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Abstract

This thesis provides a review of left/right orderable and circularly orderable groups.

A detailed proof of the classical Farrell’s theorem for left orderable groups is given,

and is generalized to the case of circularly orderable groups through a cohomological

argument. This generalizes the classical Farrell’s theorem, in the sense that left

orderable group may be viewed as the special case of circularly orderable group.
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Introduction

In this chapter we will discuss the purpose of this thesis and outline the goals of

each subsequent chapter. We know that algebraic topology uses tools from abstract

algebra to study topological spaces. The theory of orderable groups provides one

instance where we see a remarkable interplay between topology and group theory.

For example, the existence of foliations of certain 3-manifolds and non-zero degree

of a map between them is associated with the left orderabilty of their fundamental

group [21].

In this thesis we will discuss one such application via Farrell’s theorem. This theo-

rem provides conditions that guarantee the existence of an embedding of a covering

space p : X̃ → X through right orderability of the fundamental group of a given

triangulable topological space, and conversely. The main purpose of this thesis is

to generalize Farrell’s theorem to circular orderable groups. Right orderable groups

may be viewed as special cases of circularly orderable groups. The brief outline of

the thesis is as follows:

In Chapter 2, the definitions of left orderable and bi-orderable groups are given along

with their main properties. Archimedean ordered groups are defined and Hölder’s

theorem is proved which states that the additive group of reals (R,+) is universal for
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Archimedean groups. Finally, “the universal theorem” for countable left-orderable

groups is stated, which states that any countable left-orderable group may be em-

bedded into the group of order preserving homeomorphisms of the real numbers.

In Chapter 3, the proof of Farrell’s theorem is discussed in detail. This theorem

connects an embedding of the universal covering space with the right-orderability of

the fundamental group of a triangulable space. Our main purpose is to generalize

Farrell’s theorem to circular orders which is achieved in Chapter 5.

In Chapter 4, circular and secret left orders on a group are introduced and the

relationship between them is established through the second cohomology group. It

is discussed how a left/right ordering may arise as a special case of a circular ordering.

In Chapter 5, we provide the generalization of Farrell’s theorem to circular or-

derable groups in one direction, and provide a counterexample for the converse.
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2

Orderable Groups

In this chapter, we give an introduction to left orderable and bi-orderable groups.

We shall state and prove some main results concerning left orderability of a group.

In particular, we shall introduce Archimedean ordered groups and provide a detailed

proof of Hölder’s theorem, which states that the additive group of reals (R,+) is

universal for Archimedean ordered groups. Finally, we shall state and discuss what

is called the dynamic realization of left orderings, which provides an embedding of any

countable left orderable group into the group of order preserving homeomorphisms of

the real numbers. There are many useful reference books on ordered groups, such as

Right-ordered groups by Kopytov and Medvedev [16], Orderable groups by Mura and

Rhemtulla [19], Fully ordered groups by Kokorin and Kopytov [15], Ordered Groups

and Topology by Adam Clay and Dale Rolfsen [7], Partially ordered groups [13] by

A. M. W. Glass, and Groups, orders, and dynamics [9] by Deroin, Navas and Rivas.

2.1 Left and Bi-orderable groups

We start with the definitions:

A relation < is a strict order on a set X if it is:

1 Irreflexive: x < x does not hold for any x ∈ X.
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2 Asymmetric: if x < y, then y < x does not hold.

3 Transitive: x < y and y < z implies x < z.

A strict order is total if for any x, y ∈ X, either x < y, y < x or x = y.

Definition 2.1. A group G is left orderable if there is a strict total order < on G

which is left invariant, that is for all f, g, h ∈ G, the relation g < h holds if and only

if fg < fh holds.

Definition 2.2. A group G is right orderable if there is a strict total order < on G

which is right invariant, that is for all f, g, h ∈ G, the relation g < h holds if and

only if gf < hf holds.

Definition 2.3. The group G is said to be bi-orderable if it admits a strict total

order < which is both left and right invariant, in the sense of Definition 2.1 and 2.2.

The elements of G which are greater than the identity element are called positive,

and the subset of such elements of G is called the positive cone of the ordering.

The additive group of reals (R,+), rationals (Q,+) and integers (Z,+) are bi-

orderable groups under their usual orderings.

We give some important properties of left orderable and bi-orderable groups:

Proposition 2.4. We have:

(1) In a left orderable group G one has 1 < g if and only if g−1 < 1.

(2) In a left orderable group G, if 1 < g, 1 < h then 1 < gh.

(3) If f and g are elements of a left-orderable group and f 6= 1, then g is strictly

between fg and f−1g, and strictly between gf and gf−1.

Proof. (1) Suppose 1 < g, since G is left orderable, we get g−1 < g−1g or g−1 < 1.

Conversely, suppose that g−1 < 1, then by left orderability of G, we have gg−1 < g
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or 1 < g.

(2) Given 1 < h, this gives by left-invariance, g < gh. Then, by 1 < g and

transitivity in G, it follows that 1 < gh.

(3) To show fg < g < f−1g, whenever f 6= 1, it suffices to show that, g−1fg <

1 ⇔ 1 < g−1f−1g for every g ∈ G. This is true because, g−1fg = (g−1f−1g)−1 so

that if g−1fg < 1, then g−1f−1g > 1 or fg < g then f−1g < g. This by transitivity

gives, fg < g < f−1g.

Now, we show gf < g < gf−1, f 6= 1. Since f 6= 1 and < is a total order, we can

well assume that f < 1. This by left-invariance gives gf < g. Also by Proposition

2.4, f < 1 implies f−1 > 1 which further by left-invariance implies gf−1 > g. By

transitivity, we get gf < g < gf−1. If f > 1, a similar argument holds.

A right ordering on the group G is “the same as” a left ordering through the

following correspondence.

Proposition 2.5. If < is a left-ordering on G, then g ≺ h ⇔ h−1 < g−1 defines a

right-ordering ≺ which has the same positive cone, that is 1 ≺ g ⇔ 1 < g.

Proof. We show ≺ is right ordering on G. Let g ≺ h which means h−1 < g−1. This,

by left-invariance gives f−1h−1 < f−1g−1 or (hf)−1 < (gf)−1 which by definition of

≺ implies that hf ≺ gf , in other words, ≺ is a right-ordering on G.

Also, suppose that 1 < g which by Proposition 2.4 implies g−1 < 1, which further,

by definition of ≺ implies that 1 ≺ g. Similarly, 1 ≺ g implies 1 < g.

The following result shows that a left orderable group cannot be finite, except

the trivial group.

Proposition 2.6. Left orderable groups are torsion free, hence infinite.
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Proof. Suppose G is a non-trivial left orderable group and g 6= 1 ∈ G. Suppose

g > 1. Then by left invariance g2 > g, so that g2 > 1 by transitivity. Repeating the

argument, we have that gn > 1 for every n ∈ N so that gn 6= 1 for any n. Thus G is

torsion free and hence infinite.

For example, the multiplicative group of non-zero reals (R, ·) cannot be left or-

dered since the element −1 has order two which is not possible by Proposition 2.6.

The converse of Proposition 2.6 is not true, that is, there exists a torsion free group

which is not left orderable. More specifically, consider the crystallographic group

G = 〈a, b|a2ba2 = b, b2ab2 = a〉. This group is generated by the rigid motions

a(x, y, z) = (x+1, 1−y,−z), b(x, y, z) = (−x, y+1, 1−z), c(x, y, z) = (1−x,−y, z+1)

acting on R3 with coordinates x, y, z. One can check that a2ba2 = b, b2ab2 = a and

abc = id. One generator may be eliminated by the last relation. This group is torsion

free but not left orderable (see [7] for details).

Left orderable groups behaves nicely with respect to extensions in the following

way:

Proposition 2.7. Suppose G is a group with normal subgroup K and quotient

group H ∼= G
K
. In other words, suppose there is an exact sequence,

1 −→ K ↪→ G
p−→ H −→ 1.

Further suppose (H,<H) and (K,<K) are left-ordered groups. Then we can give G

a left-ordering defined in a sort of lexicographic way:

declare that g < g′ if and only if p(g) <H p(g′) or p(g) = p(g′) (so g−1g′ ∈ K) and

1 <K g−1g′.

Proof. Suppose g < g′, we prove left-invariance and transitivity of <.

Left-Invariance:

Case 1: If p(g) <H p(g′) then p(fg) = p(f)p(g) <H p(f)p(g′) = p(fg′) for every
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f ∈ G. This by definition implies that fg < fg′ so that < is left-invariant in his

case.

Case 2: If p(g) = p(g′) with 1 <K g−1g′ then p(fg) = p(fg′) with (fg)−1fg′ =

g−1f−1fg′ = g−1g′ >K 1 which implies that fg < fg′ for every f ∈ G. Hence < is

left-invariant in both cases.

Transitivity: Suppose g < g′ and g′ < f , then

Case 1: p(g) <H p(g′) and p(g′) <H p(f) implies that p(g) <H p(f) which means

g < f .

Case 2: p(g) <H p(g′) and p(g′) = p(f) implies p(g) <H p(f) so that g < f .

Case 3: p(g) = p(g′) and p(g′) <H p(f) implies that p(g) <H p(f) which means

g < f .

Case 4: If p(g) = p(g′) with 1 <K g−1g′ and p(g′) = p(f) with 1 <K g′−1f . For

g′−1f >K 1, left-invariance implies g−1g′(g′−1f) >K g−1g′ >K 1 or g−1(g′g′−1)f >K 1

or g−1f >K 1 so that g < f . Hence the transitivity.

We provide some important properties of bi-orderable groups:

Proposition 2.8. We have:

(1) A left ordering is a bi-ordering if and only if the ordering is invariant under

conjugation.

(2) In a bi-orderable group, g1 < h1, g2 < h2 implies g1g2 < h1h2.

(3) Bi-orderable groups have unique roots, that is, if gn = hn for some n > 0 then

g = h.

(4) In a bi-orderable group G, gn commutes with h if and only if g commutes with

h.

(5) Bi-orderable groups do not have generalized torsion: any product of conjugates of

a non-trivial element must be non-trivial. In particular, x−1yx = y−1 implies y = 1.

Proof. (1) Suppose the left-ordering < is bi-ordering. Let g < h, then left-invariance

gives f−1g < f−1h and right-invariance gives f−1gf < f−1hf . Hence, < is invariant
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under conjugation.

Conversely, suppose the left-ordering < is a invariant under conjugation. Let g < h.

