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ABSTRACT

Algorithms were developed to classify dockage components from Canadian Western
Red Spring (CWRS) wheat and other cereal grains like durum wheat, barley, rye, and oats
based on morphological and color features. The dockage classes used were: wheat heads.
chaff, wildoats, canola, wild buckwheat, flax, and broken-wheat pieces. The wheat head
dockage class was subdivided into single and multiple wheat heads to improve the
classification accuracy.

The developed algorithms were tested on images taken with an area scan camera.
Training and test data sets were established to evaluate the classification accuracies based
on the extracted features.

Morphology-color, morphology, and color models were evaluated for classifying the
dockage components. Morphology-color model gave 90.9 and 99.0% mean accuracies when
tested on the test and on the training data sets, respectively. The mean accuracies of 90.5 and
98.7% were obtained when the first 15 features from the morphology-color model were used
on the test and on the training data sets, respectively. The mean accuracies of 89.4 and 96.3%
for the morphology model and 71.4 and 75.6% for the color model were achieved when

tested on the test and on the training data sets, respectively.
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CHAPTER 1: INTRODUCTION

Canada produced an average of 55 Mt (million tonnes) of grains and oilseeds worth
about 6 billion dollars annually during the years from 1983 to 1992 (Canada Grains Council
1994). About 70% of these grains are exported through a grain collection, handling, and
shipping system. The producers store their grain on farms and usually deliver it in farm-
trucks to primary (country) elevators (grain handling facilities). Grain moves from the
primary elevators to terminal elevators by train.

A machine vision system (MVS) could be used effectively for objective
measurement of physical quality parameters of the grain at terminal elevators. The primary
reason for its potential application for wheat inspection at terminal elevators lies in its
capability to quantify (with precision, speed, and consistency) the composition and physical
characteristics of grain samples using parameters which form the basis of visual inspection
(e.g. object size, shape, colour, reflectance, and texture) (Sapirstein and Bushuk 1989).
Moreover, powerful microcomputers and specialized hardware have fostered moderately
priced, high performance machine vision systems able to handle the wide variability in size,
shape, colour, and textural characteristics of agricultural produce and products. As a result,
the MVS offers the potential to improve the competitive position of agriculture by raising
product quality while lowering processing costs.

Fast and accurate information on the contents of a grain sample can be used to
increase the efficiency of most grain handling operations (such as grain unloading, cleaning,

binning, and shipping) at terminal elevators (Shatadal et al. 1995b). The important



applications of machine vision to the grain industry include the design and development of
an objective, fast, and reliable on-line monitoring system for grain in continuous flow at
many points in a terminal elevator (grain handling facility). This would lead to increased
cleaning throughput and enhanced recovery of salvageable grains. Use of machine vision
guided controls and robotics could lead to complete automation of modern terminal
elevators. A commercial MVS for grain inspection at terminal elevators is not yet available.
Although substantial efforts have been made in the last decade on using MVS for automatic
information acquisition on the content and quality of grain samples (Barker et al. 1992a.
1992b, 1992c¢, 1992d; Chen et al. 1989; Ding et al. 1990; Draper and Travis 1984; Hehn and
Sokhansanj 1990; Keefe 1992; Keefe and Draper 1986; Kohler 1991; Lai et al. 1986:
Majumdar et al. 1996a, 1996b; Myers and Edsall 1989; Neuman et al. 1987, 1989a, 1989b;
Sapirstein and Bushuk 1989; Sapirstein et al. 1987; Shatadal et al. 1995a, 1995b; Symons
and Fulcher 1988a, 1988b; Thompson and Pomeranz 1991; Travis and Draper 19835; Zayas
etal. 1985, 1986, 1989, 1990), many of the special needs and problems involved in industrial
application are still unresolved. Dockage identification is one of these needs.

Dockage is a matenal that is removed from the grain by using approved cleaning
equipment so that grain can be assigned the highest grade for which it qualifies (Anonymous
1994). At terminal elevators grain is received in railcars and the varying amounts of dockage
is removed by mechanical separators before the grain is stored for shipping to export buyers.
A series of cleaning machines are used to remove the dockage. Export shipments are the
combined grain from several storage bins of like type and grade that meet the buyers’
specifications for quality and grade specifications. The dockage in the grain (wheat) has to

2



be identified for effective automation. The dockage in wheat is assessed by separating the

dockage from the grain by a Carter dockage tester or Emersion kicker (Anonymous 1994).

For the salvageable grain recovery and for adjusting the efficiency of the cleaning machines.

dockage tester fractions have to be identified. With the present machine vision technology.

the car contents can be identified and recognized as wheat, barley, durum, rye, and oats. and
the clean samples can be identified with reasonable accuracy (>95%). So far no work has
been reported on dockage identification in wheat using machine vision.
The objectives of my thesis research were:
(i) to use machine vision system to identify dockage in wheat by developing software
to extract morphological and limited colour features from grain kernels and from
dockage components,

(1) to investigate the potential of different image-extracted morphological and colour
features for classification of dockage components from CWRS wheat and from other
cereal grains such as durum wheat, barley, rye, and oats, and

(iii)  to investigate the feasibility of classifying dockage components into their appropriate
classes using the selected features by designing or selecting appropriate statistical

pattern classifiers.

(93]



CHAPTER 2: MACHINE VISION

A machine vision system (MVS) consists of imaging hardware and processing
software. The elements of a general purpose MVS (Fig 2.1) are: (i) image acquisition, (ii)

storage, (iii) processing, (iv) communication, and (v) display.

Permanent Heost Externsi Data
Sterage € computer € Transpert

w I

Camera
B .. Image
i —» Digitizer —>»> Memery

ot

Image Data
Precessor B

—>> Display —> | Display

Fig 2.1. Schematic of a typical machine vision system

2.1 Image Acquisition
Two elements are required to acquire digital images. The first is a physical device
(e.g. video camera) that is sensitive to a band in the electromagnetic energy spectrum (such

as X-ray, ultraviolet, visible, or infrared bands) and that produces an electrical signal output



proportional to the level of energy sensed. The second, called a digitizer, converts the

electrical output of the physical sensing device into digital form (Gonzalez and Woods

1992).

2.2 Storage

Providing adequate storage is usually a challenge in the machine vision systems
because a single 8-bit image of 1024 x 1024 pixels requires 1 Mb of storage. Digital data
storage in the MVS are of three types: (i) short term storage for use during processing,
(ii) on-line storage for relatively fast recall, and (iii) archival storage. For the short term
storage, computer memory or specialized boards called frame buffers are used. On-line
storage generally takes the form of magnetic disks. A Magneto-optical (MO) disk stores a
gigabyte of information. Archival storage is characterized by massive storage requirement
and magnetic disks and optical disks are used for such storage.
2.3 Image Processing
2.3.1 Digital Image The term image refers to a two-dimensional light intensity function,
denoted by f (x, y), where the value or amplitude of ‘f” at spatial coordinates (x, y) gives
the intensity (brightness) of the image at that point. To be suitable for computer processing,
an image function f (X, y) must be digitized both spatially and in amplitude. Digitization of
spatial coordinates (X, y) is called image sampling, and amplitude digitization is called the
grey-level quantization. Suppose that a continuous image f (X, y) is approximated by equally
spaced samples arranged in the form of an N x M array, where each element of the array is

a discrete quantity, i.e.:



£(0,00  £(0,1) e oo ... £(0, M-1)

f(x,y)
f(N-1,0). ... ... ... f(N-1,M-1) 2.1

The right side of the Eq. #2.1 is called a digital image. In the case of a colour image.
the amplitude is a vector which has three components that are either Red, Green, and Blue
or Hue, Saturation, and Intensity.

Processing of digital images involves procedures that are usually expressed in
algorithmic form. Therefore, with the exception of image acquisition and display, most
image processing applications can be implemented in the software. The image processing
can be subdivided into three groups: (i) image pre-processing, (ii) image analysis, and (iii)

Image interpretation.

2.3.2 Image Pre-processing Image pre-processing is improving the image quality either for
a better (subjective) interpretation of the image by a human or for making the image more
suitable for subsequent steps in computer processing. Noise filtering, contrast enhancement.
and image smoothing are some of the pre-processing operations. Because an image is a 2-D

signal, image pre-processing concepts require the knowledge on 2-D signal processing.

2.3.3 Image Analysis Image analysis is extracting information from the image for a

given application. The image analysis is explained in detail in Chapter 6.



2.3.4 Image Interpretation Image interpretation is making a decision about the image to
attain the solution of a given problem based on the information derived from the image.
Image interpretation involves image-based knowledge manipulation including procedural or
rule based manipulation of image data, 3-D modelling, and hierarchical image analysis. A
great amount of non-image related knowledge underlying the scene representation may have
to be used in image understanding. Artificial neural networks are extensively used in image

interpretation and pattern recognition problems.

2.4 Communication

Communication in digital image processing involves local communication among
image processing systems and remote communication from one point to another. typically
in connection with transmission of image data. Hardware and software for local
communication are readily available for most computers. Communication across vast
distances presents a more serious challenge if the intent is to communicate image data rather
than abstract results. Since most of the machine vision applications are in automated product

inspection (exception Satellite MVS), vast-distance communication is not that important.

2.5 Display

The principal display devices used in the modern MVS are monochrome and colour
TV monitors. Monitors are driven by the output(s) of a hardware image display module in
the back plane of the host computer or as part of the hardware associated with an image

7



processor. The signals at the output of the display module can also be fed into an image
recording device (such as slides, photographs, or transparencies) that produces a hard copy
of the image being viewed on the monitor screen. Other display media include random-

access cathode ray tubes (CRTs) and printing devices.



CHAPTER 3: REVIEW OF LITERATURE

3.1 Background

Though a commercial machine vision system for grain grading and inspection is
not yet available, rapid and substantial research has been conducted over the last decade
towards building a machine-vision based grain-grader. But many of the special needs and
problems in applying machine vision techniques to build a grain grader have yet to be solved.
Agrovision AB(S-223 70 Lund, Sweden) has developed a machine to classify wheat, barley,
oats, rye, and triticale but its classification accuracy is not reported in the literature.
Determining the potential of morphological and colour features to discriminate different
grain species, classes, varieties, damaged grains, and impurities using statistical and artificial
neural networks pattern recognition techniques has been the main focus of the reported
research. This chapter briefly reviews the published research in applying machine vision

techniques to the grain industry.

