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Abstract

Nanosecond pulse electroporation of biological cells is gaining significant interest due

to its ability to influence intracellular structures. In nanosecond pulse electroporation

of biological cells nanosecond duration pulses with high frequency spectral content are

applied to the cell. In this research we show that accurate modeling of the nanosecond

pulse electroporation process requires considering the effect of the membrane dielectric

relaxation on the electric potential across the membrane. We describe the dielectric

relaxation of the membrane as dispersion in the time-domain and incorporate it into

the nonlinear asymptotic model of electroporation. Our nonlinear dispersive model of a

biological cell is solved using finite element method in 3-D space enabling arbitrary cell

structures and internal organelles to be modeled. The simulation results demonstrate two

essential differences between dispersive and nondispersive membrane models: the process

of electroporation occurs faster when the membrane dispersion is considered, and the

minimum required electric field to electroporate the cell is significantly reduced for the

dispersive model.
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Chapter 1

Introduction

Electroporation or electropermeabilization is the process of creation of transient hy-

drophilic pores in the membrane of biological cells upon applying an intense electric

field. When a cell is exposed to an external electric field the cell membrane charges up

increasing the electric potential across the membrane. Once the required voltage of elec-

troporation is achieved the lipid bilayer molecules of the membrane rearrange themselves

and form pores in the membrane through which ions and impermeable molecules can pass

and enter the cytoplasm [9–11]. Electroporation is gaining increased importance because

of its clinical applications in gene therapy and drug delivery as a method to introduce

new DNA and drugs into a cell in order to change its function [12–15]. Electroporation

facilitate the cell uptake of impermeable materials.

Conventional methods of electroporation use millisecond to microsecond duration

pulses to porate the cell membrane [16,17]. At these time scales the internal and external
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Chapter 1. Introduction

cell media behave as good conductors and the electric field is concentrated almost entirely

across the cytoplasm membrane leaving the intracellular structures intact. Recently there

has been significant interest in investigating the effect of nanosecond and subnanosecond

duration pulsed electric fields on the process of electroporation [18–23]. There is evidence

that by applying a nanosecond pulsed electric field, such that the rise time of the pulse

is less than the charging time of the cell membrane, the electric field can penetrate inside

the cell and lead to a different electroporation dynamics called supra-electroporation. In

supra-electroporation the intracellular organelle membranes are porated [5, 24, 25].

Despite the numerous experimental studies that have been performed on the conven-

tional and supra-electroporation many aspects of cell electroporation is still unknown due

to very small time and spatial scale that the phenomenon occurs. Thus, theoretical and

numerical modeling of electroporation is of interest to obtain more insight into the inter-

action of the external electric field with the cell and the process of pore formation. Linear

and nonlinear models of the electrical response of cells to an external electric field have

been studied by several research groups [4,6,7,26–29]. In linear models, the electrical pa-

rameters of the cell are time independent, whereas in nonlinear models the cell membrane

conductivity is not constant and it changes during electroporation. In [6] the linear model

of cell is employed to investigate the power dissipated inside the membrane. In [5,27] the

interaction of the applied electric field with the internal structure membrane is studied

using the linear model of cell. The nonlinear model of cell is employed in [7, 29] to study

2



Chapter 1. Introduction

the electroporation of cell in μsec range.

In almost all studies previously performed on the modeling of nanosecond pulse elec-

troporation of cells the cell cytoplasm and membrane are treated as nondispersive media

which is adequate for low frequency pulses. However, accurate modeling of nanosecond

pulse electroporation of the cell membrane needs to account for the effect of dielectric

relaxation of the lipid bilayer molecules of the membrane. In a recent study performed

on the effect of the membrane dispersion on the induced transmembrane voltage [30],

the authors consider the membrane as a dispersive medium and use the Debye disper-

sion relation to model it. They calculate the electric potential across the cell membrane,

modeled as a linear dispersive medium, when a nanosecond pulsed electric field is ap-

plied to the cell. Then they predict the density of the pores created in the membrane by

inserting the calculated transmembrane voltage into the asymptotic model of electropo-

ration. Although the method accounts for the effect of the membrane dispersion on the

transmembrane voltage it does not incorporate the effect of the instantaneous increase in

the membrane conductivity after the creation of pores. In another study performed on

the nanosecond pulsed electroporation of cells [4], the authors consider the effect of the

pore conduction on the transmembrane voltage by modeling it as a current added to the

conduction and displacement currents of the membrane. However, in the proposed model

in [4] the membrane is considered as a nondispersive medium. They do the simulations

in 2-D space using an active circuit model for the cell membrane.

3



Chapter 1. Introduction

In this research we describe a nonlinear dispersive model for the membrane to investi-

gate the process of nanosecond pulse electroporation of biological cells. We describe the

time-domain implementation of the second order Debye dispersion relation to model the

dielectric relaxation of the cell membrane molecules. We then incorporate the dispersion

relation into the asymptotic model of electroporation. We perform the simulations in 3-D

space employing finite element method implemented in COMSOL Multiphysics.

This thesis begins with a brief introduction on the process of electroporation. The

physical and mathematical models of electroporation are discussed in ch. 2. A dispersion

model and the electrical models of cell are described in ch. 3 and the cell responses

to microsecond and nanosecond pulses are examined in 4. The thesis closes with the

conclusion and future work that can extend this research.
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Chapter 2

Process of Electroporation

The formation of transient pores inside the membrane of cells using electric fields, called

electroporation, has long been investigated due to its applications in cell biology to trans-

form bacteria, plant cells or mammalian cells by loading them with foreign molecules.

Experimental studies as well as theoretical modeling of electroporation have been de-

veloped to more accurately investigate the process of electroporation and its effects on

different types of cells. The application of short duration electric pulses in cell electropora-

tion has caused renewed interest in electroporation studies since intensive short duration

pulses are able to penetrate inside the cell and affect the internal organelles.

This chapter begins with an introduction of the physical process of electroporation.

Then the conventional method of electroporation and supra-electroporation are compared.

Finally the mathematical model of electroporation is introduced.

5



Chapter 2. Process of Electroporation 2.1. Biological Process of Electroporation

Figure 2.1: The structure of a eukaryotic cell. All eukaryotic cells have a membrane that
isolates the cell interior from the extracellular medium [1].

2.1 Biological Process of Electroporation

Figure 2.1 shows the structure of a eukaryotic cell. All cells have a membrane that

separates the extracellular medium from the cell interior and controls the movement of

substances to and out of the cell. The cytoplasm membrane of almost all living cells is

made of a lipid bilayer. The phospholipid molecules of the lipid bilayer have a hydrophilic

head and a hydrophobic tail (Fig. 2.2). In an intact membrane the phospholipid molecules

arrange themselves in a two molecule thick layer such that the hydrophobic tails are

towards each other and the hydrophilic heads point out to either sides of the layer. This

structure is selectively impermeable to water-soluble substances such as ions and glucose

and gives the cell the ability to regulate the transport of materials across the membrane

through ion-specific channels, the membrane ”pores” [31].

When the cell is exposed to an intense electric field the cell membrane charges up

6



Chapter 2. Process of Electroporation 2.1. Biological Process of Electroporation

(a) (b)

Figure 2.2: The arrangement of phospholipid molecules of lipid bilayer in (a) an intact mem-
brane [2], and (b) a porated membrane with a hydrophobic pore (Top) and a hy-
drophilic pore (bottom) [3].

increasing the electric potential across the membrane. As a result, some transient unstable

pores are created in the membrane called ”pre-pores” [32]. Pre-pores are hydrophobic

since the hydrophobic tails of the phospholipid molecules form the walls. These pores

expand and once the radius of them exceed a critical value a rearrangement in phospholipid

molecules converts them to stable hydrophilic pores [10]. The structure of hydrophobic

and hydrophilic pores are shown in Fig. 2.2. The hydrophilic pores are conductive since

they allow polar molecules (e.g. ions, proteins and DNA) to pass across the membrane

and enter the cytoplasm. This process is called electroporation and it is reversible or

irreversible depending on the intensity of the applied electric field. In the reversible case

the pores heal and reseal the bilayer when the electric field is removed, whereas in the

irreversible case the pores expand too much, leading to mechanical rupture of the cell

membrane [32].

7



Chapter 2. Process of Electroporation 2.1. Biological Process of Electroporation
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Figure 2.3: Energy of hydrophobic (dashed line) and hydrophilic (solid line) pores for different
pore radiuses.

Fig. 2.3 shows the energy of hydrophobic and hydrophilic pores at different radiuses.