This gives by conjugation f−1gf < f−1hf which further by left-invariance gives

f(f−1gf) < f(f−1hf) or gf < hf , that is, < is right-ordering as well. Thus, <

is a bi-order on G. (2) Let g2 < h2, then by left-invariance we get g1g2 < g1h2.

Also, by right-invariance g1 < h1 implies g1h2 < h1h2. Thus by transitivity, we get

g1g2 < h1h2.

(3) Suppose gn = hn for some n > 0 but g 6= h. Since < is a total order on G, we

must have either g < h or g > h. Without loss of generality, assume that g < h.

Applying (2) repetitively, we get g2 < h2, g3 < h3, ..., gn < hn for every n > 0, a

contradiction. Hence, g = h.

(4) Suppose that gh = hg, we prove gnh = hgn for every integer n 6= 0.

We have gh = hg implies g2 = h = ghg = hgg = hg2, which further implies

g3h = ghg2 = hgg2 = hg3. Thus inductively, we get gnh = hgn.

Conversely, suppose that gnh = hgn (equivalently h−1gnh = gn) for some non zero

integer n. Now consider (h−1gh)n = h−1gnh = gn, that is, (h−1gh)n = gn. By the

unique root extraction property of bi-orderable groups, that is by (3), we get h−1gh =

g or gh = hg. More generally, suppose gnhm = hmgn(equivalently h−mgnhm = gn)

for some non zero integers m and n. Consider, (h−mghm)n = h−mgnhm = gn or

(h−mghm)n = gn, which by a unique root extraction property of bi-orderable groups

gives h−mghm = g or ghm = hmg, which by (1) implies that hg = gh.

(5) Let G be bi-orderable. Suppose G contains a generalized torsion element, say

g 6= 1, so that any product of conjugates of g is 1, that is,

∏
i

(a−1
i gai) = 1.

Since g 6= 1, g < 1 or g > 1. Assume g > 1, by bi-orderability, this implies a−1
i gai > 1
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for every i, so that any product of such positive elements is positive, contradiction.

Similarly, we prove the case when g < 1.

Also, suppose y 6= 1 but x−1yx = y−1. Since, y is non-trivial, any conjugate x−1yx

of it must be non-trivial, say x−1yx < 1. This gives, by right and left multiplication,

yx < x or y < 1. But, x−1yx < 1 also implies y−1 < 1 or y > 1, contradiction.

It is clear that both left orderability and bi-orderablity are preserved under tak-

ing subgroups and direct products. If (A,<A) and (B,<B) are left orderable (bi-

orderable) groups, then their direct product A×B is also left orderable (bi-orderable)

by using the lexicographic ordering, that is, (a, b) < (a′, b′) if and only if a <A a
′ or

else a = a′ and b <B b
′.

Recall by Proposition 2.7 that left orderablility behaves nicely with respect to

extensions, however the following example shows that the bi-orderability is not well

behaved by the extensions:

Example 2.1.1. The Klein bottle group K is left orderable but not bi-orderable.

This example shows that there is a group G that fits into a short exact sequence

1→M → G→ N → 1 where M and N are bi-orderable but G is not bi-orderable.

Proof. We have K = π1(Klein Bottle) ∼= 〈x, y | xyx−1 = y−1〉. Let 〈y〉 be the

subgroup of K generated by y. Then 〈y〉 is the normal subgroup of K isomorphic to

Z and is invariant under conjugation, that is, for every y ∈ 〈y〉, xyx−1 = y−1 ∈ 〈y〉.

We see that the presentation H = 〈x, y | xyx−1 = y−1, y = 1〉 is the group K
〈〈y〉〉

where 〈〈y〉〉 is the normal closure of y, that is, the smallest normal subgroup of K

containing y.

Thus 〈〈y〉〉 = 〈y〉 so that K
〈y〉 = H = 〈x, y | xyx−1 = y−1, y = 1〉 which is clearly seen

to be the infinite cyclic group after applying Tietze transformation, that is, remove

y from the list of generators and replace it with the identity so we get K
〈y〉
∼= Z. Thus
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we have the following short exact sequence,

1 −→ 〈y〉 ↪→ K
p−→ K

〈y〉
−→ 1

Since K
〈y〉
∼= 〈y〉 ∼= Z is left orderable, it follows from Proposition 2.7 that the group

K is also left-orderable.

Also suppose that the group K can be given a bi-order. Let y < 1, y ∈ K, then by

left-invariance xy < x and by right-invariance xyx−1 < xx−1 = 1 or y−1 < 1. That

is, y < 1 implies y−1 < 1, a contradiction by Proposition 2.4.

There is another way to prove that the Klein bottle group is not bi-orderable:

Example 2.1.2. The Klein bottle group K does not have unique roots.

Proof. Let H = 〈x, y|xyx−1 = y〉 be the Klein bottle group and G = 〈a, b|a2 = b2〉.

We shall define an explicit function h : G→ K by assigning h(a) and h(b) expressions

as words in x and y and show that the relation a2 = b2 in the domain implies

xyx−1 = y in the range, so that h is a homomorphism. Similarly, we shall define a

homomorphism in the other direction and verify that it is inverse to h.

Define h : G→ H by

h(a) = x, h(b) = y−1x

which is a well-defined homomorphism since we have:

a2b−2 = x2(y−1x)−2 = x2((y−1x)−1)2 = x2(x−1y)2

= x2(x−1y)(x−1y) = xxx−1yx−1y = xyx−1y = 1H .

where 1H is the identity element of H. Next, define f : H → G by:
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f(x) = a, f(y) = ab−1

which is well-defined since:

xyx−1y = a(ab−1)a−1ab−1 = a2b−1b−1 = a2b−2 = 1G.

where 1G is the identity element of G. Finally, to show that h is a bijection, we prove

f is a two-sided inverse of h as:

f(h(a)) = f(x) = a, f(h(b)) = f(y−1x) = f(y−1)f(x) = (ab−1)−1a = ba−1a = b

and

h(f(x)) = h(a) = a, h(f(y)) = h(ab−1) = h(a)h(b−1) = x(y−1x)−1 = xx−1y = y

Thus G isomorphic to H.

The association a → x, b → y−1x is a homomorphism from G to H. Since

x 6= y−1x but we still have a2 = b2, that is x2 = (y−1x)2. Hence by Proposition 2.7

(3), K is not bi-orderable.

The following results give the characterization of left orderable and bi-orderable

groups through their subsets [7].

Theorem 2.9. A group G is left-orderable if and only if there exists a subset P ⊂ G

such that:

(1) P · P ⊂ P and

(2) ∀g ∈ G, exactly one of g = 1, g ∈ P or g−1 ∈ P holds.

Proof. Suppose (G,<) is left-orderable, we prove there exists P such that conditions
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(1) and (2).

Set P = {g ∈ G | g > 1}, the set of positive elements in G.

Condition 1: Let g1, g2 ∈ P so that g1 > 1, g2 > 1. By Proposition 2.4, g1 > 1

implies g2g1 > g2 > 1. Hence, P · P ⊂ P .

Condition 2: Suppose g 6= 1 and g ∈ P , that is g > 1, which by implies Proposition

2.4 that g−1 < 1, which further implies that g−1 is not in P .

Conversely, given such a P = {g ∈ G | g > 1} satisfying conditions (1) and (2). Then

we can define a left-order on G as : given g, h ∈ G, g < h if and only if g−1h ∈ P ,

g, h ∈ G

Left-Invariance : Suppose g < h so that g−1h ∈ P . Now, given f ∈ G, (fg)−1fh =

g−1f−1fh = g−1h ∈ P , which implies that fg < fh.

Transitivity: Suppose f < g and g < h so that f−1g ∈ P, g−1h ∈ P .

By condition (1), we have f−1g · g−1h = f−1h ∈ P , which implies that f < h. Also,

the ordering is total by condition (2).

Theorem 2.10. The group G is bi-orderable if and only if it admits a subset P

satisfying the conditions (1) and (2) of Theorem 2.9, and in addition:

(3) gPg−1 ⊂ P ∀g ∈ P.

Proof. Suppose (G,<) is bi-orderable, we prove condition (3) for P = {g ∈ G : g >

1}.

Let a ∈ P , that is a > 1, then by left-invariance ga > g and by right-invariance

gag−1 > gg−1 = 1, so that gag−1 ∈ P . Hence, gPg−1 ⊂ P ∀g ∈ P .

Conversely, suppose that condition (3) holds. It suffices to prove that (G,<) is right

invariant, where < is defined by g < h if and only if g−1h ∈ P .

Let g < h so that g−1h ∈ P . Now (gf)−1hf = f−1g−1hf = f−1(g−1h)f ∈ P and

let f ∈ G be given. The last expression follows from condition (3) since g−1h ∈ P .

Thus fg < fh.

Note that the condition (3) is equivalent to g−1Pg ⊂ P .
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2.2 Hölder’s Theorem and Dynamic Realization

of Left Orderings

In this section, we provide some important dynamical properties related to left or-

derability of a group.

Definition 2.11. A left ordering < of a group is called Archimedean if for every

pair of positive elements x, y ∈ G, there exists a natural number n such that x < yn.

The standard orderings of (R,+) and (Q,+) are Archimedean. The additive

group Z2 can be bi-ordered lexicographically, that is, we define order ≺ on Z2 as

(x, y) < (x′, y′) if and only if x < x′ or (x = x′ and y < y′) where < is the usual

order on Z. Another way to bi-order Z2 is to consider Z2 as sitting in the plane R2.

Let ~m = (m1,m2), ~n = (n1, n2) ∈ Z2 and ~v = (v1, v2) ∈ R2 with irrational slope. We

define a bi-ordering on Z2 as following:

~m <v ~n⇐⇒ m1v1 +m2v2 < n1v1 + n2v2.

We have the following result related to above ordering of Z2:

Example 2.2.1. The orderings of Z2 constructed in previous paragraph are Archimedean,

whenever the vector ~v ∈ R2 has irrational slope. On the other hand, the lexicographic

ordering is not Archimedean.

Proof. Let ~m,~n ∈ (Z2,+) be positive elements. The mentioned ordering on Z2 will

be denoted by <v and the usual ordering on R by <. We prove that ~m < t~n for

some integer t > 0.

Since Z is Archimedean, for all m1,m2, n1, n2 ∈ Z, there exists integers t1 > 0

and t2 > 0 such that ~m1 < t1 ~n1 and ~m2 < t2 ~n2. These give by invariance in Z,
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~m1v1 < t1 ~n1v1, ~m2v2 < t2 ~n2v2.

