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ABSTRACT 

Algonthms were developed to ciassi@ doçkage components h m  Canadian Western 

Red Spring (CWRS) wheat and other cereai grains Like dunim wheat, barley, rye, and oats 

based on morphological and coior features. The dockage cIasses used were: wheat heads, 

c h s ,  wildoats, canola, wiid buckwheat, flax, and broken-wheat pieces- The wheat head 

dockage class was subdivided into single and multiple wheat heads to improve the 

classification accuracy. 

The developed algorithms were tested on images taken with an area scan camera, 

Training and test data sets were estabtished to evaluate the classification accuracies based 

on the extracted features- 

Morphology-color, morphology, and color models were evaiuated for c l a s s ~ g  the 

dockage compoaents. Morphology-color model gave 90.9 and 99.0% mean accuraçies when 

tested on the test and on the training data sets, respectively. The mean accuracies of 90-3 and 

98.7% were obtained when the first 15 features fiom the morphology-color model were used 

on the test and on the training data sets, respectively- The rnean accuracies of 89-4 and 96.3% 

fcir the morphology model and 71.4 and 75.6% for the color model were achieved when 

tested on the test and on the training data sets, respectively. 

.-- 
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Canada produced an average of 55 Mt (million tonnes) of grains and oilseeds worth 

about 6 billion dollars annually during the years fiom 1983 to 1992 (Canada Grains C o u i l  

1994). About 70% of these grains are exported through a grain collection, handhg, and 

shipping system. The producers store their grain on farms and usually deliver it in farm- 

trucks to primary (country) elevators (grain handling faciiities). Grain moves from the 

primary elevators to terminal elevators by train, 

A machine vision system (MVS) couid be used effectively for objective 

measurement of physical quality parameters of the grain at terminal elevators. The primary 

reason for its potentiai application for wheat inspection at tenninal elevators lies in its 

capability to quantify (with precision, speed, and consistency) the composition and physicai 

characteristics of grain samples using parameters which fonn the basis of visual inspection 

(e.g. object size, shape, colour, reflectance, and texture) (Sapirstein and Bushuk 1989). 

Moreover, powerfbl microcornputers and specialized hardware have fostered moderately 

prked, high performance machine vision systems able to hande the wide variability in size, 

shape, colour, and textural characteristics of agricultural produce and products. As a result, 

the MVS offers the potentid to improve the cornpetitive position of agriculture by raising 

product quality while lowering processing costs. 

Fast and accurate information on the contents of a grain sample can be used to 

increase the efficiency of most grain handling operations (such as grain unloadulg, cleaning, 

binning, and shipping) at terminal elevators (Shatadal et al. 1995b). The important 



applications of machine vision to the grain industry include the design and development of 

an objective, fast, and reiiable on-line monitoring system for grain in continuous flow at 

many points in a terminal elevator (grain handling facility). This would lead to increased 

cleanuig throughput and enhanced recovery of salvageable grains. Use of machine vision 

guided controls and robotics could lead to complete automation of modem terminal 

elevators. A commercial W S  for grain inspection at terminal elevators is not yet available. 

Although substantial efforts have been made in the last decade on using MVS for automatic 

information acquisition on the content and quality of grain samples (Barker et al. 1992a. 

1992b, 2992c, 19924; Chen et ai. 1989; Ding et al. 1990; Draper and Travis 19845 Hehn and 

Sokhansanj 1990; Keefe 1992; Keefe and Draper 1986; Kohler 199 1; Lai et al. 1986: 

Majumdar et al. 1996a, 1 996b; Myers and Edsall 1989; Neuman et ai. 1987. 1989a, l989b: 

Sapirstein and Bushuk I 989; Sapirstein et ai. 1 987; Shatadai et al. 1995% 1 995 b; S ymons 

and Fulcher 1988a, 1988b; Thompson and Pomeranz 199 1 ; Travis and Draper 1985; Zayas 

et al. l985,1986,1989,1990), many of the special needs and problems involved in indumiai 

application are still unresolved- Dockage identification is one of these needs. 

Dockage is a material that is removed f?om the grain by using approved cleaning 

equipment so that grain can be assigned the highest grade for which it qualifies (Anonymous 

1994). At terminal elevators grain is received in railcars and the varying amounts of dockage 

is removed by mechanical separators before the grain is stored for shipping to export buyers. 

A series of cleaning machines are used to remove the dockage. Export shipments are the 

combined grain corn several storage bins of like type and grade that meet the buyers' 

specifications for quality and grade specifications. The dockage in the grain (wheat) has to 
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be identified for effective automation. The dockage in wheat is assessed by separating the 

dockage fiom the grain by a Carter dockage tester or Emersion kicker (Anonymous 1994). 

For the salvageable grain recovery and for adjusting the efficiency of the cleaning machines. 

dockage tester hctions have to be identified. With the present machine vision technology. 

the car contents can be identified and recognized as wheat, barley, durum, rye, and oats. and 

the clean samples can be identified with reasonable accuracy (>95%). So f i  no work has 

been reported on dockage identification in wheat using machine vision. 

(il 

(ii) 

(iii) 

The objectives of my thesis research were: 

to use machine vision system to identie dockage in wheat by developing software 

to extract morphological and limited colour features fkom grain kernels and from 

dockage components, 

to investigate the potentid of different image-extracted morphoIogica1 and coiour 

features for classification of dockage components fiom C WRS wheat and fiom other 

cereai grains such as durum wheat, barley, rye, and oats, and 

to investigate the feasibility of classi@ing dockage components into their appropriate 

classes using the selected features by designing or selecting appropriate statistical 

Dattern classifiers. 



CHAPTER 2: MACHINE VISION 

A machine vision system (MVS) consists of imaging hardware and processing 

sobare. The elements of a general purpose MVS (Fig 2-1) are: (i) image acquisition, (ii) 

storage, (iii) processing, (iv) communication, and (v) display. 

Fig 2.1. Schematic of a typical machine vision system 

2.1 Image Acquisition 

Two elements are required to acquire digital images. The e s t  is a physical device 

(e-g. video camera) that is sensitive to a band in the electromagnetic energy specmim (such 

as X-ray, ultraviolet, visible, or infiared bands) and that produces an electricai signal output 



proportional to the Level of energy sensed. The second, cailed a digitizer? converts the 

elecu-ical output of the physical sensing device hto digital form (Gonzaiez and Woods 

1992)- 

2.2 Storage 

Providing adequate storage is usuaily a challenge in the machine vision systems 

because a single 8-bit image of 1024 x 1 024 pixels requires 1 M b  of storage. Digital data 

storage in the MVS are of three types: (i) short term storage for use during processing, 

(ii) on-line storage for relatively fast recall, and (iii) archival storage. For the short term 

storage, cornputer memory or speciaiized boards called fiame buffers are used, On-line 

storage generally takes the form of magnetic disks. A Magneto-optical (MO) disk stores a 

gigabyte of information. Archival storage is characterized by massive storage requirement 

and magnetic disks and optical disks are used for such storage. 

2 3  Image Processing 

2.3.1 Digital Image The term image refers to a two-dimensional light intensity function, 

denoted by f (x, y), where the value or amplitude of 'f ' at spatial coordirates (x, y) gives 

the intensity (brightness) of the image at that point- To be suitable for cornputer processing, 

an image h c t i o n  f (x, y) must be digitized both spatialIy and in amplitude. Digitization of 

spatiai coordinates (x, y) is called image sampling, and amplitude digitization is called the 

grey-level quantization. Suppose that a continuous image f (x, y) is approxïrnated by equally 

spaced samples arranged in the form of  an N x M array, where each element of the array is 

a discrete quantity, Le.: 

5 



The nght side of the Eq- #2.1 is c d e d  a digital image. in the case of a colour image, 

the amplitude is a vector which has three cornponents that are either Red, Green, and Blue 

or Hue, Saturation, and Intensity. 

Processing of digital images involves procedures that are usuaiIy expressed in 

algorithmic form. Therefore, with the exception of image acquisition and display, most 

image processing applications can be implemented in the software. The image processing 

can be subdivided into three groups: (i) image pre-processing, (ii) image andysis, and (iii) 

image interpretation. 

2.3.2 Image Pre-processing Image pre-processing is improving the image quality either for 

a better (subjective) interpretation of the image by a human or for making the image more 

suitable for subsequent steps in cornputer processing . Noise fiitering, contrast enhancement, 

and image smoothing are some of the pre-processing operations Because an image is a 2-D 

signal, image pre-processing concepts require the knowledge on 2-D signal processing. 

2.3.3 Image Analysis image andysis is extracting information f?om the image for a 

given application. The image analysis is explained in detail in Chapter 6. 



23.4 Image Interpretation Image interpretation is maliing a decision about the image to 

attain the solution of a given problem based on the information derived fiom the image. 

Image interpretation involves image-based knowledge manipulation including procedurd or 

d e  based manipulation of image data, 3-D modelling, and hierarchical image analysis- A 

great amount of non-image related knowledge underlying the scene representation may have 

to be used in image understanding- Artinciai neural networks are extensively used in image 

interpretation and pattern recognition problems. 

2.4 Communication 

Communication in digital image processing involves local communication arnong 

ùnage processing systems and remote communication corn one point to another, typicaily 

in comection with transmission of image data. Hardware and software for Iocal 

communication are readily avaiiable for most cornputers. Communication across vast 

distances presents a more serious challenge if the intent is to communicate image data rather 

than abstract results. Since most of the machine vision applications are in automated product 

inspection (exception Satellite MVS), vast-distance communication is no t that important- 

2.5 Display 

The principal display deviçes used in the modern MVS are monochrome and colour 

TV monitors. Monitors are driven by the output(s) of a hardware image display module in 

the back plane of the host cornputer or as part of the hardware associated with an image 
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processor- The signais at the output of the dispiay moduie c m  dso be fed into an image 

recording device (such as siides, photographs, or tramparencies) that produces a hard copy 

of the image being viewed on the monitor screen. Other display media include random- 

access cathode ray tubes (CRTs) and printing devices, 



CHAPTER 3: REVIEW OF LITERATURE 

3.1 Background 

Thou& a commercial machine vision system for grain grading and inspection is 

not yet available, rapid and substanttiai research has been conducted over the last decade 

towards building a machine-vision based grain-grader. But many of the special needs and 

problems in applying machine vision techniques to build a grain grader have yet to be solved. 