Hydrophobic pores expands until their radius exceed r∗ at which the energy of hydropho-

bic and hydrophilic pores are the same. At this point reorientation of the membrane

occurs and the hydrophobic pores are converted to hydrophilic ones. The hydrophilic

pore expands to achieve its minimum energy at rm. If the radius of the pore exceeds rd

the pore expands indefinitely and makes the process of electroporation irreversible [8,10].

More detail about the energy of hydrophobic and hydrophilic pores are given in A

This technique has applications in gene therapy and drug delivery to introduce new

DNAs and drugs into a cell. Zeira et al. [15] have used electroporation technique to

insert CD4 molecules (the receptor of the Human Immunodeficiency Virus) into red blood

cells (RBC). They have shown that RBC-CD4 reduces the load of HIV in uninfected T

cells. As an application of electroporation in drug delivery, Mir et al. [14] have combined

8



Chapter 2. Process of Electroporation 2.2. Conventional and Supra Electroporation

chemotherapy and electroporation (electrochemotherapy) to treat tumors. The efficiency

of chemotherapy is restricted in tumor treatments because of poor delivery of the drugs

into the tumor cells. Bleomycin (BLM) is an impermeable cytotoxic drug which bonds

to the cells membrane to affect them. L. They have shown that using electroporation

BLM can be loaded into the cell cytoplasm to achieve higher cytotoxicity of the drug.

They have shown that electrochemotherapy requires much less concentration of BLM than

chemotherapy which reduces the side effects of the drug.

2.2 Conventional and Supra Electroporation

The term ”conventional electroporation” refers to formation and expansion of pores with

different sizes in the cytoplasm membrane whereas supra-electroporation refers to the cre-

ation of extraordinary number of very small pores (not expanding) in both the cytoplasm

and intracellular organelles membranes.

Conventional methods of electroporation use long duration electric pulses to electropo-

rate the cells. With long duration electric pulses the electric potential is almost entirely

across the membrane since the cytoplasm and the extracellular medium act like good

conductors. In this case only the cytoplasm membrane achieves the required voltage to

cause the rearrangement of lipid bilayer molecules and the formation of hydrophilic pores.

Unlike the conventional electroporation, supra-electroporation employs intensive short

duration electric pulses such that the pulse duration is less than the charging time of the

9



Chapter 2. Process of Electroporation 2.2. Conventional and Supra Electroporation

Table 2.1: The geometrical and electrical parameters of a biological cell with an internal or-
ganelle [5].

Parameter Symbol Value

Cell radius R1 10 μm

Cytoplasm membrane thickness d1 5 nm

Organelle radius R2 3 μm

Organelle membrane thickness d2 5 nm

Relative permittivity of the extracellular medium εer 72

Conductivity of the extracellular medium σe 1.2 S/m

Relative permittivity of the cytoplasm membrane εcmr 5

Conductivity of the cytoplasm membrane σcm 3× 10−7 S/m

Relative permittivity of the cytoplasm εcr 72

Conductivity of the cytoplasm σc 0.3 S/m

Relative permittivity of the organelle membrane εomr 5

Conductivity of the organelle membrane σom 3× 10−7 S/m

Relative permittivity of the organelle interior εor 72

Conductivity of the organelle interior σo 0.3 S/m

cytoplasm membrane. Short duration electric pulses are able to interact with intracellu-

lar structures and cause electroporation of organelles membrane. In supra-electroporation

the pores are created with the radius of minimum energy and they do not expand further

because with short duration high intensity electric pulses the pore creation dominates

the pore expansion. Fig. 2.4 compares the penetration of the electric field inside the

cytoplasm of a spherical cell when 100 kV/cm, 10 μs and 100 kV/cm, 10 ns duration

pulses are applied to the cell. The geometrical and electrical parameters of the cell are

given in Table 2.1 [5]. It is clear that with a 10 μs electric pulse the cytoplasm is like

an equipotential area whereas with 10 ns electric pulse the electric field penetrates inside

the cytoplasm and causes an electric potential across the internal membrane.

10
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Figure 2.4: Penetration of the electric field inside a biological cell when 10 μs and 10 ns
duration electric pulses are applied to the cell. The cell parameters are in Table
2.1 (a) 10 ns, 100 kV/cm Gaussian rise-time pulse with 1 ns rise-time and fall-
time. (b) 10, μs 100 kV/cm Gaussian pulse with 1 μs rise-time and fall-time.
(c) Electric potential inside the cell for the nanosecond (Top) and microsecond
(Bottom) pulses. The cell cytoplasm membrane shields the cell interior from the
applied microsecond pulsed electric field whereas it allows the nanosecond pulse to
penetrate inside the cell.
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Chapter 2. Process of Electroporation 2.2. Conventional and Supra Electroporation

There are several studies performed on supra-electroporation since it provides access

to the cell internal structure and consequently makes possible the internal manipulation

of cells. Kotnik et al. [5] studied a cell with an internal organelle and investigated the

electric potential across the internal and external membranes. For a 10 nsec duration

pulse with 1 nsec rise time and fall time they propose that if the organelle membrane has

a higher electric conductivity than the cytoplasm or the organelle membrane has lower

permittivity than the external membrane then the electric potential difference across the

internal membrane may exceed the external membrane. Based on this evidence they

conclude that it is possible to electroporate the internal membrane without perturbing

the cytoplasm membrane. Although this may be true for some special pulses and elec-

trical parameters, Smith’s study [4] shows that in supra-electroporation the internal and

external membranes respond in a same manner to the external electric field and they

both experience electroporation. Moreover, they explain that using different methods

to detect the perturbation of the organelle membrane and the cytoplasm membrane is

the reason that some experimental results support the idea of internal membrane elec-

troporation without electroporating the external one [4]. The integrity of the cytoplasm

membrane is generally assessed using propidium iodide (PI) which is impermeable to an

intact membrane. After the formation of the pores in the membrane PI molecules can

pass through the membrane if the pores are wide enough to allow their transport. In

supra-electroporation the radius of the pores is very small such that it hinders the PI

12



Chapter 2. Process of Electroporation 2.3. Mathematical Model of Electroporation

molecules transport and consequently suppresses the cytoplasm membrane electropora-

tion. The integrity of the intracellular organelles membrane is assessed by inspecting

the concentration change of the internal calcium. The calcium ions are very small that

can pass through very small pores created by supra-electroporation. Recent experiments

performed by Vernier et al. [33] verify the creation of small pores inside the cytoplasm

membrane as well as the intracellular membranes.

2.3 Mathematical Model of Electroporation

The electroporation process, including the formation and expansion of the pores, are de-

scribed by the Smoluchowski partial differential equation [34]. The Smoluchowski equation

defines a pore density function, n(r, t), such that the number of pores with radius between

r and r + dr at any given time, t, is n(r, t)dr. n(r, t) is described as

∂n

∂t
+D

∂

∂r

(
−∂n

∂r
− n

kT

∂W

∂r

)
= S(r), (2.1)

where D is the pore diffusion coefficient, r is the pore radius, W is the formation energy of

a pore with radius r, and S(r) describes the transition of hydrophobic pores to hydrophilic

ones, as

S(r) =
νch

kT

∂Wo

∂r
eWo/kT − νdnH(r∗ − r). (2.2)
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where νc is the pore creation rate, h is the membrane thickness, Wo is the formation

energy of a hydrophobic pore, νd is the pore destruction rate, r∗ is the radius at which

hydrophobic and hydrophilic pores have the same energy, and H(r∗−r) is a step function

at r = r∗.

Assuming that, (i) the expansion of the pores is negligible, and (ii) the temporal

change of the minimum pore energy is negligible, a quasistatic asymptotic model of elec-

troporation simplifies the PDE equation 2.1 to an ordinary differential equation [4, 8].

The ODE defines the pore density, N(t), which is related to n(r, t) as

N(t) =

∫ ∞

r=0

n(r, t)dr. (2.3)

The quasistatic asymptotic equation for N(t) is

dN(t)

dt
= αe(Vm(t)/Vep)2

(
1− N(t)

N0

e−q(Vm(t)/Vep)2
)
. (2.4)

where Vm is the transmembrane voltage, Vep is the characteristic voltage of electroporation,

N0 is the equilibrium pore density at Vm = 0, and a and q are constants.