Take t = max(t1, t2), then we get, ~m1v1 + ~m2v2 < t ~n1v1 + t ~n2v2 or (m1,m2) <v

(tn1, tn2) or ~m <v t~n. Hence Z2 is Archimedean with respect to <v.

Finally, we prove that the lexicographic ordering on Z2 is not Archimedean. Suppose

on the contrary that lexicographic ordering on Z2 is Archimedean. We note that both

(0, 1) and (1, 0) are greater than the origin (0, 0) with respect to the lexicographic

ordering on Z2. By the definition of lexicographic order, we see that (0, 1) < (n, 0)

for every natural n ≥ 1, that is, (0, 1) < n(1, 0). This implies that there doesn’t exist

any n ≥ 1 such that (0, 1) > n(1, 0), contradiction to the Archimedean property.

For the Archimedean ordered groups, we have the following results.

Proposition 2.12 ([8]). Every Archimedean left ordering is a bi-ordering.

Proof. Let P be the positive cone of an Archimedean left orderable group (G,<).

We use Theorem 2.9 to show that < is a bi-ordering on G, that is, we show that

x−1yx ∈ P for every x ∈ G and y ∈ P .

Case 1: Let x be positive element in G and let y ∈ P . By Archimedean property,

there exists a n > 0 such that x < yn. By left invariance, we have 1 < x−1yn. This

implies 1 < x−1ynx = (x−1yx)n since the product of positive elements is positive.

Since (x−1yx)n is positive, this means x−1yx is positive so that x−1yx ∈ P .

Case 2: Let x be negative so that x−1 is positive and let y ∈ P be a positive element

in G. By Archimedean property, there exists an n > 0 such that x−1 < yn. By left

invariance, we have 1 < xyn. This implies 1 < xynx−1 since the product of positive

elements is positive. This further implies that xyx−1 is positive so that xyx−1 ∈ P .

Proposition 2.13 (for proof see [7]). Every Archimedean left ordered group is

abelian.
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Recall the Archimedean left orderable group (Z2, <v) from Example 2.2.1. We

can view (Z2, <v) as the subgroup of (R,+) through the following correspondence:

Example 2.2.2. Define a map φ : Z2 −→ (R,+) by

φ(~m) = ~m · ~v
||~v||

;

where vector ~v has the irrational slope. Then φ is order preserving and injective

homomorphism.

Proof. Let ~m and ~n be in Z2, then

φ(~m) = φ(~n)

=⇒ ~m.~v

||~v||
= ~n · ~v
||~v||

=⇒ ~m · ~v = ~n · ~v

=⇒ m1v1 +m2v2 = n1v1 + n2v2

=⇒ m1 +m2α = n1 + n2α

=⇒ m1 − n1 = (n2 −m2)α

where α = v2
v1

is the slope of ~v, which is given to be irrational. Since α is irrational

and ~m,~n ∈ Z2, the above equation necessarily implies that to be true

m1 = n1,m2 = n2
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that is, ~m = ~n, hence φ is injective.

Let ~m,~n ∈ Z2 with

~m <v ~n

⇐⇒ m1v1 +m2v2 < n1v1 + n2v2

⇐⇒ m1v1 +m2v2

||~v||
<
n1v1 + n2v2

||~v||

⇐⇒ φ(~m) < φ(~n)

Hence φ is order-preserving homomorphism.

The above example shows that the Archimedean group (Z2, <v) can be embedded

into the group of reals (R,+) in such a way that the order is preserved. In fact, this

is true for every Archimedean left ordered group. Hölder’s theorem asserts that the

group of reals (R,+) acts as a universal for Archimedean left orderable groups. This

is our next result to prove.

Theorem 2.14 (Hölder [14]). The additive group of reals (R,+) is universal for

Archimedean left orderable groups G, that is, every Archimedean left ordered group

G is isomorphic with a subgroup of the additive reals, by an isomorphism under

which the ordering of G corresponds the usual order of R.

Proof. Fix f ∈ G, f > 0.

Given any g ∈ G and a fixed positive integer n, since G is Archimedean there exists

an unique integer an (dependent on f, g and n) such that fan ≤ gn < fan+1.

For each g ∈ G and every n, define a map φ : G −→ R by φ(g) = limn→∞
an

n
so that

fan ≤ gn < fan+1. Without loss of generality, we can assume that φ(f) = 1, and
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let φn(g) = an

n
so that φ = limn→∞

an

n
. We need to prove that the sequence {φn}∞n=1

is convergent so that the map φ is well-defined. It suffices prove the convergence of

the subsequence {ψn = an

2n }∞n=1. Letting ψn = an

2n , we prove that {ψn}∞n=1 is Cauchy.

Since G is Archimedean hence biorderable, by the Proposition 2.8 (2), the inequality

fan ≤ g2n
< fan+1 implies that f 2an ≤ g2n+1

< f 2(an+1). This further implies that

ψn+1 lies between 2an

2n+1 = ψn and 2(an+1)
2n+1 = ψn + 1

2n , that is, ψn ≤ ψn+1 < ψn + 1
2n .

Letting n goes to infinity, we see that the sequence {ψn}∞n=1 is Cauchy and hence

convergent.

1. φ is a homomorphism: Let g1, g2 ∈ G, then we have the existence of an

and bn with fan ≤ gn1 < fan+1 and f bn ≤ gn2 < f bn+1. Since G is bi-orderable and

abelian, we get

fan+bn ≤ gn1 g
n
2 = (g1g2)n < fan+bn+2.

This means, φn(g1g2) lies between an+bn

n
= φn(g1) + φn(g2) and an+bn+2

n
= an

n
+

bn

n
+ 2

n
= φn(g1) + φn(g2) + 2

n
, that is, we have

φn(g1) + φn(g2) ≤ φn(g1g2) < φn(g1) + φn(g2) + 2
n

Letting n goes to infinity, we get φ(g1g2) = φ(g1) +φ(g2), since limn→∞ φn(g) = φ(g)

by definition.

2. φ is order preserving: Let g1 < g2, this gives, gn1 < gn2 for all n > 0. Let an

and bn be the largest possible values with fan ≤ gn1 and f bn ≤ gn2 .

Since, gn1 < gn2 , we must have an ≤ bn. Thus φn(g1) = an

n
≤ bn

n
= φn(g2). This gives,

φ(g1) ≤ φ(g2), so that φ is order preserving.
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3. φ is injective: Let h ∈ G such that φ(h) = 0. We claim h must be an

identity. Suppose that h 6= 0, then either h > 0 or h < 0.

Assume first that h > 0, then by Archimedean property in G, exists integer n > 0

such that f < hn. Since φ is an order preserving homomorphism, we get φ(f) <

nφ(h). This gives, 1 < n · 0, a contradiction.

If h < 0, then h−1 > 0, thus there exists integer m > 0 such that f < (h−1)n. Since

φ is order preserving, we get φ(f) < n(φ(h))−1. This gives 1 < n · 0, a contradiction.

Thus h must be the identity. Hence φ is injective.

Thus we have seen that Hölder’s theorem gives an order preserving embedding

from Archimedean group G into (R,+). Next we discuss the universal theorem for

left orderable countable group G. The theorem asserts that a countable group G is

left-orderable if and only if there is an embedding from G into Homeo+(R), where

Homeo+(R) denotes the group of all order preserving homeomorphisms of the real

line. The standard way of constructing such an embedding is called the dynamic

realization. We prove the one direction in the next example:

Example 2.2.3. Homeo+(R) is left orderable.

Proof. Let {x1, x2, . . . } be a countable dense subset of reals. For two functions

f, g ∈ Homeo+(R), define an order by choosing m = m(f, g) to be the minimum i

for which f(xi) 6= g(xi) and the declare f ≺ g if and only if f(xm) < g(xm) in the

natural ordering of R. We prove this is indeed a left ordering on Homeo+(R).

Left Orderability: Let f ≺ g, this means that f(xm) < g(xm) where m is the mini-

mum i such that f(xi) 6= g(xi). For h ∈ Homeo+(R), this implies h(f(xi)) < h(g(xi))

or hf < hg, equivalently, hf ≺ hg.

Transitivity: Let f ≺ g and g ≺ h. Further, let m1 = m1(f, g) be the minimum i

with f(xi) 6= g(xi) and f(xi) < g(xi), and m2 = m2(g, h) be the minimum k with
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g(xk) 6= h(xk) and g(xk) < h(xk).

Take, t = min(i, k), then f(xt) < h(xt) with t being minimum such that f(xt) 6=

h(xt). Hence, transitivity.

Ordering is Total: Since, {xi}∞i=1 is dense in R and if f, g ∈ Homeo+(R), then f = g

if and only if f(xi) = g(xi) for every i.

Finally we state the important result of this section, a variant of of which is to

be used in the proof of Farrell’s Theorem:

Theorem 2.15. A countable group G is left-orderable if and only if G is isomorphic

to a subgroup of Homeo+(R).

We have proved the one direction in Example 2.2.3. For the other direction of

the proof, one may see [20, 7].
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3

Proof of Farrell’s Theorem

In this chapter, we discuss the proof of Farrell’s theorem [11, 7] in detail. This theo-

rem connects an embedding of the universal covering space with the right-orderability

of the fundamental group of the base space, and hence provides an example of inter-

play between topology and and the theory of orderability of groups.

3.1 Embedding Problem

One of the fundamental problems in various branches of mathematics is the embed-

ding problem, which asks for the conditions under which one object can be made

to sit inside another object. Farrell’s theorem deals with the topological embedding

problem for which we review we review the following definitions:

Definition 3.1. An injective continous map f : X → Y between topological spaces

X and Y is a topological embedding if f yields a homeomorphism between X and

f(X).

Let M and N be smooth manifolds and f : M → N be a smooth map. Then f

is called an immersion if its derivative is everywhere injective.

Definition 3.2. A smooth embedding is defined to be an injective immersion which
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is an embedding in the above topological sense.

A topological embedding lets us treat X as a subspace of Y and smooth embed-

ding lets us treat the image of X as a submanifold of Y .

One of the most famous embedding theorem in topology is as follows:

Theorem 3.3 (Whitney Embedding Theorem). Any smooth real manifold M of

dimension n can be embedded in R2n.

Here we are concerned about the embedding problem applied to covering spaces.

We summarise the basic results from the theory of covering spaces below [1].

3.2 Background from Covering Spaces

We start with the definition of covering space:

Definition 3.4. Let X be a topological space. A covering space X̃ of X is a

topological space X̃ together with a continuous surjective map p : X̃ −→ X satisfying

the following properties:

(1) For every x ∈ X, there exists an open neighbourhood U of x, such that p−1(U)

is a disjoint union of open subsets {Uα}α∈J of X̃.