AgrovÏsion AE3(S-223 70 Lund, Sweden) has developed a machine to clas* wheat, barley. 

oats, rye, and triticale but its ~Iassification accuracy is not reported in the titeranue- 

DeterminÎng the potential of morphologicai and colour features to discriminate different 

grain species, classes, varieties, damaged grains, and impurities using statistical and artificial 

neural networks pattern recognition techniques has been the main focus of the reported 

research. This chapter briefly reviews the published research in applying machine vision 

techniques to the grain industry. 

3.2 Potential for Objective Wheat Grading 

The primary and export grade determïnants of CWRS wheat are given in Appendk 

A. For prhary grades, the maximum tolerances of foreign materials including other cereal 

grains are 0.75, I.5,33, and 10% for grade 1, grade 2, grade 3, and feed grade of CWRS 

wheat, respectively. In the export grades, the maximum tolerances of foreign materials 

including other cereal grains are 0-4-0.75, 1.25, and 5% for grade 1, grade 2, grade 3 , and 

feed grade of CWRS wheat, respectively. The primary grade tolerances for wheat of other 



classes are 3,6,  and 10% for grade 1, grade 2, and grade 3 respectively. For export grade. 

these tolerances are 1.5,3, and 5%, respectively. Tolerances for damaged kernels are also 

different. The iierences in the tolerances for primary and export grades necessitate that 

grain be processed at some point in the grain distrï'bution chain. In Cam&, grain is processed 

at terminai (export) elevators. To meet these tight tolerances, an objective grain grading 

system must achieve a near perfect ~Iassification of cereal grains and irnpurities (Le., CWRS 

wheat, dunun wheat, bariey, rye, oats, and dockage and foreign materiai). Severai researchers 

(Barker et al- 1992a 1 WZb, 1992c, 19924; Draper and Travis 1984; Keefe 1992; Keefe and 

Draper 1986, 1988; Kohler 1991; Lai et ai. 1986; Myers and Edsall 1989; Neuman et al- 

1987: Sapirstein and Bushuk 1989; Sapirstein et ai- 1987; Syrnons and Fuicher 198% 

19886; Travis and Draper 1985; Zayas et ai. 1985,1986,1989) applied machine vision and 

pattern recognition techniques to derive characteristics of cereai grains that can be used for 

objective grading- Most of these studies were conducted with limited sample size. Nso, the 

method of sample presentation to the field of view (FOV) of the camera was not industrially 

implementable, 

Most of the researchers conducted their studies using rnorphological features for 

cered grain classification. Very limited work has k e n  reported on cereai grain classification 

using colour features and no work (to the best of my knowledge) has been published on the 

potentiai of appiying MVS for dockage identification in wheat, 

32.1 Early Investigations 

As mentioned earlier, the investigations related to the application of MVS to the 

agicuiturai industry is a few decades old. Segerlind and Weinberg(1972) laid the basis for 
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applying MVS to the grain industry. Though they didn't use any machine vision hardware- 

they traced the kernel profrle on the grid paper to get the image and then estimated grain 

shape by Fourier series expansion of the radial distance fkom the centre of gravity to the 

periphery of the kernels. There was 1% error in separation of oats and barley, and wheat and 

rye based on the extracted shape features. The ciass [e.g, Hard Red Spring ( H R S ) ,  Hard Red 

Winter (HRW), Amber D u .  (AD), Soft White Spring (S WS), Sofi White Witer (S WW), 

Canada Prairie Spring (CPS), and utilïty and feed wheat are different classes of Canadian 

wheat] discrimination for wheat was partiaily successfbl with 1 1-25% error- 

Draper and Travis (1984) and Travis and Draper (L985) first used the MVS to 

iden- seeds of cereals, fodder piants, and oil and fibre vegetables. They reported that 5 of 

the crop species could be distinguished fÎom their major contamuiants with an overall 

accuracy of 95% and most of the weed species codd be distinguished fiom each other. 

The potential of image analysis for identieing grains of 5 U. K. wheat cultivars on 

the basis of size and shape was investigated by Keefe and Draper ( 1986, 1988). In their 

study, individual seeds resting horizontally, adaxial surface lowermost (Le., crease down 

position), and embryo in a fuced position were viewed in side elevation using transmitted 

Iight. Nine parameters describing seed shape were used to characterize 400 wheat seeds. 

Zayas et al- (1986) used some of the morphological features used by Keefe and 

Draper (1986) and some additional features to differentiate among individual kemels of 

dBerent American wheat classes and varieties- For different wheat classes and varieties, the 

average percentage of correctiy classifled kernels were 77 and 85%, respectively. They used 

mainly pair-Wise discriminatiow. The work was limited to a single kernel per image frame 
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and it was necessary to irnmobilize kernels in a fked orientation prior to analysis. 

Lai et al. (1986) used a pattern recognition technique for iden-g and classieing 

cered grains. They developed patterns for 6 grains (corn, soybean, sorghum, rice, barley. and 

wheat) and tested the patterns for their accuracy in recognizing grains. In addition, they 

applied the technique to differentiate between brown and white rice and to differentiate the 

sphericity of corn kernels, 

3.2.2 Towards A Grain Classifier 

M e r  getting positive results Tom the early investigations, researchers started their 

investigations towards building a grain classifier. Potentiai of additionai (new) 

rnorp hologicai features for grain classification, application of the techniques of the earl y 

investigations to other grain types, potetitial of colour features in grain classification, and 

solutions to special problems and needs like discriminating the broken kernels fiom the 

whole kernels, identification of foreign material were the improved objectives of the 

continued research in this field. 

Neurnan et al. (1 987) studied the objective classification of Canadian wheat cultivars 

based on kemel morphology using digital image analysis. They used 576 kemels of 

pedigreed seed of 14 wheat varieties for analysis. Ushg a transmitted light they captured 

silhouette images of whole kernels in 'plain' (top) view and determined spatial size and 

shape parameters and Fourier descriptors. No misclassifications were found for C WRS and 

Canada Amber Durum wheat (CADW) while there was considerable overlapping between 

HRW and S WS wheats. Misclassifications among various cultivars of a single wheat class 

12 



were greater. The authors suggested that features of anatomical parts of the kernels. such as 

size and shape of germ area, cheek and brush shape, and depth and width of crease may be 

essential for varietal identification. 

Sapirstein et al. (1987) extended the study of Neuman et al. (1987) for classifiing 

C WRS wheat, barley, rye, and oats. AU cereal grain classes were disjoint with oats and wheat 

being well separated. For a sample size of 580 grains the classification error was 1 %. The 

most prornising results for objective determination of other cereai grains in wheat were 

reported by Sapirstein and Bushuk (1989). For a sample size of more than 1000 kernels, 

98.4% of CWRS wheat were correctly classified using a linear discriminant fünction and 

assuming Gaussian patterns. The classification accuracies reported in their study for C WRS 

wheat. barley. oats, and rye were 98.4, 93.7, 78.3, and 98.0%, respectively- A substantid 

improvement in cereal grain discrimination was achieved when the morphology based 

discriminant mode1 was supplemented with mean kernel reflectance. The classification 

accuracies for wheat, barley, oats, and rye using reflectance and morphological features were 

99.2,95.7,95.3, and 98.3%, respectively. 

Discriminating foreign materiai fiom wheat was fïrst attempted by Zayas et ai. 

(1989). Multivariate discriminant anaiysis was used to distinguish between wheat and not 

wheat and among weed seeds. They developed a structurai prototype to distinguish between 

wheat and non wheat. The structurai prototype method discriminated weil between wheat and 

non wheat and many times it failed to identw stones present in the sample. It is worth 

mentionhg that they described the difference between dockage and foreign material and 

suggested about the inclusion of other non-grain material in the grain classifier. 
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Zayas et al, (1990) studied special problems associated with applying MVS to the 

grain industry. They attempted to discriminate the whole corn kernels from the broken 

kernels. They evaluated the effect of image resolution on the discrunination by conducting 

experiments with different optical settings. Though theü study had a drawback of manuai 

placement of the sample with fked orientation, they could correctly c l a s se  a l i  of the broken 

kemels and 98% of the whole kernels, 

Symons and Fulcher (1 988a, 1 988 b) investigated the potential of the techniques of 

Neurnan et al. (1987) to discriminate Eastern Canadian wheat classes and varieties. They 

used shape and size features derived fiom backlit images. For a sample size of 225 kemels. 

they found that 94% of Soft White Winter ( S m  wheat were correctly classified using a 

4 way classification among SWW, HRW, hard red spring onginated fiom Europe (HRS-E), 

and hard red spring wheat originated fiom Western Canada (HRS-W), Sixteen percent of 

HRS-W were confused as HRW. The HRS-W sample was comprised of cultivars 'Katepwa' 

and 'Columbus'. These cultivars were also included in the study by Neuman et al. (1987). 

It can be mentioned again that Neuman et ai. (1987) found no confision between CWRS and 

CWRW wheat classes. Such contrasts in results suggest that there is a need for large database 

to develop a robust classifier. 

The inadequacy of the plan-fonn size and shape features for discriminating among 

different cultivars of a wheat class was aiso experienced by Symons and Fuicher (1988a). For 

three of the wheat cultivars of SWW, correct classifications of less than 60% were reported- 

In a subsequent study, Symons and Fuicher (1988b) used additional features derived fiom 

the bran layer and crease from the image of transverse section of kemels to aid in 
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classification among different cultivars of SWW class. Classification results were 

unsatisfactory with errors of more than 50%- 

The nrst four Fourier descriptor magnitudes were used for discriminating Austraiian 

wheat varieties by Myers and Edsall(1989). They also used additional features derived fiom 

side view of the kemels to improve the classincation. Their study suggested that open curve 

Fourier components were usefiil parameters for Australian wheat variety discrimination. 

Errors up to 22% were reported in their study. 

