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ABSTRACT

A search for a non-random component in the cosmic radiation
has been conducted using a ground based air shower array
s , . . 14
sensitive to cosmic ray primaries of emnergy },9x10 eV.The
time interval between the detection of successive air show-
ers has been measured for more than 149,000 air showers re-
corded over a period of three years.The data are consistent
with the conclusion that these primary particles are inci-

dent upon the upper atmosphefe randomly in time and uniform-

1y from all portions of the sky swept by the array.
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Chapter I

DESCRIPTION OF COSMIC RAY AIR SHOWERS

1.1 DEVELOPMENT OF COSMIC RAY (C.R.) AIR SHOWERS

An incoming primary_parficle collides at a great height
(typically 20-30 ¥m) with an oxygen or nitrogen nucleus,
giving rise to a shower of mesons and nucleons which contin-
ue towards the earth approximately along the projected di-
rection of the incoming particle. The central region around
this direction is usually called the ‘core’ of the show-
er.Further nuclear disintegrations are prodﬁced by these me-
sons and nucleons,giving rise to more mesons and nucleons,
constituting the nucleon cascade.In the initiél and subse~
quent cpllisions; neutral pi-mesons produced,decay into high
energy gamma rays which then initiate an electron-photon
cascades.Some of the charged pi-mesons decay into Vmuons
which form a very penetrating component.The summation of all
the individual cascades constitutés.the extensive air shower
(FAS) at ground level. He seé then that an air shower con-
sists of a core of high energy particles,some of which dré
nuclear interacting(N-Component) i.e. nucleons and mesons
and some high energy muons and electrons. Around ﬁhe core

are distributed the electron-photon component and muons.



1.2 LONGITUDINAL DEVELOPMENT OF THE ELECTRON=-PHOTON
' COMPONENT

The electron photon component of the shower is derived
almost entirely from the gamma rays produced in the decay o‘f‘Tfo
mesons ,which have themseives béen produced in nuclear inter-
actioﬁs. The electron photon component is thus a secondary
product of a nucleoﬁ éascade.

Thg longitudinal development of the cascade has .been
dealt with in varying degrees of detail in several publica-
tions. We will first give.a simplifieﬂ ﬁodélég which shows
the qualitative behaviour,and then quote the results of
more detailed treatments.1’2

Assume interactions of photons that produce electron—po-
sitron pairs,or éf electrons that produce gamma rays by
bremsstrahlung. ocecur at distances 0,1,2,3... units (radia-
tion length)1 along the path of the shower from the origin.
At each intefaction the energy 1is equally divided between
two new "particles"” (including photons as particlés).Then'

after a distance of t radiation lengths,the number of parti-

cles is
+

N=2,

and the energy of each 1is

E=E./ 2"

— -y — ot o Wt W o e v s S S e e

see page 5 for the definition.
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where F_  is the energy of the primary particle.This cascade

O .
multiplication continues until! E is reduced to some value
EC ,at which the electron loses energy rapidly by ionization
rather than tﬁé 'abovevvmentioned processes., Beyond this
stage,pascade multiplicatidn ceases,énd the particles are

then absorbed. The depth of the maximum.development,T, is

given by

o
[¢]

| T o< log R/,
Thus the depth of.the maximum of development increases loga-
rithmically with energy and the number of particles present
at the maximum is proportional to the primary energy.

The usual approach,due to Carlson and Oppenheimer3 to a
more satisfactory solutioh of the cascade problem is through
differential eguations analogous to diffusion equations
which describe the changés occuring in a depth dt at t .Ve
write'Ne (F,t) for fhe spectrum of electrons at the depth t.
and K(w,t) for the spectrum of photons. Then the number of
"electrons with energy between F and E+HR (the interval R,dE)
'changes through the following effects.

(1) photons with energy greater thaﬁ F can produce electrons
in the intervél E,dE.

(2) Eléctrons with energy LE’,greater than F,enter the inter-
val by radiating away part of theif energy.

(3) Some electrons in the interval leave it by radiation

loss.
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(4) electrons lose energy € dt by ionization in the defth“
dt. Thus the number entering the interval (E,dE) is Ne
(E+dE)é-dt'and thé number leaving the interval is Ne (E)E'
dt; Thé change of number is thuses(aNe JoE)dE dtf

(5) electrons with energy E ,greater than VW radiate photons
in the'energy'interval (V,dW) by bremsstrahlung.

(6)>some pﬁotoné_are removed from the interval by pair'pro—
Huctién.

(7) Photons are femoved from the interval'by_the Compton ef-

' . . . 14
fect. At the energies we are considering (10"

eV)
this loss is'small, and is neglected.
The cross-sections for the production of pairs by ﬁigh‘ener—
gy gamma rays and of gamma rays by bremsstrahlung in the
coulomnb field of the nucieUS'have been obta;ned by use of
quantum theoryh, For the energies with which we are con-
cerned,the iﬁpbrtént values ‘of the impact parameter are
large enougﬁ that the approximation of "complete séreening"
of the nuclear charge»by the atomic electrons may be as-

sumed.The probability that a photon of energy E produces an

. . 2 .
electron pair in one g/cm of matter is

2 :
2 € 2. )
478 —— ,Q_z).ﬁ_g lp\(\ggz 3)._.,_'_.}.
he \mc A L9 54
Where z,A and M are the atonic number,mass number and the
number of neutrons (respectively) of the target atom. The
loss of energy of an electron of energy E by bremsstrahlung

in the same distance 1is

- e? e* - |
se -4 () B e lan LosTe) < o)



These expressions are similar and nearly proportional to

2 2 \F, |

E =475 (e )Kv\(lé’?;?:”z‘)
he mct

It is convenient therefore to introduce a unit XO defined

by X, =(A/NF ). This unit is called a RADIATION LENGTH and

in it the energy of aﬁ elecﬁfon is reduced to e_'l of its

value by fadiétion.