(2) Each Uα is mapped onto U homeomorphically by p.

The neighbourhood U is called evenly covered neighbourhood of x, the open sets

{Uα}α∈J are referred to as sheets lying above U and for x ∈ X, the subset p−1(x) of

X̃ is called the fiber over x. The covering X̃ is called universal covering space if it

is simply connected.

Theorem 3.5 (Path Lifting Lemma [1]). If p : X̃ −→ X is a covering space with

x ∈ X, r ∈ X̃, p(r) = x and if α is a path in X from x to y, then there is a unique

path α̃ in X̃ starting at r with p ◦ α̃ = p.
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Theorem 3.6 ([1]). Suppose p : X̃ −→ X and α̃1 : [0, 1] −→ X̃ and α̃2 : [0, 1] −→ X̃

are two lifts of path α : [0, 1] −→ X such that α̃1(t0) = α̃2(t0) for some t0 ∈ [0, 1].

Then the two lifts agree on the whole interval namely, α̃1(t) = α̃2(t) for every t ∈

[0, 1].

Definition 3.7. A covering transformation or deck transformation of a covering

space X̃ is defined as a homeomorphism T : X̃ −→ X̃ such that p ◦ T = p.

The set of all deck transformations of X̃ forms a group under composition of

maps, denoted by Deck(X̃,X). We recall the standard correspondence between

the deck Deck(X̃,X) transformation and the fundamental group π1(X) when X̃ is

universal. Choose x̃0 = p−1(x0) ∈ X̃. Since T ∈ Deck(X̃,X) is a permutation on

p−1(x0), choose a path α from x̃0 to T (x̃0) in X̃. Now p ◦ α is some closed path at

x0, say γ in X. The map M which sends T ∈ Deck(X̃,X) to [γ] ∈ π1(X, x0) is an

isomorphism. Thus we have the following result:

Theorem 3.8 ([1]). If X̃ is the universal covering space of X, then Deck(X̃,X) '

π−1(X).

There is an action of π1(X, x0) on the fibres p−1(x0). Take [γ] ∈ π1(X, x0) and

send it to the deck transformation T satisfying T (x̃0) = γ̃(1) where γ̃ is the lift of γ

starting at base point x̃0. Thus T is defined to be the end point of a lift of the path

γ.

For simplicity, we write this action as: [γ](x̃0) = γ̃(1), thinking of [γ] as acting on

p−1(x0) given by above the correspondence.

3.3 Farrell’s theorem

Now we specify the exact problem we are going to address in this chapter. Let

p : X̃ → X be a universal covering space, where the space X has a countable
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fundamental group, and admits a triangulation. Also let q : X×R→ X be projection

on first factor, where R denotes a real line. Then the problem we are going to address

is the following:

Question 3.9. Does there exists an embedding f : X̃ → X×R such that q ◦f = p?

Farrell’s theorem answers this question in terms of the right-orderability of the

fundamental group of the space X. Before proceeding to the proof of Farrell’s the-

orem which deals with the embedding of covering spaces, we prove the following

trivial result about the embedding of n-sheeted coverings:

Theorem 3.10. Let p : Y → X be an n-sheeted covering map, where X is a

manifold. If X is compact, then Y can be immersed in R2k for some natural number

k.

Proof. Since X is a manifold, the covering space Y is also a manifold because of the

local homeomorphism provided by the covering map. We prove Y is compact.

Let C1 be any open covering of Y . For each p ∈ X, we choose an open set p ∈ Uα ⊂ X

such that

(i) Y is trivial over U

(ii) each lift of U is contained in some element of C1.

Then C2 is an open covering of X which has a finite subcovering D1 = {Ui}ni since

X is compact. Then the collection D2 = {p−1(Ui)}ni is the finite subcover of C1 so

that Y is compact. Hence by the Whitney embedding theorem, Y can be embedded

in R2k+2 and immersed in R2k for some natural number k.

The next two propositions prove Farrell’s theorem, but before that we have a

lemma:

Lemma 3.11. If A is a countable, totally ordered set, then there exists an order

preserving injection ψ : A→ R with discrete image in R (set of reals).
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Proof. Let {xi}∞i=0 be an enumeration of A. We will define ψ(xn) by induction on n.

This can be done by defining a sequence (Ij) of disjoint bounded open intervals.

We start by mapping x0 to any arbitrary real number and let I0 be any bounded

open interval around ψ(x0). In particular, we can take I0 symmetrically so that

ψ(x0) is its mid-point. Suppose ψ(x0), ψ(x1), . . . , ψ(xn−1) have been already defined

in the above manner. Now we map xn appropriately so that ψ(xn) is not contained

in ⋃ Ij
j<n

.

Let Sn = {xi | i ≤ n}. Then xn has a certain position in Sn. Let x−n be the largest

element in Sn which is smaller than xn and let x+
n be the smallest element in Sn which

is larger than xn, so that we have x−n < xn < x+
n . Also by induction assumption, let

ψ(x−n ) ∈ Ij and ψ(x+
n ) ∈ Ik for some j, k < n, where Ij and Ik are disjoint intervals.

Then we map xn to something in the interval (ψ(x−n ), ψ(x+
n )). To be specific, let a

be the right end point of Ij and b be the left end point of Ik, then ψ(x−n ) < a <

b < ψ(x+
n ). Let In = (c, d) such that a < c < d < b and we choose ψ(xn) ∈ (c, d).

In particular, we can take ψ(xn) = c+d
2 . Note that by construction, we have that

x−n < xn < x+
n implies ψ(x−n ) < c+d

2 < ψ(x+
n ) or ψ(x−n ) < ψ(xn) < ψ(x+

n ) so that

ψ is ordering preserving. Also note that ψ is injective with discrete image since the

collection Ij has been chosen as disjoint and ψ maps the elements of A onto the

mid-points of Ij inductively.

Proposition 3.12 ([11]). Let p : X̃ → X be a universal covering space and b0 ∈ X.

If there exists a continuous function h : X̃ → R such that the map f : X̃ → X × R

defined by f(x) = (p(x), h(x)) is an injection, then π1(X, b0) is right-orderable.

Proof. Define an ordering ≺ on π1(X, b0) as follows: [α] ≺ [β] if and only if

h([α]b̃0) < h([β]b̃0) (3.1)
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where b̃0 is a lift of b0 ∈ X through the map p and < is the usual ordering of R.

We prove by contradiction that (π1(X, b0),≺) is a right-ordered group. Assume that

the ordering is not right invariant, so that there exists [α], [β], [γ] ∈ π1(X, b0) with

[α] ≺ [β]

but

[α][γ] � [β][γ]. (3.2)

Since γ is a loop based at b0 ∈ X, and [α]b̃0 and [β]b̃0 are the points in X̃,

hence by Theorem 3.5, there exists lift γ̃1 and γ̃2 of γ such that γ̃1(0) = [α]b̃0 and

γ̃2(0) = [β]b̃0. Also γ̃1(1) = [α ◦ γ]b̃0 = [α][γ]b̃0 and γ̃1(1) = [β ◦ γ]b̃0 = [β][γ]b̃0.

Define a map r : [0, 1] → R by r(t) = h(γ̃1(t)) − h(γ̃2(t)). Then we have that

r(0) = h(γ̃1(0))− h(γ̃2(0)) = h([α]b̃0)− h([β]b̃0) < 0 by the prescription (3.1). Also

r(1) = h(γ̃1(1)) − h(γ̃2(1)) = h([α][γ]b̃0) − h([β][γ]b̃0) > 0, since by the assumption

(3.2), [α][γ] � [β][γ] so that h([α][γ]b̃0) > h([β][γ]b̃0). Therefore we have r(0) < 0

and r(1) > 0, hence by intermediate value theorem, there exists a real number t0 such

that r(t0) = 0, that is, h(γ̃1(t0)) = h(γ̃2(t0)). This implies f(γ̃1(t0)) = f(γ̃2(t0))).

Since f is injective, we get γ̃1(t0) = γ̃2(t0). We know that if the two lifts agree at one

point agree everywhere. In particular, the lifts γ1 and γ2 must also agree at initial

points γ̃1(0) = [α]b̃0, and γ̃2(0) = [β]b̃0. This implies [α]b̃0 = [β]b̃0 forcing [α] = [β],

a contradiction to the assumption that [α] ≺ [β] .

Proposition 3.13 ([11]). Suppose that X is a space admitting a triangulation with

countable fundamental group π1(X) and x0 ∈ X. If π1(X, x0) is right-orderable

then there exists a map h : X̃ → R such that the map f : X̃ → X × R given by

f(g) = (p(g), h(g)) is an embedding, where p is a universal covering map of X.

Proof. Since X is triangulable, we fix a triangulation on X. This induces a corre-

sponding triangulation on X̃ through the map p, that is, the simplexes on X̃ are the
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liftings of simplexes of X. For each vertex x ∈ X, we choose a point x̃ ∈ p−1(x) in

X̃.

Assume that (π1(X, x0), <) is right-orderable. Then by Lemma 3.1, there exists an

order preserving injection ψ : π1(X)→ R with discrete image.

Step 1: We construct h on the vertices of X̃ as following.

For each vertex x ∈ X and each element [γ] ∈ π1(X), we define h : X̃ → R by

h([γ]x̃) = ψ([γ]).

Note that this definition makes sense through Theorem 2.1, which gives a correspon-

dence between the deck transformations and the fundamental group.

Then we extend h linearly to the rest of X̃ using barycentric coordinates. Let g ∈ X̃

be a point lying in a simplex with vertices as [γ0]x̃0, [γ1]x̃1, ..., [γn]x̃n, then we can

write g as:

g = t0[γ0]x̃0 + t1[γ1]x̃1 + ...+ tn[γn]x̃n,

where ti ∈ [0, 1] with ∑n
i=0 ti = 1.

Then define h as:

h(g) = t0h([γ0]x̃0) + t1h([γ1]x̃1) + ...+ tnh([γn]x̃n)

= t0ψ([γ0]) + t1ψ([γ1]) + ...+ tnψ([γn])

With this choice of h, we prove that f(g) = (p(g), h(g)) is an embedding.

Step 2 (f is injective): To prove an injectivity of f , we take c, d ∈ X̃ with c 6= d

and show that f(c) 6= f(d).