A detailed study on Fourier descnptors for the discnmination of Australian wheat 

varieties was carried out by Barker et al. (1992~). They used both dimensionless and 

absolute Fourier descriptors. They suggested that the absolute Fourier set clearly 

outperformed the dimensionless feature set and also that Fourier descriptors alone were not 

enough for a practical classification system. 

Barker et al. (1992% 1992b, 1992d) used features derived fkom contour of a wheat 

kemel positioned in a fixed orientation to discriminate among Austraiian wheat varieties. 

Overall correct classification among eight varieties was less than 65%. They used ray 

parameters (Le., radial distance fiom the centro id), slice and aspect ratio parameters, and 

Chebychev coefficients features in their study. 

Features only based on size and shape are not satisfactory to build a grain classifier. 

There fore, researchers started investigating the potential of CO tour features for grain 

classifkation. Neuman et al. (1989% 1 989b) examined colour attributes of individual kemels 

of 6 Canadian wheat classes represented by IO varieties. They achieved 88% correct varietai 

classification for pair-wise discrimination using mean red, blue, and green reflectance 
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features of the pixels- The correct classification of individual varieties varied from 34 to 

90%. Average correct classifications for the SWS, AD, and HRS classes of wheat were 

76.76, and 62%, respectively. Poor classifications of 56% and 34% were achieved for CPS 

wheat classes. 

The vitreosity of dunim wheat was studied by Sapirstein and Bushuk (1989) using 

images of transilluminated kemels and specfiing the fiequency distribution of grey levels. 

They found 95% conrelation between vitreosity computed by image analysis and replicated 

offtcial inspection of hard vitreous kernels. 

3.2.3 Research towards Special Needs 

Researchers (Jayas and BuUey, Personal Communication) evaluated the potential of 

applying machine vision techniques to the grain industry. But found that before building a 

machine vision based grain classifier, the special problems Iike touching kernels, dockage 

identification, testing the classifier with samples which are not included in the training. 

testing the classifier with samples fiom various growing regions, an implementable sample 

presentation method to the FOV of the camera need M e r  investigation. Moreover, 100% 

classification has to be achieved to build a robust classifier because of the tight tolerances 

in grade determinants (Appendk A). The grains have to be identified in bulk samples to 

automate the unloading of grains fiom the railcars at the receiving end of the terminal 

elevators. Grain quaiity needs to be monitored for shipped grain on a continuous basis. 

Research to solve some of these special problems has been the main focus of the research 

in the Department of Biosystems Engineering. 
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Shatadal et al- ( 1995% 1995b) developed a software to separate the touching kernels. 

The algorithm was successfiil in discomecting 95% of HRS wheat and dunim wheat, 94% 

barley, 89% rye, and 79% oats conjoint kernel regions. 

Majurndar et al. (1996b) used texturai features for cereal grain classification. They 

achieved 95.7, 96.9, 97-8, and 97.9% classification accwacies for CWRS wheat, durum 

wheat, barley, and rye, respectively with textural features extracted fiom red colour band. 

The classification of HRS wheat was improved to 100% when textural features fiom 

'(3 R+X+B)/6' colour band were used. 

Shashidhar et al. (1996) extracted basic morphological features fiom the images of 

touching kernels by an ellipse fitting algorithm. Limited testing was done on the algorithm 

to evaluate its ability to count objects in an image and to estimate basic morphological 

features of individual kernels separated by the algorithm. They reported that most of the 

estimated size features ushg the aigorithm were not significantiy difTerent fkom the 

measured parameters obtained (p0.05) by digital image processing. 

Most of the researchers used clean and pedigreed samples for classification of cereal 

grains, and of diEerent classes and varieties of wheats. Some researchers placed the grains 

manuaüy in a specific orientation which defeats the main purpose of automation. in many 

cases, the sample size was small and an ovedl  classification accuracy of about 96% was 

achieved using morphological and reflectance features for classification of cereal grains. 

Researchers focussed their research on finding solutions for the special problems and needs. 

Testing the classï£ïcation accuracies with big sample size, solving the problem of touchiig 

kernels, and identiwing non-grain material are the some of the special probiems. 
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CHAPTER:4 DOCKAGE IN WHEAT 

4.1 Definition 

Dockage is the material that is separable fiom the grain sarnple by the use of an 

approved cleaning equipment in order that the grain cm be assigned the highest grade for 

which it qualifies. Dockage is reported in percentage by mass. The percentage of dockage 

in a sample is reported in increments of 0.5% when the grain is not commercially clean and 

in the export shipments to the nearest 0.1% (when authorized by the Canadian Grain 

Commission to contain dockage). 

4.2 Determination of Dockage in Samples 

Dockage is assessed by running the uncleaned representative sample of 500 or 1 O00 

g through the Carter Dockage Tester. A schematic diagram of the Carter dockage tester is 

shown in Fig. 4-1. For CWRS wheat, No. 25 riddle, No. 6 buckwheat sieve (a triangular hole 

sieve with 2-38 mm inscribed circle), and two No. 25 buckwheat sieves (a triangular hole 

sieve with 1.98 mm inscribed circle) are used in the Carter dockage tester. The feed control 

of the dockage tester is set at #6 position and the air control is set at minimum of #4 and can 

be varied based on the material over the riddle. in the dockage tester, dockage hctions are 

collected in pans numbered 1,2,5, and 6.  The collected fiactions are reported in percentage 

by mas. 

The dockage fraction coiiected over the riddle (fiom pan 2, Fig. 4.1) contains wheat 

heads, large seeds (Like wildoats, barle y, oats, so ybean), and other non-grain material (Like 



mm 

1 
Fig. 4.1 
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Stones. cut stem pieces etc.). The wheat grain is collected in pans 3 and 4 of the Carter 

dockage tester. in pan 5. small seeds like flax, wild buckwheat, and broken wheat pieces are 

collected. ln pan 6, kteaviiy broken wheat grains, dust, and s m d  seeds like canola and 

mustard are collected. Ch&, dust, and cut stem pieces are coliected in pan 1. 

4 3  Composition of Dockage 

As defined in the Grain Grading Handbook for Western Canada, the following are 

the dockage constituents (Anonymous 1994): 

foreign material removed over the riddle, less any portion which is eligible for 

machine separation @an 2), 

material removed by aspiration (pan 1 ), 

material removed by No. 5 buckwheat sieve in the lower position @an 5 and 6), 

a maximum of 10.0 % by mass of soft earth pellets hand picked from the cleaned 

sample, and 

any matend removed by cleaning for grade irnprovement. 

4.4 Dockage Vs Foreign Material 

Foreign material is defined as the material other than the grain of the same class, 

which remains in the sample after the removai of dockage. Based on the separation of the 

impurities by the dockage tester, they are referred to either dockage or the foreign material- 

In wheat, other cereal grains like barley, rye, oats, etc. and non-grain material like earth 

pellets, c h a  fertilizer pellets are termed as foreign material if collected on pans 3 and 4 
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with wheat and are termed as dockage if they get separated by the dockage tester. 

Some of the dockage constituents (soybean, earth pellets, Stones, and wiid mustard) 

are not incIuded in the dockage class as they are very rare constituents, Wheatheads, chaE 

wildoats, flax, wiid buckwheat, canola, and broken kernels are identified as dockage 

constituents The dockage constituents are shown in Appendix D- The main dockage 

constituents and other cereai grains (dururn wheat, barley, rye, and oats) were used in this 

study to assess the capabiiity of the morphologicai features for their identification. 



CHAPTER 5: METBODS AND MATERIALS 

5.1 Vision Hardware 

The hardware of the image acquisition system used in this study consïsted of a 3chip 

CCD (couple charge device) colour camera (Model DXC-30004 SONY) with a zoom lem 

(VCL-IO EBY) of 10-120 mm focal length, a camera control  mit (CCU) (Model CCU-M3, 

SONY), a diaise illumination chamber, a colour monitor (Model PVM-I342Q, SONY). a 

colour frame grabber (Model DT 287 1, Data Translation hc., Marlboro. MA), a h e  

processor (Model DT 2858, Data Translation Inc., Marlboro, MA), a persod computer (PC) 

(Mode1 80386, UNISYS) with 8Mb of RAM and 80Mb hard disk a SUN SPARC station LI 

with 32Mb RAM and 400Mb hard disk, and an optical disk drive (Model SMC-SSO1. 

SONY). 

The camera was mounted on a stand (Model m3, Bencher inc.. Chicago, IL,) which 

provided easy vertical movement The camera was controiied by the camera conml unit 

which enabled selectable manuai or automatic iris, video signal gain control, and white-black 

balance of the camera. The frame grabber and the &me processor boards were installed in 

the PC. An aurora subroutine Iibrary (Aurora, Data Translation hc., Marlboro, MA) was 

installed in the PC to support the h e  grabber and the h e  processor. The PC was 

networked to the SUN SPARC station and the optical disk drive. The colour monitor was 

used for on-line image display. 

The camera captured images fiom the samples placed in the illumination chamber. 



The camera outputted three parallel analog video signals, namely red (R), green (G), and blue 

(B), corresponding to the three NTSC (Nationai Television S y stem Commi ttee) colo ur 

primaries, and a sync si@. The camera control unit performed the tirne-division 

multiplexing and dc restorations of the RGB signais, and tirne signa1 generation for the firame 

grabber. The fiame grabber digitized the RGB analog video signals to three 8-bit 5 12 x 5 12 

size RGB digital images, at a speed of 30 fÏames per second, and stored hem in three of the 

four on-board buffers. The acquired digitai images were then transferred to tlie optical disk 

for storage. 

5.2 Sample Iiiumination 

Uniform diffused lighting was used in aiI the experiments. The illumination chamber 

consisted of a sample placement platfonn, a semi-spherical steel bowl of approximately 0.39 

rn in diameter, painted white and smoked with magnesium oxide on its inner side with an 

opening of 0.125 m in diameter at its top (through which the samples were viewed by the 

camera). A cucular fluorescent tube (305 mm in diameter, 32  W, Model FC 1 T W C  W. 

