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Abstract

Some branches of quantum gravity demand the existence of higher di-

mensions and the addition of higher curvature terms to the gravitational

Lagrangian in the form of the Lovelock polynomials. In this thesis we inves-

tigate some of the classical properties of Lovelock gravity.

We first derive the Hamiltonian for Lovelock gravity and find that it takes

the same form as in general relativity when written in terms of the Misner-

Sharp mass function. We then minimally couple the action to matter fields

to find Hamilton’s equations of motion. These are gauge fixed to be in the

Painlevé-Gullstrand co–ordinates and are well suited to numerical studies of

black hole formation.

We then use these equations of motion for the massless scalar field to

study the formation of general relativistic black holes in four to eight dimen-

sions and Einstein-Gauss-Bonnet black holes in five and six dimensions. We

study Choptuik scaling, a phenomenon which relates the initial conditions of

a matter distribution to the final observables of small black holes.

In both higher dimensional general relativity and Einstein-Gauss-Bonnet

gravity we confirm the existence of cusps in the mass scaling relation which

had previously only been observed in four dimensional general relativity. In

the general relativistic case we then calculate the critical exponents for four
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to eight dimensions and find agreement with previous calculations by Bland

et al but not Sorkin et al who both worked in null co–ordinates.

For the Einstein-Gauss-Bonnet case we find that the self-similar behaviour

seen in the general relativistic case is destroyed. We find that it is replaced

by some other form of scaling structure. In five dimensions we find that the

period of the critical solution at the origin is proportional to roughly the

cube root of the Gauss-Bonnet parameter and that there is evidence for a

minimum black hole radius. In six dimensions we see evidence for a new type

of scaling. We also show, from the equations of motion, that there is reason

to expect qualitative differences between five and higher dimensions.
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Chapter 1

Introduction & Background

The search to understand the role of quantum mechanics in gravity has lead

to theories such as string theory and loop quantum gravity. These theories

make predictions on the Planck scale (≈ 1019GeV ) which has made direct

experimental verification difficult. This problem requires us to find alternate

ways to verify candidate theories in both the theoretical and experimental

realms. To this end black holes have become a useful physical system. Ein-

stein’s classical theory of gravity, general relativity, predicts that there is a

singularity of infinite mass density at the center of a black hole, a problem

which must be solved by any potentially acceptable theory of quantum grav-

ity. It has also been speculated that microscopic black holes may be created

at the CERN collider when it is fully operational. According to some higher

dimensional theories of gravity these black holes could be created with ener-

gies as low as 1TeV and could therefore be used to experimentally verify pre-
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CHAPTER 1. INTRODUCTION & BACKGROUND 2

dictions of quantum gravity theories. For these reasons a deep understanding

of black holes, especially microscopic black holes, may be important to gain

insight into the most fundamental laws of physics.

Some quantum gravity theories, such as string theory, predict the exis-

tence of more than four dimensions, all but four of which are compactified

and can only be directly observed on the Planck scale. In certain situations

string theory also predicts the existence of higher order space-time curvature

terms in the gravitational Lagrangian in combinations known as the Love-

lock polynomials [4, 5]. The resulting theory, known as Lovelock gravity, is

a natural generalization of Einstein’s general relativity; it gives equations of

motion with no more than second derivatives of the metric and it is also free

of ghosts (imaginary mass) when linearized around a flat background.

This thesis will not be directly concerned with string theory or any other

quantum gravity theories. Instead, we investigate the effects of higher di-

mensions and higher curvature corrections, in the form of Lovelock gravity,

on the formation of black holes, particularly microscopic black holes. We

also concentrate on the Hamiltonian formulation for our analysis which has

the potential to be useful in the study of quantum gravity in the future. The

first goal of this work is to calculate the Hamiltonian for Lovelock gravity in

terms of a mass function. This Hamiltonian is then coupled to matter and

used to find the equations of motion which can be used to model the collapse

of matter coupled to Lovelock gravity. We then numerically simulate the

formation of microscopic black holes. The goal is to investigate the effects
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of higher dimensions and Lovelock curvature terms on Choptuik scaling, a

phenomena which relates the initial conditions of a collapsing, microscopic

black hole system to its final observables.

The rest of this chapter is dedicated to a review of relevant topics. We

start with Lovelock gravity and the Painlevé-Gullstrand co-ordinate system

which is used extensively in this thesis. All work done in this thesis assumes

spherical symmetry and uses Hamiltonian mechanics. We therefore review

the well known Hamiltonian formulation of spherically symmetric general

relativity which was first discussed by Arnowitt, Deser and Misner (ADM) in

1962 [6], although we will find it necessary to use Kuchar̂’ geometrodynamics

[7] which involves treating the mass function as a canonical variable. We then

discuss the phenomena of Choptuik scaling in general relativity. In Chapter 2

we perform the Hamiltonian analysis of Lovelock gravity. We find Hamilton’s

equations of motion for Lovelock gravity coupled to a scalar field (which are

used for all subsequent, numerical calculations) and Lovelock gravity coupled

to a charged scalar field and an electromagnetic field. In Chapters 3 and 4

we use the equations of motion found in Chapter 2 to numerically simulate

black hole formation and Choptuik scaling. In Chapter 3 we concentrate on

higher dimensional general relativity while in Chapter 4 we look at the effects

of the addition of the Gauss-Bonnet term (second order Lovelock term) into

the action. In Chapter 5 we conclude.
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1.1 Lovelock Gravity

The action of general relativity is given by

I = IGR + Imatter, (1.1)

where IGR is the Einstein-Hilbert action and Imatter is the matter action. The

Einstein-Hilbert action in n dimensions is given by

IGR =
1

2κ2
n

∫
dnx
√
−gR, (1.2)

where we work in units where only, Gn, the n dimensional gravitational con-

stant, is retained, κn :=
√

8πGn, g is the determinant of the metric (we use

the convention that the Minkowski metric is taken as diag(−,+, · · · ,+)) and

R is the Ricci scalar. This action, when coupled to matter, locally conserves

energy, ie ∇µT
µ
ν = 0 where T µν is the energy momentum tensor derived by

varying Imatter. Also, the action is ghost free (no imaginary mass) when lin-

earized around a flat background. It also gives equations of motion which

have at most second time derivatives of the metric. Theories with more than

second time derivatives of the metric in the equations of motion often require

the use of auxiliary fields in order to apply the variational principal to find

the Hamiltonian. This introduces new degrees of freedom whose physical

meaning may be difficult to interpret. For these reasons it is desirable to
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work with a theory which has no more than second derivatives of the metric

in the equations of motion. When working in four dimensions the only com-

bination of curvature terms which satisfies these conditions and contributes

to the equations of motion is the Einstein-Hilbert Lagrange density. When

considering higher dimensions, however, there exists higher curvature terms,

known as the Lovelock polynomials which also have these properties. To this

end consider the Lovelock action [4, 5] given by

ILL =
1

2κ2
n

∫
dnx
√
−g

[n/2]∑
p=0

α(p)L(p), (1.3)

L(p) :=
1

2p
δµ1···µpν1···νpρ1···ρpσ1···σpR

ρ1σ1
µ1ν1

· · ·R ρpσp
µpνp , (1.4)

where δ
µ1...µp
ρ1...ρp := δµ1[ρ1

...δ
µp
ρp] , R ρpσp

µpνp is the Reimann curvature tensor (which

obeys the conventions [∇ρ,∇σ]V µ = Rµ
νρσV

ν and Rµν = Rρ
µρν for a given

vector, V µ), α(p) are coupling constants of dimension (length) 2(p−1) and [n/2]

is the biggest integer less than n/2. The zeroth and first terms in Equation

1.3 correspond to the cosmological constant term and the Einstein-Hilbert

term respectively. The gravitational equations following from this action are

given by

Gµν = κ2
nTµν , (1.5)
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where Tµν is the energy-momentum tensor for matter fields obtained from

Imatter and

Gµν :=

[n/2]∑
p=0

α(p)G
(p)
µν , (1.6)

Gµ(p)
ν :=− 1

2p+1
δµη1···ηpζ1···ζpνρ1···ρpσ1···σpR

ρ1σ1
η1ζ1

· · ·R ρpσp
ηpζp

. (1.7)

The tensor G
(p)
µν , obtained from L(p), contains up to the second derivatives of

the metric and G
(p)
µν ≡ 0 is satisfied for p ≥ [(n+ 1)/2].

The action of Equation 1.3 combines curvature terms in such a way that it

gives equations of motion which have no more than second derivatives of the

metric and it is ghost free when linearized around a flat background [8]. In

addition to this it has been shown that, in the low energy limit, string theory

calls for the addition of the higher order Lovelock terms to the Einstein-

Hilbert term (p = 1) in the action [9–13].

In this thesis we are interested in spherically symmetric systems and so

we consider the n(≥ 4)-dimensional general metric

gµν(x)dxµdxν = gAB(ȳ)dȳAdȳB +R(ȳ)2γab(z)dzadzb, (1.8)

where gAB is a function of one time and one space co-ordinate and R(ȳ)

is a scalar function. γab is an (n − 2)-dimensional metric with sectional

curvature, k = 1, 0,−1. We introduce the covariant derivatives compatible
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with the total metric, the 2D and the (n− 2)D metrics as

∇ρgµν = 0, DFgAB = 0, D̄fgab = 0. (1.9)

The most general energy-momentum tensor Tµν compatible with this

spacetime symmetry governed by the Lovelock equations is given by

Tµνdx
µdxν = TAB(ȳ)dȳAdȳB + p(ȳ)R2γabdz

adzb, (1.10)

where TAB(ȳ) and p(ȳ) are a symmetric two-tensor and a scalar respectively.

Lovelock gravity has been shown to obey a generalized Birkhoff theory

[14–17]. This allows us to write down the Hamiltonian in terms of a mass

distribution in the spherically symmetric case. This mass function has been

calculated by [17–19]. It is a generalization of the Misner-Sharp mass function

[20] from general relativity and it reduces to the ADM (Arnowitt-Deser-

Misner) mass [6] at spatial infinity in the asymptotically flat spacetime. It

is given by

M :=
(n− 2)V

(k)
n−2

2κ2
n

[n/2]∑
p=0

α̃(p)R
n−1−2p[k − (DR)2]p, (1.11)

α̃(p) :=
(n− 3)!α(p)

(n− 1− 2p)!
, (1.12)

where (DR)2 := (DAR)(DAR) [17] and k = 1, 0,−1 corresponds to γab being

spherical (compact), flat or hyperbolic. The constant V
(k)
n−2 represents the
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volume of an n− 2 dimensional sphere in the k = 1 case.

We will review the well known Hamiltonian analysis in terms of this mass

function for the general relativity case in Section 1.6 and perform it for the

Lovelock case in Chapter 2. We note that the Hamiltonian analysis for full

Lovelock gravity was first considered by Teitelboim and Zanelli [21]. Their

result was rather formal in that an explicit parametrization of the phase

space was not provided. (See also [22, 23].) For the case of spherical sym-

metry, the Hamiltonian analysis of five-dimensional Einstein-Gauss-Bonnet

(i.e. quadratic Lovelock) gravity was worked out by Louko et al [24] (using

the methodology of Kuchař’ geometrodynamics [7]), while the Hamiltonian

analysis of higher-dimensional Gauss-Bonnet gravity coupled to matter was

recently done in our paper, [25]. In this thesis our analysis is done for generic

Lovelock gravity in arbitrary dimensions.

1.2 Painlevé-Gullstrand Co-ordinates

In this thesis, when we must choose a co-ordinate system, we often use co-

ordinates which are regular over the future horizon and are intrinsically flat

on constant time slices. They are analogous to the Painlevé-Gullstrand (PG)

co-ordinates in general relativity and so we devote this section to a review of

PG co-ordinates in 4D, static general relativity. See [26] and [27] for more

details. Note that later on in this thesis we will refer to flat slice co-ordinates

as PG co-ordinates even in the non-static, Lovelock case.



CHAPTER 1. INTRODUCTION & BACKGROUND 9

We start with the Schwarzschild metric given by

ds2 =−
(

1− 2GM

R

)
dT 2 +

(
1− 2GM

R

)−1

dR2 +R2dΩ2, (1.13)

where G is Newton’s gravitational constant and T is the Schwarzschild time

co-ordinate. Here, since we are concerned only with the static case, M is

the mass centered at the spatial origin. Later, when we are interested in the

dynamical case, M will be used to represent the generalized Misner-Sharpe

mass function [17–20]. dΩ2 is the line element of a unit 2-sphere, equal to

dθ2 + sin2θdφ2. When we work in higher dimensions we generalize to dΩn−2,

the line element of a unit n− 2-sphere.

The goal is to find a co-ordinate transformation which gives a metric that

is regular at the horizon, R = 2GM . There are many ways to do this. We

transform to the co-ordinates of a radially in-falling, massive observer. This

observer would not notice anything special when crossing the horizon. For

two events occurring along a time-like geodesic this system’s time co-ordinate

separation is equal to the proper time separation.

To find this transformation we start by applying the geodesic equation,

∂K

∂xα
− d

dτ

∂K

∂ẋα
= 0, (1.14)

where 2K = gαβẋ
αẋβ, to the metric of Equation 1.13 to obtain the equations

of motion for an ingoing, radial, massive particle,
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Ṫ =
E

1− 2GM/R
, Ṙ = −

√
E − (1− 2GM/R). (1.15)

In this section τ is an affine parameter (which we can take as the proper time

in this case) and a dot represents differentiation with respect to τ . E is the

observer’s energy per unit mass [28]. At spatial infinity this is equal to

E =
1√

1− v2
∞
, (1.16)

where v∞ is the observer’s speed at spatial infinity. The value of v∞ gives an

entire family of co-ordinate systems [26] but we will only be concerned with

the case where v∞ = 0.

We are now in a position to write down the four velocity,

uα =
(
Ṫ , Ṙ, 0, 0

)
, of a particle travelling on an ingoing, time-like geodesic,

uα =

(
−1,

√
2GM/R

1− 2GM/R
, 0, 0

)
. (1.17)

It is important to notice that this can be written as

uα = −∂αTPG, (1.18)

where the PG time, TPG, is given by
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TPG =T +

∫ √
2GM/R

1− 2GM/R
dR

=T + 4M

(√
R/2GM +

1

2
ln

∣∣∣∣∣
√
R/2GM − 1√
R/2GM + 1

∣∣∣∣∣
)
. (1.19)

We can use Equation 1.18 to write

∫
uαdx

α = −
∫
∂αTPGdx

α → −
∫
gαβẋ

βẋαdτ =

∫
dTPG. (1.20)

Since the dots represent the derivative with respect to proper time we can

use gαβẋ
βẋα = −1 along a timelike geodesic. We can now say that for any

two events the PG time separation is equal to the proper time separation.

This means that TPG is the time measured by an observer moving along a

time-like geodesic.

Using Equation 1.19 we see that the PG metric is given by

ds2 =−
(

1− 2GM

R

)
dT 2

PG + 2

√
2GM

R
dTPGdR + dR2 +R2dΩ2 =

− dT 2
PG +

(
dR +

√
2GM

R
dTPG

)2

+R2dΩ2
2. (1.21)

As promised it is regular at R = 2GM and it is intrinsically flat on constant

time slices.
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1.3 Hamiltonian Formulation of General

Relativity

In this section, we review the canonical analysis for spherically symmetric

spacetimes (k = 1) in general relativity without a cosmological constant

in terms of the Arnowitt-Deser-Misner (ADM) variables. We then perform

a canonical transformation and write the action in terms of the generalized

Misner-Sharp mass given in Equation 1.11 this is a generalization of Kuchař’s

analysis in four dimensions to arbitrary dimensions. We then minimally

couple the action to a matter field to find the equations of motion which

govern matter collapse.

Our first task is to dimensionally reduce the Einstein-Hilbert action given

in Equation 1.2. For the spherically symmetric spacetimes under considera-

tion (see Equation 1.8), the action reduces to

IGR =
V

(k)
n−2

2κ2
n

∫
d2ȳ
√
−g(2)R

n−2LGR, (1.22)

where g(2) := det(gAB) and the dimensionally reduced Einstein-Hilbert ac-

tion, LGR is given from expressions (2.19) and (2.20) of [17] (with p = 1)

as

LGR =(n− 2)(n− 3)

(
k − (DR)2

R2

)
− 2(n− 2)

D2R

R
+ (2)R, (1.23)

where (2)R is the Ricci scalar calculated using the two-dimensional metric,
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gAB and D2R := DADAR.

It should be noted here that, in general, it is not true that dimensional

reduction commutes with the variational principle. That is, obtaining the

equations of motion from a dimensionally reduced action generally is not the

same as implementing the symmetry into equations of motion which were

obtained from a non-dimensionally reduced action. In the case of spheri-

cal symmetry, however, setting the variation to zero does indeed commute

with dimensional reduction [29, 30]. This will be discussed in more detail in

Chapter 2.

We write down the action of Equation 1.22 by adopting the following

ADM co-ordinates (t, x) as our two non-angular co-ordinates

ds2
(2) = gABdȳ

AdȳB = −N(t, x)2dt2 + Λ(t, x)2(dx+Nr(t, x)dt)2. (1.24)

Now the canonical variables are N , Nr, Λ, and R and their momentum

conjugates are respectively written as PN , PNr , PΛ, and PR. In the present

section, a dot and a prime denote a partial derivative with respect to t and

x, respectively. The metric and its inverse are

gtt =− (N2 − Λ2N2
r ), gtx = Λ2Nr, gxx = Λ2, (1.25)

gtt =−N−2, gtx = NrN
−2, gxx = N−2Λ−2(N2 − Λ2N2

r ), (1.26)
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while
√−g(2) is given by

√
−g(2) = NΛ. (1.27)

For later use, we compute the following quantities:

F :=(DR)2 = −y2 + Λ−2R′
2
, (1.28)√

−g(2)D
2R =− ∂t(Λy) + ∂x(ΛNry + Λ−1NR′), (1.29)

where y is defined by

y := N−1(Ṙ−NrR
′). (1.30)

The reduced action 1.22 then becomes quite simple:

IGR =
An−2

2κ2
n

∫
d2ȳ

[
2(n− 2)Rn−3y(N ′rΛ +NrΛ

′)

− 2N

(
(Rn−2)′′Λ−1 + (Rn−2)′(Λ−1)′

)
+ (n− 2)(n− 3)(1 + F )NΛRn−4 − 2(n− 2)Rn−3yΛ̇

]
. (1.31)

Here An−2 is the surface area of an (n− 2)-dimensional unit sphere, namely

An−2 :=
2π(n−1)/2

Γ((n− 1)/2)
(≡ V

(1)
n−2), (1.32)

where Γ(x) is the Gamma function.

We will use the action of Equation 1.31 to perform the Hamiltonian anal-
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ysis in terms of the mass function and its conjugate momentum, ie, Kuchař’

geometrodynamical phase space variables. We now briefly review some rele-

vant aspects of Kuchař’ geometrodynamics.

1.3.1 Geometrodynamics

The metric of Equation 1.24 may be written in the generalized Schwarzschild

form in terms of the areal coordinates as

ds2
(2) = −F (R, T )e2σ(R,T )dT 2 + F (R, T )−1dR2. (1.33)

The generalized Misner-Sharp mass of Equation 1.11 is then given by

M(R, T ) =
(n− 2)V

(k)
n−2

2κ2
n

[n/2]∑
p=0

α̃(p)R
n−1−2p

(
k − F (R, T )

)p
, (1.34)

which reduces to

M :=
(n− 2)An−2

2κ2
n

Rn−3(1− F ) (1.35)

for the general relativistic case with k = 1. This implicitly gives the func-

tional form F = F (R,M).

To see the relation to the ADM form of Equation 1.24 we use the coor-

dinate transformations T = T (t, x) and R = R(t, x), to write the metric of
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Equation 1.33 as

ds2
(2) =− (FṪ 2e2σ − F−1Ṙ2)dt2 + 2(−FṪT ′e2σ + F−1ṘR′)dtdx

+ (−FT ′2e2σ + F−1R′
2
)dx2. (1.36)

Comparing with the ADM form, we identify

FṪ 2e2σ − F−1Ṙ2 =N2 − Λ2Nr
2, (1.37)

−FṪT ′e2σ + F−1ṘR′ =Λ2Nr, (1.38)

−FT ′2e2σ + F−1R′
2

=Λ2 (1.39)

and obtain

Nr =
−FṪT ′e2σ + F−1ṘR′

−FT ′2e2σ + F−1R′2
, (1.40)

N =
eσ(ṪR′ − ṘT ′)√
−FT ′2e2σ + F−1R′2

, (1.41)

As discussed by Kuchař in Section IVA of [7], one can ensure that ṪR′− ṘT ′

and hence the Lapse function N are positive by an appropriate choice of x.

y is then given from the definition of Equation 1.30 as

y =
FT ′eσ√

−FT ′2e2σ + F−1R′2
, (1.42)
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from which we obtain

T ′eσ =
yΛ

F
, (1.43)

where we used Equation 1.39. Using this to eliminate T ′eσ in Equation 1.39,

we obtain

F = −y2 +
R′2

Λ2
(1.44)

as required by consistency with Equation 1.28

In the above, we derived expressions for the generalized Schwarzschild

time T in terms of the canonical ADM variables. As we will see in the follow-

ing this determines the conjugate momentum to the Misner-Sharp mass func-

tion in a form that is appropriate for slicings that approach the Schwarzschild

form at spatial infinity. Other asymptotic forms for the slicings are possible,

including flat slice or generalized Painlevé-Gullstrand (PG) coordinates:

ds2
(2) = −e2σdT 2

PG + (dR +GeσdTPG)2, (1.45)

where σ = σ(TPG, R) and G = G(TPG, R). The geometrodynamical variables

appropriate for such slicings were first derived in [31]. Since we have

(DR)2 = 1−G2 (1.46)
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for the above form of the metric, it follows that

G = ±
√

1− F . (1.47)

By inspection of Equation 1.45 one can see that the positive sign yields an

equation for ingoing null geodesics that is regular at any horizon F = 0, so

this is the choice that is suitable for describing the spacetime near a future

horizon (black hole). The opposite sign must be chosen for a past horizon

(white hole). We now go through exactly the same derivation as before.