Solutions of fhe appropriate differential equa~-
.tionssohave than been obtéined in two different approxima-
tions. In approximation Av,the ijonization loss is neglect-
ed,and the asymptdtic cross-sections for high energy and
complete screening are used. A solution can then be obtained
fqr tﬁe number of electrons or gamma Tays with energy great-
er than a given value.

In approxiﬁation B ,the ionization loss is included and a
partial solution can be obtained for the total number of
electrons. Curves which show these results are given in

FIG.l.(dotted curves for approx1mat10n A and full curves for

o Locus of shower maxima, (L.e. for S=10) g
B) : ' ] T A gﬁmnawmy
81
7+
: ol-
FIG 1 =
o 5t
g
41
3
2+
It S0
100 200 300 400 500 600 700 800 00 100000 g.om”
0.!%1 l'l L'!»l ! 1. -
0 5 10 15 20 25 30

t cascade units (RAd. LENGTHS.)

Photon-electron cascads curves. Full line, Snyder (1949); dotted
line, Janossy and Messel (1951). _ )
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If N(t) is the number of particles at depth t,the integfal
N(t)dt is called ﬁhe track length integral.Since all thé en~
ergy of the primafy particle is ulfimately lost in ionizing
the air and the energy loss per ;adiation length by ioniza-
tion is EC ,it is'cleaf thaﬁ J;N(t)dt=Ep /EC ‘where Ep is

the primary energy. Greisen  has derived an approximate ex-

pression for the number of particles.

' V ‘():5] | £U=3/2 Ans)
AT e
N (t; EO) 'ZV\LEO/EL)

where s is given by s=3t/(t+21nEO /EC').



1.3 LATERAL SPREAD OF COSMIC RAY SHOWERS

So far we have described only the 1ongifudina1 develop-
ment éf the electron photon cascade.The lateral spfead of
the particles is produced mainly by multiple scaftering of
electrons.The root mean square scattering angle of particies
cf energy E  in one radiafion length is given by ESA/E (Rossi.
and Greiseﬂ); where ES =21x106 eV whereas the mean angle
of émission _of- photons in bremsstrahlung_ br electréns 'in
pair production is qf the order m /T ywhere m is the mass
of the,eieétron, which is about‘leO5 eV .

The lateral distribution has been calculated using diffu-
sion equations similar to those for the longitudinal debel—
opment, but including terms for the lateral displacement and
angular displacement of the particles.The fesulting eqﬁa-
tions have been solved.by Moliere6 » Fyges and Fernbach7 and -
by Nishimura and 'r{amata8 + The distributions obtained by

Mishimura and ¥Xamata are shown in FIG.2.
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_ *'HE LATERAL DISTRIBUTION OF ELECTRONS ABOUT THE AXIS OF AN AIR .

SHOWER ©ON THE NianUrRA-KAMmATA THEORY (THE STRUCTURE FUNCTION), !

. 5is the age parameter and is equal to unity for showers at maximum development. :
' : Ry=79 metres 2t sca level. s . i
(After Golbraith, Extensiis Air Showers, Bulierworths Stirtific Publications, 1938)s

1.4 THE DENSITY SPECTRUM

The actual densities of thé showers detected depeﬁd not
only on the area and the number of counters invol-ved',but on
the so called density spectrum of showers.By density spec—
trum is meant thg frequency of showers Y (a)da ,which give
densities within the range A to A-+db particles per unit
area at a particular boint.Tﬁe measurement of the form of
the density spectrumv (A ) has been the subject of experi-
ments carried out under a varietfr of conditibns both as re~
gards to the location of the experime.nts (abltitude etc.) and

the range of densities studied.



. . . 9,10 :
The results of all the experiments ’ is to show that

the density spectrum can be represented by a simple power

law of the form

2(a)da=C A ¥ dn

i.e.an integral spectrﬁm : AQ(?A\::Cjﬁgﬁ ‘;where c
and .C’ are consfants;The work of Cocconi and Tongiorgi
producea ghe result that

YOay=720 K% [ne
for showers in the range & =10 to 1000 per square meter at
the éea level.As more and more data accumulated it has be-
come apparent that theré is a slow inérease of the exponent
with mean density.Creisenlzl concluded that the variation at
sea level can be expressed with §=1.33 + 0.032 Ind for 1<A

<104

1.5 THE NUMBER SPECTRUM

A quantity of great importance that can bé derived from
the showef data is the primary spectrum at high energles.To
make this deri&ation it ié necessery to know the number
spectrum of showers and the relationship between the number
of particles in a showef and the primary energy.

By the number spectrum is meant the number of showers,

F(N)dN containing a total number of particles between N and
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N+dN whovsebaxes are incident upon unit area in unit time.If

it 1is 'assﬁmed that all showers have the‘same shape,i.e.the

same structure function,t_jhan a relation can be found between
the Adensity spectrum and the number spectrum.

In érder_ to contribute to‘a deﬁéity of A, A+db at a

particular point,the axis of» a shower of.size ﬁ ,N+dN must

fall at a distance r,dr .The contribution to J(a&)aid is

§(CAYda)=2TTdr Funydn

~and the density spectrum is then
0

N?(!&)d&g QJTj r Fin) dNde

o]

the relation between MN,r and A is

A=fl (r)y

A(r)=<N/R1 YE(r)

where Rl is the product of one radiation length and the
r.m.s. deflection of a particle and f(r) is the lateral

‘distribution function or the structure function

£, () = £(r)R™2

Greisen5 has summarized the data for the integral number.

spectrum near sea level and gives the relation

"‘é -‘6"‘"
~2{ 10 - . -t
F(>N)= 5.5x 10 ("“,:i_) cm $ccl stecad

with €= .53+ 0.02 fn _'ELL
lo
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1.6 THE PRIMARY ENERGY SPECTRUM
The relation between the energy of a cosmic ray primary,

