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ABSTRACT

The purpose of the research described herein was

to investigate the possibility of applying parameter adaptive

control techniques to the design of power system controllers
in order to eliminate some of the compromise normally involved
in the design of these controllers. Two different power sys-

tem problems were considered, and in each case a different

adaptive technique was suggested.

The first problem deals with the design of adaétive
| stabilizers to supplément generator static excitationAsystems.
Eigen-value techniques were used to determine the influence of
the generator static excitation om its small perturbation
stability for a wide range of loading. A vériable structure
power stabilizer that will adapt to changes in system dynamics
caused by load changes wasvthen synthesized in-éuch a wéy as
to make the overall system optimum with respect to a prescribed
criterion. A direct appfoach to the problem was taken, employ-

ing the state-space point of view and an open-loop adaptive

technique based orn measurements of the system operating
conditions. Analog computer'tests showed the effectiveness

of the variable structure power stabilizer.

The second problem deals with the variation of
incremental speed deviation with loading, A closed-loop adap-

tive controller was introduced to compensate for these variations.
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Computer simulations showed that the adaptive 1opp is capable

of maintaining satisfactory performance.
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chapter one

INTRODUCTION

An electric power system consists basically of a set
of generating units or sources with their associated prime
moving, controlling and protective equipment, a set of energy
absorbing elements or loads and the complex network of trans-
mission lines, transformers, switches necessary to inter-
connect the energy sources and sinks satisfactorily.  The
prime function of the control system in a power network is
to aqtomatically méintain a Balance between the real and re-
active power supplies and deﬁands in such a way as to main-

tain optimum system performance.

One of the problems assgciated with the control of
power systems is the off—line analysis, design and optimiza-
tion.of settings of regulators and controllers. Due to the
characteristics of the power system, which can be considered
a high.order'interacting multivariab1e~process, basically
non-linear with time varying»coefficients, it is not possible
to specify an op;imum set of controller parameters. Up to a
few years ago, controllers were designed under the more or |
less explicit assumﬁtion of constant environmental conditioné.
In marked contrast to this assumption, power systems are
characterized by the sevére requirement that the system has
to oferaté in a more orvless rapidly changing environment,

exerting an influence not only on the process to be controlled,




but in some instances also on the controller itself. Under

such circumstances, the concept of adaptation seems to be an
effective tool to eliminate some of the compromises normally

required in controller design and system analysis of power

systems.

In recent years, a great deal of effort has been de-~-
voted to the study of adaptive control systems. The interest
in adaptive control systems has been, largely motivated by a
" sizable class of problems for which convéntional techniques
for synthesizing the controller have proved inadequate.
Specifically, a controller having fixed parameters may not
be capable of achieving'thé deéired systém performance with
a given plant. Such a situation may occur when the parameters
~that describe thé plaﬁt véfy over a wide range of values dur-
ing the operation of the system (i.e., Qhen the dynamié chaf—
acteristics of the plant change markedly). ‘To make the prqb-
lem more complex, the entire system may be_airectly affected
by an environment that varies drasfically over the rénge of

operationmn.

Essentially, there have been two distinct approacheé
to the adaptive control problem; each in turn, has given rise
to a mﬁltiplicity of techniques for the implementation of the
adaptation procedure. In both apprOachés, it is assumed that
a performance criterion can‘be.defined as a measure of the
quality of control. 'Ohe approach, termed "épenjloop" with

respect to the system ﬁerformance, does not directly employ




the performance criterion in determining the adjustments of

the adaptive controller parameters., The first step, which 1is
generally referred to as the identification problem, is to
obtain a description of the plant (e.g., pole-zero configura-
tion, or differential equation). Based on the description

of the plant, the adaptive controllér is synthesized iﬁ such

a way as to make the overall system optimum with respect to

. a prescribed criteridn. That ié, the adaptive parameters

are set at those values apcording to some éomputational_él-‘
goritﬁm, that provide the optimum system performance. In this
scheme, the adaptation is based on measurements of the operat-
iné environﬁent that are directly related to the values of

the plant parameters.

The second approach, on the other hand,is "closed-loop"
with respect to the system ferformance ~ that is the perform-
ance criterion is periodically or continuously mﬁnitored and,
using this information, the adaptive controller parameters
‘are adjusted to extremize the performance meaSure. Among the
techniques employing the philosophy of performance feedwback,
the Model-Referenced adaptive control technique is the most
popular. ‘In such a scheme, the desirable dynamic éharacter~
istics of the system are specified in a;model and the'controi—
_lable parameférs_of the plant are adjusted continuously so |
bthat its‘response will duplicate that of the model as.closely
as-possible; The identification of the plant dynamic per?
formance is not necessary and hence a fast adaptation can be

achieved.




It is the purpose of this thesis to investigate the

application of the adaptive control concept, open-loop and
closed-loop to some problems in the power system area. Two

problems are considered. The first problem deals with the

design of adaptive compensators to supplement static excita-
tion systems. The second problem deals with the deviation
of incremental speed regulation with load changes., In Chap-

ter 2, the influence of a generator static excitation system

upon the small—perfurbation stability of a single machine-
infinite system - under widely varying loading conditions -
is cloaely‘5crutinized in a new way: The dominant eigen-
values of the system are plotted in the complex s—domain.for
different loading conditions and power factors. Constant
real power and constant reactiﬁe power contoursbafe shown.
Ihe tendency of an unsupplemented static exciter to degrade

the system damping for medium and heavy loading is made clear.

In Chapter 3, the design of a variable-structure power

stabilizer (i.e., variable parameters) whlch is altered to

compensate for variations in the system active and reactive
loading is discussed. An open-loop adaptive technique 1is

adopted and the optimum settings of the stabllizer parameters

a55001ated with a selected set of grid points in the real

power—reactive‘power domain, are computed off-line by minimiz-
ing a performance criterion. - Whereas a stabilizer‘with fixed
parameters is of necessity a compromise, it is shown fhat one

with variable parameters can offer improved dynamic performance




under widely varying load conditions.

In Chapter 4, the Model Reference adaptive control
techniques are applied to a classical one-area system. An
adaptive controller is introduced to compensate for variations
of the speed regulation parameter with loading. The results

demonstrate that the adaptive loop is capable of maintaining

satisfactory performance.




chapter two

EFFECT OF STATIC EXCITATION SYSTEM ON THE SMALL-
SIGNAL SYNCHRONOUS MACHINE DYNAMICS UNDER

WIDELY VARYING LOADING CONDITIONS

Modern generators on a power system are invariably
equipped with high speed continously acting excitation systems.
These are.feedback systems which regulate the terminal voltage
of the machine. Such.systems, using fotating or magnetic
amplifiers, have been used for a number of yvears in the control
of generator excitation, supplied by the rotating direct current

exciter usually monitored on the generator shaft. The princi-
1

-

pal functions of excitation systems are :

l. To preserve desired voltage at the termiﬁals of
generators and synchronous condensers

2. To retain the load-réactive volt-ampere sharing
between the pafalleled operating'genératofs

3. To prevent exceséive rea¢tive‘vqlt—ampere loading
and loss of synchronis?ﬁ/by providing the suitable —
excitation requirements ' | |

4. To increase the system damping and raise the stability.

limits.

An historical review of the development of excitation
" systems, the criteria of exciter performance, and the various
types of apparatus used in excitation systems is found else-

2
where . .




2.1 Relation of Excitation System to the Stability Problem

Increased speed of exciter reéponse was one of the
first means suggested and applied for improving power system
stability. 'The excitation systems have an influence on the
stability of power'syefems under both transient and steady-
state conditions.  This influence is clarified by recalling
that the power transmitted in a two-machine system is, accord-
ing to the approximate eqﬁation, proportional to the product
of the internal voltages of the two machines, divided by the
reactance. Therefore, the power is ihcreased if either in-
ternal voltage is increased. These statements hold regarding
the power at any particular value of angular separation be-
tween the two-internal voltages, and hence also for.the max-—
imum power. It is also true en a multimachine system that
raisiqg the intermnal voltages increases the power that cen be.
transmitted between any two machines or groups of maehines3-

Therefore, it is apparent that raising the internal voltages

increases the stability limits.

Under transient conditions, power is calculated with
the use of transient reactances of the synchronous machines
and the voltages behind transient reactance (Which are propor-
tional to flux linkages)? Upon the occurrehce of a fault, the
flux linkages are initially the same as they were just before
the;fault occurred. During the fault, however, the flux link-

ages decay at a rate described by the short-circuit time




constant T

which is least in the event of a three-phase

'd’
short-circuit at‘thé terminals of the machine and is somewhat
greater for less severe types and locations of f;ultg-

If the fault is sustained for a long time, a machine
may survive the first swing of its rotor,but, because of the

dontinued.decrease of its field flux linkages, it may pull out

of step on the second swing or on subsequent swings.

An excitation system controlled by an automatic volt-
'age regulator causes the flux linkages first to decrease more
slowly apd then to increase. As a result, a machine which
does not go out of step on the first few swings will not go
out of step on subsequent swings of the same disturbance. On
a more severe disturbance, however, it may pull out of step
on one of the first few swings. Accordingly, the action of
excitation system during a fault is an important factor in
power systen stébility. The faster the excitation system
responds to correct low voltage, the more effective it is in

improving stability.

In the steady state, power is calculated with the use
of saturated synchronous reactances and the voltages behind
these féactances (which are proportional to the respecﬁive
field currents). If the voltages are constant, the power
lixit is reached when the phase angle between the voltages
becomes 7/2.0 radians. An automatic voltage regulator tends

to preserve the terminal voltage constant. If it were entirely




successful in doing so under all conditions, the péwer limit
wéuld depend upon the reactance of the circuits between mach-
ines, instead of upbn this reactance plus the internal
(synchronous) reactance. The power limit would be greatly
raised by such ideal.voltage regulation, particularly if the

internal reactance was the major part of the total reactance.