Performing the coordinate transformations TPG = TPG(t, x) and R = R(t, x)

in the metric of Equation 1.45 and comparing to the ADM form of Equation

1.24 yields:

Λ2 = (R′ + eσGT ′PG)2 − e2σT ′PG
2
, (1.48a)

N2 − Λ2N2
r = e2σṪ 2

PG − (Ṙ + eσGṪPG)2, (1.48b)

Λ2Nr = (R′ + eσGT ′PG)(Ṙ + eσGṪPG)− e2σT ′PGṪPG. (1.48c)

Solving Equation 1.48 for N and Nr, we find

Nr =
(R′ + eσGT ′PG)(Ṙ + eσGṪPG)− e2σT ′PGṪPG

(R′ + eσGT ′PG)2 − eσ(T ′PG)2 , (1.49a)

N =
R′eσṪPG − ṘeσT ′PG√

(R′ + eσGT ′PG)2 − eσ(T ′PG)2
. (1.49b)

To complete the derivation, we use Equation 1.30 and the above expressions
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for Λ, N and Nr to calculate

yΛ = (1−G2)eσT ′PG +GR′, (1.50)

which yields:

eσT ′PG =
yΛ

F
± R′

√
1− F
F

. (1.51)

The second term on the right-hand side of the above guarantees that the PG

time is well defined either for (with a +ve sign) future or (with a -ve sign)

past horizons. This is discussed in the Appendix A.2 on boundary conditions

and is valid in the full Lovelock case.

1.3.2 Canonical Formalism

We now derive the expressions for PΛ and PR. The Lagrangian density

corresponding to the action of Equation 1.31 is

LGR =
(n− 2)An−2

2κ2
n

[
2Rn−3y(N ′rΛ +NrΛ

′)

− 2

(n− 2)
N

(
(Rn−2)′′Λ−1 + (Rn−2)′(Λ−1)′

)
+ (n− 3)(1 + F )NΛRn−4 − 2Rn−3yΛ̇

]
, (1.52)

from which we obtain PN = PNr = 0 and
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PΛ =− (n− 2)An−2

κ2
n

Rn−3N−1(Ṙ−NrR
′), (1.53)

PR =
(n− 2)An−2

2κ2
n

[
2Rn−3N−1(N ′rΛ +NrΛ

′)

− 2(n− 3)N−1ΛRn−4(Ṙ−NrR
′)− 2Rn−3N−1Λ̇

]
. (1.54)

With PΛ and PR, the Hamiltonian density H(:= Λ̇PΛ + ṘPR−L) is given by

H =(NrΛPΛ)′ −NrΛP
′
Λ +NrR

′PR

− κ2
nN

(n− 2)An−2Rn−2
PΛ

(
RPR −

n− 3

2
ΛPΛ

)
− (n− 2)An−2

κ2
n

N×{
Rn−3

(
−R′′Λ−1 +R′Λ−2Λ′

)
+
n− 3

2
ΛRn−4

(
1− Λ−2R′

2

)}
. (1.55)

The first term in Equation 1.55 is a total derivative and becomes a boundary

term. Since PN = PNr = 0, the Hamilton equations for N and Nr give

constraint equations H = 0 and Hr = 0, where the super-momentum Hr(:=
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δH/δNr) and the super-Hamiltonian H(:= δH/δN) are given by

Hr =− ΛP ′Λ +R′PR, (1.56)

H =− κ2
n

(n− 2)An−2Rn−2
PΛ

(
RPR −

n− 3

2
ΛPΛ

)
− (n− 2)An−2

κ2
n

{
Rn−3

(
−R′′Λ−1 +R′Λ−2Λ′

)
+
n− 3

2
ΛRn−4

(
1− Λ−2R′

2

)}
. (1.57)

The action is finally written as

IGR =

∫
dt

∫
dx(Λ̇PΛ + ṘPR −NH −NrHr). (1.58)

It can be verified that with suitable boundary conditions the constraints

H and Hr are first class in the Dirac sense and generate spacetime diffeo-

morphisms that preserve the spherically symmetric form of the metric.

It is important to note here that we have written the Hamiltonian in

terms of the ADM canonical variables. If we wanted to we could use Equa-

tions 1.35, 1.53 and 1.54 to group terms so that we can write the Hamiltonian

in terms of the mass function M(Λ, PΛ, R, PR), whose physical meaning is

clear. We can not repeat this procedure for the Lovelock case; the expres-

sions for PΛ and PR are too difficult to invert. We will use geometrodynamics

to treat the mass function as a canonical variable. This will let us write the

Hamiltonian in terms of the mass function. It will be important when cou-

pling matter to the action that the gravitational Hamiltonian be written in
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terms of the ADM variables and so we will do an inverse canonical trans-

formation. This will give the Hamiltonian in terms of the ADM variables,

H = H(Λ, PΛ, R, PR,M(Λ, PΛ, R, PR)). The equation which relates the mass

function to the ADM variables will be too difficult to invert but this will

be unimportant for our subsequent analysis. We now review the boundary

conditions which will be important to show that the mass function and its

conjugate form a pair of canonical variables.

1.3.3 Boundary Condition and Boundary Terms

To perform the geometrodynamics (ie, to show that the Misner-Sharp mass

can be used as a canonical variable), the boundary condition plays a crucial

role. In this thesis we adopt the following boundary condition at spacelike

infinity x→ ±∞1:

N 'N∞(t) +O(x−ε1), (1.59)

Nr 'N∞r (t)x−(n−3)/2−ε2 , (1.60)

Λ '1 + Λ1(t)x−(n−3), (1.61)

R 'x+R1(t)x−(n−4)−ε4 , (1.62)

where ε1 is a positive number and ε2 and ε4 satisfy ε2 > max[0,−(n−5)/2] and

ε4 > max[0,−(n − 5)]. This boundary condition ensures that the canonical

1These boundary conditions are suited to asymptotically Schwarzschild slicings. The
analogous boundary conditions for PG coordinates are given in [32] and discussed in
Appendix A.2.
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transformation is well defined (all terms in the Liouville form approach zero

sufficiently rapidly), the Hamiltonian is finite and that the Misner-Sharp mass

is non-zero and finite. This is discussed in Appendix A.2. The asymptotic

behaviour of PΛ and PR are given by

PΛ '−
(n− 2)An−2

κ2
n

N−1
∞

(
Ṙ1x

1−ε4 −N∞r x(n−3)/2−ε2
)
, (1.63)

PR '−
(n− 2)An−2

κ2
n

N−1
∞

[
N∞r (t)

(
−n− 3

2
+ ε2

)
x(n−5)/2−ε2 + Λ̇1(t)

]
.

(1.64)

Under the boundary condition adopted, the Misner-Sharp mass converges to

a finite value M 'M∞(t), where M∞(t) is related to Λ1(t) as

Λ1(t) ≡ κ2
nM

∞(t)

(n− 2)An−2

. (1.65)

Now let us consider the boundary term for the action of Equation 1.58.

The role of the boundary term is to subtract the diverging terms at the

boundary in the variation of the above action. The action is completed by

adding the boundary term, which gives a finite value in the variation.

Since the variation of IGR gives

δIGR =

∫
dt

∫
dx

(
∂t(δΛPΛ)− δΛṖΛ + Λ̇δPΛ + ∂t(δRPR)

− δRṖR + ṘδPR − δNH −NδH − δNrHr −NrδHr

)
, (1.66)
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we need to know the contributions fromNrδHr andNδH. Using the following

results;

NrδHr =−NrδΛP
′
Λ − (NrΛδPΛ)′ + (NrΛ)′δPΛ + (NrδRPR)′

− δR(NrPR)′ +NrR
′δPR, (1.67)

NδH =

(
irrelevant terms

)
− (n− 2)An−2

κ2
n

{
−
(

(NRn−3Λ−1δR)′ − (NRn−3Λ−1)′δR

)′
+ (N ′Rn−3Λ−1δR)′ − (N ′Rn−3Λ−1)′δR+

(NRn−3R′Λ−2δΛ)′ − (NRn−3R′Λ−2)′δΛ

}
, (1.68)

we can write Equation 1.66 in the following form:

δIGR =

∫
dt

∫
dx

(
dynamical terms

)
+

∫
dx

[
δΛPΛ + δRPR

]t=t2
t=t1

−
∫
dt

[
−NrΛδPΛ +NrPRδR−

(n− 2)An−2

κ2
n

×{
−NRn−3Λ−1δ(R′) +N ′Rn−3Λ−1δR +NRn−3R′Λ−2δΛ

}]x=+∞

x=−∞
.

(1.69)

Now the boundary condition comes into play. We assume δΛ = δR = 0 at

t = t1, t2 and then the second term in the above variation vanishes. Using

the boundary conditions of Equations 1.59–1.64, we can show that only the
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contribution in the last integral comes from NRn−3R′Λ−2δΛ as

NRn−3R′Λ−2δΛ ' N∞δΛ1 =
κ2
nN∞δM

∞(t)

(n− 2)An−2

, (1.70)

where we used Equation 1.65. Finally we obtain the boundary term in a

simple form:

δIGR =

∫
dt

∫
dx

(
dynamical terms

)
+

∫
dt

[
N∞(t)δM∞(t)

]x=+∞

x=−∞
. (1.71)

1.3.4 Misner-Sharp Mass as Canonical Variable

In the ADM coordinates, the canonical variables are {Λ, PΛ;R,PR}. How-

ever, the physical meanings of the variable Λ is not so clear. Also, as men-

tioned earlier, finding the Hamiltonian in terms of the ADM variable will not

be possible for us in the Lovelock situation. In this subsection, we show that

the two-dimensional equivalent action is written in a rather elegant man-

ner by introducing the Misner-Sharp mass M as a canonical variable. We

introduce a new set of canonical variables {M,PM ;S, PS} defined by

S :=R, (1.72)

PS :=PR −
1

R′
(ΛP ′Λ + PMM

′), (1.73)

M :=
(n− 2)An−2

2κ2
n

Rn−3(1− F ), (1.74)

PM :=− T ′eσ = −yΛ

F
, (1.75)
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where we used Equation 1.43 and F can be written in terms of the ADM

variables using Equations 1.30 1.44 and 1.53. We are going to show below

that, under the boundary conditions of Equations 1.59–1.64, the transforma-

tion from a set of variables {Λ, PΛ;R,PR} to another set {M,PM ;S, PS} is

a well-defined canonical transformation.

Note Equation 1.75 chooses the conjugate toM in terms of the Schwarzschild

time T . As verified in Appendix A.2 this leads to a finite Liouville form pro-

viding one chooses boundary conditions such that the metric approaches the

vacuum Schwarzschild solution sufficiently rapidly at spatial infinity. In or-

der to use asymptotically PG slices, it is necessary to choose the conjugate

to M in terms of the PG time TPG. That is

P̃M = −eσT ′PG = −yΛ

F
∓ R′

√
1− F
F

. (1.76)

In order to preserve the Liouville form it is of course necessary to transform

PS as well. As verified in Appendix A.2, the required term is precisely the

one that preserves the form of the diffeomorphism constraint Hr, as required

by diffeomorphism invariance ie, P̃S = PS ∓M ′√1− F/F . It turns out that

this term adds boundary terms to the variation that are required to make

the transformation from {Λ, PΛ;R,PR} to {M, P̃M ;S, P̃S} well defined under

asymptotically PG boundary conditions. This is also proven in Appendix

A.2. For simplicity, we henceforth stick to the Schwarzschild expressions.

From the expression for the Misner-Sharp mass (Equation 1.74), we ob-



CHAPTER 1. INTRODUCTION & BACKGROUND 27

tain

PMṀ =
(n− 2)An−2

2κ2
n

yΛ

F
Rn−3

[
Ḟ − (n− 3)(1− F )

Ṙ

R

]
, (1.77)

which shows (using Equations 1.53 and A.2) PMṀ = PΛΛ̇+(· · · )Ṙ+ ˙(· · · )+

(· · · )′. The Misner-Sharp mass M is expressed in terms of {Λ, PΛ;R,PR} as

M =
κ2
nP

2
Λ

2(n− 2)An−2Rn−3
+

(n− 2)An−2

2κ2
n

Rn−3

(
1− R′2

Λ2

)
. (1.78)

From this expression, we can show that M ′ is a linear combination of the

constraints:

M ′ = Λ−1(yHr −R′H), (1.79)

where we used Equation 1.53 to replace PΛ by y. This implies that in the

vacuum theory M is a constant on the constraint surface, as expected.

Also using Equation 1.78, we can show that two sets of variables {Λ, PΛ;R,PR}

and {M,PM ;S, PS} satisfy the following Liouville form:

PΛΛ̇ + PRṘ = PMṀ + PSṠ + η̇ + ζ ′, (1.80)
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where

η :=ΛPΛ +
(n− 2)An−2

2κ2
n

Rn−3R′ ln

∣∣∣∣R′ + yΛ

R′ − yΛ

∣∣∣∣, (1.81)

ζ :=− (n− 2)An−2

2κ2
n

Rn−3Ṙ ln

∣∣∣∣R′ + yΛ

R′ − yΛ

∣∣∣∣. (1.82)

Under the boundary conditions of Equations 1.59–1.64, the total derivative

term ζ converges to zero at spacelike infinity. Hence, the transformation from

a set {Λ, PΛ;R,PR} to {M,PM ;S, PS} is indeed a canonical transformation,

namely

∫ ∞
−∞

dx(PΛΛ̇ + PRṘ)−
∫ ∞
−∞

dx(PMṀ + PSṠ) = ω̇[Λ, PΛ;R,PR], (1.83)

ω[Λ, PΛ;R,PR] :=

∫ ∞
−∞

dxη[Λ, PΛ;R,PR] (1.84)

is satisfied. It is shown that the integrands in the above equation, namely

PΛΛ̇ + PRṘ, PMṀ + PSṠ, and η converge to zero faster than O(x−1) at

spacelike infinity under the boundary condition we adopt, and hence the

above expression is well-defined. (See Appendix A.2 for the proof.)

We now derive the Hamiltonian constraint and the diffeomorphism (mo-

mentum) constraint in terms of the variables {M,PM ;S, PS}. A straightfor-
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ward calculation using the above equations verifies the following relation;

L − PMṀ −
NΛ

R′
M ′ =− Ṙ

R′
PMM

′ + (t.d.) (1.85)

=
yΛ

F

(
Nr +N

y

R′

)
M ′ + (t.d.), (1.86)

where (t.d.) is a total derivative term (see Appendix A.1.4 for the derivation

in the more general Lovelock case). From this we obtain the Hamiltonian

density HG in the equivalent two-dimensional theory as

HG :=PMṀ + PSṠ − L

=NMM ′ +NSPS, (1.87)

where we have used the fact that {M,PM ;S, PS} are canonical in the first

line, Equation 1.86 in the second line and defined new Lagrange multipliers

NM and NS as

NM :=− Λ

R′

(
N +

yṘ

F

)
=− Λ

R′

(
N +

y

F
(Ny +NrR

′)

)
=−N

(
Λ

R′
− PMy

R′

)
+NrPM , (1.88)

NS :=Ṡ = (Ny +NrR
′) . (1.89)
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Collecting terms in N and Nr, we can express the total Hamiltonian as

HG = N

[(
PMy

R′
− Λ

R′

)
M ′ + yPs

]
+Nr(PMM

′ + PSS
′). (1.90)

The coefficients of N and Nr are the super-Hamiltonian H and the super-

momentum Hr, respectively. Note that H can be written as

H = − Λ

R′
M ′ +

y

R′
Hr (1.91)

in agreement with Equation 1.79.

The Lagrangian density for the canonical coordinates (M,S,NM , NS) is

now written as

L = PMṀ + PSṠ −NMM ′ −NSPS, (1.92)

which corresponds to Equation 122 of [7].

Lastly, let us derive the boundary term in Equation 1.71 with the new

canonical variables. Starting from

IGR =

∫
dt

∫
dx(PMṀ + PSṠ −NMM ′ −NSPS), (1.93)
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we obtain

δIGR =

∫
dt

∫
dx

(
δPMṀ + ∂t(PMδM)− ṖMδM

+ δPSṠ + ∂t(PSδS)− ṖSδS

− δNMM ′ − (NMδM)′ +NM ′δM − δNSPS −NSδPS

)
=

∫
dt

∫
dx

(
dynamical terms

)
+

∫
dx

[
PMδM + PSδS

]t=t2
t=t1

−
∫
dt

[
NMδM

]x=+∞

x=−∞
. (1.94)

Under the boundary condition of Equations 1.59–1.64, we obtain δM '

δM∞(t) and NM ' −N∞(t) at spacelike infinity and hence we obtain the

same result as Equation 1.71 by setting δM = 0 and δS = 0 at t = t1, t2.

One important advantage of the new set of canonical variables is to greatly

simplify the calculations. We will take advantage of this simplification in the

next section and in Chapter 2.

1.4 Addition of the Massless Scalar Field:

The General Relativistic Case

In this section, we add the action for a massless scalar field to the gravity

action using the ADM variables discussed in Section 1.6. We use this to find

Hamilton’s equations of motion, in terms of the mass function, Equation 1.78.

These equations govern the evolution of a scalar field under the influence of



CHAPTER 1. INTRODUCTION & BACKGROUND 32

spherically symmetric, nD, general relativistic gravity. We fix the gauge such

that the equations of motion are in Painlevé-Gullstrand co-ordinates. This

analysis will be repeated in some detail for the more general, Lovelock case

in Section 2.3. For this reason we only present highlights of the calculation

here.

The action for a massless scalar field, ψ, is given by

Iψ = −1

2

∫
dnx
√
−g(∇ψ)2. (1.95)

The equivalent two-dimensional action in the symmetric spacetime under

consideration can be shown to be

Iψ = −An−2

2

∫
d2ȳ
√
−g(2)R

n−2(Dψ)2 (1.96)

= −An−2

2

∫
dxdt

ΛRn−2

N

(
−ψ̇2 + 2Nrψ

′ψ̇ + (N2Λ−2 −N2
r )ψ′

2
)
,

which can be written in terms of the phase space variables as

Iψ =

∫
dxdtψ̇Pψ

−
∫
dxdtN

[
1

2Λ

(
P 2
ψ

An−2Rn−2
+An−2R

n−2ψ′
2

)
+ Pψψ

′Nr

N

]
, (1.97)

where Pψ is the conjugate momentum to ψ.

Equation 1.95 does not contain any derivatives of the metric or R, which

allows us to write the total Hamiltonian as the sum of the gravitational and
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matter parts. Using Equation 1.97, we obtain the total Hamiltonian Htotal

as2

Htotal =

∫
dx

[
N(H(G) +H(M)) +Nr(H

(G)
r +H(M)

r )

]
, (1.98)

where the super-Hamiltonian H = H(G) +H(M) and super-momentum Hr =

H
(G)
r +H

(M)
r are the given by the sums of their gravitational (G) and matter

(M) contributions and are given by

H(M) =
1

2Λ

(
P 2
ψ

An−2Rn−2
+An−2R

n−2ψ′
2

)
, (1.99)

H(M)
r =Pψψ

′. (1.100)

H(G)
r =PSS

′ + PMM
′ = PRR

′ − P ′ΛΛ, (1.101)

H(G) =− Λ

R′
M ′ +

y

R′
H(G)
r . (1.102)

y is a function of the phase space variables, Λ, PΛ and R via Equation 1.53

and we have used Equations 1.30, 1.73, 1.72, 1.75, 1.86 and 1.79 to derive

Equations 1.101 and 1.102. It should be noted that we are now using the

ADM variables and M should be thought of as a function of them. Since

Equation 1.53 shows that y is not a function of N or Nr, we can see that

the Hamiltonian density is the sum of Lagrange multiplier times constraints.

2The matter fields’ fall off conditions required for a well–defined Hamiltonian formula-
tion are well known. See [32] for the PG case.
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Since our theory is diffeomorphism invariant, H and Hr must be first class

constraints which means that there are two gauge choices to pick (see [33]

for an excellent review of constraint analysis). We choose

χ := R− x ≈ 0 (1.103)

and

ξ := Λ− 1 ≈ 0, (1.104)

where the weakly equals zero symbol (≈) means that the equations are only

valid on the solution surface. The first gauge choice, χ forces the spatial co-

ordinate to be the areal radius while the second, ξ forces the time co-ordinate

to be the Painlevé-Gullstrand time.

In order to insist that χ and ξ are satisfied at every time slice, we must

insist that their Poisson brackets with the Hamiltonian is weakly equal to

zero. This gives the consistency conditions,

Nr/N + y/R′ ≈ 0 (1.105)

and

N ′

√
2(n− 2)A(n−2)Rn−3M

κ2
n

+NPψψ
′ ≈ 0. (1.106)

In principal we can use Equations 1.103, 1.104, 1.105 and 1.106 to simplify

the Hamiltonian of Equation 1.98 (as long as we use Dirac brackets to find

the equations of motion). In practice we must solve the equations of motion
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and constraints numerically and Equation 1.106 must be solved numerically

at each time step to find the value of N . Simplifying with Equations 1.103,

1.104 and 1.105 gives

Htotal =

∫
dRN

[
−M ′ +

1

2

(
P 2
ψ

An−2Rn−2
+An−2R

n−2ψ′
2

)

+ Pψψ
′

√
2κ2

nM

(n− 2)An−2Rn−3

]
(1.107)

where we used Equation 1.74 to write the Hamiltonian in terms of the mass

function.

Using this Hamiltonian to find the equations of motion gives

ψ̇ =N

(
Pψ

An−2Rn−2
+ ψ′

√
2κ2

nM

(n− 2)An−2Rn−3

)
, (1.108)

Ṗψ =

[
N

(
An−2R

n−2ψ′ + Pψ

√
2κ2

nM

(n− 2)An−2Rn−3

)]′
. (1.109)

Given some initial data these equations can be used to evolve the scalar

field forward in time. At each time step the constraint of Equation 1.106 and

the constraint on the Hamiltonian,
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−M ′ +
1

2

(
P 2
ψ

An−2Rn−2
+An−2R

n−2ψ′
2

)
+ Pψψ

′

√
2κ2

nM

(n− 2)An−2Rn−3
= 0 (1.110)

must be satisfied.