In this project we study the process of electroporation when short duration high in-

tensity pulsed electric fields are applied to the cell. In this situation pores are created

faster than they expand making the application of asymptotic model of electroporation

valid. As such, in this study we use the asymptotic model of electroporation to study

the nonlinear process of electroporation. However, it should be mentioned that as the

14
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duration of the applied pulse approaches the time scale of molecular rearrangement there

is an open question on the limit that the asymptotic model of electroporation is valid.
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Chapter 3

Electrical models of biological cells

Exposure of cells to an external electric field induces a voltage on the cell membrane called

the transmembrane voltage. The value and the spatial distribution of the transmembrane

voltage are of significant interest in the electroporation of the cell membrane. Several

electrical models have been developed for biological cells exposed to an external electric

field to obtain the distribution of the transmembrane voltage. Fig. 3.1 shows a single-

shell structure of a spherical cell comprising of the cell cytoplasm and the cell membrane.

Here σj and εj define the conductivity and permittivity of each medium with subscripts

c,m, and e describing the cell cytoplasm, membrane, and exterior media, respectively.

Depending on the definitions of the electrical parameters of the cell we classify the mod-

els of the electrical response of cells as linear nondispersive, linear dispersive, nonlinear

nondispersive, and nonlinear dispersive. This chapter explains each of these models and

the conditions under which they are valid. The chapter begins with an introduction of the

16



Chapter 3. Electrical models of biological cells 3.1. The Debye Dispersion Model
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Figure 3.1: The model of a spherical cell with a single-shell structure. σj and εj are the
conductivity and permittivity of each media, respectively.

Debye dispersion model and its implementation in the frequency-domain and the time-

domain. Then the nonlinear modeling of electroporation is discussed and the rest of the

chapter focuses on the different models of cells. We mainly focus on the electrical prop-

erties of the models and their validity based on the dispersion and nonlinearity concepts.

The simulations and discussions on the cell response for each model will be discussed in

the next chapter.

3.1 The Debye Dispersion Model

Dispersion is defined through the dependence of the dielectric permittivity of a material

on the frequency of the electric field applied. The frequency dependent permittivity

reflects the delay in the molecular polarization of the material with respect to the applied

alternating electric field. For a linear and isotropic medium the polarization vector is

17



Chapter 3. Electrical models of biological cells 3.1. The Debye Dispersion Model

written as

P = (ε− ε0)E. (3.1)

where ε and ε0 are the permittivity of the medium and vacuum, respectively.

In the frequency-domain in order to show the phase delay between the polarization

vector and the applied electric field, the permittivity is defined as a complex function of

the frequency. The complex permittivity, ε̃, of a dispersive medium exhibiting an nth

order relaxation process can be defined by the Debye dispersion relation as

ε̃ =
n∑

j=1

Δεj
1 + jωτj

+ ε∞. (3.2)

where n is the number of dielectric relaxation steps, τj and Δεj are the time constant and

amplitude change of the jth relaxation step and, ε∞ is the medium permittivity at high

frequency limit. Equation 3.2 can be separated into real and imaginary parts as

ε̃(ω) = ε
′
(ω)− jε

′′
(ω). (3.3)

Here ε
′
(ω) is the permittivity of the medium. ε

′′
(ω) is related to the polarization loss of

the medium and it should not be confused with the conductive loss associated with charge

carriers.

For nanosecond ( 1 GHz) models the dielectric relaxation of the cytoplasm and the

extracellular medium can be described by a first order Debye relation while a two step

18



Chapter 3. Electrical models of biological cells 3.1. The Debye Dispersion Model

Table 3.1: Dielectric relaxation parameters of the cell [6]

Parameter Symbol Value

Cell Membrane

First relaxation time τm1 3× 10−9 s

Second relaxation time τm2 4.6× 10−10 s

First relaxation amplitude Δεm1 2.3× 10−11 F/m

Second relaxation amplitude Δεm2 7.4× 10−12 F/m

High frequency permittivity εm∞ 13.9× 10−12 F/m

Cell Cytoplasm

Relaxation time τc 6.2× 10−12 s

relaxation amplitude Δεc 5.9× 10−10 F/m

High frequency permittivity εc∞ 1.18× 10−10 F/m

dielectric relaxation is appropriate for describing the lipid bilayer membrane of biological

cells [6]. The first and second relaxations are associated with the headgroup dipoles of

the lipid membrane and the water molecules bounded to the membrane surface, respec-

tively [35]. The dielectric relaxation parameters of the cell membrane and cytoplasm are

given in Table 3.1 [6]. The dielectric relaxation parameters of the extracellular medium

are assumed to be the same as the cytoplasm. Fig. 3.2 shows the frequency dependent

behavior of the permittivity and net conductivity, σeff + σm0, of the cell membrane and

cytoplasm. The dielectric relaxation of the cell cytoplasm occurs at approximately 20

GHz causing an increase in the conductivity and decrease in the permittivity at higher

frequencies. Notable decrease in the membrane permittivity and increase in the membrane

conductivity occur at frequencies above 20 MHz, leading to high frequency membrane

permittivity value 3 times smaller and conductivity value 47 greater than the static values

for the membrane permittivity and conductivity, respectively. Therefore, accurate pre-

diction of the membrane electrical response in the frequency range of 20 MH to 1 GHz
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Chapter 3. Electrical models of biological cells 3.2. Nonlinear modeling of Electroporation

requires appropriate definitions of the electrical parameters of the membrane.

Dispersion is accomplished in the time-domain by defining the polarization of the

medium as a function of the electric field and its time derivatives [36]. For a second

order dispersive medium substitution of (3.3) with n = 2 into (3.1) and taking jω as the

derivative with respect to time yields

P+ (τ1 + τ2)
∂P

∂t
+ τ1τ2

∂2P

∂t2

= (εm0 − ε0)E

+ [(εm0 −Δε1 − ε0)τ1

+ (εm0 −Δε2 − ε0)τ2]
∂E

∂t

+ (εm0 −Δε1Δε2 − ε0)τ1τ2
∂2E

∂t2
. (3.4)

where εm0 is the low frequency permittivity of the membrane.

εm0 = ε∞ +
2∑

j=1

Δεj. (3.5)

3.2 Nonlinear modeling of Electroporation

As described in the previous chapter, when the transmembrane voltage achieves the re-

quired voltage of electroporation some pores are formed in the membrane. The formation

of the pores increases the membrane conductivity of the membrane and is electrically
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Figure 3.2: (a) Membrane and (b) Cytoplasm permittivity (solid line), ε
′
m, and conductivity

(dashed line), ωε
′′
m + σm0, as functions of frequency.
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Chapter 3. Electrical models of biological cells 3.2. Nonlinear modeling of Electroporation

modeled as an additional current density, Jep, inside the membrane. Jep is written as

Jep(t) = N(t)
πrp

2σpVmK

h
, (3.6)

where N is the density of the pores, rp is the pore radius, σp is the conductivity of

the solution inside the pore, Vm is the transmembrane voltage, h is the thickness of the

membrane, and K is

K =
evm − 1

w0ew0−nvm−nvm
w0−nvm

evm − w0ew0+nvm+nvm
w0+nvm

. (3.7)

In (3.7) w0 is the energy barrier inside the pore, n is the relative entrance length of the

pore, and vm = qe
kT
Vm is the non-dimensional transmembrane voltage. Assuming that the

electric field inside the membrane is uniform, the transmembrane voltage is written as

Vm = E⊥h. (3.8)

where E⊥ is the normal electric field.

The pore current density inside the membrane can be translated as an increase in the

membrane conductivity using the relation

Jep = σmE⊥. (3.9)

Inserting 3.8 in 3.6 and then the result in 3.9, the conductivity of the membrane at the
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Chapter 3. Electrical models of biological cells 3.3. Cell Models

points that pores are formed is calculated as

σm(t) = σm0 +N(t)σpπrp
2K, (3.10)

where σm0 is the conductivity of the membrane before electroporation. The nonlinearity

of the equation 3.10 comes from N which was described in the section 2.3 as

dN(t)

dt
= αe(Vm(t)/Vep)2

(
1− N(t)

N0

e−q(Vm(t)/Vep)2
)
. (3.11)

Under equilibrium conditions (3.10) and (3.11) maintain the transmembrane voltage be-

low the required voltage of electroporation, which is about 1 V . Required voltage of

electroporation is the threshold at which notable increase in the density of the pores and

membrane conductivity and consequently decrease in the transmembrane voltage occur.

The increase in the transmembrane voltage leads to the increase of pore density which

lowers the conductivity of the membrane and subsequently the transmembrane voltage.