3.2 Potential for Objective Wheat Grading

The primary and export grade determinants of CWRS wheat are given in Appendix
A. For primary grades, the maximum tolerances of foreign matertals including other cereal
grains are 0.75, 1.5, 3.5, and 10% for grade 1, grade 2, grade 3, and feed grade of CWRS
wheat, respectively. In the export grades, the maximum tolerances of foreign materials
including other cereal grains are 0.4, 0.75, 1.25, and 5% for grade 1, grade 2, grade 3 , and

feed grade of CWRS wheat, respectively. The primary grade tolerances for wheat of other



classes are 3. 6, and 10% for grade 1, grade 2, and grade 3, respectively. For export grade.
these tolerances are 1.5, 3, and 5%, respectively. Tolerances for damaged kernels are also
different. The differences in the tolerances for primary and export grades necessitate that
grain be processed at some point in the grain distribution chain. In Canada, grain is processed
at terminal (export) elevators. To meet these tight tolerances, an objective grain grading
system must achieve a near perfect classification of cereal grains and impurities (i.e., CWRS
wheat, durum wheat, barley, rye, oats, and dockage and foreign material). Several researchers
(Barker et al. 1992a, 1992b, 1992¢, 1992d; Draper and Travis 1984; Keefe 1992; Keefe and
Draper 1986, 1988; Kohler 1991; Lai et al. 1986; Myers and Edsall 1989; Neuman et al.
1987; Sapirstein and Bushuk 1989; Sapirstein et al. 1987; Symons and Fulcher 1988a.
1988b; Travis and Draper 1985; Zayas et al. 1985, 1986, 1989) applied machine vision and
pattern recognition techniques to derive characteristics of cereal grains that can be used for
objective grading. Most of these studies were conducted with limited sample size. Also. the
method of sample presentation to the field of view (FOV) of the camera was not industrially
implementable.

Most of the researchers conducted their studies using morphological features for
cereal grain classification. Very limited work has been reported on cereal grain classification
using colour features and no work (to the best of my knowledge) has been published on the
potential of applying MVS for dockage identification in wheat.

3.2.1 Early Investigations

As mentioned earlier, the investigations related to the application of MVS to the

agricultural industry is a few decades old. Segerlind and Weinberg(1972) laid the basis for
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applying MVS to the grain industry. Though they didn’t use any machine vision hardware.
they traced the kernel profile on the grid paper to get the image and then estimated grain
shape by Fourier series expansion of the radial distance from the centre of gravity to the
periphery of the kernels. There was 1% error in separation of oats and barley, and wheat and
rye based on the extracted shape features. The class [e.g. Hard Red Spring (HRS), Hard Red
Winter (HRW), Amber Durum (AD), Soft White Spring (SWS), Soft White Winter (SWW),
Canada Prairie Spring (CPS), and utility and feed wheat are different classes of Canadian
wheat] discrimination for wheat was partially successful with 11-25% error.

Draper and Travis (1984) and Travis and Draper (1985) first used the MVS to
identify seeds of cereals, fodder plants, and oil and fibre vegetables. They reported that 5 of
the crop species could be distinguished from their major contaminants with an overall
accuracy of 95% and most of the weed species could be distinguished from each other.

The potential of image analysis for identifying grains of 5 U. K. wheat cultivars on
the basis of size and shape was investigated by Keefe and Draper (1986, 1988). In their
study, individual seeds resting horizontally, adaxial surface lowermost (i.e., crease down
position), and embryo in a fixed position were viewed in side elevation using transmitted
light. Nine parameters describing seed shape were used to characterize 400 wheat seeds.

Zayas et al. (1986) used some of the morphological features used by Keefe and
Draper (1986) and some additional features to differentiate among individual kernels of
different American wheat classes and varieties. For different wheat classes and varieties, the
average percentage of correctly classified kernels were 77 and 85%, respectively. They used
mainly pair-wise discriminations. The work was limited to a single kernel per image frame

11



and it was necessary to immobilize kernels in a fixed orientation prior to analysis.

Lai et al. (1986) used a pattern recognition technique for identifying and classifying
cereal grains. They developed patterns for 6 grains (corn, soybean, sorghum, rice, barley, and
wheat) and tested the patterns for their accuracy in recognizing grains. In addition, they
applied the technique to differentiate between brown and white rice and to differentiate the

sphericity of corn kernels.

3.2.2 Towards A Grain Classifier
After getting positive results from the early investigations, researchers started their

investigations towards building a grain classifier. Potential of additional (new)
morphological features for grain classification, application of the techniques of the early
investigations to other grain types, potential of colour features in grain classification, and
solutions to special problems and needs like discriminating the broken kernels from the
whole kernels, identification of foreign material were the improved objectives of the
continued research in this field.

~Neuman et al. (1987) studied the objective classification of Canadian wheat cultivars
based on kernel morphology using digital image analysis. They used 576 kernels of
pedigreed seed of 14 wheat varieties for analysis. Using a transmitted light they captured
silhouette images of whole kernels in *plain’ (top) view and determined spatial size and
shape parameters and Fourier descriptors. No misclassifications were found for CWRS and
Canada Amber Durum wheat (CADW) while there was considerable overlapping between

HRW and SWS wheats. Misclassifications among various cultivars of a single wheat class

12



were greater. The authors suggested that features of anatomical parts of the kernels. such as
size and shape of germ area, cheek and brush shape, and depth and width of crease may be
essential for varietal identification.

Sapirstein et al. (1987) extended the study of Neuman et al. (1987) for classifying
CWRS wheat, barley, rye, and oats. All cereal grain classes were disjoint with oats and wheat
being well separated. For a sample size of 580 grains the classification error was 1%. The
most promising results for objective determination of other cereal grains in wheat were
reported by Sapirstein and Bushuk (1989). For a sample size of more than 1000 kernels,
98.4% of CWRS wheat were correctly classified using a linear discriminant function and
assuming Gaussian patterns. The classification accuracies reported in their study for CWRS
wheat. barley. oats, and rye were 98.4, 93.7, 78.3, and 98.0%, respectively. A substantial
improvement in cereal grain discrimination was achieved when the morphology based
discriminant model was supplemented with mean kernel reflectance. The classification
accuractes for wheat, barley, oats, and rye using reflectance and morphological features were
99.2,95.7, 95.3, and 98.3%, respectively.

Discriminating foreign material from wheat was first attempted by Zayas et al.
(1989). Multivariate discriminant analysis was used to distinguish between wheat and not
wheat and among weed seeds. They developed a structural prototype to distinguish between
wheat and non wheat. The structural prototype method discriminated well between wheat and
non wheat and many times it failed to identify stones present in the sample. It is worth
mentioning that they described the difference between dockage and foreign material and
suggested about the inclusion of other non-grain material in the grain classifier.

13



Zayas et al. (1990) studied special problems associated with applying MVS to the
grain industry. They attempted to discriminate the whole corn kernels from the broken
kernels. They evaluated the effect of image resolution on the discrimination by conducting
experiments with different optical settings. Though their study had a drawback of manual
placement of the sample with fixed orientation, they could correctly classify all of the broken
kernels and 98% of the whole kernels.

Symons and Fulcher (1988a, 1988b) investigated the potential of the techniques of
Neuman et al. (1987) to discriminate Eastern Canadian wheat classes and varieties. They
used shape and size features derived from backlit images. For a sample size of 225 kernels.
they found that 94% of Soft White Winter (SWW) wheat were correctly classified using a
4 way classification among SWW, HRW, hard red spring originated from Europe (HRS_E),
and hard red spring wheat originated from Western Canada (HRS_W). Sixteen percent of
HRS_W were confused as HRW. The HRS_W sample was comprised of cultivars ‘Katepwa’
and *Columbus’. These cultivars were also included in the study by Neuman et al. (1987).
[t can be mentioned again that Neuman et al. (1987) found no confusion between CWRS and
CWRW wheat classes. Such contrasts in results suggest that there is a need for large database
to develop a robust classifier.

The inadequacy of the plan-form size and shape features for discriminating among
different cultivars of a wheat class was also experienced by Symons and Fulcher (1988a). For
three of the wheat cultivars of SWW, correct classifications of less than 60% were reported.
In a subsequent study, Symons and Fulcher (1988b) used additional features derived from
the bran layer and crease from the image of transverse section of kernels to aid in

14



classification among different cultivars of SWW class. Classification results were
unsatisfactory with errors of more than 50%.

The first four Fourier descriptor magnitudes were used for discriminating Australian
wheat varieties by Myers and Edsall (1989). They also used additional features derived from
side view of the kernels to improve the classification. Their study suggested that open curve
Fourier components were useful parameters for Australian wheat variety discrimination.
Errors up to 22% were reported in their study.

A detailed study on Fourier descriptors for the discrimination of Australian wheat
varieties was carried out by Barker et al. (1992c). They used both dimensionless and
absolute Fourier descriptors. They suggested that the absolute Fourier set clearly
outperformed the dimensionless feature set and also that Fourier descriptors alone were not
enough for a practical classification system.

Barker et al. (1992a, 1992b, 1992d) used features derived from contour of a wheat
kernel positioned in a fixed orientation to discriminate among Australian wheat varieties.
Overall correct classification among eight varieties was less than 65%. They used ray
parameters (i.e., radial distance from the centroid), slice and aspect ratio parameters, and
Chebychev coefficients features in their study.

Features only based on size and shape are not satisfactory to build a grain classifier.
Therefore, researchers started investigating the potential of colour features for grain
classification. Neuman et al. (1989a, 1989b) examined colour attributes of individual kernels
of 6 Canadian wheat classes represented by 10 varieties. They achieved 88% correct varietal
classification for pair-wise discrimination using mean red, blue, and green reflectance
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features of the pixels. The correct classification of individual varieties varied from 34 to
90%. Average correct classifications for the SWS, AD, and HRS classes of wheat were
76.76, and 62%, respectively. Poor classifications of 56% and 34% were achieved for CPS
wheat classes.

The vitreosity of durum wheat was studied by Sapirstein and Bushuk (1989) using
images of transilluminated kernels and specifying the frequency distribution of grey levels.
They found 95% correlation between vitreosity computed by image analysis and replicated

official inspection of hard vitreous kernels.

3.2.3 Research towards Special Needs

Researchers (Jayas and Bulley, Personal Communication) evaluated the potential of
applying machine vision techniques to the grain industry. But found that before building a
machine vision based grain classifier, the special problems like touching kernels, dockage
identification, testing the classifier with samples which are not included in the training.
testing the classifier with samples from various growing regions, an implementable sample
presentation method to the FOV of the camera need further investigation. Moreover, 100%
classification has to be achieved to build a robust classifier because of the tight tolerances
in grade determinants (Appendix A). The grains have to be identified in bulk samples to
automate the unloading of grains from the railcars at the receiving end of the terminal
elevators. Grain quality needs to be monitored for shipped grain on a continuous basis.
Research to solve some of these special problems has been the main focus of the research
in the Department of Biosystems Engineering.
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Shatadal et al. (1995a, 1995b) developed a software to separate the touching kernels.
The algorithm was successful in disconnecting 95% of HRS wheat and durum wheat, 94%
barley, 89% rye, and 79% oats conjoint kernel regions.