Unfoftunately, Qoltage regulators Qannoﬁ raise the
power 1imit to anything near the theoretical value just dis-
cussed. Due to the delay in.the field circuit, the desired
restoration of voltage can not always be obtained rapidly
enough to incfease the eleétric:power in a way to match the
mechanical power and thus to prevent power differentials that

pull the machines out of synchrbnism.

It has been found by tests, however, that the use of
fast-acting éxcitation systems does raise the steady-state

stability limit a substantial amountu.

2.2 _Semiconductor Electronic Fast-acting Excitation System

As early as 19462, a practical experiment was made in
the use of a high power electronic device as a utility
generator exciter. The device was a mercury arc rectifier.
Beéause of the trouble associated with the use éf mercury arc

‘rectifiers (e.g. cooling systems, arc backs, cost), they were

not used on a large scale.

With the advent of reliable semiconductor high power
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devices such as.silicon diodes and controlled rectifiers
during the 1960's, semiconductor electronic excitation systems
have found a significant place in the indpstry. Consequently,
rotating exciters have been replaced by electronic exciters,
in which the generator supplies its own excitation through
rectifiers supplied from a transformer connected to generator
terminals. The exciter voltage is controlled by the use of
conffolled réctifiers using a signal derived from the genera—
tor potential transformers.  This type of eXcitétion is a
significant advance over pfeviously uged excitatiop éystems,
in its possible effects on transient and steady—state-stébility
limits, because of its ability to change generator field volt-
age almost instanténeously. In additién to the Basic require-
'meﬁts of a voltage and reactive volt;ampere control on a
generator, electronic exciters have a fast épeed of response

and afhigh ceiling voltage.

2.3 Types of Electronic Excitation Systems

Basically, two types of systems have been developed
using semiconductor devices: the "brushless system" and the

"static system”.

2.3.1 The Brushless Excitation System

The brushless system shown in Figure 2.1 hés
so far been confined to thermal turbine genefator units. It

consists of: (1) a small 3-phase pilbt exciter with a permanent
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magnet rotor; (2) a rotating exciter with a 3-phase rotor
and a stationary field structure; (3) a 3-phase diode rectifier

set which rotates with the rotating exciter structure.

The alternator field structure rotates with the exciter
rotor and diode rectifier assembly. The power flow from the
pilot exciter to the stationary field of the alternating
Current rotating exciter is controlled by a thyristor con-
verter, thereby:allowing control of the alternator field volt-

age.

2.3.2 The Static Excitation System

Static excitation systems of the type shown in.
Figure 2.2 are‘in service or under design for the majority
of the hydraulic turbine generators under development at the
present ;ime. The static excitation system is a stationary
controlled rectifier to provide the required direct current
energy for the altermator field. A self-excited alternating
current generator or an alternatiﬁg currenf power supply
tapped off the alternator‘terminals may be used to energize’

the alternator field.

2.4 Adverse Effects Associated with the use of Fast-acting

Electronic Excitation System

Tt has been stated before that it is sometimes con-
venient to treat the. excitation control system as effectively

reducing the generator impedance. In fact, an ideal excitation
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would be able to maintain a constant generator terminal volt-
age at all times and the apparent generator impedance would
be effectively zero. Stability limits would then normally

be a function of system elements external to the generator.

.Under conditioﬁs of large transient disturbances
(e.g. faults), it is impractical or uneconomical to provide
excit#tion systems of_sufficient power to maintain‘voltage.
The functioh of a practical excitation system duriﬁg majof
transients-is to provide maximum forcing action to damp out
generaﬁor'powef and angle swings as early as possible. This
calls for a system with high ceiling voltage and high speéd
of response. Static excitation systems have the most desir-

able characteristics in this respect.

An excitation system, as well as having the higﬁ gain
and high ceiling voltage required for maximum effeect 6n trans-
ien;'stability, must also operate satisfactorily during normal
steady~state or “small osciliation" conditions on the system,
A static exciter in fact, alsobﬁas desirablé characteristics
from this point of view, in.that if has the ability to main-
taiﬁ essentially comstant terminal voltége forvsmall pertur-
bationss. Performance equivalent to an effective generator-
impedance of zero, appears to be possible in the steady-state.

However, certain other problems arise under these conditions.

"For a synchronous machine equipped with a high gain

fast-acting voltage regulator, it has been showﬁ6 that




negative dampihg effects can_be introduced into the system
under cértain conditions of loading and generator angle.

This is particularly the case when operating close to or within
the "dynamic region" which is the region beyond thé normal
steady~-state stability limit for an unregulated machiné7.

The negative damping effeét may cancel out the inherent damp-
ing of the machine, and under such conditions, continuous
oscillations will result, often becoming of such magnitude

és to be unacceptable in normal operation or to cause loss of

synchronism.

The remainder of this chapter is confined to the in-
vestigation of the influence of a generator static excitation
system upon its small-perturbation stability for a wide range

of loading conditions.

2.5 Power Syétem Model and Assumptions

The analysis of the phenomena of stability of a power

system under small perturbation - in this section - is carried

out by examining the case of a single machine connected to a

large system through external reactance. The circuit in Fig-
ure 2.3 is considered the simplification of a multigenerator
system from the view point of studying the stability perform-
ance éf one machine in the system. Thus the extermal reaétancé
and infinite bﬁs represents the system as seen from the term-
inals of the machine studied. Iﬁ other words, the emphasis

is on describing the machine behaviour as affected by the
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connected system, rather than attempting a full description

of the power system'itself.

The following assumptions are also made :

Since in general, the ¥eactive powef - voltage loop

is much faster than the Teal power - £frequency loop,
due to the mechanical inertia constants and the larger
time consfants of the hydraulics in the 1atter8, it
can be assumed that the transients in the reactive
power - voltage loop are esséntially over before the
real power - frequency loop reactsg. Accordingly, the

turbine-governor system is not included in the analysis.

The local load is zero. This is a "worst case'"

10
assumption since local loads have a stabilizing effect .

The excitation system investigated is one typical of
thyristor-type systems. It is characterized by a small

time constant (0.05 seconds).

Tﬁe voltages due to the raﬁe of change of direct and
quadriture axis flux linkages and to the rate of change
of speed are negligible. Damping caused by machine
amortisseurs windings is neglected. The armature and

tie-line resistances are neglected.

The linearized model of the machine given by Heffron

7
and Phillips’' is adopted in the analysis.

A common method for analyzing the small-signal per-
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forménce of a single -machine infinite bus system is to Write
the general equatidns describing the system, A particular
operating point is then assignéd. The equations are then
rewritten to consider the effect of small éhanges in differ-
ent variables about their values at this point. The result -

is a set of linear differential equations,

The linear differential equations describing the

steady state operation of a synchronous machine connected to

an infinite bus through an external reactance are6’7:
2 - - ‘ '
(Mp“+Dp)AS ATm ATe2 (2.1)
_ E sin6o X —xé EOqucoscSo
= —_—em t 1
ATez { g g }AEq + {x'+x Eosn.ndo iqo — as (2.2)
_ d Te d e e g
x'4+x x,-x! E
d e 1 d °d 0 .
AE' = { —AE, - 4 — siné }AS (2.3)
,q Xd+xe 1+psz fd d+x l+psz o
X Vi, xé X,
Av, o= (—3— E cos§ - ——/—— —&— E 51n6 ASH{ —— —ﬂg}AE
t X +tx v o o X.,+x X, +x. v fd
e q to d"¥e Vto d to
and
x('i+xe ' (2.4)
1 - < = 1
sz X ,+x Tdo (2.5)
d e

All variables with subscript o are values of the
variables evaluated at the pre-disturbance steady state operat-
ing point. Prefix A indicates deviations of the variables

from their values at the steady state operating point.

Eqn. 2.2 to eqn., 2.5 may be rewritten in the form:




f

by, = K A8 + K AEgy
K K K
AE'! = ———2+— AE_. - —3h AS
q 1+pT dz fd  1+pT dz
AT ,= K _AS + K AE'
el 2 49
1 = 1
T!,, .KgTdo |
' x—x'd EE o
where K = —%L———-E i sind + —>32 cosé
1 x' +x o qo o x +x o}
d e e g
Eo
K =— -8ind
+
2 X d X, o
X'+xe
K3 - xd+x
X -x'
Kl+ % =7 E sind
e
X d x'd Yoo
K =-}-{-—:C|1_X—-V——E cos§ gl VJ-*E sinGo
5 e g to d "to
X Voo
6 e d to

The constants KX_, K ...K6

between the load and voltage control loops of the synchronous

generator.

1 2

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

represent the interaction

These constants, with the exception of K3 which

is only a function of the ratio of the reactances, change

. with the actual real and reactive power loading as well as

the excitation levels in the machine, making the dynamic be-

19

haviour of the machine quite different at different operating

points.
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The steady state operating values of the variables
required to calculate the values of the constants K ,K ,...

' 1 2

‘KG are evaluated from known values of Vio? Po and Q0 as

‘given by the following equations:

) 1
- 2 .2 2 y217%
iqu Po Vo {Po xq + (v to+Qoxq) } (2.16)
Vao = Too¥q | (2.7
' 1 . ' .
Voo = w2 v )t \ - | (2.18)
(Q--I-xi2 )
=_9 9 90
1, = ° - ° (2.19)
qo '
1
= .. . 2. _ . 2472 ) .
E {(vdo+-xe 1qo) + (vqo'xe ldo) } (2.20)
- vHo+xe i 0
§ = tan ! 2299 (2.21)
o v -x i
qo e “do

The above equations were derived from the standard

machine vector diagram.