Philips, Singapore) was pIaced around and just below the surface level of the sample 

placement platform of the Light chamber. The semi-spherical steel bowl was used as a 

diffuser. A voltage regulator (Model CVS, Sola Canada Inc., Toronto, ON) controlled the 

voltage to the Iamp within I0.W. A variac was used to maintain a constant voltage (12WO. 1 

V) to the light source. A Light controiier (Model FX0648-W120, Mercron, Richardson, TX) 

was used with the fluorescent lamp. The photo diode light sensor of the light controller 

automatically detected the illumination level in the light chamber and adjusted the AC 
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eequency of the Iamp to maintain a stable 1eveI of illumination- The fi-equency of the AC 

power output varied between 140 kHz at the minimum light level to 60 kHz at full power. 

5.3 ïiiumination Standaràïzation 

A Kodak white card with 90% reflectance (E 152-7795, E-en Kodak Co.. 

Rochester, NY) was used as a white reference to standardize the illumination level. The Iamp 

voltage was set to the rated value of 120 V. An image of the white card was acquired over 

a small central area of 50 x 50 pixels and the mean grey level values of R, G. and B bands 

were computed and used as iililmination level indicators. By manuaiiy adjusting the iris 

conuol and perfonning the white balance with the CCU, aü three values were adjusted to 

XWI, 

5.4 Grain and Dockage Samples 

Composite grain samples of (HRS) wheat (grade 1,2, and 3, durum wheat (grade 

1, 2, 3, and 4), barley (grade 1, and EXl), oats (grade 1, and 3), and rye (grade I ) were 

collected fiom diffierent growing regions of Western Canada for the 1994 growing season by 

the Industry Services Division of the Canadian Grain Commission, Winnipeg, MB. Samples 

of seven grain types (CWRS-1, CWRS-2, C WRS-3 wheat, dumm wheat, barley, rye, and 

oats) were selected fiom 20 growing regions- These regions were chosen ushg the climatic 

subdivisions of the Canadian Prairies (Putnam and Putnam, 1970). Three hundred kernels 

(25 kemels in an image h e )  IÏom each growing region were used for each grain type and 

grains fiom five randomly selected growing regions were analyzed. 
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Dockage samples were obtained by ninning 15 kg of uncleaned f m  samples of 

CWRS wheat from Glenlea Research Fann tbrough the Carter dockage tester. One hundred 

grams of each dockage tester hctions were collected fiom the Indusûy Services Division 

of Canadian Grain Commission, Winnipeg, MB. 

5.5 Sampling Technique 

For overall sampling, each composite grain sample (1000-1 500g) was poured ïnto 

a large plastic container and mixed thoroughiy. A scoop was used to take grains randomly 

fiom different regions of the container to give a subsample of 75 g- Before ~vithdrawing the 

second subsample, the remaining grains in the plastic container were re-mixed. in this way 

three subsamples were coUected. The three subsarnples were remixed to give a sample. The 

sarnple \vas rnixed thoroughiy by passing it through the Boerner Divider for 4 times- For 

image acquisition of individual kernels, 300 kemels were randody pic ked £tom the sarnple 

for testing. 

For each dockage class, 1500 individual objects were randomly picked from the 

hctions (fiom Glenlea Research Farm Samples) collected from the dockage tester and from 

the hctions O btained fiom the industry Services Division of Canadian Grain Commission. 

Winnipeg, MB. 

5.6 Image Acquisition 

The system was stabilized for 3 0  min. The illumination standardization and white 

balancing was done and repeated after every three images. White background was used for 
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samples of canota wild buckwheaf wildoats, and flax for better thresholding. In each frame 

25 objects were placed, imaged and stored as digital images on the optical disk for m e r  

analysis- 



6.1 Thresholding 

Thresholding is a process which converts a rnulti grey level image to a binary image 

so that objects can be distinguished fiom the background. Thresholding can be done either 

manually or automatically. In manuaf thresholding, a threshold value is specified by the user 

and the pixels whose grey levels are less thaa the threshold value are set to background (0) 

and the rernaining pixels are set to object (1). Manuai thresholding is time consuming as the 

thresholded image has to be displayed for every threshold value specified by the user to 

visuaily examine the thresholded image and to decide the fmal threshold value. 

In automated thresholding (Parker 1994), an algorithm is used which decides the 

threshold value by itself For this study, the automated thresholding was used. The threshold 

value was calculated by the principle of iterative selection in the developed algorithm. Tt 

provided an estimate of the average grey Ievel of both the background (Tb) and the O bjects 

(To) and used the average of these two levels [T = %(Tb+To)] as the threshold value T. The 

red band was used for thresholding the image. ïhe  mean grey level of the red band 

[(255+0)/3] was used to uiitialize the iterative procedure. The values of To and Tb were 

adjusted by calculating the mean grey levels of pixels whose grey levels were more than or 

less than the initiaiized T value. A new threshold value was calculated by using the adjusted 

Tb and To. The process was repeated untit the same threshold value T was produced on the 

two consecutive iterations. The maximum number of iterations was preset to 40 to reduce 



the nin time of the algorithm. 

6.2 Region Labelling 

Region labelling was used to assign a unique label or an identifier to each object in 

the binary image. The region labelling algorithm scanned the binary image once fkom the top 

lefi to the bottom right. The first encountered unlabelled object pixel was assigned a unique 

label. Then fiom that pixel the region was expanded and the same label value was propagated 

by foiiowing 8-neighbours cocmectivity. The propagation of same label value continued until 

no more neighbouring pixels of objects could be found. The scanning of the binary image 

was resumed and the same process was continued until aU the objects were labelled with 

theu unique label. Mer labelling there couid be some pixels in the object region with the 

background grey level value (called 'hole') or some pixels in the background with the object 

grey levels (called 'extra-region'). It is very important to change the values of these pixels 

to the right values for the accurate measurement of the morphological features. Therefore. 

a holefilhg and region-deleting-subroutine was used to solve this problem. Starting fiom 

a background pixel, the whole background region was connected by following the 8- 

neighbours comectivity. The left out pixels whose grey levels were that of the background 

were changed to the respective object label value. Any region which had 30 or less number 

of pixels was deleted. 



6.3 Feature Extraction 

From each object, morphologicai and basic color features were extracted, This section 

describes dl these features and their caiculations. 

63.1 Spatial Calibration 

In a digital image, al1 the morphologicd features were caiculated in pixel units. A 

scaling factor was detemiuled by taking an image of a Canadian quarter whose diameter was 

known. This scaling factor was used in expressing the features in red world dimensions. The 

rectangular pixel quarter image was converted into square pixel image and its length and 

width were calculated in pixel units. The d p i x e l  was calculated as 

mm/pixel= (2 x coin diameter) / (length-twidth). 

6.3.2 Size Features 

6.3.2.1 Area The area of an object was calculated by counting the number of pixels 

containeci in the object. The area was expressed in mm' by multiplying the total number of 

pixels by the scaling factor obtained fiom the coin Mage twice (both for x and y axis 

scaling) . 

6.3.2.2 Perimeter The primeter was calculated by adding the distances between al1 the 

successive pairs of pixels in the boundary of the object. Generally the perimeter of a region 

is calculated by adding the number of pixels on the boundary. But a pixel represents an area 

not a linear distance. Al1 the boundary pixels were matched with the templates shown in Fig. 

6.1, and the distance represented by each pixel was weighted as 1 if al1 neighbours were 
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horizontal or vertical, or weighted as 1.414 if ail neighbours were diagonal, or weighted as 

1.207 if there was one diagonal and one non-diagonal pixel. The perimeter was expressed 

in mm by multiplying total pixel distance on the boundary by the scaling factor obtained 

kom the coin image, 

oom a00 
000  000 
m 0 0  00. 

Templates for pixel distance 1 . 

Templates for pixel distance 1 -4 1 4 

e00 0 0 m  0.0 000 
O O O O  O  O 0 0 0 0 0 0 Templates for pixel distance 1.207 
0.0 O m o  .O0  a00 

Fig. 6.1 Distance templates for boundary pixels 

6.3.23 Centre of Mass Centre of mass was not used as a feature but was calculated 

for extracting other features like principal axis length, Fourier descriptors etc. The centre of 

mass of an O bject of N pixels was calculated by the following equations (Baxes, 1 994). 



where, N = total number of pixels in an object 

xi ,y, = x, y coordinate of the i& pixel 

63.2.3 Length of Principal Axis Principal axis, also known as the major axis, is defined 

as the longest iine that can be drawn through the centmid of the object. The candidate pixels 

were identified by finding the distance between each possible pair of boundary pixels which 

could be comected by a straight line and the distance was taken as  the length of principal 

axis. The length of principal axis was expressed in mm by multiplying the length in pixel 

units by the scaling factor. 

6.3.2.4 Length of Minor Axis The minor axis is defhed as the longest Iine that can 

be drawn perpendicular to the principal axis through the centroid. The candidate pixels on 

the boundary were identified and the distance between the pixeis was calculated as the width 

of minor axis, 

6.3.2.5 Length and Width of Bounding Rectangle The length and width of 

bounding rectangle were calculated by finding the rectangular box that would entirely 
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surround the object. 

6.3.2.6 Minimum, Maximum, Standard Deviation of Radü The distance of each 

pixel on the boundary from the centroid was caicdated and the minimum, maximum, and 

standard deviation of the distances were repoaed as minimum, maximum, and standard 

deviation of radii, 

6.3.3 Shape Features 

AU of the following shape features were derived fiom the size features: 

Perimeter Thinnes Ratio = 
Area 

L ength of bounding rectangle Rectangular Aspect Ratio = 
W d t h  of bounding rectangle 

Length ofPrincipalAxis Aspect Ratio = 
Length O fMinor Axis 

AreaRatio = 
Length x Wi'dlh 

A rea 



Maxim um Radius 
Radius Ratio = 

Minim um Radius 

Mean of Radii 
Haralick Ratio = 

StandardDeviation of Radii 

6.3.4 Boundary Descriptors 

6.3.4.1 Fourier Descriptors The discrete Fourier transforrn (DFT) can be used as the 

basis for describing the shape o f  a boundary on a quantitative basis. Consider an object with 

N pixels on the boundary in the xy plane. The coordinates o f  these pixels can be expressed 

in the f o m  of  x(k) = .r, and y@) =y, and with this notation the entire boundary of the image 

c m  be represented as the sequence of  coordinates as: 

f(k) = [x(k), y&)] for k = O, 1, ..... N-1. Each coordinate pair is treated as a complex nurnber 

so that 

foc) = x(k)+j y*) for k=O, 1, -, . .N- 1 . 