The electroporation parameters for the lipid bilayer membrane of biological cells are given

Table 3.2 [7].
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Table 3.2: The electroporation parameters of lipid bilayer membrane [7]

Parameter Symbol Value

Pore creation rate density α 1× 109 m2/s

Characteristic voltage of electroporation Vep 170 mV

Equilibrium pore density N0 1.5× 109 m−2

Pore creation rate q 2.46

Pore energy barrier w0 2.65

Relative entrance length of pores n 0.15

Electric charge of an electron qe 1.65× 10−19 C

Boltzmann constant k 1.38× 10−23J/K

Temperature T 295 K
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Figure 3.3: Linear nondispersive model of cell. σi0 and εi0 are the static conductivity and
permittivity of each medium
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3.3 Cell Models

3.3.1 Linear nondispersive model of cell

In linear nondispersive models the electrical parameters of the cell cytoplasm, membrane,

and the extracellular medium are constants as depicted in Fig. 3.3. σi0 and εi0 are the

static conductivity and permittivity of each medium. Since the electrical parameters are

time-invariant the transmembrane voltage calculated from the Laplace equation has a

closed form frequency-domain solution [6]

Vm = FER cos θ (3.12)

where E is the strength of the electric field, R is the cell radius, θ is the angle with respect

to the electric field, and F is

F =
3Λe (3dR

2Λc + (3d2R− d3) (Λm − Λc))

2R3 (Λm + 2Λe)
(
Λm + 1

2
Λc

)− 2(R− d)3 (Λe − Λm) (Λc − Λm)
(3.13)

with

Λe = σe0 + jωεe0, (3.14)

Λm = σm0 + jωεm0, (3.15)

Λc = σc0 + jωεc0. (3.16)
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Table 3.3: The geometrical and electrical parameters of a biological cell modeled as a single-
shell structure [7]

Parameter Symbol Value

Cell radius R 10 μm

Membrane thickness d 5 nm

Relative permittivity of the extracellular medium εe0r 80

Conductivity of the extracellular medium σe0 0.14 S/m

Relative permittivity of the membrane εm0r 5

Conductivity of the membrane σm0 5× 10−7 S/m

Relative permittivity of the cytoplasm εc0r 80

Conductivity of the cytoplasm σc0 0.3 S/m

Fig. 3.4 is the graph of the transmembrane voltage vs. frequency for a cell at θ = 0

when the intensity of the applied electric field is 1 kV/cm. The electrical and geometrical

properties of the cell are given in Table 3.3 [7]. It is clear that at high frequencies a stronger

electric field is required to achieve the transmembrane voltage required for electroporation

(0.7− 1.5 V ).

The time domain response of the cell is calculated from [26]

Vm = fER cos θ (3.17)

where f is obtained from 3.13 by replacing Λe, Λe, and Λe with

Λe = σe0 + εe0
d

dt
(3.18)

Λm = σm0 + εm0
d

dt
(3.19)

Λc = σc0 + εc0
d

dt
. (3.20)

26



Chapter 3. Electrical models of biological cells 3.3. Cell Models

104 105 106 107 108 109 1010 1011
0

0.4

0.8

1.2

1.6

V
m

 (V
)

Frequency (Hz)

Figure 3.4: The transmembrane voltage as a function of frequency for the linear nondispersive
model of cell.

The cell response to pulsed electric fields will be discussed in the next chapter.

The linear nondispersive model has been used in several studies due its simplicity.

In [5,27] the authors employ the linear nondispersive model for a double shell cell structure

to study the interaction of the applied electric field with the internal structure membrane.

Kotnik et al. [5] explain that in gigahertz range the electric potential across the organelle

membrane can exceed the external membrane provided that the organelle membrane has

a higher electric conductivity than the cytoplasm or the organelle membrane has lower

permittivity than the external membrane. In another study Kotnik et al. [26] use the

linear nondispersive model to investigate the influence of different electric field waveforms

on the transmembrane voltage when the cell is kept in physiological (σ = 0.3 S/m) and

low-conductivity (σ = 0.01 S/m) media. They show that with microsecond pulses the
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Figure 3.5: Linear dispersive model of cell. εi(ω) is the frequency dependant permittivity

shape and amplitude of the transmembrane voltage (time response) are dependent on the

conductivity of the extracellular medium.

The linear nondispersive model cannot describe the process of the pores formation

inside the membrane nor the dielectric relaxation of the media. Therefore, the model can

be adequately used to determine the penetration of low intensity fields (such that the cell

membrane is not electroporated) inside the cell at low frequencies (lower than 53 KHz,

the dielectric relaxation frequency of the membrane) and even the onset of electroporation.

3.3.2 Linear dispersive model of cell

In the linear dispersive models the conductivity of the cell membrane, cytoplasm and the

extracellular medium are constants whereas their permittivity are defined as frequency

dependent variables. Fig. 3.5 shows the linear dispersive model of the cell. εe(ω), εm(ω),
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Figure 3.6: The transmembrane voltage as a function of frequency for the linear dispersive
model of cell.

and εc(ω) are defined using the Debye dispersion relation as

εm(ω) = εm∞ +
Δεm1

1 + jωτm1

+
Δεm2

1 + jωτm2

, (3.21)

εe(ω) = εc(ω) = εc∞ +
Δεc

1 + jωτc
. (3.22)

with parameters given in Table 3.1.

The frequency domain response of the cell is obtained from 3.12 by replacing εe0,

εm0, and εc0 by εm(ω), εe(ω), and εc(ω) defined in 3.22 [6]. Fig. 3.6 is the graph of the

transmembrane voltage vs. frequency for a cell (parameters given in Table 3.3) at θ = 0

when the intensity of the applied electric field is 1 kV/cm. The transmembrane voltage at

low frequencies is the same as linear dispersive model. However, at frequencies above 50

MHz it shows a different behavior due to changes in the permittivity and conductivity

of the membrane.
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For accurate prediction of the transmembrane voltage due to pulses with high fre-

quency spectral content the dielectric relaxations of the three media are required to be

accounted for. However, the dielectric relaxation of the cytoplasm and suspending medium

occur at frequencies approaching 20 GHz [6], which is beyond the frequency spectrum

of nanosecond pulses considered in this work. Therefore, in the transmembrane volt-

age calculation the membrane is the only dispersive medium and the cytoplasm and the

suspending medium are treated as nondispersive media.

In order to calculate the transmembrane voltage in the time-domain, we use the time-

domain implementation of the Debye dispersion relation defined in 3.4. We solve the

Laplace equation

−∇ · ∂

∂t
(ε0∇Vm + P)−∇ · σm0∇Vm = 0, (3.23)

in conjunction with 3.4, the partial differential equation of the polarization vector.

The linear dispersive model extends the valid frequency range of the previous model

to 20 GHz at which the dielectric relaxation of the cytoplasm occurs. Since the model is

linear it fails to predict the formation of the pores and can be used in low intensity electric

field studies such that the cell membrane is not electroporated. There are several studies

performed on linear nondispersive model of cell. Merla uses the linear nondispersive model

to study the effect of the membrane dielectric relaxation on the transmembrane voltage.

She then inserts the calculated transmembrane voltage into the pore density equation 3.11

to investigate the effect of the membrane dispersion on the density of the pores created

30



Chapter 3. Electrical models of biological cells 3.3. Cell Models

inside the membrane [30]. Kotnik et al. use the model to study the power dissipation of

the membrane at high frequencies [6]. They theoretically show that at high frequencies

the power dissipated within the membrane exceeds that of the external medium if the

dielectric relaxation of the membrane is considered.

3.3.3 Nonlinear nondispersive model of cell

In nonlinear nondispersive models the permittivity and conductivity of the cell cytoplasm

and the extracellular medium and the permittivity of the membrane are constants whereas

the membrane conductivity is an E-field dependent (and thus time varying for transient

fields) variable. Fig. 3.7 shows the linear dispersive model of cell. σm(t) is the time

dependant membrane conductivity described in 3.10.

The transmembrane voltage is calculated by solving the Laplace equation

−∇ · ∂

∂t
(εm0∇Vm)−∇ · σm∇Vm = 0, (3.24)

in conjunction with 3.10 and 3.11. In the nonlinear nondispersive model of the cell pores

are formed in the membrane at the points that the required voltage of electroporation is

achieved and causes an instantaneous increase in the membrane conductivity and conse-

quently decrease in the transmembrane voltage. Thus, the nonlinear nondispersive model

is applicable in high intensity electric fields. However, in the model the dielectric relax-

ation of the membrane is not considered. Therefore, the model is valid only when low
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Figure 3.7: Nonlinear nondispersive model of cell. σm(E) is the time dependant membrane
conductivity.

frequency electric pulses are applied to the cell.