It will be important for later to notice that the equations of motion and

the constraints are scale invariant; that is if ψ(TPG, R), Pψ(TPG, R) and

M(TPG, R) are a solution to the equations of motion and constraints then so

are

ψ(lTPG, lR), l−(n−3)Pψ(lTPG, lR), l−(n−3)M(lTPG, lR) (1.111)

where l is some positive number. This will not be the case when a dimen-

sionful parameter appears in the Lagrangian as is the case in higher order

Lovelock gravity.

1.5 Choptuik Scaling

As mentioned at the beginning of this chapter, one of the goals of this work is

to numerically investigate the formation of microscopic black holes. To this

end we now review a phenomenon known as Choptuik scaling which relates
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observables, such as a black hole’s mass, to parameters in the initial data.

Although Choptuik scaling is affected by the number of dimensions of the

universe and the addition of higher order curvature terms in the action, we

mostly concentrate on the case of 4D general relativity in this section.

1.5.1 Phenomenology

When simulating the evolution of a matter field coupled to gravity it is

necessary to specify initial conditions, in our case the initial conditions of

the scalar field and its conjugate momentum. For many different types of

matter, including scalar field matter, a given parameter in the initial data,

p, will have a corresponding critical value p∗. For p > p∗ a black hole will

form and for p < p∗ the matter will disperse to infinity. Black holes with p

just slightly bigger than p∗ are known as near critical black holes. In 1993

Matthew Choptuik [34] numerically explored the formation of near critical

black holes. He found that near criticality the mass of the black hole at

formation, MBH , is related to the initial parameters by the relation

MBH = |p− p∗|γ, (1.112)

where γ ' 0.37 for 4D black holes. Although he found this relation in

Schwarzschild coordinates the result is independent of the coordinate system.

The result was confirmed in null coordinates by Garfinkle in 1995 [35]. Note

that this type of scaling, where the mass (or some other observable) goes to
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zero as p approaches p∗ is seen in other areas of physics and is known as type

II scaling.

In 1997 Gundlach described the origins of Choptuik scaling in terms of

discrete self-similarity of the equations of motion near the critical point [36]

(similar work was also performed at this time by Hod and Piran [37]). Using

this line of reasoning he then predicted the existence of a co-ordinate system

dependent periodic term, f(ln |p−p∗|), which should appear in the Choptuik

relation as

ln(MBH) = γ ln |p− p∗|+ f(ln |p− p∗|). (1.113)

(This relation will be referred to as Chopuik scaling for the rest of this

thesis.) It turned out that upon re-inspection of Choptuik’s work this peri-

odic function was there but it was small enough in amplitude that it went

unnoticed. Although Gundlach predicted the periodic function in Equation

1.113 he did not state a specific form for it in any coordinate system. In

Schwarschild and null coordinates it was found that it could be very well fit

to a small amplitude sine wave. Jonathan Ziprick later found [38] that in PG

coordinates the periodic function had cusps.

The critical exponent, γ, of Equation 1.113 is not a function of which

coordinate system is chosen but it is a function of the number of space-time

dimensions. In 2005 Sorkin and Oren [39] found that the value for γ peaked
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near n = 10 whereas Bland [40,41] found

γ = m1(m2 − e−m3n) (1.114)

where m1, m2 and m3 are fit parameters. This asymptotes to ≈ 0.5 for large

n. This result is obviously in conflict with that of Sorkin and Oren and will

be investigated further in Chapter 3.

1.6 Quasi-Analytical Explanation of

Choptuik Scaling

Choptuik scaling, for the massless scalar field, was thought to occur due

to the existence of a discretely self similar, critical surface which separates

the phase space into two solutions; those which form black holes and those

which end with a flat space-time. It is thought that the existence of this self

similarity is related to the scale invariance in the equations of motion such as

that seen in equation 1.111. In Carsten Gundlach’s 2003 paper [42] on this

subject he says that “the presence of a length scale in the field equations is

incompatible with exact self similarity” although he also mentions that it is

still an open question whether or not “type II critical phenomena, where the

critical solution is scale-invariant, can arise if the field equations contain a

scale.”

In 1997 Gundlach [36] verified the explanation that discrete self similarity
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causes Choptuik scaling by using it to calculate the critical exponent, γ and

by predicting the periodic function, f in Equation 1.113. This section briefly

reviews the relevant parts of that work. We keep much of the notation used

in [36].

Figure 1.1 shows the critical surface. Any point on the surface corresponds

to two functions, ψ(x) and Pψ(x) of some space-like co-ordinate, x 3. Any

initial data on this surface ([ψ(x), Pψ(x)]p∗ for example) will evolve along

this surface (solid line) until it reaches the limit cycle where it will oscillate

forever. This is the origin of the discrete self similarity. We assume that the

initial data contains one tunable parameter, p, which we call p∗ on the critical

surface. By adjusting p we move off of the critical surface. If we start with

p slightly bigger than p∗ in the initial data (see the point [ψ(x), Pψ(x)]p), ie

slightly above the critical surface, then we evolve along a curve (dotted line)

which approximates the critical solution and even follows the limit cycle for

some time before leaving the vicinity of the critical surface to form a black

hole. If p is slightly less than p∗ the evolution is similar except that the

space-time eventually becomes flat.

In order to explore the critical solution we start by defining discrete self

similarity. A space-time is said to be discretely self similar if there exists

some set of co-ordinates, (σ, xα) such that the metric can be written as

3For concreteness we have chosen to use phase space variables for this figure but, in
principal, other forms of the equations of motion could be used.
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Figure 1.1: The critical solution (solid line) and a solution starting with
initial data which is not quite on the critical surface (dashed line)

gµν(σ, x
α) = e2σg̃µν(σ, x

α) (1.115)

where

g̃µν(σ, x
α) = g̃µν(σ +m∆, xα), (1.116)

m is an integer and ∆ is some constant. By assuming that the metric takes

this form for a specific co-ordinate system on the critical surface Gundlach

[36] calculates ∆ and shows agreement with results calculated using numerical

collapse and dispersion simulations. To do this calculation start with the
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metric in the form

− α(R, T )2dT 2 + a(R, T )2dR2 +R2dΩ2
(2). (1.117)

If we transform to the co-ordinates (σ, z) given by

T = eσT̃ (σ, z) (1.118)

and

R = eσR̃(σ, z), (1.119)

where T̃ and R̃ are periodic in σ with period ∆, we get the new line element

ds2 =e2σ

{
− α2

[(
T̃ + T̃ ,σ

)
dσ + T̃ ,z dz

]2

+

a2
[(
R̃ + R̃,σ

)
dσ + R̃,z dz

]2

+ R̃2dΩ2

}
. (1.120)

This metric is discretely self similar (see Equations 1.115 and 1.116) provided

that the old metric functions obey

a(T,R) = a(em∆T, em∆R) (1.121)

and
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α(T,R) = α(em∆T, em∆R) (1.122)

where m is an integer. In order to impose discrete self similarity into the

evolution we adopt a specific co-ordinate system given by

τ := ln

(
T

l

)
(1.123)

and

ζ := ln

(
R

T

)
− ξ0(τ), (1.124)

where l is an arbitrary length scale and ξ0 is a function with period ∆. These

co-ordinates are in the form of Equations 1.118 and 1.119 with τ playing the

role of σ. In these co-ordinates Equations 1.121 and 1.122 become

a(ζ, τ) = a(ζ, τ +m∆) (1.125)

and

α(ζ, τ) = α(ζ, τ +m∆). (1.126)

Gundlach wrote the equations of motion (analogous to Equations 1.108

and 1.109) in terms of τ and ξ. Using Fourier analysis and the assumptions

given in Equations 1.125 and 1.126 he numerically calculated ∆ = 3.4453.

This value can be compared to that which is calculated using collapse sim-
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ulations (see [43] for example) of ∆ ' 3.44 giving credence to the idea that

a discretely self similar solution is responsible for the periodic term in the

Choptuik scaling relation, Equation 1.113.

In order to calculate the critical exponent, γ of Equation 1.113 we must

consider solutions which aren’t quite on the critical surface (see the dotted

line in Figure 1.1). We define Z as being short hand for a, α, ψ or Pψ, Z∗

is Z on the critical surface and δZ is a small perturbation to Z∗. From the

equations of motion we obtain the equations governing the perturbations.

They are of the form

δZ,ζ = AδZ +BδZ,τ , (1.127)

where A and B are periodic in τ with period ∆. Note that δZ can not be

periodic (or Z∗ + δZ would be on the critical surface) and that it must be

some function of the distance from the critical surface, p − p∗. To achieve

this Gundlach used the form

δZ(ζ, τ) =
∞∑
i=1

Ci(p− p∗)eλiτδiZ(ζ, τ), (1.128)

where Ci are functions of p, λi are constants and δiZ are periodic in τ with

period ∆. Gundlach calculated the set of λi using Equations 1.127 and 1.128

and found only one growing mode (λ < 0 in this case since τ = −∞ at the

singularity), which he called λ1. He found λ1 = −2.674 which, as we will

see shortly, corresponds to a critical exponent of γ = −1/λ1 = 0.374. This
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agrees well with values obtained from simulations of matter collapse (see [43]

for example).

To see the relation between Equation 1.128 and the scaling relation, Equa-

tion 1.113, consider the initial data at constant T given by

Zτ (R) = Z∗

(
ln
R

l
, τ

)
+ εδ1Z

(
ln
R

l
, τ

)
, (1.129)

where ε is a small constant who’s sign determines whether the solution will

form a black hole or a flat space-time. Here we keep only the δ1Z term since

it is the only one which corresponds to a growing mode. As we will see soon,

we can relate the constant, τ , to p and so it plays the role of the parameter

for this family of initial data.

It is important to notice that the evolution equations have no scale. This

means that the only scale in the system is l in the initial data and the solution

evolves as

Zτ (R, T ) = J

(
R

l
,
T

l
, τ

)
, (1.130)

where J is a some function. The mass of the black hole, which has units of

length, must then be given by4

M = leµ0(τ), (1.131)

where µ0 is a periodic function with period ∆. Note that a similar relation

4Note that the black hole mass could mean the mass of the final black hole, the mass
of the black hole at formation or possibly some other choice. This will affect the form of
µ0 but not its period. In this thesis we measure the mass of the black hole at formation.
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exists for the Ricci scalar, which has units of length−2, except that it is

proportional to l−2.

We now consider the evolution of a slightly super-critical system and com-

pare to Equation 1.129 to see the relationship between the initial conditions

and the black hole’s mass. For a solution near the critical surface we write

Equation 1.128 as

Z(ζ, τ) ' Z∗ (ζ, τ) + (p− p∗)∂C1

∂p

∣∣∣∣
p=p∗

eλ1τδ1Z (ζ, τ) , (1.132)

where Z∗ is the critical solution. If we define

τ∗(p) := γ ln

[
1

ε
(p− p∗)∂C1

∂p

∣∣∣∣
p=p∗

]
(1.133)

and

R(p) := leτ∗(p)+ξ0(τ∗(p)), (1.134)

where, as promised, γ is given by γ := −1/λ1, then Equation 1.132 is written

as

Zp(R) = Z∗

(
ln

R

R(p)
, τ∗(p)

)
+ εδ1Z

(
ln

R

R(p)
, τ∗(p)

)
. (1.135)

This is in the form of the initial data, Equation 1.129. We can now use

Equations 1.131, 1.133 and 1.134 to write
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M(p) = R(p)eµ0(τ∗(p))

= l(p− p∗)γeτf+µ̃0[γ ln(p−p∗)+τf ], (1.136)

where,

τf := γ ln

[
1

ε

∂C1

∂p

∣∣∣∣
p=p∗

]
(1.137)

and

µ̃0 := µ0 + ξ0 (1.138)

is a periodic function. Although Gundlach showed that µ0 and ξ0 have pe-

riods of ∆ (see Equations 1.124 and 1.131) he argued that µ̃0 should have a

period of ∆/2. Taking the logarithm of both sides of Equation 1.136 verifies

the Choptuik scaling relation of Equation 1.113 (up to shifts in the abscissa

and ordinate) and gives the period of the f as ∆/(2γ) ' 4.61 in agreement

with the value found using numerical collapse simulations. This supports

the idea that a critical surface and discrete self similarity are responsible for

Choptuik scaling.



Chapter 2

Hamiltonian Formalism of

Lovelock Gravity

In Section 1.6 we reviewed the Hamiltonian analysis of general relativity.

We obtained the Hamiltonian in terms of a mass function and wrote the

equations of motion for gravity coupled to a massless scalar field. In this

chapter we perform the non-trivial generalization of the results of Section

1.6 to the Lovelock case. This chapter is based on our paper [1] which is a

generalization of the work that we did in [25] and [44].

In Section 2.1 we derive a dimensionally reduced equivalent two-dimensional

action that is the starting point of our analysis. The Hamiltonian analysis

of Lovelock gravity is presented in Section 2.2. The contributions of scalar

matter and charged scalar matter fields are discussed in Section 2.3.

48
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2.1 Dimensionally Reduced Action

2.1.1 Covariant Form

Our first task is to dimensionally reduce the Lovelock action, given by Equa-

tion 1.3 of Section 1.1,

ILL =
1

2κ2
n

∫
dnx
√
−g

[n/2]∑
p=0

α(p)L(p),

L(p) :=
1

2p
δµ1···µpν1···νpρ1···ρpσ1···σpR

ρ1σ1
µ1ν1

· · ·R ρpσp
µpνp ,

so that it incorporates spherical symmetry. The dimensionally reduced action

is given by

ILL =
V

(k)
n−2

2κ2
n

∫
d2ȳ
√
−g(2)R

n−2

[n/2]∑
p=0

α(p)L(p), (2.1)
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where g(2) := det(gAB) and the dimensionally reduced pth-order Lovelock

term L(p) is given from Equations 2.19 and 2.20 of [17] as

L(p) =
(n− 2)!

(n− 2p)!

[
(n− 2p)(n− 2p− 1)

(
k − (DR)2

R2

)p
− 2p(n− 2p)

D2R

R

(
k − (DR)2

R2

)p−1

+ 2p(p− 1)
(D2R)2 − (DADBR)(DBDAR)

R2

(
k − (DR)2

R2

)p−2

+ p(2)R
(
k − (DR)2

R2

)p−1 ]
, (2.2)

where (2)R is the Ricci scalar calculated using gAB, D2R := DADAR and we

recall that k = 1, 0,−1 corresponds to γab being spherical (compact), flat or

hyperbolic. At a glance, there is a non-minimal coupling between (DR)2 and

the terms containing second derivatives in L(p). In this form it is not clear

how to use this Lagrangian to perform the canonical analysis. As proven

in Appendix A.1.1, we can write it, up to total divergences, without this

coupling:

L(p) =
(n− 2)!

(n− 2p)!

[
pkp−1(2)RR2−2p

+ pR2−nD
A(Rn−2p)DA((DR)2)

(DR)2

{
kp−1 − (k − (DR)2)p−1

}
+ (n− 2p)(n− 2p− 1)

{(
k − (DR)2

)p
+ 2pkp−1(DR)2

}
R−2p

]
.

(2.3)
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This is a key result of this work and the starting point of our canonical

analysis.

Note that in the following we work exclusively with the equations of mo-

tion derived from the reduced action of Equation 2.1. In general it is not true

that dimensional reduction commutes with the variational principle. That

is, the space of extrema of a dimensionally reduced action in principle may

not coincide with the space of symmetric solutions of the unreduced action.

However, in a very elegant and powerful set of papers [29,30] (see also [45]),

it has been rigorously proven that if the symmetry group is a compact Lie

group, as in our case, then for any local metric theory of gravity in arbitrary

space-time dimensions, with or without matter, variation does indeed com-

mute with dimensional reduction. The spherically symmetric equations of

motion obtained from the full, unreduced Lovelock action with matter were

explicitly written down in [17]. The proof that the solution space is the same

in both cases nonetheless requires the more detailed analysis of [29,30]. Un-

fortunately, this analysis is only valid in the compact case, so that more work

needs to be done in order to prove that the dimensionally reduced action is

sufficient when k = 0,−1. This is one of the reasons that we only consider

the k = 1 case for the rest of this work.

2.1.2 ADM Form

We are now going to write down the action of Equation 2.3 using the ADM

coordinates (t, x) as we did in Section 1.6 for the general relativistic case.
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Recall from Equation 1.24 that the ADM metric is given by

ds2
(2) = −N(t, x)2dt2 + Λ(t, x)2(dx+Nr(t, x)dt)2.

As we did in Equations 1.28, 1.29 and 1.30 for the general relativistic case it

is useful to use the following definitions and relationships

F :=(DR)2

=− y2 + Λ−2R′
2
,√

−g(2)D
2R =− ∂t(Λy) + ∂x(ΛNry + Λ−1NR′),

where y is again defined by

y := N−1(Ṙ−NrR
′).

For the Lovelock case we also need the following relationship:

DA(Rn−2p)DA((DR)2) = (n− 2p)Rn−2p−1

(
− 1

N
yḞ +

(
R′

Λ2
+
Nr

N
y

)
F ′
)
.

(2.4)
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Using these results, the action of Equation (2.3) is written in the following

simple form:

ILL =
(n− 2)V

(k)
n−2

2κ2
n

[n/2]∑
p=0

∫
d2ȳ
√
−g(2)

α̃(p)

(n− 2p)

[
pkp−1(2)RRn−2p

− p(n− 2p)
Rn−2p−1

NΛ
{kp−1 − (k − F )p−1}

×
{

Λy
Ḟ

F
− (ΛNry + Λ−1NR′)

F ′

F

}
+ (n− 2p)(n− 2p− 1)

{
(k − F )p + 2pkp−1F

}
Rn−2−2p

]
. (2.5)

The first term is two-dimensional gravity non-minimally coupled to a scalar

field R, which is essentially the same as the general relativistic case. This

term can be explicitly written down in terms of the canonical variables using

√
−g(2)R

n−2p(2)R =− 2N−1

(
(Rn−2p)′Nr − ∂t(Rn−2p)

)
(N ′rΛ +NrΛ

′ − Λ̇)

− 2N

(
(Rn−2p)′′Λ−1 + (Rn−2p)′(Λ−1)′

)
+ ∂t(· · · ) + ∂x(· · · ). (2.6)

Based on the action of Equation 2.5, we will perform the canonical analysis

in the subsequent sections using geometrodynamical phase space variables as

we did in Section 1.6 for the general relativistic case.
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2.2 Canonical Formalism in Lovelock Gravity

In this section, we show that the important results of Section 1.6 can be

generalized to full Lovelock gravity. In particular the transformation from the

ADM variables {Λ, PΛ;R,PR} to {M,PM ;S, PS} is a well-defined canonical

transformation using definitions of PM , S, and PS that are the same as

those in general relativity, Equations 1.72, 1.73 and 1.75, and M defined by

Equation 1.11.

2.2.1 ADM variables

First we derive the ADM conjugate momenta PΛ and PR. The Lagrangian

density from the action of Equation 2.5 is

LLL =
(n− 2)An−2

2κ2
n

[n/2]∑
p=0

α̃(p)

[
2pRn−2p−1y(NrΛ)′ − 2pN

n− 2p

(
(Rn−2p)′Λ−1

)′
+ (n− 2p− 1)

{
(1− F )p + 2pF

}
NΛRn−2−2p − 2pRn−2p−1yΛ̇

+ pRn−2p−1

{
1− (1− F )p−1

}{
(ΛNry + Λ−1NR′)

F ′

F
− Λy

Ḟ

F

}]
.

(2.7)

Using the binomial expansion and integration by parts many times, we can

rewrite the above Lagrangian density in the following form up to total deriva-
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tives. The derivation is presented in Appendix A.1.2.

LLL =
(n− 2)An−2

2κ2
n

[n/2]∑
p=0

α̃(p)

[
2pRn−2p−1y(NrΛ)′ − 2pN

n− 2p

(
(Rn−2p)′Λ−1

)′
+ (n− 2p− 1)

{
(1− F )p + 2pF

}
NΛRn−2−2p − 2pRn−2p−1yΛ̇

]
− (n− 2)An−2

2κ2
n

[n/2]∑
p=2

α̃(p)

[p−2∑
w=0

p!(−1)p−1−w

w!(p− 1− w)!

{
ΛNryR

n−2p−1F p−2−w(Λ−2R′
2
)′

+

p−2−w∑
j=0

2(p− 2− w)!(−1)p−2−w−j

j!(p− 2− w − j)!
(NrR

n−2p−1Λ1−2jR′2j)′y2(p−w−j)−1

2(p− w − j)− 1

− (Λ−1NR′Rn−2p−1)′F p−1−w

p− 1− w

}
+

p−1∑
w=1

2p!(−1)w

w!(p− 1− w)!
Rn−2p−1Fw−1yΛ−2Λ̇R′

2

−
p−1∑
w=1

2p!

w(p− 1− w)!

w−1∑
j=0

(−1)2w−1−j

j!(w − 1− j)!

{
∂t(R

n−2p−1Λ1−2j)R′2jy2(w−j)+1

2(w − j) + 1

− j
2(w−j)+1∑

q=0

(2w − 2j)!(−1)q

q!(2w − 2j + 1− q)!
(2.8)

× Ṙw−j+1(Rn−2p−1Λ1−2jN−2(w−j)−1R′2j−1+qN q
r )′

2(w − j + 1)

−
2(w−j)−1∑

q=0

(2w − 2j − 1)!(−1)q

q!(2w − 2j − q)!
Ṙ2w−2j−q

× (Rn−2p−1Λ−1−2jN−2(w−j)+1R′
2j+1+q

N q
r )′
}]

.
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From this Lagrangian density, we obtain

PΛ = −(n− 2)An−2

κ2
n

[[n/2]∑
p=0

α̃(p)pR
n−2p−1y (2.9)

+

[n/2]∑
p=2

α̃(p)R
n−2p−1y

R′2

Λ2

p−1∑
w=1

p!(−1)w

w!(p− 1− w)!