The discrete Fourier transform of f(k) is: 

for u = 0 ,  1, 2, .... (N-1). 



where. N = totai number of pixels on the boundary 

The cornplex coefficient a(u)'s are the cailed Fourier descriptors. The boundary f(k) 

can be restored by taking inverse Fourier ~aosforrn of a(u): 

for k = 0, 1, 2, ..-.(N-1). 

The Fourier descriptor magnitudes were caiculated by the following equation. 

where R(u), and I(u) are given by: 

And 'd' is the distance of a particular pixel fiom the centroid of the object 
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6.3.4.2 Moments 

The spatial moments of an object give statistical measures retated to an object's 

characterkation. 

The zero-order spatial moment is computed as the sum of the bnghtness values in 

an object- In the case of a b i m q  image, this is simply the number of pixels in the object. 

because every pixel in the object is equd to 1 (object =1)- Thus the zero-order spatial 

moment of a binary object is its area. 

Thefirst-order spatial moments of an object contain two independent components 

namely x and y. They are the grey level weighted sums of x and y coordinate locations of 

each pixel in the image. In the case of a binary image, the &-order x spatial moment is just 

the sum of  the x coordinates of aiI the pkeIs of the object because the object pixels are equai 

to 1. The first-order spatial moments of an object represent the object7s energy and how it 

is spatiaiiy distrïbuted. 

The moment of order @+q) for a digital image is deflned as: 

for p, q = 0, 1,2, ..-, Q where: 

Q = user-selected value to calculate a specitïc order of moment, and 

F(i, j) = gray level value at coordinate (i, j). 

F(i7 j) is 1 for any binary image- 

The above equation uses the image origin rather than the object's orïgin (centroid). 

The features used should be invariant to translation, orientation, and scaling. Because the 
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generai moments are position dependent, centrai moments are calcuiated as: 

for p, q = 0,1,2, .-..-, k where: 

k = user-selected value to caiculate a specific order of centrai moment, 

ci = ml0 / h, 

= rq,,  / moo, and 

(ci, c,) = the centre of gravity of the kemel. 

The norrnaiized centrai moments, q ,  were calcuiated fiom the central moment, pw: 

- 
'l,, - P ~ ~ ' P : O  

where, 

r =%(p+q)+ l*  

The foilowing set o f  four moments which are invariant to translation, 

rotation, and scaiing were used as the moment features. 



6.4 Basic Colour Features 

The cornrnody used colour models for image processing are the RGB (Red, Green. 

and Blue), YIQ (Lumhance, hphase, and Quadrature), and HSI (Hue, Saturation, and 

1ntensity)- The most ofien useci, hardware oriented, RGB colour model was used in this 

çnidy. in the RGB colour model, each colour appears in its primary spectral components of 

red, green, and blue. The Cartesian coordinate based colour model is shown in Fig. 6.2. 

In the RGB colour model, the R, G, and B values are at three corners and cyan, 

magenta, and yeliow are at other three corners. The RGB color model is additive color 

system and the CMY color model is subtractive color system. The grey scale is represented 

by the dotted Line from black <O white. In the images with RGB colour model, each pixel 

contains a coordinate position (x, y), and three basic Et, G, and B colour values associated 

with it. The mean of R, G, and B, and standard deviation of these three components were 

calculated and used as the basic colour feaiures. ï h e  average intensity of the O bject region 
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\vas calculated ushg the mean of Et, G, and B values as: 

1 =(R+G+B)/3 

Fig. 6.2 RGB Colour Mode1 

The other most ofien used colour model is the HSI which can be denved fiom the 

RGB model. A detailed description about the other colou. models and their uses can be 

found in Gonzalez and Woods (1992). 

6.5 Object classification 

There are two different ways of classïfjhg objects. One way is to find relations 

among the objects with the plrrpose of grouping them. For example, the similarities among 
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grains which are used to group them into different classes, like cereai grains, oilseeds, 

speciality crops, etc. Statisticai methods covering this kind of classification are cdled 

clustering, and the general principle is to group the observation vectors into clusters of a 

certain similarity, The second way of ctassification is to assiga objects into defined groups. 

The statisticai method for this ctassification is caiied discriminant anaiysis, and this is the 

usual kiud of classification which follows image analysis for recognition pwposes. 

The task of discriminant anaiysis is to find a decision d e  which assigns an object 

described by a number of m features to one of several groups Pi (i = 1, 2, .-., n) in a 

population- The simplest case is discrimination by one feature (e-g., object area) and two 

groups. If we know the probability density hc t ion  of this feature for each group, Say fI (x) 

and f i  (x)? the object should be assigned to the group with the higher probability density, i.e.. 

assigned to group P, if f, (x) > fi (x)- This is called likeiihood ratio method- 

This method may be improved ifwe kaow that a proportion sr, of the total population 

belongs to PI and the remaining 1s belongs to P,. ln this case, the object is assigned to P, 

if x, f, (x) > x, fi (x) which is tbe Bayesian classifier. 

If we assume that x is normally distrîbuted in each group as N(pi, ai2) then: 

and M e r  if a, = u2 = o for the two groups then: 



Setting this expression equal to 1 (or x, / .rra gives the threshold for group separation. 

The corresponding expression for a multivariate nomai distribution of feature vectors 

xi with dispersion matrices 2, = & = C is: 

in the univariate case, a threshold is used for separation of groups, in the bivariate case a line. 

and in the rnultivariate case it is the hyperplanes which separate groups in the muiti- 

dimensional feature space. The hyperplane for separating two groups is defined by setting 

the discriminant h c t i o n s  equal to log(x, / x,): 

In general, the distribution of the features is not known. One approach to estimating 

the error rate of a classifier is to compute it f?om the assumed parametric model. However. 

there are many problems with this approach: (i) estimate is aimost always overoptitnistic. 

(ii) characteristics that make the design samples peculiar or unrepresentative are not reveded, 

and (iii) in more generd situations it is very difficult to compute the error rate exactly, even 

if the probabilistic structure is completely known (Duda and Hart 1973). 

An empirical approach that avoids these problems is to test the classifier 

experimentally. For discrimination, three special cases are considered of practical 
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importance: 

The Resubstiiution Mdhod - The parameters of the discriminant h c t i o n s  are estimated 

fkom the same population which is classified into groups. The number of incorrectly 

classified observations mi of the q obsemtions in group Pi d e h e  the error rate as ei = m, 

/ ni, and e = x ,  e, + x, e, for two groups. 

The Cross-validafion Method - This m e h d  (also known as leating-one-out method) 

estimates the discnminant fiinctions fiom the sample data minus one (n-1) observations. The 

omitted observation is then classified as the unknowu observation and this procedure is 

repeated until aü observations (n) are classified. The correspondhg error rate is ei = bi / ni, 

and e = xi  el + zî q (for ~ W O  groups) where bi is the nwnber of misclassified observations 

in group Pi- 

The liold Out Method - This method uses a separate population (training data) for 

construction of the discriminant hctions,  and another population for testing the 

classification results- If the observations are normaily distributed, the error rate may be 

estimated by calculating the area of the region where the density fiinction is overlapped by 

a density function fiom another group. For the two group problem, the region is estimated 

by R, = {x: f, (x 1 0 J / f, (x 1 0 2) > a J R J where 8 ,are the estimated parameters of the prob- 

ability density fimction. The misclassification for group 1 is: 

where, 

R2 = feature space for group 2. 



The separation of groups in the featute space depends on how well the parameters of 

the distribution fiinctions are estimated. For example, if no errors are made on 50 test 

samples, with probability 0.95, the true error rate is between O - 8%. The classifier would 

have to make no errors on more thm 250 test samples to be reasonably sure that the true 

error rate is below 2% (Duda and Hart 1973). 

The need for data to design the classifier and additional data to evaluate it presents 

the designer with a dilemma If one reserves most of the data for the design, s h e  cannot 

have confidence in the test. Ifone reserves rnost of the data for the test, s 5 e  will not obtain 

a good design. The question of how best to partition a set of samples into a training set and 

a test set has received some analysis, and considerable discussion, but has no definitive 

answer (Duda and Hart 1973). 

In fact, there are more options available than just partitioning the data, designing the 

classifier once, and testing it. For example, one might repeat this process several times, 

usîng a different partition each t h e ,  and average the resuiting error-rate estimates. If 

computation costs are of no concem, one can use the cross-validation method. The basic 

advantage of this approach is that virtually a i l  of the samples are used in each design, which 

should lead to a good design, and ail of the samples are ultimately used in the tests. This 

procedure is particularly attractive when the number of available samples is quite small. 

When the number of samples is very large it is probably sufEcient to partition the data into 

a single training set and a single test set (hold out method). Aithough there is no theory to 

guide the designer in intemediate situations. 



6.5-1 Statistical Classifier For a set of observations containing one or more quantitative 

variables and a classification variable definhg groups of observations, PROC DISCRiM of 

SAS (1990) develops a discriminant criterion to classi* each observation into one of the 

groups. The detived discriminant criterion fiom this data set can be applied to a second data 

set during the same execution of DISCRIM. The data set that DISCRIM uses to denve the 

discriminant criterion is cailed the truining or calibrarion data set. 

When the distribution within each group is assumed to be multivariate normal, a 

parametric method can be used to develop a discriminant function. The discriminant 

fhction, also known as a classtjkation criferion, is detennined by a measure of generalized 

squared distance (Rao 1973). The classification criterion can be based on either the 

individual within-group covariance matrices (yielding a quaciratic hct ion) or the pooled 

covariance matrix (yielding a linear fiinction); it also takes into account the prior 

probabilities of the groups. The calibration information can be stored in a special SAS data 

set and applied to other data sets. 

When no assumptions can be made about the distribution within each group, or when 

the distribution is assumed to be different fiom multivariate normal distribution, non- 

parametric methods can be used to estimate the group-specific densities. These methods 

include the kernel mefhod and k-nearesf neighbor methodr (Rosenblatt 1956; Parzen 1962). 