EO ,and the number of particles in the subsequent ‘shower

present at sea level ,N,can be written as N=DE ,where D is

0

a constant and § is an exponent having a value,close to 1,

which depends on the details. of the nucleon cascade mnod-

5,14

el -.The integral primary energy spectrum can therefore be

written as )
—8F

F(YEo)= D E

where the bhest Value of § is probably 1.14 as given by 0l=-

bert’s theory13’14 . For N=105 ,0lbert’s result gives EO

|5 .
=IO] eV and Greisen’s relation gives ¥ =1.48 .The prima-

ry spectrum has thus an exponent

8T =1.14%1.48=1.69



Chapter II

POISSON STATISTICS AND THE DETECTION OF COSMIC
' RAYS :

]

2.1 EXPECTED_fREQUENCY DISTRIBUTION

in any serieé of measurements,the frequency of occurrence
of particular-Values is expected to follow some "probability
distribution law".In the case of cosmic ray showers this
frequency‘distrihution ié the Polisson distribution15 .

The Poisson‘distrihution relates to the number of events
that occur per. given segment ‘of time or space when the
events occur randomly in time or space at a certain avefage
rate.

The necessary and sufficient conditioﬁs to choose the
particular probabiiity distribution as the one controlling
cosmic ray showers are
(1) The chance.of a primary coshic ray particle inte;acting

with the étmoépheric atoms or molecules is the éame for
all primary'particles travelling.in the same direction.
(2) The fact that a primary particle‘ has dinteracted in a
given time interyal does not effect the chance that oth-
er primaries may interact in the same time interval (all

primary particles are independent).



13

(3).The,chance of ‘a primary to_in;eraét during a given time
interval is the'same for all time intervals of équal
size .

(4) The total number of showers .and the total number of
equal time intervalé arerlarge (hence statistiéal’aﬁer-
eges are significant).

If X represehts a random variable on the sanmple space
thén,ﬁé can defiﬁe tbe Poisson-distribution as a distribu-
tion in yhicb the‘probability thét K=k 1is given16 by

P(K=k)=P(k)=mk e«m [kt . k=0,1,2,3,... We shall refer
to such a situatioﬁ by writing K o~ Pn{m),i.e.X is distribut-
ed according to the Poisson distribution with parameter
m,wvhere P(k) gives the‘probability that k events'occur in

the chosen segment of time or space.

The recurrence relation for the calculation of the P(k)’s

is
P(k)=P(k-1) m /k
P(0)=e "

2.1.1 The Mean and Variance

The distribution of ¥ is represented by/u or E(¥) and de-

fined 3517

. )
/A:E(K)=;E: km e—m/k!
k=0
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E{ mkeﬁm/(kwl)!

k=0

k

ob

me E mk_l/(k—l)!

k=120

i

= me e =mn ......,.....Q....}.(l).

The parameter m 1is thé_mean-number of events which occur
per'given segment of time or space.The distribution variénce
of ¥. is represented byAV(Kj and defined‘as;

V(R)=E{(R= p)°)

| =E(K2—-2‘/\A K+ /u”) '
=E(}\2)~/u\”
~E(r2)- (n(10)) 2

CE IR (K= 1) JHECK) = TECED FE  veeneenen(2)

, »
E(K(K-—l))=z E(k=1)m e ™ /11

k=0

0 :
= me Zg'mgﬁzl(k~2)! -~

Y-

LEO
by using equation 1 and this res

sult we canbwrite equation 2
as;
V(R)=n’+m-m"
V(K)= m
Thus the‘mean and vafiance of a Poisson distribution are

the samne.
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15,16,17

2.2 TﬁE POISSON PROCESS
Ve assume that the probability qf the occurance of an
eveﬁt in the time interval (t,t+dt) is ASt+0( & t) where N
is ab constant characteristic of the process.Here §t is
small and 0( & t) means "small compared to §&t".We also as~-
sume .thét the probaﬁility of occurance of more thaﬁ. oné
event in the’inter§al in thé question is 0(8 t);
éﬁppbse we consider the probability bf.the occurance of n
events in the interval (0,t+ St) where'n)l.Undér the above
assumptions, we need‘only consider the probabilities of twé
alternative wa&s of reaching this situation.
A: n events occur in the interval (0,t) and none in the
next &t
B: n-1 eventsvoccur in the interval (0,t) and none in the
next &t since we do not need to consider ofher probhabilities
of ﬁuch smalLér.probability.If‘we let P(n,t) designate the
'probability that ﬁ ‘events have occured in the interval
(0,t).Ye have
P(A)=P(n,t){(1~ ALGL)+O( &t)}
P(B)=P(n=-1,t){(AELt)+0( §t)}
inAthe ahbove equations the term O('bt) can be ignored since
it is very small and the term (1-2A8%t) represents the prob-.
~ability of having no eventsvin the interval (t,t+dt).Also
P(n,t+ St)=P(AY+P(B)+0( St) ‘Hence
P(n,t+ St)=P(n,t)(1l- N St)+P(n-1,t)(nSt)+0( St)
,» vwhich gi&es

{ P(n,t+ $E)=P(n,t) }/ 8t = A{ P(n-1,t)=P(n,t)}+0( §t)/ &¢
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in the limit, as t goes to 0

Pln,t)=2{ P(a=1,t)=P(0,t)} ceveernronansseesl(3d)
Equatioﬁ 3 may be recast,thus

~At At
P :

d/dt{ e P(n,t)}= AP(n-1,t) which on integration be-

tween the limits-0 (where P(0.0)=1) and t yields

, A
N p(n, )= %'S AL P(n=1,) At cevevvnneaneeaaa(h)

‘Equation_4 is a~:ecurrence_formu1a by which we may obtain
sucéessively P(1,t),P(2,t),P(3,t)e.c..P(n,t) giveﬁ P(O,t) .
For the case n=0,we have
P(O,t+ St)=P(0,t){(1~ ASt)+0( § t)} hence
— N =P(0,t)/P(0,t)=d/dt {ln P(0,t)} therefore
— A%

P(O,t)=¢€ Wt eesveecoessseensenenesesssasnsesss(5)

Using equations 4 and 5 it can be shown by induction that
P(n,t)= { (At)Y & }/n!