×
{
Fw−1 −

w−1∑
j=0

(−1)w−1−j(w − 1)!

j!(w − 1− j)!
(1− 2j)y2(w−j)

2(w − j) + 1

R′2j−2

Λ2j−2

}]
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and

PR =
(n− 2)An−2

κ2
n

[n/2]∑
p=0

α̃(p)pR
n−2p−1

×

[
(NrΛ)′ − Λ̇

N
+ (n− 2p− 1)

{
(1− F )p−1 − 2

}
yΛ

R

]

− (n− 2)An−2

2κ2
n

[n/2]∑
p=2

α̃(p)p

×
[p−2∑
w=0

(p− 1)!(−1)p−1−w

w!(p− 1− w)!
N−1

{
2(Λ−1NR′Rn−2p−1)′F p−2−wy

+

p−2−w∑
j=0

2(p− 2− w)!(−1)p−2−w−j

j!(p− 2− w − j)!
(NrR

n−2p−1Λ1−2jR′
2j

)′y2(p−w−j−1)

+ ΛNrR
n−2p−1F p−3−w(Λ−2R′

2
)′
(
F − 2(p− 2− w)y2

)}
+

p−1∑
w=1

2(p− 1)!(−1)w

w!(p− 1− w)!

{
Rn−2p−1Λ−2Λ̇R′

2
N−1Fw−2

(
F − 2(w − 1)y2

)

−
w−1∑
j=0

(−1)w−1−j

j!(w − 1− j)!

×
(
∂t(R

n−2p−1Λ1−2j)
R′2jy2(w−j)

N
+

n− 2p− 1

2(w − j) + 1

Rn−2p−2R′2jy2(w−j)+1

Λ2j−1

−
2(w−j)+1∑

q=0

2j(2w − 2j)!(−1)q

q!(2w − 2j + 1− q)!
Ṙ2(w−j)+1

× (Rn−2p−1Λ1−2jN−2(w−j)−1R′
2j−1+q

N q
r )′

−
2(w−j)−1∑

q=0

(2w − 2j − 1)!(−1)q

q!(2w − 2j − 1− q)!
Ṙ2w−2j−q−1

× (Rn−2p−1Λ−1−2jN−2(w−j)+1R′
2j+1+q

N q
r )′
)}]

. (2.10)
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In general relativity, PΛ = PΛ[Λ̇, y(Ṙ)] and PR = PR[Λ̇, y(Ṙ)] can be

algebraically solved to give a unique set of Λ̇ = Λ̇[PΛ, PR] and Ṙ = Ṙ[PΛ, PR].

In higher-order Lovelock gravity, by contrast, it is not possible to obtain

a unique expression in general because of the fact that PΛ = PΛ[Λ̇, y(Ṙ)]

and PR = PR[Λ̇, y(Ṙ)] are higher-order polynomials of y. As a result, it

is difficult to obtain the explicit forms of the super-momentum Hr and the

super-Hamiltonian H, such that

L = Λ̇PΛ + ṘPR −NH −NrHr (2.11)

in terms of the ADM variables. However, it is not necessary to do so at this

stage. Things are greatly simplified by using the generalized Misner-Sharp

mass as a new canonical variable. As we will show, the super-momentum

and the super-Hamiltonian with the new set of canonical coordinates are the

same as those in general relativity and then the boundary terms at spatial

infinity can be easily derived.

2.2.2 Generalized Misner-Sharp Mass as a Canonical

Variable

We introduce a new set of canonical variables {M,PM ;S, PS} defined in

the same way as in general relativity, namely by using Equations 1.72–1.75

but with Equation 1.11 used for the mass function. Then, we prove that

{Λ, PΛ;R,PR} and {M,PM ;S, PS} again satisfy the Liouville form, Equation



CHAPTER 2. HAMILTONIAN FORMALISM OF LL GRAVITY 59

1.80, with the following total variation and the total derivative terms. The

derivation is presented in Appendix A.1.3.

η :=
(n− 2)An−2

2κ2
n

[[n/2]∑
p=1

α̃(p)pR
n−1−2p

(
2yΛ−R′ ln

∣∣∣∣R′ + yΛ

R′ − yΛ

∣∣∣∣)

−
[n/2]∑
p=2

α̃(p)R
n−1−2p

p−1∑
w=1

p!

w(p− 1− w)!

×
w−1∑
j=0

2(−1)2w−1−jR′2jy2(w−j)+1

j!(w − 1− j)![2(w − j) + 1]Λ2j−1

]
, (2.12)

ζ :=
(n− 2)An−2

2κ2
n

[[n/2]∑
p=1

α̃(p)pR
n−1−2p ln

∣∣∣∣R′ + yΛ

R′ − yΛ

∣∣∣∣
+

[n/2]∑
p=2

α̃(p)R
n−1−2p

p−1∑
w=1

2p!(−1)wyR′

w!(p− 1− w)!Λ

×
{
Fw−1 +

w−1∑
j=0

2j(w − 1)!(−1)w−1−jR′2j−2y2(w−j)

j!(w − 1− j)![2(w − j) + 1]Λ2j−2

}]
δR. (2.13)

In Appendix A.1.4, it is proven that Equation 1.86 still holds in full

Lovelock gravity. This immediately implies that the Hamiltonian density

in the equivalent two-dimensional theory takes the same form as that in

general relativity, Equation 1.87, where the definitions of the new Lagrange

multipliers NM and NS are the same as those in general relativity (Equations

1.88 and 1.89). Finally, the Lagrangian density for the canonical coordinates

{M,PM ;S, PS} can be again written as

L = PMṀ + PSṠ −NMM ′ −NSPS (2.14)
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and the super-Hamiltonian and super-momentum constraints are the same

as in the general relativistic case, Equation 1.90.

In comparison to the rather complicated starting point in Equation 2.2,

this equivalent Lagrangian density is extremely simple and the physical mean-

ing of the canonical variables are very clear. Remarkably, the coupling con-

stants α(p) do not appear explicitly in Equation 2.14. They are in fact hidden

in the definition of the mass function. This makes it possible to treat any

class of Lovelock gravity in a similar way to how we would treat general

relativity.

2.2.3 Fall-off Rate at Infinity and Boundary Terms

In order to prove that the transformation from {Λ, PΛ;R,PR} to

{M,PM ;S, PS} is canonical and well-defined, we have to discuss the asymp-

totic behaviour of the variables. We adopt the same boundary conditions as

in general relativity, Equations 1.59–1.62. With these conditions, one can

verify that the generalized Misner-Sharp mass, Equation 1.11 behaves near

spacelike infinity as

M '
(n− 2)An−2α̃(1)Λ1(t)

κ2
n

. (2.15)

This is the same as in general relativity and hence we set Λ1 as in Equation

1.65 (where α̃(1) = 1) in order that M 'M∞(t) at infinity.

It can then be shown that the leading terms of PΛ, PR, ζ, η, PS, PM ,
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NM , and NS are the same as those in the general relativistic case under the

boundary conditions of Equations 1.59–1.62. As a consequence, the proof

carries over from general relativity and all the terms in the Liouville form

of Equation 1.80 are well behaved at spacelike infinity. This is sufficient

to prove that the transformation from {Λ, PΛ, ;R,PR} to {M,PM ;S, PS} is

indeed a well-defined canonical transformation and that the Hamiltonian∫∞
−∞ dx(NMM ′ +NSPS) is also finite.

We now have the following two-dimensional action with a new set of

canonical variables;

ILL =

∫
dt

∫
dx(PMṀ + PSṠ −NMM ′ −NSPS), (2.16)

with the same asymptotic behaviour as in general relativity. The boundary

term for the above action that makes the variational principle well defined is

then also the same as in general relativity:

δILL =

∫
dt

∫
dx

(
dynamical terms

)
+

∫
dt

[
N∞(t)δM∞(t)

]x=+∞

x=−∞
. (2.17)

Given the above, we can now write down the super-Hamiltonian and

super-momentum constraints for full Lovelock gravity. In terms of the ge-

ometrodynamical variables they are the same expressions as in general rela-
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tivity:

H =

(
PMy

R′
− Λ

R′

)
M ′ + yPs , (2.18)

Hr = PMM
′ + PSS

′. (2.19)

The expressions in terms of ADM variables are considerably more compli-

cated and can in principle be obtained once again by substitution from Equa-

tions 1.72, 1.73 and 1.75, with M defined by Equation 1.11.

2.3 Adding Matter Fields

In this section, we introduce matter fields in the argument with the ADM

variables discussed in the previous sections. Here we write the super-momentum

and super-Hamiltonian for gravity as H
(G)
r and H(G) in order to distinguish

from the total super-momentum and super-Hamiltonian including matter

contributions. The following argument is valid in full Lovelock gravity.

It can be shown from Equations 1.30, 1.73, 1.72, 1.75 and 1.86 that the

gravitational Hamiltonian HG is given by:

HG =

∫
dx(NH(G) +NrH

(G)
r ), (2.20)
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where

H(G)
r =PSS

′ + PMM
′ = PRR

′ − P ′ΛΛ, (2.21)

H(G) =− Λ

R′
M ′ +

y

R′
H(G)
r . (2.22)

We have used Equations 1.79 to derive 2.22. Here it is important to think of

M and y as a function of the ADM variables. Since Equations 1.34, 1.28 and

2.10 show that M and y are not a functions of N or Nr, we can see that the

Hamiltonian density is the sum of Lagrange multipliers times constraints.

2.3.1 Massless Scalar Field

First we consider a massless scalar field ψ as a matter field, for which the

matter part of the action, Imatter = Iψ, is given by

Iψ = −1

2

∫
dnx
√
−g(∇ψ)2. (2.23)

The equivalent two-dimensional action in the symmetric spacetime under

consideration is given by

Iψ = −An−2

2

∫
d2ȳ
√
−g(2)R

n−2(Dψ)2 (2.24)

= −An−2

2

∫
dxdt

ΛRn−2

N

(
−ψ̇2 + 2Nrψ

′ψ̇ + (N2Λ−2 −N2
r )ψ′

2
)
.
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This gives the momentum conjugate Pψ to ψ as

Pψ =
An−2ΛRn−2

N

(
ψ̇ −Nrψ

′
)
, (2.25)

with which we can write the matter action as

Iψ =

∫
dxdtψ̇Pψ

−
∫
dxdtN

[
1

2Λ

(
P 2
ψ

An−2Rn−2
+An−2R

n−2ψ′
2

)
+ Pψψ

′Nr

N

]
. (2.26)

Equation 2.24 does not contain any derivatives of the metric or R, which

means that adding the scalar action to the gravitational action of Equation

1.87 does not change PΛ or PR. This allows us to write the total Hamiltonian

as the sum of the gravitational and matter parts. Using Equations 2.20, 2.21,

2.22 and 2.26, we obtain the total Hamiltonian Htotal as

Htotal =

∫
dxN

[
− Λ

R′
M ′ +

y

R′
H(G)
r +

Nr

N
H(G)
r

+
1

2Λ

(
P 2
ψ

An−2Rn−2
+An−2R

n−2ψ′
2

)
+ Pψψ

′Nr

N

]

=

∫
dx

[
N(H(G) +H(M)) +Nr(H

(G)
r +H(M)

r )

]
, (2.27)

where y is a function of the phase space variables, Λ, PΛ and R via Equation

2.10. The super-Hamiltonian H(M) and super-momentum H
(M)
r for ψ are
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given by

H(M) =
1

2Λ

(
P 2
ψ

An−2Rn−2
+An−2R

n−2ψ′
2

)
, (2.28)

H(M)
r =Pψψ

′. (2.29)

Since our theory is diffeomorphism invariant the Poisson bracket of the

Hamiltonian constraint, H = H(G) + H(M) with the total momentum con-

straint, Hr = H
(G)
r + H

(M)
r must be weakly equal to zero. This implies that

both constraints are first class.

Because there are two first class constraints, there are two gauge choices

to pick. We choose our first gauge as

χ := R− x ≈ 0. (2.30)

Any gauge choice must be second class with at least one of the first class

constraints. Equation 2.30 doesn’t commute with H
(G)
r , from Equation 2.21

which satisfies this condition. Our gauge choice above forces the spatial

coordinate to be the areal radius which means that R is no longer a phase

space variable, it is now a coordinate. In order to insist that χ is satisfied

at every time slice, we must insist that χ̇ = {χ,Htotal} ≈ 0, which requires

that Nr/N +y/R′ ≈ 0. We use this relation to write one Lagrange multiplier

in terms of the other. This leaves us with one Lagrange multiplier which

reflects the fact that there is only one gauge fix left to choose.
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We can now plug the gauge choice given by Equation 2.30 and its con-

sistency condition into the Hamiltonian as long as we use Dirac brackets to

evaluate the equations of motion in the end [33]. Note that the remaining

phase space variables, Λ, PΛ, ψ and Pψ, all commute with χ and so the

Poisson bracket is the same as the Dirac bracket. Plugging χ = χ̇ = 0 into

Equation 2.27 gives

Htotal =

∫
dRN

[
−ΛM ′ +

1

2Λ

(
P 2
ψ

An−2Rn−2
+An−2R

n−2ψ′
2

)
− yPψψ′

]
.

(2.31)

In the last term we replaced Nr/N by −y as required. Since the mass Equa-

tion 1.11 is written as

M =
(n− 2)An−2

2κ2
n

[n/2]∑
p=0

α̃(p)R
n−1−2p

(
1− Λ−2 + y2

)p
, (2.32)

we can write y(= Nr/N) in terms of the mass function. For this reason we

leave the factor of Nr/N in the Hamiltonian with the understanding that it

is the solution to Equation 2.32.

For our second gauge choice we choose

ξ := Λ− 1 ≈ 0 (2.33)

which is second class with the remaining constraint (the square brackets in

Equation 2.31). By the same reasoning used for the first gauge choice we can

set ξ strongly to zero (namely since Λ commutes with ψ and Pψ) which gives
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the Hamiltonian

Htotal =

∫
dRN

[
−M ′+

1

2

(
P 2
ψ

An−2Rn−2
+An−2R

n−2ψ′
2

)
+Pψψ

′Nr

N

]
(2.34)

and the mass function

M =
(n− 2)An−2

2κ2
n

[n/2]∑
p=0

α̃(p)R
n−1−2p

(
Nr

N

)2p

. (2.35)

To see the significance of this gauge choice, notice from Equation 1.11 that

g11 → 1−2κ2
nM/[(n−2)A(n−2)α̃(1)R

n−3] in the general relativistic case when

we strongly set ξ and χ to zero. This gives the metric in the non-static

version of Painlevé-Gullstrand coordinates:

ds2
(2) =−N2

(
1− 2κ2

nM

(n− 2)A(n−2)α̃(1)Rn−3

)
dT 2

PG

+ 2N

√
2κ2

nM

(n− 2)A(n−2)α̃(1)Rn−3
dTPGdR + dR2. (2.36)

To ensure that the second gauge condition is conserved in time we must

insist that d(Λ− 1)/dt = {Λ− 1, H} = 0→ δH/δPΛ = 0. Although we have

chosen to write Nr/N in terms of the mass function, it can also be written

in terms of PΛ. All of the PΛ dependence in the Hamiltonian is in Nr/N .
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Therefore we can write

δHtotal

δPΛ

=
δ

δPΛ

∫
dR

(
N ′M +NPψψ

′Nr

N

)
= N ′

∂M

∂(Nr/N)

∂(Nr/N)

∂PΛ

+NPψψ
′∂(Nr/N)

∂PΛ

, (2.37)

from which the consistency condition is given as

N ′
∂M

∂(Nr/N)
+NPψψ

′ = 0, (2.38)

where it is understood that we use Equation 2.35 to find ∂M/∂(Nr/N) and

write Nr/N in terms of the mass function M . Notice that the actual relation

between Nr/N and PΛ is not needed.

Using Hamilton’s equations and Equation 2.34, we find

ψ̇ =N

(
Pψ

An−2Rn−2
+ ψ′

Nr

N

)
, (2.39)

Ṗψ =

[
N

(
An−2R

n−2ψ′ + Pψ
Nr

N

)]′
, (2.40)

where the dot now represents differentiation with respect to the PG time.

These equations, along with the consistency conditions (Equations 2.35 and

2.38) and the Hamiltonian constraint

−M ′ +
1

2

(
P 2
ψ

An−2Rn−2
+An−2R

n−2ψ′
2

)
+ Pψψ

′Nr

N
= 0, (2.41)
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determine the evolution of a collapsing scalar field.

2.3.2 Charged Scalar Field

In this subsection, we consider a Electromagnetic field, Aµ, coupled to a

charged complex massless scalar field ψ = (ψ1 + iψ2)/
√

2, where ψ1 and ψ2

are real functions. We write the action for this matter as Imatter = IEM:

IEM =

∫
dnx
√
−g
[
− (∂µ + ieAµ)ψ∗ (∂µ − ieAµ)ψ − 1

4
F µνFµν

]
, (2.42)

where e is the charge and the Faraday tensor Fµν is defined in terms of Aµ as

Fµν = ∂µAν − ∂νAµ. Under the symmetry assumption in the present paper

both for gravity and matter, the equivalent two-dimensional action is given

by

IEM =An−2

∫
dtdx

√
−g(2)R

n−2

×
[
−
(
∂B + ieAB

)
ψ∗ (∂B − ieAB)ψ − 1

4
FABFAB

]
. (2.43)
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Adopting the ADM coordinates, we obtain

IEM =
An−2

2

∫
dtdx

Rn−2Λ

N

×

[
(ψ̇2

1 + ψ̇2
2)− 2Nr(ψ̇1ψ

′
1 + ψ̇2ψ

′
2) + (N2

r −N2Λ−2)(ψ′21 + ψ′22 )

− 2e

{
(A0 −NrA1)(ψ̇2ψ1 − ψ̇1ψ2)

−
(
Nr(A0 −NrA1) +N2Λ−2A1

)
(ψ′2ψ1 − ψ′1ψ2)

}
+ e2

(
(A0 −NrA1)2 −N2Λ−2A2

1

)
(ψ2

1 + ψ2
2) + Λ−2(Ȧ1 − A′0)2

]
,

(2.44)

where Aµdx
µ = A0(t, x)dt + A1(t, x)dx. From the above action we find the

conjugate momenta:

Pψ1 =
An−2R

n−2Λ

N

[
ψ̇1 −Nrψ

′
1 + e(A0 −NrA1)ψ2

]
, (2.45)

Pψ2 =
An−2R

n−2Λ

N

[
ψ̇2 −Nrψ

′
2 − e(A0 −NrA1)ψ1

]
, (2.46)

PA0 =0, (2.47)

PA1 =
An−2R

n−2(Ȧ1 − A′0)

NΛ
, (2.48)
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which give the Hamiltonian for the present matter field:

HEM =

∫
dx

[
N

2An−2ΛRn−2
(P 2

ψ1 + P 2
ψ2) + e(A0 −NrA1)(Pψ2ψ1 − Pψ1ψ2)

+Nr(Pψ1ψ
′
1 + Pψ2ψ

′
2) +

NRn−2

2An−2Λ

{
(eA1ψ1 − ψ′2)2 + (eA1ψ2 + ψ′1)2

}
+

NΛ

2An−2Rn−2
P 2
A1 + PA1A

′
0

]
. (2.49)

Since the action (2.44) contains no derivatives of the metric or R, the addition

of IEM to the gravitational action does not alter the Hamiltonian analysis and

allows us to write the total Hamiltonian as

Htotal =

∫
dx

[
N(H(G) +H(EM)) +Nr(H

(G)
r +H(EM)

r ) + A0H
(EM)
A0

]
, (2.50)

where H(G) and H
(G)
r are given by Equations 2.22 and 2.21 and H(EM), H

(EM)
r

and H
(EM)
A0 are given by

H(EM) =
P 2
ψ1 + P 2

ψ2

2An−2ΛRn−2
+
An−2R

n−2

2Λ

[
(eA1ψ1 − ψ′2)2 + (eA1ψ2 + ψ′1)2

]
+

ΛP 2
A1

2An−2Rn−2
, (2.51)

H(EM)
r =− eA1(Pψ2ψ1 − Pψ1ψ2) + (Pψ1ψ

′
1 + Pψ2ψ

′
2), (2.52)

H
(EM)
A0 =e(Pψ2ψ1 − Pψ1ψ2)− P ′A1, (2.53)

where we used integration by parts and the asymptotic condition PA1A0 → 0

at infinity to derive Equation 2.53. The consistency condition on Equation
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2.47 is {PA0, Htotal} = 0, which gives e(Pψ2ψ1 − Pψ1ψ2) − P ′A1 = 0. This

condition is already added into the Hamiltonian with A0 as its Lagrange

multiplier. Since PA0 is weakly equal to zero we can use the equation of

motion for PA0 to show that H
(EM)
A0 is weakly equal to zero and is, therefore,

a constraint in the same way as the constraints multiplying N and Nr.

This Hamiltonian is composed of three first class constraints which means

that there are three gauge choices to make. Our first two gauge choices will

be the same as in Section 2.3.1. Using similar reasoning we can write the

Hamiltonian as

Htotal =

∫
dR

[
N

{
−M ′ +

P 2
ψ1 + P 2

ψ2

2An−2Rn−2

+
An−2R

n−2

2

(
(eA1ψ1 − ψ′2)2 + (eA1ψ2 + ψ′1)2

)
+

P 2
A1

2An−2Rn−2

+
Nr

N

(
−eA1(Pψ2ψ1 − Pψ1ψ2) + (Pψ1ψ

′
1 + Pψ2ψ

′
2)

)}
+ A0

(
e(Pψ2ψ1 − Pψ1ψ2)− P ′A1

)]
. (2.54)

Just as in Section 2.3.1 the consistency condition on the first gauge fix re-

quires us to write Nr/N as a function of M using Equation 2.35. The con-

sistency condition on the second gauge choice, analogous to Equation 2.38,

is given by

N ′
∂M

∂(Nr/N)
+N

(
−eA1(Pψ2ψ1 − Pψ1ψ2) + (Pψ1ψ

′
1 + Pψ2ψ

′
2)

)
= 0. (2.55)
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For our third gauge we choose

ε := A1 ≈ 0, (2.56)

which is the coulomb gauge with the constant, A1 chosen to be zero. This

condition is second class with the remaining constraint,

e(Pψ2ψ1 − Pψ1ψ2)− P ′A1 ≈ 0, (2.57)

as required for a valid gauge choice. Note that Equations 2.56 and 2.57

removes A1 and its conjugate momentum PA1 from the set of phase space

variables. We can therefore set ε strongly to zero in the Hamiltonian as we

did for the first two gauge choices. This gives the following Hamiltonian:

Htotal =

∫
dR

[
N

{
−M ′ +

P 2
ψ1 + P 2

ψ2

2An−2Rn−2
+
An−2R

n−2

2
(ψ′22 + ψ′21 )

+
P 2
A1

2An−2Rn−2
+
Nr

N
(Pψ1ψ

′
1 + Pψ2ψ

′
2)

}
+ A0

(
e(Pψ2ψ1 − Pψ1ψ2)− P ′A1

)]
, (2.58)

where it is understood that PA1 is the solution of Equation 2.57. The con-

sistency condition on Equation 2.56 is given by

{ε,Htotal} ≈ 0→ A′0 +
NPA1

An−2Rn−2
≈ 0

→ A′0 ≈ −
eN

An−2Rn−2

∫
dR(Pψ2ψ1 − Pψ1ψ2), (2.59)
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which puts a condition on the final Lagrange multiplier and must be satisfied

at every time slice. This is the last consistency condition on ε.