Either Mahalanobis distance or Euclidean distance can be used to determine 

proximity. Mahalanobis distance can be based on either the full covariance matrix or the 

diagonal matrix of variances. In the k-nearest neighbor method, the pooled covariance 

matrix is used to calculate the Mahalanobis distances. in the kernel method, either the 
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individual within-group covariance matrices or the pooled covarÏance matrix is used to 

calculate the Mahalanobis distances. 

The DISCRIM procedure can produce an output data set containhg various statistics 

such as means, standard deviations, and correiations. The DISCRIM evaluates the 

performance of a discriminant criterion by estimating error rates (probabilities of 

misclassification) in the classification of fùture observations. When the input data set is an 

ordinary SAS data set, the error rate c m  aiso be estimated by cross-validation- 

Bayes' Theorern - Assuming that the probabiiities of group membership are known and the 

group-speciflc densities at x c m  be estimated, DlSCRiM cornputes p(t 1 x), the probability 

of x belonging to group t, by applying Bayes' theorem: 

where, 

p(t 1 x) = postenor probability of an observation x belonging to group t, 

9t = pnor probability of rnembership h group t, 

f,(x) = group-specific density estimate at x fiom group t, and 

f(x) = E qt (x), estimated unconditionai density at x. 

The DISCRIM partitions a p-dimensional vector space into regions &, where the 

region R, is the subspace containkg al1 p-dimensional vectors y such that p(t 1 y) is the 

largest among al1 groups. An observation is classified as coming from group t if it lies in 

region K. 

Parametric metfioh - Assuming that each group has a multivariate normai distribution, 
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the DISCRiM develops a discriminant function or ciassification criterion using a rneasure 

of generalized squared distance. The DISCRlM also cornputes the posterior probability of 

an observation belonging to each class. The squared distance fiom x to group t is: 

where, 

vt = S, if the within-group covariance matrices are used, 

vf = S, if the pooled CO-variance matruc is used, 

x = a p-dimensional vector containing the quantitative variables of an observation, 

m 1 = a p-dimensional vector containhg variable means in group t, 

S = pooled covariance matnx, 

st = covariance matrix within group t, and 

t = a subscnpt to distinguish the groups. 

An observation is classified into group u, if setting t = u produces the larges value 

of p(t 1 x). If  this Iargest postenor probability is less than the threshold specified, x is 

classified into group 'ollrer'. 

Non-parametric methods - Non-parametric discriminant methods are based on non- 

parametrie estimates of group-specific probability densities. When the k-nearest neighbor 

method is used, the Mahalanobis distances are based on the pooled covariance matrùt. The 

squared distance between two observation vectors, x and y, in group t is given by: 



where, 

y = a p-dimensional vectors containing the quantitative variables of an observation. 

The classification is based on the Bayes decision d e  which classifies an entity 

(represented by its pattern vector, e-g., x) to a class for which the entity has a maximum 

posterior probability (Hand 1981 ; Duda and Hart 1973). An observation x is classified into 

group u, if  setthg t = u produces the largest value of p(t 1 x). If there is a tie for the largest 

probability or this Iargest probabiiity is less than the threshold specified, x is classified into 

group 'other' . 

Using the k-nearest nelghbor d e ,  the k smallest distances are saved. Of these k 

distances, let k, represent the number of distances that are associated with group t- Then the 

estimated group t density at x is: 

where, 

v, (x) = volume of the ellipsoid bounded by (a 1 (z - x)' V-' (z - x) = r,' (x) J , 

z = a p-dimensional vector, and 

nt = number of training set observations in group t. 

The nearest-neighbor method is equivalent to the unifonn-kernel method with a 

location dependent radius r, (x). Since the pooled within-group covariance matrk is used 

to calculate the distances used in the nearest-neighbor method, the volume v, (x) is a 

constant, independent of group membership. When k = 1 is used in the nearest-neighbor 
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d e ,  x is classified into the group associated with the y point that yields the srnaLiest squared 

distance &'(x, y). 

The nearest-neighbor method is best used in applications where the choice of k is not 

critical (Silverman 1986, pp 98-99)- A practicai approach is to try several different values 

of k within the context of a particular application and to choose the one which gives the most 

satisfactory results- 

6.6 Pattern Classiftcation 

M e r  converting the rectangular pixel Mages into square pixel images, the images 

were thresholded using the automatic thresholding. Hoies w-ere filled and extra regions were 

deieted fiom the thresholded image. Morphological and basic colour features were extrac ted 

ftom the labelied and original images, respectively. The feature extraction aigorithms were 

developed on an IBM compatible pentiurn 75 personal computer. 

Discriminant analyses using PROC DISCRIM of SAS (1 990) were carried out using 

cross-validation (leave-one-out), and hold-out methods. In each case, normal and non- 

parannetrïc estimations were used. In the non-pararnetric estimation, k-nearest neighbour 

method was used with a k value of 5. Ln the hold-out method cereal grains fiom randornly 

selected 4 growing regions (300 kernels per growing region) were used as the training data 

set and fiom one growing region as the test data set. In the cross-validation method, the 

training data set used in the hold-out method was used for classification. 

To determine the level of contribution by individual morphological features to 
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classification, PROC STEPDISC (SAS 1990) was used. ïhe  training data set used in the 

hoId-out method was used for feature selection in STEPDISC analysis. Individual rankings 

of features were determined using STEPDISC analysis by removing the best feature Eom 

the model and by re-ranking the remaining features Le., for example in a model with five 

features the STEPDISC analysis was carrïed out with four features (the best feature fiom the 

five features model was removed) and the four features were raoked. This process was 

repeated with one feature in the final model. 



CHAPTER 7: RESULTS AND DISCUSSIONS 

7.1. Morp hology-Colour Mode1 Classifier 

After some p r ehnh ry  studies, the most discnminating 23 morphological features 

and 7 basic colour features were used for classification the dockage classes (wheathead. 

ch&? wildoats, canoIa, wild buckwheaî, flax. and broken-wheat pieces) together with cereal 

grain classes (i-e., CWRS wheat, durum wheat, badey, rye, and oats)- 

When an independent data set was used for testing (the hold-out method) with normal 

estimation, the classification accuracies were: CWE2S wheat (99.7), dunrm wheat (89-7), 

barley (95.3, rye (99-O), oats (993,  wheathead (27-3)- chaff(30-O), wildoats (99.3, canola 

(99 .T), wild buckwheat (98-7), flax (99.3), and broken-wheat pieces (98 -0%) Fable 7.1 (a) j . 

When hold-out method with non-parametric estimation was used the classification 

accuracies were: CWRS wheat (100-O), dumm (973,  barley (98-T), rye (993, oats (99.3, 

wheathead (2.3), ch& (1 2-O), wildoats (993, canola (1 00.0), wild buckwheat ( 100.0)? flax 

(100.0), and broken-wheatpieces (lOO.O%)~able 7,l(b)]- 

When the Leave-one-out method with normal estimation was used, the classification 

accuracies were: CWRS wheat (99-2), durum wheat (96-6), bariey (98.2), rye (96.3), oats 

(99.8), wheathead (96.3), chaff (92-6), wildoats (99.8), canola (99-4), wild buckwheat (98 -3, 

flax (99.3), and broken-wheat pieces (97.6%) Fable 7- l (c)], and when non-parametric 

estimation was used the classification accuracies were: CWRS wheat (99.8), dumm wheat 

(99. l), barley (98.3), rye (97.2)- oats (99.9), wheathead (98.9)- chaff(97.8), wildoats (99.8), 

canola (99.5), wild buckwheat (993,  flax (99.Q and bro ken-wheat pieces 
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Table 7 4 c )  Confusion matrix of the rodel  wit h twelve classes for thc leuvc-one-ou t method (Normal estiniation) 

CWRS i 
(3600)' 
Duruin $ 
( 1 200) 

$07 
!%IO) 
Oats 
( 1200) 
W lieadw 
( 1 200) 
Ctiaff 
( 1 200) 
W ildoats 
( 1200) 
Caiioln 
( 1 200) 
Wbwlieata 
( 1200) 
Flax 
( 1 200) 
Brokeiitj 
( 1200) .-- , . - 

* Sample size, + Values expressed in percelitage, t Caiida Western Red Spriny Wlieat, $ Daruni Wbeat, Y wheathead, wild buckwheat, 
§ broken-wlieat pieces. 
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(98,8%)~able7.1 (d)]. 

When the leave-one-out method was used both with normal and non-parametric 

methods the classification accuracies of wheathead and CM were considerably higher than 

when the hold-out method was used (>90% in cornparison to (10%). This suggests that 

though these dockage classes are well separated fkom other classes in the model, the 

variations in these two classes were not weii represented in the test data set used for the hold- 

out method Moreover the ranges for the features in the wheathead class were large because 

both single and multiple wheatheads represented as the wheathead class. Therefore. the 

wheathead class was separated into two classes as the single- and muitiple-wheathead for 

further analysis. Additional images of both single- and multiple wheatheads were taken and 

the features extracted were included in the data set. 

7.2 Morphology-Colour Mode1 Classifier with 13 Classes 

M e n  the leave-one-out method was used with normal estimation, the classification 

accuracies of were: CWRS wheat (99.3, durum wheat (94-T), barley (97.6), rye (95.8): oats 

(99.8), multiple-wheathead (96-7), CM (83.3), wildoats (99.6), canola (99.4), wild 

buckwheat (98.2): flax (993), broken-wheat pieces (97.3): and single-wheathead 

(96.8%)mable 7.2(a)]. For non-parametric estimation, the classification accuracies were: 

CWRs wheat (100.0), dunim wheat (98.8)- barley (98.6)ge ( 973), oats (100.0), mdtiple- 

wheathead (99 .O), ch& (96.8), wildoats (99.8)- canola (99.6), wild buckwheat (99.7), fla.~ 

(99.8), bro ken-wheat pieces (98.8), and single-wheathead (98.9 %) Fable 7.2(b)]. The 

higher classification accuracies for the non-parametric estimation imply that the samples 

54 



were not normally distributed. 

