bistatic scattering width with ka =27, e, =1, ¢; = 0°, o = —25° and

B = 25°.
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Figure 4.15: Bistatic scattering width with ke = 27, ¢, = 3, ¢; = 0°, o = —25° and

8 =250
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Figure 4.16: Bistatic scattering width with ka =27, ¢, =7, ¢; = 0°, o = —25° and
B = 25°.
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Figure 4.17: Bistatic scattering width with ke = 27, &, = 11, ¢; = 0°, o = —25°

and f = 25°.
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Figure 4.18: Back scattering width with e, = 1, ¢; = 0°, @ = —5° and 8 = 5°.
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CHAPTER 5

RESULTS AND DISCUSSION FOR THE MULTI-SLOT

CASE

In this chapter numerical results for the multi-slot problem is presented. With
knowledge of the expansion field coeflicients a,, and b, from (3.19) and (3.29),
respectively, the unknown expansion field coefficients can be found as discussed in
Chapter 3. The surface and far fields can be determined and compared for the two

proposed methods. The bistatic scattering width can be found using (4.1).

5.1 Comparison Results

To obtain numerical results, the cylinder is taken to have an electrical radius
of ka = 2m. To examine the accuracy of the solution over the boundary region,
the tangential component of the total electric field (E,) was computed using (3.1)
and (3.2) with ¢; = 0°, and e, = 1 for two different cases. Fig.5.1 shows the
results of the total tangential electric field for two equal slot angles where a; =
—5% 61 = 5% a3 = 175° and B, = 185°. Fig. (5.2) shows the same result, but for
two different slot angles,i.e. a; = —25°,8; = 25°, ay = 175° and B, = 185°. The

two results show good agreement between the two methods, and also confirm that
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the total tangential electric field vanishes at the conducting surface. Moreover, (3.1)
and (3.2) give the same results for the total tangential electric field. Fig 5.3 shows a
comparison between a complete conducting cylinder, and a two-slots cylinder where
g, = oo and p, approaches 0, oy = —25°, 8y = 25°, oy = 155°, B, = 205° and
¢i = 0°. The results show complete agreement between the exact solution and the

two proposed methods.
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Iigure 5.1: Total tangential electric field of a two slots cylinder with ka = 2,

er=1,¢;=0° oy = =5 B = 5° ay = 175° and B, = 185°.
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Figure 5.2: Total tangential electric field of a two slots cylinder with ke = 2w,

g =1, ¢; = 0%, oy = —25°, B; = 25°, ap = 175° and 3, = 185°.
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Figure 5.3: Comparison of bistatic scattering width for a complete conducting cylin-
der and a cylinder with two slots, &, = oo, ¢; = 0°, @y = —25° and f; = 25°

ag = 155% and B, = 205°.
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5.2 Results for Far Scattered Field

Figs. (5.4-5.7) show the results of the far scattered field for two slots i.e.
(oq = —25° 1 = 25°, a3 = 175° and 3, = 185°) and an arbitrary angles of incidence
equal to ¢; = 0°,90°,180° and 270°, respectively. It can be concluded that the
maximum scattered field occurs in the forward direction, and the direction of in-
cidence affects the strength of the maximum scattered field, the number of oscil-
lations and their strength. The far scattered fields for different slot angles and
different slot positions are given in Figs. (5.8-5.9), where it can be concluded that
as the slot size increases the forward scattered field decreases while the side lobe
level increases. The back scattering width for a two-slot cylinder, where oy = —5°,
P = 5% ay = 175%, 8, = 185° and ¢, = 1, is given in Fig. (5.10), and due to sym-
metry, is presented over the range from 0° to 90° showing that the maximum back

scattering width occurs in between the two slots.
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Figure 5.4: Far scattered field of a two slots cylinder with ke =27, ¢, = 1, ¢; = 0°

] — —250, ﬂ] = 250, Oy = 175% and ﬂg = 185°.
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Figure 5.5: Far scattered field of a two slots cylinder with ka = 27, ¢, = 1, ¢; = 90°

oy = —25°% 1 = 25%, ay = 175° and G, = 185°.
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Figure 5.6: Far scattered field of a two slots cylinder with ka = 27, ¢, = 1, ¢; = 180°,

o = —25°%, B = 25°, ay = 175° and 3, = 185°.
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Figure 5.7: Far scattered field of a two slots cylinder with ka = 27, &, = 1, ¢; = 270°

60 120 180 240 300 360

oy = —25°, B = 25°, ap = 175° and Sy = 185°.
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Figure 5.8: Far scattered field of a two slots cylinder with ka = 27, &, =1, ¢; = 0°

o1 = —25°, B = 25°, ap = 205° and f, = 155°.
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Figure 5.9: Far scattered field of a two slots cylinder with ka =27, ¢, = 1, ¢; = 0°

a; = —90°, B = 90°, ap = 175° and [, = 185°.
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Figure 5.10: Back scattering width of a two slots cylinder with ke = 27, ¢, = 1,

o = —58°%, B = 5°, ag = 175° and 3, = 185°.
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5.3 Results for Bistatic Scattering Width