Hence the number of occurrences in the tinme interval(0,t)

is distributed as Pn( 2 t).

HWe now coﬁsider the distribution of the time to the first
occurrencé of an event,by Qsihg equation 5 .The probability
that.the first event will occur in the intefval (t,t+ St) is’
the probability that none-have occurred up to time t multi-
plied by the probability one event occurs in the interval
(again,neglect;ng_alternatives of very small probability )
that is

PCO,E) {(ABE)F0( S )}
Substituting for P(O!t) from the eduatidn 5 gives for the

~probability in question

ae” ™ str0( 5t)
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lence,the density of the distribution of the time to the
first occufren;e of>an event,whicﬁ we shall represent_ﬁy fl
(t) is givén by
| £, (t)=f>\e—‘%k
Here,the starting time may he just after an event has oc-—
curred or'any 6ther‘time. |

Therefore the numbers of events per given time have a

"Poisson distribution while the intervals between consecutive

events have an exponential distribution.

2.3 -CHI-SQUARE TEST OF COODNESS OF FIT

This proéedure allows a comparison between the actual and
expected number of observations‘(expécted undef thg-"assump—
tion ") for various values of the variate.The expected num-
bers are calculated by using the assumed distribution witﬁ,
the parameters'set equal to their sample ‘estimates. Ve de-

fine the quantity

| | : o -
XL — E L(obaeweé Volue ) = (erpecred \’o,tu.a.\d‘]

A &e*pac+ed Vklue)d

where the summation is over the total number of independent
classifications i in which the data have been grouped.We de-
termine the number of degrees-of freedom F ,which 1is  the
nunber of‘independent classificationsf

F=k-p-1
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wheré ﬁ represents the number of parameters estimated by'
sample statistics.For example 1if .the normality assunption
were under test, f‘and o would be estimated and the number
of degfees of freedom would be k=3 s,where k represents the
number of class intérQals ‘used in fitting thé distribu-
fion.If the assumption of a Poisson distribution Qere being
testea .?;'wduld be estiméted by X,and the number of degrees
of freedom would be k-2,

By using. FIG 315 aﬁd‘from the values of chi sﬁuare and F
we determine P, whiéh is the pfobability that chi square
would exceed.its observéd value.If that’probability is 0.7
‘then seven times out of ten oneAWOuld expect to observe a
value of chi:square_at least as large as the one calculated
from the experimental data. In this ﬁaper-we will use the

notation (reduced chi-square value)/degrees of freedom to

identify the values of chi square.
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Chapter III

TIME VARIATIONS OF C.R.SHOWERS

The extensive air showver (EVA S) has been a widely stud-~
ied phenomenon of cosmic ray physics since its discovery in.
1938.The first suggestion that the extensive air showers are
electron-photon cascades in the atmosphere was made indepen-—

' ,18 . . ~ 19 :
dently by CLAY and experiments in France and Germa-

20 . e . P
v .The search for time variations in the rate of arrival

n
of extensive air showers has been a field of great interest
‘for some years,since these events indicate the arrival into
the earth’s atmosphere of the ﬁighest energy particles in
the qosmic radiation.Two. basiec methods have been used to
study time variations of cosmic rays and their possible ani-
sotropies in space and. time.

1. The counting rate of a given arrangement of apparatus

may be recorded as a function of time.Researchers

2
MARTELLT and FORNACA21 ,J. and A.DAUDIN”2 , FARLEY and
' 23 24
STOREY ,CRANSHAW and GALBRAITH , CRANSHAW and
25 26,27,28

ELLIOT s HcCUSKER ,have reported results us-
ing this method.

2. The directional method is used by a group of re-

searchers working in H.I.T.29.They determined the di-

rection of the incoming particle from the

- 20 -
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tracks,produced by the secondary particles,in the
spark or a cloud chamber.These directions are then
plotted as a "point" on the celestial sphere.Another

. ; . . 30
version of this method is employed by CLARK and
| 1 : .
GOONINGS™ " . They deduced the directions from the tim-
ing measurements on the arrival of a shower front.
The results of all these early experiments indicate
that the primary cosmic radiation 4is isotropic in
space and also isotropic in time (i.e. random).There
are however very small divrnal(e~~0.3 %) and sidereal
o . s 49
(~0.03 %) time variations .
The apparent isotropy of primary particles is explained
in a slightly different manner in different theories of the
origin of cosmic rays. The solar origin theory,suggested by

32 . :
DAUVILLIRR'? and furthery developed by RICHTMEYER and

- 33 L34 . . _
TRLLER and ALFVEN ssupposes that particles emitted by
the sun are trapped in a magnetic field which extends
throughout the solar system.The particles circulate in or-
bits wunder the action of this extended field of strength
-5 . . . 3 8

abhout 10 gauss,and after a period of time 10 =10 years
they ultimately bhecome essentially isotropic.

o 3
In a galactic origin theory33’36’37

the motion of the
particle within the spiral arm of the galaxy (where the mean
strength of the magnetic field directed along the spiral

. . -6
arms of the galaxy is on the order of 6410 gauss) is con-

sidered.It is supposed that superimposed on this mean field
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hydromagnetic waves of amplitude 10-6 gauss are travelling
along the sﬁiral arms and‘that:between scattering collisions
with gas clouds the particles are accelerated by a mechanism
similarvto that in a betatron accelerator.ﬁ. BURBRINDGE and
G; -ﬁURBRIDGEBS considered in some detail the consequencés
of such a model on the observed isotropy of the primary cos=
mic ray particles. |