Majumdar et al. (1996b) used textural features for cereal grain classification. They
achieved 95.7, 96.9, 97.8, and 97.9% classification accuracies for CWRS wheat, durum
wheat, barley, and rye, respectively with textural features extracted from red colour band.
The classification of HRS wheat was improved to 100% when textural features from
*(3R+2G+B)/6’ colour band were used.

Shashidhar et al. (1996) extracted basic morphological features from the images of
touching kernels by an ellipse fitting algorithm. Limited testing was done on the algorithm
to evaluate its ability to count objects in an image and to estimate basic morphological
features of individual kernels separated by the algorithm. They reported that most of the
estimated size features using the algorithm were not significantly different from the
measured parameters obtained (p>0.05) by digital image processing.

Most of the researchers used clean and pedigreed samples for classification of cereal
grains, and of different classes and varieties of wheats. Some researchers placed the grains
manually in a specific orientation which defeats the main purpose of automation. In many
cases, the sample size was small and an overall classification accuracy of about 96% was
achieved using morphological and reflectance features for classification of cereal grains.
Researchers focussed their research on finding solutions for the special problems and needs.
Testing the classification accuracies with big sample size, solving the problem of touching
kernels, and identifying non-grain material are the some of the special problems.
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CHAPTER:4 DOCKAGE IN WHEAT
4.1 Definition
Dockage is the material that is separable from the grain sample by the use of an
approved cleaning equipment in order that the grain can be assigned the highest grade for
which it qualifies. Dockage is reported in percentage by mass. The percentage of dockage
in a sample is reported in increments of 0.5% when the grain is not commercially clean and
in the export shipments to the nearest 0.1% (when authorized by the Canadian Grain

Commission to contain dockage).

4.2 Determination of Dockage in Samples

Dockage is assessed by running the uncleaned representative sample of 500 or 1000
g through the Carter Dockage Tester. A schematic diagram of the Carter dockage tester is
shown in Fig. 4.1. For CWRS wheat, No. 25 riddle, No. 6 buckwheat sieve (a triangular hole
sieve with 2.38 mm inscribed circle), and two No. 25 buckwheat sieves (a triangular hole
sieve with 1.98 mm inscribed circle) are used in the Carter dockage tester. The feed control
of the dockage tester is set at #6 position and the air control is set at minimum of #4 and can
be varied based on the material over the riddle. In the dockage tester, dockage fractions are
collected in pans numbered 1, 2, 5, and 6. The collected fractions are reported in percentage
by mass.

The dockage fraction collected over the riddle (from pan 2, Fig. 4.1) contains wheat

heads, large seeds (like wildoats, barley, oats, soybean), and other non-grain material (like
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Fig. 4.1 Schematic diagram of the Carter dockage tester.
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stones, cut stem pieces etc.). The wheat grain is collected in pans 3 and 4 of the Carter
dockage tester. In pan 5. small seeds like flax, wild buckwheat, and broken wheat pieces are
collected. In pan 6, heavily broken wheat grains, dust, and small seeds like canola and

mustard are collected. Chaff, dust, and cut stem pieces are collected in pan 1.

4.3 Composition of Dockage
As defined in the Grain Grading Handbook for Western Canada, the following are

the dockage constituents (Anonymous 1994):

(1) foreign material removed over the riddle, less any portion which is eligible for
machine separation (pan 2),

(i1) material removed by aspiration (pan 1),

(iii)  material removed by No. 5 buckwheat sieve in the lower position (pan 5 and 6),

(iv) a maximum of 10.0 % by mass of soft earth pellets hand picked from the cleaned
sample, and

) any material removed by cleaning for grade improvement.

4.4 Dockage Vs Foreign Material

Foreign material is defined as the material other than the grain of the same class,
which remains in the sample after the removal of dockage. Based on the separation of the
impurities by the dockage tester, they are referred to either dockage or the foreign material.
[n wheat, other cereal grains like barley, rye, oats, etc. and non-grain material like earth
pellets, chaff, fertilizer pellets are termed as foreign material if collected on pans 3 and 4
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with wheat and are termed as dockage if they get separated by the dockage tester.

Some of the dockage constituents (soybean, earth pellets, stones, and wild mustard)
are not included in the dockage class as they are very rare constituents. Wheatheads, chaff.
wildoats, flax, wild buckwheat, canola, and broken kernels are identified as dockage
constituents. The dockage constituents are shown in Appendix D. The main dockage
constituents and other cereal grains (durum wheat, barley, rye, and oats) were used in this

study to assess the capability of the morphological features for their identification.



CHAPTER 5: METHODS AND MATERIALS

5.1 Vision Hardware

The hardware of the image acquisition system used in this study consisted of a 3-chip
CCD (couple charge device) colour camera (Model DXC-3000A, SONY) with a zoom lens
(VCL-1012BY) of 10-120 mm focal length, a camera control unit (CCU) (Model CCU-M3,
SONY), a diffuse illumination chamber, a colour monitor (Model PVYM-1342Q, SONY). a
colour frame grabber (Model DT 2871, Data Translation Inc., Marlboro. MA). a frame
processor (Model DT 2858, Data Translation Inc., Marlboro, MA), a personal computer (PC)
(Model 80386, UNISYS) with 8Mb of RAM and 80Mb hard disk, a SUN SPARC station II
with 32Mb RAM and 400Mb hard disk, and an optical disk drive (Model SMC-S501.
SONY).

The camera was mounted on a stand (Model m3, Bencher Inc., Chicago, [L) which
provided easy vertical movement. The camera was controlled by the camera control unit
which enabled selectable manual or automatic iris, video signal gain control, and white-black
balance of the camera. The frame grabber and the frame processor boards were installed in
the PC. An aurora subroutine library (Aurora, Data Translation Inc., Marlboro, MA) was
installed in the PC to support the frame grabber and the frame processor. The PC was
networked to the SUN SPARC station and the optical disk drive. The colour monitor was
used for on-line image display.

The camera captured images from the samples placed in the illumination chamber.

]
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The camera outputted three parallel analog video signals, namely red (R), green (G), and blue
(B), corresponding to the three NTSC (National Television System Committee) colour
primaries, and a sync signal. The camera control unit performed the time-division
multiplexing and dc restorations of the RGB signals, and time signal generation for the frame
grabber. The frame grabber digitized the RGB analog video signals to three 8-bit 512 x 512
size RGB digital images, at a speed of 30 frames per second, and stored them in three of the
four on-board buffers. The acquired digital images were then transferred to the optical disk

for storage.

5.2 Sample [llumination

Uniform diffused lighting was used in all the experiments. The illumination chamber
consisted of a sample placement platform, a semi-spherical steel bowl of approximately 0.39
m in diameter, painted white and smoked with magnesium oxide on its inner side with an
opening of 0.125 m in diameter at its top (through which the samples were viewed by the
camera). A circular fluorescent tube (305 mm in diameter, 32 W, Model FC1279/CW,
Philips, Singapore) was placed around and just below the surface level of the sample
placement platform of the light chamber. The semi-spherical steel bowl was used as a
diffuser. A voltage regulator (Model CVS, Sola Canada Inc., Toronto, ON) controlled the
voltage to the lamp within £0.5V. A variac was used to maintain a constant voltage (120+0.1
V) to the light source. A light controller (Model FX0648-2/120, Mercron, Richardson, TX)
was used with the fluorescent lamp. The photo diode light sensor of the light controller

automatically detected the illumination level in the light chamber and adjusted the AC
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frequency of the lamp to maintain a stable level of illumination. The frequency of the AC

power output varied between 140 kHz at the minimum light level to 60 kHz at full power.

5.3 Illumination Standardization

A Kodak white card with 90% reflectance (E 152-7795, Eastmen Kodak Co..
Rochester, NY) was used as a white reference to standardize the illumination level. The lamp
voltage was set to the rated value of 120 V. An image of the white card was acquired over
a small central area of 50 x 50 pixels and the mean grey level values of R, G. and B bands
were computed and used as illumination level indicators. By manually adjusting the iris
control and performing the white balance with the CCU, all three values were adjusted to

250«£1.

5.4 Grain and Dockage Samples

Composite grain samples of (HRS) wheat (grade 1, 2, and 3), durum wheat (grade
1, 2, 3, and 4), barley (grade 1, and EX1), oats (grade 1, and 3), and rye (grade 1) were
collected from different growing regions of Western Canada for the 1994 growing season by
the Industry Services Division of the Canadian Grain Commission, Winnipeg, MB. Samples
of seven grain types (CWRS-1, CWRS-2, CWRS-3 wheat, durum wheat, barley, rye. and
oats) were selected from 20 growing regions. These regions were chosen using the climatic
subdivisions of the Canadian Prairies (Putnam and Putnam, 1970). Three hundred kernels
(25 kernels in an image frame) from each growing region were used for each grain type and
grains from five randomly selected growing regions were analyzed.
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Dockage samples were obtained by running I35 kg of uncleaned farm samples of
CWRS wheat from Glenlea Research Farm through the Carter dockage tester. One hundred
grams of each dockage tester fractions were collected from the Industry Services Division

of Canadian Grain Commission, Winnipeg, MB.

5.5 Sampling Technique
For overall sampling, each composite grain sample (1000-1500g) was poured into
a large plastic container and mixed thoroughly. A scoop was used to take grains randomly
from different regions of the container to give a subsample of 75 g. Before withdrawing the
second subsample, the remaining grains in the plastic container were re-mixed. [n this way
three subsamples were collected. The three subsamples were remixed to give a sample. The
sample was mixed thoroughly by passing it through the Boerner Divider for 4 times. For
image acquisition of individual kernels, 300 kernels were randomly picked from the sample
for testing.
For each dockage class, 1500 individual objects were randomly picked from the
fractions (from Glenlea Research Farm Samples) collected from the dockage tester and from
the fractions obtained from the Industry Services Division of Canadian Grain Commission,

Winnipeg, MB.

5.6 Image Acquisition
The system was stabilized for 30 min. The illumination standardization and white
balancing was done and repeated after every three images. White background was used for
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samples of canola, wild buckwheat, wildoats, and flax for better thresholding. [n each frame
25 objects were placed, imaged and stored as digital images on the optical disk for further

analysis.