With the fully gauge fixed Hamiltonian of Equation 2.58 we may write

down Hamilton’s equations of motion in terms of the remaining phase space

variables, ψ1, Pψ1, ψ2 and Pψ2. The equations of motion are given by

ψ̇1 =N

(
Pψ1

An−2Rn−2
+
Nr

N
ψ′1

)
− eA0ψ2, (2.60)

ψ̇2 =N

(
Pψ2

An−2Rn−2
+
Nr

N
ψ′2

)
+ eA0ψ1, (2.61)

Ṗψ1 =

[
N

(
An−2R

n−2ψ′1 +
Nr

N
Pψ1

)]′
− eA0Pψ2, (2.62)

Ṗψ2 =

[
N

(
An−2R

n−2ψ′2 +
Nr

N
Pψ2

)]′
+ eA0Pψ1. (2.63)

As in the massless scalar field case, the dot represents differentiation with

respect to the PG time. It must be remembered that at every time slice the

equations of motion must be supplemented by the consistency conditions of

Equations 2.35, 2.55 and 2.59, as well as the Hamiltonian constraint:

−M ′ +
P 2
ψ1 + P 2

ψ2

2An−2Rn−2
+
An−2R

n−2

2
(ψ′22 + ψ′21 )

+
P 2
A1

2An−2Rn−2
+
Nr

N
(Pψ1ψ

′
1 + Pψ2ψ

′
2) = 0, (2.64)

where it is understood that PA1 is the solution of Equation 2.57.



Chapter 3

Higher Dimensional Choptuik

Scaling in General Relativity

So far in this thesis we have been concerned with developing the Hamiltonian

analysis of Lovelock gravity. One set of important results of this analysis are

the equations of motion for a collapsing, massless scalar field given by Equa-

tions 2.39 and 2.40 and the constraints, Equations 2.35, 2.38 and 2.41. It is

useful to use these equations to numerically investigate black hole formation

since they are in the Painlevé-Gullstrand gauge which are regular at horizon

formation. These equations of motion also allow us to investigate collapse in

any number of dimensions, by changing n and with any number of Lovelock

curvature terms, by changing p. The effects of higher curvature terms such

as the Gauss-Bonnet term would only be felt in regions of high curvature.

For this reason it is of particular interest to investigate the formation of small

75
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black holes, since the horizon forms near the singularity, via the phenomenon

of Choptuik scaling discussed in Section 1.5. The rest of this thesis is dedi-

cated to the numerical investigation of Choptuik scaling. In this chapter we

look at mass scaling in higher dimensional general relativity and explore the

effect of higher order curvature terms in the next chapter. This chapter is

based on our paper [2].

Recall from Equation 1.113 that near criticality the scaling relation is

given by

ln(MBH) = γ ln |p− p∗|+ f(ln |p− p∗|) (3.1)

where p is a parameter in the initial data with critical value p∗, γ is the

critical exponent and f is a periodic function with period, T . sγ and T are

universal in the sense that they are independent of the type of initial data

and the quantity being measured (s is the power of the length dimensions

of the quantity being measured). They do depend on the type of matter

that is collapsing, however. The specific form of the oscillating function, f ,

is known not to be universal. The most common quantities used to test this

relationship are the mass of the final black hole (or equivalently the radius

of the event horizon) and the maximum value of the curvature at the origin

in sub-critical collapse. In this chapter we work with the mass of the black

hole at formation, MBH but we will consider subcritical cases in the next

chapter. Previous calculations for the collapse of a spherically symmetric
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massless scalar field in four spacetime dimensions in Schwarzschild, double

null and Painlevé-Gullstrand (PG) coordinates have all given γ ≈ 0.37 and

T ≈ 4.6 [34–38,40,43,46].

In Schwarzschild and double null coordinates the form of the periodic

function, f , is well approximated by a small–amplitude sine function. By

contrast, in PG coordinates the periodic function in four dimensions showed

distinctive cusps [38,43]. This difference in the form of f in PG coordinates is

perhaps surprising, but not inconsistent. The PG calculation did not measure

the final black hole mass after all matter had fallen through the horizon,

which is independent of slicing and would exhibit the same behaviour in all

coordinates. Instead, what was plotted was the radius of the apparent horizon

on formation, a quantity that does depend on the slicing. It is nonetheless

a geometrical quantity that exhibits Choptuik scaling, as shown in [38, 43].

What is less clear is whether the cusp-like features of the scaling function is

a peculiarity of PG coordinates in 4 dimensions or generic in some sense.

Most previous calculations of Choptuik scaling have involved four dimen-

sional black holes. The first higher dimensional analysis was done by Garfin-

kle and Duncan [47]. More recently, a program was initiated [48] whose

purpose was to calculate the critical exponent and echoing period for spheri-

cal collapse in arbitrary spacetime dimensions. Preliminary results were ob-

tained in 5 and 6 spacetime dimensions. Subsequently, accurate results were

obtained up to n = 14 [40,41]. These results provide strong evidence that the

critical exponent was a monotonic function of n that converged asymptoti-
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cally to 1/2. Also around that time, Oren and Sorkin [39] produced results

for the critical exponent up to n = 11 which they used to speculate that the

critical exponent was not a monotonic function, but instead achieved a max-

imum near n = 10. Moreover, it was argued on the basis of the behaviour

of black string solutions that a critical dimension near n = 10 might not

be unexpected. It should be noted that both sets of calculations were done

using double null coordinates, using different parametrizations of the fields.

The higher dimensional calculations referred to above were done in dou-

ble null coordinates, whereas the purpose of the present chapter is to look

at spherically symmetric scalar field collapse in higher dimensions using PG

coordinates. It is perhaps worth highlighting the relative merits of the two

different sets of coordinates. The main advantage of double null coordinates

for studying critical behaviour has to do with the fine spatial resolution that

is possible due to the convergence of outgoing null rays near horizon forma-

tion. However, this same convergence makes it difficult, if not impossible

to allow numerical simulations to run all the way up to horizon formation

(see numerics section of [35]). For this reason the mass/horizon radius of

the black hole in null coordinates must be approximated by choosing in ad-

vance how close one wishes to get to horizon formation. This problem is also

encountered in Schwarzschild coordinates. PG coordinates provide spatial

slices that are regular across future horizons, so that the code can be run up

to and even beyond horizon formation. Away from criticality, this allows one

to map out the structure of the trapping horizon as done in [38, 43]. Near
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criticality, we can precisely (to numerical accuracy) determine the radius of

the horizon on formation. Note that this quantity is different from the mass

of the final black hole. It marks the location that the PG slicing intersects the

trapping horizon and therefore verifies the scaling relationship in a different

geometrical quantity thereby providing independent measures of the critical

exponent and echoing scale. This also explains why a different oscillatory

function is possible. The main disadvantage of PG coordinates is that one

does not get an automatic improvement in the spatial resolution from the

convergence of null rays.

As with previous calculations, the resulting numerics get more difficult as

the number of spacetime dimensions is increased. We obtain reliable results

in 4, 5, 6 and 7 dimensions for the scaling law obeyed by the areal radius of the

apparent horizon on formation. We investigate the periodic function, f , in

this scaling relation and confirm the cusp-like nature in higher dimensions. In

addition, the higher dimensional critical exponents and periods are calculated

and compared to previous work. Our result in 7 dimensions is consistent

within error to that of [40] and inconsistent with [39].

3.1 Methodology and Results

3.1.1 Computational Details

The equations of motion and constraints that we use are the general rela-

tivistic (ie p = 1) versions of Equations 2.39, 2.40, 2.35, 2.38 and 2.41 with
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the cosmological constant set to zero. These are given by Equations 1.108,

1.109, 1.106 and 1.110 and are rewritten below for ease of reference.

ψ̇ =N

(
Pψ

An−2Rn−2
+ ψ′

√
2κ2

nM

(n− 2)An−2Rn−3

)

Ṗψ =

[
N

(
An−2R

n−2ψ′ + Pψ

√
2κ2

nM

(n− 2)An−2Rn−3

)]′

N ′

√
2(n− 2)A(n−2)Rn−3M

κ2
n

+NPψψ
′ = 0

−M ′ +
1

2

(
P 2
ψ

An−2Rn−2
+An−2R

n−2ψ′
2

)
+ Pψψ

′

√
2κ2

nM

(n− 2)An−2Rn−3
= 0

In order to solve the equations of motion we used the initial conditions:

ψ = AR2 exp

[
−
(
R−R0

B

)2
]

Pψ = 0 (3.2)

where A, B and R0 are parameters that can in principle be varied to study



CHAPTER 3. HIGHER DIMENSIONAL CHOPTUIK SCALING 81

mass scaling. These initial conditions are the same as those used in [38, 43].

We verified universality of our results by varying the amplitude, A, and the

width, B, of the initial pulse.

The equations of motion were solved using a forth order Runge-Kutta

scheme with derivatives being calculated using the finite difference method.

In order to maintain stability we used an adaptive time step, ∆TPG(TPG)

∆TPG(TPG) = minR

[(
dR

dTPG

)−1

∆R(R)

]
, (3.3)

where ∆R(R) is the spacing of the spatial lattice and dR
dTPG

is the local speed

of an ingoing null geodesic.

Much of the interesting behaviour of the collapse near criticality occurs

near the origin. This requires close spacing of the spatial mesh near R = 0.

It is not computationally realistic, however, to use this spacing along the

entire spatial slice, which needs to be long enough so that none of the mass

leaves during the simulation. The use of close spacing for the entire slice

would dramatically increase the simulation time. For this reason the spacing

near the origin was set to 10−5 and then smoothly increased to 10−2 over the

first 100 of the 1200 total lattice points.

3.1.2 Results

To find Choptuik’s mass scaling relation we first found the critical values,

A∗ and B∗, using a bisection method. We then varied the parameters A
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and B in our initial data function, Equation 3.2, and found the mass of the

black hole at formation, MBH , as a function of the initial parameters. An

apparent horizon forms when an outgoing null geodesic becomes momentarily

stationary. For equations of motion in PG gauge this is signalled by the

condition

(DR)2 = 0→ 2GM(RAH)− (n− 2)2Rn−3
AH

8(n− 3)
= 0, (3.4)

where RAH is the areal radius of the horizon on formation. The mass of the

black hole at horizon formation is then given by the value of the mass function

M(RAH) at that point. We emphasize again that this is not the ADM mass

of the final static black hole that is left behind once all the matter has fallen

through the horizon.

The mass scaling plots can be seen in Figure 3.1. A straight line, which

osculates the curve, has been plotted with the data to illustrate the linear

term in the mass scaling relation, Equation 3.1. Notice that these plots

confirm the existence in 5, 6 and 7 dimensions of the cusps in the periodic

function that were originally noted in four dimensions in [38, 43]. It is also

important to note from Figure 3.1 that as we move away from the near

critical region (i.e. as A−A∗ gets large) the cusps systematically move away

from the critical straight line. In 4 dimensions the results move above the

critical line, in five dimensions they more or less stay on the straight line, but

in higher dimensions the cusps move downward. This illustrates graphically

that in higher dimensions the critical exponent will be underestimated if one
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is not sufficiently close to criticality.

(a) 4 Dimensions (b) 5 Dimensions

(c) 6 Dimensions (d) 7 Dimensions

Figure 3.1: Mass Scaling in 4, 5, 6 and 7 dimensions with the A parameter
varied

Points in the data that were close to the straight lines (< 2%) of Figure

3.1 were chosen and were used to find the critical exponent using linear

regression. An estimate of error was found by slightly varying which points

were chosen to calculate the slope. The period of f in Equation 3.1 was
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calculated by measuring the distance between the cusps of the plots. A

measure of error for these cusps was taken as the largest deviation from the

average. All measurements were made using the first three periods of the

data where the near criticality approximation is valid. This analysis was

done for both of the cases where A and B were varied in the initial data.

The results can be seen in Table 3.1. These results show good agreement

with the results of Bland et al [40] and Ziprick and Kunstatter [38,43].

In order to give a clearer sense of why our results are limited to seven

dimensions, we present eight dimensional data in Figure 3.2. In lower dimen-

sions we were able to obtain super-critical data down to ln(A− A∗) ≈ −17.

In eight dimensions we were limited to ln(A−A∗) < −12.6 without decreas-

ing the lattice spacing near the origin, which in turn would dramatically

increase the simulation time. The effect of this is seen in Figure 3.2: we are

unable to get close enough to criticality for the slope to be approximately

constant over three periods. For this reason we were unable to reliably cal-

culate the critical exponent for eight dimensions with the same accuracy

as lower dimensional simulations. If we nonetheless obtain a slope from

the first two periods of the simulation (as opposed to three) then we find

γ = 0.44 ± 0.02 and T = 3.0 ± 0.1. This result lies between that of Bland

et al [40] (γ = 0.4459 ± 0.0054, T = 3.11 ± 0.1) and Sorkin and Oren [39]

(γ = 0.436 ± 2%, T = 3.1 ± 3%). It should be noticed that given the argu-

ments above and the negative curvature that we see in Figure 3.2 our current

value is almost certainly an underestimate. That is, a third cusp closer to
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criticality would most likely raise the value of the slope, bringing the critical

exponent closer to that of [40].

Table 3.1: Critical Exponent, γ and Period, T for Four to Seven Dimensions,
D

D γ T
4 A varied 0.378 ± 0.002 4.4 ± 0.3

B varied 0.379 ± 0.002 4.4 ± 0.2
from [40] 0.374 ± 0.002 4.55 ± 0.1

from [38,43] 0.375 ± 0.004 4.6 ± 0.1
from [39] 0.372 ± 1% 4.53 ± 2%

5 A varied 0.413 ± 0.002 3.9 ± 0.8
B varied 0.416 ± 0.002 3.7 ± 0.4
from [40] 0.412 ± 0.004 3.76 ± 0.1
from [39] 0.408 ± 2% 4.29 ± 2%

6 A varied 0.429 ± 0.003 3.4 ± 0.3
B varied 0.428 ± 0.002 3.3 ± 0.2
from [47] 0.424 3.03
from [40] 0.430 ± 0.003 3.47 ± 0.1
from [39] 0.422 ± 2% 4.05 ± 2%

7 A varied 0.440 ± 0.005 3.1 ± 0.1
B varied 0.440 ± 0.006 3.1 ± 0.4
from [40] 0.441 ± 0.004 3.36 ± 0.1
from [39] 0.429 ± 2% 3.80 ± 2%
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Figure 3.2: Mass Scaling in 8 dimensions (A varied)



Chapter 4

Choptuik Scaling in

Einstein-Gauss-Bonnet Gravity

In Section 1.1 we saw that the Lovelock action retains many of the desirable

properties of the Einstein–Hilbert action: it gives equations of motion which

are second order in derivatives of the metric, ghost free when linearized about

a flat background and obeys a Birkhoff theorem that yields a one parameter

family of spherically symmetric black hole solutions. This makes Lovelock

gravity a natural, higher dimensional generalization of general relativity.

Recall from Equation 1.3 that the Lovelock action, I, written in terms of

the Lovelock polynomials, L(p) is given by

I =
1

2κ2
n

∫
dnx
√
−g

[n/2]∑
p=0

α(p)L(p),

87
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L(p) =
p!

2p
δµ1...µpν1..νpρ1...ρpσ1..σp

Rµ1ν1
ρ1σ1 ...Rµpνp

ρpσp ,

The first two terms, L(0) and L(1), correspond to the cosmological constant

and Einstein-Hilbert term, respectively, while L(2) is the Gauss-Bonnet term.

Here we focus on the simplest non-trivial extension of general relativity,

namely Einstein-Gauss-Bonnet (EGB) gravity, containing only the Einstein

term and the p = 2, Gauss-Bonnet term1. Since the Gauss-Bonnet term is

proportional to curvature squared its effects would be most visible in regions

of high curvature such as near the horizon of a small black hole. It is the

purpose of this chapter to investigate Choptuik scaling of Einstein-Gauss-

Bonnet gravity minimally coupled to a massless scalar field and is based on

our paper [3]. This is in some ways similar to the work presented in Chapter

3 but addresses many new issues not seen in general relativity.

It has been known for quite some time that the spherically symmetric

collapse of a massless scalar field minimally coupled to general relativity

exhibits critical behaviour [34] as discussed in Section 1.5 and demonstrated

in Chapter 3. The presence of a dimensionful constant in the action in

general changes the above scenario, as verified for Yang-Mills collapse [49],

massive scalar field collapse [50] and massive gauge field collapse [51]. In

massive scalar field collapse, for initial data whose width is smaller than

the Compton wavelength of the scalar field, the usual second order phase

transition is found, whereas in the other limit the phase transition exhibits

1The addition of a cosmological constant should not affect the short distance behaviour
that is the subject of this chapter.
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a mass gap and is first order. It is clearly of interest to study the effects on

Choptuik scaling of the Gauss-Bonnet parameter and higher order Lovelock

coupling constants. Golod and Piran [52] recently presented such an analysis

for the spherical collapse of massless scalar matter coupled to Einstein-Gauss-

Bonnet gravity in five dimensions using double null co-ordinates. They found,

as expected, that the Gauss-Bonnet term dominates the dynamics at short

distances and destroys the discrete self-similarity characteristic of Choptuik

scaling. Their work concentrated on the regime where the Gauss-Bonnet

terms strongly dominated the dynamics.

The purpose of the present chapter is to investigate further the critical

collapse of a spherically symmetric, massless scalar field minimally coupled

to five and six dimensional Einstein-Gauss-Bonnet gravity. We work in flat

slice, or generalized Painlevé-Gullstrand, co-ordinates since they have several

advantages over double null co-ordinates in the present context as discussed

in Chapter 3. It will be especially important in this chapter that the horizon

scaling function in PG co-ordinates has cusps which has the advantage of

making the potential appearance of the periodicity in an equation such as

Equation 1.113 more obvious. As we will explain in the next section, the

nature of the dynamical equations suggest that qualitative differences can

occur in different numbers of spacetime dimensions. It is for this reason that

we investigate both five and six spacetime dimensions.

We confirm some of the results in five dimensions of [52], extend the

analysis to six dimensions and obtain some surprising new results in both five
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and six dimensions. For all initial data and choice of parameter p that we

examined there exists a critical value p∗ that separates black hole formation

from dispersion. As expected, when the horizon forms far from the singularity

the general relativistic term dominates and the standard Choptuik critical

scaling relation is found. Things change as one gets close enough to criticality

to enter the region in which the Gauss-Bonnet terms dominate the dynamics.

Near criticality the scalar field at the origin oscillates with a constant period

T that converges as (p − p∗) → 0 to a value that depends on the Gauss-

Bonnet parameter as previously shown [52]. We find a different relationship

between T and the Gauss-Bonnet parameter than in [52], albeit for smaller

values of the Gauss-Bonnet parameter.

In addition, we explore in detail the scaling in the Gauss-Bonnet dom-

inated region. We find qualitatively different behaviour in five and six di-

mensions. In five dimensions there is evidence for a radius gap; in the super-

critical region the radius of the apparent horizon on formation asymptotes

to a constant value as criticality is approached from above. The maximum

value of the trace of the energy-momentum tensor at the origin also appears

to approach a constant value as criticality is approached from below.

In six dimensions, the behaviour is qualitatively different. In the Gauss-

Bonnet region the radius of the apparent horizon formation obeys a rela-

tionship similar to Equation 1.113 but with different exponent and period.

The maximum of the trace of the energy-momentum tensor at the origin also

exhibits this same scaling relation with another scaling exponent, and small,
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but irregular oscillations.

The rest of this chapter is organized as follows. In Section 4.1 we describe

the equations of motion which we derived using Hamiltonian formalism in [25]

and Chapter 2. In Section 4.2 we discuss the numerical implementation of

the solution and describe the general methods used to obtain results. In

Section 4.3 we give our results.

4.1 Equations of Motion

As stated above, we start with the action for a massless scalar field ψ mini-

mally coupled to the Einstein-Gauss-Bonnet action. For the Einstein-Gauss-

Bonnet case the action can be expanded as

I =
1

2κ2
n

∫
dnx
√
−g
(
R+ α(2)

[
R2 − 4RµνRµν +RµνρσRµνρσ

]
+ κ2

n (∇ψ)2)
(4.1)

(recall κn :=
√

8πGn). The equations of motion and the constraints are once

again given by Equations 2.39 2.40, 2.38 and 2.41. They are, up to slight

changes in notation,

ψ̇ = N

(
Pψ
Rn−2

+

(
Nr

N

)
ψ′
)
, (4.2)

Ṗψ =

[
N

(
Rn−2ψ′ +

(
Nr

N

)
Pψ

)]′
, (4.3)
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N ′ = −kGNPψψ
′

Rn−3

/((Nr

N

)(
1 +

α̃

R2

(
Nr

N

)2
))

, (4.4)

and

M ′ =
1

2

(
P 2
ψ

Rn−2
+Rn−2ψ′

2

)
+

(
Nr

N

)
Pψψ

′. (4.5)

where the n dimensional gravitational constant, G is defined as 2kG =

2κ2
n/(n−2)An−2 [38], An−2 is the surface area of an n−2 dimensional sphere,

k := 8(n−3)/(n−2)2, and α̃(2) := ((n−3)!/(n−5)!)α(2) (see Equation 1.12).

For the Einstein-Gauss-Bonnet case the constraint, Equation 2.35 is given by

M :=
1

2kG

[
Rn−3

(
Nr

N

)2

+ α̃(2)R
n−5

(
Nr

N

)4
]
. (4.6)

This can be solved algebraically and yields

Nr

N
=

√√√√R2

α̃

(√
1 +

2α̃

R2

2kGM

Rn−3
− 1

)
. (4.7)

where we have defined α̃ := 2(n − 4)(n − 3)α(2) = 2α̃(2) for purposes which

will become obvious later. The sign of the inner square root in the above has

been chosen to give the correct general relativistic limit as α̃→ 0.