Figure 2.4 represents the block diagram for .the singlé—

machine infinite bus system.. The additional relation:

K

___e , ' ‘ '
BE, = Trpr te, / (2.22)

represents the effects of the voltage regulator excitation

system. The load loop, the excitation loop and the inter-

action coefficients are indicated. Although the excitation
loop itself will not go unstable for high values of exciter
gain 4Ke (assuming no changes in rotor angles), the_negativé'

~ damping effect in the load loop is important at high gain.
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LOAD LOOP
APm - ] A.S zz Ad AF;.

+ Ms+D LS

= % K4 . KZ K5
1 ) [
Av ref U Ke AEfd - Ks - K l"' AVt
+ - +sTe ] + l+sK3Td'gAE 6 [+ >
EXCITATION LOOP Q

§ Fig. 2.4 Block diagram of the single machine infinite
bus system including the effects of voltage
regulator excitation system (*stabilizing
input to be introduced later)
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2.6 EigeanalﬁeAnalysis of the Effect of Static Exciter omn

Machine Dynamic Stability

The effects of a thyristor—type'excitation system on

the stability of a single machine connected to -an infinite
6
bus have been investigated . In this section, a small-

perturbation stability analysis is performed'using eigen~

value techniques, for a wide range of system real and reactive

power loading.

10 .
In a recent paper , the effect of changing environment

on the commonly named Heffron—Phillips parameters Kl,Kz,...
K 1is recognized with the.aésumption that changing reél éﬁd
reactive ?ower levels.are the most significant environmental
changes. It is shbwn here that the concept of changing P
and Q environment as well as its direct effect on the small-
signal stability of the.system can be usefully diéplayed in

the qomplex—frequency plane.

The block diagram relations shown iniFigufe 2.4'may

be expressed as a set of differential equations:

d - - '

32 (A6) = wq ApS (2.23)

d 'ATm El. D Kz

c_ = -2 _ - =2 L '

it (ApS) v M AS M.pG v AE q ‘ (2.24)
K

d 4 1 1

— (AE' ) = - '—'—- AG - —-—-———""' AE‘ - ‘—'—""' AE (2'25)

dt q T do T doK3 q T do fd




KX KK K

4 _.se e p L e
qf (REpg) = ¢ 80+ — BB -7 BEgq ¥ T DVpet (2.26)
e e e
For the set of state wvariables
r — Y 1
X' = [a8, Aps, AR < “Esa (2.27)
and disturbance vector
ref] (2.28)

u' = [ar_, av

The linearized small-perturbation equations can be
written in the state equations format:

X=AX+Tu ‘ (2.29)

The system matrix A and the disturbance distribution

matrix T defined as follows:

- u l
e} w (e} (e} T (o] (o]
o)
5 o L& i,
M M M ° M
) 5, S U . ;T = |o o (2.30)
A= - T o] KT a T d
dO 3 (o] (o)

K
KK, o, KK 1 ok

T . T T T
e . e e L e

The four eigen-values of fhe system matrix A, deter-
mine the character of the time response and hence the'stability
of the system. It is clear that the eigen-values of the system
-are functions of the constants Kl, Kz, PN KG, and therefore
depend on the system real and reactive power loading. Iﬁ the
analysis to come after, the following numerical data for the

6
single machine infinite bus system will be used :




1l
-
L]

Synchronous.Machine X4 1.6 x'y 0.32

x = 1.55 T = 6.0 sec
q do
v = 1,0 w = 377 rad/sec
to AO
D = 0.0 M = 10.0
Tie Line x = 0.4 r = 0.0
——— 4 e e
Exciter . _ K = 50.0 T = 0.05
—_—— e , e
Loading P = (0.1, 0.2, ... 1.0)

Q = (-0.3, -0.2, -0.1, ... 1.0)

' By varying the real power and/or the reactive power
loading, to cover a large number oonperating points, it is
possible to calculate the values of the constants Kl; KZ’ .
KG (as given by eqns. 2.10 - 2.15), then for every real power-
reactive power combination, to determine the eigénavalues of
the system matrix A. The location;of the eigen-values in

the complex-frequency domain determine the stability of the

system.

The values of the Heffron-Phillips cdnstants, for the
entire loading rénge considered, ére plotfed in Figure 2.5a
through e, for Kl’ Kz’ Kq, KS and K6 respectively. K3 is
excluded because it does not depend on the system loading.
One can pbsefve from these figures that all Heffron-Phillips
constanté,’with the exception of K5 which becomes nega?ivé

for high loading and/or leading power factor, do not change

signs as the real power and/or the reactive power increase.
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Results

A computer program was written to compute the eigen«
values of the system matrix A as the loading changes. It was
found that two of the four eigen~values of the system were
negative real and were }ocated in the complex frequency plane,

to the left of a line 8 = -3.0 for the loading range

examined, and therefore have a minor effect on the system
dynamics. The two remaining eigen~values are complex con-
‘jugate and located on both sides of the imaginary axis and
close to it, apd hence are considered the dominant eigen~
values of the system. Figufe 2.6 shows the location of the
‘dominant eigen~value (with positive imaginary part) in the
complex frequency domain for all combinations of P = 0.1 to
P =1.0, and Q = -0.3 to Q = 1.0, as determined by computer
solution for steps in P and Q of 0;1; in other words 140
combinations. Constant real power lines and constant reactive
fpower lines are also shown, giving a more complete plant

portrait.

Such curves display the dynamic stability character-
istics for the system without the need of repeatedly perturb-
ing the system with step-like disturbances in the mechanical
torque and/or the voltage feference. Ipstability of the
system is easily perceived for moderate and high loading.
This result is in agreement with the qualitative resulté ob~

6
tained previously .
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As a matter of interest, the effect of a slower
exciter (Te = 2.0 sec) on the location of the dominant
eigen~values in the complex-frequency plane is shown in Fig-

ure 2.7. Only the boundary lines of constant real-power and

reactive power are shown. The dominant eigenw«values are
located in a narrower area compared to the fast exciter case
(Tev='.05.sec). The system is stable although highly

oscillatory.

The method of eigen-value analysis - besides develop-~
ing insight into effects of static excitation system - helps
to establish an understanding of the stabilizing_requirements
for such systems. The method can easily be'exteuded‘uo

excitation systems with different dynamic characteristics.

‘2.7 Correlation Between the Eigen-Value Technique and the

Synchronizing=ﬂamping“Torque3’Technique

. 6
The concept:of'synchronizing~and damping torques is

used in this section. The results obtained efe shown to

agree with the results obtained through eigen<value analysis.

At any given oscillation frequency,"braking torques

are deVeloped in phase with machine fotor angle & (synchroniz-

ing torques) and in phase with machlne rotor, speed pS (damp—
ing torques) The torque developed by any means can be
broken down into these components for stability determlnatlon.

‘Sufficient and necessary conditions for the system to be
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STABLE —§j7 ° UNSTABLE
-}
P =1.0— "'16‘

Q=10—

~ Q@=-03— |[I%

P =O‘|. >
s
L
1 T
-0.5 0

~Fig. 2.7 Boundary constant real-power lines and
constant reactive-power lines in the
complex frequency plane‘(Te = 2.0 secs)




stable are that both synchronizing torque and damping torque

coefficients be greater than zero.

The system block diagram given in Figure 2.4 may be

reduced to the form shown in Figure 2.8 where

and

where

coefficients.
operator s
~cy of oscillation jw .

into a complex quantity.

of AS

ATeg= H(s) AS (2.31)

K KK + KX (1+sT )
2.5 € 2 L e

T : 1 (2.32)

T +s(C®+T', )+ KK + —

e = do 6 e . K3
K3

H(s) = Kl - ;
|
s°T do

It is possible to rewrite eqn. (2.31) in the form:

AT = AT A8 + AT, ApS

el s d (2'33)

4 Bare the synchronizing and damping torque

They are obtained by replacing the laplace

AT and AT
s

in the transfer function H(s)

This substitution reduces H(s)

oscC

Interpreting imaginary coefficient

as real coefficient of p§ , it is possible to write

down expressions for ATS and ATd.EmL 2.31 may be rewritten

as:

AT =

wOSC' (1)0
e )] T

{Re[H(onsc
o osc

Taking into consideration that:

AS = &po EBEE“ | (2.35)
osc
Eqn. 2.34 becomes:
_ ® .
AT, = Re[H(jwosc)] AS + wo IM[H(ijSC)] ApS (2.36)

oscC

with the frequen-

IM[H(jwosc)]}AG (2.34)




35

wo3sds8 snq 9ITUFJUT dUTYydew aT3ufls syl 103
19pou aOﬂumnusuuma ITBWS PO9ZTIBSUTT JO uofiIonpsy g°z °*814

€ topl 4 |
5+ mv_wxiom.r._.o.._uvmﬁ_..%.rmm

=y

(LS +1)73%H +ay Sy

dV

_ S_|. .L : :
poI QV mi (nAQv Ll ! | odv




From eqns, 2.32 and 2.36, it follows that:

R
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: ' T
k 1 2 ' 2 ' e
-
(K2K5Ke+K2Kq) (KBKeT moschoTe)-l-moscKzKuTe.(Td°+—-K )
S . 1 2 . 2+ o Te N T' )2
(E; + KsKe'— moschoTe) wosc(f; do
(2.37)
Te l' 2
] ') (K e T! T
(K21<5Ke+1<2,1<4)('rc10 =) KZKuTe(KGKe w2 TY e,)
AT, = o : : 3
d ° 1 ' 2 2 2 Te v y2
o, ] — “ | ——— +
(K3 + KGKe woschoTe) + wosc(K Tdo)
(2.38)

The torque-angle loop defining the synchronizing

and damping torque coefficients is shown in Figure 2.9.