The nonlinear nondispersive model can be adequately used to predict the transmem-

brane voltage and the parts of the cell that experience electroporation when low frequency

electric pulses are applied to the cell. Kotnik et al. [7] employ the nonlinear nondispersive

model to study the transmembrane voltage in an irregularly shaped cell when a 1 kV/cm

step electric field is applied to the cell. In their simulations the cell electroporation occurs

after 1 μsec because the intensity of the applied electric field is not sufficiently high to

electroporate the cell in nanosecond range. Their finite element simulation results per-

formed in 3-D space show good agreement with the experiments at the regions of the

cell that experience electroporation. In [4, 19] Smith employs the nonlinear nondisper-

sive model to investigate the process of electroporation for a cell with internal structures

when nanosecond pulsed electric fields are applied to the cell. They perform the sim-

32



Chapter 3. Electrical models of biological cells 3.3. Cell Models

h
R

00
,

ee

00
,

cc

)(),( tE
mm

Figure 3.8: Nonlinear dispersive model of cell. σm(E) and εm(t) are the field and time depen-
dant membrane conductivity and permittivity.

ulations in a 2-D space using passive circuit elements to model the cytoplasm and the

extracellular medium and active elements to model the membranes. Their simulations

show supra-electroporation in the internal membranes as well as the cytoplasm mem-

branes. In another study Hu and Joshi use the nonlinear nondispersive model to study

the transmembrane voltage in a spheroidal shape cell [23]. The simulations performed

on oblate and prolate spheroidal cells shows substantially higher transmembrane voltage

for the oblate cells. Based on this evidence they propose pre-orientating the spheroidal

cells before applying an external electric field for optimal uptake of drug, DNA, or other

substances in experimental studies.
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3.3.4 Nonlinear dispersive model of cell

In the nonlinear dispersive model of the cell the electrical parameters of the cell cytoplasm

and extracellular medium are assumed constant (for ns-...) whereas the conductivity of the

membrane is field dependent and the permittivity of the membrane is time dependent. Fig.

3.8 shows the nonlinear dispersive model of a cell. σm(E) is the membrane conductivity

defined in Eq. 3.10 and εm(t) is the time-domain version of the membrane permittivity

described in 3.21. As described in the section 3.1 the time-domain implementation of

the Debye dispersion relation can be accomplished by defining the polarization vector of

the membrane as 3.4. The transmembrane voltage is calculated by solving the Laplace

equation

−∇ · ∂

∂t
(ε0∇Vm + P)−∇ · σm∇Vm = 0, (3.25)

in conjunction with Eqs. (3.11), (3.10), and (3.4). The form of the Laplace equation

shows that both the conduction current of the porated regions and membrane dispersion

play roles in determining the transmembrane voltage.

The nonlinear dispersive model is capable of predicting the formation of the pore

density on the membrane as well as the dielectric relaxation of the membrane. As such,

it can be employed when high intensity and high frequency content electric pulses (up to

20 GHz when the dielectric relaxation of the cytoplasm and extracellular media become

34



Chapter 3. Electrical models of biological cells 3.3. Cell Models

important) are applied to the cell. The nonlinear dispersive model is the most accurate

model to investigate the process of nanosecond pulse electroporation of biological cells.

To my knowledge there is no study reported on the nonlinear dispersive model of the

cell. We study the nonlinear dispersive response of cell to microsecond and nanosecond

pulses in more detail in the next chapter.

In all the described models we used Laplace equation to calculate the transmembrane

voltage. The application of the Laplace equation is valid here because the time required for

the electric field to pass through a biological cell is typically in the range of femtoseconds,

which is much smaller than the rise-time of the pulses applied in cell electroporation.
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Chapter 4

Simulation Results

The electroporation of cells occur when the cells are exposed to strong electric fields.

Modeling of the interaction of the external electric field with the cell is of special impor-

tance since it helps with better understanding of the electroporation process. The cell

electrical model plays an important role on the modeling electric response of cell to an

external electric field. As discussed in ch. 3 there are four electrical models for a cell based

on the electrical parameters of the cell. In this chapter we study the dynamic response of

the described models to microsecond and nanosecond pulsed electric fields. The chapter

begins with a brief introduction on the numerical model employed in the study. Then

the simulation results on microsecond and nanosecond response of cell are presented with

more focus on the nonlinear dispersive model. Finally the effect of the pulse duration on

the temporal response of cell is discussed.
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Figure 4.1: The geometry of a single-shell cell in a lossy medium. The top and bottom faces
of the calculation block are taken as the electrodes to which electric voltages are
applied. The electrodes are 100 μm apart.

4.1 3-D model of cell in COMSOL Multiphysics

We employ the finite element based software COMSOL Multiphysics 3.5 to simulate the

response of cells to applied electric pulses. Fig. 4.1 shows the geometry of the spherical

single-shell cell embedded in a lossy medium that we employ for our simulations. The

cell parameters given in Table 3.3 have been previously used in [7] and they are chosen to

match with Chinese hamster ovary cells (CHO). The cell radius is 10 μm and the thickness

of the cell membrane is 5 nm. In our numerical model the cell is embedded in a 3D 100

μm3 simulation space. An electric potential, Vs(t), is applied to the upper plane of the

simulation space and the lower plane is set to ground potential. The electric potential at
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any point is calculated by solving the Laplace equation

−∇ · ∂

∂t
(ε0∇φ+ P)−∇ · σ∇φ = 0, (4.1)

with

E = −∇φ. (4.2)

The auxiliary equations 3.11, 3.10, and 3.4 accompany 4.1 where required. The transmem-

brane voltage at any point on the cell membrane is calculated as the difference between

the electric potential at the outer and inner surfaces of the membrane

Vm = φ|r+h − φ|r. (4.3)

We use the Quasistatics-Electric Currents application mode to solve the Laplace equa-

tion 4.1, the PDE Modes-Weak Form Boundary application mode to solve the pore density

equation 3.11, and the PDE modes-Coefficient form to solve the polarization vector equa-

tion 3.4. The Laplace equation is solved at the subdomains inside the cell, membrane,

and outside the cell (simulation box), the pore density equation is solved on the surface

of the membrane, and the polarization vector equation is solved inside the membrane

subdomain. The initial value of all the variables are set to zero at t = 0 except for the

initial density of the pores on the membrane which is set to N0, the equilibrium pore

density. Direct PARADISO solver is used to solve the equations.
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Figure 4.2: Scaling the thickness of the membrane. The electrical parameters of the membrane
are scaled as well to maintain the transmembrane voltage as before scaling.

In our model the thickness of the membrane is more than 1000 times smaller than the

cell radius which makes the numerical solution complicated and time consuming. Kotnik

et al. have addressed the problem by replacing the membrane with a current boundary

condition that accounts for the membrane conduction and displacement currents and the

pores conduction after electroporation of the membrane [7]. This method is efficient in

memory and time. However, it cannot be improved to incorporate more features inside

the membrane. Since the membrane has a smooth radius of curvature, in our simulations

we employ a geometrical scaling to the thickness of the membrane to avoid numerical

complication [37,38]. In order to maintain the electric field inside the membrane and the

transmembrane voltage as before scaling the electrical parameters of the membrane are

scaled as well, as shown in Fig. 4.2.

We verify the thickness scaling method by simulating the thick and thin membrane cell

response to an external electric field and comparing the transmembrane voltage, normal

electric field and tangential electric field inside the membrane, as shown in Fig. 4.3. The
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Figure 4.3: The transmembrane voltage, normal and tangential electric fields inside the mem-
brane

simulations are done on the linear nondispersive model of the cell when a step voltage of 10

V is applied to the top electrode. Figures 4.4 and 4.5 are the plots of the transmembrane

voltage and the normal and tangential electric fields inside the thick and thin membranes

100 nsec and 10 usec after the onset of the electric field. A scaling factor of 100 is employed

in the simulations. The results of the thick membrane model are in good agreement with

the thin membrane one with maximum error of 10 percent. Regarding the error of less

than 10 percent, we use the scaled model to study the process of electroporation. The

scaling technique enables further investigations on the mechanical properties of the pores

as well as modeling other fine features in the membrane.
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Figure 4.4: Comparison of (a) the transmembrane voltage, (b) the normal electric field, and
(c) the tangential electric field inside the actual and scaled membrane 100 nsec
after the onset of the electric field. The horizontal axis is the arc length around
the cell starting from the bottom point on the cell.
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Figure 4.5: Comparison of (a) the transmembrane voltage, (b) the normal electric field, and
(c) the tangential electric field inside the actual and scaled membrane 10 μsec after
the onset of the electric field. The horizontal axis is the arc length around the cell
starting from the bottom point on the cell.
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4.2 Time-Domain Dispersion Model Verification

Before we proceed to incorporate the dispersion relation into the nonlinear model of elec-

troporation, we verify the time-domain dispersion relation by comparing the time-domain

and frequency-domain response of the cell when a single frequency sinusoidal electric field

is applied to the cell. The linear dispersive model of the cell is implemented in both

the time-domain and the frequency-domain using equations (3.11) and (3.4), respectively.