CHAPTER 6: IMAGE ANALYSIS

6.1 Thresholding

Thresholding is a process which converts a multi grey level image to a binary image
so that objects can be distinguished from the background. Thresholding can be done either
manually or automatically. In manual thresholding, a threshold value is specified by the user
and the pixels whose grey levels are less than the threshold value are set to background (0)
and the remaining pixels are set to object (1). Manual thresholding is time consuming as the
thresholded image has to be displayed for every threshold value specified by the user to
visually examine the thresholded image and to decide the final threshold value.

[n automated thresholding (Parker 1994), an algorithm is used which decides the
threshold value by itself. For this study, the automated thresholding was used. The threshold
value was calculated by the principle of iterative selection in the developed algorithm. [t
provided an estimate of the average grey level of both the background (Tb) and the objects
(To) and used the average of these two levels [T = %2(Tb+To)] as the threshold value T. The
red band was used for thresholding the image. The mean grey level of the red band
[(255+0)/2] was used to initialize the iterative procedure. The values of To and Tb were
adjusted by calculating the mean grey levels of pixels whose grey levels were more than or
less than the initialized T value. A new threshold value was calculated by using the adjusted
Tb and To. The process was repeated until the same threshold value T was produced on the

two consecutive iterations. The maximum number of iterations was preset to 40 to reduce
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the run time of the algorithm.

6.2 Region Labelling

Region labelling was used to assign a unique label or an identifier to each object in
the binary image. The region labelling algorithm scanned the binary image once from the top
left to the bottom right. The first encountered unlabelled object pixel was assigned a unique
label. Then from that pixel the region was expanded and the same label value was propagated
by following 8-neighbours connectivity. The propagation of same label value continued until
no more neighbouring pixels of objects could be found. The scanning of the binary image
was resumed and the same process was continued until all the objects were labelled with
their unique label. After labelling there could be some pixels in the object region with the
background grey level value (called ‘hole”) or some pixels in the background with the object
grey levels (called ‘extra-region’). It is very important to change the values of these pixels
to the right values for the accurate measurement of the morphological features. Therefore,
a holefilling and region-deleting-subroutine was used to solve this problem. Starting from
a background pixel, the whole background region was connected by following the 8-
neighbours connectivity. The left out pixels whose grey levels were that of the background
were changed to the respective object label value. Any region which had 30 or less number

of pixels was deleted.



6.3 Feature Extraction

From each object, morphological and basic color features were extracted. This section
describes all these features and their calculations.
6.3.1 Spatial Calibration

In a digital image, all the morphological features were calculated in pixel units. A
scaling factor was determined by taking an image of a Canadian quarter whose diameter was
known. This scaling factor was used in expressing the features in real world dimensions. The
rectangular pixel quarter image was converted into square pixel image and its length and
width were calculated in pixel units. The mm/pixel was calculated as

mm/pixel = (2 x coin diameter) / (length+width).

6.3.2 Size Features

6.3.2.1 Area The area of an object was calculated by counting the number of pixels
contained in the object. The area was expressed in mm? by multiplying the total number of
pixels by the scaling factor obtained from the coin image twice (both for x and y axis

scaling).

6.3.2.2 Perimeter  The perimeter was calculated by adding the distances between all the
successive pairs of pixels in the boundary of the object. Generally the perimeter of a region
is calculated by adding the number of pixels on the boundary. But a pixel represents an area
not a linear distance. All the boundary pixels were matched with the templates shown in Fig.
6.1, and the distance represented by each pixel was weighted as 1 if all neighbours were
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horizontal or vertical, or weighted as 1.414 if all neighbours were diagonal, or weighted as
1.207 if there was one diagonal and one non-diagonal pixel. The perimeter was expressed
in mm by multiplying total pixel distance on the boundary by the scaling factor obtained

from the coin image.

o} Xo 000
000 000 Templates for pixel distance 1.
o Jeo 00O

O0O® @00
00600 000 Templates for pixel distance 1.414
@00 o00e

@00 OO0 00 00O
000 000 000 0O0@ Templates for pixel distance 1.207
OO0 000 e00 eO0O

Fig. 6.1 Distance templates for boundary pixels

6.3.2.3 Centre of Mass Centre of mass was not used as a feature but was calculated
for extracting other features like principal axis length, Fourier descriptors etc. The centre of

mass of an object of N pixels was calculated by the following equations (Baxes, 1994).

x = =) x 6.1)
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y, 6:2)

where, N = total number of pixels in an object

X; ,¥i = X, y coordinate of the i™ pixel

6.3.2.3 Length of Principal Axis  Principal axis, also known as the major axis, is defined
as the longest line that can be drawn through the centroid of the object. The candidate pixels
were identified by finding the distance between each possible pair of boundary pixels which
could be connected by a straight line and the distance was taken as the length of principal
axis. The length of principal axis was expressed in mm by multiplying the length in pixel

units by the scaling factor.

6.3.2.4 Length of Minor Axis The minor axis is defined as the longest line that can
be drawn perpendicular to the principal axis through the centroid. The candidate pixels on
the boundary were identified and the distance between the pixels was calculated as the width

of minor axis.

6.3.2.5 Length and Width of Bounding Rectangle The length and width of
bounding rectangle were calculated by finding the rectangular box that would entirely
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surround the object.

6.3.2.6 Minimum, Maximum, Standard Deviation of Radii The distance of each
pixel on the boundary from the centroid was calculated and the minimum, maximum, and
standard deviation of the distances were reported as minimum, maximum, and standard

deviation of radii.

6.3.3 Shape Features

All of the following shape features were derived from the size features:

: 2
Thinnes Ratio = Perimeter” (6.3)
Area

Lengthofboundingrectangle

Rectangular Aspect Ratio = 6.4)
Widthofbounding rectangle
Aspect Ratio = LengthofPrincipal Axis (6.5)
Length of Minor Axis
AreaRatio = Lengthx Width (6.6)
Area

[
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Radius Ratio = Maximum Radius 6.7)

Minimum Radius

Mean ofRadii
Standard Deviation of Radii

Haralick Ratio = (6.8)

6.3.4 Boundary Descriptors
6.3.4.1 Fourier Descriptors The discrete Fourier transform (DFT) can be used as the
basis for describing the shape of a boundary on a quantitative basis. Consider an object with
N pixels on the boundary in the xy plane. The coordinates of these pixels can be expressed
in the form of x(k) = xi and y(k) =y and with this notation the entire boundary of the image
can be represented as the sequence of coordinates as:
flk) = [x(k), y(k)] for k=0, I, ....N-1. Each coordinate pair is treated as a complex number
so that
f(k) = x(k)+jy(k) for k=0,1,...N-1. (6.9)
The discrete Fourier transform of f(k) is:
N-1

Y f(k)exp[-j2muk/N] (6.10)

a(u) = &‘-
k=0

foru=0,1, 2, ...(N-1).
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where, N = total number of pixels on the boundary

The complex coefficient a(u)’s are the called Fourier descriptors. The boundary f(k)

can be restored by taking inverse Fourier transform of a(u):

Z

(g
~
t
~
"

% a(u)exp[j2 Tuk/N] (6.11)
u=0

fork=0,1,2, ...(N-1).

The Fourier descriptor magnitudes were calculated by the following equation.
FDM = R(u)? +I(u)? (6-12)

where R(u), and I(u) are given by:

N-1

R(u) = — ¥ dcos[2Tuk/N] (6.13)
N u=0
1 N-1

[(u) = — ¥ dsin[2Tuk/N] (6.14)
-0

And ‘d’ is the distance of a particular pixel from the centroid of the object.
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6.3.4.2 Moments

The spatial moments of an object give statistical measures related to an object’s
characterization.

The zero-order spatial moment is computed as the sum of the brightness values in
an object. In the case of a binary image, this is simply the number of pixels in the object.
because every pixel in the object is equal to 1 (object =1). Thus the zero-order spatial
moment of a binary object is its area.

The first-order spatial moments of an object contain two independent components
namely x and y. They are the grey level weighted sums of x and y coordinate locations of
each pixel in the image. In the case of a binary image, the first-order x spatial moment is just
the sum of the x coordinates of all the pixels of the object because the object pixels are equal
to 1. The first-order spatial moments of an object represent the object’s energy and how it
is spatially distributed.

The moment of order (p+q) for a digital image is defined as:

m,, = D Y iPjF(ij) (6.15)
i ]

forp,q=0, 1, 2, ..., ¢ where:
¢ = user-selected value to calculate a specific order of moment, and
F(i, j) = gray level value at coordinate (i, j).
F(,}) is 1 for any binary image.
The above equation uses the image origin rather than the object’s origin (centroid).
The features used should be invariant to translation, orientation, and scaling. Because the
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general moments are position dependent, central moments are calculated as:

Hog = 2 2 (i =P —¢))° (6.16)
i

forp,q=0,1,2, ..., k where:

k = user-selected value to calculate a specific order of central moment,
G =mye / My,
G = my, / My, and

(c;; ;) = the centre of gravity of the kernel.

The normalized central moments, 1,,, were calculated from the central moment, 1

Ny = Hpo/ Foo (6.17)

where,
r =(p +q) +1.
The following set of four moments which are invariant to translation,

rotation, and scaling were used as the moment features.

M, =Ty + T, (6.18)



M, = (T, -~ M,,)° “415, (6.19)

<
I

5 = (M -31, +(31,, - N,,)° (6.20)

M4 = (nBO +n12)2 +(n21 +no3)z (6.21)

6.4 Basic Colour Features

The commonly used colour models for image processing are the RGB (Red, Green.
and Blue), YIQ (Luminance, Imphase, and Quadrature), and HSI (Hue, Saturation, and
Intensity). The most often used, hardware oriented, RGB colour model was used in this
study. [n the RGB colour model, each colour appears in its primary spectral components of
red, green, and blue. The Cartesian coordinate based colour model is shown in Fig. 6.2.

In the RGB colour model, the R, G, and B values are at three corners and cyan.
magenta, and yellow are at other three corners. The RGB color model is additive color
system and the CMY color model is subtractive color system. The grey scale is represented
by the dotted line from black to white. In the images with RGB colour model, each pixel
contains a coordinate position (X, y), and three basic R, G, and B colour values associated
with it. The mean of R, G, and B, and standard deviation of these three components were
calculated and used as the basic colour features. The average intensity of the object region
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was calculated using the mean of R, G, and B values as:

[ =R+G+B)/3 (6.22)
B
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Fig. 6.2 RGB Colour Model

The other most often used colour model is the HSI which can be derived from the
RGB model. A detailed description about the other colour models and their uses can be

found in Gonzalez and Woods (1992).