One important point remains to be clarified. It must

be noted.thét the oscillation frequency Woge ? which is
needed as an input parameter to obtain values of ATd,and
ATS . is'in fact an unknown quantity. However, Yose could

be obtained directly from Figure 2.6 for the entire 1§ading
range considéréd..‘This ié possible because fhe‘dynamiés of
the‘system are dominated by thebtwo comple# conjﬁgate_éigenn
values. Under the circumstances, W ose is equalltq the

imaginary part of any one of the two dominant complex eigene«

values.
Figure 2.10 and Figure 2.11 give the synchronizing
~and damping torgque coefficients for the wide range of system

loading examined. It.is clear that ATS' remains always
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"Fig. 2;9 The load-loop showing synchronizing and
damping torque
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positive, while ATd becomes negative, indicating instability
for higher loading and/or lower power factors. The results
obtained by this method are in full agreement with that of

the eigenwvalue analysis.
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chapter three

VARIABLE-STRUCTURE POWER STABILIZER TO SUPPLEMENT

- STATIC EXCITATION SYSTEM

3.1 Review of Stabilizing Signals

In'Chapfer 2, it has been shown with the aid of eigen
value analysis, how a static excitation system can destroy the
damping componeht of the electrical torque under certaiﬂ
conditions of loading and -generator angle. It can be éasily
concluded that,ito gain any real advantage from static exciters,
it is necessary to introduce special control signals to increase

the system dynamic stability and to damp out machine swings.

Significqnt advances have been made which increase
stability through the’use of stabilizing signals derived from
"speed, frequency, real power and/or reactive power, rate of
change of terminal voltage, acceleration and mechanical power.
A number of published reports document both studies and field

tests.

11
Watson5 and Dandeno et al ‘have reported that analog

computer studies showed that the most effective dampiﬁg of
generator swings could be obtained by introducing an addition-
al signal to the excitation control, proportional to the rate
of change of generator angle (%€5). Consideration was given
to various methods of obtaining a signal propbrtioﬁal to

changes in generator speed, including the derivation of the
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signal from the measurement of electrical quantities at the
generator terminals; However as a result of certain limita-
tions, development work was subsequently concentrated on a
method of direct measurement from the generator rotor. Studies
have shown that the speed'signal should be derived directly
from the generator shaft itself. Stability tests made on a
special radial system arrangement showed an increase in both
steady-state stability limits (up to 97 per cent of that
theoretically possible with generators of zero internal imped-

ance) arnd transient stability limits.

‘The possibility of obtaining generator speed signals
by measurement of vatious electrical quantities on tha machine
and applying appropriate transfer functions, as altermnatives
to direct measurement of the mechanical quantities, was in-
vestigated by Ontario Hydrolz. An angle transducer was devel-
oped to provide’a d.c. signal approximately proportional to
phase angle between generator internal voltage and remote
system voltage. (These voltages were obtained from simulating
networks.) This signal was then differentiated to provide the
required damping signal (pS). Unavoidable time lags in the
measurement, and the instability of the.device when actual
system impedance was much lower than the preset value utilized
in the similarity network, were the main reasons -behind abaadon—

ing this method. A signal based upon the integral of accelerat-

ing power was then utilized. Under the assumption of GO

mechanical power input, variation in machine speed f
1

as:




Ap&) =% [ 2P at (3.1)
Such an arrangement was found to function éatisfactorily
except when it was required to change the loading on the
machine by changing the gate position (for a hydraulic unit).
The stabilizing signal had to be disconnected to prevent ex-
cessive excurSions of field current and reactive power during
real power changes on the generator, which led to the immediate
loss of the stability of the machiﬁe. Consequently, this

method was also abandoned in favour of direct measurement of

.shaft speed.

13 - .
Ellis et al have reported the results of an investi-

gation made to find a suitable signal for stabilizing machine
swings. Differenf.gtabilizing signals were considered iﬁclud—
ing the rate §f chahge of terminal voltage, speed error,"
acceleratiqn; rate of change of field current, subtransient
direct axis'field current, subtransient quadrature.axisbfield
current and rate of change of armature current. The 'signals
were evaluated using a simplified system representation on

an glectronic differential analyzer, with the exéitation fully
represented and fixed input shaft power. Several of the sig-
nals considered showed a stabilizing influence and the most
promising of thesg'wére thekrate of'change of field current
and the séeed error. The»latter gave particulérlf good resglts,
indicating ;hat it could producé any degree of damping desired.
The rate of change of field current éignal exﬁibited signsIOf

~instability because of a closed positive feedback loop in the
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excitation system, so the signal was abandoned.

The use of a signal proportional to the rate of change
of voltage to supplement the control of excitation has been
shownll+ to produce either positive or negative damping, de-
pending upon the relative gains and time constants. The
maximum positive damping it can yield is much less than that
obtainable from a frequency deviation function. It was further
shown that a control signal offering'the most promise for
improving the étability is a complex function of frequency
amounting to frequency deviations for slow rates of swing and
rate~-of-change of frequency for high rates of swings. It was
pointed out that the second derivative of frequenéy may also

be needed to achieve efficient damping at very high swing

frequencies.

Excitation voltage control by reactive power stabiliz-
ing signals, excitation current signals, speed signals and
integral of the acceleration power have been considered for
stabilizing the Hydro Québec systeme. Computer tests and
field tests have clearly shown that any relation between
generator speed and reactive po&er is subject to too many
contingencies for this control signal to be effective and re-
liable. It was even shown, that, in some céses, a signaL

proportional to the rate of change of reactive power could

cause a further reduction of the damping‘coefficient.

15 .
Shier et al described a purely electrical approach




to obtain a speed signal. The approach was based on the fact
- that the speed of the machine could also be coﬁside;ed
stored rotational energy. For transient performance, the

input power variations could be ignored and the change in

output energy could be a reasonably close measurement of
change in rotor energy. A watt transducer was used to measure
-output power, which was then converted to the final speed

'signal using operational amplifiers. '

The effectiveness of a damﬁiﬁg signal proportional to
electrical power has also been investigated 16,17. - The
stabilizing Signél,,which is derived from a single—phaée
Hall-watt tranSducer, amélified, filtered, and»applied to a
derivétivg—type circuit; was shown to bé very‘effegtive in

"damping machine swings.

.18 .
Gerhart et al presented a valuable contribution

toward shedding some light on the procedure fbr-installétion

and adjustment of power system stabilizers.

A different type of series compensation for the improve-

ment of dynamic stability of an excitation control has been

19520 . ‘ .
developed and tested - .. The device incorporates complex

zeros to compensate for thé_adverse effects'of'the.under—

damped complex poles, which mathématically, characterizg the
dynamic behaviour of a synchronous machine operating’at high
 1oading-and:high‘torque angle. 1Investigations tp“de;grmine

‘thé'sensitivity of the technique to misplacementvof-theIZero's




- which compensate the complex dynamic poles remain to be

carried out.

3.2 Problem Description and Approach

From the review given in the previéus section, it is
evident that a variéty of supplementary signals that attempt
to improve the small-signal dynamic performance of synchronous
machine is currently available. Most of these supplementary
éignéls act on the voltage regulator through various combina-
tions of fixed-structure lead-lag networks (commonly refer-
ed to as compensators or stabilizers). The design of such
compensators is usually carried out for one éet of machine

parameters corresponding to one operating point.

Since machine parameters change, in a rather complex
manner, with loading, making the dynamic behavioﬁr of the
machine quite different at different operating points, it is
difficult to reach generél conclusions, as to stabilizer
structure baséd on only one operating point. As a result,
the characteristicsof the stabilizer have to be adjusted prop-
erly to give thé desiréd performance over the expected range
of system loading. In other words, it is essential to in-
corporate variable-structure stabilizers that are altered to
compensate for variations in system dynamics caused by load
changes, if optimum dynamic performance is to be maintained

as operating conditions change.




The purpose of this study is to investigate the
possibility of designing such variable-structure self-

adjusting sﬁabilizers.

The supplementary stabilizing signal considered in
this study is one proportional to elegtrical power. A

derivative type pdwer.gtabilizefﬁwith‘twdupoles is considered.

An open-loop adaptive technique that is based on
measurements of the operating environment that are directly
reléted to the values of the plant parameters (i.e. real and
reactive power) is usedf "Figure 3.1 represents a bloqk diag-
ram for the basic schéme'of tﬁe suggested adaptiﬁe technique.
The idea is to determine the 6ptimum values of the’stébilizer
adjustable‘parametersvin conjunction with the minimum df a
pe;formance criterion. . The procedufe is performed off-line
fsr a’selected set of grid points in the real power-reactive
pdwer’domain.yb(The.mesh size in the grid, of course, depends
on the quantum of~chapge'in loadl) ~ The optimuﬁrsettings thué‘
obtéined are to be stored in a,Micro—proéessor memory. The
values of the real power and the reactivé power are to be
continuously measured using available Watt and Var trans-
ducers. A contrdl signal is then sent to the stabilizer td
update its parameters in step with changes in the system
loading in the ensuing steady~state, Thus the'stébilizers

will always be prepared to cope with disturbances;




Operating

Single-machine -

infinite-bus system

with power

stabilizer

conditions
(e,g. P,Q)
Transducer - + \lr T
Measurement. of ‘ : I
operating conditions® ]
| - - _._.-...I
Y * R [>-~—
A i o
. .
) .~
a priori informa- 1 '
b
tion about system
: y 2 4
used to optimize
parameters o
— >
m
MicfoprocesSof

Fig. 3.1 Block diagram of the open-loop adaptive
technique”(ql, qz, R represent the

adjustable pérameteré)
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3.3 Performance Criterion and Parameter Optimization

Scalar infegral performance criteria have proved to
be the most meaningful and convenient measures of dynamic
performanceg. The performance criterion chosen for this
study is the sq—called integral—of—theesqﬁared—error,(ISE)
to a step input. ISE is used here for two feasdns:

i) Its validity has been demonstfated as g performance
21 :
index
ii) ISE may be conveniently evaluated with a»digital
computer on the basis of Parseval's theorem or using

~

Lyapunov's second method.