When the hold-out method was used with normal estimation, the classification 

accuracies were: CWRS wheat (99.9), dunun wheat (89.7), barley (96.0), rye (98.7), oats 

(99.3), multiple-wheathead (99.3), chaff(9.7), wildoats (99.0), canola (993, wiid buckwheat 

(98.7), flax (99.9, broken-wheat pieces (98.0), and single-wheathead (95.0%) Fable 7.2(c)]. 

For the non-parametric estimation, the cIassif?cation accuraçies were: CWRS wheat (1 OO.O)l 

d u m  wheat (96.7), barley (98.3), rye (99.3)- oats (99.3), mutiple-wheathead (100.0), chafï 

(2 1.7), wiidoats (99.7), canola (1 00-O), wild buckwheat (1 00.0), flax (1 00.0), broken-wheat 

pieces (99.7), and single-wheathead (96.7%) [Table 7.2 (d)]. 

There was a significant increase in the classification accuracies for wheathead and 

chaEdockage classes over the mode1 which used both single and multiple wheatheads as one 

class. Separation of the wheathead class into single- and multipl- wheathead resulted in 

higher classifications for these clasres- 

Hold-out method classifier is suitable for the industrial application because a 

classifier can be developed prïor to implementation for testhg and class@ing objects on- 

line. The classification accuracies, however, were low for for chfi When the hold-out 

method was used most of the chaff components were misclassified as oats because of the 

closeness of their features to the oats class. inclusion of textural and additionai colour 

features may r e d t  in better classification of the chafYclass. AU dockage components except 

chaff could be classifïed with >95% accuracy (Table 7.2 c, 7.2 d) by a machine vision 

system. Chaff should be removed by aspiration if machine vision system is to be used to 

opthïze a cleaning unit. 





- \O* - mm- 
CU= == O 

31C 
W 

+* - w V) 
œ -- 

C 
x 

fi- E h  g g- ,ô =- a- 2- - -- 2- -0 Os 0- 3s ,s dg gg ;t gg-s !p8 ; : szWg~~N SN a n  2, 
~r?, a= m= e= oc. EC u, Q= Sc GZ m= "5 





OG *- il- 
scecm~-o * 



7.3 Selection of Features 

The features were arranged in the descending order of their level of contribution to 

5 10 15 20 25 30 
No of features 

+ Normal (Hold-out) + N-Par (Hold-out) 
-+ Normal (L-One-Out)- N-Par (L-One-Out) 

Figure 7.1 Cornparison of classification accuracies with selected features 

the classifier for both models (the model with twelve classes) [Table 7.3(a)] and (the model 

with thirteen classes) [Table 7.3@)]. Fust Fourier magnitude was the most significant 

[average squared canonical correlation (ASCC) = 0-07731 and the average blue was the least 

significant (ASCC = 0.5278) feature used in the model with thirteen classes [Table 7.3(b)J. 

Discriminant analyses were carried out with the fïrst 5, 10, and 15 features from Table 7.3(b) 

and the classification accuracies were compared with al1 30 features (Fig. 7.1). 

The classification summary for the first 5, 10, and 15 feature models are given in 

Appendix B. The individual ranklligs of the features are listed in Table 7.3(c). The between- 

class correlation coefficients are listed in Appendix C .  

There are only two color features in the best 15 features [Table 7.3 (c)]. Therefore a 
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Table 7.3(a) Selection of features using STEPDISC analysis with twelve classes 
in the mode1 

- - ~p - 

Number Selected features Average squared Partial r? 
canonical correlation 

Length 0.0703 0.913 
Average Red 
Average Green 
Haralick Ratio 
Rectanguiar Ratio 
Fust Fourier Magnitude 
Standard Deviation of radii 
Standard Deviation of Green 
Standard Deviation of Red 
Area Ratio 
Maximum Radius 
Second Invariant Moment 
First Invariant Moment 
Area 
Width 
Second Fourier Magnitude 
Intensity 
m e s  Ratio 
Forth Invariant Moment 
Perimeter 
Third Fourier Magnitude 
MinunuIn Radius 
Radius Ratio 
Fourth Fourier Magnitude 
Standard Deviation of Blue 
Third Invariant Moment 
Length of Minor axis 
Aspect Ratio 
Length of Principal Axis 
Average Blue 



Table 7.3(b) Seiection of features using STEPDISC analysis with thirteen cIasses 
in the mode1 

Number Selected features Average squared Partial r' 
canonical correlation 

1 First Fourier Magnitude 0-0773 0,928 
Standard Deviation of Radii 
Average Red 
Rectanguiar Ratio 
Haralick Ratio 
Average Green 
Maximum Radius 
Area 
Width 
Standard Deviation of Green 
Standard Deviation of Red 
Second Invariant Moment 
First invariant Moment 
Area Ratio 
Length 
Second Fourier Magnitude 
htensiîy 
Thinnes Ratio 
Forth Invariant Moment 
Perime ter 
Third Fourier Magnitude 
Third Invariant Moment 
Radius Ratio 
Minimum Radius 
Length of Minor Axis 
Fourth Fourier Magnitude 
Aspect Ratio 
Standard Deviation of Blue 
Length of Principal Axis 
Average Blue 



Table 73(c)  Individual rankiags of features using STEPDISC analysis with 
thirteen classes in the mode1 

Number Selected features Average squared Partial i 
canonical correlation 

1 First Fourier Magnitude 0,0773 0.928 

Standard Deviation of Radu 
L e n a  
Maximum Radius 
Perimeter 
Area 
Average Red 
Average Green 
Rec tangdar Ratio 
Width 
First invariant Moment 
Haralick Ratio 
Minimum Radius 
Second Fourier Magnitude 
Thinnes Ratio 
Length of Pricipal Axis 
Intensity 
Second Invariant Moment 
Area Ratio 
Length of Minor Axis 
Standard Deviation o f  Green 
Third Fourier Magnitude 
Fourth Fourier Magnitude 
Radius Ratio 
Average Blue 
Standard Deviation of Red 
Standard Deviation of Blue 
Fourth Invariant Moment 
Third Invariant Moment 
Aspect Ratio 



mode1 with oniy morphoiogicai features was evduated. 

The classi.fication accuracies were low when the Grst five features were used, The 

mean classification accuracy i n d  with the number of features upto the £kt 15 feanires 

selected fkom Table 7-3 (b) and remained constant thereder except for the hold-out method 

with non-pararnetric analysis where it decreased slightiy (Fig. 7.1). The addition of more 

features did not improve the performance of the classifier. It is important to note that the 

mean ciassification accuracy for the hold-out method wïth ail  30 features in the model with 

thirteen classes was around 90% aithough 100% classification was achieved in many cIasses 

(CWRS wheat, CanoIa, WiId buckwheat, and flax). This was because the classification 

accuracy for chaEcIass was very poor. Additionai colour featines llke the colour histogram. 

different combinations of R, G, and B, and textural features should be investigated for 

irnproving the classification accuracy of the chaffand the mean accuracy of the model. 

The results of thk study could be used to control a cleaner by a machine vision 

system. The impunties (dockage) at dHerent stages of cleaning could be identÏfÏed and the 

cleaner controlled accordingly. 

Zayas et al. (1 989) discriminated 33 wheat and 87 non-wheat components (foreip 

materials like wild buckwheat, giass, castor beans, yeilow foxtail) fiom a sample of 34 wheat 

grains and 99 non-wheat components- They achÏeved 100% discrimination of wild 

buckwheat fkom wheat grains. In a Iater study, Zayas et al. (1 990) identiiïed aU of the broken 

corn kernels fiom the whole corn kernels. 



7.4 Morp hology Mode1 Classifier 

A mode1 (thirteen classes) with only morphologicai features was investigated to 

evaluate the ability of morphologicai features to discriminate the dockage classes from the 

cereai grah classes. 

When the leave-one-out method was used with nomai estimation the ~Iassification 

accuracies were: CWRS wheat (99.3, durum wheat (92-8), barley (95.3, rye (90.0), oats 

(99-8), multiple-wheathead (95-8), ch& (73-9), wildoats (98-7), canola (98-1), wild 

buckwheat (95.6), flax (98.3)- broken-wheat pieces (85.0), and single-wheathead (973%) 

Fable 7.4(a)]. When the leave-one-out method with non-parametnc estimation was used the 

classi. ication accuracies were: C WRS wheat ( 1 00.0), durum wheat (95.1 ), barley (95.9), rye 

(9 1 .8), oats (1 00-O), multiple-wheathead (98.2), CM (93.6), wiidoats (993,  canola (9 8 -9)- 

wiId buckwheat (97.3)- flax (99.0), broken-wheat pieces (85.4), and single-wheathead 

(97.2%)mable 7.4(b)]- 

For the hold-out method with normal estimation the classïf?cation accuracies were: 

CWRs wheat (100.0), durum wheat (83.0), barley (92.3), rye (95.7), oats (993,  multiple- 

wheathead (98-3), chnff (8.7)- wiidoats (48.7), canoia (98-7), wild buckwheat (95.3,  flax 

(96 -7)- broken-wheat pieces (87.3)- and single-wheathead (95 -7%) [Table 7.4(c)]. For the 

hold-out method with non-parametric estimation the classif?cation accuracies were: C WRS 

wheat (100.0), durum wheat (79.3)- barley (97.3, rye (96.0), oats (993,  multiple-wheathead 

(100.0), ch& (19.0), wildoats (94.3), canola (99.0), wild buckwheat (98.0), flax (98.3), 

broken-wheat pieces (87.3), and single-wheathead (94.O%)Bable 7.4 (d)]. 

The classification accuracies were reduced little when the basic color features were 

65 







- n- c' cci? = -6 
O N Ne., 

- mm- 
g e  == * 

wœ- 
se. =c * 





removed fiom the model. The classification accuracy for the durum wheat class was reduced 

as its bright color might have improved its class~cation in the morphology-color model. 