6.5 Object classification
There are two different ways of classifying objects. One way is to find relations
among the objects with the purpose of grouping them. For example, the similarities among

38



grains which are used to group them into different classes, like cereal grains. oilseeds.
speciality crops, etc. Statistical methods covering this kind of classification are called
clustering, and the general principle is to group the observation vectors into clusters of a
certain similarity. The second way of classification is to assign objects into defined groups.
The statistical method for this classification is called discriminant analysis, and this is the
usual kind of classification which follows image analysis for recognition purposes.

The task of discriminant analysis is to find a decision rule which assigns an object
described by a number of m features to one of several groups P; (i= 1,2, ....n)ina
population. The simplest case is discrimination by one feature (e.g., object area) and two
groups. If we know the probability density function of this feature for each group, say f; (x)
and f; (x). the object should be assigned to the group with the higher probability density, i.e..
assigned to group P, if f; (x) > f, (x). This is called likelihood ratio method.

This method may be improved if we know that a proportion 1, of the total population
belongs to P, and the remaining T, belongs to P,. In this case, the object is assigned to P,
if &, f; (x) > =, f; (x) which is the Bayesian classifier.

If we assume that x is normally distributed in each group as N(y,, 6;%) then:

(x -u)
exp[- — 1 (6.23)

f(x) =
1/2 TOo, 20

and further if o, = g, = o for the two groups then:



_ 2 _ — 2
f,(x)/E(x) = exp[-(x FI)ZOZ(X l‘2)] (6.24)

Setting this expression equal to 1 (or &, / 7,) gives the threshold for group separation.

The corresponding expression for a multivariate normal distribution of feature vectors

x; with dispersion matrices &, = X, =X is:
£(x)/E(x) = expl(n, —1,) 2 " x -%(u. - 1) 207 (B + )] (6.25)

In the univariate case, a threshold is used for separation of groups, in the bivariate case a line,
and in the multivariate case it is the hyperplanes which separate groups in the multi-
dimensional feature space. The hyperplane for separating two groups is defined by setting

the discriminant functions equal to log(m, / «t,):
- 1 -
Ciy =) 70 =y =) 2 (wy + ) = log (/M) (6.26)

In general, the distribution of the features is not known. One approach to estimating
the error rate of a classifier is to compute it from the assumed parametric model. However,
there are many problems with this approach: (i) estimate is almost always overoptimistic.
(i1) characteristics that make the design samples peculiar or unrepresentative are not revealed,
and (iii) in more general situations it is very difficult to compute the error rate exactly, even
if the probabilistic structure is completely known (Duda and Hart 1973).

An empirical approach that avoids these problems is to test the classifier
experimentally. For discrimination, three special cases are considered of practical
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importance:

The Resubstitution Method — The parameters of the discriminant functions are estimated
from the same population which is classified into groups. The number of incorrectly
classified observations m, of the n; observations in group P; define the error rate as e, = m,
/ n;, and e = &, e, + T, e, for two groups.

The Cross-validation Method — This method (also known as /eaving-one-out method)
estimates the discriminant functions from the sample data minus one (n-1) observations. The
omitted observation is then classified as the unknown observation and this procedure is
repeated until all observations (n) are classified. The corresponding error rate is e;=b;/ n;,
and e = &, e, + 7, e, (for two groups) where b; is the number of misclassified observations
in group P;.

The Hold Out Method — This method uses a separate population (training data) for
construction of the discriminant functions, and another population for testing the
classification results. If the observations are normally distributed, the error rate may be
estimated by calculating the area of the region where the density function is overlapped by
a density function from another group. For the two group problem, the region is estimated
byR,={x:f, (x| 0)/f,(x|0,)>n,/ 7} where 0 ,are the estimated parameters of the prob-

ability density function. The misclassification for group 1 is:
e, = Jg fi(x16))dx (6.27)

where,
R, = feature space for group 2.
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The separation of groups in the feature space depends on how well the parameters of
the distribution functions are estimated. For example, if no errors are made on 50 test
samples, with probability 0.95, the true error rate is between 0 - 8%. The classifier would
have to make no errors on more than 250 test samples to be reasonably sure that the true
error rate is below 2% (Duda and Hart 1973).

The need for data to design the classifier and additional data to evaluate it presents
the designer with a dilemma. If one reserves most of the data for the design, s/he cannot
have confidence in the test. If one reserves most of the data for the test, s/he will not obtain
a good design. The question of how best to partition a set of samples into a training set and
a test set has received some analysis, and considerable discussion, but has no definitive
answer (Duda and Hart 1973).

In fact, there are more options available than just partitioning the data, designing the
classifier once, and testing it. For example, one might repeat this process several times,
using a different partition each time, and average the resulting error-rate estimates. If
computation costs are of no concern, one can use the cross-validation method. The basic
advantage of this approach is that virtually all of the samples are used in each design, which
should lead to a good design, and all of the samples are ultimately used in the tests. This
procedure is particularly attractive when the number of available samples is quite small.
When the number of samples is very large it is probably sufficient to partition the data into
a single training set and a single test set (hold out method). Although there is no theory to

guide the designer in intermediate situations.



6.5.1 Statistical Classifier For a set of observations containing one or more quantitative
variables and a classification variable defining groups of observations, PROC DISCRIM of
SAS (1990) develops a discriminant criterion to classify each observation into one of the
groups. The derived discriminant criterion from this data set can be applied to a second data
set during the same execution of DISCRIM. The data set that DISCRIM uses to derive the
discriminant criterion is called the training or calibration data set.

When the distribution within each group is assumed to be multivariate normal, a
parametric method can be used to develop a discriminant function. The discriminant
function, also known as a classification criterion, is determined by a measure of generalized
squared distance (Rao 1973). The classification criterion can be based on either the
individual within-group covariance matrices (yielding a quadratic function) or the pooled
covariance matrix (yielding a linear function); it also takes into account the prior
probabilities of the groups. The calibration information can be stored in a special SAS data
set and applied to other data sets.

When no assumptions can be made about the distribution within each group, or when
the distribution is assumed to be different from multivariate normal distribution, non-
parametric methods can be used to estimate the group-specific densities. These methods
include the kernel method and k-nearest neighbor methods (Rosenblatt 1956; Parzen 1962).

Either Mahalanobis distance or Euclidean distance can be used to determine
proximity. Mahalanobis distance can be based on either the full covariance matrix or the
diagonal matrix of variances. In the k-nearest neighbor method, the pooled covariance
matrix is used to calculate the Mahalanobis distances. In the kernel method, either the
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individual within-group covariance matrices or the pooled covariance matrix is used to
calculate the Mahalanobis distances.

The DISCRIM procedure can produce an output data set containing various statistics
such as means, standard deviations, and correlations. The DISCRIM evaluates the
performance of a discriminant criterion by estimating error rates (probabilities of
misclassification) in the classification of future observations. When the input data set is an
ordinary SAS data set, the error rate can also be estimated by cross-validation.

Bayes’ Theorem — Assuming that the probabilities of group membership are known and the
group-specific densities at x can be estimated, DISCRIM computes p(t | x), the probability

of x belonging to group t, by applying Bayes’ theorem:

p(tix) = q,f(x)/f(x) (6.28)

where,

p(t | x) = posterior probability of an observation x belonging to group t,

qe = prior probability of membership in group t,
f(x) = group-specific density estimate at x from group t, and
f(x) =Y.q.f (x), estimated unconditional density at x.

The DISCRIM partitions a p-dimensional vector space into regions R,, where the
region R, is the subspace containing all p-dimensional vectors y such that p(t | y) is the
largest among all groups. An observation is classified as coming from group t if it lies in
region R,.

Parametric methods — Assuming that each group has a multivariate normal distribution,
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the DISCRIM develops a discriminant function or classification criterion using a measure
of generalized squared distance. The DISCRIM also computes the posterior probability of

an observation belonging to each class. The squared distance from x to group t is:

@ =(x -m)'V,(x - m) (6.29)

where,

Vv, = §,, if the within-group covariance matrices are used,

vV, =8, if the pooled co-variance matrix is used,

X = a p-dimensional vector containing the quantitative variables of an observation,
m, = a p-dimensional vector containing variable means in group t,

S = pooled covariance matrix,

S, = covariance matrix within group t, and

t = a subscript to distinguish the groups.

An observation is classified into group u, if setting t = u produces the largest value
of p(t | x). If this largest posterior probability is less than the threshold specified, x is
classified into group ‘other’.

Non-parametric methods — Non-parametric discriminant methods are based on non-
parametric estimates of group-specific probability densities. When the k-nearest neighbor
method is used, the Mahalanobis distances are based on the pooled covariance matrix. The

squared distance between two observation vectors, x and y, in group t is given by:

d’xy) = (x - y)'V'(x - y) (6.30)
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where,
y = a p-dimensional vectors containing the quantitative variables of an observation.

The classification is based on the Bayes decision rule which classifies an entity
(represented by its pattern vector, e.g., x) to a class for which the entity has a maximum
posterior probability (Hand 1981; Duda and Hart 1973). An observation x is classified into
group u, if setting t = u produces the largest value of p(t | x). If there is a tie for the largest
probability or this largest probability is less than the threshold specified, x is classified into
group ‘other’.

Using the k-nearest neighbor rule, the k smallest distances are saved. Of these k
distances, let k, represent the number of distances that are associated with group t. Then the

estimated group t density at x is:

n v, (x)

where,

v, (x) = volume of the ellipsoid bounded by {z | (z-x)" V' (z - x) =’ (x)},
z = a p-dimensional vector, and

n, = number of training set observations in group t.

The nearest-neighbor method is equivalent to the uniform-kernel method with a
location dependent radius r; (x). Since the pooled within-group covariance matrix is used
to calculate the distances used in the nearest-neighbor method, the volume v, (x) is a
constant, independent of group membership. When k = 1 is used in the nearest-neighbor
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rule, x is classified into the group associated with the y point that yields the smallest squared
distance d.*(x, y)-

The nearest-neighbor method is best used in applications where the choice of k is not
critical (Silverman 1986, pp 98-99). A practical approach is to try several different values
of k within the context of a particular application and to choose the one which gives the most

satisfactory results.

6.6 Pattern Classification

After converting the rectangular pixel images into square pixel images, the images
were thresholded using the automatic thresholding. Holes were filled and extra regions were
deleted from the thresholded image. Morphological and basic colour features were extracted
from the labelled and original images, respectively. The feature extraction algorithms were
developed on an IBM compatible pentium 75 personal computer.