Consider an initially displaced system:

X(t) = A X() X(o) = X_ | L (3.2)
where A = A(q) 1is given and is assumed asymptotically
stable for all q. Vector gq includes all parameters that

,ére to be specified by the automated design‘procedure. Assume,

in'addition,'that the performance criterion

B I (x7€) WO a& o (3.3)
° . ,
is assigned to the transient response of tﬁe system given by
.th. 3.2, whgfe the weighting matrix W is assumed to be
positive seﬁi—definite real symmetric, for all q - of intereét.
It is desired to determine the values of the adjustable pafa?
meters, so as tovminimize thé pérformancé criterion  j. The.

. second method of Lyapunov allows the cqmputatiqn qf-tﬁe




© performance criterion given by eqn. 3.3 along the dynamic

solution of the system represented by eqn. 3.2 without in-
tegrating the system equations and evaluating the infinite

integral. Use of the state transition equation:

X(t) = exp (At) X_ - (3.4)

permits rewriting eqn. 3.3 in the more convenient form:

PO 1 .
j X, R X (3.5)
where, © :
R = J {exp(A't) W exp(At)} dt (3.6)
)

An alternate form for R is derived from the inte-
"gration by parts occurring in:

RA = j {exp(A't) WA exp(At)} dt (3.7)

(o}

t=w o]
RA = exp(A't) W exp(At) - J {A'" exp(A't) W exp(At)} dt
t=o0.
o (3.8)

In particular, matrix R 1s the unique solution of
the well-known relationship .

A'R + RA = -W (3.9)

Once the solution of eqn. 3.9, which is often referred

50

to as the Lyapunov equation,is obtained the parameter optim-

ization problem is accomplished by minimizing j. Since the

optimization procedure was to be repeated for numerous grid-

points in the real power-reactive power domain, it was essential

to use an efficient computer solution for the Lyapunov

‘equation.
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An algebraic method of solution of the equation, vié;é‘
similarity transformation of the system matrices to gbmpanion
fbrm has been used. The method is given in detail in Appendix
A and follqws Molinarizz. |

‘The optimization technique used to locate the ninimum-
value of the performance criterion is the "Nélder_énd Mead"
sihplex method?® which is the most efficient bf all current

sequential teéhniqueszu

. In the simplex methdd,'the objective
function is evaluated at (k+1) ‘mutually equidistant points
in the space of the k independent variables. Such points
beiﬁg said fo»form‘the vertices of a regular simpléx. The
method is‘initiated by setting up a regular sihplex in the
space of the k independent §ariab1es, and evalugting the
objective funcfion.at each vertex. The method, which is
derivative free, then adapts itself.to thé local:léndécape,
usipg reflected, expanded and contracted;points fo locate the
mipimum. The general itefation procedﬁre is.given_in

Appendik B.

Siﬁce the procedure described to evaluate the perform-
~ance criterion is only valid if the system matrix A ig
asymptotically stable, the simplex method had to be modified
to take~ﬁhat intq consideration.,: A check oﬁ the eigen yalues
locations of A .was performéd af»eQery iteratién ﬁrior‘to

the evaluation of the performance criterion.




3.4 Adaptive Stabilizing Signals Design

The transfer function of the power stabilizer is given by:

G, =K (T+eT ) (1#sT ) | (3.10)

where K, Tl, and T2 are the parameters to be varied to compensate

for load changes and optimize system performance.

This particular configuration of the stabilizer was chosen as
the result of extenéive studies of root-locus diagrams for numerous
loading conditions. These studies have also shown that the choice
T = T2 would give very close.results to the case where T1 is not

1
equal to T2 .

With that in mind and in order to reduce the large computation

costs associated with optimization techniques, T1 was taken equal to

'1‘2 . The stabilizer transfer function in this case reduces to:

¢ =K—>-—"  where (T =T =T) .

(1+sT)® v

Figure 3.2 represents the block diagram of the small-perturbation
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model for the single machine infinite bus system with the power stabilizer.

The state equations for the complete system are given by:

d N '

e X1 = on2 (3.11)
a -K K APm

_— R A —2

T ) =X -x X tH (3.12.)
d Xu Ku X3 '
L ®X)=mm - X - (3.13)
dt 3 T do T do ! T doKs ‘
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d_ - & 5 _ e g
T &) T X, T X
d' KK KK

.CTE (X ) = —_1 Xl + —2 X3 -
4 KK KK,

S (x ) = —+— X + X
dt 72 1 T2 3

X
- E&
3 e
X
—2
T
X
_ 5
T2

(3.14)
(3.15)

(3716)

The system equations can be summarized in the canonical

form:

dx

— = AX + TU

dt

(3.17)

where X and U , the state vector and the perturbation

vector respectively, are given by:

[

= [AS, ApS, AE'

The system matrix

matrix are given by:

0 ®w
o
RSN
M
_Ku
T! 0
do
A =
_KeKS 0
T
e
K K
1 0
T
K K |
_47 0
L T

, BE 45 d

U = [o, Apm, o, O, o; o]

A and the

0 0
_K2
- 0
-1 1
\j 1
TdoKs Tdo
'—KeK6 -1
T T
e e
K K
e 0
T
KZK
—ry 0
T

, d_|
1 2"

1
=1

(3.18)

(3.19)

disturbance distribution

(3.20)
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(for the case T_ =T = T)

. [o % O 0 0 o] (3.21)

The system represented by eqn. 3.17 can be reduced

" to the form of eqn. 3.2 as follows:

The states are redefined in terms of their steady—

state values, i.e.

1 ) P .
Xi A Xi - XiSS is= 1, 2, ... n (3.22)
hence
d 1, _d
dt (Xi) T dt (Xi) (3.23)

Eqn. 3.17 becomes:

@ =axt+x ) +T U (3.24)

Therefore, the change of variables puts the system in

the form:

4 xly = 1 . 1 - _
c &) =AZX ; x!(o)= -X (3.25)

This means -that by redefining the states in terms of
their steady-state values, the reference position of the
system has Been'shifted. To prevent unnecessary notation
problems, the superscript 1 will be dropped. Note that

"the matrix A remains unchanged.

For the partial case where U is a step-like pertur-

bation, the steady state value of the state vector is given

by:

X =-AtTr | (3.26)
—8Ss : .




Numerical results

The system data are the same as given in Chapter 2.
A1l the elements of the matrix W in eqn. 3.6 are assumed

to be zero except for the second diagonal element. In other

words, only speed excursions are penalized. Any other choice

for the eiements of matrix W 1is allowed.

A digital computer program was written that, when

given the system equations, the terminal voltage (1.0 P.U.),

and the real and reactive power loading of the machine, cal-
culateg the Heffron-Phillips constants Kl, Kz’ oo KG, and
determines the values of the adjustable stabilizer parameters
K and T that minimize the performance criterion. The
computational flow graph is given in Figure 3.3. ‘Several
starting pointé were assumed, and_a cross—check with CSMP*
was performed. The procedure was repeated for the selected
set of grid points in the real-power, reactive power domain.

All combinations of P =0 to P ='1.0, and Q = -0.3 to

Q= 1.0 for steps of 0.1 were considered,

The optimum values of T and K , thus obtained, could

‘be stored in the memory of the micro-processor. The stabilizer

parameters can then be updated in step with the continuously

monitored load changes. The result is: optimum performance

Continuous system modelling program
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!

Compute starting simplex
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Fig, 3.3 Computational flow

graph for optimiz-

ation technique
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for a wide loading range.

Tables I aﬁd II show the optimum values of the adjust-
able stabilizer parameters K and T for 140 different points
in the loading range considered. It is evident that - if
optimum pérformance is to be maintained over the: entire load-

ing range - the structure of the stabilizer has to be altered.

3.5 Analog Computer Tests and Results

The single machine—infinite bus systeﬁ with the
optimum stabilizér gain and time constants was simulated on
a TR-48 analog comppter. A step-like disturbance’in‘mechani—
' cal torque was used to perturb the system from its operating
state. Figure 3.4 - 3.19 are sample results of the analog
study illustrating ébﬁe significantraspect540f’thé-system
response. The ffaces shown are deviations in speed. The’
system-responseé displayed are fof three cases:
| i)  Excitati6n system unsupplemented.

'115  Settings of the powerzstabilizer parameters kept
fixed - irréspecti§e of load changes - correspond-
ing to a particular design point (P = 1.0, Q = -.3)
originally unstable.

iii) Optimum settings for the power sfabilizer parameters

altered with loading as given by Tables I and II.

From the results, it is observed that:

1) The power stabilizer considered significantly
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2)

3)

increases the dynamic stability of ﬁhé system,

Altering the structure of the stabilizer to cope -

with changes in real and/or reactive power load=-
ings, maintains optimum performance for a wide
range of system operating conditions.