First note that if c, d ∈ X̃ satisfy p(c) 6= p(d) then f(c) 6= f(d), so we only deal with

p(c) = p(d). Suppose c, d ∈ X̃, c 6= d such that p(c) = p(d). This is possible since p

is covering map and we can take c and d from the same fibre.
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Let ∆1 and ∆2 be the simplexes in X̃ such that c ∈ ∆1, d ∈ ∆2, and p(∆1) = p(∆2) =

∆ where ∆ is the simplex in X containing p(c). Since each deck transformation acts

by permutation on p−1(∆) and by the correspondence Theorem 3.8, there exists an

element [γ] ∈ π1(X, x0) such [γ](∆1) = ∆2 and [γ]−1(∆2) = ∆1. Let 1 denote the

identity of π1(X), then either [γ] > 1 or [γ] < 1, since π1(X, x0) is right-orderable.

Without loss of generality, we may assume that [γ] > 1. We work with this special

[γ].

Let x0, x1, . . . , xn be the vertices of ∆, then there exists elements [γi] in π1(X, x0)

such that the points [γi]x̃i are the vertices of ∆1. Since [γ](∆1) = ∆2, the vertices

of ∆2 are the points [γ]([γi]x̃i) where i = 0, 1, . . . , n. Thus c can be written in

barycentric coordinates as

c = t0[γ0]x̃0 + t1[γ1]x̃1 + · · ·+ tn[γn]x̃n

and consequently,

d = [γ]c = t0[γ][γ0]x̃0 + t1[γ][γ1]x̃1 + · · ·+ tn[γ][γn]x̃n.

Therefore by the definition of h, we have that

h(c) = t0ψ([γ0]) + t1ψ([γ1]) + · · ·+ tnψ([γn])

and

h(d) = t0ψ([γ][γ0]) + t1ψ([γ][γ1]) + · · ·+ tnψ([γ][γn]).

But [γ] > 1 implies that [γ][γi] > [γi] for all i since π1(X, x0) is right-orderable. This

implies ψ([γ][γi]) > ψ([γi]) for each i = 0, 1, . . . , n, since ψ is an order preserving

map with discrete image (so that inequality is strict). This gives us h(d) > h(c).

Though p(c) = p(d) we have h(c) < h(d), hence f(c) 6= f(d) so that f is an injection.
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Step 2 (f is continuous): Since the covering map p is continuous, we only need to

show that h is continuous. Now recall the construction of h, which was first defined

on the vertices of X̃, then on the simplexes of X̃ through barycentric coordinates,

and then linearly extended to the rest of X̃. Since simplexes are closed subsets of

X̃, by the Pasting Lemma [18] h is continuous, so that f is also continuous.

Hence f is an embedding.

Combining the Proposition 3.12 and 3.13, we have proved the following main

result of this chapter:

Theorem 3.14 (Farrell’s theorem [11]). Suppose X is a space admitting triangula-

tion with countable fundamental group π1(X). Then π1(X) is right-orderable if and

only if there is an embedding f : X̃ → X×R so that q◦f = p, where q : X×R→ X

is a projection on the first factor and p : X̃ −→ X is the universal cover.

We note that Farrell actually proved a more general result by assuming that X

is a Hausdorff, paracompact space with countable fundamental group, and that X̃

is an arbitrary regular covering space of X. The result can be found be in [11].
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4

Circular Orders and the Second

Cohomology Group

In this chapter, we introduce circular orders and secret left orders on a group G, and

establish a relationship between them through the second cohomology group. We

discuss how a left ordering on a group may arise as a special case of circular ordering.

The results discussed in this chapter will be used to reformulate the generalized

version of Farrell’s theorem in Chapter 5.

4.1 Second Cohomology Group

In this section, a brief introduction is given to second cohomology group of a group.

One may refer to Cohomology of Groups [5] by K.S Brown for detailed exposition.

We start with the definitions:

Definition 4.1 (Exact Sequence). A sequence

G0
f1−→ G1

f2−→ G2
f3−→ G3

f4−→ . . .
fn−→ Gn

of groups and group homomorphisms is called exact if Image(fk) = Kernel(fk+1).
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Definition 4.2 (Short Exact Sequence). The sequence of the form

0→ A
f−→ B

g−→ C → 0

is called short exact sequence if f is a monomorphism and g is an epimorphism.

Since image of f is equal to the kernel of g, we can think of A embedded in B

through the embedding f . Also C can be thought of as the quotient B
/
Image(f)

since g is onto.

Definition 4.3 (Split). The above short exact sequence is called (right) split if there

exists a homomorphism h : C −→ B such that the composition g ◦ h = 1C is the

identity map on C.

Definition 4.4 (Group Extension). If A and C are two groups, then G is called an

extension of A by C if there is a short exact sequence

1→ A
i−→ G

π−→ C → 1.

Definition 4.5 (Equivalent Extensions). The two group extensions

1→ A
i−→ G

π−→ C → 1

and

1→ A
i′−→ G′

π′
−→ C → 1

are equivalent if there exists a group isomorphism F : G −→ G′ making the following

diagram commutative.

G

1 A C 1

G′

F
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A trivial extension is an extension 1→ A→ G→ C → 1 which is equivalent to the

extension 1→ A→ A×C → C → 1 where the left and right arrows are the inclusion

and the projection maps respectively. The question which group G is an extension

of A by C (in the sense of above equivalence) is called an extension problem.

Definition 4.6 (Central Extensions). A central extension is an extension 1→ A
i−→

G
π−→ C → 1 such that A is in Z(G), the center of group G.

Let E(G) denotes the set of all isomorphism classes of central extensions of A

by G. There is a one-one correspondence between E(G) and H2(G;A), the second

cohomology group. With A = Z, we discuss this correspondence.

We look at the extension 1 → Z i−→ C
π−→ G → 1, not necessarily split. Consider a

set theoretical section s : G −→ C satisfying π ◦ s = 1G which is not necessarily a

homomorphism. We may measure to what extent it fails to be a homomorphism in

the following sense:

s(g)s(h) = i(f(g, h))s(gh) (4.1)

where f : G × G −→ Z is a function. The section s is said to be normalized if

s(1) = 1. The condition s(1) = 1 is called normalization and it implies

f(g, 1) = f(1, g) = 0. (4.2)

We wish to define a group structure on C = G× Z by the following prescription:

(a, g) · (b, h) = (a+ b+ f(g, h), gh) (4.3)

However we cannot start with an arbitrary function f : G × G −→ Z since the

multiplication fails to be associative in general. Let (a, g), (b, h), (c, k) ∈ G×Z, then
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computation shows that

((a, g) · (b, h)) · (c, k) = (a, g) · ((b, h) · (c, k)) + f(h, k)− f(gh, k) + f(g, hk)− f(g, h)

so that for associativity to hold we must have

f(h, k)− f(gh, k) + f(g, hk)− f(g, h) = 0 (4.4)

With this restriction on f , the prescription in equation (4.3) makes G × Z into a

group with identity (0, 1), and inverse given by (a, g)−1 = (−a − f(g−1, g), g−1). A

function f satisfying condition (4.4) is called an inhomogeneous 2-cocycle. So the

extensions 1 → Z → C → G → 1, with normalized section s : G −→ C, s(1) = 1

are classified by inhomogeneous 2-cocycles f .

Two or more sections may give rise to the same central extension G×Z for given 2-

cocycle f . Thus we must identify the ‘same’ sections. Consider another normalized

section s′ : G −→ C of the same extension. Then s and s′ must differ by some

function r : G −→ Z, that is

s′(g) = i(r(g))s(g). (4.5)

Since s(1) = 1 and s′(1) = 1, we get r(1) = 0. This section s′ gives rise to another

inhomogeneous 2-cocycle f ′ : G × G −→ Z. Using equations (4.1) and (4.5), the

computation shows:

s′(g)s′(h) = i(r(g) + r(h) + r(g, h)− r(gh))s′(gh). (4.6)

This measures the extent to which s differs from s′. Thus for sections s and s′ to be
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equal, we must have f ′(g, h) = r(g) + r(h) + f(g, h)− r(gh) or

f ′(g, h)− f(g, h) = r(g) + r(h)− r(gh). (4.7)

The functions of the form (g, h) → r(g) + r(h) − r(gh), r(1) = 0 are called 2-

coboundaries. We consider sections s and s′ as same if the condition (4.7) is satisfied.

Thus the central extensions are classified by the following group called the second

cohomology group:

H2(G;Z) = {2-cocycles f : G×G −→ Z, f(g, 1) = f(1, g) = 0}
{2-coboundaries (g, h)→ r(g) + r(h))− r(gh), r(1) = 0} (4.8)

where f also satisfies the condition (4.3). If the functions f and r are bounded, then

the above group is called bounded cohomology group and is denoted by H2
b (G;Z).

The above discussion tells us that there is an injection from H2(G;Z) into the set

E(G), that is, we picked up an element [f ] ∈ H2(G;Z) and got a central extension

1→ Z→ K → G→ 1, where the group operation on K = G×Z is defined through

the map f by the prescription (4.3).

Conversely, we can take a central extension 1 → A
i−→ C

π−→ G → 1 and choose

a set theoretic section s : G −→ C, π ◦ s = 1G, s(1) = 1. Define a function

f : G×G −→ Z by i(f(g, h)) = s(g)s(h)s(gh)−1. Note that f(g, 1) = f(1, g) = 0 for

all g ∈ G. A computation shows that f is an inhomogeneous 2-cocycle and different

choices of s gives rise to cohomologous choices for f , that is, such two functions differ

in the sense of equation (4.7) for some function r : G −→ Z so that [f ] ∈ H2(G;Z).

All this informal discussion leads us to the following theorem which we shall use in

the next section:

Theorem 4.7. Let E(G) denotes the set of all equivalence classes of central exten-

sions of Z by G. Then H2(G;Z) is in bijective correspondence to E(G).
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4.2 Circular Orders

We start this section with the definition of circular ordering [3, 6] on a group G.

Definition 4.8. Let G be a group. A left invariant circular ordering is a function

c : G×G×G −→ {±1, 0} such that

1. c is non-degenerate: c(g1, g2, g3) = 0 if and only if gi = gj for some i 6= j.

2. c satisfies homogeneous 2-cocycle condition:

c(g1, g2, g3)− c(g0, g2, g3) + c(g0, g1, g3)− c(g0, g1, g2) = 0

for any g0, g1, g2, g3 ∈ G.

3. c is left invariant: c(gg1, gg2, gg3) = c(g1, g2, g3) for all g, g1, g2, g3 ∈ G.