Discriminant analyses using PROC DISCRIM of SAS (1990) were carried out using
cross-validation (leave-one-out), and hold-out methods. In each case, normal and non-
pararmetric estimations were used. In the non-parametric estimation, k-nearest neighbour
method was used with a k value of 5. In the hold-out method cereal grains from randomly
selected 4 growing regions (300 kernels per growing region) were used as the training data
set and from one growing region as the test data set. In the cross-validation method, the
training data set used in the hold-out method was used for classification.

To determine the level of contribution by individual morphological features to
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classification, PROC STEPDISC (SAS 1990) was used. The training data set used in the
hold-out method was used for feature selection in STEPDISC analysis. Individual rankings
of features were determined using STEPDISC analysis by removing the best feature from
the model and by re-ranking the remaining features i.e., for example in a model with five
features the STEPDISC analysis was carried out with four features (the best feature from the
five features model was removed) and the four features were ranked. This process was

repeated with one feature in the final model.
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CHAPTER 7: RESULTS AND DISCUSSIONS

7.1. Morphology-Colour Model Classifier

After some preliminary studies, the most discriminating 23 morphological features
and 7 basic colour features were used for classification the dockage classes (wheathead.
chaff, wildoats, canola, wild buckwheat, flax, and broken-wheat pieces) together with cereal
grain classes (i.e., CWRS wheat, durum wheat, barley, rye, and oats).

When an independent data set was used for testing (the hold-out method) with normal
estimation, the classification accuracies were: CWRS wheat (99.7), durum wheat (89.7),
barley (95.3), rye (99.0), oats (99.7), wheathead (27.3), chaff (30.0), wildoats (99.3), canola
(99.7), wild buckwheat (98.7), flax (99.3), and broken-wheat pieces (98.0%) [Table 7.1 (a)].
When hold-out method with non-parametric estimation was used the classification
accuracies were: CWRS wheat (100.0), durum (97.3), barley (98.7), rye (99.3), oats (99.3),
wheathead (2.3), chaff (12.0), wildoats (99.7), canola (100.0), wild buckwheat (100.0), flax
(100.0), and broken-wheatpieces (100.0%)[Table 7.1(b)].

When the leave-one-out method with normal estimation was used, the classification
accuracies were: CWRS wheat (99.2), durum wheat (96.6), barley (98.2), rye (96.3), oats
(99.8), wheathead (96.3), chaff (92.6), wildoats (99.8), canola (99.4), wild buckwheat (98.53).
flax (99.3), and broken-wheat pieces (97.6%)[Table 7.1(c)], and when non-parametric
estimation was used the classification accuracies were: CWRS wheat (99.8), durum wheat
(99.1), barley (98.3), rye (97.2), oats (99.9), wheathead (98.9), chaff (97.8), wildoats (99.8),

canola (99.5), wild buckwheat (99.7), flax (99.8), and broken-wheat pieces
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Table 7.1(c) Confusion matrix of the model with twelve classes for the leave-one-out method (Normal estimation)

Class (to)~ f

(from)! ¢ g -

a3
g ‘g 3 e
A 5 © F 3

QOats

>
&

CWRS

Barley
Flax

Broken

CWRS 1
(3600)*

Durum }
(1200)

Barle
(120

p]

~
<

0 0 0

o

2+)
1159 4 37
(966) (0.3) (3.1)
13 1178 9
(.1)  (982) (0.6)

Rye 36 8 1156
(1200) (3.0) (09) (96.3)

5
0
0
0

Oats 0 0 0
0
0
0
0
0
0

c o o @ 9©
o O o o @ ©

Yo
[-*-%- ]
e’

2
(1200) 0.2)

Whead¥
(1200)

Chaff
(1200)

Wildoats
(1200)

Canola
(1200)

Whwheata
(1200)

Ilax I
(1200) 0.1)
Broken§ 0 0 23 6 171
(1200) (1.9) 0.5)  (97.6)

[ — T — N~ D — R — =

1156 44
(96.3) 3.7

33 |
(2.8) (92.6)

()

56 (4.7
0

— I - -

1193
(99.4)

L4
N

l(0.1)
0

o O o o © o o o o 9o

8 1182
0.7) (98.5)

0
0
0 0 0 1192
0

© o o o
© © © e °o o ogg—
=

[— I — B~ T — 2 — 2 — I
[~ N — - — T

[~ -~ - -

99.3) 7(0.6)
0 0

* Sample size, + Values expressed in percentage, + Canada Western Red Spring Wheat, § Durum Wheat, ¥ wheathead, @wild buckwheat,
§ broken-wheat pieces.
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(98.8%)[Table7.1(d)].

When the leave-one-out method was used both with normal and non-parametric
methods the classification accuracies of wheathead and chaff were considerably higher than
when the hold-out method was used (>90% in comparison to <30%). This suggests that
though these dockage classes are well separated from other classes in the model, the
variations in these two classes were not well represented in the test data set used for the hold-
out method. Moreover the ranges for the features in the wheathead class were large because
both single and multiple wheatheads represented as the wheathead class. Therefore. the
wheathead class was separated into two classes as the single- and multiple-wheathead for
further analysis. Additional images of both single- and multiple wheatheads were taken and

the features extracted were included in the data set.

7.2 Morphology-Colour Model Classifier with 13 Classes

When the leave-one-out method was used with normal estimation, the classification
accuracies of were: CWRS wheat (99.3), durum wheat (94.7), barley (97.6), rye (95.8), oats
(99.8), multiple-wheathead (96.7), chaff (83.3), wildoats (99.6), canola (99.4), wild
buckwheat (98.2), flax (99.3), broken-wheat pieces (97.3), and single-wheathead
(96.8%)[Table 7.2(a)]- For non-parametric estimation, the classification accuracies were:
CWRS wheat (100.0), durum wheat (98.8), barley (98.6),rye ( 97.3), oats (100.0), multiple-
wheathead (99.0), chaff (96.8), wildoats (99.8), canola (99.6), wild buckwheat (99.7), flax
(99.8), broken-wheat pieces (98.8), and single-wheathead (98.9 %) [Table 7.2(b)]. The
higher classification accuracies for the non-parametric estimation imply that the samples
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were not normally distributed.

When the hold-out method was used with normal estimation, the classification
accuracies were: CWRS wheat (99.9), durum wheat (89.7), barley (96.0), rye (98.7), oats
(99.3), multiple-wheathead (99.3), chaff (9.7), wildoats (99.0), canola (99.7), wild buckwheat
(98.7), flax (99.3), broken-wheat pieces (98.0), and single-wheathead (95.0%) [Table 7.2(c)].
For the non-parametric estimation, the classification accuracies were: CWRS wheat (100.0),
durum wheat (96.7), barley (98.3), rye (99.3), oats (99.3), mutiple-wheathead (100.0), chaff
(21.7), wildoats (99.7), canola (100.0), wild buckwheat (100.0), flax (100.0), broken-wheat
pieces (99.7), and single-wheathead (96.7%) [Table 7.2 (d)].

There was a significant increase in the classification accuracies for wheathead and
chaff dockage classes over the model which used both single and multiple wheatheads as one
class. Separation of the wheathead class into single- and multipl- wheathead resulted in
higher classifications for these classes.

Hold-out method classifier is suitable for the industrial application because a
classifier can be developed prior to implementation for testing and classifying objects on-
line. The classification accuracies, however, were low for for chaff. When the hold-out
method was used most of the chaff components were misclassified as oats because of the
closeness of their features to the oats class. Inclusion of textural and additional colour
features may result in better classification of the chaff class. All dockage components except
chaff could be classified with >95% accuracy (Table 7.2 ¢, 7.2 d) by a machine vision
system. Chaff should be removed by aspiration if machine vision system is to be used to

optimize a cleaning unit.
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7.3 Selection of Features

The features were arranged in the descending order of their level of contribution to

100
98

e =

?_'—_
88 .

Mean accuracy %

10 15 20 25 30
No of features

-»- Normal (Hold-out) _e— N-Par (Hold-out)
- Normal (L-One-Out)  N-Par (L-One-Out)

Figure 7.1 Comparison of classification accuracies with selected features

the classifier for both models (the model with twelve classes) [Table 7.3(a)] and (the model
with thirteen classes) [Table 7.3(b)]. First Fourier magnitude was the most significant
[average squared canonical correlation (ASCC) = 0.0773] and the average blue was the least
significant (ASCC = 0.5278) feature used in the model with thirteen classes [Table 7.3(b)].
Discriminant analyses were carried out with the first 5, 10, and 15 features from Table 7.3(b)
and the classification accuracies were compared with all 30 features (Fig. 7.1).

The classification summary for the first 5, 10, and 15 feature models are given in
Appendix B. The individual rankings of the features are listed in Table 7.3(c). The between-
class correlation coefficients are listed in Appendix C.

There are only two color features in the best 15 features [Table 7.3 (c)]. Therefore a
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Table 7.3(a) Selection of features using STEPDISC analysis with twelve classes
in the model

Number Selected features Average squared Partial
canonical correlation

1 Length 0.0703 0.913
2 Average Red 0.1307 0.826
3 Average Green 0.1900 0.772
4 Haralick Ratio 0.2424 0.699
5 Rectangular Ratio 0.2885 0.642
6 First Fourier Magnitude 0.3288 0.645
7 Standard Deviation of radii 0.3711 0.969
8 Standard Deviation of Green 0.3846 0.328
9 Standard Deviation of Red 0.4063 0317
10 Area Ratio 0.4195 0.243
11 Maximum Radius 0.4298 0.190
12 Second Invariant Moment 0.4338 0.191
13 First Invariant Moment 0.4333 0.305
14 Area 0.4480 0.125
15 Width 0.4584 0.280
16 Second Fourier Magnitude 0.4628 0.079
17 [ntensity 0.4659 0.070
18 Thinnes Ratio 0.4678 0.058
19 Forth Invariant Moment 0.4697 0.050
20 Perimeter 0.4713 0.045
21 Third Fourier Magnitude 0.4730 0.034
22 Minimum Radius 0.4746 0.029
23 Radius Ratio 0.4756 0.032
24 Fourth Fourier Magnitude 0.4762 0.018
25 Standard Deviation of Blue 0.4769 0.011
26 Third Invariant Moment 0.4771 0.009
27 Length of Minor axis 0.4773 0.002
28 Aspect Ratio 0.4774 0.002
29 Length of Principal Axis 0.4775 0.001
30 Average Blue 04775 0.001
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Table 7.3(b) Selection of features using STEPDISC analysis with thirteen classes
in the model