The v#riaﬁle structure power stabilizer provides
more damping for the machine speed‘éwings than
that_oﬁtained from a fixedvstrudture power
stabilizer. This is particﬁlarly noticeable away

from the design point.
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chapter four

A MODEL REFERENCE-ADAPTIVE CONTROLLER TO COMPENSATE
FOR VARIATIONS OF THE INCREMENTAL SPEED

REGULATION WITH LOAD

4.1 Problem Description

In general, ﬁower system disturbances caused by load
‘changes result in the deviation of several parameters from

their nominal orvdesigﬁ values. In particular, generator-

78

'governing characteristics representing steady—stéte_frequéncy—

power output_cﬁrves.aieknot straight line over the full-
range of operation;' Instead, a typiCal_chafacteriSticsO,sl
has an irregular pattern of piecéWise stpéighﬁnliné Seg—
ments as shown in Figure 4.1. The negative of the slope of
each segment represents the incremental speed regulatiqn,
which_depgnding on thé load level may ﬁary widely over the
fuli ?angé offdperationéz. |

Due to the‘faét tﬁat»controller design-is tonveﬁtion—
k ally bésed on constant plant‘paraﬁeter-values, it is easily
recognizable that any changes in the plant parametérs from
their nominal values will de-rate the system deéign perform-
bance. One design approach is to use sophistiéated control
theories to deéign contfollers insensitive,té‘changes in
fhe-controlled system. An alternative design apprbaéh‘islto

‘use adaptive control techniques.
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It is shown in this chapter that Fhe model reference
adaptive control concept can be sucéessfully used to coﬁpeﬁsate
for the'variations of the incremental speed regulation para-
meter caused by incremental load changes, The analysis is
done by examining the case of a steam turbo-altermnator on
isolated load. Several model reference adaptive control
(MRAC) techniques are considered. A brief review on the MRAC

techniques is presented in the next section.

4.2 Model Reference Adaptive Technique

One of the general categories into which the broad
scope of adaptive control systems.maylbe subdivided is re~
ferred to as the model-reference édaétive cdntrdl:approach;
The.MRAC has been a popular approach to the contfol of
.systems operating in the presence of parameter and environ-
ﬁental variations. In such a scheme, the desirable dynamic
Charactéristiés'of the plant are specified in # reference -
,médel, énd thé-Controllablempafaﬁetétspof thg planf are
adjﬁéted COﬁtiﬁﬁbuély of‘discfétely, so that its responsé
will.dﬁplicaté that of the modél as closely as possiblé.
"The identification of the plantdynamics is not necessary and

hence a fast adaptation can be achieved.

Generally speaking, there are two approaches to thé
éynthesis of MRAC systems: one is based on the minimiza-

tion of a performance index and the other on a LyapunOV';'

e




function. Each of these approaches has its own merits and
limitations. A brief but up-to-date survey on the various
MRAC techniques is in order. For a more detailed account

of the different design rules, refer to Landaud3.

The MRAC system was first designed by the performance
index minimization method proposea by Whitaker 3" of the M.I.T.
instrumentation laboratory and has since ;hen been referred
to as the M.I.T. design rule. The performance index is the
.integral squarea of the response error. This rule has been
very popular.due to its simplicity in practical implementa-

tion. An improved design rule with respect to the speed of

response has then been proposed by Donaldson®® who used a

more general performance index than that of Whitaker, but
additional filters and the measurements of the state vectors
are required.

The need of the sensitivity filters can be avoided by

36 37

a gradient method developed later on by Dressler Price
suggested an accelerated gradient method which is easy to
implement and is capable of achie#ing faster adaptations

compared with other gradient techniques.

A design rule based on the application of sensitivity
analysis but with only one sensitivity filter for the mulfi—
variable parameter adjustments, has been developed by
Kokotovic et al38239, Winsor*? has also modified the M.I.T.

Rule to reduce the sensitivity of the response to the loop
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gain, at the expense of additional instrumentation. Im all
the design rules méntioned, a good compromise between the
stability and the speed of adaptation will have to be decided

by simulation studies.

%1 extended the work of Dressler by solving the

Green
global stability problem. However, the adaptive rule is not
attractive because the first derivatives of the state vectors

are often required for its implementation.

In the Lyapunov syntﬁesis approach, the adaptive rule
is obtained by seiecting the design equations to satisfy
conditions derived from Lyapunov's second method, so. that the-
system stability is guaranteed for all inputs. Butchart and
Shakcloth™*? first suggested the use of a quadratic Lyapunov
function, which was employéd later on by Parks“3 to redesign
systems fofmerly designed by the M.I.T. rule. The u;e of
different Lyapunov. functions by Phillipsonqu and Gilbert et :
al.l*5 ﬁas resulted in the introduction of feed forward loops
that would improve the damping of the adaptive response. The
main disadvantage of the Lyapunov synthesis approach is that
the entire state vector must be available for measurement,
which is not often possible. Recent efforts by Monopoli46
have permitted one to eliminate or reduce the number of
differentiators required for implementing the design rule.

Currie and Stear'’ have suggested the use of a Kalman filter

to avoid the use of derivative networks., Another disadvantage




of the Lyapunov method is that the Lyapunov design rule may

not be applicable to cases where the plant parameters cannot

be adjusted.

Three of the methods described, namely the M.I.T.
design rule, Dressler method and the Lyapunov design approach
were applied to the ﬁower system considered. The theoretical
basis and the adaptation equations for these methods are

explained in the next section.

4.3 Theory of Adaptation Mechanisms

4,3.1 M.I.T. Design Rule

The index of performance that has been chosen
is the integral squared response error, and the criterion
for successfui adaptation is that the integral squared error
be the minimum value obtainable with the parameter variation
provided. The response érfor is the difference between the
system and the'model outputs. The performance index is given

by eqn. 4,1

J.ez dt = J(Cs - Cm)zdt = minimum (4.1)

- where CS and Cm are the oufputs of the system and the model
respectively. According to the selected performance index,
the desired operating state for the system is 6ne at whicﬁ

the parameter value corresponds to the minimum value of the

error function. At this point, we have:




-g-a { Iez dt} =0 = ' - (4.2)

where @ 1s the adaptive parameter.
If the limits of integration are independent of «a

and if the integral of the derivative of the function exists,

hence:

.%{Jezdt}=zf%-e-dt. » O (4.3)

The perfbrmance index then requires that this error
quantity be zero. Under these conditions, the net change in
the parameter over some interval of time is proportional to

the integral error functiom, that is

L | o | (4.4)

ot " € %a
or equivalently
% _ue " (4 ‘5)
ot H da '
where: u 1is the adaptive gain.

Eqn.;4;5,yields:the<rate'at which o 4is to be adjusted
and is the basic equation upon which the adjusting mechanism

works.
2
The determination of the quantity aas can be accomp-

lished in two ways. In one of these, a straight-forward
partial differentiation of the differential equatidn for CS

as a function of the input quantities can be made.~ An alter-

" mative method is to represent the controllable parameter ‘as

a variable sensitiv1ty, Sa , in some 31gna1 path of the




‘system., The effect of the Ehange, BSa , can be considered
as a disturbance entering the system at a point following

Sd or following the summation point for signal paths that
parallel Sa in the forward loop. TFor a variable Sa in

a feed back loop, the disturbance can be considered as enter-

aC
.ing at the feed back summation point”BQ_ As a result, —E ,

. e}
can be generated by taking the signal that occurs at the input
to the variable parameter and feeding it throﬁgh a suitable

_filter.

4.,3.2 Dressler Design Rule

The adaptive control system (plant plus adaptive
controller) is described by the following linear differential

'equations with time-varying coefficients:
X(t) = A_(r) X(x) + B_(r) U(t) (4.6)

c (t) = F X(t) - (4.7)

where' Aé[nxn]' . Bstnxll and F[lxn] are the system
‘matrix, the input distribution matrix and the output matrix
respectively, and X(t) [nxl] . g(t)[lxll and Cs(t) are
the state vector of the system, the input vector and the

scalar output respectively.

The plant to be controlled contains an arbitrary
number of physical parameters that vary in an unknown manner;

these are contained in matrices AS and Bs' To achieve the
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desired performance, it is necessary to provide the plant with

an appropriate adaptive controller. Hence, any elements of

AS and BS which contain time varying plant parameters will

also contain adaptive parameters providing the required com-.

pensation. The model which is an implicit characterization
of the perfofmance criterion is described by the following -

linear differential equations with constant coefficients:

Y(e) = A Y(£) + B U(E) O (4.8)
Cm(t) = F Y(t) ' (4.9)
where Am[nxn] s Bm[nxl] and F[lxn] are the system

matrix, the input distribution matrix and the output matrix;
and X(t)[nxl] s .H(t)[lxl] and Cm(t) are the state
vector of the éystem model, the input vector and the model

scalar output.

The design objective is to adjust the adaptive para-
meters so that CS approximates Cm despite variations in-
the plant parameters. The matrices As(t) and BS(t) may

be decomposed as follows:

As(t) Am + GA(t)v (4.10)

BS(t) Bm + 8B(t) (4.11)

where 6A(t) and &B(t) contain the adaptive parameters
and the time varying portion of the plant parameters. The

error criterion:

e(t) de(t) 20 (4.12)




where Ae(t) A e(t + At) - e(t) (4.13)

leads to the following adaptation equation336:
o, (t) = -u,, Y. (t) e(t) | (4.14)
1] 3] ]
8 S (415
. mz(t) = =My Uz(t) e(t) ‘ .15)
where &ij and émg are elements of the S8A(t) and 8B(t)
¥,. and u* .are the adaptive loop gains.
ij mil .