If the group G is S1, we may visualize c as a function on S1. If g1, g2 and g3 are

distinct and positively oriented (anticlockwise direction) on the circle, then we take

c(g1, g2, g3) = 1 and if they are negatively oriented, we take c(g1, g2, g3) = −1. If any

of the two elements from g1, g2, g3 coincide, we take c(g1, g2, g3) = 0, which we call a

degenerate case.

Figure 4.1: Circular order on circle.
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A right invariant circular ordering is a circular ordering which satisfies c(g1g, g2g, g3g) =

c(g1, g2, g3) for all g, g1, g2, g3 ∈ G instead of condition (3) in the Definition 4.8. The

following result shows that left invariant and right invariant circular orderings are

essentially same:

Proposition 4.9. Let c : G × G × G −→ {±1, 0} be a given left invariant circular

order, then the map d(g1, g2, g3) = c(g−1
1 , g−1

2 , g−1
3 ) defines a right invariant circular

on G×G×G.

Proof. 1. d is non-degenerate:

Since c is a circular order, we have c(g1, g2, g3) = 0 if and only if gi = gj for

i 6= j. This implies c(g−1
1 , g−1

2 , g−1
3 ) = 0 if and only if g−1

i = g−1
j for i 6= j.

By the definition of d, this further implies that d(g1, g2, g3) = 0 if and only if

g−1
i = g−1

j or gi = gj for i 6= j.

2. d satisfies homogeneous 2-cocycle condition: Let g0, g1, g2, g3 ∈ G. By the

definition of d we have d(g1, g2, g3)− d(g0, g2, g3) + d(g0, g1, g3)− d(g0, g1, g2) =

c(g−1
1 , g−1

2 , g−1
3 )− c(g−1

0 , g−1
2 , g−1

3 ) + c(g−1
0 , g−1

1 , g−1
3 )− c(g−1

0 , g−1
1 , g−1

2 ) = 0 since

all g−1
i ∈ G and c is a 2-cocycle.

3. d is right invariant: Let g, g1, g2, g3 ∈ G. Then by the definition of d we have

d(g1g, g2g, g3g) = c((g1g)−1, (g2g)−1, (g3g)−1) = c(g−1g−1
1 , g−1g−1

2 , g−1g−1
3 ) =

c(gg−1g−1
1 , gg−1g−1

2 , gg−1g−1
3 ) = c(g−1

1 , g−1
2 , g−1

3 ) = d(g1, g2, g3). The third last

equation follows by multiplying g on left since c is left invariant. This completes

the proof.

Due to Proposition 4.9, any result which is true for left invariant circular orders

would be true for right invariant circular orders. In particular we shall be considering

right invariant circular ordering in Theorem 5.8 instead of left invariant circular
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ordering. The reason for this is the use of concatenation of paths in the fundamental

group of X which is done from left to right.

Let Homeo+(S1) be the group of all orientation preserving homeomorphisms

of S1. Recall that a countable group is left orderable if and only if it embeds in

Homeo+(R), the group of orientation preserving homeomorphisms of R. A similar

result holds for circularly orderable groups. More specifically, we have the following

result [6, 17]:

Theorem 4.10. Let G be a countable group. Then G is circularly orderable if and

only if there exists an injective homomorphism from G into Homeo+(S1).

Every left orderable group can be considered as circularly ordered in the following

way:

Proposition 4.11. Every left orderable group is circular orderable.

Proof. Let < be a left order on a group G. Declare a circular order on G by

c(g1, g2, g3) =



+1 if g1 < g2 < g3 or g2 < g3 < g1 or g3 < g1 < g2

−1 if g1 < g3 < g2 or g2 < g1 < g3 or g3 < g2 < g1

0 otherwise

That is, we define c(g1, g2, g3) = sign(σ) if and only if gσ(1) < gσ(2) < gσ(3) for all

distinct g1, g2, g3 ∈ G, where σ ∈ S3 is a permutation.

The circular orderings on a group G which arise in this way are called secret left

orderings.

Definition 4.12. A circular order c on a group G is secret left order if there exists

a left order < on G such that c(g1, g2, g3) = sign(σ) if gσ(1) < gσ(2) < gσ(3) for all

distinct g1, g2, g3 ∈ G.
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In general, a circularly orderable group may not be left orderable. We wish to

look for the conditions under which circularly orderable group may be promoted into

a left orderable group. Amazingly, the answer is provided through a cohomological

argument.

We note that circular ordering c on a group G is a bounded homogeneous 2-cocycle

(in the sense of condition (2) of definition 4.8). The inhomogeneous form of c is

defined by c′ : G × G −→ {±1, 0}, (g, h) −→ c(1, g, gh). We note that c′(1, g) =

c′(g, 1) = c(g, g−1) = 0 for all g ∈ G. We construct a dehomogenized 2-cocycle from

c. Following [22], consider the function fc : G×G −→ {0, 1} given by

fc(a, b) =


0 if a = id or b = id or c(1, a, ab) = 1,

1 if ab = id(a 6= id) or c(1, a, ab) = −1.
(4.9)

The function fc satisfies equation (4.4), and hence is an inhomogeneous 2-cocycle.

By Theorem 4.7, fc will give rise to a central extension say G̃c of G. The group G̃c

is in fact Z×G equipped with group structure (n, a) · (m, b) = (n+m+ fc(a, b), ab).

Setting P = {(x, a)|n ≥ 0} \ {(0, id)}, then P is a positive cone of a left ordering <c

on G̃c. We summarize these facts as following (for proof see [4, 22])

Proposition 4.13. 1. The function fc : G × G −→ {0, 1} defined in equation

(4.9) is an inhomogeneous 2-cocycle.

2. The central extension G̃c of G arising from fc in the sense of Theorem 4.7 is a

left orderable group.

Supposing [fc] = id ∈ H2(G;Z), then by equation (4.1), s(g)s(h) = s(gh), so

that the section s : G −→ C is a homomorphism. This implies that the extension is

split and hence by splitting lemma G̃c is isomorphic to Z×G. Since by Proposition

4.13, G̃c is left orderable, we have that G is also left orderable. Thus we have [4]:
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Proposition 4.14. If G is a circular ordered group and [fc] = id ∈ H2(G;Z), then

G is left orderable.

In the above proposition, the circular ordering c doesn’t provide us with an

explicit left ordering on G. However, if the circular ordering c is a secret left ordering

then the left order on G is explicit. When this happens is characterized through the

second bounded cohomology group:

Proposition 4.15. Let G be a circularly ordered group with circular ordering c.

Then the circular order c is secretly a left order if and only if [fc] = id ∈ H2
b (G;Z).

A detailed proof of Proposition 4.15 is given in [4]. We use Proposition 4.14

and Proposition 4.15 in the next chapter to formulate a generalization of Farrell’s

theorem.
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5

Generalizing Farrell’s theorem

In this chapter, we discuss the generalization of Farrell’s theorem in two different

possible ways. The first possible direction is to replace the real line R in Farrell’s

theorem by any other topological space A and look for the existence of an embedding

f : X̃ −→ X×A in terms of the right orderability of π1(X). The second direction is

to look for the existence of an embedding f : X̃ −→ X × A in terms of the circular

orderability of π1(X). More specifically, we have the following questions. Suppose

X is a topological space admitting a triangulation and that the fundamental group

π1(X) is countable. Henceforth we shall be dealing only with the topological spaces

with these conditions.

Question 5.1. For what topological spaces A is it true that π1(X) is right orderable

if and only if there is an embedding f : X̃ → X × A with q ◦ f = p?

Here q : X × A→ X denotes a projection on the first factor and p : X̃ −→ X is

the universal cover.

Question 5.2. For what topological space A is it true that π1(X) is circular-

orderable if and only if there is an embedding f : X̃ → X × A with q ◦ f = p?
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For Question 5.2, we are specifically interested when A is a circle S1. We have seen

in the previous chapter how every left ordering gives rise to a circular ordering, and

investigated the converse through the cohomological argument (Proposition 4.15).

We note that in Proposition 3.12 of Farrell’s theorem, we are exploiting the group

structure and orderability of real line R to construct the map h. Henceforth, we

assume that the topological space A has a group structure, though we do not not

need it to be a topological group.

5.1 Answering Question 5.1

Let us take A to be a one dimensional second countable Hausdorff manifold. This

case is interesting to investigate because the Farrell’s theorem deals with the case

A = R which is a 1-manifold. Thus we wish to explore the Farrell’s theorem for

other 1-manifolds. We have the following classification theorem for one dimensional

manifolds:

Theorem 5.3. Any connected 1-manifold is homeomorphic to one of the following

four manifolds [12]:

(1) R

(2) [0, 1]

(3) [0, 1)

(4) S1

We wish to generalize Proposition 3.12 (one direction of Farrell’s theorem) by

replacing R with any of the above 1-manifolds. Note that [0, 1] and [0, 1) do not

have any natural group structures. Since there is a continuous injection between

[0, 1], [0, 1) into R, we can transport the left-orderable group structure to them from

R and we get the following result.

Proposition 5.4. Let p : X̃ → X be a universal covering space. If there exists
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a continuous function h : X̃ → A where A = [0, 1] or [0, 1) such that the map

f : X̃ → X × A defined by f(x) = (p(x), h(x)) is an injection, then π1(X, b0) is

right-orderable, where b0 ∈ X.

Proof. Note that in the proof of Proposition 3.12, we used the intermediate value

theorem but it does not hold for A = [0, 1] or [0, 1). We discuss the case A = [0, 1]

; the other case is similar. Since the inclusion map i : [0, 1] −→ R is a continuous

injection, we can define a right ordering on π1(X, b0) by [α] < [β] if and only if

i ◦ (h([α]b̃0)) < i ◦ (h([β]b̃0))

where all notations are same as in Proposition 3.1.

The proof is exactly same as in the Proposition 3.1 except that the map r : [0, 1]→ R

is defined by r(t) = i ◦ (h(γ̃1(t)))− i ◦ (h(γ̃2(t))).

The next result shows that S1 cannot be left ordered.

Lemma 5.5. A circle S1 cannot be left ordered with its usual group structure of

complex multiplication.

Proof. Suppose there exists a linear order on S1 which is left invariant. Without loss

of generality, let −1 < 1. By left multiplication this implies −i < i, which further

implies that −i2 < i2, that is 1 < −1, a contradiction.

In Proposition 5.4, we have exploited the fact that there exists a continuous

injection from [0, 1] into R. Even if there exists some other group structure on S1

with respect to which it is a left ordedrable group, the following result shows that

the same proof strategy may not be applied to A = S1.