Using Equation 4.7 to replace Nr/N by M in Equation 4.5 provides a

differential equation that can be solved for M and hence Nr/N in terms of

the scalar field and its conjugate momenta on each spacial slice. Note that

Equations 4.7 and 4.4 are the only ones in the set of equations of motion and

constraints which differentiates Einstein-Gauss-Bonnet from any other form
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of Lovelock gravity. For the case of general relativity Nr/N is given by

Nr

N
=

√
2kGM

Rn−3
. (4.8)

Given the solution for M , one can look for apparent horizons by searching

for locations where (DR)2 = 0. For the Lovelock case this gives

AH := 1−
(
Nr

N

)2

= 0 (4.9)

where for ease of reference we refer to AH as the horizon function. This

equation is the generalization of Equation 3.4 which we used in the gen-

eral relativistic case. For the Einstein-Gauss-Bonnet case one can also use

Equation 4.6 and the above to obtain:

M(RAH) =
1

4kG

(
α̃Rn−5

AH + 2Rn−3
AH

)
. (4.10)

Note that in 5D the first term is constant so that there is an algebraic lower

bound on the black hole mass as the radius of the horizon goes to zero.

Our goal is to solve the time evolution equations for the scalar field and

its conjugate momentum, with N and Nr/N on each time slice determined

using Equations 4.7, 4.4 and 4.5 and then use Equation 4.9 to look for the

formation and location of an apparent horizon. We will also be interested in

calculating the value of some scalar invariant which would allow us to explore

Choptuik scaling in the sub-critical regime. When investigating Choptuik
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scaling in general relativity it is common to use the trace of the energy mo-

mentum tensor, Tµν (which is proportional to the Ricci scalar in the general

relativistic case) for this purpose. This is the invariant that we use in this

chapter. It should be mentioned here that in Einstein-Gauss-Bonnet gravity

the equations of motion (see equation (2.11) of [17]) give

κ2
nT

µ
µ = −(n− 2)

2
R− α(2)

n− 4

2

[
R2 − 4RµνRµν +RµνρσRµνρσ

]
(4.11)

which demonstrates that, although T µµ is still a scalar invariant, it is not the

Ricci scalar as in the general relativistic case.

It is important to point out that the actual time evolution equation as

implemented in the code was obtained by expanding the derivative in Equa-

tion 4.3 and replacing the derivatives of M ′ and N ′ using Equations 4.7 and

4.5. This gives

Ṗψ = N

{[
Gk

(
P 3
ψ

2R2n−5
− ψ′2PψR

2

)/(Nr

N

)
+ (4.12)

− (n− 3)Pψ
2R

(
Nr

N

)
− α̃(n− 5)Pψ

4R3

(
Nr

N

)3
]/(

1 +
α̃

R2

(
Nr

N

)2
)

+ (n− 2)Rn−3ψ′ +Rn−2ψ′′ + P ′ψ

(
Nr

N

)}
.

Note that in five space-time dimensions the last term proportional to 1/R3

in the square brackets above vanishes. One might therefore expect behaviour
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for n > 5 that is qualitatively different from n = 5. It is for this reason that

it is important to study higher dimensions. In the present paper we restrict

consideration to five and six dimensions.

4.2 Numerics and Methods

The code used for this work is based on that used for Chapter 3. The numerics

for this project were more difficult and so it is worth mentioning some of the

details of the numerical method here. The system is evolved using c++ code

as follows:

1. Initialize the spatial lattice. We set the lattice spacing to 10−5 (unless

otherwise stated) for the first 100 points near the origin and then slowly

increase it to 10−2 at the 1200th and final lattice point.

2. Set up initial conditions. We initialized Pψ to zero and ψ to be either

a Gaussian ψG or hyperbolic tangent ψH as follows

ψG = AR2 exp

[
−
(
R−R0

B

)2
]

; ψH = A tanh

[
R−R0

B

]
(4.13)

where A, B and R0 are parameters.

3. At R = 0 set M = 0 and N = 1 (which corresponds to setting the time

co–ordinate to be the proper time at R = 0) and use a subroutine to

calculate Nr/N using Equation 4.7. Integrate N and M forward in R

using Equations 4.7, 4.4 and 4.5. This is done using an fourth order
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Runge-Kutta (RK4) method. Spatial derivatives are calculated using a

central difference routine except at the boundaries where forward and

backward difference are used.

4. Integrate ψ and Pψ forward in time using Equations 4.2, 4.3 and 4.7

employing an RK4 method. Stability is maintained by insisting that

the size of the time step, ∆t(t), is determined by

∆TPG(TPG) < min
R

{(
dR

dTPG

)−1

∆R(R)

}
, (4.14)

where ∆R(R) is the lattice spacing and dR
dTPG

is the maximum value of

either the ingoing or outgoing local speed of light as was the case in

Chapter 3.

5. Monitor the apparent horizon function, AH := (DR)2 = 1 −
(
Nr
N

)2
.

At any point where AH = 0, there is an apparent horizon. When AH

forms a local minimum it signals that an apparent horizon is soon to

form, so the time steps are diminished by a factor of ten.

6. Calculate the quantities of interest such as the mass density and the

trace of the energy momentum tensor, T µµ. Note that T µµ is calcu-

lated using the phase space variables. Starting with Tµν = ∇µψ∇νψ−
1
2
gµν |∇ψ|2 and using Equation 2.25 we find T µµ = −P 2

ψ/R
2(n−2) + ψ′2.

7. Repeat steps 3-6 until the formation of an apparent horizon or until

the field has dispersed.
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For comparison purposes it was important that the code could simulate

collapse without the Gauss-Bonnet term, ie in the general relativistic case.

It is not possible to take this limit when numerically calculating Nr/N using

Equation 4.7 so an if statement was added to the routine which calculates

Nr/N in order to return Nr/N =
√

2kGM/Rn−3 when α̃ = 0.

When α̃ is not zero a problem arises in the calculation of Nr/N when

4α̃kGM/Rn−1 is sufficiently less than one. When this term is added to unity

in the inner square root in Equation 4.7, digits are lost and thus double

precision can not be claimed. For this reason a 16th order Taylor expan-

sion of the inner square root in Equation 4.7 was used in the case that

2α̃2kGM/Rn−1 < 0.1. Quadruple precision allowed for the investigation of

overflow and underflow, as well as subtraction and addition round off errors.

The code was capable of parallel processing, and many simulations were

run on multiple processors using twelve processor years on the WestGrid and

SHARCNET computing clusters. When generating data for mass and T µµ

scaling plots the speed up was linear with the number of processors used,

whereas for the binary search used to find critical values the speed up was

logarithmic.

We first performed a binary search to find the critical value of A in Equa-

tion 4.13. ψ(TPG, R = 0) and M were then checked at late times to confirm

that they blew up for A slightly bigger than A∗ and remained finite for A

slightly smaller than A∗. We were able to get consistent results to 12 signif-

icant figures. The A∗ values for different values of α̃ can be seen in Figure
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4.1. Interestingly the points are very well fit to straight lines. The above

procedure, of course, also gives B∗ and R∗0, which could also be varied. Using

our values for A∗ we calculated ψ at the origin as a function of PG time and

used these plots to find the period of oscillation near criticality, as a function

of α̃.

(a) 5D (b) 6D

Figure 4.1: A∗ as a function of α̃

We simulated matter bounce and dispersal for 280 simulations (the num-

ber 280 was chosen to optimize graph resolution and computing time) with

A < A∗ and recorded the maximum value of the trace of the energy mo-

mentum tensor T µµ at R = 0 for each simulation. Plotting T µµ max as a

function of A∗ − A with a log-log scale gives the energy momentum scaling

plot. Similarly we simulated collapse for 280 simulations with A > A∗ and

recorded the radius of the initial apparent horizon, RAH . This procedure was

repeated in five and six dimensions checking for scaling with both the A and
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B parameters in both the gaussian and tanh initial data of Equation 4.13

to check for universality. Using gaussian initial data radius and T µµ scaling

plots were created for α̃ = 0, 10−8, 10−7, 5 × 10−7, 10−6 in the 5D case and

α̃ = 0, 10−7, 5×10−7, 10−6, 10−7, 10−4 in the 6D case to investigate the effects

of the Gauss-Bonnet terms on the critical exponent, period and the existence

of a mass gap.

4.3 Results

4.3.1 Scalar Field Oscillations

In general relativity the discrete self-similarity of the critical solution results

in oscillations of the scalar field at the origin with ever decreasing period. The

presence of the dimensionful Gauss Bonnet parameter breaks the scale in-

variance which is thought to be the cause of discrete self similarity. As shown

by Golod and Piran [52] this is indeed the case in 5 dimensions. The scalar

field oscillations at the origin near criticality approach a constant period that

depends on the value of the Gauss-Bonnet parameter. Since it was difficult

to get close enough to criticality to guarantee that the period had converged,

we plotted the values as a function of log(dA), where dA ≡ |A−A∗|. As seen

in Figures 4.2(c) and 4.3(c) the convergence was exponential and we used a

best fit to determine the value of the period T and its corresponding error

for each value of α̃. The results are shown for 5 and 6 dimensions in Fig-

ures 4.2(d) and 4.3(d). Our results are qualitatively similar to those in [52],
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namely

T(n) ∝ α̃β(n) (4.15)

Our exponents in five and six dimensions are:

β(5) = 0.34± 0.05 (4.16)

β(6) = 0.24± 0.08 (4.17)

These both differ from the value of approximately 1/2 obtained in 5D by

Golod and Piran [52], who argued that β is one divided by the scaling di-

mension of the Gauss-Bonnet coupling coefficient. Intriguingly our results

suggest a relationship of

β(n) = 1/(n− 2) (4.18)

Note that the 6D plots show oscillations at late times which are likely due

to the build up of numerical error. It should also be mentioned here that

in 6 dimensions the numerics did not let us get close enough to criticality

to measure more than a few oscillations as can be seen in Figure 4.3(b).

Although we calculated a period we can not say conclusively that the critical

solution is periodic. The oscillations may, in fact decrease in period as in the

general relativistic case.

We note also that the range of α̃ that we considered was between 5×10−8

and 10−6, which is outside the range 4× 10−6 to 4× 10−4 considered by [52],
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which may explain the discrepancy in our results. We were restricted to

smaller values of the Gauss-Bonnet parameter because our PG co-ordinate

code did not allow us to get close enough to criticality for large values of α̃

in order to reliably measure the period of the scalar field.

(a) 5D,ψ(0, TPG) near criticality, GR (b) 5D,ψ(0, TPG) near criticality, α̃ =
10−6

(c) 5D, Period of ψ(0, TPG) near criti-
cality, α̃ = 10−7, showing convergence

(d) Period of ψ(0, TPG) in 5D near
criticality as a function of Gauss-
Bonnet parameter

Figure 4.2: Scalar field oscillations
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(a) 6D,ψ(0, TPG) near criticality, GR. (b) 6D,ψ(0, TPG) near criticality, α̃ =
10−6.

(c) 6D, period of ψ(0, TPG) near crit-
icality, α̃ = 10−7, showing conver-
gence.

(d) Period of ψ(0, TPG) in 6D near
criticality as a function of Gauss-
Bonnet parameter

Figure 4.3: Scalar field oscillations

4.3.2 Critical Exponents

In general relativity there exist universal scaling relations whose properties

are determined in part by the critical solution. We now present two different

sets of scaling plots in the Gauss-Bonnet case. The first is the value of the



CHAPTER 4. CHOPTUIK SCALING IN EGB GRAVITY 103

logarithm of the apparent horizon radius RAH on formation as a function

of log(dA) as the critical parameter is approached from above (i.e. super-

critical). The second is the log of the maximum value of the trace of the

energy momentum tensor at the origin as a function of log(dA). We find

as expected that if we are far enough from criticality that the curvatures

stay small and the apparent horizon radius is large compared to the Gauss-

Bonnet scale, we reproduce approximately the general relativity results: the

curves are universal, with slope approximately equal to the general relativity

critical exponent. The energy momentum tensor plots in this region are

approximately straight lines with a small oscillation superimposed, whereas

the radius plots show the large amplitude cusps observed in [2, 43].

As the critical parameter is approached we enter into the Gauss-Bonnet

region where the higher curvature terms dominate and things change. In

the case of the T µµ plots, the Gauss-Bonnet region occurs when T µµα̃ > 1,

whereas for the radius plots it can be defined by the relation RAH <
√
α̃.

The boundary between the two regions is indicated in all the scaling plots

by a horizontal dashed line.

The radius plots of Figures 4.5 and 4.7 continue to exhibit cusps, but with

a decreased period and slope. The T µµ plots are also similar in the Gauss-

Bonnet region to the general relativistic region in that they are approximately

straight lines with oscillations superimposed. However, the slope changes

quite suddenly when the transition from the general relativistic to Gauss-

Bonnet region is made. The first important point is that the scaling plots
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are universal even in the Gauss-Bonnet region. This is illustrated for both

5D and 6D in Figure 4.4. There are qualitative differences in the scaling

plots between 5D and 6D so we will now discuss the two cases separately.

In the 5D case there is evidence that the slope of the radius plot decreases

continuously until a minimum radius is reached, i.e. that there is a radius

gap. This is most evident in Figure 4.5(d) but also appears to be the case in

Figure 4.5(e). In the remaining 5D figures the numerics did not allow us to

probe deeply enough into the Gauss-Bonnet region to fully observe this.

A radius gap is not unexpected given the presence of the dimensionful

Gauss-Bonnet parameter. Note that we focus on a radius gap instead of a

mass gap because in 5D the former is trivial in light of Equation 4.10.

The T µµ plots (Figure 4.6), initially approximately straight, change slope

quite suddenly as one moves from the general relativistic to the Gauss-Bonnet

region, and then remain constant over a small range of log(dA). The slopes

are given in Table 4.1. As criticality is approached the slope of the T µµ plot

gradually decreases, suggesting that there is a maximum value to T µµ at the

origin. This differs from general relativity, in which the critical solution is sin-

gular and T µµ at the origin increases indefinitely as criticality is approached.

We emphasize again that these features are universal.

In 6D things are different. There is no evidence of a radius gap in the

radius scaling plots, and the slope of the T µµ plots remains constant until

we reach the limits of numerical accuracy. Thus it appears that there is

a transition to a new set of scaling exponents, which are plotted in Table
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α̃ 5D T µµ Scaling

10−6 −1.426± 0.074
5× 10−7 −1.573± 0.076

10−7 −1.577± 0.028
10−8 −3.397± 0.049

Table 4.1: 5D T µµ scaling exponents in Gauss-Bonnet region.

4.2. Note that numerical uncertainties make the first and last entries in each

column unreliable. The exponents are different for T µµ and radius scaling, but

the absolute value of both appear to increase with decreasing α̃. Moreover a

log-log plot of the three reliable Radius vs T µµ exponents (Figure 4.9) reveals

that they are related by:

γ(Tµµ) ≈ −(2.24± 0.04)× γ0.28±0.02
(Radius) (4.19)

This is to be compared to the general relativistic case in which the relation

is determined purely by the dimension of the two quantities:

γ(Tµµ) = −2γ(Radius) (4.20)
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α̃ 6D T µµ Scaling 6D Radius Scaling

10−4 −1.488± 0.128 0.257± 0.002
10−5 −1.433± 0.016 0.207± 0.002
10−6 −1.619± 0.021 0.313± 0.002

5× 10−7 −1.814± 0.016 0.476± 0.002
10−7 −2.029± 0.027 0.417± 0.002

Table 4.2: 6D T µµ and AH radius scaling exponents in Gauss-Bonnet region.
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(a) 5D α̃ = 5 × 10−7, amplitude and
width separately

(b) 5D α̃ = 5 × 10−7, amplitude and
width shifted to lie on top of each
other

(c) 5D α̃ = 5 × 10−7, Radius Plots
Superimposed

(d) 5D α̃ = 5×10−7, Tµµ Plots Super-
imposed

(e) 6D, α̃ = 10−5, Radius Plots Su-
perimposed

(f) 6D, α̃ = 10−5, Tµµ Plots Superim-
posed

Figure 4.4: Universality in 5 and 6D
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(a) GR, slope= 0.413 (b) α̃ = 10−8

(c) α̃ = 10−7 (d) α̃ = 5× 10−7

(e) α̃ = 10−6

Figure 4.5: Radius Scaling Plots - 5D. The lines represent the best-fit tan-
gents to the curves in their respective regimes.
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(a) GR, slope= 0.826 (b) α̃ = 10−8

(c) α̃ = 10−7 (d) α̃ = 5× 10−7

(e) α̃ = 10−6

Figure 4.6: T µµ Scaling Plots - 5D. The lines represent the best-fit mean slopes
of the curves in their respective regimes.
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(a) GR, slope= 0.43 (b) α̃ = 10−7

(c) α̃ = 5× 10−7 (d) α̃ = 10−6

(e) α̃ = 10−5 (f) α̃ = 10−4

Figure 4.7: Radius Scaling Plots - 6D. The lines represent the best-fit tan-
gents to the curves in their respective regimes.
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(a) GR, slope= 0.43 (b) α̃ = 10−7

(c) α̃ = 5× 10−7 (d) α̃ = 10−6

(e) α̃ = 10−5 (f) α̃ = 10−4

Figure 4.8: T µµ Scaling Plots - 6D. The lines represent the best-fit mean slopes
of the curves in their respective regimes.
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Figure 4.9: Plot of Radius exponents vs T µµ 6D



Chapter 5

Conclusions

The first goal of this thesis was to perform the Hamiltonian analysis of spher-

ically symmetric Lovelock gravity in terms of a mass function. Although our

analysis was classical our results may be useful for the study of quantum

gravity. Our second goal was to use the equations of motion for a massless

scalar field, coupled to Lovelock gravity to numerically investigate the effects

of higher dimensions and higher curvature terms on the formation of small

black holes; specifically we were interested in the effect on Choptuik scaling.

In Chapter 2, Hamiltonian Formalism of LL Gravity, we performed the

Hamiltonian analysis for spherically symmetric spacetimes in general Love-

lock gravity in arbitrary dimensions. We showed that, as in general relativ-

ity, the areal radius and the generalized Misner-Sharp quasi-local mass M

are natural canonical variables that yield the remarkably simple, geometrical

Lagrangian density of Equation 2.14

113



CHAPTER 5. CONCLUSIONS 114

L = PMṀ + PSṠ −NMM ′ −NSPS

for the generic theory. Using these variables also enabled us to rigorously de-

rive the super-Hamiltonian and super-momentum constraints given in Equa-

tions 2.18 and 2.19

H =

(
PMy

R′
− Λ

R′

)
M ′ + yPs ,

Hr = PMM
′ + PSS

′

for the most general theory, a task that would have be daunting at best, if not

impossible, in terms of ADM variables. Note that the super-Hamiltonian and

the super-momentum constraints are in the same form as in general relativity.

All information specific to Lovelock theory is hidden in the mass function,

M , y and their relationships to the ADM variables.

These results are useful: the geometrodynamical variables allow the phys-

ical phase space of the vacuum theory to be explicitly parametrized in terms

of the ADM mass and its conjugate momentum, as done for general rela-

tivity by Kuchař [7]. This in turn provides a rigorous starting point for the

quantization of Lovelock black holes using the techniques of [53].

Finally, the simple form of the Hamiltonian allows us to gauge fix and
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derive the Hamiltonian equations of motion for the collapse of self gravitating

matter in flat slice coordinates. The equations of motion for a massless scalar

field are given by Equations 2.39 and 2.40,

ψ̇ =N

(
Pψ

An−2Rn−2
+ ψ′

Nr

N

)
,

Ṗψ =

[
N

(
An−2R

n−2ψ′ + Pψ
Nr

N

)]′

with the consistency conditions and Hamiltonian constraint given by Equa-

tions 2.38, 2.35 and 2.41:

N ′
∂M

∂(Nr/N)
+NPψψ

′ = 0,

M =
(n− 2)An−2

2κ2
n

[n/2]∑
p=0

α̃(p)R
n−1−2p

(
Nr

N

)2p

and

−M ′ +
1

2

(
P 2
ψ

An−2Rn−2
+An−2R

n−2ψ′
2

)
+ Pψψ

′Nr

N
= 0.

Note that only the definition of Nr/N in terms of M , from Equation 2.35 dif-

ferentiates between general relativity and any other form of Lovelock gravity.

The equations of motion plus the constraints put us in a position to study
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the dynamics of black hole formation in generic Lovelock gravity which was

the subject of Chapter 4.

In Chapter 3, Higher Dimensional Choptuik Scaling we successfully con-

firmed the existence of cusps in the mass scaling function, Equation 3.1,

in 4 to 8 dimensions as observed in 4 dimensions by Ziprick and Kunstat-

ter [38,43]. This can be seen in Figures 3.1 and 3.2 and are displayed below

in 5 to 8 dimensions.

In addition the mass scaling plots obtained using PG coordinates give

critical data which agrees with previous results in 4, 5 and 6 dimensions.

However, in 7 dimensions, our critical exponent and echoing period agree

with Bland et al [40] but disagree with the values obtained by Sorkin and

Oren [39]. It is important to note that [40] claimed that the critical exponent

was a monotonic function of spacetime dimension that asymptotes to 1/2,

whereas [39] suggested that the critical exponent peaks near n = 10. While

both claims are intriguing, only one (at most) can be right. Since we were

limited by numerics to n ≤ 7 we cannot make any definitive claims about

the asymptotic behaviour. Our result in n = 7 supports that of [41], as

does our more tentative result in n = 8. It is however impossible to make

definitive claims about the asymptotic behaviour without pushing the PG

calculation to higher dimensions. This is the topic of ongoing work using

advanced numerical techniques such as adaptive mesh refinement.

In addition to applying more advanced numerical techniques to the study

of higher dimensional collapse it is intriguing to consider the possibility of
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(a) 5 Dimensions (b) 6 Dimensions

(c) 7 Dimensions (d) 8 Dimensions

Mass Scaling in 5, 6, 7 and 8 dimensions

generalizing the work of Gundlach [36] as described in Section 1.5 to the

higher dimensional case to get a more analytical understanding of the higher

dimensional critical exponents.