The results for the bistatic scattering width for different slot angles are shown
in Iigs. (5.11-5.13). It is clear that as the size of the forward slot (facing the
incident wave) increases, the forward bistatic scattering width increases. On the
other hand, as the back slot (180° away from the incidence direction) increases in
size, the forward bistatic scattering width decreases. However, increasing the size
of the slots results in an increase in the number of oscillations and their amplitude.

The effects of loading the inner region of the cylinder with different dielectric
materials for a cylinder with different slot angles are shown in Figs. (5.14-5.16).
It can be observed that the loading increases the forward bistatic scattering width
and also reduces and smooths the oscillations elsewhere. Finally Fig. (5.17) shows
the results for the back scattering width with respect to the electrical radius ka of
a cylinder with two identical slots of 10° ie. (g = —5° 61 = 5% ay = 175° and
Py = 185°), &, = 1 and ¢; = 0°, from which it is clear that as ka increases the back

scattering width increases.
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Figure 5.12: Bistatic scattering width of a two slots cylinder with ke = 27, ¢, = 1,

9 = 0%, oq = —25°%, B = 25°, ay = 175° and B, = 185°.

67




o(0)/A

20_ ......................... e

Boundary Value Method
~-—g-- Method of Moments

Figure 5.13: Bistatic scattering width of a two slots cylinder with ka = 27, ¢, =1,

¢ = 0°, oy = —25°, By = 25°, ap = 155° and B, = 205°.
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Figure 5.14: Bistatic scattering width of a two slots cylinder with k¢ = 27, &, = 10

(,751‘ = 00, 0y = ——‘50, ﬁ} = 50, g = 175° and ,@2 = 185°.
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Figure 5.15: Bistatic scattering width of a two slots cylinder with ke = 27, &, = 3,

¢ = 0°, oy = —25°, By = 25°, ay = 155° and B, = 205°.
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Figure 5.16: Bistatic scattering width of a two slots cylinder with ke = 27, e, = 11,

gbt' — OO, = —-250, ﬁ]_ = 250, Qg = 155° and ﬁg = 205°,
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Figure 5.17: Back scattering width with e, = 1,¢; = 0°,a; = =5°, B, = 5°

ag = 175° and B, = 185°
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

The problem of scattering by a perfectly conducting circular multi-slotted cylin-
der has been investigated in this thesis. In Chapter 2 the discussion was restricted
to a single slot cylinder. The analysis was carried out using the boundary value
method. The aperture field integral equation method was introduced and the re-
sults were compared numerically with the boundary value method. The agreement
between the two methods for the surface tangential electric field, the far scattered
field, the back scattering width and the bistatic scattering width was excellent in
all cases studied. The accuracy of the solution was obtained by examining the so-
lution over the boundary region. The surface tangential electric field was computed
using the two methods, and the results confirmed that the total tangential eleciric
field vanishes over the conducting surface. Also the solution was examined for the
case where €, approaches co and p, approaches 0. The results were in a very good
agreement with the exact solution of the complete conducting cylinder. It should
be pointed out that the accuracy and the convergence of the solution are highly
dependent on the slot size, the position of the slot with respect to the incidence
field, the radius of the cylinder and the dielectric media in the inner region.

In Chapter 3, the solution was extended to include a multi-slot cylinder. Meth-
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ods of analysis used here were the same as those used in Chapter 2. The multi-slot
problem required the need of N-system of matrix equations according to the number
of slots. The investigation was limited to two-slot cylinder and the results were ob-
tained regarding the surface tangential electric field, the far scattered field, the back
scattering width and the bistatic scattering width. Similar to the case of the single-
slot, the accuracy of the solution was obtained by examining the solution over the
boundary region. Moreover, the solution was varified also with the complete con-
ducting cylinder by taking €, = oo and mu, approaches 0. The agreement between
the two methods was excellent in all cases studied. A point worth mentioning is that
the accuracy and convergence of the solution is dependent on the factors mentioned
above for the single-slot cylinder. In addition the spacing between the slots and the
number of slots has a great effect on the behavior of the scattered field.

Although the solution up to two slots was investigated, it is obviously of interest
to extend the effort to three slots and more. Another potential study is to investigate
an optimum design, taking into account the cylinder size relative to the wave length,
number, size and spacing between the slots to maximize or minimize the scattering
width. Finally, the work can be extended to loading the interior and the exterior

regions of the cylinder with dielectric multi-layers
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