COCCONI39 ‘has pfesented some interesting argumentsbwhichv
ﬁoint to thé source of:the highest energy cosmic rays being
in intergalactic space.Hé points out first of all that it 1is
difficuit to accelerate:primary particles up to 1018 —1019
eVand at the sane time keep them isotropic if we suppése
they are to be confined to the galaxy.lle suggests that at
least the highest energy particles must be present in inter=-
gpalactic space and probably are accelerated and made iso-
tropic_there. |

40,4 '
Recently BHAT et al .7’ ! have reported a large non-ran-

dom component in the arrival ‘times of EAS with E>l()14
eV.They detected fhese showérs Ey using night sky cefenkov
light pulses at éulmerg,lndia between June 1976 and June
1978fTheir interval distribution analysis is based upon 180
hoﬁrs of obéervation (9879 showers) with an average rate of
55 events/hr., and showed é 50 excess over the éxpected ran-—
dom (i.e. exponential) interval distribution. Furthermore

their data indicates significant. periodicities with peaks in

the interval distribution at 4 sec.,8 sec.,12 sec. FLGAN et



23

B2 .
al presented a preliminary report of a similar experiment

using a ground level air shower detectbr array searching for
this anomaly among some 20000 showers of primary energy

1015

> eV.They reported negative results in a search for

such non-randomness.



Chapter IV

THE EXPERIMENTAL SET UP

FIG 4 shows the arrangement of the University 6f Manitoba
air_Shower array detecto;s. The detectors A,B,C were made
from sheets of NEIQZ scintillator (90cm x 90cm » 2;54cm) each
viewed by a five inch photomultiplier tube (RCA 8085) locat=-

ed above and to the side of the scintillator.

NORTH

A

FIG4. - ®

LY
B e 2

DETECTOR ARRAY FLOOR PLAN.

Fach scintiliator was enclosed in a white interior;light
tight box. An air showver isAiﬂdicated by an A ,B ,C coinci-
dence ( 3 =1 )Msec). Discrimination_levels equivalent to ld
particles/m2 were set for detectors A ,B ,C +The arréyxwas
sensitive to showers of energy greater then rvl()15 éV (see
appendix C).The block diagram for the electronic set up 1is

shown in FIG 5 .
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The shower detectors were calibratéd by observing the
muon "through peak'in eathVof'tﬁe_détectors.Each photomulti~
plier signal was fed into a preamp and thé phofotubes were
balanced to give the séme pulse height for the "through
peak" for each of the three detectors.Uniformity between de-
tectors was obtained by setting fhe discriminator levels to
an appropriafe value (~100mV) and approximately.adjusting
the‘ variableb attenuétor before ‘each discriminator. Qutputs
from the ébove‘mentioned discriminators were then fed inté a
coincidence circuit. Thé time interval between éuccesive
showers was monitored in an 800 channel pulse height analyi-
er (Victoreen Model ST-800M) operating in the multiscaling
(MCS) .mode.The MCS counted an internally generated 60Hz sig-
nal derived from the AC-line frequéncy,so that time dinter-
vals could he measured in units of 16.7/»sec.A pulse cregted
in the coincidence circuit by the detectionm of anvéir_show—
er,caused the MCS to advance one channel;The MCS took ap~
proximately 125 microseconds to switch channels allowing a
maximum channel advance rate of 8 khz. Since the time in-
“terval between air showers on average was about 4 tb 5 min-
utes, the MCS switching time cﬁntriﬁuted negligibie uncer-
tainty to the meaSuredA "time interval  between - aip
showeré.Because the MCS had a maximum channel confent of 10
counts,an upper limit was imposed on the measurable time. in-
terval between successive air showers of 27.8 minutes. Time

intervals longer than 27.8 minutes, which are called roll-
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overs, caused the multiscaler. to start agéin at zero counts
in the same‘channel‘and wvere undetectaﬁle.in the experiment.

A data run consisfed of recording the time intervals be-
tween 800 consecutive sﬁbwers with the MCS and lasted almost
three days. The calibration of the three shower detectors
ﬁas checked using cosmic ray muons.A detection rate was de-
termined for each detector of the array for events deposit~
inglmore'than 10 times the énergy éf a minimum ionizing par-
ticle. These rates wére roughly comparable for the three
identical detectors and phototube noise did not adversely
affect the shower registration rate.This single event rate
was checked for each of tﬁe_detectors évery two weeks and
relative attenuation ievels‘were adjusted to maintain these
singles rates.3By recordiﬁgvstart_and the stoﬁ times for the
runs,the solar aﬁd sidereal times of detection of each show-
er could be inferred to an accuracy of 172'hour.This limit.
is set by the fact that we expected 0.8 rollover events/
run,resulting in the 1dss‘df 28 minutes of recofded run
time. |

The resolving time of the cdincidence circuit was direcf—
ly related to the length (3@5 of a signal produced by a
discriminator These were set so that Jw= 500 nsec.Therefore
the reéolving time of the coincidence circuit (2 Tw ) was 1

feec. and the chance coincidence rate for this set up
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can be worked outAapproximately as NA NB NC(Z 3@)2 where NA

T

s NB - and NC stand for the singles rates for each detector. .
Substituting the observed values for these rates and
the chance rate was 2.7 x 10.-13 s—1>and thus quite negligi-

ble.