In Chapter 4, Choptuik Scaling in EGB Gravity we studied the effects of

the Gauss-Bonnet term on the dynamics of the collapse of a massless scalar

field minimally coupled to gravity in five and six spacetime dimensions. We
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found that the Gauss-Bonnet term destroys the self-similar behaviour in 5

dimensions, as demonstrated by the fact that near criticality the scalar field

at the origin oscillates with a constant period as seen in Figure 4.2. In the 6

dimensional case numerics would not allow us to calculate enough oscillations

of the solution to conclude that the discrete self-similar behaviour was broken

by the Gauss-Bonnet parameter as seen in Figure 4.3. The relevant parts

of Figures 4.2 and 4.3 are displayed below for convenience. The period in

(e) 5D,ψ(0, TPG) near criticality, α̃ =
10−6

(f) 6D,ψ(0, TPG) near criticality, α̃ =
10−6

Scalar field oscillations

five dimensions is proportional to roughly the cube root of the Gauss-Bonnet

parameter. While these results differ from those in [52] it must be emphasized

that we have explored a different range of Gauss-Bonnet parameter, and this

may account for the difference.

We also showed the existence of modified, but still universal, horizon and

energy momentum scaling plots near criticality. We found evidence for the
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existence of a radius gap in five dimensions but not in six dimensions as

can be seen in Figures 4.5 and 4.7, excerpts of which are displayed below.

This qualitative difference is not completely unexpected. As mentioned be-

(g) 5D, α̃ = 10−6 (h) 6D, α̃ = 10−4

Radius Scaling Plots - 5D and 6D.

low Equation 4.12, the time evolution equation in five dimensions is special,

containing one less term than in the higher-dimensional cases.

It is clearly of interest to confirm our results with further simulations and

to try to understand analytically the source of the new scaling behaviour.

It would also be interesting to model the collapse of third order Lovelock

gravity and Lovelock gravity coupled to other forms of matter, such as the

electromagnetic field described in Section 2.3.2 This may be possible using

the code with adaptive mesh refinement mentioned earlier. These projects

are currently underway.



Appendix A

Appendices

A.1 Derivations

In this appendix, we present the details of several lengthy derivations of

results in the main text. The following relations will be useful for much of

the following:

yΛδF =yΛ

(
δ(R′2)

Λ2
− 2yδy

)
−2y(y2 + F )δΛ, (A.1)

yΛ
δF

F
=2δ(yΛ)− 2yδΛ−R′δ

(
ln

∣∣∣∣R′ + yΛ

R′ − yΛ

∣∣∣∣). (A.2)
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Equation A.2 is shown as

yΛ
δF

F
=yΛ

δ((R′2 − y2Λ2)/Λ2)

(R′2 − y2Λ2)/Λ2

=− 2(yΛ)2 δ(yΛ)

R′2 − (yΛ)2
− 2yδΛ + yΛ

2R′δR′

R′2 − y2Λ2

=2δ(yΛ)− 2yδΛ− 2R′
2 δ(yΛ)

R′2 − (yΛ)2
+ yΛ

2R′δR′

R′2 − y2Λ2

=2δ(yΛ)− 2yδΛ−R′δ
(

ln

∣∣∣∣R′ + yΛ

R′ − yΛ

∣∣∣∣). (A.3)

Equations A.1 and A.2 will also be used by replacing δ by ∂t or ∂x.

A.1.1 Lagrangian Density (2.3)

We now derive the Lagrangian density of Equation 2.3 from Equation 2.2.

Using the binomial expansion for the last two terms in Equation 2.2 yields

2p(p− 1)
(D2R)2 − (DADBR)(DBDAR)

R2

(
k − (DR)2

R2

)p−2

+ p(2)R
(
k − (DR)2

R2

)p−1

=R−2(p−1)

[
pkp−1(2)R+

{(D2R)2 − (DADBR)(DBDAR)}
p−2∑
i=0

2(i+ 1)p!kp−2−i(−1)i(DR)2i

(i+ 1)!(p− 2− i)!

− (DAR)
(
D2DAR−DAD

2R
) p−2∑
i=0

2p!kp−2−i(−1)i(DR)2i

(i+ 1)!(p− 2− i)!

]
, (A.4)
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where we used the following two-dimensional identity:

(DR)2(2)R ≡ 2(DAR)
(
D2DAR−DAD

2R
)
. (A.5)

This identity can be derived from Equation 2.10 of [25].

Equation 2.2 now reduces to

L(p) =
(n− 2)!

(n− 2p)!

[
(n− 2p)(n− 2p− 1)

(
k − (DR)2

R2

)p
− 2p(n− 2p)

D2R

R

(
k − (DR)2

R2

)p−1

+ pkp−1R2−2p(2)R

+

p−2∑
i=0

2(−1)ikp−2−ip!(DR)2i

(i+ 1)!(p− 2− i)!

{
(i+ 1)

(D2R)2 − (DADBR)(DBDAR)

R2p−2

− DAR(D2DAR−DAD
2R)

R2p−2

}]
. (A.6)

Using integration by parts, we can rewrite the term in curly brackets in

Equation A.6 as

p−2∑
i=0

2(−1)ikp−2−ip!(DR)2i

(i+ 1)!(p− 2− i)!
Rn−2p

{
(i+ 1)[(D2R)2 − (DADBR)(DBDAR)]

−DAR(D2DAR−DAD
2R)

}
=

p−2∑
i=0

2(−1)ikp−2−ip!

(i+ 1)!(p− 2− i)!
(DR)2iDA(Rn−2p)

{
1

2
DA((DR)2)− (D2R)(DAR)

}
+ (t.d.), (A.7)
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where we used the following identity:

(D2R)2 − (DADBR)(DBDAR)

+
(D(DR)2)2

2(DR)2
− (DAR)(DA(DR)2)(D2R)

(DR)2
≡ 0. (A.8)

Using the above result together with integration by parts and the following

identity;

p−2∑
i=0

2(−1)ikp−2−ip!(DR)2i

(i+ 1)!(p− 2− i)!
=−

p−1∑
w=1

2(−1)wkp−1−wp!(DR)2w(DR)−2

w!(p− 1− w)!

=−
p−1∑
w=0

2(−1)wkp−1−wp!(DR)2w(DR)−2

w!(p− 1− w)!

+ 2pkp−1(DR)−2

=
2pkp−1 − 2p(k − (DR)2)p−1

(DR)2
, (A.9)

we can rewrite Equation A.6 in the form of Equation 2.3 up to a total deriva-

tive.

A.1.2 Lagrangian Density (2.9)

In this appendix, we show the derivation of the Lagrangian density of Equa-

tion 2.9 from the action given by Equation 2.5. While we consider only

the spherically symmetric case (k = 1) in the main text, here we derive the

equations for general k.
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For this purpose, we separate Equation 2.5 into two portions:

IM =I1 + I2 + (t.d.), (A.10)

I1 :=
(n− 2)V

(k)
n−2

2κ2
n

[n/2]∑
p=0

∫
d2ȳα̃(p)

×

[
2pkp−1Rn−2p−1y(NrΛ)′ − 2pkp−1N

n− 2p

(
(Rn−2p)′Λ−1

)′
+ pRn−2p−1

{
kp−1 − (k − F )p−1

}
(ΛNry + Λ−1NR′)

F ′

F

+ (n− 2p− 1)

{
(k − F )p + 2pkp−1F

}
NΛRn−2−2p

]
, (A.11)

I2 :=
(n− 2)V

(k)
n−2

2κ2
n

[n/2]∑
p=0

∫
d2ȳpα̃(p)R

n−2p−1

×
[
−2kp−1yΛ̇− {kp−1 − (k − F )p−1}Λy Ḟ

F

]
. (A.12)

In order to perform the variation of IM , we have to deal with the terms

containing F ′ and Ḟ . Using the binomial expansion and integration by parts,
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we can rewrite the second line of Equation A.11 as

(n− 2)V
(k)
n−2

2κ2
n

[n/2]∑
p=0

α̃(p)pR
n−2p−1

{
kp−1 − (k − F )p−1

}
(ΛNry + Λ−1NR′)

F ′

F

=−
(n− 2)V

(k)
n−2

2κ2
n

[n/2]∑
p=2

α̃(p)pR
n−2p−1×

p−2∑
w=0

(p− 1)!(−1)p−1−w

w!(p− 1− w)!
kwF p−1−w(ΛNry + Λ−1NR′)

F ′

F

=−
(n− 2)V

(k)
n−2

2κ2
n

[n/2]∑
p=2

α̃(p)p

p−2∑
w=0

(p− 1)!(−1)p−1−wkw

w!(p− 1− w)!

×
{p−2−w∑

j=0

2(p− 2− w)!(−1)p−2−w−j

j!(p− 2− w − j)!
(NrR

n−2p−1Λ1−2jR′2j)′y2(p−w−j)−1

2(p− w − j)− 1

+ ΛNryR
n−2p−1F p−2−w(Λ−2R′

2
)′ − (Λ−1NR′Rn−2p−1)′

F p−1−w

p− 1− w

}
.

(A.13)

This expression does not contain y′ and can be used to obtain PR. An

important observation is that the only part of the action IM in Equation A.10

that contributes to PΛ is I2. After a tedious but straightforward calculation,

using binomial expansion and integration by parts yet again, we can rewrite
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the last term in I2 as

−
(n− 2)V

(k)
n−2

2κ2
n

[n/2]∑
p=0

∫
d2ȳpα̃(p)R

n−2p−1

{
kp−1 − (k − F )p−1

}
Λy

Ḟ

F

=−
(n− 2)V

(k)
n−2

κ2
n

×
[n/2]∑
p=2

∫
d2ȳpα̃(p)

p−1∑
w=1

(p− 1)!(−1)wkp−1−w

w!(p− 1− w)!
Rn−2p−1Fw−1yΛ−2Λ̇R′

2

+
(n− 2)V

(k)
n−2

κ2
n

×
[n/2]∑
p=2

∫
d2ȳpα̃(p)

p−1∑
w=1

(p− 1)!(−1)wkp−1−w

w!(p− 1− w)!

w−1∑
j=0

(w − 1)!(−1)w−1−j

j!(w − 1− j)!

×
[

1

2(w − j) + 1
∂t(R

n−2p−1Λ1−2j)R′
2j
y2(w−j)+1

−
2(w−j)+1∑

q=0

(2w − 2j)!(−1)q

q!(2w − 2j + 1− q)!
jṘ2(w−j+1)

w − j + 1

× (Rn−2p−1Λ1−2jN−2(w−j)−1R′
2j−1+q

N q
r )′

−
2(w−j)−1∑

q=0

(2w − 2j − 1)!(−1)q

q!(2w − 2j − 1− q)!
Ṙ2w−2j−q

2w − 2j − q

× (Rn−2p−1Λ−1−2jN−2(w−j)+1R′
2j+1+q

N q
r )′
]

+ ∂t(· · · ) + ∂x(· · · ). (A.14)

Using Equations A.13 and A.14, we obtain the Lagrangian density of Equa-

tion 2.9.
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A.1.3 Liouville Form (1.80) in Lovelock Gravity

In this appendix, we verify the Liouville form of Equation 1.80 in Lovelock

gravity. Note that the explicit form of PR is not used in the derivation. In

this appendix we take δ to be ∂t.

Using Equations 1.11 and 1.73, we write PMδM as

PMδM =− (n− 2)An−2

2κ2
n

[n/2]∑
p=0

α̃(p)
yΛ

F
Rn−2−2p

×
[
(n− 1− 2p)(1− F )pδR− pR(1− F )p−1δF

]
=− (n− 2)An−2

2κ2
n

[n/2]∑
p=0

α̃(p)(n− 1− 2p)
yΛ

F
Rn−2−2p(1− F )pδR

+
(n− 2)An−2

2κ2
n

[n/2]∑
p=1

α̃(p)R
n−1−2pyΛ

F
δF

+
(n− 2)An−2

2κ2
n

[n/2]∑
p=2

α̃(p)pR
n−1−2p

p−1∑
w=1

(p− 1)!(−1)w

w!(p− 1− w)!
Fw−1yΛδF.

(A.15)

Using Equation A.2 for the second term and Equation A.1 for the last term
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together with the binomial expansion, we obtain

PMδM =− (n− 2)An−2

2κ2
n

[n/2]∑
p=0

α̃(p)(n− 1− 2p)
yΛ

F
Rn−2−2p(1− F )pδR

+
(n− 2)An−2

2κ2
n

[n/2]∑
p=1

α̃(p)pR
n−1−2p

×
{

2δ(yΛ)− 2yδΛ−R′δ ln

∣∣∣∣R′ + yΛ

R′ − yΛ

∣∣∣∣}
+

(n− 2)An−2

2κ2
n

[n/2]∑
p=2

α̃(p)

[
pRn−1−2p

p−1∑
w=1

(p− 1)!(−1)w

w!(p− 1− w)!

×
w−1∑
j=0

(w − 1)!(−1)w−1−j

j!(w − 1− j)!
y2(w−1−j)

(
R′2

Λ2

)j
×
{
yΛ

(
δ(R′2)

Λ2
− 2yδy

)
−2y(y2 + F )δΛ

}]
. (A.16)

An important fact is that PMδM has the form of PMδM = PΛδΛ+(· · · )δR+

δη + ζ ′, where δη and ζ ′ directly appear in the Liouville form, of Equation

1.80. We can see this by comparing Equations A.16 (and the last term of

Equation A.17) to 2.10 and remembering that S is defined by S := R. This

means that all of the terms with δΛ in Equation A.16 are contained in the

expression for PΛ. Using the binomial expansion and integration by parts,
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we can calculate the other terms in Equation A.16 as follows

− (n− 2)An−2

2κ2
n

[n/2]∑
p=0

α̃(p)(n− 1− 2p)
yΛ

F
Rn−2−2p(1− F )pδR

+
(n− 2)An−2

2κ2
n

[n/2]∑
p=1

α̃(p)pR
n−1−2p

{
2δ(yΛ)−R′δ ln

∣∣∣∣R′ + yΛ

R′ − yΛ

∣∣∣∣}

+
(n− 2)An−2

2κ2
n

[n/2]∑
p=2

α̃(p)

[
pRn−1−2p

p−1∑
w=1

(p− 1)!(−1)w

w!(p− 1− w)!

×
w−1∑
j=0

(w − 1)!(−1)w−1−j

j!(w − 1− j)!
y2(w−1−j)

(
R′2

Λ2

)j
yΛ

(
δ(R′2)

Λ2
− 2yδy

)]

=− (n− 2)An−2

2κ2
n

[n/2]∑
p=0

α̃(p)(n− 1− 2p)
yΛ

F
Rn−2−2p(1− F )pδR

+
(n− 2)An−2

2κ2
n

[n/2]∑
p=1

α̃(p)δ

[
pRn−1−2p

{
2yΛ−R′ ln

∣∣∣∣R′ + yΛ

R′ − yΛ

∣∣∣∣}]

− (n− 2)An−2

2κ2
n

[n/2]∑
p=1

α̃(p)p

[
2(n− 1− 2p)Rn−2−2pyΛδR

−
(

(n− 1− 2p)Rn−2−2pR′δR +Rn−1−2pδ(R′)

)
ln

∣∣∣∣R′ + yΛ

R′ − yΛ

∣∣∣∣]
+

(n− 2)An−2

κ2
n

[n/2]∑
p=2

α̃(p)pR
n−1−2p

p−1∑
w=1

(p− 1)!(−1)w

w!(p− 1− w)!
Fw−1yR

′

Λ
δ(R′)

− (n− 2)An−2

κ2
n

[n/2]∑
p=2

α̃(p)δ

[
pRn−1−2pΛ

p−1∑
w=1

(p− 1)!(−1)w

w!(p− 1− w)!

×
w−1∑
j=0

(w − 1)!(−1)w−1−j

j!(w − 1− j)!

(
R′2

Λ2

)j
y2(w−j)+1

2(w − j) + 1

]

+
(n− 2)An−2

κ2
n

[n/2]∑
p=2

α̃(p)δ

[
Rn−1−2pΛ

p−1∑
w=1

(p− 1)!(−1)w

w!(p− 1− w)!

×
w−1∑
j=0

py2(w−j)+1

2(w − j) + 1

(w − 1)!(−1)w−1−j

j!(w − 1− j)!

(
R′2

Λ2

)j]
. (A.17)
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Because there will not appear any more total variation terms, we can read

off the total variation term η as Equation 2.12.

In order to derive ζ, we write down the quantity Π := PMδM−PΛδΛ−δη:

Π =− (n− 2)An−2

2κ2
n

[n/2]∑
p=0

α̃(p)(n− 1− 2p)
yΛ

F
Rn−2−2p(1− F )pδR

− (n− 2)An−2

2κ2
n

×
[n/2]∑
p=1

α̃(p)p(n− 1− 2p)Rn−2−2p

{
2yΛ−R′ ln

∣∣∣∣R′ + yΛ

R′ − yΛ

∣∣∣∣}δR
+

(n− 2)An−2

2κ2
n

[n/2]∑
p=1

α̃(p)

[
pRn−1−2p ln

∣∣∣∣R′ + yΛ

R′ − yΛ

∣∣∣∣δR]′

− (n− 2)An−2

2κ2
n

[n/2]∑
p=1

α̃(p)

[
pRn−1−2p ln

∣∣∣∣R′ + yΛ

R′ − yΛ

∣∣∣∣]′δR
+

(n− 2)An−2

2κ2
n

[n/2]∑
p=2

α̃(p)

[
2pRn−1−2p

p−1∑
w=1

(p− 1)!(−1)w

w!(p− 1− w)!
Fw−1yR

′

Λ
δR

]′

− (n− 2)An−2

2κ2
n

[n/2]∑
p=2

α̃(p)

[
2pRn−1−2p

p−1∑
w=1

(p− 1)!(−1)w

w!(p− 1− w)!
Fw−1yR

′

Λ

]′
δR

+
(n− 2)An−2

κ2
n

[n/2]∑
p=2

α̃(p)p(n− 1− 2p)Rn−2−2pΛ

p−1∑
w=1

(p− 1)!(−1)w

w!(p− 1− w)!

×
w−1∑
j=0

(w − 1)!(−1)w−1−j

j!(w − 1− j)!

(
R′2

Λ2

)j
y2(w−j)+1

2(w − j) + 1
δR

+
(n− 2)An−2

κ2
n

[n/2]∑
p=2

α̃(p)pR
n−1−2p

p−1∑
w=1

(p− 1)!(−1)w

w!(p− 1− w)!

×
w−1∑
j=0

(w − 1)!(−1)w−1−j

j!(w − 1− j)!
2jR′2j−1Λ1−2j

2(w − j) + 1
y2(w−j)+1δ(R′). (A.18)
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The last term generates a total derivative term by integration by parts. Now

we see all the total derivative terms and can read off the total variation term

ζ to be Equation 2.13.

In order to prove the Liouville form of Equation 1.80, we write down the

quantity ΞδR := PMδM − PΛδΛ− δη − ζ ′ as

ΞδR =− (n− 2)An−2

2κ2
n

[n/2]∑
p=0

α̃(p)(n− 1− 2p)
yΛ

F
Rn−2−2p(1− F )pδR

− (n− 2)An−2

2κ2
n

×
[n/2]∑
p=1

α̃(p)pR
n−2−2p

[
2(n− 1− 2p)yΛ +R

(
ln

∣∣∣∣R′ + yΛ

R′ − yΛ

∣∣∣∣)′]δR
+

(n− 2)An−2

κ2
n

[n/2]∑
p=2

α̃(p)p(n− 1− 2p)Rn−2−2pΛ

p−1∑
w=1

(p− 1)!(−1)w

w!(p− 1− w)!

×
w−1∑
j=0

(w − 1)!(−1)w−1−j

j!(w − 1− j)!

(
R′2

Λ2

)j
y2(w−j)+1

2(w − j) + 1
δR

− (n− 2)An−2

κ2
n

[n/2]∑
p=2

α̃(p)

[
pRn−1−2p

p−1∑
w=1

(p− 1)!(−1)w

w!(p− 1− w)!

×
{
Fw−1yR

′

Λ
+

w−1∑
j=0

(w − 1)!(−1)w−1−j

j!(w − 1− j)!
2jR′2j−1Λ1−2j

2(w − j) + 1
y2(w−j)+1

}]′
δR.

(A.19)

We now show that

Ξ =
1

R′
(ΛP ′Λ + PMM

′), (A.20)



APPENDIX A. APPENDICES 132

which is sufficient to verify the Liouville form, Equation 1.80. From Equation

2.10, we obtain

ΛP ′Λ =− (n− 2)An−2

κ2
n

[n/2]∑
p=1

α̃(p)pΛ

{
(n− 1− 2p)Rn−2−2pyR′ +Rn−1−2py′

}

+
(n− 2)An−2

2κ2
n

[n/2]∑
p=2

α̃(p)p(n− 1− 2p)Rn−2−2pR′Λ

×
{
−2y(y2 + F )

p−1∑
w=1

(p− 1)!(−1)w

w!(p− 1− w)!
Fw−1

+

p−1∑
w=1

(p− 1)!(−1)w

w!(p− 1− w)!
×

w−1∑
j=0

(w − 1)!(−1)w−1−j

j!(w − 1− j)!
2(1− 2j)

2(w − j) + 1
y2(w−j)+1(y2 + F )j

}
+

(n− 2)An−2

2κ2
n

×

[n/2]∑
p=2

α̃(p)pR
n−1−2pΛ

{
−2y(y2 + F )

p−1∑
w=1

(p− 1)!(−1)w

w!(p− 1− w)!
Fw−1

+

p−1∑
w=1

(p− 1)!(−1)w

w!(p− 1− w)!
×

w−1∑
j=0

(w − 1)!(−1)w−1−j

j!(w − 1− j)!
2(1− 2j)

2(w − j) + 1
y2(w−j)+1(y2 + F )j

}′
. (A.21)

Using

R′
{

ln

∣∣∣∣R′ + yΛ

R′ − yΛ

∣∣∣∣}′=2(yΛ)′ − 2yΛ′ − yΛ
F ′

F
(A.22)
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for the logarithmic term, we finally obtain

ΞδR =− (n− 2)An−2

2κ2
n

[n/2]∑
p=0

α̃(p)(n− 1− 2p)
yΛ

F
Rn−2−2p(1− F )pδR

− (n− 2)An−2

2κ2
n

[n/2]∑
p=1

α̃(p)

[
2p(n− 1− 2p)Rn−2−2pyΛ

+ pRn−1−2p 1

R′

(
2y′Λ− yΛ

F ′

F

)]
δR

+
(n− 2)An−2

κ2
n

[n/2]∑
p=2

α̃(p)p(n− 1− 2p)Rn−2−2pΛ

p−1∑
w=1

(p− 1)!(−1)w

w!(p− 1− w)!