7.5 Colour Mode1 Classifier 

A colour model (with 13 classes) was investigated to test the discrimination power 

of the basic colour features- When the leave-one-out method with normal estimation was 

used, the classification accuracies were: CWRS wheat (65-9), dunun wheat (65-1 ), barley 

(8 1.3), rye (74. l), oats (3 1.3), multiple-wheathead (58.3), chaff (75.9), wildoats (60.3), 

canola (95. l), wild buckwheat (96.7), flax (5 1.9), broken-wheat pieces (85.8), and single- 

wheathead (56.4%) [Table 7.S(a)]. When non-parametric estimation was used in the leave- 

one-out method the classification accuracies were: CWRS wheat (78.5): dunun wheat (77.4, 

barley (84.3), rye (85.7), oats (75.4), multiple-wheathead (72.2), ch& (8 1.9), wildoats 

(94.2), canola (84.0), wild buckwheat (92.8), fIax (95.9), broken-wheat pieces (78.6), and 

single-wheathead (56.1 %)[Table 7S(b)]- 

For the hold-out method with the normal estimation the classification accuracies 

were: CWRS wheat ( 7 7 3 ,  d u m  wheat (74.7), barley (65.0), rye (70.0), oats (0.0), 

multiple-wheathead (71.7), chaff (34.0), wildoats (46.3), canola (96.3), wild buckwheat 

(99.0), flax (52.3), broken-wheat pieces (82.7), and single-wheathead (55.7%) Fable 7 .S(c)] . 

When the hold-out method with non-parametric estimation was used the classification 

accuracies were: CWRS wheat (71.6), durum wheat (88.0), barley (51.0), rye (75,0), oats 

(2.7), multiple-wheathead (8 1 3 ,  chaff(50.0), wildoats (943, canola (83.7), wild buckwheat 

(96.7), flax (95.3), broken-wheat pieces (78.3), and single-wheathead (59.0%) Fable 7.5(d)]. 
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The classification accuracies for the color mode1 were very poor. A model with ody basic 

color features is not helpfiil in discriminating the dockage components tiom wheat. 

There is Little ciifference between the classification accuracies of the morphology- 

color model and the morphoIogy model, therefore, the morphology model can be used to 

discriminate the dockage components fiom wheat (Table 7.6). This would d o w  the use of 

a black and white camera to acquire the grey level images which wiil simpw the system and 

its cost. 



Table 7.6. Summary of classification accuracics for differcnt modcls and diffcrcnt iinalysis iiicthods 
Modcl Analysis Meihod 

Morphology- I.eavc-onc-out 
Color 12t 

Morphology 
13 

Color -13 

Morphalagy- 
Color- 13 

Normal 
Non-par+ 

Holdout 
Normal 
Nonopar 

Lcave-onesut 
Normal 
Non-par 

t loldoui 
Normal 
Non-par 

Leavc-one-oul 
Normal 
Non-par 

t loldoui 
Normal 
Non-par 

Leavc-onesul 
Normal 
Non-par 

t loldoui 
Normal 
Non-par 

*b Canada Western Red Spring Wheat, 43 Durum Wheai, O Multiple-wheathead, + wild huckwhcat, 4 Drokcn-whcni pieccs, 1 Sitigle-wheaihead, $ Values cxprcsscd in perccniagc, t Nunihcr of 
cluses in the niudel, 1 Singlc-wheaiheads were lncludcd in flic multiple-whcuihead cluss, + Noii pcirniiiciric csiiiiiotioii. 



CHAPTER 8: CONCLUSIONS 

For determination of physical quaiïty of wheat samples by machine vision, dockage 

coastituents have to be identified and cIassîf5edf In this study, discrunination capabilities of 

morphological and basic color features were evaluated for identification of dockage 

constituents fiom C WRS wheat and other cereal grains. Morphology-colour, Morphology, 

and Colour models were developed and compared. 

Based on this study, the foliowing conclusions were made: 

1) Division of wheathead into single- and multiple wheatheads improved the classification 

of wheathead class fkom (30% to >95%. 

2)  The model with only color features was not sufficient to discriminate the dockage 

components nom wheat (mean classification accuracy was about 70%)- 

3) The morphology model discriminated the dockage components with >90.0% classification 

accuracies. 

4) When the morphology model with thirteen classes was tested on an independent data set 

the classification accuracies were: C WRS wheat (1 00.0), dunuil wheat (79.3), barley (97.3 ), 

rye (96.0), oats (99.7), multiple-wheathead (1 00-O), ch& (1 9.O), wildoats ( 9 4 3  canola 

(99.0), wiid buckwheat (98.0), flax (98-3), broken-wheat pieces (87.3), and single-wheathead 

(94.0?40). The classification accuracies for the morphology- color model were: CWRS wheat 

( 1 00.0), dumm wheat (96.7), barley (98.3), rye (99.3), oats (99.3), multiple-wheatùead 

(1 00.0), c M ( 2  1 3, wildoats (99.7), canola (1 00.0), wild buckwheat (1 00.0), flax (1 00.C), 

broken-wheat pieces (993,  and single-wheathead (96.7%). 



5) The rnorphology-colour mode1 improved the mean classification accuracy by 1 - 3 4  when 

tested on an independent data set- 

6) It is necessary to improve the ciassifÏcation accuracy of chan for practical implementation- 
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APPENDIX B 

CLASSIFICATION ACCURACIES 
WITH 

SELECTED FEATURElS 





Table 8 2  Confusion matrix of the ten features niodel with thirtcen clusses for the hold-out method (Nornlal estiniution) 

CWRS 
wliea t(gOO)* 

p38r 
Darley 
(300) 

p i 0  ) 

@ô) 
M-Wliead 
(300) 
Chaff 
(300) 
Wildoats 
(300) 

Caiiola 
(300) 
W-bwheat 
(300) 
Ftax 
(300) 
Broken 
(300) 
Sn Wliead 

(300) 
O O O 6 6 O O O O O 292 

. - (2,O) (2.0) (97,3) 
* Saniplc size, + Values expressed in perceiitage 



Table B3 Confusion matrix of the ten features niodcl with thirtecn clnsscs for the Ieavcone-out niethocl (Non-parametric estimation) 

CWRS 3600 O O O O O O O O O 
wheat(3600) ( 1 OO+) 

O O O O 

Duruin O 1176 8 16 O O O O O O O O O O 
( 1200) (98.0) (0.7) (1.3) 
Bade 
( 1208) 

O 28 1164 8 O O O O O O O O O O 
(2.3) (97.0) (0,7) 

R Y ~  O 43 7 1150 O O O O O O O O O O 
(1 200) (3.6) (0.6) (95.8) 
Oats O O O O O O O O O O O 1%') O 

O 
( 1 200) 
M- Wliead O O O O 2 1186 1 O O O O O O 
( 1 200) (0.2) (98,3) (0.1) g 9 )  
Cliaff O O O O O O 1126 O O O O 26 48 O 
( 1 200) (93 -8) (2.2) (4.0) 
W i ldoats O O O O O O O O O O O 
(1 200) 

O 1%') O 
Canola O O O O O O O O 1197 3 O O O O 
( 1 200) (99.8) (0.2) 
w-bwheat O O O O O O O O 4 1196 O O O O 
( 1 200) (0,3) (99.7) 

th) O O O O O O O O O O 1197 3 O O 
(99.8) (0.2) 

Broken O O O O O O 17 O O O O 1183 O O 
( 1 200) (1*4) (98.6) 
S- Wliead O O O O O 14 22 O O O O O 
( 1 200) (1.2) (1.8) 

1163 2 
(96,8) (0,2) 

* Sainple size, 4- Values expressed in percentage. 







- h m + -  * P m -  ,= o c ,  









es 
mm- = =Co 

h 

o m  
mm- == 0 



Table BI 1 Confusion nlatrix of the 15 fcatures modcl with thirteen classes for the hold-out niethod (Normal estimation) 

CWRS 
wlieat(900)* 

Barle 
(300jl 

CR!) 
Qats 
(300) 

(30r),'lead 
Chaff 
(300) 

cY;'b~oats 

Cariola 
(300) 
(3N&Iiea t 

Flax 
(300) 
Broken 
(300) 
S- Wliead 

(300) 
O O O 10 3 O O O O O 

. . 
287 

(3.3) (LO) (95.7) 
* Saiiiple size, 4= Values expressed in percentage. 



Tabb R12 Confusion matrix of the 15 featurcs modcl with thirtccn elasscs for the hold-uut mcthod (Non-prametcic csha t i~n )  

- -- - - - - 

CWRS 900 O O O O O O O O O O O O O 
wtieat(900)* ( i 0O-k) 
Durum O 285 5 7 O O O O O O O O O 
(300) (95.0) (1,7) (2.3) 

3 
( 110) 

Barley O 3 297 O O O O O O O O O O O 
(300) ( 1  .O) (99.0) 

$0) 
O 2 O 298 O O O O O O O O O O 

(0.7) (99.3) 
Oats O O O O 300 O O O O O O O O O 
(300) ( 100) 

!J+?ead 
O O O O O 300 O O O O O O O O 

( 100) 
Cliaff 18 O O O 228 4 49 O O O O O O I 
(300) (6.0) (76.0) (1.3) (16.3) (0*3) 
W ildoats O O O O O O O 300 O O O O O 
(300) 

O 
( 100) 

Canola O O O O O O O O O O O O 
?POO) O (300) 

W-bwheat O O O O O O O O O O O O 
(';:O) O (300) 

Flax O O O O O O O O O O O O (':i!o) O (300) 
Brokeii O O O O O O O O O O O 297 O O 
(300) (99.0) 

(3iYead O O O O O 8 3 O O O O O 289 O 
(2,7) (1,O) (96.3) 

* Sample size, -f. Values expressed iii percelitage. 



APPENDIX C 

BETWEEN-CLASS CORRELATION COEFFICIENT MATRICES 



'l'able C 1 Betwecri-class corrclaiioii cocfliciciii iiiairix of iiioipliological niid h i c  color featiircs 

I ~ c t  wccn-~~ass  Corrcta t ion Cocfficicnts I 







APPENDIX D 

SAMPLES OF DOCKAGE CLASSES 



1 -multiple wheathead, 2-single wheathead, 3 - c h a ,  
4-broken-wheat, 5- wild buckwheat, 6-wildoats. 

Fig. D 1 Samples of docknge classes 