This experiﬁent was set uﬁ not only to record the shower
frequency but alsé'to detect possible cosmic ray bursts de-
fined as air showers following each other with a very small
timé interval between them (up to‘120 msec. in this experi-
menﬁ).This interval corresponds to 7 cycles in our MCS. As a
check of possible bursts and to be able to record the inter-
val reliably the 120 msec. after each air shower was also
monitored by a time to amplitude converter (TAC) (FIG.5).
An input "start" pulse to the TAC starts the internal con-
verter circuif (if it is not already busy) via the"start"
tunnel diode discriminator and enables the "sﬁop" circuit.An
inﬁut "stop" puise can ﬁhen stop the converter circuit which
will then have a voltage étored on it proportional to the
time between the "start" and "stop" pulses.The "start" puls-

es not followed within the conversion time (120 msec.) by a

"stop" pulse result in the triggering of the over conversion

detector which immediately resets the complete'systemAwith'

no additional dead time.The range setting on the TAC unit
selects the time difference between "start" and "stop" input
pulses necessary to produce a 10 V output pulse e.g.with

range set at 4 /aec the output amplitude will be equal to



29
10 Vv for ﬁstafts" followed by "stops" in 4 /ﬁec.: Roth the
"start" and the "stop" pulses for the TAC were taken frém
the coincidence.uniﬁ.The start signal was delayed via a de-
lay line (cable) for ZOD nsec.As a result of a shower,two
identical signals'are produced from the coincidence unit.One
of éhese,pulsesvactivatés the "stop" input of the TAC and
the éther actiyates the "start" input. But since the'start
sigﬁal is delayed for 200 nsec,the TAC unit starts monitor-
ing the interval between showers 200 nsec laterAthah the ac-
tual arrival tiﬁe.lf anéther shower arrives within the time
range‘set in the TAC ié stops the TAC immediately and a cor-
responding output pulse 1is produced.ZOO nsec later the de-
layed "start" signal from the second shower arrives and ac-
tivates thé TAC again.The pulse sequence for the system is

shown in FIG 6.

SToP £ BnsEe. LONG S\ GNALS B
SHOWER., fr
START ;| |
g
I
STOP_ ' | LJ |
SHOW S l l |
sTART | L |
. C U
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200 nseé l
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As can be seen from the pulse sequence diagram the ouéput

of the TAC,which indicatesbthé elapsed time 5etween show-
ers,was 200 nsec shortervthan,the actual interval length but
since this intervai is on the order of 120 msec the lost

time was negligible.



Chapter V

RESULTS AND DISCUSSION

5.1 RANDOMNESS OF PRIMARY PARTICLES

The main objective of this experiment was to look for the
large non-random component and possible periodicities in the

interval distribution of EAS with E 2 1014ev reported by

Bhat et a140’41.

The non-random component they réported
presented itself as an excess for short time intervals (<40
sec) in the interval distribution.Since the intervals be-
tween.consecutive random events theoretically have an expo-
nential_distribution,the plot of such a distribution on a
logarithmic scale produces a straight line; the meantime of
this line depends on the mean time between events (an event
being the detection of én EAS).If there really is an excess
as claimed.by Bhat et al this would require at 1eést two
straight lines with different meantimes for the regions be-
tveen 0{t£40 seconds and 4ogtgee seconds.Therefofe we divid-
ed our data into two groups and fitted a straight line to
" events with intervals t{50 seconds and another one to all of
the data.If the resultant meantime values for these ;wo
lines agree with each other within the error then that would
force us to conclude that one exponential was sufficient for

all the data and that primary cosmic rays were truly random

events.
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Our data was recorded in the UnivérSity of Manitoba cos~-
mic ray labqratory between September 1980 and June 1982 and
consisted. of 210 individual runs (a ;otal of 149500 show~
eré).The analysis of any one individual fun exhibited a com-
mon problem inherent to. every single omne of - then, name~
ly,because of thé‘ limited statistics the error values
prqduced for the meantimes were 1arge,A typical example of

. . th
this can be illustrated for the run recorded hetween 6 and

8th of July 1981.This péfticular run included 772 events and
146 of the recorded intervals were in the first-fifty sec—
onds .The meantime for the‘line fitted to the first fifty
seconds was 9.04 % 22.7 mins. and the meantime for the 1line,
"fitted to all of the data was 4.521:0.16 mins..The compufer
program we employed to fit these lines also célculated a chi
square value, which is an'indication of how good a fit is to
a given fﬁnc:ion;_ According to statistical tablesls,reduced
~chi square values 1% 0.8 could be accepted as good fits.The
qhi square values for this particular run (1.69/46 , 1.01/20
where 46 and 20 represents the degerees of freedom in each
case) vere '"good".The rather higﬁ error values which make
conclusions impossible can - be reduced by including several
runs in the analysis.This can be illustrated by the féllow—'
ing; using the data ‘accumulated betweenl }an.18t~ Aug.6tb‘
1981, wﬁich had.92 runs and a total of 72013 events‘with

14608 of these in the first fifty seconds,the meantime val-

ues were 2.85%0.27 mins. for the first fifty seconds and
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3.932 0.01 nmins. for ali of the data.The chi square values
vﬁere respectively 1.36/48 and 7;34/26 .Even though these
"mean time" resﬁlts éeem‘to indicatelthat we should fit two
exponentials-to.the interval distribution of EAS(analogoué
to the‘Bhat et al results)_this is prébably not fhe case be—
cause the corresponding chi square values >iﬁdicate _"very
poor" fité.

Reduction of chi square values was achieved by the fol-
lowing-méthod. For each individual run'wevcalculated a mean
rate.These rates varied from 0.19 showvers min“1 “to 0.35
showers minn1 with the hajofity of runs having déta regis-
tration rates between 0.19 and 0.27 showers min—l.Ail the
runs with rates between 0.19 - 0.27 showers min = were put
together and analyzed.This grouping of data included 69497
showers which were recorded between September 1980vand De-
cember 1981.The first fifty seconds interval had 12329 sﬁow~
ers and the fit produced from these selected events had a
meantime value 3.94% 0.56 mins. and a chi square value of
1.94/48.The meantime.resulting from the fit ﬁo all of the
data was 4.30 £ 0.0l . mins.with a chi square vaiue
1.60/26.Such results indicaté a single. exponential fit to
the whole intervai distribution with comparatively better
values of cﬁi square .Later on with the éddition of the data
recorded during Jan.-June 1982 the number of showers in this
particular rate range.was increased up to 125803.To study