Proposition 5.6. There is no continuous injection from S1 from R.

Proof. Suppose that h : S1 −→ R is a continuous injection. This implies that the

image of f in R is connected and compact. Thus we must have f(S1) = [a, b] for some
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a, b ∈ R. Since S1 is compact and [a, b] is Hausdorff, f must be a homeomorphism

which is not possible by Theorem 5.3.

Lemma 5.5 shows that S1 is not left orderable with respect to the usual group

structure of complex multiplication. But it may be left orderable with respect to

some other group structure and the Question 5.1 remains open in this case. Also

Proposition 5.6 shows that even if there exists some group structure on S1, we cannot

replace A by S1 in Question 5.1 by using a similar argument as in Proposition 5.4,

which essentially uses intermediate value theorem. We note that for A = [0, 1] and

A = [0, 1), we use inclusion map (which is a continuous injection) in Proposition

5.4 to transport the argument from the classical proof of Farrell’s theorem. Since

no such continuous map exists in case of A = S1 due to Proposition 5.6, we cannot

apply the similar argument.

5.2 Farrell’s theorem and circular orders

Now we provide a positive answer to Question 5.2 for A = S1 in one direction as a

Theorem 5.8, and provide a counterexample for the converse as an Example 5.2.1.

We need the following proposition:

Proposition 5.7. Let {A,B,C} ⊂ S1×{1} and {A′, B′, C ′} ⊂ S1×{0} be distinct

points on the top and bottom of the cylinder S1× [0, 1] respectively with the triples

{A,B,C} and {A′, B′, C ′} oppositely oriented (see Figure 5.1). Suppose the points

A and B are connected by non-intersecting continuous paths α : [0, 1] −→ S1× [0, 1]

and β : [0, 1] −→ S1 × [0, 1], with z coordinate strictly monotonic, to the points A′

and B′ respectively. Then any continuous path γ : [0, 1] −→ S1 × [0, 1] connecting

points C and C ′ must intersect path α or β at some point.
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Proof. Without loss of generality, we may assume the following:

α(0) = A′, β(0) = B′, γ(0) = C ′,

α(1) = A, β(1) = B, γ(1) = C.

and in general, α(t), β(t), γ(t) ∈ S1 × {t} for all t ∈ [0, 1].

Consider the triangle PQR on the surface of a cylinder (see Figure 5.1) at height t

Figure 5.1: Cylinder depicting Proposition 5.7.

with vertices P = α(t), Q = β(t) and R = γ(t), t ∈ [0, 1]. Since the z-coordinate of

each path α, β and γ is monotone, we may work in the plane R2 determined by the

points P,Q and R, and at the height t where t is fixed but arbitrary. Thus we may

regard our paths as the functions from [0, 1] into the plane R2 ∼= R2 × {t} ⊂ R3, that

is, we can write α, β, γ : [0, 1] −→ R2 with coordinates as α(t) = (α1(t), α2(t)), β(t) =

(β1(t), β2(t)), γ(t) = (γ1(t), γ2(t)). The reason for this identification is to apply the

determinant formula to compute the planar area of triangle PQR which lies at fixed

but arbitrary height t. The signed area Area(P,Q,R, t) of the triangle PQR is given
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by:

Area(P,Q,R, t) = 1
2

∣∣∣∣∣∣∣∣∣∣∣∣

α1(t) α2(t) 1

β1(t) β2(t) 1

γ1(t) γ2(t) 1

∣∣∣∣∣∣∣∣∣∣∣∣
which is a continuous function of t.

Since the points A,B,C are oriented in an anticlockwise direction, the area is

positive, that is Area(A,B,C, 1) > 0. Also the points A′, B′, C ′ are oriented in

a clockwise direction so that Area(A′, B′, C ′, 0) < 0. By the Intermediate Value

Theorem, there exists t0 ∈ [0, 1] such that Area(P,Q,R, t0) = 0. Geometrically, this

means that there exists some collinear points P,Q and R on the surface of cylinder

for some t0. But three points (not lying along the axis) on the surface of cylinder

cannot be collinear unless two of them coincide. By assumption α and β do not

intersect so P 6= Q for all t. Thus we must have P = R which is equivalent to

α(t0) = γ(t0) or Q = R which is equivalent to β(t0) = γ(t0) for some t0 ∈ [0, 1].

Hence the path γ must intersect one of the paths α or β at some point.

The above proposition can also be proved on the two boundary circles of an

annular region in the plane by using the Jordan curve theorem. Note that Figure 5.1

shows the case where the z-coordinate of each path is assumed strictly monotonic

increasing or decreasing. It seems that the theorem is true without the z-coordinate

being monotonic as well, but will require only the monotonic case in this thesis.

Finally we prove the main result of this thesis:

Theorem 5.8. Let p : X̃ → X be a universal covering space and b0 ∈ X. If there

exists a continuous function h : X̃ → S1 such that the map f : X̃ → X ×S1 defined

by f(x) = (p(x), h(x)) is an injection, then π1(X, b0) is circular orderable.
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Proof. Let c be the usual circular ordering of S1, we define a function d : π1(X, b0)×

π1(X, b0)× π1(X, b0) −→ {±1, 0} as following:

d([α], [β], [γ]) = c(h([α]b̃0), h([β]b̃0), h([γ]b̃0))

where α, β, γ are the loops at b0 ∈ X with [α], [β], [γ] ∈ π1(X, b0) and b̃0 is a lift of

b0 through the covering map p (see Figure 5.2). We prove the map d is a circular

ordering on π1(X, b0). We recall that we need to prove three conditions for d to be a

circular order: (i) right-invariance (ii) cocycle condition (iii) d is non-degenerate in

the sense of Definition (4.8) of a circular order.

To prove the right invariance of d, we need to show that for any [α], [β], [γ], [δ] ∈

π1(X, b0), we have:

d([α], [β], [γ]) = d([α][δ], [β][δ], [γ][δ])

or

c(h([α]b̃0), h([β]b̃0), h([γ]b̃0)) = c(h([α][δ]b̃0), h([β][δ]b̃0), h([γ][δ]b̃0)). (5.1)

Since δ is a loop based at b0 ∈ X and [α]b̃0, [β]b̃0 and [γ]b̃0 are points in X̃, by the

path lifting lemma (Theorem 3.5), there exists unique lifts δ̃1, δ̃2 and δ̃3 of δ such

that:

δ̃1(0) = [α]b̃0, δ̃2(0) = [β]b̃0, δ̃3(0) = [γ]b̃0 (5.2)
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and

δ̃1(1) = [α ∗ δ]b̃0 = [α][δ]b̃0 (5.3)

δ̃2(1) = [β ∗ δ]b̃0 = [β][δ]b̃0 (5.4)

δ̃3(1) = [γ ∗ δ]b̃0 = [γ][δ]b̃0 (5.5)

where ∗ denotes the concatenation of paths (see Figure 5.2). Now two cases arise:

Case I: (Degenerate Case) Suppose that δ̃1(t0) = δ̃2(t0) or δ̃1(t0) = δ̃3(t0) or

Figure 5.2: Topological space X and its covering space X̃ depicting depicting the
proof of Theorem 5.8.

δ̃2(t0) = δ̃3(t0) for some point t0 ∈ [0, 1].

We discuss the case when δ̃1(t0) = δ̃2(t0), other cases can be discussed in a similar

manner. Since the lifts δ̃1 and δ̃2 agree at one point t0, they must agree everywhere.

In particular, they must agree at initial points δ̃1(0) = [α]b̃0 and δ̃2(0) = [β]b̃0. This
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implies

[α]b̃0 = [β]b̃0 (5.6)

Also they must agree at the end points δ̃1(1) = [α][δ]b̃0 and δ̃2(1) = [β][δ]b̃0. This

implies

[α][δ]b̃0 = [β][δ]b̃0 (5.7)

To prove the right invariance in the degenerate case, we substitute (5.6) and (5.7)

in the left and right hand sides of equation (5.1) to check if they are same. The left

hand side of equation (5.1) gives:

c(h([α]b̃0), h([β]b̃0), h([γ]b̃0)) = c(h([α]b̃0), h([α]b̃0), h([γ]b̃0)) = 0

since two of the entries are the same. Similarly the right hand side of equation (5.1)

gives,

c(h([α][δ]b̃0), h([β][δ]b̃0), h([γ][δ]b̃0)) = c(h([α][δ]b̃0), h([α][δ]b̃0), h([γ][δ]b̃0)) = 0.

Therefore the map d is right-invariant in this case.

Next we prove the cocycle condition for the degenerate case. To prove the cocycle

condition for d, we need to prove that for any [α], [β], [γ], [ψ] ∈ π1(X, b0) where

α, β, γ, ψ are the loops based at b0 ∈ X the following holds:

d([α], [β], [γ])− d([α], [β], [ψ]) + d([α], [γ], [ψ])− d([β], [γ], [ψ]) = 0

which by definition of d means

c(h([α]b̃0), h([β]b̃0), h([γ]b̃0))− c(h([α]b̃0), h([β]b̃0), h([ψ]b̃0))
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+c(h([α]b̃0), h([γ]b̃0), h([ψ]b̃0))− c(h([β]b̃0), h([γ]b̃0), h([ψ]b̃0)) = 0 (5.8)

With [α]b̃0 = [β]b̃0, the first two terms in the left hand side of equation (5.8) become

zero and the third term cancels with the fourth term so that the whole left hand

side becomes zero. This proves the cocycle condition for d in this case. The other

degenerate cases are all similar.

Case II: (Non-degenerate Case) Suppose that δ̃1(t) 6= δ̃2(t) and δ̃1(t) 6= δ̃3(t) and

δ̃2(t) 6= δ̃3(t) for all t ∈ [0, 1]. We claim that h(δ̃i(t)) 6= h(δ̃j(t)) for all t ∈ [0, 1] and

for all i 6= j.

For suppose that h(δ̃i(t0)) = h(δ̃j(t0)) for some t ∈ [0, 1]. Then f(δ̃i(t0)) = f(δ̃j(t0))

implies that δ̃i(t0) = δ̃j(t0) since f is injective. Then two lifts which agree at one

point must agree everywhere, that is δ̃i(t) = δ̃j(t) for all t ∈ [0, 1], a contradiction to

the given assumptions δ̃1(t) 6= δ̃2(t), δ̃1(t) 6= δ̃3(t) and δ̃2(t) 6= δ̃3(t) for all t ∈ [0, 1].