Number Selected features Average squared Partial r*
canonical correlation

1 First Fourier Magnitude 0.0773 0.928
2 Standard Deviation of Radii 0.1590 0.980
3 Average Red 0.2217 0.799
4 Rectangular Ratio 0.2842 0.760
5 Haralick Ratio 0.3399 0.686
6 Average Green 0.3899 0.620
7 Maximum Radius 0.4058 0.285
8 Area 0.4258 0.336
9 Width 0.4406 0.267
10 Standard Deviation of Green 0.4555 0.261
11 Standard Deviation of Red 04768 0.298
12 Second Invariant Moment 0.4847 0.221
13 First [nvariant Moment 0.4935 0.309
14 Area Ratio 0.5007 0.158
15 Length 0.5055 0.101
16 Second Fourier Magnitude 0.5112 0.094
17 Intensity 0.5142 0.068
18 Thinnes Ratio 0.5163 0.066
19 Forth Invariant Moment 0.5182 0.045
20 Perimeter 0.5199 0.041
21 Third Fourier Magnitude 0.5213 0.035
22 Third Invariant Moment 0.5230 0.033
23 Radius Ratio 0.5238 0.025
24 Minimum Radius 0.5254 0.036
25 Length of Minor Axis 0.5259 0.023
26 Fourth Fourier Magnitude 0.5266 0.018
27 Aspect Ratio 0.5268 0.011
28 Standard Deviation of Blue 0.5272 0.007
29 Length of Principal Axis 0.5273 0.002
30 Average Blue 0.5278 0.001
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Table 7.3(¢c) Individual rankings of features using STEPDISC analysis with
thirteen classes in the model

Number Selected features Average squared Partial
canonical correlation

l First Fourier Magnitude 0.0773 0.928
2 Standard Deviation of Radii 0.0773 0.927
3 Length 0.0772 0.927
4 Maximum Radius 0.0769 0.923
5 Perimeter 0.0758 0910
6 Area 0.0735 0.883
7 Average Red 0.0720 0.865
8 Average Green 0.0707 0.848
9 Rectangular Ratio 0.0700 0.840
10 Width 0.0693 0.832
11 First Invariant Moment 0.0678 0814
12 Haralick Ratio 0.0659 0.791
13 Minimum Radius 0.0645 0.774
14 Second Fourier Magnitude 0.0644 0.773
15 Thinnes Ratio 0.0644 0.773
16 Length of Pricipal Axis 0.0635 0.763
17 Intensity 0.0631 0.758
18 Second Invariant Moment 0.0615 0.738
19 Area Ratio 0.0550 0.660
20 Length of Minor Axis 0.0481 0.578
21 Standard Deviation of Green 0.0426 0.512
22 Third Fourier Magnitude 0.0407 0.488
23 Fourth Fourier Magnitude 0.0370 0.444
24 Radius Ratio 0.0355 0.426
25 Average Blue 0.0324 0.389
26 Standard Deviation of Red 0.0318 0.382
27 Standard Deviation of Blue 0.0217 0.261
28 Fourth [nvariant Moment 0.0175 0.210
29 Third Invariant Moment 0.0088 0.106
30 Aspect Ratio 0.0008 0.009




model with only morphological features was evaluated.

The classification accuracies were low when the first five features were used. The
mean classification accuracy increased with the number of features upto the first 15 features
selected from Table 7.3 (b) and remained constant thereafter except for the hold-out method
with non-parametric analysis where it decreased slightly (Fig. 7.1). The addition of more
features did not improve the performance of the classifier. It is important to note that the
mean classification accuracy for the hold-out method with all 30 features in the model with
thirteen classes was around 90% although 100% classification was achieved in many classes
(CWRS wheat, Canola, Wild buckwheat, and flax). This was because the classification
accuracy for chaff class was very poor. Additional colour features like the colour histogram.
different combinations of R, G, and B, and textural features should be investigated for
improving the classification accuracy of the chaff and the mean accuracy of the model.

The results of this study could be used to control a cleaner by a machine vision
system. The impurities (dockage) at different stages of cleaning could be identified and the
cleaner controlled accordingly.

Zayas et al. (1989) discriminated 33 wheat and 87 non-wheat components (foreign
materials like wild buckwheat, glass, castor beans, yellow foxtail) from a sample of 34 wheat
grains and 99 non-wheat components. They achieved 100% discrimination of wild
buckwheat from wheat grains. In a later study, Zayas et al. (1990) identified all of the broken

com kernels from the whole corn kernels.
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7.4 Morphology Model Classifier

A model (thirteen classes) with only morphological features was investigated to
evaluate the ability of morphological features to discriminate the dockage classes from the
cereal grain classes.

When the leave-one-out method was used with normal estimation the classification
accuracies were: CWRS wheat (99.3), durum wheat (92.8), barley (95.3), rye (90.0), oats
(99.8), multiple-wheathead (95.8), chaff (73.9), wildoats (98.7), canola (98.1), wild
buckwheat (95.6), flax (98.3), broken-wheat pieces (85.0), and single-wheathead (97.2%)
[Table 7.4(a)]. When the leave-one-out method with non-parametric estimation was used the
classification accuracies were: CWRS wheat (100.0), durum wheat (95.1), barley (95.9), rye
(91.8), oats (100.0), multiple-wheathead (98.2), chaff (93.6), wildoats (99.3), canola (98.9),
wild buckwheat (97.3), flax (99.0), broken-wheat pieces (85.4), and single-wheathead
(97.2%)[Table 7.4(b)].

For the hold-out method with normal estimation the classification accuracies were:
CWRS wheat (100.0), durum wheat (83.0), barley (92.3), rye (95.7), oats (99.3), multiple-
wheathead (98.3), chaff (8.7), wildoats (48.7), canola (98.7), wild buckwheat (95.3), flax
(96.7), broken-wheat pieces (87.3), and single-wheathead (95.7%)[Table 7.4(c)]. For the
hold-out method with non-parametric estimation the classification accuracies were: CWRS
wheat (100.0), durum wheat (79.3), barley (97.3), rye (96.0), oats (99.7), multiple-wheathead
(100.0), chaff (19.0), wildoats (94.3), canola (99.0), wild buckwheat (98.0), flax (98.3),
broken-wheat pieces (87.3), and single-wheathead (94.0%)[Table 7.4 (d)].

The classification accuracies were reduced little when the basic color features were
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removed from the model. The classification accuracy for the durum wheat class was reduced

as its bright color might have improved its classification in the morphology-color model.

7.5 Colour Model Classifier

A colour model (with 13 classes) was investigated to test the discrimination power
of the basic colour features. When the leave-one-out method with normal estimation was
used, the classification accuracies were: CWRS wheat (65.9), durum wheat (65.1), barley
(81.3), rye (74.1), oats (31.3), multiple-wheathead (58.3), chaff (75.9), wildoats (60.3),
canola (95.1), wild buckwheat (96.7), flax (51.9), broken-wheat pieces (85.8), and single-
wheathead (56.4%) [Table 7.5(a)]. When non-parametric estimation was used in the leave-
one-out method the classification accuracies were: CWRS wheat (78.5). durum wheat (77.4),
barley (84.3), rye (85.7), oats (75.4), multiple-wheathead (72.2), chaff (81.9), wildoats
(94.2), canola (84.0), wild buckwheat (92.8), flax (95.9), broken-wheat pieces (78.6), and
single-wheathead (56.1%)[Table 7.5(b)].

For the hold-out method with the normal estimation the classification accuracies
were: CWRS wheat (77.7), durum wheat (74.7), barley (65.0), rye (70.0), oats (0.0),
multiple-wheathead (71.7), chaff (34.0), wildoats (46.3), canola (96.3), wild buckwheat
(99.0), flax (52.3), broken-wheat pieces (82.7), and single-wheathead (55.7%) [Table 7.5(c)].
When the hold-out method with non-parametric estimation was used the classification
accuracies were: CWRS wheat (71.6), durum wheat (88.0), barley (51.0), rye (75.0), oats
(2.7), multiple-wheathead (81.7), chaff (50.0), wildoats (94.7), canola (83.7), wild buckwheat
(96.7), flax (95.3), broken-wheat pieces (78.3), and single-wheathead (59.0%) [Table 7.5(d)].
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The classification accuracies for the color model were very poor. A model with only basic
color features is not helpful in discriminating the dockage components from wheat.

There is little difference between the classification accuracies of the morphology-
color model and the morphology model, therefore, the morphology model can be used to
discriminate the dockage components from wheat (Table 7.6). This would allow the use of
a black and white camera to acquire the grey level images which will simplify the system and

its cost.
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Table 7.6. Summary of classification accuracies for different models and different analysis methods

Model Analysis Method
" ® s % * @
g o § 4 ® 8 g 3 Mean
E — [ 9 £ g L} '6 z b =
O a & & S S 5 £ 2 § f: %
P> E 8 o & o
+
Momphology-  Leave-onc-out
Color 121 Normal 99.2 96.6 98.2 96.3 9.8 96.3 92.6 99.8 99.4 98.5 99.3 97.6 4 97.48
Non-paré 938 9.1 98.3 972 999 98.9 9718 99.8 995 99.7 9.8 98.8 . 99.1
Holdout
Normal 9.7 89.7 95.3 99.0 9.7 213 30.0 99.3 99.7 98.7 99.3 98.0 - 80.3
Non-par 100.0 913 98.7 99.3 99.3 23 12,0 99.7 1000 100.0 100.0 100.0 - 84.1
Momhology Leave-one-out
13 Normal 99.3 928 95.3 90,0 99.8 95.8 739 98.7 9.1 95.6 98.3 85.0 972 938
Non-par 100.0 95.1 95.9 918 100.0 98.2 93.6 99.3 98.9 97.3 99.0 854 97.2 96.3
Holdout
Normal 1000 830 923 95.7 99.3 98.3 8.7 487 98.7 95.3 96.7 87.3 95.7 84.6
Non-par 100.0 79.3 973 96,0 99.7 1000 19.0 943 9.0 98.0 98.3 873 94.0 894
Color -13 Leave-one-out
Normal 659 65.1 81.3 4.1 313 583 759 60.3 95.1 96.7 519 85.8 56.3 69.0
Non-par 78.5 14 843 85.7 754 722 819 942 84.0 92.8 95.9 8.6 56.] 813
Holdout
Normal .7 747 65.0 70.0 0 7.7 340 46.3 96,3 99.0 523 82.7 551 03.5
Non-par 7.6 88.0 510 750 27 81.7 500 94.7 837 96.7 95.3 783 590 714
Morphology-  Leave-one-out
Color-13 Normal 9293 94.7 916 95.8 998 96.7 833 99.6 9.4 982 99.3 97.3 %6.8 96.8
Non-par 100.0 98.8 98.6 97.3 100.0 9.0 96.8 99.8 99.6 99.7 99.8 98.8 98.9 99.0
Holdout
Normal 9.9 89.7 95.0 98.7 99.3 9.3 9.7 99.0 99.7 98.7 9.3 98.0 95.0 909
Non-par 100,0 96.7 983 9.3 99.3 1000 21.7 99.7 100.0 100.0 100.0 9.7 96.7 93.2

* Canada Westem Red SprinEthal, ® Durum Wheal, © Multiplc-wheathcad, # wild buckwheat, @ Broken-wheat picces, § Single-wheathead, 3 Values expressed in percentage, t Number of

classes in the model, § Single-wheatheads were included in the multiple-wheathead class, 4 Non parametric estimation,
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CHAPTER 8: CONCLUSIONS

For determination of physical quality of wheat samples by machine vision, dockage
constituents have to be identified and classified. In this study, discrimination capabilities of
morphological and basic color features were evaluated for identification of dockage
constituents from CWRS wheat and other cereal grains. Morphology-colour, Morphology,
and Colour models were developed and compared.