the effect on the chi square value we divided the above
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range 1into tﬁd parts and>ana1y2ed“eaéh part separately.The
range 0.19 { R { 0.22 events min"! had 55159 events of which
8532 were in the firét fifty‘seconds interval.Resultant &al—
ues for the meantime§ vere 4.86% 1.02 nins., for the first
fifty‘seconds and 4.92t;0.2 mins, for all of the data with
‘chi square values of 1.18/48 and 1.19/26 respecfively.The
other range.o;zz § R § 0.27 events min~' had 13121 showers .
in the fifst fifty secondé interval and the totalinumber of
showers in this groﬁp Qas-70644.Thevmeéntimé and the corre-
spondiﬁg chi square values were 4.50f.0.71 mins. ,.1.51/48
for the first fifty seconds interval and 4.09t0.02 mins. ,
1.11/26 for all of the data.For both Zroups, meantiﬁes of
the first fifty seconds and all of the data agree'within the
error and the chi square values indicate '"good" fits to a
single exponential function.It,is also clear that the nar-
rower the range of rates which are‘conSidered the better is
the fit to the single exéonential assumed.In Fig.7.we piot
the distributién of timé interVals bet&een the detection of
the 70644 successive air shoﬁers in the rénge 0.22 ¢ R £
0.27 events minﬁl; errors are not indicated where they are
of a sizé comparable to or less than the plotted points.

It is therefore concluded that for extensive air showers
of primary energy >,9x1014 eV,recorded over a period Qf two
years,the time interval between the detection of successive
air showers depends exponentially on that time.This is con-

sistent with the conclusion that detection of such showers



35
are truly random evenf in contradiction to the conciusions
of RBhat et al.A possible explanatlon of the Bhat et al re-
sults may well lie in their limited statistics. They observed
less than 10000 ‘showers and réported no mesurement of
"rates" dufing their experiment. We have seen that if there
is a significant spread in the rates one migﬁf well find the
need of more than one exponential fo fit the dafa which

- would then lead to the conclusion of "noh-randomness"
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5.2 SEARCH FOR A POSSIBLE STRUCTURE (PERIODICiTY) IN THE
FREQUENCY DISTRIBUTION

Since we have to restrict the range of rates to improve
the expénential fit in the discussion below.we willruse the
data recorded in runs with rates between .22 aﬁd .27 éhow-
ers/min.While this restriction reduces our.ﬁample size from
156000 to 70644 showers the subset is typical of the data
recorded in the other rate intervals.Since rejected runs are
distributed throughout the data recording period,or occur
for deliberately set experimental conditioné,this redﬂction
is not unreasonable.

In FIG 8 we plot the distribution of time intervals.be~
tween successive air showvers for time intervals less than
.100 seconds,which includes 23815 events out of 70644, To be
able to ideﬁtify'any_possible structure in this‘distributioﬁ
that might be significant,a curve smoothing techniqqe (see
appendix B )‘wés applied to the data reshlting in the’sdlid
curve shown in this figure.The dashed liné réprefégts the
"hest fit" to an exponential. To. find out if any gk\the ob?
served "peaks" represents real structure, artificial time
interval data were>generated by using an appropriate program
(see appendix A) and the résults smoothed by our smoothing
algorithm.FiG.9 shows the interval distribution of 51030 ar-
tificially generated shower data for time intervals less
than 100 seconds. There, we see the same general structure
i.e. peaks ,which are followed by similarisize valleys.In an

attempt to eliminate these fluctuations we further smoothed
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the artificial data by using 575 OWT , 797 ONT and 595 ONT
(see appendix B).We were testing to‘see whether a smooth ex-
ponential without thellittlé "gyaves" superimposed would re-~
sult from the'application-of one of these smoothing techni-
ques so that the same‘technique could then be applied to the
real déta vleaving.'behind only the marginally significant
real> structure. The results. of ‘smoothing the artificial
daté with these same techniques showed that evén when thev
595 QHT élgorithm was used these littlé "waves'" persisted.

The effects of the addition of more data to the analysis
and smoothing technique'was checked by comparing the inter-
Qal distfibution plots of 50000 and 150000 artificially gen-
erated events.The results showed no essential change; with
"yaves",due to statistical fluctuations,in both cases. The
conclusion therefore is that fhe present experiment finds no
supporting evidence for‘the shoft tern periodicities (i.e.
structures at 4 sec.,8'sec.,12 sec.) which was reported by

: 4
Bhat et aléo’*l.

5.3  POSSIBLE BURST OF EAS

During the recording of the run,which started at 18th of

January and finished at ZISt we detected a pdssiblé EAS
burst.At the time,the TAC system was not dperational'and the
intervals between showers were recorded with the MCS.The
"burst" started at the 20th of Januar& 9:55 A.M. The MCS

recorded 31 events in 4.4 minutes where the number of ex-
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pected events was approximately l.Thié is the only such
event wé have observed during our 21 months of operétion
time. In tableAA we present thé data recorded during this

run.The burst stafts at the channel 690.
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Appendix A

THE GENERATION OF RANDOM NUMBERS

The random number sequence should have the following éropef—
ties:
i.‘ Uniform distribution over a given interval: usually O
to 1 | |
2. Independance-from each other: ideally,there should Be
no corrélation between the numbers produced,that

is,between the ith and the (i+k)th were k=1,2,3

R |

3. As long a cycle as possible: the cycle is the se-

quence of numbers produced before repetition.

4, reproducibility: we should bé able to reproduce the

séme sequence.

There are manybﬁathematical processes for generating dig=-
its tha£ yield sequences satisfyigg mény of the statistical.
properties of a truly raundom process.For example if you ex-
amine a iong sequence of digits produced by these determin-
istic formulas,each digit will occur with the same frequenj
cy,od& numbers will be followed by even numbers about as
often as by odd numbers,diffgrent pairs of numbers occur
with nearly the same frequency,etc.Since such a process is
‘not really random,it is called a pseudo-random number gen-

erator.