Sinusoidal electric fields in the frequency range of 10 kHz to 1 GHz are applied to the

time-domain model of the cell and the amplitude and phase of the transmembrane voltage

at the top of the cell is compared with the frequency-domain response at each frequency.

The results, depicted in Fig. 4.6, show the time-domain and frequency-domain response

match within 1% error.

4.3 Cell response to nanosecond pulses

We apply a nanosecond duration Gaussian pulsed voltage to the top electrode producing

an electric field of 65 kV/cm intensity across the cell at its peak (Fig. 4.7). The 10 −

90% rise-time of the applied pulse is 0.7 nsec and it has a full width at half maximum

(FWHM) of 0.94 nsec. With nanosecond electric pulses the electric response of the

cell is effectively determined by the dielectric properties of the cytoplasm, membrane,

and extracellular medium because of the high frequency spectral content of the pulse.
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Figure 4.6: Transmembrane voltage at the top of the cell to compare the Debye dispersion
relation in the frequency-domain (solid line) with the time-domain implementation
(marked points). (a) Amplitude and (b) Phase of the transmembrane voltage.

Therefore, we expect to observe different behaviors for the dispersive and nondispersive

models since the permittivity of the membrane is highly influenced by the membrane

dielectric relaxation. The dispersion equation (3.2) predicts lower permittivity for the

membrane for high frequency components of the applied pulse. Thus, the membrane

capacitance in the dispersive model is smaller than that of the nondispersive one which

results in higher transmembrane voltage in the dispersive model.

Most of numerical studies previously performed on nanosecond pulsed electroporation

of cells have employed trapezoidal pulse waveforms as the electroporating signal (Fig. 4.8

shows the pulse used in [4]). The sharp discontinuities in the trapezoidal waveform contain

high frequency components which are filtered in real experiments, but in simulations result

44



Chapter 4. Simulation Results 4.3. Cell response to nanosecond pulses

0 2 4 6 8 10
0

200

400

600

V
s (V

)

Time (nsec)

0 0.2 0.4 0.6 0.8 1
0

0.25

0.5

0.75

1

M
ag

ni
tu

de

Frequency (GHz)

Figure 4.7: Applied nanosecond Gaussian pulsed voltage and its frequency spectral content.
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Figure 4.8: The trapezoidal pulse waveform used in [4].
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in unnatural artifact points in the cell electrical response. A smooth Gaussian shaped

pulse, with nanosecond parameters similar to that in [24], is employed in this study.

4.3.1 Linear model response

Fig. 4.9 shows the transmembrane voltage along the circumference of the cell for the

linear dispersive and nondispersive models. The transmembrane voltage around the cell

has a sinusoidal shape with the maximum and minimum at the top and bottom of the

cell, respectively. The transmembrane voltage at any point on the membrane follows the

pattern of the applied electric field. The membrane charges increasing the transmembrane

voltage until the peak of the pulse is achieved. Afterwards the transmembrane voltage

decreases as the applied electric field goes down. As expected the dispersive model pre-

dicts a higher transmembrane voltage than the nondispersive model at any point on the

membrane. The linear models do not consider the creation of the pores and increase in

the membrane conductivity. Thus, the transmembrane voltage can increase infinitely and

may exceed the required voltage of electroporation.

The time response of the transmembrane voltage and normal polarization at the top

point of the cell are shown in Fig. 4.10. The transmembrane voltage has the shape of the

applied electric pulse at the rising edge of the pulse. However, for the dispersive membrane

it does not reach zero at the end of the pulse because of the slow discharging response of

the membrane. The dispersive membrane response is faster because the membrane time
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Figure 4.9: The transmembrane voltage around the cell circumference starting from the right
most point on the equator and moving clockwise for the linear dispersive (solid line)
and nondispersive (dashed line) models when a 65 kV/cm nanosecond electric field
is applied to the cell.
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Figure 4.10: Time course of (a) the transmembrane voltage and (b) the normal polarization
at the top of the cell when a nanosecond electric field of 65 kV/cm is applied to
the linear model of the cell.

constant (ε/σ) is smaller due to lower membrane permittivity. The lower level of P for

the dispersive model verifies the lower membrane capacitance and consequently higher

voltage drop across the membrane.

4.3.2 Nonlinear model response

Fig. 4.11 shows the transmembrane voltage along the circumference of the cell for the

dispersive and nondispersive models when the pulse shown in Fig. 4.7 is applied to the

cell. The transmembrane voltage at each point on the membrane follows the pattern of the

applied electric field until the required voltage of electroporation is achieved. The top and
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Figure 4.11: The transmembrane voltage along the cell circumference starting from the right
most point on the equator and moving clockwise for the nonlinear dispersive (solid
line) and nondispersive (dashed line) models when a 65 kV/cm nanosecond elec-
tric field is applied to the cell. The top and bottom of the cell close to the electrodes
are electroporated in the dispersive model.
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Figure 4.12: The conductivity of the membrane at t = 5 nsec along the cell circumference
starting from the right most point on the equator and moving clockwise for the
nonlinear dispersive (solid line) and nondispersive (dashed line) models when a
65 kV/cm nanosecond electric field is applied to the cell.

bottom of the cell facing the electrodes are the first spots that experience electroporation.

When the pores are formed, the conductivity of the membrane increases rapidly resulting

in lower transmembrane voltage. After this the electroporated area increases as the pulse

proceeds to its peak. The onset of electroporation occurs after 4.75 nsec for the dispersive

model, whereas for the nondispersive model the electric field is not sufficiently strong to

electroporate the cell. The essential difference between the dispersive and nondispersive

models is that Vm|dispersive > Vm|nondispersive at each time step due to lower membrane

capacitance for the dispersive model. Fig. 4.12 is a plot of the membrane conductivity

around the circumference of cell at t = 5 nsec, illustrating the regions on the cell that

experience electroporation. It is obvious that the pole areas of the dispersive model are

electroporated.

The time response of the transmembrane voltage, normal polarization, pore density,
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and membrane conductivity at the top point of the cell are shown in Fig. 4.13. The

transmembrane voltage starts increasing faster for the dispersive membrane. Therefore,

the required voltage of electroporation is achieved after 4.75 nsec while the maximum

transmembrane voltage achieved for the nondispersive model is at the peak of applied

pulse. Fig. 4.13 shows distinctly different transmembrane behavior at the falling edge of

the pulse for the dispersive and nondispersive models. It is interesting to observe that in

the dispersive model the transmembrane voltage at polar regions obtains negative values

and then approaches zero after 7 nsec, while in the nondispersive model the transmem-

brane voltage approaches zero after 30 μsec (not shown) remaining positive all the time.

The essential difference is that the time constant (ε/σ) of the membrane is much smaller

for the dispersive model as the result of the increase in the membrane conductivity due to

electroporation and decrease in the membrane permittivity due to the dielectric relaxation

of the membrane. The time constant of the membrane is approximately 200 psec for the

dispersive membrane whereas it is 80 μsec for the nondispersive one. Since the fall time of

the applied electric pulse is 700 psec the electroporated dispersive membrane has sufficient

time to discharge while the cytoplasm remains charged due to slower response (the time

constant of the cytoplasm is approximately 2.5 nsec). Therefore, the cytoplasm charges

the membrane in the opposite direction causing a negative transmembrane voltage in the

dispersive model. The time course of the polarization vector shows weaker polarization

for the dispersive model which results in lower transmembrane voltage. As depicted in
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Figure 4.13: Time response of (a) the transmembrane voltage, (b) the normal polarization, (c)
the pore density, and (d) the membrane conductivity at the top of the cell when
a nanosecond electric field of 65 kV/cm is applied to the nonlinear model of cell.
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Fig. 4.13 the density of the pores and the membrane conductivity increase rapidly after

the onset of electroporation for the dispersive membrane whereas for the nondispersive

one they stay at the equilibrium level.