×
w−1∑
j=0

(w − 1)!(−1)w−1−j

j!(w − 1− j)!

(
R′2

Λ2

)j
y2(w−j)+1

2(w − j) + 1
δR

− (n− 2)An−2

κ2
n

[n/2]∑
p=2

α̃(p)

[
pRn−1−2p

p−1∑
w=1

(p− 1)!(−1)w

w!(p− 1− w)!

×
{
Fw−1yR

′

Λ

+
w−1∑
j=0

(w − 1)!(−1)w−1−j

j!(w − 1− j)!
2jR′2j−1Λ1−2j

2(w − j) + 1
y2(w−j)+1

}]′
δR. (A.23)

On the other hand, using Equations 1.11 and 1.73, we obtain

PMM
′ =− (n− 2)An−2

2κ2
n

[n/2]∑
p=0

α̃(p)(n− 1− 2p)Rn−2−2p(1− F )pR′
yΛ

F

+
(n− 2)An−2

2κ2
n

[n/2]∑
p=1

α̃(p)pR
n−1−2p(1− F )p−1F ′

yΛ

F
. (A.24)
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Some useful cancellations allow us to derive

Ξ−ΛPΛ + PMM
′

R′
=

− (n− 2)An−2

2κ2
n

[n/2]∑
p=2

α̃(p)pR
n−1−2p

[
F ′

R′
yΛ

F

{
(1− F )p−1 − 1

}

+

p−1∑
w=1

(p− 1)!(−1)w

w!(p− 1− w)!

{
2yFw−1(y2 + F )

(
Λ

R′

)′
+2Fw−1y2y′

Λ

R′

}

+

p−1∑
w=1

(p− 1)!(−1)w

w!(p− 1− w)!

w−1∑
j=0

(w − 1)!(−1)w−1−j

j!(w − 1− j)!
2jy2(w−j)+1(y2 + F )j−1

2(w − j) + 1

×
{

2(y2 + F )

(
Λ

R′

)′
+(2yy′ + F ′)

Λ

R′

}]
. (A.25)

Expanding the first term, we finally obtain

Ξ− ΛPΛ + PMM
′

R′

=− (n− 2)An−2

2κ2
n

{
2(y2 + F )

(
Λ

R′

)′
+(2yy′ + F ′)

Λ

R′

}[n/2]∑
p=2

α̃(p)pR
n−1−2p

×
p−1∑
w=1

(p− 1)!(−1)w

w!(p− 1− w)!

×
[
Fw−1y +

w−1∑
j=0

(w − 1)!(−1)w−1−j

j!(w − 1− j)!
2jy2(w−j)+1(y2 + F )j−1

2(w − j) + 1

]
. (A.26)

By direct calculations, we can show

2(y2 + F )

(
Λ

R′

)′
+(2yy′ + F ′)

Λ

R′
= 0 (A.27)
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and complete the proof.

A.1.4 Equation (1.86) in Lovelock Gravity

In this appendix, we derive Equation 1.86 in Lovelock gravity. While we

consider the spherically symmetric case (k = 1) in the main text, we derive

the equations for general k in this appendix.

Let us start from the action in the form of Equation A.10:

IM =
(n− 2)V

(k)
n−2

2κ2
n

[n/2]∑
p=0

∫
d2ȳα̃(p)

[
2pkp−1Rn−2p−1y(NrΛ)′

− 2pkp−1N

n− 2p

(
(Rn−2p)′′Λ−1 + (Rn−2p)′(Λ−1)′

)
+ pRn−2p−1

{
kp−1 − (k − F )p−1

}{
(ΛNry + Λ−1NR′)

F ′

F
− Λy

Ḟ

F

}
+ (n− 2p− 1)

{
(k − F )p + 2pkp−1F

}
NΛRn−2−2p

− 2pkp−1Rn−2p−1yΛ̇

]
. (A.28)

Using

(Λ−1)′ =
Λ(F ′ + 2yy′)

2R′2
− R′′

R′Λ
(A.29)
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for the second line and integration by parts for the first line, we obtain

IM =
(n− 2)V

(k)
n−2

2κ2
n

[n/2]∑
p=0

∫
d2ȳα̃(p)

[
−2pkp−1Λ

(
Nr +

Ny

R′

)
(Rn−2p−1y)′

+ pRn−2p−1

{
kp−1 − (k − F )p−1

}{(
Nr +

Ny

R′

)
Λy

F
F ′ − Λy

Ḟ

F

}
− pRn−2p−1NΛ

R′
(k − F )p−1F ′ + (n− 2p− 1) (k − F )pNΛRn−2−2p

− 2pkp−1Rn−2p−1yΛ̇

]
+(t.d.), (A.30)

where we also used R′2Λ−1 = FΛ + y2Λ. Using

NΛ

R′
M ′ =

(n− 2)V
(k)
n−2

2κ2
n

[n/2]∑
p=0

α̃(p)
NΛ

R′
Rn−1−2p

×
[
−p(k − F )p−1F ′ + (n− 1− 2p)(k − F )p

R′

R

]
, (A.31)

PMṀ =
(n− 2)V

(k)
n−2

2κ2
n

[n/2]∑
p=0

α̃(p)
yΛ

F
Rn−1−2p

×
[
p(k − F )p−1Ḟ − (n− 1− 2p)(k − F )p

Ṙ

R

]
(A.32)
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which can be obtained from Equations 1.11 and 1.73, we obtain

IM −
∫
d2ȳ

(
PMṀ +

NΛ

R′
M ′
)

=
(n− 2)V

(k)
n−2

2κ2
n

[n/2]∑
p=0

∫
d2ȳα̃(p)

[
−2pkp−1Λ

(
Nr +

Ny

R′

)
(Rn−2p−1y)′

+ pRn−2p−1

{
kp−1 − (k − F )p−1

}(
Nr +

Ny

R′

)
Λy

F
F ′ − 2pkp−1Rn−2p−1yΛ̇

− pkp−1Rn−2p−1Λy
Ḟ

F
+
yΛ

F
(k − F )p∂t(R

n−1−2p)

]
+(t.d.). (A.33)

Using Equation A.2 for yΛḞ /F together with integration by parts and Ṙ/R′ =

Ny/R′ +Nr, we rewrite the above expression as

IM −
∫
d2ȳ

(
PMṀ +

NΛ

R′
M ′
)

=
(n− 2)V

(k)
n−2

2κ2
n

[n/2]∑
p=0

∫
d2ȳα̃(p)

[
−2pkp−1Λ

Ṙ

R′
(Rn−2p−1y)′

+ pRn−2p−1

{
kp−1 − (k − F )p−1

}
Ṙ

R′
Λy

F
F ′ +

yΛ

F
(k − F )p∂t(R

n−1−2p)

+ pkp−1

{
2yΛ∂t(R

n−2p−1) +
1

n− 2p
∂t(R

n−2p)∂x

(
ln

∣∣∣∣R′ + yΛ

R′ − yΛ

∣∣∣∣)}]+(t.d.).

(A.34)

Replacing the logarithmic term by

∂x

(
ln

∣∣∣∣R′ + yΛ

R′ − yΛ

∣∣∣∣)=
−2R′′yΛ + 2(yΛ)′R′

FΛ2

=
yΛ

FR′

(
−F ′ + 2y′

y
F

)
, (A.35)
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we finally obtain

IM−
∫
d2ȳ

(
PMṀ +

NΛ

R′
M ′
)

=
(n− 2)V

(k)
n−2

2κ2
n

[n/2]∑
p=0

∫
d2ȳα̃(p)

ṘΛyRn−2−2p(k − F )p−1

R′F

×

[
(n− 2p− 1)(k − F )R′ − pRF ′

]
+(t.d.)

=

∫
d2ȳ

ṘΛy

R′F
M ′ + (t.d.) (A.36)

which completes the derivation.

A.2 Boundary Condition at

Spacelike Infinity

In this appendix, we confirm that under the transformation from {Λ, PΛ;R,PR}

to {M,PM ;S, PS} the boundary term and total variation in Equation 1.80

are finite with suitable asymptotic fall-off rates of the ADM variables con-

sistent with asymptotic flatness. We also consider the transformation to

slicings which approach the PG gauge at spatial infinity, {Λ, PΛ;R,PR} to

{M, P̃M ;S, P̃S} and show that it is also valid canonical transformation.

We consider the following behaviour of the ADM variables near spacelike
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infinity:

N ' N∞(t) +O(x−ε1), (A.37)

Nr ' N∞r (t)x−(n−3)/2−ε2 , (A.38)

Λ ' 1 + Λ1(t)x−(n−3)−ε3 , (A.39)

R ' x+R1(t)x−(n−4)−ε4 , (A.40)

where ε1 is positive, ε2, ε3 and ε4 are non-negative numbers, and we require

the following three conditions:

(I) the canonical transformation from {Λ, PΛ;R,PR} to {M,PM ;S, PS} is

well-defined,

(II) the Hamiltonian is finite in terms both of {Λ, PΛ;R,PR} and {M,PM ;S, PS},

and

(III) the Misner-Sharp mass is non-zero and finite at spacelike infinity M '

M∞(t).

We will see below that these requirements are fulfilled for ε1 > 0, ε2 >

max[0,−(n−5)/2], ε3 = 0, and ε4 > max[0,−(n−5)]. Note that to approach

PG slicings we must have ε2 = 0 and ε3 → ∞ (or Λ = 1 everywhere) for all

n. This does not greatly alter the analysis below and will be addressed when

appropriate.
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First we look at the following integrated Liouville form, Equation 1.80:

∫ ∞
−∞

dx(PΛδΛ + PRδR)−
∫ ∞
−∞

dx(PMδM + PSδS) = δ

∫ ∞
−∞

ηdx+ [ ζ ]x=∞
x=−∞,

(A.41)

where PΛ, PR, S, PS, M , PM , η, and ζ are defined by Equations 1.53, 1.54,

1.72, 1.73, 1.74, 1.75, 1.81, and 1.82, respectively. For the well-definedness of

the canonical transformation, two conditions must hold at spacelike infinity;

(i) ζ vanishes, and (ii) the integrands in the left-hand side and η converge

to zero faster than O(x−1). The second requirement ensures the finiteness of

the integrals. For the case of slicings which approach the PG gauge Equation

A.41 becomes

∫ ∞
−∞

dx(PΛδΛ + PRδR)−
∫ ∞
−∞

dx((PM + ∆PM)δM + (PS + ∆PS)δS)

= δ

∫ ∞
−∞

(η + ∆η)dx+ [ ζ + ∆ζ ]x=∞
x=−∞, (A.42)

where we define ηPG := ∆η + η and ζPG := ∆ζ + ζ as the total derivative

terms appropriate for slicings which approach PG gauge at spacelike infinity

and ∆PM and ∆PS are defined as ∆PM := P̃M −PM and ∆PM := P̃M −PM .

We know from Equation 1.76 that ∆PM = S ′
√

1− F/F . In order to preserve

the form of the diffeomorphism constraint, Hr we must insist that ∆PMM
′+

∆PSS
′ = 0 which gives ∆PS = −M ′√1− F/F . Since ∆PM and ∆PS are not
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zero it will be important to consider them (in any equations containing PM

and PS), as well as ∆η and ∆ζ when we consider PG boundary conditions.

It will be important later to notice that we can use the fact that Equation

1.34 tells us that M = M(F, S) to write

∫ ∞
−∞

dx(∆PMδM + ∆PSδS) = δ

∫ ∞
−∞

∆η dx+ [ ∆ζ ]x=∞
x=−∞

= δ

∫ ∞
−∞

X ′(S)Y (F ) dx− [ Ẋ(S)Y (F ) ]x=∞
x=−∞, (A.43)

where

X(S) := −
(n− 2)V

(k)
n−2

2κ2
n

Sn−2

n− 2
(A.44)

and

Y (F ) :=

∫
dF

√
1− F
F

. (A.45)

Using the PG boundary conditions one can easily show that ∆η = X ′Y

diverges and ∆ζ = ẊY goes to zero at spacelike infinity. We will see later

that the ∆η will cancel other diverging terms when the PG boundary condi-

tions are used.

Let us now look at the asymptotic behaviour of the momentum conjugates

for the case of slices which approach the Schwarzschild form at spacelike
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infinity. Near spacelike infinity, PΛ and PR behave as

PΛ '−
(n− 2)An−2

κ2
n

N−1
∞

(
Ṙ1x

1−ε4 −N∞r x(n−3)/2−ε2
)
, (A.46)

PR '−
(n− 2)An−2

κ2
n

N−1
∞

×
[
N∞r (t)

(
−n− 3

2
+ ε2

)
x(n−5)/2−ε2 + Λ̇1(t)x−ε3 + (n− 3)Ṙ1x

−ε4
]
,

(A.47)

with which we obtain

PΛδΛ 'O(x−(n−4)−ε3−ε4) +O(x−(n−3)/2−ε2−ε3), (A.48)

PRδR 'O(x−(n−3)/2−ε2−ε4) +O(x−(n−4)−ε3−ε4) +O(x−(n−4)−2ε4). (A.49)

Hence, ε4 > 0 and ε2 + ε3 > 0 are required for n = 5. For n = 4, the

requirement is ε4 > 1/2, ε3 + ε4 > 1, ε2 + ε4 > 1/2, and ε2 + ε3 > 1/2.

For the next check, we see the behaviour of F , defined by Equation 1.28.

Using

y 'N−1
∞ (Ṙ1x

−(n−4)−ε4 −N∞r x−(n−3)/2−ε2), (A.50)
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where y is defined by Equation 1.30, we obtain

F 'N−2
∞ Ṙ1x

−(n−4)(−Ṙ1x
−(n−4)−2ε4 + 2N∞r x

−(n−3)/2−ε2−ε4)

+ 1− 2Λ1x
−(n−3)−ε3 −N−2

∞ N∞r
2x−(n−3)−2ε2

− 2(n− 4 + ε4)R1x
−(n−3)−ε4 , (A.51)

which converges to 1. To satisfy condition (III) F must behave near infinity

as

F ' 1− F1(t)x−(n−3) (A.52)

and then, for M 'M∞(t), F1 is identified as

F1(t) ≡ 2κ2
nM

∞(t)

(n− 2)An−2

. (A.53)

Since we have already required (n− 4) + 2ε4 > 1 and (n− 3)/2 + ε2 + ε4 > 1

in the previous argument, the first line in Equation A.51 converges to zero

faster than O(x−(n−3)). Therefore the condition (III) requires ε2ε3ε4 = 0,

where F1(t) is determined depending on the cases. It will be important for

later to note that for PG slicings, where ε2 = 0, F1(t) is given by

F1(t) = −N−2
∞ N∞2

r (A.54)

Using Equation A.50 and M ' M∞(t), we obtain the asymptotic be-
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haviour of PMδM as

PMδM ' −N−1
∞ δM∞(Ṙ1x

−(n−4)−ε4 −N∞r x−(n−3)/2−ε2). (A.55)

This provides additional requirements; ε2 > 0 for n = 5 and ε4 > 1 and

ε2 > 1/2 for n = 4. Note however that if one uses the momentum variable

P̃M appropriate for asymptotically PG slices, then there is an extra term

on the right hand side of Equation A.55, ∆PMδM , that cancels the second

term. This in turn allows the choice ε2 = 0 for all spacetime dimensions as

required by the PG slicing.

The conditions for ε2 and ε4 obtained up to here are summarized as

ε2 > max[0,−(n − 5)/2] and ε4 > max[0,−(n − 5)] for slicings which ap-

proach the Schwarschild slicings at spatial infinity. We will see below that

the requirements (I) and (II) are fulfilled under these conditions.

Using the following asymptotic expansion of PS:

PS '−
(n− 2)An−2

κ2
n

N−1
∞

(
Λ̇1x

−ε3 + (n− 4 + ε4)Ṙ1x
−ε4
)

+O(x−(n−1)/2−ε2−εM ), (A.56)

where εM is some positive number defined by the next leading-order of M as
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M 'M∞ +O(x−εM ), we obtain

PSδS '− δR1
(n− 2)An−2

κ2
n

N−1
∞

×
(

Λ̇1x
−(n−4)−ε3−ε4 + (n− 4 + ε4)Ṙ1x

−(n−4)−2ε4

)
+O(x−3(n−3)/2−ε2−ε4−εM ). (A.57)

Under the present conditions this converges to zero faster than O(x−1).

Next let us evaluate ζ and η. We write the logarithmic term in Equations

1.81 and 1.82 as

ln

(
R′ + yΛ

R′ − yΛ

)
= ln

(
1−W
1 +W

)
, (A.58)

where

W :=
κ2
nΛPΛ

(n− 2)An−2Rn−3R′
. (A.59)

Using the fact that W converges to zero as

W ' −N−1
∞

(
Ṙ1x

−(n−4)−ε4 −N∞r x−(n−3)/2−ε2
)
, (A.60)

we can evaluate the logarithmic term as

ln

(
R′ + yΛ

R′ − yΛ

)
'− 2W − 2

3
W 3. (A.61)
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Using this, we can show that ζ converges to zero under the present conditions

as

ζ 'O(x−(n−5)−2ε4) +O(x−(n−5)/2−ε2−ε4). (A.62)

We also see that η is evaluated as

η =
(n− 2)An−2R

n−3R′

2κ2
n

[
2W + ln

(
1−W
1 +W

)]
'− (n− 2)An−2x

n−3

3κ2
n

W 3

'−(n− 2)An−2

3κ2
n

(
Ṙ1

N∞

)3

x−2(n−4)+1−3ε4

+
(n− 2)An−2

3κ2
n

(
N∞r
N∞

)3

x−(n−3)/2−3ε2 (A.63)

and converges to zero faster than O(x−1) under the present conditions. No-

tice that for the PG case, where ε2 = 0, the second term does not go to zero

fast enough for n ≤ 5. Applying the PG boundary conditions to Equations

A.44, A.45 and A.54 we see that this term is cancelled by ∆η

Lastly, let us check the well-definedness of the Hamiltonian
∫∞
−∞ dx(NH+

NrHr), where Hr and H are defined by Equations 1.56 and 1.57, respectively.

It requires that the fall-off rates of NH and NrHr are faster than O(x−1).
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From the following asymptotic expressions;

ΛP ′Λ '−
(n− 2)An−2

κ2
n

N−1
∞

(
1 + Λ1x

−(n−3)−ε3
)

×
[
(1− ε4)Ṙ1x

−ε4 −
(
n− 3

2
− ε2

)
N∞r x

(n−5)/2−ε2
]
, (A.64)

R′PR '−
(n− 2)An−2

κ2
n

N−1
∞

(
1− (n− 4 + ε4)x−(n−3)−ε4

)
×
[
N∞r

(
−n− 3

2
+ ε2

)
x(n−5)/2−ε2 + Λ̇1x

−ε3 + (n− 3)Ṙ1x
−ε4
]
,

(A.65)

we see that the dangerous terms of the order x(n−5)/2−ε2 in Hr = −ΛP ′Λ+R′PR

are cancelled out and obtain

NrHr 'O(x−(n−3)/2−ε2−ε3) +O(x−(n−3)/2−ε2−ε4). (A.66)

This is faster than O(x−1) under the present conditions. Next let us see the

behaviour of NH. Using the followings asymptotic expansions:

ΛPΛ '−
(n− 2)An−2

κ2
n

N−1
∞

(
1 + Λ1x

−(n−3)−ε3
)(

Ṙ1x
1−ε4 −N∞r x(n−3)/2−ε2

)
,

(A.67)

RPR '−
(n− 2)An−2

κ2
n

N−1
∞

(
x+R1x

−(n−4)−ε4
)

×
[
N∞r (t)

(
−n− 3

2
+ ε2

)
x(n−5)/2−ε2 + Λ̇1(t)x−ε3 + (n− 3)Ṙ1x

−ε4
]
,

(A.68)
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we obtain

PΛ

Rn−2

(
RPR −

n− 3

2
ΛPΛ

)
'O(x−(n−4)−ε3−ε4) +O(x−(n−3)/2−ε2−ε4)

+O(x−(n−3)/2−ε2−ε3) +O(x−(n−4)−2ε4). (A.69)

This shows that the first line of the following super-Hamiltonian;

H =− κ2
nPΛ

(n− 2)An−2Rn−2

(
RPR −

n− 3

2
ΛPΛ

)
− (n− 2)An−2

κ2
n

{
−Rn−3(R′Λ−1)′ +

n− 3

2
ΛRn−4(1− Λ−2R′

2
)

}
(A.70)

converges to zero faster than O(x−1) under the present conditions. On the

other hand, the second line is evaluated as

−Rn−3(R′Λ−1)′ +
n− 3

2
ΛRn−4(1− Λ−2R′

2
) ' ε3O(x−1−ε3) + ε4O(x−1−ε4),

(A.71)

which also converges faster than O(x−1). As a result, NH converge to zero

faster than O(x−1) and hence the Hamiltonian is well-defined. In the PG

case, where Λ = 1 everywhere this still converges to zero faster than O(x−1).

We also check the well-definedness of the Hamiltonian with a new set of

variables:
∫∞
−∞ dx(NMM ′+NSPS), where NM and NS are defined by Equa-

tions 1.88 and 1.89, respectively. Using Equation A.50, we obtain NM ' N∞.

Combining this with M ′ ' O(x−1−εM ), it is shown that NMM ′ converges to
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zero faster than O(x−1) under the present conditions. On the other hand,

using NS ' O(x−(n−4)−ε4) and Equation A.56, we obtain

NSPS 'O(x−(n−4)−ε3−ε4) +O(x−(n−4)−2ε4) +O(x−3(n−3)/2−ε2−ε4−εM ).

(A.72)

This also converges to zero faster than O(x−1) under the present conditions.
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