- 43 -
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A.l GENERATION OF RANDOM VARTATES
Suppose that we need to generate sample values of a ran-
dom variable X defined by its probabilirty density function

f(x) .We compute its cumulative distribution
%

F(x) = J f£(t) dt
R . . .00
which is by definition is equal to Pr(Xg£x).The inverse dis-
tribution method selects a’randoﬁ number,r, uniformly dis-
tributed between 0 and 1 ,sets F(x)=r andbsolves for x.For a
partiéular value L of r we get a value X ,which is a par-
ticular sample value of X, and which can be expressed as X,

-1

=F (r Y. This construction is used to generate values x of

0
a random variable X.

The time intervals between cosmic ray showers are de-
scribed by exponentially distributed random variables.To
generate samples of x of a random variable X which is expo-
nentially distributed with average interval time T7(X)

s ~— . .
Cf(x)= Ne where “HN=1/ T3 (X) is the arrival rate
—fon A
F(x)= 1l=-e =y solving for x

x=(=1/n) 1In(r)= - T (X) 1In(xr)

Therefore,when we require exponentially distributed values

with mean U’(X)Awe generate a random number T and transform

it with the above formula.



Appendix B

A CURVE SMOOTHING TECHNIQUE

The interval distribution plots for different fanges are

smoothed to be able to pull out the real structures from the

statistical fluctuations.The smoothing algorithm we have em-

ployedvhad four componénts44 .

1.

Running medians

a) Runniﬁg medians of three ("3")

b) Running medians of five ("5")

¢) Running medians of three ("3")

Quadratic interpolation ("Q")

Running means ("H")

We represent the original unsmoothed sequence by
{Yi} and the resultant seﬁuence éfter the applica-
tion of steps 1-3 by {Zi }. We than form a new se-
quence r, where ri'=Yi -Zi and apply steps 1 to 3
to this sequence.As a final step we add the resﬁltant
r:,L to the previously smoothed sequence.This proce-

dure is called "Twicing"

The running medians of three is evaluated by

Zi = medlan(Yiﬂl ,Yi ’Yi+1 )
for the end points
Z = N i . 7 -27 '
) median (3/n_1 ?3 ,Yl ,72 )
Zn = median (Zn~1 ,Yn ’32n~1>"22n—? )
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To this rgsult running medians of five is applied;The
next to the end‘points are qalculated as running‘medians of
three.The end points are simply_copﬁied.As a final step run-
" nig medians of three is again applied to the reéultingvse-
quence. |
The final sequence produced by the.above mentioned 353
teéhﬁique has ﬁonotonic discontinuties and digcontinuous de~-
rivatives.The latter is céfrected by the_quadratic interbo—
lation.The problem of monotonic discontinuty is dealt by thé
runﬁing means.

= 7 ' 7 4y7
7, =(1/6)7, | (/202 +(1/8)n, and

The procedﬁre explained so far 1is called 3530HT.0ther
versions of this algorithnm are also possible i.e.

5750HT,5950HT,3930HT ...etc.



Appendix C

- SENSITIVITY OF SHOWER ARRAY

Presume that we can write the count rate of our experiment

as;

» B
C_R()N0 )= R(N,9,¢) Aperture(¥,o,p)sine de df dN.
' Mo  ©=0 . .

@:0 oo o
where R(N,®,¢) is the differantial rate of observation of

air showers coming from the direction (6,¢),containing N to
N%dN and in a sélid angle de d¢ at 9,¢ .We assume that
R(N,65¢) can be written as

'R(rz,e,¢)=-— R(N,0,0) ang(@,d)
Where R(N,0,0) is the differantial rate of observation of
air showers coming perpendicular to our array and-ang(e » @)
is some ahgular function. E#periméntally,we know that éng(e
,? ) énly depends on the angle @ but not 6 . Aperture (N,0,d
) can be written as;. '

'Apgrture (N,0,8)=Area (N;e)=7Tr2 cos@

P
CR(>N0 )= —.JR(N,O) dnN ﬂrjang(GQ)'Area(N;G ) Sine'de dé .
No o ©O7°
P9 20 o, : :
= —-fR(N,O),TT[r(N)]Z aN J’ fang(@ Y cos® sin®© dé
d ¢ . No ' @=0 B0
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An appropriate expression for ang(é) can be found by uéing
the zenith. angle distributidn cﬁrveAS.After the evaluation
of the corresbonding integrais the count rate expréésion can

be written asj vd

]2 CdN. 3

CR(>Ng )= —1.99J R(M,0) [r()

Na
An empirical expression relating the radius of the shower

~disk to the size of the shower is:

2 NO°5268 | 3

103¢<9 .4 10°

8.593 107

r(N) = BN?‘='

I0-?.108 5

1.367 1 9.4 10°<N<10°

and the differential size spectrum is then,

- o
R(N,0) = AN = =2.489 10> y~ 2P

1f we insert these values back in equation 3

2 -
2 | 8.593 15 N8 No { NE 34107
5 ~2.58 .
CRLY NG)Y=—1.99 ——2.48‘2,\10” N ? dN _
2.0 .
o L3679 NOEB NS 4410
94410 o
-1 )/ — 2
= 3,675 103 [ wm 8344 v v 9l31410° 2166 4y ,
N %4\0$ -1

our count rate for the set up was approximately 12 hr
.If we replace CR (>NO Y by 12Aand evaluate the above inte-

grals,forbﬂ we get

0

N_ =8.9 104
0 =) e & ¥



49

The formula relating the number of particles to the primary

enérgy is given by Cranshaw48

' 10
J =
RO‘ Ep /10

therefore our energy threshold 1is approximately Et 7 9

Ol4e

1 V.
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