With a 0.94 ns duration pulsed electric field the minimum required amplitude to

observe electroporation in the nondispersive model is 120 kV/cm. In the dispersive model

electroporation occurs with electric field intensity of 65 kV/cm. The conclusion is that

ignoring dispersion leads to 85 percent overestimation of the required electroporating pulse

intensity.

Fig. 4.14 shows the transmembrane voltage around the cell for the nonlinear disper-

sive and nondispersive models when an electric field of 130 kV/cm intensity is applied to

the cell. In this case both the dispersive and nondispersive membranes experience electro-

poration. Fig. 4.15 compares the time responses with and without dispersion at the top

of the cell. It is obvious that the amplitude of Vm increases faster in the dispersive model

resulting in earlier start of electroporation. The transmembrane voltage goes negative for

the dispersive and nondispersive models since they both have high membrane conductiv-

ity that accompanies electroporation and, therefore, a small time constant. The temporal

change of normal polarization density, P shows weaker polarization of the membrane after

the onset of the pulse for the dispersive model which explains higher transmembrane volt-

age and faster start of electroporation. The normal polarization goes negative at the end

of the pulse for the dispersive and nondispersive models; however, for the nondispersive
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Figure 4.14: The transmembrane voltage around the cell starting from the right most point
on the equator and moving clockwise for the nonlinear dispersive (solid line) and
nondispersive (dashed line) models when a 130 kV/cm nanosecond electric field
is applied to the cell.
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membrane it is in phase with the electric potential across the membrane whereas for the

nondispersive membrane it is slightly delayed. The reason is that for a dispersive mem-

brane ε in the equation 3.1 is a complex value, incorporating a loss component, number

that causes a delay between P and E, while for a nondispersive membrane ε is a constant

real value. Also, it is noticed that the density of the pores is almost the same for the

dispersive and nondispersive models at the areas that poration occurs for both models.

Fig. 4.15(c) shows the time course of N with and without dispersion at the top of the cell.

In the results reported in [30] the density of the pores in the dispersive model is predicted

to exceed that of the nondispersive model. This is different from the result in Fig. 4.15(c).

The reason is that in the model of [30] the transmembrane voltage is not controlled by

the conduction current of the pores. Therefore, in the dispersive model Vm exceeds the

required voltage of electroporation and increases the density of the pores. In our model

Vm is limited to approximately 1.1 V by equations (3.11) and (3.10). The density of the

pores increases with Vm until the required voltage of electroporation is reached and it

stays unchanged afterwards. The ultimate value of N in dispersive and nondispersive

models are very close.

Moreover, the dispersive model predicts a wider electroporated area on the membrane

surface. As depicted in Fig. 4.16, in the dispersive model the whole surface area of the

cell except the equator are experiencing electroporation, while in the nondispersive model

only the pole areas are electroporated.
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Figure 4.15: Time course of (a) the transmembrane voltage, (b) the normal polarization, (c)
the pore density, and (d) the membrane conductivity at the top of the cell when a
nanosecond electric field of 130 kV/cm is applied to the nonlinear model of cell.
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Figure 4.16: Electroporated area for (a) the dispersive and (b) the nondispersive model at t = 5
nsec. The bright color parts are electroporated areas with high conductivity. The
color bar shows the conductivity of the membrane.

In the physical process of electroporation, when the hydrophilic pores are created

inside the cell lipid bilayer membrane some polar molecules (e.g. ions and proteins) in

the extracellular suspension pass through the membrane and enter the cytoplasm. As

a consequence of ion transport across the membrane the cell cytoplasm and membrane

conductivity increases. In our model we are accounting only for the increase in the

cell membrane conductivity assuming that (i) the pores are created at areas that the

transmembrane voltage exceeds the required voltage of electroporation ( 1.1 V ) and (ii)

the membrane is very thin such that the diffusion of ions and conductivity increase occur

instantaneously. However, the diffusion of ions into the cytoplasm is a more complicated

process that needs more insight on the cytoplasm diffusion time constant as well as the

volume that is affected inside the cytoplasm.
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Figure 4.17: Applied microsecond Gaussian pulsed voltage and its frequency spectral content.
The 10− 90% rise-time of the pulse is 0.7 μsec and the peak is at 5 μsec.

4.4 Cell response to microsecond pulses

We apply a microsecond duration Gaussian pulsed voltage to the top electrode in Fig. 4.1

producing an electric field of 2 kV/cm intensity across the cell at its peak. The geometry

and electrical parameters of the cell are the same as previous section. The 10− 90% rise-

time of the applied pulse is 0.7 μsec and it has a full width at half maximum (FWHM)

of 0.94 μsec. The pulse is shown in Fig. 4.17. With microsecond electric pulses the

electric response of the cell is effectively determined by the conduction properties of the

cytoplasm, membrane, and extracellular medium. Since the frequency spectral content of

the applied microsecond pulse is not sufficiently high to cause the dielectric relaxation of

the membrane we expect to observe similar behavior for the dispersive and nondispersive

models.
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Figure 4.18: Passive Circuit Model of Cell

The intensity of the applied microsecond pulse is much lower than the nanosecond

pulse used in the previous section. The reason is that with microsecond pulses a greater

portion of the total electric potential is across the membrane. Fig. 4.18 shows a passive

circuit model of the cell. Assuming one-dimensional resistor and capacitors models, Rj

and Cj are defined as

Re =
le
σeA

, (4.4)

Rm =
lm
σmA

, (4.5)

Rc =
lc
σcA

, (4.6)

Ce =
εeA

de
, (4.7)
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Cm =
εmA

dm
, (4.8)

Cc =
εcA

dc
(4.9)

where σi0 and εi0 are the static conductivity and permittivity of each medium, l is the

thickness of each medium and A is the effective cross-sectional area. Fig. 4.19 shows the

ratio of Vm/Vs versus frequency. It is obvious that at low frequencies the applied electric

potential difference is mostly across the membrane whereas at high frequencies the ratio

Vm/Vs is very small. Thus, nanosecond duration pulses require much higher intensity

than microsecond duration pulses to cause cell electroporation.

4.4.1 Linear model response

Fig. 4.20 shows the transmembrane voltage for the linear dispersive and nondispersive

models along the circumference of the cell. As expected the dispersive and nondispersive

membrane models predict the same transmembrane voltage.
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Figure 4.20: The transmembrane voltage around the cell starting from the right most point
on the equator and moving clockwise for the linear dispersive (solid line) and
nondispersive (dashed line) models when a 2 kV/cm microsecond electric field is
applied to the cell.
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Figure 4.21: Time course of (a) the transmembrane voltage, (b) the normal polarization, (c)
the pore density, and (d) the membrane conductivity at the top of the cell when
a microsecond electric field of 2 kV/cm is applied to the linear model of cell.

The time response of the transmembrane voltage and normal polarization at the top

point of the cell are shown in Fig. 4.21. It is observed that the peak of the transmem-

brane voltage is achieved after the peak of the external electric field at 5.4 μsec. The

reason for this is that during the applied falling edge of the electric field the cytoplasm

and extracellular medium discharge much faster than the membrane (The time constant

of a nonporated membrane is in microsecond range while that of the cytoplasm and ex-

tracellular medium is in the nanosecond range) and charges the membrane even though

the external electric field is decreasing. After 5.4 μsec the membrane starts to discharge

decreasing the transmembrane voltage. The time response of the normal polarization, P,
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shows that it is completely in phase with the transmembrane voltage, verifying the fact

that significant membrane dielectric relaxation does not occur with microsecond duration

pulses.

4.4.2 Nonlinear model response

Fig. 4.22 shows the time evolution of the transmembrane voltage along the circumference

of the cell. It shows that both the dispersive and nondispersive membranes experience

similar electroporation behavior. Electroporation starts at the same time for both mod-

els because with the applied microsecond duration pulse significant membrane dielectric

relaxation does not occur.