Based on this study, the following conclusions were made:

1) Division of wheathead into single- and multiple wheatheads improved the classification
of wheathead class from <30% to >95%.

2) The model with only color features was not sufficient to discriminate the dockage
components from wheat (mean classification accuracy was about 70%).

3) The morphology model discriminated the dockage components with >90.0% classification
accuracies.

4) When the morphology model with thirteen classes was tested on an independent data set
the classification accuracies were: CWRS wheat (100.0), durum wheat (79.3), barley (97.3),
rye (96.0), oats (99.7), multiple-wheathead (100.0), chaff (19.0), wildoats (94.3), canola
(99.0), wild buckwheat (98.0), flax (98.3), broken-wheat pieces (87.3), and single-wheathead
(94.0%). The classification accuracies for the morphology- color model were: CWRS wheat
(100.0), durum wheat (96.7), barley (98.3), rye (99.3), oats (99.3), multiple-wheathead
(100.0), chaff (21.7), wildoats (99.7), canola (100.0), wild buckwheat (100.0), flax (100.C),

broken-wheat pieces (99.7), and single-wheathead (96.7%).
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5) The morphology-colour model improved the mean classification accuracy by [.3% when
tested on an independent data set.

6) It is necessary to improve the classification accuracy of chaff for practical implementation.
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APPENDIX A

Primary and Export Grade Determinants for CWRS wheat
(Source: Anonymous 1987)
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Table B2 Confusion matrix of the ten features model with thirteen classes for the hold-out method (Normal estimation)

Class (t0)~ N , a w o
(from)(l ) (§ g o 3 8 =3 & ,g 3 % 5 E g
g & € 5 = g i = 2

©c A A ° > ° 5 5 3 " oA g

CWRS 900 0 0 0 0 0 0 0 0 0 0 0

wheat(900)* (1004)

Durum 0 258 4 28 0 0 0 0 0 0 0 0 0

(300) 86.0) (4.6) (9.3)

Barley 0 10 288 2 0 0 0 0 0 0 0 0 0

(300) (3.3) (96.0) (0.7)

R}ve 0 5 0 295 0 0 0 0 0 0 0 0 0

(300) (1.7) (98.3)

Oats 0 0 0 0 300 0 0 0 0 0 0 0 0

(300) (100)

M-Whead 0 0 0 0 0 300 0 0 0 0 0 0 0

(300) (100)

Chaff 27 0 0 18 199 56 0 0 0 0 0 0 0

(300) (9.0) (6.0) (66.3) (18.7)

Wildoats 0 0 0 0 0 0 10 275 0 0 0 0 15

(300) 33 (L) (5.0)

Canola 0 0 0 0 0 0 0 0 300 0 0 0 0

(300) (100)

W-bwheat 0 0 0 0 0 0 0 0 0 299 | 0

(300) 99.7) (0.3)

Flax 0 0 0 0 0 0 0 0 0 0 300 0

(300) (100)

Broken 0 0 0 0 0 0 6 0 0 0 0 294 0

(300) (2.0) (98.0)

S-Whead 0 0 0 0 0 6 6 0 0 0 0 0 292

(300) 20) (2.0) (97.3)

* Sample size, 4+ Values expressed in percentage

89



Table B3 Confusion matrix of the ten features model with thirteen classes for the leave-one-out method (Non-parametric estimation)

Class (to)~ . L] " o

(from)(l ) § ) " o) s 5 5 = § % E 3 5

- 5§ 2 § X &£ & % §
Q A a0] = (@] 3 M A

CWRS 3600 0 0 0 0 0 0 0 0 0 0 0 0 0
wheat(3600) {100+

Durum 0 1176 8 16 0 0 0 0 0 0 0 0 0 0
(1200) (98.0) (0.7) (1.3)

Barle a/ 0 28 1164 8 0 0 0 0 0 0 0 0 0 0
(I20 ) 2.3) (97 0) (0.7)

0 43 1150 0 0 0 0 0 0 0 0 0 0

(1200) (3.6) (0.6) (95.8)

Oats 0 0 0 0 1200 0O 0 0 0 0 0 0 0 0
(1200) (100)

M-Whead 0 0 0 0 2 1186 | 0 0 0 0 0 ) 0
(1200) 0.2) (983) (0.1 (0.9)
Chaff 0 0 0 0 0 0 1126 0 0 0 0 26 48 0
(1200) (93.8) 2 4.0
Wildoats 0 0 0 0 0 0 0 1200 0 0 0 0 0 0
(1200) (100)

Canola 0 0 0 0 0 0 0 0 1197 3 0 0 0 0
(1200) (99.8) (0.2)

w-bwheat 0 0 0 0 0 0 0 0 4 1196 0 0 0 0
(1200) 03) (99.7)

Flax 0 0 0 0 0 0 0 0 0 0 1197 3 0 0
(1200) (99.8) (0.2)

Broken 0 0 0 0 0 0 17 0 0 0 0 1183 0 0
(1200) (1.4) (98.6)

S-Whead 0 0 0 0 0 14 22 0 0 0 0 0 1163 2
(1200) (1.2) (1.8) (96.8) (0.2)

* Sample size, + Values expressed in percentage.
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Table BI1 Confusion matrix of the 15 features model with thirteen classes for the hold-out method (Normal estimation)

Class (t0)- ° a " o)

(from)(l ) 2 g by v 9 g & 3 3 § % é 3
3 5 &2 § 5 5 = g Z n s %
&) A M s © =2 &) £ m A

CWRS 900 0 0 0 0 0 0 0 0 0 0 0

wheat(900)* (100+)

Durum 0 260 15 25 0 0 0 0 0 0 0 0 0

(300) (86.7) (5.00 (83)

Barle 0 10 288 2 0 0 0 0 0 0 0 0 0

(300 (33) (96.0) (0.7)

Rffe 1 | 0 298 0 0 0 0 0 0 0 0 0

(300) 0.3) (0.3) (99.3)

Oats 0 0 0 0 300 0 0 0 0 0 0 0

(300) (100)

M-Whead 0 0 0 0 0 300 0 0 0 0 0 0 0

(300) (100)

Chaff 8 0 0 36 152 83 21 0 0 0 0 0 0

(300) 2.7) (120) (0.7) (@277 (1.0

Wildoats 0 0 0 0 0 0 1 286 0 0 0 0 3

(300) 3.7 (95.3) (1.0)

Canola 0 0 0 0 0 0 0 0 300 0 0 0 0

(300) (100)

W-bwheat 0 0 0 0 0 0 0 0 0 298 2 0

(300) 99.3) (0.7)

Flax 0 0 0 0 0 0 0 0 0 0 299 |

(300) 99.7) (0.3)

Broken 0 0 0 0 0 0 5 0 | 0 0 294 0

(300) (L7 (0.3) (98.0)

S-Whead 0 0 0 0 0 10 3 0 0 0 0 0 287

(300) 33) (1.0 (95.7)

* Sample size, < Values expressed in percentage.
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Table B12 Confusion matrix of the 15 features model with thirtcen classes for the hold-out methad (Non-parametric estimation)

Class (10)~ X
L R I
g
O 28 a

Oats
M whead
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wbwheat
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Broken
S-whead
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Barley
(300)

R

(300)
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(300)
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(300)

285 S 7
0500 (1.7) (2.3)
3 297
(1.0)  (99.0)
2 0

©.7n {99.3)
0

e © o o O
o o o o O
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(300)
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(300)
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297 0
(99.0)

0 289
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* Sample size, 4 Values expressed in percentage.
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APPENDIX C

BETWEEN-CLASS CORRELATION COEFFICIENT MATRICES
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Table CI

Between-class correlation cocfficient matrix of morphological and basic color features

Between-Class Correlation Coefficients
Feature!~ | FI F2 | F3 F4 Fs F6 F7 F8 F9 F10 Fil Fi2 F13 Fl4 F15
Fi 1.00
F2 097 |1.00
F3 093 1098 }1.00
F4 094 1085077 1.00
FS 093 {084 |0.76 099 1100
F6 094 |0.84 }075 099 | 098 1,00
F7 091 1082 |0.76 098 099 0.96 1.00
F8 095 1099 |099 0.80 |0.79 0.78 0.77 t.00
F9 096 1099 |0.99 0.84 |0.83 0.82 0.83 0.99 1.00
Flo 095 098 {098 084 |0384 0.81 0.84 0.98 0.99 1.00
Fil 0.84 094 | 096 065 [0.63 0.63 0.62 0.96 0.94 0.92 1.00
F12 093 1092 {089 084 083 0.84 0.82 091 0.92 0,92 0.78 1.00
F13 088 091 1092 0.71 10.70 0.71 0.70 0.93 0.92 0.62 0.42 0.61 1.00
Fi4 0.79 071 [0.59 0.81 {075 0.85 0.69 0.65 0.64 0.06 0.04 0.06 0.05 1.00
F15 045 062 |0.73 0.16 |0.15 0.12 0.16 0.70 0.65 0.60 0.74 0.33 0.66 0.08 1.00
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APPENDIX D

SAMPLES OF DOCKAGE CLASSES
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|-multiple wheathead, 2-single wheathead, 3-chaff,
4-broken-wheat, 5- wild buckwheat, 6-wildoats.

Fig. D1 Samples of dockage classes
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