The adaptation equations show that the adaptive para-

meters are adjuéted continuously aﬁ a rate proportiomnal to
the product of the instantaneoué values of e(t) and the
appropriate model state variable Yj(t) or input variable
Ul(t)' The wvarious 'Yj(t) are readily available from the
aptual mechanization of the model. The Ug(t) are also
available siﬁce they are the inputs to the system. The
adapti&e loop-gains (u.. uiz) are free to be chosen to

1]

satisfy the particular requirements of each problem.

4,3.3 Lyapunov Design rulet2>43549

In the Lyapunov synthesis'appfoach, the adaptive

rule is obtained by selecting the design equations to satisfy
conditions derived from Lyapunov's second method?®, The

theory is developed for linear plants and follows Porter and

Tatnall“g.

: th
Let the system behaviour be described by the 1 order

‘state equation:
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x(t) = A_(£) X(£) + B_(£) U(&) (4.15)

where As(nxn) s Bs(nxr) are matrices with time varying

t .
elements; X 1is the n b order plant vector and U 1is the

th . :
T order input vector.

Let the model state equations be:

Y(t) = A ¥ .1

T(e) = A Y(r) + B U(K) (4.17)
where Am(nxh) and Eénxr) 'are matrices with fixed elements;

Y 1is the nth order model vector.

An error vector can be formed by writing:

e(t) = Y(t) - X(t) , (4.18)

giving e(t) = A  e(t) + (A -A)) X(r) + (B -B) U(r)  (4.19)

Writing:
(A _-A)) = [qij] ; (B -B) = [sij] (4.20)
and regarding the uij and Bij as state variables, a
Lyapunov function is chosen as:
n,n n,r
V=e'Pet+ § w,,al + 3 v, 82 (4.21)
== %y i3 i3 gt 13 13 .
1,] 1,7

where P nxn is a positive definite symmetric matrix, M

ij
and vij are positive constants. It can be shown that?
. o nzn .
= e 'P + + o + ' o .
Vo=e' (AP HPA) e+ 2 ) (e, Xypie) Oy
1,]
nzr '
+ 2 (v,.B,, + U,p.e) B, . ‘ 4,22
1,9 ij i3 Jgi‘) ij ¢ )

where Py is the,ith column of P.

kid




If P is chosen to satisfy

A'P + PA = -I (4.23)
m m .

-
and 0.

- ' . g.. = -U, p! 4,24

1t follows that:

v = -e'e . (4.25)

which is negative semi definite of the state variables

e, 5 O and B

. . . Writing matrices A_ and B as:
i ij iy 4

s s

A, = A S r ; B, =B+ A : (4.26)
where T and A are.matrices whose elements are generated
by the adaptive loops with the object of making the behaviour

of the system indistinguishable from that of the model. It

follows from eqn. 4.20 that

[aij] =A -A-T [Bij] =B -B - A (4.27)

and

Lo, 1 =-F=-lv ;4] (6,41 = b = -[8,5] (4.28)

Therefore the adaptive equations are given by:

Y ' v
Yij Xj b g/uij A (4.29)

. C
S35 7 Uy By &/Vy; o (4300

It is clear that the practical implementation of the
control laws requires access to the states of both model and
system and also the ability to change the values of the system

parameters.




4.4 Power System Model

The adaptive design equations given in section 4.3

were applied to compensate for variations in the incremental

speed regulatioﬁ with load'changes. A classical one area
sysfem is used in this study. Figure 4.2 illustrates the
block diaéram of a steam-turbo alternator on an isolated
static load. The inertial generator model is assumed. This

is adequate for most govermnor studies since they are inherent-

1y slow in operation so that electrical transienfs in the
.machine do not play a significant part in determining the
fesponsel’g. The area is représented by a single governor-
vturbine-generator group involving two‘tiﬁe constants (governor
and turbine). The system equations are linearized and the
variables are expressed as differences with respect to the
nominal values. The folldwing equations are obtained in

Laplace transform calculus:

~ ' . AF(s) 1 '
AP (s) = (aP (s) - R, )[(1+S.TT)(1+STG)] (4.31)
APG(s) - APd(s) = Ms AF(s) + D AF(s) (4.32)

where A denotes the difference between the actual value of

a variable and its nominal value, and

F is the frequency of the area
RS is the system incremental speed regulation that

deviates from nominal value with loading
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T turbine time constant

T
TG governor time constant
PG power generated
'Ec speed changer position
Pd opérating load of the area
M | inertia constant of the area
’ ano

D Damping coefficient ( Y )

In what follows, the speed changer position will be

assumed fixed, so that the emphasis:will be only on the per-

formance of the adaptive loop. The system equations can be

summarized in the canonical form:

X(t) = A_(D)X(£) + B_U(t) - (4.33)

92

The state vector X(t) and the input vector u(t) are given

by:
Xx'(t) = [AF , AP, z] 3 U = AP, (4.34)

where 2z 1s an auxiliary variable.

It follows that As and,BS. are‘giﬁen by:

D 1 . 1
™ M 0 ™
A = 0 “%‘ %‘ ;  B_ = 0 (4.35)
S T T ] _ :
-1 1 .
.0 == 0
RSTG —-TG L i

The numerical values for the‘system;'thé'filtéré'énd”

R
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the model areg:
M= 1./6 pu Mv s/Hz
D = 8.33 x 10”3 pu Mw/Hz
?T = 0,3 s
'TG = 0.08 s

The design (nominal) value of the incremental speed
.regelation is.assumed to be Rm = 2.4 Hz/pu Mw. It is eleo
assumed that with the system operating at a certain loading
condition, a step disturbance in the load - large enough tdl
cause the incremental sPeed regulation to increase to double

its nominel value - is suddenly applied. It is then required
from the adaptive loop to compensate for this change in the

incremental speed regulation.

4.5 Computer Simulation and Results

The resuitsbobtained from simulating the sysﬁem on-a

- TR-48 EAI analog computer and on CSMP are presented in this
section. The purpose of these simulations is to demonstrate
the performance characteristic of the three adaptation tech- .
Iniques‘given in ‘section 4Q3.‘ These simulations are not»in—
tended’toebe cempliceted, but rather to give some indicetion
as to the pdSsibiiity of applying model—reference—adaptive

control techniques to power systems,

4.,5.1 Adaptive Laws Based on M.I.T. Rule

This case is best illustratedfby'fhe blbek
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diagram of Figure 4.3. The filter.necessary to obtain %%
was found to have a transfer function similarvto that of the
model, The responses of the model, the unadapted system and
the adapted syétem to the step disturbance are shown in Fig-
ure 4.4a. The action of the adaptive controllervto bring the
adaptive fesponse error to zefo is evident-from ﬂigure 4.40. |
Thé‘adaptiﬁe parameter attempt'to compensate for the assumed
variation in the~in§rémenta1 speed regulation is illuéffated

in Figure 4.4c. The computer runs shown in Figure 4.4a to

Figure 4.4c are for an adaptive loop gain of 0.162.

4.5.2 1Adaptiye Laws Based on Dressler's Method

Referring to eqn. 4.6, the (system plus adap-

tive controller) matrices ,As(t) ‘and Bs(t)' are given by:

- . - - -

D 1 1
M ¥ M
- B S U ey RPN By
As(t) | 0 T, T, 5 _Bs(t) Ov ( ..36)
-1 1
2 -0a )o0-12 0
R T T
s g 3 g N N
where -asl is the adaptive parameter that will compensate

for deviations . in the system incremental speed regulation RS.

- Referring to_edn,'4;8, the model matrices Am and Bm

are:
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A =] 0o -+ - . B =] 0 (4.37)
m T T m
-1 1
R_T 0 -7 0
m g g -
L |
The output matrix ' F is given by F' = [1 0 0].

The differential equation that governs the operation
of the adaptive system, as obtained from eqn. 4.14, is given
by:

a31_(t) =¥, Yl(t) e(t) (4.38)

Figure 4.5 shows the block diagram for the "system
plus adaptive controller" and the model. Computer runs with
the adaptive loop gain u31 = 0.39 showing the behaviour of
the unadapted system, the model, the adapted system, adaptive
error with and without'adaptive controller and the adaptive
parameter are presented in Figure 4.6a through 4.6¢c respedt-

ively.

4.5.3 Adaptive Laws Based on Lyapunov's Method:

Thé (system plus adaptive controller) matrices
Aé(t) and Bs(t) are the same as given by eqn. 4.36 (except

that the adaptive parameter is denoted by v instead of
: 31

o ). The model matrices are also the same as given by eqn,
31 ' ‘

4.37,
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The operation of the adaptive system is governed by
the differential equations of eqn. 4.29 ; for this particular

case, we have:

v (t) = —— (X e' p ) (4.39)
31 u31 1 -3

The adaptive control law of eqn. 4.39 involves the
third column p of the matrix P , hence it is first necessary

to evaluate the matrix P . This was done by solving eqn.

4f23, namely:

PA + A'P = -1
m m
where I is the unit matrix.