In particular, h(δ̃i(t)) 6= h(δ̃j(t)) implies that h(δ̃i(t)) 6= h(δ̃j(t)) for t = [0, 1] and for

any i 6= j. That is we have

h(δ̃1(0)) 6= h(δ̃2(0)), h(δ̃1(0)) 6= h(δ̃3(0)), h(δ̃2(0)) 6= h(δ̃3(0)) (5.9)

and

h(δ̃1(1)) 6= h(δ̃2(1)), h(δ̃1(1)) 6= h(δ̃3(1)), h(δ̃2(1)) 6= h(δ̃3(1)).

Using equations (5.2), (5.3), (5.4) and (5.5), the above two equations further

imply that:

h([α]b̃0) 6= h([β]b̃0) and h([α][δ]b̃0) 6= h([β][δ]b̃0) (5.10)

h([α]b̃0) 6= h([γ]b̃0) and h([α][δ]b̃0) 6= h([γ][δ]b̃0) (5.11)

49



and

h([β]b̃0) 6= h([γ]b̃0) and h([β][δ]b̃0) 6= h([γ][δ]b̃0) (5.12)

In the next step, we shall apply equations (5.10), (5.11), (5.12) and Proposition

5.7. To apply Proposition 5.7, we need to construct a certain continuous map

say, Φ from [0, 1] into the cylinder S1 × [0, 1] with all the three coordinates as

strictly monotonic increasing or decreasing. We construct such a map from the

map h(δ̃i(t)) ⊂ S1. Let xi(t) and yi(t) be the two coordinates of h(δ̃i(t)) in S1,

that is h(δ̃i(t)) = (xi(t), yi(t)), i = 1, 2. Define Φ(t) : [0, 1] −→ S1 × [0, 1] by

Φ(t) = (xi(t), yi(t), t). The map Φ satisfies all the assumptions of Proposition 5.7 as

following. Suppose both coordinates xi(t) and yi(t) are not strictly monotonic in-

creasing or decreasing, then for all t1, t2 ∈ [0, 1], t1 < t2 we must have xi(t1) = xi(t2)

and yi(t1) = yi(2) . In particular, for t1 = 0 and t2 = 1, we have xi(0) = xi(1) and

yi(0) = yi(1). This implies (xi(0), yi(0)) = (xi(1), yi(1)), that is h(δ̃i(0)) = h(δ̃j(1))

which is a contradiction to the fact that h(δ̃i(t)) 6= h(δ̃j(t)) for all t ∈ [0, 1]. This

proves the monotonicity assumption for the map h, and hence for the map Φ in order

to apply the Proposition 5.7. With the abuse of notation, we may work with the

map h rather than Φ since the third coordinate of Φ is just an identity map t.

First note that the equations (5.10), (5.11) and (5.12) implies that the left and

right hand sides of equation (5.1) cannot be zero so that the case of degeneracy

is removed. Suppose that the equation (5.1) is not true and we may well assume

without loss of generality that left hand is +1 and right hand side is −1, that is

c(h([α]b̃0), h([β]b̃0), h([γ]b̃0)) = 1 but c(h([α][δ]b̃0), h([β][δ]b̃0), h([γ][δ]b̃0)) = −1.

The equation c(h([α]b̃0), h([β]b̃0), h([γ]b̃0)) = 1 implies that the points h([α]b̃0), h([β]b̃0)

and h([γ]b̃0)) are oriented in an anticlockwise direction on the circle S1×{1} whereas

c(h([α][δ]b̃0), h([β][δ]b̃0), h([γ][δ]b̃0)) = −1 implies that the orientation is changed af-

ter right multiplication by [δ] so that the points h([α][δ]b̃0), h([β][δ]b̃0) and h([γ][δ]b̃0)
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are oriented in a clockwise direction on the circle S1 × {0}. We claim this cannot

happen.

Picture a cylinder S1 × [0, 1] as in Figure 5.3, and the top of cylinder S1 × {1} is

the circle containing A = h([α]b̃0]), B = h([β]b̃0]) and C = h([γ]b̃0]) and the bottom

S1×{0} is the circle containing A′ = h([α][δ]b̃0]), C ′ = h([β][δ]b̃0]) and B′h([γ][δ]b̃0]),

which are circularly ordered in a different sense that than three points on the top

of the cylinder. By equations (5.10), (5.11) and (5.12), all of these points A,B,C

and A′, B′, C ′ are distinct on the top and bottom of the cylinder respectively. Also

we know that h(δ̃i(t)) 6= h(δ̃j(t)) for any t ∈ [0, 1] and for any i 6= j. In particu-

lar, h(δ̃1(t)) 6= h(δ̃2(t)) which means that the path connecting point h([α]b̃0]) with

h([α][δ]b̃0]) does not intersect the path connecting the point h([β]b̃0]) with h([β][δ]̃0]).

Therefore by Proposition 5.7, we must have that the path connecting C with C ′ must

Figure 5.3: Cylinder depicting equations (5.10), (5.11) and (5.12).

intersect one of the paths connecting A with A′ or B with B′. This further implies

that h(δ̃1(t)) = h(δ̃3(t)) or h(δ̃2(t)) = h(δ̃3(t)) for some t ∈ [0, 1], a contradiction to

the fact that h(δ̃i(t)) 6= h(δ̃j(t)) for all t ∈ [0, 1] and for all i 6= j. Thus the orientation

of the points on the bottom circle of the cylinder cannot change after right multi-

plication by [δ], that is we must have c(h([α][δ]b̃0), h([β][δ]b̃0), h([γ][δ]b̃0)) = 1 as well.
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Now we prove the cocyle condition given by equation (5.8) for the non-degenerate

case. Let [α], [β], [γ], [ψ] ∈ π1(X, b0) where α, β, γ, ψ are the loops based at b0 ∈ X

as considered in the equation (5.8), and the end points of whose lifts are distinct.

By equations (5.10), (5.11) and (5.12), we have that h([α]b̃0) 6= h([β]b̃0), h([α]b̃0) 6=

h([γ]b̃0) and h([β]b̃0) 6= h([γ]b̃0). The similar argument which we have used to prove

the equations (5.10), (5.11) and (5.12) shows that h([ψ]b̃0) 6= h([α]b̃0), h([β]b̃0), h([γ]b̃0).

The only possible values h([ψ]b̃0), h([α]b̃0), h([β]b̃0) and h([γ]b̃0 are +1 or −1. With

these values and the fact that c is a circular order, we observe that the left hand side

of equation (5.8) becomes zero for all the possible permutations of {+1,−1}.

Finally, we observe that the map d is non-degenerate in the sense of Definition

(4.8) of a circular order, that is triples with repeated entries map to zero and no

others map to zero. This follows from the fact that d is defined in terms of a circular

order c and from uniqueness of lifts.

The next two results show how combining the known cohomological relationships

(from the Chapter 4) between left orderable and circular orderable groups with this

new version of Farrell’s theorem directly connects cohomology to the embedding

problem. We have the following consequences of Proposition 4.14, Proposition 4.15

and Theorem 5.8:

Theorem 5.9. Let p : X̃ → X be a universal covering space and d be the circular

ordering on π1(X, b0) constructed in Theorem 5.8 such that [fd] = id ∈ H2(G;Z)

where fd is the corresponding dehomogenized 2-cocycle given by equation 4.9. If

there exists a continuous function h : X̃ → S1 such that the map f : X̃ → X × S1

defined by f(x) = (p(x), h(x)) is an injection, then π1(X, b0) is right orderable.

In particular, the above theorem shows that how one direction of classical Farrell’s

theorem (Proposition 3.12) which holds for right orderable fundamental groups of a
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topological space, may arise as a special case of a new version of Farrell’s theorem (as

Theorem 5.8) through the cohomological argument. We note that the Proposition

4.14, and the Theorem 5.9 doesn’t provide us an explicit right order arising from the

circular order constructed in Theorem 5.8.

Theorem 5.10. Let p : X̃ → X be a universal covering space and d be the circular

ordering on π1(X, b0) constructed in Theorem 5.8. If there exists a continuous func-

tion h : X̃ → S1 such that the map f : X̃ → X × S1 defined by f(x) = (p(x), h(x))

is an injection, then the circular order d on π1(X, b0) is a secret left order if and only

if [fd] = id ∈ H2
b (G;Z).

The above theorem shows that if [fd] = id ∈ H2
b (G;Z), then the circular order

d constructed in Theorem 5.8 is secretly a right order on π1(X, b0), that is there is

already a left order on π1(X, b0) giving rise to a circular order in the sense of Defi-

nition 4.13. And conversely, if the circular d on π1(X, b0) is a secret left order, that

is, it comes from some left order in the sense of Definition 4.13, then we must have

[fd] = id ∈ H2
b (G;Z).

Finally we provide a counterexample to disprove the converse of Theorem 5.8.

We recall the famous Borsuk-Ulam theorem, which states that if f : Sn → Rn is a

continuous map then there exists an x ∈ Sn such that f(x) = f(−x) [10]. We also

recall that S3 is a covering space for the lens spaces L(p, q) where p and q are coprime

integers. More precisely, consider a unit 3-sphere S3 as a subset in C2. Consider a

homeomorphism gp,q : S3 −→ S3 given by gp,q(z1, z2) = (e2πi/p · z1, e
2πiq/p · z2). It can

be seen that p iterations of gp,q is an identity map, so that we get a group action of

Zp on S3 with the generator as gp,q. Under this group action, the lens space L(p, q)

is defined as the quotient of S3 under the equivalence relation of being in the same

orbit. We also have that the spaces L(p, q) and L(p, q′) are homeomorphic if and

only if q ≡ q′ (mod p) or qq′ ≡ ±1 (mod p) [2].
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Example 5.2.1. There exists a topological space X such that π1(X, b0) is circular

orderable without the existence of a function f in the sense of Theorem 5.8.

Proof. With the notations in Theorem 8.5, we may take any lens space X = L(p, q)

with even p, and X̃ = S3. Then the fundamental group π1(X, b0) ∼= Zp is circular

orderable. In particular, we may take X = L(4, 1). Under the group action above,

the quotient map p(x) : S3 −→ L(4, 1) identifies antipodal points, that is, we have

p(x) = p(−x) for all x ∈ S3. Suppose there is a map h : S3 → S1 ⊂ R3 so that

f(x) = (p(x), h(x)) has the properties guaranteed by Theorem 8.5. Then by Borsuk-

Ulam theorem there exists x ∈ S3 with h(x) = h(−x), however p(x) = p(−x) as well

so that f fails to be injective. Therefore the converse of Theorem 8.5 is not true.
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