The time response of the transmembrane voltage, normal polarization, pore density,

and membrane conductivity at the top point of the cell are shown in Fig. 4.23. Membrane

electroporation starts at 4.75 μsec and decreases the transmembrane voltage due to the

increase in the membrane conductivity that accompanies electroporation. It is noticed

that with microsecond pulses the density of the pores created in the membrane is much

smaller than for nanosecond pulses, and is a major difference between conventional elec-

troporation and supra-electroporation. In microsecond electroporation of cells presented

in this work we still assumed that pores are created with constant radius of 0.8 nm. More

accurate modeling of the phenomenon in the microsecond pulse case requires considering

the expansion of the pores.
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Figure 4.22: The transmembrane voltage along the circumference of the cell starting from the
right most point on the equator and moving clockwise for the nonlinear dispersive
(solid line) and nondispersive (dashed line) models when a 2 kV/cm microsecond
electric field is applied to the cell.
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Figure 4.23: Time course of (a) the transmembrane voltage, (b) the normal polarization, (c)
the pore density, and (d) the membrane conductivity at the top of the cell when
microsecond electric field of 2 kV/cm is applied to the nonlinear model of the
cell.
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4.5 The effect of the pulse fall-time

As mentioned in the previous section, the behavior of the transmembrane voltage at the

falling edge of the applied electric pulse is highly dependent on the fall-time of the pulse.

For an external electric pulse sufficiently strong to electroporate the cell membrane, the

theoretical time constant of the membrane and cytoplasm are

τm =
εm
σm

=
13.9× 10−12

0.04
= 0.35nsec, (4.10)

τc =
εc
σc

=
7.08× 10−10

0.3
= 2.36nsec. (4.11)

where εm is the high frequency membrane permittivity, σm is the conductivity of the

membrane after electroporation, εc is the cytoplasm low frequency permittivity, and σc is

the static conductivity of the cytoplasm.

In order to investigate the effect of the pulse fall-time on the transmembrane voltage

we perform simulations in 2-D space on a simple parallel plate capacitor geometry shown

in Fig. 4.24. The top, middle, and bottom layers have the parameters of the extracellular

medium, cell membrane, and cytoplasm, respectively. We use the nonlinear dispersive

model for the membrane.

Two 100 kV/cm Gaussian rise-time (fall-time) pulses with 1 nsec and 6 nsec fall-time

are applied as V s. Fig. 4.25 shows the applied pulses. The electric potential across the

middle layer (membrane) when a 1 nsec rise-time pulse is applied is shown in Fig. 4.25(c).

66



Chapter 4. Simulation Results 4.5. The effect of the pulse fall-time

5 nm

00
,

ee

00
,

cc

)()),(( ttE
mm 10 um

50 um

Vs(t)

V=0

Figure 4.24: 2-D parallel plate capacitor geometry
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Figure 4.25: Gaussian (a) 1 nsec rise-time, 10 nsec duration (b) 6 nsec rise-time 40 nsec
duration pulses applied to the parallel plate structure, and the time response of
the electric potential across the middle layer when (c) 1 nsec rise-time pulse is
applied, and (d) 6 nsec rise-time pulse is applied.
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In this case the fall-time of the pulse is shorter than the time constant of cytoplasm

and longer than the time constant of membrane. Therefore, the cytoplasm charges the

membrane in the opposite direction after the membrane is discharged, causing a negative

electric potential across the membrane. Fig. 4.25(d) shows the electric potential across

the middle layer (membrane) when a 6 nsec rise-time pulse is applied. With a 6 nsec

rise-time pulse no undershoot is observed in the transmembrane voltage at the falling

edge of the electric pulse because both the cytoplasm and membrane have sufficient time

to discharge.
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5.1 Conclusion

The time course and spatial distribution of the transmembrane voltage is of significant

interest in the studies of electroporation of biological cells. The numerical modeling of a

cell’s response to an external electric field is important since experimental monitoring of

the transmembrane voltage is difficult due to the very small time and length scales that

the phenomenon occurs. The goal of this research is to improve the electrical model of

a cell for applications in nanosecond pulse electroporation. In nanosecond pulse electro-

poration of cells we need to account for the effect of the dielectric relaxation of the lipid

bilayer membrane on the transmembrane voltage. In this project we incorporated the

time-domain implementation of the Debye dispersion relation into the nonlinear model of

electroporation to predict the transmembrane voltage more accurately. In the presented
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model we account for the changes in the membrane conductivity due to the pore conduc-

tion as well as changes in the membrane permittivity due to the lipid bilayer membrane

dispersion. Comparison of responses of cells to nanosecond pulses determined using the

nonlinear dispersive and nondispersive models shows that the increase in the transmem-

brane voltage and consequently the onset of electroporation occurs faster in the dispersive

model when nanosecond pulsed electric field is applied to the cell. Moreover, we noticed

that the minimum electric field required to observe electroporation in the cell membrane

is significantly reduced when the membrane dispersion is considered.

5.2 Future Work

The nonlinear dispersive model of the cell described in this paper provides more insight

on the interaction of high frequency electric pulses with the cell membrane and enables

more accurate modeling of nanosecond pulse electroporation of biological cells.

In this research we studied the electrical response of cells to external electric fields

assuming a single shell structure for the cells. The study and the proposed nonlinear

dispersive model can be extended to multi-shell structures and thus include some of the

cell internal organelles. The effect of an external electric field on a cell’s internal structures

is gaining special interest since it has the potential to open access to the nucleus of the

cell. Moreover, in this research we assumed a spherical shape for the cell. Simulations on

spherical shape cell provide valuable information on the response of different cell models to
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an external electric field. However, it may not provide accurate values for field strengths

needed for electroporation. More realistic cell shapes result in more accurate prediction of

the cell response. The approach developed here is capable of any arbitrary cell geometry

(as long as the radius of membrane curvature is less than its thickness and of the second

membrane thickness).

The cell response to an external electric field is highly dependent on the electrical

parameters of the cell. In our study we used electrical parameters for CHO cells that

have been measured and used in previous studies. Most of the electrical parameters of

the cell reported in literatures are based on low frequency measurements. High frequency

measurement of the electrical parameters of a cell would lead to more accurate prediction

of the cell response to high frequency pulses.

The asymptotic model of electroporation has been developed for conventional electro-

poration in which the duration of the applied pulse is much longer than the molecular

rearrangement time scale and the density of pores formed in the membrane is quiet low.

Extending this model for application in nanosecond pulse electroporation would results

in more accurate modeling of the phenomenon.

In this research we assumed that pores were created and maintained at the radius of

minimum energy. Improving the cell model to incorporate pore expansion will open the

door to more advanced modeling of electroporation that could include detailed molecular

transport across the membrane.
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Appendix A

Hydrophobic and Hydrophilic Pore

Energy

The energy of a hydrophobic pore is defined as the change in the membrane energy that

results from the formation of a hydrophobic pore of radius r in the membrane. The energy

of a hydrophobic pore at the transmembrane voltage Vm = 0 is calculated from [10]

Eo(r) = 2πhσ0r
I1(r/ρ)

I0(r/ρ)
, (A.1)

where In(x) are n − th order Bessel functions, h is the thickness of the membrane, σ0 is

the interface tension between hydrophobic lipid tails and water, ρ is a constant, and r is

the radius of the hydrophobic pore.

The energy of a hydrophilic pore is defined as the change in the membrane energy

that results from the formation of a hydrophilic pore of radius r in the membrane. The
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Table A.1: The hydrophobic and hydrophilic energy parameters [8].

Parameter Symbol Value

Thickness of the membrane h 5 nm

Interface tension between hydrophobic tails and water σ0 0.05 N/m

Constant in Eq. A.1 ρ 1 nm

Energy per unit length of the pore perimeter γ 1.8× 10−11 J/m

Energy per unit area of an intact membrane σ 10−3 J/m2

Constant in Eq. A.2 C 9.67× 10−15 J
1
4
m

energy of a hydrophilic pore at the transmembrane voltage Vm = 0 is calculated from [8]

Ei(r) = 2πγr − πσr2 +

(
C

r

)4

, (A.2)

where γ is the energy per unit length of the pore perimeter, σ is the energy per unit area

of an intact membrane, C is a constant, and r is the radius of the hydrophilic pore. The

value of the hydrophobic and hydrophilic energy parameters are given in Table A.1 [8].

When the transmembrane voltage is elevated, the energy of hydrophobic and hy-

drophilic pores are calculated from [10]

E(r, Vm) = E0(r)− π

2h
(εrw − εrm)ε0V

2
mr

2, (A.3)

where E0(r) is the pore energy at Vm = 0, εrw is the dielectric constant of water, εrm

is the dielectric constant of the membrane and Vm is the transmembrane voltage. It

is assumed that the energy of both hydrophilic and hydrophobic pores change the same

with the transmembrane voltage. Therefore, r∗, the pore radius at which hydrophobic and
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hydrophilic pores have the same energy, does not depend on the transmembrane voltage.
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