Using the Kronecker product method to solve the above

Lyapunov equation, it was found that:

0.516 0.514 0.091
P = | 0.514 1.075 0.261 | : (4.40)
0.091 0.261 0.109

The adaptive equation becomes:

' % (t) = —lf X (0.091 e + 0.261 e + 0.109 e ) (4.41)
31 .u31 1 1 2 3

The complete block diagram showing the system, the

model and the adaptive controller is presented in Figure 4.7,

- A gset of curves illustrating the response of the system with

and without the adaptive controller, the adaptive error and
the adaptive parameters are given in Figure 4,8a through

4,8c respectively.
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chapter five
SUMMARY AND CONCLUSION

The purpose of this research has been to investigate
the possible application of various adaptive techniques_in
the power system area. Two different problems were considered,
and in each case a different adaptive technique has been
suggested. The first problem deals with the design of a
gtabilizer to supplement generator static excitation systems.
A siﬁgle machine infinite bus model was assumed and the machine
was represented by the so called "Heffron-Phillips" constants.
The anaiysis'begah with a study.of the phenomenon of stability
of the system under small perturbation; for a wide range.of
real and reactive system loading; using eigen-value techniques.
The subject éf fhe study was to develop inéights into effects
of excitation éystems and to establish some basis for the
stabilizing requirement for such systems. The approach taken
to design the stabilizer employs an open—loop‘adaptive tech-
nique. Based on the description of the system, the adaptive
controller was synthesized in such a way as to make the over-
all system optimum with respect to a prescribed criterion,
namely the integr;l of the error squared., A computational
algorithm was éet to determine the stabilizing parameters
settings that provide the optimum system performance for all
the éperating points considered. Adaptation is then based

on measurements of the operating environment (i.e. real and
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reactive power) and altering the stabilizer structure.

As a result of study and tests on the system analog

computer model, the following conclusions have been reached:

1) The small perturbation dynamic stability of a single
machine equipped with thyristor type excitation system
and connected to an infinite bus through extermnal im-

pedance can be determined for an extremely wide range

of operating conditions using eigen-values analysis.

2) The concept of changing real power and reactive power
environment and its direct effect on the small pertur-
bation stability of the system can be usefully display-
ed (plotted) in the compiex frequency plane.

. 3) The.eigen value analysis not only allows the direct
determination of the system dynamic stability but can
be successfully used in obtaining accurate values of

vdamping and synchronizing torques.

4) The power stabilizer considered Ks /(1+sT)2

significantly increases the dynamic stability of the

system.
5) Altering the power stabilizer structure to cope with

real and reactive power loading, maintains optimum

performance for an extremely wide range of system

operating conditions.
6) The variable structure power stabilizer provides more

damping for the system than for a fixed structure

stabilizer. 1In the neighborhood of the désign point,
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of course, the difference between the system responseé in both

cases is small.

7 It is essential to realize that the fixed-structure stabilizer

used was based on a loading condition of P = 1.0 and Q = -0.3.

This choice, which might not be realistic for the machine, is
the worst operating point from the stability point of view for
the loading range considered.

It ié apparent that another choice of the loading conditién for

which the fixed structure stabilizer is optimized would produce

less noticeable improvement. If this is the case, the merit of
an adaptive stabilizer over a fixed-structure stabilizer would be
reduced and the use of either one is left to engineering judgement.
The second problem also involves deviations of power system para-
meters from their nominal values, caused by load changes. 1In contrast
to the first problem, the approach taken employs a closed loop adaptive
technique. A classical one area "steam turbo-alternator on isolated load"
sjstem was considered and the model reference adaptive control concept
was used to design adaptive mechanisms that compensate for the deviations

of the incremental speed regulation caused by incremental load changes.

Three different techniques were applied to the system considered and
computer simulations were carried out. From the results shown, the follow-

ing conclusions are drawn:

1. The model reference adaptive control approach, which employé
performance feedback can be applied in the power system area,
for the small-disturbance operating regime.

2. The adaptation mechanism, designed by three different methods




némely, the M.I.T. rule, the Dressler's method and the Lyapunov
synthesis approach, has operated satisfactorily in compensating
for deviation in incremental speed regulation (a 100% change)
with the load changes.

The adaptive loop is capable of keebing the system parameters
unchangéd with'environment, therefore preventing fhe de-rating
on controllers which are conventionally-based on constant plant-

parameter values.
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form,

where

using

‘where

the matrices P

Appendix A

PERFORMANCE CRITERION EVALUATION

. Consider eqn. A.1

A'R + RA = -W

Denote the characteristic polynomial of A by

o + a Sn_l
n

A(8) =S t —mmm + a (A.2)

Assume that A 1is similar to a matrix of companion

i.e.

a non-singular matrix T  exists so that
_1 '
TAT = C (A.3)
C has the form
0 I
C = ——-1 ——————————————————— (A.A)
-a l—a -3 ===~ -2 oo
2 n
eqn. A.3, eqn. A.lvtransforms‘to:'
C'Y + ¥YC = P (A.5)
= =1y -1 : . :
P=-(T )'WT (A.6)
_ m= 1y -1 ' ' . :
Y=(T ")'RT : (A.7)
and Y are symmetric.
Writing eqn. A.,5 as
‘U +V =S5 (A.8)

" the matrices U and V take the simple form

(A.1)
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j—-a
. = 1 7nj
ij _
- a .
Yi-1,3 i Ynj
v - - a1Yin
i1j )
- a,
74,31 i7in

Eqn. A.8 represent n?2

are reduced to:

e .
. .2'("1)J+1(“jk+v

j=o
where k =1 - j + 1,
1
g = .
i+ 1 -n
i
6 =
| n

Denoting the right-hand

tions may be rewritten

- ———————— o —— ———— - — - - - — S oo v

-2a
17n1
-2 + 22y
a3y azynz
n
2(—1) (yn’n_1 -
this
n Xn
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(A.10)

equations, these eguations

0 .
- z (—1)J+IS

i=1;
i= 2,
i=1,
i=1,

component

1)

jk j=o

the

1< n-

i > nj

i< n]

i > nj

side of eqn. A.ll by hi ,'the,equa—

ik

‘limits are given by: .

system may be written more concisely by defining an

1,2 ...(2n-1)

(A.11)

(A.12)

(a.13)

(A.14)

matrix H(z,n) on a general (nl+'i)etuple.Az'_by




and by

where

Eqn. A.19 yields the last row and the last column of

i.e.

H(z,n)

defining- Zgi

~Eqn.

Al =

yr(n)

A.1l4 becomes
‘a ,a
( 1’ 2

{~y

nl

and

2i—1

H(c,n)A

»1)

from other vector using eqn.

where

Yr(j-l) =
0=
y;(i) >

Y;(j) + jth col of y.

The last equation provides a check.

ith row of

y

(-1

e —— o o o .

‘yc(n), the remainder may be simply

A.5

p,. (1) +_.aj vy () = ¢'y (3) 13

pr(l) + alyr(n) f c' Yr(l)

)n
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(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

V.

generated

(A.20)

The matrix vy

should be symmetric, which provides another consistency check.




| Appendix B
OPTIMIZATION TECHNIQUE

This program finds the minimum of a multivariable:
‘unconstrained, nonlinear function:

Minimize F(X , X, ooy X))
17 2 N

'The‘procedufe is baséd on the work by J.A. Nelder
band R. Meadzs.. Thié simplex method adapts itsélf,toithe
 loca1 iandscape, using reflected, expanded, and.coﬁtrécted
points to.locate the miniﬁuﬁ. Unimodality is aséuméd and
thus several sets of starting points should be considered.
Derivatives are not required. - The algorithm proceeds as
follows:

1) A starting point,'&i, is'geleCted,7 

2) A starting "Siﬁplex“ is-gonsfrﬁcted consisting of the

starting ppint an& the following additional fointé:.

X. =X +E&
=5

X 'j ‘%,.j f-2,>3, cees Nt

where Ej is determine& from the following table:

' j . " . s e @ g M g .
_.2__ EL:J_ g_z_z..l N‘fl,J N,j
2 P q q - q
3 q P ‘e q q
N q q - P q
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3)‘

4).

X, , (contracted) = X_
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N = total number of variables

a = side length of simplex

p = —2— ( N¥1 + N-1)
N 2
q = —— (¥ - 1)
N 2

Once the simplex is formed, the objective function is

evaluated at each point. The worst point (highest

value of objective function) is replaced by a new

point. Three operations are used--reflection, contrac~—

‘tion, and expansion. A reflected point is located

first as follows:

Xi,j (reflected) = Xi,c +>a£Xi;c - Xi,j (worst) )

i=1, 2, ..., N

where 0 1is a positive constant.

1§i*c are the centroid coordinates of all points
) s . : B .

ekcluding the worst point and are calculated from the

”‘following:

X = —— | X. . -~ X. . (worst i-1, 2 -
Zl 1’3 l,J' ( ) 2 s s 3

K = N+1
;f the reflected point has the worst objective'function
value of the current'points, a contracted point is 16c—
ated as follows}

- 8K o7y (Wprét)’

i:j i,c

i-= 15 2, +.e5 N

where £ 1lies between 0 and 1.




5)

If the reflected point is better than the worst point

“ but is not the best point, a contracted point is cal-

culated from the reflected point as follows:

Xi’j (contracted) = Xi’c - B‘Xi,c - Xi,j (reflected) ),

bThe'objective function is now evaluated at the con-

tracted point. If an improvement over the current

points . is achieved, the process is restarted. - If an

'iﬁprovement is not achieved, the points are moved one

half the distance toward the best poiht:

'X. . (new) = (X, . (best) + X, .
i,] ¢ ) { i,j _( ) i,3

(o1d) )/2

'The ﬁrocess is then restarted.

If the reflected point calculated in step 3) is the

‘-best point ‘an expansion p01nt 1s'ca1culated,as follows:

1,3 4('3’?"-.?“si°-‘,‘), =Xy ot YRy 4 (reflected) - X, )

where Y 1is a positive constant. If the expansion

toint is an improvement ever the reflected'point, the
reflected point is. replaced by the expan31on point and
the process restarted. If the expan51on point is not
an improvement;over the refleeted point, the reﬁlected

point is retained and'the.process testarted;
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6) The procedure is terminated when the convergence

criterion is satisfied or a specified number of

iterations has been exceeded. A flow sheet illus-

trating the procedure is given in Figure B.1l.
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